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ABSTRACT 

With the great progress in information and communications technologies in the 

past few decades, intelligent transportation systems (ITS) have accumulated vast 

amounts of data regarding the movement iof people and goods from one location to 

another. Besides the traditional fixed sensors and GPS devices, new emerging data 

sources and approaches such as social media and crowdsourcing can be used to 

extract travel-related data, especially given the wide popularity of mobile devices 

such as smartphones and tablets, along with their associated apps. To take advantage 

of all these data and to address the associated challenges, big data techniques, and a 

new emerging field called data science,  are currently receiving more and more 

attention. Data science employs techniques and theories from many fields such as 

statistics, machine learning, data mining, analytical models and computer 

programming to solve the data analysis task. It is therefore timely and important to 

explore how data science may be best employed for transportation data analysis. In 

this doctoral study, an integrative approach is proposed for data science applications 

in ITS. The proposed approach constitutes to an integration of multiple steps in the 

data analysis process, or integration of different models to build a more powerful one. 

The integrative approach is applied and tested on two case studies: border crossing 

delay prediction and traffic accident data analysis.  

For the first case study, a two-step border crossing delay prediction model is 

proposed, consisting of a short-term traffic volume prediction model and a 



xxiv 

 

multi-server queueing model. As such, this can be seen as an integration of 

data-driven models and analytical models. For the first step, the short-term traffic 

volume prediction model, an integration of data “width” decreasing (i.e., data 

grouping) step and model development step is applied.  For model development, a 

model combination step of a Seasonal Autoregressive Integrated Moving Average 

Model (SARIMA) and Support Vector Regression (SVR) is applied to realize better 

performance than when using each single model.  In addition, the spinning network 

(SPN) forecasting paradigm is enhanced for border crossing traffic prediction through 

the utilization of a dynamic time warping (DTW) similarity metric. The DTW-SPN is 

shown to yield several advantages such as computational efficiency and accuracy as 

demonstrated by a promising Mean Absolute Percent Error (MAPE) compared to 

SARIMA and SVR. 

 This dissertation also proposes the introduction of a data diagnosis step before 

short-term traffic prediction. In order to develop a methodology for model selection 

guidance, the author calculated the statistical measures of nonlinearity and complexity 

for multiple datasets and correlated those to the performances of multiple models 

SARIMA, SVR and k nearest neighbor (k-NN).  Based on this,  useful insights are 

revealed pertaining to parameter setting and model selection based on the data 

diagnosis results.  

For the second step, namely the queueing model development, heuristic solutions 

are presented for two types of queueing models 𝑀/𝐸𝐾/𝑛 and BMAP/PH/n.  These 

models take the predicted traffic volume as input, and use it to calculate future waiting 
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time. The analytical results are compared to the results from a VISSIM model 

simulation results, and shown to be comparable.  . Finally, an android smartphone app, 

which utilizes the two-step border prediction model methodology described above, is 

developed to collect, share and predict waiting time at the three Niagara Frontier border 

crossings.  

For the second case study involving traffic accident data analysis, first an 

integration of a data “depth” decreasing step and a model development step is once 

again applied.  To do this, the modularity-optimizing community detection algorithm 

is used to cluster the dataset, and for each cluster, the association rule algorithm is 

applied to yield insight into traffic accident hotspots and incident clearance time. The 

results show that more meaningful association rules can be derived when the data is 

clustered compared to when using the whole dataset directly. Secondly, an integration 

of a data “width” decreasing step (variable selection) and model development step is 

applied for real-time traffic accident risk prediction. For this, a novel variable selection 

method based on the Frequent Pattern tree (FP tree) algorithm is proposed and tested, 

before applying Bayesian networks and the k-NN algorithms. The experiment shows 

the models based on variables selected by FP tree always performed better than those 

using variables selected by the random forecast method. Lastly, an integration of the 

data mining model, M5P tree, and  the hazard-based duration model (HBDM) 

statistical method is applied to traffic accident duration prediction. The M5P-HBDM 

method is shown to be capable of identifying more meaningful factors that impact the 
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traffic accident duration, and to have a better prediction performance, than either M5P 

or HBDM.  

The two case studies considered in this dissertation serve to illustrate the 

advantages of an integrative data science approach to analyzing transportation data.  

With this approach, invaluable insight is gained that can help solve transportation 

problems and guide public policy.  
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CHAPTER 1 INTRODUCTION 

1.1 Data Science in Intelligent Transportation Systems 

 The recent years have witnessed a data explosion in many industries such as 

information technology, healthcare, retail, etc.. For example, according to Data Never 

Sleeps 2.0 Inforgraphic (DOMO, 2014), Google receives over 4 million search queries 

per minute. Wal-Mart, the retail giant, handles more than 1million customer 

transactions every hour, feeding databases estimated at more than 2.5 petabytes (The 

Economist, 2010).   

The data explosion is also powerfully changing our intelligent transportation 

systems (ITS). ITS strive to improve transportation safety and mobility, and enhance 

American productivity, through the integration of advanced communications 

technologies into the transportation infrastructure and vehicles. ITS encompass a 

broad range of wireless and wire line communications-based information and 

electronics technologies (U.S. DOT, 2014). With the development of ITS, 

transportation professionals currently operate in an extremely data-rich environment, 

compared to the environment of a few decades ago. Every minute, the road sensors, 

Global Position System (GPS) devices, and smartphones record and accumulate huge 

amounts of movement information of people and goods from one location to another. 

Some researchers think that the large amount of data currently available can potentially 

lead to a revolution in intelligent transportation system (ITS), changing ITS from a 
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conventional technology-driven system into a more powerful multifunctional 

data-driven intelligent transportation system (Zhang et al., 2011).  

 Given this, data science, which can be generally defined as the process of 

extracting useful knowledge from the data, is emerging as a new and important field of 

inquiry. More specifically, data science employs techniques and theories from many 

fields within the broad areas of mathematics, statistics, and information technology.  

This includes such theories and techniques as signal processing, probability models, 

machine learning, data mining, statistical learning, computer programming, data 

engineering, pattern recognition and learning, visualization, uncertainty modeling, data 

warehousing, and high performance computing (Wikipedia, 2014).  

One important task of data science is to handle what is now referred to as “big 

data”. According to Douglas (2012), “big data is high volume, high velocity, and/or 

high variety information assets that require new forms of processing to enable 

enhanced decision making, insight discovery and process optimization”. This 

definition clearly summarizes the three most important characteristics of big data, 

called the “3Vs” - volume (amount of data), velocity (speed of data in and out), and 

variety (range of data types and sources).  ITS data can be definitely viewed as one 

type of “big data”.   Companies such as IBM has recently brought in big data 

techniques to tackle  challenging transportation problems  such as real-time traffic 

data analysis and traffic conditions prediction and so on (Mukherjee, 2012).   

Although most disciplines in data science, like statistics and machine learning, 

have been utilized in ITS data analysis previously, there are still a lot to be explored. 
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For example, it’s important to extract the most important aspects of the data  given a 

variety of data sources. One also needs to choose the appropriate model or sometimes 

combine multiple models flexibly to answer one hard question. With new technologies 

still emerging, as reported by New York Times, “the new field of data science promises 

to revolutionize industries from business to government, health care to academia”. 

(New York Times, 2013) 

1.2 ITS Data Introduction and Application 

The wealth of transportation-related data presents the transportation community 

with an unprecedented opportunity in support of the planning, design, management, 

operations, and maintenance of the surface transportation system. The types and 

sources of ITS data are varied. This Chapter will briefly introduce several types of ITS 

data. Some of them have been widely used in transportation research in the past, while 

others have emerged recently.  

1.2.1 Fixed Sensors 

For several years, basic temporal traffic characteristics, such as traffic volume, 

occupancy and speed at a given point, have been recorded by fixed sensors on the side 

of roads. One of the most widely used types of fixed sensors is the inductive loop 

detector (ILD). Other fixed sensors such as optical detectors, ultrasonic detectors are 

also deployed. Although these fixed sensors are very useful, they fail in capturing the 

spatial aspect of traffic. In addition they suffer from their limited reliability, with their 
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prohibitive cost in attaining significant coverage of the roadway network (Faouzi et al., 

2011). 

1.2.2 Probe Vehicles  

The relevant probe vehicles techniques include Automatic Vehicle Location (AVL) 

systems onboard buses and other fleets, Automatic Vehicle Identification (AVI), 

ground-based radio navigation, cellular geo-location and the Global Positioning 

System (GPS) (Turner et al, 1998). Probe vehicles techniques can measure travel time 

directly. In addition, fundamental traffic characteristics like volume and speed can be 

inferred from probe vehicle data. Probe vehicle data can thus be used for real-time 

traffic operations monitoring, incident detection and route guidance applications.  

1.2.3 Connected Vehicles 

 Connected vehicles technologies can create a safe interoperable wireless 

communications network that includes cars, buses, trucks, trains, traffic signals, 

cellphones, and other devices. Connected vehicles have the potential to provide 

transportation agencies with dramatically improved real-time traffic, transit, and 

parking data, making it easier to manage transportation systems for maximum 

efficiency and minimum congestion. Other environmentally relevant real-time 

transportation data can also be generated and captured by connected vehicles to support 

and facilitate green transportation choices. Another important application of connected 

vehicles data is to improve safety by increasing situational awareness and reducing or 
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eliminating crashes through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) data transmission (U.S. DOT, 2014).  

1.2.4 Inspection and Toll Stations 

 Toll stations are usually located along highways, at bridges and tunnels to collect 

usage fees which are then used to pay for the cost of the transportation infrastructure. 

Some stations also are intended to inspect travelers and/or vehicles (e.g.,  border 

crossing inspection). In order to decrease or eliminate delay on toll roads,  electronic 

toll collection (ETC) systems like E-ZPASS in northeastern US, and NEXUS for 

US-Canada border crossing, have been used. As a natural by-product of the inspection 

or the toll collection process, traffic volume data are automatically available. These 

data can be used to predict travel demand, calculate and minimize delay time, evaluate 

the traffic safety (Abdelwahab and Abdel-Aty, 2002) and assess environmental impact 

near toll plazas (Chen and Li, 2010). 

1.2.5 Traffic Accidents 

 Traffic accident data constitute also a rich data resource.  . Countless research 

efforts have been conducted over the years to solve  traffic accidents related problems. 

Currently, traffic accident data are usually derived from police crash reports, from 

which data like frequency of crashes at specific locations and the injury-severities of 

vehicle occupants can be extracted. A great deal of other information like time of day, 

age and gender of vehicle occupants, road-surface conditions, roadway lighting, and 
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speed limits can also be derived to serve as explanatory variables in traffic accident 

modeling (Mannering and Bhat, 2014).  

 There are several types of traffic accident research studies including studies on 

hazardous locations/hot spot identification, and accident frequency/rate analysis 

designed to gain a better understanding of the factors that affect the probability of 

crashes; the idea behind such studies is that a  better understanding of the likelihood of 

crashes can provide direction for policies and countermeasures aimed at reducing the 

number of crashes (Lord and Mannering, 2010). The second category of traffic safety 

studies are  traffic accident injury-severities studies designed to understand the 

characteristics that may mitigate or exacerbate the degree of injury sustained by 

crash-involved road users, given that a crash has occurred (Savolainena et al., 2011). 

The third category is accident duration analysis, which can predict accidents’ duration 

under various conditions (different local and regional traffic conditions, time of day, 

day of week, weather conditions, work zones, etc…). Based on this predicted duration 

information, the authorities can then allocate incident response personnel and resources 

more effectively, and inform travelers about incidents more accurately. The last 

category is real-time traffic accident risk prediction modeling that take advantage of 

high-resolution, complex and rapidly and continuously flowing data instead of 

employing aggregated measures of traffic flow variables (e.g., speed limits for speed, 

AADT for flow, etc.) for predicting traffic accidents (Hossain and Muromachi, 2012). 
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1.2.6 Social Media and Crowd Sourcing 

With the popularity of mobile devices like smartphones and online social platforms, 

there now exists the opportunity to glean very useful travel-related data from mining 

publicly available social media data such Twitter, Facebook, Foursquare, and Google+.  

This could provide unique insight into traveler behavior, while offering a cost-effective 

alternative to the traditional methods of collecting travel behavioral data. Traffic 

information can also be extracted conveniently from some transportation related 

smartphone applications based on crowd sourcing theory, like WAZE, a 

community-based traffic and navigation application (app) acquired by Google in 2013, 

where drivers can share real-time traffic and road information, saving travel time, gas 

and money on their daily commute.  

1.2.7 Web-based Mapping Services 

 Web-based mapping services like Google Maps, Bing Maps, MapQuest, NextBus, 

Nokia Maps (Here), TomTom, INRIX and many other service providers are providing 

traffic information (e.g., real-time travel time given an origin-destination pair). These 

traffic data can be downloaded through the Application Programming Interface (API) 

provided by the map servicers. Some researchers have shown that travel time data 

downloaded from “virtual sensors” through Bing Maps APIs have a strong correlation 

with data from infrastructure-based sensors (Morgul et al., 2014). For example, Tostes 

et al. (2013) applied image processing techniques to Bing Maps of Chicago to acquire 
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and analyze the traffic flow intensity based on the change of the color-coded road links 

on the map (where green represents free-flow conditions and red congestion).  They 

then  developed a logistic regression model to predict future traffic flow intensity.   

1.2.8 Computer Simulation Data 

Simulation is an effective way to study the dynamic changes of a transportation 

system and the interactions among its different elements through the application of 

computer software. Simulation offers a few obvious advantages over real-world 

experiments (Huang, 2011). First, the depth of understanding that can be achieved by 

simulation and modeling can hardly be achieved in other ways. Second, the cost of 

simulation and modeling is much lower than that of other ways, since it does not 

require any building or construction in reality. Third, the speed of simulation and 

modeling is mainly constrained by computational resources, but not physical factors, 

which means it is much faster and offers greater efficiency. Fourth, in most 

transportation case studies, simulation and modeling is the only choice, because 

real-world experiments are too costly, impractical, or impossible.  

Therefore simulation can also help generate data for ITS development and 

analysis. Examples include user behavior data recorded by a driving simulator for 

traffic safety studies, system performance information for traffic flow under 

conditions like inclement weather, waiting time data for a queueing system of a toll 

plaza, connected vehicle data and traffic emission data. 
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1.2.9 Weather Data 

It is widely acknowledged that inclement weather could have a significant impact 

on transportation, such as traffic safety, traffic flow characteristics, and road 

infrastructure and agency productivity. For example, in traffic safety, a report  by the 

Federal Highway Administration (FHWA) shows that every year on average 23% of all 

vehicle crashes (more than 1.3 million) are a result of inclement weather, and 6,250 

people are killed and over 480,000 people are injured in weather-related crashes 

(FHWA, 2014). 

Weather data include temperature, visibility, wind speed, and precipitation 

information. Weather data can be downloaded from commercial weather service APIs 

that provide real-time and historical weather information via the Internet.For example, 

the Weather Underground website combines data from personal weather stations with 

data from quality controlled and the automated airport weather stations (Weather 

Underground, 2014).   

1.3 ITS Data Analysis 

 Given the different types of ITS data discussed above, the remainder of this 

Chapter will introduce several applications of data science in analyzing ITS data.  The 

discussion will be organized under two headings: (1) the data analysis process; and (2) 

data analysis models used to drive value from the data.  
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1.3.1 The ITS Data Analysis Process 

 Usually, an ITS data analysis process may include one or more of the following 

important steps, data preprocessing, data fusion, data “width and depth” reduction, and 

model development, as shown in Figure 1-1. 
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1.3.1.1 Data Preprocessing 

As can be seen in Figure 1-1, the first necessary step in the ITS data analysis 

process is data preprocessing which may include outlier mining and missing data 

estimation. The objective of the data preprocessing is to produce a “clean and complete” 

traffic dataset that can be used for further analysis. 

Outliers in ITS data may be the result of measurement error or equipment failure 

(faulty values); in that case it is essential and necessary to identify those kinds of 

outliers and remove them from the dataset.  On the other hand, outliers may represent 

correct data points reflecting the ground truth.  In that case, outliers may reveal 

important patterns in the data.  Three typical outlier mining approaches can be 

identified: (1)the statistical-based approach; (2) the distance-based approach; and (3) 

the density-based approach.  These approaches were applied on a travel time dataset 

and a traffic flow dataset by Chen et al.(2010).  

The problem of missing data is another critical issue that needs to be addressed 

during the data analysis process. According to one research report, at any given time, 

approximately 25-30% of the detectors are off-line and contribute to missing data 

problems (Nguyen and Scherer, 2003). To deal with the missing data problem, 

techniques range from simply taking the average of the overall series to complex 

machine learning algorithms. A detailed review of data missing estimation techniques 

can be found in the paper published by García-Laencina et al. (2010). Most recently, 

Tan et al. (2013) proposed a tensor-based model to estimate missing traffic data and 
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showed that their model can achieve a better imputation performance than the 

state-of-the-art approaches even when the missing ratio is up to 90%.  

1.3.1.2 Data Fusion 

A widely accepted definition of data fusion is “A multi-level process dealing with 

the association, correlation, combination of data and information from single and 

multiple sources to achieve refined position, identify estimates and complete and 

timely assessments of situations, threats and their significance” (Joint Directors of 

Laboratories, 1991). With such a variety of potentially useful ITS data, data fusion has 

become one indispensable part in solving ITS problems. For example, one application 

of ITS data fusion involves combining data from loop detectors and probe vehicles to 

better estimate travel time. Faouzi et al. (2011) gave a detailed review of data fusion 

applications in ITS systems such as the advanced traveler information systems, 

automatic incident detection, traffic forecasting and traffic monitoring.   

There are three different levels of data fusion: data-level fusion, feature-level 

fusion and decision-level fusion (Hall and Llinas, 1997). Data-level fusion simply 

means the raw data can be directly combined if the sensor data are commensurate (i.e., 

if the sensors are measuring the same physical phenomena such as two visual image 

sensors or two acoustic sensors). Feature-level fusion means features are extracted 

from multiple sensor observations, and combined into a single concatenated feature 

vector which is used as an input for the models. Decision-level fusion involves fusion 

of sensor information, after each sensor has made a preliminary determination of an 
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entity’s location, attributes, and identity. One example of decision level fusion to 

improve the classification accuracy for the severity of road traffic accidents based on 

the Dempster–Shafer algorithm, the Bayesian procedure and logistic model (Sohn and 

Lee, 2003).  

1.3.1.3 Data “Width and Depth” Reduction 

As can be seen in Figure 1-1, data “width” reduction  refers to the variable 

selection (feature selection) step, whereas data “depth” reduction refers to data 

grouping and clustering. These two approaches have been shown to be useful in ITS 

data analysis, and are likely to become even more useful in the era of big data. The 

paragraphs below will introduce data width and depth reduction techniques.  .  

Different from feature-level fusion, in which different types of features can be 

concatenated and a new feature representation can be obtained for training and testing, 

variable selection (feature selection), or data width reduction methods, aims at 

identifying a subset of relevant features for improved or comparable recognition 

performance (Yeh et al., 2012). A large number of potential input variables can also 

result in the “garbage in-garbage out” effect (Papadokonstantakis et al., 2005), which 

refers to the times when computers unquestioningly process unintended, even 

nonsensical, input data ("garbage in") and produce undesired, often nonsensical, output 

("garbage out") (Wikipedia, 2014). More is not always the better. Variable selection 

can thus help researchers identify and extract meaningful information (patterns, 

structure, underlying relationships, etc.) from the data. Only a small representative 
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subset of the original feature space of the data may be needed to interpret the results 

(Fernández et al., 2014). 

Besides that, the inclusion of a large number of explanatory variables may  

cause model overfitting (Sawalha and Sayed, 2006). It can also cause 

application-related problems such as long model running time and unreliable 

prediction results, particularly when a model is applied to new locations and larger 

data instances (Fernández et al., 2014).    

Besides variable selection which can decrease the “width” of the dataset, data 

grouping and clustering techniques aim at  reducing the “depth” problem of a dataset. 

Especially when the variation in observations is relatively large, clustering the data set 

first and fitting a model for each cluster accordingly would work better than 

developing a model based on the whole dataset (Sohn and Lee, 2003). For example, 

for short-term traffic volume prediction, studies have shown that the prediction results 

could be significantly improved if the input data  were to be first grouped or 

clustered (Wild, 1997; Chrobok et al, 2004). This is mainly because daily traffic 

patterns vary significantly based on whether the prediction is for a weekday, weekend, 

or a special day (e.g., a holiday or a special event day). Another example where data 

clustering has proven very useful is in accident analysis where Abdel-Aty and Yu 

(2014), for example analyzed crashes by types, in the context of real-time crash risk 

assessment. Besides improving accuracy, dividing the dataset helps reduce 

computation time (Chung, 2004). Given this, preliminary data analysis is often 
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conducted, prior to modeling, to determine if traffic data grouping and clustering is 

necessary. 

1.3.1.4 Model Development 

The last important step in ITS data analysis process is model development. 

Usually for the same ITS data analysis task, several models may be built and 

compared. One way is to simply pick up the model with the best performance, and the 

other way is to combine the results of a few models together, known as model 

combination (this is introduced later in this Chapter).  

Note that model combination is different from decision-level data fusion, where 

each classifier is trained based on its corresponding sensor data and the results 

predicted by the different classifiers (and the associated features) are combined later 

via voting or other strategies to reach the final output (Yeh et al., 2012). In the case of 

model combination, the models are first generated by resampling using algorithms like 

bagging (Breiman, 1996), random forests (Breiman, 2001), and adaboosting (Schapire 

and Singer, 1999).  As a result of the sampling,  different subsets of the original 

dataset are obtained and utilized to train the different algorithms. Another approach is 

hybrid learning where different algorithms are trained on the original dataset (Geneva 

Artificial Intelligence Lab, 2009). Following model development, the prediction results 

of the different models are combined through fixed weights and/or Adaptive weights 

(Freitas and Rodrigues, 2006), or through majority voting (Lam and Suen, 1997).  
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The model combination method has been shown to improve the accuracy and 

robustness over a single model approach, for both regression (Clemen, 1989)  and 

classification problems (Wang, et al., 2003). This is because in real-world problems, 

the true model is likely to be unknown, and hence choices and assumptions would have 

to be made to allow the problem under study to be acceptably modelled and solved 

(Freitas and Rodrigues, 2006). Thus a small perturbation of the training sample may 

change the prediction results of a single model (Breiman, 2001). Through model 

combination, this risk could be decreased.  

Besides that, in time series prediction, the real-world time series are not purely 

linear or nonlinear, they often contain both linear and nonlinear patterns. As a result,  

a stand-alone ARIMA approach or a stand-alone neural networks (NNs) approach 

may not be adequate for modeling and forecasting time series.  This is because the 

ARIMA model cannot deal with nonlinear relationships whereas NNs cannot handle 

both linear and nonlinear patterns equally well (Zhang, 2003). Given this, ARIMA 

models have been combined with some AI-based algorithms like NNs, support vector 

regression (SVR) in recent  time series forecasting studies (e.g., Tseng, 2002; Zhang, 

2003; Chen and Wang, 2007). 

Examples of the model combination method for ITS data analysis include its 

application to short-term traffic volume prediction (Zheng, et al., 2006; Stathopoulos, 

et al., 2008; Tan, et al., 2009), travel time prediction (Van Hinsbergen and Van Lint, 

2008), traffic accident severity classification (Sohn and Lee, 2003), computer vision 

related applications like vehicle license plate recognition (Dlagnekov, 2004), vehicle 
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make recognition (Zhang, 2013), pedestrian detection (Nanni & Lumini，2008), and 

road sign identification (Kouzani, 2007).  

1.3.1.5 Model Application 

 After the models are developed, they can be integrated into all kinds of decision 

support systems, and transportation management systems for use by transportation 

authorities. They can also be developed into smartphone apps for travelers, a trend 

which is becoming more and more popular in routing, parking, and public transit 

applications.  

1.3.2 ITS Data Analysis Models 

From the previous introduction of the ITS data analysis process shown in Figure 

1-1, we can see that there are mainly two groups of models which can be used within 

the different steps of the data analysis process.  The first group is statistical models, 

and the second is machine learning and data mining. Historically,  statistical models 

have played an important role in transportation data analysis, but nowadays 

methodologies from machine learning and data mining have also become popular in 

addressing the ITS data analysis challenges especially when it comes to the area of big 

data. The following sections discuss the advantages and limitations of the two groups of 

models in ITS data analysis. Some other models like queueing model and traffic 

simulation will also be briefly introduced.  
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1.3.2.1 Statistical Models 

 As defined by the American Heritage Dictionary, statistics is the mathematics of 

collecting, organizing and interpreting numerical data, particularly when these data 

concern the analysis of population characteristics by inference from samples.. Statistics 

have a solid and a widely accepted mathematical foundation, and can thus provide 

insight into the mechanisms creating the data (Karlaftis and Vlahogianni, 2011). A 

statistical model is a set of probability distribution functions on the sample space 

(McCullagh, 2002). The real-world phenomenon and behavior are then interpreted by 

checking the parameters of the statistical models (Schutt & O’neil, 2013).  

Statistical models have been applied widely to ITS data analysis.  Examples 

include:(1) outlier detection in traffic data using a discordancy test (Chen et al., 2010); 

(2)  the use of the Dempster–Shafer algorithm in decision-level data fusion (Sohn and 

Lee, 2003); (3) the application of the classic Autoregressive Integrated Moving 

Average (ARIMA) model in traffic volume prediction (Ahmed and Cook, 1979); (4) 

the application of the multinomial logit model (MNL) in studying model choice 

behavior (Koppelman and Bhat, 2006); (5) the utilization of hazard based duration 

model (HBDM) in traffic accident clearance time analysis (Nam and Mannering, 2000), 

among others. However, the disadvantages of statistical models are that they cannot 

effectively deal with complex and highly nonlinear data (curse of dimensionality) 

(Karlaftis and Vlahogianni, 2011), a problem which is very common in ITS data 

analysis.  
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1.3.2.2 Machine Learning and Data Mining 

 On the other hand, machine learning is a subfield of computer science that deals 

with the construction and study of systems that can learn from data. Arthur Samuel in 

1959 defined it as “a field of study that gives computers the ability to learn without 

being explicitly programmed”. Machine learning is employed in a range of computing 

tasks where designing and programming explicit, rule-based algorithms is infeasible 

(Wikipedia, 2014). Data mining is the process of discovering interesting patterns and 

knowledge from large amounts of data. The data sources can include databases, data 

warehouses, the Web, and other information repositories or data that are streamed into 

the system dynamically (Han et al., 2011). Machine learning and data mining are 

sometimes conflated; the former focuses on prediction, based on known properties 

learned from the training data, and the latter focuses on the discovery of unknown 

properties in the data (Wikipedia, 2014).  

The promising performances of machine learning and data mining in dealing with 

the high nonlinearity in ITS data have been shown in comparisons with statistical 

models. Widely used machine learning and data mining models in ITS data analysis 

include support vector regress (SVR) for missing data estimation (Zhang and Liu, 

2009), random forests for variable selection (Abdel-Aty et al., 2008), neural network 

(NN) in traffic volume prediction (Smith and Demetsky, 1994), Bayesian network 

models in real time traffic accident risk prediction (Hossain and Muromachi, 2012), 

among others. However, one primary disadvantage of the machine learning and data 
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mining approach stems from the fact that they are essentially “black box” (the 

knowledge stored is not transparent to the user). These algorithms don’t generally focus 

on the interpretation of the parameters, and unlike statistical models for which the 

confidence intervals and posterior distributions for parameters and estimators are 

provided,  machine learning algorithms like k-means or k-nearest neighbors, don’t 

have a notion of confidence intervals or uncertainty (Schutt & O’neil, 2013). 

1.3.2.3 Other Types of Models 

 Besides statistical models, machine learning and data mining models, there are also 

some other types of models which play  a role in ITS data analysis. First, there are 

queueing models where the system is described in terms of the distributions of 

inter-arrival time and service time, along with the number of servers. Van Woensel and 

Vandaele (2006) proved the validity of the queueing approach to uninterrupted traffic 

flows by comparing the queueing results with observed data on speed and flow; a 

detailed review can be found in Van Woensel and Vandaele (2007). Another example 

are traffic simulation models. Before applying traffic simulation models, however, they 

must be calibrated and validated using real-world traffic data to ensure the validity of 

the results. Brockfeld et al. (2004), for example, calibrated a microscopic traffic 

simulation model by feeding the GPS data of the leading vehicle into it, and validated 

the model by comparing the simulated headway with the measured headway of the 

following vehicle. 
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1.3.2.4 Summary 

 From the aforementioned sections, we can see  that statistical models and machine 

learning and data mining have their own advantages and limitations. Although machine 

learning and data mining algorithms have shown better performances than statistical 

models in a few categories of ITS data analysis, their shortcomings, such as the “black 

box” property and the lack of correspondence between the real-world and the model 

parameters, are also worth noting. Besides that, as pointed out by Karlaftis and 

Vlahogianni (2011), it’s sometimes unfair to compare a complex machine learning or 

data mining model with a simple linear regression or linear ARIMA model.  They 

suggested that instead of solely considering model accuracy, the model simplicity and 

model suitability should also be compared.  

 The good news is that in ITS data analysis process, multiple types of models may 

be utilized together. For example, a statistical model  could be applied to find the 

outliers in the data before a data mining algorithm is used for short-term traffic volume 

prediction. In the model combination step, the results of a statistical model and a 

machine learning model may be combined to increase the accuracy. A time series 

analysis used to predict traffic demands can be integrated with a traffic simulation 

model to realize the on-line prediction of freeway travel time (Juri et al., 2007).  
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1.4 Research Overview 

 After introducing the wide range of possible applications of data science in ITS 

data analysis and modeling, this section will give an overview of the research 

performed in this dissertation. As is well-known, the two primary objectives of the 

transportation engineering profession is to improve the efficiency and safety of the 

transportation system. Therefore, this dissertation explores the application of data 

science to two case studies from the real-world, the first one focused on improving 

transportation system efficiency and the second focused on its safety, as discussed 

below.  Specifically, the focus of the first case study is on “border crossing delay 

prediction”, so as to improve the efficiency of the transportation system, and the 

second case study involves “traffic accident data analysis” in order to improve safety.. 

The two case studies considered result in five research subtopics involving the 

application of data science methods and paradigms, as described below.    

1.4.1 Two Case Studies  

1.4.1.1 Niagara Frontier International Border Crossing Delay Prediction 

 The first case study  involves predicting the border crossing delay at the Niagara 

Frontier International border crossing. The Niagara Frontier International Border 

include three main bridges connecting Western New York, U.S. to Southern Ontario, 

Canada, namely the Lewiston-Queenston Bridge, the Rainbow Bridge, and the Peace 

Bridge as shown in Figure 1-2. 
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Figure 1-2 Three Bridges at Niagara Frontier International Border 

In recent years, and as a result of the continuous travel demand increase, coupled 

with a tighter security and inspection procedures after September 11, border crossing 

delay has become a critical problem. As reported by the Ontario Chamber of 

Commerce, the border crossing delay causes an annual loss of approximate $268.45 

million for New York State. For the whole U.S., the cost is much higher and is 

estimated at about $4.13 billion every year (Ontario Chamber of Commerce, 2005). 

The report also warns that if the border delay issue is not adequately addressed, the U.S. 

stands to lose close to 17,500 jobs by 2020, and close to 92,000 jobs by 2030. Besides 

that, according to a press release in 2008 given by the U.S. Transportation Secretary, 

Mary E. Peters, the US-bound traffic from Canada encountered delays as high as three 

hours at several crossings, with delays costing businesses on both Canadian and the US 

sides as many as 14 billion dollars in 2007 (U.S. Department of Transportation, 2008). 

Besides the economic impact of border crossing delays, border delays and the 

associated idling of traffic awaiting inspection also have a significant environmental 
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cost. This includes the cost of the fuel wasted during idling, traffic-related pollutants 

and health hazards. A 10-year study by Lwebuga Mukasa et al. (2002) showed a 

positive relationship between increased commercial traffic volume at Peace Bridge 

border crossing between downtown Buffalo, New York and Fort Erie, Ontario, and the 

increased use of asthma health care.  

 To address these issues, the Niagara International Transportation Technology 

Coalition (NITTEC), a coalition of fourteen different agencies in Western New York 

and Southern Ontario, has been providing current or instantaneous border crossing 

delays to the public for years. The current border crossing times are communicated to 

the public via several information dissemination avenues, such as websites, on-road 

dynamic message signs and a traveler information phone system. 

However, there is an inherent limitation associated with providing just the current 

border delay. This is because the current delay is likely to be quite different from the 

future delay that the travelers would experience by the time they arrive at the border, 

especially if there is a significant lag between the time when travelers need to act on the 

information provided and the time of their arrival at the border. If the future delay can 

be predicted, first, it would be more informative for travelers and businesses to select 

the time to depart and the route to pursue. Second, predicting border crossing delays 

would help customs and border protection authorities determine the needed staffing 

level to meet the expected travel demand. Third, with predicted border crossing delays, 

intelligent routing algorithms could be developed to optimally direct and route 



26 

 

border-destined traffic in a fashion that would minimize the overall system travel time 

or the negative impacts on the environment. 

Therefore this dissertation proposes a two-step border delay prediction model that 

is composed of two sequential modules as shown in Figure 1-3 below. The first module 

is designed to predict the traffic volume arriving at the border crossings for each time 

period. Given the predicted traffic volume as the input, the second model estimates the 

corresponding waiting time by solving a transient multi-server queueing problem. 

 

 

 

 

 

 

Figure 1-3 Framework of the Two-step Border Crossing Delay Prediction 

1.4.1.2 Traffic Accident Data Analysis 

 The second case study is traffic accident data analysis. Traffic accidents cause a 

great deal of loss of lives and property. According to the accidents report of the United 

States Census Bureau, there were 10.8 million accidents and 35,900 persons killed in 

2009 (US Census Bureau, 2012). Besides that, As have been pointed out by a lot of 

researchers, traffic incidents account for more than 50% of motorist delays on freeways 

(Chin et al., 2004; Farradyne, 2000). The societal cost of such incidents comes in the 
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form of lost productivity, wasted fuel, harmful emissions, and potential secondary 

incidents. 

 Countless research efforts have been conducted to solve these traffic accidents 

related problems. As previously mentioned, a few important types of traffic accident 

research studies include: studies on high accident frequency locations (hotspots) 

identification; accident frequency/rate analysis; traffic accident injury-severities 

analysis; accident duration prediction; and  real-time traffic accident risk prediction 

models. This dissertation will use two traffic accident datasets collected from interstate 

I-190  in Buffalo, NY and I-64 in  Norfolk, Virginia and study three subtopics that 

include: (1) traffic accident hotspots identification and clearance time analysis; (2) 

traffic accident duration prediction; and (3) real time traffic accident risk prediction.  

1.4.2 Five Research Subtopics 

 In this dissertation, the research involving the border crossing delay prediction 

problem can be viewed as consisting of two research subtopics, whereas the traffic 

accident data analysis included three additional research subtopics, as described below.  

1.4.2.1 Short-term Traffic Volume Prediction Model 

 In this task, , based on an analysis of the diurnal distribution of hourly traffic 

volumes at the Peace Bridge, six separate groups are defined and individual models 

including the Seasonal Autoregressive Integrated Moving Average (SARIMA) model 

and Support Vector Regression (SVR) are developed for weekdays (Monday - 



28 

 

Thursday), Fridays, Saturdays, Sundays, holidays and game days. For each group, a 

model was built by combining forecasts from the SARIMA model, with forecasts made 

by SVR. The two models’ forecasts are combined using: (1) a simple fixed weight 

procedure; and (2) the fuzzy adaptive variable weight method, based on the Fresh 

Degree Function. The study’s findings appear to confirm the hypothesis that, SARIMA 

model does a good job capturing the linear characteristics of the data (e.g., seasonality 

and trend), but SVR appears to outperform SARIMA in modeling the data’s nonlinear 

aspects.  The study also shows that combining forecasts from the two models, 

especially using the fuzzy adaptive variable weight method, yields excellent prediction 

performance. 

Secondly, also under this research subtopic, the Spinning Network (SPN) method, 

a novel forecasting technique developed by Huang and Sadek (2009), is improved. The 

improvement is centered on the use of the Dynamic Time Warping (DTW) algorithm, 

to assess the similarity between two given time series, instead of using the Euclidean 

Distance as was the case with the original SPN. The performance of the DTW-SPN is 

then compared to that of three other forecasting methods, namely: (1) the original SPN 

(referred to as the Euclidean-SPN); (2) the SARIMA method; and (3) SVR. Both 

classified as well as non-classified datasets are utilized.  The results indicate that, in 

terms of the Mean Absolute Percent Error, the DTW-SPN performed the best for all 

data groups with the exception of the “game day” group, where SVR performed slightly 

better.  From a computational efficiency standpoint, the SPN-type algorithms require 

runtime significantly lower than that for either SARIMA or SVR. The performance of 
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the DTW-SPN was also quite acceptable even when the data was not classified, 

indicating the robustness of the proposed forecasting method in dealing with 

heterogeneous data.   

At last, considering that there is a lack of studies which focus on how to choose the 

appropriate prediction method based on the statistical characteristics of the dataset, the 

predictability of four different traffic volume datasets is diagnosed using various 

statistical measures including: (1) complexity analysis methods such as the delay time 

and embedding dimension method and the approximate entropy method; (2) 

nonlinearity analysis methods like the time reversibility of surrogate data; and (3) long 

range dependency analysis techniques like the Hurst Exponent.  Following the 

diagnosis of the datasets, three short term traffic volume prediction models are applied: 

(1) SARIMA; (2) k Nearest Neighbor (k-NN); and (3) SVR.  The results from the 

statistical data diagnosis methods are then correlated to the performance results of the 

three prediction methods on the four datasets in order to arrive at some conclusions 

regarding how to choose the appropriate prediction method.  

1.4.2.2 Queueing Model 

As the second step in estimate border crossing delay, the second research subtopic 

involved developing  two classes of multi-server queuing models based on real-time 

traffic volume and inspection time data collected at the Peace Bridge.  The two models 

are: (1) queueing models with exponential inter-arrival times and Erlang service times 

called M/𝐸𝐾/𝑛; and (2) a more generic model with a Batch Markovian Arrival Process 
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(BMAP) and phase types (PH) services called BMAP/PH/n. The transient solution of 

the queueing models is obtained using heuristic methods. For validation, the queueing 

models’ estimates are compared to the results from a detailed microscopic traffic 

simulation model of the Peace Bridge border crossing. The comparison shows that the 

transient queueing model, along its heuristic solution algorithm, is capable of 

predicting border crossing delay.  

1.4.2.3 Traffic Accident Hotspots and Clearance Time Analysis 

 In this third research subtopic, the potential for using complex network analysis 

and data mining methods, namely a modularity-optimizing community detection 

algorithm and association rules learning algorithm, are explored to identify important 

accident characteristics based on an accident dataset compiled for interstate highway 

I-190 in the Buffalo-Niagara metropolitan area.  The community detection algorithm is 

used first to cluster the data in order to reduce the inherent heterogeneity, and then the 

association rule learning algorithm is applied to each cluster to discern meaningful 

patterns within each, particularly related to high accident frequency locations (hotspots) 

and incident clearance time. The study results indicate that: (1) the community detection 

algorithm was quite effective in identifying clusters with discernible characteristics; (2) 

clustering helped in unveiling relationships and accident causative factors that 

remained hidden when the analysis was performed on the whole dataset.    



31 

 

1.4.2.4 Real-time Traffic Accident Risk Prediction 

In the fourth subtopic, a novel variable selection method based on Frequent Pattern 

tree (FP tree) is proposed, as well as a new variable importance metric the Relative 

Object Purity Ratio (ROPR). The research develops two traffic accident risk prediction 

models a k-NN model and a Bayesian network based on accident data collected on 

interstate highway I-64 in Virginia.  Prior to model development, two variable 

selection methods are utilized: (1) the FP tree method; and (2) the random forest 

method. The results show that the accident risk prediction models based on FP tree 

method perform better than the random forest based models, regardless of the type of 

prediction models (i.e. k-NN or Bayesian network), their parameter settings, and the 

types of datasets used for model training and testing.  

1.4.2.5 Traffic Accident Duration Prediction 

Both M5P tree based model and hazard-based duration model (HBDM) have been 

applied in traffic accident duration prediction. M5P can build tree-based models, like 

the traditional classification and regression tree (CART), but with multiple linear 

regression models as its leaves. However, in linear regression, the residuals are 

assumed to be distributed normally, which in turn means that the accidents duration is 

assumed to follow a normal distribution. Nevertheless, the distribution for the time to 

an event is almost certainly nonsymmetrical, and therefore hazard-based duration 

models (HBDM) may be a good choice for this kind of time-to-event modeling 

situation.  
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Therefore, in this last research subtopic, an M5P-HBDM algorithm is proposed to 

predict the traffic accident duration. According to the proposed algorithm, the leaves of 

the M5P tree model are replaced with HBDMs instead of linear regression models. The 

new M5P-HBDM model allows for classifying the dataset and for decreasing data 

heterogeneity.  Moreover, the proposed model avoids the need to assume a normal 

distribution of traffic accident duration. The results show that for I-190 and I-64 traffic 

accident datasets, M5P-HBDMs can find more significant and meaningful variables, 

compared to eitherthe stand-alone M5P or the HBDM algorithm,. For the duration 

prediction performance, M5P-HBDMs also have the lowest overall mean absolute 

percentage error (MAPE). 

1.5 Research Contributions 

The most important contribution of this dissertation is in proposing an integrative 

data science approach and applying it to ITS data analysis.   The integrative 

approach provides very promising insights into the data and results in the 

development of a few novel models for border crossing delay prediction and traffic 

accident data analysis. This section first discusses the dissertation contributions from 

the standpoint of the ITS data analysis process (e.g., the integration of data “width” 

reduction methods  and model development for real-time traffic accident risk 

prediction). Secondly, it describes the dissertation’s research contributions to ITS data 

analysis models (e.g., the integration of M5P and HBDM for traffic accident duration 

prediction). Lastly, this section summarizes the novel aspects of the research 
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performed.  Table 1-1 gives a summary of the research contributions in this 

dissertation.  

Table 1-1 Research Contributions Summary 

Two 

Aspects 

Research Contributions Relevant 

Research Topics 

Novelty  

ITS Data 

Analysis 

Process 

Integration of Data “Width” reduction 

methods  (variable selection based on 

frequent pattern tree) and Model 

Development 

Real-time 

Traffic Accident 

Prediction 

Yes 

Integration of Data “Depth” reduction 

methods (Dataset Grouping) and Model 

Development 

Short-term 

Traffic Volume 

Prediction 

Similar to 

previous 

research 

Integration of Data “Depth” reduction 

methods (modularity-optimizing 

community detection algorithm) and 

Model Development 

Traffic Accident 

Hotspots and 

Clearance Time 

Analysis 

Yes 

Integration of Data Diagnosis and 

Short-term Traffic Volume Model 

Development 

Short-term 

Traffic Volume 

Prediction 

Yes 

Model Combination of SARIMA and 

SVR using fuzzy adaptive variable 

weight method 

Short-term 

Traffic Volume 

Prediction 

Similar to 

previous 

research 

Model Application - an Android 

Smartphone Application for Niagara 

Frontier Border Crossing 

Border Crossing 

Delay Prediction 

Yes 

ITS Data 

Analysis 

Models  

Integration of Dynamic Time Warping 

(DTW) and Spinning Network (SPN) 

Short-term 

Traffic Volume 

Prediction 

Yes 

Integration of Data-driven Models 

(short-term traffic volume prediction 

models) and Analytical Methods 

(𝑀/𝐸𝐾/𝑛 and BMAP/PH/n queueing 

models) 

Border Crossing 

Delay Prediction 

Yes 

Integration of M5P tree and 

Hazard-based Duration Model (HBDM)  

Traffic Accident 

Duration 

Prediction 

Yes 
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1.5.1 Dissertation Contributions to the ITS Data Analysis Process 

 In this dissertation, from the standpoint of the ITS data analysis process, the 

dissertation integrates data “width” and “data depth” reduction methods with model 

development. The dissertation also proposes the use of data diagnosis metrics to guide 

model selection and development, as well as the utilization of model combinations to 

improve prediction accuracy. Finally, as a demonstration, an android smartphone 

application that can collect, share and predict the Niagara Frontier border crossing 

waiting time is developed. 

1.5.1.1 Integration of Data “Width” Reduction Methods  and Model 

Development 

 For real-time traffic accident risk prediction, the research proposes a new FP tree 

based variable selection algorithm through the calculation of a new variable importance 

metric the Relative Object Purity Ratio (ROPR). The results show that the models 

based on variables selected by this new algorithm perform better than the models based 

on variables selected by random forests. The relevant research has been documented 

and is to be submitted to Transportation Research Part C: Emerging Technologies in 

2015. 
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1.5.1.2 Integration of Data “Depth” Reduction Methods  and Model 

Development 

 For border-crossing short-term traffic volume prediction, data grouping is applied 

to group the dataset into weekdays (Monday - Thursday), Fridays, Saturdays, Sundays, 

holidays and game days. The accuracy of border crossing short-term volume forecasts 

is shown to improve by classifying the volume data into groups and developing 

separate prediction model for each group. The relevant work was published in the 

Proceedings of the Transportation Research Board 91st Annual Meeting (No. 

12-3398). 

 For traffic accident hotspots and duration analysis, data clustering is applied to 

decrease the heterogeneity of the accident dataset before building models for each 

cluster. An algorithm borrowed from social network analysis, namely a 

modularity-optimizing community detection algorithm is found to be quite appropriate 

to cluster the traffic accident data.  This part of the dissertation representsthe first time 

that algorithm is applied to ITS data analysis. The relevant research was published in 

the Journal of the Transportation Research Record, 2014.  

1.5.1.3 Integration of Data Diagnosis and Short-term Traffic Volume Model 

Development 

 Given a short-term traffic volume prediction dataset, it’s an extremely time 

consuming task to try all the possible prediction models and find the best one. Besides 

that, the best model may not be the best for other short-term traffic volume prediction 
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datasets, and the whole procedure may have to be repeated again. This research 

analyzed the complexity and non-linearity characteristics of four different datasets: (1) 

an hourly traffic volume dataset for an international border crossing; (2) an hourly 

traffic volume dataset for I-90 in Buffalo, New York; (3) a 5-minute volume dataset 

from the Commonwealth of Virginia; and (4) a 2-minute volume dataset from Beijing, 

China through the use of appropriate pre-diagnosis procedures and statistical measures. 

Followig this, the data diagnosis results were correlated to the performances of three 

different model types, SARIMA, k-NN and SVR. This exploratory study provided 

insights into the process of selecting the best prediction models, as well as into how to 

select appropriate values for the different parameters  of the short-term traffic 

prediction models. The integration of data diagnosis and short-term traffic volume 

model development is promising. The relevant research was published in the Journal 

of the Transportation Research Record, 2013. 

1.5.1.4 Model Combination of SARIMA and SVR for Short-term Traffic 

Volume Prediction 

 The author applies the fuzzy adaptive variable weight method, based on the Fresh 

Degree Function, to combine the prediction results of SARIMA and SVR models for 

border crossing short-term traffic volume prediction. The results show that the model 

combination outperforms both SARIMA and SVR. The relevant result was published 

in the Proceedings of the Transportation Research Board 91st Annual Meeting (No. 

12-3398). 
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1.5.1.5 Model Application - an Android Smartphone Application for Niagara 

Frontier Border Crossing  

An Android smartphone application called the Toronto Buffalo Border Wait Time 

(TBBW) is designed to collect, share and predict waiting time at the three Niagara 

Frontier border crossings. The innovative app offers the user three types of waiting 

times: (1) The app applies the two-step border crossing delay prediction model in 

practice to provide the future waiting time for the next 15 minutes and updates every 

five minutes; (2) the app can provide current waiting times based on data-level fusion, 

the data collected by border crossing authorities and the user-reported or 

“crowd-sourcing” data shared by the app’s users; (3) the app can provide historical 

waiting times in the forms of statistical charts and tables to help users choose the 

crossing with the likely shortest wait time. The relevant research has been accepted for 

presentation at the Transportation Research Board meeting in 2015. 

1.5.2 The Dissertation Contributions to ITS Data Models 

 In this dissertation, different kinds of statistical models, machine learning and data 

mining models, and probabilistic queueing models are integrated together to yield new 

models for accomplishing a specific task.  The new integrative models developed in 

this dissertation are briefly introduced below.  
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1.5.2.1 Integration of Dynamic Time Warping (DTW) and Spinning Network 

(SPN) for Short-term Traffic Volume Prediction 

 This integration resulted in the development of  an enhanced spinning network 

model called DTW-SPN, which uses Dynamic Time Warping (DTW) to evaluate the 

similarity between two time series instead of the Euclidean distance. The DTW-SPN 

showed superior performance compared to the original SPN, ARIMA and SVR models, 

and had a much lower computational running time. The DTW-SPN research was 

published in Transportation Research Part C: Emerging Technologies in 2013. 

1.5.2.2 Integration of Data-driven Models and Analytical Methods for Border 

Delay Prediction 

 This integration resulted in a two-step border crossing delay prediction model, 

where a data-driven short-term traffic volume prediction model is utilized first, 

followed by an analytical multi-server queueing model in the second step.  . For the 

multi-server queueing models utilized in the second step of the border delay prediction 

model, the original heuristic solution for 𝑀/𝐸𝐾/𝑛 queueing model proposed by Escobar 

et al. (2002) is improved to decrease the running speed for the on-line border crossing 

delay prediction requirement. Besides that, a new heuristic solution based on a new 

assumption called the Equally Likely Vehicles (ELV) is proposed to get the transient 

solution of BMAP/PH/n queueing model. The relevant research was published in  

Transportation Research Part A: Policy and Practice in 2014. 
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The structure of this two-step model allows one to consider multiple factors like 

the traffic volume, the weather, the accidents, the number of open lanes, and the service 

time in predicting border delay. The two-step model can also be incorporated within an 

optimization framework and used to derive optimal management strategies for a customs 

and immigration border control agency. While the two-step model was developed for the 

Niagara Frontier border crossing, it can be applied to other border crossings and toll 

stations. 

1.5.2.3 Integration of M5P tree and HBDM for Traffic Accident Duration 

Prediction 

This integration  yields a new traffic accident duration prediction model called 

M5P-HBDM, which represents an integration of a machine learning algorithm (i.e., 

M5P tree) and a statistical model (i.e., HBDM). As mentioned in section 1.4.2.5, 

through M5P-HBDM, the leaves of the M5P tree model are replaced with HBDMs 

instead of linear regression models. This new M5P-HBDM showed promising 

performance. The M5P-HBDM model research has been documented and is to be 

submitted to Accident Prevention and Analysis in 2015. 

1.5.3 Novelty Discussion 

The integrative approach adopted in this dissertation exhibits several novel 

aspects, which to the best of the author’s knowledge, have not been researched before.  

Those novel aspects can be summarized as follows: 
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(1) the introduction and design of a data diagnosis step that can be used to guide 

model selection for short-term traffic volume prediction models, as well as the 

setting of the parameters of those models; 

(2) the integration of dynamic time warping and the spinning network (SPN) 

forecasting paradigm, resulting in an enhanced SPN called DTW-SPN; 

(3) the integration of data-driven models and analytical methods to yield a two-step 

model for predicting future border crossing delay; 

(4) the integration of the machine learning model, M5P tree, and the HDM 

statistical model for developing accident duration prediction models;   

 (5) proposing a FP tree based variable selection algorithm for data “width” 

reduction before developing models for real-time accident risk prediction; 

(6) the application of a modularity-optimizing community detection algorithm for 

data “depth” reduction;  

(7) the development of heuristic solutions for 𝑀/𝐸𝐾/𝑛 and BMAP/PH/n queueing 

models; 

 (8) the development of an Android smartphone application designed to collect, 

share and predict waiting time at the three Niagara Frontier border crossings. 

1.6 Dissertation Organization 

 The current dissertation is organized in nine Chapters. Following this introductory 

chapter, Chapter 2 reviews the literature pertinent to the five research subtopics 

considered in this study.  Chapters 3 to Chapter 5 then describe the author’s effort to 
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construct the two-step border crossing delay prediction model, which can be viewed as 

an integration of a data-driven model and an analytical model. Specifically, Chapter 3 

describes the integration of data “depth” reduction methods (data grouping) and model 

development for border crossing traffic prediction, and the combining of statistical and 

AI models (namely SARIMA and SVR) using fuzzy adaptive variable weight method. 

Chapter 3 also describes the development of the enhanced SPN through the integration 

of DTW and the original SPN model, and proposes a data diagnosis step which can be 

used to guide model selection and parameter setting.  Chapter 4 presents the heuristic 

solutions for two types of queueing models 𝑀/𝐸𝐾/𝑛 and BMAP/PH/n, which take the 

predicted traffic volume as the input to calculate the future waiting time. The 

verification of the queueing models using traffic simulation and sensitivity analysis can 

also be found in that Chapter. Chapter 5 introduces an Android smartphone application 

called the Toronto Buffalo Border Wait Time (TBBW) that was developed to collect, 

share and predict waiting time at the three Niagara Frontier border crossings. Next, 

Chapters 6 through 8 introduce the novel methods and models proposed for traffic 

accident data analysis. Specifically, chapter 6 focuses on  hot spot identification and 

clearance time analysis using the modularity-optimizing community detection 

algorithm and the association rule learning algorithm; this work can be viewed as an 

integration of data “depth” reduction methods and model development. Chapter 7 

proposes the integration of data “width” reduction methods (i.e., the novel FP tree 

based variable selection method) and model development for real-time traffic accident 

risk prediction. Chapter 8 introduces the integration of the data mining model M5P tree 
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and the statistical model HBDM. The new M5P-HBDM models are then utilized to 

predict the traffic accident duration for two traffic accident datasets, and their 

performance are compared to those of stand-alone M5P trees and HBDMs. Finally, 

Chapter 9 summarizes the research contributions and gives some directions for future 

research. 
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CHAPTER 2 LITERATURE REVIEW 

This Chapter will provide a brief review of the literature pertaining to the five 

subtopics mentioned in Chapter 1.4.2. Chapter 2.1 presents the historical studies related 

to each step in the two-step border crossing delay prediction model separately, namely 

the short-term traffic volume prediction model and the queueing model. After that, the 

other relevant studies about the border crossing delay problem are also introduced. 

Chapter 2.2 focuses on discussing the studies about the traffic accident data analysis 

such as hotspots analysis, real-time traffic accident risk prediction and traffic accident 

duration analysis. It’s worth noting that the review will not follow the ITS data analysis 

process introduced in Chapter 1.3.1 strictly, only the researches relevant to the 

dissertation work are summarized.   

2.1 Border Crossing Delay Prediction  

 This chapter reviews the previous studies that are relevant to the two steps in the 

border crossing delay prediction (i.e., the short-term traffic volume prediction and the 

queueing model) . It also reviews some other researches about the border crossing delay 

problem in general.  

2.1.1 Short-term Traffic Volume Prediction 

As opposed to long-term volume forecasting which provides traffic volume 

forecasts for relatively long prediction horizons (reaching up to 20 years), short-term 
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traffic forecasting uses real-time traffic information from roadway sensors to predict 

traffic flow for much shorter prediction periods (ranging between 5 minutes to one 

hour). Short-term forecasting thus provides the functionality needed for on-line 

transportation system management and control. This Chapter summarizes the literature 

in short-term traffic volume prediction in terms of dataset grouping and clustering, 

data diagnosis, model development and model combination.  

2.1.1.1 Data “Depth” Decreasing 

 There are different ways to group or cluster short-term traffic volume 

observations. The most common one is based on the characteristics such as time of 

day, day of the week, special events (e.g., holidays and sports games), inclement 

weather, and so on. Wild (1997) split a daily traffic volume time series data into 

several groups based on different combinations of day of week and the events like 

sports games, fairs and so on. Chrobok et al. (2004) defined four distinct data classes 

based on the combinations of days of the week and holidays. Stathopoulos and 

Karlaftis (2003) excluded the Saturday and Sunday traffic data, and divided the traffic 

flow data on weekdays into six separate groups by time period. 

 As for data clustering techniques, Van Der Voort et al. (1996) developed a 

method, called the Kohonen self-organizing map, to cluster traffic data, and then 

tuned a ARIMA model for each cluster. Park (2002) applied the fuzzy C-means (FCM) 

method to classify traffic flow patterns into several clusters before develoing a 

radial-basis-function (RBF) neural network model for each cluster. Yin et al. (2002) 
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developed a fuzzy-neural model that consists of two modules: the first module 

classified the input data into a number of clusters using a fuzzy approach, and the 

second module built a neural network model to capture the pattern within each cluster. 

Similarly, Srinivasan et al. (2009) also applied a fuzzy input fuzzy output filter to 

classify the input data into a number of clusters and built a multi-layer feed-forward 

neural network with evolution strategies for each cluster.  

2.1.1.2 Data Diagnosis 

This separate Chapter discusses one issue about the short term traffic volume 

prediction studies, which is lacking data diagnosis to connect the short-term traffic 

volume datasets with the selection of the prediction models. While there is an 

extensive literature on short-term traffic volume prediction, most of the previous 

studies considered only one modeling technique and a single data set. Even among the 

comparative studies in the literature, the focus has typically been on comparing the 

performance of multiple models on a single data set (William et al., 2006; Sun et al., 

2007). The risk of using one data set to test multiple models is that the conclusions 

derived may be specific to the dataset considered.  This has often led to inconsistent 

conclusions among the different studies regarding which modeling method is superior.  

In addition, single data based testing cannot address the essential questions that are of 

particular interest to practitioners, i.e., how to select prediction models based on the 

characteristics of a specific dataset.  
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A handful of researchers have begun to pay more attention to this issue. For 

example, Smith and Demetsky (1997) tested four prediction methods on two data sets. 

However, the two data sets were collected from the sites on the same highway, and 

there was no discussion in that study about the relationship between the attributes of a 

dataset and model performance. Other researchers pointed out the importance of data 

diagnosis before model selection, and proposed different measures to indicate data 

characteristics.  For instance, Vlahogianni et al. (2006) discussed some statistical 

methods for detecting nonlinearity and non-stationarity of traffic volume time series, 

and Shang (2005) discussed the nonlinearity property of traffic volumes based on 

Chaos theory. However, no effort was made in those studies either to link data 

diagnosis results with model selection. 

2.1.1.3 Model Development 

 For model development, this Chapter first introduces two groups of algorithms or 

approaches that have attracted great attentions: (1) statistical models such as time-series 

analysis; and (2) machine learning based methods such as Neural Networks (NN) and 

Support Vector Regression (SVR), among the numerous methods recently proposed for 

short-term traffic volume prediction. After that, this Chapter discusses the model 

combination application under this subtopic.  

2.1.1.3.1 Statistical Models 

With respect to the first group, the Box and Jenkins techniques (e.g., Autoregressive 

Integrated Moving Average (ARIMA) models) were firstly applied to the field of traffic 
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forecasting by Ahmed and Cook (1979). Since then more and more advanced techniques 

from that family have been applied to traffic volume prediction, such as the seasonal 

ARIMA models (SARIMA) (Williams and Hoel, 2003; Smith et al., 2002), the ARIMA 

models with intervention x-variables (ARIMAX) (Williams, 2001; Cools et al., 2009), and 

the combination of Kohonen self-organizing map with ARIMA models (Van Der Voort et 

al., 1996).  

In addition to the Box and Jenkins models, other multivariate time series techniques 

were exploited to increase prediction accuracy, including the state space model 

(Stathopoulos and Karlaftis, 2003) and the multivariate structural time series model (MST) 

(Ghosh et al., 2009). 

Kalman filtering theory was also utilized for short-term traffic forecasting. Some 

examples are the initial examination by Okutani and Stephanedes (1984), the state space 

based method by Stathopoulos and Karlaftis (2003), and the work by Xie et al. (2007) who 

used a Kalman filter with discrete wavelet decomposition for short term traffic prediction. 

 Most recently, Min and Wynter (2011) adopted a multivariate spatial-temporal 

autoregressive model (MSTAR) to predict network-wide speeds and volumes in real time. 

2.1.1.3.2 Machine Learning and Data Mining  

On the AI side, among the most widely used methods are Neural Networks (NNs). 

Several NN topologies have been utilized in previous studies including the multilayer 

perceptron networks (MLP) (Smith and Demetsky, 1994; Chang and Su, 1995; Ledoux, 

1997), radial basis function networks (Park et al., 1998), resource allocating networks 
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(Chen and Grant-Muller, 2001), and wavelet networks (Chen et al., 2006; Xie and 

Zhang, 2006).  

NNs were also sometimes combined with other methods, such as fuzzy logic, 

genetic algorithms and empirical mode decomposition, to develop hybrid and more 

powerful predictions methods (e.g., Yin et al., 2002; Vlahogianni et al., 2005, and Wei 

and Chen, 2012).  

Besides NNs, other AI methods were recently proposed for short-term traffic 

prediction. Dimitriou et al. (2008), for example, proposed an adaptive hybrid fuzzy 

rule-based system approach to predict traffic flow in urban arterial networks.  

SVR has also recently been exploited for short-term traffic flow prediction. 

Specifically, Zhang and Xie (2008) compared a v-support vector machine (v-SVM) 

model with a NN model and concluded that the former performed better. Other 

examples of applying SVR to traffic prediction include Castro-Neto et al. (2009) and 

Hong et al. (2011).  

2.1.1.3.3 Model Combination 

Model combination has been applied in many short-term traffic volume prediction 

studies. Fuzzy logic has been used for model combination in short-term traffic volume 

prediction. Stathopoulos et al. (2008) employed a fuzzy rule based system to nonlinearly 

combine traffic flow forecasting results from a Kalman filter (KF) and a neural network 

model (ANN). Zhang and Ye (2008) also proposed a fuzzy logic system to combine 



49 

 

multiple models like KF, exponential smoothing method (ESM), back propagation neural 

networks (BPNNs), and ARIMA model.  

Besides the fuzzy logic based model combination, neural network (NN) is also 

employed to combine models. Zheng et al. (2006) applied a Bayesian combined neural 

network model to combine the traffic prediction results from two other NNs: BPNN and 

the radial basis function neural networks. Tan et al. (2009) used a BPNN model to 

aggregate the traffic flow prediction results based on moving average model (MA), 

exponential smoothing model (ES), and ARIMA model.  

More recently, Dong et al. (2014) applied the support vector regression (SVR) to 

combine the statistical model ARIMA with the Elman neural network model to handle the 

linear and nonlinear patterns in traffic time series.  

2.1.2 Queueing Model 

 This section discusses the literature relevant to the queueuing model that is the 

second step of the border crossing delay prediction model. Queueing models have been 

used extensively to solve problems related to manufacturing processes, transportation 

systems, product distribution systems, call centers, among other applications (Gontijo et 

al, 2011). Queueing models can be categorized in a number of different ways. One 

categorization divides them into stationary queueing models and transient queueing 

models as explained below.   

Let 𝑁(𝑡) denote the number of customers (i.e. vehicles) in the queueing system at 

time 𝑡 measured from a fixed initial time moment 𝑡 = 0, and let 𝑝𝑛(𝑡) denote the 
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probability that 𝑁(𝑡) = 𝑛 at time t.  Because it is usually difficult to find the 

time-dependent solution 𝑝𝑛(𝑡) analytically, many applications in practice resort to 

consider only the steady state behavior of the queueing system after being in operation 

for a sufficiently long time. In that case, one is interested in the limiting behavior of 

𝑝𝑛 = 𝑙𝑖𝑚𝑡→∞ 𝑝𝑛(𝑡) , 𝑛 = 0,1,2, … (Medhi, 2003). These queueing models that study 

the limiting probability of 𝑝𝑛(𝑡) are called stationary queueing models.   

Stationary queueing models are usually used to derive some useful performance 

measures such as the average waiting time, which in turn is often adopted as an 

objective function within an optimization framework to improve the efficiency of a 

system. For example, the study by Kim (2009) built a non-linear integer programming 

model to study the toll plaza optimization problem.  In his model, the cost of the 

waiting time of the vehicles, as determined from the steady state solution of the 

queueing model, was minimized.  Another example is the study by Ausín et al (2007), 

which minimizes the steady-state expected total waiting time by optimizing the number 

of servers based on the real data from a bank. Moreover, Zhang et al. (2011) proposed a 

two-stage queueing model to balance security and customer service goals for a border 

crossing system. Besides waiting time, some researchers tried to estimate additional 

measures of queueing systems, such as traffic intensity, based on stationary queueing 

models. Ke and Chu (2006), for example, proposed a consistent and asymptotically 

normal estimator of traffic intensity for a queueing system with distribution-free 

inter-arrival and service times. They also developed the confidence intervals for testing 

statistical hypothesis of intensity and derived the associated power function. Ke and 
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Chu (2009) constructed and compared new confidence intervals of traffic intensity for a 

queueing system based on different bootstrap methods, and introduced a new measure 

called relative coverage to assess the performances of the confidence intervals.  

On the other hand, queueing models that consider time-dependent state 

probabilities are called transient queueing models. For systems that exhibit strong 

dynamic conditions, the transient solution of a queueing model is more meaningful.  

This is definitely the case for the border crossing problem studied in the dissertation, 

where the arrival and service rates exhibit strong dynamic patterns. Hence, the focus of 

this research is on the transient solution of a queueing model. An example of studies 

that considered transient queueing models is the study by Gupta (2011) which 

estimated air traffic delays using a transient 𝐷(𝑡)/𝑀(𝑡)/1 queueing model.  

Moreover, the study by Escobar et al (2002) provided some preliminary results 

regarding the approximate transient solution for multi-server queueing systems with 

Erlangian service times, based on the equally likely combination (ELC) heuristic.   

Besides the study by Escobar et al. (2002), Ausín et al (2008) used Bayesian 

inference to derive the transient behavior and the durations of the busy periods for 

a 𝐺𝐼/𝐺/1 queueing model, while Czachorski et al (2009) studied the transient 

behavior of multi-servers with general service time and inter-arrival time distributions 

in the context of a call center. In the aforementioned studies, approximate solutions 

were proposed since exact solutions for transient queueing models with general 

distributions for arrival and service processes are notoriously hard to derive. Similar to 

the stationary models, transient queueing models can also be used within an 
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optimization framework to identify optimal system operating policies. For example, 

Parlar et al. (2008) derived the time-dependent operating characteristics of a queueing 

process that represents the operation of check-in counters at an airport.  They 

formulated a stochastic dynamic programming model to determine the optimal 

numbers of the check-in counters. 

2.1.3 Other Border Crossing Delay Studies 

While an extensive literature on the short-term traffic forecasting problem and 

queueing models exist as surveyed above, only a handful of previous studies could be 

found for border crossings. Moreover, most of those previous studies focused on 

modeling border delays for off-line planning applications, and few for on-line 

prediction which is the focus of this research. Examples include a study by Paselk and 

Mannering (1994) that used duration models and a study by Lin and Lin (2001) that 

proposed a delay model for planning applications. Kam et al. (2005) described the 

development of a NN for predicting border crossing delays. However, the data used to 

develop the model came solely from a simulation model, and not from real-world 

observations as is the case in this dissertation. More recently, Haughton and Sapna 

Isotupa (2012) also applied the computer simulation to quantify the impacts of 

smoothing the commercial vehicle flows at a major Canada-US border crossing. 

Similarly, the inter-arrival and service time distributions are assumed but not based on 

the real-world observations.  
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2.2 Traffic Accident Data Analysis 

 This section first introduces the studies about data “width” and “depth” decreasing 

in traffic accident data analysis. Following this, three important subjects of traffic 

accident data analysis are reviewed, including hotspots analysis, real-time accident 

risk prediction and traffic accident duration prediction. 

2.2.1 Data “Width” Decreasing  

 Accidents and crashes on road are highly complex phenomena that can be 

attributed to a wide range of variables, and in many occasions the quality as well as 

availability of detector data need to be compensated with surrogate variables. For 

example, the wealth of real-time traffic data offers more explanatory variables that 

may contribute to explaining traffic accident risk and patterns. This induces the 

classical situation involving large variable space and small sample size, which 

requires a suitable method to select the most important variables for traffic accident 

data analysis (Hossain and Muromachi, 2012). 

 The data “width” decreasing-variable selection problem has attracted attention 

from previous traffic accident data analysis research. As for the statistical model 

based research, Sawalha and Sayed (2006) found that using less but statistically 

significant explanatory variables can avoid over fitting and improve the reliability of a 

model. They suggested combining the t-statistics test and the likelihood ratio based 

scaled deviance test, for selecting significant explanatory variables. Different 
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procedures were suggested for Poisson regression and negative binomial regression 

respectively due to the additional complexity introduced to the scaled deviance test 

for negative binomial regression models. As for the data mining models, classification 

and regression tree (CART) has been used to perform variable selection (Yu and 

Abdel-Aty, 2013; Pande and Abdel-Aty, 2006). Another ensemble learning method 

for classification and regression, called random forests, has also been widely used to 

rank explanatory variables (Abdel-Aty et al., 2008; Ahmed and Abdel-Aty, 2012). 

Recently, a hybrid model random multinomial logit (RMNL), formed by combining 

the random forests and logit models, was applied to calculate traffic accidents variable 

importance (Hossain and Muromachi, 2012). 

2.2.2 Data “Depth” Decreasing 

Several researchers have recently pointed out that heterogeneity inherent in traffic 

accident data often prevents the further exploration of these data (Savolainen et al., 

2011). To deal with the issue, random effects and random parameter models have been 

proposed for traffic accident data analysis (Karlaftis and Tarko, 1998; Miaou et al., 

2003). Such models capture the unobserved heterogeneity by using random error terms 

and allow each estimated parameter of a model to vary across each individual 

observation in the dataset (Lord and Mannering, 2010). Anastasopoulos and Mannering 

(2009), for example, demonstrated that random parameters model can account for the 

heterogeneity arising from a number of factors in accident records and other 

unobserved factors in their accident frequency study. However, random effects model 
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and random parameters model may not be easily transferable, and are often difficult to 

estimate (Lord and Mannering, 2010).  

Data “depth” decreasing based data clustering or grouping is another way to 

minimize the heterogeneity problem. For example, Valent et al. (2002) found that 

“Sundays” and “holidays” arise as significant risk factors when the analysis was 

performed for clustered data.  Moreover, Mohamed et al. (2013) identified “bad 

visibility due to bad weather” as a factor that can increase the risk of fatal crashes in 

Montreal Canada, based on an analysis performed on a clustered dataset.  

 In traffic accidents studies, the two most widely used clustering techniques are the 

latent class clustering (LCC) and the K-means clustering method.  On one hand, LCC 

has the advantages of being able to provide statistical criteria for deciding the number 

of clusters, and to calculate the probabilities for the new data points to belong to a given 

cluster (Depaire et al., 2008; de Oña et al., 2013). On the other hand, LCC heavily relies 

on the assumption of local independence among traffic accident variables to reduce 

parametric complexity and computing time, and was found to sometimes reach the 

local optimum rather than the global optimum. As for the K-means clustering, Sohn and 

Lee (2003) used it to cluster a traffic accident severity dataset before building a 

classifier for each cluster. Anderson (2009) applied the method to classify accident 

hotspots into relatively homogenous types based on their environmental characteristics. 

In addition, Mohamed et al. (2013) reported that for the Montreal accident dataset the 

K-means clustering method appeared to do a better job compared to LCC that tended to 

classify 90% of the accidents into the first two clusters.  
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 Another widely applied way to do the data “depth” decreasing is based on traffic 

accident types (Golob et al., 1987; Ozbay and Kachroo, 1999; Giuliano, 1989). 

Recently some researchers classify the traffic crash data based on the visibility 

conditions like daylight, twilight and night conditions (Hong et al., 2014).  

2.2.3 Model Development 

The model development of traffic accident data, however, has for long been 

dominated by traditional statistical analysis methods that have yielded invaluable 

insight and helped guide policy over years. Recently, the techniques from machine 

learning and data mining have also been applied in traffic accident model development.  

This section summarizes the literature about hotspots analysis, real-time traffic 

accident risk prediction and traffic accident duration prediction. For each of them, the 

methodologies are divided into two groups: statistical models and machine learning 

and data mining. 

2.2.3.1 Hotspots Analysis 

As the first step of the highway safety management process, the identification of 

crash hotspots is very important. However, there is no universally accepted definition 

of a road accident ‘hotspot’ in the road accident literature (Anderson, 2009). Some 

studies defined hotspots (or black spots) as geographical locations with highly 

concentrated traffic accidents (Geurts et al., 2003; Xie and Yan, 2008), while some 

others detected hotspots based on quantitative measures such as the number of 
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accidents divided by the traffic flow rate per period of time (Gregoriades and Mouskos, 

2013). The identification and profile of hotspots can provide valuable insights for 

transportation authority actions.  

2.2.3.1.1 Statistical Models 

Among the statistical models identifying hotspots, Kernel Density Estimation has 

gained more and more popularity (KDE), especially in conjunction with Geographic 

Information Systems (GIS). KDE can calculate the density within an area with an user 

defined radius and an object location as the center by choosing a kernel function 

through which “distance decay effect” can be taken into account, the longer the 

distance between a point and the object location, the less that point is weighted for 

calculating the overall density (Xie and Yan, 2008). Xie and Yan (2008) proposed the 

network kernel density estimation to identify the hotspots by calculating the density 

over a linear unit instead of calculating the density over an area unit because of the 

linear nature of the road network spaces. Anderson (2009) applied a k-means 

clustering algorithm after creating the KDE map and found similar hotspots clusters 

based on collision and attribute data. Bíl et al. (2013) extended the standard KDE by 

combining it with the statistical testing of the cluster significance, and they found this 

modified KDE can both identify the clusters of traffic accidents and to determine 

which of them were significant.  

Besides KDE, Montella (2010) summarized and compared seven commonly 

applied hotspot identification methods like crash frequency, equivalent property 
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damage only crash frequency, crash rate, proportion method, empirical Bayes 

estimate of total-crash frequency, empirical Bayes estimate of severe-crash frequency, 

and potential for improvement. The quantitative evaluation tests showed that 

empirical Bayes estimate of total-crash frequency performs the best among the seven 

methods.  

2.2.3.1.2 Machine Learning and Data Mining 

 Among data mining methods proposed for hotspots analysis, the association rules 

algorithm was used to identify accident circumstances that frequently occur together 

at high frequency accident locations and compared these patterns with those at low 

frequency accident locations for the road network in Belgium (Geurts et al., 2003; 

Geurts et al., 2005). Besides that, the Bayesian networks model was built based on an 

enriched accidents dataset and was used to predict the number of accidents under 

different scenarios that describe traffic condition at different time intervals and driver 

profiles to identify accident black spots on road networks (Gregoriades and Mouskos, 

2013). Another machine learning and data mining algorithm used in hotspots analysis 

is that Nayak et al. (2011) used decision tree to find the best dataset portioning between 

crash prone and non-crash prone roads, they found the best road segment 

crash-proneness threshold was four to eight crashes in a four year period.  

2.2.3.2 Real-time Traffic Accident Risk Prediction 

As a key role in Active Traffic Management (ATM), real-time traffic accident 

risk prediction models have drawn more and more attentions. The real-time traffic 
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accident risk prediction models can be integrated with the control strategies such as 

variable speed limits (VSL) to reduce the crash risk once a certain threshold of crash 

risk has been reached (Yu and Abdel-Aty, 2013).  

2.2.3.2.1 Statistical Models 

 Lee et al. (2003) proposed an aggregate log linear model to predict the real time 

traffic accident for a freeway in Toronto, Canada, the results showed the speed 

difference between upstream and downstream detectors has a significant impact on the 

model performance. Abdel-Aty et al. (2004) applied the matched case-control logistic 

regression models to predict the freeway traffic accidents based upon loop detector data 

from Orlando, US. It was found that the coefficient of variation of speeds at the 

downstream station and the average occupancy of upstream station are significant in 

the final models. More recently, Xu et al. (2013) used a sequential logit model to 

predict the traffic accident risk based on the loop detector data from San Francisco Bay 

area, US. They found that traffic accident likelihood is high when the traffic density 

from the upstream, the speed variance from the upstream and/or downstream, volume 

difference between upstream and downstream station and the occupancy difference 

between upstream and downstream station are high. 

2.2.3.2.2 Machine Learning and Data Mining  

 Typical examples of the data mining/ machine learning modeling approaches are 

summarized as below. Pande and Abdel-Aty et al. (2006) utilized neural networks to 

analyze and classify the crash and non-crash cases. The significant variables were 
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chosen by a classification tree technique, and the results showed that the false alarm 

rates of this model were too high. Hossain and Muromachi (2012) applied the Bayesian 

Network model to predict the real-time traffic accident risk. They showed that Bayesian 

network has a very promising performance with an accuracy of 66% for the future 

crashes and a false alarm rate less than 20%. Yu and Abdel-Aty (2013) applied the 

support vector machine to a traffic accident dataset collected from Colorado, US. They 

showed the support vector machine performs better than the classic logistic regression 

models for real-time crash risk evaluation method.  

2.2.3.3 Traffic Accident Duration Prediction 

 As mentioned previously, traffic incidents account for more than 50% of motorist 

delays on freeways (Chin et al., 2004; Farradyne, 2000). Different with the recurring 

congestion, for which travelers can plan their trips according to the expected 

occurrence and severity of recurring congestion, the nonrecurring traffic congestion 

introduced by incidents cannot be managed without real-time prediction (Garib et al., 

1997). Therefore an efficient traffic incident management system (TIM) is needed to 

predict the durations of traffic incidents under various conditions (different local and 

regional traffic conditions, time of day, day of week, seasonal variations, weather 

conditions, work zones, etc…). Based on this predicted duration information, the 

authorities can then allocate incident response personnel and resources more 

effectively, and inform the travelers about the incidents more accurately. 
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The time sequential process of TIM can be divided into five phases (Zhan et al., 

2011), including: (1) the incident detection phase representing the time interval from 

the occurrence of an incident to its detection; (2) incident verification phase as the 

time interval from the detection to the confirmation of the incident; (3) the incident 

response phase as the time interval between the confirmation time and the time when 

the first responder arrives on the scene; (4) the incident clearance phase representing 

the time interval from the arrival of the first responder to the time when the incident 

has been cleared from the freeway; and (5) incident recovery phase as the time it takes 

for the normal traffic condition to return after the incident clearance phase.  

In the previous studies, there exist different understandings about the terms such 

as incidents versus accidents and duration versus clearance time. Usually incidents 

include the accidents. Besides that, the events like the vehicle breakdowns, spilled 

loads or other random events should also be called incidents but not accidents (He et 

al., 2013). For duration and clearance time, duration includes the whole process of 

five phases defined above. Clearance time is just incident clearance phase (Zhan et al., 

2011; Alkaabi et al., 2011). Here we clarify that this dissertation only focuses on 

accidents but not incidents, and defines the duration as a time interval from the time 

of the accident detection to the time when the normal traffic condition returns. 

2.2.3.3.1 Statistical Models 

In the early stage of statistical models for traffic accident duration analysis, 

log-normal and normal distributions were applied a lot. Golob et al. (1987) analyzed 
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the truck-involved incident duration in California. They found that the durations of 

the incidents categorized by type of collisions follow a log-normal distribution. Ozbay 

and Kachroo (1999) found a normal distribution of durations for homogeneous 

incidents grouped by incident type and severity. 

Linear and polynomial regressions were used to identify the factors that may 

influence the traffic accidents duration. Giuliano (1989) assigned incidents into 

multiple categories and estimated incident durations using linear regression 

techniques for each category. Garib et al. (1997) developed a polynomial regression 

model to predict the incident durations. The results showed that in terms of the 

adjusted R-square values, 81% of the incident duration can be predicted as a function 

of six independent variables. 

Another main group of statistical models for analyzing traffic accident durations 

is the hazard-based duration model. Nam and Mannering (2000) applied hazard-based 

duration models to evaluate incident durations. They mentioned that in comparison 

with regression approaches, hazard-based duration models have an advantage to allow 

the explicit study of duration effects. Recently, Alkaabi et al. (2011) and Chung (2010) 

also developed hazard-based duration models to analyze and predict traffic accident 

duration. 

2.2.3.3.2 Machine Learning and Data Mining  

Many machine learning and data mining algorithms have been applied in traffic 

accident duration analysis and prediction. There are quite a few studies that employed 
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decision tree (DT) to predict the incident duration (He et al., 2013; Zhan et al., 2011; 

Smith and Smith, 2001; Ozbay and Kachroo, 1999). The main advantage of decision 

tree is that no probable distribution assumption is required for this model, which can 

find patterns in a given data set (Alkaa-bi et al., 2011).  

However, Ozbay and Noyan (2006) pointed out that the decision trees can 

sometimes be unstable and insensitive to the stochastic nature of data. To remedy the 

situation, they applied another machine learning model, Bayesian networks (BNs), 

with the additional capability to estimate the duration in the presence of a real 

incidents for which data might only be partially available.  

Wei and Lee (2007) proposed a sequential method of accident duration prediction 

by using two Artificial Neural Networks (ANN) methods. One of them can predict the 

duration once an incident is verified, and the other can provide multiple updates of the 

duration time after the incident verification. In the follow-up research, they applied 

genetic algorithm (GA) for feature selection to decrease the number of model inputs 

for the two ANNs (Lee and Wei, 2010). 

 Recently, Valenti et al. (2010) compared five incident duration models, namely 

multiple linear regression (MLR), DT, ANN, support vector machine (SVM), and k 

nearest neighbor (k-NN). The results showed that MLR performed the best for 

incidents with durations less than 30 minutes, while the SVM and ANN perform 

much better for the incidents with longer durations. 
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CHAPTER 3 SHORT-TERM TRAFFIC VOLUME PREDICTION  

 Chapter 3 to Chapter 5 involves with the two-step border crossing delay prediction 

model, which is also an integration of data-driven model and analytical model. This 

Chapter presents the researcher’s three pieces of work on short-term traffic volume 

prediction. Chapter 3.1 introduces the integration of data “depth” decreasing step 

(dataset grouping) and model development step for border crossing traffic prediction 

and a model combination of SARIMA and SVR using fuzzy adaptive variable weight 

method. Chapter 3.2 introduces the integration of dynamic time warping and spinning 

network for border crossing traffic prediction. Chapter 3.3discusses the integration of 

the data diagnosis step with short-term traffic volume prediction model, statistical 

measures are calculated for multiple datasets and the connection with the performances 

of multiple prediction models. At last, Chapter 3.4 summarizes the conclusions from 

these three pieces of work.  

3.1 Data “Depth” Decreasing and Model Combination for Border Crossing 

Traffic Prediction 

3.1.1 Methodology 

3.1.1.1 Dataset Grouping  

The border crossing traffic volumes are impacted by the days of the week 

(weekday vs. weekend) as those at most of the other places. The different thing is the 

border crossing traffic is nationwide, which makes this system more complicate. The 
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holidays and sport games of the both countries Canada and US may also cause the 

border crossing traffic have the significant variation. A logical grouping scheme that 

would identify the number of distinct traffic patterns or types of days (weekdays, 

weekends, holidays, sport games and so on) is necessary to be built. For each distinct 

pattern or day type, we would then develop a separate prediction model. Our approach 

was to try to tie the grouping scheme to easily identifiable properties of a given day in 

order to facilitate implementation of the prediction process.  

To do this, we first considered the group of what may be called “ordinary days”, 

defined as all weekdays excluding Fridays (i.e. Monday through Thursday).  We also 

excluded the days which, we suspected, might need separate groups (i.e., holidays and 

game days).  We then calculated the mean hourly border crossing traffic volume for 

each hour of an “ordinary day”, and defined an interval of ± 15% of the average hourly 

volume (15% was chosen based on what may be regarded as acceptable prediction 

accuracy for the models).  The traffic patterns of the “special” days (i.e. Fridays, 

Saturdays, Sundays, holidays and game days) were then compared to the “ordinary 

days” to determine qualitatively whether they differed enough to warrant having their 

own groups (i.e., whether they lied within the ± 15% band or not). 

3.1.1.2 Combination of SARIMA and SVR 

This study proposes a multi-model combined forecasting method, by combining 

forecasts from SARIMA and SVR. A brief description of SARIMA and SVR is 

provided below, followed by the methods used to combine the two methods’ forecasts. 
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3.1.1.2.1 SARIMA Model 

The SARIMA model is a tool to predict future values of a time series that exhibits 

seasonal trends. According to Box and Jenkins (2008), a time series {Zt|t =

1,2, … , k} is generated by SARIMA(p, d, q) × (P, D, Q)s if: 

ΦP(Bs)𝜑𝑝(B)∇s
D∇dZt = 𝛩𝑄(𝐵𝑠)θ𝑞(𝐵)𝑎𝑡            (3-1) 

where B is the backshift operator defined by BaWt = Wt−a; p, d, q, P, D, Q are 

parameters with integer values and s represents the length of seasonal cycles;  

𝜑𝑝(B) = 1 − 𝜑1𝐵 − 𝜑2B2 − ⋯ − 𝜑𝑝B𝑝 is the nonseasonal autoregressive operator of 

𝑝 order; ΦP(Bs) = 1 − Φ1𝑠𝐵1𝑠 − Φ2𝑠B2s − ⋯ − ΦP𝑠BPs is the seasonal 

autoregressive operator of P order; θ𝑞(B) = 1 − θ1𝐵 − θ2B2 − ⋯ − θ𝑞B𝑞 is the 

nonseasonal moving average operator of q order; 𝛩𝑄(Bs) = 1 − 𝛩1𝑠𝐵1𝑠 − 𝛩2𝑠B2s −

⋯ − 𝛩𝑄𝑠BQs is the seasonal moving average operator of Q order, ∇s
D= (1 − Bs)D is 

the seasonal differencing operator of order D, ∇d= (1 − B)d is the nonseasonal 

differencing operator of order d; and 𝑎𝑡 is the estimated residual at time t, which are -

assumed to be identically and normally distributed with mean as zero and variance as 

𝜎2，{𝑎𝑡}~𝑊𝑁(0, 𝜎2). 

3.1.1.2.2 SVR Model 

Support Vector Regression (SVR) shares several advantages of the Support Vector 

Machine (SVM) concept, a popular machine learning method based on statistical 

learning theory proposed by Vapnik (1995).  SVM embodies the structured risk 

minimization principle and attempts to minimize an upper bound of the generalization 
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error. Initially, SVMs were developed to solve classification problems, but with the 

introduction of Vapnik’s insensitive loss function in 1997, SVM was extended to allow 

for solving nonlinear regression problems, resulting in the SVR method (Kim, 2003; 

Pai and Hong, 2005). SVR can be described as follows: 

Given a set of data points {(x1, y1), (x2, y2), … , (xm, ym)} ⊂ 𝒳 × ℝ, where 𝒳 

denotes the space of the input patterns and m is the total number of training samples, a 

linear regression function can be stated as f(x) =< 𝜔, 𝑥 > +b with ω ∈ 𝒳, b ∈ ℝ 

where <,> denotes the dot product in 𝒳, and b is a scalar threshold. Assuming an ε −

 insensitive loss function, a function intended to allow for ignoring errors that fall 

within a certain band or distance from the true value, the 𝜔 and b can be obtained by 

solving Equation (3-2) below. 

minimize 
1

2
ωTω + C ∑ (ξi

+ +m
i=1 ξi

−)             (3-2) 

Subject to {

yi−< 𝜔, xi > −𝑏 ≤ 𝜀 + ξi
+

< 𝜔, xi > +𝑏 − yi ≤ ε + ξi
−

 ξi
+, ξi

− ≥ 0

, 

where, 

ε (≥ 0) is insensitive loss function, representing the maximum deviation allowed; 

C (> 0) is the penalty associated with excess deviation during the training; and 

ξi
+, ξi

− are the slack variables corresponding to the size of the positive and negative 

excess deviation, respectively.  

In the process of solving this optimization problem, SVR achieves nonlinear 

regression by mapping the training samples into a high dimensional kernel induced 

feature space, followed by linear regression in that space. Since the kernel mapping is 
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implicit (depends only on the dot product of the input data vectors), it is possible to map 

the data to a very high dimension, and still keep the computational cost low. A Radial 

Basis Function (RBF) 𝐾(xi, xj) = exp (−γ|xi − xj|
2

) is one common kernel function.  

The parameters of the SVR models, namely the penalty factor C and the gamma in the 

kernel function, are often optimized using the k-fold cross validation method (Stone, 

1974; Chang and Lin, 2001). 

3.1.1.2.3 Fuzzy Adaptive Variable Weight Method  

This study used the fuzzy adaptive variable weight method based on the Fresh 

Degree Function to combine the SARIMA and SVR forecasts.  The method is adaptive 

in the sense that the weights assigned to each model are a function of how well that 

particular model performed on recent forecasts.  Furthermore, the use of the Fresh 

Degree Function (Ma and Liu, 2005), F(t), which is usually a function of the time series 

index, t (e.g., t, or t
2
 or √t ), allows one to weigh the performance on the most recent 

forecast more heavily than prior forecasts. The method proceeds as follows (Tang, 

1997). 

The prediction error of model j at time index i is first computed according to 

Equation (3-3): 

ej(i) = y(i) − fj(i)                 (3-3) 

where,             

ej(i) is the prediction error of model j at time i; 

y(i) is the observed value at time i; and 
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fj(i) is the prediction value of model j at time i. 

Following this, the method calculates the weighted average absolute prediction 

error for model j using the Fresh Degree function as shown below. 

aj(i) = ∑ F(i − p)q
p=0 |ej(i − p)|[∑ F(i − p)q

p=0 ]−1         (3-4) 

where, 

F(t), the Fresh Degree Function =  t or t2, or √t, t = 1,2, … , s.  

q = the length of the time series (i.e., the number of previous data points) used to 

calculate the weighted average absolute error, aj(i) based on the Fresh Degree Function. 

Next the method calculates the sum of the absolute prediction error for model j at 

time step i (sj(i)) using Equation (3-5).  In doing so, the method typically uses a length 

from the time series, l, which is typically longer than the length q used in Equation (3-4) 

above. 

sj(i) = ∑ |ej(i − p)|l−1
p=0                 (3-5) 

The method then calculates the following: (1) Ej(i), which is the ratio of the 

weighted average absolute prediction error over the past q data points of prediction 

method j at time i, aj(i), to the largest aj(i) of all prediction methods, m (i.e., the max 

aj(i)); and (2) EAj(i), which is the ratio of the weighted average absolute error over the 

past q data points of prediction method j at time i, , aj(i),  to the largest sum of the 𝑙 

absolute error over the past l data out of all prediction methods, m (i.e. the max sj(i)), as 

follows. 

Ej(i) = aj(i)/ [aj(i)]1≤j≤m
max                 (3-6) 

EAj(i) = aj(i)/ [sj(i)]1≤j≤m
max                (3-7) 
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Finally, Ej(i) and EjA(i), are combined using Equation (3-8), which was derived 

based on a fuzzy set formulation, where α is another weighting parameter reflecting 

the importance of the more recent forecasts. 

k̃j(i) = 1 − [αEj(i) + (1 − α)EAj(i)]                          (3-8) 

The k̃j(i) are then normalized according to Equation (3-9), and used to derive the 

weight, f(i+1), for each prediction method, m, at time step (i+1) according to Equation 

(3-10). 

kj(i) = k̃j(i)/ ∑ k̃j(i)m
j=1                 (3-9)  

f(i + 1) = ∑ kj(i)fj(i + 1), j = 1,2, … , m, i = 1,2, …  m
j=1         (3-10) 

3.1.2 Modeling Dataset 

In this research, the focus is on predicting the next hour traffic volume on the Peace 

Bridge, particularly the traffic entering the United States from Canada.  Hourly traffic 

volume and classification counts for the Peace Bridge, since 2003, are available for 

downloading on the Buffalo and Fort Erie Public Bridge Authority’s website (Buffalo 

and Fort Erie Public Bridge Authority, 2014).  This study mainly used the 2009 and 

2010 passenger car traffic data.  The data quality appeared to be excellent with very 

few hourly traffic counts missing (only 9 out of 8760 in 2009 and 7 out of 8760 points 

in 2010). For the missing counts, the time series was filled in with the average of the 

count for the hour before and the hour after the missing value.  Given that there were 

only few data points that were missing, the study did not feel the need to utilize more 
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elaborate imputation algorithms such as those described in the reference (Smith et al., 

2003).   

Figure 3-1a, Figure 3-1b and Figure 3-1c show how two holidays (one Canadian 

and one US) and one day with a US sports event have traffic patterns that differ from 

“ordinary days” (i.e. they fall outside the ± 15% band). 

 

Figure 3-1 Hourly Traffic Volume at the Peace Bridge on Different Days 

By following this procedure, the study identified the holidays with traffic patterns 

that differ significantly from “ordinary days”, and a separate group or cluster was 

defined for those holidays. In total, there were 22 such holidays in 2009, 5 of which 

belonged to Canadian holidays, while the other 17 days (including three long weekends: 

Thanksgiving, Christmas and New Year’s holidays) were U.S. or common holidays of 

the two countries.  

Figure 3-1a Figure 3-1b 

Figure 3-1c Figure 3-1d 
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For game days, the analysis showed that the days when the Buffalo Sabres’ and 

Buffalo Bills’ games were held, exhibited significantly different trends from ordinary 

days (Figure 3-1c).  As a result, a separate group was defined for those days.  In total, 

there were 50 game days in 2009, among which three were also holidays, and 48 game 

days in 2010. The study also looked at how traffic patterns generally varied by the day 

of the week.  Figure 3-1d plots the average hourly traffic volumes for four additional 

groups (i.e. weekdays excluding Friday, Fridays, Saturdays, and Sundays).  As can be 

seen, the diurnal distributions for these four groups differ significantly and warrant 

defining separate groups.   

Based on this, six different groups, for which separate prediction models were 

developed, were defined: (1) weekdays excluding Fridays (a total of 181 days in 2009 - 

only 2009 data were used for this group since there were enough data for the analysis); 

(2) Fridays (35 days in 2009 and 37 days in 2010); (3) Saturdays (with 38 and 41 days 

in 2009 and 2010, respectively); Sundays (with a total of 83 days in 2009 and 2010); (5) 

game days (a total of 98 days in 2009 and 2010); and (6) holidays (a total of 22 days in 

2009).  The following Chapter will describe the process of model development and 

evaluation for the first five groups (for holidays, given the small data size, a different 

methodology is being devised based on a case-based reasoning approach). Finally, it 

needs to mention that the data used in the study included traffic volumes under 

non-recurrent events (e.g. accidents, emergencies, inclement weathers, etc.). No 

attempts were made to screen or exclude those data points. 
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3.1.3 Modeling Development and Results 

3.1.3.1 Prediction Accuracy Measure 

Two measures were utilized in this study to assess the accuracy of the models 

developed: (1) the Mean Absolute Percent Error (MAPE); and (2) the Root Mean 

Square Error (RMSE). It is noted that in calculating both MAPE and RMSE, only the 

hourly volume from 7:00 am to 21:00 (i.e. 9 pm) from each day is utilized.  This is 

because the hourly volumes for the hours from 10 pm to 6:00 am are usually very small 

(less than 100 vehicles per hour), and hence suffer little delay. 

3.1.3.2 SARIMA Model 

The Statistical Package for Social Sciences (SPSS) was used to build the SARIMA 

models, with a separate model developed for each of the groups defined above.  The 

seasonal cycle for each model was set to 24, corresponding to the 24 hours in a day.  

Because SARIMA models are typically used for off-line modeling, a simple procedure 

was developed to allow the SARIMA model to be used for on-line prediction.  This 

procedure basically involved fitting the SARIMA model first using a training data set 

made of the first part of the time series (how the length of the training data was 

determined will be discussed next), and then recalibrating the SARIMA model to 

update the model parameters after each prediction.  When recalibrating the model, the 

most recent observation is added to the training data set, and the first or oldest data 

point in the training time series is dropped to keep the computational burden of model 
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recalibration manageable. This process, which was automated using a syntax file in 

SPSS, results in what may be viewed as a moving window that updates the part of the 

time series used for model calibration. Note that although there are more 

mathematically rigorous methods available to do so (e.g. a state-space representation of 

the SARIMA model coupled with a Kalman Filter (Shekhar and Williams, 2007)), the 

simple procedure described above was deemed adequate for the purposes of this study, 

especially since the computation time required for recalibrating SARIMA after each 

prediction was very short. 

To determine the appropriate length of the training data set, different lengths were 

tried, and for each length, the prediction errors for a test dataset consisting of 888 data 

points (about 20% of the whole time series available for the weekdays group) were 

calculated.  The results are shown in Figure 3-2a where it can be seen that, for the 

weekday group, a length of a training dataset of 960 hours (or 40 days) yielded the best 

performance in terms of the MAPE.  
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Figure 3-2 Training Dataset Length and Model Performance 

The same procedure was followed to develop the SARIMA models for the other 

four classes (i.e. Fridays, Saturdays, Sundays, and game days).  Table 3-1 lists the size 

of the training and test data sets for each model, along with the model’s MAPE and 

RMSE calculated for the test data set. 

Table 3-1 Prediction Performance of the SARIMA Model 

Data group Size of full 

dataset  

Size of 

training 

dataset 

Size of test 

dataset 

MAPE 

(%) 

RMSE 

(veh/hr) 

Weekdays (Mon -  

Thurs) 

4,344 (181 days) 960 (40 days) 3,384 (141 

days) 

9.84% 47.95 

Fridays 1,728 (35 days in 

2009; 37 days in 2010) 

960 (40 days) 768 (32 

days) 

10.28% 64.74 

Saturdays 1,896 (38 days in 

2009; 41 days in 2010) 

720 (30 days) 1,176 (49 

days) 

10.80% 57.60 

Figure 3-2a 

Figure 3-2b 
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Sundays 1,992 (42 days in 

2009; 41 days in 2010) 

720 (30 days) 1,272 (53 

days) 

11.60% 57.38 

Game Days 2,352 (50 days in 

2009; 48 days in 2010) 

1,440 (60 

days) 

912 (38 

days) 

15.17% 78.91 

As can be seen from Table 3-1, with the exception of the game days, the MAPE for 

the models was between 9.84% and 11.60%.  For game days, the MAPE was slightly 

higher (around 15%), probably because of the complex traffic patterns likely to occur 

on those days. Also note that for SARIMA, the best performance was achieved when 

predicting weekday traffic. 

3.1.3.3 SVR Model 

For the SVR model, the value of the insensitive loss function (ε )was set as 0.01, 

and the Radial Basis Function (RBF) was chosen as the kernel function. As opposed to 

the SARIMA model, SVR can be easily adapted for on-line prediction.  Specifically, 

for this study, the input to the SVR model at a given time step is a vector, X(t), whose 

length is B, defined as X(t) = [x(t), … , x(t − B + 1)]T.  The SVR would then use X(t) 

to predict the next data point in the series, X(t+1).  In other words, the model would 

always use the most recent B data points or hours to predict the next hour.  

Before using the SVR model in this fashion, however, it needs to be calibrated by 

determining the optimal values for the cost factor C and the gamma parameter of the 

RBF. To do this, a training data set similar to the one used in conjunction with the 

SARIMA model, needed to be defined; we use the letter O to refer to the length of the 

training dataset.  Moreover, to improve accuracy, we recalibrate the SVR model (i.e., 

determine new values for C and gamma) every P hours (P=120 hours in this study).  
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The reason the SVR model is only recalibrated every 120 time steps and not after each 

prediction as was the case with SARIMA, is that the calibration process is 

computationally intensive and hence cannot be practically performed after each 

prediction.  Once again, to keep the size of the training data set, O, fixed, we adopted a 

moving window strategy which replaces the first P data points in O with the latest P 

points added. 

To determine appropriate values for both B and O, multiple combinations of the 

values of the two parameters were tried, and the MAPE for a test period of 10 days was 

calculated for each combination.  Figure 3-2b shows the results from these 

experiments performed on the weekday class. As can be seen, the combination of B=6 

and O=1440 appears to yield the smallest prediction error for that class. 

Table 3-2 shows the optimal values for the training dataset size, B, and the input 

vector length, O, for the five model classes.  The table also lists the size of the test 

dataset used to calculate the MAPE and RMSE for each model.  As can be seen, the 

MAPE for the SVR model ranged from 9.42% to 13.62%.  An interesting observation 

regarding the SVR model performance is that the smallest prediction error for SVR 

(MAPE of 9.42%) was that corresponding to the game day model.  This is in stark 

opposition to the SARIMA model where the game day SARIMA model had in fact the 

largest MAPE (15.17%).  The RMSE of the game day SVR model is also lower than 

that in SARIMA model. This in turn tends to support the observation that traditional 

time series, given its assumption of linear correlation among the data points, may face 

difficulties when dealing with the non-linearity of complex patterns such as those 
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observed on game days.  For such patterns, the SVR paradigm appears to provide 

better performance.  

Table 3-2 Prediction Performance of the SVR Model 

Classes Full Dataset Size Size of 

Training 

Dataset,  O 

Input 

Vector 

Length, B 

Size of 

Test 

Dataset 

MAPE 

(%) 

RMSE 

(veh/hr) 

Weekdays (Mon 

Thru Thurs) 

 

4344 (181 days) 1440 6 2904 (121 

days) 

10.37% 49.64 

Fridays 1728 (35 days in 

2009; 37 days in 

2010) 

1440 7 288 (12 

days) 

9.87% 58.28 

Saturdays 1896 (38 days in 

2009; 41 days in 

2010) 

1440 6 456 (19 

days) 

12.50% 64.23 

Sundays 1992 (42 days in 

2009; 41 days in 

2010) 

1440 6 552 (23 

days) 

13.62% 57.03 

Game Days 2352 (50 days in 

2009; 48 days in 

2010) 

1440 6 912 (38 

days) 

9.42% 52.17 

3.1.3.4 Multi-model Combined Forecasting Method 

The comparison of the SARIMA and SVR model results indicates that each model 

appears to have its own set of strengths and weaknesses. For example, the SARIMA 

model is good at handling the linear characteristics of the data, such as seasonality and 

trend, whereas SVR is capable of capturing the nonlinear characteristics.  This Chapter 

develops methods to combine forecasts from the two models to improve the quality and 

accuracy of the predictions. 

Specifically, two methods for combining the forecasts from the two models were 

investigated.  The first method, called the simple or fixed weight method, simply 
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compares the performance of each model (i.e. SARIMA and SVR) for predicting a 

specific hour of the day (e.g. 7:00 am or 8:00 am, etc.), over the whole training dataset.  

If for example, there were more instances in which SARIMA performed better than 

SVR for the 7:00 am volume prediction, SARIMA is selected for all future predictions 

for the 7:00 am hour (i.e., the weight assigned for SARIMA in this case would be 1, and 

for SVR 0).  Our analysis of weekday predictions, for example, showed that SARIMA 

appeared to be the better model for 7 and 8 am, and for 2, 3, 6, 8 and 9 pm.  For the 

remaining hours, SVR was the better model. 

The second method is the Fuzzy Adaptive Variable Weight method previously 

described. When applying this method, the Fresh Degree Function, F(t), was assumed 

to be equal to t
2
.  It should be noted that in this method the performance of the model 

for predicting a given hour (e.g. 7 am) is evaluated based on the model’s performance in 

predicting that same hour over the past few days and not on the model’s performance 

over the past few hours of that day (i.e., the t index of F(t) is an index referring to the 

day number or sequence).  This is because, as mentioned before, each model 

outperforms the other for predicting certain hours of the day.  With respect to the other 

parameters of the weight method, q in Equation (3-4) was set to 3, the moving window 

length 𝑙 in Equation (3-5) was set to 5, and the values of α in Equation (3-8) were set 

to 0.84, 0.7, 0.75, 0.84, 0.84 for the weekdays, Fridays, Saturdays, Sundays, and Game 

days, respectively. Those α values were chosen after trying many different values and 

picking the ones with the best performance. 
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Table 3-3 shows the magnitude of the improvement in the quality of the SARIMA 

and SVR predictions when their forecasts are combined using both the simple fixed 

weight method and the fuzzy adaptive weight method. For each class, the first five days 

were used to calculate the weights for the fuzzy adaptive weight method and 

performance was evaluated on the remainder of the dataset.   

Two important observations can be made with regard to Table 3-3.  First, it is 

clear that both methods for combining the results appear to improve the quality of the 

results.  Specifically, for all five classes, both of the combined multi-model forecast 

methods are better than single model forecasts, with the exception of only the fixed 

weight method when used on the game day group, where the combined method 

performs better than SARIMA but worse than SVR. The second observation is that the 

fuzzy adaptive variable method clearly outperforms the simple weight method, and 

appears to yield a dramatic improvement in the quality of the results. Specifically, with 

the fuzzy adaptive variable method, the MAPE for all five classes is in the range of only 

6% to 8%, and the RMSE for all 5 classes is lower than 45 vehicles/hour.   

Table 3-3 Models’ Prediction Performance Comparison 

 MAPE (%) RMSE (vph) 

SARIMA SVR Fixed 

Weight 

Variable 

Weight 

SARIMA SVR Fixed 

Weight 

Variable 

Weight 

Weekdays 

(35 days) 

10.10% 9.37% 7.80% 6.32% 99.60 48.95 74.88 37.49 

Fridays 

(12 days) 

10.09% 9.78% 8.36% 7.68% 57.42 51.55 47.49 43.49 

Saturdays 

(19 days) 

10.84% 11.80% 9.49% 7.59% 60.00 56.44 77.37 39.07 

Sundays 

(23 days) 

11.55% 12.23% 10.59% 7.65% 59.54 52.42 53.59 39.38 
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Game days 

(38 days) 

15.31% 8.58% 11.93% 7.32% 79.94 48.52 64.60 43.73 

For a more disaggregate view of the performance of the models, Figure 3-3 below 

compares the traffic volume predicted by SARIMA, SVR and the combined forecasting 

method, against the field observations for a period spanning a total of 60 hours.  As can 

be seen, for some hours (e.g. those inside circle A), SARIMA outperforms SVR, 

whereas for other hours (e.g. inside circle B), SVR performs better than SARIMA.  By 

combining the two methods, the final forecast is generally quite closer to the observed 

values (with naturally a few exceptions such as the hour enclosed by rectangle C). 

 
Figure 3-3 Traffic Volume Predictions of SARIMA, SVR, and the Combined 

Forecasting Method with Variable Weight  

3.2 On-line Prediction of Border Crossing Traffic Using DTW-SPN 

3.2.1 Methodology 

In this research, the original Spinning Network method (SPN) is improved based 

on dynamic time warping (DTW), and it is compared with the SARIMA and SVR for 
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the on-line prediction of border crossing traffic. The introduction of SARIMA and SVR 

can be found in Chapter 3.1.1.2. Here only SPN is introduced.  

3.2.1.1 Spinning Network method (SPN) 

The SPN method is a novel forecasting algorithm originally proposed by Huang 

and Sadek (2009). The method is inspired by the functionality of human memory in 

sensing, processing, and predicting the states of the surrounding environment, and 

attempts to mimic some aspects of human memory including: (1) the fuzzy nature of 

the information retrieved; (2) the instinctive association of ideas; and (3) the fact that 

the quality of the information retrieved is a function of the time and effort invested.  

While the method shares some features with the nearest neighbor approach, one of its 

key advantages is its dramatic computational efficiency compared to other forecasting 

algorithms including the nearest neighbor algorithm itself.    
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Figure 3-4 Spinning Network (SPN) (Revised based on Huang and Sadek, 2009) 

As shown in Figure 3-4, the SPN consists of a set of consecutive rings on which 

the data items are stored and processed. Data items constitute the fundamental 

elements in the SPN. They denote the information that a “person” receives or recalls, 

and can be a vector, a matrix or an image. In the case of traffic volume prediction, a 

data item would take the form of a vector consisting of the current hourly traffic 

volume and the volumes collected in previous hours. Each ring has a fixed capacity 

that determines how many data items it can store.  It also has the functionality of 

merging or consolidating similar data items and forwarding them to the next ring.  

This merge function has the benefit of saving space on the rings (i.e., reducing the 

number of data items stored and searched for) and of increasing the information 

content of data items, since the information content of a merged data item represents 

an integration of the information contained within the elements that got merged into 

it.   

Each ring is exposed to three windows as also shown in Figure 3-4, representing 

the stages of receiving, consolidating, and outputting information, namely the input 

window, the To-Next-Ring (TNR) window, and the output window.  Specifically, 

the input window accommodates an arriving data item by either placing it in one of its 

vacant cells if any, or merging it with the most similar data item in the window in case 

there is no vacant cell. The TNR window consolidates or merges similar data items 

and forwards the merged data item onto the next ring.  Finally, the output window 

scans its cells and picks the data item most similar to the new data item entering the 
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SPN as the output (which in this case would represent the predicted hourly traffic 

volume for the next hour).  When outputs are generated from all the rings, they are 

evaluated again, and the one that is most similar to the new data item is selected as the 

final prediction of the new data item. The rings spin continuously in a clockwise or 

counterclockwise direction so that the different parts of the ring are exposed to the 

input, TNR, and output windows, ensuring that a wide range of historical data items 

are examined. 

As can be seen from the brief discussion above, the two key functions at the core of 

the SPN data processing are the “compare” function and the “merge” functions. The 

“compare” function in the original SPN algorithm used the Euclidean distance between 

two vectors to measure the degree of similarity between two data items. The “merge” 

function, on the other hand, combines similar data items by averaging their associated 

values. Given that the more a data item has been merged with others, the more stable 

and informative its value would be, the function also records the number of times a 

given item has been merged with others before the current merging, and uses that count 

as a weight when calculating the average.   

3.2.2 Datasets 

In this study, the same dataset described in Chapter 3.1.2 is used. The complexity 

of this dataset is calculated in Chapter 3.2.1.1.1, and its non-linearity is calculated in 

Chapter 3.2.1.1.2. Similarly, the dataset is also grouped into six different data groups as 
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shown in Chapter 3.1.2. The DTW-SPN is built for the whole dataset and the separate 

grouped datasets, as well as other models. 

3.2.3 Model Development 

3.2.3.1 Enhanced SPN 

    Refinement of the original SPN algorithm was deemed necessary to allow it to 

handle the increased complexity and the non-linearity character of the Peace Bridge 

dataset, compared to the Virginia set used in the original study.  As discussed before, 

both the “compare” and the “merge” functions of the SPN involve assessing the 

similarity between data items. The most straightforward way of evaluating the 

similarity of two data items is to calculate the Euclidean distance between them, and 

this was the approach implemented in the original SPN (referred to hereafter as the 

Euclidean-SPN).  However, the Euclidean distance is a brittle distance measure that is 

incapable of dealing with elastic timing shifts in the time series data. For example, in 

the case of the two time-dependent sequences shown in Figure 3-5, sequence Y shares 

similar patterns with sequence X although its peak timings (or peak spans) are shifted 

(or distorted). If the Euclidean distance is used as the similarity metric, sequences X 

and Y would be regarded as quite different, and the similarity between the two patterns 

would go unnoticed.    
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Figure 3-5 Similarity between Time-dependent Sequences 

To solve this issue, an alternative algorithm, called Dynamic Time Warping 

(DTW), has recently been proposed as a similarity metric between time series 

sequences.  DTW explores every possible time alignment to pair the elements of the 

two sequences, and then seeks the best pairing that returns the minimum distance.  In 

comparison to the Euclidean distance based measure, it is much more robust and allows 

similar shapes to match even if they are out of phase in the time axis (Keogh and 

Ratanamahatana, 2005). The DTW distance is calculated in the following manner 

(Muller, 2007). 

Given two time-dependent sequences X = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁] and Y =

[𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀], an 𝑁 × 𝑀 accumulated distance matrix V(N, M) is constructed, 

with its entries calculated as in Equation (3-11). The last entry of the matrix, 𝑣(𝑁, 𝑀) 

records the minimum distance associated with the best time alignment between X and 

Y, and is defined as the DTW distance of the two sequence, i.e., 𝐷𝑇𝑊(𝑋, 𝑌) =

𝑣(𝑁, 𝑀). As can be seen, Euclidean distance is a special case of DTW when the fixed 

pairing {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥min(𝑁,𝑀), 𝑦min(𝑁,𝑀))} is chosen for distance 

calculation. 
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where, 

𝑑(𝑥𝑖 , 𝑦𝑗) is the distance between 𝑥𝑖 and 𝑦𝑗, it could be 𝑑(𝑥𝑖 , 𝑦𝑗) = |𝑥𝑖 − 𝑦𝑗| or 

𝑑(𝑥𝑖 , 𝑦𝑗) = (𝑥𝑖 − 𝑦𝑗)2. 

    Different from Huang and Sadek (2009) where the focus was on the Euclidean 

distance, this research tested both the Euclidean distance and the DTW distance when 

developing the SPN model. The resulting models are labeled as the Euclidean-SPN (or 

Eu-SPN for short) and the DTW-SPN respectively, and are compared later to see which 

similarity measure performs better. 

3.2.3.2 SPN parameters 

    As discussed in Chapter 3.3.1.1, the SPN has several parameters that may be tuned 

in order to improve performance. In this study, values of those parameters were 

determined primarily through experimentation.  This involved changing the value of a 

given parameter until the value that yielded the best performance or the lowest Mean 

Absolute Percent Error (MAPE) was identified.  The parameter tuning process and 

results are briefly discussed below. 
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3.2.3.2.1 Data item length 

    The length of the data items refers to the number of elements included in the input 

vector (referred to as a data item in SPN). In the case of the border crossing traffic 

prediction, the best prediction results were obtained when the input vector included the 

current hourly traffic volume along with the hourly volumes for the previous 18 hours. 

This meant that the total length of the SPN’s data items had to be set to 20, with the first 

19 elements constituting the input information for the prediction problem (called the 

historical span) and the 20
th

 element representing the predicted traffic volume for the 

next hour (i.e., the prediction span). In other words, the hourly data elements in the 

historical span of a data item are used to evaluate whether two data items are similar or 

not. If the two data items are deemed similar, the known volume of the future hour in 

one data item can be used to predict the one-hour future volume of the other. 

3.2.3.2.2 Number of rings and ring size 

    In the SPN, the rings hold the data items and serve, through the “merge” function, 

to consolidate similar data items, thereby making them more stable and informative.   

With respect to the number of rings, the SPN was found to perform the best on the 

border crossing dataset when the number of rings was set to four.  Regarding the size 

of the rings, a general observation about the SPN is that the smaller the capacity of the 

rings the greater is the pressure to merge and consolidate data items, mainly because of 

the ring space constraint (i.e., each ring has a pre-defined capacity).   In our study, 

after some experimentation, we set the size of the outer ring as 6,000 slots or data items, 
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with the size of each inner ring being 10 slots less than the size of the ring immediately 

preceding it. 

3.2.3.2.3 Input, TNR, and Output Windows’ sizes 

    As mentioned before, there are three windows in the SPN model, namely the input 

window, the To-Next-Ring (TNR) window, and the output window.   To increase 

precision in this study, the size of the input and output windows was set to be equal to 

the full size of the ring.  The size of the TNR window was arbitrarily set to 10% of the 

size of the ring.  

3.2.3.2.4 Spinning speed 

    Experimentation with different spinning speeds for the rings showed that the rings’ 

spinning speed did not have a major impact on the SPN performance (this in fact should 

be expected because the size of the input and output windows was set to be equal to 100% 

of the ring size).   Given this, the spinning interval was arbitrarily chosen as 4 ms 

(millisecond) for the outermost ring, with the interval increasing by 1 ms for each inner 

ring. 

3.2.3.2.5 Threshold to Next Ring (TTNR) 

    The “Threshold to Next Ring (TTNR)” is a parameter associated with the TNR 

window. It denotes the minimum number of similar data items that need to be identified 

within the TNR window before a data “merge” can be conducted.  This ensures that 

only common enough patterns are combined and forwarded to the next ring.  A large 

value of TTNR would reduce the frequency of the “merge” operations (since merging 
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would only happen in that case when a large number of similar data items are identified 

within the TNR window), and the outer ring would thus fill up quickly.  In this study, 

the threshold was set to two data items. 

3.2.3.2.6 Distance tolerance 

    The “distance tolerance” is a parameter associated with the merge function, which 

specifies how close two data items need to be in order to be merged.  That parameter 

was found to have a significant impact on the SPN performance.  Large values would 

encourage unnecessary data merging while small values would prevent merging. After 

some experimentation, a value of the distance tolerance parameter equal to 60 

vehicles/hour (vph) was found to achieve a good balance. Here, the 60 vph is around 15% 

of the average hourly traffic volume in the dataset. 

3.2.3.3 SARIMA model and SVR model 

    As two bench-marking models, the same parameter settings of SARIMA and SVR 

have been introduced in Chapter 3.1.3.2 and Chapter 3.1.3.3.  

3.2.4 Evaluation Results 

    In this Chapter, we compare the prediction performance of the four models (i.e. 

DTW-SPN, Euclidean-SPN, SARIMA, and SVR) on both the classified dataset (i.e. the 

one divided into five groups) and the unclassified set. The models were tested on the 

hourly volumes from 7:00 to 21:00 of each day because the night hours (22:00-6:00) 

are of little interest due to their low traffic volumes (e.g., less than 100 vph). The test 
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dataset included 127 valid days (1,905 hours).  For the classified case, the test set was 

itself broken into the corresponding groups as follows: Weekdays (Mon-Thur) (525 

hours), Fridays (180 hours), Saturdays (285 hours), Sundays (345 hours), and Game 

Days (570 hours).  The discussion of the results from testing on the classified datasets 

is presented first, followed by the results from testing on the unclassified or the whole 

data set. 

3.2.4.1 Comparisons of the four models based on the classified dataset 

 

Figure 3-6 Prediction Performance of the Four Models for Different Data 

Classes 

    Figure 3-6 plots the MAPE of the four models when tested on the five groups.  As 

can be seen, the DTW-SPN outperformed all other three methods for almost all the data 
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groups. The only exception was the game day category where SVR performed the best 

closely followed by DTW-SPN. The superiority of DTW-SPN, compared to the other 

models, is also confirmed when one calculates the average MAPE for all the five 

groups.  As can be seen also from Figure 3-6, DTW-SPN had the lowest average 

MAPE at 9.84%, followed by SVR at 10.94%. 

    The Euclidean-SPN, on the other hand, did not perform that well and its MAPE was 

invariably higher than the two benchmarking algorithms (i.e., SARIMA and SVR).  

One reason behind this could be that the parameters of the SARIMA and SVR were 

re-calibrated and tweaked for each data group, whereas the SPN’s parameters were 

only calibrated once.   

The results also appear to confirm the known strengths and weaknesses of 

traditional time series models such as SARIMA, compared to AI-based methods such 

as SVR.  SARIMA is good at handling linear data sets such as weekday traffic that 

exhibits strong seasonality and trends, but is challenged when dealing with non-linear 

patterns (e.g., the game day group).  SVR, on the other hand, appears to be capable of 

capturing the nonlinear patterns, particularly for the days that involve significant 

volume fluctuations such as game days.  

    The robustness of the four methods, or more specifically the capability to deal with 

the sudden changes in traffic volume levels, was also tested. To do this, we first 

identified what we refer to as, hours with abrupt traffic volume changes or hourly traffic 

volumes that are dramatically different from the volume in the previous hour.  

Specifically, the hours with an abrupt change were defined as those with volumes that 



93 

 

are greater than 2.5 times (or lower than 0.4 times) of the preceding hourly volume. As 

found in Table 3-4, there are 36 abrupt points in total and 26 of them come from the 

Game Days group.  

Table 3-4 Model Performance for the Abrupt Points in the Classified Datasets 

MAPE (%)  Weekdays (6*) Fridays (0) Saturdays (2) Sundays (2) Game days (26) 

DTW-SPN 10.63 NA 54.48 21.22 26.67 

Euclidean-SPN 25.10 NA 61.91 49.02 55.78 

SARIMA 17.56 NA 58.16 33.18 49.68 

SVR 9.92 NA 13.06 23.89 9.78 

  Note: * the number in the parenthesis denotes the number of hours (or data points) 

with abrupt traffic volume changes. 

    As can be seen from Table 3-4, SVR outperforms the others in estimating abrupt 

hourly traffic volumes, except for the Sunday group. DTW-SPN ranks as the best for 

the Sunday group, and is the second best for the other groups. In contrast, 

Euclidean-SPN and SARIMA are not good at all at predicting these abrupt traffic 

volumes. These results demonstrate the comparable ability of DTW-SPN in capturing 

abrupt changes in traffic volumes although SVR is still the best in general. 
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Figure 3-7 Estimation Performances of Four Models for the Friday Group 

    To assess the prediction performance of the models in more detail, the MAPEs of 

each model with respect to different levels of traffic volumes in the Friday group are 

shown in Figure 3-7a. As can be seen, DTW-SPN performs the best for almost all 

traffic volume levels when the volume is greater than 250 vph. For low traffic volumes 

such as 151-200 vph and 201-250 vph, SARIMA or Euclidean-SPN tends to be the best. 

To provide a different view of the models performance, the predicted versus actual 

hourly traffic volumes were plotted for a sample of 60 consecutive hours for the Friday 

group (Figure 3-7b). Consistent with the previous observations, DTW-SPN and SVR 

outperform Euclidean-SPN and SARIMA in estimating hourly traffic volumes. 

 

 

Figure 3-7a 

Figure 3-7b 
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Figure 3-8 Predictions of Four Models versus Actual Volumes in the Friday 

Group 

    Finally, the plots of the models’ predictions against the hourly traffic volume 

observations are shown in Figure 3-8. As can be seen, the linear fitting curve associated 

with DTW-SPN has the highest R-square (0.89), implying that DTW-SPN is the best 

model with the highest prediction accuracy among the four.  The SVR model comes as 

a close second with an R-square value of 0.86.  

3.2.4.2 Comparison of the four models based on the non-classified dataset 

Besides comparing the models’ performance on the classified dataset, their 

performance was also evaluated on the unclassified set that did not distinguish among 

the different day types.  The results are shown in Table 3-5. As indicated by MAPE, 

the DTW-SPN model once again outperformed all other models, and had the lowest 

MAPE at 10.60%.  The SVR came in second, followed by the SARIMA model and the 
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Euclidean SPN.  In thus appears that the use of the DTW distance measure (as opposed 

to the Euclidean distance) has significantly improved the performance of the SPN, 

reducing the MAPE from 16.49% to only 10.60%.   

Table 3-5 Prediction Performance of SPN, SARIMA, and SVR for the 

Unclassified Data 

Method MAPE (%) for the Entire 

Dataset (1,905 hours) 

MAPE (%) for 

Hours Showing Abrupt 

Changes (36 hours) 

DTW-SPN 10.60 27.55 

Euclidean-SPN 16.49 69.44 

SARIMA 16.38 52.95 

SVR 14.57 12.59 

   

    Table 3-5 also shows the MAPE for the 36 hours with abrupt volume changes, as 

defined in Chapter 3.2.4.1 consistent with the previous findings, SVR yielded the best 

performance, followed by DTW-SPN.  Both methods were much more accurate than 

either SARIMA or Euclidean-SPN.  This confirms the ability of SVR and DRW-SPN 

to deal with the non-linearity of the traffic volume time series.  

 

 

 

Figure 3-9a 

Figure 3-9b 
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Figure 3-9 Estimation Performances of Four Models for the Whole Dataset 

    Figure 3-9 plots the four models’ predictions against the observed data. As can be 

seen from Figure 3-9a, DTW-SPN outperforms the others for the majority of traffic 

volumes ranging from 100 vph to 800 vph, while SVR performs slightly better for 

higher volumes. In contrast, the Euclidean-SPN and SARIMA perform worse than both 

the DTW-SPN and SVR.  Figure 3-9b provides a zoom-in view of the models’ 

estimation performance in comparison to the actual observations for a sample data with 

60 hourly traffic volumes. Consistent with the general case, DTW-SPN performs the 

best for most of the data entries, except for some hours such as the 55
th

 hour.  

 

 

Figure 3-10 Hourly Volume Predictions versus Observations in the Whole 

Dataset 

    Figure 3-10 compares the four models’ predictions with the actual observations in 

the whole dataset (i.e., unclassified). As demonstrated by both the plots and the fitted 

regression models, DTW-SPN predictions appear to match the real-world observations 
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the most: the fitting curve of the estimate-to-observation scatter plot has the slope 

which is closest to one; and the corresponding regression model has the highest 

R-square as 0.89. Among the remaining three models, Euclidean-SPN and SARIMA 

have similar performance, and both of them are worse than SVR.  

3.2.4.3 Impact of data classification 

The comparison between the classified case and the unclassified case reveals the 

role of data classification in improving model performance (the classified case in 

Figure 3-6 versus the unclassified case in Table 3-5).  When the dataset is not 

classified, the MAPEs of DTW-SPN, Euclidean-SPN, SARIMA, and SVR were 10.6%, 

16.49%, 16.38%, and 14.57% respectively. In contrast, after classifying the data by the 

day type, the average MAPEs were reduced to 9.84%, 16.33%, 11.86% and 10.94%, 

respectively. This indicates that classifying the data based on similarities of exhibited 

patterns (e.g., by day groups) is generally helpful in improving the prediction accuracy 

of all four models.  

However, the more interesting observation in that context is with respect to the 

magnitude in the improvement of the performance of the SPN, as compared to the other 

model types, when the data is classified, and what that reveals regarding the robustness 

of the paradigm. Specifically, for both the DTW-SPN and the Euclidean SPN, the 

improvement in the performance resulting from classifying the data into groups is 

significantly less (0.76% for DTW-SPN and 0.16% for SPN) than that for SARIMA 

(4.52%) or SVR (3.63%).  This seems to point out to the superior classification ability 
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inherent in the SPN algorithm itself, even without the external help from classifying the 

data into different day types.  The grouping ability of the SPN is naturally the result of 

the multiple comparisons and merging processed involved in the different windows and 

rings of network, which allowed the paradigm to exhibit high predictive accuracy even 

without the external classification of the data.  This additional advantage makes the 

SPN method more practical for real-world traffic volume prediction since no additional 

effort is required for pre data classification.  

 
 Figure 3-11 Comparison of Model Performance between the Classified Case 

and the Unclassified Case 

    As a further illustration of this last point, Figure 3-11 compares the four models’ 

performance for the two cases of the classified (solid line) and the unclassified (dashed 

line) against actual volume observations for a sample of 60 data points. As can be seen 

in Figure 3-11, the improvement in the prediction performance of the SPN-based 

  

  



100 

 

approaches (i.e., DTW-SPN or Euclidean-SPN) due to data classification was 

significantly less than the improvement for either SARIMA or SVR.  

3.2.4.4 Running time comparison of the four models 

In addition to prediction accuracy, running time is also considered as an important 

criterion for model comparison. For the SPN models, the computational burden mainly 

comes from the comparisons between the data items conducted on the three different 

windows of each ring, including: (1) the comparisons between existing data items in the 

input window of a ring and a new data item entering the ring; (2) the comparisons 

between the existing data items in the output window of a ring and a new data item; and 

(3) the periodical comparisons among the existing data items on the TNR window 

before each data merging and forwarding. Given that the testing data length is 𝑁𝑡𝑒 and 

the sizes of the input window, output window, and TNR window are 𝑤1, 𝑤2, and 𝑤3 

respectively, the overall time complexity of the SPN, due to the comparison operations 

in the three windows of all the rings, can be represented as 𝑂(𝑁𝑡𝑒 ∗ (𝑤1 + 𝑤2 +

𝑤3
2/𝑃)), with P denoting the frequency of invoking the TNR process (i.e., the number 

of records in between two consecutive executions of the TNR process). If each 

comparison takes 𝑇𝑐𝑜𝑚 , the total running time of SPN is 𝑂(𝑁𝑡𝑒 ∗ (𝑤1 + 𝑤2 +

𝑤3
2/𝑃))  ∗ 𝑇𝑐𝑜𝑚.  For the Euclidean-SPN model, the runtime of the compare function, 

𝑇𝑐𝑜𝑚, is 𝑂(𝐵), where B refers to the length of a data item.  For the DTW-SPN, 𝑇𝑐𝑜𝑚 

is larger and equal to 𝑂(𝐵2) since the distance is calculated based on any random 

pairing of data elements between the two data items being evaluated. Therefore, the 



101 

 

time complexity of the Euclidean-SPN model and the DTW-SPN model are 𝑂(𝑁𝑡𝑒 ∗

(𝑤1 + 𝑤2 + 𝑤3
2/𝑃)) ∗ 𝐵)  and 𝑂(𝑁𝑡𝑒 ∗ (𝑤1 + 𝑤2 + 𝑤3

2/𝑃)) ∗ 𝐵2) respectively.  

For the SVR and SARIMA models, due to the moving window training strategy 

used for on-line prediction, their time complexity depends on both the training data 

length (𝑁𝑡𝑟) and the testing data length ( 𝑁𝑡𝑒). For the SARIMA model, the time 

complexity associated with each model training is 𝑂(𝑚3𝑁𝑡𝑟), with m being the order 

of the model (Lu et al., 2010). Therefore, the overall time complexity of SARIMA is 

𝑂(𝑚3𝑁𝑡𝑟) ∗ 𝑁𝑡𝑒/𝑅 = 𝑂(𝑚3 ∗ 𝑁𝑡𝑟 ∗ 𝑁𝑡𝑒/𝑅), where m refers to the order of the 

SARIMA model  (the D in Equation (3-1)) and R refers to the frequency of the 

re-calibration process (specifically the number of records or data points in between 

calibrations). In our study, given that the model is recalibrated at every prediction step, 

R is equal to 1.  Similarly, for the SVR model, the time complexity for each training 

phase is 𝑂(𝑁𝑡𝑟
3 ) (Zhao and Sun, 2009), and the total running time is 𝑂(𝑁𝑡𝑟

3 ) ∗

𝑁𝑡𝑒/𝑅 = 𝑂(𝑁𝑡𝑟
3 ∗ 𝑁𝑡𝑒/𝑅) (R =100 for the SVR model).  

Generally speaking, the SVR model is the most time consuming prediction method 

due to the involvement of 𝑁𝑡𝑟
3  and the large value of 𝑁𝑡𝑟. The time complexity of the 

SPN model can be controlled by adjusting the size of the input, output, and TNR 

windows.  Table 3-6 summarizes the general time complexity of the four models, and 

shows the specific running times obtained for the unclassified Peace Bridge data set on 

a computer with 4.00 GB RAM and Intel® Core(TM) 2 Duo CPU.  

As can be seen, given the parameter settings described in the model development 

Chapter, the Euclidean-SPN model is the fastest prediction method with just 1,836 
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seconds, followed by the DTW-SPN model at 10,656 seconds. SARIMA required a 

total run time equal to 39,636 seconds, whereas SVR needed the longest running time.  

Based on this, it can be concluded that not only the DTW-SPN yielded the highest 

overall prediction accuracy (as discussed in Chapters 3.3.4.1 and 3.3.4.2), but it is also 

significantly more computationally efficient compared to either SARIMA or SVR.  

Specifically, the runtime for DTW-SPN was about one quarter of the runtime for 

SARIMA and less than 1/15
th

 of the runtime for SVR. 

Table 3-6 Computational Time Complexity of SPN, SARIMA, and SVR for the 

Unclassified Data  

Models Time Complexity (general case) Running Time (seconds)*  

DTW-SPN  𝑂((𝑤1 + 𝑤2 + 𝑤3
2/𝑃) ∗ 𝑁𝑡𝑒 ∗ 𝐵2) 10,656 

Euclidean-SPN  𝑂((𝑤1 + 𝑤2 + 𝑤3
2/𝑃) ∗ 𝑁𝑡𝑒 ∗ 𝐵

SARIMA 𝑂(𝑚3 ∗ 𝑁𝑡𝑟 ∗ 𝑁𝑡𝑒/𝑅) 39,636 

SVR 𝑂(𝑁𝑡𝑟
3 ∗ 𝑁𝑡𝑒/𝑅) 159,120 

Note: * the running times were obtained for the unclassified Peace Bridge data set on 

a computer with 4.00 GB RAM and Intel® Core(TM) 2 Duo CPU. 

3.3 Evaluating Short-term Traffic Prediction Models Based on Multiple Datasets 

and Data Diagnosis Measures 

3.3.1 Methodology 

3.3.1.1 Data Diagnosis 

The goal of the data diagnosis is to assess the predictability of a time series and to 

identify which methods are more appropriate for prediction. Multiple measures were 

utilized in this study including: (1) measures of complexity, such as delay time and 
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embedding dimension analysis and approximate entropy; (2) non-linearity indicators, 

such as the time reversibility of surrogate data; and (3) measures of long range 

dependence such as Hurst exponent. Given space limitations, only highlights of each 

measure are briefly introduced below. Interested readers are referred to the appropriate 

references for more details. 

3.3.1.1.1 Complexity Measures 

Delay Time and Embedding Dimension. The idea behind the delay time and 

embedding dimension method is to make a time-delay reconstruction of the phase or 

state space of the time series in which to view the dynamics of the system (Jayawardena 

et al., 2002; Liu et al., 2011). Suppose we have a time series{𝑥𝑡}, a new time series, 

denoted by {𝑦𝑡}, 𝑦𝑡 = {𝑥𝑡, 𝑥𝑡−𝜏, … , 𝑥𝑡−(𝑚−1)𝜏}, is first constructed.  The new space 

consisting of such vectors 𝑦𝑡 is called the phase space or state space. The elements in 

𝑦𝑡 include (m-1) relevant past values of𝑥𝑡, and the relevant past values may lag 𝜏 time 

intervals from each other. Here, 𝜏  and m, are called the delay time (or lag value) and 

embedding dimension, respectively.  Typically, the best value of delay is determined 

using the mutual information method which seeks to maximize the joint probability 

𝑝(𝑋(𝑡), 𝑋(𝑡 + 𝜏)) given τ (Fraser and Swinney, 1986). For determining the 

embedding dimension, the false nearest neighbor algorithm can be used.  The 

algorithm scans potential values of m in order to identify the optimal value that avoids 

the inclusion of false or irrelevant data the most (Kennel et al., 1992).  
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Approximate Entropy.  Approximate entropy (ApEn) is a technique for 

measuring the magnitude of irregularity or unpredictability of fluctuations in a time 

series.  Specifically, the measure denotes the likelihood that fluctuation patterns of a 

series do not repeat over time.  Small values of ApEn usually indicate a predictable 

dataset with repetitive patterns, whereas larger values of APEn indicate more 

randomness. After phase space reconstruction discussed previously, the analyst needs 

to specify the threshold for the similarity criteria, r, which defines whether two patterns 

are similar.  The details of how ApEn is calculated can be found in reference (Ho et al., 

1997).  

3.3.1.1.2 Non-linear Indicators 

Time Reversibility of Surrogate Data. The method of surrogate data tests the 

nonlinearity of time series by verifying whether a series is consistent with the null 

hypothesis of a linear Gaussian process (LGP). A process known as the iteratively 

Amplitude Adjusted Fourier Transform (IAAFT) is first used to generate surrogate 

datasets from the original time series (Schreiber and Schmitz, 2000).  This process is 

repeated several times, and after each time, a measure known as the time reversibility, 

𝑟, which measures the asymmetry of a series under time reversal, is calculated 

(Schreiber and Schmitz, 2000; Disks et al., 1995). The time reversibility value for the 

original time series, 𝑟0, is also calculated.  Finally, the test checks to see if 𝑟0 is within 

the distribution of r. If it is, the original time series is linear; otherwise, it is nonlinear 

(Merkwirth et al., 2009).  
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3.3.1.1.3 Long Range Dependence (LRD Indicators) 

Hurst Exponent. Hurst exponent is a measure to characterize the long range 

dependence (LRD) of a time series (Barbulescu et al., 2010). In the time domain, LRD 

manifests as a high degree of correlation between distantly separated data points. The 

values of the Hurst exponent range from 0 to 1, and can be categorized into three groups 

with different implications: (1) Hurst = 0.5 implies a random time series; (2) 0< Hurst 

<0.5 indicates a trend-reverting tendency by which the increasing (or decreasing) trend 

observed at present is likely to flip at the next time instant; and (3) 0.5< Hurst <1 

indicating a trend-reinforcing tendency by which the increasing (or decreasing) trend at 

present is likely to be maintained in the near future. Some researches show that for back 

propagation neural network models, time series with large Hurst exponent can be 

predicted more accurately than those series with H close to 0.50 (Qian and Rasheed, 

2004). The details about how to calculate the Hurst exponent can be found in reference 

(Hurst, 1951). 

3.3.1.2 Short-term Traffic Volume Prediction Models  

In this study, SARIMA, SVR and k Nearest Neighbor (k-NN) are used to build the 

traffic prediction models for the multiple datasets and compared with each other, the 

introduction of SARIMA and SVR can be found in Chapter 3.1.1.2. Here only k-NN is 

introduced.  
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3.3.1.2.1 k Nearest Neighbor (k-NN) 

k-NN is a prediction method which decides the output by finding the k-nearest 

neighbors (i.e. most similar) of the input in a historical dataset, and using their observed 

output (i.e. the predicted volume). The Euclidean distance is typically used to assess 

similarity. When k nearest neighbors are found, and assuming their corresponding 

output values are 𝑣𝑖 , i = 1,2, … , k, the predicted value (v) can be determined by 

calculated the weighted average of the neighbors as follows:  

v =
1

𝑘
∑ 𝑣𝑖

𝑘
𝑖=1                  (3-12) 

3.3.2 Modeling Datasets 

The volume datasets chosen for testing purposes in this study represent, facilities 

with different characteristics (e.g. an international border vs. a commuter freeway), 

different locations (New York, Virginia and Beijing), as well different time resolutions 

(hourly vs. 5-minute vs. 2-minute).  Specifically, dataset 1 came from interstate I-90 in 

Buffalo (detector M4183E), and is an hourly volume dataset.  Dataset 2 came from the 

Peace Bridge international border crossing connecting Western New York and 

Southern Ontario, and is also an hourly volume dataset.  Dataset 3 came from the 

westbound direction of Interstate 64 in the Hampton Roads area in Virginia, and has a 

resolution of 5 minutes.  Finally, data set 4 is from the second ring road in Beijing 

(detector 02024) and has a 2-minute resolution. The lengths of the time series sets 

utilized in the study were 2000 observations for the hourly volume sets, 5,760 for the 

5-minute data set, and 3,600 for the 2-minute Beijing data set. 
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3.3.3 Data Diagnosis Results 

Before applying the different model development, the predictability of the four 

data is diagnosed by using the statistical measures previously discussed.  The details 

are shown below. 

3.3.3.1 Delay Time and Embedding Dimension 

The mutual information method was first used to determine the best value for the 

time delay, 𝜏, for the four datasets.  The results are shown in Table 3-7, which lists the 

Mutual Information value for values of 𝜏 ranging from 1 to 5. As can be seen, for all 

four datasets, the best value of 𝜏 appears to 1 since it is the value corresponding to the 

maximum mutual information value (Wen and Wan, 2009). 

Table 3-7 Mutual Information Values With Respect to Time Delay 

Datasets Mutual Information value 

𝜏 =1 𝜏 =2 𝜏 =3 𝜏 =4 𝜏 =5 

I-90 9.08 9.07 9.08 9.07 9.07 

Peace Bridge 6.59 6.58 6.57 6.57 6.58 

Virginia 2.77 2.60 2.50 2.42 2.36 

Beijing 4.37 4.23 4.11 4.01 3.93 

 

To determine the value for the embedding dimension, m, Figure 3-12 plots the 

percentage of the false nearest neighbors as a function of the embedding dimension 

values, for the four datasets.  As can be seen, the best values for the embedding 

dimension appear to be equal to 7, 6, 9 and 30 for the I-90, Peace Bridge, Virginia and 

Beijing datasets respectively, since those values lead to the lowest percent of false 

nearest neighbors. Determining the embedding dimension, m, serves the very important 
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role of determining the length of the input vector for the k-NN and SVR prediction 

methods. 

 

Figure 3-12 Percent of False Nearest Neighbors With Respect to Embedding 

Dimension 

3.3.3.2 Approximate Entropy 

Here, for each dataset, the time delay (𝜏) and embedding dimensions (m) values 

which had been calculated as described in the previous Chapter were used; that is to say, 

𝜏 = 1 for all the datasets and 𝑚 = 7 for I-90,  𝑚 = 6 for the Peace Bridge data, 

𝑚 = 9 for the Virginia data and 𝑚 = 30 for the Beijing data.  With these values, a 

new state space was built, and assuming that if the Euclidean distance between two 

vectors is lower than 20 percent of the standard deviation of the dataset the two patterns 

are similar, the approximate entropy for each dataset was calculated. The results were 

an approximate entropy value of 0.24 for I-90, 0.30 for the Peace Bridge, 0.21 for the 
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Virginia dataset, and 0.0049 for the Beijing dataset.  Given that the approximate 

entropy is a measure of the predictability or irregularity of the dataset (with larger 

values indicating a harder to predict time series), it can be concluded that the Peace 

Bridge data is the most unpredictable with the least chance to have repetitive patterns, 

followed by I-90, Virginia, and finally Beijing  which is easiest to predict.  This is 

perfectly in agreement with what one should expect, since the Peace Bridge and the 

I-90 sets were hourly volumes, whereas the Virginia set was a 5-minute count, and the 

Beijing was a 2-minute count (naturally it is much harder to predict longer times in the 

future).  Moreover, traffic at a border crossing is expected to be more irregular 

compared to a commuter freeway. 

3.3.3.3 Time Reversibility of Surrogate Data  

According to the discussion in the methodology Chapter, for each of the four 

datasets, 100 replicates of surrogate data were generated, and for each surrogate data set, 

the time reversibility value, r, was calculated and a distribution of r was generated, as 

can be seen in Figure 3-13. The time reversibility value of the original time series, ro,, 

was also calculated (this is the location of the straight vertical line in each of the plots in 

Figure 3-13).   
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Figure 3-13 Test of Nonlinearity through Surrogate Data 

As can be seen, the I-90 and the Virginia dataset appear to be exhibit linear patterns 

(since ro lies within the distribution of r), whereas the Peace Bridge and the Beijing data 

exhibit nonlinearity. 

3.3.3.4 Hurst Exponent 

The calculated values for the Hurst exponent for the four datasets were as follows: 

HurstI-90 = 0.26, HurstPB = 0.60, HurstVirginia = 0.69 and HurstBeijing = 0.91.  Since, as 

was previously mentioned, the closer the value of the exponent to 0.5, the more random 

the data, the results seem to indicate that the Peace Bridge data is the most random 

while the Beijing data is the most stable one.  Moreover, given that the Hurst value for 

the I-90 data is between 0 and 0.5, the set appears to exhibit a trend-reverting tendency. 

In contrast, the Virginia and the Beijing data exhibit a trend-reinforcing tendency 

(Hurst exponent within the range of 0.5 to 1). 
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3.3.4 Model Development 

Following the characterization of each dataset, the three prediction methods 

(SARIMA, k-NN and SVR) were used to provide short-term forecasts for each of the 

four test datasets.  Following the calibration of each prediction method, its 

performance on the different datasets is evaluated and correlated to the characteristics 

of the set as quantified using the data diagnosis measures described above.  By doing 

so, the study hopes to glean useful insight into how to select the best prediction method 

for a dataset given its statistical characteristics.  Furthermore, the insights gained from 

the data diagnosis measures are utilized to guide the design and calibration of the 

prediction methods.   

3.3.4.1 SARIMA Models 

The Statistical Package for Social Sciences (SPSS) was used to build the SARIMA 

models. An essential step in developing the SARIMA models was to determine the 

appropriate training data size for each dataset. For traffic volume SARIMA models, the 

appropriate seasonal period is one week, and therefore for the hourly data sets (i.e. the 

I-90 and the Peace Bridge), a seasonal period of 168 intervals was adopted (i.e. 24 x 7).  

For the five-minute volume and the two-minute volume data sets, and considering that 

the training dataset will be very large if the one-week seasonal period is assumed, we 

set the seasonal period to one day and attempt to predict traffic volumes for weekdays 

only.  By excluding the weekends, and by assuming that weekdays are similar to one 

another, a seasonal period of one day would be adequate.  With this assumption, the 
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seasonal period was assumed to be equal to 288 intervals (24 x 12) for the Virginia data 

set, and equal to 720 intervals (24 x 30) for the Beijing data set.   

 When developing the models, various training dataset sizes were tested, and the 

values of the resulting mean absolute percent error (MAPE) was monitored (note that 

the size tested was always an integer multiple of the assumed seasonal period). To adapt 

SARIMA to on-line prediction, the training data set was updated at each step by adding 

the most recent observation and deleting the oldest. The results are shown in Table 3-8. 

 As can be seen, for the I-90 data, the prediction accuracy of SARIMA improved 

with the increase in the training data size, with the best performance reached with a size 

equal to 1,008 observations.  This was also generally the trend for the other three 

datasets, although the best performance was achieved at slightly smaller sized training 

sets (i.e., 840 for the Peace Bridge, 864 for Virginia, and 720 points for Beijing).  If 

one were to correlate these observations to the results of the statistical measures 

performed on the datasets, some interesting observations could be made.  For example, 

because the Beijing data had a very low approximate entropy value (0.02), it was much 

easier to predict and hence required the least number of data points for training.  Also, 

the Hurst exponent value for the Beijing dataset was 0.91 (close to 1.0) indicating a 

much stronger trend-reinforcing tendency compared to the Hurst value for Virginia and 

the Peace Bridge.   

Table 3-8 Performance of SARIMA With Respect to Training Data Size  

I90 PB Virginia Beijing 

Training 

Dataset 

MAPE 

(%) 

Training 

Dataset 

MAPE 

(%) 

Training 

Dataset 

MAPE 

(%) 

Training 

Dataset 

MAPE 

(%) 
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Size Size Size Size 

168 17.18 168 42.28 288 9.34 720 0.56 

336 17.21 336 47.54 576 9.84 

504 7.79 504 27.31 864 6.54 1440 0.63 

672 7.39 672 24.81 1152 8.80 

840 7.40 840 17.48 1440 7.58 2160 0.54 

1008 6.95 1008 23.73 1728 10.31 

The prediction results also reveal important information about the performance of 

SARIMA. The SARIMA models perform well for the I-90 data, the Virginia data and 

the Beijing data, resulting in acceptable MAPEs lower than 10% in general. This was 

not the case for the Peace Bridge data for which the lowest MAPE was around 18 %. 

The inconsistent performances can be explained by the nonlinearity and less 

predictability of the Peace Bridge data as identified by the surrogate data and 

approximate entropy analyses. Theoretically speaking, SARIMA models are built on 

the linearity assumption, and thus may not perform well for nonlinear time series such 

as the Peace Bridge data. 

3.3.4.2 K-NN Models 

Two attributes needed to be specified for the K-NN model development, the length 

of the input vector (B), which refers to how many previous time steps are used to 

predict the next value, and the number of nearest neighbors (k). Various combinations 

of B and k were tested to see which one leads to the best performance for each dataset. 

As shown in Figure 3-14, the best (B, k) value combinations that returned the least 

prediction errors were (7, 3), (24, 3), (11, 1) and (30, 1) for the I-90, Peace Bridge, 

Virginia and Beijing data respectively.  The question is now how do these values for B 
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and k correlate with the values of the statistical data diagnosis measures calculated for 

the datasets? 

With respect to k, the resulting values seem to correlate well with the values for the 

approximate entropy. The I-90 and Peace Bridge datasets had higher approximate 

entropies than the Virginia and Beijing datasets, which means that the probability that 

the former group of datasets will have more “different patterns” than “observed 

patterns” is higher than that for the latter group.  As a result, more nearest neighbors 

may be needed to lower the risk of using a different pattern for prediction. In terms of 

the input vector length (B), the values were identical (or very close) to the embedding 

dimension, m, values, for the I-90, Virginia and Beijing datasets where the analysis 

indicated values for m equal to 7 for I-90, 9 for Virginia, and 30 for Beijing.  However, 

this was not the case for the Peace Bridge.  For the Peace Bridge, the optimal value of 

24 is interesting since this can be easily explained by the strong seasonality of the data 

(i.e. the periodical variations of hourly volumes within the 24-hour cycle).   

 

Figure 3-14 Performance of k-NN With Respect to Input Data Vector Length (B) 

and the Number of Nearest Neighbors (k) 
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3.3.4.3 SVR Models 

The development of the SVR models required the specifications of the training 

data size (O) and input data vector length (D).  The simplest way to jointly determine 

the values of the two parameters is enumeration and testing.  For simplicity, we show 

here only partial results where the value of one parameter is fixed, and the other is 

varied and the impact of the variation on the MAPE is monitored.  For the selection of 

the other parameters for SVR model, a detailed discussion can be found in Chapter 

3.1.3.3. 

With the value of the input vector initially fixed at 6 for all four datasets, the 

performance of SVR with respect to various training data sizes is shown in Table 3-9. 

The best training data sizes for the first two datasets appears to be around 600 data 

points. For Virginia data, the lowest MAPE is attained when the training data size is 

equal to 300. For Beijing data, there is a significant decrease in MAPE when the 

training data size is increased from 300 to 400, with the lowest MAPE achieved with 

data size equal to is 700. This shows that for SVR, the appropriate moving training 

dataset length is not really correlated to the Hurst Exponent values as was the case with 

the SARIMA model.  This is because SVR does not consider the autocorrelation in the 

time dimension; instead, it considers the few “support vectors” to formulate the 

function. 

Table 3-9 Performance of SVR With Respect to Training Data Size 

MAPE 

(%) 

Training Data Size 

100 200 300 400 500 600 700 800 900 1000 
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I-90 19.77 19.01 18.75 18.47 18.32 18.22 19.32 19.68 21.74 22.73 

PB 14.83 11.17 10.49 9.90 9.02 8.37 8.49 9.47 11.59 13.66 

Virginia 37.58 29.7 13.58 13.80 17.22 17.11 17.33 18.20 19.03 20.41 

Beijing 8.66 5.50 10.99 1.00 0.24 0.17 0.01 0.01 0.01 0.01 

Next, with the training data size fixed at either 100 or 500 data-points, the length of 

the input vector was varied and the corresponding MAPEs were calculated.  As shown 

in Figure 3-15, the vector length D affects the performance of SVR only for the Peace 

Bridge dataset. For the I-90, Virginia and Beijing datasets, the resulting MAPEs remain 

almost the same when the vector length varies from 2 to 10.  

 

Figure 3-15 Performance of SVR With Respect to Input Data Vector Length D 

3.3.4.4 Comparison of Model Performance 

The best models calibrated in the previous Chapter were then applied to the four 

datasets.  The results are shown in Table 3-10, along with the results from a naïve 
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prediction model that basically uses the value of the observed volume at the current 

time step as the predicted value for the next step, and which is used for benchmarking.  

The table also lists the values of the data diagnosis measures for each dataset to give 

readers a clear view of the relationship between data characteristics and model 

selection.  

Table 3-10 Comparisons of Three Prediction Models for Four Datasets 

 

Datasets 

Predictability Performances (MAPE 

(%)) 

 

Complexity 

(AppEn) 

Nonlinearity 

(SurroData) 

LRD 

(HurstEn) 

SARIMA k-NN SVR Naïve 

Model 

I-90 0.24 No 0.26 6.95 10.03 18.22 23.51 

PB 0.30 Yes 0.60 17.48 25.13 8.37 42.34 

Virginia 0.21 No 0.69 6.54 6.81 13.58 15.23 

Beijing 0.0049 Yes 0.91 0.54 1.18 0.01 14.59 

 

From Table 3-10, we can see firstly that, all the three models perform better than 

the Naïve model. Secondly, for all four datasets, SARIMA performs slightly better than 

k-NN; however, the advantage of k-NN is its low computational cost and ease of 

implementation.  Thirdly, SARIMA and k-NN work much better for I-90 and Virginia 

traffic volume datasets than SVR, while SVR performs the best for Peace Bridge and 

Beijing traffic volume datasets. This shows that SARIMA and k-NN are more 

appropriate for linear datasets and SVR is definitely a good choice for nonlinear 

datasets.  Another observation is that for both linear datasets and nonlinear datasets, 

the larger the approximate entropy is, the higher the MAPE is.  
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3.4 Conclusions 

This chapter discusses the three pieces of work for the short-term traffic volume 

prediction model, which is the first step of the two-step border crossing delay 

prediction model. 

In Chapter 3.1, a multi-model combined forecasting method, combining forecasts 

from SARIMA and SVR, was proposed and used for the on-line prediction of hourly 

traffic volumes at the Peace Bridge in Western New York. By combining traditional 

time series analysis with SVR, the study managed to take advantage of the known 

strengths of time series analysis, while compensating for its weaknesses in capturing 

the non-linear aspects of the data, a phenomenon which AI-based methods such as SVR 

are known to be capable of capturing.  Among the main conclusions and lessons learnt 

from the study are: 

(1) The accuracy of border crossing short-term volume forecasts can be improved 

by classifying the volume data into groups and developing separate prediction 

model for each group. In this study, a convenient classification scheme involved 

dividing days into the following six groups: weekdays excluding Fridays, 

Fridays, Saturdays, Sundays, game days, and holidays. 

(2) The SVR method appears to outperform SARIMA when predicting traffic 

volumes on special days (e.g. game-days), whereas SARIMA performs better 

than SVR during normal days (e.g. the weekday group).  This is consistent 

with the known strengths and weakness of the two methods, namely the ability 
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of SARIMA, as a linear modeling approach to capture seasonality and trend, 

versus SVR superior ability to capture nonlinear effects. 

(3) While the performance of both SARIMA and SVR methods on the border 

crossing traffic volume prediction problem appears acceptable, the accuracy is 

significantly improved by combining the forecasts from the two methods as 

demonstrated by the results shown in Table 3-3 and Figure 3-3. 

(4) For combining the SARIMA and SVR forecasts, the Fuzzy Adaptive Variable 

Weight method appears to outperform the simple fixed weight method as 

indicated by Table 3-3.     

Chapter 3.2 has developed an enhanced SPN which applies the DTW method to 

assess similarity among traffic volume data.  The enhanced SPN was then used to 

predict hourly traffic volumes at the Peace Bridge international border crossing.  The 

performance of the enhanced SPN (i.e. DTW-SPN) was then compared to three other 

forecasting methods, namely the original SPN algorithm (Euclidean-SPN) described in 

Huang and Sadek (2009), SARIMA, and SVR.  When developing and comparing the 

models’ performance, the study considered two cases, classifying the dataset into 

groups by day type and using the original dataset without classification.  Among the 

main conclusions and lessons learnt from the study are: 

(1) When the dataset was divided into day groups, DTW-SPN yielded the lowest 

MAPE for all data groups with the exception of the game day group where 
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SVR performed slightly best.  The DTW-SPN also had the overall best 

performance when the MAPE was averaged over all the groups. 

(2) DTW-SPN also performed the best when the whole dataset was used (i.e. the 

data was not broken into groups), and once again had the lowest MAPE.  This 

demonstrates the robustness of the method and its ability to handle 

non-homogeneous time series to some extent. 

(3) Euclidean-SPN did not perform very well on the Peace Bridge dataset.  One 

reason could be that its parameters were not re-calibrated for the different data 

groups. On the other hand, Euclidean-SPN was the most computationally 

efficient and required a fraction of the processing time needed by SARIMA or 

SVR. 

(4) DTW-SPN also appears to be significantly more computationally efficient 

compared to SARIMA or SVR.  Specifically, for the case study considered, 

the total running time for DTW-SPN was about one quarter of the time for 

SARIMA and 1/15
th

 the time for SVR. 

(5) DTW-SPN and SVR are capable of capturing abrupt changes of hourly traffic 

while Euclidean-SPN and SARIMA performed poorly for these abrupt points. 

This implies the robustness of DTW-SPN along with SVR.    

In terms of being “application ready”, when comparing with SARIMA and SVR, 

our study shows that the SPN models appear to have several advantages such as 

computational efficiency, the ability to handle non-classified data sets, and not 
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requiring training procedures. This means the SPN models can provide an efficient, 

straightforward and transferable method for short-term traffic volume prediction. 

In Chapter 3.3, the predictability of four traffic volume datasets was first assessed 

using complexity, nonlinearity and long range dependency tests.  Three prediction 

models, SARIMA, k-NN and SVR were then calibrated and tested for each of the 

datasets. The performances of the different prediction methods were then correlated to 

the results from the data diagnosis measures, hence providing some guidelines on how 

to choose the appropriate prediction method, and set its parameters, given the statistical 

characteristics of a given dataset.  Among the main conclusions learned from the study 

are: 

With respect to prediction model choice, 

(1) For all the four datasets, SARIMA performs slightly better than k-NN, but 

k-NN has a faster running speed; 

(2) For linear datasets, SARIMA and k-NN are more appropriate.  For nonlinear 

datasets, SVR works better than SARIMA and k-NN; and 

(3) The larger the approximate entropy is, the higher the MAPE is. 

With respect to model’s parameter setting, 

(1) For SARIMA model, according to Hurst Exponent, Peace Bridge dataset has 

the weakest LRD, followed by Virginia dataset and then I-90 dataset, and we 

find the best training dataset length for Peace Bridge is 840, and for Virginia, it 

is 864, for I90, it becomes 1008. This shows that for SARIMA, a weaker LRD 
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indicates a smaller training dataset length. For datasets like Beijing with very 

small approximate entropy, the training dataset length can also be set small; 

(2) For k-NN model, the vector lengths corresponding to the lowest MAPEs are 

consistent with the results of the delay time and embedding dimension analysis.  

This was true for the I-90, Virginia, and Beijing datasets.  For the Peace 

Bridge, the best vector length is 24, because of its strong seasonality; 

(3) For K-NN, the number of nearest neighbors, k, should be set higher for 

datasets with higher approximate entropies;  

For SVR model, the setting of training dataset length does not appear to be 

sensitive to the Hurst Exponent value.  There also does not appear to be a strong 

relationship between the delay time and embedding dimension and the vector length, 

with the best value of the input vector length varying with changes in the training 

dataset length. 
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CHAPTER 4 SOLUTIONS OF TRANSIENT MULTI-SERVER 

QUEUEING MODELS 

This Chapter mainly focuses on the second step of the border crossing delay 

prediction model. With the predicted traffic as an input, the queueing models can be 

used to calculate the future border crossing waiting time. Chapter 4.1 introduces the 

real-world case study of Peace Bridge, how the data are collected and the queueing 

model 𝑀/𝐸𝑘/𝑛 and BMAP/PH/n are decided; Chapter 4.2 talks about the heuristic 

solutions for the two types of queueing models. Chapter 4.3 compares the results from 

the queueing model with the VISSIM traffic simulation model, some sensitivity 

analysis and optimization work are also introduced.  

4.1 The Peace Bridge Case Study 

As a case study for the development and solution of the border crossing delay 

prediction queueing models, this research considers the Peace Bridge, one of the four 

main border crossings connecting Southern Ontario, Canada and Western New York, 

US. The Peace Bridge carries an estimated 4.76 million cars on the annual basis, and is 

thus one of the busiest border crossings between the U.S. and Canada. When traveling 

through the bridge, traveling vehicles need to wait in line and go through security 

inspection before they can head to their destinations. The whole process can thus be 

considered as a queueing process with vehicle arrivals as the input flows, the inspection 



124 

 

checkpoints as the service stations, and the queue length and waiting times as the 

performance indicators.   

4.1.1 Estimation of Arrival and Service Process Distributions - Model 1  

Information was collected regarding vehicle arrival patterns and security 

inspection processes in Peace Bridge in order to determine the appropriate distributions 

and the correct queueing model to use. Specifically, 700 observations of the vehicle 

inter-arrival times and 571 observations of the service times (i.e. inspection time) were 

collected from December 19, 2011 to January 10, 2012. The data were then used to 

define the appropriate probability distributions that best describe the arrival and service 

processes. As shown in Figure 4-1, the distribution of headways (i.e. the inter-arrival 

times) was matched best by the exponential distribution 𝑓(𝑥) = exp (−𝑥/9.63)/

9.63, 𝑥 ≥ 0 with a mean value of 9.63 seconds (for the first model, batch arrivals were 

ignored). The R-square for fitting that curve to the collected inter-arrival time data was 

0.8721, and the Root Mean Square Error (RMSE) was 0.0064. 

For the service times, the best fitting distribution was found to be the Erlang 

distribution 𝑓(𝑥) = 𝑥 ∗ exp (−𝑥/22.29)/22.292with order 2 and mean of 44.58 

seconds, as shown in Figure 4-2.  Fitting that curve to the collected service time data 

points resulted in an R-square value of 0.8903, and RMSE of 0.009906.   
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Figure 4-1 Inter-arrival Time Distribution 

 

Figure 4-2 Service Time Distribution 

4.1.2 Estimation of Arrival and Service Process Distributions - Model 2  

In reality, the arrival process for transportation systems may not always be 

captured by an exponential distribution. In many cases, the arrival process may be the 

result of combining multiple streams with different exponential distributions.  

Moreover, it is quite common in the real-world for several vehicles to arrive 

simultaneously at the queueing system.  Moreover, the service process could be more 
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complicated than a simple Erlang distribution. To represent these complex arrival and 

service patterns, a more general modeling framework is to represent the system by a 

Batch Markov Arrival Process (BMAP) and a Phase Type (PH) distributed service 

process, as described below.  

4.1.2.1 Batch Markov Arrival Process  

Batch Markov Arrival Processes (BMAP) were introduced by Neuts (1979) in 

order to extend the standard Poisson process to account for more complex customer 

arrival processes in queueing systems. Let J be an irreducible, continuous-time Markov 

chain with finite state space 𝐸 = {1, 2, … , 𝑒}, where 𝑒 is a finite, positive integer. 

Suppose J has just entered state 𝑖, 1 ≤ 𝑖 ≤ 𝑒, the process spends an exponential 

distributed amount of time in state 𝑖 with mean 𝜆𝑖
−1 (Cordeiro & Kharoufeh, 2010). 

Let π = {𝜋1, … 𝜋𝑖 , … 𝜋𝑒} denote the probability distribution of entering state 𝑖 for the 

process J, 𝑝𝑖𝑗 be the probability for the system to switch from state i to state 𝑗, 

1 ≤ j ≤ m (j may be equal to 𝑖), and  ε𝑏,𝑖,𝑗 represent the probability for b vehicles to 

arrive in batch during the system’s transition from state i to state j (Daikoku et al. 2007). 

Obviously, the following conditions should exist: 

∑ 𝜋𝑖1≤𝑖≤𝑒 = 1,                         (4-1) 

∑ 𝑝𝑖,𝑗 = 11≤𝑗≤𝑒 ,                        (4-2) 

∑ 𝜀𝑏,𝑖,𝑗
𝐵
𝑏=0 = 1, where B is the maximum batch size.                (4-3) 

Without loss of generality, we assume 𝜀0,𝑖,𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑒. Let 𝐶 and 𝐷𝑏 

(1 ≤ b ≤ B) be 𝑒 × 𝑒 matrices. 𝐶 contains the transition rates of J for which no 
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arrivals occur, and 𝐷𝑏 (1 ≤ b ≤ B) contains the transition rates for which a batch size 

𝑏 occurs (Cordeiro & Kharoufeh, 2010). The (𝑖, 𝑗)𝑡ℎ elements 𝐶𝑖,𝑗 and 𝐷𝑏,𝑖,𝑗 in 𝐶 

and 𝐷𝑏 are given as below:  

𝐶𝑖,𝑗 = {
−𝜆𝑖 ,              𝑖𝑓 𝑖 = 𝑗

𝜆𝑖𝑝𝑖,𝑗𝜀0,𝑖,𝑗 ,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                  (4-4) 

𝐷𝑏,𝑖,𝑗 = 𝜆𝑖𝑝𝑖,𝑗𝜀𝑏,𝑖,𝑗,                     (4-5) 

So at last, the BMAP can be characterized by a set of 𝑒 × 𝑒 matrices 

(C, 𝐷1, 𝐷2 … , 𝐷𝐵). And, 𝐷 = ∑ 𝐷𝑏 ≠ 𝟎1≤𝑏≤𝐵 , which means there must be some 

vehicles arriving.  

As mentioned before, the Peace Bridge data included a total 700 observations of 

inter-arrival times. Out of those, 48 vehicles were observed to arrive in batch; 

unfortunately the study team did not record the exact size of batch for those 48 vehicles 

and the frequency at which this batch process occurred.  For demonstrating our 

procedure therefore, we assume there are twelve batches with three vehicles and six 

batches with two vehicles and assign a random interval to each batch. In order to 

estimate BMAP (i.e. estimate parameters such as π, C and D_b (1≤b≤B)), an 

expectation and maximization (EM) algorithm proposed by Breuer (2002) is used. The 

algorithm converged after four iterations, yielding the following estimates for BMAP’s 

parameters: 

π = [0.7741, 0.2259],                  

C = [
−0.1063 0.0776
0.2694 −0.3558

],                

𝐷1 = [
0.0046 0.0222
0.0727 0.0078

],                        
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𝐷2 = [
0.0001 0.0005
0.0016 0.0001

],                        

𝐷3 = [
0.0002 0.0011
0.0037 0.0005

],                       

Based on this, 𝑝𝑖,𝑗 and ε𝑏,𝑖,𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑒 can be calculated and used to determine 

the arrival intervals in our approximation/simulation approach for deriving the transient 

solution of the queueing described later. Specifically, we can first determine the initial 

state 𝑖 by sampling from the inverse cumulative function of 𝜋.  The next state of 

BMAP 𝑗 and the batch size of arrival 𝑏 in the state transition can also be sampled in 

the same way based on 𝑝𝑖,𝑗 and ε𝑏,𝑖,𝑗. Moreover, the inter-arrival time interval in this 

transition can be determined by sampling from the exponential distribution with rate 𝜆𝑖 

or using its mean value. When the system reaches state 𝑗, we continue to sample the 

next state, the arrival size and time interval. This procedure is repeated until the end of 

the prediction time horizon is reached.  

4.1.2.2 Phase Type Distribution for Service Process 

Consider a Markov process J on a finite state space (0,1, … , 𝑝) where 0 is 

absorbing and the other 𝑝 states are transient (Asmussen et al. 1996), a phase type (PH) 

distribution with parameter (𝜋, 𝐴) is the distribution of the time until absorption into 

state 0 in this Markov process. 𝜋 is the initial probability distribution of state, and it 

can be defined as [𝛼0 𝜶𝒑], where 𝛼0 is the probability of starting the process at 

absorbing state 0, and 𝜶𝒑 is a 1 × 𝑝 vector containing the probabilities of starting at 

the other 𝑝 states. Obviously, 𝛼0 = 1 − 𝜶𝒑𝟏, where 𝟏 is a 𝑚 × 1 vector with all 
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elements as 1. The 𝑝 × 𝑝 dimensional matrix 𝐴 is called the phase-type generator 

(Asmussen et al. 1996). The (𝑖, 𝑗)𝑡ℎ elements 𝐴𝑖,𝑗 are given as: 

𝐴𝑖,𝑗 = {
− ∑ 𝜆𝑖𝑘

𝑝
𝑘=0,𝑘≠𝑖 ,              𝑖𝑓 𝑖 = 𝑗

𝜆𝑖𝑗 ,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                   (4-6)  

where 𝜆𝑖𝑗 is the rate parameter of the exponential distribution, capturing the time that 

the Markov process spends at state 𝑖 before it goes to state 𝑗. 

With this, the infinitesimal generator of this process can be written as: 

Q = [
0 𝟎
𝑎 𝑨

],                          (4-7) 

where 𝑎 = −𝑨𝟏. Here, 𝟏 is a 𝑝 × 1 vector with all elements as 1. 

In this study, the KPC-Toolbox introduced by Casale et al. (2008), which uses the 

method of moment matching  (Bobbio et al. 2005), was used to estimate the PH 

distribution of the observed service time for the Peace Bridge case study. The 

estimation results of 𝜋, A and 𝑄 are shown below:  

𝜋 = [0 0.0163 0.9837 0],                

0.0126 0.0126 0

0 0.0488 0.0488

0 0 0.0488

 
 

 
 
  

A ,              

0 0 0 0

0 0.0126 0.0126 0

0 0 0.0488 0.0488

0.0488 0 0 0.0488

Q

 
 


 
 
 

 

,      

In matrix Q, since 𝜆(𝑖−1)(𝑗−1) = 𝑄𝑖,𝑗, a positive value of 𝑄𝑖,𝑗 implies the existence 

of a transition from state (𝑖 − 1) to state (𝑗 − 1) . Based on the values of matrix Q 

therefore, the PH distribution of the border service process for this study can be 

represented as in Figure 4-3 and is explained as follows. 
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Figure 4-3 PH Distribution of the Border Service Process 

As can be seen from Figure 4-3, the PH distribution for the border crossing case is 

a mixture of Exponential (with the subscript “exp”) and Erlang (with the subscript “erl”) 

distributions. There are also two types of service processes. The first service process 

starts at state 1 with a probability of 0.0163. After experiencing the service time that 

follows an Exponential distribution with a mean of 1/0.0126=79.36 seconds, it 

transitions to state 2, and then goes through state 3 before it arrives at state 0. When the 

transition from state 2 to state 0 occurs, the total service time is the summation of the 

two exponentially distributed service times, and thus follows an Erlang distribution 

with order 𝑘 = 2 and mean of 2/0.0488=40.98 seconds. The second service process 

starts at state 2 with a probability of 0.9837(i.e., this process is much more likely), and 

the total service time from state 2 to state 0 follows the same Erlang distribution as in 

the first process.  

4.2 Methodology 

The methodology followed in this study can be viewed as consisting of two major 

steps: (1) queueing model development and solution; and (2) model validation.  As 

previously mentioned, two groups of models were considered; first, the special case of 
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an 𝑀/𝐸𝑘/𝑛 queueing model and then the more generic case of a BMAP/PH/n model.    

The transient solution for such models was derived using an approximation/heuristic 

approach.  Specifically for the 𝑀/𝐸𝑘/𝑛 model, a slightly modified version of the 

Equal Likely Combination (ELC) heuristic of Escobar et al (2002), which reduces the 

computational burden, was utilized, whereas for the BMAP/PH/n, this study introduced 

a new heuristic (or assumption) which we call the Equally Likely Vehicle (ELV). In 

order to validate the model results empirically, the queue length and delay estimates 

derived from the queueing model solution were compared to those estimated from 

multiple runs of a detailed microscopic traffic simulation model. The details are shared 

below. 

4.2.1 𝑴/𝑬𝒌/𝒏 queueing models 

As pointed out by Escobar et al. (2002), the exact solution of multi-server queueing 

models with exponential inter-arrival times and Erlangian service times (𝑀/𝐸𝑘/𝑛) is 

quite challenging due to: (1) the very large number of possible system states, especially 

for systems with a large number of serves and/or Erlang distribution with high orders 

(i.e. high values of k); and (2) the complexity of the state transitions.  To address these 

challenges, a handful of previous studies have proposed approximate solution methods 

to solve 𝑀/𝐸𝑘/𝑛 queueing model, utilizing ideas to simplify the size of the problem’s 

state space.  Among those approximation method is the ELC heuristic (Escobar et al., 

2002) that is applied to this study with some modifications to better suit the problem at 

hand.  A brief description of how the solution proceeds is given below.  While the 
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details of the formulation and solution procedure can be found in Escobar et al. (2002), 

enough details are included herein to allow the reader to follow the presentation. 

4.2.1.1 System state description 

The key step in deriving either the steady state or the transient solution of an 

𝑀/𝐸𝑘/𝑛 queueing model is to transform the complex Erlang distributed service 

process to a simpler version. Since an Erlang distribution with an integer order k is 

equivalent to a sum of k independent exponential distributions, a service station with 

k
th

-order Erlang distributed service times can be replaced by a chain of k service 

stations with exponentially distributed service times.  With this, the process for a 

vehicle to go through an Erlang service station becomes equivalent to the process of 

passing through a sequence of k Exponential service stations.  

Escobar et al. (2002) proposed a compact way to represent the system state. 

According to them, the system state can be represented by a three element descriptor (l, 

m, r), where l refers to the remaining number of exponential service stations that need to 

be completed for the vehicles currently in the system (this will be referred as stages 

thereafter), m is the number of vehicles in the system, and r is what the researchers 

called the “pattern identifier”.  The pattern identifier is needed because there could be 

different instances or combinations where one would have m vehicles in the system, 

and l remaining stages or service stations.   For example, in a queueing system with 

three Erlang service stations with order 3, the state (6, 3) can represent either of the two 

patterns shown in Figure 4-4. As can be seen, both patterns have three vehicles in the 
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system. In pattern 1, one vehicle has just arrived at station 1, and the second vehicle has 

completed one stage of service in station 2, while the third vehicle has completed two 

stages in station 3.  On the other hand, all three vehicles have completed one stage of 

service in Pattern 2. Finding the number of patterns associated with a given (l, m) 

combination amounts to solving the problem of finding m integers whose sum is l. This 

can be solved by writing a simple computer code or by enumeration. 

 

Figure 4-4 an Example for Stages, Patterns and States 
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4.2.1.2 State transition probabilities 

Following the representation of the system states of a queueing model, the next 

step is to derive the state transition probabilities (herein we use  𝑃𝑙,𝑚 to denote the 

probability of a given state (l, m) and we drop the pattern identifier index from the 

notation for simplicity). As previously, we calculate the state transition probabilities in 

this study on the basis of the equally likely combinations (ELC) heuristic method 

proposed by Marcos Escobar et al. (2002), which has been shown to be capable of 

simplifying the state transition calculation process, while maintaining the precision of 

the queueing model solution. While our solution approach is largely based on the 

framework proposed by Escobar et al. (2002), we introduce a slight modification to the 

solution algorithm which makes it more efficient.  Specifically, the modification 

introduced involves updating the number of vehicles in the queueing system, when 

considering the vehicles’ arrival process, only when a new vehicle joins the queue, and 

because we are considering the transient solution, we determine the time when a new 

vehicle arrives at the system by randomly sampling from the inter-arrival time 

distribution curve (or by simply using the mean value of the inter-arrival distribution 

curve).  This is slightly different from the original ELC heuristic where the arrival 

process is considered at every time step. The modification introduced helps reduce the 

state space that needs to be considered, and thus increases the computational efficiency 

of the algorithm. Table 4-1 defines the variables and parameters that are used in the 

following Chapters. 

Table 4-1 Notation for Queueing Models 
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Symbol Definition 

𝒍 the number of unfinished stages; 

M the number of vehicles in the queueing system; 

N the number of service stations in the queueing system; 

k the order of Erlang distribution, or the number of stages added to the 

system once a vehicle joins the queue; 

𝒕𝒔 the inter-arrival time sampled from the inverse cumulative function 

of an Exponential distribution; 

𝒕𝒂𝒗 the average inter-arrival time of an Exponential distribution; 

N the number of vehicles that have joined the queue; 

𝒕𝑵 the time point when the 𝑁𝑡ℎ vehicle joins the queue; 

𝑷𝒍,𝒎 the probability of state (𝑙, 𝑚); 

𝑷(𝒍𝟏,𝒎𝟏)→(𝒍𝟐,𝒎𝟐) the transition probability from state (𝑙1, 𝑚1) to state (𝑙2, 𝑚2); 

𝒄𝒊 the different combinations for pattern 𝑖; 

𝑪𝒕𝒐𝒕𝒂𝒍 (𝒍,𝒎) the total number of combinations producing a same state (𝑙, 𝑚); 

𝒔𝟏,𝒊 the number of servers where only one stage is left for the vehicle in 

pattern 𝑖; 

𝑫(𝒍, 𝒎) the set of patterns that satisfy state(𝑙, 𝑚); 

𝜶𝒍,𝒎 the probability that one more stage of service is conducted and one 

vehicle leaves from the system at state (𝑙, 𝑚); 

𝜷𝒍,𝒎 the probability that one more stage of service is conducted but no 
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vehicle in the system is completely served at state (𝑙, 𝑚); 

𝝀(𝒕) the arrival rate at time t; 

𝜸(𝒕) the service rate at time t; 

𝝀 the average arrival rate of the Exponential distribution; 

𝝁 the average service time of the Erlang distribution; 

𝜸 the average service rate of the Erlang distribution; 

 

Now suppose that we are currently at time point, 𝑡, and that there are 𝑚 vehicles 

and 𝑙 unfinished stages in the system at that time step.  For the next time step (𝑡 + 1), 

there may exist three possible types of state transition scenarios, as described below:  

4.2.1.2.1 Scenario 1: one vehicle joins the queue 

Let us assume first that the inter-arrival time period for vehicle (𝑁 + 1) has been 

determined, either by sampling from the inverse cumulative function of the inter-arrival 

exponential distribution or by just using the mean value for that distribution as 

previously mentioned, and it is denoted by 𝑡𝑠 (for the sampled value) or by 𝑡𝑎𝑣 for the 

average value.  Also let 𝑡𝑁 denote the time at which the N
th

 vehicle had joined the 

queue.  Now if  the next time step, 𝑡 + 1, which is equal to 𝑡𝑁 + 𝑡𝑠 (or 𝑡𝑁 + 𝑡𝑎𝑣 if 

we are using the average value), the state of the queueing system would transition from 

state (𝑙, 𝑚) to state (𝑙 + 𝑘, 𝑚 + 1) since the new arrival adds 𝑘 unfinished stages 

and one more vehicle to the system . Here, 𝑘 is the order of the Erlang distribution or 

the number of stages that need be finished for one vehicle to be fully served.  In this 
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case, the transition probability 𝑃(𝑙,𝑚)→(𝑙+𝑘,𝑚+1) should be 1. For other state transition 

scenarios mentioned later, 𝑃(𝑙,𝑚)→(𝑙+𝑘,𝑚+1) should be equal to 0, revealing that, 

without a new arrival, the transition from state (𝑙, 𝑚) to state (𝑙 + 𝑘, 𝑚 + 1) is 

impossible. 

4.2.1.2.2 Scenario 2: one vehicle finishes its last stage of service and leaves the 

queue 

Intuitively, the transition probability of this case can be represented as 

𝑃(𝑙,𝑚)→(𝑙−1,𝑚−1), and is calculated as follows. As was previously discussed, a given 

state may concern multiple patterns, r, and each pattern 𝑖 may involve multiple 

combinations of servers’ stages.  For example, to produce pattern 1 shown on Figure 

4-4, we could have one server with three stages left, a second with two stages left, and a 

third with one stage left.  Moreover, the specific station server with one, two or three 

stages left may vary (e.g. server number one may have three stages left, or two or just 

one).  the number of different combinations for resulting in a given pattern can be 

calculated as: 

𝑐𝑖 = 𝑝! (𝑝1! 𝑝2! … 𝑝𝑥!)⁄                               (4-8) 

where,   

𝑝 = 𝑚𝑖𝑛 {𝑚, 𝑛} is the number of active or busy service stations; 

𝑥 is the largest number of unfinished stages for a server;  

𝑝𝑗 is the number of servers with equal number of unfinished stages j, 𝑗 = 1, 2, … , 𝑥.  
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Meanwhile, when relating patterns to system states, the total number of combinations 

producing a same state (𝑙, 𝑚) can be calculated as:  

𝐶𝑡𝑜𝑡𝑎𝑙 (𝑙,𝑚) = ∑ 𝑐𝑖𝑖∈𝐷(𝑙,𝑚)                    (4-9) 

where,  

D(l, m) is the set of the patterns that are associated with state(𝑙, 𝑚). 

To illustrate, consider once again the example shown in Figure 4-4.   For pattern 1, 

there are three different numbers of unfinished stages for server (i.e. 1, 2 and 3 stages). 

Among them, the largest number of unfinished stages is 3, which means that x = 3. 

Since each number of unfinished stages corresponds to one server, p1 = 1, p2 = 1, and p3 

= 1.  Based on this, by using Equation (4-8), the number of combinations for pattern 1, 

c1, is equal to  

𝑐1 = 3! (1 ! 1 ! 1!)⁄  = 6 

Similarly, for pattern 2, x = 2 and p2 = 3 while p1 = 0 since all the servers have two 

unfinished stages. Hence, the number of combinations for pattern 1 is equal to 

𝑐2 = 3! 0 ! 3 !⁄    = 1 

Since there are only two patterns associated with state (6, 3), the total number of 

combinations for the state is 𝐶𝑡𝑜𝑡𝑎𝑙(6,3) = 𝑐1 + 𝑐2 = 7. 

The basic assumption of the ELC method is that all the possible combinations in 

𝐶𝑡𝑜𝑡𝑎𝑙 (𝑙,𝑚) are equally likely.  Given this, the probability that one more stage of 

service is conducted and one vehicle leaves from the system can be calculated by: 

𝛼𝑙,𝑚 = ∑ 𝑃 𝑖 ∗ 𝑃1,𝑖 = ∑ (𝐶𝑖 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑙,𝑚))⁄ ∗ (𝑆1,𝑖 𝑝)⁄ =𝑖∈𝐷𝑖∈𝐷 ∑ 𝑆1,𝑖𝐶𝑖𝑖∈𝐷 𝑝𝐶𝑡𝑜𝑡𝑎𝑙 (𝑙,𝑚)⁄ , 

(4-10) 
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where,   

𝑃 𝑖 = 𝐶𝑖 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑙,𝑚)⁄  is the probability of pattern 𝑖; 

𝑃1,𝑖 = 𝑆1,𝑖 𝑝⁄  is the probability of having servers with only one stage unfinished in 

pattern 𝑖, and 𝑆1,𝑖 is the number of servers with only one stage unfinished in pattern 𝑖; 

𝑝 = 𝑚𝑖𝑛 {𝑚, 𝑛} is the number of active service stations;  

𝐷(𝑙, 𝑚) is the set of the patterns that satisfy state(𝑙, 𝑚). 

Finally, suppose γ(𝑡) is the service rate that is sampled for each time step, 𝑡, 

according to an Erlang distribution.  Because the Erlang distribution with order 𝑘 can 

be considered as a series of 𝑘 consecutive, exponentially distributed tasks, the service 

rate for each stage is 𝑘𝛾(𝑡), with a corresponding service time of 1/𝑘γ(𝑡).  Given the 

distribution, for each time step (i.e. from the current time step 𝑡 to the next time step 

𝑡 + 1), the transition probability from state (𝑙, 𝑚) to state (𝑙 − 1, 𝑚 − 1) can be 

calculated as follows:  

𝑃(𝑙,𝑚)→(𝑙−1,𝑚−1) = 𝛼𝑙,𝑚 ∗  𝑘𝛾(𝑡) ∗ 𝑝,                 (4-11) 

where 𝑝 = min (𝑚, 𝑛) is the number of active service stations. 

4.2.1.2.3 Scenario 3: one vehicle finishes one stage of service but still needs to 

stay in the queue for the other service stages 

The probability of this can be represented as 𝑃(𝑙,𝑚)→(𝑙−1,𝑚). Given the value of 

𝛼𝑙,𝑚 (the probability that one more stage of service is conducted and one vehicle leaves 

from the system) was calculated as in Equation (4-10) above, the probability that one 

stage is finished while no vehicles leave the queue, 𝛽𝑙,𝑚, can be calculated simply as: 
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𝛽𝑙,𝑚 = 1 − 𝛼𝑙,𝑚,                      (4-12) 

Similarly, the transition probability from (𝑙, 𝑚) to state (𝑙 − 1, 𝑚) can be 

calculated as follows: 

𝑃(𝑙,𝑚)→(𝑙−1,𝑚) = 𝛽𝑙,𝑚 ∗  𝑘γ(𝑡) ∗ 𝑝,                  (4-13) 

where 𝑝 = min(𝑚, 𝑛) is the number of active service stations. 

With these three scenarios discussed, the state-to-state transition diagram for the 

𝑀/𝐸𝑘=2/3 queueing model for example, can be depicted as shown in Figure 4-5. 

 

Figure 4-5 State to State Transition Process for the 𝑴/𝑬𝒌=𝟐/𝟑 Queueing Model 

On Figure 4-5, the number in the circle denotes the number of uncompleted stages 

in the queueing system (i.e. l), whereas the number on the top of each column 

represents the number of vehicles in the system (i.e. m). In other words, each circle 

represents a given state (𝑙, 𝑚). The different types of arrows show the different state to 

state transitions described in the left corner of Figure 4-5.  The solid arrow going 

toward the right represents the first transition case discussed in Chapter 4.2.1.2.1 (a new 

vehicle arrives).  The dotted diagonal arrow represents the transition case described in 
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Chapter 4.2.1.2.2 where one stage is completed and one vehicle leaves the system. 

Finally, the dotted vertical arrow moving downward represents the case described in 

Chapter 4.2.1.2.3 (one stage is completed but no vehicle departs).  

4.2.1.3 State-to-State Transitions and Transient Solution Calculations 

4.2.1.3.1 Calculation Approach Overview 

In this Chapter, we briefly describe how the state-to-state transitions are calculated.  

Our discussion is once again largely based on the work of Escobar et al.  (2002). 

However, we separate the description of the state transitions associated with serving 

vehicles from those associated with vehicle arrivals. In other words, in-between vehicle 

arrivals, we proceed in a time-step fashion to calculate the state transitions based on 

either state transition scenario 2 or 3 described above. On the other hand, when a new 

vehicle arrives, we calculate the state transitions based on scenario 1 above. 

Because we are interested in the transient solution, our approach can be regarded as 

a hybrid between a simulation or numerical based approach on one hand, and an 

analytical approach on the other.  The inter-arrival times are determined by sampling 

from the inter-arrival distribution curve, which determines when the next vehicle will 

arrive.  In between the inter-arrival period, we sample the service rate from the 

service-time distribution at each time step which is one second in this study.  The 

sampling mechanism was designed to facilitate the comparison to the VISSIM 

microscopic simulation results for validation as will be explained later in Chapter 4.2.3.  

Based on the sampled service rate, we calculate the state probabilities, as will be 
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described in more detail in Chapter 4.2.1.3.2.  Note that we also calculate the modeling 

results using the mean values of the inter-arrival and service times, and compare the 

results from both approaches (i.e. the randomly sampling based and the mean value 

based) to the VISSIM model’s results in the validation Chapter.   

4.2.1.3.2 State Probabilities Calculations 

Let 𝑃𝑙,𝑚(𝑡) represent the probability of state (𝑙, 𝑚) at the current time step 𝑡. 

Naturally, at the initial state when no vehicle is in the system at time 0, 𝑃0,0(0) = 1. 

Now consider the time interval in between when the 𝑁𝑡ℎ vehicle arrives and when the 

(𝑁 + 1)𝑡ℎ vehicle arrives (as mentioned above, the inter-arrival time period between 

vehicle N and N+1 can be either sampled from the cumulative arrival distribution curve 

(𝑡𝑠) or assumed as the mean value of the inter-arrival time period , 𝑡𝑎𝑣).  Right before 

the (𝑁 + 1)𝑡ℎ vehicle arrives, the possible values for the number of the vehicles 𝑚 in 

the system could range between 0 and 𝑁 (depending upon how many vehicles have 

already been served and have left the queue).  In other words, all the states (𝑙, 𝑚),

where 𝑚 ≤ 𝑁 may exist.  

Now, at a given time step, the change in the probability for a state (𝑙, 𝑚) can be 

calculated according to the transition probabilities from and to that state, as indicated 

by the arrows going out of and toward the circles shown in Figure 4-5 above. The 

following Equations will describe exactly how the calculations proceed to update the 

state probabilities for each time step 𝑡𝑖, within the time period which starts at the time 

when the 𝑁𝑡ℎ vehicle arrives and ends one time-step before the time when the 
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(𝑁 + 1)𝑡ℎ vehicle arrives (i.e. 𝑡𝑖 = 𝑡, … , (𝑡 + 𝑡𝑠 − 1) 𝑜𝑟 (𝑡 + 𝑡𝑎𝑣 − 1).  In these 

Equations, 𝑃̇𝑙,𝑚(𝑡𝑖) represents the change in the value for 𝑃𝑙,𝑚(𝑡𝑖) at each time step, 

and therefore 𝑃𝑙,𝑚(𝑡𝑖 + 1) = 𝑃𝑙,𝑚(𝑡𝑖) + 𝑃̇𝑙,𝑚(𝑡𝑖).   This process is then repeated until 

the end of the analysis period of interest.  

When calculating the change in the probabilities, one of the following two cases 

may occur, depending upon whether the number of vehicles in the system (m) is less 

than the number of servers in the system (i.e. no queue exists) or not.  For each case, 

the calculations are as follows: 

Case (1): The number of vehicles in the system (m) is less than the number of servers in 

the system (𝑛), 𝑚 < 𝑛: 

In this case, we have the following three possibilities: 

1a) For the special case of state (0,0), the change in the state probability (see Figure 

4-5 for possible state transitions), can be calculated by Equation (4-14)  as shown 

below: 

𝑃̇0,0(𝑡𝑖) = 𝑘𝛾(𝑡𝑖)𝑃1,1(𝑡𝑖),                    (4-14) 

1b) For the states where 𝑙 =  𝑚𝑘 (see Figure 4-5 for possible state transitions for states 

(𝑚𝑘, 𝑚)) with 𝑚 = 1,2, … , 𝑛 − 1), , we have: 

𝑃̇𝑚𝑘,𝑚(𝑡𝑖) = −𝑚𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘,𝑚(𝑡𝑖) + 𝛼𝑚𝑘+1,𝑚+1(𝑚 + 1)𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘+1,𝑚+1(𝑡𝑖) ,  (4-15) 

1c) For the states where 𝑙 =  𝑚𝑘 – 𝑥 with 

𝑚 = 1,2, … , 𝑛 − 1, 𝑎𝑛𝑑 𝑥 = 1,2, … , 𝑚(𝑘 − 1), we have: 

𝑃̇𝑚𝑘−𝑥,𝑚(𝑡𝑖) = −𝑚𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘−𝑥,𝑚(𝑡𝑖) + 𝛽𝑚𝑘−𝑥+1,𝑚𝑚𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘−𝑥+1,𝑚(𝑡𝑖) +

𝛼𝑚𝑘−𝑥+1,𝑚+1(𝑚 + 1)𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘−𝑥+1,𝑚+1(𝑡𝑖),                       (4-16) 
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Case (2):  The number of vehicles in the system (m) is equal to or greater than the 

number of servers (n), 𝑚 >= 𝑛: 

The difference between case (2) and case (1) considered above is that for case (2) 

arriving vehicles may start forming a queue behind the servers.  In this case, we would 

have the following three possibilities: 

2a) For the states where 𝑙 =  𝑚𝑘 (i.e. states (𝑚𝑘, 𝑚)) with 𝑚 = 𝑛, (𝑛 + 1), (𝑛 +

2), … 𝑁), 

𝑃̇𝑚𝑘,𝑚(𝑡𝑖) = −𝑛𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘,𝑚(𝑡𝑖) + 𝛼(𝑛−1)𝑘+1,𝑛𝑛𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘+1,𝑚+1(𝑡𝑖),     (4-17) 

2b) For the states where 𝑙 =  𝑚𝑘 – 𝑥 with𝑚 = 𝑛, (𝑛 + 1), (𝑛 + 2), … , 𝑁 and 𝑥 =

1,2, … , (𝑛 − 1)(𝑘 − 1),  

𝑃̇𝑚𝑘−𝑥,𝑚(𝑡𝑖) = −𝑛𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘−𝑥,𝑚(𝑡𝑖) + 𝛽𝑛𝑘−𝑥+1,𝑛𝑛𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘−𝑥+1,𝑚(𝑡𝑖) +

𝛼(𝑛−1)𝑘−𝑥+1,𝑛𝑛𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘−𝑥+1,𝑚+1(𝑡𝑖),                (4-18) 

2c) For the states where 𝑙 =  𝑚𝑘 – 𝑦 with 𝑚 = 𝑛, (𝑛 + 1), (𝑛 + 2), … , 𝑁 𝑎𝑛𝑑  𝑦 =

(𝑛 − 1)(𝑘 − 1) + 1, (𝑛 − 1)(𝑘 − 1) + 2, … , 𝑛(𝑘 − 1), 

𝑃̇𝑚𝑘−𝑦,𝑚(𝑡𝑖) = −𝑛𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘−𝑦,𝑚(𝑡𝑖) + 𝛽𝑛𝑘−𝑦+1,𝑛𝑛𝑘𝛾(𝑡𝑖)𝑃𝑚𝑘−𝑦+1,𝑚(𝑡𝑖),     (4-19) 

After the (𝑁 + 1)th 
vehicle finally joins the queue at time point 𝑡𝑖 = (𝑡 +

𝑡𝑠) or 𝑡𝑖 = (𝑡 + 𝑡𝑎𝑣), all the possible states in the queueing system will be updated with 

probability 1, and it would look as if the probability values of the possible states moved 

one step to the right in Figure 5 (i.e. the probability of a given state is now equal to the 

probability of the state to its left).  The probabilities of the different states when a new 

vehicle arrives can thus be calculated as shown in Equation (4-20) below: 
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𝑃𝑚𝑘−𝑥,𝑚(𝑡𝑖) = {
𝑃𝑚𝑘−𝑥−𝑘,𝑚−1(𝑡𝑖), 𝑠𝑡𝑎𝑡𝑒 (𝑚𝑘 − 𝑥 − 𝑘, 𝑚 − 1) exists  

0,                𝑠𝑡𝑎𝑡𝑒 (𝑚𝑘 − 𝑥 − 𝑘, 𝑚 − 1) 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 
    (4-20) 

for 

𝑚 =  (𝑁 + 1), 𝑁, … , 1, 0 𝑎𝑛𝑑 𝑥 = {
0,1, … , (𝑛 − 1)(𝑘 − 1), … , 𝑛(𝑘 − 1), 𝑖𝑓 𝑚 > 𝑛

0,1, … , (𝑚 − 1)(𝑘 − 1), … , 𝑚(𝑘 − 1), 𝑖𝑓 𝑚 ≤ 𝑛
, 

An example of how the state probability calculations proceed and how the above 

Equations are used is given in Appendix A for readers interested in the details. 

4.2.1.4 Performance Measurement Calculations 

With the probabilities calculated above, a number of useful performance measures 

can be calculated. In doing this, a unique advantage of our proposed hybrid 

numerical/analytical approach is that, as opposed to a purely simulation approach, the 

running time needed to derive these performance measures represents a fraction of the 

time needed to run a detailed microscopic traffic simulation model multiple times and 

to gather the required statistics.  Specifically, after the state transition probabilities for 

all states (𝑙, 𝑚) are calculated, the probability for m vehicles in the queueing system 

can be derived as follows: 

𝑃𝑚(𝑡) = {
∑ 𝑃𝑙,𝑚(𝑡),        0 ≤ 𝑚 ≤ 𝑛,𝑘𝑚

𝑙=𝑚

∑ 𝑃𝑙,𝑚(𝑡),       𝑚 > 𝑛.         𝑘𝑚
𝑙=𝑛+(𝑚−𝑛)𝑘

,   0 ≤ 𝑚 ≤ 𝑁.              (4-21) 

With 𝑃𝑚(𝑡) known, the average or most likely queue length at time t, 𝑄𝑚(𝑡), can 

be calculated as: 

𝑄𝑚(𝑡) = 𝐿𝑣𝑒ℎ ∗ ∑ 𝑃𝑚(𝑡) ∗ 𝑚𝑚 , 0 ≤ 𝑚 ≤ 𝑁                 (4-22) 

where, 𝐿𝑣𝑒ℎ is the average length of the vehicle. 
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At the same time, the average delay for a vehicle that arrives at the border at time t, 

can be calculated by estimating the time it would take for the queue in front of the 

vehicles to be served as follows: 

𝐷𝑚(𝑡) = ∑ 𝑃𝑚(𝑡) ∗ 𝑚𝑚 ∗ 𝜇,                                                    (4-23) 

where, 𝜇 is the average service time of the Erlang distribution. 

Besides the mean values, the variance or standard deviation of the expected queue 

length and/or delay can be calculated.  First, when the sampling is deployed (i.e. the 

inter-arrival and service times are determined by sampling from their probability 

distributions), the variance of the delay or queue length can be calculated by running 

the model multiple times.  Alternatively, when using the mean values of the inter- 

arrival and service times, the variance of the delay, for example, may be calculated 

from Equation (4-24), as follows.  

𝑉𝑚(𝑡) = ∑ 𝑃𝑚(𝑡) ∗ (𝑚 − 𝑚̅)2
𝑚 ∗ 𝜇,                                            (4-24)  

where,  𝑚̅ is the average value of the number of vehicles.  

4.2.2 BMAP/PH/n queueing model 

Compared with 𝑀/𝐸𝑘/𝑛 queueing model, the BMAP/PH/n queueing model has 

more complicated system states and state transition scenarios. At the onset, it is 

important to note that “system state” is used herein to describe the state of the queueing 

system itself, and that this is different from the “state space” mentioned in relation to 

the BMAP or PH distributions. To calculate the transient measures of the queueing 

system, this research introduced a novel approach to describing the system states, along 
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with a new assumption, which we call the Equally Likely Vehicles (ELV), to calculate 

the probabilities of the system states.  

4.2.2.1 System state description 

In order to make the description more understandable, we assume that “service 

type” i is equivalent to one of the service type distributions involved within that PH 

distribution (e.g., in our PH distribution, there are two service types:  Exponential 

distribution and Erlang-2 distribution). Besides that, as was the case with the M/Ek/n, 

we use “stage” li to represent the remaining number of exponential service stations 

that need to be completed for the vehicles mi in service type i.  

Now suppose there are 𝑠 service types in the PH distribution, a natural way is to 

use (𝑙𝑖 , 𝑚𝑖)1≤𝑖≤𝑠 to record the unfinished service stages 𝑙𝑖 and number of vehicles 𝑚𝑖 

in service type 𝑖. Here 𝑚𝑖 ≤ 𝑙𝑖 ≤ 𝑘𝑖 ∗ 𝑚𝑖 , 𝑚𝑖 ≥ 0, and 𝑘𝑖 denotes the number of the 

total service stages of service type 𝑖, like the order of the Erlang distribution. However, 

if there are N vehicles in the queueing system, the number of possible states will be 𝑠𝑁. 

This can be a very huge number. In order to save some space, we only calculate 

(𝑙𝑖 , 𝑚𝑖)1≤𝑖≤𝑠 for the vehicles in the service stations, and use one more digit 𝑛𝑞 to 

represent the number of vehicles waiting in the queue and not being served. The 

complete state representation is now (𝑙1, 𝑚1, 𝑙2, 𝑚2, … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 in the BMAP/PH/n 

model. Using this representation, the total number of possible states will be  𝑠𝑛 ∗ (𝑁 −

𝑛 + 1) if 𝑁 is greater than 𝑛 and 𝑠𝑁 if 𝑁 is less than or equal to 𝑛. 
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4.2.2.2 State transition probabilities 

Suppose that at time point 𝑡, 𝑁 vehicles have joined the queue, and the queue is in 

state (𝑙1, 𝑚1, … , 𝑙𝑖, 𝑚𝑖 , … , 𝑙𝑗, 𝑚𝑗 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞, 1 ≤ 𝑖, 𝑗 ≤ 𝑠, 𝑖 ≠ 𝑗. For the next time 

step (𝑡 + 1), there could be four possible state transition scenarios:  

1) Scenario 1: one or more vehicles join the queue 

Different from the M/𝐸𝑘/𝑛 queueing model, 𝑏 vehicles (and not just one) could 

arrive in the queue at 𝑡𝑁+𝑏, and the initial service types when the 𝑏 vehicles start being 

served can also be different. Now if the next time step, 𝑡 + 1, is equal to 𝑡𝑁+𝑏, there 

are three situations:  

i) if there are empty servers, ∑ 𝑚𝑖
𝑠
𝑖=1 < 𝑛 , and the number of empty servers is 

greater than or equal to 𝑏, all of the 𝑏 vehicles will instantly be served, and the 

queueing system state will change from (𝑙1, 𝑚1, … , 𝑙𝑖 , 𝑚𝑖 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 to (𝑙1 + 𝑘1 ∗

𝑚1𝑏, 𝑚1 + 𝑚1𝑏, … , 𝑙𝑖 + 𝑘𝑖 ∗ 𝑚𝑖𝑏, 𝑚𝑖 + 𝑚𝑖𝑏, … , 𝑙𝑠 + 𝑘𝑠 ∗ 𝑚𝑠𝑏, 𝑚𝑠 + 𝑚𝑠𝑏)|𝑛𝑞 with 

probability 1. Here, 𝑚𝑖𝑏 is the number of vehicles in 𝑏 with initial service type 𝑖;  

ii) if there are empty servers, ∑ 𝑚𝑖
𝑠
𝑖=1 < 𝑛 , but the number of empty servers is 

less  than 𝑏, (𝑒 = 𝑛 − ∑ 𝑚𝑖
𝑠
𝑖=1 ) of the 𝑏 vehicles will start their service process, and 

the rest will wait for their service in the queue, the state (𝑙1, 𝑚1, … , 𝑙𝑖, 𝑚𝑖 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 

will become (𝑙1 + 𝑘1 ∗ 𝑚1𝑒, 𝑚1 + 𝑚1𝑒, … , 𝑙𝑖 + 𝑘𝑖 ∗ 𝑚𝑖𝑒 , 𝑚𝑖 + 𝑚𝑖𝑒 , … … , 𝑙𝑠 + 𝑘𝑠 ∗

𝑚𝑠𝑒 , 𝑚𝑠 + 𝑚𝑠𝑒)|𝑛𝑞 + 𝑏 − 𝑒 with probability 1. Here, 𝑚𝑖𝑒 is the number of vehicles in 

𝑒 with initial service type 𝑖; 
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iii) if there are no empty servers, ∑ 𝑚𝑖
𝑠
𝑖=1 = 𝑛 , all the 𝑏 vehicles will wait in the 

queue without being served. The state will transfer from 

(𝑙1, 𝑚1, … , 𝑙𝑖, 𝑚𝑖 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 to (𝑙1, 𝑚1, … , 𝑙𝑖 , 𝑚𝑖 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 + 𝑏 with 

probability 1. 

