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ABSTRACT 
 

The operational ocean wave model needs a sea ice component to simulate the 

global ocean waves. Current ocean wave models treat ice covered regions crudely. The 

purpose of this thesis is to provide a unified continuum model for the wave ice interaction. 

Sea ice is constantly subject to environmental forcing. As a result, its physical appearance 

and mechanical properties vary dynamically. There are three existing classic wave ice 

interaction models: viscous layer, mass loading, and thin elastic plate models. Viscous 

layer models may be used to simulate grease ice, mass loading model is probably suitable 

for pancake ice, and thin elastic plate model may be used to describe a continuous ice 

sheet floating in water. This situation means that for different kind of sea ice we need 

different wave ice interaction models. Recently, a proposed viscoelastic wave ice 

interaction model synthesized the three classic models into one model. Under suitable 

limiting conditions this model converges to the three previous models. Based on this new 

development, the present study expands the viscoelastic model for wave propagation 

through two connected ice covered ocean regions. By doing so, the complete theoretical 

framework for evaluating wave propagation through various ice covers may be 

implemented in the operational ocean wave models. In this thesis, we introduce a three-

layer viscoelastic model to include the eddy viscosity in turbulent boundary layer under 

the ice cover into previous viscoelastic model and the methods to calculate wave 

reflection and transmission. We also use recent results of a laboratory study to determine 

the viscoelstic model parameters with an inverse method. The thesis concludes with a 

numerical procedure for implementing the viscoelastic dispersion relation into the ocean 

wave model and some ideas of model parameterization.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Overview 

Wave propagation under sea ice covers is a key issue in contemporary marine 

science and engineering. Its significance may be explained from two perspectives: one 

from the wave modeling and the other from the ice modeling. Global wave climate has 

both environmental and engineering implications. It contributes to and is in turn 

influenced by all mass, momentum, and energy exchange between air and sea. Shipping, 

deep sea and offshore operations need accurate information of the wave condition. 

Forecasts and hindcasts of wave conditions have relied on wave models with a long 

history of development [1]. Because of the lack of economic needs and the negligible 

wave intensity in the polar regions, these wave models have focused on the lower 

latitudes. As the ice reduction accelerates in recent years, particularly in the Arctic region, 

wave intensity has dramatically increased [2]. Simultaneously increasing interests in 

economic development and environmental concerns in this region push for a wave model 

that may be applied in the ice covered seas. 

From the ice modeling point of view, sea ice covers about 7% of the Earth’s 

surface, or about 10% of the world’s oceans. In the north, it is found in the Arctic Ocean 

and a few sub-Arctic seas. In the Antarctic, it occurs in various areas around the continent 

of Antarctica. Like wave models, sea ice models have had a long history of development 

as well [3]. The recent rapid decline of Arctic ice that exceeds all model predictions 

indicates that important processes are still missing from these models. One of such 

processes is the wave induced fracture of ice cover. Fractured ice covers effectively 
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increase their surface for heat exchange and hence the melting rate [4], which could 

accelerate ice reduction. In addition, waves may contribute to the dynamics of ice cover 

by causing it to drift [5] and raft [6]. To improve the existing sea ice models, we need to 

examine the missing wave effects.  

At present, existing operational wave models can only treat ice covers crudely. 

For example, in WAVEWATCH III (WW3) [7], an ice cover is considered as a stepwise 

filter in such a way that the fraction of wave energy flux at any location varies linearly 

between 0 and 1, with two threshold values controlling this stepwise linear variation, both 

are related to the local ice concentration. The group velocity is assumed unaltered from 

the open water condition. This model was established at a time when the only available 

ice parameter was the ice concentration and the wave conditions in the Arctic were not of 

great concern. In reality, waves can penetrate into ice-covered seas over a very long 

distance. Along its passage, wave energy is dissipated by the ice field [8]. The attenuation 

rate depends on the wave period, ice concentration, thickness and floe size distribution 

[9-11]. In turn, waves may break the ice floes and further complicate their interactive 

nature [12]. In addition, wind-wave generation may be modified greatly in the presence 

of a partial ice cover [13, 14]. In view of the rapidly changing wave and ice conditions in 

the Arctic, there is an urgent need to improve the crude parameterization of wave 

propagation under sea ice. Integrating ice effects into wave models will advance wave 

predictions in ice-covered seas. With better remote sensing capabilities, information on 

ice conditions will improve. Wave models that can utilize this improvement need to be 

developed. 
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An ice covered region may be classified roughly into landfast ice, shear zone, and 

the marginal ice zone (MIZ). This classification is based on the distance from the coast. 

Farthest from the coast, the MIZ is adjacent to open water. In this zone, sea ice has 

significant dynamic behavior influenced by ocean waves. In turn, the wave field is also 

significantly modified by the presence of ice covers. For different kinds of ice covers, 

there are three classic models of wave propagation under an ice cover: mass loading [15, 

16], thin elastic plate [17-20] and the viscous layer model [21, 22]. All these models can 

reflect some material properties of the sea ice. Wang and Shen [23] generalized these 

three models to synthesize them into one viscoelastic model. It is hoped that such 

generalized model may be able to smoothly bridge different types of ice covers by a 

proper parameterization scheme. 

In the following chapters, we first briefly review the framework for a wave model 

with sea ice effect. We will focus on the dispersion properties of ice covers, the way they 

might change the wave speed and attenuate wave energy. Based on the recent viscoelastic 

models, we then discuss the transmission and reflection between ice covers of different 

material properties. Two mathematical approaches are introduced. The methods of 

implementation and parametrization for the viscoelastic model are discussed. 

In the following sketch, we show the relations among chapters. To expand the 

ocean wave model by including the sea ice effects, we first need to know the ice 

morphology from remote sensing. With experimental and field study, we can bridge ice 

morphology and ice parameters, such as elasticity and viscosity. Inputing these 

parameters into the three-layer viscoelastic model, we can calculate wave attenuation and 
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reflection/transimission coefficients. With these results, the sea ice source term can be 

determined. 
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1.2 Research accomplishments 

This thesis consists of eight completed tasks: 

1. Reviewed previous theories and research on wave ice interaction;  

2. Developed a three-layer viscoelastic model to generalize previous classic wave ice 

interaction models;  

3. Designed an efficient numerical method to implement viscoelastic model into ice 

covered ocean wave model;  

4. Investigated the reflection and transmission coefficients between two connected ice-

covered ocean region using the approximate solution method; 

5. Investigated the reflection and transmission coefficients between two connected ice-

covered ocean region using the variational method;  

6. Experimentally studied the wave propagation under ice covers;  

7. Numerically simulated the gravitational waves of viscous and viscoelastic material in 

a rotating tank with large eddy simulation (LES) and level set method;  

8. Governing equations for wave scattering by randomly distributed ice floes for global 

ocean wave model. 

1.3 Contribution of the present research 

The present theoretical study helps to build a comprehensive viscoelastic model 

capable of describing wave propagation through a variety of ice covers. This model is 

completed by an efficient algorithm interface with WW3, solving the energy 

transmission/reflection between different ice, using inverse method to determine the 

model parameters, unified the dissipation from water body and the ice cover into one 

single model.  
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CHAPTER 2 BACKGROUND 

 

In this chapter we provide the background of ocean surface wave propagation under 

ice covers.  

2.1 Operational ocean wave model 

Ocean surface wave models are used to describe the evolution of the ocean wave 

energy generated by wind and modified by various transport and source/sink mechanisms. 

These models consider atmospheric wind forcing, nonlinear wave interactions, and 

dissipation. They output statistics describing wave heights, periods, and propagation 

directions for regional seas or global oceans. Such wave hindcasts and wave forecasts are 

extremely important for shipping and offshore construction interests, coastal management, 

and short or long term ecological and environmental evaluations.  

For WW3, the governing equations for the wave state are [24] 





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NNk
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Where N  is the wave action density spectrum, it equals to the energy density of the 

surface elevation divided by the angular frequency: /EN  . Formally, N  and S  

http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Wind_wave
http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Wave_height
http://en.wikipedia.org/wiki/Wave_period
http://en.wikipedia.org/wiki/Hindcast
http://en.wikipedia.org/wiki/Forecasting
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depend on wave number k , direction ,   sin,cos kkk , the spatial coordinates 

),( yxx  and time t ; ),,;,( tyxkNN   and ),,;,( tyxkSS  .  yx UU ,U is the 

velocity vector of the current. Here 
2

),;(ˆ2 tgE xk , in which   is the surface elevation. 

H  is the water depth, kcg  /  is the group velocity, s  is a coordinate in the 

direction  , m  is a coordinate perpendicular to s , and S represents the net source term 

from wave generation and various dissipations. The source S  contains several terms: 

icedsnlin SSSSS                                        (2.6) 

Here, inS  is the energy input term from wind effect, nlS  is the nonlinear interaction term, 

dsS  is the dissipation term, and iceS is the term due to sea ice effects.  

2.1.1 Wind input term 

The wind input term represents the energy transfer from air motion to water wave 

motion. The main issue for this term is how to derive the wave energy growth rate, g . 

NS gin                                                   (2.7) 

Current ocean wave models are mainly based on linear or quasi-linear theories to 

estimate the wave energy growth rate. Such kinds of theories started from Miles [25] who 

developed a quasi-laminar approach to predict wind wave generation. This theory 

considered the resonant interaction between the wave-induced pressure fluctuations and 

the free surface waves and captured the main mechanism for wind wave generation. After 

Miles’ theory, improvements were made to include the effect of boundary layer 

turbulence with mixing-length modeling or turbulent energy closure for calculating the 
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turbulent Reynolds stress [26-30]. For ice covered regions, the current models multiply 

this source term by the available free surface fraction. 

2.1.2 Nonlinear wave-wave interactions term 

The nonlinear wave-wave interactions play an important role in the evolution of 

ocean wave spectrum. The reason is that ocean waves are regarded most of the time as 

weakly nonlinear and dispersive. The vertical displacement of the free surface is still 

assumed with small amplitude. Therefore, the nonlinear wave governing equations are 

obtained by means of a perturbation expansion with starting point being the linear, freely 

propagating ocean waves. The evolution equations for wave action density spectrum were 

first derived by Hasselmann [31-33] with a quasi-normal assumption. Later, Zakharov 

[34] derived the evolution equations using the Hamiltonian variational approach [35]. No 

adjustment is made to this term in ice covered regions.  

2.1.3 Dissipation term 

The dissipation term describes the energy loss by continuous viscous dissipation and 

intermittent process of wave breaking. Different from laminar flow, turbulent motions 

and other organized motions such as Langmuir circulation may further enhance the 

dissipation. The key issue is to estimate the wave energy decay rate 
d . 

NS dds                                                    (2.8) 

There are three main models for the dissipation term. The first model assumed that the 

dissipation as local in the spatial domain by Hasselmann [36]. In the second model, 

Phillips [37] assumed that the dissipation was local in the wavenumber domain. The third 

model from Jenkins [38] considered the effect of large scale ocean motions and ocean 
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turbulence with eddy viscosity. All of these models were constructed for open water. If 

one includes the effect of ice cover, the problem becomes more complex. In that case, the 

dissipation term and the ice term may have overlaps in the models. No theoretical work 

has been conducted on how the presence of ice may affect the above three models. In the 

current operational wave models, dsS  is multiplied by the fraction of open water for ice 

covered regions.  

2.1.4 Ice term 

There are two identified mechanisms that may change the forward propagating wave 

energy under ice covers: attenuation and scattering. Considering both mechanisms, the 

ice source may be split into two terms: 

nciceciceice SSS ,,                                              (2.9) 

Where ciceS ,  is the term that describes the directional redistribution of wave energy by 

scattering. This is a conservative term. nciceS ,  is the term that describes the wave energy 

dissipation due to ice cover. This is a non-conservative term. The non-conservative term 

can be modeled as the following [39]: 

igncice kcES 2/,                                         (2.10) 

Here ik  is the wave attenuation rate of the ice-covered ocean, and gc  is the group 

velocity of the wave propagating in the ice-covered ocean [40, 41]. The conservative 

term results from the wave scattering effect due to ice floes. As will be discussed later, 

this term is related to the wave reflection and transmission at any discontinuity of the ice 

cover. For ciceS , , Masson and LeBlond [13] first derived the linear Boltzmann equation. 
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With the Green function method they calculated the scattering function due to rigid 

circular ice floes. They then used the result to study the wave spectra evolution by 

including wind energy input, wave breaking damping, and nonlinear wave interactions. 

Meylan et al. [42] developed another form of the linear Boltzmann equation to calculate 

wave scattering by circular ice floes. The derivations for the two models are compared in 

Meylan and Masson [43]. