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Wo apply diffusion geometry to sociopolitical and public health datasets. Our 

specific goal is to reveal hidden trends and narratives behind UN voting records and 

alcohol questionnaire response patterns. Importantly, seeking those' hidden variables 

in a, supervised context,, e.g. alcohol-abusv, can be problematic for diffusion geometry. 

We suggest two approaches to deal with these shortcomings. First, we develop a 

correlation-based hierarchical clustering algorithm tha t exposes sub-patterns in the 

feature (response) space; this works in the UN voting context. Second, we introduce 

a feature selection algorithm based on a second-order correlation measure to guide 

diffusion embeddings; this significantly improves the performance of diffusion methods 

in the alcohol context. Together they suggest how to structure embeddings when there 

exist strong correlations among features irrelevant, to a given labeling function.
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Chapter 1

Introduction

Recent advances in technology have enabled acquisition and storage of information 

in massive amounts. Analyzing these datasets have become one of the top challenges 

across many fields, ranging from business [1, 2], to personality classification [3, 4], 

to healthcare [5-8] to governments [9-12]. Many datasets are bipartite, or in social 

science terminology, two-moded [13], whose data points are usually represented as a 

discrete function Ax>y, which provides measure of the relationship between observation 

x  G X  = { x \ ,x 2,---  >x n} to feature y € Y  =  { y i , y2, - "  il/m}- The distinction 

between observations and features are interchangeable. Examples include surveys, 

questionnaires, vote records, ratings etc. An abridged version of one is presented in 

Table 1.1 In this work, we focus on datasets which come from social science domains.

These datasets are often (i) multidimensional (m and n is large) and (ii) sparse 

(missing values are the norm). The common interested tasks belong to one of the 

following categories:

•  Unsupervised exploratory: describe the observations by a small amount of di­

mensions 4 /^  : x  £ X  —>■ (xl)\(x),$2( x ) , . . .  , ^ K(x)), k  <§C n =  |X | (dimension­

ality reduction [14, 15]) or clusters T, C X,  T, fl Tj = 0 ,  Vi ^  j , thus exposing 

existing dominant pattern of organization hidden in the datasets [16].
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Table 1.1: An excerpt from the UN voting data [9] of 5 countries (USA, UKG, RUS, 
POL, CHN) in 1990 on 5 issues, denoted by their roll call id's (RCID): #3508 (Dis­
semination of information on decolonization) #3510 (Observer status o f national 
liberation movements recognized by the OAU and/or by the League of Arab States) 
#3515 (Cessation of all nuclear test explosions) #3538 (Calls upon Israel to become 
party to the Treaty on the Non-Proliferation of Nuclear Weapons) #3570 (Status 
of the International Convention on the Suppression and Punishment of the crime of 
Apartheid).

#3508 #3510 #3515 #3538 #3570 • • •
USA No No No No No
UKG No No No Abstain Abstain
RUS Yes Yes Yes Yes Yes
POL Abstain Abstain Abstain Abstain Abstain
CHN Yes Yes Abstain Yes Yes

•  Supervised classification, clustering or ranking: given a label function /  : x  € 

X  —> R, organize the observations in fld'd(x) or clusters {T,} such tha t obser­

vations having similar value in /  are mapped closer together in 'fd'd or grouped 

together in the same cluster [17].

•  Collaborative filtering: Using the existing values in A XtV to infer the missing 

data points, e.g. infer person x /s  answer to question yj in the survey even 

though he skipped it; or infer a representative aYs vote on an issue yj in case 

he abstained or was absent from voting [1, 2, 18].

These categories are related to each other, and considerations are due when the 

goal transits from one category to another.

Surveys and voting records have been studied extensively in multiple social fields 

such as political science [19, 20], psychology and sociology [21, 22]. Existing studies 

usually assume (i) a fixed form of relationships between observations and features 

which is inflexible and hard to extend to new data points [23-26] and/or (ii) an 

egocentric, dyadic approach toward observations, i.e. observations are only affected
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by other observations directly linked to them [13, 21, 22, 27]. We argue tha t there is 

a transitionary nature in social data: goods diffuse through the network of trading 

countries; political goodwills or influences diffuse through the network of countries, 

signaled by votes. In IR (International Relations), it is not uncommon that the 

pressure to resolve political issues come from third or even fourth-party outsiders. 

In surveys and questionnaires, similarity measures between pairs of participants are 

often approximated by considering other intermediate participants, because different 

people may answer different sets of questions. Similarity among survey participants 

can thus be considered as diffusing through the network of participants. Therefore, 

the “distance“ or “closeness" measure between any pair of observations is not simply 

the given direct relationship between them, but has to take into account all indirect 

paths of diffusion through intermediate observations. We apply this notion of diffusion 

distance [28] to these social datasets and show that it reveals hidden global trends 

behind the numbers.

Investigating these social datasets in supervised contexts, we found tha t in many 

cases, a  significant amount of the features provided have nothing to do with the label 

function / .  This may come from the design of the survey itself, i.e. the features, 

questions are usually designed to cover a wide range of areas in order to explore novel 

patterns, even though the majority of these well-intentioned coverage may turn out to 

be irrelevant. Similarly, voting and rating records may cover a wide range of topics, 

subjects which are unrelated to the interested classification. In addition, these “extra" 

features are likely to be correlated with each other, forming consistent patterns which 

may interfere with the discovery of any other structure in the data tha t is relevant 

to / .  We show this phenomenon in synthesized data experiment, and introduce a 

filtering algorithm to select features relevant to / .  We report several examples on 

real datasets where this algorithm significantly improves mapping, clustering results. 

In the collaborative filtering context, for each feature j/j, we can use the same filtering

3



algorithm to find a set of other relevant features which may help inferring the missing 

values of yi.

1.1 Contributions and Organization of the Thesis

Chapter 2 reviews the social network model and classical dimensionality reduction 

techniques commonly used in social sciences and public health literature. Chapter 3 

discusses diffusion distance and diffusion maps in sociopolitical applications.

The main contribution of this thesis is in two parts: First, in Chapter 4, we 

applied diffusion geometry to sociopolitical datasets, mainly International Relations 

(IR) data, uncovering hidden spatial-temporal patterns and underlying political align­

ments in the network of nations. Examination of the non-linear embeddings of these 

data across time reveals interesting historical narratives, suggesting the results may 

serve as a proxy for the analysis of security-related datasets. To our knowledge, this 

has never been done before in these fields. Second, in Chapter 5, we investigated the 

performance of diffusion maps on correlated datasets such as voting records, surveys, 

questionnaires, under supervised context. We empirically showed, with synthetic and 

real datasets, that, in supervised learning tasks, exploratory diffusion maps may be 

ineffective against these datasets in which the number of correlated, irrelevant fea­

tures could be overwhelming. In 5.4, we proposed a feature selection scheme using 

second-order correlation to pick out only features relevant to the labeling function, 

thereby enhancing diffusion methods’ performance.
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Chapter 2 

Social network analysis and 

Dimensionality Reduction

2.1 Social networks, graphs and kernels

We begin by reviewing the social network model which, given a pairwise (symmetric) 

relation Wij =  W ( x t , Xj )  between a set of entities or social actors X  =  {a?i, . . .  

represents the data as a graph G(V, W ). Each observation x t is modeled as a node 

or vertex v, € V  in the graph. Fig. 2.1 considers the small network of five Balkan 

countries in the year 2000. Each country is represented as a [numbered] vertex in the 

network. The pairwise relation is defined as a set of weighed edges between pairs 

(xi,Xj),  the weight values Wi} measure the social interactions between x l and xy  The 

social network model provides an abstraction which enables several levels of analysis 

[29], mainly focusing on the relationships among social actors, such as people [30-33], 

countries and organizations [34, 35].

Different social relations result in different W,  and hence different graphs. De­

pending on the type of social interactions of interest, W  could denote (i) border 

contiguity [36], or (ii) geographical proximity [37], or (iii) diplomatic exchange [12]

5



1/ 172*

(a) Five Balkan countries (b) Graph of the corresponding 5 capital
cities

Figure 2.1: The geographical network of 5 Balkan countries in the year 2000 (a) 
and its corresponding graph (b). The graph is complete, with an edge between every 
pair of capital cities. To avoid overcrowding the figure, only 5 edges are shown for  
demonstration. In this network, the edge weight between each pair o f cities is defined 
as the reciprocal of the squared distance (in km~2) between them — 4-, where rij

r ' j

is the geographical distance between capital cities of countries x, and X j.

between countries, etc. Tables 2.1 & 2.2 illustrate three different graphs based on 

different social relations between the same set of the five Balkan countries X  de­

picted in Fig. 2.1a. Table 2.1 shows a graph of border contiguitiy, which cotains an 

edge between countries Xi and Xj, WtJ — 1 if the two share a land border, otherwise 

= 0. The graph in Table 2.2 contains an edge between every pair of countries 

(xi,Xj). The edge weight measures geographical proximity between countries by the 

inverse squared distance between capital cities.

The conventional interpretation of IT as a pair-wise relation of edges is purely 

egocentric, providing us with the knowledge of individual edges but not what the 

whole network looks like, and thus is analogous to describing a forest by enumerating 

branches and leaves. Another interpretation of W  which offers a fuller picture of the 

network is that of IT as a kernel. A kernel is a symmetric function which measures 

how a pair of vertices (i , j )  in the network are similar, close to each other, with respect

6



Table 2.1: Matrix representation of the graph between 5 Balkan countries (Fig. 2.1a) 
whose edges’ weights W  between pairs o f countries (i , j ) denote whether Xi and Xj 
share a common land border (1) or not (0) [36].

1-CRO 2-BOS 3-YUG 4-ALB 5-MAC
1-CRO _ 1 1 0 0
2-BOS 1 1 0 0
3-YUG 1 1 . 1 1
4-ALB 0 0 1 1
5-MAC 0 0 1 1 -

to the target social activity. For each vertex x, in the network, the kernel W  provides 

us with a measure of the local, egocentric neighborhood surrounding x t, from which 

the network arrangement can be deduced. For example, by examining Table 2.1 as 

a whole, we recognize that (CEO, BOS, YUG) form a close group of border-sharing 

countries, while (YUG, ALB, MAC) form another group. W ith the exception of YUG 

which appears in both group, there’s no connection between (CRO, BOS) and (ALB, 

MAC). Thus, CRO and BOS are “closer” to each other than to ALB, MAC, while 

YUG serves as the land bridge between the two groups. Even though Table 2.2 offers 

a more nuanced picture by replacing the yes/no border-sharing property with real 

values of capital proximity, the overall picture of the two groups still stand out. This 

grouping knowledge tells us that if the five countries are on an island, YUG will cut 

right in the middle of the island, sharing borders with other countries, separating 

CRO, BOS on one side and ALB, MAC on the other side. And that corresponds 

exactly to the real map (Fig. 2.1a).
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Table 2.2: Matrix representation of the graph between 5 Balkan countries (Fig. 2.1a) 
whose edges between pairs of countries {xu Xj ) have weights equal to the inverse square 
capital distance (km~2) between x, and x , ; where rij denotes the geograph-

rij
ical distance between capital cities of countries i and j  [37].

1-CRO 2-BOS 3-YUG 4-ALB 5-MAC
1-CRO
2-BOS
3-YUG
4-ALB
5-MAC

1/2992
1/3732
1/5422
1/5602

1/2992

1/1962
1/2482
1/2742

1/3732
1/1962

1/3382
1/2452

1/542*
1/2482
1/3382

1/1722

1/560*
1/2742
1/2452
1/172*

2.2 Two-mode network datasets

Having defined the social network abstraction as graphs on a single set of entities 

(which are termed 1-mode network in social fields), we describe a special case in 

which there are two exclusive subsets of entities and interactions are only permitted 

between entities of different sets. The graph model of this type of networks resembles 

the one shown in Fig. 2.2, which is a bi-partite graph. In social science terminology, 

this is a two-mode network [13], which is very common in practice, such as surveys, 

questionnaires (interactions between people and questions), or votes, ratings (inter­

actions between voters, raters and subjects, issues) etc. These datasets are usually 

given as a discrete function Ax<y, between an observation x  € X  = { x \ , x 2, ■ ■ ■ ,x n} 

and a feature y  € Y  =  {j/i, y2, ■ ■ ■ , ym}- With finite n, m, the data  is an n  x m  matrix 

A,  similar to the one given by Tables 1.1 & 2.3. For distinguishability purpose, we 

shall call the entities in X  observations and the ones in Y  features. Even though 

most of the times, we are interested in the structure of {x,}, the roles of X  and Y  

are interchangeable, just as matrix A  can be transposed. At times, with reference to 

a particular dataset, we may switch terminology and refer to X  as countries, people, 

or participants, and to Y  as resolutions, questions, issues.

Fig. 2.3 gives us a graphical example of the structure of countries X , given their 

votes on resolutions Y  in the UN General Assembly [9]. On every UN resolution,



Figure 2.2: Bipartite graph of observation set X  =  {X\ .  X 2, X 3) X 4, X 5} and feature 
se tY = {Yu Y2,Y3,Y4,Y5}.

Table 2.3: Countries ’ membership status in Inter-Governmental Organizations (IGO) 
in year 2000 [11], Cell (i, j )  takes value 1 if the country i was a member of organizatin 
j  in 2000. Otherwise, cell value is 0.

EU NATO NAFTA UNESCO WTO IMF OECD •••
USA 0 1 1 0 1 1 1

UKG 1 1 0 1 1 1 1
FRN 1 1 0 1 1 1 1
SIN 0 0 0 0 1 1 0

CHN 0 0 0 1 0 1 0

9



a member country cast a vote of either Yes or No. We can visualize the position 

of a country on a particular resolution as point on a straight line, as illustrated in 

Fig. 2.3a. Here Abstain is positioned right in the middle between Yes and No. To 

this continuum, we assign an “opinion-score” ranging from 0 (No: totally against) 

to 1 (Yes: totally for). For example, if the resolution at hand here is the E/5/532B 

resolution in 1950 which condemns South Africa’s Apartheid policy as racial discrim­

ination, then we will see South Africa, Australia, Belgium as points toward the left of 

the spectrum (they voted No), their scores are 0 on the resolution; the Latin Ameri­

can and the Arab nations make up points toward the opposite end (they voted Yes) 

and thus scoring 1; while the U.S., Russia and most of Eluropean countries vacillating 

in between (they chose to Abstain from voting).

The number of dimensions needed to describe the original data can be very high: 

we have to look at every resolution in the dataset, which makes it difficult for human 

inspection. Every year, UN member nations vote on about 100-200 resolutions. If 

each resolution is visualized as a line like Fig. 2.3a, the whole set of votes on all 

200 resolutions constitute a 200-dimensional space, where each dimension is a line 

similar to Fig. 2.3a. In that multi-dimensional space, each country is a point, whose 

200 coordinates describe its positions on all the 200 resolutions. As our human eyes 

can only perceive up to 3 dimensions, Fig. 2.3b only shows 3 dimensions Vi, V2, 

V2OO as representatives, together with a few sample points and their coordinates. 

An example of a 3-dimensional space is the RGB color space, whose 3 dimensions 

represent a color value of Red, Green, or Blue, ranging from 0 to 1. At (0,0,0), the 

resulting color is black; (1,0,0), (0,1,0), (0,0,1), (1,1,1) represent red, green, blue, and 

white respectively. As we move a color point from (0,0,0) along the R dimension, 

its color will gradually get redder. Similarly in the voting space, a country’s point 

moving in parallel to a particular dimension Vi from 0 toward the direction of 1 in 

that dimension signifies that country leaning more and more toward supporting the

10



V2

(0,I„..,0)
(1. 1....,0)

(0.0.5....0) •
(1.0.5„.,0)

No
(0)

Yes
(D

(1.0 ,...0)

10,0 0.5)

...V200

(a) 1-dimensional visualization of UN mem- (b) Multi-dimensional voting space with sam- 
ber votes on a particular UN resolution. The pie points and coordinates, 
position of a member ranges from No (-10),
Abstain (0), to Yes (10).

...V200

VI

(c) Points uniformly distributed in the voting (d) Voting points reflecting low-dimensional 
space, if votes are cast randomly. political alignment.

Figure 2.3:
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resolution represented by V.

