
Abstract

Kulitta: a Framework for
Automated Music Composition

Donya Quick

2014

Kulitta is a Haskell-based, modular framework for automated composition and machine

learning. A central idea to Kulitta’s approach is the notion of abstraction: the idea that

something can be described at many different levels of detail. Music has many levels of

abstraction, ranging from the sound we hear to a paper score and large-scale structural

patterns. Music is also very multidimensional and prone to tractability problems. Kulitta

works at many of levels of abstraction in stages as a way to mitigate these inherent com

plexity problems.

Abstract musical structure is generated by using a new category of grammars called

probabilistic temporal graph grammars (PTGGs), which are a type of parameterized, context-

free grammar that includes variable instantiation, a feature usually only found in grammars

for programming languages. This abstract structure can be turned into full music through

the use of constraint satisfaction algorithms and equivalence relations based on music theo

retic concepts. An extension to an existing algorithm for learning PCFGs provides a way to

learn production probabilities for these grammars using corpora of existing music. Kulitta’s

modules for these features are able to be combined in different ways to support multiple

styles of music.

Kulitta’s important contributions include (1) algorithms and a generalized Haskell im

plementation to support PTGGs, (2) additional formalization of existing musical equiva

lence relations along with a new equivalence relation for modeling jazz harmony, (3) an

empirical evaluation strategy for measuring the performance of automated composition al

gorithms, and (4) the extension of a machine-learning algorithm for PCFGs to support a

much broader category of grammars (inclusive of PTGGs) via the use of an oracle. Kulitta’s

musical performance is also promising, demonstrating both stylistic versatility and aesthet

ically pleasing results.

Kulitta: a Framework for

Automated Music Composition

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Donya Quick

Dissertation Director: Paul Hudak

December 2014

UMI Number: 3582255

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Di!ss0?t&iori P iiblist’Mlg

UMI 3582255
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright © 2014 by Donya Quick

All rights reserved.

Contents

Abstract i

List of Figures xi

List of Tables xiii

Acknowledgements xiv

1 Computer Music as a Field 1

1.1 Composition vs. Performance .. 1

1.2 Automated Com position... 3

1.2.1 Computational Complexity and Music Composition 4

1.2.2 Assessing Compositional Q u a lity .. 5

1.2.3 Systems for Automated Com position.. 7

1.3 Computer Music’s Interdisciplinary Nature .. 8

1.3.1 Music, Artificial Intelligence, and Machine Learning...................... 8

1.3.2 Natural Language and M usic... 9

1.3.3 Programming Languages... 11

2 An Overview of Kulitta 12

2.1 Introduction.. 12

2.2 Musical Abstraction.. 14

iii

2.2.1 P itc h e s ... 15

2.2.2 C h o rd s ... 16

2.2.3 Chord Progressions... 17

2.2.4 M elodies.. 17

2.2.5 Developmental Structure... 18

2.3 Mathematical M odels.. 18

2.3.1 Equivalence Relations and Chord S p a c e s .. 18

2.3.2 Musical Grammars.. 19

2.3.3 Machine L ea rn in g ... 20

2.4 Implementation... 20

3 Musical Equivalence Relations 22

3.1 Equivalence Relations.. 23

3.1.1 Quotient Spaces ...24

3.1.2 G ro u p s ... 25

3.1.3 Normalizations..25

3.1.4 Path-Finding with Equivalence R elations..27

3.1.5 Musical Spaces..28

3.2 Equivalence Relations in Haskell...28

3.3 The OPTIC Relations.. 29

3.3.1 Applications of OPTIC..31

3.3.2 Normalizations for O PTIC .. 32

3.3.3 G ro u p s ..41

3.3.4 OPTIC in Haskell...42

3.4 Contour Equivalence...44

3.5 Modal Equivalence... 45

3.6 Musical Equivalence Relations in Kulitta...49

iv

4 A Grammar for Harmonic and Metrical Structure 50

4.1 Related W o rk .. 52

4.1.1 Macro Grammars..53

4.1.2 Musical Grammars.. 54

4.2 Generating Music with a PTGG ...56

4.3 Grammar Definition..57

4.3.1 Production Rules as Functions...60

4.4 Haskell Implementation... 61

4.4.1 Chords, Progressions, and M odulations..61

4.4.2 R u le s ... 62

4.4.3 Generating Chord Progressions ..64

4.4.4 Musical Interpretation...68

4.5 Modal Context-Sensitivity..70

4.6 Other Alphabets.. 73

4.7 Other Possible Extensions .. 74

5 Constraint Satisfaction 76

5.1 Musical Constraints..76

5.1.1 Predicates... 78

5.2 Single Chord Constraints...78

5.3 Pairwise Constraints ... 81

5.3.1 Depth-First S earch ...83

5.3.2 Stochastic Search.. 85

5.3.3 Delegation of Equivalence Class L o o k u p 87

5.4 Repetition... 88

5.4.1 Greedy Algorithm for Let Expressions...95

5.5 The Problem of Novelty ...97

v

6 Generating Music 99

6.1 A Simple E xam ple ... 100

6.2 Generating Complete M u s ic .. 102

6.2.1 Classical Foreground.. 103

6.2.2 Jazz Foregrounds.. 106

6.2.3 Other Styles... I l l

7 Learning Musical Structure 115

7.1 Related W o rk .. 115

7.2 The Inside-Outside A lgorithm ... 116

7.2.1 CYK P arsing .. 117

7.2.2 Learning Production Probabilities..118

7.3 Learning a Musical PCFG ... 120

7.4 Learning a P T G G .. 123

7.4.1 An Oracle Approach to the Inside-Outside Algorithm........................123

7.4.2 Removing the Terminal/Nonterminal D istinction..............................125

7.4.3 Rule Functions and Rule Instances..126

7.4.4 Parsing with Rule In stances...127

7.4.5 Modifications to the Inside-Outside algorithm.................................... 129

7.4.6 Identity Rules...130

7.4.7 Computational Complexity..132

7.5 Learning Additional Grammatical Features ... 133

8 Putting It All Together 134

8.1 Training on Bach C horales..134

8.1.1 D ataSet..135

8.1.2 A Modification of Rohrmeier’s PCFG for Harmony........................... 135

8.1.3 M ethod..136

vi

8.1.4 R e su lts ...137

8.1.5 From PCFG to PTGG ...138

8.1.6 Another A pproach...143

8.2 Training on Synthetic D a ta ...145

8.2.1 R e su lts ...149

8.3 C onclusion...149

9 Empirical Assessment 152

9.1 Experiment Overview..153

9.1.1 Likert Scale...155

9.2 Musical Phrases...157

9.2.1 Phrases from K u litta ..157

9.2.2 Randomly Produced Phrases..160

9.2.3 Phrases from Bach C horales..160

9.3 Experimental Procedure...161

9.4 Results..164

9.4.1 D iscussion...168

10 Conclusion 170

10.0.2 PTGGs and Chord S p a c es ... 170

10.0.3 Constraint Satisfaction... 171

10.0.4 Music Generation..172

10.0.5 L ea rn in g ..173

10.0.6 Empirical A ssessm ent...174

10.1 Future W ork...175

10.1.1 PTGGs and Constraint Satisfaction .. 175

10.1.2 Learning New Musical Features.. 176

10.2 Concluding R em arks..178

vii

A OPTIC Proofs 179

A.1 OPTIC Normalizations.. 180

A.2 Group Operators ... 187

B Haskell Source Code 192

B.l Modally Context-Sensitive PTGG Implementation...192

B.1.1 Monad Implementation.. 194

B.l.2 Example Rule S et... 197

B.l.3 Rule Utility Functions..200

B.2 Post-Processing.. 201

B.2.1 Constraint Satisfaction.. 204

B.3 Foreground Algorithms.. 206

B.3.1 Classical Foregrounds.. 206

B.3.2 Jazz Foregrounds...214

viii

List of Figures

1.1 The opening refrain of ‘Twinkle, Twinkle Little Star” represented as a pi

ano roll and as musical states.. 10

2.1 The overall structure of Kulitta.. 13

3.1 An illustration of the path-finding nature of chord spaces....................................32

3.2 O-space for two voices... 35

3.3 P-space for two voices..36

3.4 OP-space for two voices...37

4.1 The generative process for a probabilistic temporal graph grammar (PTGG). 57

4.2 Two parse tree representations of the same progression.....................................69

4.3 Example of the generative process and musical interpretation for Let ex

pressions 72

5.1 An example of undesirable voice-leading behavior.. 77

5.2 A simple chord progression for three voices used for testing the perfor

mance of the greedyProg algorithm 87

5.3 A chord progression generated from a let expression.. 95

5.4 A chord longer, ABA-format progression generated from a let expression. . 96

6.1 Generative workflow in Kulitta...100

6.2 A chord progression mapped through different chord spaces............................ 102

6.3 Graphical representation of Kulitta’s generative process showing different

levels of abstraction.. 103

6.4 A phrase generated by Kulitta without a foreground.. 106

6.5 The phrase from Figure 6.4 with a foreground... 106

6.6 a phrase generated by Kulitta without a foreground... 107

6.7 The phrase from Figure 6.6 with a foreground..107

6.8 An example of a 4-voice, “jazzy” phrase.. 109

6.9 Graphical representation of Kulitta’s bossa nova foreground algorithm. . . .110

6.10 An example of a phrase in C-minor with a simple jazz foreground..................I l l

6.11 An example of a phrase in C-minor with a bossa nova foreground.................. I l l

6.12 An example of a phrase in E-major with a simple jazz foreground.................. 112

6.13 An example of a phrase in E-major with a bossa nova foreground...................112

6.14 A phrase generated by Kulitta without a foreground.. 113

6.15 A “jazz chorale” generated by Kulitta...113

6.16 Application of Kulitta’s modules in a real-time setting.................................... 114

8.1 PCFG production probabilities derived from a corpus of music.....................137

8.2 A phrase produced after training on Bach chorales.. 140

8.3 A phrase produced after training on Bach chorales.. 142

8.4 A phrase produced after training on Bach chorales.. 142

8.5 A phrase produced after training on Bach chorales.. 142

8.6 PCFG production probabilities derived from a corpus of music..................... 145

8.7 PCFG production probabilities derived from a corpus of music..................... 146

8.8 A phrase produced after training on Bach chorales.. 146

8.9 A phrase produced after training on Bach chorales.. 147

8.10 A phrase produced after training on Bach chorales.. 147

8.11 A phrase produced after training on Bach chorales.. 147

8.12 PTGG production probabilities derived from a synthetic corpus......................150

8.13 Phrase generated after training on a synthetic corpus...................................... 150

9.1 A 4-measure phrase produced by Kulitta... 159

9.2 A 4-measure phrase produced by a random walk...159

9.3 The rating scale used for Kulitta’s empirical assessment................................. 163

9.4 Distribution of raw scores from condition 1 of the participant study. 165

9.5 Distribution of raw scores from condition 2 of the participant study. 166

9.6 Distribution of average scores from condition 1 of the participant study. . . 166

9.7 Distribution of average scores from condition 2 of the participant study. . . 167

10.1 Possible future extensions to Kulitta’s overall structure...................................177

xi

List of Tables

3.1 Intervallic structure of modes.. 46

3.2 Modal interpretation of Roman numerals.. 48

4.1 Production rules of a sample PTGG.. 68

4.2 A modally context-sensitive PTGG..75

6.1 Generating a short progression with a PTGG...100

8.1 A modified version of Rohrmeier’s grammar for harmony. 136

8.2 A PTGG constructed from the PCFG in Table 8.1...139

8.3 Sample progression lengths using two approaches for PCFG to PTGG con

version...141

8.4 A further simplification of the grammar in Table 8.1.......................................143

8.5 Roman numeral frequencies in the Bach corpus.. 144

8.6 A small PTGG..148

9.1 Voice ranges used for Kulitta’s phrases..158

9.2 Distribution of starting structures in Kulittas phrases for emperical evaluation. 159

9.3 List of Bach phrases... 161

9.4 Labeled examples presented to participants during Kulitta’s empirical as

sessment.. 162

9.5 Participant demographics... 164

9.6 P-values from T-Tests...167

9.7 Average scores for each composer..167

9.8 T-Test comparison of composers across experimental conditions.................... 168

xiii

Acknowledgements

I am extremely grateful to my committee members, Paul Hudak, Dana Angluin, Zhong

Shao, and Ian Quinn for their help and support over the years. I would also like to thank

the Department of Computer Science at Yale University for creating an environment that is

welcoming and that fosters interdisciplinary work. Whenever I have been in need of help,

there have always been open doors to offer assistance.

I am especially indebted to my advisor, Paul Hudak, who inspired me to start doing

research in the field of computer music and who encouraged me to be ambitious with my

research goals. He has been the driving force behind the emergence of computer music as

a research area in the department, without which the opportunity for my research would

not have existed. I am also grateful for the many teaching opportunities he created for me

to help further my career.

I would like to thank Dana Angluin and Ian Quinn for their extensive help with the

interdisciplinary aspects of my work. Dana guided my explorations into machine learning

and has been a source of moral support through much of my time at Yale. Ian has always

offered encouragement while keeping my work musically sane.

I would like to thank my husband for his help in constructing the participant study that

was used to evaluate Kulitta’s performance. Finally, I would like to thank my family for

their support during my doctoral years and for lending me their ears on so many occasions

during Kulitta’s development, which included many dissonant and bizarre musical bumps

along the road to producing more refined sounds.

xiv

This research was supported in part by the Kempner Graduate Fellowship in the De-

partmet of Computer Science, the University Fellowship in the Department of Computer

Science, NSF Grant CCF-0811665, and NSF Grant SHF-1302327.

xv

Chapter 1

Computer Music as a Field

Computer music is a broad field comprised of many different research areas, and it draws

on music theory, mathematics, computer sciennce, and other fields. The styles of mu

sic involved are equally diverse, ranging from classical Western music to modem modem

Western and also non-Western music. Research topics range from the development of new

electronic musical instruments to automation of music analysis and composition. The latter

two topics include mathematical modeling of music [11, 52, 80], automated score analy

sis [43, 74], and construction of artificial intelligence agents to create music [19, 20, 25].

The purpose of this chapter is to provide an overview of some of these research areas and

illustrate where Kulitta falls within their scope.

1.1 Composition vs. Performance

Although the definitions of what constitutes a “composition” versus a “performance” of

a composition are somewhat blurry in modem music, in general there is a one-to-many

relationship: a given composition is likely to have many possible performances, where

the composition is an abstract entity that requires additional work or interpretation to be

realized as sound.

In traditional Western music, a composition is typically represented as a printed score.

1

Some musical scores can be very specific, containing detailed information about pitches,

timing, and volume. Others are more vague - such as a jazz standard, which only gives

limited melodic information and often only abstract information about harmonies, thereby

leaving many decisions to the performer. Regardless of the precise level of detail, there

is usually room for some amount of further interpretation in concepts. Even a detailed

traditional score would allow the performer to interpret features like rubatto (creation of an

irregular tempo), the exact volume associated with pianissimo (meaning “very quiet”), and

so on. Individual instruments also have additional possibilities for expressive decisions,

such as varying timbre (the quality of the sound) or adding vibrato (subtle, rapid pitch

fluctuations).

The computer music community often considers composition and performance as two

separate tasks, just as a score can be written by one person and performed by another.

Algorithms exist for creating novel musical scores [1, 22, 25], and others for performing

scores [75,84]. In fact, even in addition to the one-to-many relationship that exists between

a composition and its possible performances, there are good computational reasons for

separating composition and performance as independent tasks. Creating a novel, human

like or even just likable musical score is a daunting enough task by itself for a machine

without having to worry about additional performance details.

The Kulitta framework addresses composition in the traditional sense: creating scores

that require performance. Although Kulitta could easily be used in conjunction with an

automated performance algorithm, properties like volume and tempo changes are outside

the scope of musical features that Kulitta considers. All of Kulitta’s output can, therefore,

be easily represented using traditional Western music notation.

2

1.2 Automated Composition

Automated composition involves generating some amount of a musical score with a com

puter. Sometimes the term “algorithmic composition” is used interchangeably and also

refers to music created at least partially by an algorithm rather than entirely by a human.

At its largest possible scope, automated composition would be the creation of a complete,

novel score from minimal human input, such as a random number seed. However, many

smaller automated composition tasks also exist. For example:

• Automated harmonization: given an existing melody and some stylistic constraints,

fill in appropriate chords.

• Automated reharmonization: given a melody and some harmony, find a slightly dif

ferent harmony that also sounds good. This a common task done by jazz musicians

to add variety to otherwise repeated phrases.

• Fill-in-the-blank problems: given a mostly complete piece of music, fill in missing

notes while trying to adhere to the same overall style as the rest of the music.

• Generating variations: given a melody or short musical phrase, produce a similar

but slightly different version of it.

Whether the output from algorithms for these tasks is considered good or human-like

is another matter. Obviously, the larger the scope of the task, the harder it will be for a

computer (or even a human for that matter) to consistently produce high-quality results ac

cording to some set of standards. However, strict standards do no always exist. Sometimes

the “humanity” of the result or exact replication of a style is also irrelevant, and the pur

pose of the composition is to represent a mathematical model acoustically. For example,

fractal-based algorithms have been used to create novel compositions using various music

theoretic concepts as a guide [33, 86].

3

Although many algorithms and implementations in these categories are exclusive to

academia, they are not absent from more widely used commercial music composition soft

ware. One of the best known examples is Band in a Box, which attempts to solve fill-in-

the-blank and automated harmonization problems in different styles [31]. The Fruity Loops

Digital Audio Workstation software package also features a “riff generator” to allow users

to automatically generate melodies in various styles [58].

The methods discussed so far are all usually handled in offline scenarios: the computer

is allowed to work for an arbitrary amount of time before returning a result. Not all styles of

music are constructed this way, and some are improvisational - such as jazz. Adding a real

time component to a musical task such as automated harmonization increases its difficulty,

assuming the same level of quality is to be maintained.

A vast array of approaches have been used for tasks in automated composition, includ

ing stochastic solvers [19, 20, 87], generative grammars [42], genetic algorithms [1], and

more cognitively-inspired models such as neural nets and Boltzmann machines [4, 26, 30,

35]. Each of these approaches has its merits and weaknesses, although there are some

common problems relating to the complexity of musical tasks that exist throughout.

1.2.1 Computational Complexity and Music Composition

Consider an 88-key piano. Any skilled pianist in a paritcular style can sit down to such an

instrument and play a series of chords that meet that style’s constraints. However, consider

how a naive computer algorithm might view the piano. There are 88 ways to depress one

key, 88 x 87 = 7,656 ways to depress two keys, 88 x 87 x 86 = 658,416 ways to depress

three keys, and so on. The total number of combinations in which the keys can be depressed

(including not depresseing any of them) is the cardinality of the power set of {1,..., 88}, or

the number of binary numbers representable with 88 bits:

288 = 309,485,009,821,345,068,724,781,056 (1.1)

4

Of course, any human musician can tell that this number is actually absurd, since no

body can reasonably play the vast majority of those combinations of pitches. Sill, even

given a classifier to determine which sets of pitches are reasonable and which are not, such

a naive algorithm would still need to compute each one in order to determine if it is viable.

These types of exponential patterns are everywhere in music. The problem above is

a vertical one in a musical score: choosing what to write on the staff at a particular beat

or point in time. However, the same problem also exists horizontally when considering

changes in those pitches over time. If there are n possible chords to pick from for each of

m melody notes, then there are nm possible chord progressions to explore. Even when n

can be whittled down to a reasonably small number of candidates, creating a progression

of those chords under styistic constraints can still become intractable. Given these prob

lems, efficient representations for musical structures and methods for minimizing unnec

essary computation are incredibly important in automated composition algorithms. Kulitta

employs an important principal in order to tackle these sorts of problems in a tractable

way: musical abstraction. This helps to break daunting tasks with large solution spaces

into smaller problems, allowing a solution to emerge in progressively finer levels of detail,

much like a sculpture being chiseled out of stone.

1.2.2 Assessing Compositional Quality

The subjects of composition and performance are often conflated when people listen to

music and make a judgement about its quality. If someone hears a piece of music and says

it is “bad,” is that because he/she didn’t like the score, the way the performers interpreted it,

or some combination of the two? Even if there exists some performance of a composition

that would be deemed “good,” it is still very easy to make that same composition sound bad

to many people: simply have it performed by an orchestra of out-of-sync, novice theremin

players 1. This makes assessment of a score rather tricky, since we don’t hear the score—we

1. The theremin is a notoriously difficult-to-play electronic instrument where the performer’s hands control
pitch and volume via their proximity to metal rods. Even minor unsteadiness of the hand and small shifts in

5

hear its performance.

Automated composition is also a strangely volatile subject, particularly amongst musi

cians. As the author has directly experienced, it is quite common for musicians to actually

be offended—sometimes dramatically so—by the existence of automated composition re

search, while others embrace it readily. Similar phenomena are described by David Cope

[21]. In contrast, research on natural language processing that attempts to let machines

communicate with us using grammatically correct sentences does not appear to elicit such

a sharply divided and emotional reaction. Voice-communication with machines and ma

chines that talk to us are increasingly prevalent and accepted features in modem society,

and yet a machine that essentially sings is controversial. The strong attitudes that exist

about automated composition research add further difficulty to objectively assessing the

performance of algorithms that produce music.

Currently, there is no standard set of metrics or methods by which to assess the perfor

mance of an automated composition system. Also, what constitutes “good” music varies

across the human population. Many aspects of “goodness” are also style-specific. For some

styles of music, such as chorales in the style of J.S. Bach, various music theoretic analy

ses can be used to determine the acceptability of a composition for its style. However, for

other styles, particularly new ones, there are fewer or no such formal approaches beyond

simply observing how other people respond to the music. Additionally, people without

musical training would also be unable to analyze a score visually in the way that a music

theorist could analyze a Bach chorale, therefore requiring a performance of that score for

any sort of assessment—bringing the problem of composition quality versus performance

quality into the mix. Chapter 9 addresses these issues in more detail and presents one pos

sible way of assessing an automated composition system’s performance empirically using

human subjects testing.

the performer’s posture while playing a note can have noticable impact on the generated pitch.

6

1.2.3 Systems for Automated Composition

Two notable automated composition systems exist with goals similar to Kulitta’s: a chorale-

harmonization system created by Kemal Ebcioglu and David Cope’s learning-based Exper

iments in Musical Intelligence. These two systems are both capable of producing complete

compositions of high compositional quality by music theoretic standards.

Kemal Ebcioglu created a system for harmonizing chorales in the style of J.S. Bach

[25]. The system uses a domain-specific programming language called Backtracking Spec

ification Language (BSL) and attempts to harmonize a melody by operating on the solution

from many different musical representations, or “viewpoints.” Some viewpoints include the

harmonic backbone of the chorale as a series of chords, the melodic detail of the chorale,

and the Schenkerian analysis 2 of the chorale. Constraints at each of these levels must be

satisfied in order to find a suitable solution, with backtracking being a fundamental part of

the overall generate-and-test search process. The system is capable of producing harmo

nizations on par with those produced by skilled human composers.

David Cope’s Experiments in Musical Intelligence (EMI) is another system capable

of generating chorales in the style of J.S. Bach [19, 20, 22], although with a significantly

different overall approach. EMI is a machine-learning based system for automated com

position that attempts to emulate styles by analyzing a corpus of music. EMI’s general

strategy for style emulation is to attempt to do mostly what has already appeared in the

training data—but to reject solutions that are too similar to the training data. Existing pat

terns are recombined at various levels to produce a new, but not too new, result. In this way,

by generating primarily features that have already been observed, many of the otherwise

tricky aspects of style emulation are avoided. Rather than backtracking, if EMI does not

find a solution, it starts over from the beginning using a slightly different set of generative

parameters. EMI is also generalizable to other types of data, such as spoken language.

2. Schenkerian analysis is a method of analyzing a score to derive its abstract harmonic structure.

7

Automated composition systems suffer from a tradeoff between novelty or scope and

quality. Systems that produce very novel or “creative” results often produce a lot of

garbage, while those that consistently produce high-quality results tend to produce many

things that sound the same. Ebcioglu’s system sacrifices novelty for high-quality output.

Cope’s system also makes this same sacrifice, although perhaps to a lesser extent. The

advantages of Cope’s approach in EMI is that it is able to very convincingly reproduce a

given style when the corpus is large, as is the case for Bach chorales. Because it closely

emulates its input data, it also will retain fairly high quality. However, novelty will suffer

as the training corpus shrinks.

1.3 Computer Music’s Interdisciplinary Nature

Research in computer music is highly interdisciplinary, drawing from areas like artificial

intelligence and machine learning, linguistics, and psychology. A few field intersections

relevant to Kulitta are highlighted here.

1.3.1 Music, Artificial Intelligence, and Machine Learning

Algorithms for atuomated composition can also often be viewed as artificial intelligence

agents. While the term “artificial intelligence” (AI) more commonly conjures up images of

interactive game opponents such as Deep Blue [12] or IBM’s Watson [27], music compo

sition has many sub-tasks that share features in common with more classical AI problems,

namely constraint-satisfaction over large domains and emulation of human behaviors or

decision-making.

A machine learning algorithm is one that attempts to derive a concept from a collection

of data. The concept may or may not have generative usage. For example, an algorithm for

classifying music by genre may need to learn what properities each genre has from training

examples, but does not necessarily need to be able to generate new compositions in those

8

styles. However, some systems can do both tasks [5].

Many, although not all, artificial intelligence algorithms also include forms of machine

learning. While it is possible to build artificial intelligence agents for simple situations

without a learning component, such as a board game opponent that bases its decisions

purely on traversal of a pre-defined tree of possibilities, learning is appealing in more com

plex scenarios. Adding a learning component to an AI algorithm allows it to tailor its

behavior to a specific situation more succintly than trying to account for each situation by

hand. Learning is commonly employed in musical algorithms when attempting to emulate

styles or create compositions that sound humanly plausible.

One of the most commonly applied learning algorithms in computer music is the Markov

chain [41, 13, 87]. There are two reasons for this: the algorithm is simple, and music is

sequential in nature, lending itself to modeling a score as a series of state transitions [2].

Figure 1.1 shows a simple example of this type of representation. It is relatively straight

forward to take a corpus of music and derive some sort of Markov model from it. Unfortu

nately, when used generatively, such models tend to result in random-sounding or distinctly

non-human-sounding music. These problems are further described in Chapter 4.

1.3.2 Natural Language and Music

Evidence from recent studies suggests that spoken language and music are related in the

brain [7]. In fact, the structure of music may be best described by grammars, just as is

the case for spoken language, and there has been substantial work on this idea in music

theory [48,67, 85]. Grammars are, therefore, an appealing category of mathematical mod

els to explore for the purpose of both analyzing and generating music. However, exactly

which category of grammars would be best for describing music is very much an open

question.

9

• • • •
Figure 1.1: Music is commonly represented using state spaces [2]. The illustrations above
show the opening refrain of ‘Twinkle, Twinkle Little Star” represented as a piano roll and
as a finite state machine over musical states. The top representation is a graph of depressed
keys on a piano over time (a gray box is a key depressed for some amount of time) and the
bottom representation shows the path for the same melody through musical states, where
each represents a key on a piano.

10

1.3.3 Programming Languages

A number of domain-specific languages exist for both representing music as well as com

posing music [36, 38,44,53, 60]. A fundamental problem in any musically-oriented com

puter program is how to actually represent various musical concepts, both mathematically

and inside a computer. What is the appropriate way to represent a pitch? Should it be an

integer and discrete like the keys on a piano, or a continuous value like the range possi

ble on a violin? Should a chord (a collection of simultaneous pitches held for some time)

be a set, multiset, or vector? What about several notes played in sequence or in parallel,

or more abstract structures like the notion of a developmental “part A” and its variations?

Can certain musical structures be polymorphic for better reusability? These are questions

that enter the realm of programming languages. Kulitta’s methods of representing musical

features, which are described in Chapters 3, 4, and 5, even include some programming-

language-specific features, such as variable instantiation to indicate repeted phrases.

Euterpea is a library for music representation and manipulation in Haskell [36]. The

Kulitta framework is implemented in Haskell and uses the Euterpea library for some of its

levels of musical representation. However, Kulitta also contains its own embedded category

of grammars for representing harmonic and metrical structure, called Probabilistic Tem

poral Graph Grammars (PTGGs). A PTGG can contain statements representing variable

instantiation, similar to the let-in constructs found in programming languages. Sentences

written using this category of grammar must then be interpreted to create music, much as a

program must be executed to know its result. PTGGs are described in chapter 4.

11

Chapter 2

An Overview of Kulitta

Kulitta is a modular framework for automated composition in a variety of styles. The

name,“Kulitta,” comes from a musician in Hittite mythology [81]. A central idea to Kulitta’s

approach is the notion of abstraction: the idea that something can be described at many

different levels of detail. Music has many levels of abstraction, ranging from the sound

we hear to a paper score and large-scale structural patterns. Music is also very multidi

mensional and prone to tractability problems. Kulitta uses this principal of abstraction to

mitigate these computational problems and flesh out a composition in stages. Kulitta is also

able to learn some musical features from a corpus of analyzed music.

2.1 Introduction

A summary of Kulitta’s overall structure can be seen in Figure 2.1. There are three general

components to the system: a learning step, a structural generation step, and a musical in

terpretation step. Structural generation begins with a musical grammar for abstract chord

progressions called a probabilistic temporal graph grammar (PTGG). Production probabil

ities for aspects of this grammar can either be defined by hand (no learning step) or inferred

from existing musical phrases using machine learning techniques. This PTGG and its asso

ciated production probabilities are passed to a generative algorithm. This process generates

12

Production
Probabilities

A

- + ■ PTGG

Learning

Infer Production
Probabilities

' t T
C orpus of Musical

P h ra se s
C andidate
G ram m ar

A bstract/Structural
G eneration

C hord S p aces

Musical
Interpretation

G enerative
Algorithm

A bstract Chord
P rogressions

. C onstraint Satisfaction j
Algorithm

Additional
P ost-P rocessing

C om plete Music

Figure 2.1: An illustration of the overall structure of Kulitta. The first stage of our system
creates abstract chord progressions. A generative grammar called a probabilistic temporal
graph grammar (PTGG) is used in combination with an algorithm for applying the gram
mar to produce abstract chord progressions. Production probabilities for aspects of this
grammar can be inferred from examples of existing musical phrases. In the second stage of
our system, these progressions are fleshed out by using a constraint satisfaction algorithm to
traverse chord spaces. The post-processing step in our current system only involves various
data type conversions for writing MIDI files, but future systems might include additional
post-processing steps for adding melodic and rhythmic development.

13

abstract musical structure. At this stage, the chord progressions produced are not tied to

any particular style of music.

The next phase of our generative system interprets those abstract progressions. As part

of the musical interpretation process, Kulitta uses a mathematical construct called chord

spaces to turn an abstract chord progression into one that could be represented as a score.

At this stage, the chord progressions will be homophonic (all voices being rhythmically

identical). However, generation does not need to stop there. Various style-specific melodic

and rhythmic elements can still be added. Two main styles are currently supported by

Kulitta: classical chorales and simple jazz.

2.2 Musical Abstraction

Kulitta revolves around the principal of abstraction: the notion that a musical passage can

be represented at different levels of detail and that two distinct musical passages may differ

in the details while being the same in more fundamental ways. Kulitta’s notion of “ab

straction” is very similar to the definition of the term used in programming languages. The

more abstract something this, the more information must be filled in before that thing can

be used. An abstract function is a type signature lacking a function body: we know some

thing about the function’s interface, but we don’t know exactly how it will behave, and

many different implementations are possible. Similarly, a series of chord symbols from a

jazz standard contain information about musical flavor, but we don’t know exactly what

interpretation a performer will take—and there are many such interpretations.

Music contains many levels of abstraction. Although one rarely thinks of it while lis

tening to a piece of music, ideas like melody and harmony are abstract concepts, as are

specific patterns within those broader features. Musical scores are abstract representations

as well, with one score having multiple possible performance interpretations. This section

addresses several areas of music that have multiple possible levels of abstraction.

14

2.2.1 Pitches

A musical pitch is a sound that has a particular fundamental freqeuncy, which is the lowest

frequency in a series of harmonics. Some instruments produce many harmonics, which is

part of what causes the timbre of one instrument to be different from another. Two pitches

on instruments sound “the same” when the fundamental frequency is the same, even if the

series of additional harmonics produced is different (creating a different timbre or texture).

In the modem Western tuning system, pitches are represented as tuples of a pitch class

(C, C#, D, etc.) and octave (an integer). Pitches on a musical score can typically be repre

sented using integers, where each number corresponds to a key on an infinitely long piano

keyboard. There are also different ways of mapping numbers to piano keys, depending on

where “octave 0” is placed. Euterpea uses the convention that (C, 0) is 0, (C#, 0) is 1, (C, 5)

is 60 (middle C on a piano), and so on for all pitch classes and octaves. Negative octaves

produce negative pitch numbers, such as (5 ,-1) = -1 . Enharmonically equivalent pitches

1 are mapped to the same integer. In other tuning systems, fractional pitch numbers may

be allowed. For example, a pitch of 60.5 would be partway between (C, 5) and (C#,5).

However, Kulitta does not support microtones, so pitches and pitch numbers will be treated

as integers from this point on.

Given this numbering system for pitch classes, the relationship between a pitch number,

p, where (C,0) = 0, and its fundamental frequency, / (in Hz), is calculated by Equation

2.1. Note that the offset of 69 added in Equation 2.1 is specific to Euterpea’s placement of

octave 0; other pitch numbering systems require adding a different offsets.

p = 69 + r i2 x log2(f/440Hz)l (2.1)

Pitch classes are essentially abstract pitches. While one can play a (C,4) concretely on

1. Pitches can be written in more than one way on a musical score. Pitches are enharmonically equivalent
when they indicate the same key on a piano. For example, within the same octave, E# and F would be
enharmonically equivalent.

15

an instrument, there is no such option for just “C” by itself - one needs more information

to be concrete, such as the octave in which the pitch class is to be played. Pitch classes can

be indexed using [0,11], where C = 0, C# = 1, and so on up to B = 11. For a pitch class,

pc, and octave, o, the pitch number, p, is calculated by the formula in Equation 2.2.

p = 12 x o + pc (2.2)

2.2.2 Chords

The term “chord” has ambiguous musical meaning. The term can be used to refer to a

specific collection of simultaneously-sounding notes on a musical score. In this case, the

concept of a chord involves both duration and the notion of voices within the chord. Such

a chord may be best mathematically represented as a vector of pitches and a duration if the

start and end times are uniform.

Chords are also notated more abstractly in music using Roman numerals, where one

numeral represents many possible score-level interpretations. In this setting, a chord is

often durationless and carries only some information about the pitch content of the music.

In the key of C, a Roman numeral I would indicate a C-major chord, perhaps with the pitch

classes C, E, and G. However, it tells the reader nothing about the octaves associated with

these pitch classes or even the number of voices involved.

Even more abstract is the idea of “chord quality.” Chord quality refers to concepts

like “major chord” and “minor chord.” A chord’s quality gives some information about

the intervallic structure of its pitch classes. The term “major chord” usually implies the

structure of a major triad: picking scale indices 1, 3, and 5 from a major scale (indexed

from 1). Again, such a chord is durationless and the pitch classes can occur in any octave.

16

2.2.3 Chord Progressions

A chord progression is a sequence of chords in time. The chords may be concrete, with

specific pitches and durations, or abstract, lacking information about duration and/or spe

cific pitches. Progressions can be described in even more abstract terms. For example, a

cadence is a chord progression that ends a musical phrase. There are several types of ca

dences, each described using abstract chords—usually Roman numerals—to indicate har

monic structure. Two examples are authentic cadences (V-I) and plagal cadences (IV-I).

Jazz often employs chord substitutions, the idea that one chord may be substituted for

another in a progression. Chord substitutions add variety to repeated phrases without break

ing harmonic continuity. A progression that is described using possible chord substitutions

exists at a higher level of abstraction than one described only in terms of a single string of

Roman numerals.

2.2.4 Melodies

Melodies are sequential patterns of notes, although the distinction between which patterns

are considered tuneful or melodic and which are not is poorly defined. A number of dif

ferent approaches have been proposed for melodic analysis and modeling [18, 88]. In

Schenkerian theory, melodies contain a mixture of harmonic tones and other notes, many

(but not necessarily all) of which are analyzed away to determine the structure of the music

[73, 74]. This suggests that there are also multiple levels of abstraction present within a

single melody.

Melodies can also be thought of as belonging to categories. In classical Western music,

a theme and variations is a peice that consists of an opening melodic motif that is repeated

with small alterations throughout the music. These variations of the original melody all

sound similar, and, in an algorithmic composition setting, one might view many of them

as equally reasonable candidates when trying to create a new melody from scratch while

adhering to various other musical constraints, such as the underlying harmonic structure of

17

the melody.

2.2.5 Developmental Structure

Repetition of patterns and variations on a repeating pattern are fundamental to musical

structure. Repetition and variation create a heirarchical structure in long sections of music,

and an absence of this structure is likely to result in complaints of the music sounding

“directionless” or “wandering.”

Patterns of repetition in music are often described using strings of letters. For example,

ABA form would imply that there is an A section and a B section, and that both instances

of A are the same — or at least sufficiently similar as to be recognizable as instances of

the same musical idea. Sometimes a “prime” notation is used to indicate slight variation.

The pattern AA'BA would indicate that the first two instances of A are similar, but the one

denoted A' is slightly different in some way. Exactly what constitutes a variation versus a

completely new section in a mathematically formal way is an open question.

2.3 Mathematical Models

Kulitta models music using two primary mathematical models: equivalence relations and

grammars. Grammars are used to generate abstract structure in the music and equivalence

relations are used to move between levels of abstraction.

2.3.1 Equivalence Relations and Chord Spaces

How should musical abstraction be mathematically represented? For a number of the ab

stract musical features discussed above, one approach is to use equivalence relations to

partition a set of concrete examples into categories representing the desired level of ab

straction.

18

Relations are mathematically represented as sets of pairs. For some relation R, (a,b) G

R means that a is related to b. An equivalence relation is a relation that is reflexive, sym

metric, and transitive. These properties are defined below, where unidirectional and bidi

rectional arrows represent implication and bi-implication respectively.

• Reflexivity: (a, a) G R.

• Symmetry2: (a, b) e R ^ { b , a) e R.

• Transitivity: (a, b) G RA(b,c) G R —> (a,c) G R.

Kulitta uses equivalence relations to move between different levels of abstraction in mu

sic, such as to move from Roman numerals to vectors of pitches. Kulitta’s implementation

supports equivalence relations in a generalized way, making the system more modular and

more easily extensible to include additional equivalence relations for new musical features.

The musical equivalence relations used in Kulitta are also called chord spaces. Some

chord spaces are derived directly from music theory. We make use of both the classical

chord spaces presented by Tymoczko et al. [80] and Callender et al. [11] as well as propos

ing a new space to capture elements of jazz harmony. These are further described in chapter

3.

2.3.2 Musical Grammars

Grammars have been explored both generatively and analytically in music [33, 42, 86].

Studies on brain activity have shown a strong link between language and music in the

brain [7], an idea that has become increasingly accepted in music theory through works

like GTTM, which presents a grammatical outlook on analyzing music [48] (although it

requires additional formalization to be implemented in both analytical and generative set

tings).

2. The property of symmetry in relations is sometimes referred to as symmetricity.

19

Kulitta uses a category of musical grammars called Probabilistic Temporal Graph Gram

mars (PTGGs). These grammars incorporate both traditional features like those from prob

abilistic context free grammars (PCFGs) as well as features more common in programming

languages, such as “let” expressions to allow variable creation and instantiation. The latter

are used to support higher-level musical structures such as ABA form where each A must

be identical, as well as to capture the more subtle AA'BA, where each A is expected to to be

identical but A' is expected to be slightly different. PTGGs are described in chapter 4.

2.3.3 Machine Learning

Although the generative part of Kulitta can be run using hand-built grammars and other

musical models, these models can also be learned from a data. Kulitta’s support for learn

ing makes it more adaptable to handling different styles of music than it would be if these

models had to be hand-built each time. Given a corpus of music, Kulitta is able to infer cer

tain properties that can then be emulated in the generative steps. Kulitta’s learning process

is described in chapter 7.

2.4 Implementation

Kulitta is implemented in the Haskell programming language. Many of the system’s fea

tures lend themselves to a functional approach, leading to an elegant Haskell implemen

tation3. Kulitta also attempts to avoid being tied to a particular musical style by using

strategies that are general and highly modular. Haskell’s type system lends itself to this,

allowing functions to be defined in the most abstract way possible through the use of type

variables. Kulitta’s modularity also allows for different models to be combined in multiple

ways, creating a diverse range of results.

3. Kulitta’s complete source code, MIDI files of the examples in subsequent chapters, and recordings of
additional compositions created by Kulitta are online at h t t p : / / v w . donyaquick. com.