2) Scenario 2: one vehicle finishes its last stage of service and leaves the queue 

Suppose after finishing the last stage of service type 𝑖, the vehicle leaves the queue 

(corresponds to the absorption state 0 in PH distribution), the queueing system would 

thus transfer from state (𝑙1, 𝑚1, … , 𝑙𝑖, 𝑚𝑖 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 to state (𝑙1, 𝑚1, … , 𝑙𝑖 −

1, 𝑚𝑖 − 1, … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞, 1 ≤ 𝑖 ≤ 𝑠. If 𝑛𝑞 > 0, which means there are still vehicles 

waiting in the queue to be served, state (𝑙1, 𝑚1, … , 𝑙𝑖 − 1, 𝑚𝑖 − 1, … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 must 

be transferred to state (𝑙1, 𝑚1, … , 𝑙𝑖 − 1 + 𝑘𝑖 , 𝑚𝑖 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 − 1 or state 

(𝑙1, 𝑚1, … , 𝑙𝑖 − 1, 𝑚𝑖 − 1, … , 𝑙𝑗 + 𝑘𝑗 , 𝑚𝑗 + 1, … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 − 1 according to the initial 

service type of the 𝑛𝑞
th

 vehicle in the reverse order from 𝑁.  

Suppose 𝛼(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
 is the probability that one more stage of service 

type 𝑖 is finished and one out of 𝑚𝑖 vehicles leaves the queue.  To calculate this, we 

still assume the ELC heuristic.  Therefore,  

𝛼(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
= 𝛼𝑙𝑖,𝑚𝑖

, if the state transition is reasonable based on the 

Markov chain in PH distribution,                 (4-25)  

Otherwise if the state transition is impossible based on the Markov chain in PH 

distribution, 

𝛼(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
= 0,                   (4-26) 

where, 𝛼𝑙𝑖,𝑚𝑖
 can be calculated using the same way in M/𝐸𝑘/𝑛 queueing model. 



150 

 

However, in order to calculate the queueing state transition probability that one 

stage of service type 𝑖 is finished and one vehicle leaves the system in one time step 

(i.e. from the current time step 𝑡 to the next time step 𝑡 + 1), one more assumption, 

which we call the Equally Likely Vehicles (ELV) heuristic, is needed.  This heuristic 

assumes all vehicles have an equal probability to be served no matter what service type 

it is in, and therefore the probability that the vehicle to be served in the current time step 

is from service type 𝑖 is given by: 

𝑣𝑖 =
𝑚𝑖

∑ 𝑚𝐼
𝑠
𝐼=1

.                       (4-27)  

Finally, the transition probability in this time step can be calculated as follows: 

𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞→𝑆𝑡 = 𝑣𝑖 ∗ 𝛼(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
∗ 𝑘𝑖𝛾𝑖(𝑡) ∗ 𝑚𝑖,    (4-28)  

Where 𝑆𝑡 is the corresponding queueing state depending on the initial service type 

of the 𝑛𝑞
th

 vehicle in the reverse order from 𝑁;  

𝛾𝑖(𝑡) is the service rate at time step 𝑡 for service type 𝑖.      

For example, let us consider how 𝛼(1,1,3,2)|0 is calculated.  For the first pair 

(𝑙1, 𝑚1) = (1,1), which refers to the number of stages and the vehicles having the 

exponentially distributed service times, according to Equation (4-26), 𝛼(1,1,3,2)|0 = 0.  

This is because in this study we know that after the vehicle finishes the Exponential 

distribution service type, it will continue the process with the Erlang-2 distribution 

service type.  In other words , (1,1,3,2)|0 → (0,0,3,2)|0 is impossible.  For the 

second pair  (𝑙2, 𝑚2) = (3,2), which records the number of stages and the vehicles 

having service type of Erlang-2 distribution, according to Equation (4-25),  
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𝛼(1,1,3,2)|0 = 𝛼𝑙2,𝑚2
= 𝛼3,2, and we know that 𝛼3,2 =

1

2
 from the previous Chapter. 

Given this, we can finally estimate, 𝑃(1,1,3,2)|0→(1,1,2,1)|0 = 𝑣2 ∗ 𝛼(1,1,3,2)|0 ∗ 𝑘2 ∗

𝛾2(𝑡) ∗ 𝑚2 =
𝑚2

𝑚1+𝑚2
∗ 𝛼3,2 ∗ 𝑘2 ∗ 𝛾2(𝑡) ∗ 𝑚2.   

3) Scenario 3: one vehicle finishes its last stage of service type 𝑖 and starts the first 

stage of another service type 𝑗 

This means the transition from state (𝑙1, 𝑚1, … , 𝑙𝑖 , 𝑚𝑖 , … , 𝑙𝑗 , 𝑚𝑗 , … 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 to 

state (𝑙1, 𝑚1, … , 𝑙𝑖 − 1, 𝑚𝑖 − 1, … , 𝑙𝑗 + 𝑘𝑗 , 𝑚𝑗 + 1, … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞, 1 ≤ 𝑖, 𝑗 ≤ 𝑠, 𝑖 ≠ 𝑗, 

from the current time step 𝑡 to the next time step 𝑡 + 1 (corresponds to the transition 

from state 1 to state 2 in Figure 4-3).  

Similarly, the probability can be calculated as: 

𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,… 𝑙𝑠,𝑚𝑠)|𝑛𝑞→(𝑙1,𝑚1,…,𝑙𝑖−1,𝑚𝑖−1,…,𝑙𝑗+𝑘𝑗,𝑚𝑗+1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
=

𝑣𝑖 ∗ 𝜏(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
∗ 𝑘𝑖𝛾𝑖(𝑡) ∗ 𝑚𝑖,             

(4-29) 

where, 

𝑣𝑖 =
𝑚𝑖

∑ 𝑚𝐼
𝑠
𝐼=1

,                  (4-30) 

𝜏(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
= 𝛼𝑙𝑖,𝑚𝑖

,              (4-31) 

if the state transition is reasonable based on the Markov chain in PH distribution. 

Otherwise, 

𝜏(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
= 0.                 (4-32) 

4) Scenario 4: one vehicle finishes one stage of service type 𝑖 but still needs to finish 

other stages of service type 𝑖 
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Now state (𝑙1, 𝑚1, … , 𝑙𝑖 , 𝑚𝑖 , … , 𝑙𝑗 , 𝑚𝑗 , … 𝑙𝑠, 𝑚𝑠)|𝑛𝑞 will become state 

(𝑙1, 𝑚1, … , 𝑙𝑖 − 1, 𝑚𝑖 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞, 1 ≤ 𝑖 ≤ 𝑠, from the current time step 𝑡 to the 

next time step 𝑡 + 1. Obviously, this probability is  

𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,… 𝑙𝑠,𝑚𝑠)|𝑛𝑞→(𝑙1,𝑚1,…,𝑙𝑖−1,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
= 𝑣𝑖 ∗ 𝛽(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞

∗

𝑘𝑖𝛾𝑖(𝑡) ∗ 𝑚𝑖,                    (4-33)  

where, 

𝑣𝑖 =
𝑚𝑖

∑ 𝑚𝐼
𝑠
𝐼=1

,                     (4-34) 

𝛽(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
= 1 − 𝛼𝑙𝑖,𝑚𝑖

,                (4-35) 

if the state transition is reasonable based on the Markov chain in the PH distribution. 

Otherwise, 

𝛽(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
= 0.                 (4-36)  

4.2.2.3 State Probabilities and Transient Solution Calculations 

In a simulation/approximation approach to determining the transient solution, the 

inter-arrival time and the arrival size can be sampled once the estimation of BMAP is 

realized. We can also estimate the initial service types of the newly arrived vehicles by 

sampling according to the PH distribution. Moreover, for each time step in the arrival 

intervals, the service rate can be determined either by sampling or using the mean value 

of the corresponding service time distribution, as done before. With these, the state 

probability can be calculated as following: 
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For a given state (𝑙1, 𝑚1, … , 𝑙𝑖 , 𝑚𝑖 , … , 𝑙𝑗 , 𝑚𝑗 , … , 𝑙𝑠, 𝑚𝑠)|𝑛𝑞, 1 ≤ 𝑖, 𝑗 ≤ 𝑠, 𝑖 ≠ 𝑗, at 

time step 𝑡, assuming that 𝑁 vehicles have joined the queue, for each service type pair 

(𝑙𝑖 , 𝑚𝑖), the probability 𝑃̇(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
 is calculated as : 

When ∑ 𝑚𝐼 = 0𝑠
𝐼=1  (which refers to the case when no vehicle is in the queue), 

𝑃̇(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
(𝑡) = 𝑣𝛼 ∗ 𝛼 ∗ 𝑚𝛼 ∗ 𝑠𝑒𝑟𝑖 ∗ 𝑃𝛼,        (4-37) 

where, 

𝑠𝑒𝑟𝑖 = 𝑘𝑖𝛾𝑖(𝑡),                 (4-38) 

𝑣𝛼 =
𝑚𝑖+1

∑ 𝑚𝐼+1𝑠
𝐼=1

,                    (4-39) 

𝛼 = 𝛼(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖+1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
,                 (4-40) 

𝑚𝛼 = 𝑚𝑖 + 1,                    (4-41) 

𝑃𝛼 = 𝑃(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖+1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
,                      (4-42) 

When ∑ 𝑚𝐼 > 0𝑠
𝐼=1  (some vehicles are in the queue), the transition probability can 

be generally expressed as, 

𝑃̇(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
(𝑡) = −𝑚𝑖 ∗ 𝑠𝑒𝑟𝑖 ∗ 𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞

+ 𝑣𝛼 ∗

𝛼 ∗ 𝑚𝛼 ∗ 𝑠𝑒𝑟𝑖 ∗ 𝑃𝛼 + 𝑣𝜏 ∗ 𝜏 ∗ 𝑚𝜏 ∗ 𝑠𝑒𝑟𝑖 ∗ 𝑃𝜏 + 𝑣𝛽 ∗ 𝛽 ∗ 𝑚𝛽 ∗ 𝑠𝑒𝑟𝑖 ∗ 𝑃𝛽,    (4-43) 

where 𝑠𝑒𝑟𝑖 = 𝑘𝑖𝛾𝑖(𝑡),                    (4-44) 

Now, if ∑ 𝑚𝐼 + 1𝑠
𝐼=1 ≤ 𝑛, 

𝑣𝛼 =
𝑚𝑖+1

∑ 𝑚𝐼+1𝑠
𝐼=1

,                      (4-45) 

𝛼 = 𝛼(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖+1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
,                   (4-46) 

𝑚𝛼 = 𝑚𝑖 + 1,                    (4-47) 

𝑃𝛼 = 𝑃(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖+1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
,                    (4-48) 

Or if ∑ 𝑚𝐼 + 1𝑠
𝐼=1 > 𝑛, 
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𝑣𝛼 =
𝑚𝑖

∑ 𝑚𝐼
𝑠
𝐼=1

,                     (4-49) 

𝛼 = 𝛼(𝑙1,𝑚1,…,𝑙𝑖−𝑘𝑖+1,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞+1, if the initial service type of the (𝑛𝑞 + 1)th
 vehicle 

in the reverse order from 𝑁 is 𝑖; or 𝛼 = 𝛼(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖+1,…,𝑙𝑗−𝑘𝑗,𝑚𝑗−1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞+1, if 

the initial service type of the (𝑛𝑞 + 1)th
 vehicle in the reverse order from 𝑁 is 𝑗, 𝑗 ≠ 𝑖      

(4-50) 

𝑚𝛼 = 𝑚𝑖,                     (4-51) 

𝑃𝛼 = 𝑃(𝑙1,𝑚1,…,𝑙𝑖−𝑘𝑖+1,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞+1, if the initial service type of the (𝑛𝑞 + 1)th vehicle 

in the reverse order from 𝑁 is 𝑖; or, 𝑃𝛼 = 𝑃(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖+1,…,𝑙𝑗−𝑘𝑗,𝑚𝑗−1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞+1, if 

the initial service type of the (𝑛𝑞 + 1)th vehicle in the reverse order from 𝑁 is 𝑗, 

𝑗 ≠ 𝑖,                      (4-52) 

𝑣𝜏 = {

𝑚𝑖+1

∑ 𝑚𝐼
𝑠
𝐼=1

,   𝑖𝑓 (𝑚𝑖 + 1) ≤ ∑ 𝑚𝐼
𝑠
𝐼=1  

0,    𝑖𝑓 (𝑚𝑖 + 1) > ∑ 𝑚𝐼
𝑠
𝐼=1            

,                        (4-53) 

𝜏 = 𝜏(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖+1,…,𝑙𝑗−𝑘𝑗,𝑚𝑗−1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
,              (4-54) 

𝑚𝜏 = 𝑚𝑖 + 1,                    (4-55) 

𝑃𝜏 = 𝑃(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖+1,…,𝑙𝑗−𝑘𝑗,𝑚𝑗−1,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
,                      (4-56) 

𝑣𝛽 =
𝑚𝑖

∑ 𝑚𝐼
𝑠
𝐼=1

,                       (4-57) 

𝛽 = 𝛽(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
,                 (4-58) 

𝑚𝛽 = 𝑚𝑖 ,                     (4-59) 

𝑃𝛽 = 𝑃(𝑙1,𝑚1,…,𝑙𝑖+1,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
,                (4-60) 

At last, after all the service type pair (𝑙𝑖 , 𝑚𝑖) is checked, 

𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
(t + 1) is updated as: 
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𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
(𝑡 + 1) =

𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
(𝑡) + ∑ 𝑃̇(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑗,𝑚𝑗,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞

(𝑡)1≤𝑖≤𝑆    

         (4-61) 

If at time step 𝑡 + 1, 𝑏 vehicles will join the queue, for state 

(𝑙1, 𝑚1, … , 𝑙𝑖, 𝑚𝑖 , … 𝑙𝑠, 𝑚𝑠)|𝑛𝑞, according to the analysis of scenario 1 in Chapter 4.2.2, 

we can get the new state (𝐿1, 𝑀1, … , 𝐿𝑖, 𝑀𝑖 , … 𝐿𝑠, 𝑀𝑠)|𝑁𝑞, and the probability of the 

new state should be: 

𝑃(𝐿1,𝑀1,…,𝐿𝑖,𝑀𝑖,…,𝐿𝑠,𝑀𝑠)|𝑁𝑞
(𝑡 + 1) = 𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞

(𝑡 + 1),         (4-62) 

𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
(𝑡 + 1) = 0,               (4-63) 

This calculation should be conducted according to the possible number of vehicles 

in the queue in a decreasing order. ∑ 𝑚𝐼
𝑠
𝐼=1 + 𝑛𝑞 = 𝑁, 𝑁 − 1, … ,1,0.  

With all the state probabilities at any time step 𝑡 known, the probability that there 

are 𝑣 vehicles in the system can be finally calculated: 

𝑃𝑣(𝑡) = ∑ 𝑃(𝑙1,𝑚1,…,𝑙𝑖,𝑚𝑖,…,𝑙𝑠,𝑚𝑠)|𝑛𝑞
(𝑡), if ∑ 𝑚𝐼

𝑠
𝐼=1 + 𝑛𝑞 = 𝑣, for 𝑣 = 0, 1, … , 𝑁.  (4-64) 

Similarly, this probability can be used to compute performance measures such as 

queue length and delay.  

An example of how the state probabilities calculations proceed and how the above 

Equations are to be applied is given in Appendix B for readers interested in the details. 

4.2.3 The Baseline micro-simulation VISSIM model  

To validate the proposed numerical /analytical approach, the queueing model’s 

results  were compared to the results derived from a detailed microscopic traffic 
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simulation model of the border crossing area developed in VISSIM (PTV, 2010).  The 

VISSIM model is used as a “baseline” model to validate the performance of the 

proposed queueing models and their approximate transient solution procedure, due to 

the current unavailability of detailed field observations regarding actually experienced 

delays and the corresponding number of inspection stations that were open at the time.  

As mentioned in the Conclusions Chapter, we are planning to validate the models 

against field data in our future research. Figure 4-6 shows a screen shot of the VISSIM 

animation of traffic at the Peace Bridge. The orange part in the figure is the U.S. toll 

plaza for the private cars entering the U.S. from Canada, which is the focus of this case 

study. As can be seen, the number of the lanes for private cars changes from 1 to 10 as 

one gets close to the border (i.e., the maximum number of inspection stations or servers 

for our queueing model is thus 10).  In the example shown in Figure 4-6, only 5 service 

stations are open.  
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Figure 4-6 Queueing Model in VISSIM 

In VISSIM, the dwell time distribution at the stop signs can be precisely controlled 

to follow a given probability distribution.  Figure 4-7 shows an example on how the 

dwell time distribution at a stop sign may be adjusted to follow any desired probability 

distribution.  Given this, a stop-bar was placed upstream the inspection plaza in order 

to control the release of vehicles and to make sure that vehicles’ arrival at the toll plaza 

follow the desired probability distributions (i.e. the inter-arrival exponential 

distribution shown in Figure 4-1).  Similarly, a second stop bar was placed, where the 

inspection stations are, to simulate the service time Erlang distribution shown in Figure 

4-2.  In other words, the VISSIM model was developed to mimic the operation of 

M/𝐸𝐾/𝑛 queueing system (i.e., the first multi-server queueing model considered in this 

study). 
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Figure 4-7 Setting of Dwell Time Distribution in Stop Sign to Simulate Service 

Time 

With this, the traffic demand was defined in a “.fma” file, and VISSIM’s optimal 

dynamic assignment module was used to simulate the drivers’ choices of lanes or 

inspection stations so as to ensure that the number of vehicles waiting in line for each 

service station is almost the same. Other settings were realized through the COM 

interface, which can be used to customize the VISSIM model (PTV, 2010), using the 

C# programming language.  For example, the COM interface was used to control the 

number of lanes/inspection stations that are open at a given time by dynamically 

controlling the the “LANECLOSED” parameter in VISSIM.  The interface was also 

used to facilitate running the simulation model for multiple runs, using a different 
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random seed number each time, and averaging the results to calculate the performance 

measures of interest (i.e.,  queue length and wait time) from the multiple runs. 

4.3 Results 

4.3.1 Validation Results 

As mentioned above, due to the unavailability of accurate field data on border crossing 

delay at the time this study was conducted, validating the queueing model results involved 

comparing them to those derived from running a VISSIM model, keeping in mind .  For 

these comparisons, a 20 minute prediction horizon was adopted (i.e., the models were used 

to estimate the queue length that a vehicle joining the queue 20 minutes later will 

encounter).  The arrival volume was assumed to be equal to 400 vehicles per hour (vph), 

and an Erlang distribution with order 2 and mean 44.58 seconds was utilized to represent 

the service process for M/𝐸𝐾/𝑛 queueing model, a mixture of an Exponential distribution 

with the mean of 79.36 seconds and an Erlang distribution with order 2 and the mean of 

40.98 seconds was utilized to represent the service process for  𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛 queueing 

model.  The number of service stations was varied from 3 to 6 stations. 

As previously mentioned before, two slightly different methods were utilized to derive 

the transient solution of the queueing models, sampling the arrival and service times from 

the corresponding distributions and using the mean values of the corresponding 

distributions.  For the M/𝐸𝐾/𝑛 queueing model, when sampling, the heuristic queueing 

model solution procedure was repeated 100 times so that the mean and standard deviation 

of the queue length were calculated.  For the 𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛 queueing model, because we 
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always need to sample the arrival size and service types, the procedure based on sampling 

the arrival and service times method and the procedure based on using the mean values 

method were both repeated 100 times.  The results from both methods were compared to 

the ones from the VISSIM model. For the VISSIM model, due to the fact that the model 

requires significantly more runtime compared to the runtime of the heuristic model solution, 

the model was run for only 10 times with different seed numbers. Finally for each model, 

the mean and the standard deviation of vehicles number in the queue can be seen in Table 

4-2. 

Table 4-2 Results of Analytical Approach and Simulation Approach 

Predicted 

Traffic 

Volume 

(vph) 

 

Number 

of 

Service 

Stations 

Number of Vehicles in the Queue (Vehicles) 

Random 

sampling method 

(M/𝐸𝐾/𝑛) 

Mean value 

method 

(M/𝐸𝐾/𝑛) 

Random 

sampling method 

(𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛) 

Mean value 

method 

(𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛) 

Simulation in 

VISSIM 

(M/𝐸𝐾/𝑛) 

Mean Standard 

Variance 

Mean Standard 

Variance 

Mean Standard 

Variance 

Mean Standard 

Variance 

Mean Standard 

Variance 

 

400 

3 43.38 9.13 40.73 5.16 50.78 4.72 47.93 6.15 41.9 7.24 

4 22.14 8.28 22 5.58 26.75 4.33 22.93 6.22 26.6 7.57 

5 12.7 6.14 8.28 3.40 8.40 2.18 8.65 3.09 15.4 5.29 

6 7 2.6 5.6 1.49 6.64 1.59 5.26 1.77 9.9 3.72 

 

As can be seen, firstly, for the M/𝐸𝐾/𝑛 queueing models, the results from the 

heuristic solution method of the queueing model appear to be quite close to the VISSIM 

model results. The advantage of the analytical approach is naturally the very high 

computational efficiency compared to the simulation based approach, and the ability to 
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incorporate the models within an optimization framework as will be described later.  

Moreover, it can be seen that the results of the  M/𝐸𝐾/𝑛 queueing models from the 

random sampling method are also generally close to the results from the mean value based 

method. Meanwhile, using the mean values proves to be even more computationally 

efficient in comparison to the random sampling method because it does not require multiple 

runs.  Based on this small-scale validation study, it can be concluded that the formulated 

queueing model 𝑀/𝐸𝑘/𝑛, and the ELC heuristic solution procedure, offers a more 

efficient approach to estimate likely queue lengths and border crossing delays than 

microscopic traffic simulation.  

Secondly, we can see that the results of the 𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛 queueing models are quite 

close to those of the  M/𝐸𝐾/𝑛 queueing model and to the VISSIM simulation, except 

perhaps for when the number of the service stations was relatively small (i.e. 3) where the 

queueing lengths derived from the 𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛 queueing models are slightly longer.  

These results appear to make perfect sense, since from the analysis of PH service process, 

we know that the probability of a vehicle going through the Exponential service process 

followed by the Erlang service process is relatively small (i.e., 1.63%).  For the majority of 

cases, the service process follows an Erlang distribution similar to the first model.   Even 

though the probability is low, the differences are expected to be more obvious effect when 

the number of service stations is small. The transient results of the 𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛 

queueing models thus appear to be realistic.  
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4.3.2 Sensitivity Analysis 

This Chapter presents the results of a few sensitivity analysis tests conducted on the 

models.  The purpose of this analysis is twofold, to demonstrate that the model results are 

reasonable and agree with intuition, and to provide some insight into how to effectively 

manage the border crossing in order to keep the delay within acceptable limits.  Owing to 

the fact that there were minor differences between the 𝑀/𝐸𝑘/𝑛 and the 𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛, 

the sensitivity analysis and the subsequent optimization are based on the 𝑀/𝐸𝑘/𝑛 for 

simplicity. 

4.3.2.1 Impact of an increasing travel demand, 𝝀 

Starting with a base mean travel demand level or volume of 𝜆 = 500 vph, the demand 

level was increased in increments of 50 vph (up to a demand level of 1000 vph), and the 

expected queue length and the delay a vehicle joining the queue 20 minutes later would 

encounter, was calculated.  In this test, the number of service stations was assumed to be 

equal to 3 stations, and the mean service time μ of the Erlang distribution with order 2 was 

set as 30 seconds.  The results are shown in Table 4-3, where it can be seen that there is a 

significant increase in the delay with increasing volumes.  For example, doubling the 

traffic volume from 500 to 1000 vph would result in an almost fourfold increase in average 

vehicle delay (from 26.2 minutes/vehicle to 109.4 minutes/vehicle).   

Table 4-3 Impact of Increasing the Traffic Demand Level 

𝝀 (veh/h) 500 550 600 650 700 750 800 850 900 950 1000 

Queue length 

(no. of 

52.4 70.5 84.1 102.7 119.9 135.4 152.2 168.8 186.2 201.9 218.9 
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vehicles) 

Delay 

(minutes) 

26.2 35.2 42.0 51.3 59.9 67.7 76.1 84.4 93.1 100.9 109.4 

 

Figure 4-8 shows the evolution of the magnitude of the likely delay a vehicle would 

encounter as the prediction time period changes from 1 to 20 minutes (i.e., the figure shows 

how the delay a vehicle encounter would change if it arrives 1 minute later versus 20 

minutes later).   The figure assumes a demand level of 500 vph, an average service time of 

30 seconds, and 3 service stations open.  As expected, the delay increases for vehicles 

joining the queue at later time periods.  If an agency has a set policy to keep the delay 

under a certain threshold, for example, Figure 4-8 can be used to determine when 

additional service stations would need to be opened.  For example, if the border crossing 

authority desires to keep delay below say 10 minutes, and assuming the case shown in 

Figure 4-8, the agency may need to open an additional inspection station around the 7th 

minute, when the delay is estimated to reach an average of 10 minutes/vehicle (see Figure 

4-8). 
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Figure 4-8 Delay Curve of 20 Minutes for 𝛌 = 𝟓𝟎𝟎 𝐯𝐞𝐡/𝐡 and 

𝛍 = 𝟑𝟎𝐬 and 𝐧 = 𝟑  

4.3.2.2 Impact of opening additional service stations, n 

Another sensitivity analysis test performed involves varying the number of 

inspection stations from 3 to 10 for the base scenario considered in Chapter 4.3.2.1 (i.e., 

arrival rate of 500 vph and an average service time of 30 seconds).  The results are 

shown in Figure 4-9 which plots the delay for the vehicle joining the queue at the end of 

the 20-minute period.  As can be seen, there is a dramatic reduction in the value of the 

delay as the number of open service stations increase from 3 to 4, and also from 4 to 5 

stations.  Having more than 5 lanes open, however, does not appear to be quite 

beneficial from a delay saving standpoint, since the drop in the delay beyond that point 

is somewhat marginal.  Plots such as Figure 4-9 can also be used to determine the 

number of stations needed to keep delay below a certain threshold.  In Figure 4-9 for 

example, if the agency would like to keep delay around 10 minutes/vehicles, 4 service 

stations would be needed.  
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Figure 4-9 Delay at the End of 20 Minutes for Different Service Station Number 

𝐧 with 𝛌 = 𝟓𝟎𝟎 𝐯𝐞𝐡/𝐡 and 𝛍 = 𝟑𝟎𝐬 

4.3.2.3 Impact of changes in the mean service time 𝝁  

The last test performed involves varying the value of the mean service time μ of the 

Erlang Distribution (in increments of 15 seconds), and determining the number of 

inspection stations needed to keep the delay at the end of the 20th minute below 10 

minutes/vehicle. The results are shown in Figure 4-10, where it can be seen that if the mean 

service time is around 15 seconds, 3 service stations would be adequate.  However, if the 

service time were to increase to 30 seconds, 4 stations would be needed, and so on.   
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Figure 4-10 Service Station Number for Different Average Service Time of Erlang 

Distribution 

4.3.3 Optimal Operating Policies 

The sensitivity analysis described above pointed out the feasibility of using the 

queueing models to derive “optimal” operating policies for a customs and immigration 

border control agency.  In this Chapter, we include a simple example that demonstrates 

how the optimization problem may be formulated.  We also provide a brief discussion of 

the results obtained and the insight they provide into the operation of the border crossing 

system. 

4.3.3.1 Optimization Problem Formulation 

The goal of the optimization problem formulated herein is to minimize the total cost of 

the queueing system for a given time period of analysis, T, including the cost for both the 

travelers as well as the operating agency. While doing that, the problem strives to keep the 

expected delay below a certain threshold.  Specifically, we view the total cost as 
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consisting of the following three elements.  The first element is the operating cost of 

opening the inspection stations, calculated by multiplying the assumed hourly cost of 

operating one booth by the number of booths or inspection stations open by the length of 

assumed analysis period, T (assumed to be 20 minutes in our study).  The second element 

is the cost of the wait time travelers spent waiting in the queue at the border, calculated by 

multiplying the assumed monetary value for one hour of waiting time by the average 

number of vehicles in the queue during that time period by analysis period, T.  The third 

element is a penalty term designed to capture the cost of switching between an open and a 

closed inspection lane (or vice versa).  Two constraints are included: the first constraint is 

added to keep the average delay per vehicle below a certain threshold while a second 

constraint is included to make sure the number of inspection lanes open does not exceed the 

physical number of lanes available at the border crossing.  The problem can thus be 

mathematically expressed as follows: 

min 𝐶𝑡 = (𝐶𝑜𝑝𝑒 ∗ 𝐵𝑡 + 𝐶𝑤 ∗ 𝑉𝑡) ∗ 𝑇 + 𝐶𝑝𝑢𝑛           (4-65) 

s.t. 

 
𝑉𝑡∗μ

𝐵𝑡
≤ 𝑇ℎ𝑤,  

𝐵𝑚𝑖𝑛 ≤ 𝐵𝑡 ≤ 𝐵𝑚𝑎𝑥, 

where, 

𝐶𝑡 is the total cost of the queueing system during time period T; 

𝐶𝑜𝑝𝑒 is the cost per hour to operate one booth; 

𝐶𝑤 is the hourly cost of waiting time per vehicle; 

𝐵𝑡  is the number of open booths at time period 𝑡; 
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𝑉𝑡 is the average number of waiting vehicles at time period T;  

μ is the average service time (seconds); 

T is the length of the analysis time period; 

𝐶𝑝𝑢𝑛 is the penalty cost for changing the number of open booths from one analysis time 

period to the next calculated as follows  𝐶𝑝𝑢𝑛 = 𝑐 ∗ |𝐵𝑡 − 𝐵𝑡−1|, where 𝑐 is the penalty 

for switching for one booth. 

𝑉𝑡∗μ

𝐵𝑡
≤ 𝑇ℎ𝑤 is the constraint that ensures that the average waiting time is less than a 

threshold value, 𝑇ℎ𝑤; 

𝐵𝑚𝑖𝑛 ≤ 𝐵𝑡 ≤ 𝐵𝑚𝑎𝑥 is the constraint for the number of available booths. 

4.3.3.2 Optimization Problem Results 

 

Figure 4-11 Traffic Volume of every 20 minutes’ Interval for a Whole Day 

To illustrate the application of the model for determining optimal operating policies 

for the border crossing, we considered the field-measured values for the hourly volumes at 

the Peace Bridge border crossing for a given day as shown in Figure 4-11, and applied the 

optimization model formulated above successively for all the successive 20-minute 

analysis periods of that day (i.e., we would calculate the predicted queue length and the 
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average vehicle delay in 20-minute increments throughout the day and calculate the total 

cost of the queueing system for that time period).   The values assumed for the other 

model’s parameters were as follows.  For the hourly operating cost of one booth (Cope), 

four levels were assumed, a value of $50 per hour, $100 per hour, $150 per hour and a value 

of $200 per hour.  For the monetary value of one hour of wait time (Cw), knowing the per 

capita annual income in New York in 2011 is $31,796 (United States Census Bureau, 2012), 

and assuming one person works 250 days per year, 6 hours per day and there are 1.2 

persons in one vehicle, the monetary value of one hour of wait time (Cw) was estimated to 

be around $25.  The penalty for switching one booth (𝑐) from closed to open (or vice versa) 

was set as $20. Given that the maximum number of inspection stations that can be opened 

at the Peace Bridge is 10, which meant that 𝐵𝑚𝑖𝑛 = 1 and 𝐵𝑚𝑎𝑥 = 10.  Two levels of the 

accepted delay threshold (𝑇ℎ𝑤) were considered, 10 minutes and 30 minutes.  

 

Figure 4-12 Total Cost of Optimizing the Queueing System for a Whole Day 
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Figure 4-13 Number of Open Booth of Optimizing the Queueing System for a 

Whole Day 

Figure 4-12 plots the values for the total cost obtained after solving the optimization 

model formulated above from the four assumed levels of hourly cost of opening a service 

booth (i.e., $50, $100, $150, and $200) and from two types of waiting time threshold (i.e., 

10 minutes and 30 minutes). The model was simply solved by enumeration since the 

solution space of the problem is quite limited (i.e., it ranged from 1 to 10 for each time 

period considered), and since the main focus herein is to illustrate the possible applications 

of the queueing models formulated.  Figure 4-13 shows the corresponding number of 

inspection lanes that are open for the four scenarios. 

As can be seen and as to be expected, the total cost increases with the increase in the 

value assumed for the hourly operation cost (i.e., from $50 up to $200), and at the same 

time, the maximum number of open booths decreases. Specifically when the hourly 

operation cost (𝐶𝑜𝑝𝑒) is equal to $50 per hour, the maximum number of booths are opened 

(i.e. 10) and that number remains open for the rest of the day.  This is because of the 
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penalty for switching one booth every 20 minutes is set as $20, which is higher than the 

operation cost in 20 minutes ($50/3 or $16.67). Besides that, when 𝐶𝑜𝑝𝑒 = $50  or 

𝐶𝑜𝑝𝑒 = $100, there were no differences in the total cost or in number of open booths when 

the waiting time threshold (𝑇ℎ𝑤) was set to 10 minutes versus when it was set to 30 

minutes. This is because in these cases the cost of opening new booths is relatively lower 

than the delay cost for the travelers.  As a result, the optimal solution was achieved at an 

average delay value less than the lower delay threshold (i.e. less than 10 minutes).  In other 

words, the constraint 
𝑉𝑡∗μ

𝐵𝑡
≤ 𝑇ℎ𝑤 was not binding in this case.  However, when 𝐶𝑜𝑝𝑒 is 

increased, for example, 𝐶𝑜𝑝𝑒 = $150 or 𝐶𝑜𝑝𝑒 = $200, minor differences in terms of the 

total cost between the two cases were observed (Figure 4-12), along with discernible 

differences between the numbers of inspection booths open (Figure 4-13).  For the 

number of booths open, as to be expected, when a lower delay threshold is assumed (i.e. 10 

minutes), more inspection stations will be needed to mitigate congestion.  

Another interesting observation is that when 𝐶𝑜𝑝𝑒 = $150 or 𝐶𝑜𝑝𝑒 = $200, at some 

time intervals, the total cost for a 30-minute average delay threshold (𝑇ℎ𝑤) was slightly 

higher than that for the 10-minute average delay threshold. This is because the increase in 

the waiting cost of the vehicles, when a higher delay threshold was allowed, slightly 

outweighed the savings in the operating cost resulting from opening fewer lanes.   

4.4 Conclusions 

This study has formulated two groups of multi-server queueing models to predict 

border crossing delay, namely 𝑀/𝐸𝑘/𝑛 and BMAP/PH/n queueing models.  The models 
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were formulated based on real-world data collected from the Peace Bridge, and their 

transient solution was numerically derived based on heuristic approaches. The solution 

derived was then validated by comparing the results to those estimated from a 

well-calibrated microscopic traffic simulation model. Sensitivity analyses were performed 

to check the validity of the model’s predictions and to gain insight into how to effectively 

manage the border crossing.  To further demonstrate the potential applications of the 

models, they were incorporated within an optimization framework and used to derive 

optimal management strategies for a customs and immigration border control agency.  

Among the main conclusions of the study are: 

(1) The transient solution of the M/𝐸𝐾/𝑛 queueing models derived using the ELC 

heuristic appears to agree quite well with the values determined using the 

microscopic simulation models.  The real advantage of the queueing modeling 

approach, however, is that its runtime is a fraction of the time needed to run the 

microscopic simulation model multiple times and gathering the required statistics; 

(2) For the case study considered herein, the results of 𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛 queueing 

models appear to be quite similar as to M/𝐸𝐾/𝑛 queueing models except for the 

case when the number of server stations was small; 

(3) The sensitivity analysis tests clearly demonstrate the reasonableness of the 

queueing model solution.  Moreover, it shows that the models can be used to gain 

insight into how to best manage the border crossing; and 

(4) The solution of the border management optimization problem described in 

Chapter 5 shows that when the hourly cost of opening and operating a new 
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inspection station is low, it becomes advantageous to open more lanes so as to 

keep the delay, and the associated wait time cost, on the low side.  The case study 

considered also demonstrates that the solution of the optimal border crossing 

management strategy problem is quite sensitive to the assumptions regarding the 

cost of operating the inspection stations and the monetary value of waiting time. 
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CHAPTER 5 ANDROID SMARTPHONE APP FOR TORONTO 

BUFFALO BORDER WAITING 

In recent years, one factor that deserves consideration is the emergence of social 

media applications using smartphones which allow people to easily create, share and 

exchange information. For example, Waze is a community-based traffic and navigation 

app, acquired by Google in 2013, where drivers can share real-time traffic and road 

information, saving travel time, gas and money on their daily commute (Waze, 2014). 

In this context, smartphone apps have become another important means for the public 

to get and share traffic information, in addition to the traditional methods such as 

variable message sign (VMS), radio, websites, and toll free phones.  Given the above, 

the opportunity now exists to integrate the useful insights mined from traffic data with 

state-of-the-art techniques such as smartphone applications to provide accurate 

information about border crossing delay. 

This Chapter introduces an Android smartphone application (app) called the 

Toronto Buffalo Border Wait Time (TBBW), which is designed to share waiting time 

among travelers of the three Niagara Frontier border crossings, namely the 

Lewiston-Queenston Bridge, the Rainbow Bridge, and the Peace Bridge. Three types of 

waiting times are offered based on users’ preferences, including the current waiting 

time, the historical waiting time, and the future waiting time predicted by a real-time 

traffic delay prediction model. For the current waiting time, the app can provide both 

the data collected by the border crossing authorities and the user-reported or 
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“crowd-sourcing” data shared by the community of users of the app. For the historical 

waiting time, the app provides statistical charts and tables to help users choose the 

crossing with the likely shortest waiting time. Moreover, the app can also provide 

future border waiting time for the next 15 minutes with an updating frequency of five 

minutes.  The future waiting times are predicted by the two-step border crossing delay 

prediction model introduced in Chapter 3 and Chapter 4.  

Figure 5-1 summarizes the characteristics of TBBW (shown in the green color), in 

comparison with the existing border crossing delay dissemination method (shown in 

the blue color). As can be seen, TBBW provides several options for border crossing 

delay estimates including, user-reported or “crowd-sourcing” wait time, historical, and 

future wait time, in addition to the current waiting time reported by the authorities. 

Travelers and border management authorities can then make better decisions based on 

this information.  
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Figure 5-1 Comparison of TBBW with the Other Ways to Share Border Waiting 

Time 

5.1 Methodology behind the App 

5.1.1 Integration of Data-driven Model and Analytical Model for Future 

Border Crossing Waiting Time 

As mentioned earlier, this app has utilized the two-step border crossing delay 

prediction model to calculate the future border crossing waiting time. The two-step 

border delay prediction model is composed of two sequential modules. The first 

module is a data-driven short term traffic volume prediction model designed to predict 
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the traffic volume arriving at the border crossings for each time period. Given the 

predicted traffic volume as input, the second model estimates the corresponding 

waiting time by solving an analytical transient multi-server queueing model. 

5.1.1.1 Border Crossing Traffic Volume Prediction Module 

In this app, however, SARIMA is chosen as the prediction method because of its 

easiness of implementation and its moderate computational cost.  As previously 

reported in this dissertation, for a testing dataset with 1,905 hourly traffic volume points, 

the mean absolute percentage error (MAPE) was found to be equal to 16.38%.  It 

needs to be noted here that the short-term traffic volume prediction module were built 

using data collected from the Peace Bridge, particularly the traffic volume entering the 

U.S. from Canada, due to the fine temporal resolution available (i.e., on the hourly basis) 

(Buffalo and Fort Erie Public Bridge Authority, 2014). The traffic volumes for the other 

bridges were only available to the study on a daily basis at the time (Niagara Falls 

Bridge Commission, 2014), and were thus deemed not sufficient for accurate waiting 

time prediction.  

5.1.1.2 Transient Multi-server Queueing Module 

Because the TBBW app requires that the predicted wait time be updated every five 

minutes, the predicted hourly traffic volume was split into a finer resolution (e.g., a 

five-minute resolution) before they were used for border wait time prediction by the 

queueing models. With the inter-arrival distribution known, this was done using the 



178 

 

inverse cumulative function of the inter-arrival exponential distribution 𝐹(𝑥) = 1 −

𝑒−𝜆𝑥, where λ is the predicted hourly volume or arrival rate.  

Other input requirements of the queueing model included the number of inspection 

booths.  However, the number of open inspection stations is typically not available 

ahead of time. To solve the problem, our approach at the moment involves running the 

queueing model for different numbers of open stations (1 to 10 in this study), and trying 

to estimate how many stations are actually open. Other venues to be explored in the 

near future are information offered by users or directly by the U.S. Customs and Border 

Protection. 

Although the more general queueing model 𝐵𝑀𝐴𝑃/𝑃𝐻/𝑛 was also solved to get 

the transient results of the queueing system in Chapter 4.2.2, due to the computational 

time constraints in the real-world application, only the 𝑀/𝐸𝑘/𝑛 queueing model was 

implemented in the Android app. 

5.1.2 Data-level Fusion for Current Border Crossing Waiting Time 

 For the current border crossing waiting times, there are two types of data sources. 

One is from the official border crossing authorities, and the other one is from the app 

users based on the idea of crowd sourcing. This fits the definition of data-level fusion 

mentioned in Chapter 1.3.1.2. The detailed introduction about the ways to share the 

current border crossing waiting time will be talked about in the following Chapter.  
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5.2 Datasets 

Two types of data are used to develop the TBBW app. The first dataset contains the 

hourly traffic volume data collected at the Peace Bridge since 2003. This is used as the 

input to develop the stepwise border delay prediction model and to predict the future 

waiting times. The second dataset captures the current waiting times collected and 

maintained by the border crossing authorities. Such data are used as one source of the 

current waiting times provided by the app. In addition, they are stored for historical data 

analysis and also used as the ground truth to assess the performance of the border delay 

prediction model. All data are available for download from the websites maintained by 

the Peace Bridge authority and Niagara Falls Bridge Commission. 

5.3 Innovative Features 

The TBBW app was developed on the Android platform, the most popular mobile 

operating system used in the U.S. Specifically, in the third quarter of 2013, Android’s 

share of the global smartphone shipment market was 81.3%. As of July 2013, there are 

more than one million apps available for Android in the Google Play Store where more 

than 48 billion apps have been downloaded by users as of May 2013 (Wikipedia, 2014).  

The developed TBBW app is innovative in terms of its ability: (1) to share current 

waiting time; (2) to store and analyze historical waiting time; and (3) to predict future 

waiting time, as described below. 

5.3.1 Sharing Current Waiting Time Function 
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Figure 5-2a Official Website Figure 5-2b Manually Share Figure 5-2c Automatic Share (GPS) 

Figure 5-2 Three Ways to Share Current Waiting Time 

The app employs two ways to collect current waiting time information. The first 

way involves downloading the waiting time data from the websites maintained by the 

Buffalo and Fort Erie Public Bridge Authority and the Niagara Falls Bridge 

Commission. The current waiting time for Peace Bridge and Lewiston Queen Bridge 

are provided and updated every five minutes, and for Rainbow Bridge, it is updated 

every one hour. The information is collected and uploaded in real time to the app as 

shown in Figure 5-2a. 

Because the official current waiting time data is lagged (particularly for the 

Rainbow Bridge where it is only updated every hour), the app also provides a second 

way to collect the current waiting time data utilizing crowd sourcing ideas. Specifically, 

users are allowed to report their experienced border crossing delays that can be then 

processed and broadcasted to other users for their benefits (called crowd sourcing). The 
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same concept has been widely applied in other traffic information sharing apps, such as 

the pre-mentioned Waze and the bus arrival time sharing app Tiramisu (Zimmerman et 

al., 2011). In TBBW, users can share their waiting times by manually inputting the data 

as shown in Figure 5-2b. They can also choose to automatically share their waiting 

times through their GPS-enabled smartphones as shown in Figure 5-2c. This option is 

necessary because if users are driving, it is unsafe and illegal to manually input waiting 

time. 

5.3.2 Utilizing Historical Waiting Time Function 

   

FIGURE 5-3a Average Waiting 

Times for Each Day of Week for 

Each Bridge 

FIGURE 5-3b Comparison of 

Waiting Times at Three 

Bridges for the Past Hour 

FIGURE 5-3c Waiting Times 

Sharing History by the registered 

user himself/herself 

Figure 5-3 Three Ways to Utilize Historical Waiting Time 

Mining and analyzing historical border crossing waiting time data in a proper 

manner can provide additional insight to travelers. In TBBW, three types of graphs and 

charts are created based on an underlying historical waiting time database.  
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As can be seen in Figure 5-3a, for each bridge, the average waiting times for each 

day of week are calculated and shown in one chart. This is the long term trend based on 

the historical data of the past month. The TBBW app also allows the users to compare 

the waiting times of the three bridges, based on the historical data of the past one hour, 

as shown in Figure 5-3b. Finally, because users may want to make decisions based on 

their own previous experiences, registered users can view their waiting times as another 

reference as shown in Figure 5-3c.  

5.3.3 Predicting Future Waiting Time Function 

Finally, in addition to current and historical analyses of wait times, the app is 

designed to predict the likely waiting time in the next 15 minutes (this estimate is also 

updated every 5 minutes). Predicting is based on utilizing the stepwise border crossing 

delay prediction model.  

The TBBW interface of the predicted waiting time for passenger vehicles from 

Canada to U.S. through the Peace Bridge is shown in Figure 5-4.  



183 

 

 

Figure 5-4 Predicted Border Crossing Waiting Time 

In order to test the prediction performance of the stepwise delay prediction model, 

the research compared the predicted waiting times with the historical waiting times 

recorded by the border authorities from 7:00 AM to 9:00 PM for each day of the 

whole month of May, 2014. Because the future waiting time is updated every five 

minutes, there should be a total of 5,580 predicted values for the month. However, 

because of several missing data points from the field observations (e.g., when the 

server was down and the official waiting time was recorded as “N/A”), a total of 

3,103 observations were deemed valid for assessing the prediction model’s 

performance. 

Table 5-1 Prediction Performance of the Two-step Delay Prediction Model 

Data Group Number of data points Mean Absolute Difference 

(minutes) 

Whole Dataset  3,103 9.22 

Officially Recorded Waiting 

Time = 0 minutes (denoting 

less than 10 minute delays) 

2,363 9.94 
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Officially Recorded Waiting 

Time >=10 minutes 

 

740 6.95 

 

The mean absolute difference (minutes) between the predicted waiting times and 

the officially recorded waiting times is shown in Table 5-1. As can be seen, the mean 

absolute difference for the whole dataset is 9.22 minutes. After checking the officially 

recorded waiting times, we find that there were a total of 2,363 data points where the 

wait times was recorded as being equal to 0 minutes, and the remaining 740 points had 

delays greater than or equal to 10 minutes.  After discussions with the border crossing 

authorities, it was revealed that their practice was to report any wait time which was 

less than 10 minutes as 0 minutes delay.  Given this, and in order to provide for a true 

evaluation of the predictive model accuracy, the testing dataset was split into two 

groups.  The first group (2,363 data points) had an official reported delay of 0 minutes, 

which meant that the delay could be anywhere between 0 and 10 minutes.  For that 

group, the mean absolute difference between the model’s predictions and the officially 

reported delay times was as high as 9.94 minutes (it should be clear now that that 

absolute error is exaggerated, since the actual delay could have been anywhere between 

0 and 10 minutes). The second group included points where the officially reported wait 

time was greater than or equal to 10 minutes.  For that second group, the mean absolute 

difference was only 6.95 minutes.  
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For a more disaggregate view of the performance of the delay prediction model, the 

predicted waiting times and the historical waiting times for the peak hours 18:00-20:00 

on April 22, 2014 are compared and shown on Figure 5-5.  

 
Figure 5-5 Prediction Performance for the Peak Hours of 18:00-20:00 on April 

22, 2014 

As can be seen in Figure 5-5, the mean absolute difference between the predicted 

waiting times and the observations is about 6.6 minutes. Most of the time, the 

difference is within 10 minutes, except for 19:40 for which the difference is around 20 

minutes. This is most probably the result of the opening of additional inspection 

stations at that time without the model being aware of that (the reader may recall that 

there is currently no easy way for the app to discern the actual number of inspection 

stations open; it is hoped that in the future such information may be obtained from the 

Customs and Border Protection agencies).  Another reason could be that the historical 

waiting time detected by the Bluetooth technology is lagging in time, since the 

Bluetooth technology provides an estimate of the delay at the time a vehicle had joined 
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the queue some time prior to the reporting time (that time is actually equal to the time it 

took the vehicle to exit the system). 

5.4 Comparison with Other Border Crossing Apps 

A detailed comparison was conducted to demonstrate the innovative features of the 

TBBW app.  A few observations can be made based on Table 5-2 below. First, 

although all other border crossing apps provide the waiting time for all border entries 

from Mexico to U.S. and from Canada to U.S., none of them provide the waiting time 

for the travelers leaving the U.S. through those borders. This is most probably because 

those apps all depend upon the data downloaded from the same U.S. Customs and 

Border Protection website that only provides the waiting time for travelers coming into 

the U.S. (U.S. Customs and Border Protection, 2014). In contrast, TBBW provides the 

waiting time for both directions. It also would be a simple extension to expand TBBW 

to include all the Canada-US and Mexico-US borders from that website. 

Table 5-2 Comparison of TBBW with Other Border Crossing Apps 

App 

name 

Border Location 

 

Bi-direction Update 

Interval 

Waiting Time Provided or 

Not 

Login 

System 

 Crowd 

Sourcing  

From To Current Historical Future Manual GPS 

TBBW Toronto  Buffalo Yes 5 min Yes Yes Yes Yes Yes Yes 

Buffalo Toronto 

Best 

Time to 

Cross 

Border 

Mexico US No 5 min Yes Yes No No Yes No 

Canada US 

Border 

Wait 

Times 

Mexico US No N/A Yes 

 

No No No No No 

Canada US 

Border Mexico US No N/A Yes No No No No No 
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Times Canada US 

Border 

Info 

Mexico US No N/A Yes No No No No No 

Canada US 

Border 

Check 

Mexico US No N/A Yes No No No No No 

Canada US 

Second, all the apps provide the current waiting time downloaded from the official 

authorities, but only the “Best Time to Cross Border” app and our own app provide 

“crowd sourcing” based waiting time. The difference between TBBW and the “Best 

Time to Cross Border” app, however, is that TBBW also provides one more option, that 

is, the ability to share the waiting time automatically based on GPS location tracking, in 

addition to the ability to manually input waiting time data.  The fact that TBBW can 

automatically calculate and report wait time is a huge advantage over the need for users 

to manually input the wait time themselves.  

