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Kulitta is a Haskell-based, modular framework for automated composition and machine 

learning. A central idea to Kulitta’s approach is the notion of abstraction: the idea that 

something can be described at many different levels of detail. Music has many levels of 

abstraction, ranging from the sound we hear to a paper score and large-scale structural 

patterns. Music is also very multidimensional and prone to tractability problems. Kulitta 

works at many of levels of abstraction in stages as a way to mitigate these inherent com

plexity problems.

Abstract musical structure is generated by using a new category of grammars called 

probabilistic temporal graph grammars (PTGGs), which are a type of parameterized, context- 

free grammar that includes variable instantiation, a feature usually only found in grammars 

for programming languages. This abstract structure can be turned into full music through 

the use of constraint satisfaction algorithms and equivalence relations based on music theo

retic concepts. An extension to an existing algorithm for learning PCFGs provides a way to 

learn production probabilities for these grammars using corpora of existing music. Kulitta’s 

modules for these features are able to be combined in different ways to support multiple 

styles of music.

Kulitta’s important contributions include (1) algorithms and a generalized Haskell im

plementation to support PTGGs, (2) additional formalization of existing musical equiva

lence relations along with a new equivalence relation for modeling jazz harmony, (3) an 

empirical evaluation strategy for measuring the performance of automated composition al

gorithms, and (4) the extension of a machine-learning algorithm for PCFGs to support a



much broader category of grammars (inclusive of PTGGs) via the use of an oracle. Kulitta’s 

musical performance is also promising, demonstrating both stylistic versatility and aesthet

ically pleasing results.
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Chapter 1 

Computer Music as a Field

Computer music is a broad field comprised of many different research areas, and it draws 

on music theory, mathematics, computer sciennce, and other fields. The styles of mu

sic involved are equally diverse, ranging from classical Western music to modem modem 

Western and also non-Western music. Research topics range from the development of new 

electronic musical instruments to automation of music analysis and composition. The latter 

two topics include mathematical modeling of music [11, 52, 80], automated score analy

sis [43, 74], and construction of artificial intelligence agents to create music [19, 20, 25]. 

The purpose of this chapter is to provide an overview of some of these research areas and 

illustrate where Kulitta falls within their scope.

1.1 Composition vs. Performance

Although the definitions of what constitutes a “composition” versus a “performance” of 

a composition are somewhat blurry in modem music, in general there is a one-to-many 

relationship: a given composition is likely to have many possible performances, where 

the composition is an abstract entity that requires additional work or interpretation to be 

realized as sound.

In traditional Western music, a composition is typically represented as a printed score.
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Some musical scores can be very specific, containing detailed information about pitches, 

timing, and volume. Others are more vague - such as a jazz standard, which only gives 

limited melodic information and often only abstract information about harmonies, thereby 

leaving many decisions to the performer. Regardless of the precise level of detail, there 

is usually room for some amount of further interpretation in concepts. Even a detailed 

traditional score would allow the performer to interpret features like rubatto (creation of an 

irregular tempo), the exact volume associated with pianissimo (meaning “very quiet”), and 

so on. Individual instruments also have additional possibilities for expressive decisions, 

such as varying timbre (the quality of the sound) or adding vibrato (subtle, rapid pitch 

fluctuations).

The computer music community often considers composition and performance as two 

separate tasks, just as a score can be written by one person and performed by another. 

Algorithms exist for creating novel musical scores [1, 22, 25], and others for performing 

scores [75,84]. In fact, even in addition to the one-to-many relationship that exists between 

a composition and its possible performances, there are good computational reasons for 

separating composition and performance as independent tasks. Creating a novel, human

like or even just likable musical score is a daunting enough task by itself for a machine 

without having to worry about additional performance details.

The Kulitta framework addresses composition in the traditional sense: creating scores 

that require performance. Although Kulitta could easily be used in conjunction with an 

automated performance algorithm, properties like volume and tempo changes are outside 

the scope of musical features that Kulitta considers. All of Kulitta’s output can, therefore, 

be easily represented using traditional Western music notation.

2



1.2 Automated Composition

Automated composition involves generating some amount of a musical score with a com

puter. Sometimes the term “algorithmic composition” is used interchangeably and also 

refers to music created at least partially by an algorithm rather than entirely by a human. 

At its largest possible scope, automated composition would be the creation of a complete, 

novel score from minimal human input, such as a random number seed. However, many 

smaller automated composition tasks also exist. For example:

•  Automated harmonization: given an existing melody and some stylistic constraints, 

fill in appropriate chords.

•  Automated reharmonization: given a melody and some harmony, find a slightly dif

ferent harmony that also sounds good. This a common task done by jazz musicians 

to add variety to otherwise repeated phrases.

•  Fill-in-the-blank problems: given a mostly complete piece of music, fill in missing 

notes while trying to adhere to the same overall style as the rest of the music.

•  Generating variations: given a melody or short musical phrase, produce a similar 

but slightly different version of it.

Whether the output from algorithms for these tasks is considered good or human-like 

is another matter. Obviously, the larger the scope of the task, the harder it will be for a 

computer (or even a human for that matter) to consistently produce high-quality results ac

cording to some set of standards. However, strict standards do no always exist. Sometimes 

the “humanity” of the result or exact replication of a style is also irrelevant, and the pur

pose of the composition is to represent a mathematical model acoustically. For example, 

fractal-based algorithms have been used to create novel compositions using various music 

theoretic concepts as a guide [33, 86].
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Although many algorithms and implementations in these categories are exclusive to 

academia, they are not absent from more widely used commercial music composition soft

ware. One of the best known examples is Band in a Box, which attempts to solve fill-in- 

the-blank and automated harmonization problems in different styles [31]. The Fruity Loops 

Digital Audio Workstation software package also features a “riff generator” to allow users 

to automatically generate melodies in various styles [58].

The methods discussed so far are all usually handled in offline scenarios: the computer 

is allowed to work for an arbitrary amount of time before returning a result. Not all styles of 

music are constructed this way, and some are improvisational - such as jazz. Adding a real 

time component to a musical task such as automated harmonization increases its difficulty, 

assuming the same level of quality is to be maintained.

A vast array of approaches have been used for tasks in automated composition, includ

ing stochastic solvers [19, 20, 87], generative grammars [42], genetic algorithms [1], and 

more cognitively-inspired models such as neural nets and Boltzmann machines [4, 26, 30, 

35]. Each of these approaches has its merits and weaknesses, although there are some 

common problems relating to the complexity of musical tasks that exist throughout.

1.2.1 Computational Complexity and Music Composition

Consider an 88-key piano. Any skilled pianist in a paritcular style can sit down to such an 

instrument and play a series of chords that meet that style’s constraints. However, consider 

how a naive computer algorithm might view the piano. There are 88 ways to depress one 

key, 88 x 87 =  7,656 ways to depress two keys, 88 x 87 x 86 =  658,416 ways to depress 

three keys, and so on. The total number of combinations in which the keys can be depressed 

(including not depresseing any of them) is the cardinality of the power set of {1,..., 88}, or 

the number of binary numbers representable with 88 bits:

288 =  309,485,009,821,345,068,724,781,056 (1.1)
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Of course, any human musician can tell that this number is actually absurd, since no

body can reasonably play the vast majority of those combinations of pitches. Sill, even 

given a classifier to determine which sets of pitches are reasonable and which are not, such 

a naive algorithm would still need to compute each one in order to determine if it is viable.

These types of exponential patterns are everywhere in music. The problem above is 

a vertical one in a musical score: choosing what to write on the staff at a particular beat 

or point in time. However, the same problem also exists horizontally when considering 

changes in those pitches over time. If there are n possible chords to pick from for each of 

m melody notes, then there are nm possible chord progressions to explore. Even when n 

can be whittled down to a reasonably small number of candidates, creating a progression 

of those chords under styistic constraints can still become intractable. Given these prob

lems, efficient representations for musical structures and methods for minimizing unnec

essary computation are incredibly important in automated composition algorithms. Kulitta 

employs an important principal in order to tackle these sorts of problems in a tractable 

way: musical abstraction. This helps to break daunting tasks with large solution spaces 

into smaller problems, allowing a solution to emerge in progressively finer levels of detail, 

much like a sculpture being chiseled out of stone.

1.2.2 Assessing Compositional Quality

The subjects of composition and performance are often conflated when people listen to 

music and make a judgement about its quality. If someone hears a piece of music and says 

it is “bad,” is that because he/she didn’t like the score, the way the performers interpreted it, 

or some combination of the two? Even if there exists some performance of a composition 

that would be deemed “good,” it is still very easy to make that same composition sound bad 

to many people: simply have it performed by an orchestra of out-of-sync, novice theremin

players 1. This makes assessment of a score rather tricky, since we don’t hear the score—we

1. The theremin is a notoriously difficult-to-play electronic instrument where the performer’s hands control 
pitch and volume via their proximity to metal rods. Even minor unsteadiness of the hand and small shifts in

5



hear its performance.

Automated composition is also a strangely volatile subject, particularly amongst musi

cians. As the author has directly experienced, it is quite common for musicians to actually 

be offended—sometimes dramatically so—by the existence of automated composition re

search, while others embrace it readily. Similar phenomena are described by David Cope 

[21]. In contrast, research on natural language processing that attempts to let machines 

communicate with us using grammatically correct sentences does not appear to elicit such 

a sharply divided and emotional reaction. Voice-communication with machines and ma

chines that talk to us are increasingly prevalent and accepted features in modem society, 

and yet a machine that essentially sings is controversial. The strong attitudes that exist 

about automated composition research add further difficulty to objectively assessing the 

performance of algorithms that produce music.

Currently, there is no standard set of metrics or methods by which to assess the perfor

mance of an automated composition system. Also, what constitutes “good” music varies 

across the human population. Many aspects of “goodness” are also style-specific. For some 

styles of music, such as chorales in the style of J.S. Bach, various music theoretic analy

ses can be used to determine the acceptability of a composition for its style. However, for 

other styles, particularly new ones, there are fewer or no such formal approaches beyond 

simply observing how other people respond to the music. Additionally, people without 

musical training would also be unable to analyze a score visually in the way that a music 

theorist could analyze a Bach chorale, therefore requiring a performance of that score for 

any sort of assessment—bringing the problem of composition quality versus performance 

quality into the mix. Chapter 9 addresses these issues in more detail and presents one pos

sible way of assessing an automated composition system’s performance empirically using 

human subjects testing.

the performer’s posture while playing a note can have noticable impact on the generated pitch.
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1.2.3 Systems for Automated Composition

Two notable automated composition systems exist with goals similar to Kulitta’s: a chorale- 

harmonization system created by Kemal Ebcioglu and David Cope’s learning-based Exper

iments in Musical Intelligence. These two systems are both capable of producing complete 

compositions of high compositional quality by music theoretic standards.

Kemal Ebcioglu created a system for harmonizing chorales in the style of J.S. Bach 

[25]. The system uses a domain-specific programming language called Backtracking Spec

ification Language (BSL) and attempts to harmonize a melody by operating on the solution 

from many different musical representations, or “viewpoints.” Some viewpoints include the 

harmonic backbone of the chorale as a series of chords, the melodic detail of the chorale, 

and the Schenkerian analysis 2 of the chorale. Constraints at each of these levels must be 

satisfied in order to find a suitable solution, with backtracking being a fundamental part of 

the overall generate-and-test search process. The system is capable of producing harmo

nizations on par with those produced by skilled human composers.

David Cope’s Experiments in Musical Intelligence (EMI) is another system capable 

of generating chorales in the style of J.S. Bach [19, 20, 22], although with a significantly 

different overall approach. EMI is a machine-learning based system for automated com

position that attempts to emulate styles by analyzing a corpus of music. EMI’s general 

strategy for style emulation is to attempt to do mostly what has already appeared in the 

training data—but to reject solutions that are too similar to the training data. Existing pat

terns are recombined at various levels to produce a new, but not too new, result. In this way, 

by generating primarily features that have already been observed, many of the otherwise 

tricky aspects of style emulation are avoided. Rather than backtracking, if EMI does not 

find a solution, it starts over from the beginning using a slightly different set of generative 

parameters. EMI is also generalizable to other types of data, such as spoken language.

2. Schenkerian analysis is a method of analyzing a score to derive its abstract harmonic structure.
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Automated composition systems suffer from a tradeoff between novelty or scope and 

quality. Systems that produce very novel or “creative” results often produce a lot of 

garbage, while those that consistently produce high-quality results tend to produce many 

things that sound the same. Ebcioglu’s system sacrifices novelty for high-quality output. 

Cope’s system also makes this same sacrifice, although perhaps to a lesser extent. The 

advantages of Cope’s approach in EMI is that it is able to very convincingly reproduce a 

given style when the corpus is large, as is the case for Bach chorales. Because it closely 

emulates its input data, it also will retain fairly high quality. However, novelty will suffer 

as the training corpus shrinks.

1.3 Computer Music’s Interdisciplinary Nature

Research in computer music is highly interdisciplinary, drawing from areas like artificial 

intelligence and machine learning, linguistics, and psychology. A few field intersections 

relevant to Kulitta are highlighted here.

1.3.1 Music, Artificial Intelligence, and Machine Learning

Algorithms for atuomated composition can also often be viewed as artificial intelligence 

agents. While the term “artificial intelligence” (AI) more commonly conjures up images of 

interactive game opponents such as Deep Blue [12] or IBM’s Watson [27], music compo

sition has many sub-tasks that share features in common with more classical AI problems, 

namely constraint-satisfaction over large domains and emulation of human behaviors or 

decision-making.

A machine learning algorithm is one that attempts to derive a concept from a collection 

of data. The concept may or may not have generative usage. For example, an algorithm for 

classifying music by genre may need to learn what properities each genre has from training 

examples, but does not necessarily need to be able to generate new compositions in those
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styles. However, some systems can do both tasks [5].

Many, although not all, artificial intelligence algorithms also include forms of machine 

learning. While it is possible to build artificial intelligence agents for simple situations 

without a learning component, such as a board game opponent that bases its decisions 

purely on traversal of a pre-defined tree of possibilities, learning is appealing in more com

plex scenarios. Adding a learning component to an AI algorithm allows it to tailor its 

behavior to a specific situation more succintly than trying to account for each situation by 

hand. Learning is commonly employed in musical algorithms when attempting to emulate 

styles or create compositions that sound humanly plausible.

One of the most commonly applied learning algorithms in computer music is the Markov 

chain [41, 13, 87]. There are two reasons for this: the algorithm is simple, and music is 

sequential in nature, lending itself to modeling a score as a series of state transitions [2]. 

Figure 1.1 shows a simple example of this type of representation. It is relatively straight

forward to take a corpus of music and derive some sort of Markov model from it. Unfortu

nately, when used generatively, such models tend to result in random-sounding or distinctly 

non-human-sounding music. These problems are further described in Chapter 4.

1.3.2 Natural Language and Music

Evidence from recent studies suggests that spoken language and music are related in the 

brain [7]. In fact, the structure of music may be best described by grammars, just as is 

the case for spoken language, and there has been substantial work on this idea in music 

theory [48,67, 85]. Grammars are, therefore, an appealing category of mathematical mod

els to explore for the purpose of both analyzing and generating music. However, exactly 

which category of grammars would be best for describing music is very much an open 

question.

9



•  • • •
Figure 1.1: Music is commonly represented using state spaces [2]. The illustrations above 
show the opening refrain of ‘Twinkle, Twinkle Little Star” represented as a piano roll and 
as a finite state machine over musical states. The top representation is a graph of depressed 
keys on a piano over time (a gray box is a key depressed for some amount of time) and the 
bottom representation shows the path for the same melody through musical states, where 
each represents a key on a piano.
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1.3.3 Programming Languages

A number of domain-specific languages exist for both representing music as well as com

posing music [36, 38,44,53, 60]. A fundamental problem in any musically-oriented com

puter program is how to actually represent various musical concepts, both mathematically 

and inside a computer. What is the appropriate way to represent a pitch? Should it be an 

integer and discrete like the keys on a piano, or a continuous value like the range possi

ble on a violin? Should a chord (a collection of simultaneous pitches held for some time) 

be a set, multiset, or vector? What about several notes played in sequence or in parallel, 

or more abstract structures like the notion of a developmental “part A” and its variations? 

Can certain musical structures be polymorphic for better reusability? These are questions 

that enter the realm of programming languages. Kulitta’s methods of representing musical 

features, which are described in Chapters 3, 4, and 5, even include some programming- 

language-specific features, such as variable instantiation to indicate repeted phrases.

Euterpea is a library for music representation and manipulation in Haskell [36]. The 

Kulitta framework is implemented in Haskell and uses the Euterpea library for some of its 

levels of musical representation. However, Kulitta also contains its own embedded category 

of grammars for representing harmonic and metrical structure, called Probabilistic Tem

poral Graph Grammars (PTGGs). A PTGG can contain statements representing variable 

instantiation, similar to the let-in constructs found in programming languages. Sentences 

written using this category of grammar must then be interpreted to create music, much as a 

program must be executed to know its result. PTGGs are described in chapter 4.
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Chapter 2

An Overview of Kulitta

Kulitta is a modular framework for automated composition in a variety of styles. The 

name,“Kulitta,” comes from a musician in Hittite mythology [81]. A central idea to Kulitta’s 

approach is the notion of abstraction: the idea that something can be described at many 

different levels of detail. Music has many levels of abstraction, ranging from the sound 

we hear to a paper score and large-scale structural patterns. Music is also very multidi

mensional and prone to tractability problems. Kulitta uses this principal of abstraction to 

mitigate these computational problems and flesh out a composition in stages. Kulitta is also 

able to learn some musical features from a corpus of analyzed music.

2.1 Introduction

A summary of Kulitta’s overall structure can be seen in Figure 2.1. There are three general 

components to the system: a learning step, a structural generation step, and a musical in

terpretation step. Structural generation begins with a musical grammar for abstract chord 

progressions called a probabilistic temporal graph grammar (PTGG). Production probabil

ities for aspects of this grammar can either be defined by hand (no learning step) or inferred 

from existing musical phrases using machine learning techniques. This PTGG and its asso

ciated production probabilities are passed to a generative algorithm. This process generates
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Figure 2.1: An illustration of the overall structure of Kulitta. The first stage of our system 
creates abstract chord progressions. A generative grammar called a probabilistic temporal 
graph grammar (PTGG) is used in combination with an algorithm for applying the gram
mar to produce abstract chord progressions. Production probabilities for aspects of this 
grammar can be inferred from examples of existing musical phrases. In the second stage of 
our system, these progressions are fleshed out by using a constraint satisfaction algorithm to 
traverse chord spaces. The post-processing step in our current system only involves various 
data type conversions for writing MIDI files, but future systems might include additional 
post-processing steps for adding melodic and rhythmic development.
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abstract musical structure. At this stage, the chord progressions produced are not tied to 

any particular style of music.

The next phase of our generative system interprets those abstract progressions. As part 

of the musical interpretation process, Kulitta uses a mathematical construct called chord 

spaces to turn an abstract chord progression into one that could be represented as a score. 

At this stage, the chord progressions will be homophonic (all voices being rhythmically 

identical). However, generation does not need to stop there. Various style-specific melodic 

and rhythmic elements can still be added. Two main styles are currently supported by 

Kulitta: classical chorales and simple jazz.

2.2 Musical Abstraction

Kulitta revolves around the principal of abstraction: the notion that a musical passage can 

be represented at different levels of detail and that two distinct musical passages may differ 

in the details while being the same in more fundamental ways. Kulitta’s notion of “ab

straction” is very similar to the definition of the term used in programming languages. The 

more abstract something this, the more information must be filled in before that thing can 

be used. An abstract function is a type signature lacking a function body: we know some

thing about the function’s interface, but we don’t know exactly how it will behave, and 

many different implementations are possible. Similarly, a series of chord symbols from a 

jazz standard contain information about musical flavor, but we don’t know exactly what 

interpretation a performer will take—and there are many such interpretations.

Music contains many levels of abstraction. Although one rarely thinks of it while lis

tening to a piece of music, ideas like melody and harmony are abstract concepts, as are 

specific patterns within those broader features. Musical scores are abstract representations 

as well, with one score having multiple possible performance interpretations. This section 

addresses several areas of music that have multiple possible levels of abstraction.
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2.2.1 Pitches

A musical pitch is a sound that has a particular fundamental freqeuncy, which is the lowest 

frequency in a series of harmonics. Some instruments produce many harmonics, which is 

part of what causes the timbre of one instrument to be different from another. Two pitches 

on instruments sound “the same” when the fundamental frequency is the same, even if the 

series of additional harmonics produced is different (creating a different timbre or texture).

In the modem Western tuning system, pitches are represented as tuples of a pitch class 

(C, C#, D, etc.) and octave (an integer). Pitches on a musical score can typically be repre

sented using integers, where each number corresponds to a key on an infinitely long piano 

keyboard. There are also different ways of mapping numbers to piano keys, depending on 

where “octave 0” is placed. Euterpea uses the convention that (C, 0) is 0, (C#, 0) is 1, (C, 5) 

is 60 (middle C on a piano), and so on for all pitch classes and octaves. Negative octaves 

produce negative pitch numbers, such as (5 ,-1 )  =  -1 . Enharmonically equivalent pitches 

1 are mapped to the same integer. In other tuning systems, fractional pitch numbers may 

be allowed. For example, a pitch of 60.5 would be partway between (C, 5) and (C#,5). 

However, Kulitta does not support microtones, so pitches and pitch numbers will be treated 

as integers from this point on.

Given this numbering system for pitch classes, the relationship between a pitch number, 

p, where (C,0) =  0, and its fundamental frequency, /  (in Hz), is calculated by Equation 

2.1. Note that the offset of 69 added in Equation 2.1 is specific to Euterpea’s placement of 

octave 0; other pitch numbering systems require adding a different offsets.

p  =  69 +  r i2  x log2(f/440Hz)l (2.1)

Pitch classes are essentially abstract pitches. While one can play a (C,4) concretely on

1. Pitches can be written in more than one way on a musical score. Pitches are enharmonically equivalent 
when they indicate the same key on a piano. For example, within the same octave, E# and F would be 
enharmonically equivalent.
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an instrument, there is no such option for just “C” by itself - one needs more information 

to be concrete, such as the octave in which the pitch class is to be played. Pitch classes can 

be indexed using [0,11], where C =  0, C# =  1, and so on up to B =  11. For a pitch class, 

pc, and octave, o, the pitch number, p, is calculated by the formula in Equation 2.2.

p = 12 x o  + pc (2.2)

2.2.2 Chords

The term “chord” has ambiguous musical meaning. The term can be used to refer to a 

specific collection of simultaneously-sounding notes on a musical score. In this case, the 

concept of a chord involves both duration and the notion of voices within the chord. Such 

a chord may be best mathematically represented as a vector of pitches and a duration if the 

start and end times are uniform.

Chords are also notated more abstractly in music using Roman numerals, where one 

numeral represents many possible score-level interpretations. In this setting, a chord is 

often durationless and carries only some information about the pitch content of the music. 

In the key of C, a Roman numeral I would indicate a C-major chord, perhaps with the pitch 

classes C, E, and G. However, it tells the reader nothing about the octaves associated with 

these pitch classes or even the number of voices involved.

Even more abstract is the idea of “chord quality.” Chord quality refers to concepts 

like “major chord” and “minor chord.” A chord’s quality gives some information about 

the intervallic structure of its pitch classes. The term “major chord” usually implies the 

structure of a major triad: picking scale indices 1, 3, and 5 from a major scale (indexed 

from 1). Again, such a chord is durationless and the pitch classes can occur in any octave.
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2.2.3 Chord Progressions

A chord progression is a sequence of chords in time. The chords may be concrete, with 

specific pitches and durations, or abstract, lacking information about duration and/or spe

cific pitches. Progressions can be described in even more abstract terms. For example, a 

cadence is a chord progression that ends a musical phrase. There are several types of ca

dences, each described using abstract chords—usually Roman numerals—to indicate har

monic structure. Two examples are authentic cadences (V-I) and plagal cadences (IV-I).

Jazz often employs chord substitutions, the idea that one chord may be substituted for 

another in a progression. Chord substitutions add variety to repeated phrases without break

ing harmonic continuity. A progression that is described using possible chord substitutions 

exists at a higher level of abstraction than one described only in terms of a single string of 

Roman numerals.

2.2.4 Melodies

Melodies are sequential patterns of notes, although the distinction between which patterns 

are considered tuneful or melodic and which are not is poorly defined. A number of dif

ferent approaches have been proposed for melodic analysis and modeling [18, 88]. In 

Schenkerian theory, melodies contain a mixture of harmonic tones and other notes, many 

(but not necessarily all) of which are analyzed away to determine the structure of the music 

[73, 74]. This suggests that there are also multiple levels of abstraction present within a 

single melody.

Melodies can also be thought of as belonging to categories. In classical Western music, 

a theme and variations is a peice that consists of an opening melodic motif that is repeated 

with small alterations throughout the music. These variations of the original melody all 

sound similar, and, in an algorithmic composition setting, one might view many of them 

as equally reasonable candidates when trying to create a new melody from scratch while 

adhering to various other musical constraints, such as the underlying harmonic structure of
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the melody.

2.2.5 Developmental Structure

Repetition of patterns and variations on a repeating pattern are fundamental to musical 

structure. Repetition and variation create a heirarchical structure in long sections of music, 

and an absence of this structure is likely to result in complaints of the music sounding 

“directionless” or “wandering.”

Patterns of repetition in music are often described using strings of letters. For example, 

ABA form would imply that there is an A section and a B section, and that both instances 

of A are the same — or at least sufficiently similar as to be recognizable as instances of 

the same musical idea. Sometimes a “prime” notation is used to indicate slight variation. 

The pattern AA'BA would indicate that the first two instances of A are similar, but the one 

denoted A' is slightly different in some way. Exactly what constitutes a variation versus a 

completely new section in a mathematically formal way is an open question.

2.3 Mathematical Models

Kulitta models music using two primary mathematical models: equivalence relations and 

grammars. Grammars are used to generate abstract structure in the music and equivalence 

relations are used to move between levels of abstraction.

2.3.1 Equivalence Relations and Chord Spaces

How should musical abstraction be mathematically represented? For a number of the ab

stract musical features discussed above, one approach is to use equivalence relations to 

partition a set of concrete examples into categories representing the desired level of ab

straction.
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Relations are mathematically represented as sets of pairs. For some relation R, (a,b) G 

R means that a is related to b. An equivalence relation is a relation that is reflexive, sym

metric, and transitive. These properties are defined below, where unidirectional and bidi

rectional arrows represent implication and bi-implication respectively.

•  Reflexivity: (a, a) G R.

•  Symmetry2: (a, b) e R ^ { b , a ) e  R.

•  Transitivity: (a, b) G RA(b,c)  G R —> (a,c) G R.

Kulitta uses equivalence relations to move between different levels of abstraction in mu

sic, such as to move from Roman numerals to vectors of pitches. Kulitta’s implementation 

supports equivalence relations in a generalized way, making the system more modular and 

more easily extensible to include additional equivalence relations for new musical features.

The musical equivalence relations used in Kulitta are also called chord spaces. Some 

chord spaces are derived directly from music theory. We make use of both the classical 

chord spaces presented by Tymoczko et al. [80] and Callender et al. [11] as well as propos

ing a new space to capture elements of jazz harmony. These are further described in chapter 

3.

2.3.2 Musical Grammars

Grammars have been explored both generatively and analytically in music [33, 42, 86]. 

Studies on brain activity have shown a strong link between language and music in the 

brain [7], an idea that has become increasingly accepted in music theory through works 

like GTTM, which presents a grammatical outlook on analyzing music [48] (although it 

requires additional formalization to be implemented in both analytical and generative set

tings).

2. The property of symmetry in relations is sometimes referred to as symmetricity.
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Kulitta uses a category of musical grammars called Probabilistic Temporal Graph Gram

mars (PTGGs). These grammars incorporate both traditional features like those from prob

abilistic context free grammars (PCFGs) as well as features more common in programming 

languages, such as “let” expressions to allow variable creation and instantiation. The latter 

are used to support higher-level musical structures such as ABA form where each A must 

be identical, as well as to capture the more subtle AA'BA, where each A is expected to to be 

identical but A' is expected to be slightly different. PTGGs are described in chapter 4.

2.3.3 Machine Learning

Although the generative part of Kulitta can be run using hand-built grammars and other 

musical models, these models can also be learned from a data. Kulitta’s support for learn

ing makes it more adaptable to handling different styles of music than it would be if these 

models had to be hand-built each time. Given a corpus of music, Kulitta is able to infer cer

tain properties that can then be emulated in the generative steps. Kulitta’s learning process 

is described in chapter 7.

2.4 Implementation

Kulitta is implemented in the Haskell programming language. Many of the system’s fea

tures lend themselves to a functional approach, leading to an elegant Haskell implemen

tation3. Kulitta also attempts to avoid being tied to a particular musical style by using 

strategies that are general and highly modular. Haskell’s type system lends itself to this, 

allowing functions to be defined in the most abstract way possible through the use of type 

variables. Kulitta’s modularity also allows for different models to be combined in multiple 

ways, creating a diverse range of results.

3. Kulitta’s complete source code, MIDI files of the examples in subsequent chapters, and recordings of 
additional compositions created by Kulitta are online at h t t p : / / v w . donyaquick. com.
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Kulitta’s implementation uses the Euterpea library to produce MIDI files as output. 

Euterpea has its own representation for various musical structures like pitches, notes, and 

chords. It also supports export of these structures to General MIDI format, which is essen

tially a collection of note on/off events for each instrument. To produce musical output, the 

Kulitta’s output data structures are turned into MIDI via Euterpea’s intermediate musical 

representations. The MIDI data is then easily turned into a visual score using conventional 

music notation software. Examples shown here were produced using MuseScore [6], an 

open source music notation system.

21



Chapter 3 

Musical Equivalence Relations

Kulitta uses a construct called a chord space to capture different levels of musical ab

straction. This allows musical problems to be solved iteratively with smaller, more easily 

searchable solution spaces at each step [62]. Chord spaces are formed using equivalence re

lations. This chapter presents a general implementation of equivalence relations in Haskell 

that supports many different chord spaces. The following notations and definitions are used 

throughout the chapter:

•  Function composition: ( /2 - f \ )x  = fi{f\{x)).

•  Function equality: f \  =  / 2 . This means that f \  and f i  will have the same input/output 

mapping even if their definitions and/or complexities are different.

•  Vectors: x =  (xi ,..., x„).

•  Vectors created from a constant: k'1 — (k,

•  Addition of two vectors: x + y  =  (xi +yi ,...,x„ +y„).

•  Adding a constant to a vector: x + k =  {x\ +k, ...,xn + k).
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3.1 Equivalence Relations

A relation is mathematically represented as a set of pairs. For some relation R C A x B ,  

the notation (a,b) G R means that a € A is related to b G B. An equivalence relation, 

R C S x S, is reflexive, symmetric, and transitive. These three properties are formalized 

below, where unidirectional and bidirectional arrows indicate logical implication and bi

implication respectively.

• Reflexivity: Va G S, (a,a) G R.

•  Symmetry: Va,b G S , (a,b) G R <— > (b,a) € R.

•  Transitivity: Va,b € S, (a,b) € RA (b,c) G R — ► (a,c) G R.

Relations can also be thought of as digraphs, where a directed edge exists from a to b if 

and only if (a,b) G R. Because of symmetry, equivalence relations are often represented as 

undirected graph, where reflexivity is assumed and where an edge connecting a and b im

plies the existence of both (a, b) G / f  and (b, a) G R. An undirected graph of an equivalence 

relation will be a collection of cliques, where each clique represents an equivalence class. 

The equivalence class of an element is the clique to which it belongs. Given a relation, R, 

and element, a, this is formalized as:

eqClass(a,R) =  {b | (a,b) G /? }  (3.1)

The notation a ~ R b  means that a is related to b under equivalence relation R, or that a 

and b are R-equivalent. This means that (a,b) G R. If R is an equivalence relation, then it 

will also be the case that b ~ r a, such that the notation is symmetric.

Composition of functions is defined as (g • / )  x =  g(f(x)), and composition of two 

relations follows a similar convention.

R2.Ri = {(a,c)\(a,b)eRu  (b , c ) e R 2} (3.2)
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However, composing two equivalence relations does not necessarily produce a new 

equivalence relation. Two equivalence relations, Ri and R2 , can be combined to make a 

new equivalence relation using the join operation, R\ V R2 [51]. We will use the notation 

R+ to denote the transitive closure of relation R, which involves adding pairs (or edges in 

the digraph) possible until R is transitive.

R+ = R U ( R R ) U ( R R R ) . . .  (3.3)

R i WR2 = (Ri -R2UR2-Ri )+ (3.4)

The join operation is commutative, such that R 1 V R2 =  R2 V /?i. For simplicity, we will 

abbreviate Ri VR2 as simply R\R2 As will be shown later with some musical equivalence 

relations, although combining equivalence relations is simple in concept, it is not always 

straightforward in practice to preserve properties like transitivity when combining two or 

more equivalence relations.

3.1.1 Quotient Spaces

A quotient space is the result of applying an equivalence relation to a set, thereby forming 

a partition of the set’s elements or “gluing” related elements together to form a set of sets. 

For a set S and relation R, the quotient space formed by applying R to S is denoted S/R  and 

sometimes referred to as /{-space.

For example, consider the equivalence relation formed by the integers modulo 2:

a ~mod 2 b <— > a mod 2 = b mod 2, a ,b e  Z (3.5)

The quotient space formed by 'Ljmod. 2 partitions the integers into even and odd equiv

alence classes, which can be represented by the points 0 and 1 respectively. All even 

numbers are “glued” to 0, and all odd numbers are “glued” to 1. This particular quotient
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space is usually denoted Z2 . Quotient spaces formed by taking the integers modulo other 

values are similarly denoted Zx for some x G Z. 1

3.1.2 Groups

A group is a pair consisting of a set, S, and an operator, *, with the following properties[24]:

•  Closure: V a , b e S , a * b e S

•  Associativity: Va,b,c € S,a*(b*c) = (a*b)*c

•  Identity element: Be € S| Va € S,a*e = e*a = a

•  Inverse element: Va € S,3a-1 € S\a*a~l = a~l *a = e

Abelian groups are also commutative: Va, b € 5, a * b =  b * a.

The symmetric group of order n is the set of all permutations of n elements. It is 

denoted S„. The symmetric group is a collection of permutations on a list of length n, and 

there are n\ such permutations. Sn =  { < T i ,an 1} is a group with function composition as 

the operator [24].

As will be shown later in this chapter, several operators that define equivalence classes 

on chords also form groups where the elements are functions, much like is the case for the 

symmetric group.

3.1.3 Normalizations

An equivalence class is a set of elements that are all related to one another, forming a clique 

when represented as a graph. Points a and b are related under R if (a,b) 6 R. However, if 

R is large (possibly infinite), simply searching for (a,b) € R can be problematic as a means 

to determine whether a b holds. This process of checking whether a b holds, or

1. The integers modulo n is also sometimes denoted Z/nZ [24]
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whether (a, b) € R, is called testing for equivalence under R or testing for class membership 

(since a ~ R b  implies that a and b belong to the same equivalence class).

Normalizations are one way to address this problem: for a set S , relation R, and quotient 

space S/R, rather than enumerate the entire equivalence class of an element s E S when 

determining class membership of a new element, one can instead compute a representative 

point of that equivalence class. The set of all representative points is referred to as the 

representative subset of S/R, denoted by Sr . If a function /  : S  -* Sr  has the property that 

every point in S  is /?-equivalent to exactly one point in Sr , it is called a normalization. More 

formally:

Definition 1. Sr C  Sis a representative subsetfor S/R iffVx E S, there is exactly one y ^ S R 

such that x ~ r  y.

Definition 2. /  is a normalization for the quotient space S/R whenever Vx,y € S, f(x)  = 

f(y)  i— > x ~ Ry A f(x)  x

Theorem 1. A function f  : S —> S' C Sis a normalization for some equivalence relation, R, 

i f f y  € S>,f(y) = y.

Proof. Since /  is a function, it will map every element of S to exactly one element in S' C S, 

forming a partition of S. If we group elements using the criteria that a * iff/ ( « ) = / (* ) ,  

then the /  can be used to partition S into a set of cliques or equivalence relations. Therefore, 

/  is a normalization for some equivalence relation. □

Corollary 1. R is an equivalence relation and f : S - y  S' c S i s a  normalization for R when 

a ~ Rb <— ► /(a )  =  f(b).

Equivalence relations can have more than one normalization, and different normaliza

tions may be needed under different circumstances. Normalizations can also sometimes be 

composed to produce new normalizations. The conditions under which this can happen are 

described below.
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Definition 3. Let f \  and f i  be normalizations for equivalence relations R\ and Ri re

spectively on set S and h =  f i -  f \  with range S3 . The function f 3 is a normalization for 

R3 = R i V/?2 i f f$x ,y€S 3 , x ~ R3 y.

The concept of a fundamental domain of a quotient space is similar to the definition 

we have presented for representative subsets, and fundamental domains exist for a num

ber of musical equivalence relations [11, 80]. However, although the exact definition of a 

fundamental domain can be slightly different from one source to another, the fundamental 

domain of a quotient space usually preserves some aspects of the quotient space’s geom

etry. These sorts of additional constraints are not required to have a representative subset, 

although every fundamental domain will also be a representative subset.

3.1.4 Path-Finding with Equivalence Relations

Just as one element is equivalent to many others under an equivalence relation, a sequence 

of many elements can be related to many other such sequences. The sequence of elements 

can be viewed as a path through equivalence classes.

For example, the first step of traditional harmonic analysis would be the process of 

turning collections of pitches, or chords, into a series of Roman numeral labels, where 

each Roman numeral represents a particular equivalence class of chords in the context of 

a key and mode. The same set of Roman numeral labels can correspond to many unique 

compositions.

An important feature of this approach of path-finding through equivalence relations 

is that it can dramatically reduce the size of the solution spaces explored for a particular 

problem. Consider an infinite set of elements S and an equivalence relation, R that produces 

quotient space S/R  with & finite number of equivalence classes. The integers modulo n, Z„ 

are an example of this sort of relationship. For example, the representative subset of Z 12 

is finite, with exactly 12 members (the numbers 0 through 11), while Z is infinite. It can 

be more efficient to partially solve a problem by first traversing a representative subset of a
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quotient space rather than diving into the set of elements directly.

3.1.5 Musical Spaces

A chord space is a way to organize chords in musically meaningful ways. They pro

vide convenient, intermediate levels of organization between various abstract and concrete 

chords. Mathematically, a chord space is a type of quotient space formed by applying an 

equivalence relation to a set of chords. One such chord space groups chords based on pitch 

class content, providing a useful level of abstraction for voice-leading assignment, but there 

are also many other possible chord spaces that relate chords in different ways.

One way to construct musically-meaningful equivalence relations is to exploit existing 

concepts in music theory, such as the ideas of pitch class and transposition. lymoczko and 

Callender et al. introduce several such relations on chords, each based on some concept in 

music theory [11, 80]. Other musical quotient spaces are also possible. There is no reason 

that the concept must be constrained to grouping individual chords. It would also be possi

ble to have a progression space by grouping chord progressions or even a melody space by 

grouping melodies. Regardless of the musical concept used, the same mathematical princi

ples of quotient spaces apply. Algorithms designed to operate on quotient spaces generally 

will also support any such musical space. Here we consider two broad categories of spaces, 

the OPTIC spaces [11, 80] and contour spaces [56], along with a new category inspired by 

jazz music theory called mode space.

3.2 Equivalence Relations in Haskell

Given a quotient space, S/R, there are two types of questions that will commonly be asked 

in the Kulitta framework when working with musical equivalence relations:

1. For some x,y € S, is jc  ~ r  y?

2. For some x £ S, what is x’s /{-equivalence class, eqClass(x,R)7
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We implement equivalence relations by creating a function to answer the first question.

type EqRel a = a-> a -*  Bool 

This is easy to do for equivalence relations where normalizations exist, 

type Norm a = a ->• a

normToEqRel:: (Eq a) =» Norm a -> EqRel a 

no rmToEqRel f  x y —f x  —= f y  

We implement sets as lists. A quotient space is then a list of lists, or [[a]]. The “slash” 

operator in the notation S/R  and equivalence class lookup can be defined as follows.

( //) : :  (Eq a) => [a] EqRel a —> QSpace a 

[ } / / r  =  []

* / / r  =

let e =  [y | y <— s ,ry  (heads)] 

in e : [z \ z <— s, -> (elem z e ) \ j  J r 

eqClass:: (Eq a, Show a) => QSpace a -> EqRel a -» a ->■ EqClass a 

eqClassqs r x =

let ind = findlndex (Xe rx  (head e)) qs

in maybe (error ("No c la ss  fo r  n ■++■ showx)) (qs\\) ind

3.3 The OPTIC Relations

Callender et al. introduce five equivalence relations on chords [11]. Chords in these rela

tions are represented as vectors of pitch numbers. The relations, therefore, partition ZB (the 

set of all integer vectors of length n). Vectors are written as x or as (xi, to show the 

elements individually. The notation 1” refers to a vector of lenth n whose elements are all 

1, and the notation IT refers to the set of all integer vectors of length n.

•  Octave equivalence, O. Chords belong to the same equivalence class if they have the 

same vectors of pitch classes: v v +127, 7e  Zn [11]. For example, (0,4,7) and
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(12,4,7) are O-equivalent; they are both C-major triads where the voices have the 

pitch classes C, E, and G respectively. 2

•  Permutation equivalence, P. Chords with the same multisets of pitches belong to the 

same equivalence class under this relation. P can be defined using the symmetric 

group of order n, S„ (the set of all permutation functions for n elements): v 

<r(v), a  € Sn [11]. For example, (0,4,7) and (4,0,7) are P-equivalent.

•  Transposition equivalence, T. Chords with the same intervallic content belong to the 

same equivalence class. For example, (0,4,7) and (1,5,8) are T-equivalent. The 

relation was originally defined as v v +  cl", c € R for continuous, microtonal 

systems [11]. For Kulitta, however, it is further constrained by requiring c 6 Z to 

model discrete tonal systems, such as those relevant to a piano.

•  Inversion equivalence, I. Chords are related to their negations, which are a reflection 

around the origin. For example (0,4,7) (0, —4, -7 ).

•  Cardinality equivalence, C. Chords with duplicate neighboring voices are related to 

each other. For example (0,4,7) is related to (0,0,4,7) but not to (0,4,7,0).

The reflexive, symmetric, and transitive properties are easy to prove for O, P, and T. 

However, I and C are problematic since their definitions do not account for all three prop

erties. The definition of I-equivalence is not reflexive, although this is an easy modification 

to make to the definition. Cardinality equivalence is somewhat more complicated, and, as 

shown later in this chapter, is more easily dealt with by defining a normalization for the 

equivalence relation.

The OPT relations can be combined to make new relations by using the join operation: 

R\ V/?2 , written as R1R2 for simplicity. For example:

2. Note that Octave equivalence is essentially Z 12, the integers modulo 12.
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•  Octave and Transposition equivalence, OT. v v +  127+cl", 7e Z", c € Z. Chords 

in the same equivalence class have the same intervallic structure when represented as 

vectors of pitch classes. For example, (0,4,7) ~ ot (13,5,8).

•  Octave and Permutation equivalence, OP. v ~ opt <x(v+ 12i), 7e Zn, a  G §„. Chords 

in the same equivalence class have the same multisets of pitch classes. For n =  3 

voices, OP-space contains an equivalence class for all C-major triads, another for all 

C-minor triads, and so on.

•  Permutation and Transposition equivalence, PT. v <r(v +  c l"), tx e  S„, c € Z (or 

c 6 R for microtonal systems). Chords in the same equivalence class share the same 

intervallic structure of their multisets of pitches. For example: (0,4,7) ~ pr (5,1,8).

•  Octave, Permutation, and Transposition equivalence, OPT. v ~ op <x(v +  127+cl"),

76 Z", <j e  Sn,c € Z. Chords in the same equivalence class have the same intervallic 

structure of their multisets of pitch classes, capturing the notion of chord quality. For 

example, (0,4,7) ~ opt (0,3,8), where (0,4,7) is a C-major triad and (0,3,8) is an 

A-flat-major triad. This can be seen as follows: (0,4,7) ~ o  (12,4,7) ~ r  (8,0,3) ~/> 

(0,3,8)

Proofs of these definitions are in Appendix A. Chord spaces involving cardinality equiv

alence are more easily formalized using their normalizations. Two such examples are PC- 

equivalence (permutation and cardinality) and OPC-equivalence (octave, permutation, and 

cardinality). PC-equivalent chords share the same sets of pitches, and OPC-equivalent 

chords share the same sets of pitch classes. Definitions for these are covered later in the 

chapter.

3.3.1 Applications of OPTIC

A sequence of representative points from a chord space represents a sequence of equiva

lence classes. Such a path also represents many possible other paths through non-representative
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Constraints

Starting chord

Next chord

Figure 3.1: An illustration of the path-finding nature of chord spaces for a 1-V progres
sion. Each Roman numeral can be mapped to many concrete chords, which may literally 
be thought of as chords floating in space. When we choose a specific /-chord, the next tran
sition may be subjected to various voice-leading or other constraints that limit the number 
of viable choices for the next chord. This defines a region of acceptable solutions for the 
next chord, which may be chosen stochastically if more than one option exists within that 
area.

points in those equivalence classes. Given a chord space that has the same level of abstrac

tion as an abstract progression (such as one written as Roman numerals), the task of turning 

that abstract progression into a concrete progression becomes a path-finding problem.

3.3.2 Normalizations for OPTIC

In order to use the OPTIC relations, there must be ways to test whether two chords are 

equivalent under each individual relation and combination of relations. For the individual 

relations and for many combinations of relations, the normalizations can be used for this 

task. Normalizations for O, P, T, I, are as follows, where sort is a function that sorts a 

vector’s elements in ascending, lexicographic order. Proofs of the property in Definition 2 

for these normalizations are somewhat trivial, following directly from the simple arithmetic 

and sorting operations involved. Proofs for these normalizations can be found in Appendix 

A.

normO((x\,...,xn)) =  (xi mod 12, mod 12) (3.6)

normP(x) =  sort(x) (3.7)
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normT ((x\,...,xn)) =  (x \ - x i , . . . , x „ - x \ ) (3.8)

normI({x\,...,xn)) = ifx j <Othen ( -x i , . . . ,-x B) else (xi,...,x„), 

where jc,- is the first non-zero element of the vector.

(3.9)

Although one normalization is shown for T-equivalence above, it serves as a good ex

ample of an equivalence relation for which more than one obvious normalization exist. In 

normT above, the first element of a vector, x\ is subtracted from the entire vector. However, 

as shown below, any jc, can be used.

Theorem 2. Let F  =  { /i be the set o f functions f -  ((x\ ,..., xn)) =  (xi -  x,,..., x„ -

xi}. An algorithm A : Z” —»Z” is a normalization for 7Ln/T  if, for all x  € Z”, it applies the 

same f  to all members o f x ’s equivalence class, E(x,hn/T).

Proof Recall that x y <— > 3c e Z ,x = y + c ln. Two chords are T-equivalent if they have 

the same intervallic structure. Adding a constant to a chord produces a T-equivalent chord, 

so V/ € F, x f(x). Now we must show that V/ e  F, Ix y <— > normT{x) — normT(y). 

L etx=  {xi,...,xn),y =  iyi,...,yn)-

L et?  =  (xi - X i , . . . , x n - X i ) , p  =  (y i- y h ...,yn - y t) for some i € Z.

If x  and y have the same intervallic structure (the definition of T-equivalence), then xf 

and y  will be equal and the ith element of both ?  and /  will be 0. We therefore have 

that c = Xi— y, and x  xf =  /  y. If x and y are not T-equivalent, then the intervallic 

structures are different and ?  xf. Therefore, A(x) =  A(y) i— > x ~ T y. □

Corollary 2. The following function:

normT ((xh ...,xn)) =  (x j-x \ , . . . ,x n- x \ )  (3.10)
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which subtracts the first element o f a vector from all other elements, is a normalization for 

Zn/T.

The original definition for C-equivalence technically only relates elements that differ 

by one set of duplications and is neither symmetric nor transitive. Symmetry is easily 

assumed, but transitivity is more problematic. Consider the following:

(x,y,z) ~ c  (x,y,y,z) ~ c  (*,y,y,z,z).

To retain transitivity, it must be the case that (x,y,z) ~ c  {x,y,y,z,z). Cardinality equiv

alence’s definition, therefore, needs to be extended to include any number of sequential 

duplications in any voice (including zero duplications to ensure reflexivity) such that two 

chords are C-equivalent if they share the same vectors of pitches where adjacent duplicates 

are eliminated. Given this definition, it is easiest to formalize C-equivalence by creating 

its normalization. A normalization for C-equivalence is most succinctly defined recur

sively, using the list notation from Haskell to represent vectors, where a vector of length n, 

(xo,...,x„-i) can be written as [xo,...,x„_i] orxo :... : []. The code for normCbelow

presents this normalization for C-equivalence using Haskell. 

normC:: [Int] —► [Int]

normC [xO: x \ : t] =  if *0 = =  x\ then normC (xO: t) else (xO: normC (* i: t)) 

normC x = x

We then have C-equivalence defined as follows:

x ~ c y <— > normC(x) =  normC(y) (3.11)

Combining Normalizations

Some of the normalizations for O, P, T, and C can be combined to create new normaliza

tions for compound equivalence relations. Proofs for these normalizations can be found in

Appendix A.

normOP — normP • normO (3.12)
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Figure 3.2: The representative subset of O-space for two voices as defined by normO.

normOT =  normO ■ normT (3.13)

normPC =  normC • normP (3.14)

normPT — normT • normP (3.15)

normOPC — normC • normP ■ normO (3.16)

Finding a normalization for an equivalence relation is not always the simplest way 

to check for equivalence class membership. An example of this is OPT-equivalence, for 

which a normalization is somewhat more complicated than checking class membership. 

While representative subsets of OPT-space can be defined 3, it is not easy to normalize 

chords into this subset of IP f  OPT. The reason for this is illustrated by the points (0,2,7)

3. For example, Tymoczko et al. define a fundamental domain for OPT-space for three voices [80]. As 
noted previously in this chapter, fundamental domains are also representative subsets.
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Figure 3.3: The representative subset of P-space for two voices as defined by normP.

and (0,5,7), which are related by:

(0,5,7) ~ o  (12,5,7) ~ p (5,7,12) ~ r  (0,2,7)

The point (0,5,7) should, therefore, be normalized to (0,2,7) under the conventions of 

our representative subset. However, we cannot use any of the normalizations discussed so 

far to accomplish this. (0,5,7) will be mapped to itself with normP, normO, and normT. 

The same thing happens with (0,2,7) as well. Therefore, we have two choices: create 

one or more new normalizations, or use another algorithm to test whether two chords are 

OPT-equivalent.

Testing for OPT-Equivalence

Because the O, P, and T normalizations cannot be combined to create a new normaliza

tion for OPT-equivalence, testing equivalence under OPT requires either a different algo-
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Figure 3.4: The relationship between the representative subsets of O-space, P-space, and 
OP-space as defined by normO, normP, and normOP.

rithm or a new normalization not based on composing existing normalizations. For OPT- 

equivalence, algorithm 1 is a function that, although it makes use of the O, P, and T normal

izations, does not define a normalization for the OPT relation itself. This algorithm returns 

true if and only if two chords are OPT-equivalent. It makes use of the vector concatenation 

operator, -H- , defined in Equation 3.17

( * i , . (3-17)

Algorithm 1. Let x and y be two vectors o f length n.

optEq(x,y) =

Letx! =  normT {normOP (x)), p  =  normT {normOP {y)).

Let Sy =  {normPT( /  +12?) |T =  lm-+f 0"-m, 0 ^  m < n}. 

lfx! G Sy then return true, otherwise return false.
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Theorem 3. Algorithm 1, optEq, correctly tests for OPT-equivalence.

Proof. We also have that P  and /  are sorted vectors in [0,1 1]" whose first element is 

zero. We have that x1 and /  must be OPT-equivalent to x and y respectively by transitivity. 

Similarly, we know that Va 6 S$, a ~ op t y- Finally, observe that is the set of all T- 

normalized rotations of p  within the range [0,12]".

We must now show that xf e  S$ <— ► P  ~ opt 9- Chords that meet P ’s structural con

straints will be referred to as “useful” chords. We will make use the following equation, 

where min(v) returns a vector’s smallest element and and max(v) returns its largest: 

spaniv) =  max(v) —min(v).

The definition of Sy contains all OPT-equivalent chords to y that have a span of < 12, 

are sorted, and whose first elements are zero. We show the correctness of S fs  definition in 

four steps.

1. At least one field of each i used to create Sy must be zero. Otherwise, because of the 

normPT operation, redundant chords will be created: normPT (x) = normPT(x+k).

2. Octave shifts where T contains at least one field that is 0 and at least one field that is 

> 1 will produce chords with too large a span to be useful.

Case 1:

•  Let v =  (...,a , . w h e r e 0 < a < b < 11.

•  Let Te [0,2]" be a vector of octave shifts such that 

normPT(v+12?) =  {a,...,b + 24)

where a is the smallest field non-shifted field and b is the largest field shifted 

by 2 octaves.

•  Case a — b: span((a,...,b + 2A)) =  24 (toobig)

• Case a < b: span((a,...,b + 24)) > 24 (too big)
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Case a —b: span((b,...,a+ 12)) =  12 (too big)

Case a < b: span((b, . . . ,a + 12)) < 12 (useful)

Because of these properties, we know that contains all possible useful chords—the 

only chords that might be equal to x'. Therefore, optEq correctly tests for OPT-equivalence.

□

A normalization for OPT-equivalence would not be much different from this algorithm. 

Since any two OPT-equivalent chords will, in fact, generate the same sets of chords for Sy, 

we can simply take the lexicographically smallest element of the set.

Algorithm 2. normOPT (x) =

LetJ? = normOP(x)

Let S$ -  {normPT(x+ I2i) \ !=  lm -H- 0"-'”, 0 ^  m < n}.

Return minimum{S$), where minimum returns the lexicographically smallest memeber 

of the set.

For example, since (0,2,7) is lexicographically smaller than (0,5,7), (0,5,7) will be 

normalized to (0,2,7) and (0,2,7) will be normalized to itself.

Theorem 4. normOPT is a normalization for OPT-equivalence.

Proof. The correctness of normOPT follows directly from the correctness of optEq. Sy 

will contain all OPT-equivalent chords falling within [0,11]" that are sorted in ascending 

order and whose first element is zero. This set will be the same for all members of an 

OPT-equivalence class of chords. □

Using these methods of testing for OPT-equivalence, a test and normalization can be 

defined for OPTC-equivalence. This relates chords whose sets of pitch classes are OPT- 

equivalent. The normOPC operation can be used to reduce a vector to its set of pitches, 

which can then be compared using optEq to determine OPTC-equivalence or further nor

malized by normOPT to achieve a normalization for OPTC.
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optcEq(x, y) =  optEq(normOPC(x), normOPCiy)) (3.18)

normOPTC =  normOPT ■ normOPC (3.19)

It is important to note that normOPTC cannot be defined using normPC instead of 

normOPC. The reason for this is that normPC will only remove duplicate pitches, while 

normOPTC clearly needs duplicate pitch classes to be removed as well. The corresponding 

proof for normOPTC’s normalization properties can be found in Appendix A.

3.3.3 Groups

The O, P, T, and I relations can also be represented as parameterized functions, where 

equivalent chords can be produced from an input chord. These functions will be written 

with the Haskell currying notation, where f{x,y) is written f  x y and ( /  jc )  is a function 

that takes one additional argument.

o 7 x = x+ \2 l, 7 e Z n (3.20)

p a  x = o{x), o e F  (3.21)

t k x = x + k l n, k e  Z (3.22)

i k x  = kx, k €  {1,-1} (3.23)

Each of the functions above has the form / r  p jc =  y for some parameter p € Pr for 

relation R. The equivalence relations could then be described as follows:

x ~ R y <— > 3p € Pr | f R(x, p ) —y (3.24)

For a relation R that can be defined using operation /#  and parameters Pr, the set of all
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functions that can be applied to any chord x is Fr =  {//? p \ p  € Pr}. For the parameteriza- 

tions above, o, p, t, and i form groups.

Go =  ( { o 7 \ 7 e Z n},-) (3.25)

GP = ({p a  | ct€5"},-) (3.26)

Gp = ({t k | *€Z },-) (3.27)

Gi =  ({i k | * € { 1 ,-1 } } ,.)  (3.28)

Gp is a group because Sn is a group, and the two are synonyms for the same group, just 

with slightly different notation. Proofs of the group properties of Go, Gp, and G/ follow 

from properties of addition and multiplication and can be found in the Appendix A. Go, 

Gp, and G/ are also Abelian, since the order of composition for the functions does not 

matter. Sn, and, therefore, Gp are not Abelian.

3.3.4 OPTIC in Haskell

Since Kulitta operates on chords in Z", we define chords as vectors or lists of integers.

Euterpea contains the type AbsPitch as a type synonym for Int. We extend this to represent

chords similarly.

type AbsChord = [AbsPitch]

Many of the various combinations of OPTIC operations are individually most easily 

implemented in Haskell using the normalizations described previously.

normO, normT, normP, normOP, normPT, normOPC:: Norm AbsChord

normO — map (‘mod* 12)

normT x = map (subtract $ head x) x

normP =  sort

normOP =  sort o normO
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normOT — normO o normT 

normOPC =  nub o normOP 

These are then easily turned into equivalence relations of type EqRel using normToEqRel. 

oEq,pEq, tEq, opEq, opcEq:: EqRel AbsChord 

[oEq,pEq, tEq, opEq, otEq, opcEq] =  map normToEqRel 

[normO, normT, normP, normOP, normOT, normOPC]

Group operators can also be defined for the O, P, T, and I. Each operator in Haskell 

mirrors its mathematical definition. Vectors are represented as lists. The octave operator, 

o, takes a list of octave shifts and a chord. The zipWith operator combines the two vectors. 

o :: [Int] —>■ AbsChord —>■ AbsChord 

oisxs = zipWith (Xi x —» x +  1 2 * i )  isxs 

The permutation operator, p, takes a permutation, s (for “sigma”), as its first argu

ment, which is represented as a list of indices into a list. The s argument must, there

fore, be the same length as xs and be a permutation of [0.. length xs — 1 ]. For example, 

p  [ 3 , 1 , 2 ]  [0,4,7] evaluates to [7,0,4]. 

p :: [Int] —> AbsChord —>• AbsChord 

p sx s  = map (x s !!) s

The transposition operator, t, simply adds a constant to a vector, and the inversion 

operator, i, takes a Boolean value that determines whether the chord is multiplied by 1 (left 

unchanged) or by - 1.

t: \In t- t  AbsChord -* AbsChord 

t cxs  = map (+c) xs 

i :: Bool —> AbsChord —► AbsChord 

i neg xs =  if neg then map (*(—1))) else xs 

As already discussed, OPT is problematic and is more easily defined using a different 

algorithm that makes use the group operator for octave equivalence, o.
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optEq:: EqRel AbsChord 

optEq x y  = 

let n — length y

( jc 7, / )  =  {normT $  normOP x, normT $  normOP y) 

is =  map {Xk -> take k {repeat 1) -H- take (n — k) {repeat 0)) [0.. n] 

s = map (normT o normP) $ map (Xi —> o i / )  is 

in or (map {== x') s)

In the definition above, is is the set of all octave shifts that result in rotations of the 

vector, and s is S$ from Algorithm 1. From this algorithm, as described previously, OPTC- 

equivalence can be tested by first normalizing into OPC space and then testing for OPT- 

equivalence.

optcEq:: EqRel AbsChord

optcEqab — optEq {normOPCa) {normOPCb)

3.4 Contour Equivalence

Contour equivalence is a concept introduced by Morris [56]. Contours exist over a sequence 

of pitches. These pitch sequences are most intuitively thought of as pitches in a melody, but 

they can actually be any musical feature that would be represented as a vector of pitches, 

such as a chord. A pitch vector’s contour is a ranking of its elements from smallest to 

largest. This is defined by the following algorithm, where sort is a function that sorts a 

vector’s elements in ascending order (e.g. sort{{3,1,2)) =  (1,2,3)).

Algorithm 3. rank{x) =

Letx1 = normPC {x)

Replace each field o fx  with its index in x/

The Haskell definition is very similar to the algorithm above, where fields in vectors are 

indexed from zero. After finding x!, the ranks value is computed as a list of tuples, which
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serves as a lookup table for each pitch’s rank. 

rank :: [AbsPitch] —>■ [Int] 

rank xs = 

let xf =  normPC xs

ranks =  zip xf [0.. length xf -  1 ] 

in map (Ax —> fromJust $ lookup x ranks) xs 

Contour equivalence can be defined as an equivalence relation, Con.

X  ~con y i— ► rank(x) =  rank(y) (3.29)

For example, rank((5,7,5,10)) =  (0,1,0,2), and r«nfc((3,10,3,12)) =  (0,1,0,2), so 

(5,7,5,10) ~con (3,10,3,12). A Con-equivalence class consists of pitch vectors that all 

have the same relative ranking of elements, or the same general type of shape. The func

tion rank both defines the equivalence relation and is a normalization for it. Reflexivity, 

symmetry, and transitivity follow from the definition of Con using a normalization.

The concept of “melodic contour” in a less mathematically strict sense has been used 

as a form of musical abstraction in automated composition tasks [41]. Although Kulitta 

currently does not make direct use of contour equivalence for generating melodies, it would 

be easily usable within the existing framework and is an appealing avenue of future work.

3.5 Modal Equivalence

The harmony of a lot of classical Western music is centered around primarily two modes: 

major and natural minor, with the intervallic structures (2,2,1,2,2,2,1) and (2,1,2,2,1,2,2) 

respectively. The minor scale is actually a rotation of the major scale’s intervallic structure. 

There are seven such rotations, each yielding a different mode as shown in Table 3.1.

A mode can be represented using several levels of abstraction: as a collection of inter

vals, as a collection of pitch classes, or as a collection of pitches. In keeping with the OPTIC
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Rotation Name Intervallic structure Scale rooted at 0
0 Ionian (Major) {2,2,1,2,2,2,1) (0,2,4,5,7,9,11)
1 Dorian {2,1,2,2,2,1,2) (0,2,3,5,7,9,10)
2 Phrygian (1,2,2,2,1,2,2) (0,1,3,5,7,8,10)
3 Lydian (2,2,2,1,2,2,1) (0,2,4,6,7,9,11)
4 Mixolydian (2,2,1,2,2,1,2) (0,2,4,5,7,9,10)
5 Aeolian (Minor) (2,1,2,2,1,2,2) (0,2,3,5,7,8,10)
6 Locrian (1,2,2,1,2,2,2) (0,1,3,5,6,8,10)

Table 3.1: The intervallic structure of all seven modes based on the major scale and an 
example scale rooted at 0 (pitch class C) for each.

way of handling chords, modes can be thought of as a 7-voice chord where each voice is a 

unique pitch class. We use this representation to define two new concepts: modally related 

chords and modal equivalence.

We define the set of all modes as chords to be transpositions of members of the right

most column from Table 3.1:

M =  {m = t km ' | it e  [0,11], m' e  {(0,2,4,5,7,9,11),...,(0,1,3,5,6,8,10)}} (3.30)

We will refer to a chord as being a member of a mode if its pitch classes are a subset 

of those allowed in the mode. Consider the power set operation, normally written as P(S) 

for set S: P(S) =  {S' C S}. This operation can also be defined over a set represented as a 

vector (i.e. the elements are sorted and no duplicates exist).

P((*1,X2,...,*„)) =  {(*l), (Xn), (*1,*2), .... (xi,x„),...,(xi,*2,-,*/«)} (3.31)

For example:

P « l , 2,3)) =  {<1), <2), (3), (1,2), (1,3), <2,3), <1,2,3)} (3.32)

For a chord x  e  Zn and a mode m e  M, a chord belongs to a mode if its pitch classes 

belong to the mode. The normalization for OPC-equivalence reduces a chord to its sorted

46



set of pitch classes, creating the right level of abstraction for this test.

member {x, in) «— Y normOPC(x) e  P(m) (3.33)

Two chords are then modally related if their pitch classes are subsets of the same mode. 

modallyRelated(x,y) <— Y 3m e  M, member(x,m) A member(y,m) (3.34)

The predicate modallyRelated defines a relation, but it is not an equivalence relation 

due to the fact that some chords have ambiguous modal membership. The two-note chord, 

(0,7), is one such ambiguous chord, being a member of all modes except Locrian. There

fore, we have modallyRelated({0,7), (0,4,7)) and modallyRelated({0,7), (0,3,7)), but 

(0,4,7) and (0,3,7) are not modally related since there are no modes in M that contain 

{0,3,4,7}.

The ambiguity issue already discussed means that vectors of pitches are not specific 

enough to create an equivalence relation grouping chords in a way that allows them to be 

explored by mode. One way to do this is to “tag” the chords with additional information, 

namely the modes to which they belong, since we need (0,7) in one mode to be differenti

ated from (0,7) in another mode.

Smo =  {(*» € M, x  G T )  | member(x,m)} (3.35)

This space is infinite because of x € Z". However, the subset of this space where x is a 

member of OPC’s representative subset is far more manageable.

Sm = {(m e  M, normOPC(x € Z")) | member(x,m)} (3.36)

This can be redefined using the definition of P over vectors. If member(x,in), then 

x e P ( m ) .
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% - { ( m 6 M , x  € P(m)} (3.37)

This set of chords is finite: Sm = 10,752. If grouped by the mode member of the 

tuple, m, there are 84 equivalence classes (one per each mode rooted at a particular pitch 

class), each containing 128 chords. Because chords are represented as tuples with a mode 

as context, modal equivalence is trivial to define over Sm .

(mi,x\) (m2,x2) i— ► mi =  m2 (3.38)

We refer to this new quotient space, Sm/M,  as mode space. Mode space is easily enu

merable and can also be generated more efficiently than the other quotient spaces discussed 

so far by utilizing its relationship to the power set operation. As shown in chapter 6, mode 

space represents an appealing level of abstraction for Jazz, bridging the gap between rep

resentative subsets of Roman-numeral-level OP-space and the more complex set of chords 

present in Jazz, as seen in Table 3.2.

Major tonic Minor tonic
Roman numeral Triad Mode Triad Mode
I Major Major Minor Minor
n Minor Dorian Diminished Locrian
m Minor Phrygian Major Major
IV Major Lydian Minor Dorian
V Major Mixolydian Minor Phrygian
VI Minor Minor Major Lydian
vn Diminished Locrian Major Mixolydian

Table 3.2: Modal interpretation of Roman numerals.
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3.6 Musical Equivalence Relations in Kulitta

Kulitta uses musical equivalence relations, or chord spaces, to transition between different 

levels of musical abstraction: a path through an abstract space is converted to a path in a 

more concrete space. However, this only solves part of the compositional problem, and 

does not address how to create the starting, abstract path or how to satisfy other musical 

constraints while transforming that path into a more concrete one. Kulitta uses musical 

grammars to create the abstract path, and then uses constraint satisfaction algorithms dur

ing path finding through chord spaces. These topics are covered in Chapters 4 and 5 re

spectively. Chapter 6 shows an integrated view of how chord spaces, musical grammars, 

and constraint-satisfaction interact to create complete pieces of music.
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Chapter 4 

A Grammar for Harmonic and Metrical 

Structure

The harmonic analysis of music has long been noted to be analogous to the parsing of 

natural languages. In the Schenkerian tradition, harmonic structure in music is viewed 

hierarchically, yielding essentially a parse tree of harmonic sections. Recent work has 

shown that music and spoken language involve the same parts of the brain [7], and work 

such as Generative Theory of Tonal Music [48] presents a grammatical outlook on many 

aspects of musical structure.

In natural language, a sentence would be parsed by starting with the terminal symbols 

(words), working backwards to infer their function (noun, verb, etc.). These symbols would 

then be grouped into grammatical phrases (adjective-noun, subject-verb-object, etc.), form

ing a hierarchical structure that ends with the start symbol representing a sentence. In mu

sic, especially in the Schenkerian tradition, a piece of music would be parsed by starting 

with the terminal symbols (notes, rests, and chords), and working backwards to infer local 

harmonic progressions (such as ii-V-I), song forms (such as AABA1), creating a similar,

1. Large-scale patterns of repetition in music are typically denoted using capital letters. ABA form would 
indicate a 3-section piece with identical (or sufficiendy identical) first and last sections. Similarly, AABA 
indicates a 4-section piece where the first, second, and fourth sections are the same.
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hierarchical structure that ends with a simple I-V-I or even just I (the tonic), serving the 

function of a start symbol [73,74].

In the context of Kulitta, however, we are primarily interested in automated music com

position rather than analysis. One way to approach this is to use grammars generatively— 

that is, to generate sentences from the start symbol. Unfortunately, with many conventional 

grammars (such as context-free grammars, or CFGs) the result is usually nonsensical—for 

example, “The dog wrote the house,” or in the case of music, something that just doesn’t 

sound right.

More specifically, conventional grammars intended for automated music composition 

have the following limitations:

1. They are unable to capture the sharing of identical phrases, such as in a song form 

AABA, where the A sections are intended to be identical (or nearly identical) to one 

other.

2. They do not take probabilities into account. Music analysis has shown that certain 

productions are more common than others—indeed specific genres of music (say, 

Bach chorales) have specific distributions of musical characteristics [68].

3. They do not capture temporal aspects of music. For example, a production rule 

stating that a I chord can be replaced with V-I does not capture the durations of those 

chords. Chord symbols in analytical grammars are typically duration-less (such as 

those in Martin Rohrmeier’s grammar for harmony [67]), despite the importance of 

rhythm in music [48, 77, 78]. When chords are durationless, the Schenkerian idea 

that the V-I would occupy the same duration as their parent I-chord is impossible to 

capture.

To overcome these problems, we define a new class of generative grammars called 

probabilistic temporal graph grammars [63], or PTGGs 2. These grammars operate on

2. PTGGs are based on a similar category of grammars called Temporal Generative Graph Grammars
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duration-parameterized chords and the rules are functions of those parameters. In a gen

erative setting, this added complexity over a traditional CFG is highly efficient and much 

more expressive.

4.1 Related Work

Generating harmony is a popular subject in automated composition research. A wide vari

ety of algorithms have been explored, including Markov chain-based approaches [16, 87], 

neural nets [4, 5, 26, 29, 30, 35], and more specialized systems intended for generating 

whole compositions [19,25].

Grammars are an appealing representation for music because of their ability to cap

ture long-spanning structural constraints such as those found in the harmonic structure of 

music—for example, starting and ending in the same key. Other popular representations 

used in algorithmic composition algorithms have problems capturing more than short-term 

structure in music. Markov Chains and Neural nets are two commonly used approaches 

that suffer from this problem.

A Markov Chain of order n represents a finite state machine where each state cap

tures n steps of production “history.” Each state has a collection of transition probabilities 

to other states. Markov chain-based approaches are commonly used both for small-scale 

algorithmic composition tasks and for tasks where partial musical information is already 

given, such as melodic harmonization [70, 87]. However, Markov chains are doomed to 

perform poorly at more complex tasks where larger scale musical structure must be gen

erated, since they can only “keep track o f ’ as many productions as their order, n, allows, 

resulting in state explosion when trying to capture constraints over longer generated sec

tions. Although approaches such as variable-length Markov chains [9, 70] can help to 

mitigate the state explosion for some tasks, they do not eliminate the problem. For even a

defined by Quick and Hudak[64].
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variable-length Markov chain to capture a constraint that spans from the first symbol to the 

last symbol, the order, n, would have to be the length of the generated section—a clearly 

unreasonable approach.

Neural nets have been used for problems in automated harmonization [26, 29, 30, 35, 

57], A related type of network, called a Boltzmann machine, has been applied to a wider 

variety of musical tasks: classification of existing music, “fill in the blank” problems (like 

automated harmonization), and free composition [4, 5]. Boltzmann machines are particu

larly appealing for their versatility in this regard, since the same model can be reused for 

each task by simply “clamping” (holding constant) different nodes in the net. However, 

Boltzmann machines as well as other neural net systems still suffer from complexity prob

lems when dealing with music, since output nodes must be tied to pitches or pitch classes. 

Representing a decision about a single note choice out of n possibilities requires n output 

nodes. For m independent choices with n possibilities each, most representations require 

nm output nodes. This quickly become problematic for representing complex structures.

4.1.1 Macro Grammars

Macro grammars [28] are a category of context-free grammars that allow both standard 

productions, such as A —>■ a, as well as productions that are functions F(x) —» w, where 

j c  is an argument or variable and w  is an expression that uses j c .  These function-based 

productions can capture features that would otherwise require a context-sensitive grammar. 

For example, a macro grammar can be used to generate strings of the form anbncn (some 

number of as followed by the exact same number of bs and cs):

S —»F(a,b,c)

F(x,y,z) -> (xa,yb,zc)

F(x,y,z) -*xyz

A more typical CFG would have no way to capture the constraint that there must be the 

same number of each of the three characters in the string, being able to capture anbn, but
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not anbtlcn. PTGGs are similar to macro grammars in that they are context-free grammars 

that use functions to capture certain features (including repetition) that would otherwise 

require a context-sensitive grammar.

4.1.2 Musical Grammars

Grammars have been explored both generatively [33, 42, 54, 86] and analytically [48, 67, 

85] in music. Studies on brain activity have shown a strong link between language and 

music in the brain [7], an idea that has become increasingly accepted in music theory 

through works like GTTM, which presents a grammatical outlook on analyzing music [48] 

(although it requires additional formalization to be implemented in both analytical and 

generative settings). Graph grammars, which can account for repetition through the use of 

shared nodes have been occasionally used in musical settings, such as to aid in composition 

with audio samples [69] and for representing aspects of musical scores [3].

Martin Rohrmeier introduced a mostly context-free grammar (CFG) for parsing classi

cal Western harmony [67]. The grammar is based on the tonic, dominant, and subdominant 

chord functions. Terminals are the Roman numerals from I to VII, and the nonterminals 

are Piece, P (phrase), TR (tonic region), DR (dominant region), SR (subdominant region), 

T (tonic), D (dominant), S (subdominant), and four chord function substitutions. However, 

this grammar has no support for important features like repetition and duration, and so is 

problematic in a generative setting without additional supervision. The HarmTrace pack

age, written in Haskell, builds on Rohrmeier’s grammar to automate harmonic analysis 

[50]. FHarm, a later system that also uses Haskell, addresses the task of melodic harmo

nization using HarmTrace to filter out results that best match a particular harmonic model 

[45]. A fundamental difference between our system and FHarm is that FHarm harmonizes 

an existing melody, whereas Kulitta can compose from scratch without existing musical 

input from the user.

The recently proposed analytical grammar by Martin Rohrmeier exhibits a small amount
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of context sensitivity based on mode. For example, tonic chords, denoted as T, are given

different, modally-determined productions [67]. 

r - + i

T -> TP

T ^  TCP

TP -* VI when in major 

TP HI when in minor 

TCP -¥ III when in major 

TCP-+V I when in minor

However, consider a PCFG formed from the grammar above. If the production prob

abilities for TP and TCP are the same, this collection of rules is really equivalent to a 

reduced set of completely context-free rules:

I

VI

r ->• in

The TP and TCP nonterminals would allow the production probabilities to differ based 

on mode, but determining exacdy how they differ is an open problem best addressed in 

a machine learning context. Determining how musical contexts such as the current mode 

should be handled in both the alphabet and construction of rules is the subject of later 

chapters, where production probabilities are derived from musical corpora.

Meter is another clearly important aspect of music. In work such as GTTM, meter 

interacts with harmonic aspects of the music through metrical grouping and preference 

rules [48]. Temperley’s work [76, 77, 78] as well as a harmonic analysis algorithm by 

Raphael and Stoddard [66] also emphasize the role of rhythm and meter in the perception 

of harmony. However, meter is often treated separately in generative settings, such as in

55



the grammars for jazz riffs presented by Keller and Morrison [42].

Repetition is another feature of music that is often ignored by generative algorithms. 

Consider a fugue: the subject that opens the piece is expected to appear in modified states 

later on in the music. If these constraints are ignored, the form of the music is violated. 

The various musical grammars discussed so far have little or no direct support for this kind 

of musical feature, and many other algorithms are fundamentally incapable of supporting 

it as well. Markov chain and most Neural Net-based approaches lack the ability to enforce 

any sort of pattern repetition over long spans of time without experiencing an explosion in 

the number of states or nodes.

Our grammar allows easy integration of both metrical features and pattern repetition 

within the grammar. This allows for the production of complex repeated patterns at multiple 

levels, even with relatively few rules containing Let expressions.

4.2 Generating Music with a PTGG

A graphical representation of the generative portion of Kulitta discussed in this chapter can 

be seen in Figure 4.1. It begins with a PTGG for chord progressions (defined in the Section 

4.3), which is passed to an algorithm for applying the grammar. This process generates 

abstract musical structure. The chord progressions produced are not tied to any particular 

style of music.

The next phase of Kulitta’s generation interprets those abstract progressions. We wish 

to emphasize that there are many possible algorithms and mathematical models to use at 

this stage, since it determines many of the stylistic elements of the music. Kulitta uses a 

mathematical construct called chord spaces and style-specific embellishment algorithms to 

generate music at the level of a MIDI file—roughly the level of representation offered by a 

paper score. Musical interpretation is discussed in more detail in Chapters 5 and 6.

Additionally, just because Kulitta can produce performable music does not mean that
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Figure 4.1: An illustration of the generative process for a probabilistic temporal graph 
grammar (PTGG). A PTGG is used in combination with an iterative algorithm for applying 
the grammar to produce sequences of abstract progressions consisting of Roman numerals, 
modulations, and Let expressions to capture repetition. After generation, Let expressions 
must be interpreted by instantiating variables.

the results are closed to further alteration by either other algorithms or a human. For ex

ample, Kulitta’s support for generating abstract structure with musical grammars could 

be employed as an algorithmic component in otherwise human-crafted compositions that 

could be in any number of styles.

4.3 Grammar Definition

A grammar is a tuple, G =  (N, T,R, S) where N  is a set of nonterminals, T  is a set of termi

nals, R is a set of rules from N ^  (NUT)+,  and S G N  is the start symbol. Terminals are 

symbols that cannot be replaced (or, alternatively, can only produce themselves), whereas 

nonterminals have rules that replace them with one or more other symbols. Rules have the 

form A -¥ v where v is a sequence of one or more terminals and nonterminals.

A PTGG has several core concepts that distinguish it from more standard CFGs:

1. The grammar generates sequences of duration-parameterized abstract chords, written
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as Roman numerals, and modulation symbols.

2. Chords function as both terminals and nonterminals. Inspired by Schenkerian ideas 

in music theory, a single, long, abstract chord may be considered representative of a 

more harmonically diverse elaboration consisting of multiple chords. For example, 

if a ii-V-I progression may be analyzed as representative of a longer tonic section 

or I-chord, it is reasonable to allow a long I-chord to produce ii-V-I in a generative 

setting.

3. Ignoring duration (see below), the grammar is context free—the context of a chord 

does not affect the productions that may be applied to it. However, this does not 

mean that the musical interpretation of the chord is context-free. A Roman numeral 

appearing in a modulated context implies a different set of pitches than the same 

Roman numeral in an unmodulated context.

4. Rules are functions on the duration of their input symbol. Because durations can be 

any real number, the set of possible duration-parameterized chords can be infinite 

even with a finite set of rules.

We use the superscript notation d  to indicate a chord c with duration t. For musical 

readability, the letters w, h, q, and e are used as shorthands to represent the relative durations 

of a whole note, half note, quarter note, and eighth note, respectively. Therefore, Iq denotes 

a /-chord with the duration of a quarter note. Chords can carry any real number as a 

duration, such as 71 °, but those numbers must be assigned a unit of measure (beats, seconds, 

etc.) to be further musically interpreted.

Chord quality is sometimes captured by using both uppercase and lowercase Roman 

numerals. When this distinction is made, i would indicate a minor chord and I  a major 

chord. However, this distinction is not made within Kulitta. Therefore, all chords are
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written with upper case Roman numerals to yield the following alphabet:

C =  {/, II, III, IV, V, VI, VII} (4.1)

The simplifying assumption that major and minor modes do not need to be distinguished in 

the alphabet of Roman numerals was made both to allow for a smaller rule set and because 

it is not clear from existing work how best to capture those concepts in a generative setting. 

Sometimes modal distinctions are ignored in an analytical setting as well [67].

The nonterminals of a PTGG are the set of all duration-parameterized chords:

iV =  {cf|c e C , r e M }  (4.2)

In keeping with Schenkerian ideas, the start symbol for our grammar is P where t is the 

duration of the entire phrase to be generated. The chord quality associated with a Roman 

numeral is determined by the home key and modulation context in which it appears. Mod

ulations can only occur based on diatonic scale degrees. Thus, there are only six possible 

modulations: one for each scale degree other than the first (which is the current key, or 

tonic).

M  =  {M2,M3,M4,Af5,M6)M7} (4.3)

The terminals of our grammar include both nonterminals and modulation symbols. Paren

theses are used as an additional “meta symbol” for indicating nested structures in generated 

sequences.

T = NUM  (4.4)

Repetition, or sharing, in our grammar is handled by the use of a let-in syntax to define 

variables. The notation let x = A in s means that all instances of x occurring in s should be 

instantiated with the same value A. The inclusion of these let-in expressions is what creates 

shared nodes in the graph grammar. Each instance of x in s will point back to the same
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node (jc ’ s  definition).

It is important to realize that the let-in notation introduces the concept of variable in

stances, which is lacking from many generative grammars. For example, the expression 

let x =  A in xBx, where A and B are nonterminals, is not the same as the expression ABA. 

This is because in the former, the result of expanding A is shared identically by all instances 

of x, whereas in the latter each A can be expanded independently.

The set of sentential forms K in our grammar is defined recursively as follows:

k e K  ::= c | k\ ...kn | (m k\) | let x =  k\ in ki | x € Var (4.5)

where Vdr is a set of predefined variable names and m € M  is a modulation.

4.3.1 Production Rules as Functions

Production rules in our grammar are parameterized by duration, and can thus be thought 

of as functions. They can be written with concrete durations, such as Ih ->■ Vq lq and 

Iq —► Ve Ie. But, in many settings, these are really the “same” rule and can be written as 

a function of the duration of the input chord: P ->• V'/2 p!1. Duration-parameterized rules 

allow a finite set of rules to produce an infinite alphabet of duration-parameterized chords.

We implement production rules as functions in Haskell [59]. As shown in the follow

ing section, treating rules as functions allows the grammar itself to capture many musically 

relevant behaviors that would otherwise be delegated to an algorithm for applying the gram

mar. Rules can create repetition as well as exhibit conditional behavior, yielding complex 

structures with even a very simple generative algorithm. Haskell allows for an elegant im

plementation of these rules and the generative algorithm. Finally, a PTGG is a probabilistic 

grammar, and thus each rule (there may be several rules for each nonterminal) is associated 

with a probability and the probabilities for a particular left-hand side (a single nonterminal) 

must sum to 1.
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4.4 Haskell Implementation

This section presents an implementation of PTGG in Haskell that closely mirrors the math

ematical presentation above. Simple data types capture the essence of chords, modulations, 

let-in expressions, and sentential forms. As mentioned earlier, functions are used to imple

ment production rules, and are paired with a probability. In addition, we describe a gener

ative algorithm in monadic style that chooses rules based on their associated probabilities.

4.4.1 Chords, Progressions, and Modulations

Roman numerals represent chords built on scale degrees, of which there are seven, 

data CType =  I  \ I I 177/ | IV \ V \ VI | VII 

deriving (Eq, Show, Ord, Enim)

Key changes, or modulations, in our grammar also take place according to scale de

grees. Similarly to the Roman numeral system for labeling chords, we define symbols 

indicating modulations for the 2nd through 1th scale degrees. The first scale degree is the 

root, and there is no need to indicate staying within the current key. 

data MType = M2 \M3 \M4\M5 \M6 \M7 

deriving (Eq, Show, Ord, Enum)

We now define a data structure to capture the sentential forms of PTGG, called Term. 

This data type has a tree structure to model the nested nature of chord progression features 

like modulations and repetition. A Term can either be a nonterminal (NT) chord, a sequence 

(S) of terms, a tenn modulated to another key (Mod), a let-in expression (Let) to capture 

repetition, or a variable (Var) to indicate instances of a particular phrase, 

data Term =

NT Chord \ S [Term] \ Mod MType Term \

Let Var Term Term | Var Var

type Var =  String
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4.4.2 Rules

We begin with the following type synonyms for clarity in type signatures for probabilities 

{Prob), random number seeds {Seed), and duration (Dur). 

type Prob =  Double 

type Seed =  Int 

type Dur = Rational

Rules are a functions from duration-parameterized chords to chord progressions. Chord 

progressions are represented as a Term. Because more than one rule may exist for a partic

ular Roman numeral, each rule also has a probability associated with it. To capture this, we 

define a constructor that takes a lefthand-side tuple of a CType and production probability, 

and pairs it with a RuleFun (a function from duration to chord progressions), 

data Rule = {CType,Prob) :—> RuleFun 

type RuleFun = Dur -y Term 

We also introduce abbreviations for single-chord Term values to allow chord progressions 

to be written more concisely.

i, ii, iii, iv, v, vi, vii:: RuleFun

[i,ii,iii,iv,v,vi,vii] =map {Xc t - yNT  {Chordt c))$enumFromI 

Note that the usage of lower-case numerals is required to define these abbreviations as 

functions in Haskell, but the quality of a chord indicated by the above functions is still 

determined by the modal context in which it appears.

For example, the rule P —► V'/2 p!2 with probability p would be written: 

( I ,p) : ->Xt ->S[v{ t /2) , i ( t /2) ]

Table 4.1 shows a complete PTGG. The following are some specific rules taken from 

our implementation of that table that represent the three main forms of our rules. Rules 

may produce a sequence of chords, a modulated section, or no change (an identity rule). 

ruleVl = (V,0.15) :->  At - y S  [iv (t /  2),v (t/2)] 

ruleV9={V, 0 .10):->v
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ruleVIO =  (V, 0.10) :->  (Mod M5 o i)

Rules according to Schenkerian theory and the metrical structures in work like Gen

erative Theory of Tonal Music (GTTM) [48] would enforce that the chord durations on 

the right-hand side sum to 1.0 and follow basic metrical divisions, such as powers of 2. 

However, this is not a strict requirement of our grammar. In fact, interesting rhythmic pat

terns can be created with rules that mix metrical structures and add or subtract duration,

although they may yield little or no sense of meter. Therefore, we do not explore these 

types of grammars, but simply note that they are legal as PTGGs.

Rules can also create repetition using Let expressions. In the rule sets used for our 

examples, we make use of the following rules:

X ' -> le tx  =  Xt/2inxx  (4.6)

X' -> let x =  X,/4 in x Xf/2 x (4.7)

X '-» letx  =  X'/4 inxV '/2x (4.8)

Because rules are functions, they are more powerful than simply being a table of in

put and output values. The rules can encapsulate additional aspects of functionality that 

would otherwise be delegated to the algorithm applying the grammar. The rules shown 

so far already demonstrate this to some degree by using an infinite alphabet to accommo

date durations and by handling repetition within rules. Rules can also exhibit conditional 

behavior.

One problematic aspect of the generative process that can be solved by adding con

ditional behavior to rules is how to obtain a “nice” distribution of durations that meets 

musical expectations for some genre. In a chorale, one would expect a lot of quarter notes 

and perhaps some half and eighth notes, but no notes spanning half the duration of the 

piece. In jazz, the distribution of durations would be more diverse, but one would still not
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expect to see very uneven distributions such as a burst of 64th notes followed by a lengthy 

passage consisting entirely of whole notes.

Even when metrical structure is built into the structure of the rules, stochastic generation 

can easily create distributions of durations that give no sense of meter and/or absurdly long 

and short durations. One way to avoid this is to delegate the decision to the algorithm 

applying the grammar: apply rules left to right whenever possible except for notes that are 

“too short” for our desired distribution. The distribution of durations is then controlled 

by other aspects of the grammar and the generative algorithm, such as the probabilities of 

self-productions (e.g. P -¥ P) and the number of generative iterations used. With a PTGG, 

there is an elegant, functional approach to this by encoding the decision making directly 

into the rules:

my RuleFun:: RuleFun

myRuleFun d = iSd< durLimit then term\ else termj 

where term\,term2 :: Term. This approach allows for a very simple implementation of the 

grammar’s generative algorithm, since the rule set encapsulates all of the complex behavior 

of the grammar.

4.4.3 Generating Chord Progressions

Our strategy for applying a PTGG generatively is to begin with a start symbol and choose 

a rule randomly, but biased by the associated probability. For each successive sentential 

form, all nonterminals are expanded “in parallel.”3

The Prog Monad

Because this strategy is stochastic, randomness must be threaded through the generative 

process to help with decision making. We achieve this with a simple state monad to thread

3. This strategy is similar to that used for an L-system or Lindenmayer system [61],
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Haskell’s “standard generator” for random numbers. While we could have used Haskell’s 

existing definition for State, we opted to define our own monad for added transparency, 

newtype Prog a =  Prog (StdGen -* (StdGen, a))

instance Monad Prog where 

return a =  Prog (As -> (s,a))

Prog po » = / i  =  Prog $ A s0 -> 

let (si,ai) =po so 

Prog pi = / i  ai 

in pi si

In addition, we define a single “domain specific” operation to generate a new random 

number from the hidden standard generator: 

getRand:: Prog Prob 

getRand =  Prog (Ag -> 

let ('■»/) =  randomR (0.0,1.0) g in (g',r))

Finally, we define a way to “run” the monad: 

runP:: Prog a —> StdGen —► a 

runP (Progf) g = snd( fg )

Applying Rules

A chord, X ‘ € N , can be replaced using any rule where X  appears on the left-hand side. 

Since there may be more than one such rule, the applyRule function stochastically selects 

a rule to apply according to the probabilities assigned to the rules. For a rule, (c,p) :—> rf, 

we use the functions Ihs, prob, and rhs to gain access to its CType, Prob, and RuleFun 

respectively.
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applyRule:: [Rule] -* Chord -> Prog Term 

applyRule rules (Chord dc) — 

let rs = filter (A((c',p) :->  rf) -> c' = =  c) rules 

in do r 4- getRand

return (choose rs r d)

choose:: [Rule] —> Prob —»■ RuleFun 

choose [\p = error "Nothing to  choose from!" 

choose {({c,pf) :—>rf): rs) p  =  

if p ^ p ' V  null rs then rf else choose rs (p —p’)

Parallel Production

The Prog monad can be used to write a generative function that runs for some number of 

iterations, with each iteration making a pass over the entire Term supplied as input to that 

iteration.

In a single iteration of the generative algorithm, a Term is updated in a depth-first man

ner to alter the leaves (the NT values representing chords) from left to right. For Let ex

pressions of the form let x — t\ int i ,  the terms t\ and tj are updated independently, but 

instances of x are not instantiated with their values at this stage. Otherwise, it would be 

trickier to ensure that all instances of x are generated the same way. 

update:: [Rule] —> Term —► Prog Term 

update rules t = case / of 

NT x —> applyRule rules x 

S s -* do ss 4 -  sequence (map (update rules) s) 

return (5 ss)

Mod m s  —► do /  <— update rules s 

return (Mod m s')

Var x  —> return (Var x)
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Letxa  t -4 do d  <— update rules a 

t! <— update rules t 

return (L e txa 't1)

Finally, we define a function gen that iteratively performs the updates by iterating a 

monadic action infinitely often.

gen:: [Rule] —> Int —► Seed -» Term —> Term

gen rules i s t  = runP (iter {update rules) t) (mkStdGen s)!! i

iterv.Monadm =>• {a —► ma) a -> m [a]

iter /  a =  do a' 4—f  a

a s«— iterf d  

return ( d : as)

Note that Haskell’s laziness extends into the monad, and so the infinite list that results 

from its use is evaluated lazily. The result of calling gen on a Term for some number of 

iterations will be a Term that may contain Let expressions. Retaining this structure allows 

us to extract constraints that aid in the musical interpretation of the Term.
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Num. Probability Rule
1 0 . 2 0 p  i p / 4 y t / 4 p / l

2 0 . 2 0 p  p / *  / y t / 4 y t / 4 p / 4

3 0 . 2 0 p  y t / 2  p / 2

4 0 . 2 0 p  p / 4 / p i 4 y t / 4 p / 4

5 0 . 2 0 P -+ P
6 0.80 IP - t lP
7 0 . 2 0 IP -+M2(VtI2 P '2)
8 0.70 IIP - t  IIP
9 0.30 IIP -tM${P)
1 0 0.80 I V '- t  IV1
1 1 0 . 2 0 IV1 -+M4(P/4 Vf/ 4  Pi2)
1 2 0.15 y t  / y t / 2  y t / 2

13 0 . 1 0 V* - t  IIP I2 VP>2
14 0 . 1 0 y t  p / 4 / / p i 4 y p / 4  p / 4

15 0 . 1 0 y t  y t / 4 y p / 4  y / p / 4  y t / 4

16 0 . 1 0 y t  y t / 2  y p / 2

17 0 . 1 0 V‘ IIP
18 0 . 1 0 y t  y t / 2  y t / 2

19 0.05 V1 -> VIP I2 V' / 2

2 0 0 . 1 0 y t ^ y t

2 1 0 . 1 0 V* —tMs(P)
2 2 0.70 VP - t  VP
23 0.30 V P -tM 6(P)
24 0.40 VIP -> VIP
25 0.50 VIP -)• p /2 IIP/2
26 0 . 1 0 VIP -tM-jiP)

Table 4.1: Production rules of a sample PTGG.

Figure 4.2 shows an example of the steps of this algorithm and the resulting parse tree. 

Because of the presence of identity rales, which can be applied many times, parse trees for 

generated progressions can often be constructed with fewer rule applications than actually 

occurred.

4.4.4 Musical Interpretation

A Term is a tree data structure with many abstract musical features that must be interpreted 

in the context in which they appear. Chords must be interpreted within a key, and the key
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Figure 4.2: Two parse tree representations of the same progression, created by applying 
the rales 1, 3, and 21 from Table 4.1, along with identity rules 5, 6 , and 12. The left 
representation more closely mirrors the iterative generation algorithm, where each row of 
chords represents an iteration.

is dependent on the modulation structure of the branch. Variables refer to instances of a 

specific chord progression, which may have nested Let expressions.

To produce a sequence of chords that can be interpreted musically, the structure of Let 

statements must be expanded by replacing variables with the progressions they represent. 

This is important because the interpretation of a variable’s chords hinges on the context 

in which the variable appears. Consider the following expression and what happens when 

variables are instantiated with their values, where the notation a=>b means “a evaluates to

br

let jc =  /* in x (M5 x) =>■ I‘(M5 P) (4.9)

In this example, the two instances of x  must be interpreted in two different keys in the 

final progression. If the passage occurs in C-major, then the first x is a C-major chord, but 

the second is a G-major chord.

When Let expressions appear in rales, the variable names in a generated progression are 

not guaranteed to be unique. In fact, duplicate variable names can be quite common. We 

use lexical scoping to handle these situations, always taking a variable’s nearest (innermost)

I  I tf4 y tM  -j-t/2

M5(Im ) v w  im

y t/8  j t /8

V
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binding in the Term tree as shown below.

letx =  T  inx (letx = V1' i n x x ) x ^ I t V1' V'7' (4.10)

The expand function accomplishes this behavior, replacing instances of variables with their 

values under lexical scope, by maintaining an environment of variable definitions. 

expand:: [(Var,Term)] —> Term —» Term 

expand e t  = case t of 

Let x a exp —> expand ((jc, expand ea):e) exp 

Varx -» maybe (error (x-H-" i s  undefined")) id $

lookup x e 

S s  -* S (map (expande) s)

Mod m t' -» Mod m (expand e t1) 

x —> x

These abstract progressions may then be further musically interpreted using chord 

spaces and musical constraints as described in the following chapters. Figure 4.3 shows a 

small example of this process.

4.5 Modal Context-Sensitivity

The PTGGs discussed so far are context-free for everything except duration of the sym

bols. However, although the harmonies produced by context-free PTGGs are interesting, 

they also demonstrate the need for considering mode when applying rules. Here we only 

consider two modes, major and minor, although the extension to a larger number of modes 

is also possible within the same framework. There are two possible ways to address the 

issue of modal context-sensitivity:
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1. Increase the alphabet size and allow for major/minor chords. The simplest approach 

would be to double the alphabet and create modulation rules such as 

VImajor -> M(,(Iminor) to indicate that a Vl-chord in a major key (which is a minor 

triad) would need to be replaced by a minor modulated section.

2. Add mode-handling to the monad and allow rules to use conditional logic on the 

mode.

The monadic implementation lends itself to easy introduction of certain contextual fea

tures. The current mode is a type of information that is easily handled in the same way as 

threading randomness through the computation. This allows for a smaller rule set, since 

rules like /*->/* and V* M$(P) for which mode does not matter do not need to be 

duplicated for major and minor modes. Instead, only those rules that are prone to making 

undesirable harmonies in one mode or another need to be modified. This type of implemen

tation does not preclude the level of detail that would be possible in a non-redundant rule 

set for an alphabet of major and minor Roman numerals, but it allows for simplifications 

when the sets of rules relevant to each mode and their associated probabilities demonstrate 

overlap.

It is important to note that modal context-sensitivity implemented at the monadic level 

is not the same as creating a traditional context-sensitive grammar, where presence of sym

bols elsewhere in the sequence can influence the selection of rules. All of the rules still 

have the context-free form of A —► XY  and traditionally context-sensitive rules of the form 

AB —» XYB are still illegal. Rather, where we would have two rules with the same left-hand 

side, A —>• XY  and A -» X'Y1, where XY  is appropriate in major and X'Y' is appropriate in 

minor, the mode-handling logic is once again encapsulated in the rules (in the same way as 

handling a minimum duration) rather than being delegated to the applying algorithm.

Table 4.2 shows an example of a modally context-sensitive PTGG. It also includes 

additional conditional behavior to aid in duration distribution. This rule set contains 26 

rules using a monad-level handling of mode.
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Iterative Generation

Generated Progression Rule(s) Applied

I 1 S ta rt sym bol

V ariable Instantiation Musical Interpretation

Pitch A ssignm ent 

A B 1

- f h
V  I  I I  V  I  V  I

Figure 4.3: Example of the generative process and musical interpretation for Let expres
sions. The pitch assignment step shows only one of many possible outcomes, with the 
important feature being that chosen pitches adhere to the overall ABA pattern defined by 
the Let expression. Handling of Let expressions at the pitch assignment step is discussed 
in Chapter 5.
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The changes to the implementation needed to support modal context-sensitivity are 

relatively small. Details of the modified implementation are shown in Appendix B.

4.6 Other Alphabets

So far, the chords used in PTGGs have been limited to Roman numerals, yielding a seven 

chord alphabet. This is, in fact, a very limited musical alphabet, and other, more diverse 

labeling systems are commonly used. Fortunately, the same framework developed in the 

previous sections is still applicable to other alphabets of chords, and it can be general

ized without requiring a redefinition of CType or any invasive changes into the algorithms. 

Rather, a chord simply can be redefined in a polymorphic way: as “something” with a 

duration.

data Chord a =  Chord Dur a 

deriving (Eq,Show)

This type change then propagates to to Term's definition, 

data Term a = NT (Chord a) \ S [Term a] | Mod MType (Term a) |

Let String (Term a) (Term a) | Var String 

deriving (Eq, Show)

Changes elsewhere are trivial to accommodate this difference, merely substituting Term a 

for the instances of Term in type signatures. The PTGGs shown in Tables 4.1 and 4.2 would 

produce progressions of type Term CType.

This more general definition of the Chord type is useful for constructing PTGGs over 

different harmonic systems, and allows the easy extension of the code to new data types rep

resenting different alphabets of chords. In chapter 8 , PTGGs are constructed from a modi

fied version of Rohrmeier’s grammar for harmony, which introduces new chordal concepts 

in addition to Roman numerals. For example, in this grammar, a “tonic chord,” denoted as 

T, is a separate and more general entity than a I-chord. The Chord a type allows this type
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of change easily within the framework. This extension would also allow the use of rules 

with more harmonic granularity, such as those found in Terry Winograd’s work [85], which 

specify the intervallic structure or inversion of the chord: I  ->• / | ,  /  -» fj, and so on. More 

details on this more generalized version of the implementation are contained in Appendix 

B.

4.7 Other Possible Extensions

Because a PTGG generates abstract structure for music that must be further interpreted, 

it would be easy to augment the alphabet and allowable sentential forms to handle more 

musical concepts. One common musical feature is the notion of a variation. This is often 

denoted using a “prime” notation. For example, AA’ would indicate a section A followed 

by a very similar but not identical version of A. One might notate this with a PTGG as:

let x  =  A in (jc variation (x)) (4.11)

where variation above denotes an operation that must be performed at the musical 

interpretation level, similarly to let-expressions. However, these sorts of additional features 

are not currently implemented. Exact repetition in the form of a let-expression is easily 

implemented in Kulitta because the musical meaning is unambiguous: each instance of a 

variable must be exactly the same. On the other hand, the idea of musical variation is far 

less well defined. We usually know a variation of a theme or section when we hear it, but 

those observations lie in an area between exact repetition and total distinction that is still 

fuzzy and poorly defined. A formal definition of what constitutes a variation would be 

needed in order to proceed from abstract to concrete in the generative process.
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Num. Probability Rule
1 0.187 P->  if major then IP<A V' / 4  P>2 else /W 4 W 4 p i2
2 0.187 p  p /A  j y t / A  y t /A  p /A

3 0.187 p  y t / 2  p ! 2

4 0.187 P ^  H major then p /A IP>A W 4 P>4 else P/4 TV' / 4 W 4 P>4
5 0.252 P -»• if t  ^  h then P else p /2 p /2
6 0.400 IP -» if major then IP else TV'
7 0.400 IP -¥ if major then (if t  > q then IP else Mi{P)) else MiiP)
8 0 . 2 0 0 IP -+ if major then VP I2 IP I2 else VP I2 TV'/2)
9 0.900 IIP -* IIP
1 0 0 . 1 0 0 IIP -+Mi(P)
1 1 0.900 /y r -> /y r
1 2 0 . 1 0 0 IV*
13 0 . 1 0 0

14 0.150 y t  j y t / 2  y t / 2

15 0 . 1 0 0 v x -* n p /2 v p /2
16 0 . 1 0 0 y t  p ! 4 JJp/A y p / A  y t /A

17 0 . 1 0 0 y t  y t /A  y p / A  y i p / A  y t /A

18 0 . 1 0 0 y t  y t / 2  y p / 2

19 0 . 1 0 0 V ^ I I P
2 0 0.050 y t  y t / 2  y t / 2

2 1 0 . 1 0 0 V' - a VIP/2 V‘/2
2 2 0 . 1 0 0 v * -* m 5{P)
23 0.700 VP -* VP
24 0.300 VP-+M 6(P)
25 0.500 VIP -► if / > q then VIP elseM7(P)
26 0.500 VIP -> p /2 IIP/2

Table 4.2: Example of a modally context-sensitive PTGG with conditional behavior on
both mode and duration within rules. Note that implementing this rule set without modal 
context-sensitivity would require an alphabet of 14 Roman numerals (Imajon Iminor, etc.) 
and would therefore require twice as many individual rules, many of which would be re
dundant. The letters h and q denote a durations of a half note and quarter note respectively.
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Chapter 5

Constraint Satisfaction

A musical grammar provides a backbone or abstract path that can be transformed into more 

concrete music using chord spaces. However, there are multiple ways that this can be done, 

and many of them are likely to sound bad or violate various music theoretic principles. 

If we wish to generate music in a particular style, there are likely to be various rules or 

constraints that define that style beyond what can be captured in a chord space, such as 

specific ways that voices must behave when transitioning between chords. These sorts 

of musical behaviors can be addressed with the use of a constraint satisfaction algorithm 

when traversing a chord space.

Artificial intelligence systems often involve constraint-sadsfaction algorithms[46]. When 

operating in a discrete environment, a brute-force approach to constraint-sadsfaction is 

depth-first search of all possible outcomes. This approach is also guaranteed to succeed 

if the constraints are sadsfiable. However, many solution spaces are too large for this ap

proach to be realistically usable, requiring the uses of stochastic alternatives instead.

5.1 Musical Constraints

Music theory describes many rules that separate good music from bad, and one style from 

another. Many of these rules can also be viewed as constraints that the composer must
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Figure 5.1: An example of undesirable voice-leading behavior. The voices cross twice 
between beats 2-3 and 4-5, and they exhibit parallel motion (discussed in Section 5.3) in 
the second measure.

satisfy in order to write good music. One of the difficulties in capturing these rules or 

constraints in a formal setting is that not all of them are strict or “hard” constraints. Quite 

often the constraints are softer, and must only be met most of the time in order to produce 

a satisfactory result.

The term “voice” refers to a musical line that contains only one note at a time. For 

many instruments, one voice corresponds to one staff on the score1. In a chorale, voices 

are not allowed to cross—in other words, the nth highest voice must play the nth highest 

note. Figure 5.1 shows an example of voices crossing. This is a hard constraint in the sense 

that the only acceptable solutions are those completely satisfying the constraint. Similarly, 

when writing a part for violin, the range of the instrument must be considered and is again 

a hard constraint. Exact repetition of a phrase would also be a hard constraint. However, 

other common transformations, such as the formation of a counter subject in a fugue by 

transposition of the subject, are not so strict, and sometimes small deviations can even be 

more pleasing than strict adherence to the rule. Because soft constraints are inherently 

more difficult to formalize, the constraints presented here are hard constraints: a musical 

feature either does or does not meet the constraints in a Boolean sense. All constraints are 

presented alongside their Haskell implementations.

Kulitta uses chord spaces as a fundamental part of the music generation process to move

1. Instruments capable of playing many notes at once are an exception to this. For example, score for a 
piano will often have more than one voice represented on the same staff.
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from abstract progressions to concrete music. Some musical constraints are easily captured 

within the chord space itself, while others are better handled during the path-finding process 

to traverse the chord space. Kulitta includes three path-finding constraint satisfaction algo

rithms. Two of these algorithms will only return solutions that satisfy 100% of the imposed 

constraints. The third is a greedy algorithm that seeks to mostly satisfy the constraints but 

might break them sometimes—a property that “softens” otherwise hard constraints. All 

three approaches have merit in different settings.

5.1.1 Predicates

All of the constraints discussed in this chapter are formalized as hard constraints. Most of 

these constraints can be formalized as a Boolean test, or predicate, that returns True when 

a musical value satisfies the constraint(s) and False otherwise, 

type Predicate a = a -*  Bool 

Predicates can exist over many different types of values. Using the AbsChord type 

defined in Chapter 3, a Predicate AbsChord would be a predicate over single chords, a 

Predicate (AbsChord, AbsChord) would be over pairs of chords, and a Predicate [AbsChord] 

would be over chord progressions. Kulitta makes use of several musical constraints of these 

types.

5.2 Single Chord Constraints

Kulitta uses a number of single-chord constraints to make style-appropriate choices for 

pitch assignment in chords. The following constraints can all be handled at the single 

chord level:

•  Voice order. A  simple way to ensure that voices do not cross is to enforce that pitches 

in all chords are sorted in ascending order.
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• Voice spacing, or intervallic structure of the chord. Spacing of voices is important; 

if the voices are too tightly packed, they may difficult to distinguish (for example, 

tightly packed clusters of low pitches on a piano are often described as sounding 

“muddy”). Voices can also be spaced too far apart.

•  Doubling. When a pitch class is played by two voices in different octaves, it is said to 

be doubled. Some styles have rules for when different pitch classes can be doubled. 

Sometimes it is appropriate to double the root or fifth of a chord, but not other voices 

such as the third or seventh.

•  Voice ranges. Each voice can only utilize a finite range of pitches. This means that 

the total set of possible chords for a given piece of music is also finite when discrete 

pitches are used, even if the set is prohibitively large or intractable to explore.

Single-chord constraints are most effectively employed in the construction of the quo

tient space itself, since single-chord predicates can be viewed as acting on the set of chords 

before any equivalence relations are applied. Pruning the set of available chords before 

applying an equivalence relation requires less computation than would be required to first 

form the quotient space and then filter out chords during path-finding.

We can represent single-chord constraints with predicates on single chords, or type 

Predicate AbsChord. Note that this is a type synonym for AbsChord —> Bool. Expressing 

the voice ordering constraint above with this type is simple. 

sorted:: Predicate AbsChord 

sorted x = x  = =  sort x

One way to constrain voice spacing is to set lower and upper bounds on how far apart 

the various voices can be. For example, it may be appropriate to allow the two lowest voices 

more freedom of movement than the two highest voices. This can be done by creating a 

predicate with an extra argument tailored to a particular style.
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spaced:: [ (Int, lnt) ] —>■ Predicate AbsChord 

spaced lims x  =  and $ 

zipWith (A(/,u) diff -> I ^  diff A diff ^  u) lims$zipWith subtract x (tail x) 

Another example of a spacing-related predicate would be the notion of what chords can 

be played with a single hand on a piano when the pianist only has a reach of an octave. 

pianoChord:: Predicate AbsChord

pianoChord x =  length xXleq 5 A maximum x  — minimumx ^  12 

The OPTIC equivalence relations discussed in chapter 3 are a useful tool for defining 

voice doubling behavior. For example, suppose we are only interested in triads expressed 

with four voices, which is a common scenario for chorales. We will allow major and minor 

triads where the root and fifth are doubled, and diminished triads where the root is doubled. 

triads:: [AbsChord]

triads =  [[0,0,4,7], [0,4,7,7], [0,0,3,7], [0,3,7,7], [0,0,3,6 ]]

doubled:: Predicate AbsChord 

doubled x = elem (normOP x) triads 

Voice ranges are best handled in a slightly different way for reasons of efficiency. The 

functions above are designed for use with a function like filter to prune away unwanted 

chords from a set or list. Chords that are pruned are really wasted computation, so it is 

best to avoid computing them in the first place when possible. Voice range constraints can 

be satisfied during generation, such that only satisfactory chords are ever computed. The 

function, makeRange, below incorporates the single-chord constraint of voice ranges to 

generate a finite set of chords for use in a chord space. The function takes a list of lower 

and upper bounds for each voice and returns all possible chords within that range. 

makeRange:: [(AbsPitch,AbsPitch)] -> [AbsChord] 

makeRange =foldr (A (/, u) xs \(a:b) \ a i -  [/. .u],b 4- jw]) [[]]

This yields chords satisfying the voice ranges, but we may wish to apply further pred

icates. Although some computation will be wasted on discarded chords, it is still better to
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waste the computation at the single chord level rather than expend it later when, for exam

ple, forming or traversing a quotient space. Consider the following two methods of forming 

a quotient space using makeRange and some additional constraints,/. 

filter f  {makeRange ranges) / /  r  

map {filter f )  {makeRange ranges /  /  r)

The first version will be more efficient than the second, since the second performs 

comparisons against potentially undesirable chords when forming the quotient space. That 

extra computation is avoided in the first version.

As a more extensive example, all of the above can be combined to create the OP-space 

for standard Soprano, Alto, Tenor, and Bass ranges where the voices do not cross, voices 

are separated by no more than an octave, and voice doubling is controlled. 

satbOP:: QSpace AbsChord

satbOP =  filter f  {makeRange ranges) / /  opEq where 

f  x = and$map ($x) [sorted, spaced limits, doubled triads] 

limits = repeat (3,12)

ranges =  [ (40,60), (47,67), (52,76), (60,81) ]

This forms a quotient space with 959 chords grouped into 60 equivalence classes, one 

for each chord quality in each key, and unwanted chords are pruned away before forming 

the quotient space. This space handles a quite a few musical constraints, but it cannot 

capture other constraints of voice-leading behavior, such as avoiding parallel motion. To 

do that, constraints over pairs of chords must be considered, which involves the use of path 

finding algorithms.

5.3 Pairwise Constraints

Kulitta makes use of two constraints that are most easily defined over pairs of chords:

•  Avoiding parallel motion. Voices move in parallel when they go up or down by the
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same number of pitches. Figure 5.1 shows an example of this.

•  Voice-leading smoothness. In some styles, smooth voice-leading is desirable and 

means that the voices should move very little from one chord to the next. In other 

styles, leaping behavior in one or more voices may be more desirable.

