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Technological advances in the recent decades have enabled cancer researchers to 

probe the disease at multiple resolutions. This wealth of experimental data combined with 

computational systems biology methods is now leading to predictive models of cancer 

progression and response to therapy. We begin by presenting our research group’s multi- 

scale in silico framework for modeling cancer, whose core is a tissue-scale computational 

model capable of tracking the progression of tumors from a diffusion-limited avascular 

phase through angiogenesis, and into invasive lesions with realistic, complex morphologies. 

We adapt this core model to consider the delivery of systemically-administered anticancer 

agents and their effect on lesions once they reach their intended nuclear target. We calibrate 

the model parameters using in vitro data from the literature, and demonstrate through 

simulation that transport limitations affecting drug and oxygen distributions play a 

significant role in hampering the efficacy of chemotherapy; a result that has since been 

validated by in vitro experimentation. While this study demonstrates the capability of our 
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adapted core model to predict distributions (e.g., cell density, pressure, oxygen, nutrient, 

drug) within lesions and consequent tumor morphology, nevertheless, the underlying 

factors driving tumor-scale behavior occur at finer scales. What is needed in our multi-scale 

approach is to parallel reality, where molecular signaling models predict cellular behavior, 

and ultimately drive what is seen at the tumor level. Models of signaling pathways linked to 

cell models are already beginning to surface in the literature. We next transition our 

research to the molecular level, where we employ data mining and bioinformatics methods 

to infer signaling relationships underlying a subset of breast cancer that might benefit from 

targeted therapy of Androgen Receptor and associated pathways. Defining the architecture 

of signaling pathways is a critical first step towards development of pathways models 

underlying tumor models, while also providing valuable insight for drug discovery. Finally, 

we develop an agent-based, cell-scale model focused on predicting motility in response to 

chemical signals in the microenvironment, generally accepted to be a necessary feature of 

cancer invasion and metastasis. This research demonstrates the use of signaling models to 

predict emergent cell behavior, such as motility. 

The research studies presented in this dissertation are critical steps towards 

developing a predictive, in silico computational model for cancer progression and response 

to therapy. Our Laboratory for Computational & Predictive Oncology, in collaboration with 

research groups throughout in the United States and Europe are following a computational 

systems biology paradigm where model development is fueled by biological knowledge, 

and model predictions are refining experimental focus. The ultimate objective is a virtual 

cancer simulator capable  of accurately simulating cancer progression and response  to 

therapy on a patient-specific basis. 
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Chapter 1: A Brief Introduction to Cancer Biology 
 
 

Worldwide, cancer claims the lives of two out of every three diagnosed 

individuals approximating to seven million deaths annually, and millions more living 

abridged lifestyles as a  consequence of treatment side-effects (Kamangar, Dores,  & 

Anderson, 2006). Currently, there are approximately 25 million persons alive with 

cancer, with lung, breast, and colon cancers the most commonly diagnosed (Parkin, Bray, 

Ferlay, & Pisani, 2005). 

Normal and healthy animal physiology can be thought of as a utopian society of 

cells functioning in harmony with one another, where self-sacrifice for the greater good is 

the covenant; individual cells play a role in this society by proliferating when needed, 

organize in multi-cellular patterns, tissues, and organs to serve a biological function, and 

die when their time has come to maintain an appropriate population balance. Cancer is a 

complex disease whose origins lay in individual cells experiencing a series of genetic 

mutations which allow them to reproduce and mobilize in defiance of normal constraints. 

The selective advantage attained by cancer cells gives them a selfish nature that disrupts 

the otherwise harmonious society. Cancer cells operate and prosper at the expense of 

their neighboring cells, growing into large cellular masses called tumors that burden the 

normal functioning society to the verge of collapse, ultimately causing organ failures and 

death. 

The purpose of this chapter is meant to briefly introduce the reader to the nature 

of this complex, multifaceted disease and set the stage for the subsequent chapters in this 

dissertation describing computational systems biology-based investigations of cancer, 

how multi-scale modeling can advance our understanding of the disease, and therefore 

improve our ability to treat it. Specifically, this chapter surveys the basic principles of 
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molecular biology, how cancer initiates, its variability between cell types, its progression 

towards metastasis, and current treatment options. 
 

THE CENTRAL DOGMA OF MOLECULAR BIOLOGY 
 

The central dogma of molecular biology states that a cell’s DNA (genome) 

encodes all of the RNA (transcriptome), which in turn encodes the protein molecules 

(proteome) required to construct cells and coordinate their behaviors (Figure 1.1). While 

DNA serves as the metaphorical collection of musical notes, the RNA and proteins can 

be thought of as the combination of sounds that produce musical masterpieces. Just as 

each musical piece differs based on how musical notes are constructed together, each cell 

type in an organism differs in its appearance, construction, and behavior despite access to 

the same library. Fundamentally, cell types in multi-cellular organisms differ from one 

another because they accumulate different sets of RNA and protein molecules, while 

conserving the nuclear DNA sequences that encode them. Many cellular functions and 

behaviors are common across cell types, and as such, rely on many of the same proteins. 

While human cells are thought to utilize approximately 21,000 proteins (Mishra, et al., 

2006), differences in only several hundred protein interactions are believed to enable the 

vast differences in morphology and behavior between cell types (Alberts, et al., 1994). 
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Figure 1.1: The Dogma of Molecular Biology. 

 
The schematic represents the transfer of sequence information amongst DNA, RNA, and Proteins. In the 
most general cases, transfer of sequence information occurs when DNA replicates itself preceding mitosis, 
DNA segments undergo transcription to form RNA, and RNA is translated into Proteins. In some special 
cases occurring in some viruses, RNA can be used as a template for synthesizing DNA in a process called 
reverse transcription and to copy itself in a process called RNA replication. DNA has been shown to be 
able to directly translate into Proteins without the usual intermediary (RNA) under in vitro experimental 
conditions. 

 
Gene expression refers to the dynamics of cellular control over their phenotypes, 

or observable behaviors, by regulating the pathway between DNA to RNA to Proteins. 

Cells typically alter the expression of their genes in response to external signals, which in 

turn drives their phenotype. This process can be regulated at many steps along the 

pathway. While the specifics of this regulation is beyond the scope of this brief 

introductory chapter, it is important to note that the transmission of signals between the 

genome, transcriptome, proteome, and external cues (e.g., levels of oxygen, levels of 

nutrient, presence of growth promoters, presence of motility promoters, presence of a 

drug, etc.) form the basis of cell signaling networks that drive cell phenotype, their social 

behavior in multi-cellular patterns, and their response to therapy. In the case of cancer, 

alterations in the signaling dynamics between the genome, transciptome, and proteome 
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can have a profound, altering effect on how cells respond to their microenvironment, 

which drives these aberrant cell phenotypes to grow into drug-resisting, invasive, 

malignant tumor lesions. 
 

THE CELL CYCLE: NORMAL VS. CANCER 
 

Each cell undergoes a series of events between replication events. The duration of 

this so called cell cycle varies between cell types (usually on the order of 12-24 hours for 

proliferating mammalian cells), but can be generalized into several distinct phases 

(Figure 1.2): 

⎪ G1 Phase: The interval following a successful cell division and prior to 

entering the S Phase. 

⎪ S Phase: The interval during which cells synthesize a copy of their DNA 

in a process referred to as DNA Replication, and necessary prior to every 

cell division. Once  cells commit to this phase, they decondense their 

nuclear DNA, the double-helix structure of the DNA is split into two 

single strands, and each strand serves as a template upon which 

biochemical reactions assisted by DNA polymerase enzymes synthesize 

double-stranded DNA that are exact (or nearly exact) copies of one 

another. 

⎪ G2 Phase: The interval following the completion of DNA Synthesis (S 

Phase) and prior to mitosis (M Phase). 

⎪ M Phase: The cell undergoes mitosis, or the active process by which cells 

traffic their components including each duplicate set of DNA to polar 

opposite ends, and subsequently cleaves to produce two daughter cells 

with nearly identical DNA to each other and their parent cell. The most 
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significant  potential  for  differences  between  the  cells  is  the  result  of 

uncaught errors during the DNA Synthesis process. 

⎪ G0Phase: An optional phase of the cell cycle where a cell might choose to

leave the G1 Phase and enter a state of arrest or quiescence. This phase is

enables cells to regulate proliferation rates. 

 

Figure 1.2: The Cell Cycle. 

A cell’s progression through the cell cycle is a well-coordinated process that is 

regulated by a family of proteins called Cyclin-Dependent Kinases (CDKs). These 

proteins are thought to undergo structural changes that advance the cell along the cell 

cycle phases. Thus, progression through the cell cycle is regulated by the activation and 

deactivation of CDKs, which are tied directly to the transcription of CDK genes into 

proteins, their degradation, and phosphorylation events that modify their structure. Built 

into the complex machinery governing cell cycle regulation are negative controls acting 

as “checkpoints” that primarily work to arrest the cell cycle if the integrity of the genome 
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has been compromised. These checkpoints are responsible for keeping healthy, normal 

cells from progressing through the cell cycle  and passing genetic flaws on to their 

progeny. During checkpoint-initiated cell cycle arrests, normal cells have the opportunity 

to correct the compromise to the DNA integrity (e.g., DNA repair of missing or 

mismatched base-pairs) before proceeding back along the cycle (Hartwell & Kastan, 

1994). 

The most prominent feature of a healthy cell cycle is its vigilant surveillance of 

the integrity of the genome before it is passed on to the following generations of cells. 

Disruptions to this surveillance can result in genetic instabilities characteristic of cancer 

cells. This is supported by experimental evidence pointing to a number of cancer types 

overcoming checkpoints due to mutations  and abnormalities to  the genes  and 

corresponding proteins involved in the normal, healthy regulation of the cell cycle 

(Hartwell & Kastan, 1994). 
 

WHAT ARE THE KEY FEATURES OF CANCERS? 
 

The cancer research community has embraced six key features as necessary for 

normal cells to transition into invasive cancerous cells (Hanahan & Weinberg, 2000): 

1. Self-sufficiency in growth signals: Whereas normal cells are dependent upon 

external stimuli to induce a proliferative state, cancer cells are autonomous in this 

regard by acquiring the ability to induce proliferation in the absence of externally 

derived growth signals. 

2. Insensitivity to growth inhibitory signals: Normal tissues maintain a homeostasis 

with anti-proliferative signals that keep cells from leaving a quiescent state into a 

proliferative state. In order to evade this boundary, cancer cells acquire a 

phenotype that is insensitive to growth inhibitory signals. 
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3. Unbounded proliferative potential: Normal cells have an intrinsic program that 

restricts their multiplication. This program appears to operate independently of 

proliferation signaling pathways responding to growth and inhibitory factors. 

Cancer cells acquire the ability to overcome this finite limit on replication. 

4. Ability to evade cell-initiated death (apoptosis): The ability for cancer cells to 

expand into tumors is not only due to their increased potential to proliferative, but 

also their resistance to commit suicide via programmed cell death, or apoptosis. 

5. Ability to recruit vasculature via angiogenesis to feed the burgeoning tumor: 

Without another source of nutrients and oxygen to grow, cancer cells proliferate 

into tumors of a size limited by the local availability of nutrients and oxygen. In 

order to grow beyond this limit, tumors are able to recruit blood vessels via a 

process called angiogenesis. 

6. Ability to invade local host tissue and metastasize to alternate locations in the 
 

body: Almost all deaths related to cancer are the result of tumors invading local 

tissue and metastasizing to other locations in the body. Changes in cells’ adhesive 

and migratory properties enable cells to escape their primary tumor site. This 

ability to invade and metastasize is an important distinction between benign and 

malignant tumors. Cells that are just relentlessly growing into a benign tumor 

mass, remain clumped together, and can be cured by surgical resection are not 

considered cancer. However, cells that have achieved the ability to invade and 

form metastases are difficult to eradicate because of their capacity to spread 

throughout the body, and are considered cancer due to this malignant nature. 
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CARCINOGENESIS OCCURS AT THE DNA LEVEL 

 
For an abnormal cell to pass on its altered traits to its descendants, these traits 

must heritable. Altering a cell’s DNA sequence, or genetic changes, is one method to 

pass on traits to the next generation of cells. A second option is to pass on a change in 

how the DNA is expressed by the cell, or what is referred to as epigenetic changes. In the 

last decade, epigenetic changes have been reported to be a cause in many cancers, and are 

considered to be as causative of cancer phenotypes as genetic changes (Miranda, et al., 

2006). Traditionally, carcinogenesis has been associated with genetic changes, while 

epigenetic changes are associated with promoting its progression. This is supported by 

the correlation between carcinogenesis (the initialization of normal cells transitioning to 

cancerous behaviors) and mutagenesis (the generation of genetic mutations) caused by 

accidental errors during the DNA replication process prior to mitosis or stimulated by 

chemical carcinogens, ionizing radiation, and viruses that are all capable of altering the 

DNA of a cell. For example, cigarette smoking is considered to be a chemical carcinogen 

because of the well-known association between smokers and the development of lung 

cancer. However, preliminary evidence has pointed to the potential for normal cells to be 

made susceptible to developing cancer phenotypes by epigenetic changes upon 

acquisition of a genetic mutation, suggesting a more direct role for epigenetic changes in 

carcinogenesis (Feinberg, 2004). Regardless of strength the role it plays in 

carcinogenesis, epigenetic changes and its interplay with genetic changes is well- 

recognized in the cancer community as a fundamental cause of cancer. 

Cancer is not the result of a single mutation. Rather, it is thought to be the result 

of a series of mutations whose additive effects along with epigenetic changes enable a 

cell to meet the six key features of cancer listed above (Hanahan & Weinberg, 2000). 

These conditions are thought to cause cancers to be genetically unstable in comparison to 
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normal cells, artificially accelerating their evolution process by increasing the rate at 

which their DNA mutates and selecting for species that overwhelm the normal cell 

population and develop phenotypes that are highly proliferative, motile, and drug- 

resistant. For example, normal cells have the ability to repair damage or errors to the 

DNA such as mismatches between base-pairs and missing/excised base-pairs; mutations 

to the genes controlling these repair functions predisposes cells to developing cancer by 

promoting genetic instability and effectively increasing the normal rate of mutagenesis, 

thereby speeding up cellular evolution. 

The number of cell divisions a person experiences increases with age, and thus 

more likely to compile enough mutations that lead to cancer. This is thought to be the 

underlying cause for why cancer incidence appears to be a function of age. However, 

uncaught mutations by the cell-cycle checkpoints or mutagens having stimulated DNA 

damage artificially alter these natural dynamics and increase the likelihood for a cell to 

pick up a mutation at each cell division. Mutagens effectively increase the probability of 

a cell to pick up mutations, and the likelihood of it eventually becoming cancer. 
 

CANCER METASTASIS 
 

The ability of cancer cells to invade local host tissue and metastasize to alternate 

sites is partially responsible for the difficulty associated with eradicating cancers with 

current treatment options. To successfully metastasize, cells must be able to loosen their 

adhesion to their neighbors, escape from the primary tumor, burrow through local tissues 

until they reach an escape route such as a blood or lymphatic vessel, cross the basal 

lamina and endothelial lining of the vessel so as to reach the circulation, exit from the 

vessel at an alternate site in the body, and then survive and proliferate in the new 

environment. In order to achieve each of these steps, cells must acquire properties such as 
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decreased adhesion, secretion of matrix-degrading enzymes, and directed motility; at the 

tumor scale, recruitment of blood vessels via angiogenesis is also a signature marker for a 

tumor’s metastatic capacity. Experimental evidence has shown that many carcinomas 

exhibit decreased expression of cell-to-cell surface adhesion molecules and the ability to 

secrete proteolytic enzymes from the invading leading edge of metastatic cells. 

Furthermore, it has been suggested that though directed cell motility may not be a 

sufficient condition for metastasis, it is necessary (Bracke, et al., 2008). This has been 

experimentally confirmed by the in vitro motile behavior of cell lines considered to be 

models of metastasis. 
 

HOW ARE CANCERS CLASSIFIED? 
 

Cancers are broadly classified by the tissue and cell type from which they derive. 

Those that arise from epithelial cells are referred to as carcinomas while those that arise 

from connective tissue or muscle cells are referred to as sarcomas. Cancers that are 

derived from blood cells and the immune  system are referred to as leukemias and 

lymphomas, respectively. About 90% of all diagnosed human cancers are carcinomas, 

which is because epithelial cells are the most proliferative cells in the body and they are 

more exposed to damage from the environment, thus increasing  their likelihood of 

acquiring mutations that lead to cancer. Cancer cells often retain characteristics of the 

tissue from which they derived. For example, skin cancer cells (melanoma) typically 

continue to produce pigment granules. This  property makes it  possible for medical 

professionals to derive the origin of biopsied cancer cells to determine whether or not the 

tumor in question is a metastasis or primary tumor. 
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HOW ARE CANCERS CURRENTLY TREATED? 

 
The major classes of treatment available to cancer patients are surgery, 

chemotherapy (cytotoxic, anti-angiogenic, and targeted), hormone therapy, and radiation 

therapy. Most common cancers can be treated with one or more of these classes of 

therapy in some form. Clinicians devise treatment plans by considering the information 

available regarding their patients’ cancer, such as its type, location, grade, stage, size, 

morphology, molecular characteristics, patient’s medical history of treatment, patient’s 

general health, vascularization status, whether or not it has metastasized, and general 

treatment response profiles of patients having suffered from the same disease in the past. 

In the process of devising their plan, Clinicians must determine which combination of 

treatment options will provide the patient with the best outcome, and in doing so, must 

also consider the intention of each treatment option: 

⎪ Curative: The treatment option is intended to cure the patient of the disease 
 

⎪ Adjuvant: The treatment is intended to be used in combination with another 

treatment option concurrently 

⎪ Neoadjuvant: The treatment is intended to be administered  prior  to  another 

treatment option (usually surgery or radiation therapy) so as to reduce the tumor 

size  and extent, and maximize the chance for the subsequent therapy(ies) to 

succeed 

⎪ Therapeutic: The treatment can be curative and benefits the patient’s expected 

survival; it is expected to halt, delay, reduce, and or reverse tumor progression 

with subsequent improvements in patient health 

⎪ Palliative: The treatment is not expected to be curative or therapeutic; rather its 

purpose is to minimize the severity of disease symptoms, relieve patient suffering, 

and improve the patient’s quality of life 
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Surgery 

 
Surgery is often a curative treatment option for patients whose tumors have not 

yet metastasized, the clinicians are confident that they can define the boundaries of the 

tumor’s extent in the patient, and the proposed surgical excision of the tumor will not 

knowingly fatally damage organ systems. Surgery can also be a first line of therapy for 

patients even if the tumor has metastasized when the clinicians determine that the 

patient’s best prospects involve removal of as much of the primary and secondary tumors 

as possible via surgery, followed by some combination of radiation therapy, 

chemotherapy, and hormonal therapy in hopes of eradicating any remnant cancer cells. If 

the cancer has been diagnosed at a point in the cancer progression where the primary 

tumor has excessively invaded the local host tissue and metastasized to the lymph nodes 

(an indication that the cancer has spread to multiple sites throughout the body), surgery is 

usually not recommended because it would place far too much burden on the patient, and 

likely be more detrimental to the patient’s health than other treatment options. 
 

Radiation Therapy 

Radiation therapy is the medical use of ionizing radiation to induce damage to 

cells’ DNA. This damage to the DNA can induce apoptosis or be passed on to further 

generations of the cancer and cause them to reproduce at a slower pace. Availability of 

oxygen in the tumor microenvironment is a consideration for the clinician when devising 

a treatment plan to use radiation therapy because oxygen helps form DNA-damaging free 

radicals. The response of cancer cells to radiation therapy also depends on the tumor type, 

its size, and the corresponding radiosensitivity. Neoadjuvant chemotherapies can help 

increase radiosensitivity of a tumor by shrinking it prior to radiation treatment. Some 

adjuvant chemotherapies are known to enhance radiosensitivity of the tumor as well. 

While the radiation therapy has its advantages in regards to inducing DNA-damage to 
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cancer cells, it can also cause such damage to healthy cells which can result in new 

cancer cells in the patient’s future. In other words, radiation therapy itself is a mutagen, 

thus limiting a patient’s exposure to ionizing radiation is critical concern of clinicians. 

Furthermore, radiation therapy is often limited to localized treatments because it would 

be harmful, as well as impractical, to subject a patient’s whole body to ionizing radiation; 

thus it is primarily used to treat non-metastatic cancer. 
 

Chemotherapy 
 

Chemotherapies are drugs that are administered intravenously or orally depending 

on the class of chemotherapy, the specific type, and the clinician designing the dosing 

cycle. These drugs reach their targets through the blood stream. Ironically, the tumor’s 

own recruitment of blood vessels to sustain growth acts as a route for drugs to reach their 

intended targets. However, these drugs typically have harsh side effects and must be used 

rationally and cautiously. 
 

Cytotoxic Chemotherapy 
 

Cytotoxic chemotherapies are chemical drugs that kill cells. Often, this class of 

chemotherapy targets cells that rapidly divide due to the cell-cycle specific nature of their 

mechanism of action. For example, the drugs doxorubicin and cisplatin target the DNA of 

actively cycling cells, and are most effective during S-phase when the DNA is most 

susceptible to drug-DNA interactions. However, cytotoxic chemotherapy is often viewed 

as a double-edge sword; because of its non-specific nature, cytotoxic chemotherapy drugs 

also target normal cells that are actively replication such as in the bone marrow, digestive 

tract, and hair follicles resulting in decreased production of blood cells, inflammation of 

the digestive tract, and hair loss, respectively. 
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Targeted Chemotherapy 

 
Targeted chemotherapies are a newer class of drugs meant to specifically interact 

with proteins involved in the signaling pathways promoting cancerous behaviors (e.g., 

proliferation, motility, lack of adhesion). These drugs are rationally designed compared to 

cytotoxic therapies which are relatively non-specific. For example, endothelial growth 

factor receptor (EGFR) is overexpressed in many cancer types, and is the target of many 

small molecule-based targeted therapies. In addition to small molecules, another class of 

targeted therapy is monoclonal antibody-based therapies (also sometimes referred to as 

Biologics or Biotherapeutics), where antibodies that specifically target surface receptors 

on cancer cells are produced in bulk in bioreactors. In some cases, the antibody itself can 

induce apoptosis once it binds to its targeted receptor (such as Rituximab which targets 

CD20 receptors). In other cases, the antibody binds to its target and interferes with the 

activity of the receptor, such as Herceptin targeting Her2/neu receptors expressed in 

about 25% of breast cancers and is responsible for stimulating proliferation. 

Radioimmunotherapies take advantage of the targeted nature of monoclonal antibodies to 

deliver an attached radioactive isotope to the local vicinity of cancer cells to induce cell 

death. For example, Ibritumomab tiuxetan targets CD20 receptors and kills cells by 

radioactive damage induced by an attached radioactive isotope. 
 

Anti-Angiogenic Chemotherapy 
 

Anti-angiogenic treatments are meant to inhibit further growth of tumors by 

blocking the formation of new blood vessels that supply growing tumors with oxygen and 

nutrients. Bevacizumab was the first clinically approved anti-angiogenic drug available 

on the market. It inhibits angiogenesis by targeting and inhibiting the function of vascular 

endothelial growth factor, which is a key promoter of new vessel formation. 
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Hormonal Therapy 

 
Several cancers, most prominently prostate and breast cancer, are well-known to 

have their growth linked to the expression of steroid hormone receptors. Hormone 

therapies operate through administration of specific hormones or hormone antagonists to 

manipulate cancer cells hormone receptor activity. For example, tamoxifen is the 

standard treatment given to breast cancer patients whose tumors express Estrogen 

Receptor, which is about 70% of cases. Tamoxifen is an antagonist of the Estrogen 

Receptor in breast cancer, thus inhibiting estrogen from binding to the receptor and 

activating proliferative signaling pathways. Similarly, antagonists of the Androgen 

Receptor are used to treat prostate cancer in order to inhibit androgens from binding to 

the receptors. 
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Chapter 2: Introduction 

 
PREFACE 

 
Segments of this introduction chapter are based on a published article, which was 

a collaborative effort between Sandeep Sanga, Dr. John Sinek, Dr. Hermann B. Frieboes, 

Dr. Mauro Ferrari, Dr. John P. Fruehauf, and Dr. Vittorio Cristini. Sanga took the lead 

role in preparing the manuscript. Sinek and Frieboes assisted in the manuscript’s 

preparation. Ferrari and Fruehauf provided related expertise in nanotechnology and 

oncology. Cristini  conceived  of the article’s  premise and directed  its progress. The 

modeling approach towards developing a modular, multi-scale virtual simulator of cancer 

for predicting tumor progression and response to therapy shaped the theme for Sanga’s 

computational systems biology research presented in this dissertation. 
 

 
Note: Portions of this chapter are based on an article originally published as (Sanga, et 
al., 2006) in Expert Review of Anticancer Therapy, which can be accessed at 
http://dx.doi.org/10.1586/14737140.6.10.1361, and have been included in this dissertation 
with permission from Future Drugs, Ltd. 
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THE MULTIFACETED NATURE OF CANCER 
 

The physiological processes underlying cancer are highly complex, spanning a 

wide range of interrelated temporal and spatial scales. The fundamental causes are 

believed to reside at the molecular scale where gene mutations and epigenetic changes 

lead to aberrant signaling pathways, enabling cells to develop a selective advantage that 

allows them to reproduce in defiance of normal constraints. In time, these cells form 

avascular masses limited to approximately a few millimeters in diameter due to the 

transport limitations of oxygen and nutrients into tissue (Folkman, 1971). As inner layers 

of the nascent tumor begin to necrose, tumor angiogenic regulators (e.g., VEGF) are 

released by the avascular tumor mass, which diffuse through the surrounding tissue and 

trigger a cascade of events upon arrival at local vasculature, culminating in the 

recruitment of vessels that supply blood to the burgeoning tumor (i.e., angiogenesis). At 

this point, the vascularized tumor may remain compact and non-invasive, i.e., benign, in 

which case it can usually be successfully removed by surgical resection or treated with 

radiation. Conversely, upon receiving infusion of nutrient from its newly formed 

vasculature, a tumor may become malignant and rapidly invade local tissue, usually 

acquiring mutations that lend its cells the ability to navigate through the bloodstream and 

lymphatics to metastasize to non-native locations in the body (Folkman, 1971). The non- 

localized nature of metastatic cancer limits the success of surgical and radiation treatment 

approaches, thus systemically administered chemotherapy continues to be the standard 

option in spite of marginal results (Tanaka, et al., 2009). 

Tumor neovasculature plays an integral role in the administration of such 

treatment. It is the first tumor-level barrier, which an administered drug molecule must 

navigate  on  its  journey  to  its  intended  intracellular  target,  and  its  anatomical  and 
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functional irregularities are thought to significantly impair drug distribution to lesion 

tissue (Jain, 2001a; Pries, et al., 2009). For standard therapy, once drug molecules 

extravasate through vasculature, they must diffuse through interstitial space, permeate 

cell membranes, survive a gauntlet of intracellular drug resistance mechanisms designed 

to detoxify cells (Wayne Materi & David S. Wishart, 2007; W. Materi & D. S. Wishart, 

2007), and finally bind to subcellular targets at sufficient cytotoxic concentrations (Jain, 

2001a). This multi-scale series of barriers parallels the multifaceted nature of the disease, 

and combines to produce an overall reduction in the efficacy of many unrelated 

anticancer drugs (Krishna & Mayer, 2000) and cannot be overcome simply by 

administering more drug, as toxicity to host tissue presents a formidable challenge. 
 

THE PUSH FOR PERSONALIZED CANCER MEDICINE: PREDICTIVE ONCOLOGY 
 

Traditionally, cancer therapy has been planned according to the organ or tissue 

from which the cancer originated. With the advance of experimental techniques to probe 

the molecular nature of the disease, this approach has become antiquated as our 

understanding of the molecular origins of cancer and the underlying intracellular 

signaling pathways that drive the cancer phenotypes has improved. Knowledge that 

cancer is the product of a series of random genetic and epigenetic changes has partially 

explained why patients with cancers of similar organ/tissue origins can respond with 

variable sensitivity to anticancer agents, and identifies an important obstacle that must be 

overcome towards improving our success in treating cancer. This heterogeneity in the 

patient population of any one particular cancer type has lead to a paradigm shift in cancer 

treatment from a ‘one size fits all’ to a more personalized approach. 

In order to devise personalized treatment plans, clinicians use patient-specific 

information  called  biomarkers  that  are  indicators  of  the  particular  genetic  defects 
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underlying the patient’s tumor. Currently, biomarkers are derived from analysis of blood 

serum, biopsied tissue, or surgically excised tissue. Biomarkers assist clinicians in 

managing their patient’s care by predicting a patient’s clinical outcome and their response 

to different classes of therapies. Clinicians can weigh the severity of the outcome 

prediction against the combinations of therapy options (e.g., surgery, radiation therapy, 

chemotherapy, hormonal therapy) and rationally devise a plan. 

Personalizing cancer medicine is important paradigm shift as it helps to classify 

patients who are more likely to respond to a therapy regimen based on molecular scale 

knowledge of a patient’s tumor. Just as important is predictive knowledge of whether a 

patient is unlikely to respond so as to avoid giving patients unnecessary adjuvant 

chemotherapy. The side effects of radiation therapy and chemotherapy are harsh and can 

immensely reduce the quality of life for a patient (Mols, Vingerhoets, Coebergh, & van 

de Poll-Franse, 2005). This is particularly a problem in the United States where it has 

been shown that approximately 55-75% of women with early stage breast cancer undergo 

unnecessary adjuvant chemotherapy (van't Veer & Bernards, 2008). 

With the completion of the Human Genome Project and the corresponding 

advance of gene expression microarray chips in the last decade, scientists and clinicians 

now have access to technologies capable of simultaneously monitoring the gene 

expression of the full human transcriptome. This has lead to studies comparing the gene 

expression between diseased and healthy human tissues to identify the genetic basis for a 

particular diseased tissue such as cancer. Similarly, the field of pharmacogenomics 

investigates the genetic basis underlying the variability in drug response between 

patients. This technology has lead to a new class of molecular diagnostic tests for cancer: 

gene  expression-based  molecular  signatures.  Such  signatures  have  already  lead  to 

commercially-marketed  diagnostic  tests,  such  as  MammaPrint®  by  Agendia,  which 
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assesses risk of metastasis in breast cancer patients and is based on a 70-gene signature 

(van de Vijver, et al., 2002). Furthermore, because gene expression is regulated by 

transcription factors (proteins that are themselves gene products); statistical associations 

between transcript abundance (the quantity measured by gene expression microarrays) 

can infer gene regulatory mechanisms and reconstruct signaling relationships in datasets 

of microarray data with large enough samples (Margolin, et al., 2006; Soinov, 2003). 

Elucidating the multitude of gene interactions involved in a cancer’s progression can help 

devise rational strategies for overcoming drug resistance and define molecular targets for 

therapy (Edgerton, Fisher, Tang, Frey, & Chen, 2007). 

However, despite our increased understanding of the molecular origins of cancer 

and subsequent improvements in the design of treatment plans, chemotherapy still 

experiences limited success in many patients, which suggests that success of 

systemically-delivered therapies may also be associated with their  overcoming 

biobarriers at the courser scales (i.e., cellular, tissue, organ). An anticancer agent faces a 

multitude of barriers along its route from the point of administration that prevent it from 

reaching its intracellular targets at the appropriate levels, and thus reducing the efficacy. 

The body recognizes drugs in circulation as toxins, and consequently acts to filter the 

drug from the blood stream. In the case of nanoparticle-mediated drug delivery, the 

reticuloendothelial system (RES), a system of macrophages and specialized cells lining 

the liver, spleen, bone marrow, and lympthatic tissues, acts to sequester and remove 

particles from circulation (ElBayoumi & Torchilin, 2009). The irregular hemodynamics 

of tumor vasculature compromises blood circulation in lesions, and consequently impairs 

transport of circulating anticancer agents to the tissue interstitium (Jain, 2001a; Pries, et 

al., 2009), where they must diffuse and permeate cell membranes, survive intracellular 
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drug  resistance  mechanisms,  and  finally reach  their  intracellular  target  at  sufficient 

concentrations to induce cell inhibition (death or quiescence). 
 

THE ROLE OF COMPUTATIONAL SYSTEMS BIOLOGY IN CANCER RESEARCH AND 
THERAPY DESIGN 

 
Developing a detailed understanding of the underlying pathophysiology of cancer, 

its progression, mechanisms of drug resistance at various scales, as well as the 

optimization of drug dosing protocols, is the subject of vast amounts of research directed 

towards the development of effective treatment and prevention strategies. Because of the 

complexity of this disease, it has proven difficult to assign quantitative weights to each 

component. This may be due in part to the often reductionist nature of experimental 

investigation where mechanisms are often studied in an isolated context. It has been 

suggested that a conceptual framework is necessary to fully understand the data produced 

in quantity by tumor biologists and clinical oncologists (A. R. Anderson & Quaranta, 

2008; Araujo & McElwain, 2004; R.A. Gatenby, 1998; R. A. Gatenby & Gawlinski, 

2003b; Wayne Materi & David S. Wishart, 2007; W. Materi & D. S. Wishart, 2007). The 

challenges of better understanding the overall cancer phenomenon and its treatment can 

benefit from a computational systems biology approach, where the disciplines of 

medicine, biology, physics, chemistry, computer science, and engineering are integrated 

to study cancer on a multi-scale, system-wide basis. In particular, this approach can be 

integrated with the vast amounts of data already available from biological experiments 

and clinical trials to calibrate and test predictive models, and eventually to rationalize 

their focus. 

Traditional clinical and biological experiments require costly investments in both 

time and materials and are often limited by equipment precision, human error, and the 

inability to distinguish between various underlying mechanisms governing tumor growth 
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(Araujo & McElwain, 2004; Kunz-Schughart, Kreutz, & Knuechel, 1998). In parallel, a 

critical weakness of theoretical models is their plasticity in uncritically recapitulating 

training data, without regard to the models’ actual validity and predictive capability. 

Nevertheless, modeling can provide investigators with tools to run computational 

experiments that would otherwise be very difficult or impossible to recreate in an 

experimental setting; accordingly, modeling can provide valuable information to plan 

effective biological experiments for testing theoretical hypotheses. Data from biological 

experiments provides necessary constraints for choosing appropriate model structure and 

parameters. Therefore, although pure theoretical or experimental investigations alone 

have inherent flaws and limitations, an ideal synergy between the two can be approached 

by using a circular, recursive work flow methodology characteristic of computational 

systems biology (Figure 2.1). 
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Figure 2.1: Systems Biology Paradigm: Hypothesis-driven research in systems biology 

 
A cycle of research begins with the selection of contradictory issues of biological significance and the 
creation of a model representing the phenomenon. Models can be created either automatically or manually. 
The model represents a computable set of assumptions and hypotheses that need to be tested or supported 
experimentally. Computational "dry" experiments, such as simulation, on models reveal computational 
adequacy of the assumptions and hypotheses embedded in each model. Inadequate models would expose 
inconsistencies with established experimental facts, and thus need to be rejected or modified. Models that 
pass this test become subjects of a thorough system analysis where a number of predictions may be made. 
A set of predictions that can distinguish a correct model among competing models is selected for "wet" 
experiments. Successful experiments are those that eliminate inadequate models. Models that survive this 
cycle are deemed to be consistent with existing experimental evidence. While this is an idealized process of 
systems biology research, the hope is that advancement of research in computational science, analytical 
methods, technologies for measurements, and genomics will gradually transform biological research to fit 
this cycle for a more systematic and hypothesis-driven science. This image and figure caption have been 
adapted from (Kitano, 2002) with permission from AAAS. 

 

 
MULTI-SCALE CANCER SIMULATION PARADIGM 

 
As the saying goes, “Rome wasn’t built in a day.” Likewise, the effort to develop 

a comprehensive, dynamic simulator of the cancer disease, let alone the entire 

mammalian system, is an intricate, arduous process. Nevertheless, its development has 

important implications towards predicting tumor progression and response to therapy on 

a patient-specific basis (a research field known as Predictive Oncology). 



24 

Our research group is taking an integrative, multi-scale approach towards 

developing a cancer simulator with the capacity to predict in vivo tumor growth and 

response to therapy, where the long-term goal is to provide clinicians with a tool to plan 

surgical interventions, radiation therapy, and chemotherapy based on patient-specific 

tumor information, thereby maximizing benefit to both patients and health-care providers. 

The endeavor to develop software packages capable of sophisticated, in vivo-like tumor 

simulation requires a modular, multi-scale development process where individual 

components are built upon models simulating disease progression at multiple resolutions, 

anticancer drug pharmacology, and drug resistance mechanisms. These models are then 

linked to simulate the disease and possible therapies through a wide temporal range. 

RESEARCH PURPOSE

The purpose of this research dissertation is to emphasize the benefit of 

computational systems biology approaches in studying cancer at multiple, inter-related 

scales, and its role in personalizing cancer medicine through advancing a multi-scale, 

predictive model(s) of solid tumor growth and progression towards invasion and 

metastasis. In the next chapter, we review methods and techniques used by predictive 

oncologists most relevant to the research performed in this dissertation. In the subsequent 

chapter, we describe the multi-scale cancer modeling framework in perpetual 

development by our research group, which forms the basis of the research conducted in 

the following chapters. 

In Chapter 5, we take a significant step towards a predictive model for tumor 

response to therapy by formulating drug delivery (pharmacokinetics) and drug effect 

(pharmacodynamics) models whose parameters we calibrate from in vitro experiments 

reported in the literature. The drug delivery model considers drug extravasation from 

tumor vasculature, its penetration into cells, drug resistance mechanisms, and drug 
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binding to intracellular targets. The drug effect model takes into account the local 

availability of oxygen and nutrients and their impact on chemotherapy efficacy. We 

model the delivery and effect of cytotoxic chemotherapy under a best-case scenario, 

where the cells comprising the tumor are molecularly homogenous and drug-sensitive, 

which is far from the heterogeneous reality. The simulations presented in this study 

demonstrate that the limited efficacy of drugs is at least in part due to barriers beyond the 

molecular difference between tumors. 

In Chapter 6, we leverage publicly available breast cancer gene expression data 

performed on microarray technology to infer cell signaling networks and predict breast 

cancer phenotypes. We present a gene expression meta-analysis studying the molecular 

characteristics of a subtype of breast cancer patients that may benefit from targeted 

therapy. While this molecularly-defined subtype was first identified by two previous gene 

expression studies, we use contemporary normalization methods to confirm that the two 
studies identified the same subtype, and that this subtype appears to persist in the breast 

cancer. In addition to defining a more robust gene signature for predicting this breast 

cancer subtype, we use gene regulation network inference methods to hypothesize 

signaling interactions, some of which have already been established through 

experimentation with  cell  lines and  others which  can guide future experiments. By 

generating hypotheses as to the network interactions defining this breast cancer 

phenotype, we are identifying potential targets for targeted therapy. One of the key 

molecules associated with this breast cancer subset is the Androgen Receptor, which is a 

promoter of proliferation in prostate cancer and is targeted for prostate cancer therapy. 