Third, only the “Best Time to Cross Border” and TBBW utilize historical data.  

The “Best Time to Cross Border” app can produce a seven day comparison graph that 

compares the average waiting time for each day of the week, and the individual day 

graph that shows the maximum, minimum and average waiting time at each hour for 

each day of the week.  In addition to those functionalities provided by the “Best Time 

to Cross Border” app, TBBW offers an additional feature of comparing the waiting 

times at the three bridges for the past hour, and can also show the sharing history for 

registered users.   

Fourth, TBBW is the only app that has registration and login functionalities. While 

unregistered users can still enjoy all the functions of this app, the ability to share 

waiting time with others is restricted to registered users.  The registration and login 
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function is deemed useful for a number of reasons. First, it can decrease the risk that 

some people share inaccurate waiting time intentionally. Second, through registration, 

users can receive the latest notification about border crossing traffic conditions. Lastly, 

as mentioned previously, the sharing history of registered users can be recorded in the 

database, which can help them make decisions based on their own experiences.  

Finally, TBBW is the only one that can provide future waiting times. This is 

perhaps the most significant advantage of TBBW, in contrast to other border crossing 

apps that simply download and list the waiting times to the users. As shown in the 

previous Chapter, the stepwise border crossing delay prediction model, which is the 

engine behind this function, has been tested and has a promising performance. 

5.5 Risks and Challenges 

This Chapter will summarize the risks and challenges encountered while 

developing the app.  Some of those challenges have been addressed, while others are 

left for future work.  

5.5.1 The Need for More Data 

A critical piece of information for wait time prediction which is missing at this 

point is the number of open lanes or inspection booths.  Although the delay prediction 

model can estimate the number of open lanes, it would be better and more accurate if 

the real value were to be provided by the U.S. Customs and Border Protection agencies. 
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The authors plan to work with multiple agencies to explore methods for acquiring such 

data in the future. 

5.5.2 Crowd Sourcing 

As with any contribution-based crowd sourcing information system, a risk exists of 

low motivation to participate and of abuse (Steinfeld et al., 2011). To overcome this 

problem for TBBW, one can design a set of reward and penalty rules on the basis of the 

registration and login function. For example, when users share their border crossing 

waiting time with others, they can get some virtual points, and every period of time the 

user with the highest rank may be rewarded. Abuse can also be prevented through 

penalties. For example, users who intentionally share wrong border crossing waiting 

times can be identified and filtered by setting a threshold for the difference between the 

value provided by the user and a “best” estimate based on a combination of the 

officially reported waiting time and the average waiting time from other users.  Users 

who abuse the system may also be restricted from sharing information.   

5.5.3 GPS Location  

Some privacy concerns may arise regarding the ability to share waiting time in an 

automatic fashion through the GPS location sharing function.  To address this, the 

TBBW app was designed so that it does not store any of the users’ GPS locations data; 

these data are only used to calculate the distances of the travelers from the borders and 

their speed, so an approximate waiting time can be estimated. 
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5.6 Conclusions 

This Chapter introduced an android app TBBW which combines sophisticated 

transportation models with emerging mobile computing technologies to solve the wait 

time border crossing problem.  The result is an app which can provide: (1) current 

border waiting time based on either officially reported data or user-shared waiting time 

based on crowd sourcing (manually input or automatically shared by GPS); (2) 

historical analysis of waiting time to further help users decide the “best” border 

crossing bridge; and (3) future or predicted border waiting time for the next 15 minutes. 

The performance of the prediction model was assessed by comparing its predictions to 

those reported by the authorities for month of May, 2014.  The comparison 

demonstrated that the predictions are quite accurate, with a mean absolute difference of 

only 6. 95 minutes for delays greater than or equal to 10 minutes.   
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CHAPTER 6 DATA MINING AND COMPLEX NETWORKS 

ALGORITHMS FOR TRAFFIC ACCIDENT ANALYSIS 

This Chapter starts to introduce the work on transportation accident data analysis, 

following by the Chapter 7 and Chapter 8. As mentioned in Chapter 1.5, this study is 

another integration of data “depth” decreasing (dataset clustering) and model 

development besides the dataset grouping before applying the traffic prediction 

models. Chapter 6.1 introduces the dataset clustering method called modularity-based 

community detection, and the data mining algorithm-the association rules learning for 

traffic accident hotspots and clearance time analysis. After that, the dataset in this study 

is introduced and processed in Chapter 6.2. The detailed clustering results and the 

analysis of the association rules for hotspots and clearance time are recorded in Chapter 

6.3. Finally, Chapter 6.4 discusses the conclusions.  

6.1 Methodology  

6.1.1 Dataset Clustering 

Recently, complex network analysis methods have been intensively used to 

understand the features of complex systems such as biological, social, technological 

and information networks. In the analysis, communities, also called clusters or modules, 

denote groups of system components that probably share common properties and/or 

play similar roles in graphs (Fortunato, 2010). For example, for a Facebook social 

network, communities represent people who share common interests, and therefore 
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exploiting the affiliations of users to these communities provides an effective way to 

provide them with targeted recommendations and advertisements (Ferrara, 2012).  For 

these methods to work, however, the problem needs to be formulated in the form of a 

network graph.   

The modularity optimization method is one of the most popular methods used for 

community detection in graph and network analysis (Fortunato, 2010). Its premise is 

that the network is divided the best when the modularity (i.e., the degree to which a 

system's components may be divided) is maximized.  Due to the generality of the 

method, the concept of modularity optimization can be applied to traffic accident 

clustering, by representing each accident record as one node in the network (analogous 

to a person in a social network). 

Suppose the accident dataset contains 𝑁 records, each of which contains 

information about a set of variables 𝐴 = {𝑐1, 𝑐2, … 𝑐𝑚, 𝑎1, 𝑎2, … 𝑎𝑛} .  We divide those 

variables intro two groups: (1) the 𝑐𝑙 variables,  1 ≤ 𝑙 ≤ 𝑚, which represents the 

causative factors behind the accident such as time of day, weather conditions, road 

geometric features (e.g. number of lanes), etc.; and (2) the accident attributes, 𝑎𝑘, 

1 ≤ 𝑘 ≤ 𝑛, which represents the specific characteristics of a crash such as associated 

injuries, location, incident clearance time, etc..   

6.1.1.1 Modularity-based Community Detection 

This study used the community detection algorithm, for the first time, to cluster the 

data and reduce heterogeneity.  The first step was to represent the data in the form of 
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the network by treating each accident record as one vertex in the network (similar to a 

friend in a Facebook network). Then, the problem becomes to find out how these 

vertices are connected in the network. Because in this study the objective is to find out 

how causative factors contribute to the outcome (i.e. the accident characteristics), the 

grouping is based on the causative factors (i.e. the cl variables).  

According to the algorithm, two vertices (i.e. two accidents) 𝑖 and 𝑗, 1 ≤ 𝑖, 𝑗 ≤

𝑁, 𝑖 ≠ 𝑗 will be connected if the following condition is satisfied: 

∑ 𝑒𝑙 ≥ 𝑒𝑡ℎ1≤𝑙≤𝑚 ,                 (6-1) 

where, 𝑒𝑙 = 1, if the values of the factor 𝑐𝑙 of 𝑖 and 𝑗 are the same, otherwise 𝑒𝑙 = 0, 

and 𝑒𝑡ℎ is the similarity threshold defined by the user (i.e. this counts how many 

attributes are similar). If the two vertices 𝑖 and 𝑗 are connected, an undirected edge is 

drawn between them, and the weight of the edge can be calculated as: 

𝑊𝑖𝑗 =
∑ 𝑒𝑙1≤𝑙≤𝑚

𝑚
,                     (6-2) 

 Following the network formation, the community detection algorithm is applied to 

divide it into clusters so that each vertex belongs to only one cluster. The most popular 

quality function of a partition is the modularity of Newman and Girvan (2004), which 

can be calculated as following: 

𝑄 =
1

2𝑇
∑ [𝑊𝑖𝑗 −

𝑓𝑖𝑓𝑗

2𝑇
]𝛿(𝑜𝑖 ,𝑖,𝑗 𝑜𝑗),              (6-3) 

where,  

𝑊𝑖𝑗 represents the weight of the edge between vertex 𝑖 and 𝑗;  

𝑓𝑖 = ∑ 𝑊𝑖𝑗𝑗  is the summation of the weights for the edges attached to vertex 𝑖; 

𝑜𝑖 is the index of community or cluster vertex 𝑖 is assigned to in a given iteration,  
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and 𝛿(𝑜𝑖 , 𝑜𝑗) = 1, if 𝑜𝑖 = 𝑜𝑗, otherwise 𝛿(𝑜𝑖 , 𝑜𝑗) = 0;  

and 𝑇 =
1

2
∑ 𝑊𝑖𝑗𝑖,𝑗 .  

As defined above, the modularity basically reflects the concentration of vertices 

within communities compared with random distribution of edges between all vertices 

regardless of communities. A positive modularity means that the weights of the edges 

within the communities exceed the weights expected on the basis of chance, and this is 

the main motivation behind maximizing modularity. However, because it is too 

difficult to enumerate and test all the ways to partition a graph, algorithms such as the 

one proposed by Blondel et al. (2008) for the fast unfolding of the communities are 

needed.  Blondel et al.’s algorithm was the one utilized in this study (Blondel et al., 

2008; Arenas et al., 2007).  

 As compared to traditional clustering techniques such as LCC and K-means 

clustering mentioned in Chapter 2.2.2, the community identification algorithm offers 

several advantages.  First, the network transformation and the modularity optimization 

method are intuitive and easy to implement. Second, when building the network, 

because the causative factors are compared one by one and because there is no distance 

measure involved, as is the case with other techniques such as K-means, there is no 

need to normalize the data (which often introduces imprecision). Third, unlike the LCC 

method, the modularity optimization algorithm does not rely on the assumption of the 

independence among variables to decrease the complexity of computation; instead, it is 

extremely fast since the number of possible communities decreases drastically after a 

few iterations (Blondel et al., 2008). Fourth, the method provides a modularity based 
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quality function, which can be used to measure the effect of clustering. Finally, the 

method, even for large dimensional datasets, requires the specification/calibration of 

only one parameter, the threshold 𝑒𝑡ℎ, as opposed to classical statistical analysis 

methods where the number of parameters may exponentially increase as the number of 

variables increases (Chen and Jovanis, 2000). 

6.1.2 Hotspots and Clearance Time Analysis 

6.1.2.1 Association Rule Learning  

The concepts of association rules learning were firstly introduced by Agrawal et al. 

(1993). Given a traffic accident related variable set 𝐴 = {𝑐1, 𝑐2, … 𝑐𝑚, 𝑎1, 𝑎2, … 𝑎𝑛}, it 

can be transformed to a set of binary attributes called items 

𝐼 = {𝐼1𝑐, 𝐼2𝑐, … 𝐼𝐿𝑐, 𝐼1𝑎, 𝐼2𝑎, … 𝐼𝐾𝑎}, where 𝐼𝑙𝑐, 1 ≤ 𝑙 ≤ 𝐿 are the binary attributes 

associated with the causative factors, and 𝐼𝑘𝑎, 1 ≤ 𝑘 ≤ 𝐾 are the binary variables 

related to accident attributes (i.e. the outcome). For example, the factor “Season” can be 

represented by four binary attributes, i.e., “spring”, “summer”, “autumn”, and “winter”. 

Each of the 𝑁 accident records, referred to here as transactions T, has a unique 

transaction ID and is a subset of 𝐼. An association rule is an implication of the form, 

X Y , where 𝑋 and 𝑌 are sets of items in 𝐼, X I , Y I  and X Y  .The 

sets of items X and Y  are called the body and head of the rules, respectively. 

 At a very high level, generating the association rules involves two basic steps. The 

first is to generate the frequent item sets in the data. 𝑋 is called a frequent item set 
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when its support, which refers to the frequency at which 𝑋 appeared in the 𝑁 

transactions, is equal to or greater than the minimum support defined by user. 

𝑠𝑢𝑝𝑝{𝑋}

𝑁
≥ 𝜎,                      (6-4) 

where, 

𝑠𝑢𝑝𝑝{𝑋} is the number of transactions in 𝑁 that contains item set 𝑋, and 𝜎 is the 

minimum support.  

 Now suppose item sets 𝑋 and 𝑋 ∪ 𝑌 are frequent item sets, the second step is to 

calculate the confidence of X Y .  This is based on the ratio of the number of 

transactions that contains 𝑋 ∪ 𝑌 to transactions that only contains 𝑋. If the confidence 

is equal to or higher than the user-defined minimum confidence, X Y is an 

association rule. 

{ }
( )

{ }

supp X Y
conf X Y

supp X
   ,                 (6-5) 

where, 

𝜀 is the minimum confidence.  Methods are then available to distinguish between the 

trivial and non-trivial rules (Geurts et al., 2003). 

6.2 Dataset Processing 

The dataset used in this study included 999 traffic accidents observed at I-190 from 

01/01/2008 to 10/31/2012. I-190 runs 28.34 miles (45.61 km) from its interChapter 

with I-90 near Buffalo, NY up north to Lewiston, NY via Niagara Falls. I-190 plays a 

critical role in the Buffalo-Niagara transportation network, especially in terms of 
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connecting Western New York to Southern Ontario, Canada. Incidents and traffic flow 

are monitored by the Niagara International Transportation Technology Coalition 

(NITTEC), which serves as the region’s Traffic Operations Center (TOC). Incident 

details are recorded every day through detailed incident log forms, which formed the 

basis for compiling the dataset used in this study. Table 6-1 lists both the causative 

factors and accident attributes variables that were available in NITTEC’s incident logs, 

and were thought to be useful for analysis. After initial screening of the data, a total of 

15 variables were selected (nine causative factors and six accident attributes) as shown 

in Table 6-1.  The variables that were excluded did not exhibit enough variation over 

the dataset compiled (i.e., more than 95% of the records had the same value for the 

variable). 
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Table 6-1 Traffic Accident Variables in the I-190 Data 

Variables Values Included 

Causative Factors  

Season Spring (March, April, May); Summer (June, July, August); 

Autumn (September, October, November); Winter (December, 

January, February) 

Yes 

Weekday Yes (Monday 2 AM-Friday 9 PM, except holidays); no  Yes 

Hour of the Day morning (7 AM-9 AM); early afternoon (10 AM-12 Noon); 

afternoon (1 PM-3 PM); evening rush (4 PM-6 PM); evening (7 

PM-9 PM); night (10 PM-6 AM) 

Yes 

Wind Speed 0 mph (miles per hour); 10 mph; 20 mph; 30 mph Yes 

Weather 

Conditions 

clear; rain; snow Yes 

Direction  North; South Yes 

Lane Number on 

Main Road 

1; 2; 3 Yes 

Lane Number on 

Ramp 

0 (away from exit); 1; 2; Yes 

Ramp Type on ramp; off ramp; highway to highway on ramp; highway to 

highway off ramp;  

Yes 

Vehicle Type Car; Truck/Tractor Trailer; Motorcycle No 

Accident Attributes:  

Location – Exit 

Number 

Exit 1; …; Exit 25; Highway Yes 

Location relative to  

Road 

Configuration 

Before the exit; at the exit; beyond the exit; highway; ramp; 

bridge; before the bridge; after the bridge 

Yes 

Number of 

Vehicles Involved 

1; 2; more than 2 Yes 

Clearance Time 0-15minutes; 16-30 minutes; 31-45 minutes; 46-60 minutes; 61-75 

minutes; 76-90 minutes; more than 90 minutes 

Yes 

Blocked Lane 

Index 

left lane at main road; middle lane at main road; right lane at main 

road; all lanes at main road; left lane at ramp; right lane at ramp; 

all lanes at ramp; 

Yes 

Blocked Lane 

Number 

one lane at main road; two lanes at main road; three lanes at main 

road; one lane at ramp; two lanes at ramp  

Yes 

Injury Yes; No No 

Roll Over Yes; No No 

Congestion Yes; No No 
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6.3 Results 

6.3.1 Community Detection 

The only parameter that needed to be calibrated was the similarity threshold 𝑒𝑡ℎ, 

and given that the number of causative variables used for the comparison was 9 

(𝑚 = 9),  the range for that parameter was from 1 to 9.  Furthermore, because 𝑒𝑡ℎ 

determines the similarity criterion between two accident records, at least more than half 

of the variables should have the same values.  This further narrowed the range to 

between 5 and 8 (it also does not make sense to require all 9 parameters to be similar).  

Given this, we experimented with four possible values for eth: 5, 6, 7, and 8. This 

process was conducted with the help of the open visualization software Gephi (Bastian 

et al., 2014), and the resulting network characteristics are shown in Table 6-2. 

Table 6-2 Network Clusters With Respect to the Similarity Threshold 

Resulting Network Characteristics 𝑒𝑡ℎ = 5 𝑒𝑡ℎ = 6 𝑒𝑡ℎ = 7 𝑒𝑡ℎ = 8 

Number of vertices 999 999 997 930 

Number of edges 180,480 83,945 27,552 5,705 

Number of clusters founded  3 5 8 33 

Maximum modularity 0.213 0.296 0.47 0.647 

 

 As can be seen from Table 6-2, with the increase in the value of the similarity 

threshold 𝑒𝑡ℎ, the number of edges in the network decreases (since it becomes harder to 

find similar vertices to connect), and the number of clusters as well as the associated 

maximum modularity of the network increase. Since modularity represents the 

concentration of nodes within communities in comparison to the random distribution of 
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edges among nodes regardless of communities, lower 𝑒𝑡ℎ makes the network more 

randomly connected. Therefore, it is better to choose larger 𝑒𝑡ℎ. However, when 

𝑒𝑡ℎ = 8, although the maximum modularity is 0.647, the number of clusters is as high 

as 33. Besides, because connection requirements are more demanding, only 930 out of 

the 999 vertices are connected in that network (the remaining accidents were not found 

to be similar to any other accident which defies the purpose behind clustering). Given 

this, 7 was selected as the value for 𝑒𝑡ℎ, resulting in a total of 8 clusters. Figure 6-1 

shows the resulting traffic accident network and the clustering results.  

 

Figure 6-1 Resulting traffic accidents network and community detection 

(𝒆𝒕𝒉 = 𝟕) 

 To identify the attributes of each cluster (in terms of describing a given accident 

type or condition), we followed the method used by Depaire et al. (2008) where the 

distributions of the variables in each cluster are analyzed to identify the dominant or 

skewed features (the cluster could then be named based on these features. For example, 
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if 100% of traffic accidents in one cluster happen at non-weekdays, while the other 

clusters have low probabilities for that feature, we can refer to that cluster as the 

non-weekday accidents cluster). Table 6-3 shows the probabilities for each feature 

within the 8 clusters, where the dominant or skewed feature probabilities are underlined 

and highlighted.  

Table 6-3 Causative Factors and Their Probabilities in Each Cluster (%) 

Variable: Value 

(Environmental 

Feature) 

Cluster 

1 2 3 4 5 6 7 8 

Season: Winter 14 50 21 34 16 45 29 94 

Weekday: Yes 99 95 0 66 54 73 73 70 

Weekday: No 1 5 100 34 46 27 27 30 

Weather 

Conditions: Clear 

80 70 84 65 85 44 73 0 

Weather 

Conditions: Snow 

1 16 5 24 0 31 14 100 

Direction: South 99 0 60 55 100 88 0 98 

Direction: North 0 100 40 45 0 12 100 0 

Lane Number at 

Main Road: 3 

99 98 99 61 0 2 0 74 

Lane Number on 

Main Road: 2 

0 0 0 37 100 98 99 26 

Lane Number on 

Ramp: 1 

99 81 90 0 100 15 72 100 

Lane Number on 

Ramp: 2 

1 19 10 0 0 85 28 0 

Lane Number on 

Ramp: 0 

0 0 0 100 0 0 0 0 

   

 The probabilities in Table 6-3 can clearly be used to characterize each cluster.  For 

example, the first three clusters are all most likely to occur on the highway Chapters 

with three lanes at main road (with the occurring probabilities of 99%, 98% and 99%, 
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respectively). Moreover, Cluster 1 and 2 can be claimed as weekday accidents in the 

southbound and northbound directions of I-190, respectively, while Cluster 3 includes 

non-weekday accidents only.  All the Cluster 4 accidents (100%) occurred on highway 

Chapters away from exits, where the lane number on the ramp is 0. Clusters 5, 6 and 7 

all involve accidents on roads with only two lanes.  However, Cluster 5 seems to have 

involved accidents close to a ramp with one lane, whereas for Cluster 6, the ramp had 

two lanes.  Moreover, Clusters 5 and 6 seem to involve accidents in the southbound 

direction, whereas accident s in Cluster 7 occurred in the northbound direction.  

Finally, Cluster 8 appears to involve accidents happening during snowy conditions 

(100%).  Based on the results, the eight clusters can be described as shown in Table 

6-4. 
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Table 6-4 Traffic Accident Types 

Cluster Traffic accident types Size 

(%) 

1 Traffic accidents on southbound Chapters with three lanes at main road on 

weekdays 

17 

2 Traffic accidents on northbound Chapters with three lanes at main road on 

weekdays 

10 

3 Traffic accidents on Chapters with three lanes at main road on non-weekdays 11 

4 Traffic accidents on Chapters away from exits 13 

5 Traffic accidents on southbound Chapters with two lanes at main road and 1 lane 

at ramp 

9 

6 Traffic accidents on southbound Chapters with two lanes at main road and two 

lanes at ramp  

13 

7 Traffic accidents on northbound Chapters with two lanes at main road  22 

8 Traffic accidents on southbound Chapters with one lane at ramp in snowy days  5 

 

6.3.2 Association Rule Analysis to Identify Hotspots 

In this research, for the association rule analysis, a “hotspot” is defined as the place 

where the ratio of the number of accidents at that particular spot, to the number of 

accidents on the whole transportation system under consideration is greater than the 

minimum support 𝜎, under the conditions defined by the body of an association rule.  

In order to identify accident hotspots and the characteristics of accidents that occur 

there, the association rule analysis algorithm was then run using the 9 causative factors 

as candidate variable for the body of each rule, and using the “Location-Exit Number” 

accident attribute as the head of each rule.  The minimum support parameter was set to 

0.05, and the minimum confidence to 0.50.  The results are shown in Table 6-5 which 

lists the rules that had the highest confidence for a given location, along with a few 
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other rules that provide some insight for the study.  As can be seen, the analysis was 

performed twice: first, on the whole dataset without clustering, and then on each cluster.  

The dominant or skewed features for each cluster, as determined from the previous 

analysis, are shown in bold.  Finally, the confidence level values shown in parentheses 

are those that result when the value of one causative factor is perturbed (e.g. for rule #5 

in cluster 2, the confidence drops from 1.00 to 0.38, when the environmental condition 

changes from rain to clear). 

Table 6-5 Rules on Hotspots from the Whole Dataset and the Clusters 

Datasets ID Body Head Confidence 

Whole 

Dataset 

1 [direction: north]+[lane number at main road: 

2]+[ramp type: off ramp] 

[Exit 9: Peace 

Bridge] 

0.67 

2 [lane number at main road: 2]+[lane number 

at ramp:1]+[ramp type: highway to highway 

off ramp] 

[Exit 11: route 

198] 

1 

3 [lane number at main road: 2]+[lane number 

at ramp: 2]+[ramp type: highway to highway 

off ramp] 

[Exit 16: I-290] 0.60 

Cluster1 

 

4 [Weekdays: yes]+[weather condition: 

clear]+[direction: south]+[lane number at 

main road: 3]+[lane number at ramp: 

1]+[ramp type: highway to highway off 

ramp]  

[Exit 7 Skyway] 1 

Cluster2 

 

5 [weekdays: yes]+[hour: 4 PM-6 

PM]+[weather condition: rain 

(clear)]+[direction: north]+[lane number 

at main road: 3]+[lane number at ramp: 1] 

[Exit 8: Niagara 

Street] 

1 (0.38) 

6 ([season: Winter]+)[weekdays: yes]+ 

[direction: north]+[lane number at main 

road: 3]+[lane number at ramp: 2]+[ramp 

type: off ramp] 

[Exit 6: Elm/Oak 

Street] 

 

0.90 (1) 

Cluster3 7 [weekdays: no]+[direction: north]+[lane 

number at main road: 3]+[lane number at 

ramp: 2]+[ramp type: off ramp]  

[Exit 6: Elm/Oak 

Street] 

0.89 

Cluster4 8 [season: winter]+[weekdays: yes]+[lane 

number at main road: 2]+[lane number at 

Milepost 10-12 0.54 
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ramp: 0] 

Cluster5 9 [direction: south]+[lane number at main 

road: 2]+[lane number at ramp: 1]+[ramp 

type: highway to highway off ramp]  

[Exit 11: Route 

198] 

1 

10 ([season: winter]+)[hour: 7 AM-9 

AM]+[direction: south]+[lane number at 

main road: 2]+[lane number at ramp: 

1]+[ramp type: off ramp] 

[Exit 17: South 

Grand Island 

Bridge] 

0.54(0.90) 

Cluster6 11 [weekdays: yes]+[hour: 4 PM-6 

PM]+[direction: south]+[lane number at 

main road: 2]+[lane number at ramp: 

2]+[ramp type: highway to highway off 

ramp] 

[Exit 16: I-290] 0.63 

12 [weekdays: yes]+[hour: 7 AM-9 

AM]+[direction: north]+[lane number at 

main road: 2]+[lane number at ramp: 

2]+[ramp type: highway to highway off 

ramp] 

[Exit 16: I-290] 1 

Cluster7 13 [weekdays: yes]+[hour: 4 PM-6 

PM]+[direction: north]+[lane number at 

main road: 2]+[lane number at ramp: 

2]+[ramp type: off ramp]  

[Exit 9: Peace 

Bridge] 

1 

14 [hour: 4 PM-6 PM]+[weather condition: 

clear]+[direction: north]+[lane number at 

main road: 2]+[lane number at ramp: 

2]+[ramp type: off ramp] 

[Exit 9: Peace 

Bridge]+[road 

structure: beyond 

the exit] 

0.52 

15 [direction: north]+[lane number at main 

road: 2]+[lane number at ramp: 1]+[ramp 

type: highway to highway off ramp]  

[Exit 11: Route 

198] 

1 

Cluster8 16 [weekdays: yes]+[weather condition: 

snow]+[direction: south]+[lane number at 

main road: 3]+[lane number at ramp: 

1]+[ramp type: highway to highway off 

ramp]  

[Exit 7: Skyway] 1 

17 [weather condition: snow]+[direction: 

south]+[lane number at main road: 3]+[lane 

number at ramp: 1]+[ramp type: highway 

to highway off ramp]  

[Exit 7: 

Skyway]+[road 

structure: before 

the exit] 

0.6 
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18 [weekdays: yes]+[hour: 10 PM-6 

AM]+([wind speed: 10])+[weather 

condition: snow]+[direction: south]+[lane 

number at main road: 2]+[lane number at 

ramp: 1]+[ramp type: off ramp] 

[Exit 9: Peace 

Bridge] 

0.5 (0.75) 

 From the analysis on the whole dataset, three association rules with the highest 

confidence, for the corresponding three hotspots (Exits 9, 11 and 16), are selected. One 

common feature in body parts of the three rules is there are two lanes at main road, and 

two out of the three rules contain highway to highway off ramp feature, which appear to 

be problematic areas with a high accident frequency (this is quite intuitive because of 

the limitation of capacity and the excessive weaving that takes place there).  As can be 

seen, the analysis on the non-clustered dataset yielded limited insight about the 

hotspots.   

 When the analysis was performed on the clusters, several more rules and causative 

factors are revealed.  Specifically, 15 association rules are revealed, along with eight 

hotspots. For the hotspots, only one is located away from exits, and the rest are all close 

to exits. Furthermore, these seven exits identified are spatially correlated with one 

another, and fall very neatly in two definite geographic clusters; the first is [Exit 6, Exit 

7, Exit 8, Exit 9, and Exit 11] – note that there is no Exit 10 on I -190; and the second is 

[Exit 16 and Exit 17]. Through comparing and analyzing the rules describing the same 

hotspot, a few additional insights can be gained as below: 

 Firstly, for Exit 6, when comparing Rules 6 and Rule 7, it becomes clear that the 

problem is consistently in the north direction no matter if it is a weekday or a 

non-weekday. Secondly, for Exit 7, when comparing Rules 4 and Rule 16, we can see 
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that Exit 7 is always a hotspot with (confidence level = 1) regardless of the weather 

condition (both clear and snow). Rule 17 shows that the segment before Exit 7 is a 

hotspot in south direction when it snows. Thirdly, for Exit 9, Rule 13 provides more 

specific conditions than Rule 1. According to the rule, Exit 9 is a hotspot with 

confidence level 1 in the north direction for the peak hour 4 PM-6 PM on weekdays. 

Rule 14 shows that if it is the peak hour 4 PM-6 PM with clear weather, the segment 

beyond Exit 9 in north direction is also a hotspot. And Rule 18 shows that, in the south 

direction, Exit 9 may also be a hotspot when it is 10 PM-6 AM on weekdays with snow. 

Fourthly, for Exit 11, by checking Rule 9 and Rule 15, Exit 11 is always a hotspot with 

confidence 1 in both the north and southbound direction. This is consistent with the 

conclusion of Rule 2 on the whole dataset. Finally, for cluster 4 describing traffic 

accidents on highways away from exits, only one hotspot is found with a relatively low 

confidence 0.54, although it contains 13% of the total records. This seems to indicate 

that accidents along I-190 tend to happen close to exits more often.   

 Besides insight regarding hotspots, the associative rules shed additional light on 

the conditions under which accidents happen at those locations.  This additional 

insight is gained by considering the role of the variables in the “body” parts of the rules.  

A few examples are described below. 

 Firstly, the variables “weekdays” and “hour of the day” appear to affect whether a 

location becomes a hotspot. Nine out of the 15 association rules generated from the 

clusters contain “[weekdays: yes]” in the body parts, and five of the nine rules contain 

“[hour: 7 AM-9 AM]” or [hour: 4 PM-6 PM].” This reveals the effect of weekday peak 
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hours on traffic accidents. Another convincing example comes from Rule 11 and Rule 

12. Exit 16-I-290 is a hotspot when it is 7 AM-9 AM in the morning towards north 

direction, and Exit 16 is also a hotspot when it is 4 PM-6 PM in the afternoon towards 

south direction. 

 Secondly, the feature “[season: winter]” can increase the confidence in claiming a 

location as a hotspot. For example, Rule 6 in Cluster 2 shows that if it is in winter, the 

confidence for Exit 6 to be a hotspot on weekdays will increase from 0.90 to 1. 

Similarly, Rule 10 in Cluster 5 shows that if it is 7 AM-9 AM on someday in winter, the 

confidence in claiming Exit 17 as a hotspot witness a large increase from 0.54 to 0.90. 

Besides that, the variable “wind speed” and “weather condition” are found to affect the 

confidence for some locations. Rule 18 shows that Exit 9-Peace Bridge has a higher risk 

0.75 than the previous 0.50 if the wind speed is 10 miles per hour. Rule 5 shows that 

with the other features in the body part being the same, the “[weather condition: rain],” 

rather than “[weather condition: clear],” tend to make Exit 8 a hotspot with confidence 

level 1.  

6.3.3 Association Rule Analysis to Identify Factors Affecting Incident 

Clearance Time  

The association rule analysis was then repeated, this time using the accident 

attribute “incident clearance time” as the “head of the rules” to gain some insight into 

the factors affecting incident clearance time.  For clearance time analysis, the 

minimum support is set as 0.05, and the minimum confidence is lowered to 0.30 
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(experiments showed this set of rules to have lower confidence levels compared to the 

hotspot analysis).  The results are shown in Table 6-6.  

Table 6-6 Rules on Clearance Time from the Whole Dataset and the Clusters 

Datasets ID Body Head Confidence 

Whole 

Dataset 

1 [weekdays: yes]+[hour: 4 PM-6 PM] [Clearance time: 

31-45 minutes] 

0.32 

2 [season: winter]+[lane number at main road: 3] [Clearance time: 

16-30 minutes] 

0.34 

Cluster1 

 

3 [weekdays: yes]+[hour: 4 PM-6 PM]+[wind 

speed: 10]+[direction: south]+[lane number 

at main road: 3] 

[Clearance time: 

31-45 minutes] 

0.35  

Cluster2 

  

4 [weekdays: yes]+[hour: 4 PM-6 PM]+[weather 

condition: clear]+[direction: north]+[lane 

number at main road: 3]+[lane number at 

ramp: 1] +[ramp type: off ramp]+[road 

structure: at the exit] 

[Clearance time: 

31-45 minutes] 

0.58 

5 [weekdays: yes]+[weather condition: 

clear]+[Exit 8: Niagara Street]+[direction: 

north]+[lane number at main road: 3]  

[Clearance time: 

31-45 minutes] 

0.55 

6 [season: winter]+[weekdays: yes]+[weather 

condition: clear]+[direction: north]+[lane 

number at main road: 3]+[lane number at 

ramp: 1] 

[Clearance time: 

16-30 minutes] 

0.30 

Cluster3 7 [season: autumn]+[weekdays: no]+[direction: 

north]+[lane number at main road: 3]+[lane 

number at ramp: 1]+[ramp type: off ramp] 

[Clearance time: 

46-60 minutes] 

0.60 

8 [weekdays: no]+[Exit 8: Niagara Street]+ [lane 

number at main road: 3]+[lane number at 

ramp: 1]+[ramp type: off ramp] 

[Clearance time: 

46-60 minutes]  

0.33  

Cluster4 9 [season: autumn]+[weekdays: yes]+[lane 

number at main road: 3]+[lane number at 

ramp: 0] 

[Clearance time: 

46-60 minutes] 

0.50 

10 [season: winter]+[direction: south]+[lane 

number at main road: 3]+[lane number at 

ramp: 0] 

[Clearance time: 

16-30 minutes] 

0.47 

11 [weekdays: no]+[direction: south]+[lane 

number at main road: 3]+[lane number at 

ramp: 0] 

[Clearance time: 

31-45minutes] 

0.37 

12 [weekdays: yes]+[direction: south]+[lane 

number at main road: 3]+[lane number at 

[Clearance time: 

16-30 minutes] 

0.41 
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ramp: 0] 

13 [weekdays: yes]+[direction: north]+[lane 

number at main road: 3]+[lane number at 

ramp: 0] 

[Clearance time: 

31-45minutes] 

0.31 

Cluster5 14 [weekdays: no]+[direction: south]+[lane 

number at main road: 2]+[lane number at 

ramp: 1]  

[Clearance time: 

16-30 minutes] 

0.31 

15 [weekdays: yes]+[direction: south]+[lane 

number at main road: 2]+[lane number at 

ramp: 1]  

[Clearance time: 

31-45minutes] 

0.32 

16 [weekdays: yes]+ [Exit 9: Peace 

Bridge]+[direction: south]+[lane number at 

main road: 2]+[lane number at ramp: 

1]+[ramp type: off ramp]  

[Clearance time: 

31-45minutes] 

0.60 

Cluster6 17 [Exit 16: I-290]+[direction: south]+[lane 

number at main road: 2]+[lane number at 

ramp: 2]+[ramp type: highway to highway off 

ramp]+[road structure: at the exit]  

[Clearance time: 

31-45minutes] 

0.35 

18 [hour: 7 AM-9 AM]+[lane number at main 

road: 2]+[lane number at ramp: 2]+[ramp 

type: highway to highway off ramp]  

[Clearance time: 

46-60 minutes] 

0.33 

Cluster7 19 [weekdays: yes]+[hour: 1 PM-3 

PM]+[direction: north]+[lane number at 

main road: 2] 

[Clearance time: 

0-15minutes] 

0.52 

20 [weekdays: yes]+[Exit 9: Peace 

Bridge]+[direction: north]+[lane number at 

main road: 2]  

[Clearance time: 

16-30 minutes] 

0.31 

21 [weekdays: yes]+[hour: 4 PM-6 

PM]+[direction: north]+[lane number at 

main road: 2] 

[Clearance time: 

31-45minutes] 

0.31 

22 [Exit 11: Route 198]+[direction: north]+[lane 

number at main road: 2] 

[Clearance time: 

31-45minutes] 

0.34 

23 [season: winter]+([weather condition: 

snow])+[direction: north]+[lane number at 

main road: 2] 

[Clearance time: 

31-45 minutes] 

0.34 (0.46) 

Cluster8 24 [season: winter]+[weather condition: 

snow]+[direction: south]+[lane number at 

main road: 3]+[lane number at ramp: 1]  

[Clearance time: 

16-30 minutes] 

0.52 

 Recalling in Table 6-1, clearance time is divided into seven intervals, each 15 

minutes long. From Table 6-6, we can see when the analysis was performed for the 
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whole dataset, two rules are shown: Rule 1 is associated with peak-hour 4 PM-6 PM on 

weekdays, and the clearance time of accidents is shown to be 31-45 minutes (with a 

confidence level of 0.32); Rule 2 is for winter, if accidents happen at Chapters with 

three lanes main road, the clearance time tend to be between 16-30 minutes (with 

confidence level of 0.32). As before, when the associate rule analysis is performed on 

the whole dataset, limited insight is gained.   

 For the clusters, 22 rules are selected; four have a clearance time of 46-60 minutes, 

12 have 31-45 minute clearance times, 5 have 16-30 minutes, while the remainder has 

0-16 minutes clearance times. Some of the main observations are summarized below.  

 Firstly, with respect to the “Weekday” variable, its impact on the incident 

clearance time appears to be mixed.  For example, Rule 8 shows that on non-weekdays, 

accidents at Exit 8 have clearance time between 46 and 60 minutes with confidence 

0.33. Also, according to Rule 11 and 12, on the southbound Chapters with 3 lanes on 

the main road, accidents on non-weekdays tend to have a longer clearance time than 

accidents on weekdays. On the other hand, when comparing Rule 14 and 15, we can see 

that with other factors being the same, accidents on non-weekdays are more likely to 

have clearance time of 16-30 minutes, while those on weekdays tend to have longer 

clearance time of 31-45 minutes.  This indicates that there are other factors besides 

whether the accident is on a weekday or not that affects clearance time, but perhaps the 

dataset was not rich enough to reveal such factors. 

 Secondly, the variable “Hour of the Day” may have an impact on the clearance 

time of traffic accidents. Rules 3, 4 and 21, which correspond to a clearance time 31-45 
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minutes, all have the same feature “the peak hours 4 PM-6 PM” in their body parts; 

Rule 18 shows that at peak hours 7 AM-9 AM, accidents on Chapters with two lanes at 

main road and two lanes at highway to highway off ramp have a probability of 0.33 to 

experience 46-60 minutes. And Rule 19 which shows on weekdays at 1 PM-3 PM (i.e. 

off-peak) the clearance time of accidents on Chapters towards north with two lanes at 

main road tends to be short, 0-15 minutes with confidence equal to 0.52.  

 Thirdly, the feature “snow” appears to increase the likelihood of longer clearance 

time.  According to Rule 23, in the winter for Chapters towards north with two lanes at 

main road, the confidence in the clearance time being 36-45 minutes (i.e. on the long 

side) is 0.34. During snowy condition, the confidence increases to 0.46. 

 Finally, the “direction” of the road may also affect the clearance time (because it 

could potentially impact the time needed to get to the incident scene). By comparing 

Rule 12 and Rule 13, we can see that for Chapters with 3 lanes on the main road on 

weekdays, accidents in the north direction has clearance time of 31-45 minutes with 

confidence 0.31, while accidents in the south direction has a probability of 0.41 to have 

clearance time of 16-30 minutes.  Another similar example is for hotspot at Exit 9. 

Based on Rule 16 and Rule 20, on weekdays, the clearance time for accidents at Exit 9 

in the southbound direction may be 31-45 minutes with a confidence level of 0.60, 

which is longer than 16-30 minutes at the same exit in the north direction (confidence of 

0.31). 
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6.4 Conclusions 

In this study, the modularity-optimizing community detection algorithm was used 

first to cluster accident data recorded for I-190 in the Buffalo-Niagara area.  Following 

this, the association rules learning algorithm was used to gain some insight into 

accident hotspots and incident clearance times.  To demonstrate the benefits of 

clustering, the association rule algorithm was applied to both the whole dataset (before 

clustering) and then to the clusters and the results were compared.  The main findings 

are summarized as below:  

(1) The community detection algorithm appears to do an excellent job in clustering the 

data into well-defined clusters;  

(2) Clustering the data first before running the association rule learning algorithm 

appears to be a necessary step that can significantly improve the quality of the 

insight to be gained from the rules extracted.  Specifically, when the 

association rule algorithm was run on the whole dataset in this study, the 

insight gained was very limited compared to that gained from running the 

analysis on the clusters. 

(3) The association rule learning algorithm has the potential to reveal interesting 

insight about the characteristics of accidents, where they tend to occur, and the 

factors that affect incident clearance time.  
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CHAPTER 7 NOVEL VARIABLE SELECTION FOR REAL-TIME 

TRAFFIC ACCIDENT RISK PREDICTION 

The Chapter is an application of the integration of data “width” decreasing and 

model development. It is organized as below.  First, in the Chapter 7.1, we introduce 

the FP tree model and its variable importance score calculation algorithm. In Chapter 

7.2, we describe the traffic accident datasets used for model training and testing.  In 

Chapter 7.3, prior to the risk prediction model development, we describe and compare 

the FP tree and the random forest based variable selection methods in terms of their 

variable importance ranking results. After that, based on the variables selected by the 

FP tree and the random forest methods respectively, two traffic accident risk 

predictions models are discussed and compared in terms of their prediction 

performance, namely the k-NN model and the Bayesian network model.  The Chapter 

ends with a summary of the main conclusions of the work. 

7.1 Methodology 

7.1.1 Variable Selection 

This Chapter discusses the FP-tree algorithm used in this research for explanatory 

variable selection.  The algorithm consists of two steps: variable discretization and 

variable importance score calculation. For the former step, the fuzzy c-means clustering 

method is used to convert a continuous variable to a series of discrete categorical 

variables; for the latter, we propose the “Relative Object Purity Ratio (ROPR)” as an 
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importance score for each explanatory variable. This Chapter will also introduce the 

random forest method that is used as the bench-marking variable selection method.  

Finally, the two methods used for accident risk prediction, namely the k-NN model and 

Bayesian network, are briefly introduced. 

7.1.1.1 Frequent pattern Tree (FP tree) 

The Frequent pattern tree (FP-tree) algorithm was proposed by Han et al. (2004). It 

yields a compact representation of all relevant frequency information in a dataset. A 

brief introduction of the FP-tree algorithm follows. 

Suppose 𝐼 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑚} be a set of items. Let 𝑇𝑁 be a set of transactions or 

records in a database DB, and each transaction Tran  is a set of items, . A 

pattern 𝑋 also contains a set of items, X I . 𝑋 is called a frequent pattern when its 

support, referring to the frequency at which 𝑋 appears in the 𝑇𝑁 transactions, is equal 

to or greater than the minimum support threshold,  . 

 supp X

TN
                     (7-1) 

where, 

 is a threshold value defined by user. 

A FP-tree includes a root labeled as “null”. It also includes a set of item-prefix 

sub-trees as the children of the root. There are two important fields for each node in the 

item-prefix sub-trees: item name and count. Item name tells which item this node 

represents, and count records the number of transactions represented by the portion of 

the path reaching this node. 

Tran I
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The FP-tree can be constructed according to the following sequential steps:  

1. Scan the DB once. Calculate the support of each item, if the item is a frequent 

item as determined by Equation (7-1), put it in the list of frequent items F. Sort F in the 

support-descending order to form the F-List; 

2. Create the root of an FP tree, T, and label it as “null”; 

3. For each transaction in DB, select the frequent items in and sort them 

according to the order of the F-List; 

4. Suppose the sorted list of Tran is [p|P], where p is the most frequent item in this 

transaction and P is the remaining list. Next, run the function insert_tree ([p|P], T). 

The function, insert_tree ([p|P], T), is defined as follows. If T already has a child 

node N, the item name of N is the same as the item name of p, and the N’s count is 

incremented by 1; otherwise, create a new node N with its count initialized as 1, and set 

its parent link to T. If P is nonempty, the function insert_tree (P, N) is run recursively.  

Figure 7-1 shows an example of a FP tree. Suppose there are TN transactions 

[𝑥1, 𝑥2, … , 𝑥𝑇𝑁] in database DB, each transaction contains the values of n explanatory 

variables 𝑉𝑒, 1 ≤ 𝑒 ≤ 𝑛, and one response variable 𝑉𝑟 which, in our case, denotes 

whether an accident occurs or not. The FP tree is then built on the TN transactions with 

𝑛 explanatory variables, among which the continuous variables are first transformed to 

discrete variables by using the Fuzzy C-means clustering method (FCM) as will be 

discussed in Chapter 2.1.2.  

Tran Tran
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Figure 7-1 Frequent pattern (FP) tree. 

As demonstrated in Figure 7-1, there are 𝑄 frequent patterns in the example, and 

each pattern 𝑝𝑞, 1 ≤ 𝑞 ≤ 𝑄, is represented by one branch in the tree. Each branch 

consists of 𝑛 nodes, and each node (node l) is labeled by item name 𝑖𝑙,𝑝 and count 𝑓𝑙,𝑝. 

As discussed before, item name 𝑖𝑙,𝑝 denotes the variable name and its discrete state 

associated with the node and the branch, and count 𝑓𝑙,𝑝 represents the number of 

records reaching the node through the preceding branch. 𝑙 is the node order in a 

frequent pattern, 𝑙 = 1,2, … , 𝑛. The pattern status indicator 𝑝 can take two values: if 

this node is a “shared node” by two or more frequent patterns, 𝑝 = 0; otherwise, 
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𝑝 = 𝑞, and we call it an “exclusive node”. There are 𝑘 exclusive nodes that are marked 

as red for frequent pattern 𝑝1 and 𝑝2 in Figure 7-1.  

7.1.1.1.1 Variable importance calculation  

A novel FP tree based variable importance score calculation method is proposed to 

rank and select the significant explanatory variables for accident risk prediction.  The 

method proceeds as follows. 

1. For each frequent pattern 𝑝𝑞, calculate its object purity ratio 𝑟𝑞 (OPR). OPR 

refers to the proportion of records falling into this frequent pattern, where their 

response variable 𝑉𝑟 takes the object value 𝑜 (in this research the object value 𝑜 is set 

as 1 which indicates an accident occurrence). 𝑟𝑞 can thus be calculated as follows:  

,

( )q r

q

n q

num V o
r

f


                  (7-2) 

where, 

( )q rnum V o  is the number of records in frequent pattern 𝑞 which have the response 

variables 𝑉𝑟 as 𝑜; 

,n qf  is the number of records allocated to frequent pattern q.  

One issue associated with OPR is that its value is in reference to the proportion of 

records taking the object value in the whole dataset DB, which can thus lead to 

inconsistent variable ranking. In this context, it is the difference between the OPR value 

of a pattern and the average behavior of the entire data that actually distinguishes a 

pattern. Therefore, we propose the relative object purity ratio 𝑟𝑟𝑞 (ROPR) in this 

research, where, in its modified version, ROPR represents the absolute difference 
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between the OPR and the proportion of records taking the object value in the whole 

dataset DB. 

,

( ) ( )
( )

q r DB r

rq

n p

num V o num V o
r abs

f TN

 
 

                (7-3) 

where, 

( )DB rnum V o  is the number of records with the response variables 𝑉𝑟 as the object 

value 𝑜.  

2. Given an observed record located in this frequent pattern, one intuitive thought 

is that the higher the ROPR is, the purer the frequent pattern is and the more likely the 

object response value will take place (i.e., in our case, that an accident will occur). Here, 

we assume that only the items that are in the exclusive nodes play a role in 

differentiating one frequent pattern from the others. Therefore, the importance score of 

an item is determined as follows: for each transaction Tran in DB, find its 

corresponding frequent pattern 𝑝𝑞 and exclusive nodes 𝐸𝑞; for each item in Tran , if it 

exits in 𝐸𝑞, add the ROPR to the item’s importance score 𝐼𝑆𝑖, otherwise, keep 𝐼𝑆𝑖 

unchanged.  

1 1

* * *i rq Tran q e

q Q Tran TN

IS r d d d
   

   , 1 i m                 (7-4) 

where, 

1Trand  if item 𝑖 is in transaction Tran ; otherwise 0Trand  ; 

1qd   if 𝑝𝑞 is the frequent pattern of the corresponding transaction Tran ; otherwise 

0qd  ; 

1ed   if item 𝑖 is in the exclusive node set 𝐸𝑞; otherwise 0ed  . 
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3. After the importance score of each item is calculated, the remaining step is to 

calculate the importance score of a variable (𝐼𝑆𝑣).  

1

*v i v
i m

IS IS d
 

  , 1 v n                    (7-5) 

where, 

1vd  if item 𝑖 is one discrete value of variable v ; otherwise 0vd  . 

At last, the explanatory variables can be ranked based on the variable importance 

scores. The complete Matlab code of this FP tree based variable selection method can 

be found from the link provided in Appendix.  

7.1.1.1.2 Variable discretization for FP tree 

The FP-tree algorithm requires each transaction in the database to be a set of 

discrete items. However, in traffic accident risk prediction database, continuous 

variables such as traffic speed and traffic volume are quite common. In this research, 

the Fuzzy C-means clustering method (FCM) is used to transform the continuous 

variables to the discrete variables. FCM is an extension of the k-means methods in 

which each data point can be a member of multiple clusters with a membership value 

(soft assignment) (Jain, 2010). FCM is briefly described below (Hung and Yang, 2001): 

Suppose there are TN transactions [𝑥1, 𝑥2, … , 𝑥𝑇𝑁] recorded for a continuous 

variable (e.g., travel speed values over time). FCM is to optimally categorize these 

transactions to different discrete clusters by solving a minimization programming 

problem as defined below. The decision variable ( ij ) to be solved is the probability for 

transaction i belonging to cluster j. The objective (𝐽𝛽(𝑈, 𝑊))) is to minimize the 
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summation of the weighted squared distances from each transaction to the center of its 

associated cluster. The first constraint indicates that the sum of the clustering 

probabilities for a transaction always equals 1 while the second constraint ensures that 

C non-empty clusters will be formed at the end.  

minimize 2

1 1

( , ) ( )
C TN

ij ij

j i

J U W d

 
 

                 (7-6) 

Subject to 

1

1,
C

ij

j




  1,...,i TN ; 

1

0 ,
TN

ij

i

TN


   1,...,j C . 