Parallel motion can be easily detected for two chords, x  and y, with the same number of 

voices by checking whether x — y contains any duplicate values. 

notParallel..Predicate (AbsChord,AbsChord) 

notParallel (x,y) =

let diff =  zipWith subtract x y 

in nub diff = =  diff

Voice-leading smoothness can be detected similarly. For generality, we will use a sub

predicate for single voices to establish what desirable movement is. 

voiceLeading:: [Predicate (AbsPitch,AbsPitch)] —►

Predicate (AbsChord, AbsChord) 

voiceLeading preds (x,y) = and $ zipWith ($) preds$zipxy

An instance of this constraint would be restricting voices to moving no more than 7 

halfsteps between chords.

v/7:: Predicate (AbsChord, AbsChord)

vl7 = voiceLeading (repeat f )  where f  (a, b) =  abs (a — b) ^ 7

Finally, while voice-crossing is most efficiently implemented by only using chords 

whos voices are sorted in ascending order, it is possible to define a more general test for 

voice crossing over pairs of chords. If there exists at least one permutation that sorts the 

pitches in two chords, then the voices do not cross from one chord to the other.
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noCrossing:: Predicate (AbsChord.AbsChord) 

noCrossing (ci,C2 ) = 

let sn =  permutations [0.. length c\ — 1 ] 

psl = filter (Xs -+p s c\ = =  sort ci) sn 

ps2 = filter (Xs - ± p s c i  = =  sort C2 ) sn 

in -i$null [p\p <— p s l ,elempps2\

Alternatively, when the chords are known to be sets of pitches (no two voices having 

duplicate pitches), contour equivalence can also be used. 

noCrossing2:: Predicate (AbsChord,AbsChord) 

noCrossing2 (x,y) — rankx = =  ranky 

Both approaches remove the need to have the voices sorted in ascending order to check 

for voice-crossing. However, it is less efficient than the single-chord approach discussed 

previously. For the complexity reasons discussed in the next section, it is always preferable 

to satisfy constraints within the chord space when it is possible to do so.

5.3.1 Depth-First Search

Finding a chord progression that meets certain constraints is analogous to the satisfiability 

problem in computer science, which is NP-complete for arbitrary formulas on Boolean 

variables [32]. Because of this, there is a tractability issue involved in finding candidate 

solutions that satisfy one or more potentially arbitrary predicates. If there are k possible 

choices for each of m chords in a progression, there are kf1 total possibilities. For a given 

quotient space S/R  and predicate H  we clearly need a more efficient method for finding 

solutions than generating all /{-equivalent solutions, storing them, and then looking for 

cases satisfying H. An algorithm generating //-acceptable solutions must perform more 

aggressive pruning of the solution space.

As already mentioned, the most efficient way to prune the solution space is to prune the 

set of available chords. However, there are many constraints that simply can’t be captured
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at that level. Fortunately, other predicates can also help prune the solution space. The algo

rithm below uses pairwise predicates during a depth-first search through the solution space. 

While this general strategy does not change the complexity class of the problem, it avoids 

computing and storing unnecessary progressions.

Algorithm4. pairProg(R,S,hpair, [ii, ...,*«]) =

1. Ifm  — 1, return E(x\,S/R) =  {z | z € SAz ~ r x}, otherwise continue.

2. LetY =pairProg{R,S,hpain[x2 ,...,xm])

3. Return {$ ,& ,...,?« ] \?\ <EE(xu S/R), [&,».,?*] € Y, hpair(yu y2)}.

This is leads to a concise Haskell definition: 

pairProg:: (Eq a, Show a) => QSpace a -* EqRel a —> Predicate (a,a) —>

l*]^[[a}}

pairProg qsrh  [] =  [[]] 

pairProg qsrh(x:xs)  =

let newSolns =  [ (y: ys) | y <— eqClass qs rx,ys <— pairProg qsrhxs,  

h (y,headys)]

in if -i $ null newSolns then newSolns else error "No s o lu tio n s !"

Even when solutions are filtered using predicates, the work involved in traversing the 

entire set of solutions to locate desirable ones and even the number of desirable solutions 

can be intractable in situations involving many chords, many voices, and/or large ranges 

for the voices. Finding the very first solution using pairProg is often easy with the types 

of predicates discussed so far (assuming the chord spaces used are musically reasonable), 

but what if we want a deeper solution, or a solution chosen uniformly at random?
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5.3.2 Stochastic Search

As mentioned in the beginning of the chapter, rules in music are not always strict, and 

so it may be sufficient to find a solution that mostly satisfies a set of predicates, even if 

some parts of the solution violate the predicates. Algorithm 5, greedyChord, illustrates 

the process of picking the next chord, and Algorithm 6 , greedyProg, describes the pro

cess of generating the entire progression. While greedyProg is not guaranteed to find a 

solution satisfying a progression predicate, it will attempt to satisfy a pairwise predicate 

when choosing each chord. greedyProg's success rate in satisfying the constraints at each 

step will be proportional to the abundance of constraint-satisfying solutions in the solution 

space.

Algorithm 5. Let x; be the chord for which we wish to find a new R-equivalent member of 

S C Z", y*. Let y,_i be the previously chosen chord, choose(S') be a function to stochas

tically select an element from a set, and f(xi ,yt-1, E(xi,S/R)) be a fall-back method for 

choosing y,.

greedyChord (x;, y,_ i , S, /?, Hpair, f )  =

Let SH = {y e  E(xi,S/R) \ Hpair(yi- , ,y)}

I fSn  =  0 then returny, =  f(xi,yi-i,E(xi,S/R)). Otherwise, returny, =  choose(Sn). 

Algorithm6. greedyProg([xi,...,xm], S,R,Hpair, f )  =  [y i,...,ym ], where

{choose(E (x\,S/R)) for i = 1

greedyChord (jfi, y,_ i , S, /?, Hpair, / )  otherwise

The main advantage to this approach is that the solution space is maximally pruned at 

each step. This allows the algorithm to operate on inputs that would cause tractability prob

lems for pairProg. The downside is that greedyProg is not guaranteed to find predicate-
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satisfying solutions. It is possible to find a partial solution with no subsequent choices that 

satisfy the supplied predicate or search strategy. In such a situation, there are three options: 

(1 ) fail and return an error message, (2 ) backtrack to try to find a better solution (analogous 

to lazy evaluation of pairProg), or (3) try another predicate. For our implementation, we 

chose option 3: a fall-back method for choosing a next chord is therefore required if we 

wish to ensure that greedyProg produces a solution. In practice, it may be sufficient to have 

a result that mostly satisfies a predicate even if some chord transitions do not. Since this 

greedy approach must make progress at each step, it presents a more tractable option for 

larger-scale composition problems.

Using a fixed input progression, a predicate p\ that forbids voice-crossing, parallel mo

tion, and leaps greater than 7 halfsteps, the greedyProg algorithm was tested to estimate its 

success rate [62]. This input progression used, shown in Figure 5.2, demonstrates some of 

the tractability issues associated with the general problem of rewriting chord progressions. 

There are 11 chords in the input progression, and, within the range [36,57]3, there are 24 

OF-equivalent ways to choose each of the first, second, and third chords and 48 ways to 

choose each of the remaining eight chords. This gives a total of 243 x 48s possible OP- 

equivalent solutions. Of those solutions, we used pairProg to determine that 901728 of 

them satisfied the constraints within the range [36,57]3.

greedyProg was run for 10000 trials under these conditions to find OP- 

equivalent solutions to the input progression in Figure 5.2 within the range [36,57]3. We 

used a predicate, pi, that restricts voice-movement to 7 half steps as a fall-back method for 

greedyProg. Under these conditions, 8165 of greedyProg's returned progressions satisfied 

the target predicate. 7406 of those p \-satisfying progressions were unique solutions. Of 

the 1835 returned progressions that violated p\, an average of only 1.1 chord transitions 

per progression violated p\, with the highest number of p \-violating transitions being 2 . 

This indicates that greedyProg performed relatively well in this experiment. However, the 

algorithm’s performance will be directly affected by the range of the voices and specific
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predicate used. Decreasing the range of each voice, for example, would increase the odds 

that greedyProg would become stuck and rely on its fall-back function.

4  g......... 9...  ' -W—9--- j* .■ ..jp- - - Q- __ r — 9— 9-------
'  M i l ------------------

0 : Lk 4  » .... « -------

1

T — f — T— P— m----0----(9-------
^  H 4 -----------P-------

f  *) :t . 3. . f T
'  ! r  i
J J —j

Figure 5.2: A simple chord progression for three voices used for testing the performance 
of the greedyProg algorithm.

5.3.3 Delegation of Equivalence Class Lookup

One notable limitation of both pairProg and greedyProg is the direct interaction with the 

quotient space. An alternative approach is to delegate the lookup of equivalence classes to 

some other algorithm. This useful in situations where single chord constraints exist that are 

position-specific. For example, perhaps we would like the bass to only play the root of a 

chord on the very last chord in a passage. This approach is formalized in Algorithms 7, 8 , 

and 9.

Algorithm 7. pairProg'(hpair, [E\,...,Em]) =

1. I fm = 1, return E\, otherwise continue.

2. LetY = pairProg'(hpair, [*2 , • • •, em])

3. Return { \y \,n ,...,ym] 1 y\ €Ei, [&,...,?«] € Y, hpairifuyb)}.
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Algorithm 8 . Let Ei be an equivalence class of chords, y,_i be the previously chosen chord 

in the sequence, choose(S) be a function to stochastically select an element from a set, and 

f (Ej ,yi-1) be a fall-back method for choosing y; if no solutions exist.

greedyChord'{Ehyi-i,H Pair, f )  =

Let SH = {y 6  Ei | Hpair{yi-\,y)}

IfSfi =  0 then return yt =  /(£ , ,# _ i). Otherwise, return yi =  choose(Sh ). 

Algorithm9. greedyProg'(Eu ...,Em,Hpair,f) =  where

yt =
choose(E) for i = 1

greedyChord'{E, y,_ i , Hpair, f )  otherwise

5.4 Repetition

The let expressions in PTGGs represent a type of progression-level constraint where ab

stract chords appearing within certain ranges must be mapped to the same concrete chords. 

Consider the following progression and its expanded interpretation:

let x =  (let y =  Vfl I'2 in y y) in x IV/3  If4 j c  (5.1)

y * l  j ' 2 y f  1 j f2  j y f 3  j f 4 y f l  j t2  y f l  j f 2  ( 5  2 )

The let expressions require that chords at positions 1-2 and 3-4 must be the same subpro

gressions, and similarly for chords at positions 1-4 and 7-10. Because sub-constraints for 

chords 1-4 are already specified, there is no need to redundantly assert that chords 7-8 and 

9-10 must be the same phrases. The let structure of a generated progression can directly
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yield these types of constraints by examining the lengths of the variables’ values and the 

positions at which they appear.

For now, we will only consider exact repetition of a phrase—that is to say that both 

phrases appear in the same key and should, therefore, be assigned identical patterns of 

pitches. This is the only type of repetition possible in the example rules sets shown in 

Tables 4.1 and 4.2. However, repetition is not always this simple in music, and some more 

complicated types of repetition are actually allowed in the sentential forms for PTGGs. For 

example:

letx =  / ' inx(M 5x ) x ^ I t {M5 P )P  (5.3)

It is not entirely clear what the “correct” interpretation of this should be beyond the 

level of Roman numerals. It is common to have repetition with transposition: playing the 

same overall pattern, but offset up or down by some number of pitches from the original. 

Under this model, if x is interpreted as (0,4,7) (C-E-G), then (M5 x) should be T-equivalent 

to (0,4,7) to retain the same intervallic structure and O-equivalent to < 7,11,2 > (G-B- 

D) to have the correct pitch classes. However, finding a satisfying pitch assignment is 

more complicated because of the modulation: a pitch assignment for the un-modulated x 

may satisfy the outer chords but not be transposable due to the ranges of the voices. An 

extreme example would be a collection of voices with only a single-octave range from 0  

to 11. Under these conditions, it is actually impossible to simply slide the pitches for x  in 

Equation 5.3 up or down enough to produce the same intervallic structure in the modulated 

key. Because of these issues and the resulting ambiguity of how to handle them, our let- 

satisfying algorithm is only equipped to handle un-modulated, exact repetition of phrases.

For a quotient space q and equivalence relation r, simply calling head o eqRel q r on 

each chord in a progression will automatically satisfy the constraints of any let expression 

even when q has had the members of its equivalence classes randomly permuted. This 

is because each Roman numeral will only be mapped to one value regardless of how it
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is constrained. However, this let -satisfying progression is unlikely to satisfy any other 

constraints, and so a more complex traversal of the solution space is required in such a 

case.

The constraints created by let expressions can be used to aggressively prune the so

lution space before traversing it. Chord progressions can be viewed as a list of indices 

into equivalence classes at some level of abstraction, and a naive approach to solving con

straints would be to simply perform a depth-first search of all possible progressions sharing 

the same sequence of equivalence classes.

Consider the following progression, which is six chords long.

let y =  (let x = A in xxB) in yy (5.4)

Chords 1-2 must be the same and chords 1-3 and 4-6 must be the same phrases. For 

simplicity, we will assume there are only two equivalence classes in the chord space with 

only two elements each: e\ =  {a,b} for A’s equivalence class and e% =  {c,d} for B's 

equivalence class, where a, b, c, and d are chords. The pattern of equivalence classes for 

the progression above would be e\, e\, e2> «i, «i, «2 , and an incremental search of all pro

gressions sharing the same equivalence classes would look like the following.

Number Indices Solution

1 0 ,0 ,0 ,0 ,0 , 0  aacaac

2  1 ,0 ,0 ,0 ,0 , 0  bacaac

3 0,1,0,0,0,0 abcaac

64 1,1,1,1,1,1 bbdbbd

Clearly many of these progressions will not even satisfy the let constraints, let alone 

any extra constraints we may wish to satisfy on top of those. The more constraints exist,
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the sparser the solutions become in a sea of garbage. On larger problems, traversing the 

solution space in this way quickly becomes intractable. Fortunately, there is a way to skip 

the cases that do not satisfy let expressions.

Imagine a search tree consisting exclusively of let-satisfying progressions, where all 

other progressions have been pruned away. In the example above, there are only four such 

progressions: aacaac, bbcbbc, aadaad, and bbdbbd, so there would only be four leaves in 

such a tree. Doing a depth-first search through this let-satisfying tree as a means to sat

isfy additional constraints is clearly more efficient, since the only solutions examined are 

already guaranteed to satisfy the let constraints even if not additional constraints. Apply

ing this strategy to the 6 -chord example above, the four let-satisfying solutions would be 

traversed as follows:

Number Indices Solution

1 0 ,0 ,0 ,0 ,0 , 0  aacaac

2  1 , 1 ,0 , 1 , 1 , 0  bbcbbc

3 0,0,1,0,0,1 aadaad

4 1,1,1,1,1,1 bbdbbd

The task of jumping from one let-satisfying progression to another is reducible to the 

process of incrementing an n-digit number where each digit can have a different number 

base and some digits’ values are tied to others. Indices that are subject to let constraints 

will move in lockstep, fully avoiding any progressions that do not satisfy the let constraints.

We denote constraints for let expressions using the type synonym Constraints for pairs 

of indices into a chord progression, 

type Index = Int

type Constraints =  [[(Index,Index)]]

Each tuple in the inner lists represents a range of indices inclusive of its endpoints. Each 

member of the outermost list (elements of type [(Int,Int)]) represents ranges of indices
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that must be instantiated with the same phrases. Indices start from zero. This structure 

can be derived directly from an unexpanded Term containing let expressions. For example, 

consider the following (durations are omitted for brevity since they are not relevant):

let x =  (let y =  II in y y V I) in x x (5.5)

From this we can clearly derive that chords 1 and 2 must be the same and that chords 1- 

4 and 5-8 must be the same phrases, yielding [[(0,0), (1,1)], [(0,3), (4,7)]]:: Constraints. 

Note that chords 5-6 (indices 4 and 5) will be the same as well if these constraints are 

satisfied.

Constraint values must be well-formed to be used in our algorithms, 

[fci, ...,kn]::Constraints is well-formed if it has no overlapping index lists (although nested 

ranges are permitted) and there is no index range in fc, that is further constrained by kj for 

j  > i. In other words, [[(0,0), (1,1)], [(0,3), (4,7)]] is well-formed but 

[ [ (0,3), (4,7)], [ (0,0), (1,1)] ] is not. Additionally, partially overlapping Index pairs are 

not allowed. [ [ (0,3), (4,7) ] ] is well-formed, but [ [ (0,3), (2,6 ) ] ] is not. When there are no 

overlapping index ranges, well-formedness can be ensured by calling sort o (map sort) on 

die Constraint.

To satisfy let constraints, we represent a chord progression as indices into those chords’ 

equivalence classes (indexed from zero) rather than as a list of actual chords (such as 

the AbsChord type described previously). For a progression of length n, there will be n 

equivalence classes and indices. Two chords having the same equivalence class (such as 

two C-major triads) do not necessarily need to have the same index into that equivalence 

class unless constrained by a let expression. As already mentioned, these n indices can be 

thought of as an n-digit number where each digit has a base determined by the length (or 

cardinality) of its equivalence class. Similarly, depth-first search through the chord space 

can be viewed as incrementing this list of indices from 0 , . . . , 0  to l\ -  1 ,...,/„ — 1 where 

/, is the length of the ith chord’s equivalence class. We treat the leftmost index as least
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significant.

Indices are referred to as free indices if they are not constrained by any indices to then- 

left in the progression. Given the constraints [ [ (0,0), (1,1) ], [ (0,3), (4,7) ] ] for a progres

sion of length 8 , the only free indices are 0, 2, and 3. With constraints applied from left to 

right, indices 1,4, and 5 will move in lockstep with index 0, and similarly for the phrases 

defined by indices 6-7 and 2-3.

Finding the next let-satisfying set of indices can be broken down into a three-step pro

cess:

1. Derive a list of free indices from the progression’s let constraints.

2. Attempt to increment that set of free indices by one, overflowing to the next free 

index if needed.

3. Apply the constraints to all non-free indices.

We define a function for each of those steps. Given the length of a progression, n, and 

well-formed k :: Constraints, the following function finds indices that can be incremented 

to traverse the solution space while satisfying let constraints. 

freelnds v .In t-t Constraints -* [Index] 

freelnds n k  —

let Id -  map (map (A (ij)  ->• [i..;'])) k 

h = nub $ concatMap head Id 

t =  nub $ concat $ concatMap tail Id 

d — [maximum (concat $ concat Id) .. n — 1 ] 

in filter (~>o(et)) h+\-d

For x =  freelnds n k, indices not in x will be constrained by and move in lockstep with 

indices within x.

The incr function below performs the step of incrementing free indices. Each index is 

tagged with two values: a Boolean flag indicating whether the index is free and the length
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of the equivalence class at that index (an Int). 

incr:: {(Bool,Index,Int)] -» [Index] 

incr [] =  error "No more so lu tio n s ."  

incr ((b,i,l) :xs) =  let is = map (X(x,y,z) —>• y) xs in 

if b then if i ^  / — 1 then 0 : incr xs else i + 1 : is 

else i : incr xs

The returned value only increments free indices, while other indices remain unchanged. 

These constrained indices are handled by the applyCons function below, which copies the 

values of free indices over to the other indices that they constrain. 

applyCons:: [Index] —)• [ (Index, Index) ] —> [Index] 

applyCons inds [] =  inds

applyCons inds ((i,j): t) =  foldl (f val) inds (mapfst t) where 

val =  (take (j — i + 1 ) $ drop i inds)

/  val src i = take i src -H- val -H-

drop (i +  length val) src 

Finally, the findNext function makes use of each of three functions above. It takes a set 

of Constraints, the current list of indices, and a list of equivalence class lengths, and returns 

a new list of let-constraint-satisfying indices.

findNext:: Constraints -* [Index] —» [Int] -» [Index] 

findNext k is lens =

let bs = map (€ freelndsnk) [0 . . length is — 1 ] 

xs = zip3 bs (is) (lens) 

in foldl applyCons (incrxs) k 

As already mentioned, the very first progression (indices [0,0,..., 0]) will always satisfy 

the let constraints, so subsequent progressions only need to be explored in order to satisfy 

additional constraints or to obtain more diverse progressions. Any additional constraints 

are satisfied by recursively calling findNext until a solution is found (assuming one exists).
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Figure 5.3: A chord progression generated from the expression: let jc =  ((let x  =  
(M2 Iq) in x x) IVq Vq Iq l lq Vq Iq) in x x. The chords were interpreted in the key of 
C-major using OPC-space for voices with the ranges [40,56], [50,62], [55,70], and [60,78] 
respectively. Note that M2 (/) is the same as an unmodulated II  chord in this case since the 
chords did not undergo further generation.

The stricter the constraints are, the harder it will be to satisfy them and the longer it will 

take on average to find a solution.

5.4.1 Greedy Algorithm for Let  Expressions

The greedyProg algorithm can be easily modified to handle Let expressions. Using a similar 

approach to that of the previous section, chords can be greedily assigned to free indices 

and then copied over to constrained indices. This approach will satisfy Let expressions 

exactly but is likely to violate any other pairwise or larger-spanning constraints at junctions 

between variables in Let expressions.
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Figure 5.4: A longer example generated with the same chord spaces and C-major key as in
5.3 in C-major. It demonstrates an overall ABA format (the start of each section is labeled 
above the staff) and includes nested modulated sections.
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greedyLet:: (Eq a, Show a) =» Predicate (a, a) -*■ Fallback a —>• Constraints —► 

[EqClass a) —> StdGen -> [a] 

greedyLet p f k e s g  — 

let n =  length es

cs = greedyProg p f  ges 

consPat — foldl applyCons [0.. n — 1 ] (sort k) 

in map (cs!!) consPat 

greedyLetT:: QSpace AbsChord —► EqRel AbsChord -»

Predicate (AbsChord, AbsChord) -> Fallback AbsChord —>

Constraints —>■ [TC/iord] - 4  StdGen —> [TChord] 

greedyLetT q r p f k c s g  — 

let justCs =  wap mP cs

es =  wap (eqClass q r) justCs 

justCsf =  greedyLet p f k e s g  

in zipWith newP cs justCs'

5.5 The Problem of Novelty

One problem with searching through organized collections of musical features is obtain

ing a range of reasonably different possible interpretations while adhering to various rules. 

Using depth-first search, adjacent solutions are likely to be very similar or even nearly 

identical, particularly when the constraints are very relaxed and solutions are abundant. 

Although this isn’t necessarily a problem from a very literal constraint-satisfaction stand

point, it poses a problem for human evaluation of the range of results.

When evaluating the performance of a system, it is useful to hear more than one result 

from a set of starting conditions. In Kulitta’s case, if for some reason we don’t like the first 

solution or simply want to hear what else the system can do under the same conditions, it
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is rather unsatisfying to hear one progression after another that only differ by a few notes. 

When solutions are abundant, finding significantly different solutions can actually become 

more difficult. For easily satisfied constraints such as v/7, the first several solutions will 

likely only differ by one chord. What we really want to hear to evaluate the system’s 

performance are solutions that are mostly different rather than nearly identical.

Both pairProg (pruned depth-first search) and findNext (depth-first search for let con

straints) are potentially impacted by this diversity problem. To more effectively explore a 

range of solutions, random paths would be more likely to capture diversity. The greedyProg 

algorithm avoids the diversity problem by being stochastic. When solutions are sparse, 

greedyProg may also end up bending the rales more than might be desired in order to 

produce a solution.

One possible answer to the problem of creating novelty for pairProg and findNext is to 

randomize the chord space before it is searched. This can be implemented by finding a ran

dom permutation of the set of chords used in the chord space and then grouping the chords 

according to an equivalence relation. For findNext, one could even go a step further and 

randomize the individual equivalence classes supplied to the algorithm. This would prevent 

an unconstrained /  chord from always being the same as another I  chord constrained by a 

let expression.

The first solution found by a depth-first search of a chord space whose elements have 

been randomized in different ways will show better diversity relative to the first solution 

from a differently randomized version of the space than would be the case for two adja

cent solutions in the same space. Because the number of chord progressions that can be 

generated from a chord space is likely to be much larger than the chord space itself (expo

nentially larger, in fact), randomizing the order of elements in the chord space helps shift 

some of the burden of novelty to a smaller domain that is easier to manipulate.

98



Chapter 6 

Generating Music

Probabilistic Temporal Graph Grammars can be used with Chord Spaces to bridge the gap 

between abstract progressions and performable musical scores. Kulitta uses the following 

generative workflow. First, Kulitta stochastically generates an abstract chord progression 

with a PTGG. Each chord in this progression is then mapped to a point in the representative 

subset for a chord space. Next, Kulitta uses a path-finding algorithm to map this represen

tative subset path to a more diverse path through the larger chord space. This may be done 

more than once in succession with different chord spaces to alter the style while moving 

closer towards concrete, performable chords. Finally, Kulitta adds more complex melodic 

and rhythmic elements to the chord progression, yielding a complete musical score. A 

visual representation of this workflow can be seen in Figure 6.1.
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Figure 6.1: Generative workflow in Kulitta: a PTGG is used to generate an abstract pro
gression, which is then iteratively turned into a concrete progression and finally processed 
by a style-specific foreground algorithm to yield a complete musical score.

6.1 A Simple Example

Step Progression Rides Applied (Left to Right)
1 JW Start symbol
2 W  Vq Ih p  - 4  ip h  v (i4 p /1
3 l lq Ms( Iq) Ih i r ^ i r ,  Vf ^ M 5{P)y P ^ P
4 IIq M5(Ve Ie) Ih I P ^ I P ,  P ^ t V ' V p / 2, P P

Table 6.1: Generating a short chord progression with a PTGG where w, h, q, and e indicate 
the durations of a whole note, half note, quarter note, and eighth note respectively.

To illustrate the role of chord spaces in our system’s generative process from start 

to finish, consider the series of productions in Table 6.1. The final chord progression, 

IIq M5(Ve Ie) Ih, contains four different chords, the middle two of which are modulated to 

the dominant. Suppose this progression were to be interpreted in C-major. The basic pitch 

classes and corresponding pitch numbers within the range [0 ,1 1 ] would be the following:

(D,F,A) (D,F#,A) (D,G,B) (<C,E,G) (6.1)

Iterative I
G en e ra tio n  , J

S to ch as tic
 ► G en era tiv e

Algorithm

A b strac t P ro g re ss io n
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(2,5,9) <2,6 ,9) (2,7,11) (0,4,7) (6.2)

When represented as triads based on their modal context, Roman numerals from our 

PTGG have a one-to-one mapping to points in representative subsets of both OP- and OPC- 

space. Once in the form shown above, the chords can be mapped outside of the representa

tive subset to obtain a more interesting progression. Using OP-space, the octaves and order 

of the voices can be changed, and, with OPC-space, the number of voices can be changed 

as well. Using OPC-space for four voices, one possible mapping would be:

(50,57,62,65) (45,54,62,69) (50,59,67,71) (48,55,64,76) (6.3)

Similarly, one possible mapping through mode space can be seen below. Note that the 

first chord omits its root, while the other three chords include it.

(0,4,5,9) (0,2,6 ,9) (2,6,7,11) (0,4,7,11) (6.4)

Finally, the jazz progression above can be mapped to a less blocky series of chords 

using OPC-space.

(52,57,65,72) (54,57,60,74) (50,55,59,66) (48,52,67,71) (6.5)

A score representation of the mappings above can be seen in Figure 6.2. It is important 

to emphasize that each of these mappings is only one of many possible. Every chord pro

gression has many possible equivalent progressions when mapped through a chord space. 

Which progression is chosen will depend on what other constraints are applied (selecting 

for voice-leading smoothness, etc.) and the decision-making process can be stochastic as 

well.
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Figure 6.2: A musical score representation of the example mappings of the progression 
detailed in section 6.1. Each measure contains a different mapping of the same example. 
From left to right, they are: block trichords (Equation 6.2 transposed up by several octaves), 
an OPC-space mapping of those trichords (Equation 6.3), block jazz chords from mode 
space (Equation 6.4), and those jazz chords mapped through OPC-space (Equation 6.5).

6.2 Generating Complete Music

The examples shown so far have been chord progressions. Performed as is, they will sound 

stiff and simplistic. One of the things that accounts for this is the lack of nonchordal tones 

in the score. A chordal tone is one that is a member of the triad representing the Roman 

numeral. For I  in C-major, chordal tones would have the pitch classes C, E, and G, and 

other pitch classes like F would be nonchordal. Adding nonchordal tones has the potential 

to both add richness and melodic patterns, but it must be done carefully, for it is very easy 

to also create a bizarre-sounding mess out of an otherwise pleasing chord progression by 

using nonchordal tones in the wrong way.

In Schenkerian analysis, music is analyzed at three different levels of abstraction: the 

background, middleground, and foreground. The background is the most abstract, typi

cally reduced to a V - 1 or I - V  - 1 pattern [73, 74], and the foreground is the musical 

score. To move from the concrete score to more abstract, underlying features, foreground 

elements are stripped away from the music. These include many of the “faster” notes and 

ornamentations in classical music, and they are often non-chordal tones—meaning that 

they are not part of the triads representing the harmony of the piece. The middleground 

includes representations with intermediate levels of musical detail between the background 

and foreground.

Using PTGGs and chord spaces to generate chord progressions creates a musical mid-
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Figure 6.3: Graphical representation of Kulitta’s generative process showing the back
ground, middleground, and foreground levels of abstraction.

dleground as shown in Figure 6.3. How to make the transition from middleground to 

foreground depends on the style of music, since the definitions of desirable rhythmic and 

melodic features can differ greatly from one genre to another. Here we present methods for 

creating foregrounds in two styles: chorales and jazz.

6.2.1 Classical Foreground

A PTGG generates structure at the middleground level. While the first few rule applica

tions may result in a structure that still more closely resembles a background in Schenke- 

rian analysis, by the time a 4-measure phrase has been expanded to include mostly quarter 

notes, it will contain middleground structure: the harmonic backbone onto which fore

ground structure can be added. In chorales in the style of J.S. Bach, the harmonic back

bone is quite prominent and foreground features are relatively simple: notes added between 

chords, slight rhythmic offset of chordal tones, etc.
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For two chordal notes in sequence with pitches i and j, there are several types of new, 

foreground notes that can be added between them. Examples include:

•  Passing tones: pitches between i and j, creating a line in one direction (either all 

ascending or all descending).

•  Neighboring tones: nearby pitches that are higher than the largest of i or j  or lower 

than the smallest of i or j. Neighboring tones are generally close to i or j, such as 

one or two halfsteps away.

•  Anticipations: another instance of pitch j  placed between the two chordal notes.

• Suspensions: pitch i is carried over into some of j 's  “temporal space” (or even all of 

it such that j  never appears). If i and j  are the same, then the notes are merged into 

one that spans the duration of both.

These types of foreground notes generally appear on pitches that are within the current 

key’s scale. In the key of C-major, (F,5) would be an acceptable passing tone between (E,5) 

and (G,5), but (F#,5) would usually not, since F# is not a member of the C-major scale.

Kulitta’s classical foreground algorithm introduces some of these features with four 

operations over adjacent pairs of chordal tones. The definitions are close to but do not 

exactly match those given above.

1 . passing(l,ti,t2 ) =  stochastically add note that is temporally between t\ and t2 , has a 

pitch between min(t\, t2 ) and max(t\, t2 ), within the current scale, and no more than I 

half steps away from either t\ or t2 -

2 . neighboring(l,t\,t2 ) =  stochastically add a note that is temporally between t\ and t2 , 

outside the interval formed by [min(ti,t2 ), max{t 1 ^ 2 )}, within the current scale, and 

no more than I halfsteps away from either t\ or *2 -

3. anticipation(ti,t2 ) =  insert a note at t2 s pitch between the onset of t\ and t2 -
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4. repetition(t\, ti) — repeat t \’s pitch once before fy.

5. nothing(t\,t2 ) = do nothing to the pair of notes.

These operations are applied on pairs of chordal notes from left to right over each 

voice independently. For situations where two adjacent notes are from chords in different 

keys, acceptable scale tones for the passing and neighboring operations are taken from the 

intersection of the two sets of pitch classes. If no suitable pitches exist, then the original 

two notes are left unchanged and nothing is the default operation.

When adding new notes between two others, one of two possible rhythmic modifica

tions takes place. If notes t\ and ti have durations d] and d2 respectively, the possibilities 

for inserting a new note, 13 with duration J 3 are as follows:

1. Set d3 = d\ /2  and set t\ ’s new duration to be d\ /2.

2 . Udi ^  q, then set J 3 =  e and set t i’s new duration to be dy -  e, otherwise resort to 

the previous option.

The Haskell implementation of this approach for generating chorale foregrounds can 

be found in Appendix B. An example of the results of this algorithm can be seen in Figures

6.4 and 6.5. Figure 6.4 presents a homophonic (all voices moving at the same time) chord 

progression, and Figure 6.5 shows this progression with foreground elements added by the 

methods described so far.

This approach to generating a classical foreground does not take let constraints into 

consideration. To achieve exact repetition for a pattern like let x =  A in x x, phrase A 

would have to be interpreted through chord spaces and have a foreground added before 

expanding the let expression. However, allowing different foreground interpretation of 

each instance of a variable is not entirely a bad thing, and actually has an interesting side 

effect: the creation of variations. Given a homophonic progression created by interpreting 

let x = A in x x through some chord space, the foreground may differ between instances of
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Figure 6.4: An example of a phrase generated by Kulitta without a foreground. It consists 
of just chordal tones and is homophonic (all voices moving at the same time).
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Figure 6.5: The phrase from Figure 6.4 with foreground elements added stochastically.

x. Because the harmonic backbone will be the same, the phrases will sound very similar, as 

though the second part of the phrase is a variation of the first. This is illustrated in Figures 

6 . 6  and 6.7.

6.2.2 Jazz Foregrounds

Jazz is fundamentally different from the chorale-like style discussed in the previous section 

in that its harmonies are based around seventh chords, which are triads containing the root, 

third, fifth, seventh, and sometimes various additions and substitutions such as the second 

(sometimes referred to as the ninth) [49]. Jazz, therefore, requires working with at least 4 

voices that can all be different pitch classes.
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Figure 6 .6 : An example of a phrase generated by Kulitta without a foreground. It consists 
of just chordal tones and is homophonic (all voices moving at the same time). Bracketed 
sections indicate repeats formed from a Let expression.
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Figure 6.7: The phrase from Figure 6.4 with foreground elements added stochastically. 
Bracketed sections indicate repeats formed from a Let expression. Note that the foreground 
was applied without knowledge of the Let expression and therefore creates a variation rather 
than an exact repeat.
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One of the more interesting aspects of Kulitta’s modular design is that a PTGG suitable 

for generating chorale-like music with a classical foreground algorithm can also create 

very jazzy harmonies. In fact, the same middlegound can produce both a chorale and jazz 

harmonies, as seen in Figure 6.2.

Jazz foregrounds are somewhat more difficult to create than those for chorales, not just 

because of the extra voices they require compared to Kulitta’s chorale foreground algo

rithm, but also because the style is broader and less formalized than is the case for chorales. 

Jazz compositions are also usually specified in less detail than their classical cousins, leav

ing a lot of decisions up to the performer. The algorithms demonstrated here are very simple 

and close to the rudimentary level of fake book notation than the intricate level of a live jazz 

performance, and there are currently no features addressed that a beginner-level performer 

couldn’t manage—in other words, no elaborate solos or clever chord substitutions. How

ever, the results are still stylistically distinct from the results of the classical foreground 

algorithm. Kulitta has two methods for generating jazzy music: a simple algorithm that 

produces mainly jazz chords and an algorithm for a simple bossa nova interpretation of a 

progression. Examples of output from these algorithms can be seen in Figures 6.10, 6.11, 

and 6 .1 2 .

Simple Jazz Foreground

Kulitta’s first approach to jazz is essentially just a mapping of the chords from a progression 

of Roman numerals to seventh chords (chords containing scale degree 7) instead of triads. 

This simple jazz approach utilizes a five-voice version of mode space for what are referred 

to as chord templates. These are collections of scale indices that can be used to represent a 

chord in a reasonable way. One example would be to use the root, third, fifth, and seventh 

of the mode. However, there are many other ways of playing a chord, and some do not 

include the root. Another way to play the chord if the root is elsewhere would be to use 

the second, third, fifth, and seventh. Kulitta will map Roman numerals to one of these two
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configurations. The bass doubles the root when it is present in the other four voices or adds 

the root when it is not present.

The bass is required to play the root in this algorithm for an important reason: if this 

voice is left out and only the 4-voice chords are used, the results often sound unusually 

dissonant. This is likely because of chords that drop the root, which may end up sounding 

like they are in a different key if heard in the wrong context particularly when more than 

one such chord occurs in sequence. Therefore, while it is locally acceptable for a jazz chord 

to drop certain chordal tones, such as the root, other parts must clearly provide some sort 

of broader harmonic context to avoid misinterpretation of the chord.
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Figure 6 .8 : An example of a 4-voice, “jazzy” phrase. However, this phrase sounds strange 
because of the lack of a root in some of the chords.

Bossa Nova Foreground

Kulitta also uses a slightly more complex jazz foreground algorithm that yields a bossa 

nova-like interpretation of a chord progression. This approach, shown graphically in Figure 

6.9, uses seven voices, which would be computationally tricky if forced into the same 

chord space. To cut down on the combinatoric explosion that would result from such an 

approach, three different chord spaces are used in parallel, one for each “band member” 

in the music: bass, harmony, and lead. This means that constraint-satisfaction can only
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Figure 6.9: Graphical representation of Kulitta’s bossa nova foreground algorithm.

take place within one of these musical roles, but that is not unreasonable for this genre of 

music. Jazz is highly improvisational in nature, and musicians will very often have to make 

decisions about their own part that only rely on abstract information about what the other 

performers will do rather than exact knowledge of the pitches. This algorithm is shown 

graphically in Figure 6.9. The forking and merging of the generative process is similar to 

the interactive ensemble models described by Hudak and Berger [37], although Kulitta’s 

bossa nova algorithm is simpler in that it does not involve any further interaction between 

musical roles after the fork occurs.
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Figure 6.10: An example of a phrase in C-minor with a simple jazz foreground.

f i n i
• # — #

Figure 6 .11: An example of a phrase in C-minor with a bossa nova foreground. It uses the 
same Roman-numeral-level, abstract progression as in Figure 6.10.