Furthermore, our network reconstruction process is important in a multi-scale cancer 

modeling framework by hypothesizing the “connection map” of interacting signals that 

once validated experimentally, can form the basis of signaling models driving the 

behavior of cellular-scale models. 



26 

In Chapter 7, we present a two-dimensional cell-scale model for chemotaxis 

whose motility is an emergent property of remodeling of the cytoskeletal structure in 

response to receptor-ligand dynamics at the cell perimeter. Chemotaxis is generally 

accepted as a model for cancer metastasis (Bracke, et al., 2008; J. Condeelis, Singer, & 

Segall, 2005) because of the necessity of cells to have the ability to mobilize away from 

the primary tumor mass. We apply receptor occupancy theory to model the generation of 

signals promoting protrusion activity at the cell periphery as a function of the percentage 

of receptors occupied by ligand at the cell surface. We calibrate and test the model with 

experimental data from the literature of cells responding to controlled chemoattractant 

gradients. Our simulations support that the underlying mechanisms of directed motility 

are conserved across cell-types, and help to elucidate how motile cells sense gradients in 

their microenvironment. This model is a critical step towards linking information derived 
from cell signaling models into a multi-scale cancer modeling framework to predict 

cellular behaviors, such as cell motility. 



27  

 
 

Chapter 3: Techniques and Methods used in Predictive Oncology 
 
Note: Portions of this chapter are based on an article originally published as (Sanga, et al., 2006) in 
Expert Review of Anticancer Therapy, which can be accessed at 
http://dx.doi.org/10.1586/14737140.6.10.1361, and have been included in this dissertation with 
permission from Future Drugs, Ltd. 

 

The purpose of a model is to describe a large class of observations and make definitive 

predictions about the results of future observations. Numerous models have been reported in the 

literature predicting behavior for a wide range of phenomena, each asserting to provide additional 

insight about the phenomenon in question. The extent to which models describe the underlying 

mechanisms of a process determines the model’s level of empiricism. There are two schools of 

thought to predictive modeling: 1) empirical, data-based models are thought to have more practical 

value because they can overcome the complexity and unknown mechanisms of the underlying 

phenomena, whereas 2) theoretical, mechanistic-based models are considered to have more predictive 

potential because they are built upon models of underlying mechanisms (either by a priori 

knowledge or by hypothesis) and are able to generate new knowledge (Nestorov, Hadjitodorov, 

Petrov, & Rowland, 1999). Predictive oncology research reflects both schools of thought, and the 

purpose of this chapter is to present a comprehensive overview of the approaches used in predictive 

oncology today, and extend upon those that are most relevant to the research presented in this 

dissertation. As we have seen thus far, the dynamics of cancer span a wide range of scales 

ranging from events at the molecular scale initiating carcinogenesis all the way to tissue scale where 

the bulk tumor behavior can invade, metastasize, and overwhelm the human body. This range of scale 

is reflected in the wide variety of modeling techniques used to study the disease. 
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MECHANISTIC CANCER MODELING APPROACHES 

 
“Mathematical models can provide biologists and clinicians with tools that might guide their 

efforts to elucidate fundamental mechanisms of cancer progression and either improve current 

treatment strategies or stimulate the development of new ones” (Alarcon, Byrne, & Maini, 2003). 

Many mechanistic cancer models have been proposed that focus on one or more phases of cancer 

progression (i.e., avascular, angiogenesis, vascular), and can typically be categorized as either a 

continuum, discrete, or hybrid approach (Alarcon, et al., 2003; Araujo & McElwain, 2004; Moreira 

& Deutsch, 2002). Continuum-based models draw upon principles from fluid and continuum 

mechanics, and describe cancer- related variables, such as cell population, nutrient concentration, 

oxygen distribution, and growth factor concentrations as continuous fields by means of 

differential equations (Alarcon, et al., 2003; Zhang, Wang, Sagotsky, & Deisboeck, 2009). 

Alternatively, discrete-based approaches describe the dynamics of discrete elements (e.g., tumor 

cells), whose states are governed by a set of deterministic and/or probabilistic rules. These rules can be 

translated from known biological processes or hypothesized by the investigating researcher in a 

straightforward manner. The state evolution of these elements can be tracked through both space 

and time. In the case of cellular-automaton (CA) models, the behavior of the discrete elements and 

their microenvironment is constrained to a two- or three-dimensional lattice of grid points. Agent-

based models (ABMs) are similar to CA models, and can be considered a more general form of CA 

models; the primary difference is that ABMs are not constrained to a pre-determined geometric 

arrangement. Both CA models and ABMs enable researchers to enclose a complex set of 

biologically-based rules into each “agent” and simulate emergent multi-cellular behavior. A recent 

trend has been to couple ABMs with continuum approaches to model intracellular cell signaling 

events and trigger the rules driving the agent phenotypes, as well as to model species in 

the microenvironment such as diffusing oxygen from local vasculature. The multi-scale complexity 

of tumors and their microenvironment make it difficult to describe all the relevant processes 
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sufficiently with using solely a continuum-based or discrete-based approach. Rather, hybrid 

models are becoming increasingly popular because of their ability to simulate cancer through a 

wide temporal and spatial range, while optimizing computational expense. Hybrid cancer modeling 

approaches combine continuum fields with discrete descriptions. In particular, substances such as 

oxygen, nutrient, drug, and growth factors can be described as a continuum in the tumor 

microenvironment, while individual CA or ABM elements dynamically evolve in response to 

local substance concentrations. 

The scientific literature devoted to the theoretical investigation of tumor growth and 

progression using continuum and CA modeling approaches has been reviewed in depth (Araujo & 

McElwain, 2004; Mantzaris, Webb, & Othmer, 2004; Moreira & Deutsch, 2002). While most of the 

models described within these reviews are able to provide useful insight into cancer-related 

processes occurring at a particular length and time scale, they do not “address the fundamental 

problem of how phenomena at different scales are coupled (Alarcon, et al., 2003).” The multi-scale 

complexity of cancer progression warrants a multi-scale modeling approach to be taken to produce 

truly predictive tumor simulators. Processes occurring at various length and time scales must be 

coupled appropriately in order to capture all the dynamics involved. Previous works have developed 

multi-scale systems modeling complex biological processes, such as cancer (Alarcon, et al., 2003; 

Alarcon, Byrne, & Maini, 2005; Jiang, Pjesivac-Grbovic, Cantrell, & Freyer, 2005; Ribba, Colin, & 

Schnell, 2006), the heart & lung (Crampin, et al., 2004; Hunter, Kohl, & Noble, 2001; Lagana, et 

al., 2005; Smith, et al., 2002), and various phenomena related to developmental biology 

(Chaturvedi, et al., 2005; Sharp, Reinitz, & Mjolsness, 1993). In particular, Jiang et al. (Jiang, et al., 

2005) and Alarcon et al. (Alarcon, et al., 2003, 2005) present frameworks for building multi-scale 

cancer progression models capable of integrating a hierarchy of processes at varying length and time 

scales. Most cancer models and multi-scale systems (Alarcon, et al., 2003, 2005; Araujo & 

McElwain, 2004; Burton, 1966; H. M. Byrne & Chaplain, 1995; H. M. Byrne & Chaplin, 1996; H.P. 

Greenspan, 1972; Jiang, et al., 2005; Maggelakis & Adam, 1990; Ribba, et al., 2006; Thomlinson & 
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Gray, 1955) primarily produce 1D and 2D simulations that are limited in their ability to capture 

complex in vivo tumor morphologies and microenvironment. 
 

Modular Development of a Multi-scale Cancer Simulation 
 

The present section provides a brief overview of a select group of tumor growth, angiogenesis, 

and pharmacology models serving as the inspiration and foundation for efforts to develop a multi-

scale cancer simulator by our research group (Figure 3.1), and the core model adapted in the research 

study presented in Chapter 5 to investigate drug delivery and effect to tumor lesions. 
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Figure 3.1: Outlook for multi-scale cancer simulation under development by Cristini and 
coworkers. 

Multi-scale cancer simulation is founded on the integration of experimental data and mathematical models. 
It should provide valuable insights into the cancer phenomenon and establish a platform information 
technology for analyzing the effectiveness of chemotherapeutic drugs and rationally design new therapies.
Modules are developed and coupled via sharing of information. 

Tumor Growth 

Cristini et al. (Cristini, Lowengrub, & Nie, 2003) were among the first to advance 

tumor modeling beyond the limited capabilities of mathematical linear analyses and into 

the realm of nonlinear computer simulation of complex tumor morphologies. The 

multifaceted nature of cancer requires sophisticated, nonlinear mathematical models to 
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capture more realistic growth dynamics and morphologies. Boundary-integral simulations 

(Cristini, et al., 2003) of classic continuum-based tumor models (Burton, 1966; H. M. 

Byrne & Chaplain, 1995; H. M. Byrne & Chaplin, 1996; H.P. Greenspan, 1972; 

Maggelakis & Adam, 1990; Thomlinson & Gray, 1955) determined that a reduced set of 

two non-dimensional parameters (related to mitosis rate, apoptosis rate, cell mobility, and 

cell adhesion) regulate morphology and growth (invasiveness) of avascular and 

vascularized tumors. In this model there is no morphological representation of 

vasculature, rather the effect of vascularity is quantified by a parameter relating the 

concentration of nutrient in the blood, nutrient transfer rate from blood to tissue, and 

nutrient consumption by the cells. Critical conditions were predicted that separate 

compact, noninvasive mass growth from unstable, fingering, infiltrative progression 

(Cristini, et al., 2003). However, further analysis demonstrated that highly vascularized 

tumors tend to grow in compact, nearly spherical shapes showing little or no signs of 

invasiveness. This unexpected prediction suggests that tumors could maintain stable 

morphology under normoxic microenvironmental conditions. This result is supported by 

experimental observations indicating that hypoxia stimulates invasiveness and tumor 

fragmentation (Kunkel, et al., 2001a; Pennacchietti, et al., 2003). 
 

 
Tumor-Induced Angiogenesis 

 
Angiogenesis is the process by which cancers recruit enhanced blood supply to 

provide the oxygen and nutrients that are commonly considered necessary to support 

growth into larger, more invasive tumor masses. As is the case with tumor growth, 

tumor-induced angiogenesis is a topic receiving considerable attention from the 

biological modeling community and has been extensively reviewed (Mantzaris, et al., 

2004). 
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MathematicalModelsfor   Tumor-InducedAngiogenesis 
 

Angiogenesis is believed to be initiated by pro-angiogenic proteins (PAP), such as 

vascular endothelial growth factor (VEGF), that have been induced by a lack of oxygen 

and nutrient to be released from the necrotic tissue of a tumor lesion into surrounding 

tissue (Folkman & Klagsbrun, 1987). These proteins create a chemical gradient that 

triggers endothelial cells (EC) from parent vessels in the pre-existing vasculature to 

migrate towards the tumor (chemotaxis). Eventually through a number of complex 

mechanisms, the accumulation of EC form finger-like capillary sprouts extending from a 

parent vessel. Analogous to plant growth, these sprouts extend and grow towards the 

tumor along the chemical gradient guided by the migration of the sprout-tip. The 

interaction between EC and the extracellular matrix (ECM), itself, is also significant in 

directing the sprout-tips. Fibronectin is generated and adheres to the matrix, serving to 

guide the direction of endothelial cell progression via a process called haptotaxis, similar 

and complementary to chemotaxis. Once capillary sprouts from the parent vessel extend 

far enough towards the tumor, they tend to lean towards each other and form tip-to-tip 

and tip-to-sprout fusions called anastomoses (thought to be caused by haptotaxis, or 

directed cell motility in response to substrate gradients) (A. R. Anderson & Chaplain, 

1998; McDougall, Anderson, Chaplain, & Sherratt, 2002). Through this process of 

anastomosis, an initial network of poorly perfused, interconnected immature vessels is 

formed. The previously described process of angiogenesis and subsequent anastomoses 

occurs in a repetitive fashion using the initial network as parent vessels, therefore 

producing an extended capillary bed concentrated in the tumor. However, the 

neovasculature is irregular and poorly perfused in comparison to normal tissue 

vasculature and will be portrayed as a biological barrier to anticancer treatment efficacy 

in Chapter 5. 
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In their seminal study, Anderson and Chaplain developed a tumor-induced 

angiogenesis model (A. R. Anderson & Chaplain, 1998) with the ability to follow the 

motion of EC at the capillary tips and control important processes such as proliferation, 

branching, and anastomosis. Their model utilizes a hybrid approach (i.e., both continuum 

and discrete modeling) and focuses on three significant variables related to angiogenesis: 

EC density, and PAP and fibronectin concentrations. While their continuum component 

tracks the profiles of PAP and fibronectin in the tumor microenvironment, their discrete 

component tracks the migration of individual  endothelial cells sprouting from local 

capillary beds in response to PAP (chemotaxis) and fibronectin (haptotaxis). This 

influential study by Anderson and Chaplain enabled simulation of qualitatively realistic 

structure of tumor vasculature laying the groundwork for improved tumor simulation 

(Cristini, et al., 2005; Cristini, Li, Lowengrub, & Wise, 2009; H. B. Frieboes, 

Lowengrub, Wise, Zheng, Macklin, Bearer, et al., 2007; X. Zheng, Wise, & Cristini, 

2005), and serving as inspiration for other angiogenesis models (H. A. Levine, Pamuk, 

Sleeman, & Nilsen-Hamilton, 2002; Plank & Sleeman, 2003, 2004; Sun, Wheeler, 

Obeyesekere, & Patrick, 2005). 

The abnormal nature of tumor vasculature compared to healthy tissue vasculature 

has been addressed (Baish, et al., 1996; Jain, 2001b; Pries, et al., 2009). Irregular tumor 

vasculature leads to restricted and inhomogeneous drug and nutrient extravasation to 

tumor tissue, which may exacerbate the situation by selecting for highly resistant clones. 

Anderson and Chaplain’s angiogenesis model appears to capture the irregularity of tumor 

vasculature through appropriate adjustment of the governing mathematical parameters. 

However, their model and others (H. A. Levine, et al., 2002; Plank & Sleeman, 2003, 

2004; Sun, et al., 2005) only describes the physical structure of the capillary network. 

Nutrient, oxygen, and drug distributions in a tumor can be modeled in a simplified 
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fashion by using the vasculature produced by these models as a source boundary 

condition in a diffusion-reaction system, with the transfer rate between the vasculature 

and tissue as a function of local pressure differences. In reality, nutrient, oxygen, and 

drug delivery depend on blood flow through the vasculature; using the entire vasculature 

as a uniform source with blood-tissue transfer proportional to local pressures is a 

satisfactory interpretation, which can be improved upon by a more direct model of blood 

flow. 

McDougall et al. (McDougall, et al., 2002) developed a direct extension of the 

Anderson and Chaplain angiogenesis model (A. R. Anderson & Chaplain, 1998) by 

describing the generated vascular networks as a series of straight, rigid cylindrical 

capillaries that join adjacent nodes. Blood flow is modeled through the cylindrical 

vascular network by modeling the elemental flow-rate in each segment with Poiseuille’s 

Law, which describes flow-rate as a function of capillary lumen radius, fluid viscosity, 

capillary length, and pressure drop. Using this simple flow model, McDougall et al. 

(McDougall, et al., 2002) identified tumor neovasculature as a biobarrier to 

chemotherapy. Results of their simulations indicated that the highly interconnected nature 

of irregular vasculature produced by tumor-induced angiogenesis could cause low rates 

of drug delivery to the tumor with the potential for drug to actually completely bypass the 

entire mass depending on the tumor shape and consequent pro-angiogenic protein 

distribution. Additionally, the simulation results suggest that drug delivered by bolus 

injection suffers from severe dilution, therefore reducing drug efficacy. 

Stephanou et al. (Stephanou, McDougall, Anderson, & Chaplain, 2005) extended 

the work of McDougall et al. (McDougall, et al., 2002) by developing an algorithm that 

normalizes vasculature produced by Anderson and Chaplain’s angiogenesis model (A. R. 

Anderson & Chaplain, 1998). They examined how pruning vessels by anti-angiogenic 
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drugs might affect blood flow distribution, and consequently drug delivery to tumors. 

Their work included blood flow simulations in fully 3D vasculature. Stephanou and 

coworkers later included vascular adaptation effects (Stephanou, McDougall, Anderson, 

& Chaplain, 2006), due to shear stress generated by flowing blood (Pries, Reglin, & 

Secomb, 2001; Pries & Secomb, 2005), to the angiogenesis model to investigate how 

adaptive remodeling affects oxygen and drug supply to tumors. Alarcon et al. (Alarcon, 

et al., 2003) also modeled the vascular adaptation effects in an effort to study 

inhomogeneity of oxygen distribution in tumors, and consequential role of hypoxic cells 

in tumor invasion. More recently, McDougall et al. (McDougall, Anderson, & Chaplain, 

2006) modified their angiogenesis model to simultaneously couple vessel growth with 

blood flow to dynamically include the effects of vascular adaptation, rather than adapt the 

vasculature a posteriori like Stephanou et al. (Stephanou, et al., 2006) and Alarcon et al. 

(Alarcon, et al., 2003). 
 

 
Pharmacology and Drug Efficacy 

 
In the event that a cancer has metastasized, systemic treatment is generally 

necessary in the form of chemotherapy delivered to the primary and secondary tumors 

through the bloodstream. Drugs must overcome various resistance mechanisms and 

barriers that affect their efficacy en route to their respective targets, thus producing the 

overall MDR phenomenon. Individual mechanisms and barriers occur at different scales: 

1) At the subcellular and cellular scale, there exists a range of drug influx/efflux pumps, 

changes in the expression of topoisomerases, and alterations in metabolic pathways (e.g., 

influencing drug metabolism, DNA repair, and/or apoptosis); 2) At the tumor and body 

scale, resistance can be due to normal clearance mechanisms (e.g., urinary system, 

reticuloendothelial  system,  blood-brain  barrier),  abnormal  tumor  vasculature,  tumor 
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microenvironment, and tumor three-dimensional structure (Jain, 2001a). Consequently, 

these biobarriers impede the delivery of chemotherapeutic drugs at effective 

concentrations to all cancer cells. 

Pharmacokinetics 
 

In the study of drug delivery, it is common to conceptualize the organism as a 

system of interconnected pools called compartments. The investigation of the properties 

of these compartments and the material fluxes between them is termed “compartment 

modeling” (Holz & Fahr, 2001). Conventional pharmacokinetic (PK) models use 

compartment modeling to investigate cellular drug-uptake and intracellular drug 

interactions as well as provide insight into modeling cellular-scale mechanisms 

contributing to drug resistance. For example, a standard 3-compartment model was used 

by Dordal et al. (Dordal, et al., 1995) to investigate cellular drug uptake. Their objective 

was to quantify increased efflux, decreased intracellular sequestration, and decreased 

membrane permeability as they relate to a reduction in drug effectiveness. Using flow 

cytometry, they assessed the cellular uptake of doxorubicin and fluorescent rhodamine- 

123 in drug-resistant and drug-sensitive cancer cells. By fitting the experimental data to 

the compartmental model, kinetic parameters for both inward and outward transport were 

obtained and used to quantify  the relative importance of the previously  mentioned 

cellular mechanisms. Specifically, their results indicate that of the three cellular 

mechanisms modeled, decreased intracellular sequestration in a non-exchangeable 

compartment is quantitatively the most significant contributor towards drug resistance 

(Dordal, et al., 1995). Similarly, compartment modeling can be applied to investigate 

additional components affecting drug delivery such as extracellular drug binding and 

target repair mechanisms. 
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Pharmacodynamics 
 
 

While PK describes drug penetration, pharmacodynamics (PD) describes drug 

cytotoxicity.  Although  the mechanisms  contributing to  drug  effect  are incompletely 

understood, several phenomenological models adequately yield fractional cell survival S 
 
as a function of concentration-time exposure history. The Hill-type model 

 

S = (1+ Axm )−1
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is  often  used, where  x  is  a measure  of  “cellular damage,”  such  as  extracellular or 
 
intracellular area under the curve (AUC). AUC, in turn, is given as the integral of 

concentration with respect to time ≡ Cdt . Another possibility is the exponential kill 

model S = exp(−kx) , where x again is a suitable measure of damage and k is a constant. 
While these are perhaps the simplest PD models in use, other equations can be employed. 

A study by El-Kareh and Secomb investigated several measures of cellular 

damage in conjunction with the Hill-type model given above to determine which 

provided the best fit to experimental data (El-Kareh & Secomb, 2003, 2005). Their 

investigation was prompted by the observation that models employing extracellular AUC 

consistently overestimated cytotoxicity in cases of extended exposure to the drugs, 

cisplatin and doxorubicin. Experimentally, toxicity would achieve a plateau, above which 

continued exposure, even to continually refreshed drug, would have no effect. To explain 

this they hypothesized that it was not the time of exposure per se that correlated with 

cytotoxicity, but rather the peak level of DNA-bound drug (El-Kareh & Secomb, 2003). 

Accordingly, they used this measure and showed that for short exposure times, the delay 

in achieving DNA-bound drug equilibrium could explain increasing cytotoxicity in time. 

Various experimental cell survival data were fit to determine appropriate values for the 

constants A and m. The new model was compared to previous models describing the 

relationship between cytotoxicity and exposure time. El-Kareh and Secomb’s model 

consistently proved to be the best fit even for long exposure in in vitro datasets (Troger, 

Fischel,  Formento,  Gioanni,  &  Milano,  1992)  establishing  that  peak  DNA-bound 
 

cisplatin is a stronger indicator of cytotoxicity than extracellular or intracellular 

concentrations. Later, they extended the model to doxorubicin (El-Kareh & Secomb, 

2005). Experimental evidence suggests that doxorubicin has two cytotoxic mechanisms, 

one involving topoisomerase II inhibition by intracellular drug, and the other involving 
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apoptosis induction via extracellular drug. El-Kareh and Secomb proposed a model that 

combines the effects of both mechanisms into the “cellular damage” by summing peak 

intracellular and extracellular drug concentrations. Like the cisplatin model, their 

doxorubicin pharmacodynamics model provides better fits to in vitro cytotoxicity datasets 

than previous models (El-Kareh & Secomb, 2005). 
 

 
Core Tumor Model Used in Chapter Five 

 
Zheng et al. (X. Zheng, et al., 2005) produced a first-generation multidimensional 

tumor simulator employing a sharp-interface (level-set) finite-element numerical method 

for tracking the tumor boundary. This model is capable of simulating two-dimensional 

tumor evolution through the major phases of growth, including avascular dormancy, neo- 

vascularization and subsequent rapid expansion, and infiltration of host tissue. Wise et al. 

(H. B. Frieboes, Lowengrub, Wise, Zheng, Macklin, Bearer, et al., 2007; Wise, 

Lowengrub, Frieboes, & Cristini, 2008) recently produced a second-generation three- 

dimensional tumor simulator employing a more physically accurate diffuse-interface 

formulation on a finite-difference framework, which can more realistically represent 

tissue interfaces and clonogenic heterogeneity. Both simulators not only serve to model 

tumor progression, but also provide test-beds for therapeutic strategies and hypotheses 

(Cristini, et al., 2005; J. Sinek, Frieboes, Zheng, & Cristini, 2004). 

These models build on the continuum-based approach used by Cristini et al. 
 
(Cristini, et al., 2003), which considers tumor mass as an incompressible and viscous 

 
material that locally expands and contracts in correspondence to variable rates of cell 

mitosis and apoptosis. Tumor cells, themselves, are not individually represented. In 

Zheng et al.’s formulation (X. Zheng, et al., 2005) local lesion environment is modeled 

as three sharply demarcated non-intersecting domains: 1) viable tumor, 2) necrotic tissue, 

and 3) host tissue (see Figure 3.2). Although Wise et al.’s diffuse interface formulation 
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(Wise, et al., 2008) uses a similar partitioning of the lesion environment into tissue 

domains, boundaries are not as strictly defined. Instead, at a given location, intermixing 

of several cancerous clones along with necrotic and host tissue can be represented by 

specifying their relative mass fractions. This cannot be done in the sharp interface model, 

and is a critical improvement towards realistically simulating mutation-driven 

heterogeneity. 
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Figure 3.2: Examples of simulated tumor evolution. 

(A) Byrne and Chaplain’s necrotic tumor model with a specific apoptosis rate (H. M. Byrne & Chaplin,
1996). This model describes the shrinkage of tumor and necrotic rim. (B) Cristini et al.’s nonlinear 
continuum-based boundary-integral model, which was among the first to capture complex tumor 
morphologies (Cristini, et al., 2003). (C) Zheng et al.’s sharp-interface level-set model of tumoral lesion 
(X. Zheng, et al., 2005), which captures complex tumor progression including tumor-induced angiogenesis; 
A  Tumor Boundary, B  Neovasculature, C  Viable Tumor Tissue, D  Necrotic Tumor Tissue, E 

 Host Tissue, and F  “Free” EC migrating from Parent Vessel (not shown). (D) Wise et al.’s diffuse- 
interface model (Wise, et al., 2008), which captures complex  tumor  morphology  and  clonogenic 
heterogeneity in three-dimensions (angiogenesis not shown). 

While it is the growth and regression of lesion tissue that is of primary interest, 

other processes support and interact with this growth, necessitating a modular design in 

which simulator components are dedicated to process management. The major 

components essential to basic lesion simulation are specific to growth and regression, 

nutrient delivery, and angiogenesis. Beyond these, modules pertaining to molecular-scale 

events (e.g., gene regulatory networks, protein-protein signaling), cellular-scale behavior 

(e.g., motility, adhesion, proliferation, apoptosis), and therapy (e.g., surgery, radiation 
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therapy, chemotherapy) need be added to provide pertinent information for expanding the 

temporal and spatial range of simulation, and applicability of the technology to patient- 

specific medicine. The growth and regression component postulates that cell velocity is 

proportional to pressure gradient  (Darcy’s law), which is  commonly used to model 

motion through porous substrates (such as a continuum of cells flowing through the 

extracellular matrix). Morphology, especially as it pertains to invasiveness, is affected by 

parameters that model cell adhesion, for instance through the definition of an equivalent 

surface tension at the tumor boundary (H.P. Greenspan, 1972). Based upon inputs from 

other components, the growth module produces a cell displacement (velocity) field and 

advects the tumor boundary in the case of Zheng et al.’s method (X. Zheng, et al., 2005), 

and the species mass fractions in the case of Wise et al.’s method (Wise, et al., 2008). 

Vasculature is incorporated into these simulators as an angiogenesis module 

inspired by the work of Anderson, Chaplain, Plank, and Sleeman (A. R. Anderson & 

Chaplain, 1998; Plank & Sleeman, 2004), linked to tumor growth through the release of 

tumor angiogenic regulators by necrosing tumor tissue. The transition between avascular 

and vascular tumor growth is marked by the recruitment of microvasculature from local 

blood vessels (i.e., angiogenesis). The governing processes of angiogenesis are still very 

much in debate, but one proposed mechanism (A. R. Anderson & Chaplain, 1998; Plank 

& Sleeman, 2003, 2004) grows new vessels from parent vessels due to chemotaxis of 

endothelial cells along an angiogenic regulator gradient towards the tumor; endothelial 

cells also interact with the extracellular matrix in a process known as haptotaxis. In 

Chapter 7, we develop a general agent-based model for directed cell motility that has 

applications towards modeling the migration of endothelial cells in response to VEGF 

gradients. 

Underlying these components are sophisticated numerical algorithms, including 

adaptive computational meshes (A. Anderson, Zheng, & Cristini, 2005; Cristini, 
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Blawzdziewicz, & Lowenberg, 2001) that enable high-resolution rendering of complex 

tumor morphologies, including fingering, invasion, and reconnection, across multiple 

length scales at the minimum computational expense. 
 

EMPIRICAL CANCER MODELING APPROACHES: MICROARRAY GENE EXPRESSION 
ANALYSIS 

In order to design sophisticated, targeted treatments for cancer, it is critical to 

consider the mechanisms underlying the pathophysiology that enables cancer cells to 

subvert normal physiology and express abnormal phenotypes. Microarray-based gene 

expression profiling has emerged as a powerful tool for simultaneously monitoring 

thousands of gene transcripts, and is being used to study a variety of biomedical problems 

such as cancer at the molecular scale. There are a number of commercially available 

microarray platforms that measure gene expression using similar, but different methods. 
Regardless of the platform chosen by the experimenter, the evaluation of gene expression 

experiments usually involves statistical analysis of the data to reveal co-expressing genes 

and assess differential expression between phenotypes (often the case in comparative 

studies such as disease vs. normal or drug-resistant vs. drug-sensitive tissue). These 

analyses benefit from having a larger number of samples. Thus, there is a strong 

motivation in the community to be able to adequately combine the increasing number of 

large scale gene expression studies in order to increase the statistical power of analyses 

and produce better empirically-driven models. 

Normalizing microarray studies performed by different groups of researchers and 

across different platforms poses a number of statistical difficulties due to the inherent 

systematic errors. These systematic errors are attributed to differences in microarray 

platforms, in the amount of RNA used, processing facilities, technicians, protocol, out- 

dated molecular knowledge used to define probes on the microarray chips, etc. Further 

details regarding statistical issues, variations, and systematic errors inherent of 
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microarray experiments have been comprehensively reviewed (Nadon & Shoemaker, 

2002). Identifying and removing these systematic effects while keeping the biological 

information intact is a research challenge in cross-study micorarray analysis. Various 

research groups have proposed different normalization methods (Barnes, Freudenberg, 

Thompson, Aronow, & Pavlidis, 2005; Bolstad, Irizarry, Astrand, & Speed, 2003; Liang 

& Wang, 2008; Lim, Wang, Lefebvre, & Califano, 2007; Shabalin, Tjelmeland, Fan, 

Perou, & Nobel, 2008; Yang & Chang, 2002) in combination with updated probe 

definitions to achieve this goal (Carter, Eklund, Mecham, Kohane, & Szallasi, 2005; Dai, 

et al., 2005; H. Liu, et al., 2007). Once the normalization process minimizes systematic 

bias in the combined data, a meta-analysis (an analysis conducted using combined sets of 

data) usually proceeds to apply various statistical and data mining techniques to study the 

data. These unsupervised and supervised methods are expected to produce results with 

higher statistical power compared to studies performed with less samples (Figure 3.3). 

 

Figure 3.3: Flow of a typical microarray experiment or meta-analysis of microarray 
studies following acquisition of raw gene expression data, much of which is 
made publicly available. 

Unsupervised Analysis – Exploring Gene Expression Levels to Identify Co- 
Expressing Genes Within and Across Samples 

Unsupervised data analysis methods do not take into account prior knowledge, 
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and are constructed in a manner that they work with data at hand. Typically, a relative 

measure of distance between objects is introduced, which enables the researcher to group 

samples together according to their proximity. The objective of unsupervised gene 

expression microarray analyses is to find genes and samples that express together 

similarly; identifying samples sharing a similar gene expression profile can help to 

classify heterogeneity within cancers having similar organ origins (Belani, 2002; Covell, 

Wallqvist, Rabow, & Thanki, 2003; Mischel, Cloughesy, & Nelson, 2004; Ogino & Goel, 

2008; Perou, et al., 2000; Y. F. Wong, et al., 2003). Moreover, identifying co-expressing 

genes can help elucidate signaling relationships underlying the tissue in question, 

especially if the co-expression is common to a number of samples within a group. Some 
 
commonly used methods for unsupervised gene expression analysis included hierarchical 

clustering (Eisen, Spellman, Brown, & Botstein, 1998), K-means clustering (Lu, Lu, 

Fotouhi, Deng, & Brown, 2004; F. X. Wu, 2008), principal components analysis (PCA) 

(Atkinson, et al., 2007; Barra, 2004; Peterson, 2003), and self organizing maps 

(Fernandez & Balzarini, 2007; Herrero & Dopazo, 2002; Nikkila, et al., 2002; Toronen, 

Kolehmainen, Wong, & Castren, 1999). We direct the reader to reviews for more details 

regarding these methods (Leung & Cavalieri, 2003; Quackenbush, 2001; Sherlock, 2001; 

Valafar, 2002). 
 

Supervised Analysis 
 

Supervised data analysis methods take into account prior knowledge, where the 

samples are labeled according to a differentiating feature (class A vs. class B). These 

methods take advantage of these labels to build empirical models for prediction or 

classification of samples not used to train the models, such as prediction of survival in 

breast cancer patients (van't Veer & Bernards, 2008; van de Vijver, et al., 2002) or 

response to a specific chemotherapy regimen in bladder cancer patients (Takata, et al., 
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2005) based on gene expression. 
 

Identifying Differentially Expressed Genes (Comparative Analysis): Discovery of 
Predictive Gene Signatures and Biomarkers 

 
Comparative analysis of the gene expression between different sample classes 

(cancer vs. normal, drug-sensitive vs. drug-resistant, good survival vs. poor survival) is a 

typical approach used for discovering molecular signatures and biomarkers of predictive 

and prognostic value. A conventional method for identifying differentially expressed 

genes between sample classes is to define a threshold cut-off for differences in expression 

levels,  such  as  two-fold  increases  or  decreases.  While  this  method  is  simple  to 

implement, it is not based on statistical significance of changes. It is sensitive to noise in 

the data as well as limits analyses by passing on gene expressions with subtle differences. 

The standard for comparative microarray analysis is based on statistical 

calculations using replicate array data. Genes are ranked according to their possibility of 

expressing differently between multiple sample classes. Replication is achieved by 

performing microarray experiments on several samples of the same class, for example 

one tissue type obtained from multiple patients compared to another tissue type also 

obtained from multiple patients. This is particularly important for expression profiling of 

disease tissues in order to account for gene expression heterogeneity of the disease type 

within the patient population, thus any one particular sample may not be representative of 

the population. Statistical hypothesis tests such as the Student’s T-test, ANOVA, 

Bayesian analysis, or the Mann-Whitney test are used to rank the genes according to p- 

values (Leung & Cavalieri, 2003), and thus elucidate which genes are differentially 

expressed between sample classes with statistical significance. Setting a standard for 

statistical significance must take into account the possibility of identifying false positives 

and false negatives, therefore setting a conventional p-value cut off of 0.05 may not be 

appropriate for microarray experiments capable of generating gene expression data for 
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the full human genome (~25,000 genes). Instead, a multiple hypothesis correction, such 

as the Bonferroni correction, can help determine an appropriate cut-off p-value based on 

the number of hypotheses (the number of genes being compared in the case of microarray 

gene expression analysis). An alternative method, and has become a standard in 

differential gene expression analysis, is implemented in the software package called 

Statistical Analysis of Microarrays (SAM) (Tusher, Tibshirani, & Chu, 2001); a modified 

Student’s T-test is used to rank the statistical significance of differential gene expression 

between sample classes, and also performs permutations on the data to derive a false 
discovery rate (FDR), or the expected frequency of identifying false positives. This 

feature allows researchers to use FDR as a cut-off for determining differentially- 

expressed genes, which can then be validated experimentally using quantitative real-time 

polymerase chain reaction (Q-RT-PCR) or northern blots (Leung & Cavalieri, 2003). 
 

Classifier Prediction Methods 
 

Another form of supervised gene expression analysis is to train a classifier 

algorithm on a pre-defined sample groups, and use the classifier to assign new samples. 

Gene signatures identified by differential gene expression analysis can also serve this 

purpose. This type of analysis is taking advantage of data mining and machine learning 

methods that are receiving attention in many other disciplines including the use of 

decision tree methods (Edgerton, et al., 2007; Pirooznia, Yang, Yang, & Deng, 2008; A. 

C. Tan & Gilbert, 2003), artificial neural networks (Bicciato, Pandin, Didone, & Di 

Bello, 2003; J. Huang, Shimizu, & Shioya, 2003; Petalidis, et al., 2008), and support 

vector machines (Y. Liu, 2004; Statnikov, Aliferis, Tsamardinos, Hardin, & Levy, 2005). 

The challenge is to avoid “over-fitting” that model, which is where the model is accurate 

in predicting the data it was trained upon, but not in predicting new samples. Developing 

these types of predictive models usually follows a protocol of defining training and 

testing sets, where the testing sets are used to assess the prediction error of the trained 
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model. When the number of samples is limited, as is usually the case with gene 

expression microarray data (thus the motivation to combine microarray studies), cross- 

validation methods are used to permute the data to create multiple sets of training and test 

sets (Goutte, 1997; Zhu & Rohwer, 1996). These empirically-driven models are expected 

to make an impact in the future of clinical diagnostics and can also help reveal the 

molecular mechanisms underlying diseased phenotypes. 

 
MODELING INTRACELLULAR PATHWAYS DRIVING TUMOR PHENOTYPES 

 
The behavior of cells is governed by the state of their internal signals, much like 

the behavior of an airplane or motor vehicle is dependent upon the state of its parts and 

how they are interacting with each other. We are entering a new age of cancer medicine, 

where the sophisticated therapeutic approaches must consider the molecular signaling 

networks that cause cancer cells to behave abnormally. For this reason, reconstruction 

and analysis of the molecular determinants driving normal and aberrant cellular 

phenotypes is an active field of biological research, and has implications for drug target 

discovery. In the framework of a multi-scale cancer model, a description of molecular 

scale interactions and how they affect cellular behaviors (e.g., cell motility, cell-cell 

interactions, cell-matrix interactions, drug sensitivity) is a critical link to develop. 

Cell signaling networks are complex in their organization because individual 

elements are highly interconnected and tend to regulate a multitude of cell functions. 

Because of the size and complexity of the number of interacting elements in pathways 

regulating cell behavior, it has become necessary to develop mathematical models to help 

elucidate the system behavior of signaling networks in order to predict emergent 

properties that can be validated through experimentation. Modeling signaling networks is 

expected to augment our understanding of pathways by 1) yielding insight into how 

individual pathways  function  within  the context  of other pathways, 2) enabling the 
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estimation of biochemical parameters that are not yet possible to probe experimentally, 

and 3) simulating system dynamics to help reveal how and why cells behave the way that 

they do, thus exposing potential strategies to treat diseases such as cancer (Bhalla & 

Iyengar, 1999; Eungdamrong & Iyengar, 2004b; Neves & Iyengar, 2002; Ruths, Nakhleh, 

Iyengar, Reddy, & Ram, 2006). 