Real-life data points do not occur randomly but tend to correlate in a structured 

way according to some underlying real-life process. Revealing the structure that 

the data points “live in” may allow us to understand the underlying process. If UN 

members cast their vote in a completely arbitrary manner, we should expect the points 

to scatter all over the space, with no discernible alignment, as shown in Fig. 2.3c. 

However, instead of mindlessly tossing coins before casting votes, UN members are 

expected to be rational players, who cast their votes consistently on related resolutions 

(e.g. Latin American nations consistently supported resolutions against Apartheid 

policy.) Additionally, we can resasonably expect the positions of UN members to 

reflect their political alignment (e.g. UKR and BLR’s positions followed the lead 

of the Soviet Union during the Cold War.) That implies: if we know a nation’s (i) 

position on one resolution, or (ii) the positions of its political neighbors (read “allies”), 

it is possible to predict its standing in other related resolutions. That further implies 

that, instead of the original 200-dimensional description, a country’s position can be 

described by a much reduced number of dominant issues, topics, or dimensions [38], 

as shown in Fig. 2.3d. Dimensionality reduction is the process to recover the low­

dimensional structure on which the data lives from the original high-dimensional data 

space. While applications of dimensionality reduction have been attem pted before, 

we show that (i) the concept of diffusion distance reveals embeddings tha t are much 

more informative, and (ii) these embeddings can be conducted across time, revealing 

the evolution of sociopolitical relationships. As such, they serve as a proxy for the 

analysis of political datasets.

12
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Figure 2.4: 2D embeddings of European capital cities, using (a) PC A, (b) MDS given 
their pairwise geographical distances riy Each point in the maps represents a capital 
city in Europe. Special markers are drawn to denote the capital cities o f Iceland (V), 
Portugal (k).  and Turkey (4)

2.3 Dimensionality Reduction In Social Science

Classical dimensionality reduction techniques commonly employed by social scientists 

include Principal Component Analysis (PCA) [24, 39, 40], Factor Analysis [41-44], 

and Multidimensional Scaling (MDS) [27, 45-47]. These techniques are usually per­

formed via statistical software packages like SPSS, or SUDAAN [48], Mplus [49].

2.3.1 Principal Component Analysis (PCA)

PCA seeks a set of principal axes 'k =  {ipk} which represent most of the variance in 

the data set [50]. These axes are usually given by the eigenvalue decomposition of 

the covariance matrix:

C  — A(Imxm lmxm)(fmxm Imxm) (2.3.1)m  m

where A  is the original data matrix, which can be a vote matrix (n countries xm  

issues), or questionnaire matrix (n people xm  questions). 1 mxm denotes the n x n 

matrix of all 1 entries, and Imxm the identity matrix of size m. Dimensionality reduc­
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tion is achieved by limiting the representation to the first few k principal components, 

which account for most of the variability among the data points. Since PCA makes 

use of data  variances, it is vulnerable to outliers. In Fig. 2.4a, due to the extreme 

position of Iceland to the northwest Portugal to the southwest and Turkey to the 

southeast, the first component lies in a southwest-northeast direction, resulting in 

the distortion of the projected map.

2.3.2 Factor Analysis

Beside the conventional projective formulation, there is another probabilistic formu­

lation of PCA [51] which introduces normally distributed latent variable 2 such that 

observations x  e  X  are Gaussian distributed conditioned on the value of 2 :

p(x\z)  =  Af(v\Fz + /x, a21) (2.3.2)

for some variance a 2, implying the mean of x  G X  is a general linear function of the

latent variable 2 , governed by a k x m matrix F  and an m-dimensional mean vector 

p, i.e.

x  =  F z  +  p +  e (2.3.3)

where e denotes additive noise which is m-dimensional Gaussian-distributed noise

with covariance a2I. F  can be computed by EM algorithms [52] and its columns can 

be shown to define the principal subspace spanned by 'I' derived from the standard 

projective PCA above [51].

Factor Analysis, also called Exploratory Factor Analysis, is a linear Gaussian 

latent variable model closely related to probabilistic PCA [53]. Instead of isotropic 

covariance a21 as in Eq. 2.3.2, the conditional distribution has a diagonal covariance 

matrix £:
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p(x\z) =  M (v\F z  +  p, E) (2.3.4)

in which factor loadings F  measure the correlations between observations and the 

diagonal elements of E, measuring independent noise variances, are called unique­

nesses. The parameters F, p. E can be determined using an EM algorithm [54]. 

Eventhough factor analysis has a long tradition in social science, it has been argued 

theoretically [55, 56] and empirically [57, 58] that Multidimensional Scaling (MDS) 

is more suitable to voting, rating data than Factor Analysis.

Multidimensional Scaling (MDS) [59, 60] is another useful technique. The Norminal 

Three-Step Estimation (NOMINATE) model [61] frequently used in voting research 

literature is a variation of MDS, which iteratively estimates the low-dimensional map­

pings of the observation and feature sets in alternating order. Given symmetric dis­

tance information (a dissimilarity function, the opposite of a kernel, which is a 

similarity function), MDS finds a low-dimensional embedding $  : Xi e  X  —>■ 't’(xi) — 

{ipk{xi)} such that all pairwise distances Rij are preserved. Mathematically, MDS 

finds 'P so as to minimize the strain function:

where dist<j/{Xi,Xj) denotes the Euclidean distance between points x, and x 2 in the 

embedding 'I'.

2.3.3 M ultidimensional Scaling (M DS)

Strain (2.3.5)

or the stress function:

(2.3.6)
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2

(a) Data points aligned in a spi- (b) 1-dimensional embedding (c) 1-dimensional embedding 
ral by MDS by diffusion maps

Figure 2.5: 1-dimensional embeddings of the spiral set of data points in (a), using (b) 
MDS and (c) diffusion maps. The original data is essentially a line whirled into a 
spiraling curve. MDS fails to identify this underlying 1-dimensional structure of the 
data, whereas diffusion maps succeeds.

Although the embedding by MDS (Fig. 2.4b) successfully recovers the geography 

of Europe, it could fail to recover structures that are non-linear [62] or low-dimensional 

structures in “folded” datasets such as the case in Fig. 2.5, since MDS tries to preserve 

all pairwise linear distances. Here, the original 1000 data points (Fig. 2.5a) is on a 

single line curved into a spiral. The true underlying structure is the line, i.e. 1- 

dimensional, but the spiralling curve complicates the distances for MDS. Due to the 

curve, points which are far apart on the line appear to be closer in the 2-dimensional 

spiral, in a manner similar to that of a “folded dimension” [47], which needs to be 

‘ “unfolded” [63] in order to get at the true alignment of data points. The MDS 

result in Fig. 2.5b is simply the original spiral projected down onto the vertical axis, 

completely missing the line structure, because MDS seeks to preserve the proportion 

of all pairs o f nodes in the dataset. Diffusion maps, on the other hand, by preserving 

only the short distances (strong links) while ignoring long distances (weak links), 

successfully recover the 1-dimensional aligment, as shown in Fig. 2.5c.
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Chapter 3

Diffusion Distance &; Diffusion 

Maps

3.1 Motivating Example: The collapse of the So­

viet Union

We come back to the UN General Assembly voting database [9] to demonstrate the 

power of our diffusion approach. Although many scholars may be skeptical about 

whether votes in the UN General Assembly even matters, left alone reflecting inter­

national dynamics, our method is able to review the hidden spatial-temporal structure 

in the data, particularly, in this example, the political dynamics before and after the 

disintegration of the Soviet Union.

Suppose there exists an arrangement of countries according to their UN voting 

patterns. In this arrangement those countries that voted similarly will be close to 

each other, and those tha t voted differently willl be far apart. As interactions between 

these countries change over time, their positions relative to each other keep evolving. 

If the world is a universe, countries would form stars and constellations revolving 

around each other in an eternal dance of alliances and conflicts, spurred, not by
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physical laws of nature, but by the ever-changing force of political, economic and 

power interests. The question is whether knowing which countries are “close” can 

provide useful quantitative information for understanding political allignment and 

historical events. An illustration of what can be achieved from our diffusion approach 

is shown in Fig. 3.1 and Fig. 3.4.

Fig. 3.1 shows the maps of nations according to their UN voting patterns at various 

time during 1989-2005 *. The embedded positions are computed by our diffusion 

method such tha t countries are placed closer to each other if they voted similarly, 

and far apart if they did not. For comparison, we present the embeddings using PCA 

on the UN voting patterns of the same periods. The apparent failure of PCA in this 

case is tha t most of the times, the USA are always positioned in the middle of the map, 

even close to RUS for some years. Fig. 3.3 compares 3 distance metrics: (a) diffusion 

distance by our method (which shall be defined in more details later in this article), 

(b) PCA embedded distance (Euclidean distance between data points embedded by 

a Principal Component Analysis projection), and (c) Hamming distance (normalized 

number of resolutions tha t countries voted different from each other.) Each subfigure 

plots the ratios of embedding distances in the period 1965-2000:

•  d ’ d i(amS( E U ) U )  88 t h e  b l u e  l i n e

•  dlS l u )  J> 88 the red line

•  85 the Sreen line

where EU is defined as the states of the European Community.

We can “read” historical events simply by looking at the movement of countries in 

the diffusion maps in Fig. 3.1. The 1989 diffusion map is polarized with the Western 

bloc (blue) on the left and the Eastern bloc (red) on the right of Fig. 3.1a. The 

distance ratio plots in Fig. 3.3a clearly shows the green line (POL-EU) trailing the

’See clip 4 on http://www.cs.yale.edu/homes/vision/zucker/em beddings.html.
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(a) 1989 (b) 1990 (c) 1991

(g) 1997 (h) 2000 (i) 2005

Figure 3.1: The collapse of the Soviet Union: Diffusion maps of UN voting pattern 
1989-2005. Several countries are marked for case study identification: ★  (USA), ■  
(UKG, FRN, BEL, LUX), ★ (BUS), ♦ (YUG), ► (UKR, BLR), ■  (POL, HUN), • 
(CHN).
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Figure 3.2: The collapse of the Soviet Union: PCA embeddings of UN voting pattern 
1989-2005. Several countries are marked for case study identification: ★  (USA), ■  
(UKG, FRN, BEL, LUX), ★ (BUS), ♦ (YUG), ► (UKR, BLR), ■  (POL, HUN), • 
(CHN).



Y e a r s 'e a r s Y e a n

(a) Diffusion distance (b) Distance of PCA embedding (c) Hamming distance

Figure 3.3: Ratios of embedding distances between USA-EU (blue), RUS-EU (red), 
POL-EU (green) in 1965-2000. Here EU is defined as the states of the European 
Community. Thes plots show how relations between USA, USSR, Poland and the 
Western European states changed over time, with Poland tailing the USSR until 1989, 
after which it was completely aligned with the West.

red line (RUS-EU) prior to 1989, indicating Poland’s policy completely dominated 

by that of the Soviet Union. However, in 1990 (Fig. 3.1a), Poland and Hungary 

(red squares) switched to the left, followed quickly by Czecholovakia, Bulgaria, and 

then the three newly independent Baltic republics. Fig. 3.3a clearly reveals a break 

between the green line and the red line from 1989, showing different trends in Poland 

and Russia’s policies from then on. By 1991 (Fig. 3.1b), Russia (red star), Belarus, 

and Ukraine (2 red triangles) followed suit, as they moved toward the center. In 1992, 

after the Soviet bloc fully disintegrated (Fig. 3.Id), its members had all migrated to 

the left, with Ukraine and Belarus hanging in the middle, leaving China (red circle) on 

the right, close to the Arabs and the third world. Figs. 3. Id- 3. If depicts Russia’s effort 

to get close to the West, as Yeltsin vied for Western support for admission to NATO 

or the EU. The downward trend of the red line during 1992-1995 in Fig. 3.3a indicates 

Russia’s aborted attem pt to get close to the EU. After Yeltsin’s second election in 

1996 and his failure to court the West (Fig. 3.1g), Russia moved to the right of the 

map. Fig. 3.3a records a sharp ascent of the red line after 1996, implying Russia’s 

abandonment of its westward movement. Further shift eastward occurred after Putin 

replaced Yeltin in 2000 (Fig. 3.lh ) , as Russia switched to the right, getting close to
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Figure 3.4: The disintegration of the Soviet Union (1988-1992): The evolution of 
2-dimensional diffusion maps of nations according to their voting patterns in the UN 
Assembly. Each dot denotes the global position of a country in a particular year. 
Special markers are drawn to denote: ★  (USA), ▲ (UKG), ★ (RUS), ■  (POL), • 
(CHN). Several lines are also plotted connecting the “paths” of these countries over 
time. Note how USA and UKG stayed relatively steady at their positions, while the 
paths of Communist states started to diverge since 1989. POL was the first to move 
out of the camp in 1990, followed by RUS, whereas CHN remained in their original 
position throughout the whole period.

China again.

The collapse is even more evident in Fig. 3.4, which provides a time-evolution of 

the event by stringing the 2-dimensional structures of the alignments in Fig. 3.1 along 

the time dimension. It is apparent from the figure:

•  USA and UKG stood close to each other in the 2-dimensional alignment, and 

their distance remain relatively stable throughout the 5-year period.

•  The break-up of the Soviet Union is shown in the diverging lines of RUS, POL 

and CHN. The Union stayed intact until 1990, when POL moved away, toward 

the other side of the map. In 1991, RUS inched apart from CHN and the
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third-world countries, and then moved completely out by 1992.

3.2 Diffusion Distance

Social phenomena and trade, unlike geography, follow a different distance measure. 

Goods and social capital diffuse from one place to another, perhaps through an in­

termediate country. Thus nearby countries m atter more than distant ones. Since 

classical techniques preserve all pairwise Euclidean distances between the data points, 

we argue that not all distances should be preserved uniformly. Instead, only short 

distances shoud be maintained, and even attenuated in order to preserve the local 

structure, while long distances should not be considered for keeping. The argument 

is illustrated in Fig. 3.5. In political terms, we see a polarization in which two 

camps (B , C) closely communicate, but (A, B) barely interact with each other except 

through intermediary contacts located in the middle tunnel. An embedding which 

highlights this polarization should tighten the clusters’ girth (thus attenuating short 

distances) and stretch the tunnel’s length (thus loosening long distances and separat­

ing the two clusters from each other). Those are the characteristics of diffusion.

Think of a substance (e.g. money, population, or political influence) diffusing from 

a source point out to its neighboring points in amounts proportional to the neighbors’ 

similarity to the source. The substance continues to diffuse to the neighbors of those 

neighbors, etc. Assuming a fixed amount of substance in the network, we can define 

Pt{z\x)  as the density of substance, originating from source point x,  at point z at 

time t. Thus pt (z\x) would be high if there are many paths of length <  t connecting 

x  to z, and low otherwise. If we take point x = B  on the right of Fig. 3.5 as the 

source, after t time steps, most of the substance originated from B  should end up at 

points like z =  C  on the right cluster, and only a small fraction ends up at points like 

z = A  on the left, because there are significantly more paths from B  to C  than to
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Figure 3.5: Two tight clusters separated by a narrow path. It is obvious that there are 
many paths between any pair of nodes from the same cluster (B and C), while there 
are significantly fewer paths between any pair o f nodes from different clusters (A and 
B). Reproduced from [64].

A. The intuitive diffusion distance [28] between any two points x  and y is a weighted 

difference between the two probability density functions:

D?{x,y) = |M * |x )  ~Pt{z\y)\\l
v -  o (3.2.i)

=  ^2iPt{z\x) -  Pt{z\y)) u ( z )
z

where u>(•) is the weight function that normalizes the distance according to the density 

estimate of each vertex.

International trade can also be viewed as a diffusion process in which money 

diffuses from country to country. The polarization in Fig. 3.5 can be described in 

terms of trade during the Cold War. Assuming the trade pattern stays constant, the 

money will diffuse out to the two sources’ trading partners. Thus pt(»\U SA) will be 

high in the West, and low in the East, while pt{»\USSR) behaves in the opposite 

direction. The function pt(»\USA) provides a notion of “trading sphere” of the USA. 

Therefore, the diffusion distance between the USA and the USSR can be defined as
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the difference between their corresponding spheres pt(»\USA) and pt(»\U SSR), as 

described by Eq. 3.2.1.