Obviously the results from the simple and bossa nova algorithms are still very much 

at the level of a beginner in jazz. To handle a greater breadth of jazz styles with more 

complicated features, it would be preferable to learn the behaviors of each instrument or 

performer from examples of human performances rather than to build unique algorithms 

for each by hand. This remains as an area of possible future work for Kulitta.

6.2.3 Other Styles

Kulitta is also capable of generating more modem-sounding harmonies through the use of 

other chord spaces as shown in Figure 6.14, and by mixing chord spaces and foreground
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Figure 6 .12: An example of a phrase in E-major with a simple jazz foreground.

m■L-Q

Figure 6.13: An example of a phrase in E-major with a bossa nova foreground. It uses the 
same Roman-numeral-level, abstract progression as in Figure 6.12.

algorithms from different styles as shown in Figure 6.15. Also, although capable of gen

erating complete musical scores, Kulitta does not have to be the sole author of its (or her) 

output. In fact, there is a wide range of possible further human interpretation for Kulitta’s 

output at many levels. Abstract progressions generated by a human can be fed into Kulitta’s 

constraint-satisfaction and foreground algorithms, or progressions made by a PTGG can 

provide the harmonic backbone or inspiration for further details added by a human com

poser. There are even real-time, interactive possibilities for Kulitta, such as using an an 

online constraint-satisfaction algorithm in conjunction with chord spaces to create music in 

response to user input. Figure 6.16 shows an example of how Kulitta’s generative modules 

can be used in this way. This type of system could be used to create an algorithmic back-
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Figure 6.14: An example of a phrase (without a foreground) that is OPTC-equivalent to the 
one shown in Figure 6.4. The use of OPTC-equivalence causes a much more diverse set 
of harmonic transitions that are uncharacteristic of classical chorales, but more frequent in 
modem music.

Figure 6.15: A five-voice “jazz chorale” generated by mixing jazz chord spaces with a 
classical foreground algorithm.

end to a more traditional step sequencer or, if extended to feature learning and/or prediction 

algorithms in the statistical analysis step, it would be possible to “jam” interactively with a 

human performer.
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Figure 6.16: An example of Kulitta’s modules used in a real-time setting with two different 
types of input: MIDI events from a “progression maker” program that converts chords to a 
timed stream of MIDI events and arbitrary MIDI events from a human user or other source. 
The “real-time music maker” takes streams of MIDI events and analyzes them to determine 
properties like the current key. This information can then be used to generate new music 
that changes based on the input stream of MIDI events.
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Chapter 7

Learning Musical Structure

One of Kulitta’s goals is to not just produce music from hand-constructed grammars, but 

to also learn features of these grammars from collections of existing compositions. Kulitta 

currently supports two methods of learning musical features:

1. Learning production probabilities for a musical PCFG, which is then converted to a 

PTGG for use with Kulitta’s generative algorithms.

2. Learning production probabilities for a PTGG directly.

Kulitta uses an extended version of the inside-outside algorithm to learn musical gram

mars. This chapter describes various modifications to that algorithm, first for learning a 

musical PCFG and later for learning a PTGG. Chapter 8  shows use of these algorithms 

with corpora of data to learn production probabilities and then generate music.

7.1 Related Work

Machine learning-based approaches to automated composition are appealing since they 

can yield more diverse results with less human effort. David Cope’s EMI [19, 20] is one 

such system, and learning algorithms such as Markov decision processes, neural nets, and 

Boltzmann machines have also been used to generate various musical features [4,5,35,87].
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Music has many features in common with spoken language and is now often analyzed 

using methods inspired by linguistics [48]. Just as spoken language has the notion of parts 

of speech (noun, verb, etc.), music has abstract labels that are applied to various features 

(I-chord, passing tone, etc.). Machine learning techniques have been applied to tasks such 

as part-of-speech tagging [34] as well as harmonic and rhythmic anaysis [13,66].

Kulitta uses musical grammars, PTGGs, as one step in its generative process. Learning 

grammars and grammatical features are common subjects of computational linguistics re

search and learning algorithms exist for various categories of grammars. CFGs are popular 

subjects for their simplicity, and PCFGs in Chomsky Normal Form are possible to learn 

in 0(n3) time with the inside-outside algorithm [17, 47]. Learning algorithms for some 

categories of context-sensitive grammars have also been proposed [14,15].

7.2 The Inside-Outside Algorithm

The inside-outside algorithm is an approach for learning production probabilities for a 

PCFG analagously to how the forward-backward algorithm learns state transition proba

bilities for HMMs [47]. Given a PCFG and a data set presumed to be generated by that 

PCFG, the algorithm’s goal is to find production probabilities for that PCFG that maximize 

the probability of the data set. Instead of computing probabilities over a linear sequence of 

symbols, the inside-outside algorithm computes probabilities over parse trees. The inside 

probability of a particular node in the parse tree is the probability of generating the subtree 

rooted at that node, and the outside probability of a node is the probability of the rest of 

the parse tree minus that node’s subtree. Inside and outside probabilities are respectively 

analagous to the forward and backward probabilities of a HMM.

The rules of a PCFG must be supplied up-front to the inside-outside algorithm along 

with initial estimates for the production probabilities. The algorithm then iteratively re- 

estimates the production probabilities for each rule. Rules are expected to be in Chomsky
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normal form for a PCFG. This form allows the two types of rules shown below1, where 

capital letters indicate nonterminals and lowercase letters represent terminals.

A ^ B C  (7.1a)

A ^ x  (7.1b)

Before production probabilities can be reestimated, strings in the training data must first 

be parsed to determine which rules might have been applied. Parsing must also be done 

in a way that accounts for ambiguity, since some strings may have more than one possible 

parse tree. The CYK algorithm can be used for this.

7.2.1 CYK Parsing

John Cocke, Daniel Younger, and Tadao Kasami described a parsing algorithm that is now 

called the CYK algorithm, or sometimes CKY algorithm [55]. It approaches the parsing 

task by filling in a table rather than building a parse tree directly. The resulting table can be 

used to determine whether a given string is accepted by a language, but finding a specific 

parse requires some extra work.

A CYK parse table shows which nonterminals can produce which substrings of the 

input sequence. For a string of length n, rows are numbered from 0 to n and columns from 

1 to n. Row 0 contains the string itself. A symbol at row r and column c must be able to 

produce symbols c through c +  r -  1 via some series of rule applications. Consequently, 

strings accepted by a given language will yield the start symbol in the topmost cell, which 

accounts for the entire string. Tables are constructed from the bottom up. For example, 

given the rules 5 -> AA, A-+AA  and A - » a, the CYK table for aaa would be:

1. Sometimes a third type of rule, S —► £, is also included to allow the start symbol to produce the empty 
string. However, such a rule is not useful in the context of this chapter and therefore is not considered.
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1 2 3
3 S,A
2 S,A S,A
1 A A A
0 a a a

Individual cells will be referred to using the notation (r, c) for row r and column c. The 

start symbol appears in (3,1), thereby indicating that at least one parse exists. However, the 

table does not indicate any particular parse. The parse for aaa above is ambiguous, since 

it could either be grouped as a(aa) or (aa)a. This is captured in the table, since (3,1) can 

produce a(aa) by generating the A symbols in cells (1,1) and (2,2) or it can produce (aa)a 

by generating the A symbols in cells (2,1) and (1,3).

All possible parses are represented in the table as well as extraneous symbols that can 

produce portions of the string but are not involved in any full parse of the string. The A 

appearing at (3,1) is an example of this, as are the start symbols, S, appearing below row 3.

7.2.2 Learning Production Probabilities

The symbol yf is used to denote the probability mass function over rules. The inside proba

bility of a nonterminal A spanning terminals i through j  is denoted a  (A, i, j ). For a sequence 

of symbols, x\,...,xn, forward probabilities are computed by:

a(A,i,i) = yr(A->Xi) (7.2)

For i < j:

k=j - 1
<*(A,iJ)= £  [¥ ( A ^ B C ) x a ( B , i , k ) x a ( C , k + l J ) }  (7.3)

I ,  A—yBĈ R
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Given the start symbol for the grammar, S, the probability of the entire sequence of 

length n can be found by: a(S, 1,n).

The outside probability of a nonterminal, A, spanning symbols i through j, is denoted 

f$(A,i,j). It accounts for all portions of the tree not addressed by a(A,i,j).  In other words, 

f$(A,i,j) is the probability of generating the sequence: x\, i, A, x;-+i, ..,.xn.

0(S ,l,n) =  l (7.4)

For A ^  S, i s$ j:

k=n
P(A, i , ) )=  £  W fi -» AC) xa (C ,k ,n ) x f i (B ,<,*)]+

k — j - f  1, B ^ A C Z R  

k—i- 1
£  { y ( B ^ C A ) x a ( C , k , i - l ) x P ( B , k , j ) ]  (7.5)

Jfc=l, B —tA C d R

The a  and p  values are combined to calculate the probability of a rule appearing at a 

particular point in a string’s parse tree. This quantity is called /i.

Iu(A, i) = «(A, i, i) xp(A, i ,  i) (7.6a)

H(A -> BC, i ,k,j) = \ff(A BC) x  a(B,i,k) x  a ( C , k + l J )  x/ J ( A , i,/') (7.6b)

For a given rule, this value is then summed over all instances of a rule and normalized 

to calculate the new production probability for that rule.

count{A -* x) =  (7.7a)
I

count (A -► BC) =  £  |t(A ->• BC, i, j)  (7.7b)
i,k,j
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Let counts denote the counting equation over a particular string in the data set (all equa

tions to this point have been for single strings). Re-estimation of the production probability 

for a rule A ->• v with data set S =  {si, is defined by:

Ijescounf^A ->• v)
L A ^ R ( L s e Scount*(A -> v'))

(7.8)

This recalculation of production probabilities can be done iteratively until the values 

converge to within some threshold.

The algorithm’s representation of symbols over spans mirrors that of the CYK algo

rithm. For example, the value a(A,i, j)  will be nonzero if A appears in column i of row 

j —i in the parse table, and zero if A is not present in that cell. Simialrly, /3 (A, i, j) will only 

be nonzero if A is part of a parse tree. The CYK parse table can be used directly to locate 

(A, i, j) tuples over which calculations should be done.

A slightly modified version of the inside-outside algorithm can be used to learn production 

probabilities for Martin Rohrmeier’s CFG for harmony. However, Rohnneier’s grammar 

is not in Chomsky normal form. Rather than modify the grammar to place it in Chomsky 

normal form, we can also modify the inside-outside algorithm to handle new types of rules. 

Rules such as TR —> T and I  —► I I V I  in Rohrmeier’s grammar require that the algorithm 

handle rules of the following forms.

The rank of a rule is the number of symbols that appear on the righthand side. Rohrmeier’s

7.3 Learning a Musical PCFG

A - tB C D (7.9a)

A ^ B (7.9b)
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grammar uses rules of rank 1, 2, and 3. Rank 3 and rank 1 for rules of the form A -» B 

are relatively straightforward additions to the equations, although rules of rank 3 increases 

the worst-case complexity for the algorithm. The definition for the i ^  j  case of the inside 

probability formula becomes:

i ^ k < l < j

a(A, iJ)  = £  [y{A -+ BCD) x  a(BJ,k) x  a{C ,k+1,1) x  <x{D,l+ l,j)]
k ,l ,  A - tB C D e R  

K k < j

+  E [y(A -»  BC) x  a(B,i,k) x  a (C ,k + 1 , j)]

+ E [ v ( A - > B ) x a ( B , i J ) ]
A -+ B e R

(7.10)

The changes to /3 are also fairly straightforward, although rather verbose. To simplify 

the definition, we will denote the previous definition of f5 in Equation 7.5 for rules of rank 

2 as J82 and the new definition for rules of rank 3 as fo-
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fh(A,i,j) = f c(AJJ )
j<k<l^n

+  £  [v ( B ^ A C D ) x a ( C J + l , k ) x a ( D , k + \ , l ) x P ( B , i , l ) ] +
k y  l y  B — t A C D ^ R

+  £  [ \ i r ( B ^ C A D ) x a ( C , k , i - l ) x a ( D J + l , l ) x p ( B , k , l ) ] +
k, I, B-yCADeR 

k<l<i
+  £  [\ff(B^CDA)  x a { C , k , l - 1) x a ( D , l , i - 1) x j8  (B,kJ))+

k, I, B - tC D A e R

+  E  [ V ' ( « - > A ) x | 3 ( B , i , j ) ]
B-teR

(7-11)

A final modification must take place in the formula for H and count as well to handle 

rules of rank 3, although the definitions of [I and count for rules of rank 2 remain the same.

H ( A ^ B , i , j )  = fo(A, iJ)  x y(A  - 4  B) x a(B, iJ)  (7.12)

fi(A - 4  BCD ,i,k,l,j) =fo(A,i, j)  x y(A  - 4  BCD)x

<x(B,i,k) x a (C , J t+ l , / ) x  a ( D , l + 1,;) (7.13)

count (A -4  B) =  E (7.14)
hi

count{A BCD) =  BCD, i, k, /, y) (7.15)
iAij
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7.4 Learning a PTGG

A PTGG is a parameterized grammar with an infinite alphabet and rules that are func

tions. All of these features are problematic for the inside-outside algorithm even with the 

extensions discussed so far. Three key features of the grammar must be addressed:

1. PTGGs make no distinction between terminals and non-terminals.

2. Symbols in PTGGs must carry extra information (the parameters indicating duration) 

and the parameter list is potentially infinite. However, a CYK-style parse table of a 

given progression will still be finite.

3. Rules are functions that are later instantiated with concrete values. Productions such

as /**'-* Vh Ih and Ih Vq Iq must be recognized as instances of the same rule,

p  y ' / 2  p!2

In a more general sense, what we need is a way to learn a grammar where the full extent 

of the alphabet is unknown and where rules have the form of X  —► f (X).  Here we show 

an oracle-based approach to the inside-outside algorithm that enables learning grammars 

of this form when f (X)  has certain properties.

7.4.1 An Oracle Approach to the Inside-Outside Algorithm

Suppose we don’t know exactly what the rules for a grammar look like except for the as

sumption that they are context-free (in the sense that only one symbol can appear on the 

left-hand side of a rule). The rules could even exhibit conditional behavior based on sym

bols’ parameters, as is possible in a PTGG. In fact, the details of the rule set are unnecessary 

for the learning production probabilities as long as the learning algorithm has access to the 

following things:

1. An identifier for each abstract rule. This can simply be a number (i.e. “rule 1,” “rule 

2 ,” and so on).
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2. The production probability for each abstract rule (or the initial estimates of those 

probabilities).

3. A partition of the abstract rules’ identifiers into groups that share the same left-hand 

side.

4. An oracle that takes a sequence of symbols and returns all rule instances that could 

have directly produced it along with their associated identifiers. The distinction be

tween a rule and its instance is described in Section 7.4.3.

Note that for a typical PCFG, there is no function/instance separation in the rules, so 

an oracle would return the rule itself. However, for some other grammar like a PTGG, 

the oracle would only return a rule instance like /w ->• Vh Ih, while the exact function that 

created it, P —> Vt!2 p /2, would remain unknown to the learning algorithm. Importantly, 

the learning algorithm has neither an enumeration of the alphabet (which is potentially 

infinite for a PTGG) nor an enumeration of all possible rule instances. The algorithm only 

needs information about the symbols and rule instances that can be used to accomplish a 

CYK-style parse of the training data. Given the four pieces of information described above, 

production probabilities can be re-estimated by:

1. Building a CKY-style parse table of rule instances for each string in the training data. 

Storing the full rule instances and their associated identifiers avoids any subsequent 

queries to the oracle once the parse table is complete.

2. Traversing the parse table to compute a  and fi values as described in Section 7.4.5.

3. Summing counts for rule instances by their rule identifiers when re-estimating pro

duction probabilities.

Step 1 above, building a CYK-style parse table, must address the lack of terminal/nonterminal 

distinction and the rule function/instance distinction for PTGGs. These cause some small,
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but cascading changes through the probability calculations. These issues are described in 

more detail in the following sections.

7.4.2 Removing the Terminal/Nonterminal Distinction

Mathematically, the inside-outside algorithm does not actually enforce any important dis

tinction between terminals and nonterminals in the traditional sense. Terminals are simply 

symbols that exist in row 0  and provide a stopping point for the recursive a  calculations, 

much like the start symbol serves as a stopping point for /3.

Removing the terminal/nonterminal distinction in a grammar implies that any point 

during generation of a sequence of symbols is a valid stopping point. In many of the 

grammars used for spoken language, this would be absurd, since a non-terminal like noun 

phrase, often abbreviated as NP, is not a spoken entity and must be further instantiated to 

something more meaningful. A string such as “This is a brown horse” is accepted by the 

English language, but “This is NP" is not—the instance of NP must be further expanded. 

However, this is not the case for all grammars.

A lack of terminal/non-terminal distinction is an important property of L-Systems, a 

category of grammars commonly used for modeling fractals, where infinite self-similarity 

must be accounted for but only finite sequences can realistically be calculated. Consider 

the following L-System with A as its start symbol:

A-+AB

B - t A  (7.16)

This grammar, defined by Prusinkiewicz and Lyndenmaier [61], consists entirely of 

non-terminals and produces strings such as ABAAB. All strings produced by the grammar 

can be further expanded. How much they are expanded depends on the generative algorithm 

used.
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In a grammar without terminals, rules of the form A -* x are mathematically no different 

from rules of the form A - t  B where A ^ B  (situations involving “identity rules” or “self 

productions” of the form A A will be addressed later). Rohrmeier’s grammar has many 

of these, such as TR ->• T  and DR -* D. Allowing for these rules, the equation for inside 

probabilities for single symbols in the sequence Xi, ...,Xn becomes:

a{A,i,i) =
1.0 if A =  Xj

(7.17)
£  [yr(A ->• B) x a(B, i, i)] otherwise

A —yB^R

The definition for a(A ,i,j)  where i ^  j  remains the same as in 7.19. True terminals 

will cause no problems; the only difference is that they are now candidates to be supplied 

to the a  calculations.

7.4.3 Rule Functions and Rule Instances

One of the trickiest aspects of PTGGs from a learning standpoint is the distinction that 

exists between rules, which are functions, and their instances, which are applications of 

those functions to specific values. For clarity, we will refer to PTGG rules as rule functions 

when refering to the function itself, such as P ->• W 2 p!2 where t is a variable. We will 

refer to the applications of those rules to specific values as rule instances. For the rule 

function P —> W 2 p!2, the productions Pv -* Vh Ih and Ih —> Vq lq are just two of many 

possible instances of the function.

For a traditional PCFG, the probability mass function, yr, can simply perform a table 

lookup, pattern maching against either the lefthand side or righthandside (or both) for cal

culating a  and /3 values respectively. For a PTGG, the process is more complicated. In 

training data, chords will have concrete durations, such as h (half note) rather than a vari

able, meaning that parsing must take place with concrete values as well. The parse tree 

must, therefore, be constructed using rule instances rather than rule functions.
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The concept of rule functions and instances of those functions is broader than simply 

those in PTGGs. In fact, any grammar with rules of the form X  -»■ f (X)  where X  is a 

single symbol and f ~ l {X) is computable are covered by this paradigm, including the more 

standard category of PCFGs. The rules in PCFGs can be thought of as functions where 

each has only one instance.

7.4.4 Parsing with Rule Instances

With a PCFG, rule instances are no different from the actual rules in the grammar. How

ever, with a PTGG, one rule can have many instances. How can we efficiently find these 

instances to recursively compute a  and f$ values without knowing about the rules them

selves? The answer lies in a simple change to the parse tree representation.

Consider the progression IIq Vq lq Iq produced by the rules P —> V' / 2 p!2, P -> 

p /2 p /2 and V‘ —»■ IPI2 W 2. A CYK-style parse tree would look like the following.

4 JW

3
2 Vh Ih Ih
1 IIq v q Iq Iq

1 2 3 4

Notice that the removal of the terminal/nonterminal distinction now means that there is 

no need for a 0-row. This representation can be used to derive the portion of the alphabet 

relevant to the string and the spans over which each symbol should have a  and p  computed. 

We can derive the following combinations for which a  and fi would need to be computed:

i j  Symbols
1 2 Vh
2 3 Ih
3 4 Ih
1 4 r
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For all other symbols and spans, a  and would be zero. However, we also need to be 

able to determine which rules produced each cell in order to recursively compute a  and 

probability values. Unfortunately, the standard CYK representation does not tell us which 

rules were applied at each point, since, under the oracle model, we don’t know anything 

about the abstract rules in the grammar and can only ask about rule instances. Rather than 

querying the oracle again to re-derive which rules were applied to which cells, a better so

lution is to simply label the cells with rule instances during the parsing process. The table 

now becomes:

4 (0 ) r ^ v h i h
3
2 (2 ) v h -> m  v q (0 ) Ih Iq (1 ) Ih -»• I* Iq
1 II« v q Iq Iq

1 2 3 4

This operation is delegated to an oracle and must be defined for a given category of 

grammars. For PCFGs, the operation is just a matter of checking symbol membership in 

the strings appearing on the right-hand side of rules. For PTGGs, the operation is a little 

more complicated and involves the notion of valid and invalid rule instances. A valid rule 

instance for a sequence of symbols is one where the duration parameters associated with 

each symbol have ratios that can account for portions of the sequence. For example, with a 

start symbol of Z4 and rules that only divide the temporal parameters of symbols by powers 

of two, Z4 —> V2 Z2 would be a valid instance of P -> V* / 2 Z*/2, but Z1 —► V1/3 Z2//3 would 

be invalid. Algorithm 10 shows the process for backtracking through rule instances of a 

PTGG that would be carried out by the oracle.
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Algorithm 10. Given a validity function for a PTGG, valid(r), that returns true for valid 

rule instances: 

b a c k t r a c k p T G G  ( * p )  =

1. Let Y = /  -> x f^ \ . .x fr ^  | 3i, x =  jc, be the collection of rule functions where x 

appears on the right-hand side at position i.

2. Y' =  0 be a set of rule instances.

3. For each rule junction, /  —>■ x{l^\..x^n̂  € Y where x  =

(a) Let p' =  f f 1 (p) be the unique parent parameter that could have produced p.

(b) Ifvalid(yp' x{l{pf) then add /  -¥ x{l{pf) . . J t t ^  toY'.

4. Return Y'

7.4.5 Modifications to the Inside-Outside algorithm

The changes required to support the oracle model and CYK parse table described in the 

previous sections cause subtle changes throughout the inside-outside algorithm’s equations. 

Changes must be made where the equations for a  and /3 make reference to the rule set, R, 

since the rule functions are inaccessible and only rule instances can be accessed through 

an oracle. However, these changes are fairly small, substituting some reference to the rule 

set’s oracle for the rule set itself. For an Oracle, O, we will use the notation P(0, i, j ) to 

refer to the cell in the Oracle-made parse table that can produce symbols from i through j. 

This cell will contain a list of rule instances. Using this notation, a  would be redefined as 

follows:

a(A,i,i) = <
1.0 if A =  X,

(7.18)
£  [yf(A -> B) x a(B, i, i)] otherwise

A.—
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i^k<l<j
a(A, i , j )= Y ,  [y^(A ->BCD) x  a(B,i,k) x  a(C,k+l , l )  x  a(D,l + l,j)] 

k,l, A->BCDeP(0,iJ)
Kk<j

+ E  [ y ( A ^ B C ) x a ( B , i , k ) x a ( C , k + l , j ) ]  (7.19)
k, A->BCeP(0,i,j)

Equations for /3 and fi would be modified similarly, replacing instances of R with 

P(0, i,j).

7.4.6 Identity Rules

So far, productions of the form A B  have been allowed, but with the requirement that 

A ^ B .  Allowing for rules of the form A A is somewhat problematic for various statisti

cal reasons. Consider the following, terminal-less PCFGs:

Grammar 1 Rule Probability
A ->AA 0.4
A-)>A 0.2
A-+B  0.4

Grammar 2 Rule Probability
A -+AA  0.5
A-+B  0.5

Both of these can generate strings defined by the regular expression [A|£]*, which is 

all strings consisting of As and Bs. However, for a fixed number of generative steps, the 

probability of generating the string AB is lower for the first grammar than for the second. 

For Grammar 1, the probability of generating AB is at most 0.4 x  0.4 =  0.16 if A —► A is 

never used, and this value would decrease for each additional instance of A —► A, which can 

be applied infinitely many times to yield as many distinct parse trees. For Grammar 2, the 

probability of generating AB is exactly 0.5 x  0.5 =  0.25.

From this, it is clear that the two distributions above can exhibit different behavior even
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under the same applying algorithm. For the same number of total productions, grammar 

1 is likely to produce a shorter string than grammar 2. However, what if the generative 

algorithm and number of productions are unknown? Distinguishing between the two dis

tributions becomes tricky, since each string producible by grammar 1 can be produced by 

grammar 2  with fewer steps.

To fully accommodate the features of PCFGs, we extend the inside-outside algorithm 

once more with a heuristic for counting occurrences of identity rules. It must be empha

sized that this heuristic will not suit all generative algorithms, since knowing where identity 

rules are likely to be applied requires knowing how the generative algorithm works. Unlike 

other rules, identity rules cannot simply be inserted into the parse tree wherever possible, 

since they can be applied infinitely many times in sequence while achieving the same over

all result. Identity rules also cannot be ignored; some probability mass should be assigned 

to them if they are present in the grammar.

As a middle ground, we count one identity rule per parse tree in the ju calculation. In 

Equations 7.12-7.15, the requirement that A ^  B is simply removed. However, importantly, 

we do not count identity rules in the a  and j3 calculations. Doing so would risk placing 

disproportionate weight on identity rules when re-estimating production probabilities for a 

PCFG. By factoring identity rules into the /x calculation as shown above but nowhere else, 

it avoids assigning truly excessive weight to identity rules. Unfortunately though, this does 

not guarantee a conservative guess for the probability of identity rules, and the estimated 

probability can still end up being disproportionately high. Consider the following grammar.

Probability Rule 
0.3 A —tAA
0.3 A-»A
0.4 A-+B
0.5 B ^ B
0.5 B-+C

It takes a minimum of two productions to generate a string containing at least one C. If
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a data set is generated with very few iterations of an L-System-Iike algorithm, such as only 

three iterations, attempting to learn the probability for the B —> B using the heuristic de

scribed above will fail by assigning a disproportionately large probability to the rule. This 

is because the restricted number of productions makes it unlikely that C will be encountered 

relative to B, and each instance of B will constitute one count for applying B-*B.  This is 

a difficult problem to avoid with “deep” grammars that require many productions to reach 

certain symbols. Symbols closer to the top of the symbol hierarchy are more likely to have 

accurate probabilities learned for their identity rules.

7.4.7 Computational Complexity

For a PCFG, the complexity of this oracle-based version is actually unchanged, since oracle 

would have a worst case runtime of 0(1), where / is the number of rules in the grammar, 

and will perform the same search as would have to be done in an oracle-less model anyway. 

Therefore, for PCFGs, the complexity is still 0(n3) for grammars with rules of rank 2 and 

0(n4) for rules of rank 3, where n is the length of of the string to be parsed. Since the 

oracle model requires that / _ 1  (X) be computable for rules of the form X  -> f (X)  but does 

not bound the complexity of that computation, it is possible that the oracle’s complexity 

could overtake that of the CKY-parsing for other categories of grammars.

The validity function for a PTGG requires checking whether the durations in a rule 

instance are possible to produce by a given grammar. One way to do this is to simply enu

merate the number of possible durations and test them. This set of values will be controlled 

by the format of the rules, the overall duration of the progression, dtotai, and the smallest 

duration present in the progression, dmjn. For example, for rules that only divide duration 

evenly, there will be log2 (dtotai/dmin) +  1 possible durations. This value will grow much 

more slowly than the length of the input sequences, which is bounded by (dtotai/dmi„). 

Therefore, the complexity for parsing will still be dominated by 0(n3) from the CYK al

gorithm, where n is the number of symbols in the input sequence.
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7.5 Learning Additional Grammatical Features

In addition to learning production probabilities, it would also be useful to learn the col

lection of rules or even a collection of relevant non-terminals for forming rules. Lari and 

Young show that the inside-outside algorithm can be used in conjunction with HMMs to 

perform precisely this task for PCFGs [47]. However, the grammars learned are linear, 

much like a HMM that must emit a symbol before moving on. This category of leamable 

grammars does not allow for any symmetry or more complex branching in the parse tree. 

This kind of structure seems a poor fit for music, where two phrases of equal length would 

normally be viewed as branches of a fairly balanced tree.

Lari and Young proposes a method of using the inside-outside algorithm with an ini

tially too-large collection of rules and pruning it down to a smaller collection of rules [47]. 

Although this could be applied to music, without a way to learn the non-terminals it doesn’t 

serve much purpose. Nonterminals like T for “tonic” do not make sense when separated 

from their musical meanings to form a set of more general rules. For example, starting with 

the collection of rules {x —► yz \ x,y,z 6  {T, £,£>}} is fundamentally problematic, since the 

grammar is simply too ambiguous to allow sufficient pruning.

PTGGs take the hypothesis that observable harmonic transitions at the level of chord 

progressions are representative of large-scale patterns as well. If this hypothesis is true, 

then it may be possible to detect short phrases that would be likely candidates for right- 

hand-sides of rules and to then derive the left-hand side through music theoretic principles. 

The task of identifying right-hand-sides of the rules is somewhat analogous to the task of 

automatic text segmentation in computational linguistics. However, this step in the learning 

process has not yet been added to Kulitta and is a subject of ongoing work.
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Chapter 8 

Putting It All Together

One of Kulitta’s goals is to not just generate music, but to “learn by listening”— to be able 

to derive desirable musical features and patterns from a corpus of data while still being able 

to produce original pieces of music. Production probabilities for PCFGs and PTGGs are 

one such musical feature that can be learned from a corpus of data as shown in Chapter 7 

using modifications to the inside-outside algorithm. Two different generative experiments 

are described in this section: training Kulitta on a corpus of Bach chorales and a modified 

version of Rohrmeier’s grammar for harmony and training on a synthetic data set generated 

by a hand-built PTGG. Each set of learned production probabilities was used to generate 

multiple novel phrases of music.

8.1 Training on Bach Chorales

Bach chorales offer a source of abundant and stylistically consistent musical examples that 

are also relatively easy to analyze to the level of Roman numerals. Because of this, it is 

a good data source for testing the performance of grammars like Rohrmeier’s. Here we 

present the results of such an experiment. A corpus of Bach chorales was analyzed to 

the Roman numeral level, and short phrases were extracted as training data. A modified 

version of Rohrmeier’s grammar for harmony [67] was used as the candidate grammar to
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parse the data and learn production probabilities. Finally, Kulitta’s generative framework 

(described in Chapter 6 ) was used to create short, chorale-styled phrases according to the 

learned production probabilities.

8.1.1 Data Set

A collection of Bach chorales analyzed by Christopher W. White [83] were taken as the 

starting data. The chorales in this data set had already been analyzed to determine the key 

of each chord. Further processing was then done to assign a Roman numeral to each chord, 

which was relatively straightforward, since most of the chords were simple triads (e.g. 

(0,4,7) in C-major is a I-chord). Phrases were taken as 4-measure sections if all within the 

same key, and same-key segments for 4-measure sections that changed key. These phrases 

were then divided by mode, creating major and minor training data sets containing 2,650 

and 1,446 phrases respectively.

8.1.2 A Modification of Rohrmeier’s PCFG for Harmony

Rohrmeier’s grammar for harmony is a CFG suitable for learning with the inside-outside 

algorithm as described in the previous chapter. A reduced version of it that lacked modula

tions was used to parse the Bach corpus. However, not all of the data was parsable with this 

reduced grammar. Some of this may have been due to noise in the Roman numeral assign

ment, but other instances were likely due to limitations of Rohrmeier’s grammar. To parse 

a larger subset of the data while minimizing redundancy in the rules, a modified version of 

Rohrmeier’s grammar was used as the candidate grammar for learning production proba

bilities. This grammar is shown in Table 8.1. Rules 13, 14,19, 20, and 21 were suggested 

by lan Quinn as mechanisms to increase the number of parsable phrases in the data set.

Important changes to the grammar include the re-purposing of the P nonterminal to 

mean “plagal cadence” rather than “phrase.” The “phrase” level in Rohrmeier’s grammar 

added redundancy and was largely irrelevant to parsing such small sections of music. Sim-
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1 TR ->• T
2 TR -4 TR TR
3 TR -4 DR T
4 TR ->• TR DR
5 DR -> DR DR
6 DR D
7 DR -4 SR D
8 SR -4 S
9 SR -> SR SR
10 T -4 VI
11 T -> m
12 T -> I
13 T -4 i n vi
14 T -4 T P
15 D - ¥ VII
16 D -4 V
17 S -4 IV
18 S -¥ n
19 S —̂ iv m rv
20 P rv I
21 P IV P

Table 8.1: A modified version of Rohrmeier’s grammar for harmony, where TR is the start 
symbol.

ilarly, “piece” as a nonterminal was not needed either. Instead, TR, or “tonic region” was 

used as the start symbol. Repetitions at the Roman numeral level were also removed to 

avoid overly ambiguous parses. The grammar from Table 8.1 was able to parse a total of 

1,335 phrases out of the 2,650 present in the major data set. The minor data set was not 

tested with this grammar.

8.1.3 Method

Using the grammar in Table 8 .1, a total of 1,335 phrases in major keys were parsable from 

the Bach corpus. The extended version of the inside-outside algorithm described in Chapter 

7 was run on samples of 200 of these phrases. Samples were taken uniformly at random 

using a pseudorandom number generator and a fixed seed to ensure reproducibility of the 

samples. A total of five random samples were taken (seeds 0 through 4). The inside-outside
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■  Uniform

■  S m d O  

» S « e d  1 

□  S e e d  2

■  S e e d  3

■  S e e d  4

■  A verage (0-4)

1 2 3 4 S 6 7 S 9 10 11 12 13 14 t3  18 t r  18 19 20 21

Rule num ber

Figure 8.1: Production probabilities for a PCFG based on Rohrmeier’s grammar using 
a corpus of major phrases from Bach chorales. A list of numbered rules can be found 
in Table 8.1. The graph shows the results of five different runs, each with a different 
seed for randomly selecting 200 data from the corpus. All runs were given uniform initial 
probabilities and ran until the change in distributions between iterations fell below 1% of  
the total probability mass. The “average” data series represents the average of all five runs.

algorithm was run until the change in probability mass fell below a specified threshold. 

This threshold was set to be 1% of the total probability mass, or 0.07 (since there were 7 

nonterminals and the probabilities for each nonterminal must sum to 1 .0 ).

8.1.4 Results

The results of 5 runs of the inside-outside algorithm on different samples from the data 

set are shown in Figure 8.1. All runs of the algorithm began with a uniform probability 

mass distribution and converged within only a few iterations. As can be seen from Figure 

8 .1 , the results are all fairly similar regardless of the particular sample of data points used, 

indicating that the data is consistent within itself. The average of these probabilities was 

used to qualitatively assess the learned production probabilities using Kulitta’s generative 

algorithms.
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8.1.5 From PCFG to PTGG

Kulitta’s generative algorithms are designed to take PTGGs rather than more typical PCFGs. 

A PCFG for harmony can be converted into a PTGG, but there is no clear best way to do 

this. PCFGs like Rohrmeier’s and the version in Table 8.1 are unable to handle any tempo

ral information and there is a terminal/nonterminal distinction, which must be removed in 

some way to produce a PTGG. Results from three different approaches to this conversion 

are presented here.

•  Approach 1: assign all symbols a constant duration of a quarter note, q. For example:

TR* -tTR ? TRq. After some number of generative iterations, nonterminals may still

exist in the string. These are forced to terminals using the following convention.

TR, T, TP, TCP, P => I

DR, D, DP =» V

SR, S, SP =► IV

•  Approach 2: divide durations according to the following patterns for different right- 

hand sides from 1 to 3 symbols long (rules of rank 1 to 3):

A* -¥ B!l2 C l1

a * -> #/4 c*/4 zy/2
As with approach 1, nonterminals are not guaranteed to be converted to terminals 

after a fixed number of iterations, so approach l ’s mapping is taken to force any 

remaining nonterminals to terminals.

•  Approach 3: Convert all non-terminals in the rule set to Roman numerals according 

to the same mapping used by the previous approaches. This results in the grammar 

shown in Table 8.2. Generation then proceeds as in approach 2, but with no need 

to coerce leftover nonterminals after generation has finished. This actually results in 

a more general grammar than the original PCFG. This approach was tested to see if 

certain temporal problems observed with the other two approaches would be resolved
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1 P -¥ P
2 P -¥ p / 2 p / 2

3 P -y y t / 2  p / 2

4 P —y p ! 2 y t / 2

5 V* -y y t / 2  y t / 2

6 V* -y v*
7 V* -y j y t / 2  y t / 2

8 TV' -y rv* /2
9 rv* -y i y t / 2  j y t / 2

1 0 p -y VP
1 1 p -y IIP
1 2 p -y P
13 p -y p / 4  j p / 4  y p / 2

14 p -y p / 2  p / 2

15 v* -y VIP
16 V* -y V*
17 TV' -y IV*
18 TV* —y IP
19 TV' -y IV*/4 IIP!4 IV*/2
2 0 P -y j y t / 2  p / 2

2 1 P -y j y t / 2  p / 2

Table 8.2: A PTGG constructed from the PCFG in Table 8 .1 using approach 3 for PCFG to 
PTGG conversion.

by a more general grammar.