20

Kulitta’s implementation uses the Euterpea library to produce MIDI files as output.

Euterpea has its own representation for various musical structures like pitches, notes, and

chords. It also supports export of these structures to General MIDI format, which is essen

tially a collection of note on/off events for each instrument. To produce musical output, the

Kulitta’s output data structures are turned into MIDI via Euterpea’s intermediate musical

representations. The MIDI data is then easily turned into a visual score using conventional

music notation software. Examples shown here were produced using MuseScore [6], an

open source music notation system.

21

Chapter 3

Musical Equivalence Relations

Kulitta uses a construct called a chord space to capture different levels of musical ab

straction. This allows musical problems to be solved iteratively with smaller, more easily

searchable solution spaces at each step [62]. Chord spaces are formed using equivalence re

lations. This chapter presents a general implementation of equivalence relations in Haskell

that supports many different chord spaces. The following notations and definitions are used

throughout the chapter:

• Function composition: (/2 - f \)x = fi{f\{x)).

• Function equality: f \ = / 2 . This means that f \ and f i will have the same input/output

mapping even if their definitions and/or complexities are different.

• Vectors: x = (xi ,..., x„).

• Vectors created from a constant: k'1 — (k,

• Addition of two vectors: x + y = (xi +yi ,...,x„ +y„).

• Adding a constant to a vector: x + k = {x\ +k, ...,xn + k).

22

3.1 Equivalence Relations

A relation is mathematically represented as a set of pairs. For some relation R C A x B ,

the notation (a,b) G R means that a € A is related to b G B. An equivalence relation,

R C S x S, is reflexive, symmetric, and transitive. These three properties are formalized

below, where unidirectional and bidirectional arrows indicate logical implication and bi

implication respectively.

• Reflexivity: Va G S, (a,a) G R.

• Symmetry: Va,b G S , (a,b) G R <— > (b,a) € R.

• Transitivity: Va,b € S, (a,b) € RA (b,c) G R — ► (a,c) G R.

Relations can also be thought of as digraphs, where a directed edge exists from a to b if

and only if (a,b) G R. Because of symmetry, equivalence relations are often represented as

undirected graph, where reflexivity is assumed and where an edge connecting a and b im

plies the existence of both (a, b) G / f and (b, a) G R. An undirected graph of an equivalence

relation will be a collection of cliques, where each clique represents an equivalence class.

The equivalence class of an element is the clique to which it belongs. Given a relation, R,

and element, a, this is formalized as:

eqClass(a,R) = {b | (a,b) G /? } (3.1)

The notation a ~ R b means that a is related to b under equivalence relation R, or that a

and b are R-equivalent. This means that (a,b) G R. If R is an equivalence relation, then it

will also be the case that b ~ r a, such that the notation is symmetric.

Composition of functions is defined as (g • /) x = g(f(x)), and composition of two

relations follows a similar convention.

R2.Ri = {(a,c)\(a,b)eRu (b , c) e R 2} (3.2)

23

However, composing two equivalence relations does not necessarily produce a new

equivalence relation. Two equivalence relations, Ri and R2 , can be combined to make a

new equivalence relation using the join operation, R\ V R2 [51]. We will use the notation

R+ to denote the transitive closure of relation R, which involves adding pairs (or edges in

the digraph) possible until R is transitive.

R+ = R U (R R) U (R R R) . . . (3.3)

R i WR2 = (Ri -R2UR2-Ri)+ (3.4)

The join operation is commutative, such that R 1 V R2 = R2 V /?i. For simplicity, we will

abbreviate Ri VR2 as simply R\R2 As will be shown later with some musical equivalence

relations, although combining equivalence relations is simple in concept, it is not always

straightforward in practice to preserve properties like transitivity when combining two or

more equivalence relations.

3.1.1 Quotient Spaces

A quotient space is the result of applying an equivalence relation to a set, thereby forming

a partition of the set’s elements or “gluing” related elements together to form a set of sets.

For a set S and relation R, the quotient space formed by applying R to S is denoted S/R and

sometimes referred to as /{-space.

For example, consider the equivalence relation formed by the integers modulo 2:

a ~mod 2 b <— > a mod 2 = b mod 2, a ,b e Z (3.5)

The quotient space formed by 'Ljmod. 2 partitions the integers into even and odd equiv

alence classes, which can be represented by the points 0 and 1 respectively. All even

numbers are “glued” to 0, and all odd numbers are “glued” to 1. This particular quotient

24

space is usually denoted Z2 . Quotient spaces formed by taking the integers modulo other

values are similarly denoted Zx for some x G Z. 1

3.1.2 Groups

A group is a pair consisting of a set, S, and an operator, *, with the following properties[24]:

• Closure: V a , b e S , a * b e S

• Associativity: Va,b,c € S,a*(b*c) = (a*b)*c

• Identity element: Be € S| Va € S,a*e = e*a = a

• Inverse element: Va € S,3a-1 € S\a*a~l = a~l *a = e

Abelian groups are also commutative: Va, b € 5, a * b = b * a.

The symmetric group of order n is the set of all permutations of n elements. It is

denoted S„. The symmetric group is a collection of permutations on a list of length n, and

there are n\ such permutations. Sn = { < T i ,an 1} is a group with function composition as

the operator [24].

As will be shown later in this chapter, several operators that define equivalence classes

on chords also form groups where the elements are functions, much like is the case for the

symmetric group.

3.1.3 Normalizations

An equivalence class is a set of elements that are all related to one another, forming a clique

when represented as a graph. Points a and b are related under R if (a,b) 6 R. However, if

R is large (possibly infinite), simply searching for (a,b) € R can be problematic as a means

to determine whether a b holds. This process of checking whether a b holds, or

1. The integers modulo n is also sometimes denoted Z/nZ [24]

25

whether (a, b) € R, is called testing for equivalence under R or testing for class membership

(since a ~ R b implies that a and b belong to the same equivalence class).

Normalizations are one way to address this problem: for a set S , relation R, and quotient

space S/R, rather than enumerate the entire equivalence class of an element s E S when

determining class membership of a new element, one can instead compute a representative

point of that equivalence class. The set of all representative points is referred to as the

representative subset of S/R, denoted by Sr . If a function / : S -* Sr has the property that

every point in S is /?-equivalent to exactly one point in Sr , it is called a normalization. More

formally:

Definition 1. Sr C Sis a representative subsetfor S/R iffVx E S, there is exactly one y ^ S R

such that x ~ r y.

Definition 2. / is a normalization for the quotient space S/R whenever Vx,y € S, f(x) =

f(y) i— > x ~ Ry A f(x) x

Theorem 1. A function f : S —> S' C Sis a normalization for some equivalence relation, R,

i f f y € S>,f(y) = y.

Proof. Since / is a function, it will map every element of S to exactly one element in S' C S,

forming a partition of S. If we group elements using the criteria that a * iff/ («) = / (*) ,

then the / can be used to partition S into a set of cliques or equivalence relations. Therefore,

/ is a normalization for some equivalence relation. □

Corollary 1. R is an equivalence relation and f : S - y S' c S i s a normalization for R when

a ~ Rb <— ► /(a) = f(b).

Equivalence relations can have more than one normalization, and different normaliza

tions may be needed under different circumstances. Normalizations can also sometimes be

composed to produce new normalizations. The conditions under which this can happen are

described below.

26

Definition 3. Let f \ and f i be normalizations for equivalence relations R\ and Ri re

spectively on set S and h = f i - f \ with range S3 . The function f 3 is a normalization for

R3 = R i V/?2 i f f$x ,y€S 3 , x ~ R3 y.

The concept of a fundamental domain of a quotient space is similar to the definition

we have presented for representative subsets, and fundamental domains exist for a num

ber of musical equivalence relations [11, 80]. However, although the exact definition of a

fundamental domain can be slightly different from one source to another, the fundamental

domain of a quotient space usually preserves some aspects of the quotient space’s geom

etry. These sorts of additional constraints are not required to have a representative subset,

although every fundamental domain will also be a representative subset.

3.1.4 Path-Finding with Equivalence Relations

Just as one element is equivalent to many others under an equivalence relation, a sequence

of many elements can be related to many other such sequences. The sequence of elements

can be viewed as a path through equivalence classes.

For example, the first step of traditional harmonic analysis would be the process of

turning collections of pitches, or chords, into a series of Roman numeral labels, where

each Roman numeral represents a particular equivalence class of chords in the context of

a key and mode. The same set of Roman numeral labels can correspond to many unique

compositions.

An important feature of this approach of path-finding through equivalence relations

is that it can dramatically reduce the size of the solution spaces explored for a particular

problem. Consider an infinite set of elements S and an equivalence relation, R that produces

quotient space S/R with & finite number of equivalence classes. The integers modulo n, Z„

are an example of this sort of relationship. For example, the representative subset of Z 12

is finite, with exactly 12 members (the numbers 0 through 11), while Z is infinite. It can

be more efficient to partially solve a problem by first traversing a representative subset of a

27

quotient space rather than diving into the set of elements directly.

3.1.5 Musical Spaces

A chord space is a way to organize chords in musically meaningful ways. They pro

vide convenient, intermediate levels of organization between various abstract and concrete

chords. Mathematically, a chord space is a type of quotient space formed by applying an

equivalence relation to a set of chords. One such chord space groups chords based on pitch

class content, providing a useful level of abstraction for voice-leading assignment, but there

are also many other possible chord spaces that relate chords in different ways.

One way to construct musically-meaningful equivalence relations is to exploit existing

concepts in music theory, such as the ideas of pitch class and transposition. lymoczko and

Callender et al. introduce several such relations on chords, each based on some concept in

music theory [11, 80]. Other musical quotient spaces are also possible. There is no reason

that the concept must be constrained to grouping individual chords. It would also be possi

ble to have a progression space by grouping chord progressions or even a melody space by

grouping melodies. Regardless of the musical concept used, the same mathematical princi

ples of quotient spaces apply. Algorithms designed to operate on quotient spaces generally

will also support any such musical space. Here we consider two broad categories of spaces,

the OPTIC spaces [11, 80] and contour spaces [56], along with a new category inspired by

jazz music theory called mode space.

3.2 Equivalence Relations in Haskell

Given a quotient space, S/R, there are two types of questions that will commonly be asked

in the Kulitta framework when working with musical equivalence relations:

1. For some x,y € S, is jc ~ r y?

2. For some x £ S, what is x’s /{-equivalence class, eqClass(x,R)7

28

We implement equivalence relations by creating a function to answer the first question.

type EqRel a = a-> a -* Bool

This is easy to do for equivalence relations where normalizations exist,

type Norm a = a ->• a

normToEqRel:: (Eq a) =» Norm a -> EqRel a

no rmToEqRel f x y —f x —= f y

We implement sets as lists. A quotient space is then a list of lists, or [[a]]. The “slash”

operator in the notation S/R and equivalence class lookup can be defined as follows.

(//) : : (Eq a) => [a] EqRel a —> QSpace a

[} / / r = []

* / / r =

let e = [y | y <— s ,ry (heads)]

in e : [z \ z <— s, -> (elem z e) \ j J r

eqClass:: (Eq a, Show a) => QSpace a -> EqRel a -» a ->■ EqClass a

eqClassqs r x =

let ind = findlndex (Xe rx (head e)) qs

in maybe (error ("No c la ss fo r n ■++■ showx)) (qs\\) ind

3.3 The OPTIC Relations

Callender et al. introduce five equivalence relations on chords [11]. Chords in these rela

tions are represented as vectors of pitch numbers. The relations, therefore, partition ZB (the

set of all integer vectors of length n). Vectors are written as x or as (xi, to show the

elements individually. The notation 1” refers to a vector of lenth n whose elements are all

1, and the notation IT refers to the set of all integer vectors of length n.

• Octave equivalence, O. Chords belong to the same equivalence class if they have the

same vectors of pitch classes: v v +127, 7e Zn [11]. For example, (0,4,7) and

29

(12,4,7) are O-equivalent; they are both C-major triads where the voices have the

pitch classes C, E, and G respectively. 2

• Permutation equivalence, P. Chords with the same multisets of pitches belong to the

same equivalence class under this relation. P can be defined using the symmetric

group of order n, S„ (the set of all permutation functions for n elements): v

<r(v), a € Sn [11]. For example, (0,4,7) and (4,0,7) are P-equivalent.

• Transposition equivalence, T. Chords with the same intervallic content belong to the

same equivalence class. For example, (0,4,7) and (1,5,8) are T-equivalent. The

relation was originally defined as v v + cl", c € R for continuous, microtonal

systems [11]. For Kulitta, however, it is further constrained by requiring c 6 Z to

model discrete tonal systems, such as those relevant to a piano.

• Inversion equivalence, I. Chords are related to their negations, which are a reflection

around the origin. For example (0,4,7) (0, —4, -7).

• Cardinality equivalence, C. Chords with duplicate neighboring voices are related to

each other. For example (0,4,7) is related to (0,0,4,7) but not to (0,4,7,0).

The reflexive, symmetric, and transitive properties are easy to prove for O, P, and T.

However, I and C are problematic since their definitions do not account for all three prop

erties. The definition of I-equivalence is not reflexive, although this is an easy modification

to make to the definition. Cardinality equivalence is somewhat more complicated, and, as

shown later in this chapter, is more easily dealt with by defining a normalization for the

equivalence relation.

The OPT relations can be combined to make new relations by using the join operation:

R\ V/?2 , written as R1R2 for simplicity. For example:

2. Note that Octave equivalence is essentially Z 12, the integers modulo 12.

30

• Octave and Transposition equivalence, OT. v v + 127+cl", 7e Z", c € Z. Chords

in the same equivalence class have the same intervallic structure when represented as

vectors of pitch classes. For example, (0,4,7) ~ ot (13,5,8).

• Octave and Permutation equivalence, OP. v ~ opt <x(v+ 12i), 7e Zn, a G §„. Chords

in the same equivalence class have the same multisets of pitch classes. For n = 3

voices, OP-space contains an equivalence class for all C-major triads, another for all

C-minor triads, and so on.

• Permutation and Transposition equivalence, PT. v <r(v + c l"), tx e S„, c € Z (or

c 6 R for microtonal systems). Chords in the same equivalence class share the same

intervallic structure of their multisets of pitches. For example: (0,4,7) ~ pr (5,1,8).

• Octave, Permutation, and Transposition equivalence, OPT. v ~ op <x(v + 127+cl"),

76 Z", <j e Sn,c € Z. Chords in the same equivalence class have the same intervallic

structure of their multisets of pitch classes, capturing the notion of chord quality. For

example, (0,4,7) ~ opt (0,3,8), where (0,4,7) is a C-major triad and (0,3,8) is an

A-flat-major triad. This can be seen as follows: (0,4,7) ~ o (12,4,7) ~ r (8,0,3) ~/>

(0,3,8)

Proofs of these definitions are in Appendix A. Chord spaces involving cardinality equiv

alence are more easily formalized using their normalizations. Two such examples are PC-

equivalence (permutation and cardinality) and OPC-equivalence (octave, permutation, and

cardinality). PC-equivalent chords share the same sets of pitches, and OPC-equivalent

chords share the same sets of pitch classes. Definitions for these are covered later in the

chapter.

3.3.1 Applications of OPTIC

A sequence of representative points from a chord space represents a sequence of equiva

lence classes. Such a path also represents many possible other paths through non-representative

31

Constraints

Starting chord

Next chord

Figure 3.1: An illustration of the path-finding nature of chord spaces for a 1-V progres
sion. Each Roman numeral can be mapped to many concrete chords, which may literally
be thought of as chords floating in space. When we choose a specific /-chord, the next tran
sition may be subjected to various voice-leading or other constraints that limit the number
of viable choices for the next chord. This defines a region of acceptable solutions for the
next chord, which may be chosen stochastically if more than one option exists within that
area.

points in those equivalence classes. Given a chord space that has the same level of abstrac

tion as an abstract progression (such as one written as Roman numerals), the task of turning

that abstract progression into a concrete progression becomes a path-finding problem.

3.3.2 Normalizations for OPTIC

In order to use the OPTIC relations, there must be ways to test whether two chords are

equivalent under each individual relation and combination of relations. For the individual

relations and for many combinations of relations, the normalizations can be used for this

task. Normalizations for O, P, T, I, are as follows, where sort is a function that sorts a

vector’s elements in ascending, lexicographic order. Proofs of the property in Definition 2

for these normalizations are somewhat trivial, following directly from the simple arithmetic

and sorting operations involved. Proofs for these normalizations can be found in Appendix

A.

normO((x\,...,xn)) = (xi mod 12, mod 12) (3.6)

normP(x) = sort(x) (3.7)

32

normT ((x\,...,xn)) = (x \ - x i , . . . , x „ - x \) (3.8)

normI({x\,...,xn)) = ifx j <Othen (-x i , . . . ,-x B) else (xi,...,x„),

where jc,- is the first non-zero element of the vector.

(3.9)

Although one normalization is shown for T-equivalence above, it serves as a good ex

ample of an equivalence relation for which more than one obvious normalization exist. In

normT above, the first element of a vector, x\ is subtracted from the entire vector. However,

as shown below, any jc, can be used.

Theorem 2. Let F = { /i be the set o f functions f - ((x\ ,..., xn)) = (xi - x,,..., x„ -

xi}. An algorithm A : Z” —»Z” is a normalization for 7Ln/T if, for all x € Z”, it applies the

same f to all members o f x ’s equivalence class, E(x,hn/T).

Proof Recall that x y <— > 3c e Z ,x = y + c ln. Two chords are T-equivalent if they have

the same intervallic structure. Adding a constant to a chord produces a T-equivalent chord,

so V/ € F, x f(x). Now we must show that V/ e F, Ix y <— > normT{x) — normT(y).

L etx= {xi,...,xn),y = iyi,...,yn)-

L et? = (xi - X i , . . . , x n - X i) , p = (y i- y h ...,yn - y t) for some i € Z.

If x and y have the same intervallic structure (the definition of T-equivalence), then xf

and y will be equal and the ith element of both ? and / will be 0. We therefore have

that c = Xi— y, and x xf = / y. If x and y are not T-equivalent, then the intervallic

structures are different and ? xf. Therefore, A(x) = A(y) i— > x ~ T y. □

Corollary 2. The following function:

normT ((xh ...,xn)) = (x j-x \ , . . . ,x n- x \) (3.10)

33

which subtracts the first element o f a vector from all other elements, is a normalization for

Zn/T.

The original definition for C-equivalence technically only relates elements that differ

by one set of duplications and is neither symmetric nor transitive. Symmetry is easily

assumed, but transitivity is more problematic. Consider the following:

(x,y,z) ~ c (x,y,y,z) ~ c (*,y,y,z,z).

To retain transitivity, it must be the case that (x,y,z) ~ c {x,y,y,z,z). Cardinality equiv

alence’s definition, therefore, needs to be extended to include any number of sequential

duplications in any voice (including zero duplications to ensure reflexivity) such that two

chords are C-equivalent if they share the same vectors of pitches where adjacent duplicates

are eliminated. Given this definition, it is easiest to formalize C-equivalence by creating

its normalization. A normalization for C-equivalence is most succinctly defined recur

sively, using the list notation from Haskell to represent vectors, where a vector of length n,

(xo,...,x„-i) can be written as [xo,...,x„_i] orxo :... : []. The code for normCbelow

presents this normalization for C-equivalence using Haskell.

normC:: [Int] —► [Int]

normC [xO: x \ : t] = if *0 = = x\ then normC (xO: t) else (xO: normC (* i: t))

normC x = x

We then have C-equivalence defined as follows:

x ~ c y <— > normC(x) = normC(y) (3.11)

Combining Normalizations

Some of the normalizations for O, P, T, and C can be combined to create new normaliza

tions for compound equivalence relations. Proofs for these normalizations can be found in

Appendix A.

normOP — normP • normO (3.12)

34

14

12

10
< N

10 12 14

Voice 1
Points in O-space's representative subset •

Figure 3.2: The representative subset of O-space for two voices as defined by normO.

normOT = normO ■ normT (3.13)

normPC = normC • normP (3.14)

normPT — normT • normP (3.15)

normOPC — normC • normP ■ normO (3.16)

Finding a normalization for an equivalence relation is not always the simplest way

to check for equivalence class membership. An example of this is OPT-equivalence, for

which a normalization is somewhat more complicated than checking class membership.

While representative subsets of OPT-space can be defined 3, it is not easy to normalize

chords into this subset of IP f OPT. The reason for this is illustrated by the points (0,2,7)

3. For example, Tymoczko et al. define a fundamental domain for OPT-space for three voices [80]. As
noted previously in this chapter, fundamental domains are also representative subsets.

35

14

12

10
CM

10 12 14

Voice 1
Points in only P-space's representative subset

Figure 3.3: The representative subset of P-space for two voices as defined by normP.

and (0,5,7), which are related by:

(0,5,7) ~ o (12,5,7) ~ p (5,7,12) ~ r (0,2,7)

The point (0,5,7) should, therefore, be normalized to (0,2,7) under the conventions of

our representative subset. However, we cannot use any of the normalizations discussed so

far to accomplish this. (0,5,7) will be mapped to itself with normP, normO, and normT.

The same thing happens with (0,2,7) as well. Therefore, we have two choices: create

one or more new normalizations, or use another algorithm to test whether two chords are

OPT-equivalent.

Testing for OPT-Equivalence

Because the O, P, and T normalizations cannot be combined to create a new normaliza

tion for OPT-equivalence, testing equivalence under OPT requires either a different algo-

36

10

8 II<uo
o> 4 II

6 80 2 4 12 1410
Voice 1

Points in only O-space's representative subset •
Points in only P-space's representative subset A
Points in 0-, P-, and OP-space's rep. subsets ■

Figure 3.4: The relationship between the representative subsets of O-space, P-space, and
OP-space as defined by normO, normP, and normOP.

rithm or a new normalization not based on composing existing normalizations. For OPT-

equivalence, algorithm 1 is a function that, although it makes use of the O, P, and T normal

izations, does not define a normalization for the OPT relation itself. This algorithm returns

true if and only if two chords are OPT-equivalent. It makes use of the vector concatenation

operator, -H- , defined in Equation 3.17

(* i , . (3-17)

Algorithm 1. Let x and y be two vectors o f length n.

optEq(x,y) =

Letx! = normT {normOP (x)), p = normT {normOP {y)).

Let Sy = {normPT(/ +12?) |T = lm-+f 0"-m, 0 ^ m < n}.

lfx! G Sy then return true, otherwise return false.

37

Theorem 3. Algorithm 1, optEq, correctly tests for OPT-equivalence.

Proof. We also have that P and / are sorted vectors in [0,1 1]" whose first element is

zero. We have that x1 and / must be OPT-equivalent to x and y respectively by transitivity.

Similarly, we know that Va 6 S$, a ~ op t y- Finally, observe that is the set of all T-

normalized rotations of p within the range [0,12]".

We must now show that xf e S$ <— ► P ~ opt 9- Chords that meet P ’s structural con

straints will be referred to as “useful” chords. We will make use the following equation,

where min(v) returns a vector’s smallest element and and max(v) returns its largest:

spaniv) = max(v) —min(v).

The definition of Sy contains all OPT-equivalent chords to y that have a span of < 12,

are sorted, and whose first elements are zero. We show the correctness of S fs definition in

four steps.

1. At least one field of each i used to create Sy must be zero. Otherwise, because of the

normPT operation, redundant chords will be created: normPT (x) = normPT(x+k).

2. Octave shifts where T contains at least one field that is 0 and at least one field that is

> 1 will produce chords with too large a span to be useful.

Case 1:

• Let v = (...,a , . w h e r e 0 < a < b < 11.

• Let Te [0,2]" be a vector of octave shifts such that

normPT(v+12?) = {a,...,b + 24)

where a is the smallest field non-shifted field and b is the largest field shifted

by 2 octaves.

• Case a — b: span((a,...,b + 2A)) = 24 (toobig)

• Case a < b: span((a,...,b + 24)) > 24 (too big)

38

• ? € [,] "

normPT (v+ T) = (b,...,a+)

b

• a = b span((b,...,a +)) =

• a < b span((b,...,a+)) = - f c e [,

>

• v = (...,a,...,b,...)

• ? € [,] "

normPT (v + 1) = (a,...,fc +)

a

v

• a = £> ,s/>an((a,...,£ +)) =

• a < b span((a,...,b-\-)) ^

v = (...,a,b,...) ^
—♦

i

normPT (v+ l) = (b,...,a+)

Case a —b: span((b,...,a+ 12)) = 12 (too big)

Case a < b: span((b, . . . ,a + 12)) < 12 (useful)

Because of these properties, we know that contains all possible useful chords—the

only chords that might be equal to x'. Therefore, optEq correctly tests for OPT-equivalence.

□

A normalization for OPT-equivalence would not be much different from this algorithm.

Since any two OPT-equivalent chords will, in fact, generate the same sets of chords for Sy,

we can simply take the lexicographically smallest element of the set.

Algorithm 2. normOPT (x) =

LetJ? = normOP(x)

Let S$ - {normPT(x+ I2i) \ != lm -H- 0"-'”, 0 ^ m < n}.

Return minimum{S$), where minimum returns the lexicographically smallest memeber

of the set.

For example, since (0,2,7) is lexicographically smaller than (0,5,7), (0,5,7) will be

normalized to (0,2,7) and (0,2,7) will be normalized to itself.

Theorem 4. normOPT is a normalization for OPT-equivalence.

Proof. The correctness of normOPT follows directly from the correctness of optEq. Sy

will contain all OPT-equivalent chords falling within [0,11]" that are sorted in ascending

order and whose first element is zero. This set will be the same for all members of an

OPT-equivalence class of chords. □

Using these methods of testing for OPT-equivalence, a test and normalization can be

defined for OPTC-equivalence. This relates chords whose sets of pitch classes are OPT-

equivalent. The normOPC operation can be used to reduce a vector to its set of pitches,

which can then be compared using optEq to determine OPTC-equivalence or further nor

malized by normOPT to achieve a normalization for OPTC.

40

optcEq(x, y) = optEq(normOPC(x), normOPCiy)) (3.18)

normOPTC = normOPT ■ normOPC (3.19)

It is important to note that normOPTC cannot be defined using normPC instead of

normOPC. The reason for this is that normPC will only remove duplicate pitches, while

normOPTC clearly needs duplicate pitch classes to be removed as well. The corresponding

proof for normOPTC’s normalization properties can be found in Appendix A.

3.3.3 Groups

The O, P, T, and I relations can also be represented as parameterized functions, where

equivalent chords can be produced from an input chord. These functions will be written

with the Haskell currying notation, where f{x,y) is written f x y and (/ jc) is a function

that takes one additional argument.

o 7 x = x+ \2 l, 7 e Z n (3.20)

p a x = o{x), o e F (3.21)

t k x = x + k l n, k e Z (3.22)

i k x = kx, k € {1,-1} (3.23)

Each of the functions above has the form / r p jc = y for some parameter p € Pr for

relation R. The equivalence relations could then be described as follows:

x ~ R y <— > 3p € Pr | f R(x, p) —y (3.24)

For a relation R that can be defined using operation /# and parameters Pr, the set of all

41

functions that can be applied to any chord x is Fr = {//? p \ p € Pr}. For the parameteriza-

tions above, o, p, t, and i form groups.

Go = ({ o 7 \ 7 e Z n},-) (3.25)

GP = ({p a | ct€5"},-) (3.26)

Gp = ({t k | *€Z },-) (3.27)

Gi = ({i k | * € { 1 ,-1 } } ,.) (3.28)

Gp is a group because Sn is a group, and the two are synonyms for the same group, just

with slightly different notation. Proofs of the group properties of Go, Gp, and G/ follow

from properties of addition and multiplication and can be found in the Appendix A. Go,

Gp, and G/ are also Abelian, since the order of composition for the functions does not

matter. Sn, and, therefore, Gp are not Abelian.

3.3.4 OPTIC in Haskell

Since Kulitta operates on chords in Z", we define chords as vectors or lists of integers.

Euterpea contains the type AbsPitch as a type synonym for Int. We extend this to represent

chords similarly.

type AbsChord = [AbsPitch]

Many of the various combinations of OPTIC operations are individually most easily

implemented in Haskell using the normalizations described previously.

normO, normT, normP, normOP, normPT, normOPC:: Norm AbsChord

normO — map (‘mod* 12)

normT x = map (subtract $ head x) x

normP = sort

normOP = sort o normO

42

normOT — normO o normT

normOPC = nub o normOP

These are then easily turned into equivalence relations of type EqRel using normToEqRel.

oEq,pEq, tEq, opEq, opcEq:: EqRel AbsChord

[oEq,pEq, tEq, opEq, otEq, opcEq] = map normToEqRel

[normO, normT, normP, normOP, normOT, normOPC]

Group operators can also be defined for the O, P, T, and I. Each operator in Haskell

mirrors its mathematical definition. Vectors are represented as lists. The octave operator,

o, takes a list of octave shifts and a chord. The zipWith operator combines the two vectors.

o :: [Int] —>■ AbsChord —>■ AbsChord

oisxs = zipWith (Xi x —» x + 1 2 * i) isxs

The permutation operator, p, takes a permutation, s (for “sigma”), as its first argu

ment, which is represented as a list of indices into a list. The s argument must, there

fore, be the same length as xs and be a permutation of [0.. length xs — 1]. For example,

p [3 , 1 , 2] [0,4,7] evaluates to [7,0,4].

p :: [Int] —> AbsChord —>• AbsChord

p sx s = map (x s !!) s

The transposition operator, t, simply adds a constant to a vector, and the inversion

operator, i, takes a Boolean value that determines whether the chord is multiplied by 1 (left

unchanged) or by - 1.

t: \In t- t AbsChord -* AbsChord

t cxs = map (+c) xs

i :: Bool —> AbsChord —► AbsChord

i neg xs = if neg then map (*(—1))) else xs

As already discussed, OPT is problematic and is more easily defined using a different

algorithm that makes use the group operator for octave equivalence, o.

43

optEq:: EqRel AbsChord

optEq x y =

let n — length y

(jc 7, /) = {normT $ normOP x, normT $ normOP y)

is = map {Xk -> take k {repeat 1) -H- take (n — k) {repeat 0)) [0.. n]

s = map (normT o normP) $ map (Xi —> o i /) is

in or (map {== x') s)

In the definition above, is is the set of all octave shifts that result in rotations of the

vector, and s is S$ from Algorithm 1. From this algorithm, as described previously, OPTC-

equivalence can be tested by first normalizing into OPC space and then testing for OPT-

equivalence.

optcEq:: EqRel AbsChord

optcEqab — optEq {normOPCa) {normOPCb)

3.4 Contour Equivalence

Contour equivalence is a concept introduced by Morris [56]. Contours exist over a sequence

of pitches. These pitch sequences are most intuitively thought of as pitches in a melody, but

they can actually be any musical feature that would be represented as a vector of pitches,

such as a chord. A pitch vector’s contour is a ranking of its elements from smallest to

largest. This is defined by the following algorithm, where sort is a function that sorts a

vector’s elements in ascending order (e.g. sort{{3,1,2)) = (1,2,3)).

Algorithm 3. rank{x) =

Letx1 = normPC {x)

Replace each field o fx with its index in x/

The Haskell definition is very similar to the algorithm above, where fields in vectors are

indexed from zero. After finding x!, the ranks value is computed as a list of tuples, which

44

serves as a lookup table for each pitch’s rank.

rank :: [AbsPitch] —>■ [Int]

rank xs =

let xf = normPC xs

ranks = zip xf [0.. length xf - 1]

in map (Ax —> fromJust $ lookup x ranks) xs

Contour equivalence can be defined as an equivalence relation, Con.

X ~con y i— ► rank(x) = rank(y) (3.29)

For example, rank((5,7,5,10)) = (0,1,0,2), and r«nfc((3,10,3,12)) = (0,1,0,2), so

(5,7,5,10) ~con (3,10,3,12). A Con-equivalence class consists of pitch vectors that all

have the same relative ranking of elements, or the same general type of shape. The func

tion rank both defines the equivalence relation and is a normalization for it. Reflexivity,

symmetry, and transitivity follow from the definition of Con using a normalization.

The concept of “melodic contour” in a less mathematically strict sense has been used

as a form of musical abstraction in automated composition tasks [41]. Although Kulitta

currently does not make direct use of contour equivalence for generating melodies, it would

be easily usable within the existing framework and is an appealing avenue of future work.

3.5 Modal Equivalence

The harmony of a lot of classical Western music is centered around primarily two modes:

major and natural minor, with the intervallic structures (2,2,1,2,2,2,1) and (2,1,2,2,1,2,2)

respectively. The minor scale is actually a rotation of the major scale’s intervallic structure.

There are seven such rotations, each yielding a different mode as shown in Table 3.1.

A mode can be represented using several levels of abstraction: as a collection of inter

vals, as a collection of pitch classes, or as a collection of pitches. In keeping with the OPTIC

45

Rotation Name Intervallic structure Scale rooted at 0
0 Ionian (Major) {2,2,1,2,2,2,1) (0,2,4,5,7,9,11)
1 Dorian {2,1,2,2,2,1,2) (0,2,3,5,7,9,10)
2 Phrygian (1,2,2,2,1,2,2) (0,1,3,5,7,8,10)
3 Lydian (2,2,2,1,2,2,1) (0,2,4,6,7,9,11)
4 Mixolydian (2,2,1,2,2,1,2) (0,2,4,5,7,9,10)
5 Aeolian (Minor) (2,1,2,2,1,2,2) (0,2,3,5,7,8,10)
6 Locrian (1,2,2,1,2,2,2) (0,1,3,5,6,8,10)

Table 3.1: The intervallic structure of all seven modes based on the major scale and an
example scale rooted at 0 (pitch class C) for each.

way of handling chords, modes can be thought of as a 7-voice chord where each voice is a

unique pitch class. We use this representation to define two new concepts: modally related

chords and modal equivalence.

We define the set of all modes as chords to be transpositions of members of the right

most column from Table 3.1:

M = {m = t km ' | it e [0,11], m' e {(0,2,4,5,7,9,11),...,(0,1,3,5,6,8,10)}} (3.30)

We will refer to a chord as being a member of a mode if its pitch classes are a subset

of those allowed in the mode. Consider the power set operation, normally written as P(S)

for set S: P(S) = {S' C S}. This operation can also be defined over a set represented as a

vector (i.e. the elements are sorted and no duplicates exist).

P((*1,X2,...,*„)) = {(*l), (Xn), (*1,*2), (xi,x„),...,(xi,*2,-,*/«)} (3.31)

For example:

P « l , 2,3)) = {<1), <2), (3), (1,2), (1,3), <2,3), <1,2,3)} (3.32)

For a chord x e Zn and a mode m e M, a chord belongs to a mode if its pitch classes

belong to the mode. The normalization for OPC-equivalence reduces a chord to its sorted

46

set of pitch classes, creating the right level of abstraction for this test.

member {x, in) «— Y normOPC(x) e P(m) (3.33)

Two chords are then modally related if their pitch classes are subsets of the same mode.

modallyRelated(x,y) <— Y 3m e M, member(x,m) A member(y,m) (3.34)

The predicate modallyRelated defines a relation, but it is not an equivalence relation

due to the fact that some chords have ambiguous modal membership. The two-note chord,

(0,7), is one such ambiguous chord, being a member of all modes except Locrian. There

fore, we have modallyRelated({0,7), (0,4,7)) and modallyRelated({0,7), (0,3,7)), but

(0,4,7) and (0,3,7) are not modally related since there are no modes in M that contain

{0,3,4,7}.

The ambiguity issue already discussed means that vectors of pitches are not specific

enough to create an equivalence relation grouping chords in a way that allows them to be

explored by mode. One way to do this is to “tag” the chords with additional information,

namely the modes to which they belong, since we need (0,7) in one mode to be differenti

ated from (0,7) in another mode.

Smo = {(*» € M, x G T) | member(x,m)} (3.35)

This space is infinite because of x € Z". However, the subset of this space where x is a

member of OPC’s representative subset is far more manageable.

Sm = {(m e M, normOPC(x € Z")) | member(x,m)} (3.36)

This can be redefined using the definition of P over vectors. If member(x,in), then

x e P (m) .

47

% - { (m 6 M , x € P(m)} (3.37)

This set of chords is finite: Sm = 10,752. If grouped by the mode member of the

tuple, m, there are 84 equivalence classes (one per each mode rooted at a particular pitch

class), each containing 128 chords. Because chords are represented as tuples with a mode

as context, modal equivalence is trivial to define over Sm .

(mi,x\) (m2,x2) i— ► mi = m2 (3.38)

We refer to this new quotient space, Sm/M, as mode space. Mode space is easily enu

merable and can also be generated more efficiently than the other quotient spaces discussed

so far by utilizing its relationship to the power set operation. As shown in chapter 6, mode

space represents an appealing level of abstraction for Jazz, bridging the gap between rep

resentative subsets of Roman-numeral-level OP-space and the more complex set of chords

present in Jazz, as seen in Table 3.2.

Major tonic Minor tonic
Roman numeral Triad Mode Triad Mode
I Major Major Minor Minor
n Minor Dorian Diminished Locrian
m Minor Phrygian Major Major
IV Major Lydian Minor Dorian
V Major Mixolydian Minor Phrygian
VI Minor Minor Major Lydian
vn Diminished Locrian Major Mixolydian

Table 3.2: Modal interpretation of Roman numerals.

48

3.6 Musical Equivalence Relations in Kulitta

Kulitta uses musical equivalence relations, or chord spaces, to transition between different

levels of musical abstraction: a path through an abstract space is converted to a path in a

more concrete space. However, this only solves part of the compositional problem, and

does not address how to create the starting, abstract path or how to satisfy other musical

constraints while transforming that path into a more concrete one. Kulitta uses musical

grammars to create the abstract path, and then uses constraint satisfaction algorithms dur

ing path finding through chord spaces. These topics are covered in Chapters 4 and 5 re

spectively. Chapter 6 shows an integrated view of how chord spaces, musical grammars,

and constraint-satisfaction interact to create complete pieces of music.

49

Chapter 4

A Grammar for Harmonic and Metrical

Structure

The harmonic analysis of music has long been noted to be analogous to the parsing of

natural languages. In the Schenkerian tradition, harmonic structure in music is viewed

hierarchically, yielding essentially a parse tree of harmonic sections. Recent work has

shown that music and spoken language involve the same parts of the brain [7], and work

such as Generative Theory of Tonal Music [48] presents a grammatical outlook on many

aspects of musical structure.

In natural language, a sentence would be parsed by starting with the terminal symbols

(words), working backwards to infer their function (noun, verb, etc.). These symbols would

then be grouped into grammatical phrases (adjective-noun, subject-verb-object, etc.), form

ing a hierarchical structure that ends with the start symbol representing a sentence. In mu

sic, especially in the Schenkerian tradition, a piece of music would be parsed by starting

with the terminal symbols (notes, rests, and chords), and working backwards to infer local

harmonic progressions (such as ii-V-I), song forms (such as AABA1), creating a similar,

1. Large-scale patterns of repetition in music are typically denoted using capital letters. ABA form would
indicate a 3-section piece with identical (or sufficiendy identical) first and last sections. Similarly, AABA
indicates a 4-section piece where the first, second, and fourth sections are the same.

50

hierarchical structure that ends with a simple I-V-I or even just I (the tonic), serving the

function of a start symbol [73,74].

In the context of Kulitta, however, we are primarily interested in automated music com

position rather than analysis. One way to approach this is to use grammars generatively—

that is, to generate sentences from the start symbol. Unfortunately, with many conventional

grammars (such as context-free grammars, or CFGs) the result is usually nonsensical—for

example, “The dog wrote the house,” or in the case of music, something that just doesn’t

sound right.

More specifically, conventional grammars intended for automated music composition

have the following limitations:

1. They are unable to capture the sharing of identical phrases, such as in a song form

AABA, where the A sections are intended to be identical (or nearly identical) to one

other.

2. They do not take probabilities into account. Music analysis has shown that certain

productions are more common than others—indeed specific genres of music (say,

Bach chorales) have specific distributions of musical characteristics [68].

3. They do not capture temporal aspects of music. For example, a production rule

stating that a I chord can be replaced with V-I does not capture the durations of those

chords. Chord symbols in analytical grammars are typically duration-less (such as

those in Martin Rohrmeier’s grammar for harmony [67]), despite the importance of

rhythm in music [48, 77, 78]. When chords are durationless, the Schenkerian idea

that the V-I would occupy the same duration as their parent I-chord is impossible to

capture.

To overcome these problems, we define a new class of generative grammars called

probabilistic temporal graph grammars [63], or PTGGs 2. These grammars operate on

2. PTGGs are based on a similar category of grammars called Temporal Generative Graph Grammars

51

duration-parameterized chords and the rules are functions of those parameters. In a gen

erative setting, this added complexity over a traditional CFG is highly efficient and much

more expressive.

4.1 Related Work

Generating harmony is a popular subject in automated composition research. A wide vari

ety of algorithms have been explored, including Markov chain-based approaches [16, 87],

neural nets [4, 5, 26, 29, 30, 35], and more specialized systems intended for generating

whole compositions [19,25].