3.3 Diffusion maps

Diffusion maps is a non-linear dimensionality reduction technique [65-69] which has 

applications if many different areas [70-80]. Given a symmetric, positive-semidefinite 

kernel W , the diffusion maps : x  € V  -» (ipt,o(x), ■ • •, xpt,K(x)) for some

k <tc n — |V| [28] are defined as:

^ tfa ) =  (K vo(x )’ • • •, (3.3.1)

where 1 =  A0 >  Ai > . . .  and {w0, t'i, • • ■} are the corresponding eigenvalues and 

eigenvectors of

W  = D -* W D -^  (3.3.2)

and D  is the diagonal matrix D(x, x ) =  d(x) = J2y W (x, y). In a trade network, d(x) 

represents the total value of goods traded by country x. In social network terminology, 

d is the degree centrality function, which can be used as a density estimate on the 

vertices [81]. The detailed construction of the diffusion maps is included in Appendix 

A.

It can be verified that the Euclidean distance in the embedded space spanned by 

'I'i corresponds to the diffusion distance Dt defined in Eq. 3.2.1, with u(x) =

Dt{x,y) = | |^ t (x) -  ^*(y)|| (3.3.3)

Dimensionality reduction arises because, at large t, only those eigenfunctions cor­

responding to large A survive.
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Chapter 4 

Diffusion maps of International 

Relation datasets

We applied diffusion maps to IR datasets. The embedding results reveal interesting 

low-dimensional structures in the network of countries. The illustrations in this sec­

tion include snapshots of these 3-dimensional embeddings. Better views of these em­

beddings are provided on our website http://www.cs.yale.edu/homes/vision/zucker/embeddings.htn

4.1 Geographical distance

Fig. 4.1 1 provides an experiment with geographical embedding of national capitals,
- rJ iwith the kernel Wy — e io®. The resulting embedding approximates global geograph­

ical positions.

1See clip 1 on http://www.cs.yale.edu/homes/vision/zucker/em beddings.html.
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Figure 4.1: Geographical embedding of national capitals in 3-dimensional space, using 
the 2nd, 3rd, and 4th vectors o f the diffusion map. The edge weight function is defined

rf
as Wij = where rij is geographical distance between captitals of nations i and j .  
Figure (a) provides a top down view, while (b)-(i) show side views of the embedding 
from different angles, turning from west to east (counterclockwise). Several countries 
are marked with colored squares for easy identification: ■  (USA, UKG, FRN, BEL, 
ISR), m (RUS, CHN, POL, HUN, BLR), ■  (EGY, SYR, LEB, SAU, KUW).
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4.2 Inter-governmental organization memberships

Since inter-governmental organizations (IGO) play a crucial role in international rela­

tions, we ask how various countries are positioned, given their IGO memberships [11]. 

We consider joining an IGO a deliberate action: when a country i joins a particular 

IGO k , it has the intention of moving close to other countries j  which are members 

of k. This is quantified by the ratio of common membership shared by i and j  to the 

total number of IGO’s joined by i:

_  | MEM, n  MEM, I
3 |M EM i| v '

where MEM, denotes the set of IGO’s joined by country i. The normalization over the 

total number of IGO’s joined by i serves to equalize IGO-intensive countries (such as 

the US) with IGO-sparse countries (e.g Taiwan). However, due to its asymmetry, INT 

cannot be used as a kernel. The country-by-country correlation matrix CV, offers a 

symmetric similarity function, in the same way the candidate-by-candidate correlation 

matrix was applied to MDS [46] in mapping political candidates from voters’ survey 

scores. Since correlation values range from -1 to 1, shifting and scaling it yields the 

kernel, whose embedding result is shown in Fig. 4.2 2:

Wy =  (4.2.2)

2See clip 2 on http://www.cs.yale.edu/homes/vision/zucker/embeddings.html.
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Figure 4.2: Diffusion map of countries, given their IGO membership in 2000, us­
ing the 2nd, 3rd, and 4th vectors, (a) provides a top-down perspective, while (b)-(i) 
show side views from different angles, in counterclockwise rotation. The countries 
are manually colored according to their geographical locations, which shows again that 
IG O ’s aligning influence is mostly regional. Legend (with respect to (a)): Caribean 
(dark blue, upper left); Central & South American (medium blue, lower left); Western 
European (light blue, upper right); former Soviet states & ISR (yellow, upper right); 
North African (light red, middle far right); African (light orange, lower right); Middle 
East (dark orange, middle right); USA & CAN (dark red, middle).
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4.3 UN Assembly voting patterns

The UN Roll Call data [9] for a particular year details for each resolution k, whether 

a country i voted yes, no, abstained, or was absent. Removing those countries who 

were absent from at least 1/2  of the roll calls, we define the matrix:

INT • =   ̂VQTE» - j J  (4 31)
11 ilJ | VOTE, |

where VOTEt===J, denotes the set of issues where country i cast the same vote as j , 

and VOTE, is the set of issues on which country i voted. The correlation kernel W  

follows Eq. 4.2.2 whereas C  is the Pearson product-moment correlation matrix [82] of 

INT. Fig. 4.3 show the embedding result for the year 1965, whose political alignment 

was heavily influenced by Cold War politics.

We note that diffusion embeddings may reveal the same patterns as other tech­

niques [83], but in the examples below they differ significantly.
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(a) (b) (c)

(d) (e) ( f)

Figure 4.3: Embedding of nations, based on their UN Voting pattern in 1965. (a) 
provides a top-down perspective, while (b)-(i) show side views from different angles 
rotated counterclockwise. Several countries are marked by colored square for easy 
identification: ■  (USA, UKG, FRN, BEL, ISR), ■  (RUS, CHN, POL, HUN, BLR), 
■  (EGY, SYR, LEB, SAU, KUW). This Cold War embedding shows the world spread 
out on a spectrum with the Western powers on one end, and the Communists on the 
other end, while the Arabs positioned themselves close to the Eastern Bloc, in an anti- 
Western stance. Apparently, we can only see one red square in the map, because the 
whole Communist Bloc concurred with each other on almost every issue. The West, 
on the other hand, were more spread out.
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4.4 Case study: de Gaulle’s France

Fig. 4.4 3 shows the embedding of the network of UN Assembly members according to 

their voting patterns at various time during 1957-1975. More detailed maps of 1967 

and 1970 are shown in Fig. 4.5 & Fig. 4.6 from different perspectives. This kind of 

visualization, in which social, political entities move around, attract and repulse each 

other in a planet-like manner, provides us with a novel historical perspective.

Additionally, Fig. 4.7 plots the ratios of embedding distance in the period 1965- 

2000:

•  " S f f P  35 the blue line

the red line

•  d’Sdiam(EU*)G) M the Sreen line

where EU* is defined as the states of the European Community, excluding FRN & 

UK. The distances and diameters are calculated from diffusion distance, distance of 

PCA embedding, and Hamming distance of the VOTE matrix. The plots of different 

distance measures show us how diffusion method amplifies the connections between 

highly connected actors, and also enhances separation between distant parties.

France’s self-isolation under de Gaulle’s presidency is apparent from the diffusion 

maps. In 1957 (Fig. 4.4a), France (cyan star, upper left corner) was close to the USA, 

UK, Belgium, Luxembourg (blue markers). By 1959, France under Charles de Gaulle 

began to withdraw from NATO military commands and completed tha t process in 

1966. Thus, when we look at the maps as time proceeds, we see France slowly move 

to the edge of the (blue) Western group in 1960 (Fig. 4.4b), gradually edging further 

away by 1963 (Fig. 4.4c), planting itself in a distant position from that of the West in

3See clip 3 on http://www.cs.yale.edu/homes/vision/zucker/em beddings.html.
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Figure 4.4: De Gaulle’s France: Diffusion maps of UN voting pattern 1957-1975. 
Several countries are marked for case study identification: i t  (USA), k  (UKG), ★ 
(FRN), ■  (BEL, LUX, GFR), ★ (RUS). These maps show France started out close 
to the Allies in 1957. Then in 1960, France, under de Gaulle’s presidency, distanced 
itsef from the West. The 70s saw France coming back toward the Western fold, once 
de Gaulle had left.
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(C) (d )

Figure 4.5: Diffusion map of UN voting pattern in 1967 from different angles. Several 
countries are marked for case study identification: i f  (USA), A (UKG), ★ (FRN), ■  
(BEL, LUX, GFR), ★ (RUS). The map is shown here from top down (a) then from  
side view with angles rotated counterclockwise (b)-(d).
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(c) (d)

Figure 4.6: Diffusion map of UN voting pattern in 1970 from different angles. Several 
countries are marked for case study identification: i f  (USA), ▲ (UKG), ★ (FRN), ■  
(BEL, LUX, GFR), ★ (RUS). The map is shown here from top down (a) then from  
side view with angles rotated counterclockwise (b)-(d).

I

•  1970 1971 1990 1999 <990 1991
Years

(a) Diffusion distance

f t *  1970 1990 m s
Years

(b) Distance of PCA embedding

MOO
Years

Figure 4.7: Ratios o f embedding distances between FRN-EU* (blue), UKG-EU* (red), 
FRN-UKG (green) in 1965-2000. Here EU* is defined as the states o f the European 
Community, excluding FRN & UK. Thes plots show how relations between France, UK 
and the rest of the Western European states changed over time, with France standing 
far apart during the 60s, and coming back to the fold afterward.
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1967 (Fig. 4.4e). The distance ratio plot in Fig. 4.7a shows us the blue line (FRN-EU) 

started at around 0.8, the green line (FRN-UKG) reaching its peak at 9 in 1967-1968, 

while the red line (UKG-EU) lying low initially, indicating France’s isolated position 

from tha t of the Western countries (and UKG) at the time. After de Gaulle left office 

in 1969, we see the blue line begin to decline steeply, moving in tandem with the 

red line, implying a reverse course in France’ foreign policy, gradually edging closer 

to that of the rest of West. Indeed, Fig. 4.4f shows France (cyan star, bottom left) 

moving back toward integration in NATO, its position in 1972-1973 (Fig. 4.4g-4.4h) 

got closer and closer to that of UKG (blue triangle, top left) (FRN opened up from 

its self-isolation, allowing UKG to join EC in 1973). By 1975 (Fig. 4.4i) France again 

stood close to the Western bloc. In the 80s until the end of the Cold War, the distance 

ratios FRN-EU and UKG-EU (blue & red lines, Fig. 4.7a) ascended slightly, due to 

the absorption of new members into the EU. The green line (FRNK-UKG), however, 

remains low throughout the 80s, showing how close FRN and UKG’s policies were to 

each other during that period.

An advantage of the diffusion maps is that they reveal the inherently low dimen­

sional structure among countries, in agreement with prior analysis [19, 84]. It is also 

apparent from Fig. 4.7 that PCA fails to discover a pattern in the movements of coun­

tries in the network, while diffusion distance uncovers the same pattern as the simple 

Hamming distance. The spectrum given by PCA decays very slowly: it requires 20- 

30 dimensions to describe all variances in the voting data. Diffusion method, on the 

other hand, requires only 5-7 dimensions to describe the voting patterns [19]. The 

diffusion method performs better in amplifying significant events in its distance plot 

(e.g. the period from 1957-1967 in which France isolated itself). However, the diffu­

sion distance in Fig. 4.7 is computed from only 5 dimensions, whereas the Hamming 

distance is the aggregated result of votes on all UN resolutions in a particular year.
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4.5 Japan and the two Chinas

In 1970 (Fig. 4.8a), Taiwan (blue circle) stood close to the Western bloc on the left 

of the distribution of countries, while Soviet Union and Arab countries planted them­

selves on the far right, surrounded by third world nations. However, Nixon’s visit 

to China in 1972 prompted Taiwan to move closer to third world countries, courting 

their votes in order to retain its seat at the UN. Indeed, Fig. 4.8b-4.8c for 1972 & 

1973 show Taiwan’s votes on the right side of the maps, mingling with the Arab and 

the third world. Its attem pt failed, however, as Taiwan was out of the picture in 1974 

(Fig. 4.8d), being replaced by PRC China (red circle).

Prior to 1973 (Figs. 4.8a-4.8b), Japan (blue diamond) positioned itself on the 

left of the map, close to the Western bloc. However, in response to the 1973 oil 

crisis (Fig. 4.8c), Japan distanced itself from US & allies and their Middle East 

policy, moving closer to the oil exporting states. Japan’s ambition to Security Council 

membership also prompted it to seek better relations with other third world nations. 

We see Japan drifting away from the West, toward the center in 1973 until mid-late 70s 

(Figs. 4.8d-4.8f). We also see Japan edging back westward in the 80s (Figs. 4.8g-4.8i), 

moving to the left of the maps, again standing among the Western bloc countries.

4.5.1 Case study: Tito-Stalin split

In the maps of Fig. 4.9 4, the Soviet Union is represented as a red star, and Yu­

goslavia as a red triangle. Poland is also shown as a red square, which, in contrast 

with Yugoslavia, stayed close to Soviet’s position throughout the period 1948-1970. 

By 1948 (Fig. 4.9a), the relation between Yugoslavia and the Soviet Union was still 

amiable. The break between them occurred in 1949 (Fig. 4.9b), as Yugoslavia sud­

denly moved away from the Soviet Union and Poland. The split became more evident

4See clip 5 on http://www.cs.yale.edu/homes/vision/zucker/em beddings.html.
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Figure 4.8: Japan and the two Chinas: Diffusion maps of UN voting pattern 1970- 
1985. Several countries are marked for case study identification: ★  (USA), ■  (UKG, 
FRN), ♦  (JPN), •  (TAW), ★ (RUS), • (CHN), ■  (EGY, SYR). These maps show 
Taiwan started out on the Western camp, then moved eastward seeking support from  
the Third World nations in order to prevent its replacement by PRC China in 1974- 
Japan also started in the Western camp, then moved away from US and Allies, toward 
oil exporting countries, and other Third World nations in its bid for Security Council 
membership in the late 70s, only to rejoin the West again in the 80s.
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(a) 1948 (b) 1949 (c) 1950

Figure 4.9: Tito-Stalin split: Diffusion maps of UN voting pattern 1948-1970. Several 
countries are marked for case study identification: ★ (RUS), ■  (POL), ▲ (YUG). 
These maps show the ups and downs in the camaraderie between Yugoslavia and the 
Soviet Union. The close cooperation broke down in 1949, and continue to deteriorate 
from there. The relationship was briefly (and unsuccessfully) rekindled after Stalin’s 
death in 1953 as Soviet ‘caught up ’ with the rest of the world, and tried to court 
Yugoslava back.
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(a) 1966 (b) 1967 (c) 1968

(d) 1970 (e) 1975 (f) 1980

Figure 4.10: The case o f Romania: Diffusion maps of UN voting pattern 1966-1980. 
Several countries are marked for case study identification: ★ (RUS), ■  (ROM), I  
(EGY, SYR). These maps demonstrate Romania’s pursuit of independent policies, 
keeping a more neutral stance, away from that o f the Soviet Union, without actually 
leaving the Communist bloc.

as Yugoslavia drifted even further away in 1950 (Fig. 4.9c). By 1952 (Fig. 4.9d), the 

Soviet bloc was mostly isolated from the rest of the world. By 1953 (Fig. 4.9e), after 

Stalin’s death, Soviet attempted to court Yugoslavia back to the fold of its influence. 

Therefore, Soviet moved up to join the main curve, and at the same time, getting 

closer to Yugoslavia. However, since then, Yugoslavia and Soviet Union drifted apart 

again, as observed in Figs. 4.9f-4.9i.

4.5.2 Case study: Soviet-Romania relation

From the mid-60s onward, Romania pursued a foreign policy somewhat independent 

of the Soviet Union, without really leaving the Soviet bloc. It stayed close to the Arabs 

and other fairly radical Third World countries. Fig. 4.10a begins with Romania (red 

square) staying close to the Soviet Union (red star) and the Arab countries (Egypt
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and Syria as green squares). Then in 1967-1968, we see Romania moved away from 

the Soviet bloc (Figs. 4.10b-4.10c). In the 70s (Figs. 4.10d-4.10f), when the distance 

between the Soviet bloc and the Arab world increases, Romania always stayed a step 

away from the Soviet bloc, and closer to the Arab countries 5.

4.5.3 Case study: US-Israel relation

Fig. 4.11 6 shows the diffusion maps of nations by their UN voting patterns at various 

time during 1966-1995. Fig. 4.12 plots the ratios of embedding distance in the period 

1965-2000:

•  - S w P  88 the blue line

•  dSm(RE§y  85 the red line

•  d'diam(EU*R) 85 the Sreen line

where EU* is defined as the states of the European Community, excluding FRN k. 