In developing models of molecular signaling pathways, the first step is to define 

the system architecture, or the “connection map”, that describe the relevant molecular 

determinants and how they interact with one another. Because cellular regulation is 

achieved through the dynamic interaction between the many components identified in the 

“connection map,” the subsequent step is to apply a modeling framework, typically using 

mass-action kinetics (W. W. Chen, et al., 2009; A. E. DeWitt, Dong, Wiley, & 

Lauffenburger, 2001; Kholodenko, Demin, Moehren, & Hoek, 1999; Wiley, Shvartsman, 

& Lauffenburger, 2003), compartmental modeling (Holz & Fahr, 2001), or diffusion- 

reaction equations (Rangamani & Iyengar, 2007), to simulate pathway dynamics, where 

some (if not all) of the system parameters can be constrained through experiments or 

rational estimation based on evidence in the literature. In Chapter 6, we present a research 

study where we use bioinformatics and data mining techniques to postulate signaling 

relationships underlying a breast cancer subset, and in Chapter 7, we develop a prototype 

agent-based model for predicting cellular scale phenotypes from underlying signaling, 

and to serve as a link between the molecular scale and cellular scale in our research 

laboratory’s multi-scale cancer modeling framework. 
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Reconstruction of Signaling Maps 
 

Reconstruction of intracellular signaling networks enables a molecular systems- 

level understanding of network function that is critical for studying complex diseases like 

cancer (Eungdamrong & Iyengar, 2004b). A reconstructed network is inferred from 

experimental data and gives an accurate representation of the biochemical events 

occurring within a signaling network. This signaling connectivity map provides the 

architecture for applying mathematical methods to quantitatively analyze the signaling 

network  properties  (Papin,  Hunter,  Palsson,  &  Subramaniam,  2005),  and  is  already 

helping link the molecular and cellular scales in multi-scale agent-based cancer models 

(C. Athale, Mansury, & Deisboeck, 2005; Deisboeck, Zhang, Yoon, & Costa, 2009; 

Kharait, et al., 2007; Z. Wang, Zhang, Sagotsky, & Deisboeck, 2007; Zhang, Athale, & 

Deisboeck, 2007; Zhang, et al., 2009). 

The advance of gene expression microarray technology, generation of large-scale 

sets of data, and improvements in normalization methods and bioinformatics analysis 

algorithms has lead to gene expression profile data serving as a major data source for 

reverse engineering cellular networks because signaling events such as protein-protein 

interactions and protein-DNA interactions can be inferred from the statistical 

dependencies between gene expression profiles (Basso, et al., 2005; Lim, et al., 2007). 

The primary drawback for network reconstruction based on gene expression profiles is 

the lack of enough samples to provide and inherent noise in the data. This serves as 

further motivation to combine microarray studies and improve normalization protocols 

that minimize persisting systematic noise in the data (see above for discussion of these 

topics). Various techniques applied to gene expression data in attempts to extract 

underlying signaling knowledge, such as Boolean networks (Akutsu, Miyano, & Kuhara, 

1999; Yu, Watterson, Marshall, & Ghazal, 2008), differential equations (Finkenstadt, et 
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al., 2008), Bayesian networks (Broom, Rinsurongkawong, Pusztai, & Do, in preparation; 

Markowetz & Spang, 2007), and supervised machine learning approaches (Edgerton, et 

al., 2007; Fisher D, Edgerton M, Tang L, Frey L, & Chen Z, 2005; Fisher DH, Edgerton 

ME, Chen Z, Tang L, & Frey LJ, 2006; Frey, Edgerton, Fisher, Tang, & Chen, 2005; 

Soinov, 2003; Soinov, Krestyaninova, & Brazma, 2003). In experiments where gene 

expression is profiled in time-series, these methods can be used to infer input-output 

relationships,  or  causality.  Static  data,  on  the  other  hand,  like  much  of  the  gene 

expression publicly available on human cancers can be used to postulate interactions that 
can later be tested experimentally. Resolving gene network interactions from static gene 

expression data is well-suited for machine learning techniques and Bayesian network 

methods, thus we use them as part of the approach we take in Chapter 6 to infer signaling 

relationships underlying a breast cancer subset. 
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Chapter 4: Predictive Oncology: A Review of Multi-disciplinary, Multi- 
scale In Silico Modeling Linking Phenotype, Morphology and Growth 

 
PREFACE 

 
The objective of predictive oncology is to promote cancer prognosis and treatment 

by advancing our understanding of the molecular biology underlying cancer phenotypes, 

prognostic evaluation of tumor development and progression, and predicting tumor 

response to therapy on a patient-specific basis. This chapter is based on a published 

article, which was a collaborative effort between Sandeep Sanga, Dr. Hermann B. 

Frieboes, Dr. Xiaoming Zheng, Dr. Robert Gatenby, Dr. Elaine L. Bearer, and  Dr. 

Vittorio Cristini. Sanga took the lead role in preparing the manuscript. Frieboes and 

Zheng assisted in the manuscript’s preparation. The multi-scale modeling framework 

presented in this manuscript is the core philosophy of our research group under the 

supervision of Cristini with collaborators Gatenby and Bearer, as well as others, and is a 

unifying theme of the research presented in this dissertation. 
 

 
Note: This chapter is based on an article originally published as (Sanga, Frieboes, Zheng, 
et al., 2007) in NeuroImage, which can be accessed at 
http://dx.doi.org/10.1016/j.neuroimage.2007.05.043. This article has been included in this 
dissertation with permission from Elsevier. 

 
 

ABSTRACT 
 

Empirical evidence and theoretical studies suggest that the phenotype, i.e., 

cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due 

to microenvironmental factors and gene expression that govern tumor growth and 

invasiveness, also determine gross tumor-scale morphology. It has been difficult to 

quantify the relative effect of these links on disease progression and prognosis using 

conventional clinical and experimental methods and observables. As a result, successful 

individualized treatment of highly malignant and invasive cancers, such as glioblastoma, 
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via surgical resection and chemotherapy cannot be offered and outcomes are generally 

poor. What is needed is a deterministic, quantifiable method to enable understanding of 

the connections between phenotype and tumor morphology. Here in this chapter, we 

critically assess advantages and disadvantages of recent computational modeling efforts 

(e.g., continuum, discrete, and cellular automata models) that have pursued this 

understanding. Based on this assessment, we review a multi-scale, i.e., from the 

molecular to the gross tumor scale, mathematical and computational “first-principle” 

approach based on mass conservation and other physical laws, such as employed in 

reaction-diffusion systems. Model  variables describe known characteristics  of tumor 

behavior, and parameters and functional relationships across scales are informed from in 

vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, 

once coupled to tumor imaging and tumor biopsy or cell culture data, should enable 

prediction of tumor growth and therapy outcome through quantification of the relation 

between the underlying dynamics and morphological characteristics. In particular, 

morphologic stability analysis of this mathematical model reveals that tumor cell 

patterning at the tumor-host interface is regulated by cell proliferation, adhesion and 

other phenotypic characteristics: histopathology information of tumor boundary can be 

inputted to the mathematical model and used as a phenotype-diagnostic tool to predict 

collective and individual tumor cell invasion of surrounding tissue. This approach further 

provides a means to deterministically test effects of novel and hypothetical therapy 

strategies on tumor behavior. 
 

 
THE ROLE OF PREDICTIVE SCIENTIFIC COMPUTATION AS “IN SILICO” CANCER 

MODELING 

 

 



55  

Cancer Progression and Invasion: Current Understanding 
 

A wealth of empirical evidence links disease progression with tumor morphology, 

invasion, and associated molecular phenomena. However, not only is there a lack of 

quantitative understanding of the underlying physiological processes driving tumor-scale 

behavior, in particular, morphology at the tumor-host interface, but the qualitative 

explanations themselves may be indecisive or inconsistent. For example, a positive 

correlation of cell adhesion molecules (integrins) and cancer cell migration was observed 

in glioma cells (Tysnes, et al., 1996), yet integrins can also serve as negative effectors 

that impede invasion and progression (Zutter, Santoro, Staatz, & Tsung, 1995). Similarly, 

conflicting data on the function of proteases in tumor invasion and metastasis (Friedl & 

Wolf, 2003) is illustrated by variable results from clinical trials of potential anti-invasive 

therapies (Lah, Alonso, & Van Noorden, 2006). While the primary role of angiogenesis 

in promoting tumor growth and invasion has been well demonstrated, the results of 

clinical trials using various drugs to suppress neovascularization have yielded mixed 

results. Despite encouraging signs of tumor regression following anti-angiogenic therapy, 

in some cases length of survival remains the same (Bernsen & Van der Kogel, 1999; 

Bloemendal, Logtenberg, & Voest, 1999; Kuiper, Schellens, Blijham, Beijnen, & Voest, 

1998). In addition, experimental observations indicate that anti-angiogenic treatments 

may exacerbate hypoxia (Steeg, 2003a), and paradoxically promote tumor fragmentation, 

cancer cell migration, and host tissue invasion (Bello, et al., 2004; Kunkel, et al., 2001b; 

Lamszus, Kunkel, & Westphal, 2003; Page, Anderson, & Sakamoto, 1987; Seftor, et al., 

2002). 
 

 
Links Between Cellular- and Tumor-scale 

 
In spite of abundant experimental and clinical data surrounding molecular and 

cellular phenomena, it is difficult to quantify their aggregate effect on gross tumor-scale 
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behavior using conventional methods that, for the most part, investigate isolated 

mechanisms. Prognosis of cancer patients suffering from highly invasive tumors, such as 

glioblastoma, is grim despite advances in surgical and chemotherapeutic treatment, since 

not all tumor cells can be removed or treated because of limited delineation between 

healthy and tumor tissue at the tumor border, which may lead to fatal recurrences (A. R. 

Kansal, S. Torquato, I. G. Harsh, E. A. Chiocca, & T. S. Deisboeck, 2000b). In particular, 

mechanisms governing glioma invasion likely include intrinsic properties of cell 

proliferation, migration, and adhesion. Glioma cells have been experimentally shown to 

infiltrate and scatter throughout the entire central nervous system after a period of only 

seven days post-implantation (Chicoine  & Silbergeld, 1995; Silbergeld & Chicoine, 

1997; Swanson, Alvord, & Murray, 2000). This might be one reason why current 

treatments that focus on surgery, radiation, and chemotherapy, while perhaps having an 

effect on primary bulk mass characteristics, may fail to extend survival time. 

A Novel, In Silico Approach to Cancer Modeling 
 

In this chapter we describe a multidisciplinary method integrating mathematical 

models with experimental (in vitro and in vivo) and clinical data. This methodology 

reflects an “engineering” approach that views tumor lesions as complex micro-structured 

materials, where three-dimensional tissue architecture (“morphology”) and dynamics are 

coupled in intricate, complex ways to cell phenotype, which in turn is influenced by 

factors in the microenvironment. Cellular and microenvironmental factors act both as 

tumor morphology regulators and as determinants of invasion potential by controlling the 

mechanisms of cancer cell proliferation and migration (Friedl & Wolf, 2003; Sierra, 

2005; van Kempen, Ruiter, van Muijen, & Coussens, 2003). In particular, recent 

experimental results demonstrate that interactions between cellular  proliferation, 

adhesion, and other phenotypic properties are reflected in both tumor-host interface 
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morphology and invasive characteristics of tumors (Bello, et al., 2004; Bernsen & Van 

der Kogel, 1999; Bloemendal, et al., 1999; Friedl & Wolf, 2003; Kuiper, et al., 1998; 

Kunkel, et al., 2001b; Lah, et al., 2006; Lamszus, et al., 2003; Page, et al., 1987; Seftor, 

et al., 2002; Steeg, 2003a; Tysnes, et al., 1996; Zutter, et al., 1995). The goal is then to 

create computational (in silico) multi-scale tools capable of predicting the complexity of 

cancer at multiple temporal and spatial resolutions, with the aim of supplementing 

diagnosis and treatment by helping plan more focused and effective therapy via surgical 

resection, standard chemotherapy, novel treatments (e.g., angiogenic, anti-invasive), or 

some combination of them. The tools would quantitatively examine the effect of tumor 

morphology regulators, which include tissue rigidity, density, adhesiveness, 

microenvironment gradients (e.g., oxygen, nutrient, growth factors), and the 

combinatorial effects of oncogenes (controlling cell proliferation, motility, and nutrient 

consumption) and tumor suppressor genes (controlling cell apoptosis and motility) on 

gross morphology. They would also define the degree of diffuse invasion of tumor cells 

peripheral to the tumor mass that may be beyond the detection of current non-invasive 

medical imaging techniques (Swanson, et al., 2000), or extrapolate tumor invasiveness 

and metastatic potential from its morphology in fixed tissue. In silico model development 

is built upon continuum, discrete, and in particular cellular automata models (Adam, 

1996; Araujo & McElwain, 2004; Ayati, Webb, & Anderson, 2006; Bellomo & Preziosi, 

2000; Boushaba, Levine, & Nilsen-Hamilton, 2006; Bru, Albertos, Subiza, Garcia- 

Asenjo, & Bru, 2003; H. M. Byrne, Alarcon, Owen, Webb, & Maini, 2006; Castro, 

Molina-Paris, & Deisboeck, 2005; M. A. Chaplain & Anderson, 2003; M. A. J. Chaplain 

& Lolas, 2005; H.B. Frieboes, Sinek, Nalcioglu, Fruehauf, & Cristini, 2006; A. 

Friedman, 2004; Garner, et al., 2005; Hatzikirou, Deutsch, Schaller, Simon, & Swanson, 

2005; Hogea, Murray, & Sethian, 2006; Jackson, 2004; Khain & Sander, 2006; Khain, 

Sander, & Stein, 2005; Macklin & Lowengrub, 2007a, 2007b; Nagy, 2005; Painter, 
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Maini, & Othmer, 2000; Quaranta, Weaver, Cummings, & Anderson, 2005; Sander & 

Deisboeck, 2002; Sanga, Frieboes, Sinek, & Cristini, 2007; Sanga, et al., 2006; Stein, 

Demuth, Mobley, Berens, & Sander, 2007; Swanson, Bridge, Murray, & Alvord, 2003). 
 

 
Incorporation of Patient Data: Predictive Modeling 

 
Multi-scale modeling quantifies the time- and space-dependent physics and 

chemistry (e.g., diffusion of substrates, mechanical forces exchanged among cells and 

with the matrix, molecular transport, receptor-ligand interactions, pharmacokinetics 

determinants) underlying tumor biological behavior. We envision that future simulators, 

building on the developments described herein, will operate as described in Figure 4.1. 

Initial  conditions  regarding  tumor  physical  location,  structure,  and  vasculature  are 

obtained from patient data, such as contrast-enhanced MRI (magnetic resonance imaging) 

(a full discussion of these technologies is beyond the scope of this paper; please see 

(Clatz, et al., 2004; Clatz, et al., 2005)), possibly coupled with CT (computed 

tomography) (Roberts, Roberts, Lee, & Dillon, 2002; Xie, et al., 2004). Image 

information would be translated using a computer program to the coordinate system of 

the multi-scale model, e.g., a finite-element computational mesh discretizing the space 

occupied by a tumor and surrounding host tissue (A. R. A. Anderson, 2005; Cristini, et 

al., 2001; Y. C. Tan, Fisher, Lee, Cristini, & Lee, 2004; X. Zheng, et al., 2005; X. M. 

Zheng, Lowengrub, Anderson, & Cristini, 2005). Cell-scale model input parameters are 

obtained from histopathology, including information about viable regions and cell density 

therein, necrosis, microvasculature, and other details (Bearer, et al., 2009; H. B. Frieboes, 

Lowengrub, Wise, Zheng, Macklin, Elaine, et al., 2007). The computer model then 

calculates local tumor growth, angiogenesis, and response to treatment under various 

conditions (H. Frieboes, Wise, Lowengrub, & Cristini, in press; H. B. Frieboes, 

Lowengrub, Wise, Zheng, Macklin, Elaine, et al., 2007; Wise, et al., 2008; X. Zheng, et 
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al., 2005) by solving in time and space conservation (e.g., diffusion equation) and other 

laws at the tissue scale. These laws are linked to the cell molecular biology by functional 

relationships and parameters informed by the biopsy data. Computational solutions are 

obtained using finite elements and other numerical techniques (e.g., (H. Frieboes, et al., 

in press; H. B. Frieboes, Lowengrub, Wise, Zheng, Macklin, Elaine, et al., 2007; X. 

Zheng, et al., 2005)). Additional patient data obtained from tissue culture, gene arrays, 

proteomic profiling, and other means would sharpen these parameter estimations (H. B. 

Frieboes, et al., 2006) in order to enable accurate prediction of behavior. Further details 

on the parameter estimation procedure are described below and in references cited. 
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Figure 4.1: Patient data can be inputted into an in silico model of cancer. 
The red line encloses sample in silico representations of tumor morphology. Tumor morphology at a given 
time is inputted from 3-D voxel fusion of CT and MR data (A) (reprinted with permission from Xie et al. 
(c) 2004 IEEE) that is translated (using a computer program) into the in silico coordinate system (B) (in 
this example, an unstructured adaptive mesh by Cristini et al., 2001) to build a tumor representation in 
virtual computational space (C). Spatial information of viable cell regions and microvasculature structure 
is obtained from histopathology (D) (reprinted from NeuroImage, Frieboes et al. (2007), Copyright 2007, 
with permission from Elsevier; bar, 200 ∝m). Vasculature specific information is defined from 
dynamic contrast enhanced CT (E), yielding parameters such as blood volume (left), blood flow  
(middle), and microvascular permeability (right) (reprinted with permission from Roberts et al., 2002). 
Other input data to the model include cell-scale parameters such as proliferation rates obtained, for 
example, from in vitro cultures. The model then predicts (F) tumor growth (viable cells: light gray;  
necrosis: darker gray), angiogenesis (red: mature; blue: immature capillaries), invasiveness, and  
response to treatment for this patient by solving time- and space-dependent conservation of mass and
momentum and other physical laws (reprinted from NeuroImage, Frieboes et al. (2007), Copyright 2007, 
with permission from Elsevier). These laws contain parameters that characterize the phenotypes and are  
linked to the underlying molecular biology by functional mathematical  relationships  founded  on   
these  and  other  experimental  data. Incorporation of models of this biology (e.g., evolution of 
genotype, cell signaling pathways) guarantees that the in silico predictions of tumor behavior are realistic 
and accurate. Computational solutions of this multi-scale model are obtained using finite elements and 
other numerical techniques. 



61  

 
 
MULTI-SCALE MODELING AND SIMULATION OF TUMOR MORPHOLOGY AND INVASION 

 

 
 
Model Development Goals and Choices 

 
The progression of tumor lesions cannot be completely characterized by studying 

effects in isolated cells since it is known that the forces and mechanisms regulating the 

motion of individual cells converge and synchronize into the collective, organized, 

structural motion of a whole body or cluster of cells (“Functional Collective Cell- 

Migration Units,” FCCMU) that often precedes the onset of epithelial-mesenchymal and 

other phenotypic transitions leading to individual cell shedding from a tumor and 

eventually to metastasis (Friedl & Wolf, 2003). Both individual and collective migration 

modes are regulated (and complicated) by multifaceted interactions among tumor cells, 

stroma and tumor microenvironment (Sierra, 2005; van Kempen, et al., 2003). 

While “discrete” in silico models (A. R. A. Anderson, 2005; Dickinson & 

Tranquillo, 1993; Dimilla, Barbee, & Lauffenburger, 1991; dos Reis, Mombach, Walter, 

& de Avila, 2003; Ferreira, Martins, & Vilela, 2002; A. R. Kansal, S. Torquato, G. I. 

Harsh, E. A. Chiocca, & T. S. Deisboeck, 2000a; Kansal, et al., 2000b; Leyrat, Duperray, 

& Verdier, 2003; Patel, Gawlinski, Lemieux, & Gatenby, 2001; S. Turner & Sherratt, 

2002) are able to capture individual cell migration and easily incorporate biological rules, 

such as cell-cell & cell-medium interactions and motion due to chemotaxis and 

haptotaxis, they are limited to relatively small numbers of cells due to computational 

cost, among the other deficiencies and over-simplifications introduced by the discrete 

approach. In contrast, “continuum” models (Bellomo & Preziosi, 2000; H. Byrne & 

Preziosi, 2003; H. M. Byrne, et al., 2006; H. M. Byrne & Chaplain, 1995; H. M. Byrne & 

Chaplain, 1996, 1997; H. M. Byrne & Chaplin, 1996; Cristini, et al., 2005; Cristini, et al., 

2003; H. B. Frieboes, et al., 2006; X. R. Li, Cristini, Nie, & Lowengrub, 2007; Macklin 



62  

 
 
& Lowengrub, 2005, 2007b), describing tissue matter as a continuum medium rather that 

discrete individual cells, capture the collective motion of FCCMUs with less 

computational expense. 

The fact that collective migration is often associated with relatively higher 

degrees of cell differentiation (Friedl & Wolf, 2003) than for the case of single-cell 

migration suggests that molecular mechanisms are relatively more robust across a tumor 

cell population. Thus, the multitude of cells can be averaged out and re-described as a 

single multi-cellular FCCMU unit obeying deterministic dynamics laws, while still 

employing mathematical models of single-cell migration when needed, e.g., to describe 

epithelial-mesenchymal transitions (Friedl & Wolf, 2003). Moreover, the domain size of 

realistic discrete simulations is limited to sub-millimeter-size in vitro tumor spheroids or 

in vivo patches of tumor tissue. We propose that discrete models of cell proliferation and 

migration should be coupled to continuum  models of FCCMU to extend the 

computational capability to realistic, cm-size three-dimensional tumor lesions as defined 

and described in the following. A hybrid, multi-scale modeling methodology (Bearer, et 

al., 2009) that links continuum (i.e., tissue-scale) with discrete (i.e., cellular-scale) 

formulations with appropriate functional relationships of cell adhesion and migration due 

to environmental conditions should provide, over the next decade, a more comprehensive 

understanding of the molecular basis of diversity and adaptation of cell migration, thus 

more efficiently and accurately predicting invasion potential from real-time tumor 

morphology. 

This approach has the advantage that well-established engineering methods and 

analyses of morphology can be applied (e.g., based on continuum methods when 

possible). Experimental measurements, computer simulations and morphologic stability 

analyses can be used to study, in detail, microenvironment transport processes (e.g., of 
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oxygen, nutrients, chemokines, growth factors), cell motion and proliferation, signaling 

pathways and molecular phenomena regulating cell cycling, cell-cell communications 

and expression of cell adhesion molecules and matrix degrading enzymes. For example, 

the link between hypoxic gradients and invasion, and between normoxic conditions and 

compact non-infiltrative tumor morphologies, can thus be explained “by exploiting the 

ability of mathematics to model physical and biological systems in ways that enable 

prediction and control” (quoting John Lowengrub, Chair, Mathematics, UC Irvine). 
 

 
Significance of In Silico Modeling: A Novel Hypothesis-Generation Tool 

 
The computational models reviewed in this paper represent important steps in 

generating hypotheses that postulate functional relationships linking the effect of 

molecular/cellular changes to tumor-scale morphology and invasiveness. By directly 

solving the mathematical equations describing underlying physical and chemical 

processes occurring within tumors, the complex biology of tumor behavior and the often 

hidden mechanisms of growth and invasion automatically are unveiled and can be 

accurately quantified in virtual, in silico simulation space. Examples of novel hypotheses 

generated from simulations studies and tested in experiments will be provided in the 

following. Although these types of models are not multi-scale per se, parameters 

characterizing cell response to substrate concentration can be interpreted as representing 

underlying biochemistry and molecular biology driving tumor-scale dynamics, 

specifically an invasive phenotype. However, modeling of tumor behavior and cell 

microenvironment remains a challenge. Existing mathematical models are only capable, 

in general, of recapitulating a posteriori the highly variable empirical observations of 

morphology, once appropriate phenomenological parameters that do not  incorporate 

direct molecular-scale description have been “fitted” to the experiments. 
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Here we propose that the next decade of investigation should focus on the task of 

developing predictive multi-scale models (e.g., see Figure 4.2) that incorporate new, 

functional relationships among macro-scale parameters characterizing differences in, and 

transitions among, cellular patterns, and variations in the molecular repertoire used by 

tumor cells to regulate proliferation, adhesion and other phenotypic properties. 
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Figure 4.2: Main component modules of a sample predictive model based on first 
principles (e.g., conservation laws of mass and momentum) linking 
cellular/molecular scale processes to tumor growth and morphology,
assuming a tumor with two clones for simplicity. 

Each component (Vasculature, Tumor, Genotype) lists biological processes that are implemented through a 
set of equations (e.g., the diffusion-reaction equation determining the local concentration n of a cell 
substrate within the tumor), as well as suggested experiments for validation of these functional 
relationships. Additional biological processes, clones, and properties of the stroma can be incorporated by
augmenting the number of variables and equations. Functional relationships to be determined 
experimentally describe mathematically the dependence of the listed phenotypic parameters (e.g., cell 
proliferation rates λM) on the array  Μ that contains genetic information. Note that several of  these 
parameters are phenomenological, i.e., they do not correspond to direct measurables (e.g., the “strengths” α 
of haptotaxis and chemotaxis, which are related to the expression of integrins and the mechanical forces 
exchanged with molecules in the ECM). Data obtained from in vitro experiments, in vivo / ex vivo models, 
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and clinically (e.g., tumor size, morphology) is thus input to the various modules. This data will also help 
refine the model’s functional relationships through an iterative exercise of multidisciplinary research that 
will progressively lead, over the next decade, to less phenomenological and more “exact” models, in which 
the parameters are directly measurable in experiments. For further mathematical details and definitions of 
variables and parameters, and for demonstrations of a “prototype” in silico model see Frieboes et al. (2009) 
and references therein. 

 
This methodology is expected to improve current modeling efforts because a 

multi-scale approach connects previous work focused on specific scales (e.g., molecular) 

and processes (e.g., gene transformation), affording the possibility to go beyond the 

current reductionist picture of tumor invasion and migration (J. Condeelis, et al., 2005; 

Elvin & Garner, 2005; Friedl, 2004; Friedl, Hegerfeldt, & Tilisch, 2004; Friedl & Wolf, 

2003; Jones, Byrne, Gibson, & Dold, 2000; Keller, Pampaloni, & Stelzer, 2006; 

Kopfstein & Christofori, 2006; Ridley, et al., 2003; Sahai, 2005; Sierra, 2005; van 

Kempen, et al., 2003; K. Wolf & Friedl, 2006; Yamaguchi, Wyckoff, & Condeelis, 2005) 

by providing a platform to study cancer as a system. Next, we describe biologically 

founded, in silico modeling efforts of tumor progression relying on known characteristics 

of tumor behavior to predict the combination of variables most likely driving progression 

towards invasiveness. 

This effort builds on an approach (e.g., (Cristini, et al., 2005; Cristini, et al., 2003; 

H. B. Frieboes, et al., 2006; X. R. Li, et al., 2007; X. Zheng, et al., 2005)) that includes 

reformulations and generalizations of mathematical models (Adam, 1996; Ambrosi & 

Preziosi, 2002; D. M. Anderson, McFadden, & Wheeler, 1998; Bellomo & Preziosi, 

2000; H. Byrne & Preziosi, 2003; H. M. Byrne & Chaplain, 1996; H. M. Byrne & 

Chaplin, 1996; M. A. Chaplain & Anderson, 2003; M. A. J. Chaplain, Graziano, & 

Preziosi, 2006; Garcke, Nestler, & Stinner, 2004; H. P. Greenspan, 1976; Jackson & 

Byrne, 2002; Jacqmin, 1999; Lee, Lowengrub, & Goodman, 2002; Leo, Lowengrub, & 

Jou, 1998; Lowengrub & Truskinovsky, 1998; Macklin & Lowengrub, 2005, 2007b), 

solved numerically using state-of-the-art algorithms and techniques (Berger & Colella, 
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1989; Brandt, 1977; Cristini, et al., 2001; J. Kim, Kang, & Lowengrub, 2004; Wise, et 

al., 2008; Wise, Lowengrub, Kim, & Johnson, 2004; Wise, et al., 2005; X. M. Zheng, et 

al., 2005). Figure 4.2 describes the main component modules (Vasculature, Tumor, and 

Genotype) of this model along with equations that represent mathematically the relevant 

biological parameters. 
 

 
Determination of Functional Relationships and Parameter Values 

 
The specific process of multi-scale model “training” relies on conducting 

experiments (Figure 4.2) in which molecular factors are measured in the cell and the 

environment, and outcome of tumor growth (e.g., morphology, shape, extent of 

vascularization and invasion) is correlated with expression of these factors. This data 

allows estimation of the mathematical model parameters and functional relationships by 

perturbing these parameters and comparing the resulting simulation predictions of 

morphology against direct measurements, thus leading, through an iterative process that 

reveals deficiencies in modeling choices and triggers refinements in the relationships 

introduced, to a validated mathematical model with calibrated constitutive parameters. By 

virtue of its predictive power, this approach (Bearer, et al., 2009) can help plan new 

experiments by identifying parameter regimes of noteworthy behavior–regimes  that 

might otherwise be time-consuming and costly to discover by systematic 

experimentation. 

Theoretical (e.g., (H. B. Frieboes, et al., 2006)) and experimental work (e.g., 

(Chomyak & Sidorenko, 2001; H. B. Frieboes, et al., 2006; J. B. Kim, 2005; Mueller- 

Klieser, 2000) and references therein) can be used to develop and test functional 

relationships, and to estimate the microphysical parameter values of a multi-scale in 

silico model. Examples (Bearer, et al., 2009) of these functional relationships include 
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those between expression of membrane transport proteins (e.g., glucose transporter-1 and 

Na/H exchanger) and hypoxia/proliferation; between extracellular matrix 

macromolecules (e.g. tubulin, actin), haptotaxis and chemotaxis; and between cell-cell 

adhesion parameters as an increasing function of oxygenation, e.g., from recent 

measurements by Robert Gatenby (personal communication) showing a gradient of cell- 

adhesion molecules (E-cadherins) opposed to hypoxia. 

In vivo animal models (e.g., dorsal wound chamber by (H. B. Frieboes, et al., 

2006)) can supply detailed measurements of angiogenesis and blood flow, which provide 

additional constraints to the in silico model to determine parameter values associated with 

a developing neovasculature. Computational models of angiogenesis (H. A. Levine, et 

al., 2002; McDougall, et al., 2006; Plank & Sleeman, 2003, 2004; Stephanou, et al., 

2005; Sun, et al., 2005) (Figure 4.2) can account for endothelial cell chemotactic and 

haptotactic movement, proliferation, development and remodeling of capillaries and the 

flow of blood through the local pressure and other constraints. Under in vivo conditions, 

additional measurements  can be performed to  determine pH and pO2 gradients that 

provide further functional constraints on the parameters relating to proliferation and 

cellular adaptation to hypoxia (Bearer, et al., 2009). Finally, in vivo measurements of 

matrix degradation at the tumor-host boundary due to acidosis and proteases can provide 

parameter values for the invasion component of the in silico model (Bearer, et al., 2009). 
 

 
COMPUTATIONAL MODELING: A FRAMEWORK FOR LINKING PHENOTYPE, 

MORPHOLOGY, AND CANCER INVASION 

Extensive mathematical modeling has produced preliminary quantifications of the 

links between invasive, malignant cell phenotypes and tumor-scale morphologies. These 

involve cell-cell and cell-extracellular matrix (ECM) interactions, cell motility, micro 
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vessel density and acidosis, and local concentration of cell substrates (Mareel & Leroy, 

2003). We illustrate representative discrete models in each of these areas. We then review 

recent mathematical and computational studies of a continuum FCMU model developed 

in our group. Both discrete and continuum models are based on conservation 

formulations such as described in Figure 4.2. 
 

 
Effects of Cell-Cell and Cell-Matrix Interactions 

 
The effects of tumor cell and environment heterogeneity on the overall tumor 

morphology were recently  studied (A. R. A. Anderson, 2005) by capturing spatial 

distribution of oxygen, matrix-degrading enzymes, and matrix molecules in the tumor 

microenvironment as continuous variables, while tumor cell properties, e.g., their 

migration, were represented by a discrete automata-like model. Results support the notion 

that tumor cell-matrix interactions ultimately control tumor shape by driving tumor cell 

migration via haptotaxis and chemotaxis towards fingering, invasive tumor morphologies 

(Figure 4.3 A and B). 

However, degradation of ECM, specifically surrounding the tumor boundary, may 

have a stronger influence on invasion than cell-cell adhesion. Using a derivation of a 

Potts model (F. Y. Wu, 1982) that incorporates homotypic and heterotypic adhesion as 

well as secretion of proteolytic enzymes that drive haptotaxis along their gradient, a more 

quantitative perspective into the role of cell adhesion and proliferation in promoting an 

invasive phenotype was obtained (S. Turner & Sherratt, 2002). The model assumes 

genetic mutations affect cellular adhesiveness, secretion of matrix degrading enzymes, 

the ability to undergo taxis along gradients, and proliferation rate (Stetlerstevenson, 

Aznavoorian, & Liotta, 1993; S. Turner & Sherratt, 2002). Using the maximum host 

tissue penetration as an index of invasiveness, simulation results predict that increases in 
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the secretion of matrix degrading enzymes in synergy with increases in cell proliferation 

and haptotaxis can produce fingering morphologies at the tumor-host interface as cells 

adhere to the ECM and spread into host tissue. The model hypothesizes a functional 

relationship between proliferation rates and changes in adhesiveness based on 

experimental evidence (S. Huang & Ingber, 1999). 

 

Figure 4.3: Effects of tumor cell and environment heterogeneity on overall tumor 
morphology predicted by a number of “discrete” (each tumor cell’s position 
is “tracked” during a simulation) computational models recently introduced. 

Simulation results from Anderson (2005) show the importance of tumor cell-matrix interactions in aiding 
or hindering migration of individual cells thus defining the overall tumor-scale geometry (A and B). Tumor 
types I-IV correspond to cell phenotypes displaying increasing levels of aggressiveness, i.e., combinations 
of cell-cell adhesiveness, proliferation, degradation, and migration rates. Both simulations use the same 
parameter values with the exception of differing initial ECM conditions (i.e., different distributions of 
matrix molecules). In (A), the matrix environment is initially described as homogeneous, whereas it is 
heterogeneous in (B). Consequently, (B) depicts invasive, fingering morphology. Cells of phenotype IV are 
on the tumor-host boundary, promoting invasion into host tissue, emphasizing that more aggressive cells 
drive fingering morphologies. These aggressive cells have minimal cell-cell adhesion, thus they do not tend 
to form compact structures. Simulations are carried out on a 400 x 400 grid representing 1 cm2 of a virtual, 
2-D tumor. Adapted from Anderson, A.R.A, A hybrid mathematical model of solid tumor invasion: the 
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importance of cell adhesion, Mathematical Medicine and Biology, 2005, vol. 22, issue 2, pages 175-176, by 
permission of Oxford University Press. Simulation results from dos Reis et al. (2003) showing how tumors 
growing in host tissue environments of low (C) and high (D) “rigidity” can influence compact, non- 
invasive (C) and fractal, fingering, invasive (D) morphologies. Simulations are carried out to approximately 
5000 cells, where cells are represented as interacting particles in a 2-D continuous space with periodic 
boundary conditions. Reprinted from Physica A, vol. 322, dos Reis et al., The interplay between cell 
adhesion and environment rigidity in the morphology of tumors, page 550, Copyright 2003, with 
permission from Elsevier. Cell patterns simulated using the model of Ferreira et al. (2002) (E) suggest how 
parameters characterizing cancer cells’ response to nutrient concentrations and embodying complex genetic 
and metabolic processes can influence the formation of fractal, fingering tumor morphologies. For 
comparison, a real fractal pattern observed in trichoblastoma (F). Reprinted figure with permission from 
Ferreira et al., Physical Review E, 65, page 021907-6, 2002. Copyright 2002 by the American Physical 
Society. 

 
The notion that formation of fingering protuberances at the tumor-host boundary 

is primarily due to an intrinsic physical property termed rigidity of the host environment 

to resist tumor growth has also been computationally examined (dos Reis, et al., 2003). 

Low rigidity allows a tumor to expand through the host environment resulting in a well- 

defined tumor-parenchyma interface, whereas higher rigidity forces a tumor to grow by 

invading the host tissue resulting in a fingering morphology (Figure 4.3, C and D), as 

predicted by simulation results. In addition, cell adhesion changes growth patterns from 

fractal morphologies at the tumor-host interface to compact shapes. 
 

 
Effects of Cell Motility 

 
Computational investigations of the invasiveness of high, medium, and low-grade 

gliomas illustrate that the ratio of tumor growth rate and cell motility can quantify the 

invasive nature of a tumor (Swanson, et al., 2000). Specifically, this ratio might be useful 

in predicting a tumor’s invasive and metastatic potential; high proliferation rates and low 

motility correspond to lower grade tumors with less invasive potential whereas low 

proliferation rates and high motility correspond to higher-grade tumors with more 

invasive potential. 

In contrast, a 3D cellular automaton model of glioblastoma capable of predicting 
 
tumor growth according to four microscopic parameters (probability of division, necrotic 
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thickness, proliferative thickness, and maximum tumor extent) successfully predicted 

tumor-scale dynamics of a test case for untreated glioblastoma progression compiled 

from medical literature; simulations reproduced data such as lesion radius, cell number, 

growth fraction, necrotic fraction, and volume doubling time at particular time points 

(Kansal, et al., 2000a; Kansal, et al., 2000b). Human glioblastoma patients have a median 

survival time of 8 months from diagnosis, which these models accurately predict using 

primary tumor volume as an indicator for survival. 
 

 
Effects of Micro Vessel Density and Acidosis 

The potential importance of micro vessel (MV) density and acidosis in promoting 

tumor growth and invasion has been demonstrated through recent computational models 

(H. B. Frieboes, et al., 2006; R. A. Gatenby & Gawlinski, 1996, 2003a; Patel, et al., 

2001). Simulations show that the production rate of H+ ions by cancer cells, due to their 

increased dependence on anaerobic glucose metabolism, is linked to an optimal micro 

vessel (MV) density such that the microenvironment favors tumor cells over normal cells, 

hence promoting growth and invasion (Patel, et al., 2001). MV  density below this 

optimal value produces an environment too acidic even for cancer cells, while MV 

density above the optimum reduces or even completely negates the advantage enjoyed by 

cancer cells over normal cells in an acidic environment, thus inhibiting overall tumor 

growth and invasion by promoting nutrient competition. 
 

Depending on the metabolic phenotype, various tumor morphologies can be 

predicted including invasive, fingering protrusions seen in experiments and with other in 

silico models. This and other modeling and experimental work further supports the acid- 

mediated tumor invasion hypothesis (H. B. Frieboes, et al., 2006; R. A. Gatenby & 

Gawlinski, 1996, 2003a; Patel, et al., 2001), illustrating the potential importance of MV 
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density in driving pH gradients in the microenvironment and associated tumor-scale 

behavior. Such microenvironmental factors, in addition to cellular dynamics, are thus 

quantitatively linked to tumor-scale morphology. 
 

 
Effects of Cell Substrate Concentration 

 
Competition for nutrient and oxygen amongst normal and cancer cells, in addition 

to cell proliferation, motility, death, and secretion of matrix degrading enzymes, may be 

an important factor driving tumor invasion. Using a cellular-automaton model (Ferreira, 

et al., 2002), cell dynamics were described where at each time step, a cell (of type 

normal, cancer, or necrotic tumor) has equal probability  of dividing, migrating, or 

undergoing necrosis; each action is governed by the local substrate concentration. Cells 

are modeled to release a series of enzymes that progressively degrade the ECM, thus 

providing more space  for tumor cells to invade.  In Figure  4.3, E and F,  fingering 

morphologies are predicted by the model (and observed) as a result of high proliferation 

rates demanding large amounts of substrates. Predicted tumor morphology remains 

compact in situations of high nutrient supply and low cell consumption, while cell 

clusters expressing a phenotype that increases nutrient consumption exhibit thinner 

“fingers.” 
 