Grammars are an appealing representation for music because of their ability to cap

ture long-spanning structural constraints such as those found in the harmonic structure of

music—for example, starting and ending in the same key. Other popular representations

used in algorithmic composition algorithms have problems capturing more than short-term

structure in music. Markov Chains and Neural nets are two commonly used approaches

that suffer from this problem.

A Markov Chain of order n represents a finite state machine where each state cap

tures n steps of production “history.” Each state has a collection of transition probabilities

to other states. Markov chain-based approaches are commonly used both for small-scale

algorithmic composition tasks and for tasks where partial musical information is already

given, such as melodic harmonization [70, 87]. However, Markov chains are doomed to

perform poorly at more complex tasks where larger scale musical structure must be gen

erated, since they can only “keep track o f ’ as many productions as their order, n, allows,

resulting in state explosion when trying to capture constraints over longer generated sec

tions. Although approaches such as variable-length Markov chains [9, 70] can help to

mitigate the state explosion for some tasks, they do not eliminate the problem. For even a

defined by Quick and Hudak[64].

52

variable-length Markov chain to capture a constraint that spans from the first symbol to the

last symbol, the order, n, would have to be the length of the generated section—a clearly

unreasonable approach.

Neural nets have been used for problems in automated harmonization [26, 29, 30, 35,

57], A related type of network, called a Boltzmann machine, has been applied to a wider

variety of musical tasks: classification of existing music, “fill in the blank” problems (like

automated harmonization), and free composition [4, 5]. Boltzmann machines are particu

larly appealing for their versatility in this regard, since the same model can be reused for

each task by simply “clamping” (holding constant) different nodes in the net. However,

Boltzmann machines as well as other neural net systems still suffer from complexity prob

lems when dealing with music, since output nodes must be tied to pitches or pitch classes.

Representing a decision about a single note choice out of n possibilities requires n output

nodes. For m independent choices with n possibilities each, most representations require

nm output nodes. This quickly become problematic for representing complex structures.

4.1.1 Macro Grammars

Macro grammars [28] are a category of context-free grammars that allow both standard

productions, such as A —>■ a, as well as productions that are functions F(x) —» w, where

j c is an argument or variable and w is an expression that uses j c . These function-based

productions can capture features that would otherwise require a context-sensitive grammar.

For example, a macro grammar can be used to generate strings of the form anbncn (some

number of as followed by the exact same number of bs and cs):

S —»F(a,b,c)

F(x,y,z) -> (xa,yb,zc)

F(x,y,z) -*xyz

A more typical CFG would have no way to capture the constraint that there must be the

same number of each of the three characters in the string, being able to capture anbn, but

53

not anbtlcn. PTGGs are similar to macro grammars in that they are context-free grammars

that use functions to capture certain features (including repetition) that would otherwise

require a context-sensitive grammar.

4.1.2 Musical Grammars

Grammars have been explored both generatively [33, 42, 54, 86] and analytically [48, 67,

85] in music. Studies on brain activity have shown a strong link between language and

music in the brain [7], an idea that has become increasingly accepted in music theory

through works like GTTM, which presents a grammatical outlook on analyzing music [48]

(although it requires additional formalization to be implemented in both analytical and

generative settings). Graph grammars, which can account for repetition through the use of

shared nodes have been occasionally used in musical settings, such as to aid in composition

with audio samples [69] and for representing aspects of musical scores [3].

Martin Rohrmeier introduced a mostly context-free grammar (CFG) for parsing classi

cal Western harmony [67]. The grammar is based on the tonic, dominant, and subdominant

chord functions. Terminals are the Roman numerals from I to VII, and the nonterminals

are Piece, P (phrase), TR (tonic region), DR (dominant region), SR (subdominant region),

T (tonic), D (dominant), S (subdominant), and four chord function substitutions. However,

this grammar has no support for important features like repetition and duration, and so is

problematic in a generative setting without additional supervision. The HarmTrace pack

age, written in Haskell, builds on Rohrmeier’s grammar to automate harmonic analysis

[50]. FHarm, a later system that also uses Haskell, addresses the task of melodic harmo

nization using HarmTrace to filter out results that best match a particular harmonic model

[45]. A fundamental difference between our system and FHarm is that FHarm harmonizes

an existing melody, whereas Kulitta can compose from scratch without existing musical

input from the user.

The recently proposed analytical grammar by Martin Rohrmeier exhibits a small amount

54

of context sensitivity based on mode. For example, tonic chords, denoted as T, are given

different, modally-determined productions [67].

r - + i

T -> TP

T ^ TCP

TP -* VI when in major

TP HI when in minor

TCP -¥ III when in major

TCP-+V I when in minor

However, consider a PCFG formed from the grammar above. If the production prob

abilities for TP and TCP are the same, this collection of rules is really equivalent to a

reduced set of completely context-free rules:

I

VI

r ->• in

The TP and TCP nonterminals would allow the production probabilities to differ based

on mode, but determining exacdy how they differ is an open problem best addressed in

a machine learning context. Determining how musical contexts such as the current mode

should be handled in both the alphabet and construction of rules is the subject of later

chapters, where production probabilities are derived from musical corpora.

Meter is another clearly important aspect of music. In work such as GTTM, meter

interacts with harmonic aspects of the music through metrical grouping and preference

rules [48]. Temperley’s work [76, 77, 78] as well as a harmonic analysis algorithm by

Raphael and Stoddard [66] also emphasize the role of rhythm and meter in the perception

of harmony. However, meter is often treated separately in generative settings, such as in

55

the grammars for jazz riffs presented by Keller and Morrison [42].

Repetition is another feature of music that is often ignored by generative algorithms.

Consider a fugue: the subject that opens the piece is expected to appear in modified states

later on in the music. If these constraints are ignored, the form of the music is violated.

The various musical grammars discussed so far have little or no direct support for this kind

of musical feature, and many other algorithms are fundamentally incapable of supporting

it as well. Markov chain and most Neural Net-based approaches lack the ability to enforce

any sort of pattern repetition over long spans of time without experiencing an explosion in

the number of states or nodes.

Our grammar allows easy integration of both metrical features and pattern repetition

within the grammar. This allows for the production of complex repeated patterns at multiple

levels, even with relatively few rules containing Let expressions.

4.2 Generating Music with a PTGG

A graphical representation of the generative portion of Kulitta discussed in this chapter can

be seen in Figure 4.1. It begins with a PTGG for chord progressions (defined in the Section

4.3), which is passed to an algorithm for applying the grammar. This process generates

abstract musical structure. The chord progressions produced are not tied to any particular

style of music.

The next phase of Kulitta’s generation interprets those abstract progressions. We wish

to emphasize that there are many possible algorithms and mathematical models to use at

this stage, since it determines many of the stylistic elements of the music. Kulitta uses a

mathematical construct called chord spaces and style-specific embellishment algorithms to

generate music at the level of a MIDI file—roughly the level of representation offered by a

paper score. Musical interpretation is discussed in more detail in Chapters 5 and 6.

Additionally, just because Kulitta can produce performable music does not mean that

56

PTGG

Iterative
Generation

Stochastic
Generative
Algorithm

Abstract Progression

Musical Interpretation

Figure 4.1: An illustration of the generative process for a probabilistic temporal graph
grammar (PTGG). A PTGG is used in combination with an iterative algorithm for applying
the grammar to produce sequences of abstract progressions consisting of Roman numerals,
modulations, and Let expressions to capture repetition. After generation, Let expressions
must be interpreted by instantiating variables.

the results are closed to further alteration by either other algorithms or a human. For ex

ample, Kulitta’s support for generating abstract structure with musical grammars could

be employed as an algorithmic component in otherwise human-crafted compositions that

could be in any number of styles.

4.3 Grammar Definition

A grammar is a tuple, G = (N, T,R, S) where N is a set of nonterminals, T is a set of termi

nals, R is a set of rules from N ^ (NUT)+, and S G N is the start symbol. Terminals are

symbols that cannot be replaced (or, alternatively, can only produce themselves), whereas

nonterminals have rules that replace them with one or more other symbols. Rules have the

form A -¥ v where v is a sequence of one or more terminals and nonterminals.

A PTGG has several core concepts that distinguish it from more standard CFGs:

1. The grammar generates sequences of duration-parameterized abstract chords, written

57

as Roman numerals, and modulation symbols.

2. Chords function as both terminals and nonterminals. Inspired by Schenkerian ideas

in music theory, a single, long, abstract chord may be considered representative of a

more harmonically diverse elaboration consisting of multiple chords. For example,

if a ii-V-I progression may be analyzed as representative of a longer tonic section

or I-chord, it is reasonable to allow a long I-chord to produce ii-V-I in a generative

setting.

3. Ignoring duration (see below), the grammar is context free—the context of a chord

does not affect the productions that may be applied to it. However, this does not

mean that the musical interpretation of the chord is context-free. A Roman numeral

appearing in a modulated context implies a different set of pitches than the same

Roman numeral in an unmodulated context.

4. Rules are functions on the duration of their input symbol. Because durations can be

any real number, the set of possible duration-parameterized chords can be infinite

even with a finite set of rules.

We use the superscript notation d to indicate a chord c with duration t. For musical

readability, the letters w, h, q, and e are used as shorthands to represent the relative durations

of a whole note, half note, quarter note, and eighth note, respectively. Therefore, Iq denotes

a /-chord with the duration of a quarter note. Chords can carry any real number as a

duration, such as 71 °, but those numbers must be assigned a unit of measure (beats, seconds,

etc.) to be further musically interpreted.

Chord quality is sometimes captured by using both uppercase and lowercase Roman

numerals. When this distinction is made, i would indicate a minor chord and I a major

chord. However, this distinction is not made within Kulitta. Therefore, all chords are

58

written with upper case Roman numerals to yield the following alphabet:

C = {/, II, III, IV, V, VI, VII} (4.1)

The simplifying assumption that major and minor modes do not need to be distinguished in

the alphabet of Roman numerals was made both to allow for a smaller rule set and because

it is not clear from existing work how best to capture those concepts in a generative setting.

Sometimes modal distinctions are ignored in an analytical setting as well [67].

The nonterminals of a PTGG are the set of all duration-parameterized chords:

iV = {cf|c e C , r e M } (4.2)

In keeping with Schenkerian ideas, the start symbol for our grammar is P where t is the

duration of the entire phrase to be generated. The chord quality associated with a Roman

numeral is determined by the home key and modulation context in which it appears. Mod

ulations can only occur based on diatonic scale degrees. Thus, there are only six possible

modulations: one for each scale degree other than the first (which is the current key, or

tonic).

M = {M2,M3,M4,Af5,M6)M7} (4.3)

The terminals of our grammar include both nonterminals and modulation symbols. Paren

theses are used as an additional “meta symbol” for indicating nested structures in generated

sequences.

T = NUM (4.4)

Repetition, or sharing, in our grammar is handled by the use of a let-in syntax to define

variables. The notation let x = A in s means that all instances of x occurring in s should be

instantiated with the same value A. The inclusion of these let-in expressions is what creates

shared nodes in the graph grammar. Each instance of x in s will point back to the same

59

node (jc ’ s definition).

It is important to realize that the let-in notation introduces the concept of variable in

stances, which is lacking from many generative grammars. For example, the expression

let x = A in xBx, where A and B are nonterminals, is not the same as the expression ABA.

This is because in the former, the result of expanding A is shared identically by all instances

of x, whereas in the latter each A can be expanded independently.

The set of sentential forms K in our grammar is defined recursively as follows:

k e K ::= c | k\ ...kn | (m k\) | let x = k\ in ki | x € Var (4.5)

where Vdr is a set of predefined variable names and m € M is a modulation.

4.3.1 Production Rules as Functions

Production rules in our grammar are parameterized by duration, and can thus be thought

of as functions. They can be written with concrete durations, such as Ih ->■ Vq lq and

Iq —► Ve Ie. But, in many settings, these are really the “same” rule and can be written as

a function of the duration of the input chord: P ->• V'/2 p!1. Duration-parameterized rules

allow a finite set of rules to produce an infinite alphabet of duration-parameterized chords.

We implement production rules as functions in Haskell [59]. As shown in the follow

ing section, treating rules as functions allows the grammar itself to capture many musically

relevant behaviors that would otherwise be delegated to an algorithm for applying the gram

mar. Rules can create repetition as well as exhibit conditional behavior, yielding complex

structures with even a very simple generative algorithm. Haskell allows for an elegant im

plementation of these rules and the generative algorithm. Finally, a PTGG is a probabilistic

grammar, and thus each rule (there may be several rules for each nonterminal) is associated

with a probability and the probabilities for a particular left-hand side (a single nonterminal)

must sum to 1.

60

4.4 Haskell Implementation

This section presents an implementation of PTGG in Haskell that closely mirrors the math

ematical presentation above. Simple data types capture the essence of chords, modulations,

let-in expressions, and sentential forms. As mentioned earlier, functions are used to imple

ment production rules, and are paired with a probability. In addition, we describe a gener

ative algorithm in monadic style that chooses rules based on their associated probabilities.

4.4.1 Chords, Progressions, and Modulations

Roman numerals represent chords built on scale degrees, of which there are seven,

data CType = I \ I I 177/ | IV \ V \ VI | VII

deriving (Eq, Show, Ord, Enim)

Key changes, or modulations, in our grammar also take place according to scale de

grees. Similarly to the Roman numeral system for labeling chords, we define symbols

indicating modulations for the 2nd through 1th scale degrees. The first scale degree is the

root, and there is no need to indicate staying within the current key.

data MType = M2 \M3 \M4\M5 \M6 \M7

deriving (Eq, Show, Ord, Enum)

We now define a data structure to capture the sentential forms of PTGG, called Term.

This data type has a tree structure to model the nested nature of chord progression features

like modulations and repetition. A Term can either be a nonterminal (NT) chord, a sequence

(S) of terms, a tenn modulated to another key (Mod), a let-in expression (Let) to capture

repetition, or a variable (Var) to indicate instances of a particular phrase,

data Term =

NT Chord \ S [Term] \ Mod MType Term \

Let Var Term Term | Var Var

type Var = String

61

4.4.2 Rules

We begin with the following type synonyms for clarity in type signatures for probabilities

{Prob), random number seeds {Seed), and duration (Dur).

type Prob = Double

type Seed = Int

type Dur = Rational

Rules are a functions from duration-parameterized chords to chord progressions. Chord

progressions are represented as a Term. Because more than one rule may exist for a partic

ular Roman numeral, each rule also has a probability associated with it. To capture this, we

define a constructor that takes a lefthand-side tuple of a CType and production probability,

and pairs it with a RuleFun (a function from duration to chord progressions),

data Rule = {CType,Prob) :—> RuleFun

type RuleFun = Dur -y Term

We also introduce abbreviations for single-chord Term values to allow chord progressions

to be written more concisely.

i, ii, iii, iv, v, vi, vii:: RuleFun

[i,ii,iii,iv,v,vi,vii] =map {Xc t - yNT {Chordt c))$enumFromI

Note that the usage of lower-case numerals is required to define these abbreviations as

functions in Haskell, but the quality of a chord indicated by the above functions is still

determined by the modal context in which it appears.

For example, the rule P —► V'/2 p!2 with probability p would be written:

(I ,p) : ->Xt ->S[v{ t /2) , i (t /2)]

Table 4.1 shows a complete PTGG. The following are some specific rules taken from

our implementation of that table that represent the three main forms of our rules. Rules

may produce a sequence of chords, a modulated section, or no change (an identity rule).

ruleVl = (V,0.15) :-> At - y S [iv (t / 2),v (t/2)]

ruleV9={V, 0 .10):->v

62

ruleVIO = (V, 0.10) :-> (Mod M5 o i)

Rules according to Schenkerian theory and the metrical structures in work like Gen

erative Theory of Tonal Music (GTTM) [48] would enforce that the chord durations on

the right-hand side sum to 1.0 and follow basic metrical divisions, such as powers of 2.

However, this is not a strict requirement of our grammar. In fact, interesting rhythmic pat

terns can be created with rules that mix metrical structures and add or subtract duration,

although they may yield little or no sense of meter. Therefore, we do not explore these

types of grammars, but simply note that they are legal as PTGGs.

Rules can also create repetition using Let expressions. In the rule sets used for our

examples, we make use of the following rules:

X ' -> le tx = Xt/2inxx (4.6)

X' -> let x = X,/4 in x Xf/2 x (4.7)

X '-» letx = X'/4 inxV '/2x (4.8)

Because rules are functions, they are more powerful than simply being a table of in

put and output values. The rules can encapsulate additional aspects of functionality that

would otherwise be delegated to the algorithm applying the grammar. The rules shown

so far already demonstrate this to some degree by using an infinite alphabet to accommo

date durations and by handling repetition within rules. Rules can also exhibit conditional

behavior.

One problematic aspect of the generative process that can be solved by adding con

ditional behavior to rules is how to obtain a “nice” distribution of durations that meets

musical expectations for some genre. In a chorale, one would expect a lot of quarter notes

and perhaps some half and eighth notes, but no notes spanning half the duration of the

piece. In jazz, the distribution of durations would be more diverse, but one would still not

63

expect to see very uneven distributions such as a burst of 64th notes followed by a lengthy

passage consisting entirely of whole notes.

Even when metrical structure is built into the structure of the rules, stochastic generation

can easily create distributions of durations that give no sense of meter and/or absurdly long

and short durations. One way to avoid this is to delegate the decision to the algorithm

applying the grammar: apply rules left to right whenever possible except for notes that are

“too short” for our desired distribution. The distribution of durations is then controlled

by other aspects of the grammar and the generative algorithm, such as the probabilities of

self-productions (e.g. P -¥ P) and the number of generative iterations used. With a PTGG,

there is an elegant, functional approach to this by encoding the decision making directly

into the rules:

my RuleFun:: RuleFun

myRuleFun d = iSd< durLimit then term\ else termj

where term\,term2 :: Term. This approach allows for a very simple implementation of the

grammar’s generative algorithm, since the rule set encapsulates all of the complex behavior

of the grammar.

4.4.3 Generating Chord Progressions

Our strategy for applying a PTGG generatively is to begin with a start symbol and choose

a rule randomly, but biased by the associated probability. For each successive sentential

form, all nonterminals are expanded “in parallel.”3

The Prog Monad

Because this strategy is stochastic, randomness must be threaded through the generative

process to help with decision making. We achieve this with a simple state monad to thread

3. This strategy is similar to that used for an L-system or Lindenmayer system [61],

64

Haskell’s “standard generator” for random numbers. While we could have used Haskell’s

existing definition for State, we opted to define our own monad for added transparency,

newtype Prog a = Prog (StdGen -* (StdGen, a))

instance Monad Prog where

return a = Prog (As -> (s,a))

Prog po » = / i = Prog $ A s0 ->

let (si,ai) =po so

Prog pi = / i ai

in pi si

In addition, we define a single “domain specific” operation to generate a new random

number from the hidden standard generator:

getRand:: Prog Prob

getRand = Prog (Ag ->

let ('■»/) = randomR (0.0,1.0) g in (g',r))

Finally, we define a way to “run” the monad:

runP:: Prog a —> StdGen —► a

runP (Progf) g = snd(fg)

Applying Rules

A chord, X ‘ € N , can be replaced using any rule where X appears on the left-hand side.

Since there may be more than one such rule, the applyRule function stochastically selects

a rule to apply according to the probabilities assigned to the rules. For a rule, (c,p) :—> rf,

we use the functions Ihs, prob, and rhs to gain access to its CType, Prob, and RuleFun

respectively.

65

applyRule:: [Rule] -* Chord -> Prog Term

applyRule rules (Chord dc) —

let rs = filter (A((c',p) :-> rf) -> c' = = c) rules

in do r 4- getRand

return (choose rs r d)

choose:: [Rule] —> Prob —»■ RuleFun

choose [\p = error "Nothing to choose from!"

choose {({c,pf) :—>rf): rs) p =

if p ^ p ' V null rs then rf else choose rs (p —p’)

Parallel Production

The Prog monad can be used to write a generative function that runs for some number of

iterations, with each iteration making a pass over the entire Term supplied as input to that

iteration.

In a single iteration of the generative algorithm, a Term is updated in a depth-first man

ner to alter the leaves (the NT values representing chords) from left to right. For Let ex

pressions of the form let x — t\ int i , the terms t\ and tj are updated independently, but

instances of x are not instantiated with their values at this stage. Otherwise, it would be

trickier to ensure that all instances of x are generated the same way.

update:: [Rule] —> Term —► Prog Term

update rules t = case / of

NT x —> applyRule rules x

S s -* do ss 4 - sequence (map (update rules) s)

return (5 ss)

Mod m s —► do / <— update rules s

return (Mod m s')

Var x —> return (Var x)

66

Letxa t -4 do d <— update rules a

t! <— update rules t

return (L e txa 't1)

Finally, we define a function gen that iteratively performs the updates by iterating a

monadic action infinitely often.

gen:: [Rule] —> Int —► Seed -» Term —> Term

gen rules i s t = runP (iter {update rules) t) (mkStdGen s)!! i

iterv.Monadm =>• {a —► ma) a -> m [a]

iter / a = do a' 4—f a

a s«— iterf d

return (d : as)

Note that Haskell’s laziness extends into the monad, and so the infinite list that results

from its use is evaluated lazily. The result of calling gen on a Term for some number of

iterations will be a Term that may contain Let expressions. Retaining this structure allows

us to extract constraints that aid in the musical interpretation of the Term.

67

Num. Probability Rule
1 0 . 2 0 p i p / 4 y t / 4 p / l

2 0 . 2 0 p p / * / y t / 4 y t / 4 p / 4

3 0 . 2 0 p y t / 2 p / 2

4 0 . 2 0 p p / 4 / p i 4 y t / 4 p / 4

5 0 . 2 0 P -+ P
6 0.80 IP - t lP
7 0 . 2 0 IP -+M2(VtI2 P '2)
8 0.70 IIP - t IIP
9 0.30 IIP -tM${P)
1 0 0.80 I V '- t IV1
1 1 0 . 2 0 IV1 -+M4(P/4 Vf/ 4 Pi2)
1 2 0.15 y t / y t / 2 y t / 2

13 0 . 1 0 V* - t IIP I2 VP>2
14 0 . 1 0 y t p / 4 / / p i 4 y p / 4 p / 4

15 0 . 1 0 y t y t / 4 y p / 4 y / p / 4 y t / 4

16 0 . 1 0 y t y t / 2 y p / 2

17 0 . 1 0 V‘ IIP
18 0 . 1 0 y t y t / 2 y t / 2

19 0.05 V1 -> VIP I2 V' / 2

2 0 0 . 1 0 y t ^ y t

2 1 0 . 1 0 V* —tMs(P)
2 2 0.70 VP - t VP
23 0.30 V P -tM 6(P)
24 0.40 VIP -> VIP
25 0.50 VIP -)• p /2 IIP/2
26 0 . 1 0 VIP -tM-jiP)

Table 4.1: Production rules of a sample PTGG.

Figure 4.2 shows an example of the steps of this algorithm and the resulting parse tree.

Because of the presence of identity rales, which can be applied many times, parse trees for

generated progressions can often be constructed with fewer rule applications than actually

occurred.

4.4.4 Musical Interpretation

A Term is a tree data structure with many abstract musical features that must be interpreted

in the context in which they appear. Chords must be interpreted within a key, and the key

68

Total duration

i

' 11 I v T
r~ m6“ i

i 11 1 I. . . . 4 /

r m5- i

[11 I v I 1 I
Figure 4.2: Two parse tree representations of the same progression, created by applying
the rales 1, 3, and 21 from Table 4.1, along with identity rules 5, 6 , and 12. The left
representation more closely mirrors the iterative generation algorithm, where each row of
chords represents an iteration.

is dependent on the modulation structure of the branch. Variables refer to instances of a

specific chord progression, which may have nested Let expressions.

To produce a sequence of chords that can be interpreted musically, the structure of Let

statements must be expanded by replacing variables with the progressions they represent.

This is important because the interpretation of a variable’s chords hinges on the context

in which the variable appears. Consider the following expression and what happens when

variables are instantiated with their values, where the notation a=>b means “a evaluates to

br

let jc = /* in x (M5 x) =>■ I‘(M5 P) (4.9)

In this example, the two instances of x must be interpreted in two different keys in the

final progression. If the passage occurs in C-major, then the first x is a C-major chord, but

the second is a G-major chord.

When Let expressions appear in rales, the variable names in a generated progression are

not guaranteed to be unique. In fact, duplicate variable names can be quite common. We

use lexical scoping to handle these situations, always taking a variable’s nearest (innermost)

I I tf4 y tM -j-t/2

M5(Im) v w im

y t/8 j t /8

V

69

binding in the Term tree as shown below.

letx = T inx (letx = V1' i n x x) x ^ I t V1' V'7' (4.10)

The expand function accomplishes this behavior, replacing instances of variables with their

values under lexical scope, by maintaining an environment of variable definitions.

expand:: [(Var,Term)] —> Term —» Term

expand e t = case t of

Let x a exp —> expand ((jc, expand ea):e) exp

Varx -» maybe (error (x-H-" i s undefined")) id $

lookup x e

S s -* S (map (expande) s)

Mod m t' -» Mod m (expand e t1)

x —> x

These abstract progressions may then be further musically interpreted using chord

spaces and musical constraints as described in the following chapters. Figure 4.3 shows a

small example of this process.

4.5 Modal Context-Sensitivity

The PTGGs discussed so far are context-free for everything except duration of the sym

bols. However, although the harmonies produced by context-free PTGGs are interesting,

they also demonstrate the need for considering mode when applying rules. Here we only

consider two modes, major and minor, although the extension to a larger number of modes

is also possible within the same framework. There are two possible ways to address the

issue of modal context-sensitivity:

70

1. Increase the alphabet size and allow for major/minor chords. The simplest approach

would be to double the alphabet and create modulation rules such as

VImajor -> M(,(Iminor) to indicate that a Vl-chord in a major key (which is a minor

triad) would need to be replaced by a minor modulated section.

2. Add mode-handling to the monad and allow rules to use conditional logic on the

mode.

The monadic implementation lends itself to easy introduction of certain contextual fea

tures. The current mode is a type of information that is easily handled in the same way as

threading randomness through the computation. This allows for a smaller rule set, since

rules like /*->/* and V* M$(P) for which mode does not matter do not need to be

duplicated for major and minor modes. Instead, only those rules that are prone to making

undesirable harmonies in one mode or another need to be modified. This type of implemen

tation does not preclude the level of detail that would be possible in a non-redundant rule

set for an alphabet of major and minor Roman numerals, but it allows for simplifications

when the sets of rules relevant to each mode and their associated probabilities demonstrate

overlap.

It is important to note that modal context-sensitivity implemented at the monadic level

is not the same as creating a traditional context-sensitive grammar, where presence of sym

bols elsewhere in the sequence can influence the selection of rules. All of the rules still

have the context-free form of A —► XY and traditionally context-sensitive rules of the form

AB —» XYB are still illegal. Rather, where we would have two rules with the same left-hand

side, A —>• XY and A -» X'Y1, where XY is appropriate in major and X'Y' is appropriate in

minor, the mode-handling logic is once again encapsulated in the rules (in the same way as

handling a minimum duration) rather than being delegated to the applying algorithm.

Table 4.2 shows an example of a modally context-sensitive PTGG. It also includes

additional conditional behavior to aid in duration distribution. This rule set contains 26

rules using a monad-level handling of mode.

71

Iterative Generation

Generated Progression Rule(s) Applied

I 1 S ta rt sym bol

V ariable Instantiation Musical Interpretation

Pitch A ssignm ent

A B 1

- f h
V I I I V I V I

Figure 4.3: Example of the generative process and musical interpretation for Let expres
sions. The pitch assignment step shows only one of many possible outcomes, with the
important feature being that chosen pitches adhere to the overall ABA pattern defined by
the Let expression. Handling of Let expressions at the pitch assignment step is discussed
in Chapter 5.

72

The changes to the implementation needed to support modal context-sensitivity are

relatively small. Details of the modified implementation are shown in Appendix B.

4.6 Other Alphabets

So far, the chords used in PTGGs have been limited to Roman numerals, yielding a seven

chord alphabet. This is, in fact, a very limited musical alphabet, and other, more diverse

labeling systems are commonly used. Fortunately, the same framework developed in the

previous sections is still applicable to other alphabets of chords, and it can be general

ized without requiring a redefinition of CType or any invasive changes into the algorithms.

Rather, a chord simply can be redefined in a polymorphic way: as “something” with a

duration.

data Chord a = Chord Dur a

deriving (Eq,Show)

This type change then propagates to to Term's definition,

data Term a = NT (Chord a) \ S [Term a] | Mod MType (Term a) |

Let String (Term a) (Term a) | Var String

deriving (Eq, Show)

Changes elsewhere are trivial to accommodate this difference, merely substituting Term a

for the instances of Term in type signatures. The PTGGs shown in Tables 4.1 and 4.2 would

produce progressions of type Term CType.

This more general definition of the Chord type is useful for constructing PTGGs over

different harmonic systems, and allows the easy extension of the code to new data types rep

resenting different alphabets of chords. In chapter 8 , PTGGs are constructed from a modi

fied version of Rohrmeier’s grammar for harmony, which introduces new chordal concepts

in addition to Roman numerals. For example, in this grammar, a “tonic chord,” denoted as

T, is a separate and more general entity than a I-chord. The Chord a type allows this type

73

of change easily within the framework. This extension would also allow the use of rules

with more harmonic granularity, such as those found in Terry Winograd’s work [85], which

specify the intervallic structure or inversion of the chord: I ->• / | , / -» fj, and so on. More

details on this more generalized version of the implementation are contained in Appendix

B.

4.7 Other Possible Extensions

Because a PTGG generates abstract structure for music that must be further interpreted,

it would be easy to augment the alphabet and allowable sentential forms to handle more

musical concepts. One common musical feature is the notion of a variation. This is often

denoted using a “prime” notation. For example, AA’ would indicate a section A followed

by a very similar but not identical version of A. One might notate this with a PTGG as:

let x = A in (jc variation (x)) (4.11)

where variation above denotes an operation that must be performed at the musical

interpretation level, similarly to let-expressions. However, these sorts of additional features

are not currently implemented. Exact repetition in the form of a let-expression is easily

implemented in Kulitta because the musical meaning is unambiguous: each instance of a

variable must be exactly the same. On the other hand, the idea of musical variation is far

less well defined. We usually know a variation of a theme or section when we hear it, but

those observations lie in an area between exact repetition and total distinction that is still

fuzzy and poorly defined. A formal definition of what constitutes a variation would be

needed in order to proceed from abstract to concrete in the generative process.

74

Num. Probability Rule
1 0.187 P-> if major then IP<A V' / 4 P>2 else /W 4 W 4 p i2
2 0.187 p p /A j y t / A y t /A p /A

3 0.187 p y t / 2 p ! 2

4 0.187 P ^ H major then p /A IP>A W 4 P>4 else P/4 TV' / 4 W 4 P>4
5 0.252 P -»• if t ^ h then P else p /2 p /2
6 0.400 IP -» if major then IP else TV'
7 0.400 IP -¥ if major then (if t > q then IP else Mi{P)) else MiiP)
8 0 . 2 0 0 IP -+ if major then VP I2 IP I2 else VP I2 TV'/2)
9 0.900 IIP -* IIP
1 0 0 . 1 0 0 IIP -+Mi(P)
1 1 0.900 /y r -> /y r
1 2 0 . 1 0 0 IV*
13 0 . 1 0 0

14 0.150 y t j y t / 2 y t / 2

15 0 . 1 0 0 v x -* n p /2 v p /2
16 0 . 1 0 0 y t p ! 4 JJp/A y p / A y t /A

17 0 . 1 0 0 y t y t /A y p / A y i p / A y t /A

18 0 . 1 0 0 y t y t / 2 y p / 2

19 0 . 1 0 0 V ^ I I P
2 0 0.050 y t y t / 2 y t / 2

2 1 0 . 1 0 0 V' - a VIP/2 V‘/2
2 2 0 . 1 0 0 v * -* m 5{P)
23 0.700 VP -* VP
24 0.300 VP-+M 6(P)
25 0.500 VIP -► if / > q then VIP elseM7(P)
26 0.500 VIP -> p /2 IIP/2

Table 4.2: Example of a modally context-sensitive PTGG with conditional behavior on
both mode and duration within rules. Note that implementing this rule set without modal
context-sensitivity would require an alphabet of 14 Roman numerals (Imajon Iminor, etc.)
and would therefore require twice as many individual rules, many of which would be re
dundant. The letters h and q denote a durations of a half note and quarter note respectively.

75

Chapter 5

Constraint Satisfaction

A musical grammar provides a backbone or abstract path that can be transformed into more

concrete music using chord spaces. However, there are multiple ways that this can be done,

and many of them are likely to sound bad or violate various music theoretic principles.

If we wish to generate music in a particular style, there are likely to be various rules or

constraints that define that style beyond what can be captured in a chord space, such as

specific ways that voices must behave when transitioning between chords. These sorts

of musical behaviors can be addressed with the use of a constraint satisfaction algorithm

when traversing a chord space.

Artificial intelligence systems often involve constraint-sadsfaction algorithms[46]. When

operating in a discrete environment, a brute-force approach to constraint-sadsfaction is

depth-first search of all possible outcomes. This approach is also guaranteed to succeed

if the constraints are sadsfiable. However, many solution spaces are too large for this ap

proach to be realistically usable, requiring the uses of stochastic alternatives instead.

5.1 Musical Constraints

Music theory describes many rules that separate good music from bad, and one style from

another. Many of these rules can also be viewed as constraints that the composer must

76

Figure 5.1: An example of undesirable voice-leading behavior. The voices cross twice
between beats 2-3 and 4-5, and they exhibit parallel motion (discussed in Section 5.3) in
the second measure.

satisfy in order to write good music. One of the difficulties in capturing these rules or

constraints in a formal setting is that not all of them are strict or “hard” constraints. Quite

often the constraints are softer, and must only be met most of the time in order to produce

a satisfactory result.

The term “voice” refers to a musical line that contains only one note at a time. For

many instruments, one voice corresponds to one staff on the score1. In a chorale, voices

are not allowed to cross—in other words, the nth highest voice must play the nth highest

note. Figure 5.1 shows an example of voices crossing. This is a hard constraint in the sense

that the only acceptable solutions are those completely satisfying the constraint. Similarly,

when writing a part for violin, the range of the instrument must be considered and is again

a hard constraint. Exact repetition of a phrase would also be a hard constraint. However,

other common transformations, such as the formation of a counter subject in a fugue by

transposition of the subject, are not so strict, and sometimes small deviations can even be

more pleasing than strict adherence to the rule. Because soft constraints are inherently

more difficult to formalize, the constraints presented here are hard constraints: a musical

feature either does or does not meet the constraints in a Boolean sense. All constraints are

presented alongside their Haskell implementations.

Kulitta uses chord spaces as a fundamental part of the music generation process to move

1. Instruments capable of playing many notes at once are an exception to this. For example, score for a
piano will often have more than one voice represented on the same staff.

77

from abstract progressions to concrete music. Some musical constraints are easily captured

within the chord space itself, while others are better handled during the path-finding process

to traverse the chord space. Kulitta includes three path-finding constraint satisfaction algo

rithms. Two of these algorithms will only return solutions that satisfy 100% of the imposed

constraints. The third is a greedy algorithm that seeks to mostly satisfy the constraints but

might break them sometimes—a property that “softens” otherwise hard constraints. All

three approaches have merit in different settings.

5.1.1 Predicates

All of the constraints discussed in this chapter are formalized as hard constraints. Most of

these constraints can be formalized as a Boolean test, or predicate, that returns True when

a musical value satisfies the constraint(s) and False otherwise,

type Predicate a = a -* Bool

Predicates can exist over many different types of values. Using the AbsChord type

defined in Chapter 3, a Predicate AbsChord would be a predicate over single chords, a

Predicate (AbsChord, AbsChord) would be over pairs of chords, and a Predicate [AbsChord]

would be over chord progressions. Kulitta makes use of several musical constraints of these

types.

5.2 Single Chord Constraints

Kulitta uses a number of single-chord constraints to make style-appropriate choices for

pitch assignment in chords. The following constraints can all be handled at the single

chord level:

• Voice order. A simple way to ensure that voices do not cross is to enforce that pitches

in all chords are sorted in ascending order.

78

• Voice spacing, or intervallic structure of the chord. Spacing of voices is important;

if the voices are too tightly packed, they may difficult to distinguish (for example,

tightly packed clusters of low pitches on a piano are often described as sounding

“muddy”). Voices can also be spaced too far apart.

• Doubling. When a pitch class is played by two voices in different octaves, it is said to

be doubled. Some styles have rules for when different pitch classes can be doubled.

Sometimes it is appropriate to double the root or fifth of a chord, but not other voices

such as the third or seventh.

• Voice ranges. Each voice can only utilize a finite range of pitches. This means that

the total set of possible chords for a given piece of music is also finite when discrete

pitches are used, even if the set is prohibitively large or intractable to explore.

Single-chord constraints are most effectively employed in the construction of the quo

tient space itself, since single-chord predicates can be viewed as acting on the set of chords

before any equivalence relations are applied. Pruning the set of available chords before

applying an equivalence relation requires less computation than would be required to first

form the quotient space and then filter out chords during path-finding.

We can represent single-chord constraints with predicates on single chords, or type

Predicate AbsChord. Note that this is a type synonym for AbsChord —> Bool. Expressing

the voice ordering constraint above with this type is simple.

sorted:: Predicate AbsChord

sorted x = x = = sort x

One way to constrain voice spacing is to set lower and upper bounds on how far apart

the various voices can be. For example, it may be appropriate to allow the two lowest voices

more freedom of movement than the two highest voices. This can be done by creating a

predicate with an extra argument tailored to a particular style.

79

spaced:: [(Int, lnt)] —>■ Predicate AbsChord

spaced lims x = and $

zipWith (A(/,u) diff -> I ^ diff A diff ^ u) lims$zipWith subtract x (tail x)

Another example of a spacing-related predicate would be the notion of what chords can

be played with a single hand on a piano when the pianist only has a reach of an octave.

pianoChord:: Predicate AbsChord

pianoChord x = length xXleq 5 A maximum x — minimumx ^ 12

The OPTIC equivalence relations discussed in chapter 3 are a useful tool for defining

voice doubling behavior. For example, suppose we are only interested in triads expressed

with four voices, which is a common scenario for chorales. We will allow major and minor

triads where the root and fifth are doubled, and diminished triads where the root is doubled.

triads:: [AbsChord]

triads = [[0,0,4,7], [0,4,7,7], [0,0,3,7], [0,3,7,7], [0,0,3,6]]

doubled:: Predicate AbsChord

doubled x = elem (normOP x) triads

Voice ranges are best handled in a slightly different way for reasons of efficiency. The

functions above are designed for use with a function like filter to prune away unwanted

chords from a set or list. Chords that are pruned are really wasted computation, so it is

best to avoid computing them in the first place when possible. Voice range constraints can

be satisfied during generation, such that only satisfactory chords are ever computed. The

function, makeRange, below incorporates the single-chord constraint of voice ranges to

generate a finite set of chords for use in a chord space. The function takes a list of lower

and upper bounds for each voice and returns all possible chords within that range.

makeRange:: [(AbsPitch,AbsPitch)] -> [AbsChord]

makeRange =foldr (A (/, u) xs \(a:b) \ a i - [/. .u],b 4- jw]) [[]]

This yields chords satisfying the voice ranges, but we may wish to apply further pred

icates. Although some computation will be wasted on discarded chords, it is still better to

80

waste the computation at the single chord level rather than expend it later when, for exam

ple, forming or traversing a quotient space. Consider the following two methods of forming

a quotient space using makeRange and some additional constraints,/.

filter f {makeRange ranges) / / r

map {filter f) {makeRange ranges / / r)

The first version will be more efficient than the second, since the second performs

comparisons against potentially undesirable chords when forming the quotient space. That

extra computation is avoided in the first version.

As a more extensive example, all of the above can be combined to create the OP-space

for standard Soprano, Alto, Tenor, and Bass ranges where the voices do not cross, voices

are separated by no more than an octave, and voice doubling is controlled.

satbOP:: QSpace AbsChord

satbOP = filter f {makeRange ranges) / / opEq where

f x = and$map ($x) [sorted, spaced limits, doubled triads]

limits = repeat (3,12)

ranges = [(40,60), (47,67), (52,76), (60,81)]

This forms a quotient space with 959 chords grouped into 60 equivalence classes, one

for each chord quality in each key, and unwanted chords are pruned away before forming

the quotient space. This space handles a quite a few musical constraints, but it cannot

capture other constraints of voice-leading behavior, such as avoiding parallel motion. To

do that, constraints over pairs of chords must be considered, which involves the use of path

finding algorithms.