UK. The distances and diameters are calculated from diffusion distance, distance of 

PC A embedding, and Jaccard distance of the VOTE matrix in the same manner as 

the plots in Fig. 3.3. Similarly, Fig. 4.13 compares the ratios of embedding distance 

in the period 1965-2000:

dist(USA,ARAB*) t h  , ,  j.
•  diam(ARAB*) 88  m e  D1Ue l m e

dist(ISR,ARAB*) . .
diam(ARAB*) 83 t t l e  r e d  l ln e

dist(USA,lSR) tVip e r p p n  l in p  
diam(ARAB*) 8 8  t n e  g r e e n  l m e

where ARAB* is defined as the countries in the Arab League in 1945: IRQ, EGY, 

SYR, LEB, JOR, SAU, YEM.

5See clip 6 on http://www.cs.yale.edu/homes/vision/zucker/em beddings.html.
6See clip 7 on http://www.cs.yale.edu/homes/vision/zucker/em beddings.html.
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(g) 1985 (h) 1990 (i) 1995

Figure 4.11: USA-Israel relation: Diffusion maps of UN voting pattern 1966-1995. 
Several countries are marked for case study identification: ★  (USA), ■  (EU nations), 
■  (ISR), ★ (RUS), •  (CHN), ★ (EGY), A (SYR), U (Arab countries). These maps 
show how the USA-ISR relations evolve, getting closer and closer together over time.
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Figure 4.12: Ratios o f embedding distances between USA-EU* (blue), ISR-EU* (red), 
USA-ISR (green) in 1965-2000. Here EU* is defined as the states of the European 
Community, excluding FRN & UK. Thes plots show how relations between USA, ISR  
and the Western European states evolve over time.
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Figure 4.13: Ratios of embedding distances between USA-ARAB* (blue), ISR-ARAB*  
(red), USA-ISR (green) in 1965-2000. Here EU* is defined as the countries in the 
Arab League in 1945: IRQ, EGY, SYR, LEB, JOR, SAU, YEM. Thes plots show 
how relations between USA, ISR and the Arab League evolve over time.
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The voting pattern of 1966 (Fig. 4.11a) begins with the world polarized by the 

West (blue) and the Soviet (red), while other countries spanned the spectrum in 

between. The Six Day War of 1967 (Fig. 4.11b) saw the Soviet-Arabs (red-green) 

alliance closing in. France under deGaulle imposed an arms embargo on Israel (cyan 

square), and adopted a more pro-Arab policy. France is shown staying away from 

the rest of the West in its stance. Hostile exchanges between Israel and the Arabs 

persisted throughout 1967-1970. At the same time, the US (blue star) and Israel began 

moving closer together, sharing military information with each other (Fig. 4.11c).

The year 1973 witnessed the Yom Kippur War, after which Israel emerged vic­

torious but more isolated from the neutral countries (Fig. 4.lid ) . The result of the 

war led to the Arab oil embargo and subsequently the oil crisis 1973-1974, forcing 

other countries, including UK and France, to oppose US’ support for Israel, in or­

der to court OPEC’s favor. Israel was most isolated from the US and Allies during 

1970-1975 (Fig. 4.12a). On the other hand, Figs. 4.l i d  k  4.l i e  show the US being 

pushed into a corner, which Israel, isolated from others, was also slowly moving to. 

The situation slightly improved in 1980 with the signing of Camp David Accords and 

the peace treaty between Israel and Egypt. Fig. 4.1 If also tells the fracture in the 

Soviet-Arabs relations after Soviet’s invasion of Afghanistan in 1979.

The year 1985 (Fig. 4.11g) saw Israel being pushed further away from the main 

group, after its attack on Iraq’s nuclear facility built by France in 1981, and its 

involvement in the First Lebanon War, which drew condemnation from the UN As­

sembly. However, with Reagan’s personal support for Israel, US-Israel (green line, 

Fig. 4.12a) relation picked up from there, solidified by numerous strategic military 

cooperation agreements. The trend continued into 1990 (Fig. 4.11h) with Israel being 

granted major non-NATO ally status in 1989, while its position with the Arabs and 

others worsened following the First Intifada and Israel’s raids into southern Lebanon 

in 1988.
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The collapse of the Soviet Union in 1991 led to major changes in the world order, 

breaking up old alliances, and thus slightly improved the global map (Fig. 4.ll i) . As 

a result of Clinton’s mediation, several peace treaties was signed between Israel and 

Arab countries. However, the trend started in the 80s by Reagan had already been 

established: the US firmly planted itself in a corner in total support of Israel, far 

away from the Third World goup, and even from the Western allies, as evident in 

Figs. 4.l l i  & 4.12a.

4.5.4 Case study: the M iddle East conflict

Figs. 4.14-4.16 show the diffusion embeddings according to the UN voting patterns 

based on: (i) all resolutions (LHS figures) and (ii) only Middle East-related resolutions 

(RHS figures). The member nations are colored according to their votes in Resolution 

GA11317 (Nov 2012) granting non-member observer state status to Palestine: For, 

Against, k  Abstain. We believe that the general embeddings in the left-column 

figures (a, c, e) show a trend in which the votes of USA and ISR getting ever closer to 

each other, and away from others. Additionally, the Middle East embeddings in the 

right-column figures (b, d, f) make an even stronger case, in which different stages of 

USA-ISR relations can be identified.

•  Late ’40s: ISR was mostly isolated (Figs. 4.14a-4.14b). Its positions was closer 

to the USA k  the West than to the rest.

•  ’50s - Early ’60s: The general embeddings in Figs. 4.14c,4.14e show ISR ap­

proaching the USA and the Western bloc. However, the Middle East embed­

dings in Figs. 4.14d,4.14f tell a slightly different story: FRN k  UKG moved 

over to ISR’s side during the Suez crisis 1956 while the USA still stood with 

the other nations in the Middle East issues.

•  Late ’60s: Fig. 4.15a again shows ISR being isolated after the Yom Kippur
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(a) All resolutions 1946-1955 (b) Only Middle East resolu­
tions 1946-1955

(c) All resolutions 1951-1960 (d) Only Middle East resolu­
tions 1951-1960

(e) All resolutions 1956-1965 (f) Only Middle East resolutions
1956-1965

Figure 4.14: Diffusion embeddings of the UN voting patterns in the late 40s untill the 
early 60s: LHS (a, c, e) using a ll reso lu tio n s  in the specified periods; RHS (b, d, f )  
using on ly  M idd le  E a s t-re la te d  reso lu tio n s  in the specified periods. UN member 
nations are colored by their votes in Resolution GA11317 (Nov 2012): For, Against, 
& Abstain. Several countries are marked by special symbols: ★ (USA), ■  (ISR), k  
(UKG), k  (FRN, SPN, SWD, DEN).



(a) All resolutions 1966-1970 (b) Only Middle East resolu­
tions 1966-1970

(c) All resolutions 1971-1975 (d) Only Middle East resolu­
tions 1971-1975

(e) All resolutions 1976-1980 (f) Only Middle East resolutions
1976-1980

Figure 4.15: Diffusion embeddings of the UN voting patterns in the late 60s through 
the 70s: LHS (a, c, e) using a ll re so lu tio n s  in the specified periods; RHS (b, d, f )  
using on ly  M idd le  E a s t-re la te d  re so lu tio n s  in the specified periods. UN member 
nations are colored by their votes in Resolution GA11317 (Nov 2012): For, Against, 
& Abstain. Several countries are marked by special symbols: ★ (USA), ■  (ISR), k  
(UKG), k  (FRN, SPN, SWD, DEN).
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(a) All resolutions 1981-1985 (b) Only Middle East resolu­
tions 1981-1985

(c) All resolutions 1986-1995 (d) Only Middle East resolu­
tions 1986-1995

(e) All resolutions 2001-2010 (f) Only Middle East resolutions
2001-2010

Figure 4.16: Diffusion embeddings of the UN voting patterns in the 80s and beyond: 
LHS (a, c, e) using all re so lu tio n s  in the specified periods; RHS (b, d, f )  using on ly  
M idd le  E a s t-re la te d  re so lu tio n s  in the specified periods. UN member nations are 
colored by their votes in Resolution GA11311 (Nov 2012): For, Agonist, & Abstain. 
Several countries are marked by special symbols: ★ (USA), ■  (ISR), k  (UKG), k  
(FRN, SPN, SWD, DEN).
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War in 1967. Nevertheless, Fig. 4.15b displays a change of attitude of the USA 

toward ISR under Johnson’s presidency. FRN, however, withdrew its support 

after the 1967 war.

•  Early ’70s: In general, ISR appeared to be politicaly isolated after the Yom 

Kippur War and the oil crisis of 1973 (Fig. 4.15c). On the other hand, we may 

argue, by the ME embedding in Fig. 4.15d, tha t the USA under Nixon’s pres­

idency wholeheartedly supported ISR while other nations keep a safe distance 

away.

•  Late ’70s and early ’90s: In general, Fig. 4.15e shows ISR closing on the Western 

bloc, including the USA, the UKG, and FRN. However, Fig. 4.15f reveals that 

the USA went all-out in support of ISR in the Middle East issues, away from 

the positions of other countries. This trend continues toward the early ’90s, 

through the collapse of the USSR (Figs. 4.16a-4.16d). Both the general and ME 

embeddings aggree on the trend that USA-ISR relations were getting ever closer 

and perhaps, more and more isolated. However, there is a timing difference in 

these embeddings. The ME embeddings show that the USA slowly approached 

ISR in the ME issues, finally throwing its weight behind ISR in the early ’70s, 

and has been standing by ISR’s side in the ME conflict ever since. The general 

embeddings contend that the “honeymoon” in USA-ISR relations started in 

the late ’80s. From this time lag, we may infer that, because USA chose to 

support ISR since the ’70s, cementing a strong alliance, ISR has been following 

the USA’s lead in every other international issues.

•  2001-2010: The color distributions in both Fig. 4.16e and Fig. 4.16f seem to 

display a clear cut on the Palestinian issue. The countries which abstained from 

voting in Resolution GA11317 mingled closely with the supporting countries. Of 

the 9 countries which voted against Resolution GA11317, Canada and Panama

49



appear to be the reluctant ones, their positions being closer to the other camp.
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Chapter 5 

Diffusion maps in supervised 

applications

5.1 Effect of irrelevant features

Section 4.5.4 provides an example in which we have a labeling function /  (in this 

case the votes on Resolution GA11317) and we would like to organize the countries 

in a way tha t reflects their opinions on GA11317. In other words, we want coun­

tries tha t are mapped closed to each other in 4^ to have similar values in / .  The 

left-column maps in Figs. 4.14-4.16 merely plot the GA11317 votes on the diffusion 

embeddings computed from every resolution, on different issues, topics. The UN 

General Assembly vote on a wide range of issues, topics, each of them having many 

resolutions. In practice, countries may disagree on one topic and agree on another, 

which means resolutions of the same topic are likely to be strongly correlated (or 

strongly anti-correlated) while resolutions from different topics are less likely to be 

so. Since Resolution GA11317 is directly related to the Middle East conflict, the 

votes on resolutions of other issues are hardly relevant. As presented in Section 4.5.4, 

the right-column maps in Figs. 4.14-4.16 plot the GA11317 votes on the diffusion em-
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(a) MMPI Scale 2 (D/Depression) (b) MMPI Scale RC4 (Antisocial Behav­
ior)

Figure 5.1: Diffusion maps of the MMPI dataset [3, 4] using all questions with a
Gaussian kernel, using the first 3 eigenfunctions. The people are colored based on 
their scores on (a) Scale 2 (D/Depression) and (b) Scale RC4 (Antisocial Behavior)

beddings computed from only resolutions on Middle East issues, which reveal more 

nuanced, and at times different representations of the relations between countries in 

the Middle East conflict, more relevant to the targeted Resolution GA11317.

We argue that: in supervised context, diffusion method may fail to find structure 

which agrees with a particular function of interest f ,  from datasets such as surveys, 

questionnaires, ratings, voting records. These types of datasets, either by design or by 

nature, usually consist of multiple groups of features, most of which are irrelevant to 

/ ,  both semantically and statistically. However, because features of the same groups 

are likely to be strongly correlated (or strongly anti-correlated), the irrelevant features 

tend to form consistent patterns in the observation space X ,  which may interfere with 

the discovery of any other useful structure in X  tha t is relevant to  / .

Fig. 5.1 further demonstrates the effect of irrelevant features in the Minnesota Mul- 

tiphasic Personality Inventory (MMPI) dataset. The MMPI is a standardized, highly 

used psychometric test of adult personality and psychopathology [3], that has been 

in its revised version, the MMPI-II for 13 years [4, 85|. Over the past 60+ years, this 

item set has been widely accessed and well researched with a wide variety of different 

clinical and nonclincal samples [41, 42, 86-89]. The sample MMPI-2 dataset in our
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0 2

Figure 5.2: Diffusion maps, using all questions from the NESARC dataset, with the 
first 3 eigenfunctions from a Gaussian kernel. The people are colored by their re­
sponses to question S2BQ1A21 - More than once drive a vehicle while drinking (W l).

experiment contains a survey response N  x M  matrix A  of N  =  2428 persons answer­

ing M  =  567 questions. We applied a Gaussian kernel k(xt ,Xj)  =  e(~/racll/1' - '4jll2̂ 2) 

where Ai, A} are response vectors on all 567 questions of participants x t, Xj respec­

tively. Fig. 5.1 plots the diffusion maps for two of its restructured clinical scales, the 

widely used Depression and Antisocial Behavior scales. The smooth transition from 

cool color (low value) to hot color (high value) in Fig. 5.1a shows tha t the diffusion 

maps using all questions can organize people in this particular data sample according 

to their MMPI Scale 2 (D/Depression) scores. However, it performs rather badly 

in organizing people according to their Restructured Clinical Scale RC4 (Antisocial 

Behavior) scores (Fig. 5.1b).

Fig. 5.2 presents another demonstration of the same phenomenon using all ques­

tions currently available from the National Epidemiologic Survey of Alcohol and Re­

lated Conditions (NESARC) dataset [5, 6]. It is the largest comorbidity study, cover­

ing questions on alcohol consumption, tobacco and drug uses, psychological disorders 

and other problems using a national population sample. Because of both its wide
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(c) (d)

Figure 5.3: Diffusion embedding of AddHealth Wave-1 questionnaire participants, us­
ing the first 3 eigenfunctions. A Gaussian kernel was used. Participants are colored 
based on the alcohol questions of BINGE DRINKING FREQUENCY at W-2, red cor­
responds to cases where respondents have moved from non-binging status (in this case 
-from non-drinking at baseline) to binging (having had at least one bingeing incident 
in the past year (5 or more alcoholic drinks on an occasion), at follow-up, a year later; 
whereas blue to non-binging cases. The subfigures are o f the same 3-dimensional map 
from different viewing angles.

item pool and the representativeness of the sample, this dataset has attracted lots 

of attention from the social science and public health research community [43, 90- 

95]. Due to the large size of the dataset, 5000 persons (out of 43000) were randomly 

picked from the whole population of the dataset. Their corresponding points, col­

ored by their responses to question S2BQ1A21 (More than once drive a vehicle while 

drinking), appear to be completely unorganized with respect to the labeling function 

S2BQ1A21.

As another example, we applied diffusion maps to the national sample Adolescent 

Health Longitudinal Study (ADDHealth) Wave 1 questionnaire [7, 8], which surveyed 

students at age 13-14 (Wave-1) in order to identify alcohol abuse behavior (e.g. bing-
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AddHealth Wi Rada! Question* AddHealth Wi Radai Quaatknu AddHealth Wi Racial Quart ton*

(a) (b) (c)

Figure 5.4: AddHealth WI questionnaire responses on racial questions, (a) Responses 
of all 1735 participants on 6 racial questions; We then applied diffusion methods to 
the responses in (a) and used the first eigenfunction to divide the participants into 
the negative end (b) and positive end (c) o f the first eigenfunction. Note the opposite 
patterns of responses between (b) and (c).

ing) a year later (Wave-2). Ample research have been carried out on this dataset to 

study and predict adolescent substance use, mental health and other issues [44, 96- 

98]. The dataset composes of 1735 persons x 374 questions, most of which are binary. 