 
Continuum-Based Parameter-Sensitivity Studies of FCCMU 

 

 
 
Morphologic Instability as a Mechanism of Tumor Invasion 

 
The current conceptual framework of continuum FCCMU models is based on 

reaction–diffusion formulations (Figure 4.2). Accordingly, tumor morphologic “stability” 

is regulated by the competition of pro- and anti- migratory/proliferative factors. When the 
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former prevail, complex, unstable FCCMU patterns can develop (Cristini, et al., 2003; X. 

 
R. Li, et al., 2007). The power of this approach is that it is based on a  physical 

mechanism that can account for the various invasive morphologies observed, and is thus 

potentially predictive of tumor growth. This mathematical analysis of morphologic 

stability has suggested that tumor tissue dynamics is regulated by two dimensionless 

parameters: the parameter G quantifies the competition between local tumor mass growth 

due to proliferation, and cell adhesion that tends to minimize tumor surface area and thus 

maintain compact nearly spherical tumors; the parameter A quantifies tumor mass 

shrinkage due to cell death (these parameters are obtained from some of those listed in 

Figure 4.2 using dimensional analysis; for the sake of simplicity, the associated 

cumbersome formulation is not reported here: see (Cristini, et al., 2003; X. R. Li, et al., 

2007)). During glioblastoma tumor growth in vitro, cell proliferation is observed in a 

viable region where nutrients, oxygen, and growth factor levels are adequate, and cell 

death and necrosis in the inner regions where diffusion limitations prevent these 

substances from being present in adequate levels (H. B. Frieboes, et al., 2006). In the 

presence of these substrate gradients, morphology can be “unstable”, i.e., invasive, when 

cell adhesion is weak (large G). In contrast for small G, spheroid morphology is 

“stabilized” (i.e., spherical or nearly spherical) by cell adhesion (Cristini, et al., 2003). 

This is illustrated in a morphologic stability diagram (Cristini, et al., 2003; H. B. 

Frieboes, et al., 2006), Figure 4.4, A. The G-curves divide the parameter space into stable 

(left) and unstable (right) regions. The G-curves are more shifted to the left as cell 

adhesion decreases (higher G), thus reducing the range of sizes of tumors that will be 

morphologically stable. The in silico model parameters A and G were calibrated using 

data from “stable” spheroids (shaded area) until agreement was obtained between the 

model calculations of morphology and growth and in vitro measures of tumor growth 
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curves and thickness of the viable rim of cells. The model was then tested by 

predicting morphology stability conditions for an independent set of 

experiments (filled symbols) where the cell medium levels of growth factors and 

glucose were changed over a wider range to manipulate glioblastoma cell 

proliferation and adhesion (Frieboes et al., 2006a). 
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A 

B 

 

Figure 4.4: In silico model predictions and in vitro measurements of locally 
invasive cell clusters in collective migration, using a “continuum 
model” (see text for a definition). 

Adapted from Frieboes et al. (2006) with permission from the American Association of Cancer Research. 
In the morphologic stability diagram (A), obtained from a mathematical analysis of the model, “stationary 
radius” describes tumor dimension R (unit length = 100 ∝m), monotonically decreasing as death 
(described by the parameter A) increases. The G-curves calculated by the mathematical model divide, for 
each value of G (a parameter related to cell adhesion), the parameter space into morphologically stable  
(left) and unstable (right) tumors. Stable tumors remain roughly  spherical  during  growth;  unstable  
tumors are invasive and form wavy protrusions at the tumor-host boundary that further develop into sub-
tumors that break-up from the parent tumor (B). The shaded region was determined from calibration of 
the parameter values under “stable” in vitro conditions. Representative “stable” and “unstable” spheroids 
(filled symbols) from different sets of experiments are shown to agree with the model predictions. This  
means that the mathematical model was capable of predicting invasive behavior of tumors under  
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conditions of growth factors and substrate concentrations different from the “control” that was used  
to calibrate the model parameters. These results indicate that wavy patterns of cell arrangements at the 
tumor-host boundary could be inputted to a mathematical model to predict future invasive potential. (B) 
Time progression (arbitrary units) of avascular glioma predicted by simulations of the in silico model (top) 
compared to observations in vitro (bottom). Tumor morphology and invasiveness are predicted to be  
heavily influenced by substrate gradients (e.g., nutrient) in the cellular microenvironment, driving 
detachment of bulbs or clusters of cells. Bar, 130 ∝m. 

 
A remarkable result of this study was that the in silico model was capable of 

predicting growth and invasion of tumors from experiments that were not used for model 

training, thus successfully testing, under relatively simple highly controllable in vitro 

conditions, the hypothesized phenomenological relationships of adhesion and 

proliferation with substrate levels and their effects on tissue-scale growth and 

morphology (e.g., see Figure 4.2). Computer simulations and experimental observations 

of “unstable” spheroids that develop protrusions and detachment of cell clusters are 

shown in Figure 4.4, B. As described below, these infiltrative morphologies are also 

universally observed in tumors in vivo and in data from patients. 
 

 
Clinical Relevance 

 
Morphologic instability during tumor growth is predicted to result from genomic 

changes that produce variations in sub-tumor clonal expansion, rates of mitosis and 

apoptosis, oxygen consumption, and diffusion gradients. This physical hypothesis is 

corroborated by in vitro and in vivo observations (Bello, et al., 2004; H. B. Frieboes, et 

al., 2006; Kunkel, et al., 2001b; Lamszus, et al., 2003; Rubenstein, et al., 2000) and by 
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patient data. In a study of several clinical samples of glioblastoma multiforme from 

multiple patients (Figure 4.5), histology reveals protruding fronts of cells in collective 

motion away from a necrotic area into an area of the host brain where neo-vascularization 

is present, thus following substrate gradients. This data strongly resembles the 

morphology of the tumor boundary predicted by computer simulation (Bearer, et al., 

2009; H. B. Frieboes, Lowengrub, Wise, Zheng, Macklin, Elaine, et al., 2007) and by the 

in vitro experiments described above (H. B. Frieboes, et al., 2006). These infiltrative 

shapes were consistently observed in high-grade gliomas, although their size may vary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5: Glioblastoma histopathological sections from one patient 

 
Stained for H&E and viewed by bright field (A) and fluorescence (B) microscopy (Frieboes et al. 2007, 
reproduced with permission from Elsevier) showing tumor (bottom) pushing into more normal brain (top). 
Note demarcated margin between tumor and brain parenchyma to the middle top of the image and green 
fluorescent outlines of large vascular channels deeper in the tumor. Neovascularization (NV) at the tumor- 
brain interface can be detected by red fluorescence from the erythrocytes inside the vessels. Altogether, 
these data support the “morphologic instability” hypothesis. Bar, 100 ∝m. 
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Figure 4.6: In silico predictions of tumor morphology based on varying cellular 
and micro-environmental conditions in a parameter-sensitivity 
simulation study of the continuum model by Zheng et al. 2005 

(Note: figures are not to scale). These results extend the findings illustrated in Figure 4.4 and demonstrate 
that the in silico model can account for the variety of invasive morphologies observed in tumors, and that 
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the in silico model is thus potentially predictive of tumor growth. (A) When cell taxis but not proliferation 
is present, cells are predicted to align in chains or strands (a). When cell proliferation is significant, more 
bulb- or cluster-like protrusions form and detach into the host (b). Red: tumor boundary; Black: hypoxia; 
Blue and Pink: neovascularization (immature and mature, respectively); time units are arbitrary. Drawings 
of cell strand and cluster adapted by permission from Macmillan Publishers Ltd: Nature Rev. Cancer, Vol. 
3, p. 366, Friedl & Wolf, Copyright 2003. Corresponding structures observed after inducing hypoxia in 
vitro (proliferation was also inhibited) (c) (Pennacchietti et al., 2003) and in vivo (Rubenstein et al., 2000) 
through anti-angiogenic therapy (d) are shown for comparison. Bar, 80 ∝m. Reprinted from Cancer 
Cell, Vol. 3, Pennacchietti et al., page 354, Copyright (2003), with permission from Elsevier. Reprinted  
from Neoplasia, vol. 2, Rubenstein et al., page 311, Copyright 2000, with permission from Neoplasia 
Press. (B) Snapshots from three simulated tumor morphologies corresponding to different values of cell 
adhesion and vascularization parameters: high cell adhesion (a); low cell adhesion (b); low cell adhesion 
and with higher microvascular density or more efficient  vascularization  (c).  Arrows  indicate  
morphology  transitions following different  therapy strategies.  Adapted  from Cristini et al. (2005)  
with permission from the American Association of Cancer Research. 

 

 
 
Effects of Phenotype on Morphology and Growth 

In Figure 4.6, A, different  morphologies predicted by a continuum FCCMU 

model (Cristini, et al., 2005; X. Zheng, et al., 2005) are shown, starting from the same 

initial condition of a spherical tumor. The model predicts that when cell taxis, but no 

proliferation is present (a), cells tend to align in chains or strands. When cell proliferation 

is significant (b), more “bulb like” protrusions form and detach into the host. These are 

also predicted to be more hypoxic. In all cases, these complex morphologic patterns 

developed because cell adhesion parameters were set very low ("morphologic 

instability,” Cristini et al., 2003). Corresponding structures observed after inducing 

hypoxia (c) in vitro (proliferation was inhibited) (Pennacchietti, et al., 2003) and (d) in 

vivo (Rubenstein, et al., 2000) are reported for comparison. The underlying molecular 

phenomena (Friedl & Wolf, 2003) responsible for the prevalence of one over another 

morphology, and for the spatial frequency of finger-like protrusions originating from a 

primary tumor, are captured by (phenomenological) model parameters describing 

proliferation and taxis and the associated convective cell fluxes on one side, and cell- 

adhesion forces on the other (Cristini, et al., 2003). 
 

This model was further used to predict changes in the system dynamics following 
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a range of possible perturbations of parameters related to cell-adhesion forces and to 

oxygen distribution in the environment, with the goal of providing suggestions for novel 

treatment protocols aimed at restoring normoxia and thus preventing “unstable” 

morphologies (Cristini, et al., 2005; H. B. Frieboes, et al., 2006). Since these phenotypic 

and environmental parameters are also associated with invasion, this perturbation study 

provided preliminary quantification of the effects of  anti-invasive and “vasculature- 

normalizing” anti-angiogenic therapeutic strategies that alter the balance of morphology- 

stabilizing and -destabilizing micro-environmental and molecular processes. In particular, 

this study helped explain the undesirable effects on morphology following current anti- 

angiogenic therapy due to exacerbation of micro-environmental hypoxic gradients and 

enhancement of cell migration (as reviewed above). 

In Figure 4.6, B, case (a) corresponds to sufficiently high cell adhesion so that the 

simulated tumor growth is morphologically “stable”. Due to hypoxic gradients, necrotic 

regions have formed where concentrations are inadequate, leading to a diffusion-limited 

tumor size. Angiogenic factors (not shown) emanate from the peri-necrotic regions and 

diffuse outward, reaching pre-existing vessels and triggering neo-vascularization of the 

lesion. Even after angiogenesis, the model predicts that lesion (a) will maintain a 

compact shape because of high cell adhesion. 

Case (b) corresponds to low cell adhesion, in which the tumor experiences 

morphological instability driven by hypoxic gradients as it progresses (H. M. Byrne & 

Chaplain, 1997; Cristini, et al., 2003; Macklin & Lowengrub, 2007b; X. Zheng, et al., 

2005). Cell adhesion is insufficient to maintain proliferating cells together. The lesion 

breaks up into fragments, or detached cell clusters (Friedl & Wolf, 2003), moving away 

following  outward   gradients  of  nutrient  and   oxygen  concentration  (Macklin   & 
Lowengrub, 2007b; X. Zheng, et al., 2005). The model predicts that anti-invasive therapy 

enforces a morphology transition from (b) to (a) by increasing cell adhesion. 
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Case (c) corresponds to low cell adhesion (as in (b)), but with a more spatially 

uniform distribution of vessels. The simulation predicts that this ‘‘vascular 

normalization’’ would lead to reduced oxygen gradients, and hence to suppression of 

instability and to clustering of cells into a more compact tumor morphology. This result 

could be achieved by pruning immature and inefficient blood vessels, leading to a more 

normal vasculature of vessels reduced in diameter, density, and permeability (Jain, 1990, 

2001a, 2001b). In contrast, after anti-angiogenic therapy ((c) to (b)), increased scattering 

of tumor cell clusters in response to hypoxia is predicted, as documented in vivo by 

(Bello, et al., 2004) and by others. Remarkably, the simulations also predict that in this 

case some tumor cell clusters tend to co-opt the vasculature to maximize nutrient uptake, 

as documented previously in vivo (Kunkel, et al., 2001b; Lamszus, et al., 2003; 

Rubenstein, et al., 2000). 

Figure 4.7 shows a summary of some of the biology revealed by the predictive 

model reviewed here (Cristini, et al., 2005; H. B. Frieboes, Lowengrub, Wise, Zheng, 

Macklin, Elaine, et al., 2007; H. B. Frieboes, et al., 2006; Sanga, et al., 2006; J. Sinek, et 

al., 2004; X. Zheng, et al., 2005) under the categories of Tumor, Microenvironment, 

Treatment Response, and Vasculature, including gross tumor morphology in 3-D (A), 

gradients of cell substrates (B), tissue fragmentation in response to chemotherapy 

involving large nanoparticles and adjuvant anti-angiogenic therapy (C), and tumor 

vasculature with both conducting and non-conducting vessels (D). 
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Figure 4.7: Tumor biology revealed by parameter-sensitivity studies of a 

continuum FCCMU computer model is listed under the 
categories of Tumor, Microenvironment, and Vasculature, 
along with response to various treatments. 

 
(A) Gross tumor growth and morphology in 3-D are predicted  based on cell-scale 
parameters (e.g., proliferation, cell adhesion) set from experimental values. Viable (light grey) 
and necrotic (dark grey) tissue as well as extensive vascularization (conducting vessels in red, 
non-conducting in blue) are shown. Reprinted from NeuroImage, Frieboes et al. (2007), 
Copyright 2007, with permission from Elsevier. (B) Gradients of cell substrates (from highest 
(red) to lowest concentration (blue)) are predicted from the vasculature topology (dark red 
lines). Thin dashed line denotes tumor boundary. Reprinted from Journal of Mathematical 
Biology, Sinek et al. (2009), Copyright 2007 Springer. With kind permission of Springer 
Science and Business Media. (C) Local tumor fragmentation (top) is predicted in response to 
chemotherapy involving large nanoparticles and adjuvant anti-angiogenesis (bottom). Boundary 
of tumor fragments is in red, vessels are pink (conducting) and light blue (non-conducting). 
Gradient of drug (red, highest, blue, lowest) is centered in middle area of tumor tissue. Adapted 
from Biomedical Microdevices, Vol 6, 2004, p. 307, Sinek et al., Figure 4.5. Copyright 2004, 
Kluwer Academic Publishers. With kind permission of Springer Science and Business Media. 
(D) Abnormal tumor vasculature architecture with conducting (red) 
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and non-conducting vessels (blue) is predicted based on angiogenic regulators produced by tumor and host 
tissue. Reprinted from NeuroImage, Frieboes et al. (2007), Copyright 2007, with permission from Elsevier. 

 

 
 
CONCLUSIONS AND FUTURE WORK 

 
The research direction we envision focuses on the development and application to 

tumor biology of quantitative methods traditionally confined to engineering and the 

physical sciences. Indeed, it is clear that such complex biological systems dominated by 

large numbers of processes and highly complex dynamics are very difficult to approach 

by experimental methods alone. They can typically be understood only by using 

appropriate mathematical models and sophisticated computer simulations complementary 

to experimental investigations. In the innovative and powerful multidisciplinary approach 

reviewed here, mathematical and computational modeling completes the circle of 

discovery: laboratory experiments provide data that, in turn, informs the construction of a 

mathematical model that can then predict behavior and guide the design of future 

experiments to test these predictions. 

This multi-scale approach captures tumor progression by taking into account 

ongoing molecular and cellular scale events (H. B. Frieboes, et al., 2006; 

MartinezZaguilan, et al., 1996; Rofstad & Danielsen, 1999; Schlappack, Zimmermann, & 

Hill, 1991). One of the key links established in a more quantitative manner is that 

mutations drive increased cellular uptake, which introduces perturbations in spatial 

gradients of oxygen and nutrient; these gradients enhance hypoxia and cause 

heterogeneous cell proliferation and migration leading towards diffusional shape 

instabilities. This supports the hypothesis that cellular and extra-cellular properties 

driving tumor growth and invasiveness also determine tumor morphology (Cristini, et al., 

2005;  H.  B.  Frieboes,  et  al.,  2006)  and  suggests  that  morphological  characteristics 
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including neo-vasculature and harmonic content of the tumor edge should serve as 

predictors of tumor growth (Cristini et al., 2006). 

Predictive modeling assumes that criteria and critical microphysical conditions for 

tumor invasion can be formulated in terms of physical laws linking tissue architecture 

and morphology to cell phenotype. Future multidisciplinary investigations should exploit 

the power of predictive modeling that allows observable properties of the tumor, such as 

its morphology in general and specifically the cell spatial arrangements at the tumor 

boundary, to be used to both understand the underlying cellular physiology and predict 

subsequent invasive behavior. We envision this research taking steps towards further 

establishing the dependence of tumor cell motion into surrounding host tissue on the 

balance between cell proliferation and adhesion, as well as perturbations caused by 

microenvironmental factors such as oxygen, nutrient, and H+  diffusion gradients. This 
 
will include the continuing application of mathematical and empirical methods to 

quantify the competition between gradient-related pro-invasion phenomena and 

molecular forces that govern proliferation and taxis, and forces opposing invasion 

through cell adhesion. In addition, a more detailed description of the complex in vivo 

environment, which better recapitulates the conditions of tumors in patients, would be 

valuable. 

Currently, pathologic analysis is often limited to a set of morphological features 

that are rarely quantitatively assessed (the main quantitative factors are mitotic rates and 

size of invasive tumor “fingers”), and these measures differ depending on the types of 

tumor. “Degree of pleiomorphism” (variable phenotypes) is also used as a prognosticator, 

although this has no absolute quantitative definition and is subjective. Multi-scale 

modeling of cancer would allow predictions of cellular and molecular perturbations that 

alter invasiveness and are measured through changes in tumor morphology. This opens 
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the possibility of designing  novel individualized therapeutic strategies in which the 

microenvironment and cellular factors are manipulated with the aim of imposing compact 

tumor morphology by both decreasing invasiveness and promoting defined tumor 

margins—an outcome that would benefit cancer therapy by improving local  tumor 

control through surgery or chemotherapy. 
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Chapter 5: Predicting Drug Pharmacokinetics and Effect in 
Vascularized Tumors Using Computer Simulation 

 
PREFACE 

 
The field of predictive oncology conventionally applies methodologies such as 

microarrays and immunohistochemical staining for comprehensively profiling gene 

expression and protein activities of genes in cancer tissue, and identifying biomarkers and 

signatures that are either prognostic and/or predictive of chemotherapy response. 

However, the complex nature of cancer has made it difficult to identify unique molecular 

and pathophysiological signatures for each disease variant, consequently hindering the 

ability to predict the performance of therapies in individual patients solely using these 

approaches (Sanga, et al., 2006). In the next chapter, we take an alternate approach; we 

investigate the drug delivery (pharmacokinetics) and effect (pharmacodynamics) of 

doxorubicin and cisplatin in vascularized tumors and show that microenvironmental 

considerations such as lesion-scale  drug and nutrient distributions may significantly 

hamper therapeutic efficacy and should be considered as carefully as genetic and 

proteomic determinants. Our model takes into account tumor vascularity and morphology 

as well as cellular and lesion-scale pharmacokinetics determinants such as p-glycoprotein 

efflux and cell density. Drug transport is encapsulated using a multi-compartment model 

calibrated from published experimental data; this model tracks drug as it extravasates 

from the blood stream into the tumor interstitial space, diffuses through the lesion, enters 

cells and eventually reaches its intended target: DNA. Cell inhibition is modeled as a 

function of this DNA-bound drug. Unlike a truly in vivo situation, our in silico model 

provides the means to quantify expected in vivo IC50 under varying drug, oxygen, 

nutrient,  and  drug  transporter  conditions.  The  nonlinear  interaction  among  various 
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determinants representing cell and lesion phenotype as well as therapeutic strategies 

towards predicting tumor response to therapy is a unifying theme of our results. Our 

results suggest that macroscopic environmental conditions, notably drug and nutrient 

distributions, give rise to considerable variation in tumor response to chemotherapy, 

hence clinical resistance. Moreover, the synergy or antagonism of combined therapeutic 

strategies depends heavily upon this environment. 

This research was a collaborative effort between Dr. John P. Sinek, Sandeep 

Sanga, and Dr. Xiaoming Zheng under the supervision of Dr. Vittorio Cristini. Sinek and 

Sanga strategized the model development, model calibration, coordinating model 

simulations, and analyzing results. Sinek took the lead role in preparing the manuscript 

for publication with the assistance of Sanga. Sanga took a lead role in running model 

simulations presented in the research study. Analysis of simulation results was conducted 

by Sinek, Sanga, and Cristini. The core tumor modeling framework was originally 

developed by Zheng, Wise, and Cristini (X. Zheng, et al., 2005), and was adapted by 

Zheng to model drug delivery using the pharmacokinetics model. Cristini directed the 

progress of the research study. 
 

 
Note: This chapter is based on an article originally published as (J. P. Sinek, et al., 2009) 
in the Journal of Mathematical Biology, which can be accessed at 
http://dx.doi.org/10.1007/s00285-008-0214-y. This article has been included in this 
dissertation with permission from Springer. 

 
 

ABSTRACT 
 

In silico modeling is an increasingly powerful tool in probing processes driving 

cancerous behavior and, in particular, tumor response to therapeutics. It has the capability 

of integrating individually well-understood phenomena across a wide range of scales, 

such as the vascular extravasation of oxygen and drug, interstitial diffusion, and cells’ 

response to local concentrations in a spatially multi-dimensional setting, thereby giving 
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rise to behavior that is more than the sum of its inputs. As such, the model can be used as 

an in silico laboratory, investigating tumor therapeutic response under almost any 

conceivable set of conditions. The results can suggest hypotheses to be corroborated by 

further in vitro and in vivo experimentation, the convergence of results shedding light on 

cancer phenomena and treatment. 

In this chapter we investigate the pharmacokinetics and effect of doxorubicin and 

cisplatin in three simulated two-dimensional vascularized tumors. We take into account 

especially vascular and morphological heterogeneity as well as cellular and lesion-level 

pharmacokinetic determinants like Pgp efflux and cell density. To do this we construct a 

multi-compartment PKPD model calibrated from published experimental data and 

simulate two-hour bolus administrations followed by 18-hour drug washout. Our results 

show that lesion-scale drug and nutrient distribution may significantly impact therapeutic 

efficacy and should be considered as carefully as genetic determinants modulating, for 

example, the production of multidrug-resistance protein or topoisomerease II. We 

visualize and rigorously quantify distributions of nutrient, drug, and resulting cell 

inhibition. A main result is the existence of significant heterogeneity in all three, yielding 

poor inhibition in a large fraction of the lesion, and commensurately increased serum 

drug concentration necessary for an average 50% inhibition throughout the lesion (IC50). 

For doxorubicin the effect of hypoxia and hypoglycemia (“nutrient effect”) is isolated 

and shown to further increase cell inhibition heterogeneity and double the IC50, both 

undesirable. We also show how the therapeutic effectiveness of doxorubicin penetration 

therapy depends upon other determinants affecting drug distribution, such as cellular 

efflux and density, offering some insight into the conditions under which otherwise 

promising therapies may fail and, more importantly, when they will succeed. Cisplatin is 

used as a contrast to doxorubicin since both published experimental data and our 

simulations indicate its lesion distribution is more uniform than that of doxorubicin. 
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Because of this some of the complexity in predicting its therapeutic efficacy is mitigated. 

Using this advantage, we show results suggesting that in vitro monolayer assays using 

this drug may more accurately predict in vivo performance than for drugs like 

doxorubicin. 

The nonlinear interaction among various determinants representing cell and lesion 

phenotype as well as therapeutic strategies is a unifying theme of our results. Throughout 

it can be appreciated that macroscopic environmental conditions, notably drug and 

nutrient distributions, give rise to considerable variation in lesion response, hence clinical 

resistance. Moreover, the synergy or antagonism of combined therapeutic strategies 

depends heavily upon this environment. 

INTRODUCTION

While drug resistance to solid tumors is often considered to be a consequence of 

genetic factors, such as over-expression of anti-apoptotic proteins or production of drug 

efflux pumps, factors residing at coarser physiological scales may have profound 

influence on tumor therapeutic response. Lesion mass is a heterogeneous three- 

dimensional composite of fibrous and connective tissues, stromal components, 

vasculature, and multiple clones of cancer cells. Atop this intrinsic heterogeneity is 

layered the anatomical and functional irregularity of tumoral vasculature, characterized 

by erratic flow, collapsed vessels, diminished oxygen tension, and a large mean tissue-to- 

vessel distance (Baish, et al., 1996; Gulledge & Dewhirst, 1996; Haroon, Peters, 

Greenberg, & Dewhirst, 1999; Jain, 2001a; Padera, et al., 2004). As a consequence, the 

tumor microenvironment is highly variable, marked by gradients of nutrient (oxygen and 

glucose), regions of hypoxia, acidity, and necrosis, and heterogeneous proliferation. In 

order for an anticancer agent to work, it must extravasate, diffuse through lesion, and 

then be transported into cells, where it must bind to its target and effect cell apoptosis or 
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mitotic inhibition. Clearly, the tumor environment is not conducive to these processes. 

The vessel bed’s blood flow and spatial distribution hinder uniform extravasation, calling 

into question the capability of drug molecules to adequately distribute throughout tissue. 

In vitro experiments by Tannock and others underscore this concern, demonstrating 

limited penetration of drugs through lesion tissue, especially highly protein-bound 

molecules like doxorubicin and paclitaxel (Kohno, Ohnuma, & Truog, 1994; Tannock, 

Lee, Tunggal, Cowan, & Egorin, 2002; J. H. Zheng, Chen, Au, & Wientjes, 2001). Once 

a drug molecule has traversed lesion from its point of extravasation and is presented to a 

cell, the path from extracellular space to intracellular target is fraught with difficulties 

ranging from protonation due to the acidic environment, which renders anthracyclines 

incapable of traversing membrane, to intracellular removal by drug efflux pumps, to 

nuclear processes that effect DNA repair and drug clearance (Arancia, Calcabrini, 

Meschini, & Molinari, 1998; Demant & Friche, 1998; Hurwitz, Terashima, Mizunuma, & 

Slapak, 1997; Simon & Schindler, 1994; Takemura, et al., 1991). In addition to 

pharmacokinetics, drug pharmacodynamics is equally impaired. Significant hypoxia and 

hypoglycemia throughout lesion tend to induce cell quiescence, and there is evidence that 

under these conditions, the efficacy of chemotherapeutic agents can be reduced (Durand, 

1986, 1990). Quiescence may shield cells directly from the action of cycle phase-specific 

drugs like doxorubicin and cisplatin, and hypoglycemia can induce changes in 

topoisomerase II detrimental to the functioning of doxorubicin (Mellor, Ferguson, & 

Callaghan, 2005; Shen, Subjeck, Lock, & Ross, 1989; Siu, Arooz, & Poon, 1999). 

The heterogeneity and three-dimensionality of the tumoral environment presents a 

challenge to drug assessment, both during development and in the clinic. Whereas a 

particular drug may show marked activity against a particular cancer line in vitro, its 

potency may vanish or become far less reliable in vivo. This is evidenced by the 

differential between positive predictive accuracy of in vitro-assisted therapy selection 



92  

(around 70%) and negative predictive accuracy (around 90%), a situation not remarkably 

changed over the years (J. P. Fruehauf, 2002; J.P. Fruehauf & Bosanquet, 1993). 

Supraoptimal delivery of drug to cultured cells eliminates the gauntlet of biobarriers in 

vivo described above, precluding the variability they induce. A drug that consistently 

works in vitro can therefore be expected to only sometimes work in vivo. Unraveling the 

myriad interactions of therapeutic determinants within the complex three-dimensional 

tumoral environment is evidently difficult, resulting in high costs of drug development 

and patient suffering. 
 

Perhaps the crystal ball we are attempting to build is incomplete when made only 

of glass typically found in the wet-lab; the in silico lab, i.e., computer simulation, might 

fulfill a key aspect of the lens. A significant capability of in silico experimentation 

(including simulated assays) is the complete control over and monitoring of the simulated 

in vivo tumor environment. Moreover, computer modeling can create hypothetical 

environments and conditions impossible to achieve otherwise, the study of which is 

nonetheless instrumental in unraveling disease and drug mechanisms. This expansive 

control, founded upon an adequately mechanistic mathematical basis, could facilitate the 

discovery of hypotheses as to why certain drugs or therapeutic strategies would or would 

not be effective, potentially on a patient-by-patient basis. The relative ease and cost- 

efficiency of performing simulation could furthermore enable a thorough investigation of 

strategies, revealing the optimal among them. The judicious combination of this 

burgeoning technology with the capabilities of the wet-lab is an attractive development in 

both drug discovery and the clinical management of cancer leading to the easing of 

patients’ burdens. 

The past two decades have witnessed explosive growth in the mathematical and 

computational modeling of vascular and avascular tumors (Alarcon, et al., 2003; Araujo 
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& McElwain, 2004; Bellomo & Preziosi, 2000; Breward, Byrne, & Lewis, 2003; M. A. J. 

Chaplain, 1996; Cristini, et al., 2003; Jiang, et al., 2005; Please, Pettet, & McElwain, 

2005). It was not long before similar models were employed to investigate lesion 

response to anticancer drugs (Jackson, 2003; Lankelma, Fernandez Luque, Dekker, 

Schinkel, & Pinedo, 2000; Norris, King, & Byrne, 2006; Ward & King, 2003). Notable 

limitations of these models, however, are their one-dimensionality (employing cylindrical 

or   spherical   symmetry)   and   lack   of   realistic   vasculature.   Without   true   multi- 

dimensionality and discrete vasculature, it is difficult to simulate the heterogeneities of 
nutrient and drug that profoundly affect therapeutic efficacy. In the present paper we use 

the two-dimensional (non-symmetric) tumoral growth engine of Zheng et al. (X. Zheng, 

et al., 2005), which employs the discrete vasculature algorithm of Anderson and Chaplain 

(A. R. Anderson & Chaplain, 1998), to perform chemotherapy simulations using cisplatin 

and doxorubicin. In particular, we focus on the effects of drug and nutrient distribution 

heterogeneity and their impact on in vivo therapeutic efficacy. Sinek et al. (J. Sinek, et 

al., 2004) had earlier performed a similar investigation; however, the pharmacokinetics 

and pharmacodynamics (PKPD) component was rudimentary, assuming one homogenous 

lesion compartment and not based upon externally acquired parameter values. In the 

present work we implement an extensive multi-compartment PKPD component whose 

parameter values are calibrated via published experimental data. This enables a 

comparison of the tissue- and cell-level drug dynamics of the two drugs, and facilitates 

the generation of hypotheses to explain their in vivo characteristics. We ask that the 

reader consider that if doxorubicin and cisplatin were discovered only today, the 

simulations herein could be seen as providing great insight into their in vivo performance, 

potentially streamlining and reducing costs of development and clinical trials, and of 

assisting in clinical therapeutic strategy to improve patient comfort and survival. 
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MATERIALS AND METHODS 
 

 
 
Model Description 

 
The multi-scale tumor growth and angiogenesis simulator developed by Zheng et 

al., (X. Zheng, et al., 2005) is used to grow the lesions upon which we simulate 

chemotherapy. The simulation field incorporates three phases: viable cancerous tissue, 

normal host tissue, and necrotic debris. The lesion/host interface is demarked by thick 

black contours, while the microvasculature appears as thin red curves. Dark regions are 

necrotic debris. Briefly, nutrient (oxygen and glucose) is provided through the discrete 

microvasculature, which is generated in response to angiogenic regulators produced from 

perinecrotic cells. This results in proliferation and tumor growth. The simple steady-state 

diffusion equation 
 
 

0 = k (1 − n)™ + D ∇2 n − k 
n 

(1) 
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is used to model nutrient delivery and uptake, where n is the local nutrient normalized by 

the intravascular level, kv is a measure of vascular porosity (0 is impermeable, ° is 

completely porous), ™ is the Dirac delta function located along the vasculature, Dn is 

nutrient diffusivity, and kn is the local rate of consumption by cells (X. Zheng, et al., 

2005). The characteristically high porosity of tumor vasculature implies a very high 

setting of kv so that, essentially, vasculature provides a constant boundary condition of 1. 

Experiments given in (Mueller-Klieser, 1984) demonstrate that oxygen penetrates 

approximately 150 ∝m into in vitro spheroids before falling to about 10 percent of 

serum level. At this point necrosis ensues. Combining this with a diffusivity Dn of  

around 

60,000 ∝m2min-1 (Nugent & Jain, 1984a, 1984b, 1984c; Swabb, Wei, & Gullino, 
1974), 

the nutrient uptake rate is calculated to be kn = 24 min-1. Waste resulting from necrotic 

cell degradation is assumed to be removed via convection towards and through the 

tumor-host interface as well as via scavenger cell phagocytosis. In regions where nutrient 

is sufficient to maintain viability, mitosis is assumed to be directly proportional to its 

concentration, with the proportionality constant dependent upon the average cell cycle 

time of the malignant population. 

Once the tumors are grown, drug administration via the vasculature is simulated 

by our multi-compartment pharmacokinetics model, based upon earlier work of (Demant 
& Friche, 1998; Dordal, et al., 1995; El-Kareh & Secomb, 2003, 2005). For cisplatin, 

there are three compartments corresponding to (1) extracellular, (2) cytosolic, and (3) 

DNA-bound drug. For doxorubicin, there is a fourth compartment corresponding to 

intracellular organelles, e.g., lysosomes. The system of equations governing transport for 

both drugs is 
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s& = k (s − s )™ + D ∇2 

s 
− k′ s + k′ (s / V ) 

1 v v  1 s 1 12  1 21     2 C 

s&2 

s&3 

s&4 

= k12VC s1 − k21s2 + k32 s3 − k23s2 (1− s3 / sM ) + k42 s4 − k24 s2 

= k23s2 (1− s3 / sM ) − k32 s3 − k3 s3 

= k24 s2 − k42 s4 

 
(2) 

 

where si represents drug concentration in compartment i, kij represents a transfer rate from 

compartment i to j, and ki represents a rate of permanent removal from compartment i. sv 

is intravascular drug concentration during bolus, and sM  is a DNA saturation parameter 

relevant to doxorubicin. VC is the volume of a cell (assumed spherical with diameter 10 

∝m, yielding VC = 520 fL) and appears in the first equation to reconcile the dimensions 

of s1 (∝M) with the dimensions of all other compartments (fmoles/cell). kv and ™ are  

the same as in Eq. 1. The primed rates appearing in the first equation are related to  

their unprimed counterparts via a constant due to the fact that extracellular volume is 

only a fraction F of total tumor volume. Taking a baseline tumor density of 1.0E9 

cells/ml, a well-known representative value, in combination with the cell volume 

previously quoted results in an extracellular fraction of 0.48, also a reasonable value.  

Finally, Ds  is the diffusivity of the drug through interstitial space. 

Both cisplatin and doxorubicin pass through cell membrane according to k12 

(which includes possible pump and transporter activity, as do all other rates). From there, 

the drugs may efflux according to k21 or may bind to DNA according to k23. The kinetics 

differ from here for the two drugs. Cisplatin may be removed according to the rate k3, 
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which destroys the functioning of the drug and repairs the DNA (D. Wang & Lippard, 

2005). Doxorubicin, however, has an off rate given by k32, and moreover may be 

sequestered and released by lysosomes according to k24 and k42 (Arancia, et al., 1998; 

Hurwitz, et al., 1997; Rizzo, Sacchi, & Menozzi, 1989). Although lysosomal flow to 

membrane and exocytosis of sequestered drug plays a role in some drug resistant cell 

lines, we are not necessarily modeling drug resistance via this function, and so assume 

this process to be negligible, a valid assumption (Demant & Friche, 1998). On the other 

hand, we are concerned with the quantity of drug lysosomes can sequester, as this 

contributes to the cellular uptake of drug, and hence, its penetration characteristics. 

The pharmacodynamics model consists of the Hill-type equation along the lines 

of those employed in (El-Kareh & Secomb, 2003, 2005) 

E =  
N (n)

1 + A−1 x−m
(3) 

where E is cell inhibition (1 minus surviving fraction), x is DNA-bound drug-time 

product (area under the curve, or AUC), and A and m are phenomenologically fit 

parameters. N(n) is a function of nutrient n ranging from 0 to 1 used to mimic the effect 

of hypoxia and hypoglycemia. Results with doxorubicin show that cells in deeper layers 

of spheroids do not respond as well to drug as do cells on the surface, even when 

intracellular drug levels are taken into account (Durand, 1986, 1990). Other experiments 

demonstrate reduced response in monolayer when cells are forced into quiescence due to 

reduced oxygen (Siu, et al., 1999). Still others show that hypoglycemia can deplete 

topoisomerase II, thus reducing the effect of some anthracyclines (Shen, et al., 1989). 

These results imply that the response of cells to doxorubicin in vivo might correlate to the 

local nutrient, which we herein refer to as the “nutrient effect.” For our purposes, the 
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exact form of N is not important. For simplicity, we choose N = np, where p is a 

phenomenological parameter derived from the data of (Durand, 1990), and equals 0.4. 

Since in our model n is normalized with respect to the intravascular level, it runs from 0 

to 1, and thus so does N. Furthermore, at full nutrient levels, N = 1, and so cell inhibition 

(Padera, et al., 2004) is maximal. In our simulations, drug pharmacokinetics (Eq. 2) is 

allowed to proceed from bolus initiation to washout 20 hours later. During this time the 

locally varying DNA-bound AUC is calculated and used to find cell inhibition (Eq. 3). 

 

 
 
Table 5.1: A complete summary of baseline pharmacokinetics and pharmacodynamics 

parameters along with references. Tumor growth and angiogenesis 
parameters can be found can be found in (X. Zheng, et al., 2005) 
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Pharmacokinetics Model Parameters 

 
It will be useful to bear in mind that a generally acceptable theoretical setup for 

performing experiments to measure compartmental concentrations (and therefore to 

derive the rate constants we are after) is either a suspension or monolayer in an 

inexhaustible drug-laden medium corresponding to s1. Under these conditions, the 

relevant model consists of the last three equations in Eq. 2, with s1 held constant. We will 

refer to this model as the modified version of Eq. 2. All model parameters and values are 

summarized in Table 5.1 along with references. These will be referred to as the baseline 

values, some of which will be adjusted later to simulate different tumor characteristics 

and therapeutic treatments. We emphasize that parameter values, having been derived 

from a variety of published experimental data spanning many years and cell types, 

correspond to a prototypical tumor and cancer cells suitable for the simulations herein, 

but not necessarily representative of any particular clinical specimen. 