[0,1]ij  , 1,...,i TN and 1,...,j C ; 

where, 

U is the membership function matrix with element
ij ; 

ij  is the probability for the 𝑖𝑡ℎ transaction belonging to the 𝑗𝑡ℎ cluster; 

ijd  is the distance from a transaction 𝑥𝑖 to ( )t
jw , ( )|| ||t

ij i jd x w  ;  

( )t
jw  denotes the center of the 𝑗𝑡ℎ pattern cluster in the 𝑡𝑡ℎ iteration; 

𝑊 is the cluster center vector; 

𝛽 is the exponent associated with ij  to control fuzziness or amount of overlapping 

clusters. 

Derived from the method of Lagrange multipliers, the following optimal results 

can be reached: 

( )

2

( 1)

1

1
,

( )

t

ij
C

ij

k ik

d

d












1,...,i TN , 1,...,j C                                    (7-7) 

If d 0ij   then 1ij   and 0ik   for k j ,                           (7-8) 
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




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


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


, 1,...,j C ,                     (7-9) 

The FCM solution algorithm is composed of the following steps: 

1. Set initial time step 𝑡 = 0. Initialize the cluster center matrix 𝑊(0), given a 

predetermined number of clusters  C, and initialize the membership matrix 𝑈(0) by 

using Equation (7-7) and (7-8); 

2. Increase time step 𝑡 by one, compute the new cluster center matrix 𝑊(𝑡) by 

using Equation (7-9) and the new membership matrix 𝑈(𝑡) by using Equation (7-7) and 

(7-8); 

3. Continue on Step 2 until ( ) ( 1)max {| |}t t

ij ij ij    , indicating that little improvement 

can be made on the clustering probabilities. Here,   is a user defined positive 

threshold value. 

7.1.1.2 Random forest 

Random forest is an ensemble learning method for classification and regression. It 

is widely used to rank the importance of variables in a natural way. Again, suppose 

there are TN records or transactions [𝑥1, 𝑥2, … , 𝑥𝑇𝑁] in database DB, each record 

includes one response variable 𝑉𝑟 and a set of explanatory variables 𝑉 = [𝑉1, … , 𝑉𝑛], a 

classification and regression tree (CART) 𝑓 for predicting 𝑉𝑟 can be built (Breiman et 

al., 1984) . The prediction error of 𝑓 based on a validation subset of DB is then defined 

as 

    
1

,
| |

ˆ ˆ
i

i DB

irR f DB I f V V
DB 

  ,             (7-10) 
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where, 

  1,
( )

0

   

   ,

 if eis tru
I e

e

if eis false


 


;  

DB  is the validation data subset; 

irV  is the observed value of the response variable of the 𝑖𝑡ℎ record.  

However, CART is known to be unstable as a small perturbation of the training 

sample may change the prediction results. To overcome this, Breiman introduced the 

random forest algorithm (Breiman, 2001): the trees are built over 𝑛𝑡𝑟𝑒𝑒 bootstrap 

samples 𝐷𝐵
1

, … , 𝐷𝐵
𝑛𝑡𝑟𝑒𝑒

 of the training data DB; for each tree, different from the 

CART algorithm, a subset of variables 𝑛𝑣𝑎𝑟 is randomly chosen for the splitting rule at 

each node; each tree is then fully grown until each node is pure. The trees are not 

pruned. The resulting learning rule is the aggregation of all the tree-based estimators 

denoted by 𝑓1, … , 𝑓𝑛𝑡𝑟𝑒𝑒
 (Gregorutti et al., 2013). The class with the maximum number 

of votes among the 𝑛𝑡𝑟𝑒𝑒 trees in the forest is the predicted class of an observation.  

The Gini criterion is used to select the split with the lowest impurity at each node. As a 

useful byproduct of random forests, the Gini variable importance measure can be 

calculated once the forest is formed: at each split, the decrease in the Gini node 

impurity is recorded for variable 𝑉𝑖 in [𝑉1, … , 𝑉𝑛], and the average of all the decreases 

in the Gini impurity in the forest where 𝑉𝑖 forms the split is its Gini variable 

importance. At last, the variables can be ranked according to the Gini variable 

importance measure (Archer and Kimes, 2008). Besides this, Breiman also proposed 

other measures like the permutation importance, the z-score and so on (Breiman, 2001). 
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7.1.2 Models 

7.1.2.1 k nearest neighbor (k-NN) 

k-NN is applied for short-term traffic volume prediction in Chapter 3.2, which is a 

way of regression. Here it is used for classification and introduced again. When k 

nearest neighbors are found, the following Equation (7-11) can be used to determine the 

class of the object (Murphy, 2012):  

( , )

1
( | , , ) ( )

k

i

i N X D

p y c X D k I y c
k 

               (7-11) 

where, 

𝑁𝑘(𝑋, 𝐷) are the k nearest neighboring points to object 𝑋 in point set 𝐷;  

  1,
( )

0

   

   ,

 if eis tru
I e

e

if eis false


 


; 

iy  is the response variable of neighboring point i; 

y  is the response variable of object 𝑋; 

c is the one of the possible classes.  

7.1.2.2 Bayesian Network 

By the chain rule of probability, a joint distribution can be represented as follow

         1 2 1 3 2 1 4 1 2 31: 1: 1, , , ( | )VV Vp x p x p x |x p x |x x p x |x x x p x x            (7-12) 

where, 

V  is the number of variables; 

1:V  denotes the set {1,2,..., }V .  
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Suppose all the variables have 𝐾 discrete states, we can create 𝑝(𝑥1) as a table of 

𝑂(𝐾) numbers, representing a discrete distribution (there are actually only K-1 free 

parameters because of the sum-to-one constraint, but we write 𝑂(𝐾) for simplicity). 

Similarly, we can create 𝑝(𝑥2|𝑥1) as a table of 𝑂(𝐾2) numbers, and 𝑝(𝑥3|𝑥2, 𝑥1) as 

a table with 𝑂(𝐾3) numbers, and so on. These tables are called conditional probability 

tables (CPTs). As can be seen, the conditional distributions p(𝑥𝑡|𝑋1:𝑡−1) become 

harder to estimate as 𝑡 gets larger (Murphy, 2012).  

A Bayesian network is an efficient tool to overcome this problem. Specifically, a 

Bayesian network is a directed graphical model representing a joint distribution by 

making conditional independence (CI) assumptions. The nodes in the graph represent 

random variables, and the edges represent the CI assumptions. Based on the ordered 

Markov property, Bayesian network assumes that a node only depends on its immediate 

parents, not on all predecessors. So Equation (7-12) can be transferred into:  

   1:
1

( | )
V

tV pa t
t

p x |G p x x


                (7-13) 

where, 

𝑝𝑎(𝑡) represent the parents of node 𝑡. 

One of useful properties of Bayesian network is to perform probabilistic inference 

for some unobserved variables (for example, whether a traffic accident would happen 

or not) after the joint distribution is given. The posterior distribution can be calculated 

as Equation (7-14):  

'
'

( , | ) ( , | )
( | , )

( | ) ( , | )

h v h v

h v

v h v
hX

p X X p X X
p X X

p X p X X

 


 
 


          (7-14) 
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where, 

𝑋ℎ is the unobserved variable; 

𝑋𝑣 are the observed variables; 

𝜃 is the known parameters in this Bayesian network.  

7.2 Modeling dataset  

The dataset used in this research includes the traffic accident records collected on a 

segment on interstate highway I-64 in Norfolk, Virginia in 2005, as marked in Figure 

7-2: 
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Figure 7-2 Part of I-64 in Norfolk, Virginia. 

The accidents were stored in the Virginia Department of Transportation (VDOT’s) 

Archived Data Management System (ADMS). Besides that, this dataset also contains 

W64-01 EB 

W64-01 WB 

W64-03 EB 
W64-06 WB 

W64-07 WB 
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weather, visibility, traffic volume, speed, and occupancy information, with one minute 

resolution.  

However, this dataset by itself cannot be directly applied to predict real-time traffic 

risk directly. As a classification problem, the pre-crash condition and normal traffic 

condition have to be defined first (Hossain and Muromachi, 2012). Some studies 

defined the pre-crash condition as a time period starting right before an accident and 

extending up to 5 or 10 minutes (Oh et al., 2005; Zheng et al., 2010), while some studies 

defined it as a 5 minute time period starting from a close time point such as 4 or 5 

minutes before the accident (Abdel-Aty et al., 2008; Hossain and Muromachi, 2012). In 

this research, we used two temporal settings to define the pre-crash condition: the first 

one is a 10-minute time period starting from 5 minute before the accident, and the other 

is in a 5-minute time period starting from 5 minute before the accident. The normal 

condition is defined as the same time period as the pre-crash condition, but taking place 

on the same day of the other weeks from two weeks earlier to two weeks later than the 

day of the week with an accident. It needs to note that a normal condition data point is 

excluded if there is an accident happening within one hour before or after the 

designated time (Hossain and Muromachi, 2012).  

After the pre-crash condition and normal traffic condition are defined, the relevant 

data can be extracted given the number and locations of traffic detectors in place. Most 

of the previous studies considered more than one detector during the extraction process, 

such as one upstream detector and one downstream detector (Abdel-Aty et al., 2008), 

and two upstream detectors, two downstream detectors and one detector covering the 
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accident location (Hossain and Muromachi, 2012). In this research, due to a huge 

amount of missing data, we were forced to rely on only one detector, that is to say, the 

one reporting an accident. There are five such detectors, labeled W64-01 EB, W64-01 

WB, W64-03 EB, W64-06 WB and W64-07 WB, their approximate locations are 

marked in Figure 7-2.  

At last, two datasets were obtained, which differ from one other in terms of the the 

time period used to define the pre-crash and normal traffic condition (the first DB has a 

time period of 10-minute long, and the second one is 5-minute long).  Eight 

explanatory variables were contained in the data, including: the mean of the weather 

condition (Meanwea) as defined below, the mean of visibility (Meanvis), the mean and 

standard deviation of the traffic volume (Meanvol and Stdvol, unit: vehicle per hour), the 

mean and standard deviation of the traffic speed (Meanspe and Stdspe, unit: mph), and the 

mean and standard deviation of the occupancy (Meanocu and Stdocu). The accident 

response variable is defined as a binary variable with value 1 for the pre-crash situation 

and 0 for normal traffic. It is worth noting that the weather variable was a categorical 

variable originally with 26 possible different weather types.  In this research we use 

the numbers 0 to 25 to represent these different weather types that range from fine 

weather like “clear” to extreme inclement weather like “thunderstorm”. Although 

typically, the weather condition will not change significantly within a 5- or 10- minute 

period, we nevertheless, take the mean value of the weather over that period. The 

resulting variable, therefore, may theoretically assume a non-integer value and can be 
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assumed as a continuous (and not discrete) variable.  The same applied for “visibility”, 

which is also a continuous variable ranging from 0 to 10 miles.  

After processing, the 5-minute accident dataset included 170 pre-crash records and 

555 normal traffic records, and the 10- minute accident dataset included 174 pre-crash 

records and 569 normal traffic records. Note that the 5-minute accident dataset has 

fewer records because of the higher probability of data missing for 5 minute period than 

the 10 minute period. For each dataset, 80% of the pre-crash records and normal traffic 

records were randomly chosen as the training dataset while the remaining 20% were 

taken as the test dataset.  

7.3 Model development and results 

This Chapter will calculate variable importance scores using the ROPR based 

variable importance calculation algorithm and the random forest algorithm discussed in 

Chapter 2. Then the k nearest neighbor and Bayesian network will be built and their 

performance will be compared based on the different variable importance calculation 

results.  

7.3.1 Variable importance calculation 

Two training datesets are generated through the random sampling with the 80% 

rate, including a 5-minute training dataset with 136 pre-crash records and 444 normal 

traffic records and a 10-minute training dataset with 139 pre-crash records and 455 
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normal traffic records. For each training dataset, FCM was first applied to transfer a 

continuous variable to a discrete cluster variable.   

Table 7-1 Clustering Results for 5-minute and 10-minute Accident Training 

Datasets 

datasets Variable  Cluster 1 low  Cluster 2 medium  Cluster 3 high 

5-minute  

training dataset 

Meanwea [0, 5] [6, 16] [17, 25] 

Meanvis [0.13, 4.25] [5, 8]  [8.8, 10] 

Meanvol [60, 564] [576, 1164] [1176, 1908] 

Meanocu [1, 8.2] [8.4, 27.6] [31.2, 66.4] 

Meanspe [0, 33.6] [34, 59.8] [60, 93] 

Stdvol [0, 112.24] [115.41, 245.19] [247.38, 642.58] 

Stdocu [0, 3.96] [4, 15.66] [26.62, 27.07] 

Stdspe [0, 4.15] [4.21, 11.73] [12.19, 33.16] 

10-minute  

training dataset 

Meanwea [0, 5] [6, 16] [17, 25] 

Meanvis [0.25, 4.8] [5, 8] [8.5, 10] 

Meanvol [60, 560] [564, 1152] [1170, 1890] 

Meanocu [1, 7.9] [8, 28] [29.7, 66.4] 

Meanspe [0, 31.6] [34.37, 59.8] [59.85, 94.5] 

Stdvol [0, 124.73] [124.9, 245.68] [248.51, 699.74] 

Stdocu [0, 4.17] [4.36, 16.06] [17.79, 31.10] 

Stdspe [0, 4.63] [4.65, 13.48] [13.62, 31.78] 

 

The clustering results are shown in Table 7-1. Three clusters were generated for 

each continuous variable, representing: low, medium and high value ranges. The two 

numbers in each bracket denotes the lower bound and upper bound of a cluster. 

Through this process, the original eight continuous explanatory variables were 

transferred into 24 discrete variables (called items in the following analysis). The 
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support of each item or the size of each cluster were obtained and sorted in a descending 

order as shown in Table 7-2:  

Table 7-2 Supports of Items in 5-minute and 10-minute Accident Training 

Datasets 

Index 5-minute training dataset 10-minute training dataset 

Item Support Item  Support 

1 Stdocu low 542 Stdocu low 554 

2 Meanwea low 435 Meanwea low 436 

3 Meanvis high 401 Meanvis high 405 

4 Meanocu low 385 Meanocu low 383 

5 Stdspe low 372 Stdspe low 373 

6 Meanspe medium 337 Meanspe medium 332 

7 Stdvol low 321 Stdvol low 327 

8 Meanvol medium 261 Meanvol medium 261 

9 Meanspe high 216 Meanspe high 231 

10 Meanvol low 170 Meanvol low 188 

11 Meanocu medium 169 Stdspe medium 188 

12 Stdvol medium 169 Stdvol medium 184 

13 Stdspe medium 169 Meanocu medium 178 

14 Meanvol high 149 Meanvol high 145 

15 Meanvis medium 125 Meanvis medium 132 

16 Meanwea medium 98 Meanwea medium 109 

17 Stdvol high 90 Stdvol high 83 

18 Meanvis low 54 Meanvis low 57 

19 Meanwea high 47 Meanwea high 49 

20 Stdspe high 39 Stdocu medium 34 

21 Stdocu medium 35 Meanocu high 33 

22 Meanspe low 27 Stdspe high 33 
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23 Meanocu high 26 Meanspe low 31 

24 Stdocu high 3 Stdocu high 6 

 

When screening frequent items, we set the threshold value  in Equation (7-1) to 0 

so that all the items shown in Table 7-2 are considered. The rationale behind this is to 

prevent any information loss in the variable importance score calculation. Since the 

items have already been sorted in a support-based descending order, Table 7-2 also 

provides the F-List to build the FP Tree.  
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Figure 7-3 A part of the FP Tree for the 10-minute training dataset 

FP trees were built for the two training datasets. Due to space limitations, only a 

part of the FP Tree constructed for the 10-minute training dataset is shown Figure 7-3. 

Three frequent patterns are demonstrated, including: frequent pattern 1 { Stdocu low 

Meanwea low Meanvis high Meanocu low Stdspe low Stdvol low Meanspe 

high Meanvol low} with 𝑓8,1 = 48; frequent pattern 2 { Stdocu low Meanwea low 

null 

Stdocu low : 554 

Meanwea low: 404 

Meanvis high: 363 

Meanocu low: 245 

Stdspe low: 155 

Stdvol low: 61 

Meanspe high: 49 

Accident: 8 Non-accident:40 

Meanvol low: 48 

…
 

…
 

…
 

…
 

…
 

…
 

Meanvol high: 1 

Accident: 1 

Meanvol medium: 12 

Meanspe high: 12 

Accident: 4 Non-accident:8 
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Meanvis high Meanocu low Stdspe low Stdvol low Meanspe high Meanvol high} 

with 𝑓8,2 = 1; and frequent pattern 3 { Stdocu low Meanwea low Meanvis high 

Meanocu low Stdspe low Stdvol low Meanvol medium  Meanspe high} with 

𝑓8,3 = 12.  Figure 7-3 also marks the shared nodes and exclusive nodes for each 

pattern, and lists the numbers of accidents and non-accidents observed in each frequent 

pattern.  

With the FP Tree constructed, the variables’ importance scores are calculated using 

Equation (7-3), (7-4) and (7-5). The results are shown in Table 7-3. 

Table 7-3 Variable Importance Calculations Results based on FP Tree and 

Random Forest Methods 

Variables 5-minute training dataset 10-minute training dataset 

FP tree Random Forest FP tree Random Forest 

Meanvol 46 (1)* 27.31 (3) 48.6 (1) 27.51 (4) 

Stdvol 43.2 (2) 26.98 (4) 42.8 (2) 29.15 (2) 

Meanspe 16.6 (7) 28.56 (2) 20.8 (7) 29.02 (3) 

Stdspe 35.6 (4) 29 (1) 29 (6) 30.11 (1) 

Meanocu 21.6 (6) 25.99 (5) 35.8 (4) 24.89 (6) 

Stdocu 15.2 (8) 22.19 (6) 15 (8) 26.41 (5) 

Meanwea 40.2 (3) 8.79 (8) 37.6 (3) 9.88 (8) 

Meanvis 33.8 (5) 13.77 (7) 30.8 (5) 13.39 (7) 

Notes: * The first number is the variable importance score, and the number in the 

following parentheses is the ranking of variable (“1” means the most important, and “8” 

means the least important). 
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We also calculated the variables importance scores based on random forest method 

(see Table 7-3), using the package “randomForest” within the statistics software R 

(Liaw and Wiener, 2002). Based on the guidance of this package’s instructions, the 

number of trees to grow 𝑛𝑡𝑟𝑒𝑒 should not be set to a very small number, in order to 

ensure that every input row gets predicted at least a few times;  the default value of 500 

was used in this study. The number of variables randomly sampled as candidates at 

each split 𝑛𝑣𝑎𝑟 was set to the square root of the total number of variables (3 in this 

study). The size of samples  𝐷𝐵
1

, … , 𝐷𝐵
𝑛𝑡𝑟𝑒𝑒

 was set as 0.632*the total size of 

training dataset;  for the 5-minute training dataset, the sample size was set as 366, and 

for the 10-minute training dataset, the sample size was set as 375. The package 

“randomForest” produced the mean decrease of Gini index for each variable as an 

output. As mentioned before, the mean decrease of the Gini index measures the 

contribution of a variable to the homogeneity of the nodes and leaves in the random 

forest (Metagenomics Statistics, 2014). The higher the mean decrease of the associated 

Gini index is, the more important the variable is.  

Through the comparison of the variable importance scores generated from the FP 

tree and Random forest, we can see that the two models produce different variable 

importance rankings. The FP tree models tended to rank traffic volume related 

variables, such as Meanvol and Stdvol as the top two most important variables while 

resulting in much lower scores for speed related statistics, particularly for Meanspe. In 

contrast, traffic speed related statistics variables were deemed slightly more important 

by the random forest. Nevertheless, the volume related variables were judged important 
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by both of the methods (among the top four). As for the weather related variables, 

Meanwea was ranked as the third most important variable based on the FP method, while 

it was scored as the least important by the random forest method.  

7.3.2 k-NN 

This research tested the performance of k-NN for the 5-minute and 10-minute 

testing datasets. k was set as 2 and 3 separately, and each time k-NN was run for three 

scenarios: (1) using all the variables; (2) using all variables except for Meanspe and 

Stdocu which were ranked as the least important by the FP tree method; and (3) using all 

variables except for Meanwea and Meanvis that were ranked as the least important by 

random forest. The voting criterion of k-NN in this research is that once one of k 

nearest neighbors has the response variable equal to 1 (indicating the occurrence of an 

accident), the predicted response of the observation is set as 1. The results can be seen 

in Table 7-4.  

Table 7-4 Performance of k-NN for Different Variable Selection 

Variable selection Criteria 5-minute testing 

dataset 

10-minute testing 

dataset 

k=2 k=3 k=2 k=3 

All variables Sensitivity 32.35% 50.00% 40.00% 48.57% 

False alarm rate 36.03% 52.25% 42.98% 56.14% 

FP Tree Sensitivity 38.23% 52.94% 45.71% 60.00% 

False alarm rate 34.23% 51.35% 42.10% 54.38% 

Random Forest Sensitivity 32.35% 44.11% 37.14% 54.28% 

False alarm rate 53.15% 64.86% 49.12% 61.40% 
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Note that there are two prediction performance measures used as shown in Table 

7-4: (1) sensitivity, which measures the proportion of actual accidents that were 

accurately predicted as such; and (2) the false alarm rate that refers to the proportion of 

normal situations that were wrongly predicted as accidents. A good traffic accident risk 

prediction model should yield a high sensitivity and a low false alarm rate.  

The major findings are summarized below according to Table 7-4. First of all, 

although k-NN doesn’t perform well in general, using the FP tree to pre-select the 

explanatory variables significantly improved the prediction accuracy. In comparison to 

the all variables case, the FP tree based k-NN model always produces higher prediction 

sensitivity values and lower false alarm rates no matter which testing dataset is used. In 

contrast, there is no benefit from a random forest based variable selection with the only 

exception of the case of k=3 with the 10-minute testing dataset. This indicates the 

advantage of FP tree in sorting out important affecting factors and improving model 

prediction performance.  Second, regardless of the type of testing datasets used, the 

comparison between the k-NN model with k=3 and the one with k=2 shows that adding 

one nearest neighbor will significantly increase the prediction sensitivity, however, as 

can be seen, this will also increase the false alarm rate. Lastly, the k-NN models work 

better for the 10-minute testing dataset than for the 5-minute testing dataset in terms of 

prediction sensitivity. However, the false alarm rates tend to be higher for the 

10-minute testing dataset as well. This indicates that the pre-crash time period may also 

affect model performance.  
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7.3.3 Bayesian network  

Bayesian network models were also built to predict accident risk for comparison. 

As a crucial step to perform Bayesian network modeling, the continuous variables need 

to be discretized. How to transform a continuous variable to discrete category variables 

vastly depends on the objectives set by researchers (Hossain and Muromachi, 2012). 

Among the discretization techniques available in the literature, we selected the 

normalized equal distances (NED) method, using the software Bayesialab due to its 

promising performance (Bayesia, 2013). The values of each variable are first 

normalized based on the mean and standard deviation of the variable (Han et al., 2011). 

Then, the normalized values are split to the user-defined number of equal width discrete 

intervals (Kotsiantis and Kanellopoulos, 2006). For this research, we set the number of 

equal width discrete intervals as 3 and 4 separately.  

We considered one of the most plausible Bayesian network structures, which just 

let the response variable be the child node of the possible explanatory variables 

(Hossain and Muromachi, 2012). Three scenarios, as before, were tested under the 

structure: (1) using all the variables; (2) using all except of Meanspe and Stdocu that are 

ranked as the least important by FP tree; and (3) using all except Meanwea and Meanvis 

that are ranked as the least important by random forest. The software Netica was used to 

learn the Bayesian network parameters (Netica tutorial, 2014). As an example, the 

Bayesian network for the 10-minute dataset using all variables without Meanspe and 
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Stdocu and with 4 discrete intervals for each continuous variable is demonstrated in 

Figure 7-4. 

 

Figure 7-4 Bayesian Network for 10 min Dataset Using Variables based on FP 

Tree 

As can be seen in Figure 7-4, each of the six explanatory variables was split into 

four intervals by NED. The number right next to an interval is the probability for the 

value of a variable to fall into that interval. Taking Meanvol as an example, 26.4% of 

records have the values ranging between 0 and 478 vehicles/hour.  

The probability threshold of Bayesian network was set to 0.2, which means that if 

the estimated accident probability is greater than 0.2, we predict that an accident would 

happen. The performance of Bayesian networks with different NED numbers (in 

parentheses), and for the 5-minute and 10-minute testing datasets are shown in Table 

7-5. 

Table 7-5 Prediction Performance of Bayesian Network with Different Variable 

Selection Strategies 

Variable selection Criteria 5-minute testing dataset 10-minute testing dataset 
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NED (3) NED (4) NED (3) NED (4) 

All variables Sensitivity 47.37% 31.57% 50.00% 61.11% 

False alarm rate 50.67% 32.00% 47.37% 47.37% 

 Overall Performance 48.93% 60.63% 52.12% 54.25% 

FP Tree Sensitivity  52.63% 31.57% 44.44% 61.11% 

False alarm rate 52.00% 30.67% 38.15% 38.16% 

 Overall Performance 48.93% 61.70% 58.51% 61.70% 

Random Forest Sensitivity 63.15% 47.37% 33.33% 61.11% 

False alarm rate 69.33% 60.00% 42.10% 53.95% 

 Overall Performance 37.23% 41.48% 53.19% 48.93% 

 

Several observations can be discerned from Table 7-5. First, the best Bayesian 

network model results in a sensitivity value as high as 61.11% and a false alarm rate as 

low as 38.16% when trained based on the 10-minute dataset with the NED number 

equal to 4. These results compare very favorably to those in the literature, especially 

given that only one detector was used.  Second, the number of NED can affect the 

performance of Bayesian network. For the 5-minute dataset, the sensitivity and false 

alarm rate both decreased when the number of NED was set to 4 instead of 3. On the 

other hand, for 10-minute dataset, the sensitivity improved, but the false alarm rate 

remained almost the same when NED number is changed from 3 to 4, except for the 

situation using the variables based on random forest, for which the false alarm rate also 

increased. Third, for the majority of cases, the Bayesian network models using 

variables selected by FP tree perform better than the ones using the random forest 

selected variables. For example, for the 10-minute dataset, when NED number is 4, 
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although the sensitivity values of the two types of models are somewhat similar (around 

61%), the false alarm rate of the random forest based Bayesian network model is much 

higher than its FP tree based counterpart.  For other cases, however (e.g., the models 

based on the 5-minute training dataset), it is hard to decisively conclude that the models 

based on FP tree performed better than those based on random forest because the 

sensitivity and false alarm rate of the former are both lower than those of the latter. 

Because of this, we introduced a third criterion, called the overall performance to 

measures the ratio of correct predictions (no matter whether it is accident or a 

non-accident) in the whole testing dataset. Based on the overall performance criterion, 

we can easily see that the models based on variables selected by FP tree significantly 

outperform those based on all the variables or based on random forest.    

7.4 Conclusions 

This study proposed a novel variable selection algorithm based on FP tree for 

real-time traffic accident risk prediction. The importance score of each explanatory 

variable in the dataset is calculated and ranked through the calculation of the ROPR of 

the corresponding frequent patterns. This variable selection algorithm was tested on the 

Virginia traffic accident dataset collected in 2005 in comparison to the widely used 

random forest variable selection. Based on the variables selected by the two methods, 

two traffic accident risk prediction models, the k-NN and Bayesian network models, 

were developed and tested for three situations: using all variables, using the important 
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variables selected by FP tree, and using the important variables selected by random 

forest. The major findings are summarized as below:  

(1) Generally, the accident risk prediction results are quite acceptable when using 

the Bayesian network model with NED number equal to 4 and based on a 

10-minute dataset. This is especially true for the case using variables selected 

by FP tree, where the sensitivity was as high as 61.11% and the false alarm rate 

was as low as 38.16%. Considering that only data from one detector were 

available in this study, these results are very promising. 

(2) In terms of the time resolution to be used in compiling the datasets, no decisive 

conclusions can be made regarding whether a 5-minute or a 10-minute 

resolution would yield better performance.  For Bayesian network, the overall 

performances are improved by using the 10-minute dataset except the cases 

with NED number set as 4, using all variables and FP tree based variables.  

(3) The most important finding of this research is that the accident risk prediction 

models based on FP tree variable selection outperform the models based on all 

variables and the ones based on random forest, regardless of the settings of the 

prediction models such as the selection of k for k-NN, the NED number 

selected for Bayesian network, and the pre-crash time period used in the 

datasets. Being insensitive to the selection of the models’ parameters is a good 

quality that the FP tree variable selection algorithm appears to possess. 
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CHAPTER 8 TRAFFIC ACCIDENT DURATION PREDICTION 

BASED ON M5P TREE AND HBDM 

This chapter introduces the integration of the data mining model M5P tree and the 

statistical model hazard-based duration model (HBDM) for traffic accident duration 

prediction. The arrangement of this chapter is as following: first, the basic 

methodologies of M5P tree and HBDM are introduced in Chapter 8.1, as well as the 

new algorithm to build the M5P-HBDM; after that, descriptive analysis of the two 

traffic accident datasets, I-190 and I-64 traffic accident datasets, will be presented in 

Chapter 8.2; then in Chapter 8.3, each traffic accident duration dataset is split into a 

training dataset and a testing dataset. The significant variables selected by the three 

models M5P, HBDM, and M5P-HBDM based on the training dataset are compared and 

analyzed to see which model can find more meaningful variables. The prediction 

performances of these models for the testing dataset are also compared in detail in 

Chapter 8.3; finally, the conclusions and future work will be discussed in Chapter 8.4. 

8.1 Methodology 

This chapter proposed a new traffic accident duration prediction model 

M5P-HBDM based on the decision tree model M5P tree and the statistical model 

HBDM. The traditional decision trees were proposed by Breiman et al. (1984), 

however, these trees have fixed average values at their leaves that cannot model 

stochastic nature of the parent-child relationship in a realistic way (Ozbay and Noyan, 
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2006). Considering this, Quinlan (1992) developed a new type of tree named the M5 

tree which can have multivariate linear models at their leaves, so more flexible 

predictions are allowed. In order to handle the enumerated attributes and attribute 

with missing values, Wang and Witten (1997) proposed a modified M5 tree algorithm 

and called it M5P algorithm. M5P has the advantages like dealing with categorical 

and continuous variables and handling variables with missing values (Zhan et al., 

2011).  

M5P tree has been applied by Zhan et al. (2011) to predict lane clearance time of 

freeway incidents. But one problem with M5P tree is that in linear regression process 

to build its leaves, the residuals are assumed to be distributed normally, in another 

word, the accidents clearance time is assumed to follow a normal distribution too. 

However, the distribution for time to an event (here it is the time when the traffic 

returns to normal) is almost certainly nonsymmetrical (Cleves et al., 2008).  

For HBDM, it is a statistical model to analyze the duration of a specific event. 

Different distributions of the duration can be assumed like Weibull distribution, 

log-normal distribution, log-logistic distribution and so on. It has been applied 

directly to the whole accident dataset to analyze and predict the duration (Alkaabi et 

al., 2011; Nam and Mannering, 2000; Chung, 2010). However, as far as we know, no 

researches have been conducted to test the impact of classification method to HBDM. 

Based on the classification of the accident dataset, it is interesting to explore whether 

more insights about the relationship between accident duration and the explanatory 
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variables can be gained and whether the prediction performance can be improved with 

the HBDM.  

Therefore simply speaking, we hope the M5P-HBDM can keep the ability of 

M5P tree to classify the traffic accident dataset but to build the HBDMs with the best 

selected distribution at its leaves instead of the linear regression model with the 

normal distribution assumption. This section will introduce M5P tree and HBDM first. 

After that, the detailed algorithm to build the M5P-HBDM will be given. 

8.1.1 M5P Tree 

Before introducing M5P algorithm, the constructing process of M5 tree should be 

understood (Quinlan, 1992). Assume there is a collection of 𝑇𝑛 training cases at node 

𝑛 (𝑛 = 0 for the root node), each case has a fixed set of attributes, either discrete 

(binary or category) or numeric, and has a target value. In tree growth step, calculate the 

standard deviation 𝑠𝑑(𝑇𝑛) of the target values of cases in 𝑇𝑛, suppose there is a test 

tree which splits 𝑇𝑛 into N outcomes, let 𝑇𝑖
𝑛 denote the subset of cases that have the 

i
th

 outcome of the potential test, 𝑠𝑑(𝑇𝑖
𝑛) denote the standard deviation of the target 

values of cases in 𝑇𝑖
𝑛, |𝑇𝑖

𝑛| means the number of cases in 𝑇𝑖
𝑛, |𝑇𝑛| is the number of 

cases in 𝑇𝑛. The object function is to find the potential test which maximizes the error 

reduction which is calculated by Equation (8-1): 

∆𝑒𝑟𝑟𝑜𝑟 = 𝑠𝑑(𝑇𝑛) − ∑
|𝑇𝑖

𝑛|

|𝑇𝑛|
× 𝑠𝑑(𝑇𝑖

𝑛)𝑁
𝑖=1                    (8-1) 

The same process is applied recursively to the subsets using the 

divide-and-conquer method, until the subsets at a node contain only a few instances or 
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vary very slightly. Therefore there are two termination thresholds, the first one is 𝑇𝐻1, 

the minimum number of cases at a node, and the second one is 𝑇𝐻2, used in checking 

whether the standard deviation of the target values at the node is less than 𝑇𝐻2 ∗

𝑠𝑑(𝑇0). The nodes where the split terminates are marked as leaf, otherwise the types of 

the nodes are marked as interior or non-leaf.  

After the initial tree has been grown, a multivariate linear model is constructed for 

each non-leaf node of the model tree using standard regression techniques. In M5 

algorithm, the linear model can only use the attributes that are referenced by sub-tree at 

this node. This is because M5 will compare the accuracy of a linear model with the 

accuracy of a sub-tree, it is fair that they use the same information. Besides that, in 

order to prevent the overfitting problem of the linear model, M5 uses a greedy search to 

remove variables that contribute little to the linear model, so sometimes the linear 

model can just be a constant. These linear models for non-leaf nodes will be useful in 

the next two steps: pruning step and smoothing step.  

In pruning step, starting near the bottom, examine each non-leaf node of the model 

to decide whether this node should be replaced with the linear model gotten above as a 

new leaf node or kept the subtree unchanged. This depends on which one can bring the 

lower estimated error. It’s worth noting that for each leaf node, there is an associated 

value used for error calculation, which is the averaged target value of the training cases 

at that leaf.  The estimated error is calculated using Equation (8-2): 

𝐸𝑟𝑟𝑜𝑟 =
𝑁+𝑣

𝑁−𝑣
∗

∑ 𝑎𝑏𝑠(𝑉𝑎𝑐𝑡−𝑉𝑝𝑟𝑒)𝑛
𝑖=1

𝑁
              (8-2) 



248 

 

So the estimated error is the average absolute difference between the actual target 

values 𝑉𝑎𝑐𝑡 of the training cases and the predicted values 𝑉𝑝𝑟𝑒 given by the linear 

model at the current node (or the averaged target value for the leaf node), adjusted by 

(𝑁 + 𝑣)/(𝑁 − 𝑣), where 𝑁 is the number of training cases going through this current 

node, 𝑣 is the number of the parameters in the linear model. This is also to avoid the 

overfitting problem. For the estimated error of the subtree, one more thing need be 

mentioned is that the error from each branch is combined into a single overall value for 

the node using a linear sum in which each branch is weighted by the proportion of the 

training cases that go down it (Wang and Witten, 1997).  

At last, Quinlan (1992) observes that the prediction of M5 tree can be improved by 

a smoothing step. The smoothing step can compensate for the sharp discontinuities that 

will inevitable occur between adjacent linear models at the leaves of the pruned tree, 

particularly for some models constructed from a small number of training cases (Wang 

and Witten, 1997). The predicted value at the leaf is the value computed by the linear 

regression model or the constant averaged target value at the leaf, then the value is 

filtered along the path back to the root, smooth it at each node by combining it with the 

value predicted by the linear model for that node. The calculation is shown in Equation 

(8-3): 

𝑝′ =
𝑛𝑝+𝑘𝑞

𝑛+𝑘
                   (8-3) 

Where 𝑝′ is the prediction passed up to the next upper node, 𝑝 is the prediction 

passed to this current node from a lower node, 𝑞 is the value predicted by the linear 
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model at this current node, 𝑛 is the number of training cases from the lower branch of 

this current node, and 𝑘 is a user-defined value (default value 15).  

The improvement of M5P algorithm to M5 is that before tree construction all 

enumerated attributes are transformed into binary variables to handle enumerated 

attributes, if the enumerated attribute has 𝑐 possible values, it will be replaced by 

𝑐 − 1 synthetic binary attributes. So in M5P, all splits are binary: they involve either a 

continuous-valued attribute or a synthetic binary one (Wang and Witten, 1997). 

Besides that, in order to take account of missing values, Equation (8-1) is revised as 

following:  

∆𝑒𝑟𝑟𝑜𝑟 =
𝑚

|𝑇𝑛|
× 𝛽 × [𝑠𝑑(𝑇𝑛) − ∑

|𝑇𝑖
𝑛|

|𝑇𝑛|
× 𝑠𝑑(𝑇𝑖

𝑛)]𝑁
𝑖={𝐿,𝑅}          (8-4) 

where, 𝑚 is the number of training cases without missing values;  

𝛽 is called correction factor, for original binary and continuous attributes, 𝛽 = 1;  

for enumerated attributes, 𝛽 decays exponentially as the number of synthetic binary 

attributes increases, 𝛽 = 𝑒𝑥𝑝 (7 ∗ (2 − 𝑚𝑎𝑥(2, 𝑐))/|𝑇𝑛|) (Jekabsons, 2010). This is 

to solve the problem that the enumerated attributes having a large number of different 

values are automatically favored;  

𝑖 = {𝐿, 𝑅} means in M5P the split is binary which generates the left subtree and right 

subtree.  
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8.1.2 Hazard-based Duration Model (HBDM) 

Suppose the duration of a specific traffic accident is represented by a continuous 

random variable 𝐷. The cumulative distribution function is 𝐹(𝑑), which is also called 

failure function in HBDM, as shown in Equation (8-5): 

𝐹(𝑑) = ∫ 𝑓(𝑢)𝑑𝑢
𝑑

0
= P(𝐷 < 𝑑) , 0 < 𝑑 < ∞           (8-5) 

𝐹(𝑑) tells the probability that the duration 𝐷 is less than time value 𝑑, and its 

probability density function is shown in Equation (8-6): 

𝑓(𝑑) =
𝛿𝐹(𝑑)

𝛿𝑑
= 𝑙𝑖𝑚∆𝑑→0

𝑃(𝑑≤𝐷<𝑑+∆𝑑)

∆𝑑
             (8-6) 

𝑓(𝑑) describes the instantaneous failure rate in the infinitesimally small interval 

[d, d + ∆d]. One more function need be introduced in HBDM, which is called survival 

function, 𝑆(𝑑) and defined in Equation (8-7): 

𝑆(𝑑) = 1 − 𝐹(𝑑) = 𝑃(𝐷 ≥ 𝑑)              (8-7) 

𝑆(𝑑) gives the probability that duration 𝐷 is longer than time value 𝑑. 

At last, after the probability density function 𝑓(𝑑) of failure function and survival 

function 𝑆(𝑑) are known, the hazard function ℎ(𝑑) is defined in Equation (8-8) as 

following: 

ℎ(𝑑) =
𝑓(𝑑)

𝑆(𝑑)
= lim∆𝑑→0

𝑃(𝑑≤𝐷≤𝑑+∆𝑑|𝐷≥𝑑)

∆𝑑
            (8-8) 

ℎ(𝑑) can be interpreted as the instantaneous failure rate at time 𝑑, given that the 

duration has lasted 𝑑 minutes. The difference between 𝑓(𝑑) and ℎ(𝑑) is that ℎ(𝑑) 

is the normalized rate after knowing the duration will not end before 𝑑. When d = 0, 

ℎ(𝑑) is the same as 𝑓(𝑑). 
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There are two alternative parametric approaches to investigate the effects of 

explanatory variables using HBDMs: the proportional hazard metric (PH) and 

accelerated failure time metric (AFT). PH function is shown as following: 

ℎ𝑖(𝑡) = ℎ0(𝑡)exp (𝛽𝑥𝑖)                (8-9) 

where, ℎ0(𝑡) is called baseline hazard which can be specified a functional form; 

𝑥𝑖 is the value vector of variables of case 𝑖; 

𝛽 is the vector of estimated coefficients.  

We can see that little attention is paid to the actual failure times and predictions of 

these failure times are seldom desired in PH. In contrast, the AFT gives a more 

prominent role to analysis time (Cleves et al., 2008). So as the other researches 

(Alkaabi et al., 2011; Chung, 2011), AFT is used in this paper. AFT assumes a 

distribution for  

𝜏 = 𝑒𝑥𝑝 (−𝑥𝑖𝛽)𝑑𝑖                (8-10) 

where, 𝜏 may have a specified distribution like the Weibull distribution, Log-normal 

distribution, Log-logistic distribution and so on; 

𝑑𝑖 is the duration of case 𝑖; 

𝑥𝑖 is its value vector of variables; 

𝛽 is the vector of estimated coefficients. 

After taking logarithm for both sides, the AFT model can be framed as a linear 

model as shown in Equation (8-11): 

𝑙𝑛(𝑑𝑖) = 𝑥𝑖𝛽 + 𝑙𝑛 (𝜏)               (8-11) 
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where, 𝑙𝑛(𝑑𝑖) is the natural logarithm of the survival time. When the parameters in 𝛽 

and 𝜏 are estimated, given a new observation of a case, the mean and medium of the 

failure time distribution can be calculated as its predictions (Cleves et al., 2008). 

8.1.3 M5P-HBDM Model 

After introducing M5P and HBDM models, this section will talk about how to 

combine the two models. Table 8-1 shows the Pseudo-codes of M5P-HBDM algorithm, 

and compares it with the original M5P algorithm (Wang and Witten, 1997).  

Table 8-1 the Pseudo-Code of M5P-HBDM Algorithm and Comparison with 

M5P Tree 

M5P-HBDM (𝑻𝟎 training cases) 

{ 

SD=sd(𝑻𝟎) 

For each c-valued category variable, convert into c-1 synthetic binary variables,  

root=new_node, 

root.trainingcases=𝑻𝟎, 

split(root), 

prune(root), 

print_tree(root), 

} 

 

split(node) 

{ 

if sizeof(node.trainingcases)< 𝑻𝑯𝟏 or sd(node.trainingcases)< 𝑻𝑯𝟐*SD 

node.type=LEAF, 

node.model1=HBDM(node), 

node.model2=average of the target values of the cases at this leave node. 

if error(node.model1)<error(node.model2) 

    node.model=node.model1,  

else 

    node.model=node.model2, 

else 

    node.type=INTERIOR, 

    for each continuous and binary variable, 

        for all possible split positions, 
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            calculate the ∆𝒆𝒓𝒓𝒐𝒓 from the Equation (8-4),  

    node.variable=variable with max ∆𝒆𝒓𝒓𝒐𝒓 

    split (node.left), 

    split (node.right), 

} 

 

prune(node) 

{ 

if node.type=INTERIOR then  

    prune(node.left_child), 

    prune(node.right_child), 

node.model=HBDM(node),  

(for M5P algorithm, node.model=linear_regression(node)) 

    if subtree_error(node)> 𝒆𝒓𝒓𝒐𝒓(node.model) then 

        node.type=LEAF 

} 

 

subtree_error(node) 

{ 

l=node.left;  

r=node.right, 

if node=INTERIOR then  

      return 

(sizeof(l.trainingcases)*subtree_error(l)+sizeof(r.trainingcases)*subtree_error(r))

/sizeof(node. trainingcases) 

  else 

      return 

      𝒆𝒓𝒓𝒐𝒓(node.model) 

} 

 

𝒆𝒓𝒓𝒐𝒓(node.model) 

{ 

  predict the target values using node.model, the model can be a constant, which is 

the average or the median of the target values for the original leave nodes; it can 

be a HBDM, the prediction is the mean or media value of AFT with a selected 

distribution shown in Equation (8-11). (for M5P algorithm, the model of the 

node can be the linear regression model, except for the original leave nodes, it 

can only be the average of the target values) 

calculate the estimated error based on Equation (8-2),  

} 

 

sizeof (node.trainingcases), 

{ 
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returns the number of training cases that go through the current node,  

} 

 

As can be seen in Table 8-1, the building process of M5P-HBDM model is very 

similar as M5P model; two main steps tree growth and tree pruning are kept. The 

different parts of the two algorithms are marked as bold, italic and underlined.  

First, in split step for tree growth, when the stop criteria are met, the node will be 

marked as a leave node, in the M5P algorithm, the average of the target values will be 

calculated for this leave node, but in the HBDM-M5P algorithm, we will continue to 

build a HBDM model using the training cases at this leave node, if the prediction 

performance of the HBDM model is better than the constant average value, we will use 

the HBDM model as the model of the leave node. This is shown in the “split(node)” 

function.  

Second, in prune step, a model need be built for each interior/non-leaf node. In the 

original M5P algorithm, as mentioned in Chapter 8.1.1, the function linear_regression 

(node) can build a linear regression model for the current node restricted to the 

variables that are referenced by the subtree, and then greedily drops the variables if 

doing so decreases the prediction errors calculated using Equation (8-2). In another 

word, the linear regression models in the original M5P algorithm do not consider 

problems like whether the variables are significant or whether the signs of the variables 

are meaningful. For the M5P-HBDM algorithm, a HBDM model will be built for that 

node in a statistical approach based on all the variables except those that have been 

taken by the higher-level nodes in the path from the root to the current node. The 
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prediction performance of HBDM model as well as the p-values of the variables, the 

signs of the variables and so on will all be checked. Here we also loose the limitation of 

the candidate variables, not just including those referenced by the subtree of the current 

node, because (a) in the M5P tree growth step, all the possible variables have been 

tested to find the best ones for splitting the nodes, in that sense, HBDM model should 

also be built based all the available variables, and (b) some variables that are not chosen 

to split the node may be useful for HBDM model. For example, in Figure 8-1, the tree 

growth step has been finished, the black nodes are the interior nodes, and the green ones 

are the leaf nodes. Suppose there are seven processed binary variables in this dataset 

{V1, V2, V3, V4, V5, V6, V7}, now in the tree pruning step, for the node using V2, the 

original M5P algorithm builds the linear regression model based on {V2, V3, V4}, 

while the M5P-HBDM algorithm builds the HBDM model from {V2, V3, V4, V5, V6, 

V7}.  

 
Figure 8-1 an Example of Tree Pruning Step 
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Third, to calculate the estimated error of the model at the node of M5P-HBDM, the 

model of the node can be the constant value calculated by taking the average or the 

median of the target values, which will be the prediction of the traffic accident duration; 

the model of the node can also be a HBDM, the predictions of the target values could be 

the mean or media value of the AFT with a selected distribution shown in Equation 

(8-11). It is different with the prediction calculation using the constant average values 

or the linear regression models in the M5P tree, the detail will be introduced later.  

8.2 Modeling Datasets 

8.2.1 Virginia Traffic Accident Dataset 

This dataset includes the traffic accident records in 2005 and 2006 from a part of 

interstate highway I-64 in Norfolk, Virginia. At last, 602 accident records are picked 

out. For each record, 17 variables are used to describe it. These variables are 

summarized in Table 8-2. 

Table 8-2 Traffic Accident Variables in I-64 Dataset 

Variables  Values Type 

Season  

Spring (March, April, May); Summer (June, July, 

August); Autumn (September, October, November); 

Winter (December, January, February) 

Categorical  

Weekday Yes (Monday 2 AM-Friday 9 PM, except holidays); No Categorical  

Hour of the day  

Morning (7 AM-9 AM); Early afternoon (10 AM-12 

Noon); Afternoon (1 PM-3 PM); Evening rush (4 PM-6 

PM); Evening (7 PM-9 PM); Night (10 PM-6 AM)  

Categorical  

Weather 

conditions  
Clear; Rain; Snow Categorical 

Direction East Bound; West Bound Categorical 

Location code 
1; 2; 3; 4; 5; 6; 7; 8 ;9 (the codes mean different 

detectors) 
Categorical 
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Lane number at 

main road 
2; 3; 4 Categorical 

Road structure Highway; Ramp Categorical 

Detection 

source 

CCTV; FIRT; Phone Call; SSP; TMS Camera; VSP 

CAD; VSP Radio; Other 
Categorical 

Accident Type 
Car; Wrong Way; Truck/Tractor trailer; Motorcycle; car 

to facility; Others 
Categorical 

Moving to 

shoulder 
Yes; No Binary 

Fire  Yes; No Binary 

Roll over Yes; No Binary 

Number of 

vehicles 

involved 

0, 1, … Continuous 

Blocked lanes 0; 1; 2; 3; 4 Categorical 

Injured number 0, 1, … Continuous 

Duration 0, 1, … Continuous 

 

As can be seen, there are three temporal variables: season, weekday and hour of the 

day; one environmental variable: weather conditions; four geographic variables: 

direction, location code, lane number at main road and road structure; nine accident 

outcome variables: detection source, accident type, moving to shoulder, fire, roll over, 

number of vehicles involved, blocked lanes, injured number and duration. From the 

types of the variable values, we divide them into categorical variable, binary variable, 

and continuous variable.  

Among these traffic accident relevant variables, “location code” can be from “1” to 

“9”, this means the nearest traffic detector from the accident location, for example, “1” 

represents “W64-01”. “Detection source” is included because it is interesting to know 

whether the accident reporting way has an impact on the accident duration. “Accident 

type” may affect the way and equipment of the removal work on the accident parties, 
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which in turn affect the accident duration (Chung, 2010). At last, when the emergency 

team arrives at the scene, the first thing they will try to do is to move the involved 

vehicles to the shoulder, so “Moving to shoulder” is included because it is generally 

assumed that the accidents with involved vehicles moved to shoulder contribute to 

shorter duration. 