We first zero-centered every question, replacing all the blank values with 0. The zero- 

centered matrix D  was re-normalized such that every question has answers ranging 

from 0 to 1. We then computed the Gaussian kernel, using (3 =  100. Here the func­

tion /  is the binary function which separates 190 bingers (10.95%) from the remaining 

non-bingers. Fig. 5.3 shows the diffusion map of questionnaire participants using the 

first 3 eigenfunctions. The participants are shown as blue and red dots on the map. 

Red dots correspond to bingers while blue dots are non-bingers. The only recogniz­

able structure, using the first 3 eigenfunctions, is 4 big clusters (Fig. 5.3a), which 

are divided according to races (Caucasian vs. non-Caucasian) and gender (male vs. 

female). Other eigenfunctions do not present any discernible structure. The bingers 

appear to be randomly distributed.

The questionnaire dataset can be shown to consist of smaller groups of questions 

which are correlated (or anti-correlated) to each other in various degrees. Fig. 5.4 

focuses on the group of racial questions:
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AddHealth Wi Deviant Behavior Queetkau AddHealth Wi Deviant Behavior Querthma AddHealth Wi Deviant Behavior Queettoai

(a) (b) (c)

Figure 5.5: AddHealth WI questionnaire responses on questions about deviant be­
haviors. (a) Responses of all 1735 participants on 5 deviant behavior questions; We 
then applied diffusion methods to the responses in (a) and used the first eigenfunction 
to divide the participants into the negative end (b) and positive end (c) o f the first 
eigenfunction. Note the opposite patterns of responses between (b) and (c).

•  6.1 WHAT IS YOUR RACE (WHITE)

•  6.2 WHAT IS YOUR RACE? (BLACK)

•  S1Q6A RACE-WHITE-W1

a S1Q6B RACE-AFRICAN AMERICAN-W1

•  A6_l RACE, WHITE-PQ

• A6_2 RACE, BLACK/AFRICAN AM.-PQ

while Fig. 5.5 focuses on the group of questions about deviant behaviors:

•  S29Q12 SELL DRUGS-W1

•  S24Q1 EVER HAVE SEX-W1

•  S5Q9 EXPELLED FROM SCHOOL-W1

•  S26Q5 NON-ROMANCE SEX W / ANYONE-W1

•  S5Q7 RECEIVED OUT-OF-SCHL SUSPENSION-W1

The absolute values of correlation among the first group is at least 0.6, and the 

correlation among the second group is 0.26 on average.
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5.2 Synthetic Experiments

We tested this effect of irrelevant features in synthetic dataset of multiple sections, 

each represents a topical group of binary questions. To replicate the behavior of the 

real data, we investigated the responses in Fig. 5.5a, built a Gaussian kernel from it. 

The first eigenfunction divides the participants into two groups which have opposite 

patterns of response values, as shown in Figs. 5.4b k  5.4c. This property holds true 

for the group of deviant behavior questions in Figs. 5.5b & 5.5c, and for other group 

of correlated questions. Thus, given N  = |X | as the number of participants and 

S £ (0 ,0.5) as Bernoulli mean parameter, for each section S t of the synthetic data, 

we first randomly divide the population of n participants into two mutually exclusive 

groups X f and X f  (of random proportions): U X f  =  X , X °  fl X b = 0 . Let \ t

be the identifying function on the participants according to the population division 

in section S t such that Xt(?) =  1 Vx, € X “ and Xt(*) =  0 Vx, € X bt . The number of 

questions m t in section S t is a function of 6. The answer of participant x x to question 

qj is modeled as:

r

Au  ~  B (l, <S) if qj £ S t & Xj 6  X?
< 3 3 (5.2.1)

Ajj ~  B (l, 1 -  8) if qj £ S t k  Xj e  X b

Fig. 5.6a shows the synthetic questionnaire datasets of 2000 participants, 20 sec­

tions, each contains 50 binary questions. The Bernoulli mean parameter 6 is set at 

0.3. We used the first section S i’s population division Xi as the control dimension 

(i.e. assuming that xi divides bingers from non-bingers.)

Therefore, let /  =  Xi- Figs. 5.6b-5.6h plot /  on different diffusion embeddings. 

These embeddings were computed from Gaussian kernels based on increasing number 

of question sections. As the number of questionnaire sections climbs up, the red 

points (bingers) gradually disperse among the blue points (non-bingers). We define 

an error function H('k. / )  which measures the smoothness of /  on the embedding
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Figure 5.6: Experimental results on (a) synthetic questionnaire o f 2000 participants, 
5 = 0.3, 20 sections o f 50 questions each. Let f  = Xi > the identifying function of 
question section Si. Following are the plots o f f  on different diffusion maps, computed 
from Gaussian kernels based on sections (b) S\ only; (c) S \, S2; (d) S i, S2 , S 3; (e) 
Si,- - • , £4/ (f) S 1, • • • , S 5; (g) Si,  ■ ■ ■ , Sio! (h) Si, - • • , S 20 (every sections o f questions 
in the dataset), (i) plots the error function E with respect to f  o f the diffusion 
embeddings as more sections are used.
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(a) <5 =  0.1, mt =  20 VS< (b) 5 =  0.3, mt =  50 VS* (c) <5 =  0.45, m t =  250 VSt

Figure 5.7: Experimental results on synthetic questionnaire of 2000 participants, f  = 
Xi, the identifying function of question section S\. The plots show the error function  
E as the number of questionnaire sections increases, under different settings of S and 
m t .

N

E ( * , f )  = ' £ ( f ( x i) - U ( x t))2 (5.2.2)
i =  1

where f y ( x t) is the average of /  on the i/-nearest neighborhood of x {, weighted by 

inverse diffusion distances. By default, we set v — 10. Fig. 5.6i plots the values of 

E as the number of questionnaire sections used to compute the diffusion embeddings 

increases. The error curve steadily climbs up, implying that as more irrelevant fea­

tures were included in the computation, the information given by S\ was diluted, so 

that more and more bingers (red point) end up in neighborhoods consisting mostly 

of non-bingers (blue points). The error function E plots in Fig. 5.7 under different 

settings of 6, in repeated experiments, shows the same characteristic.

5.3 Correlation hierarchical clustering of features

We have shown empirically that, under a supervised context, diffusion method is vul­

nerable to irrelevant features. We also showed that correlated patterns exist in the 

feature space of survey and voting record datasets. Our first attem pt in selecting 

relevant features is to tackle the structure of the feature space, which will hopefully 

provide further information on the clustering of observations. In specific, we seek
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to organize the resolutions according to how countries voted on them, or the survey 

questions according to how people answered them, with the goal of uncovering themes 

that summarize them. Given the lack of a prior on themes among resolutions and 

questions -  how many there are or, even, whether any exist -  we adapt a hierarchical 

clustering algorithm. For each cluster in the hierarchy, we seek a set of “summary 

questions” tha t best approximate large groups of questions underlying the embed­

dings. This reduces the dimension of the data set; and if the summary questions are 

combinations of small numbers of questions, they are more interpretable. Different 

from factor analysis, which is a top-down approach leading to factors that are linear 

combinations of all questions, ours is a bottom-up approach, grouping and summa­

rizing questions as we go, according to the correlations within the “local groups” .

5.3.1 Algorithm

Any pair of resolutions are related if they are highly correlated either positively or 

negatively. For example, during the Cold War period, a UN resolution condemning 

Israel in Middle East issues will most likely be rejected by the West and supported 

by the Arabs; however, another UN resolution in support of Israel would lead to 

the exact opposite voting pattern. Therefore, we study the absolute value of data 

correlation as a topical similarity function. More formally, this leads to a relatively 

standard objective function that only depends on dot products. It can be modified 

using the kernel trick to incorporate non-linearities, in particular those that arise with 

our diffusion kernel.

We treat each resolution as a vector of responses qt normalized so J T  qt(j) =  0 

and Hqjll =  1. We denote Q =  { q ,, . . .  ,q n}, the set of votes to all resolutions. On 

the way to designing an objective function, we first seek to find a set of “summary 

questions” S  =  { « !,...,« * }  and a clustering C = { c i,...,c * }  of questions with
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summary questions with the following properties:

k
U c i =  Q (5.3.1)
i= 1

CiDcj — 0 ,? 7  ̂j  (5.3.2)

I N I  =  1 (5-3.3)

Equations (5.3.1) and (5.3.2) guarantee that each question is assigned to a single 

cluster. We now maximize the similarity between each question and the summary 

question to which it is assigned. The objective function is: g(C, S)  =  23i=i X ^ e Ci l(9jls «)l2 

In bioinformatics this is called the diametric clustering objective function [99], 

and it has an equivalent metric clustering minimization problem. Using the fact that 

| ( g > i ) |2 <  i

argm ax^C ', S)  =  a rg m in jn -  g(C, 5)}
0,5 C,S

k
arg min EE d{qj, Si)2

i =  1 q j €c i

where d(v, w) = s j l  -  |{t;|tu)|2. d(-, ■) is a pseudometric, which is to  say (i) d(v, v ) =

0 ; (ii) d(v, w ) =  d(w, v); (iii) d(u, v ) + d(v, w) > d(u, w).
The maximization version of this problem suggests one heuristic, while the mini­

mization problem suggests another. The first is a modification of Lloyd’s algorithm, 

procedure MODlFlEDLLOYD({gi,. . .  ,?„}) 

cluster =  initialclusteringQ

while Q o l d  Q n e w  do 

Q o l d  ^  Q n e w

for i =  1 to k do

V =  concat(q 6 c{) > V  =  [gc l | ■ \qcm]

Vi =  S V D (V ) > Vi is largest left sing. vect.
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end for 

end while 

for j  =  1 to n do

put qj in the cluster that maximizes |(t>i|0j)l 

end for 

recompute Qnew 

end procedure

This algorithm increases the objective function g at each stage. In fact, each 

for-loop increases g.

Proof. The second for-loop is straightforward, as each question is assigned to the 

cluster that maximizes the objective. Therefore if any questions change cluster, the 

objective function will increase.

Let V  be defined as above. Then V  = U * D * W T where U and W  are unitary 

and D  is a diagonal matrix of singular vectors. Then

where it* are the columns of U. This is maximized by setting s  to be equal to the 

largest singular vector Ui

Therefore each stage of the algorithm increases g. Since there are a finite number 

of clusterings, and hence values for g and each stage of the algorithm increases g, it

Although Lloyd’s algorithm guarantees a local maximum in the objective func­

tion, for our application we seek a related -  but in a local sense, slightly different 

-  condition: we guarantee tha t the absolute correlation distance cannot exceed a 

threshold.

2̂ k ^ » i 2 =  i i * 3v i i 2
qj€Ci

converges, though possibly not to the global optimum. □
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We start with n individiual singleton clusters of observations X  and a data matrix 

A  of m  countries (rows) and n resolutions (columns) (e.g. Table 1.1). We also have 

a correlation threshold 6 €  (0,1) and a cooldown ratio a  € (0,1). We repeatedly 

iterate through the following steps, merging clusters until only one remains:

procedure G reedyC luster(A, 9) 

unallocated =  A 

for c in unallocated do

remove c from unallocated 

for q in unallocated do

if abs(corr(c, g) < 9) then 

remove q from unallocated 

assign q to cluster c 

end if 

end for 

end for

reassign questions to most correlated cluster center 

return clusters 

end procedure

procedure GreedyTree(A, 9, a) 

tree =  0

while numclusters >  1 do

clusters =  GreedyCluster(A, 9) 

add clusters to a new layer in tree

set A to projection onto the largest singular vector of each cluster 

9 =  9a 

end while 

return tree 

end procedure

Performance is very similiar to the Lloyd algorithm, which could in effect be 

inserted into the first procedure. The result of GreedyTree is a hierarchy of clusters,
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Figure 5.8: Clustering result of UN resolutions during the period 1998-2002. Two
individual clusters are marked with •  and  ■  symbols fo r  dem onstration.

whose bottom layer contains singletons and top layer contains a single cluster which 

includes all features. Each of the layers in between are formed by merging clusters in 

the layer immediately under it. One possible way toward selecting features relevant 

to the labeling function /  is to include / ,  as if it is also a feature, into the input 

dataset before calling Greedy Tree. We can examine the resulting hierarchy to see 

which cluster of features /  ends up in.

5.3.2 Experim ental Results

U N  Resolutions We applied the clustering algorithm on the set of UN resolutions 

during the period 1998-2002 [9], with 6 = 0.95 and a  =  0.8. Fig. 5.8 shows the 

clustering hierarchy with two clusters •  and ■. Below are the tag descriptions of the 

resolutions in cluster ■  which contain Middle East-related resolutions:

•  Palestine, Assistance

•  Palestine, Displaced Persons

•  Palestine, Scholarships, Grants

•  UNRWA
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•  Palestine, Refugee Properties

•  Jerusalem, University

•  Israel, Geneva Convention

•  Israel, Settlem ents

•  Human Rights, Occupied Territories

•  Syrian Golan

and cluster •  which is composed of resolutions mostly from Human Eights topic:

•  Human Rights, Iraq

•  Human Rights, Iran

•  Human Rights, Iran

•  Human Rights, Iraq

•  Human Rights, Democratic Congo

•  Human Rights, Sudan

•  Crimes Against Women

•  Human Rights, Iran

•  Human Rights, Iraq

•  Human Rights, Sudan

•  Human Rights, Democratic Congo

•  Arm am ents, Transparency

•  Human Rights, Iran

•  Human Rights, Democratic Congo
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Figure 5.9: Clustering result o f IG O  according to memberships in the year 2000. Two
individual clusters are marked with •  and ■  symbols fo r  dem onstration.

•  Human Rights, Iraq

•  Human Rights, Sudan

•  Arm am ents, Transparency

•  Executions, Arbitrary

•  Human Rights, Sudan

•  Human Rights, Iraq

•  Human Rights, Democratic Congo

Inter-governmental Organizations (IGO) The clustering hierarchy of IGO’s, 

according to memberships in the year 2000, is displayed in Fig. 5.9. Cluster ■  contain 

organizations in the European region:

•  CERN: Eur. Org. fo r Nuclear Research

•  COE: Council o f Europe

•  EBRD: Eur. Bank for Reconstruction & Dev.

•  ECPTA : Eur. Conf. o f Postal & Telecom. Admin.
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•  EMBC: Eur. Molecular Biology Conf.

•  EMBL: Eur. Molecular Biology Lab

•  EM PPO: Eur. & Mediterranean Plant Protection Org.

•  EPFSC: Eur. Postal Financial Services Commission

•  EPO: Eur. Patent Office

•  EUFMD: Eur. Commission for the Control of Food-and-mouth Disease

•  EUROCONTROL: Eur. Org. fo r the Safety of A ir  Navigation

•  EUROM ET: Eur. Collaboration on Measurement Standards

•  HCPIL: Hague Conf. on Private International Law

•  NATO: North A tlantic Treaty Org.

•  OSCE: Org. fo r Security & Cooperation in Europe

•  OTIF: Central Office fo r International Railway Transport

Cluster •  contain organizations in the Caribbean region:

•  ACS: Assoc, of Caribbean States

•  ASBLAC: Assoc, of Supervisory Banks of Latin Am erica and Caribbean

•  CARICOM : Caribbean Community

•  CDB: Caribbean Development Bank

•  CFATF: Caribbean Financial Action Task Force

•  CXC: Caribbean Examinations Council

•  ECCB: Eastern Caribbean Central Bank

•  I  ACT. Inter-Am erican Children’s Institute
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(a) IGO membership (2000) (b) UN votes (2000) (c) AddHealth W l question­
naire

Figure 5.10: Absolute value of correlations among the features o f different datasets: 
(a) IGO membership of 333 organizations in year 2000; (b) UN voting records o f 202 
resolutions in year 2000; (c) AddHealth W l questionnaire of 374 questions.

•  IACSS: Inter-Am erican Inst, o f Agr. Sci.