We begin with cisplatin, setting k24 and k42 to 0 since we assume only three 

compartments, and k32 to 0 since we assume the repair rate k3 is the dominant removal 

rate of DNA-bound drug. k3 is next obtained as follows. In experiments performed by 

Sadowitz et al. (Sadowitz, et al., 2002), adducts per million nucleotides on isolated 

peripheral blood mononuclear cell DNA fell from 75 to 5 and 185 to 40 in two hours in 

two different experiments. Thus, assuming the exponential repair model s&3  = k3s3    we 
 

calculate the repair rate to be about 0.015 min-1. An initial estimate of k23 is then made as 

follows. Sadowitz et al. (Sadowitz, et al., 2002) shows that for 7 ∝M cis, in two 

hours peripheral blood mononuclear cells accumulate from about 25 (non-thiol-blocked 

cells) to 175 (thiol-blocked cells) adducts per million nucleotides. Assuming that DNA 

consists of about 1.25 E6 kbp, this converts to from 1.04 E-19 to 7.27 E-19 moles of Pt 

docked on 
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the DNA (1 atom/adduct). Neglecting the cell membrane and supposing the DNA to be 

 

exposed directly to the drug, we have the ODE 
 

s&3  = 7⎣23  − k3s3 , where ⎣23  is a clearance 
 
parameter (fL-min-1). The solution of this is s 

 
= 7(⎣ 

 
/ k )(1 − e− k3t ) . Substituting values 

3 23 3 
 
of k3 = 0.015 min-1, t = 120 min, and 1.04 E-4 ″ s3 ″ 7.27 E-4 fmole yields 0.27 ″ ⎣23 ″ 

1.9 fL-min-1. To convert this to a rate we use the relation k23 = ⎣23/VC, arriving at 3.82E-4 

min-1. The assumption that DNA was exposed directly to the cis solution means that this 

rate is only a bootstrap approximation and must be refined. At this point we note that the 

extremely low ratio of adducts per kbp implies that the saturation capacity of DNA with 

respect to cisplatin is never approached, and so set sM to ∝. 
 
 

Intracellular  Platinum Accumulation 
(CAL 27 cell line) 
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5.1 uM Fit 12.8 uM Fit 25.6 uM Fit 51.3 uM Fit 
5.1 uM Data 12.8 uM Data 25.6 uM Data 51.3 uM Data 

 
 

Figure 5.1: Data from (Troger, et al., 1992) used to calibrate k12, k21, and k23 for the 
cisplatin model. 

 
Parameters are fit simultaneously to all four curves treated as one set of data; they are not different for each 
curve. 
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Next, we estimate k12 and k21. While doing this we will refine our initial estimate 

of k23. The whole procedure involves fitting the best curves to data from (Troger, et al., 

1992) (Figure 5.1). Troger exposed CAL-27 cells in monolayer to four different 

concentrations of cisplatin and then measured the total intracellular amount of Pt at 

selected times. This corresponds to s2+s3 in our model. Beginning with the previous 

estimate of k23 and setting s1 to the concentrations used by Troger, we adjust k12 and k21 in 

the modified version of Eq. 2 until a good fit of Troger's data is obtained. 

Simultaneously, we adjust k23 to keep the DNA-bound drug true to the results of 

Sadowtiz et al. (Sadowitz, et al., 2002) previously discussed. We remark that the 

disparity between the inward and outward rates derived for cisplatin may be due in part to 

carrier-mediated transport, e.g., the CTR1 influx transporter. 

Proceeding to doxorubicin we first obtain an acceptable range for k12 and k21 from 

the literature. For a variety of anthracyclines, including doxorubicin, initial estimates of 

cell membrane permeability P are taken from experiments with SU-4 and SU-4R 

wildtype and resistant human lymphoma cells (Dordal, et al., 1995), from experiments 

with EHR2 and EHR2/DNR+ wildtype and resistant Ehrlich ascites tumor cells (Demant 

& Friche, 1998), and from experiments with MDA-468 breast cancer cells (Lankelma, et 

al., 2000). The range reported is 2.4 ″ P ″ 1000 ∝m-min-1. The relation k12 = PAC/VC, 

where AC represents the cell membrane area, can then be used to arrive at an initial range 

of 1.4 ″ k12 ″ 600 min-1, which will be refined later. In the case of passive diffusion, k21 = 

k12. We note that these values are far larger than those obtained for cisplatin previously. 

More generally, it has been remarked that cell membrane  permeability for cis is much 

lower than for doxorubicin, etoposide, and vinblastine, although all four drugs  are 

thought to enter cells by passive diffusion (Jekunen, et al., 1993). 
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We next turn our attention to DNA-binding affinity. Given the great DNA affinity 

of the anthracyclines, saturability of the DNA must be taken into account, requiring an 

estimate of sM. A difficulty arises since there is evidence a typical anthracycline molecule 

intercalation occludes from 3 to 10 binding sites in a manner that cannot be corrected 

exactly by a factor (McGhee & von Hippel, 1974; Rizzo, et al., 1989; Tarasiuk, Frezard, 

Garnier-Suillerot, & Gattegno, 1989). To a first approximation, we assume that such a 

correction can be applied. Demant & Friche (Demant & Friche, 1998) report a DNA 

binding site concentration of about 5 mM within a cell volume of 1000 fL, yielding 5 

fmoles of sites. A low value of 0.7 fmoles is obtained by using our assumed value of 1.25 

E6 kbp and the reported site exclusion parameter of about 3 from Rizzo et al., (Rizzo, et 

al., 1989). Tarasiuk et al., (Tarasiuk, et al., 1989) find that the DNA of human 

lymphocytes is comprised of about 6.0 E6 kbp and that one intercalating molecule of 

doxorubicin requires 10 base pairs. Thus, Tarasiuk's data  implies a factor-corrected 

quantity of 1 fmole of binding sites, which we take as a representative value of sM. 

DNA  binding  kinetics  of  the  anthracyclines  is  nontrivial,  perhaps  requiring 
 
multiple steps and demonstrating sequence specificity (Qu, Wan, Becker, Zhong, & 

Zewail, 2001; Rizzo, et al., 1989). Bearing this in mind, as an approximation it will 

suffice to assume non-specific, one-step binding and unbinding according to the chemical 

reaction  
 

⎯k⎯on → 
Drug Molecule + DNA bp Intercalated bp 

←⎯⎯ 
koff 

 

A representative value for the binding coefficient in the above equation for doxorubicin is 

reported as kon = 4.2 E8 M-1min-1 and a value of the unbinding coefficient as koff = 1800 

min-1  (Rizzo, et al., 1989). koff  is identical with k32. From kon  we calculate a clearance 
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parameter (as with cisplatin) given as ⎣23 = konsM = 4.2 E8 fL-min-1 (being cautious with 

the scales of our dimensions). k23 can then be calculated as ⎣23/VC, given in Table 5.1. 

We next turn our attention to the rates k24 and k42 governing lysosomal 

sequestration. Experiments of Hurwitz et al. (Hurwitz, et al., 1997) using U-937 myeloid 

leukemia cells and their dox-resistant variant U-A10 show that the ratio of DNA-bound 

to lysosomally-sequestered drug is about 3 (Hurwitz uses daunorubicin, an anthracycline 

related to doxorubicin) In our modified model equations with all other parameters set as 

described above, the amount of sequestered drug at equilibrium is dependent only upon 

the ratio k24/k42. This ratio furthermore does not affect the equilibrium quantity of DNA- 

bound drug. Arbitrarily selecting k24 = 1 min-1, we find that the appropriate DNA-bound 
 
to lysosomally-sequestered ratio is obtained by setting k42 to 0.007. Considering that 

lysosomal membrane permeability is quite high (Demant & Friche, 1998), the 

lysosomally-bound drug must achieve equilibrium quickly, which can be modified by 

changing k24 while keeping the ratio k24/k42 constant. We find that increasing k24 by a 

factor of 10 reduces the time required to achieve 95% of equilibrium value (max95) to 

about 300 minutes, below which further increases in k24 only reduce this time negligibly. 

Thus, we conservatively set k24 = 10 and k42 = 0.07. 

To refine our initial range of k12  and k21, we use the modified PK model to 
 
compare our simulated monolayer uptake profiles of total intracellular drug with those of 

DeGregorio et al. (DeGregorio, Lui, Macher, & Wilbur, 1984) using human Ewing’s 

sarcoma and rhabdomyosarcoma cells. At 5.40 min-1 both equilibrium values and uptake 

rates compare favorably at three test concentrations. 

The last pharmacokinetics parameter values needed are the diffusivities Ds of 

cisplatin and doxorubicin through tumor interstitium. For molecules of their size (dox 

M.W. = 544, cis M.W. = 300), diffusivity should be about 30,000 ∝m2-min-1 (Nugent 
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Jain, 1984c; Swabb, et al., 1974). However, doxorubicin faces particularly severe barriers 

due to its binding to extracellular constituents such as hyaluronic acid (Kohno, Ohnuma, 

Kaneko, & Holland, 1988; Kohno, et al., 1994), and its diffusivity in some tissues has 

been estimated to be as low as 1000 ∝m2-min-1, which we take as our baseline  

value 

(Lankelma, et al., 2000). 
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Figure 5.2: Cell inhibition fits for Equation 3 using data from (Levasseur, et al., 1998) on 

A2780 ovarian cancer cells exposed in monolayer. 
 

 
 
Pharmacodynamics Model Parameters 

 
In order to calibrate the pharmacodynamics model (Eq. 3), we use the in vitro data 

of Levasseur et al., (Levasseur, Slocum, Rustum, & Greco, 1998) with A2780 ovarian 

cancer cells exposed in monolayer to both doxorubicin and cisplatin over a range of times 

and concentrations. We assume the previously discussed modified pharmacokinetics 

model along with the values derived, and simulate Levassuer’s exposures followed by 

approximately 24 hours of drug washout in drug-free medium (s1 is set to 0). During this 

time, DNA-bound AUC is calculated. These data are then used in conjunction with 

Levasseur’s surviving fraction data to fit the parameters A and m in Eq. 3 using Excel 
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(Figure 5.2). During this process, nutrient is assumed plentiful (n = 1) thus bypassing the 

nutrient effect. 
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Figure 5.3: DNA-bound AUC at four times (rows: 2, 8, 14, and 20 hours) post bolus 
initiation for three two-dimensional simulated baseline tumor lesions 
(columns). 

Results are normalized to average lesion AUC at the time taken to enable comparison of distribution 
heterogeneities. Thick black contours are tumor boundaries. Thin red curves are vasculature. Dark regions 
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are  necrotic  areas.  Each  unit  represent  200  ∝m.  Bottom  probability  distributions  show  final  
AUC distributions at 20 hours. A concise measure of heterogeneity is given by the inter-quartile range 
(IQR), depicted in the lower left graph and explained in the text. Although AUC in host tissue is also 
shown in plots, analysis considers only DNA-bound drug in viable lesion. 

 

 
 
In Silico Experiments 

 
We first grow three vascularized two-dimensional in silico lesions, shown in 

Figure 5.3. Each lesion is produced based upon the same set of growth and vasculature 

control parameters (See Zheng et al. (X. Zheng, et al., 2005) for a complete description 

of these), but randomness in the vasculogenesis algorithm and slightly different initial 

shapes produce different morphologies. We then perform simulations to demonstrate and 

analyze distributions of DNA-bound drug AUC, nutrient, and cell inhibition resulting 

from intravascular bolus administrations of cisplatin and doxorubicin. Each experiment is 

replicated in each of the three lesions. In each case we hold the intravascular 

concentration of drug (sv in Eq. 2) constant for two hours, then set it to zero for eighteen 

more hours to allow washout. Although this sharp “square wave” is perhaps a caricature 

of clinical bolus administration, it allows for consistent analysis and comparison of 

results. Intravascular concentrations are calibrated in each case to produce a total cellular 

growth inhibition of 50 percent (IC50 concentration). It is assumed that a true in vivo 

tumor does not grow or regress appreciably during the 20 hour course of the therapy we 

are attempting to simulate, hence we freeze tumor and vascular growth during our in 

silico therapies. 

Our first set of experiments compares DNA-bound drug AUC distributions of 

doxorubicin and cisplatin under baseline conditions (see Table 5.1). We furthermore 

show the homogenizing effect of doxorubicin retention on final DNA-bound AUC 

(Durand, 1990). We next investigate the impact of inhibition heterogeneity on dosing 

requirements, paying particular attention to the nutrient effect for doxorubicin under 
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baseline conditions and improved penetration by, for example, removing hyaluronic acid 

(Kohno, et al., 1988; Kohno, et al., 1994). In our third set of simulations we more deeply 

investigate the effect of doxorubicin penetration therapies under three circumstances: 

baseline tumor density, high tumor density, and baseline tumor density with Pgp efflux 

activity. These are chosen because they demonstrate a spectrum of possibilities due to 

their effect on cellular drug uptake. High tumor density increases uptake, while Pgp 

efflux  decreases  it.  In  order  to  simulate  increased  penetration,  we  increase  Ds   for 

doxorubicin from its baseline value to 5000 ∝2-min-1 for a moderate increase, and 
30,000 

for the maximum increase, thus matching the performance of cisplatin. To simulate high 

tumor density we increase 〉 by 50 percent to 1.5 E9 cells-ml-1. This has the effect of 

lowering the interstitial fraction F to 0.22, which in turn increases k’12 and k’21 while 

leaving all other rates unchanged. Pgp efflux is simulated by increasing k21 by a factor of 

10, which has the effect of reducing all intracellular compartment concentrations by 

approximately the same factor. This is consistent with results of (Chen & Simon 2000) 

that show Pgp activity can reduce intracellular concentrations of daunorubicin (an 

anthracycline related to doxorubicin) by up to a factor of 100. In our fourth and final set 

of experiments we investigate permeabilization therapy with respect to cisplatin, whereby 

a detergent, such as digitonin, or electropermeabilization is used to increase the 

permeability of cell membrane (Jekunen, et al., 1993; Tanaka, et al., 2001). We take an 

extreme case, increasing the rate constants k12 and k21 from baseline both by a factor of 

100. Note that this does not increase the limiting intracellular or DNA-bound levels of 

drug attained in simulated monolayer, only the rate at which these come to equilibrium. 

Thus highly permeabilized, DNA-bound max95 is attained at 3.4 hours of exposure; 

further permeabilization reduces this negligibly. For comparison, max95 takes longer than 
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27 hours for unpermeabilized cells. This therapy is simulated under both in vivo baseline 
and very high cell densities achieved by increasing the baseline density 75 percent to 

1.75E9 cells-ml-1. At this density, the interstitial fraction F drops to a mere 0.08. Both of 

these are further compared to monolayer results to probe the conditions under which in 

vitro assays can be used to predict clinical efficacy. 
 
 

RESULTS 
 

Although all treatments described in this section are duplicated in each of the 

three in silico tumors, we display only representative plots with appropriate summaries of 

all data. Note that the nutrient effect is only used where noted. 

We begin by examining DNA-bound AUC distributions at various times in the 

baseline simulated lesions (each lesion corresponding to a column, A, B, or C), shown in 

Figure 5.3. From top to bottom, the times correspond to two hours, eight hours, fourteen 

hours, and twenty hours post bolus initiation. Levels are normalized relative to the 

average AUC within viable lesion for comparison of heterogeneity. Although 

surrounding host tissue cells uptake and bind with drug differently than cancer cells, we 

make no distinction in these color plots; however, quantitative analytical results only 

consider DNA-bound drug within viable lesion. The two left column sequences (Lesions 

A and B) show doxorubicin AUC, while the rightmost column shows cisplatin. For both 

Lesions A and B, at 2 hours doxorubicin AUC is seen to be about 3 times the average 

(dark red) close the vasculature, and almost 0 (blue) elsewhere. The distribution is only 

slightly more homogeneous by 8 hours. By 14 hours the heterogeneity has lessened, with 

the peaks close to the vasculature reaching only about 2.2. Finally, at the conclusion of 

washout 20 hours after bolus initiation, the distribution has become much more 

homogeneous, with the peaks only reaching about 1.7 times the average. In contrast, the 
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cisplatin  distribution within  Lesion  C  remains extremely homogeneous,  right  at  the 

average, throughout the entire treatment. 

The probability distributions at the bottom, corresponding to AUC at 20 hours 

post bolus initiation, allow for a more quantitative comparison. The two corresponding to 

doxorubicin show much heterogeneity relative to cisplatin on the right. Using the 

leftmost distribution as an example, the average DNA-bound AUC is found to be 6.04 

fmole-min. 25 percent of tumor cells receive less than 1.66 fmole-min each, while 25 

percent of tumor cells receive more than 9.54 fmole-min. The remaining 50 percent of the 

tumor cells receive between these two values, a range of 7.88 fmole-min. When 

normalized with respect to the average and expressed as a percent, this yields 131% (the 

interquartile range, or IQR), and gives a concise measure of distribution heterogeneity. 

IQR’s are given at each of the other time points as well. All three tumors, despite varied 

lesion and vasculature morphologies, demonstrate similar results (not all shown). 

Doxorubicin AUC IQR’s typically lessen from about 250 percent at 2 hours to 150 

percent at 20 hours; cisplatin AUC IQR’s drop from about 10 to 2 percent. Interestingly, 

in the run shown, the heterogeneity for cisplatin increases slightly in the last frame. This 

happens in some of the other cisplatin simulations as well. 

We next investigate the impact of drug and nutrient heterogeneity on cell 

inhibition distributions and IC50’s. Bolus administrations are simulated for cisplatin using 

the baseline lesions exactly as in Figure 5.3. The PD model (Eq. 3) is then used to 

calculate cell inhibition. For doxorubicin we use the baseline lesions as well as lesions in 

which drug penetration therapy is applied. The experiments for dox are run both with and 

without the nutrient effect. 

A table of average IC50’s and log(IC50/ IC50,mono)’s for these experiments is given 
 
in Figure 5.4. Here and throughout this paper IC50,mono refers to baseline cells exposed in 
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monolayer and serves as a reference; IC50 refers to cells in lesion with parameters set to

simulate particular conditions. Note that, as these are simulated monolayer exposures,

IC50,mono is deterministic. Figure 5.4 also shows a typical nutrient profile, using Lesion B

as an example with an IQR of 36%. This measurement is completely analogous to that

used in Figure 5.3, except that here it is applied to the nutrient distribution and there is no

normalization since nutrient levels are bounded absolutely from 0 to 100 percent, the

level within the vasculature, itself. The nutrient IQR’s for the other two lesions are within

2% of this value. 

IQR = 36% 

Drug IC50,mono (∝M) IC50 (∝M) log(IC50/IC50,mono) 
Dox Baseline 
Nut. Eff. Off 

0.175 0.482 ± 0.163 0.424 ± 0.138 
*p < 0.05 

Dox Baseline 
Nut. Eff. On 

0.175 1.34 ± 0.874 0.830 ± 0.261 
*p < 0.05 

Dox w/ Penetration 
Nut. Eff Off 

0.175 0.197 ± 0.0172 0.0511 ± 0.0371 
p > 0.05 

Dox w/ Penetration 
Nut. Eff. On 

0.175 0.371 ± 0.0356 0.325 ±0.0407 
*p < 0.05 

Cis Baseline 7.05 7.14 ± 0.0757 0.00529 ± 0.00462 
p > 0.05 

Figure 5.4: Means ± SD’s of the IC50’s and the logs of their ratios with respect to 
monolayer treatments for experiments to investigate the impact of drug and 
nutrient heterogeneity. 
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IC50,mono is the IC50 of baseline cells in monolayer. At the 5% significance level using a one-tailed t-test, the 
average log ratio for cisplatin does not exceed 0. On the other hand, in three of the four experiments with 
doxorubicin, they do. Paired one-tailed t-tests show that the average log IC50 ratios for doxorubicin with the 
nutrient effect are greater than that without regardless of penetration therapy. Contour plot shows nutrient 
distribution in Lesion B demonstrating significant heterogeneity. Other lesions are similar. 

 
At the 5% significance level, one-tailed t-tests show that the average log IC50 ratio 

is not greater than 0 for cisplatin, underscoring the homogeneity of its distribution. In 

contrast, out of the four experiments performed for doxorubicin from the combinations of 

nutrient effect and penetration therapy, three indicate that the average log ratios are 

greater than 0 at the 5% significance level. Within this group of four we can analyze the 

strength of the nutrient effect. For the baseline lesion, the nutrient effect increases the log 

IC50 ratio by 0.406 units (a factor of about 2.5). For the lesion with penetration therapy, 

the increase is 0.274 units (a factor of about 1.9). Paired t-tests show that these 

differences are significant at the 5% level. 

The cell inhibition distributions closely mirror their AUC distributions, with that 

of cisplatin being virtually uniform at 50 percent inhibition throughout. Conversely, 

doxorubicin displays heterogeneity, increased with the addition of the nutrient effect. 

Using Lesion B as a representative example for doxorubicin, the upper block of frames in 

Figure 5.5 demonstrates the inhibition distributions for the baseline lesion with and 

without the nutrient effect. While the broadening of the cumulative probability plot as 

well as a comparison of the color distribution plots indicate that the nutrient effect 

increases heterogeneity, the inhibition IQR is reduced from 81 to 77 percent (again, not 

normalized). Employing penetration therapy in the lower block of frames, again we see 

increased heterogeneity in the plots with the nutrient effect, this time the IQR now also 

reflecting the increase. Lesions A and C yield similar results. 

In our third set of simulations, we investigate the effect of therapies designed to 

improve  doxorubicin   penetration  under   several  combinations   of  drug/interstitum 
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diffusivities, cell densities, and drug efflux activities (e.g., Pgp). Figure 5.6 gives bar 

graphs of log(IC50/IC50,mono)’s for three scenarios. The leftmost triplet corresponds to 

baseline tumor density and no efflux, resulting in a condition of “normal” cellular uptake. 

The middle triplet corresponds to high density with no efflux, a condition of high uptake. 

The rightmost corresponds to baseline density with efflux, a condition of low uptake. In 

the baseline tumor case there is a change of -0.388 log units in going from no removal of 

hyaluronic acid to almost complete removal. When density is increased, the change 

becomes –0.709; however, when Pgp efflux is activated, ANOVA reveals there is no 

statistical difference, and in fact, the measured change is positive. Results are similar 

when the nutrient effect is included, with all bars essentially increased by a constant, 

approximately 0.37. 
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No Penetration Therapy 

Nutrient Effect Off 
 

IQR = 81% 

45% 

31% 

24% 

Nutrient Effect On 77% 

Penetration Therapy 

Nutrient Effect Off 7% 

Nutrient Effect On 21% 

Figure 5.5: Top block shows the cell growth inhibition profile of Lesion B at baseline 
settings with and without the nutrient effect after bolus administration 
depicted in Figure 5.4. 

Probability plot and IQR are now of inhibition distribution and are not normalized with respect to any 
average. Although the IQR indicates decreased heterogeneity with the nutrient effect, both the color plot 
and the probability plot indicate increased heterogeneity as is evidenced by the broadening of the curve. 
Bottom block repeats the same experiment, except with doxorubicin penetration increased. Now both the 
plots and IQR show increased heterogeneity. The appropriate IC50 is used in each experiment. 

In  our  fourth  and  final  set  of  simulations  we  investigate  the  effect  of 

permeabilization therapy vis-à-vis cisplatin. Figure 5.7 shows log(IC50,perm/IC50,unperm) for 
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three cases: monolayer, in vivo with baseline cell density, and in vivo with high cell 

density. Here, the subscripts “perm” and “unperm” denote the application or withholding 

of permeabilization therapy. Permeabilization results in a decrease of 0.154 log IC50 units 

for simulated monolayers, i.e., a reduction of IC50 by a factor of 0.7, and is thus effective 

in vitro. An interesting question is whether this carries over in vivo, i.e., whether a 

monolayer assay can be used to predict clinical efficacy. Improvements for the two in 

vivo simulations are comparable to monolayer results, with all three log-differences about 

–0.14, and no statistical difference for the baseline case at the 5% significance level using

a two-tailed t-test. 

DISCUSSIO

According to our simulations, heterogeneities of drug and nutrient, caused in part 

by irregular vasculature and lesion morphology, exist and can significantly impact 

therapeutic results. Moreover, the sense and magnitude of their influence is not always 

intuitively obvious. A good example of this is that, despite its well-noted penetration 

difficulties, doxorubicin performs well clinically. Our simulations show that this may be 

somewhat explained by its retention in tissue removed from vasculature, causing 

homogeneity of exposure to increase long after the bolus has been terminated (Figure 

5.3). This phenomenon has been experimentally verified in (Durand 1990) with 

spheroids. Because of this, the resulting cell inhibition distribution is more homogenous 

than would otherwise be expected. On the other hand, cisplatin maintains an homogenous 

DNA-bound distribution at all times from bolus initiation to 20 hours later, resulting in an 

extremely uniform cell inhibition distribution. This result, as well as the near equality of 

its IC50  and IC50,mono  demonstrated in Figure 5.4, has also been experimentally verified 
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with spheroids (Durand, 1986; Inoue, Ohnuma, Holland, & Wasserman, 1985; Kohno, et 

al., 1988). 

While retention in tissue contributes to the performance of doxorubicin in vivo, 

Figure 5.4 demonstrates that its heterogeneity of distribution contributes to increased 

serum drug concentrations to match the same cell inhibition in monolayer. In one case, 

the average amount of drug increases by nearly one log unit. It is reasonable to expect 

that heterogeneity of nutrient, resulting in hypoxia and hypoglycemia, should compound 

this problem for doxorubicin. Indeed, this is the case as can be seen by the approximate 

doubling of the IC50’s (0.482 ∝M vs. 1.34 and 0.197 vs. 0.371) when the nutrient effect 

is applied.  By  graphically  and  quantitatively  showing  corresponding  cell   

inhibition 

distributions Figure 5.5 offers further insight into these phenomena. It is easily seen that 

cell inhibition distributions are as heterogeneous as their corresponding DNA-bound 

AUC distributions, with areas of lesion removed from vasculature experiencing reduced 

cell inhibition. An examination of the upper probability plot corresponding to a baseline 

lesion with no nutrient effect shows that a full 24% of viable lesion undergoes no 

inhibition at all. It is clear from these graphs that penetration therapy greatly decreases 

heterogeneity of cell inhibition (and commensurately, IC50) as does removal of the 

nutrient effect. This latter is clinically feasible through, for example, carbogen breathing 

or recombinant human Epo (rHuEPO) administration (Shannon, Bouchier-Hayes, 

Condron, & Toomey, 2003; Teicher, Holden, & Jacobs, 1987). 

One puzzling behavior is that while both the color and probability plots 

demonstrate consistently increased heterogeneity brought about by the nutrient effect (as 

is evidenced by the broadening of the probability curves), the IQR actually decreases in 

the baseline case from 81 to 77%. This occurs with Lesions A and C as well. A solution 
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to the mystery is obtained by noticing that a large portion of the tumor either experiences 
no inhibition (about 24%) or an already heterogeneous inhibition (about 31%). The 

remaining 45% receives a near homogeneous level of inhibition (the vertical portion of 

the curve), and this fraction corresponds to tissue close to the vasculature. Thus, the only 

significant heterogeneity that can be induced by the nutrient effect is within this fraction. 

Indeed, it is just this part of the curve that broadens in the second probability distribution, 

indicating greater heterogeneity, as expected. As the IQR is designed to measure 

heterogeneity somewhat more globally, it misses—in fact, misdiagnoses—the change 

occurring within this fraction. 

In addition to dosing requirements, there is a second and subtler reason to 

consider heterogeneity of the inhibition distribution when treating clinical tumors. 

Heterogeneities in growth and regression have been linked to increased lesion 

fragmentation and invasiveness (Cristini, et al., 2005; H.  B. Frieboes,  et al., 2006; 

Kunkel, et al., 2001b; Pennacchietti, et al., 2003). While the mechanisms underlying this 

phenomenon are complex, involving myriad protein signaling events and activities at the 

cellular level, they may at least partly rely on gross lesion effects. 

Figure 5.6 shows what might be expected from therapies that increase 

doxorubicin penetration by, for example, removing hyaluronic acid. As expected, for the 

baseline tumors, greater homogeneity and level of AUC is achieved, resulting in 

reductions of IC50. This effect has been experimentally verified using spheroids (Kohno, 

et al., 1988; Kohno, et al., 1994). That it should be more pronounced for high-density 

tumors and completely absent in the presence of Pgp efflux is intriguing. A potential 

explanation is availed by simplifying the pharmacokinetics model (Eq. 2), reducing it to 

the one-dimensional, one-compartment steady state diffusion equation 0 = D∇2 s − ks with 

diffusivity D and uptake rate k. In two dimensions, a segment of blood vessel acting as a 

source next to a section of tissue approximates the one-dimensional case. This equation 
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has one governing parameter, the characteristic diffusion length L = D / k , and a (non- 
 

unique) solution 
 

sv exp(−x / L) , where x is distance from the source and sv is the constant 
 

level of drug in the vasculature. Considering a section of tissue of thickness d next to a 
 
vessel, average AUC is proportional to the integral, 

d 

≡0  
sv exp(−x / 

L)dx 

= sv L(1− exp(−d / L)) .  Let  AUC50    be  the  fixed  average  AUC 

 

required for fifty percent cell inhibition. Then, ignoring the constant of proportionality, 

AUC50 =IC50 L(1− exp(−d / L)) . Increasing L by some factor C > 1 to simulate penetration 

therapy results in a new characteristic length of CL, and hence new IC50. The ratio of 
IC50’s is therefore   AUC50   L (1−exp(−d/L )) (1−exp( −d/L ))   

CL (1−exp( − d / CL )) ⋅ 
 

AUC50 = C (1−exp( − d / CL))  , which for large characteristic 
 

lengths L approaches 1, and for small lengths approaches 1/C. Now, increasing cell 

density has approximately the effect of increasing k, resulting in a small L, thus 

manifesting the differential in IC50’s. Conversely, activating Pgp efflux has the effect of 

decreasing k, resulting in a large L, thus nullifying the differential. This could be an 

important point when deciding upon appropriate therapies for tumors exhibiting different 

characteristics such as efflux mechanisms and relatively high or low densities. Any 

therapy involves risk. There may be less to gain under certain conditions, advising that 

the therapy not be performed or perhaps, that concomitant therapy be performed designed 

to optimize conditions. 
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Figure 5.6: The effect of increasing doxorubicin penetration is shown in three cases: 

baseline tumor (excepting penetration therapy), high-density tumor, and 
tumor with Pgp efflux. 

 
High density has the effect of increasing drug uptake, while Pgp efflux has the opposite effect. Bars are 
log(IC50/IC50,mono), where IC50,mono is the IC50 for baseline cells exposed in monolayer. Results are similar 
for simulations carried out under the effects of hypoxia and hypoglycemia, with all bars approximately 
increased by a constant. Three replications per bar with results of ANOVA displayed. 

 
The great homogeneity of both cisplatin AUC and cell inhibition demonstrated in 

Figures 5.3 and 5.4 indicate that in vitro assays using this drug may have relatively high 

positive predictive accuracy. While our simulations do not yield enough resolution to 

claim that the results herein answer this question, the outcome shown in Figure 5.7 is of 

interest. There is no statistical difference at the 0.01 significance level between 

improvement obtained by permeabilization therapy in the simulated tumors (even very 

dense ones) and monolayer. This compares favorably with the findings of (Tanaka, et al., 

2001) in which the improvement obtained via cisplatin permeabilization therapy in vitro 

is strongly reflected by the improvement in isolated lung perfusion in rats. 



119  

1 

 
 
 

0.00E+00 P > 0.05 *P < 0.05 
 
 
 
 

-4.00E-02 
 
 
 
 

-8.00E-02 
 
 
 
 

-1.20E-01 
 
 
 
 

-1.60E-01 

Monolayer Baseline 
Density 
Tumor 

High 
Density 
Tumor 

 
 

Figure 5.7: Effect of permeabilization therapy with respect to cisplatin is shown in three 
cases. 

 
Bars are of log(IC50,perm/IC50,unperm) where IC50,perm and IC50,unperm correspond to permeabilized and 
unpermeabilized conditions. Three replications per bar with results of two-tailed t-tests relative to 
monolayer displayed. While there is a statistical difference at the 0.05 significance level for the high- 
density tumor, this disappears at the 0.01 significance level. 

 
While it can and should be argued that the simulations herein fail to account for 

some (many!) critical aspects of tumor growth and drug response (such as clonal 

heterogeneity, cell phase sensitivity, and signaling pathways) and that parameter settings 

may in  some cases be inexact,  it should not be concluded that  these shortcomings 

invalidate characteristics the simulations have revealed. Indeed, we have correctly post- 

dicted several results: that doxorubicin retention results in a more uniform AUC and cell 

inhibition than would otherwise be indicated by its penetration difficulties (Durand, 

1990); that cisplatin achieves a highly uniform AUC, and its cellular inhibition in vitro 

can closely match that in vivo (Durand, 1986; Inoue, et al., 1985; Kohno, et al., 1988); 

and that improvement due to cisplatin permeabilization therapy in vitro can accurately 
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predict improvement in vivo (Tanaka, et al., 2001). We have given compelling evidence 

that not only do macroscopic environmental conditions, namely, drug and nutrient 

distribution heterogeneity, greatly impact therapeutic efficacy, but also that the outcome 

of therapeutic strategies can depend upon them in nonlinear and a priori unpredictable 

ways. The results of our third set of experiments (penetration therapy) provide an 

example. In light of this, it is naive to solely devote attention to genetic factors at the 

expense of factors residing at coarser and more global scales. 

One of our broader goals is to demonstrate how increasingly sophisticated in 

silico technology, driven by mathematical modeling and calibrated with experimental 

data, can and is being developed to provide an alternate investigative and clinical tool 

complementary to traditional methods (Bangs & Paterson, 2003; H.B. Frieboes, et al., 

2006; Sanga,  Frieboes,  Sinek,  et  al., 2007; Sanga,  et  al.,  2006; J. Sinek,  Frieboes, 

Sivaraman, Sanga, & Cristini, 2006). It can well be imagined that were doxorubicin and 

cisplatin discovered today, the in vivo simulations herein presented could be used to 

anticipate their lesion- and cellular-scale pharmacokinetics, helping to refine clinical trial 

design and lower costs. In clinical application, the results could be used to guide 

therapeutic strategy. For example, any risks associated with doxorubicin penetration 

therapy could be avoided if it were known that the patient’s tumor were expressing Pgp 

or otherwise had lowered cellular uptake, according to the results given in Figure 5.6. 

The power of in vitro experimentation lies in its ease of implementation while remaining 

in the biological realm. By its very nature, in vitro experimentation attempts to refine and 

isolate. Yet, much of what happens in vivo is the result of a nonlinear system whose 

behavior is more than the sum of its parts. The power of in silico simulation lies in its 

ability  to  integrate  components  into  a  virtual  system  capable  of  reproducing  such 

behavior, implicitly taking into account circuits of information flow difficult to explicitly 
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analyze. Accurately calibrated and rigorously validated, such an integrated model could 

provide a “dry-lab” to be used as a powerful complement to the traditional wet-lab in 

fundamental research, drug discovery, and the clinic. It could be used to probe scenarios 

and test hypotheses that are either difficult or impossible to instantiate in the body. 

Results could then suggest supportive in vitro and in vivo experimentation, the end result 

being new therapeutic targets or strategies. Simultaneously, weaknesses (or strengths!) of 

the in silico model could be uncovered and addressed. Computational models have the 

potential to facilitate an era of great discovery and progress in understanding and treating 

cancer, and providing new hope to its victims. 
 

 
ACKNOWLEDGMENTS 

 
The authors would like to thank Steve Wise (U.C. Irvine) for assistance with 

numerical methods and programming, Ardith El-Kareh (U. of Arizona) for insights into 

the cellular pharmacokinetics and pharmacodynamics of doxorubicin and cisplatin, 

Hermann Frieboes (U.C. Irvine) for helpful discussions regarding in vitro experimental 

protocols and drug response, and John Fruehauf (U.C. Irvine) for suggestions and 

corrections covering a broad spectrum of oncological knowledge. 

 
 



122  

Chapter 6: Gene Expression Meta-Analysis Supports Existence of 
Molecular Apocrine Breast Cancer with a Role for Androgen Receptor 

and Implies Interactions with ErbB Family 
 

 
 
PREFACE 

 
The advance of microarray gene expression platforms in recent decades has 

enabled cancer researchers to simultaneously probe the disease on a genome-wide basis. 

This has lead to generation of massive amounts of gene expression data (much of which 

is publicly available), which are forming the basis for the discovery of molecular 

signatures and biomarkers having clinical value as prognostic indicators and predictors of 

patient response to therapy. While these empirically-based predictive models provide 

researchers with knowledge of the genes and proteins involved, they alone do not provide 

information about pathway relationships, which can help elucidate the mechanisms 

driving cancer phenotypes, facilitate therapy design, and provide structure for molecular 

signaling models in a multi-scale modeling framework. 

Biomolecular network reconstruction is motivated by the desire to map molecular 

scale interactions to cellular and tissue level traits of interest (Bickel, et al., 2009). The 

pharmaceutical and biotechnology industries have strong motivation to “reverse- 

engineer” molecular networks in order to rationally derive molecular targets (T. Chen, 

He, & Church, 1999; Hopkins & Groom, 2002; Markowetz & Spang, 2007). In the field 

of predictive oncology, reconstructing the maps of interacting molecules that ultimately 

drive cancer phenotypes is the first step in framing cell signaling models that may serve 

in a multi-scale cancer modeling framework. Advances in bioinformatics and 

computational systems biology analysis methods in combination with measurements of 

gene expression has provided researchers with tools to efficiently hypothesize signaling 

relationships that may be validated through experimentation. 
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Gene expression analysis has divided breast cancer into multiple molecular 

subclasses, with the major groups defined primarily by their estrogen receptor (ER), 

progesterone receptor (PR), and Her2/neu receptor (ErbB2) status (Perou, et al., 2000). 

These subclasses have been shown to differ by clinical outcomes (Sorlie, et al., 2001). 

The best prognosis categories are the luminal A and B groups, which are ER+ and ErbB2-
 

. The two most aggressive subsets of breast cancer are the ErbB2+  subgroup, which 

overexpress ErbB2 (clinically referred to as Her2neu), and the ER-/PR-/ErbB2- subgroup, 

termed the basal subtype in the original profiling studies. The ErbB2+ subgroup can be 

offered herceptin as an adjuvant molecularly targeted therapy, while the basal phenotype, 

clinically recognized as the triple negative phenotype by immunohistochemical assay for 

ER, PR and Her2neu, does not respond to either hormonal therapy or targeted therapy. 

