
A CONTACT MODEL FOR GEOMETRICALLY
ACCURATE TREATMENT OF POLYTOPES IN

SIMULATION

By

Jedediyah Freeman Williams

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Approved by the
Examining Committee:

Jeffrey C. Trinkle, Thesis Adviser

Srinivas Akella, Member

Kurt S. Anderson, Member

Barbara Cutler, Member

Charles V. Stewart, Member

Rensselaer Polytechnic Institute
Troy, New York

August 2014
(For Graduation December 2014)

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3684118

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3684118

© Copyright 2014

by

Jedediyah Freeman Williams

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENT . xiv

ABSTRACT . xv

1. INTRODUCTION . 1

1.1 Time-stepping . 2

1.2 State-of-the-art . 4

1.3 Contributions . 12

2. BACKGROUND . 14

2.1 Kinematics . 14

2.1.1 Spatial representation of rigid bodies 14

2.1.2 Mapping and transformation 15

2.1.3 Alternative rotation representations 16

2.2 Dynamics . 17

2.2.1 Twist, wrench, and inertia . 18

2.2.2 Newton-Euler equations . 19

2.2.3 Bilateral constraint . 20

2.3 Contact and the complementarity problem 22

2.3.1 Contact constraint . 23

2.3.2 Friction constraint . 24

2.4 Time stepping . 27

2.4.1 Discretization of Newton-Euler equations and constraints . . . 27

2.4.2 Impulse constraint correction 30

2.5 Solution methods . 33

2.5.1 Projected Gauss-Seidel, Splitting Method 35

2.5.2 Projected Succesive Over Relaxation 37

2.5.3 Matrix Augmentation . 37

2.6 Collision Detection . 38

iii

3. DETECTING CONTACT BETWEEN MOVING GEOMETRIES 43

3.1 Representing convex polyhedra . 43

3.2 Applicability . 44

3.3 Feasibility . 49

3.4 Edge-edge orientation . 52

3.5 2D narrow phase collision detection 53

3.6 3D narrow phase collision detection 56

3.6.1 Vertex-face . 56

3.6.2 Edge-edge . 58

4. POLYTOPE EXACT GEOMETRY . 61

4.1 Motivation and a new approach . 61

4.2 Three fundamental contact constraints 67

4.2.1 Unilateral contact constraint 67

4.2.2 Inter-contact constraint . 68

4.2.3 Cross-contact constraint . 70

4.3 PEG 2D . 71

4.3.1 Vertex-edge . 71

4.3.2 Vertex-vertex . 71

4.3.3 PEG abstraction layers . 72

4.4 PEG 3D . 75

4.4.1 Vertex-face . 75

4.4.2 Edge-edge . 76

4.4.3 Vertex-edge . 76

4.4.4 Vertex-vertex . 77

4.5 Non-convexity with PEG . 82

4.6 PEG with non-polytopes. 85

4.7 Time-stepping formulation with PEG 88

4.8 Solvability of the new contact model 95

5. SIMULATION BEHAVIOR AND PERFORMANCE 96

5.1 Instantaneous cases . 96

5.2 Simulation benchmarks . 100

5.2.1 Triangle-drop experiment . 101

iv

5.2.2 Stack of boxes . 104

5.2.3 Box of polygons . 108

5.2.4 Box of polyhedra . 112

5.2.5 2D grasp experiment . 115

5.2.6 2D grasp experiment with friction 118

5.3 Rigid body rotation and implicit time-stepping 121

5.4 Conservation of momentum . 124

5.5 Numerical tolerances . 126

5.6 Floating point error and contact degeneracies 127

6. RPI-MATLAB-SIMULATOR . 128

6.1 Creating and running scenes . 130

6.1.1 Simulator options . 130

6.1.2 Example scripts . 132

6.2 Recording and replaying simulations 134

6.3 The default simulator . 140

6.4 Dynamics formulations . 142

6.5 Sample application: PD controlled robotic arm 147

7. CONCLUSIONS AND FUTURE WORK 152

7.1 Conclusion . 152

7.2 Future Work . 153

REFERENCES . 155

v

LIST OF TABLES

2.1 Joint constraint Jacobian definitions. 22

2.2 Joint correction constraint Jacobian definitions. 31

2.3 Joint correction constraint violation definitions. 32

6.1 Simulator options (See Simulator.m for the complete list). 131

6.2 Solvers available with RPIsim. 144

vi

LIST OF FIGURES

1.1 The main stages of the time-stepping simulation approach. At each iter-
ation, a contact set is determined, a time-stepping problem representing
the dynamic model is formulated, a solution to this problem is found
which generates updated body properties, and finally these properties
are used to update body positions. 3

1.2 ATLAS standing at the start of the terrain task in the Gazebo Simula-
tor. 5

1.3 Code segment from ODEPhysics.cc in the Gazebo 3.0.0. When the
number of contacts between two bodies is over a certain threshold, only
the contacts with the deepest violations are kept. This is a popular
contact heuristic. 6

1.4 The bottom right vertex of body A has potential contact with two
edges of B. Including both contacts will generate a non-physical force
sideways. The common heuristic of including contacts with deepest
penetration guarantees this non-physical behavior in such cases. 7

1.5 Visualization of contacts and contact normals between ATLAS’s foot
and the ground plane while “standing” in the Gazebo simulator. Con-
tact instabilities have imposed additional challenges in the DARPA
Robotics Challenge. 7

1.6 A screen capture of the Bullet 2.80 release video www.youtube.com/

watch?v=8jGZv1YYe2c at 3:12. Despite all 110,000 bodies being iden-
tical (which makes collision detection more straight forward), this sim-
ulation has numerous dramatic and deep interpenetrations. 9

1.7 A screen capture of video vimeo.com/31810546 at 0:47. Although the
vast number of bodies makes it difficult to discern, there are numerous
deep interpenetrations between bodies. 10

2.1 A joint constraint between two bodies A and B. Every joints maintains
two joint frames, one per body involved. The discrepancies in these two
frames correspond to the joint error. 21

2.2 Bodies A and B in 3D, and contact vectors in the world frame {W}. A
potential contact force is enacted along the normal direction n̂. Fric-
tional forces occur in the plane spanned by t̂ and ô, which form an
orthonormal basis with n̂. 23

vii

2.3 The friction cone of Coulomb’s dry friction model. The cone represents
to the possible frictional force λf corresponding to the normal force λn.
The size of the base of the cone (top) is determined by the friction
coefficient μ and λn. When sticking, λf will project to the interior of
the base, and when sliding, λf is constrained to the perimeter of the
base. 25

2.4 The friction cone and its polygonal approximation for nd = 7 friction
directions as viewed from the side and top. In this linear model, the
friction occurs along one of the nd directions, but models the same fric-
tion law. Some error is introduced by the simplification, but solutions
are easier to find and allow us to forgo non-linear solvers. 26

2.5 A hanging pendulum. A single joint constrains the motion of the dy-
namic body (blue) with respect to the the static body (gray). 33

2.6 Position and velocity error for pendulum simulations. 34

2.7 The two common types of bounding boxes. 38

2.8 Depiction of the sort and sweep process. The body geometries, or possi-
bly the corresponding bounding geometries, are projected onto an axis.
Bodies that are found to have overlapping projections, e.g., A and B,
will be considered at finer levels of collision detection. 39

3.1 Geometric representation of a convex polyhedron. Vectors t1 and t2 are
perpendicular to edge e and planar with their corresponding faces f1
and f2. The face normals η1 and η2 are normal with f1 and f2, as well
as perpendicular to e. 44

3.2 2D normal regions for edge and vertex. These regions represent the
possible directions in which a force could physically feasibly be enacted
with the given feature. 45

3.3 3D normal regions for face, edge, and vertex. 46

3.4 Two vertices of body A near an edge of B. Vertex va1 has classical
applicability with eb and the normal n1 of C(va1, eb) is within the normal
cone. Vertex va2 does not have classical applicability with eb and the
normal n2 of C(va2, eb) is outside its corresponding normal cone. 47

3.5 Vertex-face applicability tests all adjacent edges of a vertex va against
a face normal η̂. In the configuration depicted here, va clearly has
applicability with fb since all adjacent edges of va are pointed “away”
from fb. 48

viii

3.6 Edge-edge contact at the border of stability for classical applicability
(ε

{ee}
θ = 0). The result in this configuration is dependent on machine

precision error. Relaxation eliminates this dependency by increasing
the domain of applicability. 50

3.7 The region of feasibility for a vertex against a facet f of a body B is the
region above the thick dashed line. A vertex in this region is considered
to have a potential contact force λ with f 50

3.8 Our body representation uses vertices, with edges and faces in terms
of these vertices. Due to machine error, solver error, etc., the location
of these vertices can only be traced and known with some ε. This is
especially true in cases in which are are concerned about it most, when
bodies are in contact. 51

3.9 The orientation vector Oeb is defined in such a way as to always point
“left” of edge eb when looking onto the edge from the outside of the body. 52

3.10 Two different configurations of edge-edge contacts. 52

3.11 2D vertex-edge contact identification. All edges within ε of va will be
considered as potential vertex-edge contacts. 55

3.12 Multiple views of a vertex va near multiple faces. The gap distances
ψ1, ψ2, and ψ3 correspond to the three possible vertex-face contacts
between va with body B. Physically, only one of these contacts should
be active at one time. 57

4.1 The standard-model trap. A vertex v approaching two edges e1 and e2
at a corner of a body. If unilateral constraints are enforced against both
edges, the vertex becomes trapped by the sum of the edges’ half-spaces
(gray regions plus body). The same trap can occur in 3D between a
vertex and set of faces or an edge against multiple edges. 62

4.2 The possible values for c in the space surrounding edges e1 and e2. The
regions where c is zero and where c = ψ2−ψ1 correspond to the Voronoi
regions of the edges of the body. 63

4.3 A dual case of a vertex near two edges in 2D. The physically feasible
trajectories of va are interdependent with the trajectories of vb. Consider
that if va goes “on top” of B, then vb cannot simultaneously go “on top”
of A. 65

4.4 A valid solution to the dual vertex-edge case using the LNC model.
Note that neither vertex is penetrating the other body, satisfying the
constraints of equation (4.5). 66

ix

4.5 A vertex near multiple edges. Depending on the complexity of body
geometries, as well as body velocities and the time step size, there may
be an arbitrary number of relevant contacts between a vertex of one
body and facets of another. Further, some of these contacts may not
have a contact force associated with them, but are still necessary when
writing contact constraints in order to represent contact geometry. . . 68

4.6 Abstraction layers of PEG. 72

4.7 A well defined vertex-face contact between vertex va of body A and face
fb of body B. C(va, fb) is clearly the only contact which could be active. 75

4.8 An example of a vertex-edge configuration. Consider the relationship
between the contacts C(va, fb1) and C((vk3, va), eb). If the first is not
enforced, then the second must be, and vice versa. 76

4.9 A vertex va of body A approaching a vertex vb of body B from above.
Vertex va should be permitted to break the half spaces represented by
the falsely extended faces of B, but not all of them and only when doing
so does not violate edge-edge contacts. 77

4.10 Contact determination in a non-convex region of a polygon. Here, two
unilateral constraints are required to prevent interpenetration of A and
B. Equivalently, body B could be decomposed into a union of convex
bodies, requiring no modifications to PEG. 82

4.11 A portion of a non-convex body and a possible decomposition into two
overlapping convex parts. 83

4.12 Three views of a saddle point vertex, a vertex with two convex edges
(top edges) and two non-convex edges (middle side edges). The interior
of the body is below the faces. 84

4.13 Two examples of non-polytopal body geometries whose contact inter-
actions can be modeled using PEG. In (b), ψ1 is determined using the
tangent at the point on s1 nearest to particle v. 85

4.14 Contact between a particle v and a curved surface. The dashed line rep-
resents the half space corresponding to the non-penetration constraint.
At each time step, v is prevented from crossing the tangent of s at the
point nearest to v. 87

4.15 A single body composed of convex and non-convex curved surfaces. The
thick black line represents the body perimeter while the alternating col-
ors correspond to sub-bodies in the decomposition. Sub-bodies overlap
to prevent possible interpenetration from zero-area bodies such as par-
ticles. 87

x

4.16 Comparison of problem sizes for contact constraints only. For both PEG
and the standard model, the problem size increases with the number of
contacts. The standard model . 94

5.1 Two vertices approach one another. Note that va is approaching from
a region of deep penetration of eb1. 96

5.2 Dual standard-model trap where constraints between va with eb1 and
eb2, as well as constraints between vb with ea1 and ea2. 97

5.3 Example of 3D standard-model trap for vertices against multiple faces
(bottom right vertices of red body in (a)). Given this configuration,
what contacts should be generated to produce accurate interaction of
these bodies? . 98

5.4 Multiple views of a tetrahedron stacked and aligned atop a second simi-
lar but inverted tetrahedron. Which contacts should be enforced in this
configuration? . 98

5.5 Sample comparison of methods on triangle drop benchmark for h = 0.01
s. 101

5.6 Component trajectories of the red triangle in the triangle drop exper-
iment for three different models over time steps from h = 0.001 s to
h = 0.016 s. 103

5.7 Results of 2D box stack with corrective method. 105

5.8 Results of 2D box stack with standard model. 106

5.9 Results of 2D box stack with PEG. Although the same set of contacts
is identified as with the standard model, especially the top right most
contacts, PEG does not enforce erroneous contact and is subsequently
stable where other models fail. 107

5.10 Simulation experiment with several polygons in 2D. 109

5.11 Failure to find solution with standard model. Red lines correspond
to negative gap distance of contacts, and green lines to positive gap
distances. Contacts on the left and right sides of the bodies cannot be
simultaneously satisfied. Smaller time steps allow for smaller epsilons,
reducing this occurrence, but not eliminating it. 110

5.12 Two contacts have been identified: one on the left of A with negative
gap distance ψ1, and one on the right side of A with negative gap
distance ψ2. There is no solution that can move A both relatively left
and right of B simultaneously. 110

xi

5.13 Number of contacts and number of SM-traps encountered at each time
step for an example 2D simulation experiment with time step of h = 0.01
s. Smaller time steps generate fewer SM-traps since the ε used are
smaller. 111

5.14 Simulation experiment with several polyhedra in 3D. 112

5.15 Number of contacts and number of SM-traps encountered at each time
step for an example 3D simulation experiment with time step of h = 0.01 s.113

5.16 Comparisons of PEG versus corrective method for the 3D box experi-
ment over 5 seconds with h = 0.01 s. 114

5.17 Sequence (top to bottom, left to right) of a 2D grasping experiment
with a PD controlled two-fingered gripper. 115

5.18 Sample results from the first 2D grasp experiment. 116

5.19 A non-physical grasp due to fingers entering into standard-model traps
near vertices of the object. 117

5.20 Median, Q1, and Q3 of position error over ten trials for different time
steps in the 2D grasping experiment. 118

5.21 Sample results of 2D grasp experiment with friction for first polygon. . 119

5.22 Median, Q1, and Q3 of position error for all trials of the 2D grasping
experiment with friction. 119

5.23 Area of overlap error for PEG in 2D experiment. Although these small
errors do appear to increase with time step size, we will see that this is
a consequence of the time-stepping method used, and not of PEG. . . . 121

5.24 Initial configuration of two rectangular bodies with nonzero rotational
velocity. Over the next time step, both bodies will rotate due to their
rotational velocities as well as their interactions with one another. How-
ever, the contact frames do not rotate since Stewart-Trinkle is semi-
implicit. 122

5.25 Area of overlap error in semi-implicit time stepping due to rotation and
sliding. Clearly, the area of overlap error is proportional to the rotation,
which is dependent on the body velocities and time step size. 123

5.26 Simulation experiment to test conservation of momentum with the Stewart-
Trinkle time-stepping method. 124

5.27 Momentum experiment results. Each step in the curves above corre-
sponds to an inelastic impact. Note that the total momentum is con-
served over all collisions. 125

xii

6.1 Initial configuration of three bodies in an example simulation with
RPIsim. The blue cubes represent axis-aligned bounding boxes. 130

6.2 The sim replay() GUI. The “Play” button will animate the simulation,
or dragging the slider will set the simulation time manually. 135

6.3 A hanging rod simulation with userFunction plotting. While the simu-
lation on the left runs, plots are simultaneously being generated during
simulation with the userFunction. 139

6.4 Error in joint position for the hanging rod pendulum. Due to the sta-
bilization term in Stewart-Trinkle, the joint error is bound, in this case
below 7× 10−5. 140

6.5 RPIsim file structure. Simulator code is organized in order to reflect
the stages of simulation and to give the user intuition about the con-
nectedness of these stages. The existing code serves as templates for
extending the simulator with custom modules. 141

6.6 Simulation loop in the RPI-MATLAB-Simulator. At each stage, a user
can replace or plug in custom modules. 142

6.7 Simulation of a robotic arm in RPIsim. A PD-controller is used to
control the arm in joint-space. Here, the arm is depicted in its zero-
configuration, i.e., all joint angle values are zero. 148

6.8 Various stages of simulation of Schunk Powerball arm executing a grasp
trajectory. The trajectory is a set of joint angles interpolated between
start and goal configurations over a given time. 150

xiii

ACKNOWLEDGMENT

Thanks foremost to my advisor Jeff Trinkle, who has given me so many amazing

opportunities and whose guidance has been invaluable. Thanks also to my doctoral

committee, whose feedback and insight have been essential to the development of

my work. Thanks in particular to Chuck and Barb, whose classes I had the great

fortune to be able to take. I learned a great deal from them both, and had a most

excellent time doing it. Many thanks and much appreciation also goes to the staff

here in RPI CS, especially Pam, who in addition to being exceedingly helpful is

exceedingly kind.

Thanks to my loving family for being totally rad and indefatigably supportive.

Thanks to my second family, the Nilsons (and the subset Ripps), whose love and

support mean the universe to me, and which I could not have done without.

To all of my lab mates, past and present, it has truly been a pleasure to share

this research and learning experience with you. I will greatly miss working with this

talented and capable group of people. I can’t imagine I will ever again work in an

environment where I can casually say “we should build a quad copter” and three

weeks later we are tuning the flight controller to hover. Nor do I expect to hear a

future coworker ask “wanna see the robot I built this weekend?”

Thanks to my amazing, brilliant, and beautiful dear friends. As David J.

Buckley Esquire points out, it is remarkable that the same group of preschoolers

should still be hanging out decades later.

xiv

ABSTRACT

Simulation can be an invaluable tool, particularly in fields such as robotics where

physical experiments can be extremely expensive, time consuming, and even danger-

ous. However, the value of a simulator is directly related to its ability to accurately

and reliably model physical phenomena such as intermittent contact. In virtually all

multibody simulators available today, the standard methods of contact identification

and response treat the free space between pairs of bodies as a convex set, when it is

in fact non-convex. To reconcile, simulators typically use very small time steps and

employ numerous ad hoc corrections, many of which have become commonplace and

include allowing interpenetration to occur, arbitrarily limiting response forces, mis-

representing body geometries, and “freezing” bodies with relatively low velocities.

Indeed, a vast body of literature exists addressing the many symptoms of dynamic

instability due to poor contact determination.

I herein present a formulation of non-penetration constraints between pairs

of bodies which accounts for all possible combinations of active contact. This is

the first formulation that accurately models the body geometries near points of

potential contact, simultaneously preventing interpenetration while allowing bodies

to traverse accurately through the surrounding free space. Unlike the standard

approach, this method does not need to guess at which contacts to enforce. This

new formulation is easy to incorporate into existing simulation methods, improves

accuracy by many orders of magnitude, and is stable for even large time steps.

Additionally, I present the RPI-MATLAB-Simulator (RPIsim), an open source

tool for efficient research and practical teaching in multibody dynamics. RPIsim

is designed to be easy to use and easily extended. Students being introduced to

dynamics for the first time have no problem creating and running simulations, even

with a limited programming background. Researchers can utilize the existing code

base to support work on specific areas since it is easy to replace or extend individual

modules of the simulator.

xv

CHAPTER 1

INTRODUCTION

There is a wide spectrum of applications for simulation, but an understandable bias

toward real-time interactivity has bred a culture that leaves concerns of physical

accuracy in a dark corner. As a result, applications which require some level of

physical fidelity from simulation are left with a relatively underdeveloped set of

tools. The major focus of the work presented herein is on improving simulation

accuracy, and subsequently stability, without increasing computational complexity.

This trade off of speed versus accuracy in simulation is a classic one, and

many applications simply do not gain from improved physical accuracy. The gaming

community is naturally concerned with methods that are fast and reliable, but not

necessarily accurate [1–3], inspiring the term “game physics.” Many games in fact

intentionally incorporate non-realistic physics into their play, and no one would

rely on Angry Birds, which uses Box2D [4], to predict avian flight patterns. The

graphics community, which is constantly pushing the boundaries of realistic-looking

visual effects, does not offer many improvements to physically accurate simulation.

Although there are many examples in a long history of “physics based” methods in

use in animation [5–9], there is really no need for such methods to do more than

approximate some convenient alternative version of reality. Indeed, a more pressing

concern in many graphics applications is to present the viewer with something that

“feels” correct.

Particularly in the field of robotics, physical fidelity is a pressing concern and

is especially challenging with regard to intermittent frictional contact. Robotics

experiments tend to be exceedingly costly and time consuming, so that the ability

to perform reliable experiments in simulation would be a great benefit. Although

some work has been done regarding validation of simulation [10–13], the problem

of measuring physical accuracy of simulation is a difficult one. Certainly we can

say that convergence of a constraint solver is not a good metric alone, since the

underlying constraints may be flawed. Comparison of a simulation with that of a

1

2

commercial simulator (an argument I have heard with unfortunate frequency) is

meaningless without proof of the commercial simulator’s accuracy. Even validation

of a simulator with experiment can be misinterpreted when it takes the tuning of

several simulation parameters to match a single experiment. Such an attempt at

validation says little, if anything, of the simulator’s ability to predict a different

experiment.

Simulation is a powerfully useful tool if it can be shown to be accurate. A

simulation requires accuracy in order to make any claims as to its ability to model

behavior in the physical world, yet the growing number of variants on old simulation

methods all have at least this in common: they sacrifice numerical and physical

fidelity at multiple stages in order to achieve computational speed-up. The ideal

simulation tool would be both accurate and fast, but when we sacrifice accuracy, we

are necessarily sacrificing the usefulness of that tool.

1.1 Time-stepping

One category of simulation is the event-driven approach, which distinguishes

between dynamic modes such as no contact, sticking contact, and slipping contact,

and integrates over the current mode until a mode switching event occurs [14]. This

may be preferable for small numbers of bodies and contacts, as it is continuous

and computationally efficient in such a case, but becomes prohibitively expensive

as the number of contacts increases [15] since the mode switching will occur more

frequently.

Time-stepping is by far the most popular approach to simulating multiple

bodies, and the most common representation of bodies are as polygons in 2D and

polyhedra (often triangle meshes) in 3D. Throughout this document, I will be fo-

cusing on time-stepping methods which follow the pattern depicted in Figure 1.1.

These methods involve maintaining the positions and velocities of a set of bodies

and determining how to update these values over discrete time steps, starting from

an initial valid configuration.

The first stage in Figure 1.1 of graphically rendering the scene, although not

strictly necessary in the definition of this loop, is becoming more relevant as imple-

3

render scene

collision
detection

formulate
dynamics

solve
dynamics

state update

Figure 1.1: The main stages of the time-stepping simulation approach.
At each iteration, a contact set is determined, a time-stepping
problem representing the dynamic model is formulated, a so-
lution to this problem is found which generates updated body
properties, and finally these properties are used to update
body positions.

mentations are being pushed onto graphics cards and graphics data structures are

becoming more intimately tied with simulation, e.g., CUDA’s interopability. The

next stage, collision detection, involves the identification of contact or “interfer-

ence” points between pairs of bodies. From the set of contacts (and any additional

constraints such as joints or force/torque control), the next stage formulates a time-

stepping problem. This problem is solved in the next stage, providing an updated

set of velocities for each body. In the final stage, the new velocities are integrated

over the simulation time step to obtain the new body positions.

Of particular interest in this document are the stages of collision detection and

dynamics formulation, and how they are connected. The big question is: during

simulation, when given a pair of bodies composed of vertices, edges, and faces, that

are relatively close such that they are or could be in contact within the next time

step, what contacts should be enforced to best model their interaction with physical

fidelity?

There are two major classes of methods for handling contact, preventative

4

methods [16–18], or penalty, methods [19–21]. Preventative methods attempt to

identify contacts before they are violated, ideally preventing interpenetration of

bodies. This approach has several benefits over penalty methods, particularly that

it exhibits more stable behavior with regard to dynamics [22]. The major issue with

preventative methods, which will be our starting off point of Chapter 4, is deciding

which contacts to enforce when there are several to choose from. Enforcing too few

contacts will increase the likelihood of interpenetration, and enforcing too many

contacts will generate unnatural interactions.

Unlike preventative methods, penalty methods wait for contacts to be violated

before enforcing them. Penalty methods are generally straight forward to implement

and computationally less expensive than preventative methods, however they typ-

ically require very small time steps in order to avoid deep interpenetrations which

result in dynamic instability. Traditional penalty methods model contact as a linear

spring system [23], essentially pushing back on points of contact with penetration.

As we shall see in Chapter 5, penalty methods can exhibit unpredictable behavior

that is highly sensitive to time step size, and do not converge dynamically toward

stability for small time steps.

1.2 State-of-the-art

At the time of this writing, the Defense Advanced Research Projects Agency

(DARPA) Robotics Challenge (DRC) (www.theroboticschallenge.org) has com-

pleted its first two stages. The first stage was the Virtual Robotics Challenge (VRC)

in which competitors implemented controllers and algorithms for enabling a virtual

ATLAS robot to complete a set of predefined tasks meant to represent scenarios

that could possibly occur at a disaster scene such as a nuclear meltdown. DRC

tasks have included

1. Drive a utility vehicle

2. Traverse rubble

3. Remove debris blocking a doorway

4. Open a door and travel through it

5

5. Climb an industrial ladder

6. Pick up a tool and use it to cut through a wall

7. Locate and turn a set of valves

Winning teams of the VRC were given an ATLAS robot built by Boston

Dynamics, with the idea that they would be able to port their algorithms from the

VRC onto the real robot. Unfortunately, due to challenges with simulation, teams

in the VRC were forced to exploit unrealistic modeling choices in the simulation

software which did not translate into real robot control.

The simulator used for the VRC, and subsequently used by many teams dur-

ing the DRC trials in December of 2013, was the Gazebo simulator [24], currently

being developed by the Open Source Robotcs Foundation (OSRF). Figure 1.2 shows

Figure 1.2: ATLAS standing at the start of the terrain task in the Gazebo
Simulator.

ATLAS standing at the start of task 2, the terrain traversal task, as simulated by

Gazebo.

The code segment in Figure 1.3 is from the file ODEPhysics.cc in the Gazebo

simulator version 3.0.0, and includes a heuristic for limiting the number of contacts

6

between pairs of bodies. Prior to this point in the code, an initial set of contacts

was determined by finding all contacts within a small distance ε between two bodies.

Line 854 tests if the number of contacts in the initial set is over a given threshold. If

853 // Choose only the best contacts if too many were generated.
854 if (numc > maxCollide)
855 {
856 double max = contactCollisions[maxCollide−1].depth;
857 for (unsigned int i = maxCollide; i < numc; ++i)
858 {
859 if (contactCollisions[i].depth > max)
860 {
861 max = contactCollisions[i].depth;
862 this−>indices[maxCollide−1] = i;
863 }
864 }
865
866 // Make sure numc has the valid number of contacts.
867 numc = maxCollide;
868 }

Figure 1.3: Code segment from ODEPhysics.cc in the Gazebo 3.0.0.
When the number of contacts between two bodies is over
a certain threshold, only the contacts with the deepest vio-
lations are kept. This is a popular contact heuristic.

it is, then the subset of these contacts with deepest penetration are kept, while the

other contacts are removed. This choice of heuristic, choosing to include contacts

with deepest penetration, is a common one. It does seem quite sensible to think

that correcting the deepest contact should take priority over less severe contacts.

However, this simple heuristic can lead to instabilities.

Consider the case of a vertex of one body near a corner of another body as

depicted in Figure 1.4. The bottom right vertex of body A has a small penetration

with edge e2 which could be corrected with a small force. The significant weakness

of the deepest contact heuristic manifests when the vertex gets too close to e1. As

soon as this contact is considered, it will take priority since its penetration depth is

significant. Subsequently, a non-physical and large force will be applied to “correct”

this violation. It is tempting to immediately suggest an alternative heuristic to solve

for this specific case, but such a heuristic would inevitably break for a different case.

7

e1

e2

A

B

Figure 1.4: The bottom right vertex of body A has potential contact
with two edges of B. Including both contacts will gener-
ate a non-physical force sideways. The common heuristic of
including contacts with deepest penetration guarantees this
non-physical behavior in such cases.

Note in particular that it is entirely possible for the gap distance with e1 to be smaller

than the gap distance with e2 in nearly the same configuration, but a sideways force

would still be non-physical.

Figure 1.5 demonstrates another instability which is common in multibody

simulators. In each frame, we see the set of contacts (blue spheres) and the direction

of the contact normal (green lines) between the feet of ATLAS and the ground plane.

In 1.5a, the collision detection in Gazebo has identified a set of contacts that has the

(a) Time ∼ 1.7 s (b) Time ∼ 1.85 s (c) Time ∼ 2.0 s

Figure 1.5: Visualization of contacts and contact normals between AT-
LAS’s foot and the ground plane while “standing” in the
Gazebo simulator. Contact instabilities have imposed addi-
tional challenges in the DARPA Robotics Challenge.

deepest penetration, and at this particular time step these contacts happen to all be

8

at the front of the feet. Given this contact set, and the center of mass of the robot

being behind these contacts, ATLAS will rock backward. Less than half a second

later we see that the heels now have the deepest penetration and the contacts at

the toes are no longer included. As a result of choosing only a subset of the possible

contacts, as well as using a heuristic of choosing contacts with deepest penetration,

Gazebo and similar simulators tend to generate oscillatory motions of bodies that

should stay dynamically still. A common approach to correcting this is to dampen

body velocities and zero velocities below a certain threshold.

That state-of-the-art simulators employ such unsophisticated techniques for

identifying contacts speaks to a general focus on speed over accuracy, and exemplifies

the underdeveloped state of methods for contact determination. There are some

heuristics that have shown improved stability, such as using grouping on normal

directions [25] or maximizing the surface area between contacts. However, these

heuristics are treating the symptoms and not the cause, and are susceptible to other

instabilities.

Despite significant challenges lingering with regard to modeling multibody

contact and dynamics, many have pushed past onto larger and more complex sim-

ulations. Unfortunately, simulations with large numbers of bodies result in a sort

of overloading of human perception so that it is difficult for humans to perceive the

large number of non-physical interactions, especially when these interactions may

occur quickly over just a few time steps. This is unfortunate because it creates a

sense of greater progress than there really is.

Since the Bullet physics engine [26] is used in many video games and for some

special effects, it has little incentive to be physically accurate but great incentive

to be fast. Yet, like the Open Dynamics Engine (ODE) [27] which is the default

physics engine used in Gazebo, Bullet is utilized for robotics simulation. Figure 1.6

is a screen capture of the demo for Bullet 2.80 release, in which we can see many

interpenetrations between bodies, even some bodies that are stuck inside others

(front center). The video demonstrates the impressive speed of Bullet for many

bodies, but also serves as an excellent example of sacrificing accuracy for speed.

9

Figure 1.6: A screen capture of the Bullet 2.80 release video www.youtube.
com/watch?v=8jGZv1YYe2c at 3:12. Despite all 110,000 bodies
being identical (which makes collision detection more straight
forward), this simulation has numerous dramatic and deep
interpenetrations.

Figure 1.7 is a screen capture of a video from the Simulation Based Engi-

neering Lab (SBEL) group at University of Wisconsin, Madison. This group has

many impressive results not just for rigid bodies, but also for fluids and vehicles on

granular terrain. Unfortunately, they too must deal with underdeveloped methods,

particularly concerning collision detection and interference response for rigid body

dynamics.

At this point we may make a general observation on demonstrations of state-

of-the-art simulators: they tend to involve a large number of similar, if not identical,

bodies. Although this may give an innocent enough impression in that it is easier to

generate identical bodies as opposed to several thousand unique bodies, it drastically

reduces the conclusions one can make from such a demonstration. In particular,

giving every body the same set of attributes is an extremely special case and allows

10

Figure 1.7: A screen capture of video vimeo.com/31810546 at 0:47. Al-
though the vast number of bodies makes it difficult to discern,
there are numerous deep interpenetrations between bodies.

for many assumptions to be made during simulation which would not be safe in

general. Using identical bodies also avoids many issues with collision detection

since precisely the same set of tests will be applied between every pair of potentially

colliding bodies. Having identical body attributes also helps to avoid issues that

would arise when trying to solve multibody dynamics, since having all masses being

equal greatly improves the numerical properties of the dynamics problems, and

subsequently improves the stability of solution methods.

There are several closed source and for-profit simulators, but they do not seem

to show improvements in physical fidelity. There are several packages intended for

game physics, such as Havok Physics [28] and PhysX [29]. There are also packages

such as the widely popular Adams simulator [30], which purports to allow the user

to simulate “Real World” physics, but we should make special note their use of quo-

tation marks regarding what type of physics they simulate. Adams uses a penalty

method, and consequently exhibits many of the issues and instabilities associated

with such methods. Other simulation software packages, such as Cinema 4D Dy-

namics for MAXON, or Massive for Maya, are intended for use in cinematography

11

and need only provide eye-pleasing results.

In addition to robotic simulation, there are many other

Some of the challenges with state-of-the-art simulation include:

1. Penalty methods are popular for their ease of implementation and speed, but

are inherently flawed (non-physical) and require fine tuning to achieve stability.

2. Many problems in collision detection are poorly defined, and simulators tend

to require custom collision detection.

3. It is common in popular collision detection libraries to use some form of broad-

phase collision detection, and then GJK (see 2.6) for narrow phase. The

problem with using only GJK at narrow-phase is that it returns only a single

contact. A single contact is not generally good enough to provide accuracy

and stability.

4. Simulators scale poorly. Many contain hard coded parameters that are only

appropriate for certain problems. Others deal well only with particular body

types.

5. Solvers are slow (inefficient)

6. Solvers struggle with some numerical properties of simulation problems, such

as large mass ratios and complex friction models.

7. Little has been done to analyze the performance of the various solvers com-

monly used for simulation.

8. The trade off of speed for accuracy results in non-physical simulation. In

particular, accuracy is often sacrificed in friction and proper collision response.

9. Commonly, joint constraint correction involves applying an impulse after a

general dynamics solution. These corrections ignore other constraints such as

non-penetration and friction, voiding guarantees of accuracy.

12

1.3 Contributions

There are many applications for which simulation only becomes useful when

it accurately represents real-world phenomena. The goal of my research has been to

develop mathematical methods and simulation tools to push the state-of-the-art per-

formance in multibody dynamics simulation toward accuracy and dynamic stability,

with a particular focus on applications in robotics. The three major contributions

presented herein are as follows.

1. Contact determination

Chapter 3 details a set of geometric tests for robust identification of potential

contacts for polygons in 2D and polyhedra in 3D. While many simulators wait for

interpenetration to occur before identifying contact (due in part to the nature of

the collision detection tools available), it is necessary to detect potential contacts

before they are violated in order to avoid interpenetration. In doing so, we are able

to avoid the many instabilities that inevitably arise if we were to attempt to enforce

constraints only after they have been violated.

2. Modeling of contact interdependencies

During simulation, it is possible to reach a state in which a feature of one

body has multiple contacts with several features of another body. The traditional

approach is to make some heuristic choices regarding which of these contacts to

include in the “active” set. Unfortunately, it is always possible to provide examples

which break this approach. In Chapter 4, I introduce by means of derivation a con-

tact model which is capable of taking into account all potential contacts, and show

how to formulate a time stepping problem which takes into account the interdepen-

dencies between them. This new contact model permits all geometrically accurate

configurations of bodies in 2D and 3D. Chapter 5 compares the performance of this

new model to popular and competitive alternative models.

3. RPI-MATLAB-Simulator

In Chapter 6, I describe the RPI-MATLAB-Simulator (RPIsim), an open

source simulation framework for research and education in multibody dynamics.

13

RPIsim is designed and organized to be extended. Its modular design allows users

to edit or add new components without worrying about extra implementation de-

tails. RPIsim has two main goals:

1. Provide an intuitive platform that is easy to extend for research and education

in multibody dynamics,

2. Maintain an evolving code base of useful algorithms and analysis tools for

multibody dynamics problems.

CHAPTER 2

BACKGROUND

In this chapter, we cover much of the background of rigid body kinematics and

dynamics, as well as basic ideas in collision detection. We will see how rigid bod-

ies are commonly represented in simulation, and how to formulate sets of dynamic

constraints, including those for contact, friction, and joints. We also introduce meth-

ods for discretizing these constraints into formulations for time-stepping simulation

schemes. Lastly, we briefly introduce some of the popular collision detection libraries

for multibody simulation.

2.1 Kinematics

Kinematics refers to the mathematical descriptions of positions and orienta-

tions of bodies, or points on those bodies, as they move through space over time.

2.1.1 Spatial representation of rigid bodies

A rigid body’s frame of reference is completely described with respect to the

world frame by a position and a rotation (orientation). In three dimensional space,

let the position of a body’s frame {B} at a point x be represented by the column

vector p =
[
px py pz

]T
where px, py, and pz represent the x, y, and z values of

a 3D coordinate. The rotation of the body from frame {A} to frame {B} may be

represented by a rotation matrix RAB =
[
x̂AB ŷAB ẑAB

]
, where x̂AB, ŷAB, and

ẑAB are the unit vectors representing the principal axes of frame {B} in frame {A}
coordinates [31]. RAB is said to be the rotation matrix ”from A to B.” The rotation

matrix is composed of nine scalar values rij where

RAB =

⎡
⎢⎢⎣
x̂B · x̂A ŷB · x̂A ẐB · x̂A
x̂B · ŷA ŷB · ŷA ẐB · ŷA
x̂B · ẑA ŷB · ẑA ẐB · ẑA

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎥⎥⎦

14

15

Upon inspection of this matrix describing {B} with respect to {A}, we notice that

each row i is indeed a principal axis of {A} with respect to {B}. In other words,

the transpose of rotation matrix gives the rotation matrix in the reverse order, or

RT
AB = RBA. Further, we note that multiplying RABRBA results in the identity I3.

This is precisely the definition of a matrix inverse, which leads us to write

RAB = RT
BA = R−1

BA

and declare that the inverse of a rotation matrix is equal to its transpose. As a final

observation on the properties of rotation matrices, we note that a rotation matrix is

said to be ”orthonormal” since it is both orthogonal and composed of unit vectors.

It can be shown that for a given rotation matrix R, det(R) = 1 and ||R|| = 1.

2.1.2 Mapping and transformation

Mapping refers to the conversion, or transformation, of a point or vector from

one reference frame to another. Consider the following example: Given frames {A}
and {B}, the vector pAB from {A} to {B}, and the vector pBC what is pAC? To

convert a vector from frame {B} to frame {A}, we simply multiply the rotation

matrix RAB by the vector’s representation in {B}. Here we begin see a pattern in

the notation. The solution is pAC = pAB +RABpBC . Indeed, if we were to consider

a similar example finding pAZ , the solution would simply be

pAZ = pAB +RABpBC +RACpCD +RAEpEF + ...+RAY pY Z

where for example RAD is given by RAD = RABRBCRCD.

It is common to combine the rotation and translation from one frame to an-

other into a single matrix T we call a transformation matrix. Given the rotation

matrix RAB and the column vector pAB, we define

TAB =

⎡
⎣ RAB pAB

0 0 0 1

⎤
⎦

Examining this definition while considering the example above finding PAC , we see

16

that we can rewrite the solution compactly as p̄AC = TABp̄BC where p̄ is a ho-

mogenous vector [px py pz 1]
T . If we consider the example finding p̄AZ , the notation

really goes to work for us with the solution p̄AZ = TABTBCTCD . . .TXY p̄Y Z .

Note that the reverse transformation matrix is not so neat as the rotation

matrix alone,

TBA =

⎡
⎣ RT

AB −RT
ABpAB

0 0 0 1

⎤
⎦

2.1.3 Alternative rotation representations

There are many ways of representing a 3D rotation [32, 33]. The following are

brief descriptions of the most popular rotation representations.

Euler Angles

Rotating with Euler angles involves three rotations by angles of α, β, and γ

about three primary axes. The axes used can be any combination of X, Y , and Z,

as long as no redundant rotations occur, e.g. XXY . This leaves 12 total possible

rotation combinations. Sometimes a distinction is made between “classical” Euler

angles whose first and third rotations are about the same axis, and Cardan or Tait-

Bryan angles, whose rotations use all three primary axes.

If the orientation of the axes of rotation change with the system, the rotations

are said to be intrinsic. If the rotations occur about axes fixed with respect to the

world frame, they are said to be extrinsic.

Axis-Angle and Exponential Notation

The aptly named axis-angle rotation representation defines rotation by an

angle θ about an axis defined by unit vector k̂. This is directly related to exponential

notation where e[k̂]×θ corresponds to the rotation by θ radians about unit vector k̂

where []× denotes the cross product matrix

[k]× =

⎡
⎢⎢⎣

0 −kz ky

kz 0 −kx
−ky kx 0

⎤
⎥⎥⎦ . (2.1)

17

The definition is found in the Euler-Rodrigues formula

R = e[k̂]×θ = I3cos(θ) + [k]× sin(θ) + (1− cos(θ))kkT (2.2)

which is derived by expanding e[k̂]×θ using Taylor series expansion.

Quaternions

Strictly speaking, it is unit quaternions that are used for spacial rotation.

The quaternion takes the form of a four-tuple and may be written as {a, b, c, d} or

a+ bi+ cj + dk where i, j, and k follow Hamilton’s rules:

i2 = j2 = k2 = ijk = −1
ij = −ji = k

jk = −kj = i

ki = −ik = j.

Given the quaternion q = a+ bi+ cj + dk, one can calculate the rotation matrix R

corresponding to q with

R =

⎡
⎢⎢⎣
1− 2(c2 + d2) 2(bc− ad) 2(ac+ bd)

2(bc+ ad) 1− 2(b2 + d2) 2(cd− ab)

2(bd− ac) 2(ab+ cd) 1− 2(b2 + c2)

⎤
⎥⎥⎦

Quaternions are often favored because they do not suffer from Gimbal lock,

they require less storage space since they are composed of only four real numbers,

and are numerically more stable since they are easily normalized and have fewer

sources of error than rotation matrices when being integrated.

2.2 Dynamics

Dynamics, or classical mechanics, is the branch of physics that deals with

forces and torques on bodies, and the behavior consequences of those forces. We

focus particularly on those forces generated by contact and friction.

18

2.2.1 Twist, wrench, and inertia

Consider a world frame {W} in which we place a rigid body with an inertial

frame {B}, fixed with respect to the body and with its origin coincident with the

body’s center of mass (this coincidence is the convention, and is mathematically

convenient, but not required). The orientation of the body is given by the position

u ∈ R
3 and a rotation matrix RWB =

⎡
⎢⎢⎣
x̂B · X̂W ŷB · x̂W ẑB · x̂W
x̂B · ŶW ŷB · ŷW ẑB · ŷW
x̂B · ẐW ŷB · ẑW ẑB · ẑW

⎤
⎥⎥⎦ ∈ R

3×3. The

translational velocity v ∈ R
3 contains scalar components representing the velocity

in the direction of the primary axes. The angular velocity ω ∈ R
3 contains scalar

compenets representing the angular velocity about the primary axes in the right-

handed sense. The generalized velocity of of the body is the stacked column vector

ν =

⎡
⎣v
ω

⎤
⎦. For an arbitrary point with respect to the body, ν is composed of the

translational and rotational velocity of that point expressed in {W}, and is called

the twist [34]. From here on, when we refer to velocity, we are speaking of the

generalized velocity.

Consider a point ci on the body given by a vector r ∈ R3 from the body’s

center of mass to the point, with a fixed frame {C}. The velocity of the point ci

with respect to the world frame is given by

⎡
⎣vWiobj
ωW
obj

⎤
⎦ = PT

i ν, (2.3)

where

Pi =

⎡
⎣I3×3 0

[r]× I3×3

⎤
⎦ .

If we want to know the twist of the origin of {C}i given in frame {C}i, we can

transform the left hand side of equation (2.3). Let Ri represent the rotation matrix

19

from {W} to {C}i. The twist represented in {C}i is given by

⎡
⎣RT

i 0

0 RT
i

⎤
⎦
⎡
⎣vWiobj
ωW
obj

⎤
⎦ . (2.4)

The inertia tensor J̄ is a 3 × 3 matrix of moments of inertia and relates a

body’s angular momentum to its angular velocity. A body with volume V has

angular momentum L which may be written as L = J̄ω or

⎡
⎢⎢⎣
Lx

Ly

Lz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
∫
(y2 + z2) dV − ∫ xy dV − ∫ xz dV

− ∫ xy dV
∫
(z2 + x2) dV − ∫ yz dV

− ∫ zx dV − ∫ yz dV
∫
(x2 + y2) dV

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ωx

ωy

ωz

⎤
⎥⎥⎦ . (2.5)

We can transform J̄ into the world frame inertia tensor J by

J = RJ̄RT . (2.6)

2.2.2 Newton-Euler equations

The Newton-Euler equations are simply the combination of Newton’s sec-

ond [35, 36] law with Euler’s second law [37].

Newton’s 2nd Law: f = mv̇

Euler’s 2nd Law: τ = Jω̇ + ω × Jω

where f is force, m is mass, v̇ is the translational acceleration, τ is torque, J is

inertia, and ω is angular velocity. We can combine these into a single equation

M(q)ν̇ = G(q)λapp + λext (2.7)

where q is the generalized position q =

⎡
⎣u
q

⎤
⎦ given quaternion q,M(q) is the mass-

inertia matrix with the form M =

⎡
⎣mI3 0

0 J

⎤
⎦, ν̇ is the derivative of the generalized

20

velocity vector, and λ is the generalized force containing the torque λ =

⎡
⎣ f
τ

⎤
⎦. We

have also broken up the forces into an applied force λapp and external force λext.

The matrix G(q) is a Jacobian matrix and contains information about the point on

the body at which λapp is being applied. It essentially translates the applied force

into its translational and rotational components with respect to the body frame.

When associated with a force λ in direction n̂,

G(q) =

⎡
⎣ n̂

r× n̂

⎤
⎦ (2.8)

where r is the vector from the center of mass to the point of application of λ.

In equation (2.7), we could have also multiplied a G by λext, but it would have

simplified to an identity since the point of application of the external force is through

the center of mass.

2.2.3 Bilateral constraint

Joints may be modelled as bilateral constraints as

0 = ψb(q, t) (2.9)

where ψb(q, t) is the constraint violation as a function of configuration q and time

t. Consider the joint depicted in Figure 2.1.

Joint constraints attempt to constrain the relative positions of joint frames of

either one body to the world frame or two bodies relative to one another. Given

two bodies A and B, each has their own joint frame {Ja} and {Jb} fixed relative to

their respective bodies. Let ra be the vector from the center of mass of body A to

the joint frame {Ja}, and let x̂a, ŷa, and ẑa be the unit vectors corresponding to

the primary axes of {Ja}, all expressed in the world frame. Body b has analogously

defined vectors for its joint frame {Jb}. We may write the joint constraint Jacobian

as the stacked matrix Gb =

⎡
⎣GA

GB

⎤
⎦. If we were to constrain both position and

21

(a) Two joined bodies and their re-
spective joint frame coordinate
systems {JA} and {JB}.

(b) The set of joint axes and possi-
ble errors in origins as well as unit
points along constraint directions.

Figure 2.1: A joint constraint between two bodies A and B. Every joints
maintains two joint frames, one per body involved. The dis-
crepancies in these two frames correspond to the joint error.

rotation about all three axes, we would have a rigid or “fixed” joint where

GA =

⎡
⎣ x̂a ŷa ẑa 0 0 0

ra × x̂a ra × ŷa ra × ẑa x̂a ŷa ẑa

⎤
⎦

GB =

⎡
⎣ −x̂a −ŷa −ẑa 0 0 0

rb ×−x̂a rb ×−ŷa rb ×−ẑa −x̂a −ŷa −ẑa

⎤
⎦

(2.10)

We can think of the six columns of equation (2.10) as respectfully constraining

the x position, y position, z position, x rotation, y rotation, and z rotation with

regard to the assumed initially coincident joint frames {Ja} and {Jb}. From here, we

can create any common joint we wish by simply masking out the columns for which

we would like to introduce a degree of freedom. A revolute joint about the ẑ axis

would include columns one through five, but eliminate column six, thus allowing

non-zero rotational velocity about the joint’s ẑ direction. Table 2.1 contains the

Jacobian definitions (for GA) for several common joint types.

22

Table 2.1: Joint constraint Jacobian definitions.

Joint Type Jacobian

Rigid (fixed) GA =

⎡
⎣ x̂a ŷa ẑa 0 0 0

ra × x̂a ra × ŷa ra × ẑa x̂a ŷa ẑa

⎤
⎦

Revolute GA =

⎡
⎣ x̂a ŷa ẑa 0 0

ra × x̂a ra × ŷa ra × ẑa x̂a ŷa

⎤
⎦

Prismatic GA =

⎡
⎣ x̂a ŷa 0 0 0

ra × x̂a ra × ŷa x̂a ŷa ẑa

⎤
⎦

Cylindrical GA =

⎡
⎣ x̂a ŷa 0 0

ra × x̂a ra × ŷa x̂a ŷa

⎤
⎦

Spherical GA =

⎡
⎣ x̂a ŷa ẑa

ra × x̂a ra × ŷa ra × ẑa

⎤
⎦

2.3 Contact and the complementarity problem

Consider two bodies A and B near contact as depicted in Figure 2.2. A contact

between two bodies may be represented as a 5-tuple C = {Aid,Bid,pa, n̂, ψn}, where
Aid and Bid are body indices or identifiers for A and B respectively, pa is the contact

point on A in world coordinates, n̂ is the contact normal vector in the direction of

A onto B by convention, and ψn is the signed gap distance between the two bodies.

The point of contact pb on B is available by pb = pa + ψnn̂. Vectors t̂ and ô form

an orthonormal basis with n̂. The vectors ra and rb span from the center of mass of

each body to the point of contact on that body. Although not required, we use the

convention that a body’s reference frame is coincident with its center of mass. There

is the potential for a contact force λn along the normal vector which is intended to

prevent ψn from becoming negative.

The complementarity problem offers a convenient way to model contact. There

is a vast body of research regarding complementarity problems and methods for their

solution [38, 39]. Given a mapping f(z) : Rn → R
n, the complementarity problem

23

ψn

x̂a

ŷa

ẑa

x̂b

ŷb
ẑb

n̂

ô
t̂

ra

rb

A
B

{W}
x̂

ŷ

ẑ
ua

ub

Figure 2.2: Bodies A and B in 3D, and contact vectors in the world frame
{W}. A potential contact force is enacted along the normal
direction n̂. Frictional forces occur in the plane spanned by
t̂ and ô, which form an orthonormal basis with n̂.

(CP) seeks to find a solution vector z ∈ R
n to satisfy

z ≥ 0

f(z) ≥ 0

zT f(z) = 0

(2.11)

which may be expressed equivalently as

0 ≤ f(z) ⊥ z ≥ 0 (2.12)

There are many solvers available for CPs [40], and in particular the linear CP (LCP)

[41, 42] where f(z) is a linear function. There are also specialized solvers which at-

tempt to exploit properties specifically related to multibody dynamics problems [43].

2.3.1 Contact constraint

A unilateral contact constraint is intended to prevent interpenetration of bod-

ies given the contact information depicted in Figure 2.2 (we will see in 5.3 why this

24

is subject to error). The standard approach of this constraint [44] requires

λn ≥ 0

ψ(q, t) ≥ 0

λnψ(q, t) = 0

(2.13)

or following the format of (2.12),

0 ≤ ψ(q, t) ⊥ λn ≥ 0 (2.14)

demonstrating how useful the complementarity problem is for modeling contact.

2.3.2 Friction constraint

There are several choices of friction model, but a typical choice is Coulomb’s

dry friction model [45]. Coulomb’s model is expressed as

||λf || ≤ μ||λn|| (2.15)

where λf is the friction force and μ is the coefficient of friction between the two

bodies at the point of contact. This inequality corresponds to a friction cone as

depicted in Figure 2.3. The contact may be in one of two states in terms of friction.

When the relative velocity of the contact points is zero, the contact is said to be

sticking or rolling, otherwise the contact is said to be sliding. In the case of sticking,

the magnitude of the friction force λf is bounded by

0 ≤ λf ≤ μλn

and in the case of sliding the magnitude of the friction force is given by

λf = μλn.

25

λn

λf

n̂

t̂

ô

(a) Sticking case.

λn

λf v

n̂

t̂

ô

(b) Sliding case.

Figure 2.3: The friction cone of Coulomb’s dry friction model. The cone
represents to the possible frictional force λf corresponding to
the normal force λn. The size of the base of the cone (top)
is determined by the friction coefficient μ and λn. When
sticking, λf will project to the interior of the base, and when
sliding, λf is constrained to the perimeter of the base.

The direction of λf is opposite that of the velocity vector, and may be in any

direction in the case of sticking. We define the friction cone F(μ, λn) as

F(μ, λn) = {(λt, λo : μ2λ2
o − λ2

t − λ2
o ≥ 0} (2.16)

where λt and λo are the magnitudes of vectors λt and λo which form an orthogonal

basis with λn [46]. The maximum dissipation principle allows us to write Coulomb’s

law as

(λt, λo) ∈ argmax
(λt,λo)∈F

(−λtvt − λovo) (2.17)

where vt and vo are the velocity vector components in the t̂ and ô directions.

Following the derivations in [46, 11], we can write Coulomb’s law as a nonlinear

problem with multiple contacts as

0 = (Uλn) ◦ (vt) + λt ◦ σ (2.18)

0 = (Uλn) ◦ (vo) + λo ◦ σ (2.19)

0 ≤ σ ⊥ (Uλn) ◦ (Uλn)− λt ◦ λt − λo ◦ λo ≥ 0 (2.20)

26

where for each contact j, U is a diagonal matrix composed of coefficients of friction

μj and σ is the slip speed. The ◦ operator denotes the Hadamard product for vectors

and matrices where for example

⎛
⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎟⎠ ◦

⎛
⎜⎜⎝

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a11 b11 a12 b12 a13 b13

a21 b21 a22 b22 a23 b23

a31 b31 a32 b32 a33 b33

⎞
⎟⎟⎠

We can linearize the friction constraint by approximating the friction cone as

a polygonal cone as depicted in Figure 2.4. This allows us to write the friction

constraint as a linear complementarity problem which is convenient. The linear

λn

n̂

t̂

ô

(a) Side view.

d̂1

d̂2d̂3

d̂4

d̂5
d̂6

d̂7

(b) View from above.

Figure 2.4: The friction cone and its polygonal approximation for nd = 7
friction directions as viewed from the side and top. In this
linear model, the friction occurs along one of the nd directions,
but models the same friction law. Some error is introduced
by the simplification, but solutions are easier to find and allow
us to forgo non-linear solvers.

friction constraint takes the form

0 ≤ Gfν
�+1 + Es�+1 ⊥ p�+1

f ≥ 0
0 ≤ Up�+1

n − ETp�+1
f ⊥ s�+1 ≥ 0

(2.21)

where s corresponds to the relative sliding speed, U is a diagonal matrix composed

of friction coefficients, E is a selection matrix given by

E = blockdiag(e1, . . . , enc), where ei = ones(nd, 1)

27

for nc contacts, and the friction constraint Jacobian Gf is composed of submatrices

Gfij for nd friction directions in the linearized friction cone with

Gfij =

⎡
⎣ d̂i1 ... d̂ind

(rij × d̂i1) ... (rij × d̂ind
)

⎤
⎦ (2.22)

where d̂ik is the kth vector representing the friction cone.

2.4 Time stepping

Time stepping describes the process in which we keep track of all bodies, in-

cluding their position, orientation, and other physical properties such as velocity, and

formulate a time-stepping subproblem of which the solution gives the updated values

for velocity at the end of the time step. Time-stepping simulation methods utiliz-

ing the complementarity problem were introduced by Moreau [17], and there was

significant work regarding constraint based multibody dynamics in the 1980s [47–

49].Using the backward Euler method to approximate the derivatives from step � to

�+ 1 of size h, we have

ν̇�+1 ≈ ν�+1 − ν�

h
(2.23)

and

q̇�+1 ≈ q
�+1 − q�

h
(2.24)

If the mass matrix M and the constraint Jacobian G are to be evaluated at � + 1,

then the time-stepping scheme is said to be fully-implicit. A semi-implicit scheme,

such as Stewart-Trinkle [18], is one in which M and G are formulated at � but

constrained to be true at �+ 1.

2.4.1 Discretization of Newton-Euler equations and constraints

We discretize constraints over a time step h in seconds from step � to �+ 1 as

a time-stepping subproblem using the Taylor series approximation of a gap distance

ψ�+1 = ψ� +GT (q)ν�+1h+
∂ψ�

∂t
h (2.25)

28

for generalized velocity νi =
[
vTi ωT

i

]T
, and where G(q) is the constraint Jacobian

given for body i and constraint j by

Gij =

⎡
⎣ n̂ij

rij × n̂ij

⎤
⎦ (2.26)

where r is the vector from the center of mass of body i to the point of application of

the force corresponding to constraint j on body i. The non-penetration constraint

of equation (2.14) is then discretized to

0 ≤ ψ�
n +G

T
nν

�+1h+
∂ψ�

n

∂t
h ⊥ p�+1

n ≥ 0 (2.27)

where pn are impulses, i.e., p = hλ for time step size h.