•  OAS: Pan-Am erican Union/Org. o f American States

•  OECS: Organization of Eastern Caribbean States

•  O P AN AL: Agency fo r  Prohibition of Nuclear Arm s in Latin America

•  PAHO: Pan-Am erican Health Organization

5.3.3 Drawbacks

The correlation hierarchical clustering algorithm provides us with a structured view 

of the feature space. Taking a horizontal slice at any level reveals clusters of features 

which are thematically related to each other. The summary variables are useful in 

averaging out small noises in related features, and also help us achieve dimensionality 

reduction. However, a few disadvantages must be taken into consideration. First 

of all, not all datasets have highly-structured feature space like the IGO member­

ship and UN voting records. Even though there are (barely) recognizable structures 

in the question space of the AddHealth W l questionnaire dataset (Fig. 5.10c), the 

correlation values are significantly lower than those presented in Figs. 5.10a-5.10b.
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(b) (c )

Figure 5.11: Experiment on synthetic binary questionnaire with N  — 2000, 10 sections 
of mt =  50 questions each, S =  0.3: (a) The data matrix; (b) Cluster assignments of 
500 questions at level 6  o f the hierarchy; (c) Cluster assignments o f 500 questions at 
level 7 of the hierarchy.

Additionally, we have no prior statistics to justify the threshold value at any hor­

izontal layer. For example, it may make sense to have a cluster of Human Rights 

resolutions at layer 5, while resolutions about Arms Control and Border Conflicts 

separated at level 4. The best clustering is most likely to compose of clusters from 

different layers. Fig. 5.11 demonstrates such a case using synthetic binary question­

naire of N  — 2000 persons, 10 sections of m t =  50 questions each, Bernoulli mean 

parameter 5 = 0.3. We ran Greedy Tree procedure (a  =  0.5, initial 0 — 0.9) on the 

dataset shown in Fig. 5.11a. Figs. 5.11b & 5.11c show the cluster assignments of all 

500 questions at level 6 and 7, respectively. The clustering hierarchy has 15 clusters 

at level 6 and 7 clusters at level 7. Fig. 5.11b tells us that most of the sections have 

been correctly grouped at level 6, with the exceptions of Sj and S9, each being divided 

into 3 subclusters. Our best option is to retain the clustering of other sections and 

merge the subclusters of S\ and Sg separately. However, that is impossible without 

prior knowledge of proper threshold values, as shown in Fig. 5.11c: at level 7, Si is 

correctly clustered, while {5s, 57}, {S8, S9}, and {S3, S \0} are merged together.

Most importantly, using this algorithm can only associate /  with feature clusters 

of only one theme while n practice, the labeling function /  may not be constrained 

within a single theme. W ith the UN voting records, our most common task is to
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(d) (f)

Figure 5.12: Experiment on synthetic binary questionnaire with N  =  2000, 10 sec­
tions of m t — 50 questions each, 5 = 0.25: (a) The original data matrix; (b) Cluster 
assignments o f 500 questions at level 6 of the hierarchy showing perfect clustering; (c) 
The extended data matrix with f \  = Xi represented as the “11th section” o f questions 
501 to 550; (d) Cluster assignments o f 550 questions in (c) showing perfect clustering 
and f \  = Xi assigned to the same cluster with questions o f Si (the red-colored seg­
ment); (e) The extended data matrix with / 2(^i) =  1 */ (Y lje j A*j) > f i {x i) = 0 
otherwise. J  is a random set o f 20 questions which include 3 questions from S 2 , 2 
from S3, 2 from S4, 4 from S5, 1 from S7, 1 from Ss , 3 from Sg and 4 from S w . f 2 
is represented as the ‘11th section” of questions 501 to 550; (f) Cluster assignments 
of 550 questions in (d) showing minor clustering noise and f 2 assigned to the same 
cluster with questions o f S 3 (the red-colored segment).
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infer the votes in one future resolution based on existing resolutions. The unknown 

resolution likely belongs to only one of a few strongly-defined topics of interest in the 

UN General Assembly. However, in other datasets such as the MMPI, AddHealth W l 

questionnaires, the function /  may not exclusively belong to any semantic group of 

questions. Fig. 5.12 demonstrates such a case using synthetic binary questionnaire of 

N  = 2000 persons, 10 sections of m t — 50 questions each, Bernoulli mean parameter 

6 =  0.25. Running GreedyTYee procedures (a  =  0.5, initial 8 =  0.9) on the dataset 

shown in Fig. 5.12a yields a perfect 10-cluster clustering at level 6 of the hierarchy 

(Fig. 5.12b). Fig. 5.12c shows the same questionnaire appended by =  Xi which 

is represented as the “I I th section” of questions 501 to 550. Running GreedyTYee 

on this dataset also yields perfect 10-cluster result at level 6 with the “S i l” (the 

red segment) correctly assigned to the same cluster as Si.  We then chose a different 

labeling function / 2 (x,) =  1 if A tJ) > 10, / 2(£i) =  0 otherwise, whereas J  is

a random set of 20 questions which include 3 questions from S2, 2 from S3, 2 from 

S4, 4 from S5, 1 from S7, 1 from Sg, 3 from S9 and 4 from Sio- Fig. 5.12e shows the 

questionnaire appended by / 2 which is represented as “S n ” of questions 501 to 550. 

Running GreedyTYee on this dataset produces an almost perfect clustering with minor 

noise. However, / 2 is assigned to the same cluster as S5, implying tha t the labeling 

function / 2 belongs to the same topic as only S5, which is incorrect considering the 

way / 2 is constructed.

5.4 Second-order correlation of features

Our main interest is in selecting features which “organize the data points in the same 

way as f  does. ” If /  is binary, the desired features should also be able to divide 

the population into two camps, similar to the division of / .  If /  is continuous, the 

selected features should spread the population accordingly from / ’s high end to its
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low end. In other words, the resulting structure induced by the chosen features have 

to correlate with the structure implied by / .  There fore, if we have a kernel function 

K f  induced by / ,  and a kernel function K y induced by a particular feature y, we can 

compute the correlation between K f  and K y as

=  ( M - 1 )

where \\K\\2F = <  K ,K  >F. A simple choice for the kernels of /  and y is their 

autocorrelations:

= -  Vf )TKy = {y -  v v){y ~  tl y)T (5.4.2)

which make K f  and K y first-order correlation measures, and Corr(Kf ,  K y) therefore

a second-order correlation:

Corr(Kf , K y) = EUtU<tVtV> [(it -  -  n f ){v -  n y){v' -  n y)] (5.4.3)

whereas u ,u ' € range(f )  and v ,v ' G range(y).  This choice is similar to the usage of 

the cross-covariance operator in [100, 101] which measures the dependence between 

reproducing kernel Hilbert spaces (RKHSs). In our finite, single-feature case, the 

cross-covariance operator [101] becomes a covariance (correlation) operator:

^ f v  ~  Euv{(u /i/) * {v — g y)\ — Euv[(u — (if) (d — gy)} (5.4.4)

Then, we then have:

Cfy = <  C/y, Cfy >— EUiÛ vy  [(it — At/)(it — ys)i.v ~  Lt‘y){v ~  My)] =  Corr(Kf ,  K y)

(5.4.5)
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5.4.1 Filtering Algorithm

p roced u re C o r r e la t io n S c o r e (A , / ,  y) 

f  =  f ~ H

r =  A(y)  t> r is responses to y

r  — r  -  f j r

K f =  f  * f T

K y  =  f * f T

s  =  t r ( K f  * K v ) / ^ t r ( K f * K f ) * t r ( K y * K y ) 

return  s 

en d  p roced u re

p roced u re S e le c t F e a t u r e s ( j4, / ,  k) 

for y e  Y  do

S(j)  =  CorreIationScore(yl, / ,  y) 

en d  for

set J  =  {j i ,  ■ ■ ■ , j k)  the indices of the top-A: highest in S 

return  {yn , ■■ ■ , yj k} 

en d  p roced u re

We use the CorrelationScore procedure to compute Corr(Kf ,  K y) for each feature 

y in the dataset. The procedure SelectFeatures then picks the k top-correlated fea­

tures. For convenience, we usually use k = 10 or k  =  20. However, a more careful 

approach is to gradually increase the value of k, starting from 1, and observe the 

smoothness of /  on the induced diffusion embeddings, according to the error function 

H(4r, / )  defined in Eq. 5.2.2.

5.4.2 Synthetic Experim ents

Fig. 5.13 shows two experiments with random synthetic questionnaire data to com­

pare factor analysis and SelectFeature-enhanced diffusion maps. We repeatedly run 

experiments on randomized synthetic questionnaire of 2000 participants, Bernoulli 

mean parameter (5 varies from 0.1 to 0.45. In (a), there are exactly 10 sections in
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Figure 5.13: Experiments on synthetic questionnaire of 2000 participants, S varies 
from 0.1 to 0.45. In (a) the questionnaire has exactly 10 sections of 20 binary ques­
tions each. In (b) the questionnaire has a random number of sections (from 2 to 10), 
each has its own random number of questions (from 20-30). In each repetition of the 
experiment, the function f  is created by randomly selecting 2 0  questions, f (xi )  = l i f  
the sum of the answers by x, to these questions exceeds 1 0 , and f ( x i ) =  0 otherwise. 
The first 5 lines plot the error functions E of the diffusion maps induced by different 
number of factors computed by factor analysis. The cyan-colored line plots the error 
function of the diffusion maps induced by 4 0  features filtered by the SelectFeatures pro­
cedure. To complete the comparison, the last blue dotted line plots the error function 
of the diffusion maps induced by All questions in the questionnaire.
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the questionnaire, each section consists of exactly 20 questions. Experiment (b) in­

troduces more uncertainty into the process by making the number of sections in each

questionnaire a random number in [2 , 10]; each section has its own random number of 

questions (in [20,30]). In each repetition, we randomly chose a set J  of 20 questions. 

The labeling function /  is defined as:

1 i f E ^ o > 1 0  
/(* .)  =  < '  (5.4.6)

0 otherwise

We used factor analysis to uncover 2, 5, 10, 15 and 20 factors, projected the 

dataset onto them to use as low-dimensional coordinates. We used the SelectFeatures 

procedure to filter 40 questions most correlated with / .  We then compute the diffusion 

maps with the Gaussian kernel on these selected questions. For comparison, we 

also computed the diffusion maps with the Gaussian kernel on all quesions. Several 

observations can be drawn from Fig. 5.13:

•  Increasing values of 8 disturb the discovery of factors and degrades the perfor­

mance of factor analysis-induced maps.

•  As the number of factors parameter increases, the performance also rises. The 

difference in performance is due to the loss of information by analyzing fewer 

sections than what present in the data.

•  Since 10 is the true number of questionnaire sections in experiment (a) (or the 

maximum number of sections in experiment (b)), the diffusion maps induced 

by factor analysis of 10 factors performs best with respect to the error function 

E. Factor analysis using 15 or 20 factors can do not much better than using 10 

factors. Generally, the performance of diffusion maps using all questions is on 

par with that of factor analysis using 10, 15 or 20 factors.

•  The diffusion maps computed from features filtered by SelectFeatures has the
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best performance, with respect to E. At low values of 6 , it behaves slightly 

poorly, compared to factor analysis, only if the latter is supplied with precise 

apriori information. However, as delta increases, it picks up immediately and 

performs significantly better than factor analysis.

5.4.3 M M PI dataset

We applied SelectFeatures procedure to the MMPI dataset [4]. Fig. 5.14 shows the 

performance of SelectFeatures against two labeling functions: Depression score and 

Antisocial behavior score. W ith the depression score function, using the questions 

filtered by SelectFeatures appears to be no worse than using all questions (Figs. 5.14a 

& 5.14e). Moreover, SelectFeatures yielded a perfectly smooth antisocial behavior 

score function in Fig. 5.14f, in comparison with Fig. 5.14b. In descending order of their 

corresponding correlation scores, the 30 questions most correlated with depression 

scale are:

•  95. I am happy most of the time.

•  65. Most of the time I feel blue.

•  9. My daily life is full of things tha t keep me interested.

•  73. I am certainly lacking in self-confidence.

•  31. I find it hard to keep my mind on a task or job.

•  3. I wake up fresh and rested most mornings.

•  140. Most nights I go to sleep without thoughts or ideas bothering me.

•  75. I usually feel tha t life is worthwhile.

•  165. My memory seems to be all right.
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(a) MMPI Scale 2 (D/Depression), all (b) MMPI Scale RC4 (Antisocial Behav- 
questions used ior), all questions used

MMPI Questions

(c) MMPI Scale 2 (D/Depression), corre­
lation scores

MMPI Questions

(d) MMPI Scale RC4 (Antisocial Behav­
ior) correlation scores

(e) MMPI Scale 2 (D/Depression), top- (f) MMPI Scale RC4 (Antisocial Behav- 
30 correlated questions used ior), top-30 correlated questions used

Figure 5.14: Diffusion maps of the MMPI dataset [3, 4] with Gaussian kernels, using 
the first 3 eigenfunctions. The left column uses Scale 2 (D/Depression) score and the 
right column uses Scale RC4 (antisocial behavior) score as labeling functions: (a) & 
(b) diffusion maps computed from all questions (replicated from Fig. 5.1); (c) & (d) 
plots o f correlation scores o f the question responses against the two labeling functions; 
(e) & (f) diffusion maps calculated from the top-30 most correlated questions.
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•  273. Lile is a strain for me much of the time.

•  10. I am about as able to work as I ever was.

•  130. I certainly feel useless at times.

•  377. I am not happy with myself the way I am.

•  43. My judgment is better than it ever was.

•  223. I believe I am no more nervous than most others.

•  554. When my life gets difficult, it makes me want to just give up.

•  454. The future seems hopeless to me.

•  233. I have difficulty in starting to do things.

•  469. I sometimes feel tha t I am about to go to pieces.

•  141. During the past few years I have been well most ofthe time.

•  561. I usually have enough energy to do my work.

•  516. My life is empty and meaningless.

•  152. I do not tire quickly.

•  39. My sleep is fitful and disturbed.

•  411. At times I think I am no good at at all.

•  180. There is something wrong with my mind.

•  56. I wish I could be as happy as others seem to be.

•  464. I feel tired a good deal of the time.

•  109. I seem to be about as capable and smart as most others around me.
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•  196. I frequently find myself worrying about something.

while the 30 questions most correlated with RC4 antisocial behavior scale (in 

descending order of correlation score) are:

•  105. In school I was sometimes sent to the principal for bad behavior.

•  84. I was suspended from school one or more times for bad behavior.

•  487. I have enjoyed using marijuana.

•  489. I have a drug or alcohol problem.

•  431. In school my marks in classroom behavior were quite regularly bad.

•  35. Sometimes when I was young I stole things.

•  540. I have gotten angry and broken furniture or dishes when I was drin...

•  412. When I was young I often did not go to school even when I shouid h...

•  264. I have used alcohol excessively.

•  511. Once a week or more I get high or drunk.

•  202. My parents often objected to the kind of people I went around with.

•  548. Ive been so angry at times that lve hurt someone in a physic...

•  429. Except by doctors orders I never take drugs or sleeping pills.

•  266. I have never been in trouble with the law.

•  21 . At times I have very much wanted to leave home.

•  502. I have some habits that are really harmful.

•  52. I have not lived the right kind of life.
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•  518. I have made lots of had mistakes in my life.

•  85. At times I have a strong urge to do something harmful or shocking.

•  379. I got many beatings when I was a child.

•  37. At times I feel like smashing things.

•  542. I have become so angry with someone tha t I have felt as if I would...

•  134. At times I feel like picking a fist fight with someone.

•  240. At times it has been impossible lor me to keep from stealing or sh...

•  250. At times 1 have been so entertained by the cleverness of some crim...

•  94. Much of the time I feel as If I have done something wrong or evil.

• 373. I have done some bad things in the past tha t I never tell anybody ...

•  362. I can remember ’’playing sick” to get out of something.

•  316. I have strange and peculiar thoughts.

•  527. After a bad day, I usually need a few drinks to relax.

Fig. 5.15 presents a comparison between factor analysis (FA) and diffusion maps 

with feature selection on the MMPI dataset, using RC4 score for labeling function. 

The blue line plots the error function Z(FA,  RCA) of the embedding using the FA 

factors as coordinates, whereas the number of factors increases from 5 to 50 along the 

horizontal axis. Its shape reveals the true number of factors is about 25. The green 

line plots the error function RCA),  where 'F is the diffusion coordinates computed 

from all questions. The red line plots S (^ , / ) ,  in which 'F is the diffusion coordinates 

calculated from top-30 questions filtered by SelectFeatures. The plots indicate that 

diffusion maps enhanced by SelectFeatures significantly reduces the error, compared 

to tha t of diffusion maps without SelectFeatures and factor analysis.