Approaches 2 and 3 mirror the patterns of duration division used in the PTGGs shown 

in Chapter 4, while approach 1 makes no attempt to preserve meter. Phrases produced 

with approach 1 may, therefore, have a strange number of chords and end in the middle 

of a measure and merely substitutes a duration for the sake of fitting into Kulitta’s gener

ative framework. Approach 3 is overall most similar to the PTGGs in Chapter 4 since the 

terminal/nonterminal distinction is removed by allowing all symbols to be generative.

These three approaches for converting PCFGs into PTGGs were tested using the aver

age of the learned production probabilities from the Bach chorale data set and the modified 

version of Rohrmeier’s grammar. To evaluate the performance of the two methods, each 

were tested with stochastic generation using the classical approach from Chapter 6  on 20 

different random number seeds. The lengths of these progressions are summarized in Table
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Figure 8.2: The phrase from seed 0, approach 3 from Table 8.3. Note that no I-chords were 
produced. The distribution of durations is also skewed due to the appearance of E-chords 
(which cannot create any other chords) early in the generative process.

8.3. Sample phrases from this set are shown in Figures 8.2-8.5.

Approach 1 suffers from a lack of temporal consideration, being likely to stop in the 

middle of a measure in a way that is quite uncharacteristic of the training data (Bach 

chorales). Both approaches 1 and 2 also suffer from a chord distribution problem—they 

are prone to becoming “stuck” on very few chords, often only a single tonic chord. Simi

larly, they are prone to not generating terminals.

Approaches 2 and 3 have the temporal benefits of the PTGGs in Chapter 4, although 

both allow strange chord transitions that are not representative of the input data. Approach 

3, for which the PTGG was actually more general than the learned PCFG), demonstrated 

temporal behavior more like the PCFGs from Chapter 4, but it also had the most unusual- 

sounding transitions. Still, the results from this learning-based approach seemed on par 

with that of the hand-build grammars in Chapter 4—allowing for the fact that no modula

tions are present in the learned version. The phrases are also quite prone to ending on V 

rather than I, which does occur in the training data, but would present a problem if used 

to generate a complete piece of music where ending on I  is required. Approach 3 also had 

more consistent quality of results than approaches 1 and 2. This was largely because the 

temporal distribution of chords and also the number of chords was more consistent between 

examples, lacking the big swings in density present in the the other two approaches.
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Seed Approach 1 Approach 2 Approach 3 Key
0 2 2 5 C Major
1 5 5 6 F Major
2 1 1 6 B-flat Major
3 1 1 6 B-flat Major
4 3 3 6 E-flat Major
5 1 1 9 A-flat Major
6 1 1 6 G Major
7 6 5 1 0 D-flat Major
8 2 2 6 F-sharp Major
9 27 8 1 B Major

1 0 28 9 5 B-flat Major
11 1 2 6 6 E Major
1 2 2 2 5 A Major
13 2 2 2 D Major
14 4 4 6 D-flat Major
15 1 1 6 G Major
16 1 1 6 C Major
17 3 3 13 F Major
18 1 1 9 E Major
19 1 1 1 0 B-flat Major

Table 8.3: Progression lengths resulting from using PCFG to PTGG conversion approaches 
1, 2, and 3 on 20 random number seeds. Approaches 2 and 3 were run using a minimum 
duration for chords of a quarter note and a phrase length of 4 measures. All progressions 
were generated using 8  iterations of the generative algorithm. Progressions with only one 
chord are the result of T R - t T  occurring first. Examples of the musical phrases from seeds 
0 and 7 can be seen in Figures 8.2 through 8.5.
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f

IV  IV

Figure 8.3: The phrase from seed 7, approach 1 from Table 8.3. Note that the phrase ends 
in the middle of a measure.

| M t z -
iA h .i—  -. . . . . . =— ^ = = F = r = \

---------------------------

_ o

------ --------------------
.......... ’ — r r

o  .....

IV  I

Figure 8.4: The phrase from seed 7, approach 2 from Table 8.3. Although it has I-chords, 
unlike the phrase in Figure 8.2, it still has a relatively poor distribution of chord durations.

v i ii i II  IV  II i ii i

Figure 8.5: The phrase from seed 7, approach 3 from Table 8.3. This phrase has a somewhat 
more reasonable distribution of durations and chords than in Figures 8.2-8.4.
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1 T -4 T
2 T —y T T
3 T D T
4 T —̂ T D
5 D - 4 D
6 D —̂ DD
7 D - 4 SD
8 S - 4 S
9 S - 4 SS

Table 8.4: A further simplification of the grammar in Table 8.1.

8.1.6 Another Approach

Many of the problems in the results seen from training on the grammar in Table 8.1 stem 

from the possibility that generation can become “stuck” on certain chords. For example, 

T R - y T  occurring first will always result in a single-chord progression, no matter how 

many generative iterations are used. Although this is less of a problem with approach 3, 

many short progressions still occur due to productions such as 7 - 4  7/7 occurring either first 

or in a fairly early iteration. Additionally, when progressions are longer with approach 3, 

they become fairly bizarre and unrepresentative of the input data.

To get a better distribution of chords within a progression, the same data set was tested 

using a yet further simplification: only working with the three symbol alphabet of T, S, 

and D. Rules for producing series of these can be derived from Table 8.1 and are shown in 

Table 8.4. This grammar parsed 1,095 of the 2,650 phrases in the major data set and 582 

of the 1,446 phrases in the minor data set. From this selection of each data set, samples of 

200 were used with a convergence threshold of 0.03 (1% of the total probability mass). The 

learned probabilities over five runs for the major data set is shown in Figure 8 .6 . Averages 

of five runs over the major and minor data set are shown in Figure 8.7.
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Roman numeral I II HI IV V VI VII
Occurrences in Bach corpus 12758 4443 1451 3689 8449 2061 1209

T/S/D  category T S T S D T D

Table 8.5: Roman numeral frequencies in the Bach corpus.

The grammar in Table 8.4 was converted to a PTGG with the following method of 

assigning durations based on the rank of the rule:

A'

a * ->& i2 a / 1.

This resulted in sequences of T, S, and D, which require further conversion to be used in 

Kulitta’s generative framework. Two methods of mapping from T/S/D  to Roman numerals 

were tried:

1. One-to-one mapping: T =  /, 5 =  TV, and D = V. With this approach, the other four 

Roman numerals (//, III, VI, and VII) are never used.

2. Stochastic, one-to-many mapping: T =  {I,III, VI}, S = {II,IV},  and D = {V, VII} 

based on the statistical prevalence of each type of chord in the corpus (shown in 

Table 8.5). This was implemented by using greedyProg on a chord space populated 

with Roman numerals in the proportions shown in Table 8.5 and grouped by T/S/D  

category.

These mappings were then run through the same chord spaces as used in previous ex

amples in this chapter. Examples of the results can be seen in Figures 8 .8 -8 .11.

Overall, this method performed notably better for creating a PTGG and generating mu

sical phrases. Results from the simple, one-to-one mapping were generally consonant and 

had a reasonable temporal distribution of chords. However, the harmony was also very re

stricted. The stochastic one-to-many mapping performed similarly due to the fact that the 

most likely chords in each category are those from the one-to-one mapping. Harmony was 

slightly more diverse, but strange chord transitions were also periodically introduced, prob-
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■ Uniform
■ Seed 0
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■ Seed 3
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Rule number

Figure 8 .6 : Production probabilities for the PCFG in Table 8.4 after training on major 
Bach chorales. The graph shows the results of five different runs, each with a different 
seed for randomly selecting 200 data from the corpus. All runs were given uniform initial 
probabilities and ran until the change in distributions between iterations fell below 1% of 
the total probability mass. The “average” data series represents the average of all five runs.

ably due to a combination of noise in the data and the lack of broader context-sensitivity in 

the one-to-many mapping step.

For the generative purposes described in Chapter 9, the process described so far on ma

jor chorales was repeated on the minor subset of the Bach corpus. There were significantly 

fewer minor examples, and only 582 were possible to parse. A comparison of results is 

shown in Figure 8.7. In general, the learned production probabilities were very similar to 

the major distribution, with one main exception: the probabilities for S -> S and S -> SS.

As shown in Chapter 7, the inside-outside algorithm can be extended with an oracle that 

allows for rule functions to be learned. However, it is not obvious how to construct a PTGG 

that will parse the Bach chorale corpus, so training from a real data set is problematic even 

though the inside-outside algorithm can handle the rule formats for PTGGs. Still, parsing 

on artificially generated data sets is possible and also serves as a proof of concept for the

8.2 Training on Synthetic Data
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Major and Minor Production Probabilities Learned from Bach Chorales
n  U niform  ■  M ajo r ■  M inor

2

0 .9
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E  0 .4

0 .3

0.2

0.1

.17

J

Rule number

Figure 8.7: Average production probabilities for the PCFG in Table 8.4 from major and mi
nor Bach chorales. The graph shows the average of five different runs for each mode, each 
with a different seed for randomly selecting 200 data from the corpus. All runs were given 
uniform initial probabilities and ran until the change in distributions between iterations fell 
below 1% of the total probability mass. The “average” data series represents the average 
of all five runs.
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Figure 8 .8 : A progression generated by training the grammar in Table 8.4 on Bach chorales 
and using the simple, one-to-one mapping for Roman numerals.
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Figure 8.9: A progression generated from the same abstract progression at the T/S/D  level 
as Figure 8 .8 , but using the stochastic, one-to-many mapping for Roman numerals.
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Figure 8.10: A progression generated by training the grammar in Table 8.4 on Bach 
chorales and using the simple, one-to-one mapping for Roman numerals.
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Figure 8.11: A progression generated from the same abstract progression at the T/S/D  
level as Figure 8.10, but using the stochastic, one-to-many mapping for Roman numerals.
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Num. Probability Rule
1 0.7 p  y t / 2  p / 2

2 0.3 p  j y t / A  y t /4  p / 2

3 0.7 IIP ->• IIP I2 V f ! 1
4 0.3 IIP -»  P/2 IIP>2
5 0 . 6 I V t  _> /V '/4  u p / *  p / t / 2

6 0.4 j y t  y t / 2 j y t / 2

7 0 . 2 V* _> p / t / 2  y t / 2

8 0.3 y t  Jp / 2  y t / 2

9 0.4 V{ - *  IIP
1 0 0 .1 V‘ VIP

Table 8 .6 : A small PTGG.

feasibility of learning PTGGs from corpera.

In the experiment presented here, a synthetic data set was generated using the rules 

shown in Table 8 .6 . A total of 1000 phrases was created using the PTGG rules and prob

abilities shown in Table 8 . 6  and the gen function from Chapter 5. Phrases were created 

using 4 generative iterations, a starting duration of 4w (a whole note in 4/4), and a mini

mum duration of a quarter note q.

Kulitta’s learning algorithm was run using samples of 100 phrases taken from the total 

set of 1000. Learning was considered complete when the change in probability mass from 

one iteration to another fell below 1% of the total (0.04, since the rules in Table 8 . 6  have a 

total mass of 4). Phrases were selected uniformly at random using a random number seed. 

Learning was repeated with five different samples from random number seeds 0 through 4. 

The results of this training are graphed in Figure 8.12. Finally, the average of the learned 

probabilities over all five runs was used to generate new musical phrases. Because the 

grammar in Table 8 . 6  will create new chords at every generative step, only three generative 

iterations were needed to fill 4 measures with a reasonable distribution of notes (compared 

to 8  iterations needed for the grammar in Tables 8.2 and 8.4, which have many productions 

of rank 1).
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8.2.1 Results

The learned production probabilities are shown in Figure 8.12. All runs of the learning 

algorithm converged to the same result rapidly. This is like due to the small rule set and 

the fact that the candidate grammar was, in fact, the grammar used to produce the data set. 

The learned probabilities differ from the probabilities shown in 8 .6 , but are nevertheless 

close for most of the rules. Some deviation is likely not just because of having a finite 

sample of data but also because the generative algorithm is not guaranteed to produce 

data with the exact ratios of rule applications as dictated by the production probabilities 

(due to psuedo-randomness and the fact that the data produced is finite). One significant 

deviation occurred: rules 5 and 6  have learned probabilities almost the reverse of those 

used to generate the data set. This is likely to be another artifact of the minimum duration 

threshold in the generative algorithm, since rule 5 (which produces 3 symbols) would be 

less likely to be usable further down in generation than rule 6  (which produces only 2  

symbols).

Musically, the results from this test are more dissonant than those from the Bach corpus 

with PCFG to PTGG conversion. This will be partly because the PTGG used for this exper

iment was designed mainly to test the learning algorithm rather than to model a particular 

type of music well. Cearly it would be preferable to perform learning on a corpus of real 

music rather than synthetic data in order to obtain results that match a particular style.

8.3 Conclusion

The results from the experiments in this chapter are promising, since they indicate that 

results that sound similar to those from the PTGGs in Chapter 4 can be obtained by learning 

production probabilities from a corpus of real, human-made music. The synthetic data 

experiment also serves as a proof of concept that PTGGs are feasible to learn when given 

suitable data.

149



1

■  U n ifo rm
■ SndO
■ Seed 1 
DSeed 2
■ Seed 3
■ Seed 4 
■Average (0-4) 
■Actual

Figure 8.12: Production probabilities for the PTGG shown in 8 . 6  using a corpus of major 
phrases generated from the same grammar. The graph shows the results of five different 
runs, each with a different seed for randomly selecting 100 data from the corpus. All runs 
were given uniform initial probabilities and ran until the change in distributions between 
iterations fell below 1% of the total probability mass. The “average” data series represents 
the average of all five runs and the “actual” data series shows the values used to generate 
the data set (from Table 8 .6 ).
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Figure 8.13: Phrase generated using the production probabilities in Figure 8.12.
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The various phrases generated after training show a clear need for a temporal element 

in the grammar and also a need for ways to control the number of produced chords—or, 

rather, a way to avoid being immediately funneled into a single-chord series of productions. 

PTGGs like those in Chapter 4 do this well, but parsing real music with them is tricky. 

Small amounts of noise in the analysis could easily render a phrase unparsable by a PTGG 

if the durations of chords were affected, whereas a more standard, non-temporal PCFG is 

able to handle these types of deviations with the inclusion of a few extra rules. Currently, 

this actually makes PCFG to PTGG conversion a somewhat more robust approach when 

trying to learn features from human-made music. However, learning a PTGG directly could 

be equally robust if error tolerance was built into the parsing process.
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Chapter 9 

Empirical Assessment

There are currently no standard metrics or experimental procedures for assessing the per

formance of automated composition algorithms, and there are many problems associated 

with creation of such tests. First, what does “quality” mean in the context of an automated 

composition algorithm? There are many possible interpretations of quality, such as how 

well a work adheres to music theoretic rules, whether it sounds convincingly like it was 

produced by a particular composer, whether it sounds human, or whether people simply 

“like” it.

If we are interested in a measure like “humanness,” who is to be the judge? For ex

ample, if the goal is to determine how well an algorithm can sound convincingly like J.S. 

Bach (without duplicating existing work), then the question must be asked: to whom is it 

convincing? The algorithm’s creator, an expert, an arbitrary other person, or some combi

nation of all of them? There is a tendency in the field of computer music to assume that a 

panel of music experts should always be used to determine whether an algorithm has met 

its compositional goals. However, there are some serious problems associated with having 

an algorithm be judged by such a panel.

Suppose we wish to evaluate whether an algorithm writes music that is in the style of 

J.S. Bach, but without duplicating existing work by the composer. The odds are stacked
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against the algorithm when viewed by a panel of experts, simply because the Bach’s corpus 

is both finite and well-known. Even if the algorithm produced something that Bach might 

have written, the mere fact that it is novel risks carrying a negative bias with an expert in 

Bach’s existing music. In order to gain an unbiased result, novel chorales by Bach himself 

would be required for anonymous comparison against those from the algorithm.

Expert analysis in these sorts of cases is clearly problematic. However, it is also not 

the only means of evaluation, particularly when the questions of interest are less composer- 

specific. If there is such a quality as how “human” a work sounds, it is not unreasonable to 

assume that non-experts should be able to pick up on it intuitively. This quality may even 

be a factor in the likability of a piece of music, or even inseparable from it. Both may be 

rooted to some degree in abstract structural elements, or the anticipation of what is to come 

next when listening to a piece of music [39].

Expert analysis can take place visually by reading a score, which seems appealing for 

testing algorithms that generate musical scores without their corresponding performances. 

Because of the expert-related problems in comparison against famous works, however, 

novel features may be unfairly punished for their novelty. On the other hand, a non-expert 

would be unable to analyze a printed score, and requiring the non-expert to listen to a 

performance of the work risks conflating compositional features with performance features.

9.1 Experiment Overview

We present an experimental format that attempts to mitigate the problems discussed so far 

and show results from a study using this approach. Using a structure similar to a Turing 

test [79], participants were asked to rate their confidence or belief that a musical phrase was 

written by either a human or a machine. To avoid the issue of bias against certain styles, 

participants were first shown examples of phrases created by both humans and computers 

in two contrasting styles, atonal and classical chorales. Phrases used as stimuli during
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the subsequent experiment came from three categories: (1) Kulitta, (2) a random-walk 

algorithm that will be referred to as Random, and (3) chorales written by J.S. Bach. These 

three phrase categories are referred to as “composers” for simplicity, despite the fact that 

two are algorithms.

The two computer composers, Kulitta and Random, utilized the same chord spaces 

and similar foreground algorithms. Phrases from all categories were rendered to audio on 

computer to ensure uniform performance features. Phrases used in the experiment were 

all four measures long, contained four voices, and were recorded at 1 2 0 bpm with virtual 

instruments for oboe, clarinet, English horn, and bassoon assigned to soprano, alto, tenor, 

and bass respectively. A small amount of reverb effect was added to make the recordings 

sound more natural, since the instruments could sound rather harsh when dry. All notes 

within each phrase assigned a volume of 127 (the maximum possible value in MIDI). This 

resulted in “flat” performances with no dynamics or tempo variation. Because these very 

mechanical performances could have impacted participants’ ability to judge the underlying 

scores, the presence of human-made phrases in the stimuli was important to serve as a 

sanity check. This also yielded a baseline measure of how confident the participants were 

that real humans were actually human under the particular performance conditions.

Two experimental conditions were used, and each only differed in the phrases taken 

from Kulitta. In the first condition, phrases were generated using hand-built PTGGs. The 

second condition featured phrases generated with models learned from Bach chorales as 

described in Chapter 7. The Bach and random phrases remained the same. Each partici

pant was only allowed to take a single survey corresponding to one of these experimental 

conditions.

Results were analyzed within each experimental condition to derive raw score distribu

tions for Bach, Kulitta, and the random-walk algorithm. Although the raw scores exhib

ited a bimodal distribution, mean scores by participant for each composer (Bach, Kulitta, 

and Random) exhibited a more typical normal distribution. T-Tests on these distributions
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shows that all three were distinct (using p  < 0 .0 1 ) in both experimental conditions, although 

Kulitta’s mean was closer to Bach’s than it was to that of the random-walk algorithm.

T-Tests comparing distributions for the same composer between experimental condi

tions showed that Bach’s distributions were not distinct (p  > 0.05). Therefore, Bach was 

rated consistently across both experimental conditions. Kulitta’s distributions between con

ditions were subtly different but still very similar, indicating that the learning approach 

performed roughly the same as the hand-built grammars. However, a T-Test of the two 

Random distributions fell under p  < 0.01, which indicates distinct distributions. Since 

Kulitta’s phrases were the only ones to change between experimental conditions, this dif

ference suggests that perception of Kulitta’s phrases may have impacted perception of the 

Random phrases.

9.1.1 Likert Scale

A Likert scale is a measurement strategy commonly employed in psychology experiments 

for measuring degree of agreement with statements. They are often used in situations where 

a binary classification such as “yes/no” or “agree/disagree” is considered to limited, such 

as when answers like “uncertain,” “no preference,” or “slightly agree” would be useful in 

addition to more extreme alternatives.

Participants in this experiment were asked to classify musical examples by using a 

Likert scale measuring confidence that an example was produced by either a human or a 

computer. The ratings used the 7-point scale shown in Figure 9.3. This type of scale was 

used because there is a potentially meaningful difference between someone being totally 

confident in a classification and merely leaning towards it but being forced to choose due 

to the limited options. If participants really are unsure of their choice, that information can 

be useful.

It was suspected at first that Kulitta might fail a more standard Turing test, and the 

binary classification used in a Turing test would remove some of the detail that could be
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observed from a Likert scale. One of the reasons it was assumed that Kulitta might not fare 

well in a more standard Turing test was the fact that the human examples used were not 

just human-made, but also the product of an expert human, J.S. Bach. In a classical Hiring 

test, participants would be asked to observe phrases from unknown sources (humans or 

computers) and classify them decisively as either human or computer.

A Hiring test to compare Bach and Kulitta is, in some ways, like a Hiring test for com

paring a primitive/early chess algorithm with known shortcomings against a Grandmaster. 

Obviously the bar is set quite high for the machine in such circumstances, since the ma

chine’s performance will inevitably be compared to that of the expert in successive trials. 

Therefore, if the goal is to determine whether the machine performs like an arbitrary hu

man, the test is really rather unfair. Nevertheless, even if Kulitta performed miserably when 

compared to human composers, the Likert scale would still provide more information on 

the algorithm’s performance than would be the case for a binary classification method.

To illustrate the information captured by a Likert scale that is lost with binary classifica

tion, consider two hypothetical algorithms, A and B. Suppose that both would both would 

fail a Turing test by being classified as a machine 100% of the time. That does not mean 

that the two algorithms performed equally during the test. In fact, the two algorithms could 

still show differences when using the Likert scale used in this experiment. If algorithm A 

scored closer to the middle of the scale (but still on the computer side) while algorithm B 

was classified firmly as a computer, that difference is meaningful and would indicate that 

algorithm A was closer to exhibiting human-like behavior than algorithm B. Using binary 

classification, there is no room to allow participants to express doubt or uncertainty in their 

answers, and so information on how swayed a participant is in one direction or the other is 

lost.
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9.2 Musical Phrases

A total of 40 phrases, all lasting about 10 seconds, were recorded for this experiment. 10 

phrases were taken from Bach chorales, 10 from the random walk algorithm, and 20 from 

Kulitta. Kulitta’s phrases occupied the majority of the examples because Kulitta has a fairly 

diverse range of behavior. Therefore, it was important to try to capture a representative 

sample while keeping the total number of trials reasonable, since long experiments can 

cause participants to become frustrated, bored, or otherwise fatigued.

9.2.1 Phrases from Kulitta

Two versions of Kulitta were tested: one using hand-built grammars and one trained on 

Bach chorales. Both versions used the same OPC-space for four voices (using the ranges 

shown in Table 9.1) and the simple foreground algorithm described in Chapter 6  to add 

melodic elements in a classical, chorale-like style.

In both cases, Kulitta used a minimum duration of a quarter note to generate abstract 

structure for 4-measure long phrases with a 4/4 meter. Additionally, the starting structure 

of the phrase was also varied uniformly at random to be one of the following, where w 

indicates a whole note (the duration of one measure in 4/4):

•  I4w

•  / 2w / 2kv

•  Letx =  / 2w inxx

The bass was forced to double either the root or the fifth for major and minor chords and 

the root for diminished chords. This was accomplished by using a single-chord predicate 

that checked for OPC-equivalence to (x,x,x + m,k + l) , (x,x+m ,x + l ,x  + 7), or (jc,x,x+ 

3,jc +  6 ) for x  6  [0,11] and m e  {3,4}. OP-space mapping was done using greedyProg' 

from Chapter 5 and a filter over equivalence classes that selected for the bass doubling the
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Voice Pitch number range Pitch range in Euterpea
Soprano [60, 81] (C,5) to (A,6 )

Alto [52,76] (E,4) to (E,6 )
Tenor [47,67] (B,3) to (G,5)
Bass [40,60] (E,3) to (C,5)

Table 9.1: Voice ranges used for Kulitta’s phrases. “Middle C” or (C, 5) is pitch 60.

root only with 80% probability. Foregrounds were added to the phrases using the classical 

foreground approach described in Chapter 6 . Phrases were generated in both major and 

minor. In each condition (hand-built vs. trained), 10 major and 10 minor examples were 

taken. Of each modal group, 8  progressions ending on I and 2 progressions ending on V 

were selected at random.

Phrases from Hand-Built Grammars

Two hand-built rule sets were used: the rule set shown in Table 4.2 and an additional rule 

set modified to end on V instead of I. This additional V-ending rule set was added because 

some of the phrases taken from Bach chorales ended on V. For each mode and grammar, 

20 phrases were generated, each with a different random seed. A home key was chosen 

uniformly at random for each abstract phrase. From the total of 80 phrases generated, 

a smaller sample was selected for the experiment. This smaller sample consisted of 16 

phrases ending on I, half of them major and the other half minor, and 4 phrases ending 

on V, again half major and half minor. Within each ending/mode category, phrases were 

randomly chosen out of the 20 that were generated. Details on the distribution of starting 

structures can be found in Table9.2.

Phrases from Trained Model

Kulitta was trained on Bach chorales using the approach described in Chapter 7 that used a 

3-letter alphabet: T (tonic), D (dominant), and S (subdominant). Alphabets were expanded 

to Roman numerals using the one-to-many approach described in Chapter 7 to obtain a

158



Mode Ending type Starting Structure Hand-Built Phrases Trained Phrases
Major I j4w 1 2

Major I j lw  j lw 6 5
Major I L etx = I2w in x x 1 1

Major V j lw  j lw 2 2

Minor I jAw 1 2

Minor I j lw  jlw 3 2

Minor I Letx =  / 2winxx 4 4
Minor V jAw 1 0

Minor V j lw  jlw 1 1

Minor V LetJc =  /2H,inxx 0 1

Table 9.2: Distribution of starting structures in Kulittas phrases for emperical evaluation.

Jj; j — ---------- —

m - = 3 =

—n — — -------

- J -------- d ---- d ----
--------■— * — j —

9  J— J----------

----- a------------*—

-J— J-------

k j ^ - f  r  A

j  j  J ;

y  *1 'J--------------------------

3 1 = = ^ = ^ = =
4- d ...r  J  -

L S  ^  ^.... f  -■

----------

Figure 9.1: An example of one of the phrases used in the experiment that was generated by 
Kulitta using a hand-built grammar. It is in G-major and uses the grammar from Table 4.2, 
ending on I.

Figure 9.2: An example of one of the phrases generated by the random walk through chord 
spaces.
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distribution of Roman numerals similar to that of the training data. Once mapped to an 

expanded set of Roman numerals, the phrases were interpreted in the same way as those 

from the hand-built grammars, using the same chord spaces and foreground algorithm.

9.2.2 Randomly Produced Phrases

The Random phrases were intended to provide another computer-generated point of com

parison, but using a simpler approach than Kulitta. Instead of using a grammar as the 

source of abstract harmonic structure, the algorithm performed a stochastic walk through 

the chorale chord space described in section 9.2.1 using the greedy algorithm described 

in 5. This resulted in very dissonant phrases, since they were created with no notion of 

key. Foreground elements were added stochastically using an approach similar to the one 

described in Chapter 6  for classical foregrounds, but without the scale-related constraints 

on choosing non-chord tones as foreground elements.

The main difference between Random and Kulitta is in the abstract musical structure: 

Kulitta’s phrases have a hierarchical structure, while Random’s did not. The Random 

phrases were texturally similar to Kulitta’s phrases due to the similar foreground algo

rithm. However, they differed sharply by the lack of a clear tonal center and therefore more 

diverse transitions between chords. An example of a randomly-produced phrase can be 

seen in Figure 9.2.

9.2.3 Phrases from Bach Chorales

A set of 10, 4-measure-long phrases were taken from some Bach chorales and are listed 

in table 9.3. Most of the phrases ended on I, but some did not. Chorales and individual 

phrases were selected by the author with a few selection criteria: chorales needed to be in 

4/4, have at least one 4-measure phrase, and relatively simple foregrounds (i.e. no trills) 

that were texturally/rhythmically similar to the Kulitta and Random phrases.
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Phrase BWV Number
1 1 2

2 18
3 39
4 67
5 293
6 293
7 334
8 64
9 1 0 1

1 0 1 0 1

Table 9.3: List of Bach phrases showing source chorale numbers.

9.3 Experimental Procedure

The experiment was run online and implemented using a combination of Javascript, PHP, 

and HTML5 to control transitions between stimuli, randomize the order of the audio ex

amples, deliver audio in an automated way, and record participants’ responses. The ex

periment’s interface was a slideshow-like format where participants were moved from one 

screen to another either automatically or when clicking a button.

The experiment was run using Amazon Mechanical Turk[10, 40, 72] (MTurk) as a 

source of participants. Data from a total of 237 participants was obtained on MTurk, which 

121 in the first category (Kulitta with hand-built PTGGs) and 116 in the second (Kulitta 

trained on Bach chorales). Participants in this study had various levels of education and 

musical training, were taken from the United States only, and included non-composers as 

well as some composers.

After viewing the consent form, participants first entered their MTurk ID and then 

pressed a button to continue. They were then given another button to press to play a sound, 

specifically a chord produced by the virtual woodwind instruments at MIDI volumes of 

127 each. They were asked to adjust the volume of their audio system using this chord as a 

reference. Participants had to press the button to hear a sound at least once before continu

ing, but had the option to press the button as many times as needed for volume adjustment.
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Style Human Phrase Source Computer Phrase Source
Atonal “Six Little Piano Pieces: 

Rasch, aber Leicht” by Arnold 
Schoenberg

An L-System similar to those in 
Euterpea

Chorale A chorale by J.S. Bach (BWV 
NUMBER)

A chorale by David Cope’s 
artificial intelligence algorithm, 
Emmy [23]

Table 9.4: Labeled examples presented to participants at the beginning of the experiment.

After the volume setup was complete, participants were taken to a set of labeled examples 

that were not part of the experimental trials.

Labeled Examples

After the volume adjustment step, participants were given four example phrases to listen to 

in two different styles: modem/atonal and chorales in the style of J.S. Bach. The purpose 

of these examples was to encourage listeners to think about the diversity of results they 

might encounter in the experimental trials and to be aware that more than two distinct 

sources of music could be involved. The examples were labeled truthfully as being written 

by either a computer (algorithm) or a human, but only to that level of detail—information 

on authors and composition titles were not included. All examples were approximately 

the same length (about lOsec) and rendered to audio using a virtual piano instrument. The 

virtual woodwinds were not used because not all of the examples contained exactly four 

voices. The examples are described in Table 9.4. Once all four examples had been played 

at least once, participants were allowed to continue to the series of 40 experimental trials.

Experimental Trials

Following the training examples, participants were instructed that they would be given 40 

phrases to listen to, would only be able to listen to each phrase once, and would rate their 

confidence that each was written by either a human or a computer. Participants were asked 

to rate examples quickly after hearing them while the examples were still fresh in their
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Rate Phrase 1

Absolutely Probably Maybe Unsure Maybe Probably Absolutely 
b iiuii human humau waip sw wnwpsw rn«wp ^ «

[ Contaiua |

V_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ )

Figure 9.3: An example screen shot from the experiment. Having just heard a phrase (in 
this case the first phrase of 40) participants were asked to rate it using a 7-point Likert scale.

minds. Phrases were played automatically; once playback had finished, participants were 

asked to rate the example. Participants had to select a rating in order to continue to the next 

example by pressing a button. The rating could be changed as many times as desired before 

continuing. The scale presented is shown in Figure 9.3.

For each phrase in the experiment, the following items were recorded and written to a 

file:

•  Loading time of the page playing the phrase

•  Trial number

• Audio file played

•  Rating given by the participant

Ratings were recorded using a scale of 0-6 corresponding to the labels shown in Figure 

9.3, where 0 was “absolutely human” and 6  was “absolutely computer.” The loading time 

of the first page of the survey was also recorded to be able to compute the total time spent 

on each of the 40 phrases. After listening to and rating each of the 40 phrases, participants 

were asked to complete a short survey on demographics and musical background.
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Participant Demographics
Value Condition 1 Condition 2

Minimum Age 
Maximum Age 
Average Age

19
67
35
65
48

1

7

20
74
35
67
49
0

0

Male 
Female 

Other Gender 
Undefined Gender

Table 9.5: Basic demographics for participants by experimental condition. The “undefined” 
cases in condition 1 were due to a browser compatibility-related data collection problem on 
one of the pages of demographics questions (all other data for the experimental trials was 
still recorded for these participants)

Demographics and Musical Experience

Standard demographics were collected for participants along with information on their mu

sical training. Demographics information was collected on age, gender, ethnicity, nation

ality, first language, and highest level of education. Musical background information col

lected included whether the participants played an instrument, how many years of musical 

training they had, and whether they had taken a music theory course.

A total of 237 people participated in the experiment on MTurk. 121 participants took 

the experiment under condition 1 , where Kulitta’s phrases were generated from hand-built 

grammars. The remaining 116 participants were in condition 2, where Kulitta used a gram

mar with production probabilities derived from Bach chorales. Some basic demographics 

are summarized in Table 9.5.

Participants took an average of 18.2 seconds per trial. Participants in condition 1 (121 

participants) took an average of 18.4 seconds and those in condition 2 (116 participants) 

averaged 18.0 seconds. In addition to time spent making a decision, this number includes 

the 1 0  seconds during which the trial’s phrase would be played along with any additional

9.4 Results
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Distribution of Ratings (Condition 1)
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(0 = Absolutely Human, 3 = Unsure, 6 = Absolutely Computer)

Figure 9.4: Distribution of raw scores for condition 1 of the participant study (hand-built 
grammar).

latency factors, such as a slow connection causing delays when loading audio files. Sub

tracting the playback time, this means that participants took an average of 8.2 and 8.4 

seconds to respond to each trial, which is relatively fast.

A summary of raw scores as a histograms is shown in Figures 9.4 and 9.5. Participants’ 

average scores for each composer are shown as a histogram in Figures 9.6 and 9.7. Both 

representations show that there are differences in the scores for each musical source, but 

the patterns exhibited by the Bach and Kulitta scores are more similar than either is to the 

random walk.

Table 9.6 shows p-values from performing a paired, two-tailed Student T-Test on the 

averages of participants’ scores for all three categories. All comparisons are statistically 

significant (p < 0 .0 1 ), indicating that the three categories of music yielded distinct distri

butions of scores.

As expected, the Bach phrases’ scores averaged closest to 0 (“absolutely human”) and 

Random’s scores averaged closest to 6  (“absolutely computer”) with Kulitta’s results falling 

in the middle. Overall average scores for each composer are shown in Table 9.7. Notably, 

Kulitta’s scores fall much closer to Bach’s than to the random walk’s. Music training
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Distribution of Ratings (Condition 2)
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Figure 9.5: Distribution of raw scores for condition 2 of the participant study (trained on 
Bach chorales).
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Figure 9.6: Distribution of average scores for condition 1 of the participant study (hand- 
built grammar).
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Figure 9.7: Distribution of average scores for condition 2 of the participant study (trained 
on Bach chorales).

T-Test Comparisons
Condition Random/Bach Bach/Kulitta Random/Kulitta
1 (Hand-Built) 4.83 x lO" 20 1.06 x l0 “ 5 1.14 x lO " 22

2 (Trained) 1.07 xlO " 11 4.70 x 10~ 7 7.24 x 10~n

Table 9.6: P-values from paired, two-tailed T-Tests to compare average scores of each com
poser. All fall well below the typical threshold of p  < 0.01, indicating that the distributions 
are different.

and music theory training showed no correlation with the average scores given to each 

composer (R2 < 0.1 for all comparisons).

T-Test comparisons of each composer to itself across the two conditions are shown 

in Table 9.8. As seen in the table, Bach was scored consistently (a large p value), but 

the Random distribution changed {p < 0.01). It may be that the differences in Kulitta’s

Average Scores 
Condition Random Kulitta Bach
1 (Hand-Built) 4.09 2.67 2.32
2 (Trained) 3.70 2.80 2.39

Table 9.7: Average scores for each composer across all participants. Kulitta averaged both 
on the human side of the scale (< 3.0) and closer to Bach than to Random. Kulitta and 
Bach differed by 0.35 and 0.41 in conditions 1 and 2 respectively. Kulitta and Random 
differed by 1.42 and 0.90, and Random and Bach differed by 1.77 and 1.31.
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Within-Composer T-Tests
Bach 0.506
Kulitta 0.0413
Random 0.00748

Table 9.8: T-Test comparison of composers across experimental conditions. Large p val
ues are not considered significant. The results indicate that Bach was scored consistently, 
while there is a clear difference (p < 0.01) for the Random distributions between the two 
experimental conditions. Kulitta’s distributions may or may not have been different.

behavior from one condition to the other (hand-built vs. trained on Bach chorales) affected 

participants judgments of the Random cases. In the second condition (trained on Bach 

chorales), Kulitta exhibited some strange chord transitions that, to the author, did sound 

somewhat more similar to the Random phrases than was the case in the first condition. 

In other words, when the version of Kulitta trained on Bach chorales made a “mistake,” 

it created chord transitions that were perhaps more similar to the Random phrases than 

when non-learning version of Kulitta made a mistake. Whether Kulitta’s score distributions 

differed between the two experimental conditions is somewhat unclear. While the p -value 

of 0.0413 is within the standard of p  < 0.05 used in many psychology studies, it is very 

close to the threshold and not nearly as strong an effect as exhibited in Table 9.6 (p < 0.01 

in all cases).