5.3 Pairwise Constraints

Kulitta makes use of two constraints that are most easily defined over pairs of chords:

• Avoiding parallel motion. Voices move in parallel when they go up or down by the

81

same number of pitches. Figure 5.1 shows an example of this.

• Voice-leading smoothness. In some styles, smooth voice-leading is desirable and

means that the voices should move very little from one chord to the next. In other

styles, leaping behavior in one or more voices may be more desirable.

Parallel motion can be easily detected for two chords, x and y, with the same number of

voices by checking whether x — y contains any duplicate values.

notParallel..Predicate (AbsChord,AbsChord)

notParallel (x,y) =

let diff = zipWith subtract x y

in nub diff = = diff

Voice-leading smoothness can be detected similarly. For generality, we will use a sub

predicate for single voices to establish what desirable movement is.

voiceLeading:: [Predicate (AbsPitch,AbsPitch)] —►

Predicate (AbsChord, AbsChord)

voiceLeading preds (x,y) = and $ zipWith ($) preds$zipxy

An instance of this constraint would be restricting voices to moving no more than 7

halfsteps between chords.

v/7:: Predicate (AbsChord, AbsChord)

vl7 = voiceLeading (repeat f) where f (a, b) = abs (a — b) ^ 7

Finally, while voice-crossing is most efficiently implemented by only using chords

whos voices are sorted in ascending order, it is possible to define a more general test for

voice crossing over pairs of chords. If there exists at least one permutation that sorts the

pitches in two chords, then the voices do not cross from one chord to the other.

82

noCrossing:: Predicate (AbsChord.AbsChord)

noCrossing (ci,C2) =

let sn = permutations [0.. length c\ — 1]

psl = filter (Xs -+p s c\ = = sort ci) sn

ps2 = filter (Xs - ± p s c i = = sort C2) sn

in -i$null [p\p <— p s l ,elempps2\

Alternatively, when the chords are known to be sets of pitches (no two voices having

duplicate pitches), contour equivalence can also be used.

noCrossing2:: Predicate (AbsChord,AbsChord)

noCrossing2 (x,y) — rankx = = ranky

Both approaches remove the need to have the voices sorted in ascending order to check

for voice-crossing. However, it is less efficient than the single-chord approach discussed

previously. For the complexity reasons discussed in the next section, it is always preferable

to satisfy constraints within the chord space when it is possible to do so.

5.3.1 Depth-First Search

Finding a chord progression that meets certain constraints is analogous to the satisfiability

problem in computer science, which is NP-complete for arbitrary formulas on Boolean

variables [32]. Because of this, there is a tractability issue involved in finding candidate

solutions that satisfy one or more potentially arbitrary predicates. If there are k possible

choices for each of m chords in a progression, there are kf1 total possibilities. For a given

quotient space S/R and predicate H we clearly need a more efficient method for finding

solutions than generating all /{-equivalent solutions, storing them, and then looking for

cases satisfying H. An algorithm generating //-acceptable solutions must perform more

aggressive pruning of the solution space.

As already mentioned, the most efficient way to prune the solution space is to prune the

set of available chords. However, there are many constraints that simply can’t be captured

83

at that level. Fortunately, other predicates can also help prune the solution space. The algo

rithm below uses pairwise predicates during a depth-first search through the solution space.

While this general strategy does not change the complexity class of the problem, it avoids

computing and storing unnecessary progressions.

Algorithm4. pairProg(R,S,hpair, [ii, ...,*«]) =

1. Ifm — 1, return E(x\,S/R) = {z | z € SAz ~ r x}, otherwise continue.

2. LetY =pairProg{R,S,hpain[x2 ,...,xm])

3. Return {$,& ,...,?«] \?\ <EE(xu S/R), [&,».,?*] € Y, hpair(yu y2)}.

This is leads to a concise Haskell definition:

pairProg:: (Eq a, Show a) => QSpace a -* EqRel a —> Predicate (a,a) —>

l*]^[[a}}

pairProg qsrh [] = [[]]

pairProg qsrh(x:xs) =

let newSolns = [(y: ys) | y <— eqClass qs rx,ys <— pairProg qsrhxs,

h (y,headys)]

in if -i $ null newSolns then newSolns else error "No s o lu tio n s !"

Even when solutions are filtered using predicates, the work involved in traversing the

entire set of solutions to locate desirable ones and even the number of desirable solutions

can be intractable in situations involving many chords, many voices, and/or large ranges

for the voices. Finding the very first solution using pairProg is often easy with the types

of predicates discussed so far (assuming the chord spaces used are musically reasonable),

but what if we want a deeper solution, or a solution chosen uniformly at random?

84

5.3.2 Stochastic Search

As mentioned in the beginning of the chapter, rules in music are not always strict, and

so it may be sufficient to find a solution that mostly satisfies a set of predicates, even if

some parts of the solution violate the predicates. Algorithm 5, greedyChord, illustrates

the process of picking the next chord, and Algorithm 6 , greedyProg, describes the pro

cess of generating the entire progression. While greedyProg is not guaranteed to find a

solution satisfying a progression predicate, it will attempt to satisfy a pairwise predicate

when choosing each chord. greedyProg's success rate in satisfying the constraints at each

step will be proportional to the abundance of constraint-satisfying solutions in the solution

space.

Algorithm 5. Let x; be the chord for which we wish to find a new R-equivalent member of

S C Z", y*. Let y,_i be the previously chosen chord, choose(S') be a function to stochas

tically select an element from a set, and f(xi ,yt-1, E(xi,S/R)) be a fall-back method for

choosing y,.

greedyChord (x;, y,_ i , S, /?, Hpair, f) =

Let SH = {y e E(xi,S/R) \ Hpair(yi- , ,y)}

I fSn = 0 then returny, = f(xi,yi-i,E(xi,S/R)). Otherwise, returny, = choose(Sn).

Algorithm6. greedyProg([xi,...,xm], S,R,Hpair, f) = [y i,...,ym], where

{choose(E (x\,S/R)) for i = 1

greedyChord (jfi, y,_ i , S, /?, Hpair, /) otherwise

The main advantage to this approach is that the solution space is maximally pruned at

each step. This allows the algorithm to operate on inputs that would cause tractability prob

lems for pairProg. The downside is that greedyProg is not guaranteed to find predicate-

85

satisfying solutions. It is possible to find a partial solution with no subsequent choices that

satisfy the supplied predicate or search strategy. In such a situation, there are three options:

(1) fail and return an error message, (2) backtrack to try to find a better solution (analogous

to lazy evaluation of pairProg), or (3) try another predicate. For our implementation, we

chose option 3: a fall-back method for choosing a next chord is therefore required if we

wish to ensure that greedyProg produces a solution. In practice, it may be sufficient to have

a result that mostly satisfies a predicate even if some chord transitions do not. Since this

greedy approach must make progress at each step, it presents a more tractable option for

larger-scale composition problems.

Using a fixed input progression, a predicate p\ that forbids voice-crossing, parallel mo

tion, and leaps greater than 7 halfsteps, the greedyProg algorithm was tested to estimate its

success rate [62]. This input progression used, shown in Figure 5.2, demonstrates some of

the tractability issues associated with the general problem of rewriting chord progressions.

There are 11 chords in the input progression, and, within the range [36,57]3, there are 24

OF-equivalent ways to choose each of the first, second, and third chords and 48 ways to

choose each of the remaining eight chords. This gives a total of 243 x 48s possible OP-

equivalent solutions. Of those solutions, we used pairProg to determine that 901728 of

them satisfied the constraints within the range [36,57]3.

greedyProg was run for 10000 trials under these conditions to find OP-

equivalent solutions to the input progression in Figure 5.2 within the range [36,57]3. We

used a predicate, pi, that restricts voice-movement to 7 half steps as a fall-back method for

greedyProg. Under these conditions, 8165 of greedyProg's returned progressions satisfied

the target predicate. 7406 of those p \-satisfying progressions were unique solutions. Of

the 1835 returned progressions that violated p\, an average of only 1.1 chord transitions

per progression violated p\, with the highest number of p \-violating transitions being 2 .

This indicates that greedyProg performed relatively well in this experiment. However, the

algorithm’s performance will be directly affected by the range of the voices and specific

86

predicate used. Decreasing the range of each voice, for example, would increase the odds

that greedyProg would become stuck and rely on its fall-back function.

4 g......... 9... ' -W—9--- j* .■ ..jp- - - Q- __ r — 9— 9-------
' M i l ------------------

0 : Lk 4 » « -------

1

T — f — T— P— m----0----(9-------
^ H 4 -----------P-------

f *) :t . 3. . f T
' ! r i
J J —j

Figure 5.2: A simple chord progression for three voices used for testing the performance
of the greedyProg algorithm.

5.3.3 Delegation of Equivalence Class Lookup

One notable limitation of both pairProg and greedyProg is the direct interaction with the

quotient space. An alternative approach is to delegate the lookup of equivalence classes to

some other algorithm. This useful in situations where single chord constraints exist that are

position-specific. For example, perhaps we would like the bass to only play the root of a

chord on the very last chord in a passage. This approach is formalized in Algorithms 7, 8 ,

and 9.

Algorithm 7. pairProg'(hpair, [E\,...,Em]) =

1. I fm = 1, return E\, otherwise continue.

2. LetY = pairProg'(hpair, [*2 , • • •, em])

3. Return { \y \,n ,...,ym] 1 y\ €Ei, [&,...,?«] € Y, hpairifuyb)}.

87

Algorithm 8 . Let Ei be an equivalence class of chords, y,_i be the previously chosen chord

in the sequence, choose(S) be a function to stochastically select an element from a set, and

f (Ej ,yi-1) be a fall-back method for choosing y; if no solutions exist.

greedyChord'{Ehyi-i,H Pair, f) =

Let SH = {y 6 Ei | Hpair{yi-\,y)}

IfSfi = 0 then return yt = /(£ , ,# _ i). Otherwise, return yi = choose(Sh).

Algorithm9. greedyProg'(Eu ...,Em,Hpair,f) = where

yt =
choose(E) for i = 1

greedyChord'{E, y,_ i , Hpair, f) otherwise

5.4 Repetition

The let expressions in PTGGs represent a type of progression-level constraint where ab

stract chords appearing within certain ranges must be mapped to the same concrete chords.

Consider the following progression and its expanded interpretation:

let x = (let y = Vfl I'2 in y y) in x IV/3 If4 j c (5.1)

y * l j ' 2 y f 1 j f2 j y f 3 j f 4 y f l j t2 y f l j f 2 (5 2)

The let expressions require that chords at positions 1-2 and 3-4 must be the same subpro

gressions, and similarly for chords at positions 1-4 and 7-10. Because sub-constraints for

chords 1-4 are already specified, there is no need to redundantly assert that chords 7-8 and

9-10 must be the same phrases. The let structure of a generated progression can directly

88

yield these types of constraints by examining the lengths of the variables’ values and the

positions at which they appear.

For now, we will only consider exact repetition of a phrase—that is to say that both

phrases appear in the same key and should, therefore, be assigned identical patterns of

pitches. This is the only type of repetition possible in the example rules sets shown in

Tables 4.1 and 4.2. However, repetition is not always this simple in music, and some more

complicated types of repetition are actually allowed in the sentential forms for PTGGs. For

example:

letx = / ' inx(M 5x) x ^ I t {M5 P)P (5.3)

It is not entirely clear what the “correct” interpretation of this should be beyond the

level of Roman numerals. It is common to have repetition with transposition: playing the

same overall pattern, but offset up or down by some number of pitches from the original.

Under this model, if x is interpreted as (0,4,7) (C-E-G), then (M5 x) should be T-equivalent

to (0,4,7) to retain the same intervallic structure and O-equivalent to < 7,11,2 > (G-B-

D) to have the correct pitch classes. However, finding a satisfying pitch assignment is

more complicated because of the modulation: a pitch assignment for the un-modulated x

may satisfy the outer chords but not be transposable due to the ranges of the voices. An

extreme example would be a collection of voices with only a single-octave range from 0

to 11. Under these conditions, it is actually impossible to simply slide the pitches for x in

Equation 5.3 up or down enough to produce the same intervallic structure in the modulated

key. Because of these issues and the resulting ambiguity of how to handle them, our let-

satisfying algorithm is only equipped to handle un-modulated, exact repetition of phrases.

For a quotient space q and equivalence relation r, simply calling head o eqRel q r on

each chord in a progression will automatically satisfy the constraints of any let expression

even when q has had the members of its equivalence classes randomly permuted. This

is because each Roman numeral will only be mapped to one value regardless of how it

89

is constrained. However, this let -satisfying progression is unlikely to satisfy any other

constraints, and so a more complex traversal of the solution space is required in such a

case.

The constraints created by let expressions can be used to aggressively prune the so

lution space before traversing it. Chord progressions can be viewed as a list of indices

into equivalence classes at some level of abstraction, and a naive approach to solving con

straints would be to simply perform a depth-first search of all possible progressions sharing

the same sequence of equivalence classes.

Consider the following progression, which is six chords long.

let y = (let x = A in xxB) in yy (5.4)

Chords 1-2 must be the same and chords 1-3 and 4-6 must be the same phrases. For

simplicity, we will assume there are only two equivalence classes in the chord space with

only two elements each: e\ = {a,b} for A’s equivalence class and e% = {c,d} for B's

equivalence class, where a, b, c, and d are chords. The pattern of equivalence classes for

the progression above would be e\, e\, e2> «i, «i, «2 , and an incremental search of all pro

gressions sharing the same equivalence classes would look like the following.

Number Indices Solution

1 0 ,0 ,0 ,0 ,0 , 0 aacaac

2 1 ,0 ,0 ,0 ,0 , 0 bacaac

3 0,1,0,0,0,0 abcaac

64 1,1,1,1,1,1 bbdbbd

Clearly many of these progressions will not even satisfy the let constraints, let alone

any extra constraints we may wish to satisfy on top of those. The more constraints exist,

90

the sparser the solutions become in a sea of garbage. On larger problems, traversing the

solution space in this way quickly becomes intractable. Fortunately, there is a way to skip

the cases that do not satisfy let expressions.

Imagine a search tree consisting exclusively of let-satisfying progressions, where all

other progressions have been pruned away. In the example above, there are only four such

progressions: aacaac, bbcbbc, aadaad, and bbdbbd, so there would only be four leaves in

such a tree. Doing a depth-first search through this let-satisfying tree as a means to sat

isfy additional constraints is clearly more efficient, since the only solutions examined are

already guaranteed to satisfy the let constraints even if not additional constraints. Apply

ing this strategy to the 6 -chord example above, the four let-satisfying solutions would be

traversed as follows:

Number Indices Solution

1 0 ,0 ,0 ,0 ,0 , 0 aacaac

2 1 , 1 ,0 , 1 , 1 , 0 bbcbbc

3 0,0,1,0,0,1 aadaad

4 1,1,1,1,1,1 bbdbbd

The task of jumping from one let-satisfying progression to another is reducible to the

process of incrementing an n-digit number where each digit can have a different number

base and some digits’ values are tied to others. Indices that are subject to let constraints

will move in lockstep, fully avoiding any progressions that do not satisfy the let constraints.

We denote constraints for let expressions using the type synonym Constraints for pairs

of indices into a chord progression,

type Index = Int

type Constraints = [[(Index,Index)]]

Each tuple in the inner lists represents a range of indices inclusive of its endpoints. Each

member of the outermost list (elements of type [(Int,Int)]) represents ranges of indices

91

that must be instantiated with the same phrases. Indices start from zero. This structure

can be derived directly from an unexpanded Term containing let expressions. For example,

consider the following (durations are omitted for brevity since they are not relevant):

let x = (let y = II in y y V I) in x x (5.5)

From this we can clearly derive that chords 1 and 2 must be the same and that chords 1-

4 and 5-8 must be the same phrases, yielding [[(0,0), (1,1)], [(0,3), (4,7)]]:: Constraints.

Note that chords 5-6 (indices 4 and 5) will be the same as well if these constraints are

satisfied.

Constraint values must be well-formed to be used in our algorithms,

[fci, ...,kn]::Constraints is well-formed if it has no overlapping index lists (although nested

ranges are permitted) and there is no index range in fc, that is further constrained by kj for

j > i. In other words, [[(0,0), (1,1)], [(0,3), (4,7)]] is well-formed but

[[(0,3), (4,7)], [(0,0), (1,1)]] is not. Additionally, partially overlapping Index pairs are

not allowed. [[(0,3), (4,7)]] is well-formed, but [[(0,3), (2,6)]] is not. When there are no

overlapping index ranges, well-formedness can be ensured by calling sort o (map sort) on

die Constraint.

To satisfy let constraints, we represent a chord progression as indices into those chords’

equivalence classes (indexed from zero) rather than as a list of actual chords (such as

the AbsChord type described previously). For a progression of length n, there will be n

equivalence classes and indices. Two chords having the same equivalence class (such as

two C-major triads) do not necessarily need to have the same index into that equivalence

class unless constrained by a let expression. As already mentioned, these n indices can be

thought of as an n-digit number where each digit has a base determined by the length (or

cardinality) of its equivalence class. Similarly, depth-first search through the chord space

can be viewed as incrementing this list of indices from 0 , . . . , 0 to l\ - 1 ,...,/„ — 1 where

/, is the length of the ith chord’s equivalence class. We treat the leftmost index as least

92

significant.

Indices are referred to as free indices if they are not constrained by any indices to then-

left in the progression. Given the constraints [[(0,0), (1,1)], [(0,3), (4,7)]] for a progres

sion of length 8 , the only free indices are 0, 2, and 3. With constraints applied from left to

right, indices 1,4, and 5 will move in lockstep with index 0, and similarly for the phrases

defined by indices 6-7 and 2-3.

Finding the next let-satisfying set of indices can be broken down into a three-step pro

cess:

1. Derive a list of free indices from the progression’s let constraints.

2. Attempt to increment that set of free indices by one, overflowing to the next free

index if needed.

3. Apply the constraints to all non-free indices.

We define a function for each of those steps. Given the length of a progression, n, and

well-formed k :: Constraints, the following function finds indices that can be incremented

to traverse the solution space while satisfying let constraints.

freelnds v .In t-t Constraints -* [Index]

freelnds n k —

let Id - map (map (A (ij) ->• [i..;'])) k

h = nub $ concatMap head Id

t = nub $ concat $ concatMap tail Id

d — [maximum (concat $ concat Id) .. n — 1]

in filter (~>o(et)) h+\-d

For x = freelnds n k, indices not in x will be constrained by and move in lockstep with

indices within x.

The incr function below performs the step of incrementing free indices. Each index is

tagged with two values: a Boolean flag indicating whether the index is free and the length

93

of the equivalence class at that index (an Int).

incr:: {(Bool,Index,Int)] -» [Index]

incr [] = error "No more so lu tio n s ."

incr ((b,i,l) :xs) = let is = map (X(x,y,z) —>• y) xs in

if b then if i ^ / — 1 then 0 : incr xs else i + 1 : is

else i : incr xs

The returned value only increments free indices, while other indices remain unchanged.

These constrained indices are handled by the applyCons function below, which copies the

values of free indices over to the other indices that they constrain.

applyCons:: [Index] —)• [(Index, Index)] —> [Index]

applyCons inds [] = inds

applyCons inds ((i,j): t) = foldl (f val) inds (mapfst t) where

val = (take (j — i + 1) $ drop i inds)

/ val src i = take i src -H- val -H-

drop (i + length val) src

Finally, the findNext function makes use of each of three functions above. It takes a set

of Constraints, the current list of indices, and a list of equivalence class lengths, and returns

a new list of let-constraint-satisfying indices.

findNext:: Constraints -* [Index] —» [Int] -» [Index]

findNext k is lens =

let bs = map (€ freelndsnk) [0 . . length is — 1]

xs = zip3 bs (is) (lens)

in foldl applyCons (incrxs) k

As already mentioned, the very first progression (indices [0,0,..., 0]) will always satisfy

the let constraints, so subsequent progressions only need to be explored in order to satisfy

additional constraints or to obtain more diverse progressions. Any additional constraints

are satisfied by recursively calling findNext until a solution is found (assuming one exists).

94

■ 9--- ---- 9---- — ■--- 9--- -------------------------------i9----
1 - i
9---

1

9--- 9--- •
-•— i\~

9---
----------------4 ------------ a a

--- 9--- 9

-0

1

-

U ■
j9---

---- 0

9--- 9------- 9--- ■ £ = f 9---
*= \

-0 --- 0 ------------- 9—
9 m---

s j 1

.F..-.F. 9--- J--- * F-............

a .
9 ------------------------------- 9--- 9--- <= t = ^ : . .j

0----

M2(I) M2(I) IV V I II V I M2(I) M2(I) IV V I II V

Figure 5.3: A chord progression generated from the expression: let jc = ((let x =
(M2 Iq) in x x) IVq Vq Iq l lq Vq Iq) in x x. The chords were interpreted in the key of
C-major using OPC-space for voices with the ranges [40,56], [50,62], [55,70], and [60,78]
respectively. Note that M2 (/) is the same as an unmodulated II chord in this case since the
chords did not undergo further generation.

The stricter the constraints are, the harder it will be to satisfy them and the longer it will

take on average to find a solution.

5.4.1 Greedy Algorithm for Let Expressions

The greedyProg algorithm can be easily modified to handle Let expressions. Using a similar

approach to that of the previous section, chords can be greedily assigned to free indices

and then copied over to constrained indices. This approach will satisfy Let expressions

exactly but is likely to violate any other pairwise or larger-spanning constraints at junctions

between variables in Let expressions.

95

P a

$-4

----------0 ---------- V 0

-1----- h—*
11 Lv----1 *.

*r.iT — =

N t - — j

= 4 ~T— -----

J -£r~

r »
i b

F = H

$=
p----------

= 4

i

= 4

i . . ---- j ----41---------M--------- 4^— i

- H * t ------------—a . :::

M 2(V I) M 5(V I) IV V I I M 7 (V M 7(VII) VI V V M 7(VII) VI V

5A a „ A

f * • £ r *

P W £ £

M5(V I) III I M 5(V I) III i) M2(V I) M5(V I) IV V I I

Figure 5.4: A longer example generated with the same chord spaces and C-major key as in
5.3 in C-major. It demonstrates an overall ABA format (the start of each section is labeled
above the staff) and includes nested modulated sections.

96

greedyLet:: (Eq a, Show a) =» Predicate (a, a) -*■ Fallback a —>• Constraints —►

[EqClass a) —> StdGen -> [a]

greedyLet p f k e s g —

let n = length es

cs = greedyProg p f ges

consPat — foldl applyCons [0.. n — 1] (sort k)

in map (cs!!) consPat

greedyLetT:: QSpace AbsChord —► EqRel AbsChord -»

Predicate (AbsChord, AbsChord) -> Fallback AbsChord —>

Constraints —>■ [TC/iord] - 4 StdGen —> [TChord]

greedyLetT q r p f k c s g —

let justCs = wap mP cs

es = wap (eqClass q r) justCs

justCsf = greedyLet p f k e s g

in zipWith newP cs justCs'

5.5 The Problem of Novelty

One problem with searching through organized collections of musical features is obtain

ing a range of reasonably different possible interpretations while adhering to various rules.

Using depth-first search, adjacent solutions are likely to be very similar or even nearly

identical, particularly when the constraints are very relaxed and solutions are abundant.

Although this isn’t necessarily a problem from a very literal constraint-satisfaction stand

point, it poses a problem for human evaluation of the range of results.

When evaluating the performance of a system, it is useful to hear more than one result

from a set of starting conditions. In Kulitta’s case, if for some reason we don’t like the first

solution or simply want to hear what else the system can do under the same conditions, it

97

is rather unsatisfying to hear one progression after another that only differ by a few notes.

When solutions are abundant, finding significantly different solutions can actually become

more difficult. For easily satisfied constraints such as v/7, the first several solutions will

likely only differ by one chord. What we really want to hear to evaluate the system’s

performance are solutions that are mostly different rather than nearly identical.

Both pairProg (pruned depth-first search) and findNext (depth-first search for let con

straints) are potentially impacted by this diversity problem. To more effectively explore a

range of solutions, random paths would be more likely to capture diversity. The greedyProg

algorithm avoids the diversity problem by being stochastic. When solutions are sparse,

greedyProg may also end up bending the rales more than might be desired in order to

produce a solution.

One possible answer to the problem of creating novelty for pairProg and findNext is to

randomize the chord space before it is searched. This can be implemented by finding a ran

dom permutation of the set of chords used in the chord space and then grouping the chords

according to an equivalence relation. For findNext, one could even go a step further and

randomize the individual equivalence classes supplied to the algorithm. This would prevent

an unconstrained / chord from always being the same as another I chord constrained by a

let expression.

The first solution found by a depth-first search of a chord space whose elements have

been randomized in different ways will show better diversity relative to the first solution

from a differently randomized version of the space than would be the case for two adja

cent solutions in the same space. Because the number of chord progressions that can be

generated from a chord space is likely to be much larger than the chord space itself (expo

nentially larger, in fact), randomizing the order of elements in the chord space helps shift

some of the burden of novelty to a smaller domain that is easier to manipulate.

98

Chapter 6

Generating Music

Probabilistic Temporal Graph Grammars can be used with Chord Spaces to bridge the gap

between abstract progressions and performable musical scores. Kulitta uses the following

generative workflow. First, Kulitta stochastically generates an abstract chord progression

with a PTGG. Each chord in this progression is then mapped to a point in the representative

subset for a chord space. Next, Kulitta uses a path-finding algorithm to map this represen

tative subset path to a more diverse path through the larger chord space. This may be done

more than once in succession with different chord spaces to alter the style while moving

closer towards concrete, performable chords. Finally, Kulitta adds more complex melodic

and rhythmic elements to the chord progression, yielding a complete musical score. A

visual representation of this workflow can be seen in Figure 6.1.

99

PTGG

M usical In terp re ta tion

 ► P ath -F ind ing
— ►) th rough C hord S p a c e s

!
L l L e ss A b strac t P ro g re ss io n j i

1
F o reg ro u n d G en era tio n

?
C o m p le te M usical S c o re

Figure 6.1: Generative workflow in Kulitta: a PTGG is used to generate an abstract pro
gression, which is then iteratively turned into a concrete progression and finally processed
by a style-specific foreground algorithm to yield a complete musical score.

6.1 A Simple Example

Step Progression Rides Applied (Left to Right)
1 JW Start symbol
2 W Vq Ih p - 4 ip h v (i4 p /1
3 l lq Ms(Iq) Ih i r ^ i r , Vf ^ M 5{P)y P ^ P
4 IIq M5(Ve Ie) Ih I P ^ I P , P ^ t V ' V p / 2, P P

Table 6.1: Generating a short chord progression with a PTGG where w, h, q, and e indicate
the durations of a whole note, half note, quarter note, and eighth note respectively.

To illustrate the role of chord spaces in our system’s generative process from start

to finish, consider the series of productions in Table 6.1. The final chord progression,

IIq M5(Ve Ie) Ih, contains four different chords, the middle two of which are modulated to

the dominant. Suppose this progression were to be interpreted in C-major. The basic pitch

classes and corresponding pitch numbers within the range [0 ,1 1] would be the following:

(D,F,A) (D,F#,A) (D,G,B) (<C,E,G) (6.1)

Iterative I
G en e ra tio n , J

S to ch as tic
 ► G en era tiv e

Algorithm

A b strac t P ro g re ss io n

100

(2,5,9) <2,6 ,9) (2,7,11) (0,4,7) (6.2)

When represented as triads based on their modal context, Roman numerals from our

PTGG have a one-to-one mapping to points in representative subsets of both OP- and OPC-

space. Once in the form shown above, the chords can be mapped outside of the representa

tive subset to obtain a more interesting progression. Using OP-space, the octaves and order

of the voices can be changed, and, with OPC-space, the number of voices can be changed

as well. Using OPC-space for four voices, one possible mapping would be:

(50,57,62,65) (45,54,62,69) (50,59,67,71) (48,55,64,76) (6.3)

Similarly, one possible mapping through mode space can be seen below. Note that the

first chord omits its root, while the other three chords include it.

(0,4,5,9) (0,2,6 ,9) (2,6,7,11) (0,4,7,11) (6.4)

Finally, the jazz progression above can be mapped to a less blocky series of chords

using OPC-space.

(52,57,65,72) (54,57,60,74) (50,55,59,66) (48,52,67,71) (6.5)

A score representation of the mappings above can be seen in Figure 6.2. It is important

to emphasize that each of these mappings is only one of many possible. Every chord pro

gression has many possible equivalent progressions when mapped through a chord space.

Which progression is chosen will depend on what other constraints are applied (selecting

for voice-leading smoothness, etc.) and the decision-making process can be stochastic as

well.

101

-4 J H - ... {. J - i [2
■2---------d -------- f i r J- - - -

£ *
9 ------------------ f -

II M5(V I) I
0

II M5(

:...w ~

V I)

s - i j ^ t i r - j = ^

I II M5(V I) I II M5(V I)

- l ---------

I

Figure 6.2: A musical score representation of the example mappings of the progression
detailed in section 6.1. Each measure contains a different mapping of the same example.
From left to right, they are: block trichords (Equation 6.2 transposed up by several octaves),
an OPC-space mapping of those trichords (Equation 6.3), block jazz chords from mode
space (Equation 6.4), and those jazz chords mapped through OPC-space (Equation 6.5).

6.2 Generating Complete Music

The examples shown so far have been chord progressions. Performed as is, they will sound

stiff and simplistic. One of the things that accounts for this is the lack of nonchordal tones

in the score. A chordal tone is one that is a member of the triad representing the Roman

numeral. For I in C-major, chordal tones would have the pitch classes C, E, and G, and

other pitch classes like F would be nonchordal. Adding nonchordal tones has the potential

to both add richness and melodic patterns, but it must be done carefully, for it is very easy

to also create a bizarre-sounding mess out of an otherwise pleasing chord progression by

using nonchordal tones in the wrong way.

In Schenkerian analysis, music is analyzed at three different levels of abstraction: the

background, middleground, and foreground. The background is the most abstract, typi

cally reduced to a V - 1 or I - V - 1 pattern [73, 74], and the foreground is the musical

score. To move from the concrete score to more abstract, underlying features, foreground

elements are stripped away from the music. These include many of the “faster” notes and

ornamentations in classical music, and they are often non-chordal tones—meaning that

they are not part of the triads representing the harmony of the piece. The middleground

includes representations with intermediate levels of musical detail between the background

and foreground.

Using PTGGs and chord spaces to generate chord progressions creates a musical mid-

102

Background generation

| ... Duration of composition_____________(

I

Structural information,
' home key, etc.

I V I

Midground
generation J

r Generative
grammar

Map to
v notes

Foreground generation

0 O O O - D O D O - O

Figure 6.3: Graphical representation of Kulitta’s generative process showing the back
ground, middleground, and foreground levels of abstraction.

dleground as shown in Figure 6.3. How to make the transition from middleground to

foreground depends on the style of music, since the definitions of desirable rhythmic and

melodic features can differ greatly from one genre to another. Here we present methods for

creating foregrounds in two styles: chorales and jazz.

6.2.1 Classical Foreground

A PTGG generates structure at the middleground level. While the first few rule applica

tions may result in a structure that still more closely resembles a background in Schenke-

rian analysis, by the time a 4-measure phrase has been expanded to include mostly quarter

notes, it will contain middleground structure: the harmonic backbone onto which fore

ground structure can be added. In chorales in the style of J.S. Bach, the harmonic back

bone is quite prominent and foreground features are relatively simple: notes added between

chords, slight rhythmic offset of chordal tones, etc.

103

For two chordal notes in sequence with pitches i and j, there are several types of new,

foreground notes that can be added between them. Examples include:

• Passing tones: pitches between i and j, creating a line in one direction (either all

ascending or all descending).

• Neighboring tones: nearby pitches that are higher than the largest of i or j or lower

than the smallest of i or j. Neighboring tones are generally close to i or j, such as

one or two halfsteps away.

• Anticipations: another instance of pitch j placed between the two chordal notes.

• Suspensions: pitch i is carried over into some of j 's “temporal space” (or even all of

it such that j never appears). If i and j are the same, then the notes are merged into

one that spans the duration of both.

These types of foreground notes generally appear on pitches that are within the current

key’s scale. In the key of C-major, (F,5) would be an acceptable passing tone between (E,5)

and (G,5), but (F#,5) would usually not, since F# is not a member of the C-major scale.

Kulitta’s classical foreground algorithm introduces some of these features with four

operations over adjacent pairs of chordal tones. The definitions are close to but do not

exactly match those given above.

1 . passing(l,ti,t2) = stochastically add note that is temporally between t\ and t2 , has a

pitch between min(t\, t2) and max(t\, t2), within the current scale, and no more than I

half steps away from either t\ or t2 -

2 . neighboring(l,t\,t2) = stochastically add a note that is temporally between t\ and t2 ,

outside the interval formed by [min(ti,t2), max{t 1 ^ 2)}, within the current scale, and

no more than I halfsteps away from either t\ or *2 -

3. anticipation(ti,t2) = insert a note at t2 s pitch between the onset of t\ and t2 -

104

4. repetition(t\, ti) — repeat t \’s pitch once before fy.

5. nothing(t\,t2) = do nothing to the pair of notes.

These operations are applied on pairs of chordal notes from left to right over each

voice independently. For situations where two adjacent notes are from chords in different

keys, acceptable scale tones for the passing and neighboring operations are taken from the

intersection of the two sets of pitch classes. If no suitable pitches exist, then the original

two notes are left unchanged and nothing is the default operation.

When adding new notes between two others, one of two possible rhythmic modifica

tions takes place. If notes t\ and ti have durations d] and d2 respectively, the possibilities

for inserting a new note, 13 with duration J 3 are as follows:

1. Set d3 = d\ /2 and set t\ ’s new duration to be d\ /2.

2 . Udi ^ q, then set J 3 = e and set t i’s new duration to be dy - e, otherwise resort to

the previous option.

The Haskell implementation of this approach for generating chorale foregrounds can

be found in Appendix B. An example of the results of this algorithm can be seen in Figures

6.4 and 6.5. Figure 6.4 presents a homophonic (all voices moving at the same time) chord

progression, and Figure 6.5 shows this progression with foreground elements added by the

methods described so far.

This approach to generating a classical foreground does not take let constraints into

consideration. To achieve exact repetition for a pattern like let x = A in x x, phrase A

would have to be interpreted through chord spaces and have a foreground added before

expanding the let expression. However, allowing different foreground interpretation of

each instance of a variable is not entirely a bad thing, and actually has an interesting side

effect: the creation of variations. Given a homophonic progression created by interpreting

let x = A in x x through some chord space, the foreground may differ between instances of

105

=n =
j)----- J-----J---*---d ̂ T J -

J <
H: 4 f - ~~F~--

I ~. J J i Jt=|J— ;M =
B. m

-------- J-----------------—0------- &-----
r -r- -f- =. ̂4 -.\.....

*Ti...... I..— -1---- #---- ;--- 1-- 1

-*

«...=—----J--- r -?-■ J ^
IV V I M4(V VI V I) M4(I) M5(I) M6(I) II M5(I) I

Figure 6.4: An example of a phrase generated by Kulitta without a foreground. It consists
of just chordal tones and is homophonic (all voices moving at the same time).

, , , =4

p z i j T J z g z i j — 1 m - n j ... |

.... i - •J j ^ __

k - f - r4=4

^ — n ••0.... "1 dr-------

■t -~f r -m a

--------^-------a ------------
L#------------------ "v__I= r - 3 —

T = fJ -
IV V I M4(V VI V I) M4(I) M5(I) M6(I) II M5(I) I

Figure 6.5: The phrase from Figure 6.4 with foreground elements added stochastically.

x. Because the harmonic backbone will be the same, the phrases will sound very similar, as

though the second part of the phrase is a variation of the first. This is illustrated in Figures

6 . 6 and 6.7.

6.2.2 Jazz Foregrounds

Jazz is fundamentally different from the chorale-like style discussed in the previous section

in that its harmonies are based around seventh chords, which are triads containing the root,

third, fifth, seventh, and sometimes various additions and substitutions such as the second

(sometimes referred to as the ninth) [49]. Jazz, therefore, requires working with at least 4

voices that can all be different pitch classes.

106

i t ■: ... h =
J

L% M ft

i = ^ =
r - F -

. . . . j . . .

0

....1 j -
f ...r ~ w f 4 •

sF ■

t r ^ r = = r = ...f£f - T ... r
[V I M4(V I) IV M5(I) I] [V I M4(V I) IV M5(I) I]

Figure 6 .6 : An example of a phrase generated by Kulitta without a foreground. It consists
of just chordal tones and is homophonic (all voices moving at the same time). Bracketed
sections indicate repeats formed from a Let expression.

I n , , J 1 1 1=i=f * J J i
^ - r - r ..r

^..O j—

*— 1«— p—

.... -
. f=J4=f

jEÊ===E
B. «

U-r r r ..f f . - H B--=<---
[V I M4(V I) IV M5(I) I] [V I M4(V I) IV M5(1) I]

Figure 6.7: The phrase from Figure 6.4 with foreground elements added stochastically.
Bracketed sections indicate repeats formed from a Let expression. Note that the foreground
was applied without knowledge of the Let expression and therefore creates a variation rather
than an exact repeat.

107

One of the more interesting aspects of Kulitta’s modular design is that a PTGG suitable

for generating chorale-like music with a classical foreground algorithm can also create

very jazzy harmonies. In fact, the same middlegound can produce both a chorale and jazz

harmonies, as seen in Figure 6.2.

Jazz foregrounds are somewhat more difficult to create than those for chorales, not just

because of the extra voices they require compared to Kulitta’s chorale foreground algo

rithm, but also because the style is broader and less formalized than is the case for chorales.

Jazz compositions are also usually specified in less detail than their classical cousins, leav

ing a lot of decisions up to the performer. The algorithms demonstrated here are very simple

and close to the rudimentary level of fake book notation than the intricate level of a live jazz

performance, and there are currently no features addressed that a beginner-level performer

couldn’t manage—in other words, no elaborate solos or clever chord substitutions. How

ever, the results are still stylistically distinct from the results of the classical foreground

algorithm. Kulitta has two methods for generating jazzy music: a simple algorithm that

produces mainly jazz chords and an algorithm for a simple bossa nova interpretation of a

progression. Examples of output from these algorithms can be seen in Figures 6.10, 6.11,

and 6 .1 2 .

Simple Jazz Foreground

Kulitta’s first approach to jazz is essentially just a mapping of the chords from a progression

of Roman numerals to seventh chords (chords containing scale degree 7) instead of triads.

This simple jazz approach utilizes a five-voice version of mode space for what are referred

to as chord templates. These are collections of scale indices that can be used to represent a

chord in a reasonable way. One example would be to use the root, third, fifth, and seventh

of the mode. However, there are many other ways of playing a chord, and some do not

include the root. Another way to play the chord if the root is elsewhere would be to use

the second, third, fifth, and seventh. Kulitta will map Roman numerals to one of these two

108

configurations. The bass doubles the root when it is present in the other four voices or adds

the root when it is not present.

The bass is required to play the root in this algorithm for an important reason: if this

voice is left out and only the 4-voice chords are used, the results often sound unusually

dissonant. This is likely because of chords that drop the root, which may end up sounding

like they are in a different key if heard in the wrong context particularly when more than

one such chord occurs in sequence. Therefore, while it is locally acceptable for a jazz chord

to drop certain chordal tones, such as the root, other parts must clearly provide some sort

of broader harmonic context to avoid misinterpretation of the chord.

n

t 7

£ 4

*-m- - - S'i-

<— | h

_ _

■ 1

—*

f J

r : z:::~ . j J-------a L _ ,J
► r t i f f

~m —a n —

T . . 7 . . . f'' "p' 'p
im ■. . .

k : . \ ■■ r -r iy g i

^ 4 — w. . —. —j ■ r

— — ■* 4

f = 3 f

i

—

- U : . 1

J C f 1'i * - . - r 9 6 - - - - 4H = h
I IV III V V I M 5(V)VI V I I V V M5(I) V I I IV III V VI

Figure 6 .8 : An example of a 4-voice, “jazzy” phrase. However, this phrase sounds strange
because of the lack of a root in some of the chords.

Bossa Nova Foreground

Kulitta also uses a slightly more complex jazz foreground algorithm that yields a bossa

nova-like interpretation of a chord progression. This approach, shown graphically in Figure

6.9, uses seven voices, which would be computationally tricky if forced into the same

chord space. To cut down on the combinatoric explosion that would result from such an

approach, three different chord spaces are used in parallel, one for each “band member”

in the music: bass, harmony, and lead. This means that constraint-satisfaction can only

109

PTGG

Abstract Progression

Mode Space for
Bass (2 Voices)

Bossa Nova
Bass Rhythm

Mode Space for
Harmony (4 Voices)

i
Bossa Nova

Chords Rhythm

Mode Space for
Lead (1 Voice)

t
Classical

Foreground

Combine in
Parallel

Musical Score

Figure 6.9: Graphical representation of Kulitta’s bossa nova foreground algorithm.

take place within one of these musical roles, but that is not unreasonable for this genre of

music. Jazz is highly improvisational in nature, and musicians will very often have to make

decisions about their own part that only rely on abstract information about what the other

performers will do rather than exact knowledge of the pitches. This algorithm is shown

graphically in Figure 6.9. The forking and merging of the generative process is similar to

the interactive ensemble models described by Hudak and Berger [37], although Kulitta’s

bossa nova algorithm is simpler in that it does not involve any further interaction between

musical roles after the fork occurs.