The bilateral constraint of equation (2.9) discretizes to

0 = ψ�
b +G

T
b ν

�+1h+
∂ψ�

b

∂t
h (2.28)

where ψb is the distance violation for each constrained dimension. It is not uncom-

mon to see the terms ψ�
b +

∂ψ�
b

∂t
h in equation (2.28) dropped, allowing the bilateral

constraint to “drift” over time. Joint stabilization can then be utilized to correct

this drift at the end of the time step after other constraints have been satisfied.

We enforce the Newton-Euler equation with all of our constraints

Mν̇ = Gbλb +Gnλn +Gfλf + λext (2.29)

where M is the mass-inertia matrix diagonally composed of Mi =

⎡
⎣miI3 0

0 Ji

⎤
⎦ for

each ith body with mass mi and inertia tensor Ji, ν̇ is the first derivative of the

generalized velocities, each λ is a column vector of forces resulting from constraints

imposed upon the bodies, G is the corresponding constraint Jacobian, and λext

is a column vector of the external forces applied to the bodies, e.g., gravity. We

29

discretize equation (2.29) as

Mν�+1 =Mν� +Gbp
�+1
b +Gnp

�+1
n +Gfp

�+1
f + p�+1

ext (2.30)

where pext are the external impulses, e.g., gravity.

We can write this dynamic model in the form of a mixed LCP (MCP) by

letting

ρ�+1
n = GT

nν
�+1 +

ψn

h
+

∂ψn
∂t

(2.31)

ρ�+1
f = GT

f ν
�+1 +

∂ψf
∂t

(2.32)

σ�+1 = Up�+1
n − ETp�+1

f (2.33)

Then we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ρ�+1
n

ρ�+1
f

σ�+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−M Gb Gn Gf 0

GT
b 0 0 0 0

GT
n 0 0 0 0

GT
f 0 0 0 E

0 0 U −ET 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν�+1

p�+1
b

p�+1
n

p�+1
f

s�+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mν� + pext
ψb

h
+ ∂ψb

∂t

ψn

h
+ ∂ψn

∂t
∂ψf

∂t

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.34)

0 ≤

⎡
⎢⎢⎣
ρ�+1
n

ρ�+1
f

σ�+1

⎤
⎥⎥⎦ ⊥

⎡
⎢⎢⎣
p�+1
n

p�+1
f

s�+1

⎤
⎥⎥⎦ ≥ 0 (2.35)

which corresponds to the Stewart-Trinkle (ST) time-stepping method [18]. If we

change the unilateral constraint terms in the right most portion of equation (2.34) to

be zero, i.e., replace ψn

h
+ ∂ψn

∂t
with 0, we achieve the Anitescu-Potra method [50, 51].

At the end of each time step, body configurations are kinematically updated.

Bodies that were not included in the time-stepping subproblem, i.e., those that were

unconstrained during the time step, have velocities updated by

ν�+1 ← ν� +
λext
m

h

Given a quaternion representation of rotation of q = a + bi + cj + dk, all dynamic

30

bodies are then updated according to

q�+1 ← q� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3 0

0 1
2

⎛
⎜⎜⎜⎜⎜⎝

−b −c −d
a d −c
−d a b

c −b a

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
ν�+1h (2.36)

As an alternate dynamics formulation to the MCP of equation (2.34), we can

write the LCP in a form that can be passed to a solver. We can write the dynamics

model as

A =

⎡
⎢⎢⎣
0 0 0

0 0 E

U −ET 0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
GT

n 0

GT
f 0

0 0

⎤
⎥⎥⎦
⎡
⎣−M Gb

Gb 0

⎤
⎦
−1 ⎡
⎣Gn Gf 0

0 0 0

⎤
⎦ (2.37)

b =

⎡
⎢⎢⎣
ψn

h
+ ∂ψn

∂t
∂ψf

∂t

0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
GT

n 0

GT
f 0

0 0

⎤
⎥⎥⎦
⎡
⎣−M Gb

Gb 0

⎤
⎦
−1 ⎡
⎣Mν� + pext

ψb

h
+ ∂ψb

∂t

⎤
⎦ (2.38)

From the solution z, we determine ν�+1 with

ν�+1 =

⎡
⎣−M Gb

Gb 0

⎤
⎦
−1⎛
⎝−

⎡
⎣Gn Gf

0 0

⎤
⎦ z−

⎡
⎣Mν� + pext

ψb

h
+ ∂ψb

∂t

⎤
⎦
⎞
⎠ (2.39)

2.4.2 Impulse constraint correction

As mentioned, joint constraints are prone to drift within this maximum coor-

dinate formulation. A joint correction algorithm is given in algorithm 1 where C is

the bilateral constraint violation and V is the kinematic mapping onto q. This algo-

rithm is conceptually similar to that described by Bender [52], but is more general

in that it could be used for any equality constraint for which we could determine C.

31

Algorithm 1 Iterative joint constraint correction method

while (norm(C(�+1)) > εp)

p = −(G(�)TM−1G(�))−1 C(�+1)

h

Δν =M−1 G(�) p

q(�+1) = q(�+1) +V Δν h

ν(�+1) = ν(l+1) +Δν

Recalculate C(�+1)

G(�+1) ← G(�)

while (norm(Ċ(�+1)) > εν)

p = −(G(�+1)TM−1G(�+1))−1 Ċ(�+1)

Δν =M−1 G(l+1) p

ν(�+1) = ν(�+1) +Δν

Recalculate Ċ(�+1)

The joint constraint Jacobians of Algorithm 1 are different than the bilateral

Jacobian definitions of equation (2.10). Here, we define these constraint Jacobians

in Table 2.2 in terms of a primary bilateral vector, which we choose by convention

to be the ẑ axis of the joint.

Table 2.2: Joint correction constraint Jacobian definitions.

Joint Type Jacobian

Rigid (fixed) G =

⎡
⎣ x̂a ŷa ẑa x̂a ŷa ŷa

ra × x̂a ra × ŷa ra × ẑa rza × x̂a rza × ŷa rxa × ŷa

⎤
⎦

Revolute G =

⎡
⎣ x̂a ŷa ẑa x̂a ŷa

ra × x̂a ra × ŷa ra × ẑa rza × x̂a rza × ŷa

⎤
⎦

Prismatic G =

⎡
⎣ x̂a ŷa x̂a ŷa ŷa

ra × x̂a ra × ŷa rza × x̂a rza × ŷa rxa × ŷa

⎤
⎦

Cylindrical G =

⎡
⎣ x̂a ŷa x̂a ŷa

ra × x̂a ra × ŷa rza × x̂a rza × ŷa

⎤
⎦

Spherical G =

⎡
⎣ x̂a ŷa ẑa

ra × x̂a ra × ŷa ra × ẑa

⎤
⎦

32

Table 2.3: Joint correction constraint violation definitions.

Joint Type Error

Rigid (fixed) C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pax − pbx
pay − pby
paz − pbz
zax − zbx
zay − zby
xay − xby

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Revolute C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

pax − pbx
pay − pby
paz − pbz
zax − zbx
zay − zby

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Prismatic C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

pax − pbx
pay − pby
zax − zbx
zay − zby
zaz − zbz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cylindrical C =

⎡
⎢⎢⎢⎢⎢⎣

pax − pbx
pay − pby
zax − zbx
zay − zby

⎤
⎥⎥⎥⎥⎥⎦

Spherical C =

⎡
⎢⎢⎣
pax − pbx
pay − pby
paz − pbz

⎤
⎥⎥⎦

A revolute joint example was run for the pendulum configuration depicted in

Figure 2.5 where a dynamic body (blue) is constrained to a static body (gray) and

set to swing. Two simulations were executed: one with joint correction, and one

without. The error over the first 4000 iterations of these simulations is shown in

Figure 6.4. We can see that the error is periodic in both corrected and non-corrected

33

runs, but the position error in the non-corrected run increases over time. This drift

is stabilized in the corrected run using Algorithm 1. Note that both position and

velocity error for the corrected run are stably maintained within values of 10−5 since

this was the epsilon value used for both the position εp and velocity εv.

Figure 2.5: A hanging pendulum. A single joint constrains the motion of
the dynamic body (blue) with respect to the the static body
(gray).

This type of correction to bilateral constraint violation is useful and shown

to be quick, but because it is executed at the end of the time step after all other

constraints have been satisfied, it ignores all other constraints such as contact. As

a result, it is possible to violate the constraints that were just implicitly solved for

in the time-stepping subproblem. Because of this, this method of joint stabilization

requires small time steps in order to avoid violating constraints too deeply to recover

from in the next time step.

2.5 Solution methods

There are several numerical methods for solving problems in the forms of

LCP, mLCP, and NCP, all with varying advantages and disadvantages. One set of

34

(a) Joint error with no correction.

(b) Stabalized joint error with Correction.

Figure 2.6: Position and velocity error for pendulum simulations.

popular methods for solving systems of linear equations are variants of the iterative

Gauss-Seidel method [53–55].

The standard Gauss-Seidel scheme for solving Ax = b is loosely derived as

follows. Decompose A into its lower triangular and strictly upper triangular com-

ponents A = L+U. We may then write Lx = b−Ux, or as a fixed-point iteration

xk+1 = L−1(b−Ux(k)). It follows that the element-wise iterative scheme for solving

35

x with sequential forward substitution is given for i from 1 to N as

x
(k+1)
i ← 1

Aii

(bi −
∑
j<i

Aijx
(k+1)
j −

∑
j>i

Aijx
(k)
j). (2.40)

If this method is instead executed without sequentially forward substituting, it is

the Jacobi method [56] and is written

x
(k+1)
i ← 1

Aii

(bi −
∑
i �=j

Aijx
(k)
j). (2.41)

Because the Jacobi method does not rely on the results of other rows, it is easily

parallelized, however it converges much more slowly than GS, if at all.

It should be noted that there is a division in equation (2.40) by each diagonal

element of A. Indeed, for guaranteed convergence, A must be either symmetric

positive-definite, or diagonally dominant. Unfortunately, formulations like those in

equation (2.34) have zeros in the diagonals of their LCP portions, which make them

poorly suited for standard Gauss-Seidel without modification. Further, the LCP

definition requires that the solution x be non-negative.

2.5.1 Projected Gauss-Seidel, Splitting Method

Consider the ”pure” LCP formulation, rewritten here

Ax ≥ b
x ≥ 0

xT (Ax+ b) = 0

(2.42)

One variation on Gauss-Seidel that attempts to solve the LCP is the so called split-

ting method [57, 58]. The idea is to split A into two different and more numerically

convenient matrices. Using splitting, we break up A into A = M −N. It follows

36

from equation (2.42) then

Mx−Nx+ b ≥ 0
x ≥ 0

xT (Mx−Nx+ b) = 0
(2.43)

It can be shown that equation (2.43) is equivalent to finding

min(xk+1,Mxk+1 + b−Nxk) = 0

which is easily rearanged by subtracting xk+1 and negating into the fixed-point

formulation

xk+1 = max(0,−Mxk+1 − b+Nxk + xk+1) (2.44)

Here, we can see (by trying both cases of xk+1 = 0 and xk+1 ≥ 0) that Mxk+1 =

−b + Nxk. So assuming that M was chosen well, it can be inverted and we can

back substitute into equation (2.44) to get

xk+1 = max(0,M−1(Nxk − b)) (2.45)

From here, we obtain our fixed-point iterative method of Projected Gauss-Seidel

(PGS) for solving LCPs of the form in equation (2.42):

Algorithm 2 Projected Gauss-Seidel using Splitting Method

Given matrix A, vector b, and initial guess x0
Determine matrices M and N where A =M−N
Initalize xk ← x0
while not converged

xk+1 ← −M−1(Nxk − b)
if xk+1 < 0

xk+1 ← 0 The projection step
xk ← xk+1

Of course, it remains to be determined what good choices are forM and N in

algorithm 2, and how to find them.

37

2.5.2 Projected Succesive Over Relaxation

Projected Successive Over Relaxation (PSOR) is a more general form of PGS

[59]. For the square matrix A, the iterative elemental form is a modified version of

equation (2.40), and has the form

x
(k+1)
i ← max(0, x

(k)
i + λ

[
1
Aii

(bi −
∑
j<i

Aijx
(k+1)
j −

∑
j>i

Aijx
(k)
j)− x

(k)
i

]
) (2.46)

where λ is a tuning parameter intended to improve convergence, and PGS is the

special case where λ = 1.

We can also modify the Jacobi method to use a similar technique [60]. I

have compared its performance against other methods and found in practice that

a value of λ around 0.5 improves convergence for the problems tested. The idea is

the same as when applied to GS: we use a tuning parameter λ in order to improve

convergence. The iterative scheme I have used shares the same relationship with

Jacobi that PSOR shares with GS and is given by

x
(k+1)
i ← max(0, x

(k)
i + λ

[
1
Aii

(bi −
∑
j �=i

Aijx
(k)
j)− x

(k)
i

]
) (2.47)

This is a projected Jacobi method with successive over-relaxation, and without

projection onto zero is sometimes referred to as the modified Richardson iteration

method.

2.5.3 Matrix Augmentation

Although shown to be useful for particular types of matrices, Gauss-Seidel

requires non-zero diagonal elements. One simple idea for side-stepping this limita-

tion is to add a constant value ε to all diagonal elements of A as a preprocessing

step. Although it is not clear what a “good” value of ε is for a given matrix, I have

experimented with problems in the RPI-MATLAB-Simulators HDF5 database and

found that it takes unfortunately large values (i.e., 0.5) to improve the convergence

time. This is unfortunate of course because introducing ε also introduces an offset

in the solution, impeding the effectiveness of the solver for converging to the correct

solution, seemingly within the order of ε
N
.

38

2.6 Collision Detection

Collision detection is naturally an important step in simulation and can be ex-

tremely computationally expensive if not implemented well. Collision detection can

be considered to occur in three phases: broad phase, mid phase, narrow phase. A

major focus in collision detection research has been on broad phase collision detec-

tion [1], including spacial acceleration data structures such as uniform or hierarchical

grids, trees, and sweep and prune methods [61, 62]. Additional tests using bounding

volumes such as axis-aligned bounding boxes (AABB) or object-oriented bounding

boxes (OBB) [63] are common. AABBs may be represented by a minimum and

maximum value for each primary axis in the world frame. Alternatively, they may

be represented by a center point of the bounding box along with three scalar mag-

nitudes corresponding to the distance in each primary direction the box extends.

OBBs may be represented in much the same way, but in terms of the corresponding

body’s primary axes.

x

y

(a) Axis aligned (b) Object oriented

Figure 2.7: The two common types of bounding boxes.

In the broad phase, spatial partitioning is used to determine which pairs of

bodies should be considered. Being able to determine that two bodies are decidedly

not is the first of many performance improvements since no more tests are necessary

between those bodies. In the mid phase, there may be additional tests, such as

the separating axis theorem, used for deciding if a body pair can be removed from

consideration. In the final, and and most computationally expensive narrow phase,

39

A

a0 a1

B

b0 b1

C

c0 c1

Sorting axis

Figure 2.8: Depiction of the sort and sweep process. The body geome-
tries, or possibly the corresponding bounding geometries, are
projected onto an axis. Bodies that are found to have over-
lapping projections, e.g., A and B, will be considered at finer
levels of collision detection.

contacts are determined and fully defined in terms of contact locations relative to

each body and contact normal direction.

The sweep and prune method projects objects or the bounding volumes of

objects onto a chosen axis, then checks which pairs of bodies have overlapping

projections. In Figure 2.8, we see that the body pair (A,B) has an overlapping

projection whereas (A, C) and (B, C) do not.

The sweep and prune method is an application of the separating axis theorem

(SAT) or hyperplane separation theorem (HST). HST is a convexity-based method

which states that given two convex sets A and B, the sets are disjoint if and only if

there exists a hyperplane between them that does not intersect A or B.
Because simulation bottlenecks occur in the solve step, it is critical with regard

to timing to minimize the size of the problem by limiting the number of contacts,

ideally while avoiding non-physical results. A problem quickly arises however with

choosing which contacts to include in the active set, and which to throw out. Includ-

ing the “wrong” set of contacts by including too many results in over constraining

(section 4.1). Not including enough contact results in interpenetrations which are

40

physically impossible and lead to instabilities.

A great collection of collision detection software is available online at gamma.

cs.unc.edu/software/. The following are brief descriptions of some of the popular

collision detection algorithms and libraries available.

GJK

The Gilbert-Johnson-Keerthi algorithm [64] has been very popular in video

games and other real-time simulators, including the Bullet Physics Library [26].

Accelerated versions such as the so called “Enhanced GJK” from Cameron [65]

greatly improve performance by exploiting mesh data structures. GJK finds the

shortest distance between two complex polyhedra by iteratively walking along sim-

plices of point subsets of two bodies until convergence on the nearest points. It

does this using a support function that at each iteration determines the points that

maximize the Minkowski Difference of the two simplices, then checks each body to

see if there is an adjacent simplex that contains each point.

Unfortunately, GJK returns only a single nearest point by default, which is

not necessarily a complete set between two bodies. Consider for example a cube

sitting on a plane which requires at least three contacts to sit stably. Bullet uses

an interesting approach in which they perturb one of the bodies about the contact

normal and re-perform GJK to test for additional contacts. This is most useful when

a face is in contact with another face. Finally, GJK returns accurate gap distances

only for positive gaps.

RAPID

Robust and accurate polygon interference detection (RAPID) [63] is mainly

a broad-phase algorithm that uses oriented bounding box trees (OBBTrees) to ac-

celerate collision detection. In their original paper, Gottschalk et al. compare

OOBTrees to axis aligned bounding boxes (AABBs) and claim fewer operations are

needed for their test. However, they leave the definition of “operation” ambiguous!

Further, their algorithm, although potentially useful for broad-phase, does not gen-

erate accurate contacts at the narrow-phase. I believe that AABBs are more easily

41

and commonly implemented in modern simulators. There is a memory-optimized

version of RAPID called OPCODE.

V-Clip

Given two polyhedra in terms of their features, where a feature is any of vertex,

edge, or face, V-Clip identifies a set of points such that each feature containing those

points on each body lies within the Voronoi region of the other’s feature [66]. It

can be shown that when such a pair of features exist for two convex bodies, these

are the nearest features between the bodies. V-Clip claims to be simpler and more

robust than the Lin-Canny nearest features algorithm [67]. The claim of robustness

stems from V-Clip’s ability to deal well with penetrating bodies.

SWIFT and Lin-Canny

SWIFT utilizes accelerated spacial data structures or what they called “multi-

level-of-detail representation” [68], as well as a Voronoi-based algorithm modified

from the Lin-Canny collision detection in order to determine closest features. Un-

fortunately, like GJK, classic Lin-Canny performs poorly on overlapping polyhedra,

which is practically guaranteed. The technique in SWIFT is called “Voronoi march-

ing.” Among its features, SWIFT claims to be faster than V-Clip, which claims to

be faster than Enhanced GJK. Additionally, it claims to be more robust, which it

justifies by having passed the so called “Algorithm 10” test from the original V-Clip

paper.

Chapter summary

In this chapter, we were introduced to rigid body kinematics and dynam-

ics, as well as approaches to collision detection. We saw how to represent rigid

bodies in simulation, and how to formulate sets of dynamic constraints. Discrete

time-stepping formulations were derived, including those for contact, friction, and

joints. In particular, we utilized the Stewart-Trinkle time-stepping method. We

also discussed solution methods for multibody dynamics problems, particularly the

popular projected Gauss-Seidel (PGS) method. Lastly, we briefly introduced the

42

broad-phase, middle-phase, and narrow-phase in collision detection, and surveyed

some of the influential and popular collision detection libraries available for multi-

body simulation.

CHAPTER 3

DETECTING CONTACT BETWEEN MOVING

GEOMETRIES

“Practitioners, new to the field or otherwise, quickly discover that the

attempt to build a fast, accurate, and robust collision detection system

takes them down a long path fraught with perils and pitfalls unlike most

they have ever encountered.” - Gino van den Bergen

There are two major pitfalls common in collision detection which we will ad-

dress in this chapter. The first is to treat discrete time simulations, evolving over

each step, as though they were continuous or static systems. Such treatment leads

to models that cannot prevent interpenetration at the end of the time step. Much

of the robotics community approaches simulation using similar tools that they use

in motion planning [69]. However, motion planning techniques do not necessarily

deal with dynamic behavior, and are typically useful only when determining when

interpenetration has already occurred. The second pitfall is more subtle, and re-

gards how we choose the subset of potential contacts we keep for inclusion in the

formulation of our dynamics. In the following sections, we will develop a set of

geometric tools for precisely the purpose of choosing this contact set.

3.1 Representing convex polyhedra

We define a convex polyhedron in terms of its features. We may refer to a

vertex either as an object v or as the vector v representing the vertex’s position.

Similarly, an edge object e = (vt, vh) corresponds to a vector e = vh−vt. A body is

composed of a set vertices V , edges E, and triangle faces F defined by three vertices

in counter-clockwise order. The normal vector for a given face f = (vi, vj, vk) ∈ F

is given by

η̂ =
(vj − vi)× (vk − vj)
||(vj − vi)× (vk − vj)|| . (3.1)

43

44

α

e

vt

vh

t1

t2

f1
f2

η1

η2

Figure 3.1: Geometric representation of a convex polyhedron. Vectors
t1 and t2 are perpendicular to edge e and planar with their
corresponding faces f1 and f2. The face normals η1 and η2 are
normal with f1 and f2, as well as perpendicular to e.

The angle α between two faces joined by an edge is given by

α = π − arccos(η̂1 · η̂2),

and because we will make the assumption of convexity, it is necessarily the case that

α ∈ (0, π].

Let us also define two vectors t1 and t2 for each edge that are planar with f1

and f2 respectively, and perpendicular to the vector e = vh − vt. These vectors are
defined as

t1 = η̂1 × e
t2 = e× η̂2

(3.2)

and are useful for geometric tests when determining contacts.

3.2 Applicability

The geometric test of applicability is well known [70–73] and commonly used in

applications such as collision detection for motion planning. We geometrically relax

the traditional notion of applicability in order to better determine which contacts

to include. We have adopted notation similar to that of Latombe [71].

Figures 3.2 and 3.3 depict the possible positions and orientations of contact

normal vectors for each feature in 2 and 3 dimensions. These normal vectors corre-

45

e1

n̂1

(a) 2D normal region of an edge.

e1

e2

n̂1

n̂2

(b) 2D normal “cone” at a vertex. A contact at this vertex may result in
a contact normal n̂ anywhere in this wedge.

Figure 3.2: 2D normal regions for edge and vertex. These regions repre-
sent the possible directions in which a force could physically
feasibly be enacted with the given feature.

spond to direction in which feasible contact forces could manifest at these surface

regions. For example, realize that a flat edge such as that in 3.2a can only have a

force that acts in the direction perpendicular to and outward from that edge. Al-

though we could technically consider the vertices which define an edge as part of

that edge, we distinguish between the two for clarity and convenience.

It is important to realize that when using a time-stepping method, we hope

to identify contacts which will reflect these feasible contact normals at the end of

the time step. Yet, many methods of contact identification use approaches that

assume continuous or static body positions, resulting in inevitable interpenetrations

due to the inability to foresee potential contacts. This is why we geometrically relax

the following set of tests that will prove useful for identifying and making heuristic

46

f1f1 n̂1

(a) 3D normal region for a face. The simplest of the three 3D normal re-
gions, it is defined by a single half space. The Voronoi region (depicted)
is a subspace of that half space.

f1

f2

f1

f2fff2ff

n̂1

n̂2

e

(b) 3D normal region at an edge. Again the Voronoi region (pictured) is
a subset of the normal region.

f1

f2 f3f3ff

n̂1

n̂2
n̂3

(c) 3D normal “cone” at a vertex joining 3 faces. For the general case of
m joined faces, the polyhedral region will be defined by m half spaces
planar with the faces, and is equivalent to the Voronoi region for the
vertex.

Figure 3.3: 3D normal regions for face, edge, and vertex.

47

choices regarding potential contacts.

Consider the simple example in Figure 3.4 where two vertices, va1 and va2 of

body A are near an edge eb of body B. In order to achieve stability in such a config-

uration, it is clear that both potential contacts C1 = C(va1, eb) and C1 = C(va2, eb)
must be considered by the dynamics formulation. If only one were included, e.g., C1

then it is possible for the other to penetrate the half space defined by eb given a large

enough time step or velocity. We observe that the second contact normal n2 is out-

side of the normal cone region of va2, does not correspond to a physically reasonable

contact normal. However, this is because n2 is determined at the beginning of the

time step, yet we wish to prevent interpenetration for the end of the time step. In

order to avoid interpenetrations, we must detect and consider such contacts as C2,

even when they are not physically feasible at the current time step. This necessity

requires that we geometrically relax the normal cone region, or equivalently, relax

the definition of applicability.

va1

va2

eb

n1

n2

A

B
Figure 3.4: Two vertices of body A near an edge of B. Vertex va1 has

classical applicability with eb and the normal n1 of C(va1, eb)
is within the normal cone. Vertex va2 does not have classical
applicability with eb and the normal n2 of C(va2, eb) is outside
its corresponding normal cone.

48

2D applicability

Let ω(v) be the set of all vertices connected by an edge to v. We refer to va

having applicability with eb when APPL{ve}(q, va, eb) ≥ εθ for relaxation parameter

εθ = − sin(θ)

and where

APPL{ve}(q, va, eb) = min
vk∈ω(va)

η̂b · vk − va||vk − va|| (3.3)

Whereas classical applicability is a boolean function, our function returns a

value as we may wish to use the value of applicability as a heuristic when comparing

contacts.

3D applicability

Figure 3.5 depicts a vertex va near a face fb. Regardless of the proximity of va

to fb, it would be unreasonable to consider a potential force between these features

if there existed a vertex connected to va that was significantly closer to fb since we

would expect this other vertex to make contact with fb first.

fb

η̂b

va

va1
va2

va3

A

B

Figure 3.5: Vertex-face applicability tests all adjacent edges of a vertex va
against a face normal η̂. In the configuration depicted here,
va clearly has applicability with fb since all adjacent edges of
va are pointed “away” from fb.

The 3D vertex-face case is analogous to the 2D vertex-edge case and is defined

as

APPL{vf}(q, va, fb) = min
vk∈ω(va)

η̂b · vk − va||vk − va|| (3.4)

49

In 2D, the applicability test will always be with two adjacent edges, whereas in 3D

we may have an arbitrary number of edges greater or equal to three.

Figure 3.6 depicts two edges, ea and eb, in contact. Just as there are vertex-

face configurations that have proximity but could not result in a force, so too are

there edge-edge configurations that should not be associated with potential contact

forces. First, we should note that given an edge-edge contact normal n = ea × eb,

we cannot immediately say if we have the correct sign for n (this issue is addressed

in 3.4). However, we can still determine edge-edge applicability in the following

manner. Let

da1 = n̂ · t̂a1

da2 = n̂ · t̂a2

db1 = −n̂ · t̂b1

db2 = −n̂ · t̂b2

We then define edge-edge applicability as

max (min (da1, da2, db1, db2) ,min (−da1,−da2,−db1,−db2)) (3.5)

Conceptually similar to (3.4), (3.5) measures the maximal extent by which the

adjacent faces of an edge are pointed “in” on another body.

3.3 Feasibility

Feasibility is similar to applicability, but is dependent on feature positions as

opposed to orientations. The region of feasibility is essentially the region in which

we anticipate a contact between a vertex v and a facet f could occur. We define

vertex-edge and vertex-face feasibility similarly. Given an angle φ and a small value

ε greater than machine precision, a vertex with contact C(va, fb) has feasibility if

• va ∈ V R(f) and ψ > −ε, or

• va �∈ V R(f) and va within region defined by φ below the point ε below the

nearest point on f ,

50

ta1

ta2

tb1
tb2

n̂

A

B

ea

eb

Figure 3.6: Edge-edge contact at the border of stability for classical ap-
plicability (ε

{ee}
θ = 0). The result in this configuration is de-

pendent on machine precision error. Relaxation eliminates
this dependency by increasing the domain of applicability.

where V R(f) refers to the Voronoi region of the facet f [66]. An example of the

feasibility region is depicted in Figure 3.7.

f

B

ε
φ

Figure 3.7: The region of feasibility for a vertex against a facet f of a
body B is the region above the thick dashed line. A vertex
in this region is considered to have a potential contact force
λ with f .

The reason we allow for the distance ε below the face is that we must allow

and even expect penetrations of at least machine precision. Additional penetration

is even possible when considering rotation (see section 5.3). Consider Figure 3.8

where a dynamic red triangular body is sitting on top of, and horizontally aligned

51

(a) A dynamic red triangle sits atop a static blue triangle. The two trian-
gles are similar and aligned horizontally.

ε

(b) A close up view (exaggerated) of the nearest edges of the two bodies,
where they are in contact.