80



40

30
M

30

#factors

Figure 5.15: Comparison between factor analysis (FA) and diffusion maps with feature 
selection on the MMPI dataset, using RC4 score for labeling function. The blue 
line plots the error function E (FA,  RCA) of the embedding using the FA factors as 
coordinates. The number of factors increases from 5 to 50 along the horizontal axis. 
The green line plots the error function RCA), where 'F is the diffusion coordinates 
computed from all questions. The red line plots E ( '£ ,/ ) ,  in which $  is the diffusion 
coordinates calculated from top-30 questions filtered by SelectFeatures.
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NESARC Questions

(a) Scores of correlation with drunk driv-(b) Diffusion maps on questions with cor­
ing behavior relation scores above 0.02

Figure 5.16: (a) Plot of correlation scores between the driving-while-drinking question 
S2BQ1A21 and other non-alcohol questions. The red dotted line shows the applied 
threshold value 0.02 to obtain the top correlated questions; (b) Diffusion maps of 5000 
NESARC participants, whose points are colored by their responses to drunk driving 
questions S2BQ1A21. The diffusion coordinates were computed from a Gaussian 
kernel of questions whose correlation score to S2BQ1A21 is above 0.02.

5.4.4 NESARC questionnaire

We applied our algorithm to the NESARC questionnaire data to see how SelectFea­

tures procedure improve the embedding in Fig. 5.2. Fig. 5.16a shows the resulting 

plot of correlation scores and the threshold 0.02 being applied for filtering purpose. 

The questions whose correlation scores are above 0.02 are mostly about (i) smoking 

and illicit or non-medical prescription drug use, and (ii) antisocial behaviors:

•  GENDER

• HISTDX2. HISTRIONIC PERSONALITY DISORDER (LIFETIME DIAG­

NOSIS)

•  PARADX2. PARANOID PERSONALITY DISORDER (LIFETIME DIAG­

NOSIS)

•  S10Q1B63. EVER TROUBLE YOU OR CAUSE PROBLEMS AT WORK/SCHOOL 

OR WITH FAMILY/OTHER PEOPLE



S10Q1B64. EVER TROUBLE YOU OR CAUSE PROBLEMS AT WORK/SCHOOL 

OR WITH FAMILY/OTHER PEOPLE

S11AQ1A1. OFTEN CUT CLASS, NOT GO TO CLASS OR GO TO SCHOOL 

AND LEAVE WITHOUT PERMISSION(Wl)

S11AQ1A13. EVER SCAM OR CON SOMEONE FOR MONEY, TO AVOID 

RESPONSIBILITY OR JUST FOR FUN

S11AQ1A14. EVER DO THINGS THAT COULD EASILY HAVE HURT YOU 

OR SOMEONE ELSE, LIKE SPEEDING OR DRIVING AFTER HAVING 

TOO MUCH TO DRINK(W l)

S11AQ1A15. EVER GET MORE THAN 3 TICKETS FOR RECKLESS/CARELESS 

DRIVING, SPEEDING, OR CAUSING AN ACCIDENT(Wl)

S11AQ1A21. EVER FORGE SOMEONE ELSE’S SIGNATURE, LIKE ON A 

LEGAL DOCUMENT OR CHECK

S11AQ1A23. EVER ROB OR MUG SOMEONE OR SNATCH A PURSE

S11AQ1A24. EVER MAKE MONEY ILLEGALLY, LIKE SELLING STOLEN 

PROPERTY OR SELLING DRUGS(Wl)

S11AQ1B21. HAPPEN BEFORE AGE 15 (FORGE SOMEONE ELSE’S SIG­

NATURE)

S11AQ1B24. HAPPEN BEFORE AGE 15 (MAKE MONEY ILLEGALLY,

LIKE SELLING STOLEN PROPERTY OR SELLING DRUGS)

S11AQ1C1. HAPPEN SINCE AGE 13 (CUT CLASS, W l)

S11AQ1C13 HAPPEN SINCE AGE 15 (SCAM OR CON SOMEONE FOR 

MONEY)



•  S11AQ1C14. HAPPEN SINCE AGE 15 (RECKLESS, W l)

•  S11AQ1C15. HAPPEN SINCE AGE 15 (MORE THAN 3 TICKETS, W l)

•  S11AQ1C18. HAPPEN SINCE AGE 15 (START FIRE ON PURPOSE TO 

DESTROY SOMEONE ELSE’S PROPERTY)

•  S11AQ1C21 . HAPPEN SINCE AGE 15 (FORGE SOMEONE ELSE’S SIGNA­

TURE)

•  S11AQ1C23. HAPPEN SINCE AGE 15 (ROB OR MUG SOMEONE OR 

SNATCH A PURSE)

•  S11AQ1C24. HAPPEN SINCE AGE 15 (ILLEGAL INCOME, W l)

•  S11AQ5B. DID ALL EXPERIENCES BEFORE AGE 15 HAPPEN WHILE 

OR AFTER USING A MEDICINE OR DRUG

•  S3AQ1A. EVER SMOKED 100+ CIGARETTES (W l)

•  S3AQ1B. EVER SMOKED 50+ CIGARS (W l)

•  S3AQ1C. EVER SMOKED A PIPE 50+ TIMES

• S3AQ1D. EVER USED SNUFF 20+ TIMES (W l)

•  S3AQ1E. EVER USED CHEWING TOBACCO 20+ TIMES (W l)

•  S3AQ93. SMOKED PIPE WHEN HAD SOME OF THESE EXPERIENCES 

WITH TOBACCO IN LAST 12 MONTHS

• S3BQ1A4. EVER USED AMPHETAMINES (W l)

•  S3BQ1A5. EVER USED CANNABIS (W l)

•  S3BQ1A6. EVER USED COCAINE OR CRACK (W l)
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NESARC Questions

(a) Scores of correlation with Vandalizing (b) Diffusion maps on questions with cor- 
behavior relation scores above 0.05

Figure 5.17: (a) Plot of correlation scores between the vandalizing behavior question 
S2BQ1A17 and other non-alcohol questions. The red dotted line shows the applied 
threshold value 0.05 to obtain the top correlated questions; (b) Diffusion maps of 
5000 NESARC participants, whose points are colored by their responses to driving- 
while-drinking questions S2BQ1A21. The diffusion coordinates were computed from  
a Gaussian kernel o f questions whose correlation score to S2BQ1A17 is above 0.02.

•  S3BQ1A7. EVER USED HALLUCINOGENS (W l)

•  S3CD5Q12E7. HAPPEN PRIOR TO LAST 12 MONTHS WITH CANNABIS

• S3CQ12A7. MORE THAN ONCE DRIVE A VEHICLE UNDER THE IN­

FLUENCE OF MEDICINE/DRUG (W l)

•  S3CQ12D7. PPY MORE THAN ONCE DRIVE A VEHICLE UNDER THE 

INFLUENCE OF MEDICINE/DRUG (W l)

•  SCHIZDX2. SCHIZOID PERSONALITY DISORDER (LIFETIME DIAGNO­

SIS)

Fig. 5.16b repeats the experiment in Fig. 5.2, this time using only questions filtered 

by SelectFeatures. The drunk-drivers are more well organized in this embedding, with 

a transition from blue color (low values) to red (high values), compared to Fig. 5.2.

As another experiment, we used the vandalizing behavior (part of antisocial be­

havior section in the questionnaire) S11AQ1A17 (EVER DESTROY/  BREAK/ VAN­

DALIZE SOMEONE ELSE’S PROPERTY) as the labeling function. Fig. 5.17ashows



the resulting plot of correlation scores and the threshold 0.05 being applied for filtering 

purpose. The filtered questions are all about antisocial behaviors:

•  ANTISOCDX2. ANTISOCIAL PERSONALITY DISORDER (WITH CON­

DUCT DISORDER)

•  S11AQ1A11. EVER TIME HAVE WHEN YOU LIED A LOT, OTHER THAN 

TO AVOID BEING HURT

• S11AQ1A13. EVER SCAM OR CON SOMEONE FOR MONEY, TO AVOID 

RESPONSIBILITY OR JUST FOR FUN

• S11AQ1A14. EVER DO THINGS THAT COULD EASILY HAVE HURT YOU 

OR SOMEONE ELSE, LIKE SPEEDING OR DRIVING AFTER HAVING 

TOO MUCH TO DRINK (W l)

•  S11AQ1A18. EVER START FIRE ON PURPOSE TO DESTROY SOMEONE 

ELSE’S PROPERTY OR JUST TO SEE IT BURN

• S11AQ1A20. EVER STEAL SOMETHING FROM SOMEONE/SOMEPLACE 

WHEN NO ONE WAS AROUND

• S11AQ1A22. EVER SHOPLIFT

•  S11AQ1A24. EVER MAKE MONEY ILLEGALLY, LIKE SELLING STOLEN 

PROPERTY OR SELLING DRUGS(Wl)

•  S11AQ1A25, EVER DO SOMETHING YOU COULD HAVE BEEN AR­

RESTED FOR, REGARDLESS OF WHETHER YOU WERE CAUGHT OR 

NOT

•  S11AQ1A27. EVER GET INTO A LOT OF FIGHTS THAT YOU STARTED
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•  S11AQ1A30. EVER HIT SOMEONE SO HARD THAT YOU INJURED THEM 

OR THEY HAD TO SEE A DOCTOR

• S11AQ1A31. EVER HARASS, THREATEN OR BLACKMAIL SOMEONE

• S11AQ1B17. HAPPEN BEFORE AGE 15 (VANDALIZE, W l)

•  S11AQ1B18. HAPPEN BEFORE AGE 15 (ARSON, W l)

•  S11AQ1B20. HAPPEN BEFORE AGE 15 (STEAL, W l)

•  S11AQ1B22. HAPPEN BEFORE AGE 15 (SHOPLIFT, W l)

•  S11AQ1B25. HAPPEN BEFORE AGE 15 (COULD BE ARRESTED, W l)

•  S11AQ1C13. HAPPEN SINCE AGE 15 (SCAM OR CON SOMEONE FOR 

MONEY)

•  S11AQ1C14. HAPPEN SINCE AGE 15 (RECKLESS, W l)

•  S11AQ1C17. HAPPEN SINCE AGE 15 (VANDALIZE, W l)

•  S11AQ1C20. HAPPEN SINCE AGE 15 (STEAL, W l)

•  S11AQ1C22. HAPPEN SINCE AGE 15 (SHOPLIFT, W l)

•  S11AQ1C24. HAPPEN SINCE AGE 15 (ILLEGAL INCOME, W l)

•  S11AQ1C25. HAPPEN SINCE AGE 15 (COULD BE ARRESTED, W l)

•  S11AQ1C30. HAPPEN SINCE AGE 15 (INJURE OTHERS, W l)

•  S11AQ1C31. HAPPEN SINCE AGE 15 (HARASS, THREATEN, W l)

Fig. 5.17b, maps the 5000 questionnaire participants using only the filtered ques­

tions listed above. Compared to Fig. 5.2, the drunk-drivers are more well organized 

in this embedding. We could see two groups of points, one including mostly blue
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Figure 5.18: Correlation scores between the W-2 binging kernel (computed from W-2 
question about binging frequency) and the kernels computed from non-alcohol questions 
in the AddHealth dataset. The red dotted line shows the applied threshold value 0.01 
to obtain the 14 questions, which are used to render the diffusion maps in Fig. 5.19.

points, and the other containing mostly red points. This shows a strong relationship 

between drunk driving (S2BQ1A21) and antisocial behaviors.

5.4.5 AddH ealth questionnaire

We applied SeleetFeatures procedure to the AddHealth W l questionnaire. The cor­

relation scores in Fig. 5.18 are extremely low, indicating tha t most of the questions 

do not carry a lot of information about the bingers. So, we focused on the most 

informative responses. Taking all the questions whose correlation scores are higher 

than 0.01, we obtained the following 13 questions

•  S28Q1 EVER SMOKED A CIGARETTE-W1

•  S29Q14 TAKE PART IN A GROUP FIGHT-W1
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•  C46 THINK HAS KISSED/NECKED-PQ

•  S22Q1 DID YOU HAVE A ROMANCE-W1

•  S18Q16 RELY ON GUT FEELINGS-W1

• S33Q4 PAST YR-FRIENDS ATTEMPT SUICIDE-W1

• S29Q15 LOUD/ROWDY IN A PUBLIC PLACE-Wl

•  S3Q51 TYPICAL HOURS OF SLEEP-W l

•  S29Q3 LIE TO PARENTS ABOUT WHEREABOUT-W1

•  S3Q40 FREQ-RIDE A MOTORCYCLE-W1

• S26Q5 NON-ROMANCE SEX W / ANYONE-W1

• C32 BAD TEMPER-PQ

• S1Q6B RACE-AFRICAN AMERICAN-W1

Fig. 5.19 shows the diffusion embedding of all participants, with a Gaussian kernel 

on the 14 questions, using the first 3 eigenfunctions, at several different rotations.

From Fig. 5.19a, we see that the participants belong to 2 large clusters located 

along the second eigenfunction.

From Fig. 5.20, most of African American are located on the upper portion of the 

second eigenfunction. Since there are only 16 bingers (out of 191) who are African 

American, we turned our focus to the non-African American group. We filter out 

all participants whose second eigenfunction value is higher than 0.03, and repeat the 

kernel correlation computation, based on the remaining group of participants. The 

kernel correlation scores are shown in Fig. 5.21.

Thresholding the correlation scores in Fig. 5.21 at 0.015, we obtained the following 

10 questions:
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Figure 5.19: Diffusion maps of AddHealth W1 questionnaire participants using 13 
questions whose correlation scores to the binging kernel (Fig. 5.18) is more than 0.01, 
and a Gaussian kernel. Bingers are colored in red. The subfigures are of the same 
3-dimensional map from different viewing angles.
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Figure 5.20: Thresholding on the second eigenfunction of the embedding shown in 
Fig. 5.19a: (a) Participants whose second eigenfunction has value greater than 0.05 
are colored in red; (b) Participants whose answered Yes to ”S1Q6B RACE-AFRICAN  
A M E R IC A N -W l” are colored in red.

90



0 . 0 6

0.05

0.04

CA
0.03

0.02

0.01

kjrfUiid
300100 150 200

AddHealth Wi Questions
250 350 400

Figure 5.21: Correlation scores between the W-2 binging kernel and the kernels com­
puted from W l non-alcohol questions in the AddHealth dataset, based on non-African 
American respondents. The red dotted line shows the applied threshold value 0.015 to 
obtain the 14 questions, which are used to render the diffusion maps in Fig. 5.22.
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•  S28Q1 EVER SMOKED A CIGARETTE-W1

• C46 THINK HAS KISSED/NECKED-PQ

•  S18Q16 RELY ON GUT FEELINGS-W1

• S29Q14 TAKE PART IN A GROUP FIGHT-W 1

•  S29Q15 LOUD/ROWDY IN A PUBLIC PLACE-W1

• S29Q3 LIE TO PARENTS ABOUT WHEREABOUT-W1

• S22Q1 DID YOU HAVE A ROMANCE-W1

• S35Q6 WANT TO LEAVE HOME-W1

• S33Q1 PAST YR-THINK ABOUT SUICIDE-Wl

•  S26Q5 NON-ROMANCE SEX W / ANYONE-W1

More than half of these questions are about behavioral undercontrol and rule 

breaking, especially when considered in the context that these are 11-12 year olds 

[102]. More interestingly, this filtered list of social and behavioral characteristics 

strongly agrees with the recent findings by the IMAGEN project [103] of factors 

differentiating bingers from non-bingers (their Extended data Fig 7), in order of 

strength of relationship: smoking, romantic events, deviance events/deviance valence 

(suicidal ideation), and family events. These same domains of content differentiate 

those who became bingers in the prospective analysis from those who did not. Brain 

activation patterns in reward response and emotional reactivity and several candidate 

genes relating to alcohol abuse also predict these drinking differences, albeit with 

much lower strength [103]. This strong agreement is a signal tha t our findings are on 

the right track, reaching the same results via only responses in a limited dataset.
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Working only with the W1 questions in the filtered list above, Fig. 5.22 shows the 

diffusion embedding of non-African American participants, with a Gaussian kernel of 

these 10 questions, using the first 3 eigenfunctions.

According to Fig. 5.22, the first 3 eigenfunctions divide the non-African Ameri­

can participants into 12 clusters. The first 2 eigenfunctions organize these clusters 

in parallel lines (Fig. 5.22a). Fig. 5.24 shows that the smokers and non-smokers are 

separated along the parallel direction, while Fig. 5.25 shows that the direction perpen­

dicular to the parallel direction resembles the sum of answers to questions ”S22Ql DID 

YOU HAVE A ROMANCE-Wl” and ”C46 THINK HAS KISSED/NECKED-PQ” . 