110

. «
*y.|k 4 n -----------

o
[f l |. J — = J T ---------- © Q --------------

o
H -------

e
H H -------- = i

— — |------1-
— ** l ia . J J ___J

M5 (I) I M

* »

4(1

^ 1 1

) M

m

4(1) i n
w

I
w

I

Figure 6.10: An example of a phrase in C-minor with a simple jazz foreground.

f i n i
• # — #

Figure 6 .11: An example of a phrase in C-minor with a bossa nova foreground. It uses the
same Roman-numeral-level, abstract progression as in Figure 6.10.

Obviously the results from the simple and bossa nova algorithms are still very much

at the level of a beginner in jazz. To handle a greater breadth of jazz styles with more

complicated features, it would be preferable to learn the behaviors of each instrument or

performer from examples of human performances rather than to build unique algorithms

for each by hand. This remains as an area of possible future work for Kulitta.

6.2.3 Other Styles

Kulitta is also capable of generating more modem-sounding harmonies through the use of

other chord spaces as shown in Figure 6.14, and by mixing chord spaces and foreground

111

° — ” J J_J *
Figure 6 .12: An example of a phrase in E-major with a simple jazz foreground.

m■L-Q

Figure 6.13: An example of a phrase in E-major with a bossa nova foreground. It uses the
same Roman-numeral-level, abstract progression as in Figure 6.12.

algorithms from different styles as shown in Figure 6.15. Also, although capable of gen

erating complete musical scores, Kulitta does not have to be the sole author of its (or her)

output. In fact, there is a wide range of possible further human interpretation for Kulitta’s

output at many levels. Abstract progressions generated by a human can be fed into Kulitta’s

constraint-satisfaction and foreground algorithms, or progressions made by a PTGG can

provide the harmonic backbone or inspiration for further details added by a human com

poser. There are even real-time, interactive possibilities for Kulitta, such as using an an

online constraint-satisfaction algorithm in conjunction with chord spaces to create music in

response to user input. Figure 6.16 shows an example of how Kulitta’s generative modules

can be used in this way. This type of system could be used to create an algorithmic back-

i|* ^ >
i J - - ^

V * ^ * j i =

c - t------------------

* > 4 —

i t - r *

* —m — ..IN i n — ->—r .------------ ------------4j------ i L r J , ------^ ---------- “ I
Figure 6.14: An example of a phrase (without a foreground) that is OPTC-equivalent to the
one shown in Figure 6.4. The use of OPTC-equivalence causes a much more diverse set
of harmonic transitions that are uncharacteristic of classical chorales, but more frequent in
modem music.

Figure 6.15: A five-voice “jazz chorale” generated by mixing jazz chord spaces with a
classical foreground algorithm.

end to a more traditional step sequencer or, if extended to feature learning and/or prediction

algorithms in the statistical analysis step, it would be possible to “jam” interactively with a

human performer.

113

Progression Maker

! P T G G j

i
Ite ra tive G e n e ra tio n

i
I T riad
I C h o rd S p a c e

t
j C o n v e rt to

MIDI E v e n ts

K e y b o a rd s
a n d o th e r

MIDI d e v ic e s

Real-Time Music Maker

] S ta tis tic a l A n a ly s is [
o f MIDI E v e n ts

C o n v e rt to
MIDI E v e n ts

C h o rd S p a c e s

I
F o re g ro u n d
G e n e ra tio n

S y n th e s iz e r

Figure 6.16: An example of Kulitta’s modules used in a real-time setting with two different
types of input: MIDI events from a “progression maker” program that converts chords to a
timed stream of MIDI events and arbitrary MIDI events from a human user or other source.
The “real-time music maker” takes streams of MIDI events and analyzes them to determine
properties like the current key. This information can then be used to generate new music
that changes based on the input stream of MIDI events.

114

Chapter 7

Learning Musical Structure

One of Kulitta’s goals is to not just produce music from hand-constructed grammars, but

to also learn features of these grammars from collections of existing compositions. Kulitta

currently supports two methods of learning musical features:

1. Learning production probabilities for a musical PCFG, which is then converted to a

PTGG for use with Kulitta’s generative algorithms.

2. Learning production probabilities for a PTGG directly.

Kulitta uses an extended version of the inside-outside algorithm to learn musical gram

mars. This chapter describes various modifications to that algorithm, first for learning a

musical PCFG and later for learning a PTGG. Chapter 8 shows use of these algorithms

with corpora of data to learn production probabilities and then generate music.

7.1 Related Work

Machine learning-based approaches to automated composition are appealing since they

can yield more diverse results with less human effort. David Cope’s EMI [19, 20] is one

such system, and learning algorithms such as Markov decision processes, neural nets, and

Boltzmann machines have also been used to generate various musical features [4,5,35,87].

115

Music has many features in common with spoken language and is now often analyzed

using methods inspired by linguistics [48]. Just as spoken language has the notion of parts

of speech (noun, verb, etc.), music has abstract labels that are applied to various features

(I-chord, passing tone, etc.). Machine learning techniques have been applied to tasks such

as part-of-speech tagging [34] as well as harmonic and rhythmic anaysis [13,66].

Kulitta uses musical grammars, PTGGs, as one step in its generative process. Learning

grammars and grammatical features are common subjects of computational linguistics re

search and learning algorithms exist for various categories of grammars. CFGs are popular

subjects for their simplicity, and PCFGs in Chomsky Normal Form are possible to learn

in 0(n3) time with the inside-outside algorithm [17, 47]. Learning algorithms for some

categories of context-sensitive grammars have also been proposed [14,15].

7.2 The Inside-Outside Algorithm

The inside-outside algorithm is an approach for learning production probabilities for a

PCFG analagously to how the forward-backward algorithm learns state transition proba

bilities for HMMs [47]. Given a PCFG and a data set presumed to be generated by that

PCFG, the algorithm’s goal is to find production probabilities for that PCFG that maximize

the probability of the data set. Instead of computing probabilities over a linear sequence of

symbols, the inside-outside algorithm computes probabilities over parse trees. The inside

probability of a particular node in the parse tree is the probability of generating the subtree

rooted at that node, and the outside probability of a node is the probability of the rest of

the parse tree minus that node’s subtree. Inside and outside probabilities are respectively

analagous to the forward and backward probabilities of a HMM.

The rules of a PCFG must be supplied up-front to the inside-outside algorithm along

with initial estimates for the production probabilities. The algorithm then iteratively re-

estimates the production probabilities for each rule. Rules are expected to be in Chomsky

116

normal form for a PCFG. This form allows the two types of rules shown below1, where

capital letters indicate nonterminals and lowercase letters represent terminals.

A ^ B C (7.1a)

A ^ x (7.1b)

Before production probabilities can be reestimated, strings in the training data must first

be parsed to determine which rules might have been applied. Parsing must also be done

in a way that accounts for ambiguity, since some strings may have more than one possible

parse tree. The CYK algorithm can be used for this.

7.2.1 CYK Parsing

John Cocke, Daniel Younger, and Tadao Kasami described a parsing algorithm that is now

called the CYK algorithm, or sometimes CKY algorithm [55]. It approaches the parsing

task by filling in a table rather than building a parse tree directly. The resulting table can be

used to determine whether a given string is accepted by a language, but finding a specific

parse requires some extra work.

A CYK parse table shows which nonterminals can produce which substrings of the

input sequence. For a string of length n, rows are numbered from 0 to n and columns from

1 to n. Row 0 contains the string itself. A symbol at row r and column c must be able to

produce symbols c through c + r - 1 via some series of rule applications. Consequently,

strings accepted by a given language will yield the start symbol in the topmost cell, which

accounts for the entire string. Tables are constructed from the bottom up. For example,

given the rules 5 -> AA, A-+AA and A - » a, the CYK table for aaa would be:

1. Sometimes a third type of rule, S —► £, is also included to allow the start symbol to produce the empty
string. However, such a rule is not useful in the context of this chapter and therefore is not considered.

117

1 2 3
3 S,A
2 S,A S,A
1 A A A
0 a a a

Individual cells will be referred to using the notation (r, c) for row r and column c. The

start symbol appears in (3,1), thereby indicating that at least one parse exists. However, the

table does not indicate any particular parse. The parse for aaa above is ambiguous, since

it could either be grouped as a(aa) or (aa)a. This is captured in the table, since (3,1) can

produce a(aa) by generating the A symbols in cells (1,1) and (2,2) or it can produce (aa)a

by generating the A symbols in cells (2,1) and (1,3).

All possible parses are represented in the table as well as extraneous symbols that can

produce portions of the string but are not involved in any full parse of the string. The A

appearing at (3,1) is an example of this, as are the start symbols, S, appearing below row 3.

7.2.2 Learning Production Probabilities

The symbol yf is used to denote the probability mass function over rules. The inside proba

bility of a nonterminal A spanning terminals i through j is denoted a (A, i, j). For a sequence

of symbols, x\,...,xn, forward probabilities are computed by:

a(A,i,i) = yr(A->Xi) (7.2)

For i < j:

k=j - 1
<*(A,iJ)= £ [¥ (A ^ B C) x a (B , i , k) x a (C , k + l J) } (7.3)

I , A—yBĈ R

118

Given the start symbol for the grammar, S, the probability of the entire sequence of

length n can be found by: a(S, 1,n).

The outside probability of a nonterminal, A, spanning symbols i through j, is denoted

f$(A,i,j). It accounts for all portions of the tree not addressed by a(A,i,j). In other words,

f$(A,i,j) is the probability of generating the sequence: x\, i, A, x;-+i, ..,.xn.

0(S ,l,n) = l (7.4)

For A ^ S, i s$ j:

k=n
P(A, i ,))= £ W fi -» AC) xa (C ,k ,n) x f i (B ,<,*)]+

k — j - f 1, B ^ A C Z R

k—i- 1
£ { y (B ^ C A) x a (C , k , i - l) x P (B , k , j)] (7.5)

Jfc=l, B —tA C d R

The a and p values are combined to calculate the probability of a rule appearing at a

particular point in a string’s parse tree. This quantity is called /i.

Iu(A, i) = «(A, i, i) xp(A, i , i) (7.6a)

H(A -> BC, i ,k,j) = \ff(A BC) x a(B,i,k) x a (C , k + l J) x/ J (A , i,/') (7.6b)

For a given rule, this value is then summed over all instances of a rule and normalized

to calculate the new production probability for that rule.

count{A -* x) = (7.7a)
I

count (A -► BC) = £ |t(A ->• BC, i, j) (7.7b)
i,k,j

119

Let counts denote the counting equation over a particular string in the data set (all equa

tions to this point have been for single strings). Re-estimation of the production probability

for a rule A ->• v with data set S = {si, is defined by:

Ijescounf^A ->• v)
L A ^ R (L s e Scount*(A -> v'))

(7.8)

This recalculation of production probabilities can be done iteratively until the values

converge to within some threshold.

The algorithm’s representation of symbols over spans mirrors that of the CYK algo

rithm. For example, the value a(A,i, j) will be nonzero if A appears in column i of row

j —i in the parse table, and zero if A is not present in that cell. Simialrly, /3 (A, i, j) will only

be nonzero if A is part of a parse tree. The CYK parse table can be used directly to locate

(A, i, j) tuples over which calculations should be done.

A slightly modified version of the inside-outside algorithm can be used to learn production

probabilities for Martin Rohrmeier’s CFG for harmony. However, Rohnneier’s grammar

is not in Chomsky normal form. Rather than modify the grammar to place it in Chomsky

normal form, we can also modify the inside-outside algorithm to handle new types of rules.

Rules such as TR —> T and I —► I I V I in Rohrmeier’s grammar require that the algorithm

handle rules of the following forms.

The rank of a rule is the number of symbols that appear on the righthand side. Rohrmeier’s

7.3 Learning a Musical PCFG

A - tB C D (7.9a)

A ^ B (7.9b)

120

grammar uses rules of rank 1, 2, and 3. Rank 3 and rank 1 for rules of the form A -» B

are relatively straightforward additions to the equations, although rules of rank 3 increases

the worst-case complexity for the algorithm. The definition for the i ^ j case of the inside

probability formula becomes:

i ^ k < l < j

a(A, iJ) = £ [y{A -+ BCD) x a(BJ,k) x a{C ,k+1,1) x <x{D,l+ l,j)]
k ,l , A - tB C D e R

K k < j

+ E [y(A -» BC) x a(B,i,k) x a (C ,k + 1 , j)]

+ E [v (A - > B) x a (B , i J)]
A -+ B e R

(7.10)

The changes to /3 are also fairly straightforward, although rather verbose. To simplify

the definition, we will denote the previous definition of f5 in Equation 7.5 for rules of rank

2 as J82 and the new definition for rules of rank 3 as fo-

121

fh(A,i,j) = f c(AJJ)
j<k<l^n

+ £ [v (B ^ A C D) x a (C J + l , k) x a (D , k + \ , l) x P (B , i , l)] +
k y l y B — t A C D ^ R

+ £ [\ i r (B ^ C A D) x a (C , k , i - l) x a (D J + l , l) x p (B , k , l)] +
k, I, B-yCADeR

k<l<i
+ £ [\ff(B^CDA) x a { C , k , l - 1) x a (D , l , i - 1) x j8 (B,kJ))+

k, I, B - tC D A e R

+ E [V ' (« - > A) x | 3 (B , i , j)]
B-teR

(7-11)

A final modification must take place in the formula for H and count as well to handle

rules of rank 3, although the definitions of [I and count for rules of rank 2 remain the same.

H (A ^ B , i , j) = fo(A, iJ) x y(A - 4 B) x a(B, iJ) (7.12)

fi(A - 4 BCD ,i,k,l,j) =fo(A,i, j) x y(A - 4 BCD)x

<x(B,i,k) x a (C , J t+ l , /) x a (D , l + 1,;) (7.13)

count (A -4 B) = E (7.14)
hi

count{A BCD) = BCD, i, k, /, y) (7.15)
iAij

122

7.4 Learning a PTGG

A PTGG is a parameterized grammar with an infinite alphabet and rules that are func

tions. All of these features are problematic for the inside-outside algorithm even with the

extensions discussed so far. Three key features of the grammar must be addressed:

1. PTGGs make no distinction between terminals and non-terminals.

2. Symbols in PTGGs must carry extra information (the parameters indicating duration)

and the parameter list is potentially infinite. However, a CYK-style parse table of a

given progression will still be finite.

3. Rules are functions that are later instantiated with concrete values. Productions such

as /**'-* Vh Ih and Ih Vq Iq must be recognized as instances of the same rule,

p y ' / 2 p!2

In a more general sense, what we need is a way to learn a grammar where the full extent

of the alphabet is unknown and where rules have the form of X —► f (X). Here we show

an oracle-based approach to the inside-outside algorithm that enables learning grammars

of this form when f (X) has certain properties.

7.4.1 An Oracle Approach to the Inside-Outside Algorithm

Suppose we don’t know exactly what the rules for a grammar look like except for the as

sumption that they are context-free (in the sense that only one symbol can appear on the

left-hand side of a rule). The rules could even exhibit conditional behavior based on sym

bols’ parameters, as is possible in a PTGG. In fact, the details of the rule set are unnecessary

for the learning production probabilities as long as the learning algorithm has access to the

following things:

1. An identifier for each abstract rule. This can simply be a number (i.e. “rule 1,” “rule

2 ,” and so on).

123

2. The production probability for each abstract rule (or the initial estimates of those

probabilities).

3. A partition of the abstract rules’ identifiers into groups that share the same left-hand

side.

4. An oracle that takes a sequence of symbols and returns all rule instances that could

have directly produced it along with their associated identifiers. The distinction be

tween a rule and its instance is described in Section 7.4.3.

Note that for a typical PCFG, there is no function/instance separation in the rules, so

an oracle would return the rule itself. However, for some other grammar like a PTGG,

the oracle would only return a rule instance like /w ->• Vh Ih, while the exact function that

created it, P —> Vt!2 p /2, would remain unknown to the learning algorithm. Importantly,

the learning algorithm has neither an enumeration of the alphabet (which is potentially

infinite for a PTGG) nor an enumeration of all possible rule instances. The algorithm only

needs information about the symbols and rule instances that can be used to accomplish a

CYK-style parse of the training data. Given the four pieces of information described above,

production probabilities can be re-estimated by:

1. Building a CKY-style parse table of rule instances for each string in the training data.

Storing the full rule instances and their associated identifiers avoids any subsequent

queries to the oracle once the parse table is complete.

2. Traversing the parse table to compute a and fi values as described in Section 7.4.5.

3. Summing counts for rule instances by their rule identifiers when re-estimating pro

duction probabilities.

Step 1 above, building a CYK-style parse table, must address the lack of terminal/nonterminal

distinction and the rule function/instance distinction for PTGGs. These cause some small,

124

but cascading changes through the probability calculations. These issues are described in

more detail in the following sections.

7.4.2 Removing the Terminal/Nonterminal Distinction

Mathematically, the inside-outside algorithm does not actually enforce any important dis

tinction between terminals and nonterminals in the traditional sense. Terminals are simply

symbols that exist in row 0 and provide a stopping point for the recursive a calculations,

much like the start symbol serves as a stopping point for /3.

Removing the terminal/nonterminal distinction in a grammar implies that any point

during generation of a sequence of symbols is a valid stopping point. In many of the

grammars used for spoken language, this would be absurd, since a non-terminal like noun

phrase, often abbreviated as NP, is not a spoken entity and must be further instantiated to

something more meaningful. A string such as “This is a brown horse” is accepted by the

English language, but “This is NP" is not—the instance of NP must be further expanded.

However, this is not the case for all grammars.

A lack of terminal/non-terminal distinction is an important property of L-Systems, a

category of grammars commonly used for modeling fractals, where infinite self-similarity

must be accounted for but only finite sequences can realistically be calculated. Consider

the following L-System with A as its start symbol:

A-+AB

B - t A (7.16)

This grammar, defined by Prusinkiewicz and Lyndenmaier [61], consists entirely of

non-terminals and produces strings such as ABAAB. All strings produced by the grammar

can be further expanded. How much they are expanded depends on the generative algorithm

used.

125

In a grammar without terminals, rules of the form A -* x are mathematically no different

from rules of the form A - t B where A ^ B (situations involving “identity rules” or “self

productions” of the form A A will be addressed later). Rohrmeier’s grammar has many

of these, such as TR ->• T and DR -* D. Allowing for these rules, the equation for inside

probabilities for single symbols in the sequence Xi, ...,Xn becomes:

a{A,i,i) =
1.0 if A = Xj

(7.17)
£ [yr(A ->• B) x a(B, i, i)] otherwise

A —yB^R

The definition for a(A ,i,j) where i ^ j remains the same as in 7.19. True terminals

will cause no problems; the only difference is that they are now candidates to be supplied

to the a calculations.

7.4.3 Rule Functions and Rule Instances

One of the trickiest aspects of PTGGs from a learning standpoint is the distinction that

exists between rules, which are functions, and their instances, which are applications of

those functions to specific values. For clarity, we will refer to PTGG rules as rule functions

when refering to the function itself, such as P ->• W 2 p!2 where t is a variable. We will

refer to the applications of those rules to specific values as rule instances. For the rule

function P —> W 2 p!2, the productions Pv -* Vh Ih and Ih —> Vq lq are just two of many

possible instances of the function.

For a traditional PCFG, the probability mass function, yr, can simply perform a table

lookup, pattern maching against either the lefthand side or righthandside (or both) for cal

culating a and /3 values respectively. For a PTGG, the process is more complicated. In

training data, chords will have concrete durations, such as h (half note) rather than a vari

able, meaning that parsing must take place with concrete values as well. The parse tree

must, therefore, be constructed using rule instances rather than rule functions.

126

The concept of rule functions and instances of those functions is broader than simply

those in PTGGs. In fact, any grammar with rules of the form X -»■ f (X) where X is a

single symbol and f ~ l {X) is computable are covered by this paradigm, including the more

standard category of PCFGs. The rules in PCFGs can be thought of as functions where

each has only one instance.

7.4.4 Parsing with Rule Instances

With a PCFG, rule instances are no different from the actual rules in the grammar. How

ever, with a PTGG, one rule can have many instances. How can we efficiently find these

instances to recursively compute a and f$ values without knowing about the rules them

selves? The answer lies in a simple change to the parse tree representation.

Consider the progression IIq Vq lq Iq produced by the rules P —> V' / 2 p!2, P ->

p /2 p /2 and V‘ —»■ IPI2 W 2. A CYK-style parse tree would look like the following.

4 JW

3
2 Vh Ih Ih
1 IIq v q Iq Iq

1 2 3 4

Notice that the removal of the terminal/nonterminal distinction now means that there is

no need for a 0-row. This representation can be used to derive the portion of the alphabet

relevant to the string and the spans over which each symbol should have a and p computed.

We can derive the following combinations for which a and fi would need to be computed:

i j Symbols
1 2 Vh
2 3 Ih
3 4 Ih
1 4 r

127

For all other symbols and spans, a and would be zero. However, we also need to be

able to determine which rules produced each cell in order to recursively compute a and

probability values. Unfortunately, the standard CYK representation does not tell us which

rules were applied at each point, since, under the oracle model, we don’t know anything

about the abstract rules in the grammar and can only ask about rule instances. Rather than

querying the oracle again to re-derive which rules were applied to which cells, a better so

lution is to simply label the cells with rule instances during the parsing process. The table

now becomes:

4 (0) r ^ v h i h
3
2 (2) v h -> m v q (0) Ih Iq (1) Ih -»• I* Iq
1 II« v q Iq Iq

1 2 3 4

This operation is delegated to an oracle and must be defined for a given category of

grammars. For PCFGs, the operation is just a matter of checking symbol membership in

the strings appearing on the right-hand side of rules. For PTGGs, the operation is a little

more complicated and involves the notion of valid and invalid rule instances. A valid rule

instance for a sequence of symbols is one where the duration parameters associated with

each symbol have ratios that can account for portions of the sequence. For example, with a

start symbol of Z4 and rules that only divide the temporal parameters of symbols by powers

of two, Z4 —> V2 Z2 would be a valid instance of P -> V* / 2 Z*/2, but Z1 —► V1/3 Z2//3 would

be invalid. Algorithm 10 shows the process for backtracking through rule instances of a

PTGG that would be carried out by the oracle.

128

Algorithm 10. Given a validity function for a PTGG, valid(r), that returns true for valid

rule instances:

b a c k t r a c k p T G G (* p) =

1. Let Y = / -> x f^ \ . .x fr ^ | 3i, x = jc, be the collection of rule functions where x

appears on the right-hand side at position i.

2. Y' = 0 be a set of rule instances.

3. For each rule junction, / —>■ x{l^\..x^n̂ € Y where x =

(a) Let p' = f f 1 (p) be the unique parent parameter that could have produced p.

(b) Ifvalid(yp' x{l{pf) then add / -¥ x{l{pf) . . J t t ^ toY'.

4. Return Y'

7.4.5 Modifications to the Inside-Outside algorithm

The changes required to support the oracle model and CYK parse table described in the

previous sections cause subtle changes throughout the inside-outside algorithm’s equations.

Changes must be made where the equations for a and /3 make reference to the rule set, R,

since the rule functions are inaccessible and only rule instances can be accessed through

an oracle. However, these changes are fairly small, substituting some reference to the rule

set’s oracle for the rule set itself. For an Oracle, O, we will use the notation P(0, i, j) to

refer to the cell in the Oracle-made parse table that can produce symbols from i through j.

This cell will contain a list of rule instances. Using this notation, a would be redefined as

follows:

a(A,i,i) = <
1.0 if A = X,

(7.18)
£ [yf(A -> B) x a(B, i, i)] otherwise

A.—

129

i^k<l<j
a(A, i , j)= Y , [y^(A ->BCD) x a(B,i,k) x a(C,k+l , l) x a(D,l + l,j)]

k,l, A->BCDeP(0,iJ)
Kk<j

+ E [y (A ^ B C) x a (B , i , k) x a (C , k + l , j)] (7.19)
k, A->BCeP(0,i,j)

Equations for /3 and fi would be modified similarly, replacing instances of R with

P(0, i,j).

7.4.6 Identity Rules

So far, productions of the form A B have been allowed, but with the requirement that

A ^ B . Allowing for rules of the form A A is somewhat problematic for various statisti

cal reasons. Consider the following, terminal-less PCFGs:

Grammar 1 Rule Probability
A ->AA 0.4
A-)>A 0.2
A-+B 0.4

Grammar 2 Rule Probability
A -+AA 0.5
A-+B 0.5

Both of these can generate strings defined by the regular expression [A|£]*, which is

all strings consisting of As and Bs. However, for a fixed number of generative steps, the

probability of generating the string AB is lower for the first grammar than for the second.

For Grammar 1, the probability of generating AB is at most 0.4 x 0.4 = 0.16 if A —► A is

never used, and this value would decrease for each additional instance of A —► A, which can

be applied infinitely many times to yield as many distinct parse trees. For Grammar 2, the

probability of generating AB is exactly 0.5 x 0.5 = 0.25.

From this, it is clear that the two distributions above can exhibit different behavior even

130

under the same applying algorithm. For the same number of total productions, grammar

1 is likely to produce a shorter string than grammar 2. However, what if the generative

algorithm and number of productions are unknown? Distinguishing between the two dis

tributions becomes tricky, since each string producible by grammar 1 can be produced by

grammar 2 with fewer steps.

To fully accommodate the features of PCFGs, we extend the inside-outside algorithm

once more with a heuristic for counting occurrences of identity rules. It must be empha

sized that this heuristic will not suit all generative algorithms, since knowing where identity

rules are likely to be applied requires knowing how the generative algorithm works. Unlike

other rules, identity rules cannot simply be inserted into the parse tree wherever possible,

since they can be applied infinitely many times in sequence while achieving the same over

all result. Identity rules also cannot be ignored; some probability mass should be assigned

to them if they are present in the grammar.

As a middle ground, we count one identity rule per parse tree in the ju calculation. In

Equations 7.12-7.15, the requirement that A ^ B is simply removed. However, importantly,

we do not count identity rules in the a and j3 calculations. Doing so would risk placing

disproportionate weight on identity rules when re-estimating production probabilities for a

PCFG. By factoring identity rules into the /x calculation as shown above but nowhere else,

it avoids assigning truly excessive weight to identity rules. Unfortunately though, this does

not guarantee a conservative guess for the probability of identity rules, and the estimated

probability can still end up being disproportionately high. Consider the following grammar.

Probability Rule
0.3 A —tAA
0.3 A-»A
0.4 A-+B
0.5 B ^ B
0.5 B-+C

It takes a minimum of two productions to generate a string containing at least one C. If

131

a data set is generated with very few iterations of an L-System-Iike algorithm, such as only

three iterations, attempting to learn the probability for the B —> B using the heuristic de

scribed above will fail by assigning a disproportionately large probability to the rule. This

is because the restricted number of productions makes it unlikely that C will be encountered

relative to B, and each instance of B will constitute one count for applying B-*B. This is

a difficult problem to avoid with “deep” grammars that require many productions to reach

certain symbols. Symbols closer to the top of the symbol hierarchy are more likely to have

accurate probabilities learned for their identity rules.

7.4.7 Computational Complexity

For a PCFG, the complexity of this oracle-based version is actually unchanged, since oracle

would have a worst case runtime of 0(1), where / is the number of rules in the grammar,

and will perform the same search as would have to be done in an oracle-less model anyway.

Therefore, for PCFGs, the complexity is still 0(n3) for grammars with rules of rank 2 and

0(n4) for rules of rank 3, where n is the length of of the string to be parsed. Since the

oracle model requires that / _ 1 (X) be computable for rules of the form X -> f (X) but does

not bound the complexity of that computation, it is possible that the oracle’s complexity

could overtake that of the CKY-parsing for other categories of grammars.

The validity function for a PTGG requires checking whether the durations in a rule

instance are possible to produce by a given grammar. One way to do this is to simply enu

merate the number of possible durations and test them. This set of values will be controlled

by the format of the rules, the overall duration of the progression, dtotai, and the smallest

duration present in the progression, dmjn. For example, for rules that only divide duration

evenly, there will be log2 (dtotai/dmin) + 1 possible durations. This value will grow much

more slowly than the length of the input sequences, which is bounded by (dtotai/dmi„).

Therefore, the complexity for parsing will still be dominated by 0(n3) from the CYK al

gorithm, where n is the number of symbols in the input sequence.

132

7.5 Learning Additional Grammatical Features

In addition to learning production probabilities, it would also be useful to learn the col

lection of rules or even a collection of relevant non-terminals for forming rules. Lari and

Young show that the inside-outside algorithm can be used in conjunction with HMMs to

perform precisely this task for PCFGs [47]. However, the grammars learned are linear,

much like a HMM that must emit a symbol before moving on. This category of leamable

grammars does not allow for any symmetry or more complex branching in the parse tree.

This kind of structure seems a poor fit for music, where two phrases of equal length would

normally be viewed as branches of a fairly balanced tree.

Lari and Young proposes a method of using the inside-outside algorithm with an ini

tially too-large collection of rules and pruning it down to a smaller collection of rules [47].

Although this could be applied to music, without a way to learn the non-terminals it doesn’t

serve much purpose. Nonterminals like T for “tonic” do not make sense when separated

from their musical meanings to form a set of more general rules. For example, starting with

the collection of rules {x —► yz \ x,y,z 6 {T, £,£>}} is fundamentally problematic, since the

grammar is simply too ambiguous to allow sufficient pruning.

PTGGs take the hypothesis that observable harmonic transitions at the level of chord

progressions are representative of large-scale patterns as well. If this hypothesis is true,

then it may be possible to detect short phrases that would be likely candidates for right-

hand-sides of rules and to then derive the left-hand side through music theoretic principles.

The task of identifying right-hand-sides of the rules is somewhat analogous to the task of

automatic text segmentation in computational linguistics. However, this step in the learning

process has not yet been added to Kulitta and is a subject of ongoing work.

133

Chapter 8

Putting It All Together

One of Kulitta’s goals is to not just generate music, but to “learn by listening”— to be able

to derive desirable musical features and patterns from a corpus of data while still being able

to produce original pieces of music. Production probabilities for PCFGs and PTGGs are

one such musical feature that can be learned from a corpus of data as shown in Chapter 7

using modifications to the inside-outside algorithm. Two different generative experiments

are described in this section: training Kulitta on a corpus of Bach chorales and a modified

version of Rohrmeier’s grammar for harmony and training on a synthetic data set generated

by a hand-built PTGG. Each set of learned production probabilities was used to generate

multiple novel phrases of music.

8.1 Training on Bach Chorales

Bach chorales offer a source of abundant and stylistically consistent musical examples that

are also relatively easy to analyze to the level of Roman numerals. Because of this, it is

a good data source for testing the performance of grammars like Rohrmeier’s. Here we

present the results of such an experiment. A corpus of Bach chorales was analyzed to

the Roman numeral level, and short phrases were extracted as training data. A modified

version of Rohrmeier’s grammar for harmony [67] was used as the candidate grammar to

134

parse the data and learn production probabilities. Finally, Kulitta’s generative framework

(described in Chapter 6) was used to create short, chorale-styled phrases according to the

learned production probabilities.

8.1.1 Data Set

A collection of Bach chorales analyzed by Christopher W. White [83] were taken as the

starting data. The chorales in this data set had already been analyzed to determine the key

of each chord. Further processing was then done to assign a Roman numeral to each chord,

which was relatively straightforward, since most of the chords were simple triads (e.g.

(0,4,7) in C-major is a I-chord). Phrases were taken as 4-measure sections if all within the

same key, and same-key segments for 4-measure sections that changed key. These phrases

were then divided by mode, creating major and minor training data sets containing 2,650

and 1,446 phrases respectively.

8.1.2 A Modification of Rohrmeier’s PCFG for Harmony

Rohrmeier’s grammar for harmony is a CFG suitable for learning with the inside-outside

algorithm as described in the previous chapter. A reduced version of it that lacked modula

tions was used to parse the Bach corpus. However, not all of the data was parsable with this

reduced grammar. Some of this may have been due to noise in the Roman numeral assign

ment, but other instances were likely due to limitations of Rohrmeier’s grammar. To parse

a larger subset of the data while minimizing redundancy in the rules, a modified version of

Rohrmeier’s grammar was used as the candidate grammar for learning production proba

bilities. This grammar is shown in Table 8.1. Rules 13, 14,19, 20, and 21 were suggested

by lan Quinn as mechanisms to increase the number of parsable phrases in the data set.

Important changes to the grammar include the re-purposing of the P nonterminal to

mean “plagal cadence” rather than “phrase.” The “phrase” level in Rohrmeier’s grammar

added redundancy and was largely irrelevant to parsing such small sections of music. Sim-

135

1 TR ->• T
2 TR -4 TR TR
3 TR -4 DR T
4 TR ->• TR DR
5 DR -> DR DR
6 DR D
7 DR -4 SR D
8 SR -4 S
9 SR -> SR SR
10 T -4 VI
11 T -> m
12 T -> I
13 T -4 i n vi
14 T -4 T P
15 D - ¥ VII
16 D -4 V
17 S -4 IV
18 S -¥ n
19 S —̂ iv m rv
20 P rv I
21 P IV P

Table 8.1: A modified version of Rohrmeier’s grammar for harmony, where TR is the start
symbol.

ilarly, “piece” as a nonterminal was not needed either. Instead, TR, or “tonic region” was

used as the start symbol. Repetitions at the Roman numeral level were also removed to

avoid overly ambiguous parses. The grammar from Table 8.1 was able to parse a total of

1,335 phrases out of the 2,650 present in the major data set. The minor data set was not

tested with this grammar.

8.1.3 Method

Using the grammar in Table 8 .1, a total of 1,335 phrases in major keys were parsable from

the Bach corpus. The extended version of the inside-outside algorithm described in Chapter

7 was run on samples of 200 of these phrases. Samples were taken uniformly at random

using a pseudorandom number generator and a fixed seed to ensure reproducibility of the

samples. A total of five random samples were taken (seeds 0 through 4). The inside-outside

136

■ Uniform

■ S m d O

» S « e d 1

□ S e e d 2

■ S e e d 3

■ S e e d 4

■ A verage (0-4)

1 2 3 4 S 6 7 S 9 10 11 12 13 14 t3 18 t r 18 19 20 21

Rule num ber

Figure 8.1: Production probabilities for a PCFG based on Rohrmeier’s grammar using
a corpus of major phrases from Bach chorales. A list of numbered rules can be found
in Table 8.1. The graph shows the results of five different runs, each with a different
seed for randomly selecting 200 data from the corpus. All runs were given uniform initial
probabilities and ran until the change in distributions between iterations fell below 1% of
the total probability mass. The “average” data series represents the average of all five runs.

algorithm was run until the change in probability mass fell below a specified threshold.

This threshold was set to be 1% of the total probability mass, or 0.07 (since there were 7

nonterminals and the probabilities for each nonterminal must sum to 1 .0).

8.1.4 Results

The results of 5 runs of the inside-outside algorithm on different samples from the data

set are shown in Figure 8.1. All runs of the algorithm began with a uniform probability

mass distribution and converged within only a few iterations. As can be seen from Figure

8 .1 , the results are all fairly similar regardless of the particular sample of data points used,

indicating that the data is consistent within itself. The average of these probabilities was

used to qualitatively assess the learned production probabilities using Kulitta’s generative

algorithms.

137

8.1.5 From PCFG to PTGG

Kulitta’s generative algorithms are designed to take PTGGs rather than more typical PCFGs.

A PCFG for harmony can be converted into a PTGG, but there is no clear best way to do

this. PCFGs like Rohrmeier’s and the version in Table 8.1 are unable to handle any tempo

ral information and there is a terminal/nonterminal distinction, which must be removed in

some way to produce a PTGG. Results from three different approaches to this conversion

are presented here.

• Approach 1: assign all symbols a constant duration of a quarter note, q. For example:

TR* -tTR ? TRq. After some number of generative iterations, nonterminals may still

exist in the string. These are forced to terminals using the following convention.

TR, T, TP, TCP, P => I

DR, D, DP =» V

SR, S, SP =► IV

• Approach 2: divide durations according to the following patterns for different right-

hand sides from 1 to 3 symbols long (rules of rank 1 to 3):

A* -¥ B!l2 C l1

a * -> #/4 c*/4 zy/2
As with approach 1, nonterminals are not guaranteed to be converted to terminals

after a fixed number of iterations, so approach l ’s mapping is taken to force any

remaining nonterminals to terminals.

• Approach 3: Convert all non-terminals in the rule set to Roman numerals according

to the same mapping used by the previous approaches. This results in the grammar

shown in Table 8.2. Generation then proceeds as in approach 2, but with no need

to coerce leftover nonterminals after generation has finished. This actually results in

a more general grammar than the original PCFG. This approach was tested to see if

certain temporal problems observed with the other two approaches would be resolved

138

1 P -¥ P
2 P -¥ p / 2 p / 2

3 P -y y t / 2 p / 2

4 P —y p ! 2 y t / 2

5 V* -y y t / 2 y t / 2

6 V* -y v*
7 V* -y j y t / 2 y t / 2

8 TV' -y rv* /2
9 rv* -y i y t / 2 j y t / 2

1 0 p -y VP
1 1 p -y IIP
1 2 p -y P
13 p -y p / 4 j p / 4 y p / 2

14 p -y p / 2 p / 2

15 v* -y VIP
16 V* -y V*
17 TV' -y IV*
18 TV* —y IP
19 TV' -y IV*/4 IIP!4 IV*/2
2 0 P -y j y t / 2 p / 2

2 1 P -y j y t / 2 p / 2

Table 8.2: A PTGG constructed from the PCFG in Table 8 .1 using approach 3 for PCFG to
PTGG conversion.

by a more general grammar.

Approaches 2 and 3 mirror the patterns of duration division used in the PTGGs shown

in Chapter 4, while approach 1 makes no attempt to preserve meter. Phrases produced

with approach 1 may, therefore, have a strange number of chords and end in the middle

of a measure and merely substitutes a duration for the sake of fitting into Kulitta’s gener

ative framework. Approach 3 is overall most similar to the PTGGs in Chapter 4 since the

terminal/nonterminal distinction is removed by allowing all symbols to be generative.

These three approaches for converting PCFGs into PTGGs were tested using the aver

age of the learned production probabilities from the Bach chorale data set and the modified

version of Rohrmeier’s grammar. To evaluate the performance of the two methods, each

were tested with stochastic generation using the classical approach from Chapter 6 on 20

different random number seeds. The lengths of these progressions are summarized in Table

139

lif 4 ■ = 1
S ’ * - = 3

i t - i

L©------------------------L

1;..."m '

— 1 J — — J ■ ^

-£>----------m............. ...□'W

L-©------------------------1

II II V VI
L-o------------------------ i
III

Figure 8.2: The phrase from seed 0, approach 3 from Table 8.3. Note that no I-chords were
produced. The distribution of durations is also skewed due to the appearance of E-chords
(which cannot create any other chords) early in the generative process.

8.3. Sample phrases from this set are shown in Figures 8.2-8.5.

Approach 1 suffers from a lack of temporal consideration, being likely to stop in the

middle of a measure in a way that is quite uncharacteristic of the training data (Bach

chorales). Both approaches 1 and 2 also suffer from a chord distribution problem—they

are prone to becoming “stuck” on very few chords, often only a single tonic chord. Simi

larly, they are prone to not generating terminals.

Approaches 2 and 3 have the temporal benefits of the PTGGs in Chapter 4, although

both allow strange chord transitions that are not representative of the input data. Approach

3, for which the PTGG was actually more general than the learned PCFG), demonstrated

temporal behavior more like the PCFGs from Chapter 4, but it also had the most unusual-

sounding transitions. Still, the results from this learning-based approach seemed on par

with that of the hand-build grammars in Chapter 4—allowing for the fact that no modula

tions are present in the learned version. The phrases are also quite prone to ending on V

rather than I, which does occur in the training data, but would present a problem if used

to generate a complete piece of music where ending on I is required. Approach 3 also had

more consistent quality of results than approaches 1 and 2. This was largely because the

temporal distribution of chords and also the number of chords was more consistent between

examples, lacking the big swings in density present in the the other two approaches.