Figure 3.8: Our body representation uses vertices, with edges and faces
in terms of these vertices. Due to machine error, solver error,
etc., the location of these vertices can only be traced and
known with some ε. This is especially true in cases in which
are are concerned about it most, when bodies are in contact.

with, a similar but static blue triangle. In 3.8b, we see an example a configuration

that is invalid, but within ε of a valid configuration. Configurations such as this are

what require the ε relaxation in feasibility.

To further impart the dangers of making assumptions regarding vertex posi-

tions, consider that the example of Figure 3.8 is ignoring the horizontal component

of errors, and is a relatively clean example in that the left and right vertices of

the red body will not necessarily have symmetrical errors. These errors, and the

52

subsequent lack of assumptions available regarding contact, are more evidence that

there exists no heuristic approach to choosing a contact subset to enforce.

3.4 Edge-edge orientation

Vertex-edge and vertex-face contact are always determined by the correspond-

ing edge or face normal that the vertex is colliding with. With edge-edge contact we

must deal with the issue of the normal direction given by ea × eb having arbitrary

sign. We do this using the notion of orientation of edges.

Consider an edge eb of body B. We define an orientation vector Oeb = eb ×
−(η̂1 + η̂2).

−(η̂1 + η̂2)

Oeb

eb

B

Figure 3.9: The orientation vector Oeb is defined in such a way as to
always point “left” of edge eb when looking onto the edge
from the outside of the body.

B

ea
eb

ea ·Oeb > 0
ea is rotated CCW w.r.t. eb

B

ea

eb

ea ·Oeb < 0
ea is rotated CW w.r.t. eb

Figure 3.10: Two different configurations of edge-edge contacts.

53

Knowing the orientation of edge-edge contact allows us to determine the cor-

rectly signed contact normal

n̂ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ea × eb
||ea × eb|| if ea ·Oeb > 0

eb × ea
||eb × ea|| if ea ·Oeb < 0

(3.6)

In the special case that the edges have the same direction, that is, ea · Oeb = 0,

we are then in a fortunate position of not needing to include this edge-edge contact

directly. Instead, we rely on the vertex-face contacts to prevent interpenetration.

3.5 2D narrow phase collision detection

Of particular interest when performing 2D collision detection are the distances

and nearest points between either a point and a line, or a point and a segment. This

is due to the fact that we are concerned with vertices penetrating edges. Given an

edge composed of vertices a and b which define a line a line
←→
ab where a �= b, there

is a unit normal vector n̂ defined as perpendicular to
←→
ab and pointing “out” of the

body. Given the convention in 2D that the vertices are listed in counter-clockwise

order for each polygon, we may determine the normal vector n̂ by rotating the edge

vector by −π/2 with

n̂ =

⎡
⎣ 0 1

−1 0

⎤
⎦ b− a
||b− a||

The signed gap distance ψ of a point c to the line is given by

ψ = (c− a) · n̂ (3.7)

where we could replace a with b and obtain the same result. The closest point d

on the line (the closest point on the segment is trickier) is given by

d = c− ψn̂ (3.8)

54

Equation (3.7) is useful for determining the gap distance, but may be unnecessary

in cases where c is a distance greater than some ε away from the segment ab. The

nearest point on a segment ab to a point c, as well as the distance from c to the

segment, are given by Algorithm 3 [1].

Algorithm 3 Point-segment nearest point, for both 2D and 3D.

Given a, b, c, determines nearest point d on ab to c.
function point-segment(a, b, c)
e = b−a

||b−a||
t = c−a

e·e
if t < 0 then

t = 0
else if t > 1 then

t = 1
end if
d = a+ te

end function

We observe that Algorithm 3 contains a “clamping” function in that it projects

t onto the segment (0, 1). As this function is useful in following algorithms as well,

let us define it as a function as in Algorithm 4.

Algorithm 4 Clamp value to segment.

function clamp(t,tmin,tmax)
if t < tmin then

t = tmin
else if t > tmax then

t = tmax
end if

end function

Figure 3.11 depicts a vertex va within ε of the edges eb1 and eb2. The vertex

identified as vb is the nearest point on both edges to va. We note that va has

applicability with eb2 but not eb1. Moreover, va has feasibility with both edges. It is

clear that the contact C(va, eb1) could not result in a contact force (given reasonable

time step size and velocities), while the contact C(va, eb2) could result in a contact

force.

We will see in chapter 4 how such contacts are utilized in the formulation of

a time-stepping subproblem. Further, we will analyze what heuristics we can use

55

va ε

eb1

eb2 vb

A

B

Figure 3.11: 2D vertex-edge contact identification. All edges within ε of
va will be considered as potential vertex-edge contacts.

to improve performance by reducing the number of these contacts or the number of

contacts which may potentially result in contact forces.

Algorithm 5 represents a brute force approach to vertex-edge collision detec-

tion, however it should be noted that there are optimizations which exploit spacial

and temporal coherence, as well as geometric convexity, to drastically reduce com-

putational complexity to be effectively constant. We denote a primary contact as

Algorithm 5 2D contact identification.

Given polygons A and B, a distance ε, and relaxation εθ
for va ∈ VA do
for eb = {vb1, vb2} ∈ EB do

ψn = (va − vb1) · η̂b
pb = POINT -SEGMENT (vb1, vb2, va)
if ||va − pb|| ≤ ε then
if APPL{ve}(va, eb) ≥ εθ

∧
FEAS{ve}(va, eb) then

Add primary contact C(va, eb)
else

Add secondary contact C(va, eb)
end if

end if
end for

end for

56

one which could feasibly result in a force. A secondary contact is one that, although

it could not reasonably be associated with a contact force, is necessary to include

in order to accurately represent the local geometry near the point of contact. The

distinction of a contact’s applicability and feasibility is important because a con-

tact can only be considered as primary if it has both applicability and feasibility.

However, the contact must still be considered if it is within ε and regardless of

its applicability and feasibility since satisfaction of a constraint which includes this

contact may be necessary in order to achieve geometrically accurate interactions of

bodies.

3.6 3D narrow phase collision detection

3D collision detection is quite different than 2D. Even reducing our subsets of

possible considered bodies to be closed complete convex polyhedra, adding the single

spacial dimension drastically increases the potential complexities. For example, in

2D all vertices connect exactly two edges, while in 3D all vertices connect at least

three edges, but may connect arbitrarily many more.

3.6.1 Vertex-face

The vertex-face process in 3D is similar to the vertex-edge algorithm in 2D. A

vertex is considered for potential collision with a face when it is within a distance

ε of that face, which in 3D manifests as an ε sphere. Consider Figure 3.12, and

in particular the vertex va near multiple faces of body B. Vertex va has three

potential contacts with the three faces of B: C1 = C(va, fb1), C2 = C(va, fb2), and
C3 = C(va, fb3). In the configuration shown, it happens that va has applicability

with all of these faces. Moreover, it has feasibility with all three faces. Certainly all

three contacts would need to be considered in the formulation of a dynamics problem

in order to guarantee geometrically accurate interaction, but moreover because all

three contacts have applicability and feasibility, they are all candidates to have a

contact force associated with them.

This set of vertex-face contacts begins to hint at a question of which contacts

should be included at the stage of formulating dynamics. If we were to include all

57

x

y

z

fb3fbff 3ff

va

fb1
fb2

A

B

x

y

z

fb3fbff 3

yyyyyy

va

fb1

A
B

x

y

z

fb2

fb3ffbff 3f

fbff 2

fffffff
va

fb1

A Bψ1
ψ2

ψ3

Figure 3.12: Multiple views of a vertex va near multiple faces. The gap
distances ψ1, ψ2, and ψ3 correspond to the three possible
vertex-face contacts between va with body B. Physically,
only one of these contacts should be active at one time.

of these contacts and enforce unilateral constraints on each of them, we would be

trapping va against the corner of B. This question is precisely the topic of Chapter 4,

and we will see there how we can include all primary and secondary contacts but

58

still allow the accurate passing of bodies through free space.

A high level approach to vertex-face contact identification is given in Algo-

rithm 6. I have not defined the function POINT -TRIANGLE-3D, but it identifies

a point on a triangle in R
3 that is nearest to a given point.

Algorithm 6 3D vertex-face contact identification.

Given polyhedra A and B, a distance ε
for va ∈ VA do
for fb = {vb1, vb2, vb3} ∈ FB do

ψn = (va − vb1) · η̂b
pb = POINT -TRIANGLE-3D(vb1, vb2, vb3, va)
if ||va − pb|| ≤ ε then
if APPL{vf}(va, fb) ≥ εθ

∧
FEAS{vf}(va, fb) then

Add primary contact C(va, fb)
else

Add secondary contact C(va, fb)
end if

end if
end for

end for

3.6.2 Edge-edge

An important part of edge-edge contact identification is determining the near-

est points between two segments in 3D. This procedure is detailed in Algorithm 7.

Although this algorithm is known and available from other sources such as [1], it is

fundamental to collision detection in 3D and I have therefore chosen to include it

for completeness. Noting that an edge is defined by two vertices, we observe that

the case of a vertex near an edge (vertex-edge) is a subset of edge-edge detection.

This observation may be useful during a mid-phase collision detection step since

in 4.4.3 we will treat the vertex-edge configuration as a special case which requires a

special set of constraints. Further, edges which are found to be within ε of another

body, but not within ε of an edge of that other body, will be found to have vertex-

face contact. This observation can be used to decrease computational expense in

determining the complete set of contacts between two bodies.

59

Algorithm 7 Segment-segment nearest points and distance in 3D.

Given p1, q1, p2, q2, determines nearest points c1 on p1q1 and c2 on p2q2.
function segment-segment-3D(p1, q1, p2, q2)
d1 = q1 − p1
d2 = q2 − p2
r = p1 − p2
a = d1 · d1
e = d2 · d2
f = d2 · r
if a ≤ 0 ∧ e ≤ 0 then

s = t = 0
c1 = p1
c2 = p2
dist = ||c1 − c2||
return

end if
if a ≤ 0 then

s = 0
t = f

e

t = CLAMP (t, 0, 1)
else

b = d1 · d2
if ae− bb �= 0 then

s = CLAMP (bf−ce
ae−bb , 0, 1)

else
s = 0

end if
t = bs+f

e

if t < 0 then
t = 0
s = CLAMP (−c

a
, 0, 1)

else if t > 1 then
t = 1
s = CLAMP (b−c

a
, 0, 1)

end if
end if
c1 = p1 + d1s
c2 = p2 + d2t
dist = ||c1 − c2||

end function

60

Chapter summary

In this chapter, we defined our representation of polytopes and developed two

important geometric tests, namely applicability and feasibility, for determining the

set of potential contacts between pairs of bodies. In the case of applicability, we

applied a geometric relaxation to a classical definition in order to better identify

contacts which are not currently active, but could become active within the time

step. Details were given on the nature of some errors which can manifest in computer

simulation, providing motivation for and insight into the computational geometry

tools we were developing. We were then presented with a reliable way of determining

the sign of the contact normal for edge-edge contact, resolving the ambiguity that

can arise when taking the cross product of two edge vectors. Finally, we looked

at algorithms, which utilize the geometric tools we developed, for choosing sets of

contacts between polytopes.

CHAPTER 4

POLYTOPE EXACT GEOMETRY

The standard approach to modeling contact between two bodies is to choose a set of

contacts between them (possibly limited to one) and to model all of these contacts

as unilateral constraints. In this chapter, we will begin to elucidate the problems

imposed by this classical representation of contact, and derive an alternative contact

model. This new model is based on a mathematical framework which allows us to

incorporate the complete set of possible contacts in order to accurately capture

the body geometries at those points of potential contact, fully representing the

physically possible outcomes. We will see how to apply this new model to convex

bodies in 2D as well as 3D, and how incorporate this model into the Stewart-Trinkle

time-stepping method.

4.1 Motivation and a new approach

One approach to multibody simulation is to allow interpenetrations (and other

constraint violations) to occur, and then to apply ad hoc corrections as necessary

to catch the poorly defined geometric configurations that inevitably result. This

approach, which includes penalty methods, is notoriously prone to instabilities and

oscillatory behavior. The primary approach to dealing with these instabilities is to

use a very small time step size. However, this often merely lessens the apparentness

of instabilities, and does not address their cause. Our approach attempts to prevent

non-physical configurations from occurring. In order to achieve this we must detect

potential contacts before interpenetration occurs.

Contact constraints have been traditionally modeled as fundamentally uni-

lateral, however, representing features as infinite half-spaces at points of potential

contact generates non-physical behavior at corners where multiple finite features

meet and terminate. Consider a vertex v near a corner as depicted in Figure 4.1.

When the collision detection routine identifies both C1 = C(v, e1) and C2 = C(v, e2),
the vertex becomes erroneously trapped in the convex subspace of the free space

61

62

surrounding the corner if both contacts are enforced. This is a known consequence

in the standard model, and we therefore refer to it as the standard-model trap or

SM trap. Most often, heuristics based on gap distances or body properties are em-

e1

e2

v

ψ2 ψ1

Figure 4.1: The standard-model trap. A vertex v approaching two edges
e1 and e2 at a corner of a body. If unilateral constraints are
enforced against both edges, the vertex becomes trapped by
the sum of the edges’ half-spaces (gray regions plus body).
The same trap can occur in 3D between a vertex and set of
faces or an edge against multiple edges.

ployed in order to make a guess about a subset of these potential contacts to include.

However, such heuristics are easily broken, and in some cases incorporate additional

instabilities.

Deriving a new model

Let us begin by solving the SM trap in 2D for a single vertex v approaching a

corner composed of two edges e1 and e2, similarly to as was done by Nguyen [74]. We

identify two potential contacts C1 = C(va, e1) and C1 = C(va, e2) with corresponding

gap distances ψ1 and ψ2 for example as in Figure 4.1. We wish to enforce that

max(ψ1, ψ2) ≥ 0, (4.1)

allowing v to penetrate either half space corresponding to e1 or e2, but not both.

Lemma 4.1.1

Given a, b ∈ R,max(a, b) = a+max(b− a, 0) ≥ 0

63

Proof:

Case a ≥ b =⇒ a+max(b− a, 0) = a+ 0 = a

Case a ≤ b =⇒ a+max(b− a, 0) = a+ (b− a) = b �

Lemma 4.1.2

Given a, b ∈ R, b = max(a, 0) ⇐⇒ 0 ≤ b− a ⊥ b ≥ 0

Proof:

Case a ≤ 0: max(a, 0) = 0 =⇒ b = 0 =⇒ 0 ≤ b− a ⊥ b ≥ 0

Case a > 0: max(a, 0) = a =⇒ b = a =⇒ 0 ≤ b− a ⊥ b ≥ 0

Case b− a = 0, b ≥ 0: b = max(a, 0) = a

Case b = 0, b− a ≥ 0: a ≤ 0 =⇒ max(a, 0) = 0 = b �

Using Lemma 4.1.1, we rewrite and constrain equation (4.1) as

max(ψ1, ψ2) = ψ1 +max(ψ2 − ψ1, 0) ≥ 0

Then using Lemma 4.1.2 and letting c = max(ψ2−ψ1, 0), we can constrain max(ψ1, ψ2) ≥
0 with

0 ≤ c+ ψ1 − ψ2 ⊥ c ≥ 0

c+ ψ1 ≥ 0
(4.2)

To give some intuition regarding c and its relationship with ψ1 and ψ2, consider the

figure below and the value of c on each side of the bisector where ψ1 = ψ2. A vertex

e1

e2

ψ1 > ψ2

c = 0 ψ2 > ψ1

c = ψ2 − ψ1 > 0

Figure 4.2: The possible values for c in the space surrounding edges e1
and e2. The regions where c is zero and where c = ψ2 − ψ1

correspond to the Voronoi regions of the edges of the body.

in the free space left of the bisector has ψ1 > ψ2 =⇒ ψ1 − ψ2 > 0 which requires

64

c = 0 to satisfy the complementarity condition of (4.2). A vertex to the right of

the bisector has ψ1 < ψ2 =⇒ ψ1 − ψ2 < 0 which requires c = ψ2 − ψ1 in order to

satisfy the complementarity condition. In both cases, satisfaction of the constraints

in (4.2) requires that at least one gap distance be non-negative.

We now wish to include potential forces λ1 and λ2 while ensuring that only one

is non-zero since allowing both to be simultaneously non-zero would be non-physical.

Lemma 4.1.3

Given a, b ∈ R, b = |min(a, 0)| ⇐⇒ 0 ≤ b+ a ⊥ b ≥ 0

Proof:

Case a ≤ 0: |min(a, 0)| = −a = b =⇒ b+ a = 0 =⇒ 0 ≤ b+ a ⊥ b ≥ 0

Case a > 0: |min(a, 0)| = 0 = b =⇒ (a+ b)b = 0 =⇒ 0 ≤ b+ a ⊥ b ≥ 0

Case b+ a = 0, b ≥ 0: a ≤ 0 =⇒ |min(a, 0)| = −a = b

Case b = 0, b+ a ≥ 0: a > 0 =⇒ |min(a, 0)| = 0 = b �

Lemma 4.1.4

Given a, b ∈ R, a = 0, b ≤ 0 ⇐⇒ (max(a, b) ≥ 0) ∧ (max(a, b) + |min(a, 0)| = 0)

Proof:

The only way to satisfy both max(a, b) ≥ 0 and |min(a, 0)| ≥ 0 is for both to reach

equality. When |min(a, 0)| = 0, it is possible that a ≥ 0, so in order to have

max(a, b) = 0 we must have a = 0, b ≤ 0. The argument for the reverse of a and b

is similar. �

Using Lemma 4.1.3, we write

0 ≤ d1 + ψ1 ⊥ d1 ≥ 0

0 ≤ d2 + ψ2 ⊥ d2 ≥ 0
(4.3)

where d1 and d2 are slack variables that will equal the magnitude of the gap distance

when in penetration and zero otherwise. Using Lemma 4.1.4, we have

0 ≤ c+ ψ1 + d1 ⊥ λ1 ≥ 0

0 ≤ c+ ψ1 + d2 ⊥ λ2 ≥ 0
(4.4)

65

which permits at most one of λ1 or λ2 to be non-zero. At this point, equations (4.2),

(4.3), and (4.4) correspond to the locally non-convex (LNC) model proposed by

Nguyen [74] which accurately models the case for a single vertex against multiple

edges. Although this model has been shown to contribute some improvement over

other methods [75], stopping here would correct the SM trap at the expense of

permitting inter-penetrations [76]. To see this, let us continue with a slightly more

complex case.

Consider two bodies approaching as depicted in Figure 4.3. In this configu-

va vb

eb2

eb1

ea1

ea2

A B
ψ1

ψ2 ψ3

ψ4

Figure 4.3: A dual case of a vertex near two edges in 2D. The physically
feasible trajectories of va are interdependent with the trajec-
tories of vb. Consider that if va goes “on top” of B, then vb
cannot simultaneously go “on top” of A.

ration, our collision detection routine identifies four potential contacts. These are

C1 = C(va, eb1), C2 = C(va, eb2), C3 = C(vb, ea1), and C4 = C(vb, ea2). We cannot

simply constrain all of these contacts, for this would result in a dual SM trap. It is

possible to make a guess as to which contacts to enforce, but this inserts the likely

possibility of generating contact forces where there are none. Of course we could

also ignore all four contacts and allow interpenetration, but this too is clearly a

non-physical approach.

Instead, let us write constraints including all four potential contacts in such a

way as to allow all physically feasible interactions while preventing interpenetration.

We start by observing that C1 and C2 should both be able to be violated, but not

simultaneously. Similarly, C3 and C4 should not be simultaneously violated. We

66

have seen how these constraints can be represented with

0 ≤ c1 + ψ1 − ψ2 ⊥ c1 ≥ 0

0 ≤ c2 + ψ4 − ψ3 ⊥ c2 ≥ 0

c1 + ψ1 ≥ 0

c2 + ψ4 ≥ 0

0 ≤ d1 + ψ1 ⊥ d1 ≥ 0

0 ≤ d2 + ψ2 ⊥ d2 ≥ 0

0 ≤ d3 + ψ3 ⊥ d3 ≥ 0

0 ≤ d4 + ψ4 ⊥ d4 ≥ 0

0 ≤ c1 + ψ1 + d1 ⊥ λ1 ≥ 0

0 ≤ c1 + ψ2 + d2 ⊥ λ2 ≥ 0

0 ≤ c2 + ψ3 + d3 ⊥ λ3 ≥ 0

0 ≤ c2 + ψ4 + d4 ⊥ λ4 ≥ 0

(4.5)

but we make the important observation that this model erroneously allows for ψ1 and

ψ4 or ψ2 and ψ3 to be simultaneously violated. An example of such a consequence is

depicted in Figure 4.4. The model of equation (4.5) can be completed by including

A B

vb va

Figure 4.4: A valid solution to the dual vertex-edge case using the LNC
model. Note that neither vertex is penetrating the other
body, satisfying the constraints of equation (4.5).

constraints to prevent such inter-penetrations. That is, we additionally constrain

67

max(ψ1, ψ4) ≥ 0 and max(ψ2, ψ3) ≥ 0 with

0 ≤ c3 + ψ1 − ψ4 ⊥ c3 ≥ 0

0 ≤ c4 + ψ2 − ψ3 ⊥ c4 ≥ 0

c3 + ψ1 ≥ 0

c4 + ψ2 ≥ 0

(4.6)

Equations (4.5) and (4.6) together represent our first example of a geometrically

accurate contact model. We will refer to the constraint type in equation (4.5) as

inter-contact constraint, and the type in equation (4.6) as cross-contact constraint.

These, along with unilateral constraint, form the set of three contact constraints

necessary for our model.

4.2 Three fundamental contact constraints

In order to resolve the issues of interdependency among contacts discussed in

the previous section, we had to change the way we formulate contact constraints. In

this section, we define three fundamental contact constraints in their general form

and begin to describe how they can be applied.

4.2.1 Unilateral contact constraint

The simplest of the three contact constraints is the common unilateral con-

straint (U -constraint) that was introduced by equation (2.14). We define a U -
constraint as a function of a single contact Ci and write it as

U(Ci) (4.7)

which corresponds to the complementarity problem

0 ≤ ψi ⊥ λi ≥ 0 (4.8)

where λi is the force corresponding to contact Ci.

68

4.2.2 Inter-contact constraint

An inter-contact constraint (I-constraint) is that which was demonstrated in

equation (4.5) for preventing the SM trap. An I-constraint deals with contacts of a

single feature of one body against multiple features of another body, as for example

in Figure 4.5. Here we will define the general formulation of I-constraint for a vertex

v

e1

e2 e3

e4

Figure 4.5: A vertex near multiple edges. Depending on the complexity
of body geometries, as well as body velocities and the time
step size, there may be an arbitrary number of relevant con-
tacts between a vertex of one body and facets of another.
Further, some of these contacts may not have a contact force
associated with them, but are still necessary when writing
contact constraints in order to represent contact geometry.

of A against multiple features of B where a subset of these potential contacts may

feasibly result in a contact force at the end of the current time step.

Consider two sets of contacts: Cι which is composed of all contacts which

could feasibly result in a contact force, and Cκ which contains all contacts that

could not feasibly result in a contact force but are necessary to accurately represent

the contact geometry. An I-constraint seeks to

• Constrain at least one gap distance ψ{ι,κ} of {Cι,Cκ} to be non-negative,

• Permit a non-zero contact force λιi > 0 for at most one contact in Cι, and

• Only permit λιi > 0 when ψi = 0 and all other ψι,κ are non-positive.

We represent an I-constraint as
I(Cι,Cκ) (4.9)

69

which corresponds for m = |Cι| and n = |Cκ| to the set of constraints

0 ≤ cι2 + ψι1 − ψι2 ⊥ cι2 ≥ 0

0 ≤ cι3 + cι2 + ψι1 − ψι3 ⊥ cι3 ≥ 0
...

0 ≤ cιm + cιm−1 + ...+ cι2 + ψι1 − ψιm ⊥ cιm ≥ 0

0 ≤ cκ1 + cιm + cιm−1 + ...+ cι2 + ψι1 − ψκ1 ⊥ cκ1 ≥ 0
...

0 ≤ cκn + ...+ cκ1 + cιm + ...+ cι2 + ψι1 − ψκn ⊥ cκn ≥ 0

(4.10)

cκn + ...+ cκ1 + cιm + ...+ cι2 + ψι1 ≥ 0 (4.11)

0 ≤ dι1 + ψι1 ⊥ dι1 ≥ 0
...

0 ≤ dιm + ψιm ⊥ dιm ≥ 0

(4.12)

0 ≤ cκn + ...+ cκ1 + cιm + ...+ cι2 + ψι1 + dι1 ⊥ λι1 ≥ 0
...

0 ≤ cκn + ...+ cκ1 + cιm + ...+ cι2 + ψι1 + dιm ⊥ λιm ≥ 0

(4.13)

Equations (4.10) and (4.11) enforce that at least one contact in {Cι,Cκ} is non-

negative. Equations (4.12) and (4.13) allow at most one contact force to be non-

zero, and only permit this force to be non-zero when all other gap distances are

non-positive. Solving such a set of constraints is possible as a linear program with

complementarity constraints (LPCC) [77], or by reducing or rewriting to eliminate

the inequality of (4.11).

An I-constraint requires there be at least one contact in Cι. If there were not,

then there would exist no non-trivial solution since these potential contact forces

are necessary for preventing interpenetration. In the case that |Cι| = 1, we are able

to dramatically reduce the set of constraints by eliminating equations (4.11) and

(4.12) and replacing equation (4.13) with the single constraint

0 ≤ cκn + ...+ cκ1 + cιm + ...+ cι2 + ψι1 ⊥ λι ≥ 0 (4.14)

70

This greatly reduces the number of constraints, and removes the inequality of (4.11)

to leave a pure LCP. We see now the incentive for choosing our contact set with a

single primary contact Cι, possibly using heuristics like those described in Chapter 3.

4.2.3 Cross-contact constraint

In contrast to I-constraint which deals with a single feature ofA against multi-

ple features of B, a cross-contact constraint (X -constraint) deals with sets of contacts

that may not depend on the same features, but could result in interpenetration if

simultaneously violated, e.g., equation (4.6).

Given sets of contacts Ca and Cb, a X -constraint attempts to constrain either

• At least one non-negative ψa in Ca OR

• At least one non-negative ψb in Cb

We represent a X -constraint as

X (Ca,Cb) (4.15)

and can write the LCP in multiple forms. Conveniently, X -constraints can be writ-

ten in the form of equations (4.10) and (4.11). That is, X (Ca,Cb) is similar to

I(Ca,Cb), but excludes equations (4.12) and (4.13) which involve contact forces.

Although a X -constraint necessarily deals with contacts between the same pair

of bodies, the contacts need not share features. Subsequently, there is no argument

for incorporating contact forces directly into a X -constraint since the purpose is

to effectively “mask” the set of existing U - and I- constraints to eliminate config-

urations with interpenetration. It should be understood however that care must

be taken, when constructing a time-stepping subproblem containing X -constraints,

not to construct a subproblem that is inherently unsatisfiable. This is accomplished

by ensuring that there exist sufficient U - or I-constraints so as to allow genera-

tion of forces which may contribute to achieving configurations that will satisfy all

constraints.

Despite there being no formal need to associate any potential forces with an

X -constraint, I will risk sounding contradictory by observing that one may represent

an X -constraint as an I-constraint. Doing so will create redundant contact forces at

71

the solver level, but the total resultant forces from these solutions will be the same

as if only a single force component were used, giving the same outcome at the end

of the time step. This is convenient in terms of notation as well as implementation,

and is used in section 4.7 when we write a time stepping formulation using PEG.

4.3 PEG 2D

We consider two contact configurations in 2D: vertex-edge and vertex-vertex.

We do not consider edge-edge because to do so would be redundantly covered by the

other two configurations [71]. To be clear, edge-edge penetration in 2D is impossible

if vertex-edge and vertex-vertex constraints are properly enforced, simply because

edges defined and composed of vertices, and for two edges to come near each other

implies that the vertices of at least one of those edges is nearing the other edge. We

can formulaically generate the set of constraints for the two 2D configurations as

given below.

4.3.1 Vertex-edge

Given a vertex va near a single edge eb, this case is modeled by a unilateral

constraint on a single contact as

U(C(va, eb)) (4.16)

In this case, the vertex is within a reasonably small distance ε of the edge, but

farther than ε from either of the edge’s vertices.

4.3.2 Vertex-vertex

The 2D vertex-vertex case was depicted in Figure 4.3. Using the contacts

defined for this case requires the constraints

I(Cι1,Cκ1)

I(Cι2,Cκ2)

X ({C1}, {C4})
X ({C2}, {C3})

(4.17)

72

where Cι1 contains at least one of C1 or C2, Cκ1 may contain one of C1 or C2, and

similarly Cι2 contains at least one of C3 or C4, and Cκ2 may contain one of C3 or

C4. As is the case for all I-constraints, which contacts are included in Cι or Cκ are

determined using the geometric heuristics defined in chapter 3.

4.3.3 PEG abstraction layers

Given the fundamental constraints for vertex-edge and vertex-vertex cases,

we have now been presented with the full approach represented by the abstraction

layers of PEG as depicted in Figure 4.6. At the lowest level is the complementarity

Configuration /
feature combinations

Fundamental PEG constraints

Complementarity Problem (CP)

PEG

Figure 4.6: Abstraction layers of PEG.

problem which is utilized first as a model of unilateral contact with force, but further

as a tool for generating logical XOR conditions on subsets of potential contacts. Sets

of these low level constraints can be entirely represented by abstracting to the three

fundamental constraints of unilateral, inter-contact, and cross-contact. In turn, the

fundamental constraints are formulaically generated by the highest abstraction layer

which looks only at what pairs of features between two bodies are near each other.

In the next section, we will see how precisely the same abstraction can be developed

in 3D.

The following algorithms represent PEG 2D, and roughly correspond to the

structure of the abstraction layers. The translation to the lowest level of comple-

mentarity problem from fundamental constraints was given previously.

73

The function PEG-2D-VERTEX-EDGE of Algorithm 8 corresponds to equation

(4.16) and represents vertex-edge interaction in 2D.

Algorithm 8 PEG 2D, vertex-edge.

function PEG-2D-vertex-edge(va, eb)
if FEAS{ve}(va, eb) ∧ APPL{ve}(va, eb) ≥ εθ then
return {U(C(va, eb))}

else
return {∅}

end if
end function

The C-SPLIT function of Algorithm 9 is useful as it separates a set of contacts

into those that could reasonably result in a force over a time step Cι, and those that

could not Cκ.

Algorithm 9 C-split.

function C-split(C)
Cι = {}
Cκ = {}
for Ci ∈ C do

f1 = Ci.feature1
f2 = Ci.feature2
if APPL(f1, f2) ∧ FEAS(f1, f2) then
Cι = Cι ∪ {Ci}

else
Cκ = Cκ ∪ {Ci}

end if
end for
return (Cι,Cκ)

end function

The function PEG-2D-VERTEX-VERTEX of Algorithm 10 corresponds to equa-

tion (4.17) and returns the set of contacts for geometrically accurate interaction

based on a vertex-vertex configuration for convex polygons in 2D. One can use Fig-

ure 4.3 as a guide and follow Algorithm 10 to see how this algorithm chooses the

correct contact set.

The PEG-2D function takes as parameters two bodies A and B, and generates

the lowest level set of PEG constraints representing accurate interactions of those

bodies.

74

Algorithm 10 PEG 2D, vertex-vertex.

Returns the set of PEG constraints between va and vb.
function PEG-2D-vertex-vertex(va, vb)

ea1 = (va−1, va), ea2 = (va, va+1), eb1 = (vb−1, vb), eb2 = (vb, vb+1)
C1 = C(va, eb1), C2 = C(va, eb2), C3 = C(vb, ea1), C4 = C(vb, ea2)
C1ι = C1κ = C2ι = C2κ = ∅
(Cι1,Cκ1) = C-split({C1, C2})
(Cι2,Cκ2) = C-split({C3, C4})
return {I(Cι1,Cκ1)} ∪ {I(Cι2,Cκ2)} ∪ {X ({C1}, {C4})} ∪ {X ({C2}, {C3})}

end function

Algorithm 11 PEG 2D.

Given polygons A and B, generates the set of contact constraints between them.
function PEG-2D(A,B)

Constraints = {}
for va ∈ VA, vb ∈ VB : ||va − vb|| ≤ ε do

Constraints = Constraints ∪ PEG-2D-vertex-vertex(va, vb)
va.collision = true
vb.collision = true

end for
for va ∈ VA, eb = (vb1, vb2) ∈ EB : point-segment-2D(va,vb1,vb2) ≤ ε do
if ¬va.collision then

Constraints = Constraints ∪ PEG-2D-vertex-edge(va, eb)
end if

end for
for vb ∈ VB, ea = (va1, va2) ∈ EA : point-segment-2D(vb,va1,va2) ≤ ε do
if ¬vb.collision then

Constraints = Constraints ∪ PEG-2D-vertex-edge(vb, ea)
end if

end for
return Constraints

end function

75

4.4 PEG 3D

There are four contact configurations in 3D: vertex-face, edge-edge, vertex-

edge, and vertex-vertex. Again, we exclude certain feature pairs just as we did

in 2D, namely edge-face and face-face, because they become redundant when the

other constraints are properly enforced. Edge-face is redundant since edges are

composed of vertices, and for an edge to approach a face requires that either the

vertices of that edge approach that face, or the edge approaches the edges at the

perimeter of that face (possibly adjacent edges), reducing to either vertex-face or

edge-edge respectively, and edge-vertex in the case that the edges of the second

body are adjacent. By a similar argument, face-face becomes redundant; a face,

being composed of edges in turn composed of vertices, nearing another face implies

that edges and vertices are approaching the other face. In all possible configurations,

this results in one of the four feature combinations considered.

4.4.1 Vertex-face

The vertex-face case is analogous to the 2D vertex-edge case. Given a vertex

va near a face fb as depicted in Figure 4.7, we include

U(C(va, fb)) (4.18)

in the set of constraints.

fb

η̂b

va

A

B

Figure 4.7: A well defined vertex-face contact between vertex va of body
A and face fb of body B. C(va, fb) is clearly the only contact
which could be active.

76

4.4.2 Edge-edge

Edge-edge contact, such as depicted in Figure 3.6, is another example of a

single contact with unilateral constraint, and is written for an edge ea against an

edge eb by

U(C(ea, eb)) (4.19)

4.4.3 Vertex-edge

Consider Figure 4.8 where a vertex va of body A approaches the edge eb of

body B. There are an arbitrary number of edges (greater or equal to three) that

could connect to va, however we can limit the edge-edge contacts considered to a

subset of those with relatively large magnitudes of edge orientation |ea ·Oeb |. Given

ebf1

f2

va vk1

vk2vk3

Figure 4.8: An example of a vertex-edge configuration. Consider the
relationship between the contacts C(va, fb1) and C((vk3, va), eb).
If the first is not enforced, then the second must be, and vice
versa.

C1 = C(va, f1) and C2 = C(va, f2),The set of constraints for vertex-edge is given by

I(Cι,Cκ)

X ({Cei}, {C1})
X ({Cej}, {C2})

(4.20)

where C1 and C2 are distributed appropriately into Cι and Cκ. Each Cei is an

edge with positive edge orientation, and each Cej is an edge with negative edge

orientation, and both sets of edges have applicability and feasibility with eb.

77

4.4.4 Vertex-vertex

In the case of a vertex va near another body’s vertex vb as depicted in Fig-

ure 4.9, we wish to avoid trapping va against the faces of B, and similarly for vb

against A. This first requires the set of I-constraints

I(Cιa,Cκa)

I(Cιb,Cκb)
(4.21)

where Cιa and Cκa are composed of contacts between va and faces of B, and Cιb and

Cκb are composed of contacts between vb and faces of A. We additionally require

X -constraints for each face pair (fa, fb) in the form

X ({C(va, fb), C(vb, fa)}, {C(ea1, eb1), C(ea2, eb2)}) (4.22)

where fa has edges ea1, ea2 connected to va, and fb has edges eb1, and eb2 connected

to vb. These X -constraints are enforced only for edges ear and ebs which have edge-

edge applicability and feasibility. The constraint in equation (4.22) is similar to the

X -constraints in equation (4.20) for the vertex-edge case, but permits a vertex to

pass on either side of a face instead of either side of an edge.

vb

va

A

B

Figure 4.9: A vertex va of body A approaching a vertex vb of body B
from above. Vertex va should be permitted to break the half
spaces represented by the falsely extended faces of B, but not
all of them and only when doing so does not violate edge-edge
contacts.

78

Given the previous definitions, we can write the algorithms for 3D just as we

did for 2D, also corresponding roughly to the same abstraction layers.

Algorithms 12, 13, 15, and 16 respectively correspond to the four configura-

tions, or feature combinations, for 3D in 4.4.1, 4.4.2, 4.4.3 and 4.4.4. Algorithm 14

Algorithm 12 PEG 3D, vertex-face.

function PEG-3D-vertex-face(va, fb)
if FEAS(va, fb) ∧ APPL{vf}(va, fb) ≥ εθ then
return {U(C(va, fb))}

end if
return {∅}

end function

Algorithm 13 PEG 3D, edge-edge.

function PEG-3D-edge-edge(ea, eb)
if APPL{ee}(ea, eb) ≥ εθ then
return {U(C(ea, eb))}

end if
return {∅}

end function

represents a useful auxiliary function that is used for both the vertex-edge and

vertex-vertex configurations.

Algorithm 17 keeps track of which edges are involved in contact subsets in

order to avoid over-constraining the potential contacts between A and B. To do so

could result in a trap analogous to the standard-model trap.

79

Algorithm 14 Auxiliary function for 3D PEG functions.

function Vertex-edge-3D-X-constraints(va, eb)
C1 = C(va, eb.fb1)
C2 = C(va, eb.fb2)
Xconstr = {}
for ea = (va, vai) ∈ EA do
if APPLee(ea, eb) ≥ εθ then
if ea

||ea|| · Oeb ≥ |εθ| then � Only eb.f1
Xconstr = Xconstr ∪ {I(C-split(C1, C(ea, eb)))}

else if ea
ea
· Oeb ≤ |εθ| then � Only eb.f2

Xconstr = Xconstr ∪ {I(C-split(C2, C(ea, eb)))}
else � Both eb.f1 and eb.f2

C3 = C(ea, eb)
C4 = C3

C4.n̂ = −C4.n̂ � Flip the contact normal
if ea · Oeb ≥ 0 then

Xconstr = Xconstr ∪ {I(C-split(C1, C3)} ∪ {I(C-split(C2, C4)}
else

Xconstr = Xconstr ∪ {I(C-split(C2, C3)} ∪ {I(C-split(C1, C4)}
end if

end if
end if

end for
return Xconstr

end function

Algorithm 15 PEG 3D, vertex-edge.

function PEG-3D-vertex-edge(va, eb)
C1 = C(va, eb.fb1)
C2 = C(va, eb.fb2)
Iconstr = I(C-split({C1, C2}))
return Iconstr ∪ V ertex-edge-3D-X-constraints(va, eb)

end function

80

Algorithm 16 PEG 3D, vertex-vertex.

function PEG-3D-vertex-vertex(va, vb)
Iconstr = {I(C-split({C(va, fb)})), I(C-split({C(vb, fa)}))} : fb ∈ FB, vb ∈

fb, fa ∈ FA, va ∈ fa
Xconstr = {}
for eb ∈ EB : vb ∈ eb do

Xconstr = V ertex-edge-3D-X-constraints(va, eb)
end for
for ea ∈ EA : va ∈ ea do

Xconstr = V ertex-edge-3D-X-constraints(vb, ea)
end for
return Iconstr ∪Xconstr

end function

81

Algorithm 17 PEG 3D.

Given polyhedra A and B, generates the set of contact constraints between them.
function PEG-3D(A,B)

Constraints = {}
for va ∈ VA, vb ∈ VB : ||va − vb|| ≤ ε do � Vertex-vertex

Constraints = Constraints ∪ PEG-3D-vertex-vertex(va, vb)
ea.collision = true : va ∈ ea
eb.collision = true : vb ∈ eb

end for
� Vertex-edge

for va ∈ VA, eb = (vb1, vb2) ∈ EB : point-segment-distance(vb1,vb2,va) ≤ ε do
if ¬ea.collision : va ∈ ea then

Constraints = Constraints ∪ PEG-3D-vertex-edge(va, eb)
ea.collision = true : va ∈ ea
eb.collision = true : vb ∈ eb

end if
end for

� Vertex-face
for va ∈ VA, fb = (vb1, vb2, vb3) ∈ FB : point-triangle-

distance(va,vb1,vb2,vb3) ≤ ε do
if ¬ea.collision : va ∈ ea then

Constraints = Constraints ∪ PEG-3D-vertex-face(va, fb)
ea.collision = true : va ∈ ea
eb.collision = true : vb ∈ eb

end if
end for

� Edge-edge
for ea = (va1, va2) ∈ EA, eb = (vb1, vb2) ∈ EB : segment-segment-distance-

3D(va1,va2,vb1,vb2) ≤ ε do
if ¬ea.collision ∨ ¬eb.collision then

Constraints = Constraints ∪ PEG-3D-vertex-face(va, fb)
end if

end for
return Constraints

end function

82

4.5 Non-convexity with PEG

We could approach non-convex cases by augmenting the methods described

already in this chapter. For example, the 2D vertex-vertex case must be augmented,

as it is clear in the configuration of Figure 4.10 that unilateral constraint on both

contacts C(va, eb1) and C(va, eb2) must be enforced. However, we can see for this

A

B

vaeb2
eb1ψ1ψ2

Figure 4.10: Contact determination in a non-convex region of a poly-
gon. Here, two unilateral constraints are required to prevent
interpenetration of A and B. Equivalently, body B could
be decomposed into a union of convex bodies, requiring no
modifications to PEG.

particular case that this is equivalent to decomposing body B into two bodies which

overlap near where eb1 and eb2 meet, or share a vertex there. In fact, convex decom-

position is a good general approach to using PEG with non-convex bodies.

Consider the body of Figure 4.11 of which we see four edges and note particu-

larly the two convex vertices v1 and v3 and the non-convex vertex v2. Decomposing

this body into a union of two overlapping convex bodies allows us to use PEG on

each of these sub-bodies independently.

The decomposition approach depicted if Figure 4.11 avoids two pitfalls in

particular: allowing interpenetration for non-area (or non-volume in 3D) bodies such

as a single vertex, and regenerating standard-model traps. The first pitfall is avoided

by having the convex decompositions overlap as opposed to having zero distance

which is large enough to permit a vertex through. The second pitfall is avoided

83

v1

v2

v3

Figure 4.11: A portion of a non-convex body and a possible decomposi-
tion into two overlapping convex parts.

since the decomposition will add edges on the interior of the body, as opposed to

extending the original edges as infinite half spaces which could potentially recreate

the standard-model traps we were originally trying to avoid.

Figure 4.12 is an example of a saddle point vertex. This vertex has degree of

four where two of the edges adjoin faces which are convex relative to the interior of

the body, and two of the edges adjoin faces which are non-convex. This particular

example is one which, when identified, can be handled with configuration approaches

we have already defined for PEG. In particular, if a vertex of another body is

approaching this saddle point vertex, we can utilize PEG’s vertex-edge constraints

for the approaching vertex against the two edges of the saddle that are convex.

Letting the convex edges be e1 and e2 and the non-convex edges be e3 and e4, we

can write the constraints for a vertex va of a convex body against this vertex as

I(Cι1,Cκ1)

X ({Ce1i}, {C1a})
X ({Ce1j}, {C1b})
I(Cι2,Cκ2)

X ({Ce2i}, {C2a})
X ({Ce2j}, {C2b})

(4.23)

where the first three constraints are for va against e1 and the last three are for va

against e2. Being able to write (4.23) for this configuration is in great part due

to the fact that the plane defined by the two convex edges is inside the body, and

84

xxxx
y

z

xyyyy xxx

z

y

z

xx

e1

e2

Figure 4.12: Three views of a saddle point vertex, a vertex with two
convex edges (top edges) and two non-convex edges (middle
side edges). The interior of the body is below the faces.

moreover that a vertex that is on one side of this plane for one of those edges will

necessarily be on the same side of this plane for the other edge. Further, note that

we did not have to include e3 and e4 in the constraints. This formulation exploits the

fact that having independent constraints, in this case those on e1 and those on e2,

is precisely the AND condition that is appropriate for non-convex regions. Having

simultaneous constraints on the two faces of e3 is enough to prevent penetration of

these faces, and similarly for e4. This turns out to be exactly the same approach as

would be taken if we had decomposed the body into a union of convex bodies.

85

4.6 PEG with non-polytopes.

It is possible to utilize the underlying mathematical framework of PEG for

non-polytope bodies, for example, those defined by semi-algebraic sets [78], or non-

uniform rational basis splines (NURBs) which include Bézier curves and B-splines.

The framework to which we are referring is that which allows us to effectively trans-

late sets of AND conditions on unilateral constraints into subsets of OR conditions.

The only requirement for utilizing PEG for alternative body geometries is that at

the very lowest level, the concept of a single contact is fundamentally unilateral, as

depicted in Figure 2.2.

For alternative body geometries, the approach would still follow that repre-

sented by the abstraction layers depicted in Figure 4.6. The underlying mathe-

matical tools at the lowest level remain the same. The difference for each type of

body geometry would be the set of fundamental constraints, as well as the possible

configurations which generate the sets of these fundamental constraints.

For example, consider the two different cases of a particle v approaching a

body B with surfaces as depicted in Figure 4.13. Instead of line segment edges,

B

s2

s1

ψ1 ψ2

v

(a)

B

s2

s1

ψ1 ψ2

v

(b)

Figure 4.13: Two examples of non-polytopal body geometries whose con-
tact interactions can be modeled using PEG. In (b), ψ1 is
determined using the tangent at the point on s1 nearest to
particle v.

body B is composed of surfaces s1 and s2. In 4.13a, s1 is convex, and in 4.13b, s1

is non-convex. In both cases, the first contact C1 = C(v, s1) is determined by the

86

closest distance not to that feature, but to the curve that represents that feature.

In the case of C1, we have used to the tangent of s1 at the point nearest to v.

This is precisely the same as what is done for non-curved edges such as s2 where

C2 = C(v, s2). We may observe that for both cases of curved and straight facets,

as well as both cases of convex and non-convex, it is possible for the contact point

pb on body B to be located off the surface of B. From here, for both examples, we

make the PEG-like observations that the particle v can only be in contact with one

of s1 or s2, not both. Further, C1 should be allowed to be violated as long as C2 is

not, and vice versa. This set of contact constraints is easily written for either of our

examples as

0 ≤ c1 + ψ1 − ψ2 ⊥ c1 ≥ 0

c1 + ψ1 ≥ 0

0 ≤ d1 + ψ1 ⊥ d1 ≥ 0

0 ≤ d2 + ψ2 ⊥ d2 ≥ 0

0 ≤ c1 + ψ1 + d1 ⊥ λ1 ≥ 0

0 ≤ c1 + ψ2 + d2 ⊥ λ2 ≥ 0

(4.24)

where just as was the case in our derivation of PEG, c1, d1, and d2 are slack vari-

ables, and λ1 and λ2 are the potential contact forces associated with C1 and C2,

respectively. Equation (4.24) can even be simplified to the equivalent

I({C1, C2}, {}) (4.25)

where both C1 and C2 have applicability and feasibility.

It should be noted that time-stepping with curved surfaces does introduce error

similar to that due to rotation of polytopes over the time step (see 5.3 for details).

This is due to the nature of the unilateral constraint used to model contact, as

described in 2.3, which treats the region of contact as an infinite half space divided

by a line in 2D or plane in 3D. Figure 4.14 depicts an example of this contact

model applied to a curved surface. This is a well known issue with curved surfaces

in time-stepping simulation and can be ignored for small time steps. Alternatively,

depending on the application and required behavior, multiple contacts can be used at

points on s within some small distance ±δ from the point nearest to v, or constraints

87

B
s

ψ

v

Figure 4.14: Contact between a particle v and a curved surface. The
dashed line represents the half space corresponding to the
non-penetration constraint. At each time step, v is pre-
vented from crossing the tangent of s at the point nearest
to v.

can be written to implicitly account for the curved body geometries [78].

We begin to approach non-convex non-polytopal bodies with curved surfaces in

the same manner as we did for non-convex polytopal bodies. That is, we decompose

them into unions of sub-bodies. However, it requires theoretically infinitely many

sub-bodies to decompose a region with a non-convex curve. One approach to dealing

with this issue is depicted in Figure 4.15, where a larger body is decomposed into

sub-bodies which are either convex, or have their exterior defined by a single curve.

Contact between this body and any other is then done per sub-body where contact

s1

s2

s3

s4

s5

Figure 4.15: A single body composed of convex and non-convex curved
surfaces. The thick black line represents the body perime-
ter while the alternating colors correspond to sub-bodies in
the decomposition. Sub-bodies overlap to prevent possible
interpenetration from zero-area bodies such as particles.

88

with a non-convex region of this body includes I-constraints between the exterior

curve and the adjacent interior surfaces created during decomposition.

4.7 Time-stepping formulation with PEG

As an independent contact model, there are any number of time-stepping

methods into which we may incorporate PEG. However, I have regularly used the

Stewart-Trinkle method of equations (2.34) and (2.35). To do this, we start by

discretizing and rewriting the constraints of PEG, and here we’ll focus on the case

where we make a choice of which contact is the primary contact which may have

a potential force associated with it. Then we let that primary contact be the first

in the set. We have already seen the unilateral constraint in section 2.4. An I-
constraint may be discretized also by substituting equation (2.25) into (4.10) and

(4.13) to get

0 ≤ EI1c�+1
I +

ψI
h

�

+GT
Iν

�+1 +
ψ�

I
∂h

⊥ c�+1
I ≥ 0 (4.26)

0 ≤ EI2c�+1
I +

ψ�
Iι
h

+GT
Iιν

�+1 +
∂ψ�

Iι
∂t

⊥ p�+1
I ≥ 0 (4.27)

for which we also extend the Newton-Euler equations to include

Mν�+1 =Mν� + · · ·+GnIp�+1
nI (4.28)

where for m I-constraints, cI is the solution vector composed of unknown variables

c�+1
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c�+1
I1
...

c�+1
Ij
...

c�+1
Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

89

where the cardinality of each c�+1
Ij is k where the jth I-constraint has k + 1 sub-

contacts, EI1 is diagonally composed of sub-matrices where

EI1j =

⎡
⎢⎢⎣
1 0 0

1
. . . 0

1 1 1

⎤
⎥⎥⎦

which is the lower triangular matrix of size k, EI2 is diagonally composed of sub-

matrices of row vectors of ones where

EI2j =
[
1 1 . . . 1

]

has length k, ψ�
I is the vector

ψ�
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ�
I1
...

ψ�
Ij
...

ψ�
Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where each sub-vector ψ�
Ij is given by

ψIj =

⎡
⎢⎢⎣
(
ψIj1

h
+

ψIj1

∂t
)− (

ψIj2

h
+

ψIj2

∂t
)

...

(
ψIj1

h
+

ψIj1

∂t
)− (

ψIjk

h
+

ψIjk

∂t
)

⎤
⎥⎥⎦ ,

ψIι is the vector of primary sub-contacts

ψIι =

⎡
⎢⎢⎣
ψIι1

h
+

ψIι1

∂t
...

ψIιm

h
+

ψIιm

∂t

⎤
⎥⎥⎦ ,

90

p�+1
I is a vector of unknown impulses

p�+1
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p�+1
I1
...

p�+1
Ij
...

p�+1
Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

GI is the Jacobian difference matrix diagonally composed of sub-matrices GIj each

composed of sub-matrices GIjis where

GIjis =

⎡
⎣ n̂j1

rj1 × n̂j1
− n̂js

rjs × n̂js

⎤
⎦ , (4.29)

and GnI is the Jacobian matrix of only primary contacts

GnIj =

⎡
⎣ n̂j1

rj1 × n̂j1

⎤
⎦ .

An X -constraint can be discretized and incorporated in precisely the same

way as the I-constraint. The result is that the PEG model may be written with

quadratic friction as

Mν�+1 =Mν� +Gbp
�+1
b +Gnp

�+1
n +GnIp�+1

I +GnXp�+1
X +Gfp

�+1
f + p�ext (4.30)

0 = ψ�
b +G

T
b ν

�+1h+
∂ψ�

b

∂t
h (4.31)

0 ≤ ψ�
n +G

T
nν

�+1h+
∂ψ�

n

∂t
h ⊥ p�+1

n ≥ 0 (4.32)

0 ≤ EI1c�+1
I +

ψI
h

�

+GT
Iν

�+1 +
ψ�

I
∂h

⊥ c�+1
I ≥ 0 (4.33)

0 ≤ EI2c�+1
I +ψ�

I ⊥ p�+1
I ≥ 0 (4.34)

0 ≤ EX1c
�+1
X +

ψX
h

�

+GT
Xν

�+1 +
ψ�

X
∂h

⊥ c�+1
X ≥ 0 (4.35)

91

0 ≤ EX2c
�+1
X +ψ�

X ⊥ p�+1
X ≥ 0 (4.36)

0 =
(
Up�+1

n

) ◦ u�+1
t + p�+1

t ◦ s�+1 (4.37)

0 =
(
Up�+1

n

) ◦ u�+1
o + p�+1

o ◦ s�+1 (4.38)

σ =
(
Up�+1

n

) ◦ (Up�+1
n

)− p�+1
t ◦ p�+1

t − p�+1
o ◦ p�+1

o (4.39)

0 ≤ σ�+1 ⊥ s�+1 ≥ 0 (4.40)

where equations (4.37) through (4.40) represent the quadratic friction constraints

of Coulomb friction, and we have augmented the appropriate values, e.g., U, to

include the primary sub-contacts of the I and X -constraints.

We can also write PEG with the linearized friction model by replacing the

quadratic friction constraints.

Mν�+1 =Mν� +Gbp
�+1
b +Gnp

�+1
n +GnIp�+1

I +GnXp�+1
X +Gfp

�+1
f + p�ext (4.41)

0 = ψ�
b +G

T
b ν

�+1h+
∂ψ�

b

∂t
h (4.42)

0 ≤ ψ�
n +G

T
nν

�+1h+
∂ψ�

n

∂t
h ⊥ p�+1

n ≥ 0 (4.43)

0 ≤ EI1c�+1
I +

ψI
h

�

+GT
Iν

�+1 +
ψ�

I
∂h

⊥ c�+1
I ≥ 0 (4.44)

0 ≤ EI2c�+1
I +ψ�

I ⊥ p�+1
I ≥ 0 (4.45)

0 ≤ EX1c
�+1
X +

ψX
h

�

+GT
Xν

�+1 +
ψ�

X
∂h

⊥ c�+1
X ≥ 0 (4.46)

0 ≤ EX2c
�+1
X +ψ�

X ⊥ p�+1
X ≥ 0 (4.47)

0 ≤ Gfν
�+1 + Es�+1 ⊥ p�+1

f ≥ 0 (4.48)

0 ≤ Up�+1
nIX − ETp�+1

f ⊥ s�+1 ≥ 0 (4.49)

where we have augmentedGf , U, and E of the friction constraints of equation (4.48)

to include friction information on the primary contacts of the I and X -constraints.

Considering that in this form, X -constraints may be represented as I-constraints,

92

let’s simplify by using the linearized friction cone and letting

ρ�+1
n = GT

nν
�+1 + ψn

h
+ ψn

∂t

ρ�+1
nI = GT

nIν
�+1 + EI2c�+1

I +ψIι

γ�+1
I = GT

Iν
�+1 + EI1c�+1

I +ψ�
I

ρ�+1
f = GT

f ν
�+1 + Es�+1

σ�+1 = Up�+1
n − ETp�+1

f

then writing this PEG model in the form of a MCP as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ρ�+1
n

ρ�+1
nI

γ�+1
I

ρ�+1
f

ρ�+1
fI

σ�+1

σ�+1
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−M Gb Gn GnI 0 Gf GfI 0 0

GT
b 0 0 0 0 0 0 0 0

GT
n 0 0 0 0 0 0 0 0

GT
nI 0 0 EI2 0 0 0 0 0

GT
I 0 0 0 EI1 0 0 0 0

GT
f 0 0 0 0 0 0 E 0

GT
fI 0 0 0 0 0 0 0 EI

0 0 U 0 0 −ET 0 0 0

0 0 0 UI 0 0 −ETI 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν�+1

p�+1
b

p�+1
n

p�+1
nI
c�+1
I
p�+1
f

p�+1
fI
s�+1

s�+1
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mν� + pext
ψb

h
+ ∂ψb

∂t

ψn

h
+ ∂ψn

∂t

ψ�
Iι

ψ�
I

∂ψf

∂t
∂ψfI
∂t

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.50)

0 ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ�+1
n

ρ�+1
nI

γ�+1
I

ρ�+1
f

ρ�+1
fI

σ�+1

σ�+1
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p�+1
n

p�+1
nI
c�+1
I
p�+1
f

p�+1
fI
s�+1

s�+1
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (4.51)

where we notice that our friction for the I-constraints very nearly matches that for

the U -constraints. We could reduce this notation by redefining EI2 to include zero

entries for U -constraints.
It is a good question at this point to ask what the size of the MCP will be for

PEG as well as what it will have been for the standard model in Stewart-Trinkle for

93

comparison. For both models, the number of bodies nB > 0 dynamically involved

would generate (in 3D) a mass matrix of size 6nB × 6nB, and nb ≥ 0 bilateral con-

straints will generate a Gb of size 6nB×nb. The problem size diverges for unilateral

and additional contact constraints since a subset of unilateral constraints from the

standard model will be separated into I and X -constraints with PEG. Given nd ≥ 0

friction directions in the linearized friction cone, nu unilateral constraints with the

standard model generate a 6nB × nu matrix Gn and a 6nB × nd matrix Gf with

additional 6nB, so that the total size in MCP rows of the standard model is given

by

6nB + nb + nu + nund + nu (4.52)

With PEG, some subset of contacts of size ns, where ns can be any of 0, 2, 3,

. . . , nu, will be involved in I or X -constraints. However, there could be one single

I-constraint made up of ns contacts, or as many as
⌊
ns

2

⌋ I-constraints since each

I-constraint involves at least two contacts. Further, the higher the percentage of I
constraints, the smaller the problem size will be, due solely to there being a smaller

number of contacts which could result in frictional forces. The general problem size

for PEG is given by

6nB + nb + (nu − ns) + (nu − ns)nd + (nu − ns) + ns +
⌊ns
2

⌋
nd +

⌊ns
2

⌋
(4.53)

which has an upper bound where ns = 0, which is precisely equal to (4.52), the

problem size for the standard model. The next highest bound for PEG is when

nc ≥ 2 and ns = 2, and is given by

6nB + nb + (nu − 2) + (nu − 2)nd + (nu − 2) + 2 + nd + 1 (4.54)

where 2 + nd + 1 is the number of row/columns for the I-constraint with nd + 1

columns/rows required for friction on a single I-constraint on two contacts. The

lower bound for PEG is given for ns = nc by

6nB + nb + ns +
⌊ns
2

⌋
nd +

⌊ns
2

⌋
(4.55)

94

The bounds on problem size are depicted in Figure 4.16 in comparison with the

standard model. It can be shown that the PEG formulation is generally smaller

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of contacts

C
on

ta
ct

 p
ro

bl
em

 s
iz

e

Standard model
PEG upper bound
PEG lower bound

Figure 4.16: Comparison of problem sizes for contact constraints only.
For both PEG and the standard model, the problem size
increases with the number of contacts. The standard model

than or equal to the standard model formulation: We wish to show that (4.53) is

always smaller or equal to (4.52). It follows that

6nB + nb + 2nu − ns +
⌊ns
2

⌋
+ (nu − ns +

⌊ns
2

⌋
)nd ≤ 6nB + nb + 2nu + nund

−ns +
⌊ns
2

⌋
+ (nu − ns +

⌊ns
2

⌋
)nd ≤ nund

and since −ns +
⌊
ns

2

⌋ ≤ 0, we can remove this expression from the left hand side

without loss of generality to obtain

nu − ns + �ns
2
� ≤ nu

which is always true since, again, −ns + �ns

2
� ≤ 0 �.

The PEG formulation is equivalent to the standard model when there are only

95

U -constraints without I or X -constraints. PEG and the standard model are not

equivalent but do have the same problem size when there are I-constraints but no
friction involved.

4.8 Solvability of the new contact model

I can currently offer no formal proof of the solvability of the PEG formulation,

however I can offer the observation that in practice I have successfully implemented

and run PEG using the PATH solver with robustness and reliability. Any proof of

solution existence for the general PEG formulation would be a significant mathe-

matical undertaking that is beyond the scope of my current research, and certainly

is to be considered future work. To give just a small amount of perspective on the

magnitude of such an undertaking, David Stewart’s work on convergence for for-

mulations of rigid body dynamics with friction [79, 80] cites no fewer than eighteen

works on the topic of solution existence spanning several decades of “controversy”

on the topic, notably [16, 81, 82].

Chapter summary

In this chapter, we described a contact model called PEG which replaces the

classical notion of sets of unilateral constraints with three fundamental constraints

which can be written in the form of complementarity problems. These constraints

can be used not only in conjunction to generate logical AND statements on unilateral

constraints, but offer a mathematical framework for logical XOR statements between

subsets of unilateral contacts. This framework allows us to incorporate all possible

contacts into a time-stepping formulation in order to accurately capture the body

geometries at those points of potential contact, fully representing the physically

possible outcomes. We discussed how this contact model can be used in 2D and 3D,

and with non-convex bodies by decomposing them into unions of overlapping convex

bodies. We were also introduced to non-polytopal bodies that can also benefit from

a PEG-like contact model. Lastly, we saw how PEG can be incorporated into the

Stewart-Trinkle time-stepping method, and discussed solving this formulation.

CHAPTER 5

SIMULATION BEHAVIOR AND PERFORMANCE

In this chapter, we will see the improvements offered by the Polytope Exact Ge-

ometry (PEG) model over other methods in a variety of benchmark simulations

designed to test specific contact cases. We will start by observing certain instan-

taneous cases, or cases over a single time step. We will then proceed by analyzing

simulations, using various methods, over many time steps.

The PEG contact model can be incorporated into the Stewart-Trinkle method

by discretizing U , I, and X -constraints using equation (2.25). At each time step �,

a time-stepping subproblem is constructed and solved to determine the kinematic

state of dynamic bodies at the end of the time step �+ 1. We will see comparisons

between the new model and the standard model (SM), the locally non-convex model

(LNC), and corrective methods.

5.1 Instantaneous cases

We have seen previously the pitfall of the standard-model trap as depicted in

Figure 4.1. Because it is typical to only consider contacts with gap distances within

a chosen epsilon value, it is consequently also possible for a vertex to approach a

corner condition such as the standard-model trap from behind the trap. Consider

the case depicted in Figure 5.1 where the vertex va is approaching a corner from

inside one of the edge’s half spaces. Let us consider the two gap distances ψ1 of va

ea1

ea2

va
vb ε

eb1

eb2

A

B

Figure 5.1: Two vertices approach one another. Note that va is approach-
ing from a region of deep penetration of eb1.

96

97

against eb1 and ψ2 of va against eb2. It is clear that ψ2 is approximately zero as A
slides left to right. It also should be clear that ψ1 has a deep penetration. Using a

standard contact approach, if we were to include both contacts C1 = C(va, e1) and
C2 = C(va, e2), our dynamics formulation would attempt to correct C1 by generating

an immense force to the right at va and an equal and opposite force at the corner

where eb1 meets eb2. One could attempt to minimize this occurrence by using small

values of epsilon, however this requires subsequently smaller time step sizes and only

lessens the likelihood of this case, but does not eliminate it. Such an approach is

not robust.

We should also consider that vb is approaching a standard-model trap against

the two nearest edges of A. This dual trap will result in A “sticking” to the corner

of B in the time step after va enters within ε of vb. Notice that in Figure 5.2, va has

vaea1

ea2

vb

eb1

eb2

A

B

Figure 5.2: Dual standard-model trap where constraints between va with
eb1 and eb2, as well as constraints between vb with ea1 and ea2.

zero gap distance with the two nearest edges of B, and vb has zero gap distance with

the two nearest edges of A. Body A’s, progress to the right will be halted by the

constraint of vb against ea2, since this constraint would become negative if A moved

any farther right.

We can generate similar standard-model traps for vertices against multiple

faces in 3D. In Figure 5.3, a red cube is on top of and near the side of a larger

blue rectangular body. Two vertices on the bottom right of the red cube in 5.3a

are near two faces of the blue body, a top face and a side face. The analysis of this

configuration is nearly the same as for the 2D case. If only the contact with the

top face is enforced, then the vertex is stopped from potentially traversing the free

space below the top face and to the right of the side face. Conversely, if only the

98

(a) Side view. (b) Angled view.

Figure 5.3: Example of 3D standard-model trap for vertices against mul-
tiple faces (bottom right vertices of red body in (a)). Given
this configuration, what contacts should be generated to pro-
duce accurate interaction of these bodies?

contact with the side face is enforced, then the red body is erroneously prevented

from sliding left, but worse there is nothing to stop the right side of the red body

from falling into the blue body. Enforcing both contacts as unilateral constraints

does not improve the situation, as although it prevents interpenetration, it traps the

vertices in the convex free space defined by the union of the faces’ half spaces. Using

PEG to model this configuration, we would include all possible contacts since PEG

finds a solution from among the physically feasible combinations of these contacts.

Figure 5.4 depicts a configuration between two tetrahedra in which the stability

is sensitively dependent on any heuristic choices made regarding vertex-face contact.

The bottom blue body is static, pinned to the world frame. The top red body is

Figure 5.4: Multiple views of a tetrahedron stacked and aligned atop
a second similar but inverted tetrahedron. Which contacts
should be enforced in this configuration?

99

dynamic and affected by gravity. Consider any of the corners where there is contact,

e.g., the two nearest vertices in the center image of Figure 5.4. We will refer to the

vertex of the top body as va and the three faces it is near as vb1, vb2, and vb3. We

then consider the three contacts

C1 = C(va, vb1)
C2 = C(va, vb2)
C3 = C(va, vb3)

that could be enforced. Including all of these contacts, as well as the similar

contacts with other vertices between these bodies, as unilateral constraints with

Stewart-Trinkle would effectively fuse these two bodies in this configuration. So

what heuristic could we employ to choose a subset of the possible contacts? Is there

any subset that would result only in physically realistic interaction of these bodies?

A heuristic which only considers the value of gap distances is not robust.

Consider that the gap distances for C1, C2, and C3 are all near zero, approximately

equal, and vary by numerical errors due to both floating point error and solver

convergence error. So, choosing for example to enforce the contact with the smallest

non-negative gap distance would result in unpredictable behavior.

Using applicability as a heuristic in this configuration would at least be con-

sistent regarding which contacts where included, since only the vertex-face contacts

between vertices and the faces which are touching have applicability. However, this

configuration is at the boarder of classical applicability and would degenerate unless

we use the geometric relaxation presented in 3.2. Even with this heuristic, we are

not achieving physical fidelity by including a subset of the potential contacts. In

fact, this heuristic creates a partial standard-model trap by preventing any vertices

of the the top body from penetrating the top face of the bottom body, and similarly

preventing any vertices of the bottom body from penetrating the bottom face of the

top body. Further, it is not clear that this heuristic would be any more successful

for other configurations.

PEG, with its ability to accurately model the geometry of contact, is necessary

if one hopes to accurately simulate the physically feasible interactions of these bodies

100

for configurations such as this, and ones like it.

5.2 Simulation benchmarks

In this section, we look at several examples of two or more bodies in simulation

over hundreds or thousands of time steps and make observations on accuracy and

stability for different models. We will particularly observe how the behavior of

these models changes (or doesn’t change) as we vary the size of the time step h.

I try to focus here are cases that approach the border of what is poorly or well

defined in traditional methods, e.g., vertices near other vertices. Simulations were

frictionless and the popular PATH solver [40] was used for all simulations unless

stated otherwise.

Three methods that we will compare throughout the section are a corrective

method (essentially a modified penalty method), a standard approach to contact

with the standard model, and PEG. The corrective method considers only con-

tacts that are violated. Corrective forces for this method are not determined in the

traditional way of a penalty method by directly treating each contact as an inde-

pendent linear spring system, but are modeled as unilateral constraints and solved

for simultaneously using PATH. This approach makes this corrective method more

competitive in terms of the errors that we will measure in the various simulation

experiments. There is no correlation between solver convergence and these errors,

since the solver has no sense of what it is solving when attempting to satisfy sets

of constraints. Particularly with PATH, if the constraints cannot be solved then an

error is returned and the simulation crashes. In other words, for all simulations that

completed, constraints were satisfied within solver convergence criteria. The contact

identification used with the standard model simply includes all contacts within the

ε value for that experiment. The contacts for PEG are identified in precisely the

same way as for the standard model, the difference of course is how these contacts

are incorporated into a dynamics problem.

The MATLAB code for all of these experiments is available as a branch to the

RPI-MATLAB-Simulator at http://code.google.com/p/rpi-matlab-simulator/

source/browse/#svn%2FPEG_branch.

101

5.2.1 Triangle-drop experiment

In this benchmark, a triangle with side length 2.45 m, mass of 1 kg, and

rotational inertia of 0.6495 kg/m2 is dropped from above and to the right of a larger

static triangle of side length 4.9 m. This experiment was run for time steps ranging

from 0.001 to 0.016 s over a period of 1.5 s of simulation without friction. For each

time step h, an epsilon of ε = 10h m was used for collision detection.

Figure 5.5 depicts trials for three different models applied to the triangle drop

simulation for h = 0.01 s. In the first two frames (top two rows), at time steps 60 and

T
im

e

(a) Corrective method. (b) Standard model. (c) PEG.

Figure 5.5: Sample comparison of methods on triangle drop benchmark
for h = 0.01 s.

102

80 before contact occurs, all three methods are identical as they fall under gravity.

In the third frame, all three methods diverge. The corrective method encountered an

interpenetration and generated a force to correct it, resulting in a moderate bounce

off of the bottom triangle. With the standard model, the left most vertex of the red

body has entered a standard-model trap against the top two edges of the bottom

body. With PEG, although the same set of contacts were identified as with the

standard model, we see the red body slide through the trap and along the right face

of the bottom body. In the final frame, the standard model is still trapped, while

the smaller triangles in the other two methods have fallen off of the larger one.

Consider Figure 5.6 which shows the x and y trajectories, as well as the rotation

of the red triangle as it falls for the various values of time step size (brighter colors

correspond to larger time steps). A ground truth simulation was run using PEG

at a time step of h = 0.0001 s. The standard model consistently diverges in x and

y as soon as the vertex becomes trapped. All 16 trials of the PEG model overlap

and cover the the ground truth on all three plots. The corrective method varied

dramatically for different time steps.

It is tempting, when comparing the behavior of PEG with the corrective

method in Figure 5.5, to give the corrective method more credit than it deserves, as

it appears to qualitatively resemble the trajectory of the PEG simulation. However,

PEG is able to recreate the same trajectory for even very large time steps, where

the results from a corrective method vary considerably with changing time steps

and require time steps which are multiple orders of magnitude smaller to achieve

quantitatively similar behavior to PEG.

103

0 0.5 1 1.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time (s)

X
 p

os
iti

on
 (

m
)

Standard model
Corrective
PEG

(a) x position

0 0.5 1 1.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (s)

Y
 p

os
iti

on
 (

m
)

Standard model
Corrective
PEG

(b) y position

0 0.5 1 1.5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time (s)

A
ng

le
 o

f r
ot

at
io

n
(r

ad
)

Standard model
Corrective
PEG

(c) rotation

Figure 5.6: Component trajectories of the red triangle in the triangle
drop experiment for three different models over time steps
from h = 0.001 s to h = 0.016 s.

104

5.2.2 Stack of boxes

In this benchmark simulation, a stack of ten staggered squares of 1 m2 is

simulated with a time step of h = 0.005 s and ε = 0.07 m. The initial positions

of the boxes were generated randomly in the horizontal direction between values of

±0.1 m, and separated by 0.25 m in the vertical direction. The bottom box is a

static body. The physical result would be for the boxes to fall and stay stacked, as

they are not so staggered to place their centers of mass off of the bottom box. We

will observe three cases, the first of which is a corrective method.

Figure 5.7 shows three frames from the simulation using a corrective method.

At step 110, all boxes but the top have fallen and made contact with the boxes below.

We can already see some unexpected rotations in the boxes toward the bottom. At

step 150, the momentum of the boxes has generated interpenetrations as the boxes

fell from gravity, and we see the boxes separating as they rebound from this violation

of contact constraint. It is already apparent that this stack will not recover from

this rebounding. In fact, even if it did, the stack could not be considered stable, an

unfortunate consequence of corrective methods. At step 190, we see the boxes as

they start to fall away after their rebound. Eventually, the static bottom box is the

only box that remains.

Figure 5.8 depicts the results of using the standard model with standard con-

tact identification. The simulation appears to be behaving well at step 110. At

precisely step 120, the top box has come close enough to the box below it, and the

vertices of these two boxes are close enough to one another, that we see a quadruple

standard-model trap occur. The horizontal forces generated by these false contacts

shifts the box second from the top to the left, which in results in a sort of domino

effect in which the top six boxes all enter quadruple standard-model traps with at

least one of their neighbors, which we see at step 130. Although this stack does not

topple in this particular case, the behavior is clearly non-physical and undesirable.

Figure 5.9 demonstrates the stability and physical behavior of PEG. At step

110, eight of the ten boxes are in contact while the last two boxes are about to make

contact. At step 130, all boxes are in contact with gap distances of zero (within

machine precision) at all active contacts. Thousands of steps later, the box stack is

105

(a) Step = 110 (b) Step = 150 (c) Step = 190

Figure 5.7: Results of 2D box stack with corrective method.

steady and stable.

A question arises as to what modifications could be made to either the cor-

rective or standard models in order to improve their performance. Although the

corrective method waits for contacts to be violated before adding them to the active

set, once in this set, contacts could be cached so as to not allow violation on suc-

cessive steps. Although this technique, which is employed by Bullet Physics, does

curtail instabilities for certain cases, it would not improve performance for simula-

106

(a) Step = 110 (b) Step = 120 (c) Step = 130

Figure 5.8: Results of 2D box stack with standard model.

tions such as the box stack experiment where the initial interpenetrations generate

forces which undermine the stability of the interdependent body configurations. As

we follow a line of thought that has generated many of the ad hoc corrections com-

mon to simulators today, the natural next idea is to dampen the forces generated

by deep penetrations [21, 83] in the hope of mitigating the resultant instabilities.

Such corrections may be well suited for certain applications but I’ll reiterate that

they only treating symptoms, and can always be broken.

107

(a) Step = 110 (b) Step = 130 (c) Step = 5000

Figure 5.9: Results of 2D box stack with PEG. Although the same set of
contacts is identified as with the standard model, especially
the top right most contacts, PEG does not enforce erroneous
contact and is subsequently stable where other models fail.

108

5.2.3 Box of polygons

Figure 5.10a depicts an experiment in which we simulate five seconds of pour-

ing polygons into a container. Each polygon was generated by taking the convex

hull of ten randomly generated points between values of ±0.25. SM and LNC were

unable to simulate the full five seconds as they were prone to enter non-physical

configurations or generate contact sets which were unsolvable using PATH or re-

sulted in extreme instability and “exploded” using other solution approaches such

as Lemke’s algorithm [41].

Figure 5.10b shows the median and first and third quartile of area of overlap

error for ten different sets of random bodies, for increasing time step, of our model

compared to a corrective method where the error is measured by the total area of

overlap between all body pairs. The corrective method used here identifies areas of

overlap per body pair, determines a single contact per overlap, and applies impulses

to reduced the interpenetration to zero at the end of the time-step. Although

this method introduces instability in the form of “bounce” between objects, it is

competitive in terms of the area of overlap error metric. Even for small time steps,

PEG produced errors orders of magnitudes smaller than the corrective method for

this experiment.

Figure 5.11 demonstrates a body configuration and contact set that resulted in

a failure to find solution with the standard model. The failure occurred due to there

being three contacts that could not be simultaneously satisfied. The first contact

involves the right most vertex of the green body against the right edge of the red

body (incidentally the green body’s vertex is trapped against the top most vertex

of the red body). The second and third contact both involve vertices at the lower

left of the green body against the left most edge of the red body. Essentially, the

green body must move left relative to the red body but cannot.

To reiterate this idea with a contrived but simpler example than that which

occurred in the box of polygons experiment, consider the basic configuration of

Figure 5.12 in which a smaller cube is stacked upon a larger one. There are two

contacts which have been identified between bodies A and B: one between the

bottom left vertex of A with the left edge of B, and one with the bottom right vertex

109

(a) An example 2D experiment. A polygon is dropped into a con-
tainer every 0.25 seconds for 5 seconds of simulation.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

0.5

1

1.5

2

2.5
x 10

−3 Median, Q1, and Q3 of area of overlap error in 2D

Timestep size h (s)

T
ot

al
 a

re
a

of
 o

ve
rla

p
(m

2)

Corrective
PEG

(b) Comparison of area overlap errors for 2D polygon experiment. Pre-
dictably, the corrective method generates larger error for larger time
steps. The error of PEG is relatively imperceptible, set along the
horizontal axis for all time steps tested.

Figure 5.10: Simulation experiment with several polygons in 2D.

of A with the right edge of B. Both of these contacts, once identified during some

mid-phase collision detection, would be considered by the narrow-phase and could

110

Figure 5.11: Failure to find solution with standard model. Red lines
correspond to negative gap distance of contacts, and green
lines to positive gap distances. Contacts on the left and
right sides of the bodies cannot be simultaneously satisfied.
Smaller time steps allow for smaller epsilons, reducing this
occurrence, but not eliminating it.

A

B

ψ1 ψ2

Figure 5.12: Two contacts have been identified: one on the left of A with
negative gap distance ψ1, and one on the right side of A with
negative gap distance ψ2. There is no solution that can move
A both relatively left and right of B simultaneously.

both be included during the formulation of the time-stepping problem. However,

the negative gap distance ψ1 on the left requires A to move left relative to B in

111

order to be “corrected,” and the negative gap distance ψ2 on the right requires A
to move right relative to B. Clearly, this contact set in this configuration cannot be

satisfied, and attempting to solve the dynamics formulation will fail and possibly

crash the simulator.

An interesting statistic to observe is the rate of occurrence of the SM-trap. In

other words, how frequently is PEG necessary to achieve a geometrically accurate

interaction between bodies. Figure 5.13 depicts the number of SM-traps encountered

at each time step for the 2D experiment above.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Time step

C
ou

nt

Total number of contacts
Number of ST−traps

Figure 5.13: Number of contacts and number of SM-traps encountered
at each time step for an example 2D simulation experiment
with time step of h = 0.01 s. Smaller time steps generate
fewer SM-traps since the ε used are smaller.

112

5.2.4 Box of polyhedra

A similar set of simulation experiments was run for PEG and the corrective

method in 3D, an example of which is shown in Figure 5.14a. Every 0.5 seconds,

a polyhedron was dropped into the box with a horizontal velocity in the negative

x direction. The results, depicted in Figure 5.14b, are extremely similar to the

2D results. As the step size increases, the interpenetrations grow steadily larger

(a) An example 3D experiment. A polyhedron is dropped into a box con-
tainer every 0.5 seconds for 5 seconds of simulation.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4 Median, Q1, and Q3 of volume of overlap error in 3D

Timestep size h (s)

V
ol

um
e

of
 o

ve
rla

p
(m

3)

Corrective
PEG

(b) Results for 3D polyhedra experiment.

Figure 5.14: Simulation experiment with several polyhedra in 3D.

113

with a corrective method, whereas PEG virtually eliminates this error at all time

steps. In addition to this similarity between 2D and 3D, we also see a similar rate of

occurrence of the SM-trap for this particular experiment at the step size of h = 0.01

s (Figure 5.15). Although this similarity is intriguing, it is simply coincidence, as

these results are only representative of a single experiment at a single time step and

2D, and a single experiment at a single time step in 3D.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Time step

C
ou

nt

Number of contacts and number of SM−traps detected

Number of contacts
Number of SM−traps

Figure 5.15: Number of contacts and number of SM-traps encountered
at each time step for an example 3D simulation experiment
with time step of h = 0.01 s.

Although accuracy is paramount, practicality dictates the importance of speed

as well. Figure 5.16 compares several statistics between PEG and the corrective

method for the 3D experiment with regard to problem size and solver time. For this

experiment, the mean solution time for the corrective method was 0.52342 ms, and

the mean solution time for PEG was 0.96736 ms.

114

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Time step

N
um

be
r

of
 c

on
ta

ct
s

Number of contacts

Corrective
PEG

(a) The number of contacts in the
corrective method corresponds
roughly to the number of bod-
ies since each body has relatively
consistent contact with the bot-
tom of the box and inter-body
contacts do not last long.

0 50 100 150 200 250 300 350 400 450 500
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time step

P
ro

bl
em

 s
iz

e

Problem size (rows × columns)

Corrective
PEG

(b) The size of the matrix repre-
senting the time-stepping prob-
lem was roughly 4 times larger on
average for PEG than for the cor-
rective method.

0 50 100 150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time step

S
ol

ve
r

tim
e

(s
)

Time taken to find solution

Corrective
PEG

(c) The amount of time that PATH
took to solve PEG averaged 1.85
times that to solve the implicit
formulation for the corrective
method. This is an excellent per-
formance for PEG.

Figure 5.16: Comparisons of PEG versus corrective method for the 3D
box experiment over 5 seconds with h = 0.01 s.

115

5.2.5 2D grasp experiment

Figure 5.17 shows a sequence from a 2D grasping experiment. In this experi-

ment, a five-link two-fingered gripper grasps a randomly generated convex polygon

sitting on a surface.

Figure 5.17: Sequence (top to bottom, left to right) of a 2D grasping
experiment with a PD controlled two-fingered gripper.

116

The same three models were compared as in the other experiments. For each

model, ten trials were run over multiple time step sizes from h = 0.001 s to h = 0.01

s, where each of the ten trials corresponded to a randomly generated convex polygon.

Each method was tested on the same set of polygons. For each of these trials, the

position at each step was compared to the position from a “ground truth” experiment

which was run with a very small time step of h = 0.0001 s. For now, the rotation is

ignored, and the positional error is determined by the Euclidean distance between

the ground truth and the position at the corresponding step of each trial. Figure 5.18

shows results from this experiment using the first polygon, where lighter shades of

a color correspond to trials with larger time steps.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time

E
uc

lid
ea

n
di

st
an

ce
 p

os
iti

on
 e

rr
or

Standard Model
Corrective
PEG

Figure 5.18: Sample results from the first 2D grasp experiment.

The standard model tends to generate large errors starting near the time at

which the fingers make contact with the object. This is due to the vertices at the

finger tips entering into the standard-model trap against vertices on the surface of

the object. For example, consider Figure 5.19 where both finger tips are trapped

against the object. Although this “grasp” will remain in this configuration stably,

it is clearly non-physical as the finger on the right is actually above the object but

117

Figure 5.19: A non-physical grasp due to fingers entering into standard-
model traps near vertices of the object.

still applying a force upward on the nearest bottom face of the object. The finger

on the left is also trapped where we can clearly see vertex-vertex contact.

Predictably, the corrective method performs poorly in the 2D grasp exper-

iment, as it has persistent bounce and never settles into a stable configuration.

Some trials for h greater than 0.003 s are not shown for the corrective method in

Figure 5.18, as it was mostly unstable above this time step and the object being

grasped tended to “explode” out of the gripper due to deep contact.

PEG performs best of the three models tested, even for relatively large time

steps. Additionally, even though PEG has small deviations during times when

dynamics are changing, e.g., initial contact, these deviations are temporary and all

PEG trials converge to the ground truth.

Trials for all three models are prone to increasing error as the time step in-

creases since the proportional-derivative controller used to control the four joint

torques of the gripper had constant gains over all trials, and the controller becomes

less stable with increasing time step size. Although this could be improved by im-

plementing gravity compensation and employing gain tuning, it does not affect the

relative results of the grasping experiment.

The 2D grasp experiment of Figure 5.17 was repeated for ten different ran-

domly generated polygons over time steps from h = 0.001 s to h = 0.01 s. The

118

median and first and third quartiles of the positional error for three models at each

time step is presented in Figure 5.20. Trials for the standard model entered con-

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time step size (s)

P
os

iti
on

 e
rr

or

2D grasp experiment error

Standard Model
Corrective
PEG

Figure 5.20: Median, Q1, and Q3 of position error over ten trials for
different time steps in the 2D grasping experiment.

figurations without solution for time steps above h = 0.005 s, so these trials do

not appear in in the data. Such configurations were conceptually similar to that of

Figure 5.11.

5.2.6 2D grasp experiment with friction

Precisely the same experiment was performed as in 5.2.5, but this time a

friction coefficient of 0.25 was used between all bodies. Looking at the results in

Figure 5.21 for the first trial object grasped, we see that all three models performed

similarly as in the experiment without friction. One notable difference is that al-

though PEG converges to the ground truth for the smallest time steps, it consistently

converges to a slightly different position for larger time steps. This has to do with

the timing of the fingers closing and whether or not certain contacts were sticking

or slipping with friction.

119

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

E
uc

lid
ea

n
di

st
an

ce
 p

os
iti

on
 e

rr
or

Standard model
Corrective
PEG

Figure 5.21: Sample results of 2D grasp experiment with friction for first
polygon.

Figure 5.22 shows results for all ten trials for each of the three models for

time steps for ten different time steps. The results are quite similar to the grasping

experiment without friction. This time, however, the standard model was able to

make it to h = 0.008 s without crashing, and the corrective method was unable to

complete trials for h = 0.01 s.

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time step size (s)

P
os

iti
on

 e
rr

or

2D grasp experiment with friction

Standard model
Corrective
PEG

Figure 5.22: Median, Q1, and Q3 of position error for all trials of the 2D
grasping experiment with friction.

120

Videos of experiments

The following videos are presently available online. These videos include ex-

periments from this section as well as additional demonstrations comparing PEG to

other methods.