Outside of clinical trials with anti-angiogenesis therapy, the primary option for patients 

with a triple-negative tumor is to receive chemotherapy and radiation. They have an 

expected three-year survival rate of 76.8% compared to 93.5% for patients with other 

phenotypes (Tischkowitz, et al., 2007). The question arises-are there other 

distinguishable subsets of clinical significance present that might be distributed across 

these major groups or as a subset of one of them, and if so could a target be defined 

within their profiles that can be used for therapeutic purposes? Identifying more such 

subclasses at a more granular level will encourage the discovery of new molecular targets 

and prognostic biomarkers by more finely dividing breast cancer molecular phenotypes. 

In the next chapter, we present a research study where we perform a meta-analysis 

of two independently-conducted breast cancer gene expression studies that claim to have 

identified another molecularly-defined subgroup of ER-  breast cancer. The first part of 
this study addresses the need to define criteria for comparing the molecular equivalence 

between independently conducted studies. In comparing the gene expression data from 

the two studies, we describe our experiences with data normalization, and propose a 
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normalization protocol for conducting gene expression meta-analyses. We continue to 

analyze the data using conventional bioinformatics methods, and derive a gene 

expression signature to predict this phenotype in the breast cancer population. Finally, we 

perform network reconstruction methods on the normalized data to postulate signaling 

relationships underlying this breast cancer phenotype, and show that we are able to derive 

signals that have already been identified experimentally in cell lines. Thus, we report that 

our data mining and computational systems biology approach is able to hypothesize 

signaling relationships to rationally guide experimentation. Furthermore, our pathways 

analysis implicates a strong role for the Androgen Receptor and related pathways in 

driving this phenotype, which should be considered in strategizing therapy for this patient 

population. 

This research was a collaborative effort between Sandeep Sanga, Dr. Bradley M. 

Broom, Dr. Vittorio Cristini, and Dr. Mary E. Edgerton. Sanga carried out the data 

mining, normalization and analysis using the majority of the bioinformatics and 

computational systems biology methods referred to in the manuscript, with the exception 

of those performed by Broom. Sanga also participated in the study design, and took the 

lead role in drafting the manuscript. Broom carried out the Gene Shaving and Robust 

Bayesian Network methods. Cristini participated in the study design. Edgerton conceived 

of the study, directed its design and coordination, and helped to draft the manuscript. 
 

 
Note: This chapter is based on a manuscript that has been accepted for publication in 
BMC Medical Genomics as (Sanga, Broom,  Cristini, & Edgerton, In Press) and is 
currently in press. 

 
 

ABSTRACT 
 
Background: Pathway discovery from gene expression data can provide critical insight 

into the relationship between signaling networks and the biology of cancer. Oncogenic 
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signaling pathways are most often inferred by comparison with cell lines. We performed 

a meta-analysis of breast cancer data and demonstrate that we can discover signaling 

pathways and interactions by detecting patterns in the patient data without having to 

compare them to profiles from cell lines. 

Results: We first demonstrate that two separately introduced ER-  breast cancer subsets 
 
represent the same tumor type. We combine the gene expression data and compare results 

of pathway analysis using two different network inference methods, LeFEminer and 

Backward Chaining Rule Induction. Both algorithms support a role for AR signaling in 

the data. Using a classifier built from this data, we identify more tumors with the same 

profile from published data. We apply Gene Shaving and Robust Bayesian Network 

Analysis and detect interactions between the AR pathway and members of the ErbB 

family. 

Conclusions: Network inference analysis associates this ER-  breast cancer subset with 
 
AR signaling and demonstrates interactions between AR and both EGFR and ErbB2, 

implying that therapies targeting AR might be hampered if interactions with these ErbB 

family signals are not addressed. Data mining strategies provide an alternative method to 

comparison with cell lines for discovering seminal pathways and interactions between 

signaling networks. 

INTRODUCTION 
 

Gene expression array data can be mined to provide critical insight into our 

understanding of the relationship between signaling networks and the biology of cancer 

(Bild, et al., 2006; Desmedt, et al., 2008; Heiser, et al., 2009). In addition to identifying 

individual pathways, recent attention has been given to “cross-talk” or interactions that 

cause aberrant signaling patterns in cancer (Citri & Yarden, 2006; Migliaccio, et al., 

2006; Naderi & Hughes-Davies, 2008). The conventional method of identifying 
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oncogenic pathways and their interactions has been through studying cell lines (Bild, et 

al., 2006; Doane, et al., 2006; Farmer, et al., 2005; Heiser, et al., 2009). Our goal is to be 

able to identify dominant pathways using data mining methods that do not require direct 

comparison with cell lines. 

To pursue our goal we investigate a recently introduced subtype of ER-  breast 
 
cancer that is hypothesized to result from AR signaling. We analyze the data using 

several different bioinformatics approaches to pathway discovery. We are able to detect 

patterns that support the same conclusions reached with comparison to cell lines data by 

the original authors. In addition, we introduce interactions not previously discovered in 

the data that have important therapeutic implications. Thus, our results contribute to both 

bioinformatics and to breast cancer biology. 

The ER- breast cancer subtype that we study here has been termed the “molecular 
 

apocrine” subtype (Farmer, et al., 2005; Weigelt, et al., 2008) and the “ER- class A” 

subtype (Doane, et al., 2006) in two separate studies that proposed its existence. The 

studies were independently performed, but both groups hypothesized AR signaling as a 

defining feature of the transcript profile, leading us to question whether or not they 

represent the same tumor subset. One study identifies six of 16 ER-  tumors as the 

molecular apocrine subtype and the other study identifies ten of 41 ER- as the class A 

tumors. Since there has not been a meta-analysis of both studies to actually confirm that 

the individual tumor clusters actually represent the same breast cancer subset as defined 

by gene expression, we start by performing a comparative study. We call this a test of 

“molecular equivalence,” and we propose a set of criteria for establishing molecular 

equivalence cancer subsets defined by gene expression data: 1) the majority of the 

molecular phenotype should cluster together and their combined profile should be distinct 

from the remaining samples in unsupervised clustering of the combined data; 2) there 

should be significant overlap of the gene signatures used to classify the phenotype from 
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each institution; and 3) a classifier trained on data from one institution should be able to 

predict the phenotype correctly in the other institution’s data, and vice versa. In the 

process of establishing molecular equivalence, we test different methods of normalizing 

the data to remove institutional bias and we comment on their effectiveness. 

Once having established the molecular equivalence of the group, we use Learner 

of Functional Enrichment algorithm (LeFEminer), which is based on gene set enrichment 

(Eichler, Reimers, Kane, & Weinstein, 2007), and Backward Chaining Rule Induction 

(BCRI), which is a de novo discovery method (Edgerton, et al., 2007; Fisher D, et al., 

2005; Fisher DH, et al., 2006) to identify pathways in the combined data. Both of these 

methods incorporate existing pathway knowledge from the literature within their 

methodology. Our results indicate a role for AR in this breast cancer subset. 

Subsequently, we use a gene expression classifier to identify more molecular apocrine 

data for discovery of pathway interactions. We use Gene Shaving and Robust Bayesian 

Network Analysis because it facilitates discovery of interactions that have variable 

prevalence in the patient population (Broom, et al., in preparation; Hastie, et al., 2000). 

We demonstrate that there are highly prevalent interactions between AR signaling and 
members of the ErbB family. We discuss the therapeutic implications of cross-talk 

between AR and members of the ErbB family in molecular apocrine type breast cancer. 

Taken together, these results demonstrate that data mining methods can be used to 

generate network information directly from gene expression data. 
 

 
Data 

The data used in this study were generated on Affymetrix U133A oligonucleotide 

microarrays and are publicly available (Doane, et al., 2006; Farmer, et al., 2005; Ivshina, 

et al., 2006; Rouzier, et al., 2005; Sotiriou, et al., 2006). The cohort from Farmer et al. 

(Farmer, et al., 2005) includes 22 ER- breast carcinoma samples with six classified as 
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molecular apocrine. The cohort from Doane et al. (Doane, et al., 2006) includes 41 ER- 

breast carcinoma samples with ten classified as molecular apocrine. We refer to data 

generated by Farmer et al. and Doane et al. as the “index cohorts.” We use additional 

cohorts from Ivshina et al. (Ivshina, et al., 2006), Rouzier et al. (Rouzier, et al., 2005), 

and Sotiriou et al. (Sotiriou, et al., 2006), which contain 59, 51, and 34 ER- breast 

carcinoma samples, respectively, to confirm the existence of the molecular apocrine 

phenotype in larger cohorts outside the index cohorts and to explore gene network 

interactions. 
 

 
 

RESULTS 
 

 
 
Data Normalization 

 
We combine the index cohorts into a single, homogeneous dataset with quantile 

normalization (QN) performed using the dChip software package (Bolstad, et al., 2003; 

C. Li, 2008) followed by a recently published cross-study normalization scheme (XPN) 
that results in removal of persistent systematic bias and noise (Shabalin, et al., 2008). 

Additionally, we use updated probeset definitions (Barnes, et al., 2005; Carter, et al., 

2005; Dai, et al., 2005; H. Liu, et al., 2007). XPN brings the two gene expression datasets 

into better agreement as evidenced by improvements in the expected linear relationship of 

median probeset expression levels between the index cohorts after three sequential steps: 

1) QN, 2) QN + XPN, and 3) QN + XPN with updated probeset definitions (Figure 6.1). 

The Pearson correlation coefficient for the three steps is 0.877, 0.923, and 0.913, 

respectively. We note that step 2 gives normalized data with a slightly higher coefficient 

than with using updated probeset definitions (step 3). However, we choose to follow 

recommendations in the bioinformatics literature to take advantage of the most up-to-date 

gene sequence information for grouping and mapping transcript-consistent probesets 
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(Barnes, et al., 2005; Carter, et al., 2005; Dai, et al., 2005; H. Liu, et al., 2007). As we 

proceed with our analysis, we compare our results using XPN with results we generate 

using median-centering, a conventional method for cross-study normalization of data 

performed on a single microarray platform. 

 

Figure 6.1: Scatter plots of Median Probeset Expression Values of Farmer et al. Data vs. 
Doane et al. Data. 
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The blue markers represent the data after quantile normalization (QN), the green markers represent the data
after subsequent cross-study normalization by XPN, and the yellow markers represent the data after
subsequent update of probeset definitions. The red line depicts the unity line, i.e. y = x. In the legend lists
Pearson correlation coefficient for each normalization step. All data has been natural-log transformed. 

 

Figure 6.2: Hierarchical Clustering of Doane et al. and Farmer et al. Data. 

(A) Hierarchical clustering of the quantile normalized, natural-log transformed data from dChip using 
original probes sequence information provided by Affymetrix. (B) Hierarchical clustering of the quantile 
normalized, XPN normalized, natural-log transformed data using original probe sequence information 
provided by Affymetrix. (C) Hierarchical clustering of the quantile normalized, XPN normalized, natural- 
log transformed data using updated probe sequence information provided by AffyProbeMiner. 
Information: Clustering was performed using the Pairwise-Average Linkage method and measures 
distance using Euclidian Distance. The samples cluster according to institution and not by their “molecular 
apocrine” or “non-molecular apocrine” phenotype as indicated by 1 and 0, respectively, preceding the 
sample ID. 
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Figure 6.3: PCA of Combined Doane et al. and Farmer et al. Cohorts 

(A) Principal Components Analysis (PCA) of the combined cohorts from Farmer et al. (Farmer, et al., 
2005) and Doane et al. (Doane, et al., 2006) on natural-log scaled data quantile-normalized using the 
Affymetrix-provided chip definition file (CDF) before cross-study normalization and XPN; p-value = 
0.369. (B) PCA of the combined cohorts on natural-log scaled data quantile normalized and XPN 
normalized using the Affymetrix-provided CDF; p-value < 0.0001. (C) PCA of the combined cohorts on 
natural-log scaled data quantile normalized and XPN normalized using the AffyProbeMiner-provided CDF 
(H. Liu, et al., 2007); p-value < 0.0001. Qualitative and quantitative comparison of (A) – (C) 
systematically shows the improvement of bringing the data from multiple institutions into uniformity using 
quantile normalization, XPN, and updated probeset definitions. With each frame, the data becomes more 
well-defined by molecular phenotype rather than by institution, which is confirmed by the decreasing p- 
values. Information: The plots use the first two principal components. Circles represent the Doane et al. 
cohort and asterisks (*) represent the Farmer et al. cohort. The hypothesized “molecular apocrine” 
phenotype is represented by the color green and “non-molecular apocrine” phenotype by the color blue. 
The p-values are calculated using the Fasano & Franceschini statistical test with the null hypothesis that the 
two phenotypes cannot be differentiated on the basis of two-dimensional, principal components 
coordinates. 
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Comparison for Molecular Equivalence 

 
When we perform XPN in addition to QN, we see significant improvement in the 

removal of systematic bias using both unsupervised hierarchical clustering (HC) and 

principal components analysis (PCA). We use  routines in the GenePattern software 

package (Kuehn, Liberzon, Reich, & Mesirov, 2008; Reich, et al., 2006) and separately 

we compute a p-value using the Fasano & Franceschini statistical test (Fasano & 

Franceschini, 1987). Figures 6.2A and 6.3A demonstrate that the data clusters by 

institution with QN alone. The addition of XPN to the normalization scheme (Figures 

6.2B and 6.3B) tapers the institutional systematic bias and reveals a single molecular 

apocrine cluster. The dendrogram from the HC results shows 12 of 16 (75%) samples 

defined previously as molecular apocrine in a single cluster (p < 0.0001). Updating the 

probeset definitions (Figures 6.2C and 6.3C) brings the molecular apocrine hierarchical 

cluster membership to 15 of 16 (94%) samples across the combined index cohorts with 

improved separation by phenotype (p < 0.0001). We note that median-centering per 

probeset by institution also results in statistically significant separation (p < 0.0001, see 

Appendix Figure A.6.1) with 13 of 16 (81%) molecular apocrine samples clustering 

together in the HC dendrogram (Appendix Figure A.6.2) compared to 15 of 16 (94%) 

samples using XPN. We note that this difference is not statistically significant. 

We evaluate our second proposed criterion for determining molecular equivalence 

by using Significance Analysis of Microarrays (SAM) (Tusher, et al., 2001) to identify 

the top 100 statistically significant probesets in each of the index cohorts (after 

normalization) that differentiate the hypothesized molecular apocrine phenotype from the 

remaining samples. The resulting gene signatures share 76 genes (Supplementary File 1), 

while the original two studies identified 138-gene (Doane, et al., 2006) and 400-gene 
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(Farmer, et al., 2005) profiles with 25 genes overlapping. The extent of overlap for both 

results is statistically significant (both p < 0.0001). For comparison, 100-gene signatures 

derived from a median-centered dataset using manufacture-provided probeset definitions 

has 25 overlapping genes and from a median-centered dataset using AffyProbeMiner 

probeset definitions has 33 overlapping genes (both p < 0.0001). While there is no 

notable difference in statistical significance, the larger number of common genes gives us 

more attributes with which to investigate the networks and gene interactions that define 

this species. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4: PCA and Hierarchical Clustering of Cross-Study Normalized Cohort #1 

filtering for 100-Probeset Signature Generated from Analysis of Cohort #2 
and Vice Versa 

 
(A) Cohort #1: Doane et al. and Cohort #2: Farmer et al. (B) Cohort #1: Farmer et al. and Cohort #2: 
Doane et al. Information: The Principal Components Analysis plot (LEFT) shows that the first component 
separates  the  tumor  samples  according  to  their  hypothesized  “non-molecular  apocrine”  (blue)  and 
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“molecular apocrine” (green) phenotypes using the 300 probesets identified by Significance Analysis of 
Microarrays (SAM) (Tusher, et al., 2001). Hierarchical clustering (RIGHT) of the cross-study normalized data 
using the signature also clusters the samples according to phenotype. Phenotype is represented by 0 for “non-
molecular apocrine” and 1 for “molecular apocrine”. Clustering was performed using the Pairwise- Average 
Linkage method and calculates distance using Euclidian Distance. The PCA uses the principal components for 
the two-dimensional coordinates. 

 
We perform hierarchical clustering and PCA of the Doane et al. (Doane, et al., 2006) 

cohort with the 100-gene signature identified with SAM on the Farmer et al. (Farmer, et 

al., 2005) cohort, and vice versa to test compliance with our thrid criterion (see Figure 6.4). 

We compare these results with the performance of the published signatures on the published 

data as normalized by the submitting institution. While the samples do not group together as 

tightly (Appendix Figures A.6.3 & A.6.4) as they do with the 100-gene signatures derived 

using our normalized data, the signatures identified by Farmer et al. and Doane et al. can 

indeed predict the molecular apocrine phenotype in the other cohort without the need for 

cominbing the data via cross-study normalization. 
 

 
Functional Analysis of the “Molecular Apocrine” Phenotype Using LeFEminer 

 
Using an approach that builds upon the concept of gene set enrichment, LeFEminer 

identifies a set of top-ranked gene ontology (GO) categories in the normalized index cohorts 

(see Table 6.1). Notably, the “Androgen Up-regulated Genes” (86 genes (Nelson, et al., 2002; 

Subramanian, et al., 2005)) and “Breast Cancer Estrogen Signaling” (101 genes (Subramanian, 

et al., 2005)) GO categories both are identified at 0% false discovery rate, with AR presenting 

as the top ranked gene in the “Breast Cancer Estrogen Signaling” category; three genes 

overlap between the two profiles used to define the GO categories. Table 6.1 shows that the 

AR and ER signal based pathways are the top two regulatory signaling pathways, after 

metabolic and other enzymatic pathways that are listed. These results support the hypothesis 

that the molecular apocrine subtype has molecular characteristics of a steroid hormone 

response similar to that of estrogen 
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response (Doane, et al., 2006; Naderi & Hughes-Davies, 2008; Teschendorff, Naderi, 

Barbosa-Morais, & Caldas, 2006). 
 

Table 6.1. Top-ranking Gene Ontology categories identified by LeFEminer on the 
normalized index cohorts. 

 
Rank determined by p-value and false discovery rate. All categories shown in table were identified with 0% 
false discovery rate. The Category.Size column lists the number of genes in the pre-defined dataset 
representative of the GO category. 
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Table 6.2: Transcription regulation analysis by GeneGo’s MetaCore generates sub- 
networks centered on transcription factors given the 17 genes discovered by 
Backward Chaining Rule Induction (Figure 6.6). 

 

Sub-networks are ranked by a p-value and interpreted in terms of Gene Ontology. 
 
 

 
 

 
 
 
 
 
 
 

 

 
 
Network Inference Analysis of “Molecular Apocrine” Phenotype Using Backward 

Chaining Rule Induction and MetaCore 
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We use See5 as a rule induction method (Rulequest, St. Ives, Australia) and 

MetaCore, a commercial pathways database with analysis tool distributed by GeneGo (St. 

Joseph, MI) (Ekins, Nikolsky, Bugrim, Kirillov, & Nikolskaya, 2007) for implementation 

of the BCRI strategy for network discovery (Edgerton, et al., 2007; Fisher D, et al., 2005; 

Fisher DH, et al., 2006). The method is similar to one previously used to study yeast 

networks (Soinov, 2003). We followed the BCRI strategy for six successive iterations to 

identify 17 genes whose expression could predict threshold expression levels of the genes 

identified in the previous iteration (see Figure 6.5). A Transcription Regulation Analysis 

by MetaCore on the 17 genes identifies AR, ESR1 (ER), HNF4-alpha, HNF1-alpha, and 

HNF3-beta as significant transcription factors regulating the genes identified by BCRI 

(Table 6.2). The top 3 regulatory pathways listed in Table 2 are ER, HNF4-alpha, and 

AR. In addition, using Dijkstra’s algorithm (MetaCore function) to find the shortest 

known directed paths within two nodes between the 17 BCRI genes results in a network 

that clearly shows the close relationship between AR and the BCRI genes (Figure 6.6). 

The transcription regulation and shortest path analyses (Table 6.2 and Figure 6.6) both 

also specify ER as having a close network relationship with the BCRI genes. 
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Figure 6.5. Network Inference Using Backward Chaining Rule Induction. 

 
The 17 genes discovered by the Backward Chaining Rule Induction strategy applied to the index cohorts to 
postulate gene network relationships from the index cohorts’ gene expression microarray data. 

 

 
 

 
Figure 6.6. Prior Knowledge Support for Gene Relationships Identified by Backward 

Chaining Rule Induction. 
 

Androgen Receptor is closely connected to the 17 genes identified by the Backward Chaining Rule 
Induction strategy as indicated by using MetaCore to identify the closest paths connecting the genes. 

 

 
 
Persistence of Molecularly-defined Phenotype in Larger Dataset 

At this point we have supporting evidence for a role for AR in defining the 

molecular apocrine subtype using two independent methods of network inference. We 

now seek to identify the gene network and pathways that interact with AR. Limited 
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sample sizes hinder this type of analysis (Broom, et al., in preparation). Therefore, we 

expand our molecular apocrine gene expression data with ER- samples from Ivshina et 

al., Rouzier et al., and Sotiriou et al., bringing our total to 199 (Doane, et al., 2006; 

Farmer, et al., 2005; Ivshina, et al., 2006; Rouzier, et al., 2005; Sotiriou, et al., 2006). 

We normalize with QN + XPN with updated probeset definitions. We apply SAM to the 

index cohorts and identify a 346-probeset signature at 0% false discovery rate to predict 

molecular apocrine samples (see Supplementary Table 1). We use these genes to perform 

PCA on the expanded cohort. These results show a natural demarcation in the larger ER- 

dataset where the 22 molecular apocrine sampes in the index cohort along with an 

additional 46 samples in the expanded cohort separate from the rest of the data (see 

Figure 6.7). We refer to these 68 samples as the “model-classifed cohort.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7: Principal Components Analysis of Cross-study Normalized, Five-Cohort 

Dataset. 
 

The Principal Components Analysis of a 346-probeset signature derived from the combined Doane et al. 
and Farmer et al. data qualitatively shows that a large ER- dataset combining the Ivshina et al., Rouzier et 
al., and Sotiriou et al. cohorts (blue) splits into the molecular apocrine (red) and non-molecular apocrine 
(green) phenotypes as indentified by Doane et al. and Farmer et al. There are a total of 199 samples. 
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Network Inference Analysis of “Molecular Apocrine” Phenotype Using Gene 

Shaving & Robust Bayesian Network Analysis 

First, we perform a unsupervised gene clustering using Gene Shaving (GS), and 

subsequently use Robust Bayesian Network Analysis (RBNA) to discover relationships 

between an AR-based cluster and other gene clusters (Broom, et al., in preparation). Note 

that we do not seek support for the AR pathway as having a role in the molecular 

apocrine subtype in the model classified cohort because our gene classifier that predicts 

membership in the molecular apocrine subtype includes AR. This would have biased the 

network inferences toward selecting AR. 

We identified the top 200 gene clusters using unsupervised GS (Supplementary 

File 2) ranked  according to  their internal cluster strength  (order of how  they were 

shaved). The cluster containing AR was the 7th ranked cluster (Appendix Figure A.6.5). 

Clusters 24, 29, and 7 were the top three clusters associated with the molecular apocrine 

phenotype using Kendall’s tau log rank analysis (see Methods). We selected RBNA as a 

network inference method for studying interactions between AR, represented as Cluster 

7, and other gene clusters because in addition to discovering relationships between the 

clusters, it provides a “global” perspective on both interaction and prevalence in the 

patient population. The top 26 clusters correlating with the molecular apocrine phenotype 

analysis were used in this analysis. The number of clusters was selected using an absolute 

value of 0.5 as a cut-off for the Kendall’s tau log rank. This threshold was selected to 

maintain sufficient correlation with the molecular apocrine phenotype, to allow clusters 

to be used which will have interactions that may not involve the entire molecular 

apocrine phenotype or may overlap with other phenotypes, and finally to provide a 

sufficient number of clusters for RBNA to sample in order to quantify the relative 
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strengths of interactions in the samples. Network associations amongst 14 of these 26 

clusters were identified with RBNA (Figure 6.9). The AR cluster (Cluster 7) is most 

strongly associated with Cluster 24 and less so with Cluster 71 (Figure 6.8). These are the 

only two clusters that directly interact with the AR cluster, and we select these two for 

further characterization. 

Figure 6.8: Robust Bayesian Network Analysis of Top Apocrine-related Gene Clusters 
Identified Through Gene Shaving Reveals Interactions with AR.

Robust Bayesian Network Analysis postulates network interactions between the top apocrine-related gene
clusters, and their relative strength (indicated by bolder links connecting clusters). Cluster 7 (AR cluster) 
interacts with Cluster 29 (EGFR processing genes) and Cluster 71 (ErbB2 cluster). This is a subset of all 
the interacting clusters identified by RBNA (Supplementary Figure 6.6). 
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Figure 6.9: Robust Bayesian Network Analysis of Top Apocrine-related Gene Clusters 
Identified Through Gene Shaving. 

Robust Bayesian Network Analysis postulates network interactions between the top apocrine-related gene
clusters, with the strength of relationships indicated by boldness of links. The 14 interacting clusters are
depicted along with a node illustrating the “molecular apocrine phenotype.” Links to the phenotype node
indicate clusters with the strongest association with the molecular apocrine phenotype. 

Analysis of the Interacting Gene Clusters 

We submit the members of the interacting clusters to both MetaCore (Ekins, et 

al., 2007) and GeneCards (Rebhan, Chalifa-Caspi, Prilusky, & Lancet, 1997; Stelzer, et 

al., 2008) to identify associated gene ontologies and known transcription regulation 

relationships. From GeneCards we identify multiple upregulated species associated with 

EGFR processing in Cluster 24, which we label as the EGFR processing cluster, but are 

not necessarily involved in amplifying EGFR. MetaCore shows that Cluster 71, which 

contains ErbB2, also contains other EGFR-related genes. We call this cluster the ErbB2 

cluster. We also analyzed the clusters that indirectly interact with the AR cluster. Cluster 
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16 is interesting because although AR is not a member, MetaCore reveals a large number 

of genes whose transcription is regulated by AR. Furthermore, MetaCore analysis of 

Cluster 16 suggests network relationships related to ER, p53, and Maspin (a tumor 

suppressor gene associated with breast, prostate, and pancreatic cancer). In addition to 

Cluster 16, MetaCore identifies relationships between ER and the genes in the AR and 

ErbB2 clusters along with clusters 56, 62, 71, 76, 80, and 92. Of interest, ErbB3 is 

present in cluster 62, which has an indirect link to the molecular apocrine subtype (see 

Figure 6.9). 
 

 
DISCUSSION & CONCLUSION 

 
Our conclusions are pertinent to both bioinformatics in general and to this 

particular breast cancer subset. 
 

 
Observations of Normalization Strategies to Remove Institutional Bias in Meta- 

Analysis of Gene Expression Array Data 

In the course of our investigation, we compared the effectiveness of normalizing 

data using quantile normalzation, conventional median-centering, and a recently 

published algorithm called XPN. Although the data from the two institutions 

demonstrated adequate correlation after quantile normalization, results of the hierarchical 

clustering continued to be affected by institutional bias. This may indicate a particular 

sensitivity of hierarchical clustering to institutional bias. 

Molecular Equivalence of the “ER- Subclass A” with “Molecular Apocrine” Breast 

Cancer 

We have proposed three criteria for evaluating molecular equivalence between 

transcript-defined subsets identified by two or more independently conducted studies: 1) 
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the majority of molecularly equivalent samples should cluster together and distinctively 

separate from the remaining samples in unsupervised clustering of the combined data; 2) 

there should be statistically significant overlap of gene signatures used to define the 

phenotype in each separate study; and 3) a classifier trained on data from one institution 

should successfully predict the phenotype in the other institution, and vice versa. We call 

upon the microarray community to consider these criteria and establish a standard 

protocol for etablishing molecular equivalence. 

In the course of our evaluation, we demonstrate that two of the three criteria 

proposed are met even without combining and normalizing the data together: the 25- 

gene overlap between the signatures identified by Farmer et al. and Doane et al. is 

statistically significant; and the published signatures for each of these studies adequately 

predicts the hypothesized breast cancer subset in the other index cohort. However, not 

only were we able to enlarge the extent of overlap in the signatures, but we found that 

only after appropriate normalization did the samples from the two institutions cluster 

together by hypothesized phenotype. 
 

 
Role of AR Signaling in Molecular Apocrine Tumors 

Both authors suggest a role for AR signaling in this subtype of breast cancer 

based on comparison to data generated by cell lines. In addition, Doane et al. suggests 

that there is some overlap of the signatures with known ER+ genes. We chose two 

different network inference methods to explore causal networks in this data. LeFEminer 
utilizes a gene set enrichment type approach while BCRI functions as a discovery 

strategy supplemented by pathway information from Metacore. We selected pathways 

that were common to both strategies as highly supported. The AR and ER signals were 

the two signaling pathways that were identified by both algorithms as relevant to the 

molecular apocrine phenotype. Expression of the ER molecular profile in the molecular 
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apocrine group, in spite of the fact that it is ER-  by immunohistochemistry, has been 
 
described by other authors (Doane, et al., 2006; Naderi & Hughes-Davies, 2008; 

Teschendorff, et al., 2006). From a bioinformatics perspective, and since BCRI is a 

relatively new method of network inference, we see this result as validation of its utility 

in pathway discovery. 
 

 
Pathways that Interact with AR in Molecular Apocrine Breast Cancer 

Our analysis shows that the molecular apocrine phenotype lacks an 

overexpression of basal cytokeratins, which is considered to be a defining feature of 

basal-like breast cancer (Gusterson, Ross, Heath, & Stein, 2005; Livasy, et al., 2006). 

Thus, we can consider molecular apocrine tumors to be a distinct subset of ER- tumors 

that includes both triple-negative  and ER-/PR-/ErbB2+ tumors. Since  we started our 

research, two other studies have discovered this subgroup (Teschendorff, Miremadi, 

Pinder, Ellis, & Caldas, 2007; Weigelt, et al., 2008). One study identified it within triple- 

negative tumors alone while the other identified it to combine AR and ErbB2 signaling. 

We agree with the orginiating authors that the molecular apocrine tumors can be either 

ErbB2+ or ErbB2- based on intraction studies that we will discuss below. 
 

Our results reveal a strong interaction between the AR cluster and a cluster with 

several genes involved in EGFR processing. Several cell lines studies have hypothesized 

an interaction between EGFR and both AR and ER, suggesting that together they form a 

complex with Src that enhances EGFR phosphorylation of tyrosine and therefore 

increases the effectiveness of EGF signaling (Ignar-Trowbridge, et al., 1992; Migliaccio, 

et al., 2006; Migliaccio, et al., 2000). However, this is the first study of gene expression 

data using cancer tissue from patients in which this interaction has been detected using 

gene expression data analysis methods. 

A significant relationship is also revealed between the AR cluster and the ErbB2 
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cluster. The strength of the interaction between this cluster and the AR cluster is weaker 

than the EGFR processing cluster. In the index studies of molecular apocrine tumors, 

approximately half of the cases were ErbB2+. This is consistent with the less strong, but 

significant interaction between AR and ErbB2 in our analysis. In addition to simple co- 

expression, actual cross-talk between ErbB2 and AR pathways has been suggested based 

on cell line studies in breast (Migliaccio, et al., 2006; Naderi & Hughes-Davies, 2008). 

These studies demonstrated an additive affect of AR inhibition in reducing ErbB2 

signaling, and suggested that tumors that are AR+/ErbB2+ might need AR inhibition in 

addition to targeted anti-ErbB2 therapy to completely neutralize the effective of the 

ErbB2 signal. 

In prostate cancer, cell lines studies have led investigators to hyopthesize that 

ErbB family signaling, including EGFR (ErbB1), ErbB2, and ErbB3, can activate AR and 

therefore is responsible for evolution from androgen dependent to androgen independent 

tumor growth (Stern, 2008). Thus, tumors with AR transcription profiles might require 

therapy with ErbB family inihibitors. 

Our results with both BCRI and GS combined with RBNA also support the role of 

FOXA1 interacting with AR in this phenotype. FOXA1 is known to have a role in 

potentiating steroid receptor transcription regulation, and its association with AR by 

immunohistochemistry has been reported by several other investigators (Badve, et al., 
2007; Habashy, et al., 2008; Lacroix & Leclercq, 2004; Nakshatri & Badve, 2007; 

Thorat, et al., 2008; Tozlu, et al., 2006; I. Wolf, et al., 2007). FOXA1 is a member of the 

AR cluster and was also directly identified by BCRI (Appendix Figure 6.5). Three other 

genes identified directly by BCRI (i.e., SPDEF, MLPH, and SERHL) are also part of the 

AR cluster, which further emphasizes BCRI as a valid network inference strategy. 

Associations between PIK3CA mutations and AR in triple-negative tumors have 

been reported recently (Gonzalez-Angulo, et al., 2009). Strong associations between a 
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PIK3CA expressing cluster and AR cluster were not identified. However, given that 

mutations in PIK3CA may not be picked up on standard gene expression platforms, this 

association may not be discoverable from the data. 
 

 
Clinical and Therapeutic Implications for Molecular Apocrine Breast Cancer 

 
We propose that therapies targeting AR activity may present a rational strategy 

for managing these patients. The concept of introducing AR blockade as a therapeutic 

option for breast cancer has received more attention recently (Doane, et al., 2006; 

Farmer, et al., 2005; Moe & Anderson, 2007; Naderi & Hughes-Davies, 2008; Nahleh, 

2008; Ogawa, et al., 2008; Swain, 2001; A. R. Tan & Swain, 2008; Weigelt, et al., 2008). 

Older trials of AR blockade did not select for patients with AR dependent signaling or 

AR expression and therefore may not have addressed the question with an optimal cohort 

(Perrault, et al., 1988). Based upon our interaction studies, we also recommend that any 

therapeutic strategies for the molecular apocrine subgroup consider combinatorial 

targeted therapy to include ErbB family targets, particularly EGFR targeted therapy for 

the entire molecular apocrine subtype and ErbB2 therapy for those tumors that 

overexpress ErbB2. 

While there is evidence to support ER response genes in the molecular apocrine 

subset, anti-estrogen therapy using tamoxifen in ER- women in general has been shown to 

have too little benefit for clinical use. However, small benefits were reported that point to 

the need for more study (Swain, 2001). An important question arises - is the presence of 

ER signaling inferred because AR and ER share a common pathway, or is there cross-talk 

where AR activation stimulates the ER pathway? Our pathway analyses from BCRI that 

demonstrate AR and ER as related signals (Figure 6.6), and analysis of Cluster 16 

(Supplementary File 3), do not support a common pathway that is activated by AR and 

ER. While interesting, these results are not conclusive. We note that if cross-talk from 
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activated AR signaling is the cause of the ER signal activation in ER- tumors, then AR 

inhibition therapy would be sufficient to interrupt this signal. 

There is little known about the survival of molecular apocrine tumors as they have 

only been recently introduced as a subtype. Farmer et al. (Farmer, et al., 2005) describes 

poor survival in the cohort that they identified from the literature. Weigelt et al. (Weigelt, 

et al., 2008) suggest that apocrine carinomas can expect a 10-year survival rate of 35- 

50%, and Teschendorff etl al. (Teschendorff, et al., 2007) suggest that it has the poorest 

outcome of all of the ER-    tumor types. Other data suggests that AR+  tumors that are 
 
otherwise triple-negative as defined by immunohistochemistry may have a better 

prognosis than the basal subtype of tumors (Rakha, et al., 2007). In a recent study of AR 

protein expression in any type of breast cancer, an improved prognosis was associated 

with AR expression above a certain threshold in ER+ tumors (Gonzalez-Angulo, et al., 

2009). It may be that interactions with ErbB family members modify the survival 

characteristics of AR+  tumors. This deserves further study. 

Learning the Systems  Biology  of  Cancer Using  Network  Inference Methods  to 

Analyze Gene Expression Data 

Our results support the strength of using network  inference to analyze gene 

expression array data for oncogenic pathways and their interactions. Our results 

demonstrate that the discovery of oncogenic pathways and their interactions does not 

have torely on comparison with signatures from cell lines, but can be discovered using 

network inference methods. This study demonstrates the rich knowledge resource within 

gene expression data generated from human tissues. 
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MATERIALS & METHODS 
 

 
 
Data Collection 

 
The raw CEL files from Farmer et al. (Farmer, et al., 2005) are available for 

download at NCBI GEO Datasets under accession GSE1561. The raw CEL files from 

Doane et al. (Doane, et al., 2006) are available for download at the National Cancer 

Institute caArray database. The raw CEL files from Ivshina et al. (Ivshina, et al., 2006) 

and Sotiriou et al. (Sotiriou, et al., 2006) are available for download at NCBI GEO 

Datasets under accession GSE4922 and GSE2990, respectively. The raw CEL files from 

Rouzier et al. (Rouzier, et al., 2005) are available for download at 

http://bioinformatics.mdanderson.org/pubdata.html. 
 

 
Microarray Normalization: Removing Systematic and Institutional Bias 

 
The Doane et al. and Farmer et al. cohorts were first quantile-normalized 

(Bolstad, et al., 2003) together using the default settings in DNA-Chip Analyzer (dChip), 

a software package for probe-level analysis of gene expression microarrays (C. Li, 2008). 

This process was repeated twice: the first time, the original Affymetrix-provided chip 

definition file (CDF) was used, and the second time, a transcript-consistent Affymetrix- 

formatted Chip Definition File (CDF) downloaded from AffyProbeMiner (H. Liu, et al., 

2007) was used. A recently published cross-study normalization scheme called XPN 

(Shabalin, et al., 2008) was subsequently implemented to further combine the quantile- 

normalized datasets into a single, unified datasets with significantly reduced systematic 

bias; one dataset derives from normalization with Affymetrix’s CDF and a second dataset 

(the primary dataset used for analysis in this study) derives from normalization with 

AffyProbeMiner’s CDF. The details regarding the normalization scheme, referred to as 

XPN, have been previously described (Shabalin, et al., 2008). In short, the XPN 
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algorithm is based on linking gene/sample clusters amongst given datasets. Data is scaled 

and shifted according to the assumption that similar gene-sets cluster together across 

multiple platforms. XPN has been shown to successfully remove systematic bias, while 

avoiding the loss of useful biological information due to data over-correction (Shabalin, 

et al., 2008). 

The other cohorts were included to investigate the persistence of the molecular 

trends identified in the Doane et al. and Farmer et al. datasets. All five cohorts were 

quantile-normalized with dChip using a transcript-consistent Affymetrix-formatted CDF 

provided by AffyProbeMiner (H.  Liu, et al., 2007). Then, XPN was  used in serial 

increments to bring the five cohorts into uniform agreement by removing persistent 

systematic bias between the datasets. 
 