9.4.1 Discussion

Kulitta’s phrases performed surprisingly well in this experiment. The fact that Kulitta av

eraged on the human side of the scale suggests that the system may have passed a more 

standard Turing test with a binary answering scheme rather than a Likert scale. However, 

the Likert scale provided important information about Kulitta’s performance that would 

have been lost with a binary system. Kulitta’s placement relative to the Bach and Random 

scores shows that, although Kulitta was clearly more similar to Bach, there is plenty of 

room for improvement.

Some interesting observations can be also be made about the other two composer’s
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phrases from this experiment. Although lowest-scored on average (most human), Bach’s 

phrases did not score consistently on the human side of the scale and some phrases scored 

consistently higher (more computer-like) than others. It may be that, as suspected before 

the experiment was run, that the “flat” or un-expressive performance of the phrases led to 

participants doubting that some Bach phrases were written by a human. Alternatively, it 

may be that a lack of larger context for the phrases makes them more difficult to interpret. 

These hypotheses could be tested using experimental designs similar to this one.

The random phrases had the highest scores on average (most computer-like), which was 

expected given the lack of structural consideration when generating the phrases. However, 

the phrases did have a similar texture to the Bach and Kulitta phrases as well as brief pas

sages that were more tonal-sounding purely due to chance. As a result, it is not surprising 

that there was a range of scores for the random walk phrases that sometimes wandered onto 

the human side of the scale.

An unexpected outcome of the study was the bimodal nature of the Likert scale scores, 

even though the distribution of averages was still normal. Although avoiding the extreme 

ends of a Likert scale is a well-known phenomenon, avoidance of the middle suggests that 

the scale may have actually functioned as two separate Likert scales joined at the middle. 

Further testing would be needed on the exact wording and organization of the rating system 

to determine whether this was the case.
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Chapter 10

Conclusion

Kulitta is a modular framework for automated composition that has demonstrated po

tential with two distinctly different styles of music. Kulitta breaks down the composi

tional process into a series of generative steps using musical grammars, chord spaces, 

and constraint-satisfaction algorithms before adding style-specific foreground elements— 

melodic and rhythmic features as they would appear on a musical score. Kulitta also fea

tures a learning module that allows production probabilities for a musical grammar to be 

learned from a corpus.

10.0.2 PTGGs and Chord Spaces

PTGGs are a new category of musical grammars that use an alphabet of chords parameter

ized by duration, resulting in an alphabet that is technically infinite. This parameterization 

allows a PTGG to capture both abstract harmonic structure as well as metrical constraints. 

Rules are functions of duration that can exhibit conditional behavior as well as modal con

text sensitivity. PTGGs also have a feature that is normally associated with programming 

languages: let-in expressions that capture the notion of repetition through variable decla

ration and instantiation. This helps to capture an aspect of self-similarity in music that is 

missing from many other proposed musical grammars. While the features of PTGGs in
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crease parsing difficulty, parsing data with them and learning production probabilities for 

their rules (which are really functions) is still feasible.

With a very simple generative algorithm similar to what would be used for an L-System, 

PTGGs are able to generate abstract harmonic structure in music that is suitable for a variety 

of styles of music. The conditional behavior of the rules both helps to reduce redundancy 

in the rule set as well as ensuring a reasonable distribution of durations. When combined 

with chord spaces and constraint-satisfaction algorithms, PTGGs can be used to create a 

complete musical score.

Chord spaces are a way of grouping chords (collections of pitches) in musically mean

ingful ways. Mathematically, they are the result of applying an equivalence relation to a 

set of chords to form a quotient space (a “gluing together” of related points). Many chord 

spaces can be defined according to music theoretic concepts and geometric transforma

tions. Kulitta makes use of several different chord spaces to convert abstract progressions 

from PTGGs into concrete chord progression for both Western classical music and jazz. 

This transformation from abstract to concrete is a path-finding problem that requires a 

constraint-satisfaction algorithm to capture desirable musical behaviors.

10.0.3 Constraint Satisfaction

Constraint-satisfaction algorithms are needed to turn abstract progressions from PTGGs 

into concrete chords while enforcing the presence or avoidance of various concrete musical 

features. For a classical chorale, voice-leading should be relatively smooth and both paral

lel motion and voice-crossing should be strictly avoided. Some of these constraints can be 

captured by filtering the quotient space before it is traversed, but others such as those con

cerning pairs of chords (as is the case for avoiding parallel-motion and large leaps) require 

satisfying constraints during path-finding.

Kulitta’s constraint-satisfaction techniques are rather basic: depth-first search; a single

pass, greedy search; and a search for satisfying let expressions. These algorithms perform
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well on fairly simple musical constraints, such as voice-leading constraints characteristic 

of chorales. However, the harder musical constraints become to satisfy, the more these 

algorithms become intractable, in the case of the depth-first and let-satisfying searches, or 

unlikely to find a good solution in the case of the greedy algorithm.

The main benefit of Kulitta’s greedy search is that it runs quickly, fast enough that it 

is possible to use in an interactive setting. It will also always produce a result, even if 

that result violates some constraints. On the other hand, the other two search strategies, 

which are fundamentally depth-first, are unsuitable for any sort of application where a 

solution must be found rapidly. They might get lucky with a particular chord space and 

find a solution quickly, or they might end up searching through billions of solutions when 

a perfect solution may not even exist.

The time vs. quality trade-off of producing a quick but imperfect result or performing a 

slow search for a perfect solution are far from unique to music. It is a problem that plagues 

any area of computer science with a large search space. Many decision-making problems 

in AI suffer the same trade-off, and the problem is amplified in a real-time setting.

10.0.4 Music Generation

Kulitta is able to generate chorale-like, classical music in a style resembling J.S. Bach by 

using PTGGs derived from existing analyses of Bach’s work, chord spaces, and a fore

ground algorithm to add basic melodic elements such as passing and neighboring tones. 

The system’s modularity allows for the style of music to easily be changed by utilizing 

different chord spaces and a different foreground algorithm. Jazzy harmonies can be pro

duced by either reinterpreting classical progressions or mapping Roman numerals through 

a mode space with jazz chord templates and then through OPC-space for some number of 

voices.

One of Kulitta’s notable features is the ability to blend styles through the use of dif

ferent chord spaces and foreground algorithms. Kulitta’s modularity allows for multiple
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chord spaces to be combined in different ways and for foreground algorithms to be used 

interchangeably. For example, a “jazz chorale” can be created simply by passing through 

an additional chord space, mode space, between the classical chord space and classical 

foreground steps in generation.

The generative algorithms used by Kulitta suffer from one major limitation: they must 

always move forward and produce a result. In some ways, this makes a qualitative com

parison against human-made music exceptionally difficult for Kulitta, since humans are 

generally not held to the same, linear type of workflow. Consider writing a lengthy passage 

of text with a pen and paper in one pass. Mistakes in the result will obviously be more 

likely under those constraints than if the same task was performed with a pencil, eraser, 

and proof-reader. In general, outside the special settings such as academic exams, humans 

working at the level of a paper score—or a passage of text—are free to abandon partially- 

complete work when it becomes problematic. Human composers can also rework ideas 

multiple times in the process of trying to create a desirable result, just as a writer will iter

atively edit wording and punctuation. Kulitta does not currently have this luxury, and the 

compositional process for every given random seed must be carried through to completion 

in a single pass. It is therefore not at all surprising that there is a fairly wide range of quality 

in the output.

10.0.5 Learning

Kulitta uses an extended version of the inside-outside algorithm to learn musical PCFGs as 

well as PTGGs. The inside-outside algorithm must be modified to handle rules of higher 

rank (the number of symbols on the right-hand side of rules) and to handle the distinction 

between rule functions and rule instances that exist for PTGGs. The latter is done by the 

use of an oracle that allows a CYK-style parse table to be derived for a particular category 

of grammars.

Learning for musical PCFGs was tested by using a corpus of major phrases from Bach
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chorales using modified and simplified versions of Rohrmeier’s grammar for harmony [67]. 

Production probabilities for this grammar were iteratively re-estimated until the change in 

probability mass fell below a 1% of the total. The average of five runs of the learning 

algorithm over different subsets of the Bach corpus was used to generate new phrases of 

music. To do this, the PCFGs were converted to PTGGs by three different means. Although 

phrases generated by two of those approaches suffered problems related to the PCFG’s lack 

of support for metrical structure, the third produced phrases that were qualitatively very 

similar to those produced by the hand-built grammars described in Chapter 4.

As described in Chapter 7, PTGGs have difficulty parsing real musical data. This is due 

to the strict nature of the temporal divisions of PTGGs like those in Chapter 4. Musicians 

are rarely to strict with their temporal decisions, so training data would either need to be 

coerced into a suitably strict form or the temporal constraints of the PTGG would need to be 

softened during the parsing process. In the absence of such heuristics, it was not possible to 

test a PTGG with the Bach corpus. Instead, the performance of the learning algorithm was 

evaluated using a synthetically generated data set, supplying the same PTGG to the learning 

algorithm that was used to generate the data set but with uniform initial probabilities instead 

of the actual probabilities used to generate the data set. In general, the actual probabilities 

were recovered successfully, with exceptions likely being due to deviations introduced by 

limitations on the generative algorithm.

10.0.6 Empirical Assessment

A participant study was designed and conducted on Amazon’s Mechanical Turk to evaluate 

Kulitta’s performance compared to J.S. Bach and a random walk algorithm. Participants 

were asked to listen to a random permutation of 40 phrases (10 from Bach, 10 from the 

random-walk, and 20 from Kulitta). After hearing a phrase, participants were asked to 

rate their confidence or belief that the phrase was written by a human or computer using a 

7-point scale from “absolutely human” to “absolutely computer.”
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The results of the study showed that Kulitta performed quite well, averaging on the 

human side of the scale used, although still close to the middle of the scale. Kulitta scored 

more similarly to Bach than to the random walk algorithm. So far, only Kulitta’s chorale 

phrases have been evaluated using this empirical approach. Whole pieces as well as other 

styles, such as jazz or perhaps more complex styles of classical music, should eventually 

be evaluated in a similar manner.

10.1 Future Work

Figure 10.1 shows an example of possible improvements to Kulitta’s workflow. Both the 

generative and learning aspects of Kulitta have many avenues of possible future work: 

handling more musical features in PTGGs, improved constraint-satisfaction algorithms, 

and learning new musical features.

10.1.1 PTGGs and Constraint Satisfaction

The grammars used in Kulitta, PTGGs, have the potential to be expanded to include rep

resentations of more musical features. Currently only repetition is captured, but other con

cepts such as variations and perhaps other musical transformations such as retrograde and 

inversion could also be added. Context-sensitivity may also be useful in avoiding undesir

able harmonic transitions.

Kulitta’s constraint satisfaction algorithms are currently somewhat basic, with the greedy 

approach, greedyProg, being the only stochastic search. In artificial intelligence, stochas

tic search algorithms are often employed as a means to traverse large solutions spaces that 

would otherwise be very difficult to traverse in a depth-first manner. Tactics like simu

lated annealing (such as the approach used in Boltzmann machines [4,5]) and Monte Carlo 

search [8 ] may yield better performance over large chord spaces than Kulitta’s current 

search methods.
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It would also be useful to allow some sort of bi-directional workflow during generation. 

Given an analysis algorithm to detect problematic musical features, the overall quality of 

Kulitta’s results could obviously be raised if random number seeds that produced unde

sirable results could be identified “thrown out” at the first sign of a problem rather than 

pressing ahead to try to turn them into concrete music. Similarly, introduction of a back

tracking approach to rework ideas that only have minor problems would allow for improved 

performance.

10.1.2 Learning New Musical Features

Kulitta’s learning component has the potential to be greatly expanded. It would be ideal 

to learn more musical features than just production probabilities for an existing grammar. 

The most obvious extension would be to learn the grammar itself, deriving a candidate 

collection of rules from a corpus for which production probabilities can be learned using 

the same data.

Additional chord spaces would also be useful to learn from data sets rather than being 

defined by hand. For example, Bach sometimes used altered versions of triads that, if 

analyzed to the correct Roman numeral, are not currently possible for Kulita to create due 

to the particular chord spaces used during generation1. Approaches similar to that of Quinn 

and Mavromatis to learn harmonic function [65] or White for chordal alphabet reduction 

[82] could be used to accomplish this. Chord substitution in jazz is another example of a 

feature that may be possible to learn from a data set and would likely be best modeled in 

a way similar to mode space, by tagging chords with additional contextual information. It 

may also be useful to learn weights or probability distributions over chord spaces to favor 

some chords over others during generation.

The ability to learn foreground behavior would also be a beneficial extension to Kulitta,
1. Diminished chords, II in a minor key and VII in a major key, often sound inappropriately used in Kulitta’s 

progression. This is probably due to the chord spaces not containing more style-appropriate versions of those 
chords.
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Figure 10.1: An example of a possible extension to Kulitta, featuring a more extensive 
learning component and backtracking or bidirectional workflow between the generative 
steps. Bold lines indicate new features that are not currently included in Kulitta.

since defining individual styles by hand is both time-consuming and difficult to do in a gen

eralized way. This would require new data sets and new analysis algorithms to effectively 

handle different types of music.

Finally, patterns of repetition and variation are an important part of musical styles. 

There are key differences at this level between, for example, a fugue and a rock song. 

In addition to learning style-specific behavior at the foreground level to produce style- 

appropriate phrases, it would be useful to identify larger-scale developmental patterns that 

can be used as starting patterns for generation with a PTGG or similar type of grammar.

Because of music’s similarity to spoken language, other learning approaches used in 

computational linguistics may be relevant to musical data. Some of the additional musical 

features mentioned so far may be best learned using algorithms intended for text processing. 

For example, phrase detection is a shared problem between the two types of data.
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10.2 Concluding Remarks

Kulitta serves as a useful hypothesis testing mechanism for modeling musical constraints 

and examining candidate grammars for harmonic structure, since Kulitta can act in both 

an analytical and generative capacity. Kulitta also serves as a way to generate new and 

interesting music based on a user-supplied description of the constraints and style. That syle 

may be something well-known, or something new—even something totally unexpected. 

Used as a coding framework, Kulitta provides an interesting and unique way to compose 

novel works by writing a high-level or abstract description of the structure, which Kulitta 

then instantiates. Overall, Kulitta is a promising automated composition system whose 

strengths are “her” modularity and adaptability.
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Appendix A

OPTIC Proofs

This appendix contains supporting proofs for the OPTIC normalizations, tests for equiva

lence, and group properties. Recall the following notations used in Chapter 3:

• Function composition: (fa • / i )* =  fa(fa(x))-

•  Function equality: fa =  fa. This means that fa and fa will have the same input/output 

mapping even if their definitions and/or complexities are different.

•  Vectors: x =  (xi,...,x„).

•  Vectors created from a constant: k'1 =  (k,

•  Addition of two vectors: x+ y  = (xi +yi, ...,xn +yrt)-

•  Adding a constant to a vector: x + k =  (jq + k)...,xn + k).

•  Vector concatenation: (x\,...,xn) -B- (yi,...,ym) =  (x\,...,xn,y\,...,ym)

Additionally, the notation 3! is used to denote unique existence.
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A.l OPTIC Normalizations

Recall the properties in Definition 2 from Chapter 3. For a function, / :  S - t  S' C S, to be a 

normalization for an equivalence relation, R, two properties must hold:

1. Vx€S,  x ~ Rf(x)

2. Vx,y € S, x y <— ► /(x) =  /(y)

The normalizations for 0-, P-, OP-, OT-, PT-, PC-, and OPC- are simple and follow 

from basic properties of the symmetric group (permutations) and simple arithmetic on vec

tors. This section gives proofs that the two properties above exist for each normalization 

discussed in Chapter 3 for which a proof was not already given in the chapter.

Theorem 5. normO{x i, ...,*«) =  (*i mod 12, ...,xnmod 12) is a normalization for O-equivalence.

Proof. Recall that octave equivalence is defined as follows. 

x x ■+• 1 2 i, i £

This is related to the division algorithm, which is defined by Kenneth H. Rosen [71] as 

follows:

Let a be an integer and d a positive integer. Then there are unique integers q 

and r with 0 ^ r < d ,  such that a = dq + r.

In this algorithm, r = a mod d is the remainder. The normO operation is performing 

this operation field-wise on a vector, where d =  1 2 : 

a =  \2q + r 

or:

r = a - \ 2 q

Since r =  normO(a) is equivalent to an octave shift operation, we know that the first 

normalization property holds: x normOx. The division algorithm also means that any 

y € Z" can be defined as:
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y = x + l 2 i , x e  [0,11]",/€ Z "

We can now use this to rewrite the definition of octave equivalence. First, we will start 

by relating rG  [0 , 1 1 ]” to two arbitrary other vectors. 

x + l 2 i ~ 0 x ~ o x + 1 2 l  *g [0 , 11]"

Now, because equivalence relations must be transitive, we can drop the x in the middle.

x +12 i ~ 0 x +12j , x € [ 0 , l l ] n

To show that octave equivalent vectors normalize to the same value, we can show that

for a particular x = (xj ,...,xn) and an arbitrary 7 = (i'i,..., /„), normO(x+127) = x. 

normO((l2ii + xi,...,l2 in+xn))

=  ((12ii + * i) mod 12,..., (12i„ +x„) mod 12) Definition of normO.

= {xi,...,xn) Simplification.

For y — x+ \2 i and z= x ' + l2 j  where x,x! G [0,11]", we therefore have the bi-implication:

y ~ o z  <— > normO(y) — normO (z)- Therefore, normO is a normalization for octave equiv

alence.

□

Theorem 6. normP{x\ =  sort(x\ , ...,xn) is a normalization for P-equivalence.

Proof. The proof of this property follows trivially from the fact that sorting a vector of 

integers in ascending order produces a sorted multiset. Since sorting algorithms form per

mutations, x ~ P normP(x) holds. If two vectors are permutations of the same multiset, 

they must have the same value when those elements are sorted in ascending order1. There

fore, we have that x  ~  y <— > normP(x) =  normPiy), making normP a normalization for 

P-equivalence. □

1. Note that there is more than one permutation that will sort a vectors with fields that have duplicate 
values. However, this does not matter, since all of the possible sorted permutations will have the same vector 
value. For example, there are two permutations that will sort (1,0,0), but both will produce the same value: 
(0, 0, 1).
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Theorem 7. normOP = normP • normO is a normalization for OP-equivalence.

Proof. First, the property that x ~op normOP(x) is easy to show by transitivity. 

x ~ 0 normO(x) normP(normO(x))

We can observe a similar, more general relationship using the definitions of O- and 

P-equivalence.

x x -J-1 2 / ~p ct(x +  1 2 i), (€  Z”, o  € Sn

The middle term can be removed by transitivity, giving the following definition of OP- 

equivalence:

.x 0 ,(jc+ 12l), i € Zn, o  € Sn

Using transitivity, properties of the division algorithm described in the proof for normO, 

and properties of permutations, we can assert the following:

Vy€ Z", 3<y 6  S/i, 3!/<EZn, 2 €[0,11]", \ y =  ct(1 2 T+x)

This allows the previous definition of OP-equivalence to be re-written. 

o(12i+x) ~ 0p<j/(12j+x),  ^ e  [0 , 1 l]n, x = sort(x), i , J e Z n, a , a ' e S „

Note that x is the representative point for an OP-equivalence class. We can now show 

that, for a particular, sorted x e  [0,11]", an arbitrary 7 e  Z", and an arbitrary o  £ Sn, all 

vectors of the form a ( x + 12T) will be mapped to x  by normOP.

normOP(o(12i+2))

=  sort(normO(o(12i+x))) Definition of normOP.

=  sort{normO(\2(a(i)) +  (t ( x ) ) )  Property: cr(12T-l-jc) =  12<r(i) +  <r(3c)

=  sort(cr(x)) Application of normO.

=  sortQc)) Property: sort(o(x)) =  sort(x)

= x x € [0 , 1  l]n is already sorted.

For two vectors, y =  cr(127+jt) and z =  <t'(12/+j?), we have the bi-implication: 

y ~ op z *— ► normOP(x) = normOP(xf). Therefore, normOP is a normalization for OP- 

equivalence. □
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Note that normO ■ normP is not a normalization for OP-equivalence. For example, con

sider (0,4,7) ~op (60,4,7). The two vectors, (0,4,7) and (60,4,7), should normalize to 

the same value (as they would with normOP =  normP • rtormO). However, 

normO(normP((0,4,7))) — (0,4,7) while normO(normP((60,4,7))) =  (4,7,0).

Theorem 8 . normOT =  normO normT is a normalization for OT-equivalence.

Proof Recall that normT ((xi,...,xn)) = (.x\ -x \ , . . . ,x n- x \ ) .  We know that x ~ar normOTx 

because of the following relationship: 

x normT(x) ~ o  normO(normT(x))

Similarly, we observe a more general relationship. 

x x  + 1 2 * ~ 7’ x + 1 2 /+  *, i 6  k G Z 

Because of transitivity, the middle term can be removed. 

x ~ o r x  +  12i +  k, i ^ l P ,  JfcGZ

Using properties of the division algorithm and addition, we can make the following 

assertion.

VyeZ", aiTeZ", *€[0,11], X€(0)-H- [0,l l] " -1, jc+ * € [0 ,ll]n I y =  3c+12T+it 

The definition of OT-equivalence can then be rewritten as:

I2i+k ~ ar x + 12/+*7, Jce(0)-H- [0, l l]”- 1, 7 ,/g Z " , k,k! e Z  

Note that x  is the representative point for an OT-equivalence class: a vector in [0,11]" 

whose first element is zero. For a particular such x, an arbitrary 7, and an arbitrary k, we 

can now show that all vectors of the form x +127+* will normalize to x.
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normOT (x + 12i + k)

=  normO(normT (* +  I2i + k))

= normO((x +I2i  + k) — (jq +  I2ii + k)) 

= normOix — x\ + 12i — 12/1 +  k — k)

= normO(x — x\ +  1 2 (i — *i))

=  normO(x — x\)

=  normO (x + Q)

— x

Definition of normOT.

Definition of normT.

Properties of addition.

Properties of addition and multiplication. 

Property of O-equivalence. 

jcj is zero by definition . 

x  is already within [0 , 1 1 ]"

For y = x + lH  +  k and z. =  +  12/ +  k!, we then have the bi-implication:

y ~or z <— > normOT (y) =  normOT (z). Therefore, normOT is a normalization for OT- 

equivalence. □

Note that normT • normO is not a normalization for octave equivalence. Consider the 

vectors (1,0,0) and (0,11,11), which are OT-equivalent and normalize to the same value 

using normOT as defined above. The transformations that relate these two vectors are:

(1,0,0) (1,12,12) ~ r  (0,11,11)

However, normT(normO(( 1,0,0))) =  (—1,0,0) and normT(normO((0,11,11))) =  

(0 , 11, 11).

Theorem 9. normPC =  normC • normP is a normalization for PC-equivalence.

Proof. This proof directly follows from that of normP and normC (which is a normaliza

tion due to its use in defining C-equivalence in Chapter 3. The normP operation turns a 

vector into its sorted multiset representation, and normC removes all adjacent duplicate 

elements. Because all duplicate elements will be adjacent after calling normP on a vector, 

the subsequent normC will reduce a vector of pitches to a sorted set of pitches. Chords 

sharing the same set of pitches will be correctly normalized to the same value. Chords with 

different sets of pitches will normalize to different values. □
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Theorem 10. normOPC =  normC ■ normOP is a normalization for PC-equivalence.

Proof. This proof follows directly from the proofs for normOP and normPC. The normOP 

function converts a chord into a multiset of pitch classes sorted in ascending order. All 

duplicate pitch classes will be adjacent and will be removed by normC. Chords sharing 

the same set of pitch classes will be correctly normalized to the same value. Chords with 

different sets of pitch classes will normalize to different values. □

Theorem 11. normPT =  normT sort is a normalization for PT-equivalence.

Proof Recall that normT ({x\,...,xn)) =  (*i -  — xl). We know that

x ~ pt normPTx because of the following relationship: 

x ~ P normP (x) normT (normP (x))

Similarly, we observe a more general relationship. 

x ~ p o { x )  ~ T  < j ( G ( x ) ) + k ,  o e S „ ,  k e  Zn 

Using transitivity, the middle term can be removed. 

x  ~ p r  ct(x)  +&, <T €  Sn, k  G Z”

Properties of permutations and addition allow the following assertion.

VyG Z", 3<XGS„, 3! G Z, * G (0)-H-Z", x = sort(x) | y = o(x)+k  

This allows the definition of PT to be rewritten.

a(x) + k~pT o ((x) + kf, x =  sort(x),x G (0) -H- Z”, <T,<r'GSn, k,kf € Z n. 

x is a representative point for a PT-equivalence class: a sorted vector whose first ele

ment is zero. Now, for a particular x, an arbitrary a  G Sn, and an arbitrary k G Z", we will 

show that normPT(<t(jc) +  k) =  x, where minimum(x) returns the smallest element of x. To 

do this, we make use of two observations: (1 ) the first field of (sort(x)) is minimumQt) and 

(2 ) adding a constant to a vector does not change the set of permutations that sort it.
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normPT (a  (x) + k)

=  normT(normP(a(x) +  k)) Definition of normPT.

=  normT (sort (a(x) +  k)) Definition of normP.

= normT(sort(x) +  k) Property: sort • a  = sort.

=  sort(x) + k — (iminimum(x) +  k) Definition of normT.

=  sort(x) — minimum(x) + k — k Properties of addition.

=  sort(x) — minimum(x) Simplification.

=  sort(x) x\ is zero.

=  x x is already sorted.

Therefore, for y =  a(jc) +  k and z =  o(x!) + kJ, we have the bi-implication: 

y ~ pj z <— > normPT(y) = sort(x) -  minimum(x) = normPT(z), making normPT a nor

malization for PT-equivalence.

□

Theorem 12. normOPTC =  normOPT • normOPC is a normalization for OPTC- 

equivalence.

Corollary 3. optcEq(x,y) =  optEq(normOPC(x),normOPC(y)) correctly tests for OPTC- 

equivalence.

Proof. The property x ~ o p t c  normOPTC(x) follows from transitivity and the normaliza

tion properties for normOPT and normOPC. We define the notion of the set of all possible 

cardinality changes, Sc, where a given c(x) € Sc produces a C-equivalent chord to x. Prop

erties of addition, permutations, and sets, and OPT-equivalence allow any vector to be 

rewritten as a cardinality operation, transposition, permutation, and octave shift of a set of 

pitch classes that is also its own OPT-normalization.

VyeZ", 3 a  € Sn, c e S c , 3! Tg Zn, Ik g [0,11], x e Z m, 

x =  normOPT(x), x =  normOPC(x), x+k G  [0, l l]m, m ^ n  \ y = a(c(x)) + l27+k
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Using transitivity and the property above, we can re-write the definition of OPTC- 

equivalence as follows.

<j(c(Jc)) +  \2i + k~oPTcO,{cl{x)) + l'2'j + V, * =  normOPT(x), x — normOPC(x),

7 , / g  z b, o , a ' e S n, c , c ' e S c , x + k €  [0,ll]m, x + k f e  [0,ll]m 

x is a representative point for an OPTC-equivalence class. We can now show that 

y ~ o p t c  z <— > normOPTC(y) = normOPT C(z). For a particular set of pitch classes, 

x G [0,11]" where x =  normOPT(x), an arbitrary or, an arbitrary k, and an arbitrary and

normOPTC(a(c(x)) 4 -12* +  k)

=  normOPT (normOPC (o(c(x)) +12/ +  k) Definition of normOPTC.

=  normOPT (normOPC(x) -I- k) Property of OPC-equivalence.

=  normOPT (normOP(x) +k) x  is already set.

=  normOPT (x + k) normOPT already calls normOP.

=  normOPT (x) Property of OPT-equivalence.

=  x Definition of x.

For two vectors, y = a(c(x)) +  \2i + k and z =  cr'(c'(j?)) +  12?+^, we have the bi

implication: y ^ o p tc z <— y normOPTC(y) = normOPT (x) — normOPTC(z). Therefore, 

normOPTC is a normalization for OPTC-equivalence.

□

A.2 Group Operators

Chapter 3 defines four Abelian groups based on the O, P, T, and I relations: Go, G/>, Gt , and 

Gj respectively. This section presents proof of the properties of closure and associativity 

and the presence of identity and inverse elements for each group. Recall that the group 

definitions are:
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•  Go =  ( { o l  |7eZ"} , - )

•  GP = ({p a  | a  &Sn},-).

•  Gr = {{t k | fee Z } ,)

.  G/ =  ({i fe | fee { 1 ,-1 } } , )

For notational simplicity in this section, instead of writing p o x t o  indicate a permuta

tion, the symmetric group will be used directly: a(x), a  € Sn.

Theorem 13. Go is an Abelian group.

Proof.

Closure: for any two members of Go, (o ii) and (o if):

(o li -O 12) X 

= o ii (o 12 x)

=  (jc +  12i2) +  12*i 

— x-\- 12(l2 +  *1)

=  o (12 +  i'i ) x, which is another member of Go-

Identity: 0 I 0 QP =  o 0" o l=  o l

Inverse: ol -o  (— 1) = o (—1) o T = o 0 ”

Associativity: 0 1  ( o j o k )

= o l (o  (j + k ))

= o( l+ ( j+k))

= o ( ( l+ j ) +k )

= o ( l + j ) o k  

= (o i -o j )  ok
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Commutitivity:

(O T\ o  12) X 

=  X +  12(1*2 +  h)

=  x  +  1 2 (i*i H- *2 )

=  ( o  l2 0  i i )  X

a

Theorem 14. Gj is an Abelian group.

Proof.

Closure: for any two members of G j, (t ki) and (t ki)\

(t k\ t k2) x

= (x + k2ln) + k 1ln 

= x+(k2ln+ k \ l n)

= t (k2 + k\ ) x, which is another member of G j .

Identity: t k  tO = tO t k  = t k

Inverse: t k  t ( - k) = t  ( - k ) - t  k = t 0

Associativity: t a -(tb t c)

= t a  t (b + c)

= t (a + (b + c))

= t ((a + b)+c)

= t (a+ b) t c 

= (t a t b) t c

Commutativity:

(r k\ t k2) x 

= x + k 2ln + k i l n 

= x + k i l n + k2ln 

= (t k2 t k\ ) x
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□

Theorem 15. G/ is an Abelian group.

Proof. Gj has two members: (i l)an d (i (-1 )).

Closure, associativity, and commutativity: these properties follow from basic properties of 

multiplication of vectors by 1 and (-1 ).

Identity: i 1

i (—1 ) i 1 — H  i ( - 1 ) =  i (—1 ) 

i 1 • 1 1 =  i l

Inverse:

i l i l = i l

i ( - l ) - i ( - l )  =  i l  □

Theorem 16. For vectors o f length n:

V / =  r\ •... rm, ri € {Go,S„,Gt }, 3 o f O f t f  = f ,Of  € Go,Of € Sn,tf € Gt

Proof. For every pair of operators in {Go,Sn,Gr}, there is a way to reorder them when 

they are from different groups and combine them when they are from the same group. 

These transformations follow from basic algebra and group properties.

•  o7 o j = o ( 7 + J ) ,  7 J e z n

•  o -o 7 = o (<j (7))-o , T e Z ”, o e S „

•  o i  t k  =  t k  o7, T e Z n, fceZ

•  V<Ti,tT2 G Sn, 3 o3 €  Sn I <73 =  CTl • Ol

•  a  t k  = tk  a , k e Z ,  <reS„

•  t k\- t  k2=t  (ki+k2), k \ , k 2€Z

•  V/ g {Go,Sn,Gr}, f  = f  oQP
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.  V /e { G 0 ,S„,G r},/  =  /  ( 0 

•  V /e{G o,S„ ,G r} ,/  =  /•<Ttf where <jw( x ) = i

Using these rules, operators can be iteratively reordered and combined. This will ul

timately allow any function using some number of operators from Go, S„, and Gj  to be 

transformed into an equivalent function that uses only one operator from each group (some 

of which may be identity operators). □
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Appendix B

Haskell Source Code

This appendix includes code to describe portions of the Kulitta’s implementation that has 

not been included in the main text. The full implementation of the context-sensitive monad 

for PTGGs along with a sample PTGG implementation are included, along with code il

lustrating the details of the classical and jazz foreground algorithms described in Chapter 

6 .

B.l Modally Context-Sensitive PTGG Implementation

The following constant determines the behavior of the choose function. If set to True, then 

ID rules MUST be present in the rule set to succeed. If set to False, then if no relevant rules 

are found for a symbol, the symbol will be left unchanged (rather than throwing an error). 

forcelDs — False 

Construction of the grammar’s symbols and structure 

A CType is the Roman numeral, 

data CType = I \ I I \ I I I \ I V \ V \ V I \ V I I  

deriving (Eq, Show, Ord, Enum,Read)

An MType is a degree of modulation (relative 2nd, 3rd,..., 7th). There is no Ml since 

that would indicate remaining in the home key.
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data MType = M 2 \ M 3\M 4\ M5 \M 6\ M 7  

deriving (Eq, Show, Ord, Enum)

A Chord is “something” with a duration. This “something” can be a CType, but it can 

also be a different datatype. This polymorphic definition of a Chord allows for PTGGs to 

handle more than one alphabet of chord symbols, 

data Chord a =  Chord Dur a 

deriving (Eq,Show)

The Term data structure has five constructors: a chord, which acts as a nonterminal but 

can also be a terminal; a ’’sentence,” or sequence of Terms; a modulation applied to a Term; 

a variable; and a Let statement that uses variables that are represented as strings, 

data Term a =  NT (Chord a) | S [Term a] | Mod MType (Term a) |

Let String (Term a) (Term a) | Var String 

deriving (Eq,Show)

data Rule a =  (a, Prob): —> RuleFun a

type RuleFun a — Ctxt —t Dur —► Term a 

type Prob =  Double

Lowercase versions of the Roman numerals are used as a shorthand for chords. As in 

Chapter 3, the lowercase letters are a Haskell requirement and do not indicate the quality 

of the chords.

i, ii, iii, iv, v, vi, vii:: Dur —► Term CType

[i, ii, iii, iv, v, vi, vii] =  map (Ac t —► NT (Chord tc))$enumFrom I  

cc t t  — NT (Chord t ct) 

rf fs t =  map ($t)fs

Modal context will be represented using Euterpea’s Mode datatype, which has two con

structors: Major and Minor. 

type Ctxt — Mode

type CtxtFun =  Ctxt —> MType —> Ctxt
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We also need a function to update the context when modulations occur. The approach 

for determining the mode of a modulation is related to the list of Roman numeral modes in 

Table 3.2. Since this implementation only considers two modes, modulation Mn will have 

the mode of the triad on the nth scale degree, where diminished triads are considered to be 

minor. For example, in the key of C-major, M2 would use the triad formed on the 2nd scale 

degree, D-F-A (a minor triad), to determine the new mode: minor. 

defCtxtFun:". CtxtFun

defCtxtFun Major m = [Minor,Minor,Major,Major,Minor,Minor]!!fromEnum m 

defCtxtFun Minor m =  [Minor, Major, Minor, Minor, Major, Major] !! fromEnum m 

Although this implementation only addresses two modes, it could easily be extended to 

handle more modes by altering the type for Ctxt and redefining defCtxtFun accordingly.

B.1.1 Monad Implementation

The monad implementation remains relatively unchanged from the one described in Chap

ter 4. The only new additions are the set/get functions for the modal context, setCtxt and 

getCtxt respectively.

newtype Prog a =  Prog ((StdGen, Ctxt) -> ((StdGen, Ctxt),a))

instance Monad Prog where 

return a =  Prog (As -> (s,a))

Progpo » = / i  =  Prog$Xs0 

let ( s i , a i )  =Pos0

Prog Pi = / i  a i

in pi si

getRand:: (Random a) =>• {a, a) —> Prog a

getRand ran =  Prog (A (g,c) —>• let (r,g') = randomR ran g

in((g',c),r))
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getCtxt:: Prog Ctxt

getCtxt =  Prog (A(g,c) -4 ((g,c),c))

setCtxt:: Ctxt - 4  Prog ()

setCtxt d  =  Prog (A(g,c) -4 ((g,</),()))

runP:: Frog a —> StdGen - 4  Ctxt - 4  a 

runP (Progf) g c = snd (f (g,c)) 

update:: (£<7 a) =>• [Fu/e a] - 4  Term a - 4  Prog (Term a) 

update rules t =  case t of 

ATT x —> applyRule rules x

S s  —> do ss «— sequence (map (update rules) s)

re/um (5 ss)

Mod m s -> doc <— getCtxt

setCtxt (defCtxtFun c m) -  into mod 

s' <— update rules s 

setCtxt c — out of mod 

return (Mod m s')

Var x  -4 return (Var x)

Letxa t - 4  do d  <- update rules a 

t' <— update rules t 

return (Letxa! t!) 

applyRule:: (Eq a) =» [Rule a] - 4  Chord a -4 Prog (Term a) 

applyRule rules t@ (Chord dc) — 

let rs =  filter (A((c',p) :->  rf) -4 c' = =  c) rules 

in do r <- getRand (0.0,1.0) 

x 4 - getCtxt

return ((choose! t r s r ) x  d)

The choose function is modified from its original definition to use theforcelDs function.
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This change is needed to support PTGGs build from modified versions of Rohrmeier’s 

grammar as described in chapter 7. IfforcelDs =  True then the original definition of choose 

is used and PTGGs will be strictly required to include rules of the form A - 4  A for all chords 

(otherwise an error message will be thrown). IfforclDS =  False, then this requirement does 

not exist and chords may remain unchanged if no rules exist for them. 

choose':: Chord a -4 [Rule a] - 4 Prob -4 (RuleFun a) 

choose' t r sp  =

if null rs A -> forcelDs then Ac d - 4  NT $ t — auto ID rule 

else choose rs p

choose:: [Rule a] -4 Prob -4 {RuleFun a) 

choose [\p = error "Nothing to  choose from!"

choose {{(c,p') :—>rf): rs) p  =  if p  ^  p' V null rs then rf else choose rs (p— p')

The iteration function, iter, remains unchanged, and gen simply takes an additional 

argument.

iter:: Monad m=> {a - 4  ma) - 4  a - 4  m[a\ 

iterf a = do a' * - /  a

a s«— iterf a' 

return { d : as) 

type Seed = Int

gen:: (Eq a) => [Rule a] —>■ Int —► Seed —► Ctxt -4 Term a - 4  Term a 

gen rules i s c t  = runP {iter {update rules) t) {mkStdGens) c !!i 

Another interface to gen is provided for use with StdGen directly. 

gen':: {Eq a) => [Rule a\ -4 Int -4 StdGen -4 Ctxt -4 Term a -4 Term a 

gen' rules i s c t  = runP {iter {update rules) t) sc  Hi 

The expand function eliminates Lets and Vars from a generated Term a. It allows for 

nested Let expressions for variables with the same name with lexical scoping.
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expand:: [(String, Term a)] —» 7erm a -» Term a 

expand e t  — case f of 

Letxa exp -> expand ((x,expande a) :e) exp 

Var x —>• maybe (error (x 4 + "  is  undef ined")) u/ $ lookup x e 

S s  S%map (expande) s

Modmt! —> Mod m $ expand e ^ 

x —► x

Finally, it is often useful to “flatten” Term values before operating on them or printing

them

flatten xs =  let x /  =  flattenRec xs in if xs/ == xs then xs else flatten xsf where 

flattenRec t =  case t of

Let x a exp —»Let x (flattenRec a) (flattenRec exp)

Var x -¥ Var x

Mod m t -4 Mod m (flattenRec t)

S[]  - > S [ ]

S xs —>5$ concatMap stripS $ map flattenRec xs

NT v —>• NT v where

stripS:: Term a - 4  [Term a] 

stripS (S xs) = concatMap stripS xs 

stripS xs = [xs]

B.1.2 Example Rule Set

This is the Haskell implementation of the rule set shown in Table 4.1.