140

Seed Approach 1 Approach 2 Approach 3 Key
0 2 2 5 C Major
1 5 5 6 F Major
2 1 1 6 B-flat Major
3 1 1 6 B-flat Major
4 3 3 6 E-flat Major
5 1 1 9 A-flat Major
6 1 1 6 G Major
7 6 5 1 0 D-flat Major
8 2 2 6 F-sharp Major
9 27 8 1 B Major

1 0 28 9 5 B-flat Major
11 1 2 6 6 E Major
1 2 2 2 5 A Major
13 2 2 2 D Major
14 4 4 6 D-flat Major
15 1 1 6 G Major
16 1 1 6 C Major
17 3 3 13 F Major
18 1 1 9 E Major
19 1 1 1 0 B-flat Major

Table 8.3: Progression lengths resulting from using PCFG to PTGG conversion approaches
1, 2, and 3 on 20 random number seeds. Approaches 2 and 3 were run using a minimum
duration for chords of a quarter note and a phrase length of 4 measures. All progressions
were generated using 8 iterations of the generative algorithm. Progressions with only one
chord are the result of T R - t T occurring first. Examples of the musical phrases from seeds
0 and 7 can be seen in Figures 8.2 through 8.5.

141

f

IV IV

Figure 8.3: The phrase from seed 7, approach 1 from Table 8.3. Note that the phrase ends
in the middle of a measure.

| M t z -
iA h .i— -. =— ^ = = F = r = \

_ o

------ --------------------
.......... ’ — r r

o

IV I

Figure 8.4: The phrase from seed 7, approach 2 from Table 8.3. Although it has I-chords,
unlike the phrase in Figure 8.2, it still has a relatively poor distribution of chord durations.

v i ii i II IV II i ii i

Figure 8.5: The phrase from seed 7, approach 3 from Table 8.3. This phrase has a somewhat
more reasonable distribution of durations and chords than in Figures 8.2-8.4.

142

1 T -4 T
2 T —y T T
3 T D T
4 T —̂ T D
5 D - 4 D
6 D —̂ DD
7 D - 4 SD
8 S - 4 S
9 S - 4 SS

Table 8.4: A further simplification of the grammar in Table 8.1.

8.1.6 Another Approach

Many of the problems in the results seen from training on the grammar in Table 8.1 stem

from the possibility that generation can become “stuck” on certain chords. For example,

T R - y T occurring first will always result in a single-chord progression, no matter how

many generative iterations are used. Although this is less of a problem with approach 3,

many short progressions still occur due to productions such as 7 - 4 7/7 occurring either first

or in a fairly early iteration. Additionally, when progressions are longer with approach 3,

they become fairly bizarre and unrepresentative of the input data.

To get a better distribution of chords within a progression, the same data set was tested

using a yet further simplification: only working with the three symbol alphabet of T, S,

and D. Rules for producing series of these can be derived from Table 8.1 and are shown in

Table 8.4. This grammar parsed 1,095 of the 2,650 phrases in the major data set and 582

of the 1,446 phrases in the minor data set. From this selection of each data set, samples of

200 were used with a convergence threshold of 0.03 (1% of the total probability mass). The

learned probabilities over five runs for the major data set is shown in Figure 8 .6 . Averages

of five runs over the major and minor data set are shown in Figure 8.7.

143

Roman numeral I II HI IV V VI VII
Occurrences in Bach corpus 12758 4443 1451 3689 8449 2061 1209

T/S/D category T S T S D T D

Table 8.5: Roman numeral frequencies in the Bach corpus.

The grammar in Table 8.4 was converted to a PTGG with the following method of

assigning durations based on the rank of the rule:

A'

a * ->& i2 a / 1.

This resulted in sequences of T, S, and D, which require further conversion to be used in

Kulitta’s generative framework. Two methods of mapping from T/S/D to Roman numerals

were tried:

1. One-to-one mapping: T = /, 5 = TV, and D = V. With this approach, the other four

Roman numerals (//, III, VI, and VII) are never used.

2. Stochastic, one-to-many mapping: T = {I,III, VI}, S = {II,IV}, and D = {V, VII}

based on the statistical prevalence of each type of chord in the corpus (shown in

Table 8.5). This was implemented by using greedyProg on a chord space populated

with Roman numerals in the proportions shown in Table 8.5 and grouped by T/S/D

category.

These mappings were then run through the same chord spaces as used in previous ex

amples in this chapter. Examples of the results can be seen in Figures 8 .8 -8 .11.

Overall, this method performed notably better for creating a PTGG and generating mu

sical phrases. Results from the simple, one-to-one mapping were generally consonant and

had a reasonable temporal distribution of chords. However, the harmony was also very re

stricted. The stochastic one-to-many mapping performed similarly due to the fact that the

most likely chords in each category are those from the one-to-one mapping. Harmony was

slightly more diverse, but strange chord transitions were also periodically introduced, prob-

144

■ Uniform
■ Seed 0
■ Seed 1
□ Seed 2
■ Seed 3
■ Seed 4

Rule number

Figure 8 .6 : Production probabilities for the PCFG in Table 8.4 after training on major
Bach chorales. The graph shows the results of five different runs, each with a different
seed for randomly selecting 200 data from the corpus. All runs were given uniform initial
probabilities and ran until the change in distributions between iterations fell below 1% of
the total probability mass. The “average” data series represents the average of all five runs.

ably due to a combination of noise in the data and the lack of broader context-sensitivity in

the one-to-many mapping step.

For the generative purposes described in Chapter 9, the process described so far on ma

jor chorales was repeated on the minor subset of the Bach corpus. There were significantly

fewer minor examples, and only 582 were possible to parse. A comparison of results is

shown in Figure 8.7. In general, the learned production probabilities were very similar to

the major distribution, with one main exception: the probabilities for S -> S and S -> SS.

As shown in Chapter 7, the inside-outside algorithm can be extended with an oracle that

allows for rule functions to be learned. However, it is not obvious how to construct a PTGG

that will parse the Bach chorale corpus, so training from a real data set is problematic even

though the inside-outside algorithm can handle the rule formats for PTGGs. Still, parsing

on artificially generated data sets is possible and also serves as a proof of concept for the

8.2 Training on Synthetic Data

145

Major and Minor Production Probabilities Learned from Bach Chorales
n U niform ■ M ajo r ■ M inor

2

0 .9

0.8

0 .7

0.6

0 .5

E 0 .4

0 .3

0.2

0.1

.17

J

Rule number

Figure 8.7: Average production probabilities for the PCFG in Table 8.4 from major and mi
nor Bach chorales. The graph shows the average of five different runs for each mode, each
with a different seed for randomly selecting 200 data from the corpus. All runs were given
uniform initial probabilities and ran until the change in distributions between iterations fell
below 1% of the total probability mass. The “average” data series represents the average
of all five runs.

J j= |

—1- - - - - -
-- - #- - - - - - <

*):LVk4- - - - - - —- - - - - ■f.:. . . r "7

1 -J- - - - - 6

- - - - - -
j- - - - - LJ *

* M
4.

=— - - - - - a ’ -

I I I I I I V IV V V I

Figure 8 .8 : A progression generated by training the grammar in Table 8.4 on Bach chorales
and using the simple, one-to-one mapping for Roman numerals.

146

L£ # 4)....................J

4 - .— » p - — •.

= f = f
Q X r J J - <

5 :

- J ---- j J — *— — J - — L

£ = ? = r

<9-------
^ n 1
r r . -]

*V 1 Ld ° —1----------------“~r

- - ------1-------

Z 0------------- J-----------r

I 1 I VI III I V IV V V I

Figure 8.9: A progression generated from the same abstract progression at the T/S/D level
as Figure 8 .8 , but using the stochastic, one-to-many mapping for Roman numerals.

j . —

j r
pr...................p

— J - 3 —

fg' ~ ^ ----------PC

3 - P —

C T I E = ~ i
-6 -

r •
r - r 1

j = ^ = d = j 3 = P . r i
IV V IV IV V V I V 1 I I

Figure 8.10: A progression generated by training the grammar in Table 8.4 on Bach
chorales and using the simple, one-to-one mapping for Roman numerals.

JWta---------- 1

£ - f* .. «----- : U * * J J------- ^

♦ft Ira 4 «------- f*
«L— ^ ^
-p------#----j:----- 1-

F P j r - P
s T*4-f--------

W l l -------a ' r - ± = —

IV V IV IV V V III V I III I

Figure 8.11: A progression generated from the same abstract progression at the T/S/D
level as Figure 8.10, but using the stochastic, one-to-many mapping for Roman numerals.

147

Num. Probability Rule
1 0.7 p y t / 2 p / 2

2 0.3 p j y t / A y t /4 p / 2

3 0.7 IIP ->• IIP I2 V f ! 1
4 0.3 IIP -» P/2 IIP>2
5 0 . 6 I V t _> /V '/4 u p / * p / t / 2

6 0.4 j y t y t / 2 j y t / 2

7 0 . 2 V* _> p / t / 2 y t / 2

8 0.3 y t Jp / 2 y t / 2

9 0.4 V{ - * IIP
1 0 0 .1 V‘ VIP

Table 8 .6 : A small PTGG.

feasibility of learning PTGGs from corpera.

In the experiment presented here, a synthetic data set was generated using the rules

shown in Table 8 .6 . A total of 1000 phrases was created using the PTGG rules and prob

abilities shown in Table 8 . 6 and the gen function from Chapter 5. Phrases were created

using 4 generative iterations, a starting duration of 4w (a whole note in 4/4), and a mini

mum duration of a quarter note q.

Kulitta’s learning algorithm was run using samples of 100 phrases taken from the total

set of 1000. Learning was considered complete when the change in probability mass from

one iteration to another fell below 1% of the total (0.04, since the rules in Table 8 . 6 have a

total mass of 4). Phrases were selected uniformly at random using a random number seed.

Learning was repeated with five different samples from random number seeds 0 through 4.

The results of this training are graphed in Figure 8.12. Finally, the average of the learned

probabilities over all five runs was used to generate new musical phrases. Because the

grammar in Table 8 . 6 will create new chords at every generative step, only three generative

iterations were needed to fill 4 measures with a reasonable distribution of notes (compared

to 8 iterations needed for the grammar in Tables 8.2 and 8.4, which have many productions

of rank 1).

148

8.2.1 Results

The learned production probabilities are shown in Figure 8.12. All runs of the learning

algorithm converged to the same result rapidly. This is like due to the small rule set and

the fact that the candidate grammar was, in fact, the grammar used to produce the data set.

The learned probabilities differ from the probabilities shown in 8 .6 , but are nevertheless

close for most of the rules. Some deviation is likely not just because of having a finite

sample of data but also because the generative algorithm is not guaranteed to produce

data with the exact ratios of rule applications as dictated by the production probabilities

(due to psuedo-randomness and the fact that the data produced is finite). One significant

deviation occurred: rules 5 and 6 have learned probabilities almost the reverse of those

used to generate the data set. This is likely to be another artifact of the minimum duration

threshold in the generative algorithm, since rule 5 (which produces 3 symbols) would be

less likely to be usable further down in generation than rule 6 (which produces only 2

symbols).

Musically, the results from this test are more dissonant than those from the Bach corpus

with PCFG to PTGG conversion. This will be partly because the PTGG used for this exper

iment was designed mainly to test the learning algorithm rather than to model a particular

type of music well. Cearly it would be preferable to perform learning on a corpus of real

music rather than synthetic data in order to obtain results that match a particular style.

8.3 Conclusion

The results from the experiments in this chapter are promising, since they indicate that

results that sound similar to those from the PTGGs in Chapter 4 can be obtained by learning

production probabilities from a corpus of real, human-made music. The synthetic data

experiment also serves as a proof of concept that PTGGs are feasible to learn when given

suitable data.

149

1

■ U n ifo rm
■ SndO
■ Seed 1
DSeed 2
■ Seed 3
■ Seed 4
■Average (0-4)
■Actual

Figure 8.12: Production probabilities for the PTGG shown in 8 . 6 using a corpus of major
phrases generated from the same grammar. The graph shows the results of five different
runs, each with a different seed for randomly selecting 100 data from the corpus. All runs
were given uniform initial probabilities and ran until the change in distributions between
iterations fell below 1% of the total probability mass. The “average” data series represents
the average of all five runs and the “actual” data series shows the values used to generate
the data set (from Table 8 .6).

■■■■Ilka
R u le n u m b e r

- j— f - ...m i I— , f —m--------- J-----

A uj........... ;........r

B

—j---------

— -

@■"■4 j tJ
I
J ^ ... -.....j | = t J ----------------------

a 9

J - - - - - j

= f

w
2.

J ----- -w~ cl

S * j 1

« w k -i

.. *....jB

a ~ — - -I

P r t

± = J-------------- 1— I
^ ..^ t r

III V IV II III II III II V V I

Figure 8.13: Phrase generated using the production probabilities in Figure 8.12.

150

The various phrases generated after training show a clear need for a temporal element

in the grammar and also a need for ways to control the number of produced chords—or,

rather, a way to avoid being immediately funneled into a single-chord series of productions.

PTGGs like those in Chapter 4 do this well, but parsing real music with them is tricky.

Small amounts of noise in the analysis could easily render a phrase unparsable by a PTGG

if the durations of chords were affected, whereas a more standard, non-temporal PCFG is

able to handle these types of deviations with the inclusion of a few extra rules. Currently,

this actually makes PCFG to PTGG conversion a somewhat more robust approach when

trying to learn features from human-made music. However, learning a PTGG directly could

be equally robust if error tolerance was built into the parsing process.

151

Chapter 9

Empirical Assessment

There are currently no standard metrics or experimental procedures for assessing the per

formance of automated composition algorithms, and there are many problems associated

with creation of such tests. First, what does “quality” mean in the context of an automated

composition algorithm? There are many possible interpretations of quality, such as how

well a work adheres to music theoretic rules, whether it sounds convincingly like it was

produced by a particular composer, whether it sounds human, or whether people simply

“like” it.

If we are interested in a measure like “humanness,” who is to be the judge? For ex

ample, if the goal is to determine how well an algorithm can sound convincingly like J.S.

Bach (without duplicating existing work), then the question must be asked: to whom is it

convincing? The algorithm’s creator, an expert, an arbitrary other person, or some combi

nation of all of them? There is a tendency in the field of computer music to assume that a

panel of music experts should always be used to determine whether an algorithm has met

its compositional goals. However, there are some serious problems associated with having

an algorithm be judged by such a panel.

Suppose we wish to evaluate whether an algorithm writes music that is in the style of

J.S. Bach, but without duplicating existing work by the composer. The odds are stacked

152

against the algorithm when viewed by a panel of experts, simply because the Bach’s corpus

is both finite and well-known. Even if the algorithm produced something that Bach might

have written, the mere fact that it is novel risks carrying a negative bias with an expert in

Bach’s existing music. In order to gain an unbiased result, novel chorales by Bach himself

would be required for anonymous comparison against those from the algorithm.

Expert analysis in these sorts of cases is clearly problematic. However, it is also not

the only means of evaluation, particularly when the questions of interest are less composer-

specific. If there is such a quality as how “human” a work sounds, it is not unreasonable to

assume that non-experts should be able to pick up on it intuitively. This quality may even

be a factor in the likability of a piece of music, or even inseparable from it. Both may be

rooted to some degree in abstract structural elements, or the anticipation of what is to come

next when listening to a piece of music [39].

Expert analysis can take place visually by reading a score, which seems appealing for

testing algorithms that generate musical scores without their corresponding performances.

Because of the expert-related problems in comparison against famous works, however,

novel features may be unfairly punished for their novelty. On the other hand, a non-expert

would be unable to analyze a printed score, and requiring the non-expert to listen to a

performance of the work risks conflating compositional features with performance features.

9.1 Experiment Overview

We present an experimental format that attempts to mitigate the problems discussed so far

and show results from a study using this approach. Using a structure similar to a Turing

test [79], participants were asked to rate their confidence or belief that a musical phrase was

written by either a human or a machine. To avoid the issue of bias against certain styles,

participants were first shown examples of phrases created by both humans and computers

in two contrasting styles, atonal and classical chorales. Phrases used as stimuli during

153

the subsequent experiment came from three categories: (1) Kulitta, (2) a random-walk

algorithm that will be referred to as Random, and (3) chorales written by J.S. Bach. These

three phrase categories are referred to as “composers” for simplicity, despite the fact that

two are algorithms.

The two computer composers, Kulitta and Random, utilized the same chord spaces

and similar foreground algorithms. Phrases from all categories were rendered to audio on

computer to ensure uniform performance features. Phrases used in the experiment were

all four measures long, contained four voices, and were recorded at 1 2 0 bpm with virtual

instruments for oboe, clarinet, English horn, and bassoon assigned to soprano, alto, tenor,

and bass respectively. A small amount of reverb effect was added to make the recordings

sound more natural, since the instruments could sound rather harsh when dry. All notes

within each phrase assigned a volume of 127 (the maximum possible value in MIDI). This

resulted in “flat” performances with no dynamics or tempo variation. Because these very

mechanical performances could have impacted participants’ ability to judge the underlying

scores, the presence of human-made phrases in the stimuli was important to serve as a

sanity check. This also yielded a baseline measure of how confident the participants were

that real humans were actually human under the particular performance conditions.

Two experimental conditions were used, and each only differed in the phrases taken

from Kulitta. In the first condition, phrases were generated using hand-built PTGGs. The

second condition featured phrases generated with models learned from Bach chorales as

described in Chapter 7. The Bach and random phrases remained the same. Each partici

pant was only allowed to take a single survey corresponding to one of these experimental

conditions.

Results were analyzed within each experimental condition to derive raw score distribu

tions for Bach, Kulitta, and the random-walk algorithm. Although the raw scores exhib

ited a bimodal distribution, mean scores by participant for each composer (Bach, Kulitta,

and Random) exhibited a more typical normal distribution. T-Tests on these distributions

154

shows that all three were distinct (using p < 0 .0 1) in both experimental conditions, although

Kulitta’s mean was closer to Bach’s than it was to that of the random-walk algorithm.

T-Tests comparing distributions for the same composer between experimental condi

tions showed that Bach’s distributions were not distinct (p > 0.05). Therefore, Bach was

rated consistently across both experimental conditions. Kulitta’s distributions between con

ditions were subtly different but still very similar, indicating that the learning approach

performed roughly the same as the hand-built grammars. However, a T-Test of the two

Random distributions fell under p < 0.01, which indicates distinct distributions. Since

Kulitta’s phrases were the only ones to change between experimental conditions, this dif

ference suggests that perception of Kulitta’s phrases may have impacted perception of the

Random phrases.

9.1.1 Likert Scale

A Likert scale is a measurement strategy commonly employed in psychology experiments

for measuring degree of agreement with statements. They are often used in situations where

a binary classification such as “yes/no” or “agree/disagree” is considered to limited, such

as when answers like “uncertain,” “no preference,” or “slightly agree” would be useful in

addition to more extreme alternatives.

Participants in this experiment were asked to classify musical examples by using a

Likert scale measuring confidence that an example was produced by either a human or a

computer. The ratings used the 7-point scale shown in Figure 9.3. This type of scale was

used because there is a potentially meaningful difference between someone being totally

confident in a classification and merely leaning towards it but being forced to choose due

to the limited options. If participants really are unsure of their choice, that information can

be useful.

It was suspected at first that Kulitta might fail a more standard Turing test, and the

binary classification used in a Turing test would remove some of the detail that could be

155

observed from a Likert scale. One of the reasons it was assumed that Kulitta might not fare

well in a more standard Turing test was the fact that the human examples used were not

just human-made, but also the product of an expert human, J.S. Bach. In a classical Hiring

test, participants would be asked to observe phrases from unknown sources (humans or

computers) and classify them decisively as either human or computer.

A Hiring test to compare Bach and Kulitta is, in some ways, like a Hiring test for com

paring a primitive/early chess algorithm with known shortcomings against a Grandmaster.

Obviously the bar is set quite high for the machine in such circumstances, since the ma

chine’s performance will inevitably be compared to that of the expert in successive trials.

Therefore, if the goal is to determine whether the machine performs like an arbitrary hu

man, the test is really rather unfair. Nevertheless, even if Kulitta performed miserably when

compared to human composers, the Likert scale would still provide more information on

the algorithm’s performance than would be the case for a binary classification method.

To illustrate the information captured by a Likert scale that is lost with binary classifica

tion, consider two hypothetical algorithms, A and B. Suppose that both would both would

fail a Turing test by being classified as a machine 100% of the time. That does not mean

that the two algorithms performed equally during the test. In fact, the two algorithms could

still show differences when using the Likert scale used in this experiment. If algorithm A

scored closer to the middle of the scale (but still on the computer side) while algorithm B

was classified firmly as a computer, that difference is meaningful and would indicate that

algorithm A was closer to exhibiting human-like behavior than algorithm B. Using binary

classification, there is no room to allow participants to express doubt or uncertainty in their

answers, and so information on how swayed a participant is in one direction or the other is

lost.

156

9.2 Musical Phrases

A total of 40 phrases, all lasting about 10 seconds, were recorded for this experiment. 10

phrases were taken from Bach chorales, 10 from the random walk algorithm, and 20 from

Kulitta. Kulitta’s phrases occupied the majority of the examples because Kulitta has a fairly

diverse range of behavior. Therefore, it was important to try to capture a representative

sample while keeping the total number of trials reasonable, since long experiments can

cause participants to become frustrated, bored, or otherwise fatigued.

9.2.1 Phrases from Kulitta

Two versions of Kulitta were tested: one using hand-built grammars and one trained on

Bach chorales. Both versions used the same OPC-space for four voices (using the ranges

shown in Table 9.1) and the simple foreground algorithm described in Chapter 6 to add

melodic elements in a classical, chorale-like style.

In both cases, Kulitta used a minimum duration of a quarter note to generate abstract

structure for 4-measure long phrases with a 4/4 meter. Additionally, the starting structure

of the phrase was also varied uniformly at random to be one of the following, where w

indicates a whole note (the duration of one measure in 4/4):

• I4w

• / 2w / 2kv

• Letx = / 2w inxx

The bass was forced to double either the root or the fifth for major and minor chords and

the root for diminished chords. This was accomplished by using a single-chord predicate

that checked for OPC-equivalence to (x,x,x + m,k + l) , (x,x+m ,x + l ,x + 7), or (jc,x,x+

3,jc + 6) for x 6 [0,11] and m e {3,4}. OP-space mapping was done using greedyProg'

from Chapter 5 and a filter over equivalence classes that selected for the bass doubling the

157

Voice Pitch number range Pitch range in Euterpea
Soprano [60, 81] (C,5) to (A,6)

Alto [52,76] (E,4) to (E,6)
Tenor [47,67] (B,3) to (G,5)
Bass [40,60] (E,3) to (C,5)

Table 9.1: Voice ranges used for Kulitta’s phrases. “Middle C” or (C, 5) is pitch 60.

root only with 80% probability. Foregrounds were added to the phrases using the classical

foreground approach described in Chapter 6 . Phrases were generated in both major and

minor. In each condition (hand-built vs. trained), 10 major and 10 minor examples were

taken. Of each modal group, 8 progressions ending on I and 2 progressions ending on V

were selected at random.

Phrases from Hand-Built Grammars

Two hand-built rule sets were used: the rule set shown in Table 4.2 and an additional rule

set modified to end on V instead of I. This additional V-ending rule set was added because

some of the phrases taken from Bach chorales ended on V. For each mode and grammar,

20 phrases were generated, each with a different random seed. A home key was chosen

uniformly at random for each abstract phrase. From the total of 80 phrases generated,

a smaller sample was selected for the experiment. This smaller sample consisted of 16

phrases ending on I, half of them major and the other half minor, and 4 phrases ending

on V, again half major and half minor. Within each ending/mode category, phrases were

randomly chosen out of the 20 that were generated. Details on the distribution of starting

structures can be found in Table9.2.

Phrases from Trained Model

Kulitta was trained on Bach chorales using the approach described in Chapter 7 that used a

3-letter alphabet: T (tonic), D (dominant), and S (subdominant). Alphabets were expanded

to Roman numerals using the one-to-many approach described in Chapter 7 to obtain a

158

Mode Ending type Starting Structure Hand-Built Phrases Trained Phrases
Major I j4w 1 2

Major I j lw j lw 6 5
Major I L etx = I2w in x x 1 1

Major V j lw j lw 2 2

Minor I jAw 1 2

Minor I j lw jlw 3 2

Minor I Letx = / 2winxx 4 4
Minor V jAw 1 0

Minor V j lw jlw 1 1

Minor V LetJc = /2H,inxx 0 1

Table 9.2: Distribution of starting structures in Kulittas phrases for emperical evaluation.

Jj; j — ---------- —

m - = 3 =

—n — — -------

- J -------- d ---- d ----
--------■— * — j —

9 J— J----------

----- a------------*—

-J— J-------

k j ^ - f r A

j j J ;

y *1 'J--------------------------

3 1 = = ^ = ^ = =
4- d ...r J -

L S ^ ^.... f -■

Figure 9.1: An example of one of the phrases used in the experiment that was generated by
Kulitta using a hand-built grammar. It is in G-major and uses the grammar from Table 4.2,
ending on I.

Figure 9.2: An example of one of the phrases generated by the random walk through chord
spaces.

159

distribution of Roman numerals similar to that of the training data. Once mapped to an

expanded set of Roman numerals, the phrases were interpreted in the same way as those

from the hand-built grammars, using the same chord spaces and foreground algorithm.

9.2.2 Randomly Produced Phrases

The Random phrases were intended to provide another computer-generated point of com

parison, but using a simpler approach than Kulitta. Instead of using a grammar as the

source of abstract harmonic structure, the algorithm performed a stochastic walk through

the chorale chord space described in section 9.2.1 using the greedy algorithm described

in 5. This resulted in very dissonant phrases, since they were created with no notion of

key. Foreground elements were added stochastically using an approach similar to the one

described in Chapter 6 for classical foregrounds, but without the scale-related constraints

on choosing non-chord tones as foreground elements.

The main difference between Random and Kulitta is in the abstract musical structure:

Kulitta’s phrases have a hierarchical structure, while Random’s did not. The Random

phrases were texturally similar to Kulitta’s phrases due to the similar foreground algo

rithm. However, they differed sharply by the lack of a clear tonal center and therefore more

diverse transitions between chords. An example of a randomly-produced phrase can be

seen in Figure 9.2.

9.2.3 Phrases from Bach Chorales

A set of 10, 4-measure-long phrases were taken from some Bach chorales and are listed

in table 9.3. Most of the phrases ended on I, but some did not. Chorales and individual

phrases were selected by the author with a few selection criteria: chorales needed to be in

4/4, have at least one 4-measure phrase, and relatively simple foregrounds (i.e. no trills)

that were texturally/rhythmically similar to the Kulitta and Random phrases.

160

Phrase BWV Number
1 1 2

2 18
3 39
4 67
5 293
6 293
7 334
8 64
9 1 0 1

1 0 1 0 1

Table 9.3: List of Bach phrases showing source chorale numbers.

9.3 Experimental Procedure

The experiment was run online and implemented using a combination of Javascript, PHP,

and HTML5 to control transitions between stimuli, randomize the order of the audio ex

amples, deliver audio in an automated way, and record participants’ responses. The ex

periment’s interface was a slideshow-like format where participants were moved from one

screen to another either automatically or when clicking a button.

The experiment was run using Amazon Mechanical Turk[10, 40, 72] (MTurk) as a

source of participants. Data from a total of 237 participants was obtained on MTurk, which

121 in the first category (Kulitta with hand-built PTGGs) and 116 in the second (Kulitta

trained on Bach chorales). Participants in this study had various levels of education and

musical training, were taken from the United States only, and included non-composers as

well as some composers.

After viewing the consent form, participants first entered their MTurk ID and then

pressed a button to continue. They were then given another button to press to play a sound,

specifically a chord produced by the virtual woodwind instruments at MIDI volumes of

127 each. They were asked to adjust the volume of their audio system using this chord as a

reference. Participants had to press the button to hear a sound at least once before continu

ing, but had the option to press the button as many times as needed for volume adjustment.

161

Style Human Phrase Source Computer Phrase Source
Atonal “Six Little Piano Pieces:

Rasch, aber Leicht” by Arnold
Schoenberg

An L-System similar to those in
Euterpea

Chorale A chorale by J.S. Bach (BWV
NUMBER)

A chorale by David Cope’s
artificial intelligence algorithm,
Emmy [23]

Table 9.4: Labeled examples presented to participants at the beginning of the experiment.

After the volume setup was complete, participants were taken to a set of labeled examples

that were not part of the experimental trials.

Labeled Examples

After the volume adjustment step, participants were given four example phrases to listen to

in two different styles: modem/atonal and chorales in the style of J.S. Bach. The purpose

of these examples was to encourage listeners to think about the diversity of results they

might encounter in the experimental trials and to be aware that more than two distinct

sources of music could be involved. The examples were labeled truthfully as being written

by either a computer (algorithm) or a human, but only to that level of detail—information

on authors and composition titles were not included. All examples were approximately

the same length (about lOsec) and rendered to audio using a virtual piano instrument. The

virtual woodwinds were not used because not all of the examples contained exactly four

voices. The examples are described in Table 9.4. Once all four examples had been played

at least once, participants were allowed to continue to the series of 40 experimental trials.

Experimental Trials

Following the training examples, participants were instructed that they would be given 40

phrases to listen to, would only be able to listen to each phrase once, and would rate their

confidence that each was written by either a human or a computer. Participants were asked

to rate examples quickly after hearing them while the examples were still fresh in their

162

Rate Phrase 1

Absolutely Probably Maybe Unsure Maybe Probably Absolutely
b iiuii human humau waip sw wnwpsw rn«wp ^ «

[Contaiua |

V_)

Figure 9.3: An example screen shot from the experiment. Having just heard a phrase (in
this case the first phrase of 40) participants were asked to rate it using a 7-point Likert scale.

minds. Phrases were played automatically; once playback had finished, participants were

asked to rate the example. Participants had to select a rating in order to continue to the next

example by pressing a button. The rating could be changed as many times as desired before

continuing. The scale presented is shown in Figure 9.3.

For each phrase in the experiment, the following items were recorded and written to a

file:

• Loading time of the page playing the phrase

• Trial number

• Audio file played

• Rating given by the participant

Ratings were recorded using a scale of 0-6 corresponding to the labels shown in Figure

9.3, where 0 was “absolutely human” and 6 was “absolutely computer.” The loading time

of the first page of the survey was also recorded to be able to compute the total time spent

on each of the 40 phrases. After listening to and rating each of the 40 phrases, participants

were asked to complete a short survey on demographics and musical background.

163

Participant Demographics
Value Condition 1 Condition 2

Minimum Age
Maximum Age
Average Age

19
67
35
65
48

1

7

20
74
35
67
49
0

0

Male
Female

Other Gender
Undefined Gender

Table 9.5: Basic demographics for participants by experimental condition. The “undefined”
cases in condition 1 were due to a browser compatibility-related data collection problem on
one of the pages of demographics questions (all other data for the experimental trials was
still recorded for these participants)

Demographics and Musical Experience

Standard demographics were collected for participants along with information on their mu

sical training. Demographics information was collected on age, gender, ethnicity, nation

ality, first language, and highest level of education. Musical background information col

lected included whether the participants played an instrument, how many years of musical

training they had, and whether they had taken a music theory course.

A total of 237 people participated in the experiment on MTurk. 121 participants took

the experiment under condition 1 , where Kulitta’s phrases were generated from hand-built

grammars. The remaining 116 participants were in condition 2, where Kulitta used a gram

mar with production probabilities derived from Bach chorales. Some basic demographics

are summarized in Table 9.5.

Participants took an average of 18.2 seconds per trial. Participants in condition 1 (121

participants) took an average of 18.4 seconds and those in condition 2 (116 participants)

averaged 18.0 seconds. In addition to time spent making a decision, this number includes

the 1 0 seconds during which the trial’s phrase would be played along with any additional

9.4 Results

164

Distribution of Ratings (Condition 1)

0.20 o .is

CC 0 .2 5

Q . 0 .0 5 oo

0 .15jjĵl l Random
■ Bach
■ Kulitta

Rating
(0 = Absolutely Human, 3 = Unsure, 6 = Absolutely Computer)

Figure 9.4: Distribution of raw scores for condition 1 of the participant study (hand-built
grammar).

latency factors, such as a slow connection causing delays when loading audio files. Sub

tracting the playback time, this means that participants took an average of 8.2 and 8.4

seconds to respond to each trial, which is relatively fast.

A summary of raw scores as a histograms is shown in Figures 9.4 and 9.5. Participants’

average scores for each composer are shown as a histogram in Figures 9.6 and 9.7. Both

representations show that there are differences in the scores for each musical source, but

the patterns exhibited by the Bach and Kulitta scores are more similar than either is to the

random walk.

Table 9.6 shows p-values from performing a paired, two-tailed Student T-Test on the

averages of participants’ scores for all three categories. All comparisons are statistically

significant (p < 0 .0 1), indicating that the three categories of music yielded distinct distri

butions of scores.

As expected, the Bach phrases’ scores averaged closest to 0 (“absolutely human”) and

Random’s scores averaged closest to 6 (“absolutely computer”) with Kulitta’s results falling

in the middle. Overall average scores for each composer are shown in Table 9.7. Notably,

Kulitta’s scores fall much closer to Bach’s than to the random walk’s. Music training

165

Distribution of Ratings (Condition 2)

0 .3 5

a 0 30
• S 0 .2 5 (0
CC

0.20O
8) 0 .1 5

2
i
£

0 .1 0 o.o®

0.05 03H|
0 0 7 0 0 7

Rating
(0 = Absolutely Human, 3 = Unsure, 6 = Absolutely Computer)

n Random
■ Bach
■ Kulitta

Figure 9.5: Distribution of raw scores for condition 2 of the participant study (trained on
Bach chorales).

(O

o€co
CL

(0

£<D
CL

0 .5

0 .4 5

0 .4

0 .3 5

0 .3

0 .2 5

0.2

0 .1 5

0.1

0 .0 5

0

Distribution of Average Ratings (Condition 1)

'o o o oH .o o

07

I

r. Random
■ Bach
■ Kulitta

.00.00 I .00.00

[0.0,05] (0 5,1.0] (10.1.5] (15,2.0) (2.0,25] (2 5 ,3 0] (3 0,3.5] (35,4.0] (4.0,45] (45,5.0] (5 0,5.5) (5 5 ,6 0]

Average Rating

Figure 9.6: Distribution of average scores for condition 1 of the participant study (hand-
built grammar).

166

M Random
Distribution of Average Ratings (Condition 2) «Ba<*

■ KuNtta

0 .5 0

0 .4 5 ■*

[0 .0 ,0 .5] < 0 .5 ,1 .0] (1 .0 ,1 .5] (1 .5 ,2 .0] (2 .0 ,2 .5] (2 .5 ,3 .0] (3 .0 ,3 .5] (3 .5 ,4 .0] (4 .0 ,4 .5] (4 .5 .5 .0] (5 .0 ,5 .5] (5 .5 ,6 .0]

Average Rating

Figure 9.7: Distribution of average scores for condition 2 of the participant study (trained
on Bach chorales).

T-Test Comparisons
Condition Random/Bach Bach/Kulitta Random/Kulitta
1 (Hand-Built) 4.83 x lO" 20 1.06 x l0 “ 5 1.14 x lO " 22

2 (Trained) 1.07 xlO " 11 4.70 x 10~ 7 7.24 x 10~n

Table 9.6: P-values from paired, two-tailed T-Tests to compare average scores of each com
poser. All fall well below the typical threshold of p < 0.01, indicating that the distributions
are different.

and music theory training showed no correlation with the average scores given to each

composer (R2 < 0.1 for all comparisons).

T-Test comparisons of each composer to itself across the two conditions are shown

in Table 9.8. As seen in the table, Bach was scored consistently (a large p value), but

the Random distribution changed {p < 0.01). It may be that the differences in Kulitta’s

Average Scores
Condition Random Kulitta Bach
1 (Hand-Built) 4.09 2.67 2.32
2 (Trained) 3.70 2.80 2.39

Table 9.7: Average scores for each composer across all participants. Kulitta averaged both
on the human side of the scale (< 3.0) and closer to Bach than to Random. Kulitta and
Bach differed by 0.35 and 0.41 in conditions 1 and 2 respectively. Kulitta and Random
differed by 1.42 and 0.90, and Random and Bach differed by 1.77 and 1.31.

167

Within-Composer T-Tests
Bach 0.506
Kulitta 0.0413
Random 0.00748

Table 9.8: T-Test comparison of composers across experimental conditions. Large p val
ues are not considered significant. The results indicate that Bach was scored consistently,
while there is a clear difference (p < 0.01) for the Random distributions between the two
experimental conditions. Kulitta’s distributions may or may not have been different.

behavior from one condition to the other (hand-built vs. trained on Bach chorales) affected

participants judgments of the Random cases. In the second condition (trained on Bach

chorales), Kulitta exhibited some strange chord transitions that, to the author, did sound

somewhat more similar to the Random phrases than was the case in the first condition.

In other words, when the version of Kulitta trained on Bach chorales made a “mistake,”

it created chord transitions that were perhaps more similar to the Random phrases than

when non-learning version of Kulitta made a mistake. Whether Kulitta’s score distributions

differed between the two experimental conditions is somewhat unclear. While the p -value

of 0.0413 is within the standard of p < 0.05 used in many psychology studies, it is very

close to the threshold and not nearly as strong an effect as exhibited in Table 9.6 (p < 0.01

in all cases).

9.4.1 Discussion

Kulitta’s phrases performed surprisingly well in this experiment. The fact that Kulitta av

eraged on the human side of the scale suggests that the system may have passed a more

standard Turing test with a binary answering scheme rather than a Likert scale. However,

the Likert scale provided important information about Kulitta’s performance that would

have been lost with a binary system. Kulitta’s placement relative to the Bach and Random

scores shows that, although Kulitta was clearly more similar to Bach, there is plenty of

room for improvement.

Some interesting observations can be also be made about the other two composer’s

168

phrases from this experiment. Although lowest-scored on average (most human), Bach’s

phrases did not score consistently on the human side of the scale and some phrases scored

consistently higher (more computer-like) than others. It may be that, as suspected before

the experiment was run, that the “flat” or un-expressive performance of the phrases led to

participants doubting that some Bach phrases were written by a human. Alternatively, it

may be that a lack of larger context for the phrases makes them more difficult to interpret.

These hypotheses could be tested using experimental designs similar to this one.

The random phrases had the highest scores on average (most computer-like), which was

expected given the lack of structural consideration when generating the phrases. However,

the phrases did have a similar texture to the Bach and Kulitta phrases as well as brief pas

sages that were more tonal-sounding purely due to chance. As a result, it is not surprising

that there was a range of scores for the random walk phrases that sometimes wandered onto

the human side of the scale.

An unexpected outcome of the study was the bimodal nature of the Likert scale scores,

even though the distribution of averages was still normal. Although avoiding the extreme

ends of a Likert scale is a well-known phenomenon, avoidance of the middle suggests that

the scale may have actually functioned as two separate Likert scales joined at the middle.

Further testing would be needed on the exact wording and organization of the rating system

to determine whether this was the case.

169

Chapter 10

Conclusion

Kulitta is a modular framework for automated composition that has demonstrated po

tential with two distinctly different styles of music. Kulitta breaks down the composi

tional process into a series of generative steps using musical grammars, chord spaces,

and constraint-satisfaction algorithms before adding style-specific foreground elements—

melodic and rhythmic features as they would appear on a musical score. Kulitta also fea

tures a learning module that allows production probabilities for a musical grammar to be

learned from a corpus.

10.0.2 PTGGs and Chord Spaces

PTGGs are a new category of musical grammars that use an alphabet of chords parameter

ized by duration, resulting in an alphabet that is technically infinite. This parameterization

allows a PTGG to capture both abstract harmonic structure as well as metrical constraints.

Rules are functions of duration that can exhibit conditional behavior as well as modal con

text sensitivity. PTGGs also have a feature that is normally associated with programming

languages: let-in expressions that capture the notion of repetition through variable decla

ration and instantiation. This helps to capture an aspect of self-similarity in music that is

missing from many other proposed musical grammars. While the features of PTGGs in

170

crease parsing difficulty, parsing data with them and learning production probabilities for

their rules (which are really functions) is still feasible.

With a very simple generative algorithm similar to what would be used for an L-System,

PTGGs are able to generate abstract harmonic structure in music that is suitable for a variety

of styles of music. The conditional behavior of the rules both helps to reduce redundancy

in the rule set as well as ensuring a reasonable distribution of durations. When combined

with chord spaces and constraint-satisfaction algorithms, PTGGs can be used to create a

complete musical score.

Chord spaces are a way of grouping chords (collections of pitches) in musically mean

ingful ways. Mathematically, they are the result of applying an equivalence relation to a

set of chords to form a quotient space (a “gluing together” of related points). Many chord

spaces can be defined according to music theoretic concepts and geometric transforma

tions. Kulitta makes use of several different chord spaces to convert abstract progressions

from PTGGs into concrete chord progression for both Western classical music and jazz.

This transformation from abstract to concrete is a path-finding problem that requires a

constraint-satisfaction algorithm to capture desirable musical behaviors.

10.0.3 Constraint Satisfaction

Constraint-satisfaction algorithms are needed to turn abstract progressions from PTGGs

into concrete chords while enforcing the presence or avoidance of various concrete musical

features. For a classical chorale, voice-leading should be relatively smooth and both paral

lel motion and voice-crossing should be strictly avoided. Some of these constraints can be

captured by filtering the quotient space before it is traversed, but others such as those con

cerning pairs of chords (as is the case for avoiding parallel-motion and large leaps) require

satisfying constraints during path-finding.

Kulitta’s constraint-satisfaction techniques are rather basic: depth-first search; a single

pass, greedy search; and a search for satisfying let expressions. These algorithms perform

171

well on fairly simple musical constraints, such as voice-leading constraints characteristic

of chorales. However, the harder musical constraints become to satisfy, the more these

algorithms become intractable, in the case of the depth-first and let-satisfying searches, or

unlikely to find a good solution in the case of the greedy algorithm.

The main benefit of Kulitta’s greedy search is that it runs quickly, fast enough that it

is possible to use in an interactive setting. It will also always produce a result, even if

that result violates some constraints. On the other hand, the other two search strategies,

which are fundamentally depth-first, are unsuitable for any sort of application where a

solution must be found rapidly. They might get lucky with a particular chord space and

find a solution quickly, or they might end up searching through billions of solutions when

a perfect solution may not even exist.

The time vs. quality trade-off of producing a quick but imperfect result or performing a

slow search for a perfect solution are far from unique to music. It is a problem that plagues

any area of computer science with a large search space. Many decision-making problems

in AI suffer the same trade-off, and the problem is amplified in a real-time setting.

10.0.4 Music Generation

Kulitta is able to generate chorale-like, classical music in a style resembling J.S. Bach by

using PTGGs derived from existing analyses of Bach’s work, chord spaces, and a fore

ground algorithm to add basic melodic elements such as passing and neighboring tones.

The system’s modularity allows for the style of music to easily be changed by utilizing

different chord spaces and a different foreground algorithm. Jazzy harmonies can be pro

duced by either reinterpreting classical progressions or mapping Roman numerals through

a mode space with jazz chord templates and then through OPC-space for some number of

voices.

One of Kulitta’s notable features is the ability to blend styles through the use of dif

ferent chord spaces and foreground algorithms. Kulitta’s modularity allows for multiple

172

chord spaces to be combined in different ways and for foreground algorithms to be used

interchangeably. For example, a “jazz chorale” can be created simply by passing through

an additional chord space, mode space, between the classical chord space and classical

foreground steps in generation.

The generative algorithms used by Kulitta suffer from one major limitation: they must

always move forward and produce a result. In some ways, this makes a qualitative com

parison against human-made music exceptionally difficult for Kulitta, since humans are

generally not held to the same, linear type of workflow. Consider writing a lengthy passage

of text with a pen and paper in one pass. Mistakes in the result will obviously be more

likely under those constraints than if the same task was performed with a pencil, eraser,

and proof-reader. In general, outside the special settings such as academic exams, humans

working at the level of a paper score—or a passage of text—are free to abandon partially-

complete work when it becomes problematic. Human composers can also rework ideas

multiple times in the process of trying to create a desirable result, just as a writer will iter

atively edit wording and punctuation. Kulitta does not currently have this luxury, and the

compositional process for every given random seed must be carried through to completion

in a single pass. It is therefore not at all surprising that there is a fairly wide range of quality

in the output.

10.0.5 Learning

Kulitta uses an extended version of the inside-outside algorithm to learn musical PCFGs as

well as PTGGs. The inside-outside algorithm must be modified to handle rules of higher

rank (the number of symbols on the right-hand side of rules) and to handle the distinction

between rule functions and rule instances that exist for PTGGs. The latter is done by the

use of an oracle that allows a CYK-style parse table to be derived for a particular category

of grammars.

Learning for musical PCFGs was tested by using a corpus of major phrases from Bach

173

chorales using modified and simplified versions of Rohrmeier’s grammar for harmony [67].

Production probabilities for this grammar were iteratively re-estimated until the change in

probability mass fell below a 1% of the total. The average of five runs of the learning

algorithm over different subsets of the Bach corpus was used to generate new phrases of

music. To do this, the PCFGs were converted to PTGGs by three different means. Although

phrases generated by two of those approaches suffered problems related to the PCFG’s lack

of support for metrical structure, the third produced phrases that were qualitatively very

similar to those produced by the hand-built grammars described in Chapter 4.

As described in Chapter 7, PTGGs have difficulty parsing real musical data. This is due

to the strict nature of the temporal divisions of PTGGs like those in Chapter 4. Musicians

are rarely to strict with their temporal decisions, so training data would either need to be

coerced into a suitably strict form or the temporal constraints of the PTGG would need to be

softened during the parsing process. In the absence of such heuristics, it was not possible to

test a PTGG with the Bach corpus. Instead, the performance of the learning algorithm was

evaluated using a synthetically generated data set, supplying the same PTGG to the learning

algorithm that was used to generate the data set but with uniform initial probabilities instead

of the actual probabilities used to generate the data set. In general, the actual probabilities

were recovered successfully, with exceptions likely being due to deviations introduced by

limitations on the generative algorithm.

10.0.6 Empirical Assessment

A participant study was designed and conducted on Amazon’s Mechanical Turk to evaluate

Kulitta’s performance compared to J.S. Bach and a random walk algorithm. Participants

were asked to listen to a random permutation of 40 phrases (10 from Bach, 10 from the

random-walk, and 20 from Kulitta). After hearing a phrase, participants were asked to

rate their confidence or belief that the phrase was written by a human or computer using a

7-point scale from “absolutely human” to “absolutely computer.”

174

The results of the study showed that Kulitta performed quite well, averaging on the

human side of the scale used, although still close to the middle of the scale. Kulitta scored

more similarly to Bach than to the random walk algorithm. So far, only Kulitta’s chorale

phrases have been evaluated using this empirical approach. Whole pieces as well as other

styles, such as jazz or perhaps more complex styles of classical music, should eventually

be evaluated in a similar manner.

10.1 Future Work

Figure 10.1 shows an example of possible improvements to Kulitta’s workflow. Both the

generative and learning aspects of Kulitta have many avenues of possible future work:

handling more musical features in PTGGs, improved constraint-satisfaction algorithms,

and learning new musical features.

10.1.1 PTGGs and Constraint Satisfaction

The grammars used in Kulitta, PTGGs, have the potential to be expanded to include rep

resentations of more musical features. Currently only repetition is captured, but other con

cepts such as variations and perhaps other musical transformations such as retrograde and

inversion could also be added. Context-sensitivity may also be useful in avoiding undesir

able harmonic transitions.

Kulitta’s constraint satisfaction algorithms are currently somewhat basic, with the greedy

approach, greedyProg, being the only stochastic search. In artificial intelligence, stochas

tic search algorithms are often employed as a means to traverse large solutions spaces that

would otherwise be very difficult to traverse in a depth-first manner. Tactics like simu

lated annealing (such as the approach used in Boltzmann machines [4,5]) and Monte Carlo

search [8] may yield better performance over large chord spaces than Kulitta’s current

search methods.

175

It would also be useful to allow some sort of bi-directional workflow during generation.

Given an analysis algorithm to detect problematic musical features, the overall quality of

Kulitta’s results could obviously be raised if random number seeds that produced unde

sirable results could be identified “thrown out” at the first sign of a problem rather than

pressing ahead to try to turn them into concrete music. Similarly, introduction of a back

tracking approach to rework ideas that only have minor problems would allow for improved

performance.

10.1.2 Learning New Musical Features

Kulitta’s learning component has the potential to be greatly expanded. It would be ideal

to learn more musical features than just production probabilities for an existing grammar.

The most obvious extension would be to learn the grammar itself, deriving a candidate

collection of rules from a corpus for which production probabilities can be learned using

the same data.

Additional chord spaces would also be useful to learn from data sets rather than being

defined by hand. For example, Bach sometimes used altered versions of triads that, if

analyzed to the correct Roman numeral, are not currently possible for Kulita to create due

to the particular chord spaces used during generation1. Approaches similar to that of Quinn

and Mavromatis to learn harmonic function [65] or White for chordal alphabet reduction

[82] could be used to accomplish this. Chord substitution in jazz is another example of a

feature that may be possible to learn from a data set and would likely be best modeled in

a way similar to mode space, by tagging chords with additional contextual information. It

may also be useful to learn weights or probability distributions over chord spaces to favor

some chords over others during generation.

The ability to learn foreground behavior would also be a beneficial extension to Kulitta,
1. Diminished chords, II in a minor key and VII in a major key, often sound inappropriately used in Kulitta’s

progression. This is probably due to the chord spaces not containing more style-appropriate versions of those
chords.

176

Probabilistic
Musical G ram m ar

k

Learning

L eam Production
R ules

T
P a rse to

Sm aller P h ra se s
A 1

Leam
Equivalence

R elations

Leam Large-
S ca le P a tte rn s

C orpus of C om plete
C om positions

A bstract/Structural
G eneration

G enerative
Algorithm

A bstract Chord
P rog ressions

♦ t
Chord S p a c e s

Musical
Interpretation

\ C onstraint Satisfaction
Algorithm

Additional
Post-P rocessing

C om plete Music

Figure 10.1: An example of a possible extension to Kulitta, featuring a more extensive
learning component and backtracking or bidirectional workflow between the generative
steps. Bold lines indicate new features that are not currently included in Kulitta.

since defining individual styles by hand is both time-consuming and difficult to do in a gen

eralized way. This would require new data sets and new analysis algorithms to effectively

handle different types of music.

Finally, patterns of repetition and variation are an important part of musical styles.

There are key differences at this level between, for example, a fugue and a rock song.

In addition to learning style-specific behavior at the foreground level to produce style-

appropriate phrases, it would be useful to identify larger-scale developmental patterns that

can be used as starting patterns for generation with a PTGG or similar type of grammar.

Because of music’s similarity to spoken language, other learning approaches used in

computational linguistics may be relevant to musical data. Some of the additional musical

features mentioned so far may be best learned using algorithms intended for text processing.

For example, phrase detection is a shared problem between the two types of data.

177

10.2 Concluding Remarks

Kulitta serves as a useful hypothesis testing mechanism for modeling musical constraints

and examining candidate grammars for harmonic structure, since Kulitta can act in both

an analytical and generative capacity. Kulitta also serves as a way to generate new and

interesting music based on a user-supplied description of the constraints and style. That syle

may be something well-known, or something new—even something totally unexpected.

Used as a coding framework, Kulitta provides an interesting and unique way to compose

novel works by writing a high-level or abstract description of the structure, which Kulitta

then instantiates. Overall, Kulitta is a promising automated composition system whose

strengths are “her” modularity and adaptability.

178

Appendix A

OPTIC Proofs

This appendix contains supporting proofs for the OPTIC normalizations, tests for equiva

lence, and group properties. Recall the following notations used in Chapter 3:

• Function composition: (fa • / i)* = fa(fa(x))-

• Function equality: fa = fa. This means that fa and fa will have the same input/output

mapping even if their definitions and/or complexities are different.

• Vectors: x = (xi,...,x„).

• Vectors created from a constant: k'1 = (k,

• Addition of two vectors: x+ y = (xi +yi, ...,xn +yrt)-

• Adding a constant to a vector: x + k = (jq + k)...,xn + k).

• Vector concatenation: (x\,...,xn) -B- (yi,...,ym) = (x\,...,xn,y\,...,ym)

Additionally, the notation 3! is used to denote unique existence.

179

A.l OPTIC Normalizations

Recall the properties in Definition 2 from Chapter 3. For a function, / : S - t S' C S, to be a

normalization for an equivalence relation, R, two properties must hold:

1. Vx€S, x ~ Rf(x)

2. Vx,y € S, x y <— ► /(x) = /(y)

The normalizations for 0-, P-, OP-, OT-, PT-, PC-, and OPC- are simple and follow

from basic properties of the symmetric group (permutations) and simple arithmetic on vec

tors. This section gives proofs that the two properties above exist for each normalization

discussed in Chapter 3 for which a proof was not already given in the chapter.

Theorem 5. normO{x i, ...,*«) = (*i mod 12, ...,xnmod 12) is a normalization for O-equivalence.

Proof. Recall that octave equivalence is defined as follows.

x x ■+• 1 2 i, i £

This is related to the division algorithm, which is defined by Kenneth H. Rosen [71] as

follows:

Let a be an integer and d a positive integer. Then there are unique integers q

and r with 0 ^ r < d , such that a = dq + r.

In this algorithm, r = a mod d is the remainder. The normO operation is performing

this operation field-wise on a vector, where d = 1 2 :

a = \2q + r

or:

r = a - \ 2 q

Since r = normO(a) is equivalent to an octave shift operation, we know that the first

normalization property holds: x normOx. The division algorithm also means that any

y € Z" can be defined as:

180

y = x + l 2 i , x e [0,11]",/€ Z "

We can now use this to rewrite the definition of octave equivalence. First, we will start

by relating rG [0 , 1 1]” to two arbitrary other vectors.

x + l 2 i ~ 0 x ~ o x + 1 2 l *g [0 , 11]"

Now, because equivalence relations must be transitive, we can drop the x in the middle.

x +12 i ~ 0 x +12j , x € [0 , l l] n

To show that octave equivalent vectors normalize to the same value, we can show that

for a particular x = (xj ,...,xn) and an arbitrary 7 = (i'i,..., /„), normO(x+127) = x.

normO((l2ii + xi,...,l2 in+xn))

= ((12ii + * i) mod 12,..., (12i„ +x„) mod 12) Definition of normO.

= {xi,...,xn) Simplification.

For y — x+ \2 i and z= x ' + l2 j where x,x! G [0,11]", we therefore have the bi-implication:

y ~ o z <— > normO(y) — normO (z)- Therefore, normO is a normalization for octave equiv

alence.

□

Theorem 6. normP{x\ = sort(x\ , ...,xn) is a normalization for P-equivalence.

Proof. The proof of this property follows trivially from the fact that sorting a vector of

integers in ascending order produces a sorted multiset. Since sorting algorithms form per

mutations, x ~ P normP(x) holds. If two vectors are permutations of the same multiset,

they must have the same value when those elements are sorted in ascending order1. There

fore, we have that x ~ y <— > normP(x) = normPiy), making normP a normalization for

P-equivalence. □

1. Note that there is more than one permutation that will sort a vectors with fields that have duplicate
values. However, this does not matter, since all of the possible sorted permutations will have the same vector
value. For example, there are two permutations that will sort (1,0,0), but both will produce the same value:
(0, 0, 1).

181

Theorem 7. normOP = normP • normO is a normalization for OP-equivalence.

Proof. First, the property that x ~op normOP(x) is easy to show by transitivity.

x ~ 0 normO(x) normP(normO(x))

We can observe a similar, more general relationship using the definitions of O- and

P-equivalence.

x x -J-1 2 / ~p ct(x + 1 2 i), (€ Z”, o € Sn

The middle term can be removed by transitivity, giving the following definition of OP-

equivalence:

.x 0 ,(jc+ 12l), i € Zn, o € Sn

Using transitivity, properties of the division algorithm described in the proof for normO,

and properties of permutations, we can assert the following:

Vy€ Z", 3<y 6 S/i, 3!/<EZn, 2 €[0,11]", \ y = ct(1 2 T+x)

This allows the previous definition of OP-equivalence to be re-written.

o(12i+x) ~ 0p<j/(12j+x), ^ e [0 , 1 l]n, x = sort(x), i , J e Z n, a , a ' e S „

Note that x is the representative point for an OP-equivalence class. We can now show

that, for a particular, sorted x e [0,11]", an arbitrary 7 e Z", and an arbitrary o £ Sn, all

vectors of the form a (x + 12T) will be mapped to x by normOP.

normOP(o(12i+2))

= sort(normO(o(12i+x))) Definition of normOP.

= sort{normO(\2(a(i)) + (t (x))) Property: cr(12T-l-jc) = 12<r(i) + <r(3c)

= sort(cr(x)) Application of normO.

= sortQc)) Property: sort(o(x)) = sort(x)

= x x € [0 , 1 l]n is already sorted.

For two vectors, y = cr(127+jt) and z = <t'(12/+j?), we have the bi-implication:

y ~ op z *— ► normOP(x) = normOP(xf). Therefore, normOP is a normalization for OP-

equivalence. □

182

Note that normO ■ normP is not a normalization for OP-equivalence. For example, con

sider (0,4,7) ~op (60,4,7). The two vectors, (0,4,7) and (60,4,7), should normalize to

the same value (as they would with normOP = normP • rtormO). However,

normO(normP((0,4,7))) — (0,4,7) while normO(normP((60,4,7))) = (4,7,0).

Theorem 8 . normOT = normO normT is a normalization for OT-equivalence.

Proof Recall that normT ((xi,...,xn)) = (.x\ -x \ , . . . ,x n- x \) . We know that x ~ar normOTx

because of the following relationship:

x normT(x) ~ o normO(normT(x))

Similarly, we observe a more general relationship.

x x + 1 2 * ~ 7’ x + 1 2 /+ *, i 6 k G Z

Because of transitivity, the middle term can be removed.

x ~ o r x + 12i + k, i ^ l P , JfcGZ

Using properties of the division algorithm and addition, we can make the following

assertion.

VyeZ", aiTeZ", *€[0,11], X€(0)-H- [0,l l] " -1, jc+ * € [0 ,ll]n I y = 3c+12T+it

The definition of OT-equivalence can then be rewritten as:

I2i+k ~ ar x + 12/+*7, Jce(0)-H- [0, l l]”- 1, 7 ,/g Z " , k,k! e Z

Note that x is the representative point for an OT-equivalence class: a vector in [0,11]"

whose first element is zero. For a particular such x, an arbitrary 7, and an arbitrary k, we

can now show that all vectors of the form x +127+* will normalize to x.

183

normOT (x + 12i + k)

= normO(normT (* + I2i + k))

= normO((x +I2i + k) — (jq + I2ii + k))

= normOix — x\ + 12i — 12/1 + k — k)

= normO(x — x\ + 1 2 (i — *i))

= normO(x — x\)

= normO (x + Q)

— x

Definition of normOT.

Definition of normT.

Properties of addition.

Properties of addition and multiplication.

Property of O-equivalence.

jcj is zero by definition .

x is already within [0 , 1 1]"

For y = x + lH + k and z. = + 12/ + k!, we then have the bi-implication:

y ~or z <— > normOT (y) = normOT (z). Therefore, normOT is a normalization for OT-

equivalence. □

Note that normT • normO is not a normalization for octave equivalence. Consider the

vectors (1,0,0) and (0,11,11), which are OT-equivalent and normalize to the same value

using normOT as defined above. The transformations that relate these two vectors are:

(1,0,0) (1,12,12) ~ r (0,11,11)

However, normT(normO((1,0,0))) = (—1,0,0) and normT(normO((0,11,11))) =

(0 , 11, 11).

Theorem 9. normPC = normC • normP is a normalization for PC-equivalence.

Proof. This proof directly follows from that of normP and normC (which is a normaliza

tion due to its use in defining C-equivalence in Chapter 3. The normP operation turns a

vector into its sorted multiset representation, and normC removes all adjacent duplicate

elements. Because all duplicate elements will be adjacent after calling normP on a vector,

the subsequent normC will reduce a vector of pitches to a sorted set of pitches. Chords

sharing the same set of pitches will be correctly normalized to the same value. Chords with

different sets of pitches will normalize to different values. □

184

Theorem 10. normOPC = normC ■ normOP is a normalization for PC-equivalence.

Proof. This proof follows directly from the proofs for normOP and normPC. The normOP

function converts a chord into a multiset of pitch classes sorted in ascending order. All

duplicate pitch classes will be adjacent and will be removed by normC. Chords sharing

the same set of pitch classes will be correctly normalized to the same value. Chords with

different sets of pitch classes will normalize to different values. □

Theorem 11. normPT = normT sort is a normalization for PT-equivalence.

Proof Recall that normT ({x\,...,xn)) = (*i - — xl). We know that

x ~ pt normPTx because of the following relationship:

x ~ P normP (x) normT (normP (x))

Similarly, we observe a more general relationship.

x ~ p o { x) ~ T < j (G (x)) + k , o e S „ , k e Zn

Using transitivity, the middle term can be removed.

x ~ p r ct(x) +&, <T € Sn, k G Z”

Properties of permutations and addition allow the following assertion.

VyG Z", 3<XGS„, 3! G Z, * G (0)-H-Z", x = sort(x) | y = o(x)+k

This allows the definition of PT to be rewritten.

a(x) + k~pT o ((x) + kf, x = sort(x),x G (0) -H- Z”, <T,<r'GSn, k,kf € Z n.

x is a representative point for a PT-equivalence class: a sorted vector whose first ele

ment is zero. Now, for a particular x, an arbitrary a G Sn, and an arbitrary k G Z", we will

show that normPT(<t(jc) + k) = x, where minimum(x) returns the smallest element of x. To

do this, we make use of two observations: (1) the first field of (sort(x)) is minimumQt) and

(2) adding a constant to a vector does not change the set of permutations that sort it.

185

normPT (a (x) + k)

= normT(normP(a(x) + k)) Definition of normPT.

= normT (sort (a(x) + k)) Definition of normP.

= normT(sort(x) + k) Property: sort • a = sort.

= sort(x) + k — (iminimum(x) + k) Definition of normT.

= sort(x) — minimum(x) + k — k Properties of addition.

= sort(x) — minimum(x) Simplification.

= sort(x) x\ is zero.

= x x is already sorted.

Therefore, for y = a(jc) + k and z = o(x!) + kJ, we have the bi-implication:

y ~ pj z <— > normPT(y) = sort(x) - minimum(x) = normPT(z), making normPT a nor

malization for PT-equivalence.

□

Theorem 12. normOPTC = normOPT • normOPC is a normalization for OPTC-

equivalence.

Corollary 3. optcEq(x,y) = optEq(normOPC(x),normOPC(y)) correctly tests for OPTC-

equivalence.

Proof. The property x ~ o p t c normOPTC(x) follows from transitivity and the normaliza

tion properties for normOPT and normOPC. We define the notion of the set of all possible

cardinality changes, Sc, where a given c(x) € Sc produces a C-equivalent chord to x. Prop

erties of addition, permutations, and sets, and OPT-equivalence allow any vector to be

rewritten as a cardinality operation, transposition, permutation, and octave shift of a set of

pitch classes that is also its own OPT-normalization.

VyeZ", 3 a € Sn, c e S c , 3! Tg Zn, Ik g [0,11], x e Z m,

x = normOPT(x), x = normOPC(x), x+k G [0, l l]m, m ^ n \ y = a(c(x)) + l27+k

186

Using transitivity and the property above, we can re-write the definition of OPTC-

equivalence as follows.

<j(c(Jc)) + \2i + k~oPTcO,{cl{x)) + l'2'j + V, * = normOPT(x), x — normOPC(x),

7 , / g z b, o , a ' e S n, c , c ' e S c , x + k € [0,ll]m, x + k f e [0,ll]m

x is a representative point for an OPTC-equivalence class. We can now show that

y ~ o p t c z <— > normOPTC(y) = normOPT C(z). For a particular set of pitch classes,

x G [0,11]" where x = normOPT(x), an arbitrary or, an arbitrary k, and an arbitrary and

normOPTC(a(c(x)) 4 -12* + k)

= normOPT (normOPC (o(c(x)) +12/ + k) Definition of normOPTC.

= normOPT (normOPC(x) -I- k) Property of OPC-equivalence.

= normOPT (normOP(x) +k) x is already set.

= normOPT (x + k) normOPT already calls normOP.

= normOPT (x) Property of OPT-equivalence.

= x Definition of x.

For two vectors, y = a(c(x)) + \2i + k and z = cr'(c'(j?)) + 12?+^, we have the bi

implication: y ^ o p tc z <— y normOPTC(y) = normOPT (x) — normOPTC(z). Therefore,

normOPTC is a normalization for OPTC-equivalence.

□

A.2 Group Operators

Chapter 3 defines four Abelian groups based on the O, P, T, and I relations: Go, G/>, Gt , and

Gj respectively. This section presents proof of the properties of closure and associativity

and the presence of identity and inverse elements for each group. Recall that the group

definitions are:

187

• Go = ({ o l |7eZ"} , -)

• GP = ({p a | a &Sn},-).

• Gr = {{t k | fee Z } ,)

. G/ = ({i fe | fee { 1 ,-1 } } ,)

For notational simplicity in this section, instead of writing p o x t o indicate a permuta

tion, the symmetric group will be used directly: a(x), a € Sn.

Theorem 13. Go is an Abelian group.

Proof.

Closure: for any two members of Go, (o ii) and (o if):

(o li -O 12) X

= o ii (o 12 x)

= (jc + 12i2) + 12*i

— x-\- 12(l2 + *1)

= o (12 + i'i) x, which is another member of Go-

Identity: 0 I 0 QP = o 0" o l= o l

Inverse: ol -o (— 1) = o (—1) o T = o 0 ”

Associativity: 0 1 (o j o k)

= o l (o (j + k))

= o(l+ (j+k))

= o ((l+ j) +k)

= o (l + j) o k

= (o i -o j) ok

188

Commutitivity:

(O T\ o 12) X

= X + 12(1*2 + h)

= x + 1 2 (i*i H- *2)

= (o l2 0 i i) X

a

Theorem 14. Gj is an Abelian group.

Proof.

Closure: for any two members of G j, (t ki) and (t ki)\

(t k\ t k2) x

= (x + k2ln) + k 1ln

= x+(k2ln+ k \ l n)

= t (k2 + k\) x, which is another member of G j .

Identity: t k tO = tO t k = t k

Inverse: t k t (- k) = t (- k) - t k = t 0

Associativity: t a -(tb t c)

= t a t (b + c)

= t (a + (b + c))

= t ((a + b)+c)

= t (a+ b) t c

= (t a t b) t c

Commutativity:

(r k\ t k2) x

= x + k 2ln + k i l n

= x + k i l n + k2ln

= (t k2 t k\) x

189

□

Theorem 15. G/ is an Abelian group.

Proof. Gj has two members: (i l)an d (i (-1)).

Closure, associativity, and commutativity: these properties follow from basic properties of

multiplication of vectors by 1 and (-1).

Identity: i 1

i (—1) i 1 — H i (- 1) = i (—1)

i 1 • 1 1 = i l

Inverse:

i l i l = i l

i (- l) - i (- l) = i l □

Theorem 16. For vectors o f length n:

V / = r\ •... rm, ri € {Go,S„,Gt }, 3 o f O f t f = f ,Of € Go,Of € Sn,tf € Gt

Proof. For every pair of operators in {Go,Sn,Gr}, there is a way to reorder them when

they are from different groups and combine them when they are from the same group.

These transformations follow from basic algebra and group properties.

• o7 o j = o (7 + J) , 7 J e z n

• o -o 7 = o (<j (7))-o , T e Z ”, o e S „

• o i t k = t k o7, T e Z n, fceZ

• V<Ti,tT2 G Sn, 3 o3 € Sn I <73 = CTl • Ol

• a t k = tk a , k e Z , <reS„

• t k\- t k2=t (ki+k2), k \ , k 2€Z

• V/ g {Go,Sn,Gr}, f = f oQP

190

. V /e { G 0 ,S„,G r},/ = / (0

• V /e{G o,S„ ,G r} ,/ = /•<Ttf where <jw(x) = i

Using these rules, operators can be iteratively reordered and combined. This will ul

timately allow any function using some number of operators from Go, S„, and Gj to be

transformed into an equivalent function that uses only one operator from each group (some

of which may be identity operators). □

191

Appendix B

Haskell Source Code

This appendix includes code to describe portions of the Kulitta’s implementation that has

not been included in the main text. The full implementation of the context-sensitive monad

for PTGGs along with a sample PTGG implementation are included, along with code il

lustrating the details of the classical and jazz foreground algorithms described in Chapter

6 .

B.l Modally Context-Sensitive PTGG Implementation

The following constant determines the behavior of the choose function. If set to True, then

ID rules MUST be present in the rule set to succeed. If set to False, then if no relevant rules

are found for a symbol, the symbol will be left unchanged (rather than throwing an error).

forcelDs — False

Construction of the grammar’s symbols and structure

A CType is the Roman numeral,

data CType = I \ I I \ I I I \ I V \ V \ V I \ V I I

deriving (Eq, Show, Ord, Enum,Read)

An MType is a degree of modulation (relative 2nd, 3rd,..., 7th). There is no Ml since

that would indicate remaining in the home key.

192

data MType = M 2 \ M 3\M 4\ M5 \M 6\ M 7

deriving (Eq, Show, Ord, Enum)

A Chord is “something” with a duration. This “something” can be a CType, but it can

also be a different datatype. This polymorphic definition of a Chord allows for PTGGs to

handle more than one alphabet of chord symbols,

data Chord a = Chord Dur a

deriving (Eq,Show)

The Term data structure has five constructors: a chord, which acts as a nonterminal but

can also be a terminal; a ’’sentence,” or sequence of Terms; a modulation applied to a Term;

a variable; and a Let statement that uses variables that are represented as strings,

data Term a = NT (Chord a) | S [Term a] | Mod MType (Term a) |

Let String (Term a) (Term a) | Var String

deriving (Eq,Show)

data Rule a = (a, Prob): —> RuleFun a

type RuleFun a — Ctxt —t Dur —► Term a

type Prob = Double

Lowercase versions of the Roman numerals are used as a shorthand for chords. As in

Chapter 3, the lowercase letters are a Haskell requirement and do not indicate the quality

of the chords.

i, ii, iii, iv, v, vi, vii:: Dur —► Term CType

[i, ii, iii, iv, v, vi, vii] = map (Ac t —► NT (Chord tc))$enumFrom I

cc t t — NT (Chord t ct)

rf fs t = map ($t)fs

Modal context will be represented using Euterpea’s Mode datatype, which has two con

structors: Major and Minor.

type Ctxt — Mode

type CtxtFun = Ctxt —> MType —> Ctxt

193

We also need a function to update the context when modulations occur. The approach

for determining the mode of a modulation is related to the list of Roman numeral modes in

Table 3.2. Since this implementation only considers two modes, modulation Mn will have

the mode of the triad on the nth scale degree, where diminished triads are considered to be

minor. For example, in the key of C-major, M2 would use the triad formed on the 2nd scale

degree, D-F-A (a minor triad), to determine the new mode: minor.

defCtxtFun:". CtxtFun

defCtxtFun Major m = [Minor,Minor,Major,Major,Minor,Minor]!!fromEnum m

defCtxtFun Minor m = [Minor, Major, Minor, Minor, Major, Major] !! fromEnum m

Although this implementation only addresses two modes, it could easily be extended to

handle more modes by altering the type for Ctxt and redefining defCtxtFun accordingly.

B.1.1 Monad Implementation

The monad implementation remains relatively unchanged from the one described in Chap

ter 4. The only new additions are the set/get functions for the modal context, setCtxt and

getCtxt respectively.

newtype Prog a = Prog ((StdGen, Ctxt) -> ((StdGen, Ctxt),a))

instance Monad Prog where

return a = Prog (As -> (s,a))

Progpo » = / i = Prog$Xs0

let (s i , a i) =Pos0

Prog Pi = / i a i

in pi si

getRand:: (Random a) =>• {a, a) —> Prog a

getRand ran = Prog (A (g,c) —>• let (r,g') = randomR ran g

in((g',c),r))

194

getCtxt:: Prog Ctxt

getCtxt = Prog (A(g,c) -4 ((g,c),c))

setCtxt:: Ctxt - 4 Prog ()

setCtxt d = Prog (A(g,c) -4 ((g,</),()))

runP:: Frog a —> StdGen - 4 Ctxt - 4 a

runP (Progf) g c = snd (f (g,c))

update:: (£<7 a) =>• [Fu/e a] - 4 Term a - 4 Prog (Term a)

update rules t = case t of

ATT x —> applyRule rules x

S s —> do ss «— sequence (map (update rules) s)

re/um (5 ss)

Mod m s -> doc <— getCtxt

setCtxt (defCtxtFun c m) - into mod

s' <— update rules s

setCtxt c — out of mod

return (Mod m s')

Var x -4 return (Var x)

Letxa t - 4 do d <- update rules a

t' <— update rules t

return (Letxa! t!)

applyRule:: (Eq a) =» [Rule a] - 4 Chord a -4 Prog (Term a)

applyRule rules t@ (Chord dc) —

let rs = filter (A((c',p) :-> rf) -4 c' = = c) rules

in do r <- getRand (0.0,1.0)

x 4 - getCtxt

return ((choose! t r s r) x d)

The choose function is modified from its original definition to use theforcelDs function.

195

This change is needed to support PTGGs build from modified versions of Rohrmeier’s

grammar as described in chapter 7. IfforcelDs = True then the original definition of choose

is used and PTGGs will be strictly required to include rules of the form A - 4 A for all chords

(otherwise an error message will be thrown). IfforclDS = False, then this requirement does

not exist and chords may remain unchanged if no rules exist for them.

choose':: Chord a -4 [Rule a] - 4 Prob -4 (RuleFun a)

choose' t r sp =

if null rs A -> forcelDs then Ac d - 4 NT $ t — auto ID rule

else choose rs p

choose:: [Rule a] -4 Prob -4 {RuleFun a)

choose [\p = error "Nothing to choose from!"

choose {{(c,p') :—>rf): rs) p = if p ^ p' V null rs then rf else choose rs (p— p')

The iteration function, iter, remains unchanged, and gen simply takes an additional

argument.

iter:: Monad m=> {a - 4 ma) - 4 a - 4 m[a\

iterf a = do a' * - / a

a s«— iterf a'

return { d : as)

type Seed = Int

gen:: (Eq a) => [Rule a] —>■ Int —► Seed —► Ctxt -4 Term a - 4 Term a

gen rules i s c t = runP {iter {update rules) t) {mkStdGens) c !!i

Another interface to gen is provided for use with StdGen directly.

gen':: {Eq a) => [Rule a\ -4 Int -4 StdGen -4 Ctxt -4 Term a -4 Term a

gen' rules i s c t = runP {iter {update rules) t) sc Hi

The expand function eliminates Lets and Vars from a generated Term a. It allows for

nested Let expressions for variables with the same name with lexical scoping.

196

expand:: [(String, Term a)] —» 7erm a -» Term a

expand e t — case f of

Letxa exp -> expand ((x,expande a) :e) exp

Var x —>• maybe (error (x 4 + " is undef ined")) u/ $ lookup x e

S s S%map (expande) s

Modmt! —> Mod m $ expand e ^

x —► x

Finally, it is often useful to “flatten” Term values before operating on them or printing

them

flatten xs = let x / = flattenRec xs in if xs/ == xs then xs else flatten xsf where

flattenRec t = case t of

Let x a exp —»Let x (flattenRec a) (flattenRec exp)

Var x -¥ Var x

Mod m t -4 Mod m (flattenRec t)

S[] - > S []

S xs —>5$ concatMap stripS $ map flattenRec xs

NT v —>• NT v where

stripS:: Term a - 4 [Term a]

stripS (S xs) = concatMap stripS xs

stripS xs = [xs]

B.1.2 Example Rule Set

This is the Haskell implementation of the rule set shown in Table 4.1.

Rules for Let

ruleLl, ruleL2:: CType —>■ RuleFun CType

ruleLl ct ctxt t = Let "x" (cct (t / 2)) (S [Var nx",Var "x"])

197

ruleLl ct ctxt t = Let "x" (cct (t / 4)) (S [Var "x",v (t/2),Var "x"])

rulesL:: [Rule CType]

rulesL = concatMap (Xct -> [(cf, 0.1) :-> Xt -> ru/eTJ cf t,

(ct,0.1):—> Xt —>• ruleLl ct f]) (enumFrom I)

Rules for I

rulell = (7,0.15) :-> Xctxt t ->

ii ctxt == Major then 5 [ii (f/4),v (f /4),i (f/2)]

else 5 [iv (f/4),v (f / 4), i (r / 2)]

rute/ 2 = (7,0.15):-> Acfccf t -* S [i (t / 4), iv (t / 4), v (t / 4), i (t / 4)]

ruleI3= (7,0.15) :-> Xctxt f - > S [v (f / 2),i (t/1)]

ruleI4 — (I,0.15): -> Xctxt t —>■

if ctxt = = Major then5[i (f/4),ii (f /4) ,v (i /4) , i (t / 4)]

else S [i (t / 4) , iv (f/4),v (f/ 4) , i (f/4)]

ruleI5= (7,0.2):—> Acttf i -^ if i < hn then/r else5 [i (t /2) , i (t / 2)]

ru/ey7 = [rulell, ruleI2, ruleI3, rule!4, rulelS]

Rules for II

rulell 1 = (77,0.4):—> Xctxt -*• if ctxt = = Mayor then ii else iv

ru/e/7/i> = (77,0.4) :-> Xctxt t->

if ctxt = = Mayor then if t > qn then ii t else Mod M2 $ i t

else Mod M2 $ i t

rulelI2 = (77 ,0 .2)> Xctxt t -*

if ctxt =— Major then S [vi (t / 2), ii (t / 2)]

else 5 [vi (t / 2), iv (t / 2)]

rulesll = [rulell1, rulelllb,ruleII2]

198

Rules for in

rulellll = (///,0 .9):—> Xctxt —y iii

ruleIII2 = (717,0.1) :-> Xctxt -y {Mod M3 o i)

rwfejTTT = [rulellll,rulelU2]

Rules for IV

ruleIV 1 = (TV,0.9):—> Actxf —y iv

ruleIV2 = (TV, 0.1): —> Xctxt —y (Afcwf M4 o /)

rulesTV = [ruleTVl ,ruleFV2}

Rules for V

ruleVl = (V,0.15

ruleV2 — (V,0.10

ruleV3 = {V, 0.10

n*feV4 = (V,0.10

ruleV5 — (V,0.10

ruleV6 = (V,0.10

ruleVl — (V, 0.10

ruleV8 = (V,0.05

ruleV9 = (V,0.10

> Xctxt t -yS[iv (f / 2),v (r / 2)]

:-> Xctxt t - y S [i i i (f / 2) ,v i (f / 2)]

: -> Acfxf f -y 5 [i (f / 4), iii (f / 4), vi (7 / 4), v (f / 4)]

:-> Xctxt t S [v (f/ 4),vi (f/4),vii (f/4),v (f / 4)]

:—> Xctxt t S [v (f/2),vi (f/2)]

: —> Xctxt —y iii

> Xctxtt - y £ [v (f / 2),v (f / 2)]

: -> Acf*f f -y 5 [vii (f / 2), v (f / 2)]

> Xctxt —y v

ruleVIO — (V,0.10):—> Acfxf —y (AfoJM5oi)

rulesV = [ruleVl ,ruleV2, ruleV3, ruleV4, ruleVS,

ruleV6, ruleV7, ruleV8, ruleV9, ruleVl 0]

199

Rules for VI

ruleVIl = (VI,0.7) :-> Xctxt -» vi

ruleVU = (VI,0.3) :-> Acfctf -4 (ModM6oi)

rulesVI = [ruteV/i, ra/eV/2]

Rules for VII

ruleVIU = (VII, 0.5) :-> Xctxt t -+i(t>qn then vii t else Mod M 7$ i t

ruleVin = (VII,0 .5):-> Xctxtt ->• S [i (t/ 2) ,iii (f/2)]

rulesVII= [ruleVIIl,ruleVII2]

The rule set defined below is broken up into two steps to allow easier testing of the

probability sums.

ruleSetJ useLets — normalize $concat

[rulesl, rulesll, rulesIII, rulesIV, rulesV, rulesVI, rulesVII,

if useLets then rulesL else []]

ruleSet d useLets = map (toRelDur d) $ ruleSet! useLets

B.1.3 Rule Utility Functions

Rule probabilities need to sum to 1.0 for rules with the same lefthand side. Since there is

an option to include or exclude the let rules, the probabilities should be normalized (forced

to sum to 1 .0) before the rules are used.

lhs((c,p):->rf) = c

prob ((c,p) :—> r f) = p

normalize:: (Eq a) =>• [Rule a] —*■ [Rule a)

normalize [] = []

normalize (r@((l,p) :—>rf): rs) =

let rset = r : filter ((/ = =) o Ihs) rs

200

rsel! = filter {{I /) o Ihs) rs

psum — sum $ map prob rset

in map (A{{l',p') :—> d) —>■ ((/',p' / psum) :—> d)) rset-H-normalize rset!