 
Significance Analysis of Microarrays: Modified T-Test 

 
Significance Analysis of Microarrays (SAM) was performed on the normalized 

Doane  et  al.  (Doane,  et  al.,  2006)  and  Farmer  et  al.  (Farmer,  et  al.,  2005)  data 

individually to identify top 100 probesets that classify between the molecular apocrine 

samples and the remaining samples. SAM was also performed on the combined Doane et 

al. and Farmer et al. subset of the cross-study normalized, five-cohort data to identify a 

gene signature with 0% false discovery rate for classifying molecular apocrine samples 

from the remaining samples, and identifying similar molecular trends in the remaining 

data. SAM is based on a modified T-test; details regarding the algorithm have been 

previously described (Cui & Churchill, 2003; Tusher, et al., 2001). 
 

 
Hierarchical Clustering and Principal Components Analysis 

 
Hierarchical Clustering was performed using a Pairwise-Average Linking method 

and Euclidian Distance as the distance measure. Both Hierarchical Clustering and 
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Principal Components Analysis were performed on the GenePattern software package 

provided by the Broad Institute (Kuehn, et al., 2008; Reich, et al., 2006). Visualizations 

of the Principal Components Analysis were performed with MATLAB (Mathworks, 

Natick, MA). 
 

 
Two-Dimensional Kolmogorov-Smirnov Test 

 
The Fasano & Franceschini statistical test (Fasano & Franceschini, 1987), a two- 

dimensional adaptation of the Kolmogorov-Smirnov test (Lopes, Hobson, & Reid, 2008), 

was performed on the coordinates derived from the first two principal components using 

an algorithm provided by Numerical Recipes in Fortran 90 (Press, Teukolsky, Vetterling, 

& Flannery, 1996). 
 
Statistical Significance of Overlap Between Gene Signatures 

 
The Fasano & Franceschini statistical test (Fasano & Franceschini, 1987), a two- 

dimensional adaptation of the Kolmogorov-Smirnov test (Lopes, et al., 2008), was 

performed on the coordinates derived from the first two principal components using an 

algorithm provided by Numerical Recipes in Fortran 90 (Press, et al., 1996). 
 

 
Backward Chaining Rule Induction 

 
Backward Chaining Rule Induction (BCRI) is a supervised learning approach for 

identifying relationships amongst genes that can predict for the molecular apocrine 

phenotype. In order to initialize the BCRI strategy, we use a classifier method called See5 

(Rulequest, St. Ives, Australia) to build a prediction model from the normalized gene 

expression data for classifying the molecular apocrine phenotype from the remaining 

samples in the index cohorts. Successive iterations of the BCRI strategy infert gene 

network relationships by predicting threshold expression of genes from other genes. 

Further details regarding the BCRI strategy have been previously described (Edgerton, et 
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al., 2007; Frey, et al., 2005). 
 

 
Gene Shaving 

 
To identify clusters of highly correlated genes, we used unsupervised Gene 

Shaving (Hastie, et al., 2000). Specifically, we used a high-performance, parallel C 

implementation of the method that was developed from the GeneClust software package 

(Do, Broom, & Wen, 2003). Gene Shaving was used independently on both unweighted 

data and on 127 bootstrap resamples, extracting the first 150 gene clusters in each case. 

In both cases, the data was first ranked within each sample. To obtain the unweighted 

data, the ranked data was ranked again, this time across samples within each cohort. For 

the bootstrap resamples, each sample within a cohort was assigned a random weight 

chosen from the Bayesian bootstrap distribution (Rubin, 1981) and weighted rankings 

across samples within each cohort were computed. In both cases, the rank of each sample 

was scaled by the number of samples in the cohort, so that for each cohort the data is in 

the range zero to one. Robust clusters were obtained from the combined outputs of the 

Gene Shave runs by selecting those genes that occur frequently together in the outputs of 

individual runs. We extracted the first  200  clusters with  the largest number of co- 

clustering genes, weighted by the homogeneity of the clusters to which they belong. 
 

 
Robust Bayesian Network Analysis 

 
The 200 robust clusters obtained by Gene Shaving were ranked by their 

correlation with their molecular apocrine phenotype. A cluster meta-gene score was 

obtained for each sample by computing the signed average mean gene. We note that 

unlike other gene clustering methods, Gene Shaving clusters may include both correlated 

and anti-correlated genes. The 26 clusters with the highest absolute Kendall Tau 

correlation between the cluster meta-gene scores and the molecular apocrine phenotype 
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status were selected for network analysis. 

The network analysis included nodes for the 26 gene clusters most highly 

correlated with molecular apocrine status and a node for molecular apocrine status. The 

cluster meta-gene scores were each discretized to three levels: the lowest, middle, and 

highest thirds of the expression range for each meta-gene. Forty thousand bootstrap 

resamples of the discretized weights were obtained by randomly weighting each sample 

according to the Bayesian bootstrap distribution (Rubin, 1981), and a high-scoring 

network was found for each resample using greedy hill-climbing with random restarts 

and the sparse candidate algorithm (N. Friedman, Nachman, & Pe'er, 1999). The scoring 

function used was DPSM with λ = 1 (Yang & Chang, 2002). 

Edges that occurred frequently (in either direction) within the forty thousand best 

networks thus obtained were selected for the final network. Edges that occurred in at least 

97.5% of the networks are drawn with a triple black line, those that occurred in at least 

95% of the networks with a black line, and those that occurred in at least 85% of the 

networks with a dashed line. Gene clusters that are not connected by any path along such 

edges to the node for molecular apocrine status are not included. 
 

 
LIST OF KEY ABBREVIATIONS 

 
Estrogen Receptor (ER); Human Epidermal Growth Factor Receptor 2 (ErbB2) 

commonly referred to as Her2neu; Androgen Receptor (AR); Epidermal Growth Factor 

Receptor (EGFR); Quantile Normalization (QN); Hierarchical Clustering (HC); Principal 

Components Analysis (PCA); Significance Analysis of Microarrays (SAM); Backward 

Chaining Rule Induction (BCRI); Gene Shaving (GS); Robust Bayesian Network 

Analysis (RBNA) 
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Chapter 7: From Receptor Dynamics to Directed Cell Motion: A 
Predictive Agent-Based Model for Cell Motility in Complex 

Microenvironments 
 

 
 
PREFACE 

 
It is thought that a significant factor in cancer-related deaths is the ability of tumor 

cells to spread from primary tumors to form metastases in alternate locations throughout 

the body. This spreading behavior relies on upon cell motility, which enables cells to 

invade the host tissues and gain access to the lymphatics and blood vessels, and thus 

access to the rest of the body. Motility behavior of tumor cells need be analyzed as 

carefully as the molecular expression pattern of invasive cancer cells (J. Condeelis, et al., 

2005). 

The tumor microenvironment is an important determinant of the motile behavior 

of cancer cells, and their desire to invade/metastasize. In the transition of cancer cells 

towards an invasive phenotype, they alter their interactions with the extracellular matrix, 

growth factors, and response to local levels of molecular species. In order to develop 

therapeutic strategies to inhibit invasion and metastasis, an understanding of how 

molecular patterns (gene expression, protein interactions) and the microenvironment 

influence cancer cell motility is required. 

In this next chapter, we develop an agent-based model of cell motility where the 

locomotion of cells is the emergent behavior of cytoskeletal reorganization in response to 

chemical signals in the microenvironment. We calibrate and test the model using 

experimental cell motility data of neutrophils and breast cancer cells, respectively, in 

response to controlled gradients of chemical species. This cell-scale model is expected to 

serve as a method for modeling the motile behavior of cells in our multi-scale cancer 
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modeling framework, and is an initial step towards linking pathway signaling knowledge 

with a cell-scale model to predict an emergent behavior, in this case cell motility. 

This research was a collaborative effort between Sandeep Sanga, Dr. Paul T. 

Macklin, and Dr. Vittorio Cristini. Sanga carried out the model development, simulations, 

analysis, drafted the manuscript, and participated in the study design. Macklin and 

Cristini conceived the study design, supervised the research, and helped draft the 

manuscript. 
 

 
Note: This chapter is currently under preparation as a  research manuscript (Sanga, 
Macklin, & Cristini, In Preparation) to be submitted to a journal whose audience is 
interested in computational systems biology and theoretical biology. 

 
ABSTRACT 

 
Cellular behaviors are thought to be the consequence of intricate molecular 

signaling networks influenced by their local microenvironment. Directed cell motility is a 

behavior relevant to many biological processes including embryogenesis, angiogenesis, 

inflammatory response, and cancer metastasis. We develop an agent-based model for 

directed cell motility where motion is an emergent feature of actin cytoskeletal 

reorganization in response to receptor-ligand binding. We introduce receptor occupancy 

theory to establish a functional link between receptor-ligand binding events at the cell 

periphery and downstream intracellular signals leading to actin protrusions causing cell 

motion. We calibrate the functional relationship using experimental data reported in the 

literature of dHL-60 neutrophil-like cells responding to controlled fMLP gradients, and 

subsequently predict the motility of MDA-MB-231 breast carcinoma cells responding to 

EGF under different gradient conditions. These simulation results support that the 

underlying mechanisms responsible for directed cell migration are conserved across cell 

types, and that spatial gradient sensing alone is all that is required to achieve chemotaxis. 

Furthermore, we demonstrate that in order to recapitulate the experimental data used for 
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calibration, the curve describing the functional relationship between receptor-ligand 

dynamics and internal signaling must be sigmoidal in shape. We validate this curve shape 

using a calibrated protein signaling model describing EGFR signaling from the literature. 

This result demonstrates a method for deriving functional relationships from pathway 

signaling models that can be linked to a discrete cell model to predict behavior such as 

motility. 

INTRODUCTION 
 

The cell is the most basic structural and functional unit of living organisms, and is 

itself an intricate machine whose ultimate behavior derives from a complex set of 

physical processes reacting to its microenvironment. The fundamental causes of cancer 

are thought to reside at the genome and protein scales, where a series of mutations and/or 

altered levels of expression result in aberrant protein function, and enable cells to develop 

a selective advantage, allowing them to reproduce and mobilize in defiance of normal 

constraints. At the gross scale, cancer is observed as a mass of cells growing as a bulk 

tumor and interfering with the function of vital organs. Almost all deaths due to cancer 

can be attributed to the effects of metastasis (Mehlen & Puisieux, 2006), which is when 

neoplastic cells also acquire the biological behavior of invasion. Among the critical steps 

in the invasion-metastasis cascade are the cytoskeletal reorganization affecting cell shape 

and motility, the cancer cells’ ability to form invadopodia that release collagenases and 

proteinases, invasion of neighboring tissues with escape into the vascular or lymphatic 

circulation, and then taking up residence and proliferating into tumors that affect vital 

organs away from the primary tumor (Kedrin, van Rheenen, Hernandez, Condeelis, & 

Segall, 2007). 
 

 
Mathematical-Computational Modeling Can Link the Multiple Scales 

Without question, cancer is a complex disease with underlying physiological 
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processes spanning a wide range of interrelated temporal and spatial scales. An ongoing 

research challenge has been to relate biological information spanning these multiple 

scales. Mathematical models implemented as computational frameworks have proven to 

be useful tools for scientifically interrogating biological phenomena (Edelstein-Keshet, 

2005), including cancer (Wayne Materi & David S. Wishart, 2007), and can serve as a 
conduit for connecting gene- and protein-scale intracellular signaling networks with 

tissue-scale morphology and behavior (Kansal, et al., 2000a; Sanga, Frieboes, Zheng, et 

al., 2007; Z. Wang, et al., 2007; Zhang, et al., 2007; Zhang, et al., 2009). In this regard, 

agent-based modeling (ABM) has become a popular computational modeling technique 

for describing interacting cells, such as diseased cancer cells, because of its well-suited 

framework for simulating individual cells and the sub-cellular dynamics governing their 

phenotype in response to external cues from the microenvironment (Peirce, Skalak, & 

Papin, 2006). The primary value of cellular automata and ABM is to predict higher level 

emergent patterns by simulating interacting entities, whose individual phenotypic 

behaviors are governed by a given set of “rules”, through both time and space. ABM in 

particular enables cells to have arbitrarily complex internals governing their behavior 

without constraint to grids. Emerging tissue patterns and morphologies have important 

implications on the biology of the phenomenon in question.  In the case of cancer, 

understanding how and why tumors evolve into the shapes that they do, invade local host 

tissue, and eventually metastasize to secondary locations throughout the body are 

processes that can be addressed with ABM in combination with other, more continuum 

based approaches, in a multi-scale fashion (Chuang, et al., in preparation; Deroulers, 

Aubert, Badoual, & Grammaticos, 2009; Edgerton, et al., In Review; Macklin, Kim, 

Tomaiuolo, Edgerton, & Cristini, 2009; Sanga, Frieboes, Zheng, et al., 2007). Recent 

studies have already combined traditional experimentation with multi-cell agent-based 

modeling to recapitulate realistic tissue patterning (Macklin, et al., 2009; Thorne, Bailey, 
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& Peirce, 2007). For example, Macklin et al. (2009) develops a model for ductal 

carcinoma in situ of the breast using an ABM approach, and directly compares simulation 

results    with    immunohistochemically-stained    pathological    slides.    These    results 

demonstrate  the  effectiveness  of  ABM-type  models  in  predicting  multi-cell  tissue 
patterns seen in vivo by tuning parameters governing cellular behaviors such as 

proliferation, apoptosis, and cell-cell interactions. An intended application of this type of 

work is to assist the management of breast  cancer patient care by more accurately 

predicting surgical margins (Edgerton, et al., In Review). 

From a modeling perspective, a cell’s phenotype is a collection of states. The key 

cell states can be distilled to quiescent, proliferative, apoptotic, adhesiveness, and motile; 

Cancerous cells have phenotypic alterations such as increased proliferation, decreased 

apoptosis, decreased adhesiveness, and increased motility. Theoretical research has 

already implicated the importance of these cell states in understanding tissue scale 

behavior of tumors (A. R. Anderson, 2005; Macklin, et al., 2009; Sanga, Frieboes, 

Zheng, et al., 2007). The complex interplay between intracellular biochemical, 

biomechanical, and bioelectrical signaling, along with microenvironmental stimuli, is 

responsible for determining the cell’s phenotypic properties; thus a modeling framework 

linking sub-cellular network properties to key cellular activities (e.g., quiescence, 

proliferation, death, adhesiveness, and motility) can bridge the molecular and cellular 

scales so as to better understand how events at the molecular scales affect multi-cellular 

behavior. 
 

 
Signal Transduction Research Reveals Signaling Relationships Governing Cellular 

Behavior 

In the last decade, we have witnessed a surge in biological data available in the 

public domain as a result of high-throughput microarray technologies capable of probing 
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cellular information at the DNA, transcript, and protein scales, as well as advances in 

experimental techniques such as fluorescent microscopy and mass spectrometry towards 

studying  protein-protein  interactions.  From  these  data,  bioinformatics  and  systems 

biology approaches are utilizing computational algorithms in partnership with 

experimental systems for reconstructing signaling relationships in order to hypothesize 

and discover the underlying physiological mechanisms responsible for cellular 

phenotypes. Often, pathways and signal transduction research begins by defining the 

architecture of the system in question through identifying a “connection map” of the key 

genes/proteins and their interacting relationships (Broom, et al., in preparation; Edgerton, 

et al., 2007; Eungdamrong & Iyengar, 2004a, 2004b; Fisher DH, et al., 2006; Frey, et al., 

2005; Sanga, et al., In Press; Soinov, 2003). Following pathway network reconstruction, 

the next step for investigating the system-level dynamics is to frame a mathematical 

model for the network, usually in the form of chemical kinetics, compartmental, or 

reaction-diffusion equations (Bhalla & Iyengar, 1999; Eungdamrong & Iyengar, 2004a, 

2004b; Neves & Iyengar, 2002). 

Cancer and its progression towards metastasis involves a number of events, with 

multiple signals from tumor and stromal cells, the extracellular matrix, and soluble 

growth factors influencing the behavior of cancer cells (Chambers, Groom, & 

MacDonald, 2002; M. D. Levine, Liotta, & Stracke, 1995; A. Wells, 2000). One of the 

most important, and best understood, growth factor systems in this regard is the 

EGF/EGFR system, long implicated in cancer development (Price, Tiganis, Agarwal, 

Djakiew, & Thompson, 1999; Steeg, 2003b; A. Wells, Kassis, Solava, Turner, & 

Lauffenburger, 2002). Traditionally associated with tumor cell proliferation and growth, 

EGFR expression has been found to correlate with the metastatic potential of various 

cancers (Radinsky, et al., 1995; Wiley, et al., 2003). On the cellular level, EGF was 

shown to induce chemotaxis of metastatic breast cancer cells, both in vivo (T. Turner, 
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Epps-Fung, Kassis, & Wells, 1997) and in vitro (Steeg, 2003b; Wyckoff, Segall, & 

Condeelis, 2000). This is particularly relevant  to metastasis, since platelets, smooth 
muscle cells, monocytes, and macrophages have been shown to produce EGF and related 

growth factors (Bailly, Yan, Whitesides, Condeelis, & Segall, 1998; Chambers, et al., 

2002; Dluz, Higashiyama, Damm, Abraham, & Klagsbrun, 1993; Kume & Gimbrone, 

1994; Peoples, et al., 1995). Gradients resulting from the release of these factors may 

provide chemotactic cues that direct metastatic cell motility towards blood vessels, where 

they can enter the blood stream and travel to other sites in the body (J. S. Condeelis, et 

al., 2001; T. Turner, et al., 1997), as well as invasion into and disruption of the 

surrounding host tissue. In order to understand and subsequently treat metastasis, we need 

to understand the mechanism of cancer cell motility in response to EGF and other 

chemoattractants. 
 

 
Towards the Development of Predictive, Multi-Scale, Computer Representations of 

Cancer by Incorporating Pathways Knowledge into Each Cell 

ErbB signaling pathways, more specifically ErbB1 (EGFR) and ErbB2 (Her2neu), 

have been the subject of vast amounts of both experimental and theoretical research (W. 

W. Chen, et al., 2009; A. DeWitt, et al., 2002; A. E. DeWitt, et al., 2001; Harms, Bassi, 

Horwitz, & Lauffenburger, 2005; Kholodenko, et al., 1999; Lauffenburger, 2000; A. 

Wells, et al., 2006; Wiley, et al., 2003). Lauffenburger, Wiley, and coworkers have 

developed, parameterized, and calibrated systems of ordinary differential equations 

(ODEs) modeling EGFR-ligand binding, trafficking, and downstream signaling via a 

chemical kinetics approach that has proven useful for studying EGFR-ligand dynamics 

(W. W. Chen, et al., 2009; A. DeWitt, et al., 2002; Lauffenburger, 2000; Lazzara & 

Lauffenburger, 2009; A. Wells, et al., 2006; Wiley, et al., 2003). Furthermore, Deisboeck 

and coworkers have pioneered the use of ABM as a multi-scale cancer modeling tool, and 
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have  recently implemented  similar  systems  of  ODEs  for  tracking  gene  and  protein 

signaling events resulting from EGFR-ligand binding thought to govern migratory and 

proliferative behavior (C. Athale, et al., 2005; C. A. Athale & Deisboeck, 2006; L. L. 

Chen, Zhang, Yoon, & Deisboeck, 2009; Deisboeck, et al., 2001; Z. Wang, et al., 2007; 

Zhang, et al., 2007; Zhang, et al., 2009). 
 

 
Cell Motility Modeling Using an Agent-based Approach with Pathways Knowledge 

 
Ultimately, cell movement is an emergent behavior of many dynamic processes 

regulating the polymerization and depolymerization of actin filaments at the leading and 

trailing edges. There has been significant progress modeling cell motility by linking 

observations of actin protrusion/retraction dynamics to theoretical considerations of 

intracellular signals to capture motion of individual and interacting cells (Flaherty, 

McGarry, & McHugh, 2007; Keren, et al., 2008; Mogilner, 2006; Mogilner & Edelstein- 

Keshet, 2002; Mogilner & Rubinstein, 2005; Satulovsky, Lui, & Wang, 2008). These 

efforts have initiated the framework for modeling cells as “shape machines” whose 

motility is based on regulation of actin cytoskeletal dynamics. Inspired by these previous 

efforts, in this report, we describe a multi-scale agent-based model of cancer cell motility 

built upon emerging biological knowledge of the underlying signaling pathways, 

triggered by surface receptor and ligand binding dynamics, that regulate cell morphology 

(Z. Wang, et al., 2007; Wiley, et al., 2003; Zhang, et al., 2009). While previous 

approaches mostly implement migration velocities (speed and direction) in a rules-based 

a priori manner, we seek to use a multi-scale ABM approach to more biophysically 

simulate cell motility where receptor-ligand binding events predict underlying regulation 

of actin cytoskeletal dynamics, and emergent cell motility. This effort brings the 

modeling community (e.g., The Center for the Development of a Virtual Tumor 

(Deisboeck, Zhang, & Martin, 2007)) a step closer towards comprehensive, multi-scale 
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cancer models which monitor dynamics changes within each cell’s molecular networks as 

a function of their microenvironment. In this study, we build upon the pioneering models 

presented in the literature (Keren, et al., 2008; Kholodenko, et al., 1999; Macklin, et al., 

2009; Maree, Jilkine, Dawes, Grieneisen, & Edelstein-Keshet, 2006; Mogilner, 2006; 

Satulovsky, et al., 2008; Z. Wang, et al., 2007; Wiley, et al., 2003; Zhang, et al., 2009) 

and find that we are able to reproduce both random and directed cell motility with respect 

to chemokine gradients (chemotaxis) as well as with respect to extracellular matrix 

gradients (haptotaxis). 
 

The Model Building Cycle 
 

Predictive models at the cell or tissue scale are expected to have applications 

towards model-based predictive  and/or preventative  medicine (Rodriguez-Fernandez, 

Mendes, & Banga, 2006). A typical model building cycle consists of 1) defining the 

purpose of the model, 2) identifying a priori knowledge from available data, 3) choosing 

a suitable modeling framework, 4) performing parameter estimations using available data 

leading to a prototype model, 5) validating the prototype model with new experiments to 

reveal deficiencies, and 6) refining the model and plan new validation experiments 

(Rodriguez-Fernandez, et al., 2006; van Riel, 2006). The scope of this work involves 

developing a prototype model for cell motility based on considerations of receptor-ligand 

binding trained on in vitro experimental motility data of neutrophil-like cells and 

validated with experimental data of breast carcinoma cells. The remainder of this report 

guides the reader through the steps of the model building cycle. We describe the 

modeling details, calibrate the functional relationship linking receptor-ligand binding to 

internal signaling based on experimental data from the literature, and finally validate the 

model performance by comparing the calibrated model to experimental results from the 

literature performed under different gradient conditions not used during the calibration 
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phase. 
 

 
MODEL DEVELOPMENT 

 

 
 
Key  Observables  of  Directed  Cell  Motility:  A  Priori  Knowledge  for  Model 

Development 

Cell migration is a well-coordinated, multi-step process where 1) a cell acquires a 

polarized morphology in response to extracellular cues; 2) the actin cytoskeleton 

reassembles at the front to form protrusions called lamellipodia (flat-shaped) and 

filopodia (finger-shaped); 3) these protrusions form focal adhesions to the extracellular 

matrix acting as anchors; and 4) to move forward, the cell contracts while releasing 

adhesions towards the rear of the cell. The mechanisms of chemotaxis have been 

rigorously studied in Dictyostelium (in response to cyclic AMP) and neutrophils (in 

response to fMLP and IL-8), both classic models for studying chemotaxis. Progress has 

also been made in studying chemotaxis of cancer cells in response to EGF, considered to 

be a model for metastasis. While the receptors and ligands involved in inducing 

morphological changes and directed migration varies across cell types, it is generally 

accepted that the role of actin dynamics in regulating the cytoskeletal structure associated 

with membrane protrusions and cell-matrix focal adhesions is conserved (Le Clainche & 

Carlier, 2008; Rafelski & Theriot, 2004). 

A generally accepted framework for capturing characteristic morphological 

behaviors in a cell motility model is the concept of Local Excitation Global Inhibition 

(LEGI) (Iglesias & Devreotes, 2008; Janetopoulos & Firtel, 2008; Levchenko & Iglesias, 

2002; Ma, Janetopoulos, Yang, Devreotes, & Iglesias, 2004; Parent & Devreotes, 1999; 

Satulovsky, et al., 2008; Skupsky, Losert, & Nossal, 2005). The LEGI framework asserts 

that a cell’s ability to sense gradients derives from an internal balance between signaling 
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molecules that act locally and those that act globally. The local signaling molecules 

generate a stimulus focused towards the leading edge of a motile cell, and the global 

signaling molecules mediate an adaptation to the average stimulus in the cell. 

We seek to advance a generalized model for cell motility that helps elucidate the 

mysteries of chemotoaxis. In particular, the cell motility community has not yet 

definitively identified how cells sense and interpret external cues in the 

microenvironment, and subsequently morphologically respond to gradients. While it is 

known that cells build up a polarized spatial pattern of internal signal proteins towards 

the up-gradient, it remains unclear whether this pattern and eventual response to migrate 

is a result of temporal or spatial sensing, or perhaps some combination of both. Temporal 

sensing of gradients has been proposed as a method of gradient sensing for bacteria, 

where they sense local ambient concentration of chemoattractant at a given moment and 

compare with previous moments in order to determine their motile behavior. In contrast, 

spatial sensing has been proposed as a method more complex eukaryotic cells use; rather 

than compare chemoattractant through time, cells compare chemoattractant levels at 

different points along their surface, and consequently adjust their migration. Furthermore, 

it remains a mystery how responses to gradients depend on the magnitude of the gradient 

at any given point and the ambient attractant concentration at that point (Herzmark, et al., 

2007). Experimental investigations with neutrophil-like cells (Herzmark, et al., 2007) 

have helped elucidate some of these questions. They report chemotactic prowess depends 

on both the variation in attractant concentration in space and the ambient concentration of 

attractant. They also observed that cells were able to sense differences in attractant 

concentrations across their diameters in relatively shallow gradients, and of translating 
purely spatial cues into a decision of whether or not to migrate. Finally, they report that 

chemotaxing cells behave as if they interpret gradients primarily with the use of saturable 

receptors to assess differences in attractant concentration across their own diameters. 
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A Cell Modeled as a “Shape Machine” 

In a recent study, Satulovsky et al. (2008) develop a two-dimensional model for cell 

motility based on the LEGI concept, where each cell is treated as a collection of points 

representing the cell’s perimeter and the cell’s center is calculated as the centroid of the 

perimeter points at a given time point. More specifically, the perimeter of each cell is 

discretized into 360 points, where each point tracks a 1° arc relative to the cell’s center 

(See Figure 7.1). Each of the 360 perimeter points is free to protrude (extend away from 

the center) or retract (curtail towards the center) as a function of a net balance between 

local signals stimulating protrusion and retraction. A noteworthy limitation of this 

framework is that cell perimeter points are not constrained to conserve volume or mass, 

thus allowing for the possibility of unrealistic morphologies; a minimum radius is defined 

as a crude approximation to a cell’s incompressibility and acts as an initial approximation 

for conservation of mass. However, this modeling structure is relatively flexible, easy to 

implement, and is able to capture a wide range of realistic two-dimensional cell 

morphologies while providing a means to provide a framework to efficiently integrate the 

functional aspects of actin dynamics and their impact on membrane extension-retraction 

dynamics, from which cell motility emerges. In this study, we develop our agent-based 

model of cell motility with consideration of receptor-ligand dynamics upon the 

framework proposed by Satulovsky et al. (2008). 
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Figure 7.1: Modeling cells as shape machines. 
 

 
 
Cell Model Details 

 

 
 
Model of Cell Shape as a Function of a Protruding and Retracting Membrane 

In this subsection, we comprehensively review the modeling details 

originally presented by Satulovsky et al. (2008) for two-dimensionally treating a cell’s 

shape as a function of protrusions and retractions of the actin cytoskeleton near the cell 

membrane. At a given time point, ⎮, each cell’s perimeter points are represented as 

vectors r with the cell center (calculated as the geometric center of the perimeter 

points) as the origin. A local protrusion signal, S+(r,⎮) is tracked for each 

perimeter point, and is meant to represent the collective signaling activities 

stimulating acting polymerization responsible for lamellipodia  and filopodia 

formations.  Following the theme of  LEGI, retraction signals, S-(⎮), are treated as a 

global cell variable that suppress protrusion signaling and promote retractions 
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throughout the cell, and effectively represent myosin-dependent contractions that are 

critical for cells to migrate. The net balance between protrusion and 
retraction signals determines the evolution each cell’s perimeter: retraction of a perimeter 

point towards the cell center occurs when S+(r,⎮) ″ S-(⎮), and protrusion of a 

perimeter 

point away from the cell center occurs when S+(r,⎮) > S-(⎮). The rate of retraction is 
 
represented as ∂ r 

∂t 

 

= max ( ⎣⎡ r − rmin ⎦⎤ R 
 

, 0) 
 
where rmin is a constant minimum radius that 

accounts for a cell size at which point is incompressible, and R-  is a retraction rate 

constant. The linear dependence of the retraction rate on |r| implies elastic behavior of the 
∂ r 

cytoplasm. The rate of protrusion is represented as 
∂t 

 

= max (G(R+ ), 0) where G(R+) is 
 

a Gaussian distribution function of average value R+ and variance R+, where R+ is the 

average protrusion rate of the cell boundary. The stochastic nature of this protrusion rate 

is meant to capture variable rates of actin polymerization that depend on local availability 

of reactants. 

Focal adhesions between the cell perimeter and the extracellular matrix (ECM) 

are modeled as constraints where cell retraction cannot occur as long as the adhesion 

bond is still intact. This is meant to capture experimental evidence that focal adhesions 

mediated by integrin receptors form near the leading edge of cells during protrusion, and 

remain attached as cells move forward. At each protruding point along the cell perimeter, 

focal adhesions are modeled to form at a probability of P+
FA, and disassemble with a 

 

probability of P-
FA. 

 
Local protrusion signals at a given time point are calculated by 

∂S + 
(r,⎮ ) 

= ∇2 S 
+ (r,⎮ )K 

 
− S + (r,⎮ )K 

 
+ max (G ([ f (S + (r,⎮ ) − S − (⎮ ),© , ⎣) 
+ P 

 
]N ) , 0) 

∂⎮ diffuse decay baseline burst 
 

, which consists of deterministic terms describing the propagation and decay of 
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protrusion signals along the cell periphery (approximation of the diffusion of signaling 

proteins within the cytoplasm), and a stochastic term accounting for local stimulation and 

generation of new signals via a positive feedback loop. For computational simplicity, the 
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propagation term (diffusion of signals) is modeled as one-dimensional diffusion along the 

cell perimeter, though the actual process may occur across the more, if not the entire, cell 

via multiple signaling pathways affecting actin cytoskeletal reorganizations at the cell 

surface. The decay term accounts for processes that dampen signals such as 

dephosphorylation events, diminished energy levels, proteolysis, etc. The feedback loop 

is implemented to generate more protrusion signals in protruding regions because 

evidence suggests that signaling cascades for protrusion act as amplifiers of the stimulus, 

in addition to transducers (Ma, et al., 2004). The protrusion signals are generated with an 

average    magnitude    of    Nburst      at    an    average    rate    of    bursts    expressed    as 
 

f (S 
 
+ (r,⎮ ) − S 
−

 

 

(⎮ ), © , ⎣) + P baseline , where the piecewise linear 
function 

 

f (x, © , ⎣) models 

 

the positive feedback: if x < ⎣ 
 
then 

 

f (x, © , ⎣) = 0; and if x ≥ ⎣ then 
 

f (x, © , ⎣) =[x − ⎣ ]© 
 

where ⎣ represents the takeoff point for the feedback and © is the slope of the response. 
 

P baseline 

 

is a parameter controlling the rate of signal bursts due to internal baseline cell 
 

activities. This parameter encompasses the downstream signaling of receptor-ligand 

binding at the surface which ultimately leads to protrusions. Stochasticity in the 

generation of signals is controlled using a Gaussian distribution function G(a) where a is 

both the mean and the variance. 

Retraction signals at any given timepoint, ⎮, are specified by a global inhibition 
 
rule that is a function of the integration of the protrusion signals over the cell perimeter, 
the cell area (A), and an inhibition constant (C-): S − (⎮ ) = C − A0≡ S + (r,⎮ )dr . 
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While Satulovsky et al. (2008) focus the development of their model and 

calibration of model parameters towards simulating the migratory behavior of Dictyostelium, 

they also report how changes in their model’s parameter values and the additional 

consideration of focal adhesions exhibited model behavior similar to that of fibroblasts, 

neurons, and keratocytes. Here, we initiate model parameter values with those 
 

suggested to be more representative of mammalian cell types (Satulovsky, et al., 2008). 

For a complete list of model parameters and their values, refer to Table 7.1. 
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Table 7.1: Cell Migration Model Parameters. 
 

These parameter values are used in the simulations presented in this study. Note that some of the parameter 
values were suggested by Satulovsky et al. (2008). 
Parameter Definition Biological Meaning Suggested Value 
Kdiffuse Diffusion constant of 

stimulus along membrane; 
Signal change driven by 
concentration gradients 

Transport of factors that 
promote actin 
polymerization and 
protrusion approximated 
as a 1D diffusion process 
along the periphery 

1.91 x 101 µm2·sec-1
 

(Satulovsky, et al., 2008) 

Kdecay Percentage decay of stimulus 
per cycle; fraction of signal 
decrease per unit time 

Rate of deactivation of 
signals for actin 
polymerization, e.g., 
through 
dephosphorylation, 
proteolysis, ligand 
dissociation, or depletion 

2.42 x 10-2 sec-1
 

(Satulovsky, et al., 2008) 

Pbaseline Average burst rate of signals; 
Number of pulses per unit 
time per unit length at 
maximum fraction of 
occupied receptors 

Average rate of 
spontaneous generation 
of signals that promote 
actin polymerization 

1.81 x 10-2
 

(Satulovsky, et al., 2008) 

Nburst Average magnitude of each 
generated protrusive pulse 

Magnitude of 
spontaneous signals that 
promote actin 
polymerization and 
protrusion 

1.30 x 101
 

(Satulovsky, et al., 2008) 

C Inhibitor concentration per 
unit; concentration of 
retraction signals generated 
per unit spread area per unit 
integrated protrusion signals 

Response of signals that 
promote global cell 
retraction, such as 
RhoGTPases and 
phosphatases like PTP- 
Pest, in relation to 
protrusive activities and 
spreading area 

1.30 x 10-5 µm-3
 

(Satulovsky, et al., 2008) 

R+ Average rate of increase in 
radius protrusion 

Average rate of 
pseudopodium extension 

1.03 x 10-1 µm·sec-1
 

(Satulovsky, et al., 2008) 
R- Rate of fraction decrease in 

radius during retraction 
Rate of retraction, in 
relation to distance from 
cell center; Linear 
dependence on radius 
implies elastic behavior 
of cytoplasm 

2.81 x 10-2 sec-1
 

(Satulovsky, et al., 2008) 

© Slope of positive feedback 
curve 

Rate of new signals 
stimulated by existing 

2.91 x 101 sec-1
 

(Satulovsky, et al., 2008) 



174  

  net signals  
λ Feedback curve take off 

point; X-intercept of the 
positive feedback curve 

Minimal protrusive 
signals required to 
activate the feedback 
loop that promotes actin 
polymerization and 
protrusion 

3.22 µm-1
 

(Satulovsky, et al., 2008) 

RMinimum Minimum distance that any 
one perimeter point can 
retract towards the cell center 

Maintains a minimum 
radius for the cell; 
though a cell can 
morphologically alter 
itself, the minimum 
radius defines the 
minimum cell size 
beyond which the cell is 
incompressible. 

5 µm 

P+ Probability of formation of a 
focal adhesion per unit time 

Probability of the 
formation of a focal 
adhesion in an extending 
perimeter point of the 
cell 

0.015 sec-1 

P-
FA Probability of detachment of 

an already formed focal 
adhesion per unit time 

Probability of the 
detachment of a focal 
adhesion between the 
cell perimeter and the 
environment 

⎛   log( 2) ⎞ 
⎜ − ⎟ 

− ⎜    Thalf    ⎟ P = 1− e⎝ ⎠  = 0.023 
FA 

(based on assumption of bond 
half life, Thalf = 30 sec) 
(Satulovsky, et al., 2008) 

KD Receptor-Ligand 
disassociation constant at 
chemical equilibrium 

Characterizes the 
dynamics of Receptor- 
Ligand disassociation 
and is the ratio between 
the dissociation rate 
constant and association 
rate constant 

Neutrophils (FPR-fMLP): 10 
nM (Herzmark, et al., 2007) 

 
Breast Carcinoma Cells 
(EGFR-EGF): 10 nM 
(Schlessinger, 2002) 

A Phenomenological parameter 
in Hill-type Sigmoidal Curve 

Controls shape of the 
Sigmoidal curve 
describing effect of 
receptor-ligand binding 
dynamics on internal 
signaling 

0.7 

m Phenomenological parameter 
in Hill-type Sigmoidal Curve 

Controls shape of the 
Sigmoidal curve 
describing effect of 
receptor-ligand binding 
dynamics on internal 
signaling 

2.46 

z Phenomenological parameter 
in Hill-type Sigmoidal Curve 

Controls displacement of 
the Sigmoidal curve 
along the y-coordinates 

0.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FA 
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Model of the Receptor-Ligand Dynamics Leading to Intracellular Signaling 

The development of an all-encompassing protein signaling model governing 

cellular phenotypic decisions and behaviors, such as cell motility, is a highly complex 

and daunting task for a number of reasons. Primarily, it is a difficult undertaking because 

many functional protein interactions are not well-understood, and many more are left to 

be determined. Therefore, models of this sort are typically developed based on a highly- 

focused set of key, well-reported interacting molecular species. Deisboeck and coworkers 

have been developing an agent-based cancer model whose phenotypic decision to migrate 

or proliferate hinges on the activation of the PLC© and Raf-MEK-ERK pathways 

downstream of EGFR-ligand binding events. Experimental evidence in various cancer 

cell lines indicate that PLCγ and ERK activation downstream of EGFR signaling 

pathways correlate with a cell’s migratory and proliferative behavior; PLCγ has been 

shown to preferentially activate towards the leading edge of migrating cells (Dittmar, et 

al., 2002; Mouneimne, et al., 2004), while the involvement of the Ras-MEK-ERK 

pathways in cell proliferation has been well established (Carey, et al., 2007; Friday & 

Adjei, 2008; Hilger, Scheulen, & Strumberg, 2002; K. K. Wong, 2009). Deisboeck and 

coworkers model a cell’s response to their microenvironment by way of explicitly 

modeling the signal transduction network, with a system of differential equations, of 

interacting genes and proteins stimulated by EGFR-ligand binding and tracking 

downstream PLCγ and ERK concentrations with respect to time (C. Athale, et al., 2005; 
 

Z. Wang, Birch, & Deisboeck, 2008; Z. Wang, et al., 2007). 
 

Rather than explicitly model a signal transduction network of interacting 

molecules, Satulovsky et al. (2008) apply an alternative approach where the intracellular 

signals  responsible  for  cell  migration  are  modeled  as  randomized  local  bursts  of 
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protrusion signals that diffuse along the cell periphery and are globally inhibited by 

retraction signals. We introduce a representation of receptor-ligand binding mediating 

directed cell motility by biasing the generation of local protrusion signals at each cell 

perimeter point as a function of local ligand concentration. 