Rules for Let

ruleLl, ruleL2:: CType —>■ RuleFun CType

ruleLl ct ctxt t = Let "x" (cct (t / 2)) (S [Var nx",Var "x"])
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ruleLl ct ctxt t = Let "x" (cct  (t / 4)) (S [Var "x",v (t/2),Var "x"]) 

rulesL:: [Rule CType]

rulesL =  concatMap (Xct -> [(cf, 0.1) :->  Xt -> ru/eTJ cf t,

(ct,0.1):—> Xt —>• ruleLl ct f ]) (enumFrom I)

Rules for I

rulell =  (7,0.15) :->  Xctxt t -> 

ii ctxt == Major then 5 [ii (f/4),v (f /4),i  (f/2)] 

else 5 [iv (f/4),v (f /  4), i (r /  2) ] 

rute/ 2  =  (7,0.15):-> Acfccf t -* S [i (t /  4), iv (t /  4), v (t /  4), i (t /  4) ] 

ruleI3= (7,0.15) :->  Xctxt f - > S [ v ( f / 2),i (t/1)] 

ruleI4 — (I,0.15): ->  Xctxt t —>■ 

if ctxt = =  Major then5[i (f/4),ii ( f /4 ) ,v ( i /4 ) , i  (t /  4)] 

else S [i ( t / 4 ) , iv (f/4),v (f/ 4 ) , i (f/4)] 

ruleI5= (7,0.2):—> Acttf i -^ if  i < hn then/r else5 [i (t /2) , i  (t / 2)] 

ru/ey7 =  [rulell, ruleI2, ruleI3, rule!4, rulelS]

Rules for II

rulell 1 = (77,0.4):—> Xctxt -*• if ctxt = =  Mayor then ii else iv 

ru/e/7/i> =  (77,0.4) :-> Xctxt t->  

if ctxt = =  Mayor then if t > qn then ii t else Mod M2 $ i t 

else Mod M2 $ i t 

rulelI2 =  (77 ,0 .2 )>  Xctxt t -* 

if ctxt =— Major then S [vi ( t / 2), ii (t /  2) ] 

else 5 [vi (t /  2), iv (t /  2) ]

rulesll =  [rulell1, rulelllb,ruleII2]

198



Rules for in

rulellll =  (///,0 .9):—> Xctxt —y iii 

ruleIII2 =  (717,0.1) :->  Xctxt -y {Mod M3 o i) 

rwfejTTT =  [rulellll,rulelU2]

Rules for IV

ruleIV 1 =  (TV,0.9):—> Actxf —y iv 

ruleIV2 =  (TV, 0.1): —> Xctxt —y (Afcwf M4 o /) 

rulesTV =  [ruleTVl ,ruleFV2}

Rules for V

ruleVl =  (V,0.15 

ruleV2 — (V,0.10 

ruleV3 = {V, 0.10 

n*feV4 =  (V,0.10 

ruleV5 — (V,0.10

ruleV6 = (V,0.10 

ruleVl — (V, 0.10 

ruleV8 =  (V,0.05 

ruleV9 =  (V,0.10

> Xctxt t -yS[iv ( f / 2 ),v (r /  2 )]

:-> Xctxt t - y S [ i i i ( f / 2 ) ,v i ( f / 2 )]

: ->  Acfxf f -y 5 [ i (f /  4), iii (f /  4), vi (7 /  4), v (f /  4) ] 

:-> Xctxt t S [v (f/ 4),vi (f/4),vii (f/4),v ( f / 4)] 

:—> Xctxt t S [v (f/2),vi (f/2)]

: —> Xctxt —y iii 

> Xctxtt - y £  [v ( f / 2 ),v ( f / 2 )]

: ->  Acf*f f -y 5 [vii (f /  2 ), v ( f / 2 )]

> Xctxt —y v 

ruleVIO — (V,0.10):—> Acfxf —y (AfoJM5oi)

rulesV = [ruleVl ,ruleV2, ruleV3, ruleV4, ruleVS, 

ruleV6, ruleV7, ruleV8, ruleV9, ruleVl 0]
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Rules for VI

ruleVIl =  (VI,0.7) :->  Xctxt -» vi 

ruleVU =  (VI,0.3) :->  Acfctf -4 (ModM6oi)  

rulesVI =  [ruteV/i, ra/eV/2]

Rules for VII

ruleVIU = (VII, 0.5) :->  Xctxt t -+i( t>qn  then vii t else Mod M 7$ i t 

ruleVin =  (VII,0 .5 ):-> Xctxtt ->• S [i ( t/ 2 ) ,iii (f/2)] 

rulesVII= [ruleVIIl,ruleVII2]

The rule set defined below is broken up into two steps to allow easier testing of the 

probability sums.

ruleSetJ useLets — normalize $concat

[rulesl, rulesll, rulesIII, rulesIV, rulesV, rulesVI, rulesVII, 

if useLets then rulesL else [ ] ]

ruleSet d useLets =  map (toRelDur d) $ ruleSet! useLets

B.1.3 Rule Utility Functions

Rule probabilities need to sum to 1.0 for rules with the same lefthand side. Since there is 

an option to include or exclude the let rules, the probabilities should be normalized (forced 

to sum to 1 .0 ) before the rules are used.

lhs((c,p):->rf) = c 

prob ((c,p) :—> r f ) = p

normalize:: (Eq a) =>• [Rule a] —*■ [Rule a) 

normalize [ ] =  [ ]

normalize (r@((l,p) :—>rf): rs) =  

let rset =  r : filter ((/ = = ) o Ihs) rs
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rsel! =  filter {{I / )  o Ihs) rs 

psum — sum $ map prob rset 

in map (A{{l',p') :—> d)  —>■ ((/',p' / psum) :—> d)) rset-H-normalize rset!

Rules can be ’’wrapped” to produce rules that only operate on chords with at least a 

certain duration.

toRelDur:: Dur -» Rule a —>• Rule a 

toRelDurd {{c,p) :—> /)  =  

let dmin ctxt t = minDur $ expand [ ] $ /  ctxt t

in {{c,p) :—> Xctxt t —> if dmin ctxt t< d  then NT$ Chord t c e lse/ ctxt t)

minDur:: Term a —> Dur 

minDur (S s) =  minimum $ map minDur s 

minDur {Mod m t) =  minDur t 

minDur {NT {Chord dx)) — d

minDur_ =  error " (minDur) S tring  is  not f u l ly  in te rp re ted ."  

relRuleSet drs — map {toRelDur d) $ rs

B.2 Post-Processing

Kulitta must perform post-processing (namely type conversion) on a PTGG’s results in 

order to process the chords through a chord space or add musical foregrounds. Types 

involved are:

type Key =  (AbsPitch,Mode) 

type RChord =  {Key,Dur, CType) 

type TChord =  {Key,Dur,AbsChord) 

type TNote =  (Key,Dur,AbsPitch) 

type Voice — [TNote] 

tnK {k,d,p) = k
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tnD (k,d,p) =  d 

tnP (k,d,p) = p  

newP (k,d,p) p' =  (k,d,p')

The general interface between Term and the types presented here is the following:

Input Function Output

Seeds, PTGG gen Term

Term toAbsChords [TChord] with a basic triad mapping

Term toChords =*► list version of Term

[TChord] =J- toVoices =*► [Voice], notes listed by voice first

[Voice] => vsToMusic Music Pitch

The toChords function converts a Term to a list representation of the progression. This 

eliminates nested structures like modulations, meaning that chords must now carry infor

mation on their relative key and mode. A default of C-major or C-minor (depending on the 

mode given) is assumed.

toChords:: Term CType -4 Mode -4 [RChord] 

toChords (NT (Chorddc))m=  [((0,m),d,c)] 

toChords (S ts) m =  concatMap (Xt - 4  toChords t m) ts 

toChords (Mod mtx) m = 

let (amt,mt') = getMods mt m

f  =  map (X((k,m),d,c) -4 ((k + amt,mt'),d,c)) 

in /  (toChords x mt') 

toChords xm  =

error (" (toChords) Unable to  handle expression: " M-showTermx) 

Lists of RChord can be converted directly to Euterpea’s Music Pitch. 

tChordsToMusic:: [TChord] - 4  Music Pitch 

tChordsToMusic =  line o m apf where
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/  ((k,m),d,as) =  chord%map (Aa —► note d {pitch a)) as 

Conversion to the TChord type is done by turning the Roman numerals into basic triads. 

toAbsChord:: RChord —*• TChord 

toAbsChord {{k,m),d,c) =  ((k,m),d,t k$toAs c m) 

toAbsChords:: Term CType -» Mode —¥ [TChord] 

toAbsChords tsm = map toAbsChord $ toChords ts m 

Conversion of an invidiual chord involves determining the current scale and choosing 

scale indices from it based on the particular Roman numeral. 

toAs:: CType —> Mode -» [AbsPitch] 

toAs ctm = 

let s = getScale m -H- map (+12) s

i =  head $findlndices (= =  ct) [I, II, III, IV, V, VI, VII] 

in map (s\\)$map (+i) [0,2,4]

getScale:: Mode - f  [AbsPitch] 

getScale Major =  [0,2,4,5,7,9,11] 

getScale Minor =  [0,2,3,5,7,8 ,10]

getMods mtm = 

let mts = [M2,M3,M4,M5,M6,M7]

i =  {head $ findlndices (= =  mt) mts) +  1 

in {getScale m\\i ,  relPat mWi) where 

relPatv.Mode —>■ [Mode]

relPat Major =  [Major, Minor, Minor, Major, Major, Minor, Minor] 

relPat Minor = [Minor, Minor, Major, Minor, Minor, Major, Major]

The ctTrans and atTrans functions allow transposition of progressions represented as 

lists of RChord and TChord respectively.
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atTrans " AbsPitch -> [ (Key, Dur,AbsChord) ] -> [ (Key, Dur,AbsChord) ] 

atTransa — map (X((k,m),d,c) -> ((fixK kam,m),d, t  (a ‘mod* 12) c))

ctTrans:: AbsPitch -» [ (Key, Dur, CType) ] -> [ (Key, Dur, CType) ] 

ctTransa =  map (X((k,m),d,c) —> ((fixK k a m,m),d,c))

fixK k a Major = (k+a) ‘mod' 12 

f ixKkaMinor  =  ((fc+a) ‘mod4 12) +12 

To add foregrounds, a [TC/iord] must be turned on its side to lists notes by voice rather 

than as chords. Values of type [Voice] can be easily converted to Music Pitch, with or 

without specifying the instrument to be used for each voice. 

toVoices:: [TChord] -* [Voice] 

toVoices ts =  

let (ks,ds,ps) =  unzip3 ts 

in map (Xv —► zip3 ksdsv)$ transpose ps 

toNotes:: Voice -» Music Pitch 

toNotes = line omap (X(k,d,p) —> note d (pitchp))

vsToMusic:: [Voice] —¥ Music Pitch 

vsToMusic = chord o map toNotes

vsToMusicI:: [InstrumentName] —> [Voice] —► Music Pitch 

vsToMusicI is = chord o zipWith ( X i m - t  instrument i m) is o map toNotes

B.2.1 Constraint Satisfaction

The following two functions are used to convert Let expressions to lists of constraints as 

described in Chapter 5.

mkCons:: (Eq a) => Term CType —> Predicate [a] 

mkCons txs — toCons (findlnds [ ] t) xs where 

toCons:: (Eqa) => [[(Int,Int)]] -» [a] —► Bool

204



toCons [] xs =  True 

toCons (c : cs) xs — 

let /  (i,j) = take (j + 1  — i) $ drop i xs 

in (and $ map (f (head c) = = ) $ map f  $ tail c) A toCons cs xs 

The findlnds function below returns the Let-imposed constraints of a Term as lists of 

index ranges (pairs of integers).

findlnds:: [(String, Term CType)} -> Term CType -> [[(/nt,/nt)]] 

findlnds e t — case t of 

Mod m t -* findlnds e t

*[] -►[]

S (s : ss) —>•

let vsl = findlnds e s

len — length $ toAbsChords (expand e s) Major 

vsl =  findlnds e (S ss) 

in vsl -H- map (add' len) vsl where

add' y =  map (A (a,b) —► (a+y,b+y))

Letxa exp —>

let d  — (x, expand ea):e

xCases =  findlndsSub x e' exp 

in xCases: findlnds e' a M-findlnds e' exp 

-> []

findlndsSub:: String -> [ (String, Term CType) ] —► Term CType —> [(Int, Int)] 

findlndsSub x e t = case t of 

Let x' a exp-*

let d  =  expand e a --to figure out sequence length 

in if xf = =  x then [] -- x has been redefined

else findlndsSub x e a  -H- findlndsSub x ((x!, a' ) : e) exp
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Var*i —► if x ^ x !  then [] else

let v =  maybe (error (x -H-" i s  undef ined")) id $ lookup x e

len =  length $ toAbsChords v Major 

in [ (0 , l en-1)]

Mod m t' —> findlndsSub x e  t'

S[] “Ml
S (s : ss) —►

let len = length $ toAbsChords (expand e s) Major 

in findlndsSub xe s M-  add' {len) (findlndsSub x e  (S ss)) where 

add'y =  map (X(a,b) —>■ (a + y , b+ y ))

NTv  ->[]

B.3 Foreground Algorithms

Kulitta has two types of foreground algorithms: classical and jazz. For each style, there are 

multiple ways to add foreground features.

B.3.1 Classical Foregrounds

The classical foreground algorithm uses a collection of constants that can be user-specified 

(a default collection are also provided). ntLimC is the number of half steps away a neighbor

ing tone can be and ptLimC is a similar value for passing tones. pHalfC is the probability 

of dividing a note’s duration in half evenly (vs. a potentially asymmetrical division where 

the new note is an eighth note) and pTteC is the probability of tieing identical, sequential 

pitches into a single note. rootBassThreshC is the probability of forcing the bass voice to 

be the root of a chord and noCPLThreshC is the “voice-smoothness” parameter to favor 

movement within a fixed number of halfsteps.
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data CConstants = CConstants { 

ntLimC:: Int, 

ptLimC v.Int, 

pHalfC ..Double, 

pTleC:: Double, 

rootBassThreshC ..Double, 

noCPLThreshC:: Int}

defConsts = CConstants 2 3 0.5 0.5 0.8 7 

Adding passing and neighboring tones requires knowing which pitch classes are ac

ceptable choices. Kulitta defines “acceptable” in this case as pitch classes that are shared 

by the scales of the two adjacent chordal tones. 

allPs:: TNote -» TNote —► [AbsPitch] 

allPs t\ t2 = 

let (ol,o2) =  (tnP t i 4div4 12,mP ^  ‘div‘ 12)

[oMin,oMax] =  sort [ol,o2]

offs = map (12*) [oMin — 1, oMin, oMax, oMax + 1]

(si,S2 ) =  (baseScale$tnK t\,baseScale%tnK ^ ) 

in nub $ concatMap (A o t o [ s | s «- s i , elem s 5 2 ]) offs where

baseScale:: Key —> [AbsPitch] 

baseScale (k,m ) =  normOP$tk (getScale m)

Several foreground operations are defined using the type ForeFun.

type ForeFun =  StdGen -* TNote —» TNote —► (StdGen, Maybe AbsPitch)

A  passing tone is a non-chordal tone between two chordal tones. Usually a passing tone 

and the notes on either side of it follow the scale directly, but Kulitta’s definition is broader 

and allows passing tones to be up to lim number of half steps away from the lower and 

upper chordal tones.

207



pickPT "AbsPitch -* ForeFun 

pickPT lim g t \ t 2 —

let \pMin,pMax\ =  sort [tnP t \ , tnP

f  x = x>pMin Ax<pM ax A (x —pMin < lim VpMax—x  ^  lim) 

psf =  [x | x  «— allPs t\ t2 , fx]

(iNew,g') =  randomR (0, length ps' — 1) g 

in ifpMin = =  pMax V nullps1 then (g,Nothing) else (g',Just$ps' WiNew)

A neighboring tone is a non-chordal tone that is either above two chordal tones or 

below them, creating either an up-and-down or down-and-up motion. Kulitta’s definition 

of a neighboring tone is similar to that of a passing tone, but placing the non-chordal tone 

up to lim half steps outside the chordal tones. 

pickNT:: AbsPitch -» ForeFun 

pickNT lim g t \ t 2 =

let [pMin,pMax] =  sort [tnP t\ , tnP

f x = ( x <  pMin A pMin - x ^  lim) V (x > pMax A x —pMax ^  lim) 

ps1 = [x | x  4- allPs t\ t2 , f  x]

(iNew,g') =  randomR (0, length ps1 — 1) g 

in if pMin == pMax V null psf then (g, Nothing) else (g1\Just Sps1!! iNew) 

Anticipations (anticip) and repetitions (rept) involve repeating chordal tones. 

anticip, rept, doNothing:: ForeFun 

anticip g t\ t2 — (g,Just$tnP t2 ) 

rept g t \ t 2 = (g,Just $ tnP t \)

Finally, not all chordal tones need additional notes inserted between them. Kulitta 

also includes a “do nothing” foreground function to allow some pairs chordal tones to be 

stochastically left unchanged.

doNothing g t \ t 2 = (g, Nothing)

The various foreground functions above are grouped and given probabilities of applica
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tion for each voice in a 4-voice chorale. The particular probabilities shown below are the 

author’s choice.

f \  =  pickPT o ptLimC 

f i  — pickNT o ntLimC

[fcJiJS] =  "MP const [anticip,rept,doNothing] 

allFFs:: CConstants —>• [[(Double, ForeFun)]] 

allFFs c =

[[(0.3,/ i  c), (0.1,/ 2 c), (0.6,P  c)], -  S (sopranno)

[(0.3,/! c), (0.7,f5c)], - A  (alto)

[(0.1,/i c),(0.9,/5c)]] -  T (tennor)

-H- repeat [ (1.0,f5 c) ] -  B (bass) and lower 

When adding new notes between chordal tones, duration must be borrowed from one of 

the chordal notes. Kulitta borrows time from the first chordal tone to do this. Exactly how 

much time is given to the new note is a stochastic choice: either the chordal tone’s duration 

is divided in half, or an eighth note is subtracted from it to give to the new tone. 

splitP:: CConstants —>• StdGen —► AbsPitch —► TNote —► (StdGen, [TNote]) 

splitP consts g newP t =

let (r,gf) =  randomR (0,1.0:: Double) g 

dNew =  if r < pHalfC consts then tnD t /  2 else en 

in (g',[(tnK t,tnD t —dNew,tnPt),(tnK t,dNew,newP)])

Foregrounds are added to voices from highest to lowest, left to right. A foreground 

is added to one voice completely before moving on to the next voice. The addFgToVoice 

function adds a foreground to a single voice, and addFG performs foreground addition over 

a list of voices sorted from highest to lowest.
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addFgToVoice:: CConstants -4 [ (Double, ForeFun) ] -4 StdGen -4 [77Vote] 

-4 (StdGen, [ TNote ]) 

addFgToVoice c foreFuns g (t\ : : ts) = 

let (j,gl) =  randomR (0,1.0) g 

fFun =  chooseFF j  foreFuns 

(g2, t l ') =  applyForeFun c g l t\ t2 fFun 

(g3,tRest) =  addFgToVoice cforeFuns g2 (r2: ts) 

in (g3, tl ' -H- tRest) where 

chooseFF j  [jc] =  snd x

chooseFF j  ((p,x):t) = it j < p  then x else chooseFF (j—p ) t  

chooseFF j[] = error "(chooseFF) Nothing to  choose from!" 

applyForeFun c g t \  t2 fFun =  

let (g l, newP) =fFun g t\ f2 

in case newP of Nothing -4 (gl, ])

Just x -4 splitP c g l x t \  

addFgToVoice c foreFuns g x  = (g,x)

addFG:: CConstants -4 StdGen -4 [ [TNote] ] -y (StdGen, [ [TNote] ]) 

addFG cgvs  = let (g;, vs1) = fgRec c g 0 vs in tieRec c g' vs' where 

fgRec c g ivs = if i ^  length vs V  / < 0 then (g, vs) else 

let (g1, V) — addFgToVoice c (allFFs c !! i) g (vs!! i) 

vs' = take i vs-H- |V] + f  drop (1 +1) vs 

mfgRec eg' ( i + 1) vs' 

tieRec cg[\  = (g,[]) 

tieRec c g (v:vs) = 

let ( g i y )  = stochTie c g v  

(g2, vs1) — tieRec c g l vs 

in (g2,v':vs/)
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A final post-processing step in foreground generation is the creation of ties, which 

are notes held across beats. This is best left until the very end, otherwise ties can cre

ate rhythmic abnormalities when adding other foreground features. Two ajacent notes are 

stochastically tied if they share the same pitch.

stochHe:: CConstants -4 StdGen -4  [TNote] -4  (StdGen, [TNote]) 

stochUe consts g ( t \ : t i : ts) =  

let (r ,g l) =  randomR (0,1.0 ..Double) g 

(g2, (t2': ts1)) = stochlle consts g l (t i : ts)

{d\, d2f) — (tnD t\ , tnD t2') 

in if tnP t\ = =  tnP t2' A r <pTieC consts 

then (g2,(tnK ti,di + d2',tnPt\) : ts') 

else (g2,11 : t2': tsr) 

stochHe consts gts = (g, ts)

There are two steps to adding a classical foreground to an abstract chord progression 

represented as Roman numerals: (1) traversing an appropriate chord space and (2) adding 

melodic elements. These steps are separated and presented with different type interfaces.

From a Term CType, a classical foreground can be added by using just the classicalFG 

function.

classicalFG: : StdGen -4 Key -4  Term CType -4

(StdGen, (Music Pitch,Music Pitch)) 

classicalFG g (k,m) t =  

let consts = sort Sfindlnds [] t

rChords =  ctTrans k$toChords (expand [ ] t) m 

in classicalFGR g (k,m) rChords consts 

However, there are some instances where more control is desirable, such as if we are 

working with Let statments or perhaps want to supply a progression manually rather than 

using Term. The following functions allow adding a foreground to different intermediate
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types.

classicalFGR:: StdGen -> Key - » [RChord] -> Constraints ->

(StdGen, (Music Pitch,Music Pitch)) 

classicalFGR g (k,m) res consts = 

let (gl,csChords) =  classicalCS g (k,m) res consts 

in classicalFG' g l csChords 

classicalFG' :: StdGen -» [TChord] - » (StdGen, (Music Pitch,Music Pitch)) 

classicalFG1 g aChords' = 

let (g4, csFG) =  addFG defConsts g $ reverse $ toVoices aChords' 

is =  [Bassoon,EnglishHom,Clarinet,Oboe,SopranoSax] 

fgM — vsToMusicI is $ reverse csFG 

csM =  vsToMusicI is $ toVoices aChords1 

in (g4,(csM,fgM))

Similarly, there are instances when we may want to use a classical chord space, but not 

add a classical foreground. This can be useful for mixing styles.

classicalCS::StdGen —► Key -* [RChord] -» Constraints —> (StdGen, [TChord]) 

classicalCS g (k,m) res consts =  classicalCS2 g (k,m)

(atTransk$map toAbsChord res) consts 

classicalCS2:: StdGen -> lGey -* [TChord] —>■ Constraints —► (StdGen, [TChord]) 

classicalCS2 g (k,m) aChords consts =  

let justChords =  map (A, (a, b, c) —y c) aChords 

(gl,g2)= split g

(g3, eqs) =  classBass 0.8 g2$map (eqClass satbOP opcEq) justChords 

csChords =  greedy Let (noCPL 7) nearFall consts eqs g3 

aChords1 = zipWith (X(a,b,c) d -> (a,b,d)) aChords csChords 

in (g3,aChordsf)

The classicalCS2 function uses a stochastic filter over equivalence classes called classBass.
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This filter enforces that the bass holds the root with a certain probability (the ’’thresh” 

value). If the constraints can’t be met, the bass is allowed to deviate from this rule for the 

sake of producing a result.

classBass ..Double —> StdGen —> [EqClass AbsChord] —»

(StdGen, [EqClass AbsChord]) 

classBass thresh g [] =  (g, []) 

classBass thresh g (e: es) =  

let (r,gf) = randomR (0,1.0:: Double) g

e' = i f  r> thresh then e else filter rootFilter e 

e" =  if null e' then e else e'

(g", es1) = classBass thresh g es 

in (g'^e" :es/) where 

rootFilter:: Predicate AbsChord

rootFilter x =  or $ map (opcEq x) [ [0,0,4,7], [0,0,3,7], [0,0,3,6] ]

The code so far has only made use of the greedy approaches to constraint satisfaction. 

As an alternative, the following version handles constraint satisfaction differently. Two 

MIDI files are produced, one without melodic elements and one with them. The benefit 

of this alternate approach is that constraints will be 100% satisfied if a solution is found. 

However, existence of a solution is not guaranteed and the runtime will be quite long if 

solutions are sparse.

classicalFG2 :: StdGen -* Key -> Term CType —>• FilePath -4 FilePath - » IO () 

classicalFG2 g (k,m) t fill fn2 =  do 

let aChords =  atTrans k$toAbsChords (expand [ ) t )m  

justChords = map (X(a,b,c) —>■ c) aChords 

(gl,g2) = split g 

qSpace =  satbOP' gl

ecs = map (eqClass qSpace opcEq) justChords
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cons = findlnds [] t 

(jc, csChords) «— findSoln2 cons (progL 10) ecs 

let aChords' =  zipWith (k(a,b,c) d —> (a,b,d)) aChords csChords 

(g4, csFG) = addFG def Consts g2 $ reverse $ toVoices aChords' 

is = [Bassoon, EnglishHom, Clarinet, Oboe] 

fgM  =  vsToMusicI is $ reverse csFG 

csM =  vsToMusicI is $ toVoices aChords' 

writeMidi fill fgM  

writeMidi fii2 csM

B.3.2 Jazz Foregrounds

Jazz requires keeping track of modes in a slightly more complicated way than was the case 

for the classical algorithms described in the previous section. First, we need to find the 

modes for Roman numerals interpreted in a particular key/mode. The type JTriple is actu

ally a synonym for TChord, but it is used for clarity to indicate that the pitch information 

represents a mode rather than a chord. 

majorModes = allModes

minorModes = drop 5 allModes -H- (take 5 allModes)

chordMode:: CType —>• Key —► AbsMode 

chordMode ct (k,m) = 

let pModes =  if m = =  Major then majorModes else minorModes 

ctMode = pModes!! firomEnum ct 

ck =  pModes!! 0 !!fromEnum ct 

in t (k +  ck) ctMode

toJTriple:: (Key, Dur, CType) -» (Key, Dur, AbsMode) 

toJTriple (km,d,c) =  (km, d, chordMode c km)
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Simple Jazz Foreground

This approach, called jazzFGl (or jazzFGIT to interface more directly with the grammar 

monad defined in Chapter 4), creates jazz chords and a stochastic bassline. Let instantiation 

only takes place at the level of Roman numerals. As a result, progressions such as let x =  A 

in x x will only exhibit abstract repetition, while exact instantiations of the chord may 

differ.

jazzFGl "StdGen —»■ [ (Key, Dur, CType) ] —► (StdGen, Music Pitch) 

jazzFGl g chords =

let [gJ,gR,gOPC,gB] = take 4% splitNg 

jts =  map toJTriple chords 

ms =  map (k(a,b,c) ([],c))Jts

qj  = modeSpace' alglTemps

chordsJ =  greedyProg qJ modeEq (const True) nearFalLJ gJ ms 

qOPC =  makeRange' alglRans /  /  opcEq 

es =  map (convOPC qOPC bassRoot) chordsJ 

chordsOPC =  greedyProg (const True) nearFall gOPC es 

chordsOPC’ = zipWith (A(a,b,c) x -4 (a,b,x)) jts chordsOPC 

jVoices = dtrans $ map toJNote chordsOPC'

(gRet,bassLine) =  stochBass gB% head jVoices 

in (gRet, instrument AcousticBass bassLine:=:

jnToMusic (repeat AcousticGrandPiano) (tailjVoices))

alglTemps =  [ [0,2,4,6], [0,1,2,4,6] ]

alglRans =  (34,45): take 4 (repeat (50,64))

bassRoot (chrd,m) =  (minimum chrd ‘mod‘ 12) = =  head (normO m)

splitN g = let (g l, g2) = split g in gl : splitN g2

convOPC:: QSpace AbsChord —>• Predicate JChord —>• JChord -»

EqClass AbsChord
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convOPC qpj (c, m) =  filter (Xx —> pj (jc , m)) $ eqClass q opcEq c 

stochBass:: StdGen —>■ [/Note] —> (StdGen,Music Pitch) 

stochBassg [] =  (g, rest 0) 

stochBass g ((km,d,p) : t) =  

let (g',pat) — pickPattem g d p  

(g", t1) = stochBass g 't  

in (g",pat\ +  :*') 

pickPattem g d p  =

let ( r , / )  =  randomR (0, length pats — 1) g 

f  dp  — note d (pitchp) 

pats =  \ f  dp,

if d ^  hn theny qn p . •/ (d qtt) p  else f  d p,

i f d ^ h n  thenf  (d — en) p: + :f  enp elsef  dp] 

in (g',patsV.r)

jazzFGIT :: StdGen -* Key —»• Term CType (StdGen,Music Pitch)

jazzFGIT g (k,m) t — jazzFGl g$ctTransk$toChords (expand [] r) m

Bossa Nova

This approach interprets Roman numerals through three separate chord spaces as described 

in Chapter 6 in order to cut down the task’s combinatorics. As a result, this type of fore

ground can usually be generated much more quickly than the musically simpler one in the 

previous section—an illustration of the fact that musical simplicity does not always imply 

computational simplicity.
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jazzFG2:: StdGen -> [(Key,Dur, CType)} -y (StdGen,Music Pitch) 

jazzFGl g chords —

let gs@ [gJC, gJB, gJL, gRC, gRB, gRL, gOPCC, gOPCJ, gOPCJL, gL] = 

take 10$ splitN g 

jts = map toJTriple chords 

ms =  map (A(a,b,c) -4 ([],c));Yi 

qs@[qJC,qJB,qJL] =  

map modeSpace' [alg2TempsC,alg2TempsB,alg2TempsL\

[chordsJ,bassJ,leadJ) =  zipWith (Aqgx  -4 greedyProg q modeEq 

(const True) nearFalU gx ms) qs $ take 3 gs 

qOPC-C = filter alg2FilterC (makeRange' alg2RartsC) /  /  opcEq 

qOPC-B = makeRange alg2RansB j  j  opcEq 

qOPCJL =  makeRange' alglRansL j  /  opcEq 

esC — map (convOPC qOPC C (const True)) chordsJ 

esB =  map (convOPC qOPCJi bassRoot2) bassJ 

esL =  map (convOPC qOPC L (const True)) leadJ 

chordsOPC =  greedyProg' (const True) nearFall gOPCJC esC 

bassOPC = greedyProg' (noCPL 7) nearFall gOPC-B esB 

leadOPC =  greedyProg? (noCPL 7) nearFall gOPC-L esL 

[cc,bc,lc\ = map (zipWith (A(a,b,c) x -y (a,b,x)) jts)

[chordsOPC, bassOPC, leadOPC] 

cm = bossaChords cc 

bm =  bossaBass be 

(gRet, Im) — bossaLead gL Ic 

in (gRet,chord [instrument AcousticBass bm, 

instrument AcousticGrandPiano cm, 

instrument Flute Im])
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Each part (bass, chords, lead) uses a different set of chord templates as well as different 

ranges and constraints for their respective chord spaces. 

alg2TempsC =  [[0,2,4,6], [1,2,4,6]] -- for chords 

alg2TempsB =  [[0,4]] -  for bass 

alg2TempsL =  [ [0], [2], [4] ] -  for lead

alg2RansB= [(34,49), (34,49)] 

alg2RansC = take 4 $ repeat (50,64) 

alg2RansL =  [(65,80)]

bassRoot2 ([i>i,&2 ],/n) =  normO [bi,bi] ==normO [m!!0,m!!4] 

bassRoot2 _ =  error " (bassRoot2) Bad arguments."

alg2FilterC x = sorted x A  pianoChord x

toTN2' (k,d,[p]) b l  = TNote2kdblp

toTN2' =  error " (toTN2’) Bad arguments"

tn2M (TNote2 k d b l p )  =  noted (pitchp)

Conversion to Music Pitch also takes place independently for each voice. Instead of 

going through an intermediate type like Voice as done for the classical foregrounds, simple 

bossa nova features are added directly at the Music level.

The bass foreground will start with pairs of notes as a chord. How these two pitches are 

handled depends on the duration of the chord. For a whole note, a standard bossa nova bass 

pattern is used, but shorter durations can only use subsets of that pattern. Chords longer 

than a whole note are partitioned into whole note sections.
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bossaBass:: [ TChord] —► Music Pitch 

bossaBass [ ] =  rest 0 

bossaBass ((km,d,c@[pi,p2 ]) :t) = 

if d > wn then bossaBass ((km, wn, c ) : (km,d — wn, c ): t) else 

if d = =  wn then f \ p i p 2 ' + ■ bossaBass t else

if d = =  hn then f iP i P i '  + • bossaBass t else f o p \d \  + : bossaBass t where 

f i  hi b2 = fz b\ b2: +  :/2 &2 hi 

f i  hi b2 = /3  hi (qn +  en): + :/3 b2 en 

f o b id  = note d (pitch bi) 

bossaBass _ =  error" (bossaBass) Bad input" 

bossaChords:: [TChord] —>■ Music Pitch 

bossaChords [ ] =  rest 0 

bossaChords ((km,d,c):t) = 

if d>wn  then bossaChords ((km,wn,c): (km,d — wn,c): t) else 

if d = =  wn then/i c : +  : bossaChords t else f i d e :  + : bossaChords t where 

f i  c = let d  =  /2  en c in rest qn : +  : d : +  : rest qn: +  : d : +  : rest qn 

f 2 d c  = chord $ map (Xp —>• note d  $ pitch p) c 

bossaLead:: StdGen —> [TChord] —► (StdGen,Music Pitch) 

bossaLead g ts =

let Is = take (length ts — 1) (repeat False) -H- [True] 

v =  zipWith3 toTN2' ts (repeat 0) Is 

(g 'y )  = addFgToVoice jConsts (foreFunsJ defConsts) g v 

in (g', line $ map tn2M i/) where

foreFunsJc =  [(0.5,/ j  c), (0.5,/2  c )]:: [(Double,ForeFun)] 

jConsts = CConstants 2 3 0.3 0.5 0.8 7
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Finally, the foreground is given an easy interface to the Term type. 

jazzFGIT:: StdGen -¥ Key -» Term CType ->• (StdGen,Music Pitch) 

jazzFGITg (k,m) t =  jazzFG2 g $ctTrans k $ toChords (expand []t )m

Jazz Chords

In addition to the foreground algorithms already presented, for the purpose of mixing styles 

it is also useful to have a simpler mapping from Roman numerals to the AbsChord type 

without altering the original chords’ durations or adding any additional melodic elements. 

jazzChords:: StdGen —> [(Key,Dur,CType)] —> Constraints ->

(StdGen, [ (Key, Dur,AbsChord) ]) 

jazzChords g chords consts =

let [gJ,gOPC,gf] = take 3 $ splitN g 

jts = map toJTriple chords 

ms = map (X(a,b,c) —► ([],c)) jts 

q j  =  modeSpace' alglTemps 

chordsJ =  greedyLet (const True) nearFalU consts 

(map (eqClass qJ modeEq) ms) g j  

qOPC =  makeRange' alglRans / /  opcEq 

es =  map (convOPC qOPC bassRoot) chordsJ 

chordsOPC = greedyProg' (const True) nearFall gOPC es 

in (g', zipWith newP jts chordsOPC)
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