2D

• Box of polygons - PEG http://www.youtube.com/watch?v=Lq_O4CED-ks(Date

Last Accessed, June, 30, 2014)

• Staggered box drop http://www.youtube.com/watch?v=JXKK6Xlwk2U(Date

Last Accessed, June, 30, 2014)

• Grasp experiment http://www.youtube.com/watch?v=pOfJ3D3ebc8(Date Last

Accessed, June, 30, 2014)

• Triangles - SM http://www.youtube.com/watch?v=pi0MoQuo5rA(Date Last

Accessed, June, 30, 2014)

• Triangles - Corrective http://www.youtube.com/watch?v=Ju38NdDAKQI(Date

Last Accessed, June, 30, 2014)

• Triangles - PEG http://www.youtube.com/watch?v=VJYNzZr66XI(Date Last

Accessed, June, 30, 2014)

• Triangles - LNC http://www.youtube.com/watch?v=igGXULnmwoQ(Date Last

Accessed, June, 30, 2014)

3D

• PEG - Icosahedra http://www.youtube.com/watch?v=Q3iWrmk7K-U(Date Last

Accessed, June, 30, 2014)

• PEG - Sliding vert-edge http://www.youtube.com/watch?v=VbFDdHhUJzQ(Date

Last Accessed, June, 30, 2014)

• PEG - vertex-edge http://www.youtube.com/watch?v=wfa1su7aBFQ(Date Last

Accessed, June, 30, 2014)

• PEG - vertex-vertex http://www.youtube.com/watch?v=ewgOAkXWdGE(Date

Last Accessed, June, 30, 2014)

121

5.3 Rigid body rotation and implicit time-stepping

We notice in Figures 5.10b and 5.14b that PEG tremendously outperforms

the popular corrective method. However, if we look closely at the error for PEG in

Figure 5.23, we observe that it does increase as the time step increases. Why is this

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6 Median, Q1, and Q3 of area of overlap error for PEG in 2D

Timestep size h (s)

T
ot

al
 a

re
a

of
 o

ve
rla

p
(m

2)

Figure 5.23: Area of overlap error for PEG in 2D experiment. Although
these small errors do appear to increase with time step size,
we will see that this is a consequence of the time-stepping
method used, and not of PEG.

the case since PEG should not allow interpenetration, regardless of the time step

size? The answer is that the time stepping method we incorporated PEG into, in

this case Stewart-Trinkle, is a semi-implicit method and is therefore susceptible to

error due to rotations over the time step. To understand the source of this error,

we must look at the time stepping method at the lowest level.

Polytope overlap

The points of contact at the surface of each body, as well as the contact normal

directions, are identified and determined at the beginning of the time step. The gap

122

distances for the constraints written in terms of this contact information is part of

the solution to the time-stepping problem which is solved for at the end of the time

step. Because of this time discrepancy of when these values are determined for, a

subsequent error can manifest due to rotations and sliding during the time step.

n̂1 n̂2

ra1 ra2

rb1 rb2

ωa

ωb

Figure 5.24: Initial configuration of two rectangular bodies with nonzero
rotational velocity. Over the next time step, both bodies
will rotate due to their rotational velocities as well as their
interactions with one another. However, the contact frames
do not rotate since Stewart-Trinkle is semi-implicit.

Consider Figure 5.24, in which two rectangular blocks are horizontal and in

contact at the beginning of the time step. The contact normals are given by n̂1 =

n̂2 =
[
0 1

]T
. Figure 5.25 depicts the final position of both bodies at the end of

a single simulation step for various step sizes where both bodies have rotational

velocities of ω = 1 rad/s. Gravity and friction are not considered. In the initial

configuration, two contacts are identified: one with each of the bottom vertices of the

top body with the top edge of the bottom body. The combination of the contact

information having been determined at the beginning of the time step, with the

rotation and relative sliding of the bodies, results in the configurations depicted,

which clearly have larger error corresponding to larger time steps. Equivalently,

larger rotational velocities could result in larger error for the same time step.

Although a more subtle error, it is also possible if there were additional external

forces for the constraints to be over satisfied as opposed to the under satisfied which

we saw in Figure 5.25. For example, if the top body were forced to slide left while

the two bodies undergo the same rotations, it would be constrained with similar

123

(a) h = 0.01, area error of 0.000025 (b) h = 0.1, area error of 0.0025

(c) h = 0.2, area error of 0.01 (d) h = 0.3, area error of 0.0223

(e) h = 0.4, area error of 0.0395 (f) h = 0.5, area error of 0.0612

Figure 5.25: Area of overlap error in semi-implicit time stepping due to
rotation and sliding. Clearly, the area of overlap error is
proportional to the rotation, which is dependent on the body
velocities and time step size.

error but off of the bottom body.

124

5.4 Conservation of momentum

Whether or not momentum is conserved in multibody simulation is not directly

dependent on the contact model, but on the dynamic model used. In all cases thus

far, PEG has been integrated into the Stewart-Trinkle time-stepping method with

inelastic contact. To show how momentum can be conserved using this model,

consider the experimental setup depicted in Figure 5.26. The left most body has

an initial velocity of 2 m/s to the right, while all other bodies begin at rest. There

is no gravity, nor friction. The masses of the bodies, from left to right, are 1.5, 1,

0.25, 0.12, and 0.8 kg.

(a) Setup of example experiment to test conservation of momentum. The
left most body has an initial velocity of 2 m/s to the right, while all
other bodies are at rest.

(b) Final configuration after all collisions.

Figure 5.26: Simulation experiment to test conservation of momentum
with the Stewart-Trinkle time-stepping method.

125

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Time step

M
om

en
tu

m

Body
1

Body
2

Body
3

Body
4

Body
5

Total

Figure 5.27: Momentum experiment results. Each step in the curves
above corresponds to an inelastic impact. Note that the
total momentum is conserved over all collisions.

Figure 5.27 depicts the results of the momentum simulation experiment. Each

of the discernible steps in the colored curves corresponds to impact with a new body.

At each inelastic impact, a body with zero momentum at the beginning of the time

step has a non-zero momenum at the end of the time step. Also, each body that

had non-zero momentum at the beginning of the time step loses some momentum

as its velocity is lowered due to the added mass of the new body. We see that the

total momentum of all bodies is constant throughout the simulation, demonstrating

conservation of momentum.

126

5.5 Numerical tolerances

The number of contacts identified in either 2D or 3D is dependent on the body

geometries, the body configurations, the time step size, and the values used for the

various types of ε. Because contact for polygons and polyhedra are determined for

specific feature combinations, the more of these features there are within some ε

of another bodies features, the larger the time-stepping problem will be. In other

words, the more complex the body geometries, the more complex the dynamics

problem is that needs to be solved to determine accurate interactions.

There are some simulation tolerances that may be and frequently are hard

coded. These include such values as ε, the distance outside of which we do not

consider potential contacts. This value naturally requires tuning, at least to some

degree, and is particularly sensitive to time step size as well as body velocities. Con-

sider that the larger the time step or body velocity, the larger the distance a body

will travel per time step, requiring an ε value large enough to prevent interpenetra-

tion over the time step. The purpose of using ε is primarily to reduce computational

time by spatially limiting the contacts that are considered as well as limiting the

complexity of the dynamics step. However, the trade off is clear that while reducing

the size of ε can help improve performance, it can also break if it is made too small

and subsequent interpenetrations occur.

We can dynamically set ε values using the time step size h and body properties.

A conservative estimate is given by

ε =
1

2

||f �||
m

h+ ||ν�||h+
1

2

(||τ �||
J

− ||ω� × Jω�||
)
rh (5.1)

which is the estimate of the maximum distance a point on a body can move in a

single time step.

PEG introduces other tolerances, such as εθ for the test of applicability in

section 3.2. The tuning of this parameter is much less critical however, since εθ

is dimensionless and therefore scales nicely. That is, εθ is practically independent

of time step size since it is a measure of radians. The exception to this practical

independence would be in the case of very high rotational velocities. Such cases

127

simply would require smaller time steps.

5.6 Floating point error and contact degeneracies

All computer simulations that intend to represent one or more dimensions

of space suffer from floating point errors, and must address these issues to some

extent. Additionally, some mathematical models degenerate when contacts have gap

distances of less than or equal to zero, e.g., classical applicability. Many degeneracies

are due to such weaknesses as sensitivity to dot products or cross products which

evaluate to zero. Unfortunately, it is when such values approach their regions of

degeneracy that the result is most important!

Particularly prevalent is the case when two bodies are in contact yet the dis-

tance calculated is within machine precision, that is, 0 ± εmachine. It is then im-

portant for any geometric tests that involve the gap distance to gracefully allow for

such errors to occur in order to maintain stability. Further, it demonstrates that

determining contact normal direction, for example by taking the vector b − a for

points a on body A and b on body B, is not robust and can be unstable due to the

“flipping” of the normal direction or having a zero normal when a = b.

Chapter summary

In this chapter, we analyzed the approach and behavior of PEG as compared

with the standard model in Stewart-Trinkle and a penalty based corrective method.

We were presented with precise arguments regarding the inability of heuristics to

accurately determine a contact subset for accurate interactions of bodies, underlin-

ing the necessity of PEG. We observed instantaneous cases where traps may occur,

as well as behavior over entire simulations in both 2D and 3D. PEG consistently

outperformed other methods in terms of stability and multiple error metrics. Ad-

ditionally, we discussed the source of instability in some mathematical models of

contact.

CHAPTER 6

RPI-MATLAB-SIMULATOR

A tool for efficient research and

practical teaching in multibody dynamics

RPI-MATLAB-Simulator (RPIsim) is an open source simulation framework for

research and education in multibody dynamics available from rpi-matlab-simulator(Date

Last Accessed, June, 30, 2014) [84]. RPIsim is designed and organized to be ex-

tended. Its modular design allows users to edit or add new components without

worrying about extra implementation details. RPIsim has two main goals:

1. Provide an intuitive and easily extendable platform for research and education

in multibody dynamics

2. Maintain an evolving code base of useful algorithms and analysis tools for

multibody dynamics problems.

In this chapter, we will take a look at many of the features of RPIsim and also see

some examples.

MATLAB is a popular numerical computing environment developed by Math-

Works and available for purchase from www.mathworks.com/products/matlab/(Date

Last Accessed, June, 30, 2014). Follow MATLAB’s installation instructions for your

environment.

GNU Octave is a free MATLAB alternative that is available for Linux and

Windows systems [85]. Windows users must use Cygwin to run Octave, which

is available from www.cygwin.com/(Date Last Accessed, June, 30, 2014). Octave

is available from www.gnu.org/software/octave/download.html(Date Last Ac-

cessed, June, 30, 2014), but on many popular Linux systems, Octave can be quickly

installed by running

Portions of this chapter previously appeared as: J. Williams, Y. Lu, S. Niebe, M. Andersen,
K. Erleben, J.C. Trinkle. RPI-MATLAB-Simulator: A tool for efficient research and practical
teaching in multibody dynamics. Workshop on Virtual Reality Interaction and Physical Simulation
(VRIPHYS).

128

129

RPI-MATLAB-Simulator is available online at

code.google.com/p/rpi-matlab-simulator/. In a Linux environment, the RPIsim

source code can be downloaded using subversion by running

$ svn checkout

http://rpi−matlab−simulator.googlecode.com/svn/simulator
rpi−matlab−simulator

If you do not have subversion, you will have to install it. For Windows, we

suggest TortoiseSVN, available from tortoisesvn.net/. For Linux systems, simply

run

$ sudo apt−get install subversion

Getting started

For the remainder of the chapter, we will discuss using RPIsim in the context

of MATLAB, however everything should be similarly executable in Octave.

Once you have a system setup and have downloaded RPIsim, open MATLAB

and change directories to RPIsim and run setupRPIsim.m:

>> cd ˜/rpi−matlab−simulator/
>> setupRPIsim

setupRPIsim.m simply adds all of the necessary directories to the path. Now

run a test script such as

>> simtest

You should be presented with the graphical representation of a small sample

scene that will run automatically and look similar to the following image. The blue

wire-frame cubes are axis-aligned bounding boxes and will turn red when the cor-

responding body has active contacts with another body (visualization of bounding

boxes is not on by default). The largest cube is static, and will not move. The

130

Figure 6.1: Initial configuration of three bodies in an example simulation
with RPIsim. The blue cubes represent axis-aligned bound-
ing boxes.

other two bodies will fall with gravity and slide off of the static cube. You should

see contacts plotted in green as they are identified between bodies.

6.1 Creating and running scenes

In this section we introduce the basics of writing a simulation script and run-

ning it. We cover several of the common options in 6.1.1, then we will learn by

example in 6.1.2.

6.1.1 Simulator options

There are several options when running a simulation including whether to use

the GUI, whether to show contacts or bounding boxes, what step size to use, whether

to record the simulation, etc. Many of these options are exemplified in section 6.1.2,

but we will describe several of the options in Table 6.1 for reference. You can find

all of these fields in Simulation.m. When used below, sim represents a Simulator

131

struct.

Table 6.1: Simulator options (See Simulator.m for the complete list).

Option syntax Default value Description

sim.draw = [BOOL] true Sets whether to graphically dis-

play the simulation as it runs.

sim.drawBoundingBoxes =

[BOOL]

false Sets whether to graphically dis-

play bounding boxes of bodies.

sim.drawContacts =

[BOOL]

false Sets whether to graphically dis-

play contacts as they occur dur-

ing simulation.

sim.drawJoints = [BOOL] false Sets whether to graphically dis-

play joints.

sim.gravity = [BOOL] true Turns gravity on (true) and off

(false). This must be done before

calling sim run().

sim.gravityV ector =

[DOUBLE3×1]

⎡
⎢⎢⎣

0

0

−9.81

⎤
⎥⎥⎦ A 3 × 1 vector that defines the

magnitude and direction of the

gravitational force.

sim.H collision detection =

@[function]

collision detection The function handle that points

to the function which performs

collision detection.

sim.H dynamics =

@[function]

mLCPdynamics The function handle that points

to the function that will formu-

late the time-stepping subprob-

lem at each simulation time step.

sim.num fricdirs = [INT] 7 The number of friction directions

to use when linearizing the fric-

tion cone during the dynamics

formulation stage.

132

6.1.2 Example scripts

Hello world

1 sim = Simulator(); % Initialize the simulator

2 sim = sim addBody(sim, mesh cube()); % Add a cube to the scene

3 sim = sim run(sim); % Run the simulator

Script 1. Hello world.

Script 1 depicts a minimal simulation with only a single cube at the origin. The

first line initializes a simulator structure, the second line adds a default cube to the

simulator, and the third line runs the simulator.

A rolling cart

Let’s create a rectangular chassis and put four wheels on it!

1 sim = Simulator(.01);

2 sim.H dynamics = @mLCPdynamics;

3 sim.drawContacts = true;

4 sim.drawJoints = true;

5

6 % Ground

7 ground = Body plane([0; 0; 0],[0; .1; 1]);

8 ground.color = [.7 .5 .5];

9 ground.mu = 1;

10

11 % Chassis

12 chassis = mesh rectangularBlock(1,3,0.25);

13 chassis.u = [0; 0; 1];

14 chassis.color = [.3 .6 .5];

15

16 % Wheels

17 wheel = mesh cylinder(20,1,0.25,0.2);

18 wheel.quat = qt([0 1 0],pi/2);

19 w1 = wheel;

20 w2 = wheel; % Copy wheel struct to four wheels

133

21 w3 = wheel;

22 w4 = wheel;

23 w1.u = [.5; 1.3; .75]; % Position wheels around chassis

24 w2.u = [−.5; 1.3; .75];

25 w3.u = [.5; −1.3; .75];

26 w4.u = [−.5; −1.3; .75];

27

28 % Add bodies to simulator

29 sim = sim addBody(sim, [ground chassis w1 w2 w3 w4]);

30

31 % Create joints

32 sim = sim addJoint(sim, 2, 3, w1.u, [1;0;0], 'revolute');

33 sim = sim addJoint(sim, 2, 4, w2.u, [1;0;0], 'revolute');

34 sim = sim addJoint(sim, 2, 5, w3.u, [1;0;0], 'revolute');

35 sim = sim addJoint(sim, 2, 6, w4.u, [1;0;0], 'revolute');

36

37 % Run the simulator

38 sim = sim run(sim);

Script 2. A rolling cart.

In lines 1-4, we initialize the simulator and set some properties for run-time. Then

we create a ground plane (7-10), chassis (12-14), and four wheels (17-26). Notice

that when we created the four wheels, we re-used a generic “wheel” struct that had

the rotation and body properties we wanted to share between all four wheels. The

one attribute we needed to change for each wheel was its starting position u (23-26).

Line 29 adds the bodies to the simulator. Lines 32-35 create the four revolute joints

between the wheels and chassis. Unfortunately at the time of this writing, there

is no “nice” way to reference the bodies when creating a joint, so we must use the

bodyID attribute. For example, line 32 specifies a joint between body 2 (the chassis)

and body 3 (w1), where body 1 was the ground plane. This requires the user to be

able to keep track of what order bodies were added.

134

6.2 Recording and replaying simulations

Basic record and playback

Recording a simulation is done by setting the Simulation attribute record to

true as on line 2 of the script below. To improve performance, you may turn off the

GUI during simulation. MATLAB graphics tend to be quite slow, often taking up

about half the time of simulation!

1 sim = Simulator(); % Create a simulator

2 sim.record = true; % Turn on recording

3 sim.MAX STEP = 500;

4 sim.draw = false;

5 ...

6 sim = sim run(sim); % Run the simulator

Script 3. Turning on recording

Each time a simulator is run with record enabled, a directory is created with a

name formatted as “sim data ”[year] [month] [day] [hour] [minute] [second]. This

looks like a long name, but it will help identify simulation data. For example,

sim data 13 10 14 18 22 59 was created at 6:22:59 pm on October 10, 2013.

Playing a recorded simulation is done by running sim replay([directory]), for

example

>> sim replay('sim data 13 10 14 18 22 59')

Figure 6.2 depicts the GUI with which the user is presented when re-animating

a simulation using sim replay(). The slider allows the user to browse frames of the

simulation, and the “Play” button animates over all frames.

135

Figure 6.2: The sim replay() GUI. The “Play” button will animate the

simulation, or dragging the slider will set the simulation time

manually.

Incorporating user functions

There are two fields in the Simulator struct that make interacting with data

during simulation straightforward: userFunction and userData. userFunction

allows the user to to specify a function to be evaluated at the end of every time step.

userData is a struct where values generated in the user function can be stored. The

userFunction allows the user to put in place a custom function such as a controller

or functionality for plotting. A controller could be an explicit time-based position

or velocity controller, or a proportional-integral-derivative (PID) controller for joint

control of a robotic arm. Although all simulation variables are available and editable

at this stage, it is recommended that bodies be controlled only by setting external

forces and allowing the dynamics to solve for the next step. This is similar to the

idea behind energy functions in simulation [86].

The following sections exemplify how to use the userFunction and userData.

136

Position, velocity, acceleration

Script 4 demonstrates a user function for plotting the vertical position, velocity,

and acceleration of a body. Script 5 is an example simulation that utilizes Script

4. Notice that Script 4 takes sim as an argument and also returns sim. Important

things to remember when writing your userFunction:

• userFunction should take sim as an argument and return sim.

• All variables that you wish to store go in sim.userData.

• When plotting, you may have to check if it is the simulation’s first step in

order to initialize things.

• You don’t just have to use custom functions for plotting!

137
1 function sim = plotPVA(sim)

2 body = sim.bodies(2); % The body we'll plot P, V, and A for.

3

4 P = body.u(3); % Verticle position

5 V = body.nu(3); % Verticle velocity

6 A = body.Fext(3)/body.mass; % Verticle acceleration

7

8 if sim.step == 1

9 % On the first time step, the plot doesn't exist yet,

10 % so we'll create it.

11 figure();

12 sim.userData.P = plot(sim.time, P, 'r'); hold on;

13 sim.userData.V = plot(sim.time, V, 'g');

14 sim.userData.A = plot(sim.time, A, 'b');

15 xlabel('Time (s)');

16 legend('Position','Velocity', 'Acceleration',2);

17 else

18 % After the first time step the plots exist,

19 % so we'll just update their X and Y data.

20 set(sim.userData.P,'xdata',[get(sim.userData.P,'xdata') sim.time]);

21 set(sim.userData.P,'ydata',[get(sim.userData.P,'ydata') P]);

22

23 set(sim.userData.V,'xdata',[get(sim.userData.V,'xdata') sim.time]);

24 set(sim.userData.V,'ydata',[get(sim.userData.V,'ydata') V]);

25

26 set(sim.userData.A,'xdata',[get(sim.userData.A,'xdata') sim.time]);

27 set(sim.userData.A,'ydata',[get(sim.userData.A,'ydata') A]);

28 end

29 end

Script 4. A user function for plotting position, velocity, and acceleration.

1 function sim = hangingRod()

2 % Initialize simulator

3 sim = Simulator();

4 sim.H dynamics = @mLCPdynamics;

5 sim.userFunction = @plotPVA;

6

7 % Create an invisible static body

8 staticBody = mesh cylinder(7,1,0.2,1);

138

9 staticBody.dynamic = false;

10 staticBody.visible = false;

11

12 % Create a hanging rod

13 angle = pi/5;

14 hangingBody = mesh cylinder(7,1,0.1,0.5);

15 hangingBody.u = [−0.25*sin(angle); 0; 0.25−0.25*cos(angle)];
16 hangingBody.quat = qt([0;1;0], angle);

17

18 % Gather simulation bodies and add to simulator

19 bodies = [staticBody hangingBody];

20 sim = sim addBody(sim, bodies);

21

22 % Create joint

23 sim = sim addJoint(sim, 1, 2, [0;0;0.25], [0;1;0], 'spherical');

24

25 % Run simulation

26 sim = sim run(sim);

27 end

Script 5. A simulation that uses plotPVA().

Running hangingRod will generate two plots: the simulation (Figure 6.3a) and

the plot generated by the user function (Figure 6.3b).

Joint Error

Let’s take a look at joint error for a ranging rod pendulum. The simulation

is depicted in Figure 6.3a. We can plot the joint error during simulation with the

following function:

1 function sim = plotJointError(sim)

2 [C,˜] = joint constraintError(sim,1); % Error in FIRST joint

3 if sim.step == 1

4 figure(2);

5 sim.data.error = plot(sim.time,norm(C));

139

(a) hangingRod(), a simulation that
calls the userFunction plotPVA.

0 0.5 1 1.5 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

Position

Velocity

Acceleration

(b) Position and velocity (accelera-
tion is constant -9.81) in verti-
cal direction.

Figure 6.3: A hanging rod simulation with userFunction plotting. While
the simulation on the left runs, plots are simultaneously being
generated during simulation with the userFunction.

6 xlabel('Time (s)');

7 ylabel('norm(Joint Error)');

8 else

9 set(sim.data.error,'xdata', ...

10 [get(sim.data.error,'xdata') sim.time]);

11 set(sim.data.error,'ydata', ...

12 [get(sim.data.error,'ydata') norm(C)]);

13 end

14 end

Script 6. Function for plotting joint error.

To tell the simulator to call this function during simulation, we add the single

line

sim.userFunction = @plotJointError;

140

to our simulation script. Figure 6.4 depicts the magnitude of the joint error

for hangingRod.m over five seconds of simulation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7
x 10

−5

Time (s)

no
rm

(J
oi

nt
 E

rr
or

)

Figure 6.4: Error in joint position for the hanging rod pendulum. Due
to the stabilization term in Stewart-Trinkle, the joint error
is bound, in this case below 7× 10−5.

6.3 The default simulator

This section discusses the workings of RPIsim “out of the box” and goes into

greater detail about what functionality is already implemented.

The file structure of the simulator is depicted in Figure 6.5. This structure is

meant to be intuitive and help guide the user when editing or adding new compo-

nents. The “examples” directory contains several examples of scenes which demon-

strate how to specify options, and run a simulation. The simulator itself is entirely

contained in the “engine” directory. The directories found there are fairly self-

explanatory. The “dynamics” directory contains the functions defining each avail-

able time-stepping formulation, all of which construct a time-stepping subproblem

formulated as a complementarity problem (CP). The “solvers” directory contains

various functions for solving the complementarity problem: linear complementar-

ity problem (LCP), mixed linear complementarity problem (mLCP), and nonlinear

141

complementarity problem (NCP). See [39] for a comprehensive review of these top-

ics.

body
geometries

collision
detection

dynamics solvers

engine examples

simulator

Figure 6.5: RPIsim file structure. Simulator code is organized in order to
reflect the stages of simulation and to give the user intuition
about the connectedness of these stages. The existing code
serves as templates for extending the simulator with custom
modules.

The flow of simulation is depicted in Figure 6.6. As soon as a simulation

script is executed, the scene is rendered so that it may be inspected. When run, the

simulator proceeds through the various stages of the simulation loop.

Body representations

In previous versions of RPIsim, each body type, i.e., cubes, spheres, etc.,

was an instance of a corresponding MATLAB object. This has changed in the

current version for multiple reasons (in part because Octave does not use objects

in the MATLAB sense), and now all simulation bodies are represented by the Body

struct. All common body attributes such as position, rotation, mass, inertia, etc.

are contained in Body, but because all bodies are represented by this one struct, it

also contains type-specific attributes such as radius for spheres, point and normal

for planes, etc. See Body.m for more details.

Triangle meshes

All mesh bodies are represented as triangle meshes. There are several meshes

already available including mesh cube, mesh cylinder, mesh rectangular block, and

the five Platonic solids.

142

sim run()render scene

userFunction

collision
detection

formulate
dynamics

solve
dynamics

state update

joint
stabilization

Figure 6.6: Simulation loop in the RPI-MATLAB-Simulator. At each
stage, a user can replace or plug in custom modules.

New meshes can be created by either generating the vertex and face data, or

using mesh read poly file.m to read in a text file like cube.poly. The format of this

file must first list the vertices in order, then list faces as triples of vertex indices.

The function test mesh object.m is useful when creating your own meshes as it will

plot your mesh along with the face normals. It’s important for collision detection

to make sure that the normals are all pointing “out” of the body.

6.4 Dynamics formulations

There are several ways available for modelling the dynamic behaviour of the

simulation. The default formulation is in LCPdynamics.m and constructs the ma-

trices in vectors needed to solve the linear complementarity problem [18]

143

0 ≤

∣∣∣∣∣∣∣∣

GT
nM

−1Gn GT
nM

−1Gf 0

GT
fM

−1Gn GT
fM

−1Gf E

U −ET 0

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

p�+1
n

p�+1
f

s�+1

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

GT
n (ν

� +M−1p�ext) +
Ψ�

n

h
+ ∂Ψ�

n

∂t

GT
f (ν

� +M−1p�ext) +
∂Ψf

∂t

0

∣∣∣∣∣∣∣∣
⊥

∣∣∣∣∣∣∣∣

p�+1
n

p�+1
f

s�+1

∣∣∣∣∣∣∣∣
≥ 0

(6.1)

where after a solution is found for p�+1
n and p�+1

f , new velocities are calculated for

all bodies with

ν�+1 = ν� +M−1Gnp
�+1
n +M−1Gfp

�+1
f +M−1pext (6.2)

Note that (6.1) does not include bilateral constraints. Currently when simu-

lating joints, you must use mLCPdynamics.m which constructs the mixed linear

complementarity problem as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ρ�+1
b

ρ�+1
n

ρ�+1
f

σ�+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−M Gb Gn Gf 0

GT
b 0 0 0 0

GT
n 0 0 0 0

GT
f 0 0 0 E

0 0 U −ET 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ν�+1

p�+1
b

p�+1
n

p�+1
f

s�+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Mν� + pext
Ψ�

b

h
+

∂Ψ�
b

∂t

Ψ�
n

h
+ ∂Ψ�

n

∂t
∂Ψ�

f

∂t

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6.3)

0 ≤

⎡
⎢⎢⎢⎢⎢⎣

ρ�+1
b

ρ�+1
n

ρ�+1
f

σ�+1

⎤
⎥⎥⎥⎥⎥⎦
⊥

⎡
⎢⎢⎢⎢⎢⎣

p�+1
b

p�+1
n

p�+1
f

s�+1

⎤
⎥⎥⎥⎥⎥⎦
≥ 0 (6.4)

where ρb, ρn, ρf , and σ are slack variables.

Solving dynamics

Several solvers are available including an implementation of Lemke’s method

[87], the PATH solver [40], and a suite of solvers num4lcp [58]. Having numerous

solvers available offers choices and also the opportunity to compare their perfor-

mance [88, 89]. These solvers are classified into pivoting methods and iterative

144

methods.

Pivoting method

Lemke’s algorithm is one robust pivoting method, although there is no general

solution method which guarantees the solution of any given LCP except for a total

enumeration of 2n for a problem of size n. Lemke’s algorithm works well for a small

problem size while for larger-size problem, it tends to be slow.

Iterative method

The iterative method, such as Projected Gauss Seidel (PGS), generalized New-

ton’s method and fixed-point iteration methods are included in the RPIsim. The

following table shows briefly about the available solvers inside the RPIsim:

Table 6.2: Solvers available with RPIsim.

Name Applicable Model Category

Lemke LCP pivotal method

PATH mLCP mixed pivotal and iterative method

PGS LCP, mLCP iterative method with projection

Projected Jacobi LCP, mLCP iterative method with projection

Fixed-point LCP, NCP iterative method

Interior-point LCP iterative method

Fischer-Newton LCP, NCP non-smooth Newton with line search

Minmap-Newton LCP, NCP non-smooth Newton with line search

To call a specific solver, say, to use PATH solver, you need to call it by setting:

sim.H solver = @pathsolver;

Customizing the simulator

One of the main goals of RPIsim is to enable easy customizations and ex-

tensions through its modular structure. This section describes some of the default

145

modules and gives examples on how to replace them with custom modules. Essen-

tially this comes down to understanding the interface for a given component in the

simulation loop (Figure 6.6).

Collision detection

The default collision detection function in RPIsim is collision detection.m,

which can find contacts between combination pairs of planes, spheres, and triangle

meshes (of course we never test plane against plane). Unfortunately, the algorithms

implemented in the default function are slow, so it is up to you to write optimized

routines (and commit them to the repository!).

A collision detection routine in RPIsim will iterate over all bodies contained

in sim.bodies and determine and store a set of contacts in sim.contacts.

Important things to remember when writing a collision detection routine in

RPIsim:

• When adding a contact between bodies A and B, make sure to “activate”

those bodies with

sim = sim activateBodies(sim, Aid, Bid);

This marks each body as dynamically “active” for the current time step, and

is important for all of the indexing that will happen later in the simulation

loop (when building matrices for the dynamics).

• Some bodies may be static, so improve efficiency by checking:

if ˜A.dynamic && ˜B.dynamic, continue; end

• Some bodies are set to not collide (e.g. two joined bodies), so avoid errors by

checking:

if any(A.doesNotCollideWith == B.bodyID), continue; end

There are several functions included in engine/collision detection/body tests

that may be helpful in writing a collision detection routine.

146

Formulating dynamics and solving

In order to incorporate a custom dynamics formulation or solver, the user

should be familiar with how dynamics components are passed from one block of

the simulation loop to the next. By default, the function preDynamics.m puts

together the necessary matrices and vectors including the mass-inertia matrix and

the Jacobians for unilateral contact, bilateral joints, and friction constraints. These

matrices are stored in the struct sim.dynamics in order to pass them along.

A custom dynamics formulation may choose to use the value in sim.dynamics

or not. If not, then it is of course most efficient to remove the call to preDynamics()

inside of sim run.m.

Using Bullet collision detection

Unfortunately, the Bullet interface will only work with MATLAB 32-bit ver-

sions, and will not work with Octave nor MATLAB 64-bit versions. This is because

1. it requires use of MEX files, which Octave does not support and 2. it requires

use of 32-bit MEX files and 64-bit MATLAB cannot compile 32-bit MEX files.

Installing Bullet

In order to use the Bullet collision detection library, you first need Bullet

installed. This can be done by following the instructions on bulletphysics.org/

mediawiki-1.5.8/index.php/Installation.

Under Linux, I was able to do this with revision 2672 of Bullet:

$ svn checkout bullet.googlecode.com/svn/trunk/ bullet−read−only
$ cd bullet−read−only
$ mkdir bullet−build
$ cd bullet−build
$ cmake .. −G "Unix Makefiles" −DINSTALL LIBS=ON

−DBUILD SHARED LIBS=ON

$ make −j4
$ sudo make install

147

Using Bullet with RPIsim

Once Bullet is installed, we need to build the interface that will pass the

RPIsim body information to Bullet. This is done in RPIsim with

>> Compile BULLET

One possible error may occur if you do not have a compiler set in MATLAB

for compiling MEX functions.

6.5 Sample application: PD controlled robotic arm

In this section, we will demonstrate how to use RPIsim to simulate a robotic

arm and a proportional-derivative controller in the joint space for the arm.

Modeling the arm

Many thanks go to Rohinish Gupta who did the work of importing the mesh of

the robotic arm into MATLAB. The arm we model is the Schunk Powerball arm, and

the files are contained in examples/powerball. Specifically the script powerball.m

loads the mesh bodies, defines the joints between all bodies, and initializes the

simulator. Following the convention of RPIsim, the geometric model is a triangle

mesh.

Kinematics

Directly controlling the arm by setting the joints to specific angles is straight

forward as it is handled by the forward kinematics in the model. The variable

jointAngle in powerball.m is initially set to all zeros, but may be altered to any set

of joint angles.

Dynamic simulation

Dynamic control of the arm is achieved through a proportional-derivative con-

troller utilizing the userFunction functionality as described in section 6.2. Because

the userFunction is called at the beginning of each time step, we can observe the

148

Figure 6.7: Simulation of a robotic arm in RPIsim. A PD-controller is
used to control the arm in joint-space. Here, the arm is
depicted in its zero-configuration, i.e., all joint angle values
are zero.

current state of each joint and apply external torques to any dynamic bodies. Our

PD-controller userFunction will look like

1 function sim = powerball controller(sim)

2 theta desired = ones(length(sim.joints),1) * sin(sim.step*.01);

3 % Clear body torques

4 for j=1:length(sim.joints)

5 sim.bodies(sim.joints(j).body1id).Fext(4:6) = 0;

6 sim.bodies(sim.joints(j).body2id).Fext(4:6) = 0;

7 end

8

9 % Calculate new torques

10 for j=1:length(sim.joints)

11 J = sim.joints(j);

149

12

13 Perror = theta desired(j) − J.theta; % Proportional error

14 Deriv = (J.theta − J.theta prev) / sim.h; % Derivative

15 joint frame torque = 50*Perror − 5*Deriv; % PD controller

16

17 t1 = J.T1world(1:3,1:3) * [0;0; −joint frame torque];

18 sim.bodies(J.body1id).Fext(4:6)=sim.bodies(J.body1id).Fext(4:6)+t1;

19

20 t2 = J.T2world(1:3,1:3) * [0;0; joint frame torque];

21 sim.bodies(J.body2id).Fext(4:6)=sim.bodies(J.body2id).Fext(4:6)+t2;

22

23 % For now, we need to keep track of this in the controller.

24 sim.joints(j).theta prev = J.theta;

25 end

26 end

Script 7. PD-control userFunction.

Figure 6.8 depicts several stages of dynamic simulation of the Powerball arm

executing a joint space trajectory from a start position (zero configuration) to a goal

position.

150

Figure 6.8: Various stages of simulation of Schunk Powerball arm exe-
cuting a grasp trajectory. The trajectory is a set of joint an-
gles interpolated between start and goal configurations over
a given time.

151

Chapter summary

In this chapter, we were introduced to the RPI-MATLAB-Simulator (RPIsim),

a fully functioning multibody dynamics tool for 2D and 3D simulation. We covered

several of its features and saw example scripts, from a “hello world” to a fully dy-

namically simulated PD controlled Powerball arm, demonstrating its modularity

and ease of use. RPIsim’s code structure mimics the flow of a time-stepping simu-

lation scheme, making it easy to incorporate new code or replace existing modules

within the simulator. User defined functions provide an easy way to do real-time

plotting of simulation parameters, and also provide a template for instructors to

build custom dynamics or simulation assignments.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

The goal of this thesis is to provide mathematical techniques and a set of

simulation tools for the advancement of multibody simulation and the benefit of

such fields as robotics which require the improved physical accuracy and stability

these tools provide. Along the way, I have attempted to give insight into common

pitfalls in multibody simulation.

In Chapter 3, I enumerated several classical ideas in computational geometry

and showed why geometric relaxations must be applied to these ideas in order to

successfully determine sets of potential contacts before they occur. It is important

to detect potential contacts because we must prevent (non-trivial) interpenetration

in order to avoid the contact degeneracies and dynamic instabilities common to

many state-of-the-art simulators. I also presented new geometric tests for further

improving identification of these potential contacts, as well as determining accurate

contact normals.

Chapter 4 contained the most significant contribution, a contact model which

was first derived in 2D and then extended to 3D. The new model, which we refer

to as Polytope Exact Geometry (PEG), formulates non-penetration constraints as

combinations of all potential contacts in the form of a complementarity problem so

that only physically feasible body configurations may result at the end of the time

step. In Chapter 5, I analyzed the behavior of PEG and compared its performance

in several benchmarks against other well known and used models.

In Chapter 6, I introduced the RPI-MATLAB-Simulator (RPIsim). RPIsim is

a tool for research and education in simulation and multibody dynamics. RPIsim has

ample documentation with many examples, and can be used with little programming

experience. RPIsim is also compatible with the open source math package Octave.

152

153

7.2 Future Work

There are many interesting avenues of possible future work extending the work

presented here. Below, I describe several of these in some detail.

Proof of solvability

As mentioned in 4.8, I can currently offer no proof as to the existence of solution

for the general PEG formulation. Although I have deomonstrated proof of concept

via the examples and simulation experiments, and in practice I have never seen a

simulation with PEG fail, it would be very interesting (and satisfying) to achieve

a formal proof of solution existence or be able to identify any cases which could

break PEG or are degenerate. Ideally, we would like to achieve a proof of global

convergence similar to what David Stewart achieved for the standard contact model

in Stewart-Trinkle [18]. Of course, the main matrix of the time-stepping problem

with PEG is different than the standard model. Similar to what was pointed out by

Nguyen in [74], the inclusion of sub-matrices similar to GI in equation (4.50) break

the co-positivity of the main matrix of the LCP.

Reduce constraints

An interesting question that is extremely difficult to prove for non-trivial cases

is that of whether PEG constraints might be redundant and could be reduced to

achieve a smaller problem size. Such a case, if it were to exist, would be dependent

on configurations of likely three or more bodies. One way to detect the existence of

such cases is to determine all constraints between all body pairs, and then attempt

to reduce the full problem before solving. If linearly dependent constraints are

found, it is possible that one could reverse engineer the configuration(s) which lead

to the redundancy. This would be useful in generating smaller problem sizes more

efficiently, which would be subsequently easier to solve.

Extention to non-polytopes

We briefly discussed in section 4.6 utilizing the underlying mathematical frame-

work of PEG for non-polytope bodies such as those defined by semi-algebraic sets,

154

or non-uniform rational basis splines (NURBs) which include Bézier curves and B-

splines. It would be straight forward to develop PEG alternatives which would be

useful for alternative body geometries. As a first step, we could utilize collision de-

tection routines which first determine an initial contact between convex bodies [90],

then determine which additional contacts are necessary to prevent interpenetration.

Optimized implementation

Nearly all of the testing done with PEG was completed in MATLAB, and

was therefore unable to achieve speeds similar to state-of-the-art simulators written

in C/C++. As such, it is difficult to make any significant comparisons regarding

the speed performance of PEG. Fortunately, the vast majority of the computation

necessary for formulating PEG lies in the collision detection and configuration iden-

tification, which is highly conducive to parallelization. An excellent next step with

this work would be a more optimized implementation, possibly utilizing newer GPU

technologies such as CUDA.

Tuning of geometric parameters

In Chapter 3, I introduced geometric relaxations and other ideas which are

dependent on parameters such as ε distances or angles of relaxation. It is possible

that these parameters to could be more tightly tuned based on simulation attributes

such as the sizes of bodies, or body attributes such as velocity. For the sake of

computation, we wish to include as few potential contacts as possible while not

allowing interpenetrations. There is more that can be done regarding this tricky

tuning, and possibly more insight to be gained regarding the geometric tests.

REFERENCES

[1] C. Ericson, Real-Time Collision Detection. San Francisco, CA: Morgan
Kaufmann Publishers Inc., 2004.

[2] D. H. Eberly, Game Physics, 2nd ed. Miamisburg, OH: Elsevier Science, 2010.

[3] I. Millington, Game Physics Engine Development: How to Build a Robust
Commercial-Grade Physics Engine for Your Game, 2nd ed. San Francisco,
CA: Morgan Kaufmann Publishers Inc., 2010.

[4] E. Catto. Box2D, a 2D physics engine for games [Online]. Available:
http://box2d.org/ (Date Last Accessed, June 30, 2014).

[5] D. Terzopoulos, J. Pltt, A. Barr, D. Zeltzer, A. Witkin, and J. Blinn,
“Physically-based modeling: Past, present, and future,” SIGGRAPH Comput.
Graph., vol. 23, no. 5, pp. 191 – 209, July 1989.

[6] D. Baraff, “Fast contact force computation for nonpenetrating rigid bodies,”
in Proc. of the 21st Annu. Conf. on Comp. Graph. and Interactive Techn.,
SIGGRAPH ’94, Orlando, FL, 1994, pp. 23–34.

[7] N. Foster and D. Metaxas, “Realistic animation of liquids,” Graphical Models
and Image Process., vol. 58, no. 5, 1996, pp. 471–483.

[8] A. Witkin, D. Baraff. (1997, Sept.). Physically Based Modeling: Principles and
Practice [Online]. Available: http://www.cs.cmu.edu/˜baraff/sigcourse/ (Date
Last Accessed, June 20, 2014).

[9] K. Erleben, J. Sporring, K. Henriksen, and H. Dohlmann, Physics-based
Anmiation. Rockland, MA: Charles River Media, Inc., 2005.

[10] F. Pfeiffer and C. Glocker, Multibody Dynamics with Unilateral Contacts.
Weinheim, Germany: Wiley, 1996.

[11] S. Berard, “Using Simulation for Planning and Design of Robotic Systems
with Intermittent Contact,” Ph.D. dissertation, Dept. of Comp. Sci., RPI,
Troy, NY, 2009.

[12] S. Berard, B. Nguyen, K. Anderson, and J. Trinkle, “Sources of error in a
rigid body simulation of rigid parts on a vibrating rigid plate,” ASME J. of
Computational and Nonlinear Dynamcis, vol. 5, no. 4, Jan. 2010.

155

156

[13] W. Macaluso, “Exploring the Domain of Applicability of Simulated 2D Rigid
Body Dynamical Systems,” M.S. thesis, Dept. of Comp. Sci., RPI, Troy, NY,
2012.

[14] E. Haug, S. Wu, and S. Yang, “Dynamic mechanical systems with coulomb
friction, stiction, impact and constraint addition-deletion—i: Theory,”
Mechanisms and Mach. Theory, vol. 21, no. 5, pp. 407–416, Sept. 1986.

[15] R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth
Mechanical Systems. Lecture Notes in Applied and Computational Mechanics,
New York, NY: Springer, 2004.

[16] P. Lötstedt, “Coulomb friction in two-dimensional rigid body systems,”
ZAMM - J. of Appl. Mathematics and Mechanics / Zeitschrift fr Angewandte
Mathematik und Mechanik, vol. 61, no. 12, pp. 605 – 615, Nov. 1981.

[17] J. Moreau and P. Panagiotopoulos, Unilateral Contact and Dry Friction in
Finite Freedom Dynamics. Montpellier, France: Springer, 1988.

[18] D. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and coulomb friction,” Int. J. for
Numerical Methods in Eng., vol. 39, no. 15, pp. 2673 – 91, Aug. 1996.

[19] A. Kurdila, J. Junkins, and S. Hsu, “Lyapunov stable penalty methods for
imposing holonomic constraints in multibody system dynamics,” Nonlinear
Dynamics, vol. 4, no. 1, pp. 51 – 82, Feb. 1993.

[20] J. M. Goicolea and J. C. G. Orden, “Dynamic analysis of rigid and
deformable multibody systems with penalty methods and energymomentum
schemes,” Comp. Methods in Appl. Mechanics and Eng., vol. 188, no.4,
pp. 789 – 804, Aug. 2000.

[21] E. Drumwright, “A fast and stable penalty method for rigid body
simulation,” IEEE Trans. on Visualization and Comp. Graph., vol. 14, no. 1,
pp. 231–240, Jan. 2008.

[22] E. Kokkevis, “Practical physics for articulated characters,” in Game
Developers Conf., San Jose, CA, 2004.

[23] D. Baraff, “Non-penetrating rigid body simulation,” in SIGGRAPH ’95
Course Note 34. ACM SIGGRAPH, Los Angeles, CA, 1993.

[24] N. Koenig, A. Howard, OSRF. Gazebo Simulator [Online]. Available:
http://gazebosim.org/ (Date Last Accessed, May 27, 2014).

[25] K. Hauser. (2013). Robust Contact Generation for Robot Simulation with
Unstructured Meshes [Online]. Available:
http://www.iu.edu/ motion/klampt/ (Date Last Accessed, May 20, 2014).

157

[26] E. Coumans. Bullet Physics Library: An open source collision detection and
physics library [Online]. Available: http://code.google.com/p/bullet/ (Date
Last Accessed, July 1, 2014).

[27] R. Smith. Open Dynamics Engine [Online]. Available: http://www.ode.org/
(Date Last Accessed, May 27, 2014).

[28] Havok Inc. Havok Physics Engine [Online]. Available:
http://www.havok.com/products/physics (Date Last Accessed, Apr. 27,
2014).

[29] NVIDIA. PhysX [Online]. Available:
http://www.geforce.com/hardware/technology/physx (Date Last Accessed,
May 27, 2014).

[30] MSC Software. Adams [Online]. Available:
http://www.mscsoftware.com/product/adams (Date Last Accessed, May 27,
2014).

[31] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed. Upper
Saddle River, NJ: Pearson Prentice Hall, 2005.

[32] J. Wen. (2010). Robotics 1 course notes [Online]. Available:
http://cats-fs.rpi.edu/ wenj/ECSE448F10/ (Date Last Accessed, Dec. 20,
2010).

[33] J. C. Trinkle. (2011). Robotics 2 course notes [Online]. Available:
http://www.cs.rpi.edu/ trink/Courses/RoboticsII/RoboticsII.html (Date Last
Accessed, May 15, 2011).

[34] D. Prattichizzo and J. C. Trinkle, ”Grasping,” in Handbook on Robotics, New
York, NY: Springer, 2008, pp. 671–700.

[35] I. Newton, Philosophi Naturalis Principia Mathematica. London, England: J.
Societatis Regiae ac Typis J. Streater, 1687.

[36] J. Hermann, Phoronomia, Sive De Viribus et Motibus Corporum Solidorum et
Fluidorum Libri Duo. Amstelædami, apud R. & G Wetstenios, 1716.

[37] L. Euler, Theoria Motus Corporum Solidorum seu Rigidorum. Ghent,
Belgium: Rostock & Greifswald, 1765.

[38] S. C. Billups and K. G. Murty, “Complementarity problems,” J. Comput.
Appl. Math., vol. 124, no. 12, pp. 303–318, Dec. 2000.

[39] J. Bender, K. Erleben, and J. C. Trinkle, “Interactive simulation of rigid body
dynamics in computer graphics,” Comput. graph. forum, vol. 33, no. 1,
pp. 246–270, Feb. 2012.

158

[40] M. Ferris and T. Munson, “Complementarity problems in gams and the path
solver,” J. of Econ. Dynamics and Control, vol. 24, no. 2, pp. 165 – 88, July
2000.

[41] R. Cottle, J. Pang, and R. Stone, The Linear Complementarity Problem.
Classics in Applied Mathematics, Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1992.

[42] K. Erleben, “Numerical methods for linear complementarity problems in
physics-based animation,” in ACM SIGGRAPH 2013 Courses, SIGGRAPH
’13, Anaheim, CA, 2013, pp. 8:1–8:42.

[43] E. Todorov, “A convex, smooth and invertible contact model for trajectory
optimization,” in IEEE Int. Conf. on Robotics and Automation, Shanghai,
China, 2011, pp. 1071–1076.

[44] A. Signorini, “Questioni di elasticità non linearizzata e semilinearizzata.,”
Rendiconti Di Matematica e Delle Sue Applicazioni, V. Serie, vol. 18, no. 5,
pp. 95–139, 1959.

[45] C.-A. de Coulomb, Thorie des Machines Simples, en Ayant gard au
Frottement de Leurs Parties et la Roideur des Cordages. Paris, France:
Bachelier, 1821.

[46] P. Song, J. Trinkle, V. Kumar, and J.-S. Pang, “Design of part feeding and
assembly processes with dynamics,” in IEEE Int. Conf. on Robotics and
Automation, New Orleans, LA, 2004, pp. 39–44.

[47] N. I. Badler, K. H. Manoochehri, and D. Baraff, “Multi-dimensional input
techniques and articulated figure positioning by multiple constraints,” in
Proc. of the 1986 Workshop on Interactive 3D Graph., I3D ’86, Chapel Hill,
NC, pp. 151–169, 1987.

[48] P. M. Isaacs and M. F. Cohen, “Controlling dynamic simulation with
kinematic constraints,” in Proc. of the 14th Annu. Conf. on Comp. Graph.
and Interactive Techn., SIGGRAPH ’87, Anaheim, CA, 1987, pp. 215–224.

[49] R. Barzel and A. H. Barr, “A modeling system based on dynamic
constraints,” in Proc. of the 15th Annu. Conf. on Comp. Graph. and
Interactive Techn., SIGGRAPH ’88, Atlanta, GA, 1988, pp. 179–188.

[50] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body contact
problems with friction as solvable linear complementarity problems,”
Nonlinear Dynamics, vol. 14, pp. 231–247, 1997.

[51] M. Anitescu and F. Potra, “A time-stepping method for stiff multibody
dynamics with contact and friction,” Int. J. for Numerical Methods in Eng.,
vol. 55, no. 7, 2002, pp. 753–84.

159

[52] J. Bender and A. Schmitt, “Fast dynamic simulation of multi-body systems
using impulses,” in Workshop on Virtual Reality Interactions and Physical
Simulations, Madrid, Spain, 2006, pp. 81–90.

[53] F. Gauss, Theoria Combinationis Observationum Erroribus Minimis
Obnoxiae. Ghent, Belgium: H. Dieterich, 1823.

[54] P. L. von Seidel, “Uber ein verfahren die gleichungen, auf welche die methode
der kleinsten quadrate fhrt, sowie linere gleichungen berhaupt durch
successive annherung aufzulsen,” Abhandlungen der Bayerischen Akademie,
Dritte Abteilung,, vol. 11, 1873, pp. 81–108.

[55] W. Kahan, “Gauss-Seidel Methods of Solving Large Systems of Linear
Equations,” Ph.D. dissertation, Dept. of Math., Univ. of Toronto, Toronto,
Canada, 1958.

[56] C. G. J. Jacobi, “Uber eine neue auflosungsart der bei der methode der
kleinsten quadrate vorkommenden linearen gleichungen,” Astronomische
Nachrichten, vol. 22, pp. 297–306, 1845.

[57] J. L. Morales, J. Nocedal, and M. Smelyanskiy, “An algorithm for the fast
solution of symmetric linear complementarity problems,” Numerische
Mathematik, vol. 111, no. 2, pp. 251–266, Nov. 2008.

[58] K. Erleben. (2010, Nov.) Linear Complementarity Problems, A short
Introduction to Definitions and Numerical Methods [Online]. Available:
http://image.diku.dk/kenny/download/vriphys10 course/lcp.pdf (Date Last
Accessed, Apr. 27, 2014).

[59] D. M. Young Jr., “Iterative Methods for Solving Partial Difference Equations
of Elliptic Type,” Ph.D. dissertation, Dept. of Math., Harvard Univ.,
Cambridge, MA, 1950.

[60] L. F. Richardson, “The approximate arithmetical solution by finite differences
of physical problems involving differential equations, with an application to
the stresses in a masonry dam,” Philosophical Trans. of the Royal Soc. A,
vol. 210, pp. 307–357, Jan. 1910.

[61] D. Baraff, “Dynamic simulation of non-penetrating rigid bodies,” Ph.D.
dissertation, Dept. of Comp. Sci., Cornell Univ., Ithica, NY, 1992.

[62] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide: An
interactive and exact collision detection system for large-scale environments,”
in Proc. of the 1995 Symp. on Interactive 3D Graph., I3D ’95, Monterey,
California, 1995, pp. 189–196.

160

[63] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: a hierarchical structure
for rapid interference detection,” in Proc. of the 23rd Annu. Conf. on Comp.
Graph. and Interactive Techn., SIGGRAPH ’96, New Orleans, LA, 1996,
171–180.

[64] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional space
robotics and automation,” IEEE J. of Robotics and Automation, vol. 4, no. 2,
pp. 193–203, Apr. 1988.

[65] S. Cameron, “Enhancing GJK: computing minimum and penetration
distances between convex polyhedra,” in IEEE Int. Conf. on Robotics and
Automation, Albuquerque, NM, 1997, pp. 3112–3117.

[66] B. Mirtich, “V-clip: fast and robust polyhedral collision detection,” ACM
Trans. Graph., vol. 17, no. 3, pp. 177–208, Jul. 1998.

[67] M. Lin and J. Canny, “A fast algorithm for incremental distance calculation,”
in IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH, 1991, vol. 2,
pp. 1008–1014.

[68] S. A. Ehmann and M. C. Lin, “Accelerated proximity queries between convex
polyhedra by multi-level voronoi marching,” in Int. Conf. on Intelligent
Robots and Syst., Takamatsu, Japan, 2000, pp. 2101–2106.

[69] S. M. LaValle, Planning Algorithms. New York, NY: Cambridge University
Press, 2006.

[70] B. R. Donald, “Local and global techniques for motion planning,” Ph.D.
dissertation, Dept. of Elec. Eng. and Comp. Sci., MIT, Cambridge, MA, 1984.

[71] J.-C. Latombe, Robot Motion Planning. Norwell, MA: Kluwer Academic
Publishers, 1991.

[72] M. C. Lin, “Efficient Collision Detection for Animation and Robotics,” Ph.D.
dissertation, Dept. of Comp. Sci., Univ. of California, Berkeley, CA, 1993.

[73] P. Jiménez and F. Thomas and C. Torras, “Collision Detection Algorithms for
Motion Planning,” in Lecture Notes in Control and Information Sciences, vol.
4. New York, NY: Springer, 1998, pp. 305–343.

[74] B. Nguyen, “Locally Non-Convex Contact Models and Solution Methods for
Accurate Physical Simulation in Robotics,” Ph.D. dissertation, Dept. of
Comp. Sci., RPI, Troy, NY 2011.

[75] D. M. Flickinger and J. C. Trinkle, “Evaluating the performance of constraint
formulations for multibody dynamics simulation,” in Proc. of the ASME Int.
Design Eng. Tech. Conf. & Comp. and Inform. in Eng. Conf., Portland, OR,
2013.

161

[76] J. Williams. (2014, Feb.). A complementarity based contact model for
physically accurate treatment of polytyopes in simulation [Online]. Available:
http://www.birs.ca/events/2014/5-day-
workshops/14w5147/videos/watch/201402201024-Williams.mp4 (Date Last
Accessed, Mar. 4, 2014).

[77] J. Hu, J. E. Mitchell, J. Pang, K. P. Bennett, and G. Kunapuli, “On the
global solution of linear programs with linear complementarity constraints,”
SIAM J. on Optimization, vol. 19, no. 1, pp. 445 – 471, May 2008.

[78] N. Chakraborty, S. Berard, S. Akella, and J. Trinkle., “A geometrically
implicit time-stepping method for multibody systems with intermittent
contact,” Int. J. of Robotics Res., vol. 32, no. 10, pp. 426 – 445, Oct. 2013.

[79] D. E. Stewart, “Convergence of a timestepping scheme for rigidbody
dynamics and resolution of painlev’s problem,” Archive for Rational
Mechanics and Anal., vol. 145, no. 3, pp. 215 – 260, Dec. 1998.

[80] D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM Rev.,
vol. 42, no. 1, pp. 3–39, Mar. 2000.

[81] M. T. Mason and Y. Wang, “On the inconsistency of rigid-body frictional
planar mechanics,” in IEEE Int. Conf. on Robotics and Automation,
Philadelphia, PA, 1988, vol. 1, pp. 524–528.

[82] F. Gnot and B. Brogliato, “New results on painlev paradoxes,” European J. of
Mechanics - A/Solids, vol. 18, no. 4, pp. 653 – 677, July 1999.

[83] E. Drumwright and D. A. Shell, “A robust and tractable contact model for
dynamic robotic simulation,” in Proc. of the 2009 ACM Symp. on Appl.
Computing, SAC ’09, 2009, pp. 1176–1180.

[84] J. Williams, Y. Lu, S. Niebe, M. Andersen, K. Erleben, and J. Trinkle,
“Rpi-matlab-simulator: A tool for efficient research and practical teaching in
multibody dynamics,” in Workshop on Virtual Reality Interaction and
Physical Simulation, Lille, FR, 2013.

[85] J. W. Eaton, GNU Octave Manual. Bristol, United Kingdom: Network
Theory Limited, 2002.

[86] A. Witkin, K. Fleischer, and A. Barr, “Energy constraints on parameterized
models,” in Comp. Graph., vol. 21, no. 4, pp. 225–232, Aug. 1987.

[87] J. Burkardt. LEMKE solver for linear complementarity problems [Online].
Available: http://people.sc.fsu.edu/˜jburkardt/m src/lemke/lemke.html (Date
Last Accessed, May 20, 2014).

162

[88] Y. Lu, C. Lacoursiere, J. Williams, and J. Trinkle, “Standard interface for
data analysis of solvers in multibody dynamics,” in Canadian Conf. on
Nonlinear Solid Mechanics (CanCNSM), Montreal, Quebec, Canada, 2013.

[89] Y. Lu, J. Williams, C. Lacoursiere, and J. Trinkle, “A framework for problem
standardization and algorithm comparison in multibody system,” in ASME
Int. Design and Eng. Tech. Conf. and Comp. and Inform. in Eng., Buffalo,
NY, 2014.

[90] N. Chakraborty and J. Peng, “Proximity queries between convex objects: An
interior point approach for implicit surfaces,” in IEEE Int. Conf. on Robotics
and Automation, Orlando, FL, 2006, pp. 1910–1916.