8.2.2 Buffalo Traffic Accident Detector 

This dataset has been previously described in Chapter 6.2. However, in this study, 

more variables are included, and some traffic accident records are deleted from this 

dataset because of the unclear values. At last 616 traffic accident records are available. 

Similarly, Table 8-3 summarizes these variables. 

Table 8-3 Traffic Accident Variables in I-190 Dataset 

Variables  Values Type 

Season  

Spring (March, April, May); Summer (June, July, 

August); Autumn (September, October, November); 

Winter (December, January, February) 

Categorical  

Weekday Yes (Monday 2 AM-Friday 9 PM, except holidays); No Categorical  

Hour of the 

day  

Morning (7 AM-9 AM); Early afternoon (10 AM-12 

Noon); Afternoon (1 PM-3 PM); Evening rush (4 PM-6 

PM); Evening (7 PM-9 PM); Night (10 PM-6 AM)  

Categorical  

Visibility 0-10 Categorical 

Wind speed 0 mph (miles per hour), …,  Continuous 

Weather 

conditions  
Clear; Rain; Snow Categorical 

Direction North Bound; South Bound Categorical 

Location code 
1; 2; …; 24; 25; 26 (the codes represent different exits at 

I-190) 
Categorical 

Lane number 

at  main road 
2; 3; >=3 Categorical 

Lane number 

at  ramp 
0 (away from exit); 1; 2 Categorical 

Ramp type On ramp; off ramp; highway to highway on ramp; Categorical 
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highway to highway off ramp 

Ramp layout 
On ramp, off ramp; off ramp, on ramp; only off ramp; 

only on ramp 
Categorical 

Road structure 
Before the exit; at the exit; beyond the exit; highway; 

ramp; bridge; before the bridge; after the bridge 
Categorical 

Accident Type 
Car; Wrong Way; Truck/Tractor trailer; Motorcycle; car 

to facility; Others 
Categorical 

Blocked lane  

N/A at main road; Left lane at main road; middle lane at 

main road; right lane at main road; left two at main road; 

right two at main road; left and right lanes at main road; 

all lanes at main road; N/A at ramp; left lane at ramp; 

right lane at ramp; all lanes at ramp 

Categorical 

Blocked lanes 

number at 

main road 

0; 1; 2; 3 Categorical 

Blocked lanes 

number at 

ramp 

0; 1; 2 Categorical 

Injured  Yes; No Binary 

Roll over Yes; No Binary 

Congestion Yes; No Binary 

Fire Yes; No Binary 

Number of 

vehicles 

involved 

0, 1, greater than or equal to 2 Categorical 

Duration 0, 1, … Continuous 

In this dataset, there are 23 variables in total. The three temporal variables are the 

same as those in the I-64 dataset: season, weekday and hour of the day. There are three 

environmental variables: visibility, wind speed and weather conditions; seven 

geographic variables: direction, location code, lane number on main road, lane number 

on ramp, ramp type, ramp layout and road structure; ten accident outcome variables: 

accident type, block lane index, blocked lanes number at main road, blocked lanes 

number at ramp, injured, roll over, congestion, fire, number of vehicles involved and 

clearance time.  
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Some variables in I-190 dataset also need be explained a little further. “Location 

code” here can be from “1” to “26”, this is the number of the nearest exit from the 

accident location. For example, “1” means the accident is closest to Exit 1 at I-190. 

“Ramp type” here can be “highway to highway on ramp” or “highway to highway off 

ramp”, this is because I-190 is connected to another two highways “I-290” and “I-90”. 

If the ramp is from the other highway to I-190, we classify the ramp as “highway to 

highway on ramp”. “Ramp layout” is the layout of the ramps at the exit. The relative 

location order of “on-ramp” and “off-ramp” may impact the accident duration. 

“Blocked lane” records the blocked lane at the main road or the ramp caused by the 

traffic accident if the relevant information can be extracted.  

Comparing the two datasets, we can see that the records have different emphasis on 

traffic accidents characteristics. The I-64 accident dataset records detailed information 

about moving to shoulder and detection source. In contrast, the I-190 accident dataset 

include more information like which lane the accident occurs at, whether it happens at 

main road or ramp and so on.  
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8.2.3 Accident Duration Characteristics 

 

Figure 8-2 Density Distributions of Accident Duration for I-64 and I-190 

In order to have a more direct understanding to the accident duration, Figure 8-2 

shows the density distributions of duration for the two datasets. It can be seen that both 

density distributions are skewed to the right.  

Table 8-4 Statistical Analysis of Accident Duration for I-64 and I-190 

Datasets  Mean Median Minimum Maximum Standard Deviation 

I-64 49.71 45 6 297 31.69 

I-190 42.28 36 1 305 32.05 

 

Besides that, Table 8-4 shows some basic statistical analysis for the two datasets. 

The mean and median traffic accident durations of I-64 dataset are a little longer than 

those of I-190 dataset, but its standard deviation is a little shorter than I-190.  
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8.3 Model Development and Comparison 

As mentioned before, the I-64 dataset includes 602 traffic accident records and the 

I-190 dataset includes 616 traffic accident records. For each dataset, the first 500 

records are used for model training, the rest records will be used for testing. 

8.3.1 M5P Tree 

In this study, a Matlab package called M5PrimeLab (Jekabsons, 2010) was used 

for M5P tree model development. This package provides different options to build the 

M5P tree. For both I-64 and I-190 training dataset, the smoothing parameter k in 

Equation (8-3) is set as the default value 15. Besides this parameter, the users also need 

decide two thresholds: the minimum number of training records at one node 𝑇𝐻1 and 

the ratio of the standard deviation 𝑇𝐻2 mentioned in section 8.1.1.    

Although the value of 𝑇𝐻1 can be set as low as 2, in order to build the linear 

regression models for the non-leaf nodes after the tree growth step, we don’t want the 

node has too few records. So here we tested 𝑇𝐻1 from the interval 5% to 10% of the 

total number of training cases, which is from 25 to 50.  

After a few times of experiments, for I-64 training dataset, 𝑇𝐻1 is set as 30, and 

𝑇𝐻2 is set as 0.95. The following Figure 8-3 shows the M5P tree model for I-64 dataset. 
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Figure 8-3 M5P Tree Model for I-64 Training Dataset 

As can be seen in Figure 8-3, for some leaf nodes, there are a constant value and a 

number in the parenthesis, which are the averaged value and the number of the training 

cases in that node; there are also two linear models in two leaf nodes, LM1 and LM2. In 

the tree pruning step they replaced the original sub trees covered by the red rectangles. 

The detail of LM1 and LM2 are listed as following. Here the two linear regression 

models are two constants. From section 8.1.1, it’s known that to build a linear 

regression model for an interior node, M5P uses a greedy search to remove variables 

that can’t improve the predictions for the cases going through that node, so sometimes 
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the linear model can just be a constant. The number in the parentheses is the number of 

training cases at that leave.  

LM1: Duration=62.46 minutes (103 cases); 

LM2: Duration=52.49 minutes (209 cases); 

First, from the splitting rule at the root node, it’s worth noting that if the involved 

vehicles can be moved to the shoulder once the accidents happen, the average accident 

duration is only 37 minutes, that is much lower that all the other scenarios. Second, if 

the involved vehicles were not moved to shoulder, and there was someone injured, 

LM1 shows the estimated accident duration can be as long as 62.46 minutes. If we 

check the subtree replaced by LM1, we know if the detection source was FIRT or Cell 

Phone or Camera, the estimated duration will be longer than the scenario when the 

accident was detected by the other ways. Third, when the involved vehicles were not 

moved to shoulder but nobody was injured, if the lane number at main road is less than 

or equal to 2, the estimated duration is 43.45 minutes, which is shorter than the cases 

when the accidents happen at main road with lane number greater than 2, for which the 

duration is 52.49 minutes shown by LM2. This may be because there is lighter traffic 

for the main road with less lane number. Besides that, the subtree replaced by LM2 

shows that when the hour of the day is night (10 PM-6 AM), the accidents need more 

time to be clear, 61.72 minutes, in contract to 50.03 minutes for the other time intervals.  

Similarly, for I-190 accident dataset, through a few runs of testing, 𝑇𝐻1 is set as 

35, and 𝑇𝐻2 is set as 0.75. Figure 8-4 shows that the M5P tree model for this training 

dataset.  
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Figure 8-4 M5P Tree Model for I-190 Training Dataset 

In Figure 8-4, for the original tree before pruning (red covered), first we can see 

that if the accident was involved with a truck, the estimated duration is 64.78 minutes, 

which is the longest. Second, if the accident has nothing to do with a truck, and it is near 

the ramps, the duration is predicted as 38.48 minutes, while if it happens away from the 

on-ramps and off-ramps at the highway, and the hour of the day is morning (7 AM-9 

AM), early afternoon (10 AM-12 Noon) or evening rush (4 PM-6 PM), the duration is 

estimated as 54.55 minutes, which is much longer than 33.3 minutes for the other time 

intervals. This is understandable because more traffic are going through the ramps 
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when it is rush hours like morning, early afternoon and evening rush, so the accident 

duration is increased a lot.  

We can also see that this is an extreme situation when the whole grown M5P tree is 

replaced by one linear regression model LM1 in the tree pruning step, which is listed as 

following. The underline part is the independent variables of the linear models, for the 

value of the independent variable including “?”, the value is 1 if the judgment in the 

variable name is true, otherwise it is 0. 

LM1: Duration=37.95+6.92*Hour of the day= Morning (7 AM-9 AM) or Early 

afternoon (10 AM-12 Noon) or Evening rush (4 PM-6 PM)? (500 cases); 

LM1 shows that the estimated duration of an accident is at least 37.95 minutes, and 

there is only one independent variable,  which is again “hour of the day=morning (7 

AM-9 AM) or early afternoon (10 AM-12 Noon) or evening rush (4 PM-6 PM)”. The 

duration will be increased by 6.92 minutes if it is one of these three time intervals. 

In conclusion, although the tree pruning step is conducted when the linear 

regression model can bring the lower estimated error calculated in Equation (8-2), for 

both the training datasets, it make the model more hard to be explained. For I-64 dataset, 

the two linear regression models are both constants. For I-190 dataset, the linear 

regression model replaces the whole original tree and only has one independent 

variable. So in this study one drawback of tree pruning for M5P tree is that it’s hard to 

tell which variable has an impact on the duration. 
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8.3.2 Hazard-based Duration Model 

Before applying HBDM models, there are two problems, first, a distribution form 

needs be specified for 𝜏 in Equation (8-10); second, the significant explanatory 

variables 𝑥𝑖 need be determined. This paper takes the following four steps with the 

help of STATA software to solve these problems (Alkaabi et al., 2011; Collett, 2003):  

1. Fit the models using exponential, weibull, log-normal, log-logistic and generalized 

gamma models with no explanatory variables. Record the log likelihood for each 

model.  

2. For each model, add the explanatory variable from the candidate variables one by 

one, test the new model, and select the one which can increase the log likelihood the 

most by comparing with the original model as the current model. 

3. For each model, repeating Step 2 by adding the variable one by one from the rest 

candidate variables, stop until no variable can increase the log likelihood.  

4. For each model, calculate the value of the Akaike information criterion (AIC), which 

can be calculated as following (Alkaabi et al., 2011; Cleves et al., 2008): 

𝐴𝐼𝐶 = −2𝑙𝑛𝐿 + 2(𝑘 + 𝑐)              (8-12) 

where, 𝐿 is the likelihood; 

𝑘 is the number of model covariates; 

and c is the number of model-specific distributional parameters.  

Finally select the model with the lowest value of AIC as the HBDM model.  
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The AIC values of HBDMs for I-64 and I-190 are listed in Table 8-5, as can be 

seen, no matter for I-64 or I-190 dataset, the HBDM model with log-normal distribution 

has the lowest AIC. So it is employed to analyze the accident duration in this paper. 

This is consistent with the other studies (Golob et al.,1987; Chung, 2010).  

Table 8-5 AIC Values of HBDMs for I-64 and I-190 Training Datasets 

Model  
I-64 dataset I-190 dataset 

-2lnL k c AIC -2lnL k c AIC 

Exponential  1169.42 9 1 1179.42 1223.04 2 1 1226.04 

Weibull 952.92 9 2 963.92 1105.78 9 2 1116.78 

Log-normal 949.08 6 2 957.08 1107.72 4 2 1113.72 

Log-logistic 954.62 8 2 964.62 1186.34 9 2 1197.34 

Generalized gamma 957.24 5 3 965.24 1185.3 9 3 1197.3 

 

From Equation (8-11), we know for the log-normal regression AFT model, 𝜏 is 

distributed as log-normal with parameters (𝛽0, 𝜎). To make it more clear, the 

log-normal AFT function is shown in Equation (8-13) as following (Cleves et al., 

2008): 

𝑙𝑛(𝑑𝑖) = 𝛽0 + 𝑥𝑖𝛽 + 𝜇               (8-13) 

where, 𝜇 follows a standard normal distribution with mean 0 and standard deviation 𝜎. 

For I-64 dataset, Table 8-6 shows the estimated coefficients of explanatory 

variables, standard error, P-value, and percentage change (%) for the log-normal AFT 

model of I-64 dataset. According to Equation (8-10), percentage change (%) can be 

calculated by taking the exponent of the estimated coefficient of the significant variable. 

For example, the coefficient of variable “night” in Table 8-6 has a positive value 0.19, 

its exponential value is exp(0.19)=1.21, which can be interpreted as the duration will be 
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21% longer when it is night; if the coefficient of variable has a negative value, for 

example, the coefficient of “move to shoulder” in Table 8-6 is -0.36, its exponential 

value is exp(-0.36)=0.70, this means the duration will be about 30% shorter if the 

vehicles have been moved to shoulder. In one word, percentage change (%) represents 

the duration change due to one unit change of the variable (positive means increasing 

and negative means decreasing).  

Table 8-6 Log-normal AFT Models on I-64 Training Dataset 

Variable  Coefficient Standard 

Error 

P 

value 

Percentage Change 

(%) 

Night 0.19 0.07 0.016 21% 

Move to shoulder? -0.36 0.07 0.000 -30% 

Road structure 0.26 0.10 0.017 30% 

Injured Number 0.22 0.04 0.000 25% 

Detection=7 (Virginia 

State  

Police Radio) 

-0.16 0.08 0.025 -15% 

Roll over 0.51 0.25 0.041 67% 

𝛽0 3.41 0.11 0  

𝜎 0.62 0.02   

As shown in Table 8-6, the variables that can increase the traffic accident duration 

include the night (10 PM-6 AM), road structure (highway=0, ramp=1), injured number 

and roll over. If the accidents happen at night, the duration will be increased by 21%; if 

the accidents happen near ramps, the accident duration will be 30% longer; every time 

one more person gets injured, the duration will be increased by 25%; and at last if the 

vehicles in the accidents roll over, this will cause the maximum of increase with 67%. 

In contrast, moving to shoulder can decrease the accident duration by 30%, and if the 
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detection source of the accident is 7 (Virginia State Police Radio), the duration will 

have a decrease of 15%.  

Similarly, Table 8-7 lists the coefficients of significant variables, and the 

corresponding standard error, P-value, and percentage change (%) for the log-normal 

AFT model of I-190 training dataset. 

Table 8-7 Log-normal AFT Models on I-190 Training Dataset 

Variable  Coefficient Standard Error P value Percentage Change (%) 

afternoon -0.16 0.10 0.007 -15% 

Roll Over? 0.83 0.26 0.001 129% 

Vehicle number 0.21 0.10 0.050 23% 

𝛽0 3.06 0.20 0  

𝜎 0.75 0.02   

As can be seen, the only variable with negative percentage change (%) is afternoon 

(1 PM-3PM). If the accident happens at this time interval, the duration will be 15% 

shorter. Like the results for I-64 training dataset, the rolling over of the involved 

vehicles can also largely increase the accident duration by 129%.  The duration of the 

accident will be increased by 23% with the increase of involved vehicle number.  

8.3.3 M5P-HBDM Model 

With the process described in Chapter 8.1.3, for I-64 training dataset, the 

M5P-HBDM model is built as shown in Figure 8-5.  
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Figure 8-5 M5P-HBDM Model for I-64 Training Dataset 

From Figure 8-5, in the M5P-HBDM model of I-64 training dataset, we can find 

only the splitting rule “moving to shoulder?” at the root node is kept. The HBDM1 

replaces the subtree for the accidents when the involved vehicles are moved to the 

shoulder. And for the accidents when the vehicles are not moved to the shoulder, 

HBDM2 is built. The AIC test shows the log-normal distribution is still the best 

assumption for the accelerated failure time functions of HBDM1 and HBDM2. Table 

8-8 shows the relevant parameters for the two models.  

Table 8-8 Log-normal AFT Models in M5P-HBDM of I-64 Training Dataset 

Branches Variable  Coefficient Standard 

Error 

P 

value 

Percentage 

Change (%) 

HBDM1 

(96 

cases) 

𝛽0 3.36 0.08 0  

𝜎 0.74 0.05   

HBDM2 

(404 

cases) 

night 0.14 0.07 0.06 15% 

Blocked lane number 0.06 0.04 0.007 6% 

Road structure 0.27 0.10 0.005 31% 

Injured Number 0.18 0.05 0.000 20% 

Detection= 5 (TMS 

Camera)? 

0.06 0.07 0.007 6% 

Detection= 7 

(Virginia State Police 

-0.13 0.09 0.008 -12% 
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Radio)? 

Roll over? 0.54 0.27 0.05 72% 

Fire or not? 0.11 0.09 0.02 12% 

𝛽0 3.31 0.12 0  

𝜎 0.60 0.02   

For the log-normal AFT model HBDM1 based on 96 cases, in which the involved 

vehicles are moved to the shoulder, no significant variables are found, only the constant 

𝛽0 and the sigma in the log-normal distribution are estimated.  

For the HBDM2 based on 404 cases when the involved vehicles are not moved to 

the shoulder, we can see most of the significant variables are the same as the HBDM 

based on the whole I-64 dataset. Except that, the variables “Move to shoulder” is 

missing because it is a splitting rule at the root node in this M5P-HBDM. We can also 

find that three more variables “blocked lane number”, “detection=5” (TMS camera) 

and “fire or not” are added. This tells that “blocked lane number” becomes a significant 

variable for cases when the vehicles are not moved to the shoulder, and one more lane 

being blocked can increase the accident duration by 6%. The detection source 

“detection=5” (TMS camera) verifies that the accidents detected by camera have a 

longer duration which has been shown in the M5P tree model before pruning in Figure 

8-3. One more observation is that if the vehicle in the traffic accident is on fire, the 

duration will be increased by 12%.  

Similarly, the M5P-HBDM of I-190 dataset is shown in Figure 8-6. Comparing 

with the M5P tree before pruning in Figure 8-4, HBDM1 replace the interior node 

“Hour of the day = Morning (7 AM-9 AM) or Early afternoon (10 AM-12 Noon) or 

Evening rush (4 PM-6 PM)”, the leave node with 360 cases is replaced with HBDM2. 
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For the branch with 37 cases in which the traffic accident is involved with a truck, the 

leaf node is kept the same as the original M5P tree model after tree growth. This is 

because no HBDMs are found to bring the lower estimated error than the constant value 

at the leaf. It’s worth noting that in Figure 8-4 this constant value is 64.78 minutes, 

which is the mean value of the 37 cases, here the 44 minutes is the median value of the 

37 cases, which we find is more accurate based on the estimated error in the building 

process of M5P-HBDM.  

 

Figure 8-6 M5P-HBDM Model for I-190 Training Dataset 

For both HBDM1 and HBDM2, the AIC test still shows they should choose the 

log-normal distribution as the best assumption for the AFT functions. The relevant 

parameters of HBDM1 and HBDM2 are shown in Table 8-9.  

Table 8-9 Log-normal AFT Models in M5P-HBDM of I-190 Training Dataset 
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Branches Variable  Coefficient Standard 

Error 

P 

value 

Percentage 

Change (%) 

HBDM1 

(103 cases) 

Evening Rush (4 

PM-6 PM) 

0.44 0.22 0.05 55% 

𝛽0 3.38 0.10 0  

𝜎 0.87 0.06   

HBDM2 

(360 cases) 

Morning (7 AM-9 

AM) 

0.06 0.11 0.02 6% 

Afternoon (1 PM-3 

PM) 

-0.21 0.11 0.05 -19% 

Vehicle Number 0.32 0.14 0.007 38% 

Location=Exit 16 0.34 0.14 0.019 40% 

Main Road Lane 

Number=2 

-0.90 0.67 0.02 -59% 

Main Road Lane 

Number=3 

-0.96 0.67 0.01 -62% 

𝛽0 3.72 0.73 0  

𝜎 0.67 0.02   

From Table 8-9, we can see that for HBDM1 based on 96 cases when the accidents 

happen away from the ramps, if it is evening rush (4 PM-6 PM), the accident duration 

will be increased by 55%.  Recall that in the original M5P tree before pruning in 

Figure 8-4, the splitting rule “Hour of the day = Morning (7 AM-9 AM) or Early 

afternoon (10 AM-12 Noon) or Evening rush (4 PM-6 PM)?” at the interior node also 

shows that the accident that happens at these time intervals will experience a higher 

duration.  

Comparing the HBDM2 based on the 360 cases with the HBDM based on the 

whole I-190 dataset, variable “roll over” is missing. Variable “morning” (7 am-9 am) is 

added, as well as the other three variables “Main Road Lane Number=2”, “Main Road 

Lane Number=3” and “Location=Exit 16”.  
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First, if accidents happen in the “morning” (7 AM-9 AM), the duration will be 

increased by 6%. Second, through comparison of the percentage changes caused by 

“Main Road Lane Number=2” and “Main Road Lane Number=3”, we can find an 

interesting conclusion: for the non-truck involved accidents that happen close to the 

ramps, the main road with three lanes can reduce the accident duration by 62%, which 

is a little larger than 59%, under the scenario when the main road close to the ramps has 

two lanes. Although the main road with three lanes may mean there are more traffic 

going through the ramp than the main road with two lanes, it’s also possible that a wider 

main road can provide more space for the accident clearance work and therefore the 

duration will be shorter. This need be verified when the traffic volume data are 

available.    

The last thing need be noting here is that if the accident happens at the Exit 16, it 

can also largely increase the duration by 40%. This may be because Exit 16 is the 

interchange of I-190 and I-290. Our previous research in Chapter 6.3.2 also shows that 

Exit 16 is one of the hotspots at I-190, which means the place where the ratio of the 

number of accidents at that particular spot, to the number of accidents on the whole 

transportation system under consideration is greater than a user defined threshold. 

8.3.4 Significant Variables Comparison 

In the process of model building, we can find there are different significant 

variables found in the M5P, HBDM and M5P-HBDM models. This section will 
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compare these significant variables among different models for both I-64 and I-190 

training dataset and analyze how the traffic accident duration can be reduced.  

Table 8-10 Significant Variables in M5P, HBDM and M5P-HBDM of I-64 

Training Dataset 

I-64 Training Dataset M5P HBDM M5P-HBDM 

Lane Number at Main Road <=2? X (-)   

Move to Shoulder? X (-) X (-) R 

Injured Number X (+) X (+) X (+) 

Road Structure (0 for highway, 1 for ramp)  X (+) X (+) 

Hour of the day=night?  X (+) X (+) 

Roll Over?  X (+) X (+) 

Detection Source=Virginia State Police Radio  X (-) X (-) 

Detection Source= Camera?   X (+) 

Blocked lane number at main road   X (+) 

Fire or not?   X (+) 

 

Table 8-10 lists all the significant variables of the M5P, HBDM and M5P-HBDM 

for I-64 training dataset. As can be seen, the significant variables for the corresponding 

model are marked with “X”, and the sign in the parenthesis represents whether that 

variable can increase or reduce the accident duration. “R” represents it’s a splitting rule 

at the M5P-HBDM model.  

First we can see that M5P only finds three significant variables, HBDM utilizes six 

significant variables, while eight significant variables and one splitting rule exist in 

M5P-HBDM model. Two significant variables “moving to shoulder?” and “injured 

number” are selected by all the three models.  
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Second, the variable “hour of the day=night” gets selected by HBDM and 

M5P-HBDM, and it can increase the accident duration. This tells the clearance work 

need be strengthened for the traffic accidents at night, maybe more staffs are necessary.  

Third, besides “moving to shoulder”, the detection of traffic accident by Virginia State 

Police Radio can also reduce the accident duration. This may be because the police can 

report the accident and make response more quickly, comparing with the TMS camera 

detection. This is useful when it can be combined with a traffic accident risk prediction 

model. When the risk is high like a snowy day, more police officers are needed for 

highway patrol.  

Table 8-11 Significant Variables in M5P, HBDM and M5P-HBDM of I-190 

Training Dataset 

I-190 Training Dataset M5P HBDM M5P-HBDM 

Hour of the day= Morning (7 AM-9 AM) X (+)  X (+) 

Hour of the day= Early afternoon (10 AM-12 Noon) X (+)   

Hour of the day= Evening rush (4 PM-6 PM) X (+)  X (+) 

Hour of the day= afternoon (1 PM-3 PM)  X (-) X (-) 

Vehicle Number  X (+) X (+) 

Roll Over?  X (+) X (+) 

Location=Exit 16   X (+) 

Lane Number at Main Road =2   X (-) 

Lane Number at Main Road =3   X (-) 

Accident Type=Truck?    R 

Away from the ramps?   R 

 

Similarly, the significant variables in M5P, HBDM and M5P-HBDM of I-190 

training dataset are summarized in Table 8-11. For I-190 training dataset, first 

M5P-HBDM selects eight significant variables and two splitting rules, following that, 

HBDM and M5P both have three significant variables. There are no common 
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significant variables in these three models. Second, for the variables relevant with hour 

of the day, during the peak commute hours (7 AM-9 AM and 4 PM-6 PM) and lunch 

break hours (10 AM-12 Noon), the accident duration will be longer, while at the 

non-peak hours (1 PM-3 PM), the duration will be shorter.  

So obviously, for both I-64 and I-190 training datasets, the number of significant 

variables in M5P-HBDM model is the maximum. Recall that in tree growth step, the 

splitting rule at the nodes of M5P tree is to find the variable that can bring the maximum 

reduction of the standard deviation of the target value (accident duration), in this way 

the data heterogeneity is alleviated, and more unobserved factors that impact the traffic 

accident duration can be captured. 

8.3.5 Duration Prediction Comparison 

As mentioned before, I-64 dataset has a testing dataset including 102 records, and 

I-190 has a testing dataset including 116 records. This section uses the previous built 

M5P, HBDM and M5P-HBDM models to make predictions for the two testing datasets. 

For the prediction performance evaluation, the Mean Absolute Percentage Error 

(MAPE) is a widely used measure to assess the accuracy of the models developed. 

MAPE can be calculated as follows: 

MAPE =
1

𝑛
∑ |

𝐴𝑖−𝑃𝑖

𝐴𝑖
|𝑛

𝑖=1                (8-14) 

where, 𝐴𝑖 is the i
th

 actual value, 𝑃𝑖 is the i
th

 predicted value.  

To calculate the predictions, for M5P tree model, each testing record will be 

directed into the corresponding leave and the linear functions or the mean target values 
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at that leave will be used to estimate the accident duration. For HBDMs, the mean and 

the median values of the survival time (accident duration) for the log-normal AFT 

models can be calculated as the predictions as Equation (8-15) and (8-16) after the 

relevant parameters and variable coefficients in the log-normal AFT models are 

estimated.  

median(𝑑𝑖) = exp (𝛽0 + 𝑥𝑖𝛽)              (8-15) 

mean(𝑑𝑖) = exp (𝛽0 + 𝑥𝑖𝛽 + 𝜎2/2)            (8-16) 

For M5P-HBDMs, similarly as M5P, the testing record is directed into the 

corresponding leave. If there is no log-normal AFT model at the leave, as mentioned 

earlier in Chapter 8.3.3, we use the median value of the cases at that node as the 

prediction instead of using the mean value as M5P tree does. Otherwise, if there is a 

log-normal AFT model at the corresponding leave, the predictions can be gotten by 

using the same way in HBDMs. Note that the mean and median values can vary for 

different testing records when they have different values for the significant variables in 

the AFT model, however, if there are no significant variables found in AFT model, for 

example, HBDM1 in M5P-HBDM for I-64 dataset, the mean and the median values for 

these testing records will be the same.  

It’s worth mentioning that in this study experiments show that the median values of 

the survival time always have better performances as the predictions than the mean 

values for both HBDMs and M5P-HBDMs. So the median values are used to calculate 

the MAPEs for HBDMs and M5P-HBDMs.  
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Finally, the MAPEs of M5P tree model, HBDM model and the M5P-HBDM model 

for the two testing datasets can be calculated in the following Table 8-12. 

Table 8-12 MAPEs of M5P Tree, HBDM Model and M5P-HBDM Model for I-64 

and I-190 Testing Datasets 

Datasets M5P  HBDM M5P-HBDM 

I-64 48.69% 38.32% 36.20% 

I-190 38.45% 33.61% 31.87% 

It can be seen that for I-64 testing dataset, the lowest MAPE is 36.20% given by 

M5P-HBDM, HBDM is the second best model to predict the traffic accident duration 

with a MAPE of 38.32%, while the MAPE of M5P is as high as 48.69%. For I-190 

testing dataset, M5P-HBDM still has the best prediction performance with MAPE 

equal to 31.87%, which is followed by HBDM and M5P. We can also see that no matter 

for the I-64 or the I-190 testing dataset, the M5P-HBDM model performs the best, the 

MAPE of HBDM is about 2% higher than M5P-HBDM, while M5P performs the worst 

with an obvious highest MAPE.  

Considering that the M5P tree model from the study (Zhan et al., 2011) has a 

MAPE of 42.70%, and the traffic accident duration prediction using HBDM from 

literature (Chung, 2010) has a MAPE of 47%, our results are comparable with these 

previous researches.   

It is also interesting to know the performances of the three models for different 

levels of accident duration times. This paper divided the durations into four different 

levels: 0 minutes-20 minutes, 21 minutes-40 minutes, 41 minutes-60 minutes and more 

than 60 minutes. The proportions of each level and the MAPEs of each model for I-64 

and I-190 testing datasets are shown in Table 8-13. First, for I-64 testing datasets, we 



281 

 

can see M5P-HBDM has the lowest MAPE for 0 minute - 20 minutes, although this 

level only occupies a small portion of the whole test dataset (3.5%); for 21 minutes-40 

minutes level, which occupies 46.5% of the testing dataset, M5P-HBDM still performs 

better than M5P and HBDM; for 41 minutes-60 minutes level and more than 60 

minutes level, M5P tree performs the best with MAPE equal to 11.28% and 40.20% 

separately. Second, for the I-190 testing dataset, for the lower levels 0 minute - 20 

minutes and 21 minutes - 40 minutes, HBDM performs the best with MAPE as 78.72% 

and 14.64% correspondingly. For the higher levels 41 minutes - 60 minutes and more 

than 60 minutes, M5P again performs the best. M5P-HBDM always performs the 

second best for the four levels in this testing dataset. Third, for both testing datasets, all 

these three models have high MAPEs for the levels 0 minute - 20 minutes and more 

than 60 minutes, and they have relatively better performances for the middle levels 21 

minutes - 40 minutes and 41 minutes - 60 minutes.  

Table 8-13 Performances of M5P, HBDM and M5P-HBDM for Different Actual 

Duration Intervals of I-64 and I-190 Testing Datasets 

Datasets Actual Duration levels  Proportion M5P HBDM M5P-HBDM 

I-64 0 min-20 min  3.5% 166.35% 98.12% 89.48% 

 21 min-40 min  46.5% 59.84% 36.97% 32.43% 

 41 min-60 min  17.4% 11.28% 16.25% 18.63% 

 More than 60 min  32.6% 40.20% 45.67% 45.58% 

I-190 0 min-20 min 7.5% 135.99% 78.72% 91.24% 

 21 min-40 min 39.2% 36.73% 14.64% 23.33% 

 41 min-60 min 34.6% 14.25% 31.30% 20.00% 

 More than 60 min 18.7% 47.83% 59.69% 48.03% 

In order to further compare the three models, another measure of prediction 

performance used in literature (Zhan et al., 2011; Chung, 2010; Smith and Smith, 2001) 

was also compared in this research. The percentages of predictions that are within a 
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certain tolerance of actual duration times are calculated for each model and each dataset. 

In this study, five different tolerances are tested: 10 minutes, 20 minutes, 30 minutes, 

40 minutes and 50 minutes. The mean absolute difference between the predictions and 

the actual values are also listed. All the results are shown in Table 8-14. 

Table 8-14 Percentage of Predictions Having a Difference within a Certain 

Tolerance and Mean Absolute Differences of M5P Tree, HBDM Model and 

M5P-HBDM Model for I-64 and I-190 Testing Datasets 

Datasets Absolute Difference  M5P HBDM M5P-HBDM 

I-64 <=10 min 27.91% 39.53% 40.70% 

 <=20 min 55.81% 66.28% 68.60% 

 <=30 min 72.09% 76.74% 74.42% 

 <=40 min 89.53% 82.56% 83.72% 

 <=50 min 93.02% 90.70% 89.53% 

 Mean (min) 24.97 23.08 22.68 

I-190 <=10 min 43.93% 44.86% 49.53% 

 <=20 min 71.96% 73.83% 79.44% 

 <=30 min 87.85% 82.24% 88.78% 

 <=40 min 91.59% 87.85% 88.78% 

 <=50 min 92.52% 91.56% 94.39% 

 Mean (min) 17.24 18.73 16.23 

 

Table 8-14 shows that for I-64 testing dataset, 40.70% of predictions of 

M5P-HBDM model have the absolute difference less than or equal to 10 minutes, and 

68.60% of predictions of M5P-HBDM model have the absolute difference less than or 

equal to 20 minutes, which are both the highest in the corresponding group comparing 

with M5P and HBDM. With the tolerance threshold equal to 50 minutes, among the 

three models, the absolute difference of 93.02% of M5P tree predictions is within the 

tolerance, which is the highest. Besides that, M5P-HBDM model has the lowest mean 

absolute difference which is 22.68 minutes, followed by HBDM and M5P.  
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For I-190 testing dataset, the absolute difference of almost half of predictions 

(49.53%) made by M5P-HBDM is less than or equal to 10 minutes, which is the highest. 

The percentages of predictions of the three models that have an absolute difference 

within 20 minutes are all above 70%, but M5P-HBDM again has the highest percentage 

of 79.44%. Even when the tolerance is set as 50 minutes, M5P-HBDM still has the 

maximum number of predictions which have the absolute difference within 50 minutes 

with a percentage of 94.39%. For the mean absolute difference, the lowest one is 16.23 

minutes maintained by M5P-HBDM model, M5P has the second lowest mean absolute 

difference, while HBDM has the largest mean absolute difference.  

8.4 Conclusions 

In this traffic accident duration prediction study, a new algorithm was designed to 

build a M5P-HBDM on the basis of the traditional M5P tree algorithm. The leaves of 

the M5P-HBDM can be an AFT model, which is different as the linear regression 

model in the M5P tree model. For the two traffic accident duration datasets in this study, 

I-64, Virginia and I-190, Buffalo, each of them was split into a training dataset and a 

testing dataset. The M5P-HBDM model, M5P tree and HBDM were built on each 

training dataset, and the significant variables in these models were compared and 

analyzed. Then for each testing dataset, the three models were used to predict the traffic 

accident duration. The prediction performances of the three models were compared 

through the following three aspects: the MAPEs of the predictions, the MAPEs for 
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different duration levels, and the percentages of predictions with absolute difference 

within different tolerances. A few main conclusions are summarized as following:  

(1) In tree growth step of M5P, for each interior node, all the possible splitting 

rules are tested and the one that can maximize the reduction of the standard 

deviation is selected. M5P-HBDM keeps this ability which can reduce the data 

heterogeneity through the splitting rules at the nodes. Through the comparison 

of significant variables found by the three models for each training dataset, 

M5P-HBDM model can reveal more factors that may affect accident durations 

than the M5P and HBDM model. This is also consistent with our previous 

research that through dataset grouping and clustering the data heterogeneity 

can be reduced.  

(2) M5P-HBDM can build an AFT model as its leave.  The AFT model does not 

assume the accident durations follow the normal distribution as the linear 

regression model in M5P model assumes. The Weibull distribution, 

log-normal distribution, log-logistics distribution and so on can all be tested. 

In this study, we found the log-normal AFT model is the best choice based on 

the AIC values.  

(3) The comparison of the prediction performances of the three models shows that, 

no matter for the I-64 or I-190 testing dataset, the M5P-HBDM always has the 

lowest overall MAPE. M5P-HBDM also has a promising performance for 

different duration levels. The percentage of predictions with absolute different 
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less than or equal to 20 minutes given by M5P-HBDM is also the highest for 

each testing dataset.  
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CHAPTER 9 DISSERTATION CONTRIBUTION AND FUTURE 

RESEARCH 

This doctoral research proposes an integrative approach for the emerging field 

data science applications in intelligent transportation systems (ITS) data analysis. The 

integrative approach can be conducted from the aspect of ITS data analysis process, 

such as the integration of data “width” decreasing and model development. It can also 

be conducted from the aspect of ITS modeling, combining various modeling 

techniques such as statistical models, data mining, machine learning, analytical 

models, numerical models and so on to solve one problem. With the rapid 

development of data science and the idea of integrative approach, novel models and 

processes can be developed for advanced and more efficient ITS data analysis.    

The integrative approach is applied and tested on two ITS data analysis case 

studies to improve the efficiency and safety of transportation systems, namely the 

border crossing delay prediction and the traffic accident data analysis. The first case 

study includes two subtopics of short-term traffic volume prediction and multi-server 

queueing model, and the second case study includes three subtopics of traffic accident 

hotspots analysis, real-time traffic accident risk prediction and traffic accident 

duration prediction.  

 The border crossing delay prediction case study is described in Chapter 3 through 

5, consisting of the discussions about a short-term traffic volume prediction model, a 

queueing model, and a border crossing android smartphone application. Chapter 3 has 
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documented all the work relevant to short-term traffic volume prediction, such as the 

integration of a dataset grouping method with the model development process. The 

combined SARIMA and SVR model was applied to predict the border crossing traffic 

for Peace Bridge, Buffalo, New York. Besides this, a novel model called DTW-SPN 

was also proposed for border crossing traffic prediction. Chapter 3 also suggested the 

ITS data analysis step called the data diagnosis to be integrated with the model 

development process. Based on the statistical measures of multiple datasets, the 

performances of different short-term traffic volume prediction models are compared. 

Chapter 4 discussed the heuristic transient solutions for two types of multi-sever 

queueing models, namely the 𝑀/𝐸𝑘/𝑛 model and the BMAP/PH/n model. The 

𝑀/𝐸𝑘/𝑛 queueing model is developed based on the real observations at the Peace 

Bridge border crossing, and the BMAP/PH/n is a more general model that can be 

applied to other border crossings, as well as other similar situations such as toll 

collection stations. The results of the analytical queueing model 𝑀/𝐸𝑘/𝑛 were 

compared with the results of VISSIM traffic simulation model for Peace Bridge, and 

sensitivity analysis were performed and incorporated to derive optimal management 

strategies for the U.S. customs and border protection agencies. Chapter 5 introduced an 

android smartphone app that was designed to collect, share and predict waiting times 

for the Niagara Frontier border crossings. It offers the users three types of waiting times, 

namely the current waiting times collected at the crossings, the historical waiting times, 

and the future waiting times predicted for the next 15 minutes and updated every five 

minutes.  
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 Chapter 6 through 8 are relevant to the second case study, i.e., traffic accident data 

analysis. In Chapter 6, a community detection algorithm in graph and a network 

analysis technique called the modularity optimization method were applied to cluster 

the traffic accident dataset. The association rules learned from each data cluster 

provided interesting insight about the characteristics of accidents, such as where they 

tend to occur and the influential factors of the incident clearance time. Chapter 7 

presented a frequent pattern (FP) tree based new variable selection method and a new 

variable importance score called Relative Object Purity Ratio (ROPR) for real-time 

traffic accident risk prediction. The k-NN and Bayesian network models were 

developed and tested for three data scenarios such as using all variables, using the 

important variables selected by FP tree, and using the important variables selected by 

random forest. The results of experiments show the effectiveness of the FP tree based 

variable selection method. Chapter 8 proposed a new combined model M5P-HBDM to 

predict the traffic accident durations. Instead of pruning the tree with linear regression 

models after tree growth in the original M5P tree algorithm, M5P-HBDM prunes the 

tree with HBDMs. The main advantages of the combined M5P-HBDM model are that 

M5P decreases the data heterogeneity by using the splitting conditions at the nodes and 

that HBDM does not require the accident durations to be normally distributed as 

assumed by linear regression models. Due to the two advantages, M5P-HBDM can 

identify more significant variables than the M5P tree method or HBDMs, and it 

outperforms both M5P and HBDM in traffic accident duration prediction.  
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 The main contributions of this dissertation are summarized from two aspects: ITS 

data analysis process and ITS data analysis models. From the aspect of the ITS data 

analysis process shown in Chapter 1.3.1:  

(1) The integration of data “width” decreasing with model development. 

In Chapter 7, a novel variable selection algorithm based on FP tree for 

real-time traffic accident risk prediction was proposed. The importance score of 

each explanatory variable in the dataset is calculated and ranked through the 

calculation of the Relative Object Purity Ratio (ROPR) for the corresponding 

frequent patterns. The accident risk prediction models based on FP tree variable 

selection outperform the models based on all variables and the ones based on 

random forest, regardless of the settings of the prediction models such as the 

selection of k for k-NN, the NED number selected for Bayesian network, and the 

pre-crash time period used in the datasets. Being insensitive to the selection of the 

models’ parameters is a good quality that the FP tree variable selection algorithm 

appears to possess. 

(2) The integration of data “depth” decreasing with model development. 

a. Grouping data and developing a separate prediction model for each data 

group prove to significantly improve the accuracy of border crossing short-term 

volume forecasts as discussed in Chapter 3.1. In the border crossing traffic 

volume prediction study, a convenient classification scheme involved dividing 

observation days into the following six groups: weekdays excluding Fridays, 

Fridays, Saturdays, Sundays, game days, and holidays. 
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b. From Chapter 6, for traffic accident dataset clustering, the community 

detection algorithm appears to do an excellent job in clustering the traffic accident 

data into well-defined clusters to decrease the data heterogeneity. Clustering the 

data first before running the association rule learning algorithm appears to be an 

important step to significantly improve the quality of the insights to be gained from 

the rules extracted. 

(3) Integration of Data Diagnosis and Short-term Traffic Volume Model 

Development 

The data diagnosis is to assess the overall predictability of a dataset through 

learning the complexity, nonlinearity and long range dependency of the data. As 

shown in Chapter 3.2, by correlating the performances of the different prediction 

methods to the data diagnosis measures on four different short-term traffic datasets, 

some guidelines can be obtained on how to choose the appropriate prediction 

method from the optional methods such as SARIMA, k-NN and SVR, and on how 

to efficiently set the parameters of the selected method. 

(4) Model Combination of SARIMA and SVR for Short-term Traffic Volume 

Prediction 

As found, combining SARIMA and SVR using the Fuzzy Adaptive Variable 

Weight method can significantly improve the performance of both SARIMA and 

SVR models for the border crossing traffic volume prediction problem as 

discussed in Chapter 3.1. 
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(5) Model Application - an Android Smartphone Application for Niagara Frontier 

Border Crossing 

Chapter 5 introduces the Toronto Buffalo Border Waiting android smartphone 

app that is designed to collect, share and predict waiting time at the three Niagara 

Frontier border crossings. This app applies the data-level fusion to collect the 

current waiting times from both the official sources and the users through crowd 

sourcing. This app also relies on the two step border crossing delay prediction 

model to estimate the future waiting times. It has been downloaded close to 500 

times, and is available in Google Play Store as following link 

https://play.google.com/store/apps/details?id=toronto.buffalo.borderwaiting&hl=

en.  

From the aspect of ITS data analysis Models, the main contributions of this 

dissertation include:  

(1) Integration of Dynamic Time Warping (DTW) and Spinning Network (SPN) 

for Short-term Traffic Volume Prediction. 

In Chapter 3.3, an enhanced SPN was developed to predict hourly traffic 

volumes at the Peace Bridge international border crossing. The enhancement is at 

using the DTW method to assess similarity among traffic volume data, rather than 

using the typical distance-based similarity index. The performance of the enhanced 

SPN (i.e. DTW-SPN) was then compared to three other forecasting methods, 

namely the original SPN algorithm (Euclidean-SPN), SARIMA, and SVR. 

DTW-SPN had the overall best performance when the MAPE was averaged over 

https://play.google.com/store/apps/details?id=toronto.buffalo.borderwaiting&hl=en
https://play.google.com/store/apps/details?id=toronto.buffalo.borderwaiting&hl=en
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all the day groups. DTW-SPN also had the lowest MAPE when the whole dataset 

was used (i.e. the data was not broken into groups). DTW-SPN also appears to be 

significantly more computationally efficient in comparison with SARIMA or SVR.  

(2) Integration of Data-driven Models and Analytical Methods for Border Delay 

Prediction. 

This integration is the foundation of the two-step border crossing delay 

prediction model. It is also one of the most important contributions in this 

dissertation. For the first step, the short-term traffic volume prediction model, 

intensive work can be found in Chapter 3. For the second step, the multi-server 

queueing model, Chapter 4 gives the detailed solution. The idea of the model 

integration is not limited to border crossing studies. It can also be applied to other 

similar situations that deal with dynamic demand and queueing systems, such as 

like toll stations, intersections, manufacturing processes, product distribution 

systems, call centers, and so on.  

(3) Integration of M5P tree and HBDM for Traffic Accident Duration Prediction 

The research discussed in Chapter 7 improved the original M5P tree algorithm 

by building a combined M5P-HBDM model. Through which, the leaves of M5P 

tree model can be HBDMs instead of the linear regression models. This new 

M5P-HBDM model reduces the data heterogeneity and does not rely on the 

assumption of the normal distribution for traffic accident durations as the linear 

regression in a M5P tree does. The M5P-HBDM was found to be able to identify 
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more significant variables and perform better than M5P tree and HBDM, based on 

the prediction results of two traffic accident duration datasets.  

From Chapter 3 to Chapter 8, there are several future research directions which are 

suggested by this dissertation work.  

(1) Short-term Traffic Volume Prediction 

a. Border Crossing Traffic Prediction 

We can investigate the benefits of incorporating traffic volumes from 

upstream links into the prediction process to improve accuracy and allow for 

extending the prediction horizon. We also need test the transferability of the 

approach to other border crossings. Another possible future research area involves 

dynamically estimating confidence bounds for the volume forecasts, which gives a 

measure of the reliability of the forecast.   

b. Enhanced SPN 

First, conduct additional testing of both the original SPN and the enhanced 

DTW-SPN to other data sets to further confirm the prediction accuracy and 

advantages of the method. Second, because the SPN models require the 

specification of a number of parameters such as: 1) the data item length; 2) the 

number of rings and ring sizes; 3) the sizes of the input, output, and TNR windows; 

4) the spinning speed; 5) the threshold to next ring, and 6) the distance tolerance, 

guidance is needed on how to best set these parameters.  The current study seems 

to indicate that performance is most sensitive to the data item length and the 



294 

 

distance tolerance.  However, additional research is needed in order to confirm 

that. 

c. Data Diagnosis for Model Selection and Parameter Settings 

Further testing on additional traffic volume datasets are necessary to ensure 

that the conclusions from this study may be generalized; this may include traffic 

volume datasets from arterials.  Another suggested future research direction is to 

use the insights gained from this study to develop a decision support tool which 

could aid the analyst in selecting the appropriate modeling paradigm for a given 

data set and in setting the values of the model’s parameters. 

(2) Transient Multi Server Queueing Models 

The accuracy of the border crossing delay, predicted by the queueing models 

formulated herein, is naturally dependent upon the ability to predict: (1) the future 

traffic volume; and (2) the number of inspection stations open.  It would be quite 

interesting to study how robust the overall prediction system is to faulty 

assumptions regarding those two variables (i.e. predicted traffic volume and the 

number of inspection stations).  Moreover, for the use of the models for online 

prediction (as a part of a real-time traveler information systems), future research 

should consider how to update the models’ predictions in real-time based upon 

real-world observations (i.e. measurements) of delay via technologies such as 

blue-tooth readers at border crossings. 

(3) Smartphone App for Border Crossing 
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First, at the moment, the TBBW app is only predicting the delay for the next 

15 minutes, it would be better to make the prediction horizon a user-specified value 

(e.g., some users may be interested in the future delay for the next 30 minutes or 

one hour, if their trip origin is farther away from the border).  Second, although 

the app is currently designed for the Niagara International Frontier Borders, it can 

also be easily extended and applied to other US-Canadian borders as well as to the 

borders between the US and Mexico, provided that similar data are available. The 

app can even be extended to predict airport delay, as well as delay at many other 

similar queueing systems, in the future. 

(4) Community Detection for Traffic Accident Hotspots and Clearance Time 

Analysis 

For future research, the authors plan to test the community detection and 

association rule learning algorithms on larger and richer data sets, and to explore 

additional relationships between causative factors and accident attributes.   

(5) Variable Selection based on FP-tree 

As a novel algorithm, there are still a lot of details to be finalized in the future. 

For example, we may test the impact of clustering number in FCM on the FP tree 

variable importance calculation (in this study, we just set it as 3), and we may also 

try other variable discretization methods. Besides that, there are some other 

variable reduction/selection algorithms, such as stratified random forest (Ye, et al., 

2013), and random projection (Fan, et al., 2013) that deserve to be explored. We 
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will also test other accident risk prediction methods such as support vector machine 

(SVM) as our future work. 

(6) M5P-HBDM for traffic accident duration prediction 

For the future study, we may test the combination of M5P and random 

parameter HBDM which may improve the accident duration prediction. For 

example, in the M5P-HBDM for I-190 dataset, when the non-truck accidents 

happen near the ramps, the situation that the lane number at main road is three can 

reduce the traffic accident duration more than the situation when the lane number 

at main road is two. As we have analyzed, this may be true considering the 

three-lane main road can provide more space for the clearance work than the 

two-lane main road, but the three-lane main road main road may also have more 

traffic. In this case, we think the random parameter HBDM can capture this insight 

by allowing the coefficients of the variables in the model to vary across each 

individual observation in the dataset. 
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