As a step towards considering the effect receptor-ligand dynamics on cell 

migration, we introduce a functional relationship between the generation of protrusion 

signals, Pbaseline, at each cell perimeter point and receptor occupancy by ligand(s) based on 

the concept of receptor occupancy theory (Limbird, 2005), where a response to receptor- 

ligand binding events at chemical equilibrium is modeled as a function of occupied 

receptors (FRO). We use a simple ligand-receptor binding model to calculate the FRO at 
 equilibrium: ⎡ C FRO = 

 
⎤ (Herzmark, et al., 2007; Limbird, 2005; S. J. Wang, Saadi, 

⎢ ⎥ 
⎣ C + kD ⎦ i

 
 

Lin, Minh-Canh Nguyen, & Li Jeon, 2004) where i=1 to 360 for each perimeter point. C, 

at each perimeter point, is the ambient ligand concentration (e.g., [EGF], [fMLP]) 

experienced by the entire cell perimeter. In our modeling of neutrophils responding to 

gradients of Formly-Methionyl-Leucly-Phenylalanine (fMLP) binding to fMLP Receptor 

(FPR), we use kD = 10 nM according to binding studies from the literature (Herzmark, et 

al., 2007; Quehenberger, Prossnitz, Cavanagh, Cochrane, & Ye, 1993). Likewise, in our 

modeling of breast carcinoma cells responding to EGF gradients binding to EGFR, we 

use kD = 10 nM (Schlessinger, 2002). Biologically, the use of a model based on receptor 

occupancy theory simulates a cell’s receptor-mediated activity, such as motility, 

acclimating to the immediate microenvironment; Satulovsky et al. (2008) report a 

parameter value for Pbaseline that simulates the rate of generation of new signals promoting 

actin protrusions at the cell perimeter, and consequently cell motility; we modify the 

parameter’s value according to FRO, and refer to it as Pprotrusion(FRO). According to the 
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model, protrusions occur at points along the cell periphery where the net protrusive 

signals (taking into account new signals, diffusing signals, and signals generated due to 

the positive feedback loop) outweigh the global inhibitory signal. A sensitivity analysis 

of the model, where the effect of perturbing Pprotrusion on the leading cell edge on the 

motile behavior of simulated cells, demonstrates that local decreases in the parameter 

value of Pprotrusion as a function of FRO lead to a net increase in local protrusion signals. 

Thus, there is an inverse relationship between the value of Pprotrusion(FRO) and protrusive 

activities. 

Figure 7.2: Application of Receptor Occupancy Theory: Effect of Receptor-Ligand 
Binding Dynamics on Signal Generation. 

LEFT: Sigmoidal curve that describes how changes in receptor occupancy affect the rate new signal 
generation, Pprotrusion, which has an inverse relationship with net protrusive signaling activity. The 
parameters describing the shape of the curve can be tuned according to a particular cell line. The parameter 
values used in this report are available in Table 7.1. RIGHT: Plot of the |slope| of the curve from the left 
panel shows that in order to recapitulate the chemotaxis results from Herzmark et al. (2007), the peak 
difference in signal generation activity across a cell must occur at approximately 50% receptor occupancy, 
or near an ambient ligand concentration equal to the dissociation constant, KD. 

We take advantage of this inverse relationship by linking FRO with the net 

activity of protrusion signals at each simulated cell’s perimeter points. Intuitively, it 

follows that with less FRO, the cell’s local protrusion signals are lower, and with more 
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FRO, the cell’s local protrusion signals are higher. In order to achieve this relationship, 

we assume a sigmoidal relationship between FRO and Pprotrusion until FRO reaches a high 

enough capacity, the resulting Pprotrusion is relatively low, and once receptor-ligand binding 

nears saturation, the resulting Pprotrusion peaks and does not change significantly with FRO 

(see Figure 7.2). We apply a Hill-type curve (El-Kareh & Secomb, 2003, 2005) to model 
 

this sigmoidal behavior, and may be represented as P = 
Pbaseline 

1+ A−1 xm
 

 

+ z , where parameters 
 

A, m, and z are control the shape and magnitude of the curve describing the functional 

relationship; we expect that these parameters may be fit according to experiments or 

theoretical signaling models of comparing receptor-ligand binding with internal signaling 

activities, perhaps a signaling marker such as PLC© (C. Athale, et al., 2005; Dittmar, 

et al., 2002; Mouneimne, et al., 2004; Z. Wang, et al., 2007) or PIP3 (Servant, et al., 

2000). We choose to maintain the rate of generation of protrusion signals by at 

Pbaseline when FRO = 0 to represent baseline cell activity without the presence of ligand 

in the microenvironment. 
 

 
Other Modeling Considerations: Agent-Based Framework, Cell-Cell Sensing, and 

Proliferation 

An agent-based framework is well-suited for the object-oriented programming 

paradigm. Satulovsky et al. (2008) have made available to the public a basic 

implementation of a single cell with their model (source code written in C using a 

structured programming approach). We built an object-oriented framework atop this 

source code in C++ so as to readily call for multiple cells for simulating various 

experimental conditions in vitro and in vivo. In order to account for cell-to-cell contact, 

we implemented a contact detection algorithm (Hogue, 1998) to determine whether or not 

two or more cells are in contact in the virtual space. Without the consideration of cell 
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contact, the virtual cells would have no sense of one another’s presence and simply pass 

through one another. 

At each time step, we iterate through the cell list data structure and exhaustively 

calculate the Euclidian distance between each of the virtual cells. If distanceij  > (ri  + rj ) , 
 

where r is the maximum radius of the cell, then the two cells are not interacting with each 
 

other. However, if  distanceij  ″ ri  − rj 

 

, then the two cells in question are overlapping. 
 

This situation occurs following mitosis in our model, when the two daughter cells are 

placed at the same cell center coordinates as their parent cell. This situation also occurs 

during the initializing of simulations when cells may be randomly seeded close to each 

other. Also this situation can occur when two motile cells run into each other before 

avoiding each other. In our model, when two cells overlap, we implement a rule where 

one of the two cells is randomly chosen to move adjacent to the other cell by a distance 

equivalent to its maximum radius (at that time point) from the other cell’s center; the 

angular position relative to the first cell’s center to which the second cell is moved is 

stochastically chosen. In order to avoid cells from running over each other, we implement 

a rule that cells in contact cannot experience protrusion activity, regardless of the state of 

intracellular signaling, in the cellular region where the two cells are in contact. A virtual 

circle around each cell (with center at the cell’s center and radius defined by the 

perimeter point farthest away the cell center) is defined and this region of no protrusion 

activity is treated as the intersection of the virtual circles (see Figure 7.3). In this region, 

each cell experiences retraction either until there is no more interaction or the perimeter 

point in question has retracted to the minimum radius, and the inherent bias of protrusion 

signals on the non-interacting sides of the cells mobilizes the cells away from each other. 

We treat mitotic events as a simple probability rule. The HL-60 and MDA-MB- 
 
231 cell lines both have a doubling time of approximately 25 hours (Collins, 1987; 
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Korah, Sysounthone, Golowa, & Wieder, 2000). Since our simulation time steps are on 

the  order  of  1  per  second,  we  estimate  the  probability  of  mitosis  per  timestep  as 
1 mitosis 

(25 hours) ⎛ 3600 

 
 
seconds ⎞ = 1.11e-5 . We note that the duration of the simulations in 

⎜ hour ⎟ 
⎝ ⎠ 

this report are on the order of few hours, thus mitosis is not an immediate concern. 

Mitosis has been treated more rigorously in prior agent-based cell models running 

simulations on the order of days and months, where the state of each cell within the cell 

cycle is tracked as a probability function of time (Macklin, et al., 2009) or a protein 

signaling model elicits proliferation by tracking activation of well-reported proliferation- 

related pathways such as Raf-MEK-ERK pathway (Z. Wang, et al., 2007) and levels of 

p27 (Alarcon, Byrne, & Maini, 2004). 

 

Figure 7.3: Two cells Interacting and Responding via Contact Detection Scheme. 

This is an example of two cells interacting with each other during a simulation. The contact detection 
algorithm determines the region of intersection of the two virtual circles surrounding the cells, and 
subsequently introduces retraction of the cells’ perimeter points in the intersecting region. 
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Simulation of In Vitro Microenvironments 

 
Experimental biologists utilize various cell-based assays in combination with 

time-lapse microscopy to monitor cell behavior in controlled environments. A recent 

trend in the cell motility community has been to perform in vitro experimental studies 

using microfabricated chemotaxis chambers (Herzmark, et al., 2007; Lin, et al., 2005; 

Mosadegh, Saadi, Wang, & Jeon, 2008; Roman Zantl, 2006; Saadi, et al., 2007; Saadi, 

Wang, Lin, & Jeon, 2006; S. J. Wang, et al., 2004; C. M. Wells & Ridley, 2005). This 

type of experimental device in conjunction with time-lapse microscopy is a powerful tool 

for investigating the response of cells to chemoattractants in real-time. Cells are seeded 

on a specific portion of a glass slide (we refer to as the channel) where the gradient of a 

chemoattractant such as EGF or fMLP can be finely controlled and stably maintained. 

The glass slide can also be coated with adhesion factors such as Collagen IV and 

Fibronectin to promote adhesion and better simulate in vivo extracellular matrix (ECM) 

conditions. 

For the purposes of comparisons to experimental studies from literature 

(Herzmark, et al., 2007; S. J. Wang, et al., 2004) in this paper, we set up our two- 

dimensional virtual microenvironment as a lattice mesh N microns x M microns (See 

Table 7.2 for specifics). Simulated cells are not constrained to move on the lattice mesh 

points, however we assign the concentration of chemoattractant at each lattice point 

according to the gradient profile in question. Wang et al. (2004) studied chemotaxis of 

MDA-MB-231 breast cancer cells under uniform, linear (y = mx) and polynomial (y = 

Cx4.2) gradients, where m and C are parameters whose value depend on the difference of 
 
EGF  concentration  across  the  channel  (See  Table  7.2).  Herzmark  et  al.  (2007) 

investigated the chemotactic behavior of differentiated HL60 neutrophil-like cells under 
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linear (y = mx) and exponential (y = V0ek(x-x_source) gradient conditions, where V0 is the 

maximum ligand concentration at the source, k is the decay rate of the ligand, and xsource 

is the x-coordinate of the source of the ligand on one side of the channel. We initiate the 

cell motility model with the same microenvironmental conditions as these chemotaxis 

experiments, and compare the results of our simulations with them in order to assess the 

utility of model as a predictive in silico tool for studying cell motility. 

Table 7.2: Microenvironmental Conditions in Chemotaxis Chamber. 

Simulating the gradient profiles considered in Herzmark et al. (2007) with dHL60 neutrophils and Wang et 
al. (2004) with MDA-MB-231 breast cancer cells. The chemotaxis chambers used in Herzmark et al. 
(2007) and Wang et al. (2004) is simulated on N x M lattices with the concentration of ligand calculated at 
each lattice point. 

 
Profile Lattice Model Parameter Values Simulating 

Conditions 
Uniform 400 µm x 400 µm y = V0 V0 = [0 3.906 7.812 

15.625] nM 
Herzmark et al. 
(2007) 

Linear 400 µm x 400 µm 
 
 
 

350 µm x 350 µm 

y = (V0/∆x)x V0 = 45 nM 
∆x = 400 µm 

 
 

V0 = [0 3.906 7.812 
15.625] nM 
∆x = 350 µm 

Herzmark et al. 
(2007) 

 
 

Wang et al. (2004) 

Power 400 µm x 400 µm y = Cx4.2 C = [0.046e-9 
0.092e-9 0.184e-9] 

Wang et al. (2004) 

Exponential 1000 µm x 1000 µm y = V0ek(x-x_source) V0 = 100 nM 
xsource= 400 µm 

Herzmark et al. 
(2007) 

 
 

PROTOYPE MODEL PERFORMANCE: COMPARISON TO IN VITRO EXPERIMENTS FROM 
 

LITERATURE 
 

Chemotactic experiments with both neutrophil-like (Herzmark, et al., 2007) and 

breast carcinoma (S. J. Wang, et al., 2004) cells have reported differential migratory 

responses to chemoattractants that appear to depend on the steepness of the gradient 

profile. Cells exhibit weak (or no) chemotactic response under linear chemoattractant 

 



183 

profiles, as measured by Chemotacic Index metric, and exhibit noticeably stronger 

chemotactic responses under nonlinear chemoattractant profiles. These reports point to 

the differences in ligand concentration a cell experiences across its exposed surface, ∆C, 

relative to the average ambient ligand concentration,  C, experienced by the cell as 

indicative of this differential behavior. Under linear profiles, a cell experiences a constant 

∆C between its front and rear edges, whereas C increases linearly as the cell moves up 

the ligand gradient (see Figure 7.4). Thus, the fractional difference in concentration 

experienced across the cell, 
∅C , decreases as a cell moves up the linear gradient. Under 
C 

exponential profiles (Herzmark, et al., 2007), ∆C is proportional to C; thus 
∅C remains 
C 

constant as a cell moves up the gradient (see Figure 7.5). We use the experimental results

of dHL-60 neutrophil-like cells behavior when exposed to linear and exponential

gradients of fMLP as the basis for initially training and assessing our prototype cell

motility model. We subsequently show that the trained model can predict the differential

behavior seen in MDA-MB-231 breast cancer cells responding to gradients of EGF.

Figure 7.4: Linear Profile in Simulated Chemotaxis Chamber. 

LEFT: Plot of linear gradient of fMLP across the simulated chemotaxis chamber. MIDDLE: Difference in 
ambient fMLP concentration, ∆C, across a “typical” size of diameter 10 µm versus position across the 
chemotaxis chamber. RIGHT: the fractional difference of fMLP concentration experienced across the cell, 
∅C , versus position across the chemotaxis 
chamber. 
C 
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Calibration of Receptor Occupancy Theory-based Signaling Model 

Herzmark et al. (2007) investigate the chemotactic behavior of dHL-60 

neutrophil-like cells exposed for 10 minutes to a linear fMLP gradient with maximum of 

45 nM (see Figure 7.4) and exponential fMLP gradients with a maximum of 100 nM (see 

Figure 7.5). The results are interpreted as the chemotactic index (ratio of the distance 

traveled by a cell towards the up gradient to the total distance traveled by the cell during 

the same time duration) for each cell in relation to the ambient fMLP concentration of the 

cell’s initial position in the channel, Cinitial. Under the linear conditions, the experimental 

results show that the chemotactic index (CI), a measure of chemotactic prowess of a cell, 

steadily decreases from a maximum  of 0.4 to zero (i.e., random motility) as Cinitial 

increases (see Figure 7.6). Under the exponential conditions, the experimental results 

show that the CI steadily increases with Cinitial it peaks near Cinitial = KD, and then steady 

declines (see Figure 7.7). This peak occurring at Cinitial = KD can be predicted using a 

simple relationship which relates the difference in FRO across the leading and rear edge 

of a cell (~10 µm in diameter), ∆FRO, to Cinitial. (see Figure 7.8). Herzmark et al. (2007) 

model the difference in receptor occupancy across a cell as 
 ∅FRO = FRO ⎛ − FRO = Crear  

+ ∅C 
⎞ 
− 
⎛ Crear ⎞ 

= KD ∅C 

front rear 
⎜ (C + ∅C ) + K  ⎟ ⎜ C + K   ⎟  ((C  + ∅C ) + K 

 ) (C  + K   ) 
⎝ rear D  ⎠ ⎝ rear D  ⎠ rear D rear D 

 
 
 

where by assuming ∅C ⊕ (Crear + KD ) , the model simplifies to 
 ∅FRO = KD 

∅C = 
⎛ ∅C  

⎞ 
KDCrear  . Under exponential gradients, the 

 

(Crear  + KD ) 
⎜ ⎟ 
⎝ rear  ⎠ 

 

rear  + KD ) 
 
fractional difference in concentration experienced across the cell, ∅

C 
Crear 

 
, is constant. By 
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2 

 

receptor occupancy theory applied to chemotaxis and according to this simplified model, 
 
 
it follows that the highest CI occurs when KD ∅C 

(Crear  + KD ) 

 
is maximized, which is when 
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Cinitial = Crear = KD (Herzmark, et al., 2007). 

 

Figure 7.5: Exponential Profile in Simulated Chemotaxis Chamber. 

LEFT: Plot of exponential gradient of fMLP across the simulated chemotaxis chamber. MIDDLE: 
Difference in ambient fMLP concentration, ∆C, across a “typical” size of diameter 10 µm versus 
position across the chemotaxis chamber. RIGHT: the fractional difference of fMLP concentration 
experienced across the cell, ∅C , versus position across the chemotaxis chamber. LEGEND: The k 
parameter represents 

C 
the decay constant in the exponential profile (see Table 
7.2).

 

Figure 7.6: Comparison of In Vitro and In Silico Chemotaxis Experiments Under 
Linear Gradient. 

Comparison of the in silico prediction of chemotactic index (CI) vs. starting fMLP concentration
(LEFT) against experimental results (Herzmark, et al., 2007) (RIGHT) under the same linear gradient
conditions. Note the similar decreasing trend of CI with the initial ligand concentration; this
relationship is confirmed 
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by the Pearson correlation coefficient, ρ, comparing the simulated results from our study with the average
trend (blue line) reported by Herzmark et al. (2007).. The solid blue line represents the average trend in the
data, computed from the CI of individual cells (blue dots). The gray lines represent the 95% confidence
intervals, computed from 1000 bootstrap resamples of the data. For the in silico results, 50 cells at multiple
positions across the chemotaxis chamber corresponding to increasing initial ligand concentrations were
simulated. The image in the RIGHT panel was reprinted from Herzmark et al. (2007) with kind permission
from PNAS. 

 

Figure 7.7: Comparison of In Vitro and In Silico Chemotaxis Experiments Under
Exponential Gradients. 

Comparison of the in silico prediction of chemotactic index (CI) vs. starting fMLP concentration (LEFT) 
against experimental results (Herzmark, et al., 2007) (RIGHT) under the same exponential gradient 
conditions. Herzmark et al. (2007) report their results for three regimes of DC = ∆C/Cinitial. The solid blue 
line represents the average trend in the data, computed from the CI of individual cells (blue dots). The gray 
lines represent the 95% confidence intervals, computed from 1000 bootstrap resamples of the data. The red 
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line is the theoretical relationship, CI = k (FRO front  − FROrear ) , postulated by (Herzmark, et al., 2007), 
where k is a parameter fit according to experimental data. Note the similar increasing trend of CI as the 
initial ligand concentration approaches KD and decreases thereafter; this relationship is confirmed by the 
Pearson correlation coefficients, ρ, comparing the simulated results from our study with the theoretical 
relationship (red line) reported by Herzmark et al. (2007). For the in silico results, 50 cells at multiple 
positions across the chemotaxis chamber corresponding to increasing initial ligand concentrations were 
simulated. The x-axis is reported in log10 scale. 476, 1023, and 372 cells were tracked for the three regimes 
(in order of increasing DC) reported by Herzmark et al. (2007). The images on the RIGHT panel were 
reprinted from Herzmark et al. (2007) with kind permission from PNAS. 

 
Using the experimental data of dHL-60 cells responding to gradients of fMLP as 

an endpoint for comparison and choosing KD = 10 nM for fMLP-FPR binding dynamics 

(Herzmark, et al., 2007; Quehenberger, et al., 1993), we vary the shape of the curve 

linking receptor-ligand binding to intracellular signals leading to actin cytoskeletal 

reorganization in our model until we recapitulate the cell behavior seen experimentally. 

Based on dose-response relationships seen in pharmacodynamics (El-Kareh & Secomb, 

2003, 2005), we hypothesized that shape of curve to be sigmoidal: at each perimeter point 

on the cells, intracellular signaling activity is maintained at FRO = 0% and slowly ramps 

up as receptors and ligands form complexes, and ultimately peaks as receptors saturate 

(FRO  100%); this relationship is achieved by manipulating Pprotrusion(FRO) (see Figure 

7.2). Furthermore, in order to recapitulate chemotactic prowess maximizing near Cambient 

= KD (as seen experimentally), the slope of the curve must be steepest at this point (see 
 
Figure 7.2). 

 
We run chemotaxis simulations using the  functional  relationship depicted in 

Figure 7.2 between FRO and the rate of generation of signals driving actin protrusions 

under linear and exponential gradients (Table 7.2) for 10 minutes. Our results show we 

are able to recapitulate CI vs. Cinitial profiles similar to those reported by Herzmark et al. 

(2007), thus supporting the functional link (and its shape) between FRO and intracellular 

signaling we introduced into our cell motility model (see Figures 7.6 and 7.7) and 

indicating that our model calibration was successful. We found that the chemotactic 
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behavior of the cells was sensitive to the shape of the curve, and that the sigmoidal curve 

shape depicted in Figure 7.2 is necessary to reproduce the dHL-60 chemotactic prowess 

in response to fMLP gradients. 

Figure 7.8: Linear and Nonlinear-Power Profiles in Simulated Chemotaxis Chamber for 
MDA-MB-231 Breast Cancer Cells Responding to EGF. 

A) LEFT: Plot of linear gradient of EGF across the simulated chemotaxis chamber. MIDDLE: Difference 
in ambient EGF concentration, ∆C, across a “typical” size of diameter 10 µm versus position across the 
chemotaxis chamber. RIGHT: the fractional difference of EGF concentration experienced across the cell, 
∅C , versus position across the chemotaxis chamber; the plot is consistent for this profile regardless of
the
C 

value of the constant, C. LEGEND: The m parameter represents the slope of the linear profile (see Table 
7.2). B) LEFT: Plot  of nonlinear-power gradient  of EGF across  the simulated chemotaxis  chamber.
MIDDLE: Difference in ambient EGF concentration, ∆C, across a “typical” size of diameter 10 µm versus
position  across  the  chemotaxis  chamber.  RIGHT:  the  fractional  difference  of  EGF  concentration 
experienced across the cell, ∅C , versus position across the chemotaxis chamber; the plot is consistent for 

C 
this profile regardless of the value of the constant, C. LEGEND: The C parameter represents the constant in 
the power profile (see Table 7.2). 
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Validation: Breast Carcinoma Cells Responding to EGF Gradients 

Wang et al. (2004) performed chemotaxis experiments with MDA-MB-231 breast

carcinoma cells under linear and nonlinear gradient conditions of EGF (Table 7.2). As an

external test for the motility model, whose link between receptor-ligand binding and

intracellular signaling activity we calibrated in the previous section, we simulate the

chemotaxis chamber conditions presented in Wang et al. (2004) (see Table 7.2), and

evaluate the performance of our model in comparison to the experimental results. 
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Figure 7.9: Prediction of Differential Motile Behavior of MDA-MB-231 Breast Cancer 

Cells Responding to EGF. 
 

A) Trajectories of cells experiencing linear gradients with  maximum [EGF] of 4, 8, and  16 nM  in 
chemotaxis chamber. B) Trajectories of cells experiencing nonlinear gradients (polynomial) with maximum 
[EGF] of 4, 8, and 16 nM in chemotaxis chamber. Like Wang et al. (2004), the analysis was divided into 
two regimes: x < 200 µm (where cells experience a shallow gradient) and x > 200 µm (where cells 
experience a steep gradient). Refer to Table 7.1 and 2 for details regarding the motility parameters and the 
gradient profiles. 

Based on EGF-EGFR binding studies from the literature, we found that KD ranges 

from 10 to 20 nM (A. DeWitt, et al., 2002; Kholodenko, et al., 1999; Schlessinger, 2002). 

In our simulations, we choose KD = 10 nM. Under linear gradient conditions, with 

varying slopes (see Table 7.2), our simulations agree with the reported experimental 

results: using CI as the metric for chemotactic prowess, there is no noticeable directed 

motility and the migration speeds are on the order of 1 µm/min (Figure 7.10). Under 

nonlinear gradient conditions, with a profile modeled as y = Cx4.2 (see Table 7.2), our 

simulations also agree with the reported experimental results showing the same 

differential behavior in motility between the first half of the chemotaxis chamber (where 

the gradient is shallow) and the second half of the chemotaxis chamber (where the 

gradient is steep) (7.10). We note that unlike linear and exponential gradients used to 

calibrate the cell motility model’s functional link between receptor occupancy and 

internal signaling, the gradients established by the power relationship y = Cx4.2  have 
 

neither a constant ∆C (linear) or 
∅C (exponential); rather both vary throughout the 
C 

 

chemotaxis chamber as a function of distance from the EGF source (see Figure 7.8). By 

only considering the dissociation constant, KD, for EGF-EGFR as the free parameter to 

set according to values reported in the literature, we show that it is possible to predict the 

experimental results of a different cell type responding to a different ligand via a different 

receptor experiencing a different gradient profile. This is a significant result because we 

calibrated the shape of the Pprotrusion(FRO) curve according to the motility data from 
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(Herzmark, et al., 2007) under linear gradient conditions, internally validated the curve 

on motility data from (Herzmark, et al., 2007) under exponential gradient conditions, and 

externally validated the performance of the model by comparing to motility data from (S. 

J. Wang, et al., 2004) of a different cell type responding to linear and nonlinear EGF 

gradients. This computational result is compelling and supports that the mechanisms 

underlying receptor-ligand binding leading to chemotaxis are indeed conserved across 

different cell types and that spatial gradient sensing is all that is necessary for cells to 

successfully migrate preferentially towards gradients of ligand (Herzmark, et al., 2007). 
 

 
Using a Protein Signaling Model to Justify the Functional Link Between Receptor- 

Ligand Binding and Signal Generation Leading to Motility 

Rather than presume that the shape of the curve describing  the relationship 

between occupied receptors and intracellular motility signaling to be accurate solely on 

the basis of fitting it so as to reproduce experimental chemotaxis results, we sought to 

validate the shape of the functional relationship based on a biochemical understanding of 

the pathways involved in cell motility. To this end, we use the signaling model reported 

by Wang et al. (2007) to simulate lung cancer cells’ decisions to migrate or proliferate, to 

investigate the relationship between EGF-EGFR binding dynamics and the generation of 

Phospholipase C gamma (PLC©) under various microenvironmental EGF 

concentrations. 

PLC© has been shown to preferentially concentrate at the leading edge of migrating 
cells, 

 
and is used as the molecular signal in the agent-based model reported by Wang et al. 

(2007) to trigger a migratory phenotype. In keeping with the philosophy of our scientific 

peers, we chose phosphorylated PLC© to be a molecular signal of migration; we 
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assume its generation marks increased net protrusive activity necessary for migration. 

Based on our results thus far, we hypothesize it would also have an inverse 

relationship with 

 
 
Pprotrusion(FRO). We ran the system of differential equations describing the mass 

action kinetics of EGF-EGFR binding and downstream generation of phosphorylated 

PLC© for a simulation time duration of 200 seconds with a microenvironmental 

[EGF] = 1 nM, and kept record of [Phosphorylated PLC©] and [EGFR-EGF] at 

steady state; we chose 200 seconds as the time duration for the simulation because it 

allowed enough time for the signal to peak and reach steady state. We repeat this 

procedure for [EGF]  = 2, 3, 4,…1000 nM of EGF, each time keeping record of 

the [Phosphorylated PLC©] and [EGFR-EGF] at steady state. We plot 

[Phopshorylated PLC©]steady state (unit normalized) versus the corresponding [EGFR-

EGF] steady state (unit normalized) for 1 to 1000 nM of [EGF]microenvironment (See Figure 

7.10). The general shape of the curve matches the sigmoidal features necessary for 

our model to recapitulate the chemotaxis results. We consider this result, which is 

founded on a well-calibrated protein signaling model from the literature 

(Kholodenko, et al., 1999; Z. Wang, et al., 2007; Wiley, et al., 2003), as biological 

justification for our functional link between receptor-ligand binding dynamics and 

intracellular signaling governing actin cytoskeletal reorganization, and consequently 

motility. 
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Figure 7.10: Protein Signaling Model Predicts Generation of Phosphorylated 

PLC© with respect to EGFR-EGF complex. 
 

LEFT: [Phosphorylated PLC©] (unit normalized) vs. [EGFR-EGF complex] (unit normalized) at 
steady state. PLC© has been shown to preferentially activate towards the leading edge of migrating cells. 
RIGHT: Due to the inverse relationship between the model parameter Pprotrusion and local protrusive 
activities, we show the perceived relationship between Pprotrusion and [EGFR-EGF complex] according to 
the activation of PLC© predicted by the protein signaling model (Z. Wang, et al., 2007). 

 
 
DISCUSSION AND CONCLUSION 

 
Here we have presented a modeling framework for cell motility that takes into 

account receptor-ligand binding dynamics. We show that it is possible to simulate the 

chemotactic behavior of neutrophil-like and breast carcinoma cells responding to 

gradients of fMLP and EGF, respectively, by introducing the concept of receptor 

occupancy theory to provide a functional link between local chemoattractant levels and 

internal signaling leading to cytoskeletal restructuring at the cell surface that ultimately 

drive cell migration. This type of model provides a valuable link for scientists to create 

and test hypotheses at the molecular scale that impact cellular and tissue scale behavior. 

Our simulation results were able to predict, albeit using an abbreviated molecular 

model for the effect of receptor-ligand binding on internal protrusion signaling, the 

differential motile behavior of MDA-MB-231 breast cancer cells to polynomial-shaped 
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EGF gradients, after calibrating the model according to neutrophil-like cells responding 

to linear- and exponential-shaped fMLP gradients. This is compelling because we 

calibrated the model on one cell type responding to a linear gradient, and use it to predict 

behavior under different gradient conditions and in a different cell type. These results 

provide validation for the capability of the model to predict cell motility under various 

gradients, and support that the underlying mechanisms of cells responding to gradients of 

chemokines are conserved across cell types regardless of receptor and ligand so long as 

an understanding of their binding dynamics known. Our results also support that gradient 
sensing  is  likely  achieved  in  eukaryotic  cells  by  a  spatial  method,  where  cells 

dynamically compare the microenvironment on different locations on their surface. 

After testing Pprotrusion(FRO) of various shapes, we found that a sigmoidal shaped 

curve is necessary to recapitulate the correct motility behavior (as defined by chemotactic 

index vs. ambient ligand concentration profiles) by our model in comparison to our 

training data. This result led us to hypothesize that the receptor dynamics are indeed 

sigmoidal. In  order to test  this  hypothesis,  we turned to a protein  signaling model 

reported in the literature describing key signaling events downstream of EGFR-EGF 

binding, where chemical kinetic parameters were experimentally-derived or robustly 

estimated. Specifically, we compared the shape of the curve describing activity of a 

marker for cell motility, PLC©, in response to local EGF levels in the 

microenvironment to the shape of the sigmoidal curve we found necessary to 

recapitulate the motility behavior seen experimentally. This comparison validates our 

hypothesis because both curves share the same sigmoidal shape. 

We view this study as a first integration of a molecular-scale signaling model into 

our ABM framework, and  as a demonstration of a method for implementing other 

molecular signaling models in future studies. Furthermore, this study points to the 

potential of analyzing molecular signaling models to find appropriate “shortcuts” to use 
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in full agent-based models. This modeling framework provides a tool for testing 

circumstances and/or hypotheses that may affect cell motility, such as interfering with 

EGFR dynamics via an inhibitor (e.g., Erlotnib) or the impact of Her2/neu receptors on 

chemotaxis of cancer cells responding to EGF gradients given that Her2/neu is known to 

dimerize with the EGFR-EGF complex (W. W. Chen, et al., 2009). Elucidating the role 

of Her2/neu on motility is a particularly interesting in the case breast cancer, where 

approximately 30% of invasive breast cancers are known to express the receptor. 
 
MATERIALS & METHODS 

 
We initialized our in silico chemotaxis chamber according to the conditions used 

by Herzmark et al. (2007) to investigate chemotaxis prowess of dHL-60 neutrophil-like 

cells. For each simulation, we introduced fMLP gradients to the microenvironment 

according to the profiles and parameters listed in Table 7.2. We assumed the simulated 

cells were surrounded by a bath with sufficient levels of nutrients so to not inhibit the 

potential for proliferation or induce apoptosis. We simulated the motility of 50 cells 

initialized along evenly distributed increments across the in silico chemotaxis chamber in 

order to assess the chemotactic prowess of our virtual cells at different initial ambient 

fMLP concentrations. Simulations were run for 10 simulated minutes with one second 

timesteps. The chemotactic index (CI) was calculated for each cell as the ratio of its net 

displacement towards the gradient to its total trajectory. The average trend in the data was 

computed from the chemotactic index of the individual cells. The 95% confidence 

intervals depicted in Figures 7.6 and 7.7 were computed from 1000 bootstrap resamples 

of the data. 

Subsequently, we initialized our in silico chemotaxis chamber according to the 

conditions used by Wang et al. (2004) to study chemotaxis of MDA-MB-231 breast 

carcinoma cells responding to EGF gradients. We simulated linear and polynomial 
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gradients of EGF according to the profile and parameters listed in Table 7.2. We seeded 

the chemotaxis chamber with 49 cells evenly distributed across the two-dimensional 

Cartesian plane. Simulations were run for three simulated hours with one second 

timesteps. 

The cell motility model was written in object-oriented C++. Simulations were run 

on a high performance server with two 3.16 GHz quadcore Intex Xeon processors, 2x6 

MB of L2 cache and Core2 architecture, 1333 MHz FSB, and 16 GB of RAM. On 

average, the ratio of processing time to simulation time is 1.2e-3 per cell. 

The data analysis and plotting were performed using MATLAB 7.1. 
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Appendix

CHAPTER 6 SUPPLEMENTARY FIGURES AND TABLES 

Figures 

 

Figure A.6.1: PCA of Combined Doane et al. and Farmer et al. Cohorts where Data is 
Median-Centered per Probeset by Institution. 

Principal Components Analysis (PCA) of the combined cohorts from Farmer et al. (Farmer, et al., 2005) 
and Doane et al. (Doane, et al., 2006) on natural-log scaled data quantile-normalized using the 
AffyProbeMiner-provided chip definition file (CDF) with median-centering per probeset by institution; p- 
value < 0.0001. Information: The plot uses the first two principal components. Circles represent the Doane 
et al. cohort and asterisks (*) represent the Farmer et al. cohort. The hypothesized “molecular apocrine” 
phenotype is represented by the color green and “non-molecular apocrine” phenotype by the color blue. 
The p-values are calculated using the Fasano & Franceschini statistical test with the null hypothesis that the 
two phenotypes cannot be differentiated on the basis of two-dimensional, principal components 
coordinates. 
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Figure A.6.2: Hierarchical Clustering of Combined Doane et al. and Farmer et al. 

Cohorts where Data is Median-Centered per Probeset by Institution. of the combined cohorts from Farmer 
et al. (Farmer, et al., 2005) and Doane et al. (Doane, et al., 2006) on natural-log scaled data quantile- 
normalized using the AffyProbeMiner-provided chip definition file (CDF) with median-centering per 
probeset by institution. Information: Clustering was performed using the Pairwise-Average Linkage 
method and measures distance using Euclidian Distance. The samples cluster according to institution and 
not by their “molecular apocrine” or “non-molecular apocrine” phenotype as indicated by 1 and 0, 
respectively, preceding the sample ID. 

 

Figure A.6.3: PCA and Hierarchical Clustering on Doane et al. Cohort filtered for 400- 
gene signature by Farmer et al. 

The 400-gene signature was identified by Farmer et al. to discriminate the molecular apocrine from the 
basal phenotype. The original data normalized by Doane et al. was filtered for the 400-gene signature. 
(LEFT) PCA plot of the filtered data. (RIGHT) Hierarchical Clustering of the filtered data. Information: 
(LEFT) The plot uses the first two principal components. The hypothesized “molecular apocrine” 
phenotype is represented by the color green and “non-molecular apocrine” phenotype by the color blue. 
(RIGHT) Phenotypes of “molecular apocrine” or “non-molecular apocrine” are indicated by 1 and 0, 
respectively, preceding the sample ID. Clustering was performed using the Pairwise-Average Linkage 
method and calculates distance using Euclidian Distance. 
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Figure A.6.4: PCA and Hierarchical Clustering on Farmer et al. Cohort filtered for 138- 
gene signature by Doane et al. 

The 138-gene signature was identified by Doane et al. to discriminate the molecular apocrine from the
basal phenotype. The original data normalized by Farmer et al. was filtered for the 138-gene signature.
(LEFT) PCA plot of the filtered data. (RIGHT) Hierarchical Clustering of the filtered data. Information: 
(LEFT)  The  plot  uses  the  first two  principal  components.  The  hypothesized  “molecular  apocrine” 
phenotype is represented by the color green and “non-molecular apocrine” phenotype by the color blue.
(RIGHT) Phenotypes of “molecular apocrine” or “non-molecular apocrine” are indicated by 1 and 0,
respectively, preceding the sample ID. Clustering was performed using the Pairwise-Average Linkage
method and calculates distance using Euclidian Distance. 

Figure A.6.5: Heat-map of Gene Cluster 7 Identified by Unsupervised Gene Shaving. 
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This heatmap of gene cluster 7 identified by unsupervised Gene Shaving includes both the AR and FOXA1 
genes. This 16-gene cluster alone is able to act as a gene signature for separating the molecular apocrine 
samples in the 199 ER- from the remaining samples. 

 
Tables 

 
Table A.6.1: The 100-probeset signatures for differentiating molecular apocrine and non- 

molecular apocrine phenotypes derived strictly from Doane et al. cohort. 
 

This gene signatures was derived from the Doane et al. samples following normalization using XPN on the 
combined Doane et al. and Farmer et al. samples, with  updated probeset definitions. There are 76 
overlapping genes between this signature and that from Table A.6.2. This signatures was derived using 
Significance Analysis of Microarrays (Tusher, et al., 2001). 
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Table A.6.2: The 100-probeset signatures for differentiating molecular apocrine and non- 

molecular apocrine phenotypes derived strictly from Farmer et al. cohort. 
 

This gene signatures was derived from the Farmer et al. samples following normalization using XPN on the 
combined Doane et al. and Farmer et al. samples, with  updated probeset definitions. There are 76 
overlapping genes between this signature and that from Table A.6.1. This signatures was derived using 
Significance Analysis of Microarrays (Tusher, et al., 2001). 
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Table A.6.3: The 346-probeset signature for differentiating molecular apocrine and non- 

molecular apocrine phenotypes. 
 

The signature was identified using Significance Analysis of Microarrays software on the Doane et al. and 
Farmer et al. cohorts at a false discovery rate of 0%. 
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Close Network Interactions Identified by MetaCore for the Select Interacting Gene 
Clusters 

 
 
 
Robust Bayesian Network Analysis indicates interactions amongst 14 of the top 26 gene 

clusters identified by Gene Shaving (Figure 6.9). MetaCore identifies close network 

relationships amongst the genes in Clusters 7, 16, 24, and 71 using Dijkstra’s shortest 

path algorithm and prior knowledge: 
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