Rules can be ’’wrapped” to produce rules that only operate on chords with at least a

certain duration.

toRelDur:: Dur -» Rule a —>• Rule a

toRelDurd {{c,p) :—> /) =

let dmin ctxt t = minDur $ expand [] $ / ctxt t

in {{c,p) :—> Xctxt t —> if dmin ctxt t< d then NT$ Chord t c e lse/ ctxt t)

minDur:: Term a —> Dur

minDur (S s) = minimum $ map minDur s

minDur {Mod m t) = minDur t

minDur {NT {Chord dx)) — d

minDur_ = error " (minDur) S tring is not f u l ly in te rp re ted ."

relRuleSet drs — map {toRelDur d) $ rs

B.2 Post-Processing

Kulitta must perform post-processing (namely type conversion) on a PTGG’s results in

order to process the chords through a chord space or add musical foregrounds. Types

involved are:

type Key = (AbsPitch,Mode)

type RChord = {Key,Dur, CType)

type TChord = {Key,Dur,AbsChord)

type TNote = (Key,Dur,AbsPitch)

type Voice — [TNote]

tnK {k,d,p) = k

201

tnD (k,d,p) = d

tnP (k,d,p) = p

newP (k,d,p) p' = (k,d,p')

The general interface between Term and the types presented here is the following:

Input Function Output

Seeds, PTGG gen Term

Term toAbsChords [TChord] with a basic triad mapping

Term toChords =*► list version of Term

[TChord] =J- toVoices =*► [Voice], notes listed by voice first

[Voice] => vsToMusic Music Pitch

The toChords function converts a Term to a list representation of the progression. This

eliminates nested structures like modulations, meaning that chords must now carry infor

mation on their relative key and mode. A default of C-major or C-minor (depending on the

mode given) is assumed.

toChords:: Term CType -4 Mode -4 [RChord]

toChords (NT (Chorddc))m= [((0,m),d,c)]

toChords (S ts) m = concatMap (Xt - 4 toChords t m) ts

toChords (Mod mtx) m =

let (amt,mt') = getMods mt m

f = map (X((k,m),d,c) -4 ((k + amt,mt'),d,c))

in / (toChords x mt')

toChords xm =

error (" (toChords) Unable to handle expression: " M-showTermx)

Lists of RChord can be converted directly to Euterpea’s Music Pitch.

tChordsToMusic:: [TChord] - 4 Music Pitch

tChordsToMusic = line o m apf where

202

/ ((k,m),d,as) = chord%map (Aa —► note d {pitch a)) as

Conversion to the TChord type is done by turning the Roman numerals into basic triads.

toAbsChord:: RChord —*• TChord

toAbsChord {{k,m),d,c) = ((k,m),d,t k$toAs c m)

toAbsChords:: Term CType -» Mode —¥ [TChord]

toAbsChords tsm = map toAbsChord $ toChords ts m

Conversion of an invidiual chord involves determining the current scale and choosing

scale indices from it based on the particular Roman numeral.

toAs:: CType —> Mode -» [AbsPitch]

toAs ctm =

let s = getScale m -H- map (+12) s

i = head $findlndices (= = ct) [I, II, III, IV, V, VI, VII]

in map (s\\)$map (+i) [0,2,4]

getScale:: Mode - f [AbsPitch]

getScale Major = [0,2,4,5,7,9,11]

getScale Minor = [0,2,3,5,7,8 ,10]

getMods mtm =

let mts = [M2,M3,M4,M5,M6,M7]

i = {head $ findlndices (= = mt) mts) + 1

in {getScale m\\i , relPat mWi) where

relPatv.Mode —>■ [Mode]

relPat Major = [Major, Minor, Minor, Major, Major, Minor, Minor]

relPat Minor = [Minor, Minor, Major, Minor, Minor, Major, Major]

The ctTrans and atTrans functions allow transposition of progressions represented as

lists of RChord and TChord respectively.

203

atTrans " AbsPitch -> [(Key, Dur,AbsChord)] -> [(Key, Dur,AbsChord)]

atTransa — map (X((k,m),d,c) -> ((fixK kam,m),d, t (a ‘mod* 12) c))

ctTrans:: AbsPitch -» [(Key, Dur, CType)] -> [(Key, Dur, CType)]

ctTransa = map (X((k,m),d,c) —> ((fixK k a m,m),d,c))

fixK k a Major = (k+a) ‘mod' 12

f ixKkaMinor = ((fc+a) ‘mod4 12) +12

To add foregrounds, a [TC/iord] must be turned on its side to lists notes by voice rather

than as chords. Values of type [Voice] can be easily converted to Music Pitch, with or

without specifying the instrument to be used for each voice.

toVoices:: [TChord] -* [Voice]

toVoices ts =

let (ks,ds,ps) = unzip3 ts

in map (Xv —► zip3 ksdsv)$ transpose ps

toNotes:: Voice -» Music Pitch

toNotes = line omap (X(k,d,p) —> note d (pitchp))

vsToMusic:: [Voice] —¥ Music Pitch

vsToMusic = chord o map toNotes

vsToMusicI:: [InstrumentName] —> [Voice] —► Music Pitch

vsToMusicI is = chord o zipWith (X i m - t instrument i m) is o map toNotes

B.2.1 Constraint Satisfaction

The following two functions are used to convert Let expressions to lists of constraints as

described in Chapter 5.

mkCons:: (Eq a) => Term CType —> Predicate [a]

mkCons txs — toCons (findlnds [] t) xs where

toCons:: (Eqa) => [[(Int,Int)]] -» [a] —► Bool

204

toCons [] xs = True

toCons (c : cs) xs —

let / (i,j) = take (j + 1 — i) $ drop i xs

in (and $ map (f (head c) = =) $ map f $ tail c) A toCons cs xs

The findlnds function below returns the Let-imposed constraints of a Term as lists of

index ranges (pairs of integers).

findlnds:: [(String, Term CType)} -> Term CType -> [[(/nt,/nt)]]

findlnds e t — case t of

Mod m t -* findlnds e t

*[] -►[]

S (s : ss) —>•

let vsl = findlnds e s

len — length $ toAbsChords (expand e s) Major

vsl = findlnds e (S ss)

in vsl -H- map (add' len) vsl where

add' y = map (A (a,b) —► (a+y,b+y))

Letxa exp —>

let d — (x, expand ea):e

xCases = findlndsSub x e' exp

in xCases: findlnds e' a M-findlnds e' exp

-> []

findlndsSub:: String -> [(String, Term CType)] —► Term CType —> [(Int, Int)]

findlndsSub x e t = case t of

Let x' a exp-*

let d = expand e a --to figure out sequence length

in if xf = = x then [] -- x has been redefined

else findlndsSub x e a -H- findlndsSub x ((x!, a') : e) exp

205

Var*i —► if x ^ x ! then [] else

let v = maybe (error (x -H-" i s undef ined")) id $ lookup x e

len = length $ toAbsChords v Major

in [(0 , l en-1)]

Mod m t' —> findlndsSub x e t'

S[] “Ml
S (s : ss) —►

let len = length $ toAbsChords (expand e s) Major

in findlndsSub xe s M- add' {len) (findlndsSub x e (S ss)) where

add'y = map (X(a,b) —>■ (a + y , b+ y))

NTv ->[]

B.3 Foreground Algorithms

Kulitta has two types of foreground algorithms: classical and jazz. For each style, there are

multiple ways to add foreground features.

B.3.1 Classical Foregrounds

The classical foreground algorithm uses a collection of constants that can be user-specified

(a default collection are also provided). ntLimC is the number of half steps away a neighbor

ing tone can be and ptLimC is a similar value for passing tones. pHalfC is the probability

of dividing a note’s duration in half evenly (vs. a potentially asymmetrical division where

the new note is an eighth note) and pTteC is the probability of tieing identical, sequential

pitches into a single note. rootBassThreshC is the probability of forcing the bass voice to

be the root of a chord and noCPLThreshC is the “voice-smoothness” parameter to favor

movement within a fixed number of halfsteps.

206

data CConstants = CConstants {

ntLimC:: Int,

ptLimC v.Int,

pHalfC ..Double,

pTleC:: Double,

rootBassThreshC ..Double,

noCPLThreshC:: Int}

defConsts = CConstants 2 3 0.5 0.5 0.8 7

Adding passing and neighboring tones requires knowing which pitch classes are ac

ceptable choices. Kulitta defines “acceptable” in this case as pitch classes that are shared

by the scales of the two adjacent chordal tones.

allPs:: TNote -» TNote —► [AbsPitch]

allPs t\ t2 =

let (ol,o2) = (tnP t i 4div4 12,mP ^ ‘div‘ 12)

[oMin,oMax] = sort [ol,o2]

offs = map (12*) [oMin — 1, oMin, oMax, oMax + 1]

(si,S2) = (baseScale$tnK t\,baseScale%tnK ^)

in nub $ concatMap (A o t o [s | s «- s i , elem s 5 2]) offs where

baseScale:: Key —> [AbsPitch]

baseScale (k,m) = normOP$tk (getScale m)

Several foreground operations are defined using the type ForeFun.

type ForeFun = StdGen -* TNote —» TNote —► (StdGen, Maybe AbsPitch)

A passing tone is a non-chordal tone between two chordal tones. Usually a passing tone

and the notes on either side of it follow the scale directly, but Kulitta’s definition is broader

and allows passing tones to be up to lim number of half steps away from the lower and

upper chordal tones.

207

pickPT "AbsPitch -* ForeFun

pickPT lim g t \ t 2 —

let \pMin,pMax\ = sort [tnP t \ , tnP

f x = x>pMin Ax<pM ax A (x —pMin < lim VpMax—x ^ lim)

psf = [x | x «— allPs t\ t2 , fx]

(iNew,g') = randomR (0, length ps' — 1) g

in ifpMin = = pMax V nullps1 then (g,Nothing) else (g',Just$ps' WiNew)

A neighboring tone is a non-chordal tone that is either above two chordal tones or

below them, creating either an up-and-down or down-and-up motion. Kulitta’s definition

of a neighboring tone is similar to that of a passing tone, but placing the non-chordal tone

up to lim half steps outside the chordal tones.

pickNT:: AbsPitch -» ForeFun

pickNT lim g t \ t 2 =

let [pMin,pMax] = sort [tnP t\ , tnP

f x = (x < pMin A pMin - x ^ lim) V (x > pMax A x —pMax ^ lim)

ps1 = [x | x 4- allPs t\ t2 , f x]

(iNew,g') = randomR (0, length ps1 — 1) g

in if pMin == pMax V null psf then (g, Nothing) else (g1\Just Sps1!! iNew)

Anticipations (anticip) and repetitions (rept) involve repeating chordal tones.

anticip, rept, doNothing:: ForeFun

anticip g t\ t2 — (g,Just$tnP t2)

rept g t \ t 2 = (g,Just $ tnP t \)

Finally, not all chordal tones need additional notes inserted between them. Kulitta

also includes a “do nothing” foreground function to allow some pairs chordal tones to be

stochastically left unchanged.

doNothing g t \ t 2 = (g, Nothing)

The various foreground functions above are grouped and given probabilities of applica

208

tion for each voice in a 4-voice chorale. The particular probabilities shown below are the

author’s choice.

f \ = pickPT o ptLimC

f i — pickNT o ntLimC

[fcJiJS] = "MP const [anticip,rept,doNothing]

allFFs:: CConstants —>• [[(Double, ForeFun)]]

allFFs c =

[[(0.3,/ i c), (0.1,/ 2 c), (0.6,P c)], - S (sopranno)

[(0.3,/! c), (0.7,f5c)], - A (alto)

[(0.1,/i c),(0.9,/5c)]] - T (tennor)

-H- repeat [(1.0,f5 c)] - B (bass) and lower

When adding new notes between chordal tones, duration must be borrowed from one of

the chordal notes. Kulitta borrows time from the first chordal tone to do this. Exactly how

much time is given to the new note is a stochastic choice: either the chordal tone’s duration

is divided in half, or an eighth note is subtracted from it to give to the new tone.

splitP:: CConstants —>• StdGen —► AbsPitch —► TNote —► (StdGen, [TNote])

splitP consts g newP t =

let (r,gf) = randomR (0,1.0:: Double) g

dNew = if r < pHalfC consts then tnD t / 2 else en

in (g',[(tnK t,tnD t —dNew,tnPt),(tnK t,dNew,newP)])

Foregrounds are added to voices from highest to lowest, left to right. A foreground

is added to one voice completely before moving on to the next voice. The addFgToVoice

function adds a foreground to a single voice, and addFG performs foreground addition over

a list of voices sorted from highest to lowest.

209

addFgToVoice:: CConstants -4 [(Double, ForeFun)] -4 StdGen -4 [77Vote]

-4 (StdGen, [TNote])

addFgToVoice c foreFuns g (t\ : : ts) =

let (j,gl) = randomR (0,1.0) g

fFun = chooseFF j foreFuns

(g2, t l ') = applyForeFun c g l t\ t2 fFun

(g3,tRest) = addFgToVoice cforeFuns g2 (r2: ts)

in (g3, tl ' -H- tRest) where

chooseFF j [jc] = snd x

chooseFF j ((p,x):t) = it j < p then x else chooseFF (j—p) t

chooseFF j[] = error "(chooseFF) Nothing to choose from!"

applyForeFun c g t \ t2 fFun =

let (g l, newP) =fFun g t\ f2

in case newP of Nothing -4 (gl,])

Just x -4 splitP c g l x t \

addFgToVoice c foreFuns g x = (g,x)

addFG:: CConstants -4 StdGen -4 [[TNote]] -y (StdGen, [[TNote]])

addFG cgvs = let (g;, vs1) = fgRec c g 0 vs in tieRec c g' vs' where

fgRec c g ivs = if i ^ length vs V / < 0 then (g, vs) else

let (g1, V) — addFgToVoice c (allFFs c !! i) g (vs!! i)

vs' = take i vs-H- |V] + f drop (1 +1) vs

mfgRec eg' (i + 1) vs'

tieRec cg[\ = (g,[])

tieRec c g (v:vs) =

let (g i y) = stochTie c g v

(g2, vs1) — tieRec c g l vs

in (g2,v':vs/)

210

A final post-processing step in foreground generation is the creation of ties, which

are notes held across beats. This is best left until the very end, otherwise ties can cre

ate rhythmic abnormalities when adding other foreground features. Two ajacent notes are

stochastically tied if they share the same pitch.

stochHe:: CConstants -4 StdGen -4 [TNote] -4 (StdGen, [TNote])

stochUe consts g (t \ : t i : ts) =

let (r ,g l) = randomR (0,1.0 ..Double) g

(g2, (t2': ts1)) = stochlle consts g l (t i : ts)

{d\, d2f) — (tnD t\ , tnD t2')

in if tnP t\ = = tnP t2' A r <pTieC consts

then (g2,(tnK ti,di + d2',tnPt\) : ts')

else (g2,11 : t2': tsr)

stochHe consts gts = (g, ts)

There are two steps to adding a classical foreground to an abstract chord progression

represented as Roman numerals: (1) traversing an appropriate chord space and (2) adding

melodic elements. These steps are separated and presented with different type interfaces.

From a Term CType, a classical foreground can be added by using just the classicalFG

function.

classicalFG: : StdGen -4 Key -4 Term CType -4

(StdGen, (Music Pitch,Music Pitch))

classicalFG g (k,m) t =

let consts = sort Sfindlnds [] t

rChords = ctTrans k$toChords (expand [] t) m

in classicalFGR g (k,m) rChords consts

However, there are some instances where more control is desirable, such as if we are

working with Let statments or perhaps want to supply a progression manually rather than

using Term. The following functions allow adding a foreground to different intermediate

211

types.

classicalFGR:: StdGen -> Key - » [RChord] -> Constraints ->

(StdGen, (Music Pitch,Music Pitch))

classicalFGR g (k,m) res consts =

let (gl,csChords) = classicalCS g (k,m) res consts

in classicalFG' g l csChords

classicalFG' :: StdGen -» [TChord] - » (StdGen, (Music Pitch,Music Pitch))

classicalFG1 g aChords' =

let (g4, csFG) = addFG defConsts g $ reverse $ toVoices aChords'

is = [Bassoon,EnglishHom,Clarinet,Oboe,SopranoSax]

fgM — vsToMusicI is $ reverse csFG

csM = vsToMusicI is $ toVoices aChords1

in (g4,(csM,fgM))

Similarly, there are instances when we may want to use a classical chord space, but not

add a classical foreground. This can be useful for mixing styles.

classicalCS::StdGen —► Key -* [RChord] -» Constraints —> (StdGen, [TChord])

classicalCS g (k,m) res consts = classicalCS2 g (k,m)

(atTransk$map toAbsChord res) consts

classicalCS2:: StdGen -> lGey -* [TChord] —>■ Constraints —► (StdGen, [TChord])

classicalCS2 g (k,m) aChords consts =

let justChords = map (A, (a, b, c) —y c) aChords

(gl,g2)= split g

(g3, eqs) = classBass 0.8 g2$map (eqClass satbOP opcEq) justChords

csChords = greedy Let (noCPL 7) nearFall consts eqs g3

aChords1 = zipWith (X(a,b,c) d -> (a,b,d)) aChords csChords

in (g3,aChordsf)

The classicalCS2 function uses a stochastic filter over equivalence classes called classBass.

212

This filter enforces that the bass holds the root with a certain probability (the ’’thresh”

value). If the constraints can’t be met, the bass is allowed to deviate from this rule for the

sake of producing a result.

classBass ..Double —> StdGen —> [EqClass AbsChord] —»

(StdGen, [EqClass AbsChord])

classBass thresh g [] = (g, [])

classBass thresh g (e: es) =

let (r,gf) = randomR (0,1.0:: Double) g

e' = i f r> thresh then e else filter rootFilter e

e" = if null e' then e else e'

(g", es1) = classBass thresh g es

in (g'^e" :es/) where

rootFilter:: Predicate AbsChord

rootFilter x = or $ map (opcEq x) [[0,0,4,7], [0,0,3,7], [0,0,3,6]]

The code so far has only made use of the greedy approaches to constraint satisfaction.

As an alternative, the following version handles constraint satisfaction differently. Two

MIDI files are produced, one without melodic elements and one with them. The benefit

of this alternate approach is that constraints will be 100% satisfied if a solution is found.

However, existence of a solution is not guaranteed and the runtime will be quite long if

solutions are sparse.

classicalFG2 :: StdGen -* Key -> Term CType —>• FilePath -4 FilePath - » IO ()

classicalFG2 g (k,m) t fill fn2 = do

let aChords = atTrans k$toAbsChords (expand [) t)m

justChords = map (X(a,b,c) —>■ c) aChords

(gl,g2) = split g

qSpace = satbOP' gl

ecs = map (eqClass qSpace opcEq) justChords

213

cons = findlnds [] t

(jc, csChords) «— findSoln2 cons (progL 10) ecs

let aChords' = zipWith (k(a,b,c) d —> (a,b,d)) aChords csChords

(g4, csFG) = addFG def Consts g2 $ reverse $ toVoices aChords'

is = [Bassoon, EnglishHom, Clarinet, Oboe]

fgM = vsToMusicI is $ reverse csFG

csM = vsToMusicI is $ toVoices aChords'

writeMidi fill fgM

writeMidi fii2 csM

B.3.2 Jazz Foregrounds

Jazz requires keeping track of modes in a slightly more complicated way than was the case

for the classical algorithms described in the previous section. First, we need to find the

modes for Roman numerals interpreted in a particular key/mode. The type JTriple is actu

ally a synonym for TChord, but it is used for clarity to indicate that the pitch information

represents a mode rather than a chord.

majorModes = allModes

minorModes = drop 5 allModes -H- (take 5 allModes)

chordMode:: CType —>• Key —► AbsMode

chordMode ct (k,m) =

let pModes = if m = = Major then majorModes else minorModes

ctMode = pModes!! firomEnum ct

ck = pModes!! 0 !!fromEnum ct

in t (k + ck) ctMode

toJTriple:: (Key, Dur, CType) -» (Key, Dur, AbsMode)

toJTriple (km,d,c) = (km, d, chordMode c km)

214

Simple Jazz Foreground

This approach, called jazzFGl (or jazzFGIT to interface more directly with the grammar

monad defined in Chapter 4), creates jazz chords and a stochastic bassline. Let instantiation

only takes place at the level of Roman numerals. As a result, progressions such as let x = A

in x x will only exhibit abstract repetition, while exact instantiations of the chord may

differ.

jazzFGl "StdGen —»■ [(Key, Dur, CType)] —► (StdGen, Music Pitch)

jazzFGl g chords =

let [gJ,gR,gOPC,gB] = take 4% splitNg

jts = map toJTriple chords

ms = map (k(a,b,c) ([],c))Jts

qj = modeSpace' alglTemps

chordsJ = greedyProg qJ modeEq (const True) nearFalLJ gJ ms

qOPC = makeRange' alglRans / / opcEq

es = map (convOPC qOPC bassRoot) chordsJ

chordsOPC = greedyProg (const True) nearFall gOPC es

chordsOPC’ = zipWith (A(a,b,c) x -4 (a,b,x)) jts chordsOPC

jVoices = dtrans $ map toJNote chordsOPC'

(gRet,bassLine) = stochBass gB% head jVoices

in (gRet, instrument AcousticBass bassLine:=:

jnToMusic (repeat AcousticGrandPiano) (tailjVoices))

alglTemps = [[0,2,4,6], [0,1,2,4,6]]

alglRans = (34,45): take 4 (repeat (50,64))

bassRoot (chrd,m) = (minimum chrd ‘mod‘ 12) = = head (normO m)

splitN g = let (g l, g2) = split g in gl : splitN g2

convOPC:: QSpace AbsChord —>• Predicate JChord —>• JChord -»

EqClass AbsChord

215

convOPC qpj (c, m) = filter (Xx —> pj (jc , m)) $ eqClass q opcEq c

stochBass:: StdGen —>■ [/Note] —> (StdGen,Music Pitch)

stochBassg [] = (g, rest 0)

stochBass g ((km,d,p) : t) =

let (g',pat) — pickPattem g d p

(g", t1) = stochBass g 't

in (g",pat\ + :*')

pickPattem g d p =

let (r , /) = randomR (0, length pats — 1) g

f dp — note d (pitchp)

pats = \ f dp,

if d ^ hn theny qn p . •/ (d qtt) p else f d p,

i f d ^ h n thenf (d — en) p: + :f enp elsef dp]

in (g',patsV.r)

jazzFGIT :: StdGen -* Key —»• Term CType (StdGen,Music Pitch)

jazzFGIT g (k,m) t — jazzFGl g$ctTransk$toChords (expand [] r) m

Bossa Nova

This approach interprets Roman numerals through three separate chord spaces as described

in Chapter 6 in order to cut down the task’s combinatorics. As a result, this type of fore

ground can usually be generated much more quickly than the musically simpler one in the

previous section—an illustration of the fact that musical simplicity does not always imply

computational simplicity.

216

jazzFG2:: StdGen -> [(Key,Dur, CType)} -y (StdGen,Music Pitch)

jazzFGl g chords —

let gs@ [gJC, gJB, gJL, gRC, gRB, gRL, gOPCC, gOPCJ, gOPCJL, gL] =

take 10$ splitN g

jts = map toJTriple chords

ms = map (A(a,b,c) -4 ([],c));Yi

qs@[qJC,qJB,qJL] =

map modeSpace' [alg2TempsC,alg2TempsB,alg2TempsL\

[chordsJ,bassJ,leadJ) = zipWith (Aqgx -4 greedyProg q modeEq

(const True) nearFalU gx ms) qs $ take 3 gs

qOPC-C = filter alg2FilterC (makeRange' alg2RartsC) / / opcEq

qOPC-B = makeRange alg2RansB j j opcEq

qOPCJL = makeRange' alglRansL j / opcEq

esC — map (convOPC qOPC C (const True)) chordsJ

esB = map (convOPC qOPCJi bassRoot2) bassJ

esL = map (convOPC qOPC L (const True)) leadJ

chordsOPC = greedyProg' (const True) nearFall gOPCJC esC

bassOPC = greedyProg' (noCPL 7) nearFall gOPC-B esB

leadOPC = greedyProg? (noCPL 7) nearFall gOPC-L esL

[cc,bc,lc\ = map (zipWith (A(a,b,c) x -y (a,b,x)) jts)

[chordsOPC, bassOPC, leadOPC]

cm = bossaChords cc

bm = bossaBass be

(gRet, Im) — bossaLead gL Ic

in (gRet,chord [instrument AcousticBass bm,

instrument AcousticGrandPiano cm,

instrument Flute Im])

217

Each part (bass, chords, lead) uses a different set of chord templates as well as different

ranges and constraints for their respective chord spaces.

alg2TempsC = [[0,2,4,6], [1,2,4,6]] -- for chords

alg2TempsB = [[0,4]] - for bass

alg2TempsL = [[0], [2], [4]] - for lead

alg2RansB= [(34,49), (34,49)]

alg2RansC = take 4 $ repeat (50,64)

alg2RansL = [(65,80)]

bassRoot2 ([i>i,&2],/n) = normO [bi,bi] ==normO [m!!0,m!!4]

bassRoot2 _ = error " (bassRoot2) Bad arguments."

alg2FilterC x = sorted x A pianoChord x

toTN2' (k,d,[p]) b l = TNote2kdblp

toTN2' = error " (toTN2’) Bad arguments"

tn2M (TNote2 k d b l p) = noted (pitchp)

Conversion to Music Pitch also takes place independently for each voice. Instead of

going through an intermediate type like Voice as done for the classical foregrounds, simple

bossa nova features are added directly at the Music level.

The bass foreground will start with pairs of notes as a chord. How these two pitches are

handled depends on the duration of the chord. For a whole note, a standard bossa nova bass

pattern is used, but shorter durations can only use subsets of that pattern. Chords longer

than a whole note are partitioned into whole note sections.

218

bossaBass:: [TChord] —► Music Pitch

bossaBass [] = rest 0

bossaBass ((km,d,c@[pi,p2]) :t) =

if d > wn then bossaBass ((km, wn, c) : (km,d — wn, c): t) else

if d = = wn then f \ p i p 2 ' + ■ bossaBass t else

if d = = hn then f iP i P i ' + • bossaBass t else f o p \d \ + : bossaBass t where

f i hi b2 = fz b\ b2: + :/2 &2 hi

f i hi b2 = /3 hi (qn + en): + :/3 b2 en

f o b id = note d (pitch bi)

bossaBass _ = error" (bossaBass) Bad input"

bossaChords:: [TChord] —>■ Music Pitch

bossaChords [] = rest 0

bossaChords ((km,d,c):t) =

if d>wn then bossaChords ((km,wn,c): (km,d — wn,c): t) else

if d = = wn then/i c : + : bossaChords t else f i d e : + : bossaChords t where

f i c = let d = /2 en c in rest qn : + : d : + : rest qn: + : d : + : rest qn

f 2 d c = chord $ map (Xp —>• note d $ pitch p) c

bossaLead:: StdGen —> [TChord] —► (StdGen,Music Pitch)

bossaLead g ts =

let Is = take (length ts — 1) (repeat False) -H- [True]

v = zipWith3 toTN2' ts (repeat 0) Is

(g 'y) = addFgToVoice jConsts (foreFunsJ defConsts) g v

in (g', line $ map tn2M i/) where

foreFunsJc = [(0.5,/ j c), (0.5,/2 c)]:: [(Double,ForeFun)]

jConsts = CConstants 2 3 0.3 0.5 0.8 7

219

Finally, the foreground is given an easy interface to the Term type.

jazzFGIT:: StdGen -¥ Key -» Term CType ->• (StdGen,Music Pitch)

jazzFGITg (k,m) t = jazzFG2 g $ctTrans k $ toChords (expand []t)m

Jazz Chords

In addition to the foreground algorithms already presented, for the purpose of mixing styles

it is also useful to have a simpler mapping from Roman numerals to the AbsChord type

without altering the original chords’ durations or adding any additional melodic elements.

jazzChords:: StdGen —> [(Key,Dur,CType)] —> Constraints ->

(StdGen, [(Key, Dur,AbsChord)])

jazzChords g chords consts =

let [gJ,gOPC,gf] = take 3 $ splitN g

jts = map toJTriple chords

ms = map (X(a,b,c) —► ([],c)) jts

q j = modeSpace' alglTemps

chordsJ = greedyLet (const True) nearFalU consts

(map (eqClass qJ modeEq) ms) g j

qOPC = makeRange' alglRans / / opcEq

es = map (convOPC qOPC bassRoot) chordsJ

chordsOPC = greedyProg' (const True) nearFall gOPC es

in (g', zipWith newP jts chordsOPC)

220

Bibliography

[1] Andres Garay Acevedo. Fugue composition wtih counterpoint melody generation

using genetic algorithms. In Computer Music Modeling and Retrieval, volume 3310

of Lecture Notes in Computer Science, pages 96-106. 2005.

[2] J. L. Alty. Navigating through compositional space: The creativity corridor.

Leonardo, 28(3):215-219,1995.

[3] Stephen Baumann. A simplified attributed graph grammar for high-level music recog

nition. In International Conference on Document Analysis and Recognition, vol

ume 2, pages 1080-1083,1995.

[4] Matthew I. Bellgard and Chi-Ping Tsang. Harmonizing music the Boltzmann way.

Connection Science, 6(2):281-297,1994.

[5] Matthew I. Bellgard and Chi-Ping Tsang. On the use of an effective Boltzmann ma

chine for musical style recognition and harmonization. In Proceedings of the Inter

national Computer Music Conference, pages 461-464,1996.

[6] Thomas Bonte, Nicolas Froment, and Werner Schweer. Musescore, 2014.

[7] Steven Brown, Michael J. Martinez, and Lawrence M. Parsons. Music and language

side by side in the brain: a PET study of the generation of melodies and sentences. In

European Journal o f Neuroscience, pages 2791-2803,2006.

221

[8] Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,

and Simon Colton. A survey of Monte Carlo tree search methods. IEEE Transactions

on Compututing Intelligence andAI in Games, 4(1): 1-43,2012.

[9] Peter Biihlmann and Abraham J. Wyner. Varable length Markov chains. The Annals

o f Statistics, 27(2):480-513,1999.

[10] Michael D. Buhrmester, Tracy Kwang, and Samuel D. Gosling. Amazon’s Mechan

ical Turk: A new source of inexpensive, yet high-quality data? Perspectives on

Psychological Science, pages 3-5, 2011.

[11] Clifton Callender, Ian Quinn, and Dimitri Tymoczko. Generalized voice-leading

spaces. Science Magazine, 320(5874):346-348,2008.

[12] Murray Campbell, A. Joseph Hoane Jr., and Feng-Hsiung Hsu. Deep Blue. Artificial

Intelligence, 134(l-2):57-83.

[13] Parag Chordia, Avinash S as try, and Sertan Senturk. Predictive tabla modeling using

variable-length Markov and hidden Markov models. Journal o f New Music Research,

40(2): 105-118, 2011.

[14] Alexander Clark. Efficient, correct, unsupervised learning of context-sensitive lan

guages. In Proceedings o f the Fourteenth Conference on Computational Natural

Language Learning, pages 28-37, July 2010.

[15] Alexander Clark, Rimi Eyraud, and Amaury Habrard. A polynomial algorithm for

the inference of context free languages. In Proceedings o f International Colloquium

on Grammatical Inference, pages 29-42,2008.

[16] Bradley J. Clement. Learning harmonic progression using Markov models. In Genetic

Algorithms in Search, Optimization, and Machine Learning, 1998.

222

[17] Michael Collins. The inside-outside algorithm, 2014.

[18] Darrell Conklin. Melodic analysis with segment classes. Machine Learning, 65(2-

3):349-360, December 2006.

[19] David Cope. An expert system for computer-assisted composition. Computer Music

Journal, ll(4):30-46,1987.

[20] David Cope. On the algorithmic representation of musical style. In Understanding

Music with AI, pages 354—363. MIT Press, 1992.

[21] David Cope. Facing the music: Perspectives on machine-composed music. Mind,

pages 79-87,1999.

[22] David Cope. Computer Models o f Creativity. The MIT Press, 2005.

[23] David Cope. 5000 works in bach style, 2014.

[24] David S. Dummit and Richard M. Foote. Abstract Algebra. Prentice Hall, New Jersey,

1999.

[25] Kemal Ebcioglu. An expert system for Schenkerian synthesis of chorales in the style

of J.S. Bach. In Proceedings of the International Computer Music Conference, pages

135-140,1984.

[26] Douglas Eck and Jurgen Schmidhuber. Learning the long-term structure of the blues.

In In Proceedings o f the International Conference on Artificial Neural Networks,

pages 284-289, 2002.

[27] David Ferrucci et al. Building Watson: An overview of the DeepQA project. AI

Magazine, pages 59-79,2010.

223

[28] Michael J. Fischer. Grammars with macro-like productions. In Proceedings o f the

9th Annual Symposium on Switching and Automata Theory (Swat 1968), SWAT ’68,

pages 131-142. IEEE Computer Society, 1968.

[29] Judy A. Franklin. Recurrent neural networks and pitch representations for music

tasks. In Forida AI Research Symposium, 2004.

[30] Judy A. Franklin. Recurrent neural networks for music computation. INFORMS

Journal on Computing, 18(3):321—338,2006.

[31] Peter Gannon. Band-in-a-Box: Intelligent Music Accompaniment Software for Your

Multimedia Computer. PG Music Inc., 2002.

[32] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Free

man and Company, 1979.

[33] Michael Gogins. Score generation in voice-leading and chord spaces. In Proceedings

o f the International Computer Music Conference, pages 593-600, 2006.

[34] William P. Headden, El, David McClosky, and Eugene Charniak. Evaluating unsu

pervised part-of-speech tagging for grammar induction. In Proceedings o f the 22Nd

International Conference on Computational Linguistics, volume 1 of COUNG ’08,

pages 329-336,2008.

[35] Dominik Homel. CHORDNET: Learning and producing voice leading with neural

networks and dynamic programming. Journal o f New Music Research, 33(4):387-

397,2004.

[36] Paul Hudak. Euterpea, 2014.

[37] Paul Hudak and Jonathan Berger. A model of performance, interaction, and improvi

sation. In Proceedings of International Computer Music Conference, pages 541-548,

1995.

224

[38] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore music notation

- an algebra of music. Journal o f Functional Programming, 6(3):465-483, May 1996.

[39] David Huron. Sweet Anticipation Music and the Psychology of Expectation. A Brad

ford Book, 2008.

[40] Amazon Inc. Amazon Mechanical Turk, 2014.

[41] Kevin Tang Jon Gillick and Robert M. Keller. Learning jazz grammars. In Proceed

ings o f the Sound and Music Computing Conference, pages 125-130,2009.

[42] Robert M. Keller and David R. Morrison. A grammatical approach to automatic

improvisation. In Sound and Music Computing Conference, pages 330-337,2007.

[43] Phillip B. Kirlin and Paul E. Utgoff. A framework for automated Schenkerian analy

sis. In International Conference on Music Information and Retrieval, pages 363-368,

2008.

[44] Christopher Konopka. Csound, 2014.

[45] Hendrik Vincent Koops, Jose Pedro Magalhaes, and W. Bas de Haas. A functional

approach to automatic melody harmonisation. In Proceedings of ACM Workshop on

Functional Art, Music, Modeling, and Design. ACM Press DL, September 2013.

[46] Vipin Kumar. Algorithms for constraint satisfaction problems: a survey. AI Magazine,

13(1):32—44,1992.

[47] K. Lari and S.J. Young. The estimation of stochastic context-free grammars using the

inside-outside algorithm. Computer Speech ad Language, 4:35-56,1990.

[48] Fred Lerdahl and Ray S. Jackendoff. A Generative Theory o f Tonal Music. The MIT

Press, 1996.

[49] Mark Levine. The Jazz Theory Book. Sher Music, 1995.

225

[50] Jose Pedro Magalhaes and W. Bas de Haas. Functional modelling of musical har

mony: an experience report. In Proceedings o f the 16th ACM SIGPLAN international

conference on functional programming, pages 156-162,2011.

[51] Matteo Mainetti. Symmetric operations on equivalence relations. Annals o f Combi

natorics, 7:325-348,2003.

[52] Guerino Mazzola. The Topos o f Music: Geometric Logic o f Concepts, Theory, and

Performance. Birkhuser, 2002.

[53] James McCartney. Rethinking the computer music language: Supercollider. Comput.

Music J., 26(4):61-68, December 2002.

[54] Jon McCormack. Grammar based music composition. Complex Systems, 96:320-336,

1996.

[55] Ruslan Mitkov. The Oxford Handbook o f Computational Linguistics. The Oxford

Prress, 2003.

[56] Robert D. Morris. Voice-leading spaces. Music Theory Spectrum, pages 175-208,

1998.

[57] Tomasz Oliwa and Markus Wagner. Composing music with neural networks and

probabilistic finite-state machines. In Proceedings o f the Conference on Appications

o f Evolutionary Computing, pages 503-508,2008.

[58] Steve Pease. FL Studio Power! The Comprehensive Guide. Cengage Learning PTR,

2009.

[59] Simon Peyton Jones. The Haskell 98 language and libraries: the revised report. Jour

nal o f Functional Programming, 13(1):0—255, Jan 2003.

226

[60] Tim Place and Trond Lossius. Jamoma: A modular standard for structuring patches

in Max. In Proceedings of the International Computer Music Conference, pages 143—

146, 2006.

[61] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of

Plants. Springer, 1990.

[62] Donya Quick and Paul Hudak. Computing with chord spaces. In Proceedings o f the

International Computer Music Conference, pages 433-440, 2012.

[63] Donya Quick and Paul Hudak. Grammar-based automated music composition in

haskell. In Proceedings of the first ACM SIGPLAN workshop on Functional art,

music, modeling, and design, pages 59-70,2013.

[64] Donya Quick and Paul Hudak. A temporal generative graph grammar for harmonic

and metrical structure. In Proceedings of the International Computer Music Confer

ence, 2013.

[65] Ian Quinn and Panayotis Mavromatis. Voice-leading prototypes and harmonic func

tion in two chorale corpora. In Proceedings of the International Conference on Math

ematics and Computation in Music, pages 230-240, 2011.

[66] Christopher Raphael and Joshua Stoddard. Functional harmonic analysis using prob

abilistic models. Computer Music Journal, 28(3):45-52,2004.

[67] Martin Rohrmeier. Towards a generative syntax of tonal harmony. Journal of Mathe

matics and Music, 5(l):35-53, 2011.

[68] Martin Rohrmeier and Ian Cross. Statistical properties of tonal harmony in Bach’s

chorales. In Int. Conf. on Music Perception and Cognition, 2010.

227

[69] Gerard Roma and Perfecto Herrera. Graph grammar representation for collaborative

sample-based music creation. In 5th Audio Mostly Conference, pages 1-8. ACM,

2010.

[70] Dana Ron, Yoram Singer, and Saftali Tishby. The power of amnesia: learning proba

bilistic automata with variable memory length. Machine Learning, 25:117-149,1996.

[71] Kenneth H. Rosen. Discrete Mathematics and Its Applications (7th Ed.). McGraw-

Hill, Inc., New York, NY, USA, 2012.

[72] Joel Ross, Lilly Irani, M. Six Silberman, Andrew Zaldivar, and Bill Tomlinson. Who

are the crowdworkers?: shifting demographics in Mechanical Turk. In CHI ’10 Ex

tended Abstracts on Human Factors in Computing Systems, pages 2863-2872,2010.

[73] Heinrich Schenker. Harmony. University of Chicago Press, OCLC 280916,1954.

[74] Stephen W Smoliar. A computer aid for schenkerian analysis. In Proceedings of the

1979 Annual ACM Conference, pages 110-115,1979.

[75] Johan Sundberg, Anders Friberg, and Lars Frydn. Rules for automated performance

of ensemble music. Contemporary Music Review, 3(1):89-109,1989.

[76] David Temperley. Modeling common-practice rhythm. Music Perception, 27(5):335-

376,2010.

[77] David Temperly. The Cognition o f Basic Musical Structure. The MIT Press, 2004.

[78] David Temperly. Music and Probability. The MIT Press, 2010.

[79] Alan M. Turing. Computing machinery and intelligence. Mind, 49:433-460.

[80] Dimitri Tymoczko. The geometry of musical chords. Science Magazine,

313(5783):72-74, 2006.

228

[81] Karel van der Toom, Bob Becking, and Pieter W. van der Horst. Dictionary of deities

and demons in the Bible. Leiden, 1999.

[82] Christopher White. An alphabet-reduction algorithm for chordal n-grams. In Pro

ceedings o f the International Conference on Mathematics and Computation in Music,

pages 201-212,2013.

[83] Christopher W. White. Some Statistical Properties of Tonality, 1650-1900. PhD thesis,

Yale University, 2013.

[84] Gerhard Widmer and Wemer Goebl. Computational models of expressive music per

formance: The state of the art. Journal o f New Music Research, 33(3):203-216,2004.

[85] Terry Winograd. Linguistics and the computer analysis of tonal harmony. Journal of

Music Theory, 12(l):2-49,1968.

[86] Peter Worth and Susan Stepney. Growing music: musical interpretations of 1-systems.

Applications on Evolutionary Computing, pages 535-540,2005.

[87] Liangrong Yi and Judy Goldsmith. Automatic generation of four-part harmony. In

UAI Applications Workshop, 2007.

[88] Jason Yust. The geometry of melodic, harmonic, and metrical hierarchy. In Mathe

matics and Computation in Music, volume 38, pages 180-192, 2009.

229