Moreover, the third eigenfunction organizes the clusters into layers, which correspond 

to the difference between answers to ”S22Q1 DID YOU HAVE A ROMANCE-Wl” 

and ”C46 THINK HAS KISSED/NECKED-PQ” (Fig. 5.26). Thresholding the third 

eigenfunction, we found 5 layers:

•  V3 < —0.15: kids said no romance while parents thought their kids have 

kissed/necked.

•  —0.15 < V3 < -0.07: kids said no romance and parents had no idea.

•  —0.07 < V3 < 0: both answered yes.

•  0 <  V3 < 0.1: mixed set of both answered yes or both answered no.

•  0.1 < V3: kids had romance and parents thought no kissing/necking took place.

Since the bingers are the main target, we observe tha t the bingers are located 

with high density in certain portions of the parallel clusters. Fig. 5.27 indicates that 

in each cluster, the 4th eigenfunction spreads along the parallel direction, while the 

6th  eigenfunction spreads along the vertical direction. Therefore, as we are able to 

locate each individual cluster using the first 3 eigenfunctions, we can locate the area 

of high binger density in tha t cluster with the 4th and 6th  eigenfunctions. Fig. 5.28
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Figure 5.22: Diffusion maps of AddHealth W1 questionnaire’s non-African American 
participants, using 10  questions whose correlation scores to the binging kernel is more 
than 0.015, and a Gaussian kernel. Bingers are colored in red. The subfigures are of 
the same 3-dimensional map, from different viewing angles.
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Figure 5.23: The spectrum of the Gaussian kernel, built on the responses of non- 
African American to 10 questions whose correlation scores to the binging kernel is 
more than 0.015. The graph is limited to the first 7 eigenvalues.
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Figure 5.24: Thresholding on the first two eigenfunctions o f the embedding shown in 
Fig. 5.22a: (a) Participants whose projections of the first two eigenfunctions onto 
the diagonal (2, 1) direction (SW -NE) value lower than 1.6 are colored in red; (b) 
Participants who answered Yes to ’’S28Q1 EVER SMOKED A C IG ARETTE-W 1” 
are colored in red.
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Figure 5.25: Thresholding on the first two eigenfunctions o f the embedding shown in 
Fig. 5.22a: (a) Participants are colored based on the projection values o f the first 
two eigenfunctions onto the diagonal (-1, 2) direction (NW-SE); (b) Participants are 
colored based on the sum of answers to ”S22Q1 DID YOU HAVE A R O M A N C E -W l” 
and ”C46 THINK HAS KISSED/NECKED -PQ”.
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Figure 5.26: Thresholding on the third eigenfunction of the embedding shown in 
Fig. 5.22c (This is the vertical direction of the 3-dimensional map in Fig. 5.22):
(a) Participants are colored based on third eigenfunction; (b) Participants are colored 
based on the difference of answers to ’’S22Q1 DID YOU HAVE A R O M A N C E -W l" 
and ”C46 THINK H AS KISSED /NECKED -PQ ”.
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Figure 5.27: Thresholding o f local clusters using 4 th and 6th eigenfunctions: (a) &
(c) are taken from the same angle as Fig. 5.22a while (b) & (d) are captured from  
the same perspective as Fig. 5.22c; (a) & (b) Participants are colored based on 4th 
eigenfunction; (c) & (d) Participants are colored based on 6th eigenfunction. These 
eigenfunctions are explained in Fig. 5.29.

provides a demonstration of using the first 3 eigenfunctions to locate one particular 

cluster, then thresholding the 4th eigenfunction to locate the bingers.

Investigating the 4th and 6th eigenfunctions, Fig. 5.29a indicates tha t these two 

functions separate people with suicidal thoughts from those who don’t have such 

thoughts. The addition of the 5th eigenfunction in Fig. 5.29b widens the separa­

tion between the two groups. Fig. 5.29c shows certain relation between questions 

”S33Q1 PAST YE-THINK ABOUT SUICIDE-W1” and "S18Q16 RELY ON GUT 

FEELINGS-W1” : Among the participants who have the same answers to ’’S18Q16
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Figure 5.28: Locating the bingers in a local cluster, diffusion map based on first 3 
eigenfunctions: (a) The overall diffusion map with bingers being colored red; (b) The 
targeted cluster of participants (bingers and non-bingers included) is colored red, lo­
cated by thresholding the first 2 eigenfunctions; (c) Participants in the targeted cluster 
is colored by the 4th eigenfunction; (d) Thresholding the 4th eigenfunction on the tar­
geted cluster, using threshold value of 0.1.
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RELY ON GUT FEELINGS-W1” , the 5th eigenfunction value separates those who 

have suicidal thoughts from others. Fig. 5.30 shows the embedding using 1st, 2nd 

and 5th eigenfunctions, which reveals some interesting relationship between the 5th 

eigenfunctions, suicidal thoughts, and gut feelings.

Fig. 5.31 summarizes the experiments in Waves 2 and 3 of the same AddHealth 

dataset, on the same participants. From Fig. 5.31a, the 10 W2 non-alcohol questions 

most correlated with the W2 binge drinking frequency are:

•  S27Q44 SINCE MOLI,TRIED MARIJUANA-W2.

•  S27Q48 3 FRIENDS-SMOKE POT i l  A MONTH-W2.

•  S27Q1 SMOKED A CIGARETTE-W2.

•  S23Q1 EVER TOUCH ANOTHERS GENITALS-W2.

•  S23Q2 EVER HAVE SEX-W2.

•  S27Q10 HOW MANY FRIENDS SMOKE-W2.

•  S3Q46 NIGHT FROM HOME W /O  PERMISS-W2.

•  S33Q3 MOM-USE OF BIRTHCONTROL-W2.

•  S33Q2 MOM-YOU HAVING SEX WITH STEADY-W2.

•  S33Q1 MOM-FEEL ABOUT SEX NOW-W2.

Fig. 5.31b embeds the participants using these 10 W2 questions, and plots the W2 

binging frequency labeling function on the map. Likewise, Fig. 5.31c yields another 

group of 10 W3 questions most correlated with the W3 binge drinking question (i.e., 

when respondents were age 19-20):

•  S28Q103 3 BEST FRNDS H/MANY DRINK MON-W3.
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Figure 5.29: Diffusion embeddings of non-African American participants, using the 
10 selected W l non-alcohol questions and the 4th, 6 th and 5th eigenfunctions: (a) 
Embedding by 4th and 6 th eigenfunctions, participants are colored based on answers to 
”S33Q1 PA ST YR-TH INK ABO U T S U IC ID E -W 1 (b )  Embedding by 4th, 6th and 
5th eigenfunctions, participants are colored based on answers to "S33Q1 P A ST  YR- 
THINK ABO U T SUICIDE-W 1”, the addition of the 5th eigenfunction enhances the 
distinction between the two groups; (c) Embedding by 4th, 6 th and 5th eigenfunctions, 
participants are colored based on answers to ’’S18Q16 R E LY  ON GUT FEELINGS- 
W l”; (d) Embedding by 4 th, 6 th and 5th eigenfunctions, bingers are colored in red.
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Figure 5.30: Diffusion embeddings of non-African American participants by the 1st, 
2nd and 5th eigenfunctions: (a) Participants are colored based on answers to ’’S33Q1 
P A ST YR-THINK AB O U T S U IC ID E -W 1 (b )  Participants are colored based on 
answers to ’’S18Q16 R E LY  ON GUT FEELINGS- W1 ”.

•  S28Q37 SINCE JUN95 DRINK 2/3  TIMES-W3.

•  S28Q108 SINCE JUN95 USED MARIJUANA-W3.

•  S28Q104 3 BEST FRNDS H/MANY BINGE-W3.

•  S28Q117 SINCE JUN95 USED OTH DRUG-W3.

•  S12Q16 PAST 7 DAYS NEVER SWEAR-W3.

•  S28Q105B SINC JUN95 TAKN TRANQUILIZER-W3.

•  S26Q1 12 MO,OFT DAMAGE PRO P/NOT YOUR-W3.

•  S28Q1 EVER TRIED CIG SMOKING-W3.

•  S28Q28 TRUE-LOOK FOR EXCITEMENT-W3.

Fig. 5.31d uses these W3 questions to embed the participants, colors them by their 

binge drinking during W3. AddHealth Wave-3 questionnaire was conducted 5 years 

after Wave-2, meaning the participants were about 19-20 years old when they took 

W3 survey. The time gap and the age difference explains a stark contrast between
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respondents were ages 19-20, i.e., 5 years after W-2)
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the W l, W2 list of relevant questions and the W3 list. The interested questions in 

W l, W2 show tha t early teens’ binging behavior is related to different factors such 

as cigarette smoking, sex/romance, deviant behaviors, violence. However, in W3, 

the questions gear mostly toward smoking and drugs, with a rule-breaking, sensation 

seeking orientation, and involving substantially more drug use, of a variety of different 

types [104],
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Chapter 6

Conclusions

We applied diffusion geometry to sociopolitical and public health datasets, revealing 

hidden patterns in the relationships among nations. Our experimental results yield 

interesting historical narratives. The fact that our findings, drawn only from the 

datasets, largely concur with those of political scientists and behavioral scientists, 

and indicate great potential of diffusion geometry in the analysis of security-related 

datasets, and in parsing other behavioral science, and public health data.

We presented a variety of experiments, both with synthetic and real data, to 

demonstrate the noise effect of irrelevant features in correlated datasets (such as 

surveys, votings, ratings). We showed that, under a supervised context, applying 

diffusion maps in an exploratory approach to the original dataset leads to unsatis­

factory performance. We proposed a feature selection algorithm using second-order 

correlation, which demonstrably enhances the performance of diffusion methods in 

supervised applications on several public health datasets.
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Appendix A

Diffusion maps &; Diffusion 

distance

A .l Random Walk

We begin by taking a microscopic view at the diffusion process in social network: a 

randomwalk [105]. Let us follow the path of a person “migrating” from country to 

country inside the network of capital cities, whose edge weights are defined according 

to the demographic gravitational model [106] Wij — a 1̂ 1 , where N, denotes the
Tij

population of country i, r tJ provides the distance between capital cities of countries 

i and j ,  and a  is a positive constant. We assume that for every time step t, if 

the person is at country i, the probability that he moves to country j  in the next 

step is proportional to the demographic attraction W,j. Setting the proportionality 

parameter to 1 for convenience, we then construct the transition matrix M  whose 

entries M l} denotes the probability the person moves from country i to country j .

M  = D ~l W  (A.1.1)
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where D  is a diagonal matrix Dtl — dx =  ]TV called the degree matrix. M  is 

by definition a stochastic matrix whose every row sums to one. Therefore, M  can 

be interpreted as defining a random walk on G. If we examine a 1-by-n vector pt of 

probability the person appears in each country at time t , we have:

pJ+ l^ p j M  = p fD - 1W  (A.1.2)

Unless G  is a regular graph (whose vertices have the same degree), M  is an 

asymmetric matrix, which is difficult to deal with. Instead, we may opt to examine 

another symmetric matrix related to M :

M  = £>1/2M Z T 1/2 =  D~ll2W D - l/2 (A.1.3)

The entries of M  are thus Mt] = ■ Because M  is real-valued and symmetric,

it is diagonalizable and all of its eigenvalues are real. Eigenvector decomposition of 

M  gives us Ai > A2 >  . . .  > An as the eigenvalues and {u*} their corresponding 

orthonormal eigenvectors. In matrix form:

M  -  TA Tr  (A.1.4)

where A is the diagonal matrix with {A*} on its diagonal, and T is a matrix whose 

columns are the corresponding eigenvectors {u*,}. Since M  and M  are similar, they 

have the same set of eigenvalues {A*,}. In matrix form, we have:

M  = D ~1/2M D 1/2 = D ~1/2T A T t D 1/2 (A .I.5)

Thus, if we let

4>k = D 1/2vk 

ipk = D ~1/2vk
(A .I.6)
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then

M  =  $ A $ T (A.1.7)

which implies that { ^ }  and { fa }  defined in Eq. A .I.6 are the left and right eigen­

vectors of M  corresponding to eigenvalues {A*}. Since {ufc} are orthonormal vectors, 

it is easily seen from Eq. A. 1.6 that fa and fa  are bi-orthonormal:

< fa ,fa > = 5 ij  (A.1.8)

where < •, • > is the standard dot product. It is also verifiable that

M d l/2 = D ~1/2W D ~ 1/2d1/2 = D~l/2W l  = D~1/2d =  d1/2 (A.1.9)

Therefore d} / 2 is an eigenvector of M  with eigenvalue 1. Since the vector d 1̂ 2

is positive, Perron-Frobenius theorem [107] tells us that its corresponding eigenvalue 

1 is the largest eigenvalue of M  and V/c |A*| < 1. Thus Ai =  1. In fact, if G  is 

connected (so tha t M  represents an irreducible and aperiodic Markov chain) then 

'ik  > 1 |Afcl <  1 =  Ai. We also have =  p t73]f, which leads to fa =  p $ 2|  and

fa  =  [[rfiyai) • That means fa  is a constant vector, while fa (i) = —̂ ===.

Let Pt(j\i) be the probability distribution of the person stays at country j  at time 

t, given that he starts out from country i at time 0. Prom Eq. A. 1.2, we have:

= e j M t = ef'PA*#7’ =  J ^ ^ fc(*)A \ f a t i )  (A .I.10)
k

where e, is a vector whose entry ex(k) =  <5̂ . Hence, if G is connected (so that every

eigenvalue other than Ai is less than 1), then regardless of the initial starting point:

l i m t ^ p t i N )  = fa{i ) fa(j )  =  j|df/2-p  =  (A .I.11)

The first eigenvector fa therefore serves as the stationary distribution of the ran-
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dom walk M.  Furthermore, it can also be considered a, density estimate, which tells 

us of how frequently our walker passes by a particular country. In social network 

terminology, it is the centrality vector. It is obvious that <t>\ is related to degree cen­

trality. <f>i is also similar to the eigenvector centrality of W  [108], in the sense tha t it 

satisfies fa (i) =  ^ M j ) -

A .2 Diffusion Distance & Diffusion Maps

For each country i, we can imagine the diffusion process starts with an initial distri­

bution poO N) =  bxy After t steps, this distribution diffuses out to the neighborhood 

of i, with the landscape described by P t(j|i). The walker is more likely to end up in 

countries close to i than those far away. The difference between any 2 countries can 

be measured by:

71

= \\Pt(l\i) ~  Pt(l\j\\l = -  pt{l\j))2u{i) (A.2.1)
i

where u>(l) = j  is the weight function, which normalize the distance by the centrality 

measure of each node. We call Df ( i , j ) the diffusion distance between i and j  at 

time t. It can be seen as the weighted difference between the two distributions of 

concentrations after t steps of two random walks starting from nodes i and j .  We 

also define diffusion map 'I'i as the mapping between the original data space onto the 

first k left eigenvectors of M:

®t(0 =  (A ^i(z), A ^ 2(2>, • • . , A ^ k(i »  (A.2.2)

It is easily verifiable that the diffusion distance in Eq. A.2.1 is equal to Euclidean 

distance in the diffusion map space:
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M ) M )= £  XU -  V ' f c i O ' ) ) ^  ( t M O  ”  V’f c a O ' ) )  d j  

= £  xii (iMO -  ^O)) Ai ^ d )  - M ) )  £  ̂ M )
n

=  I Z  A *1 ( l M * )  ~  ^ * i 0 ‘)  ) A U  t M * )  - -  V' fcaC?)  )  '%2'l’kl(l)M)
fci,fc2 A /  V /  i

= £  Afc, A m * )  -  -- V'fcaO'))^!**
fei,A:2

= 51 a* (Wo -V'itO')

=  | I « . ( 0 - * « C j ) I I 3
(A.2.3)

Practically, only the last (k — 1) coordinates are to be considered because i/'i is a 

constant vector. Additionally, since Vk |Afcj < =  1, components Aj^fc(i) in Eq. A.2.2 

corresponding to smaller values of A* start to vanish as t increases. The larger the 

value of t, the more components of 'lh(i) are brought down to 0, thus reducing the 

dimensionality of the embedded space.
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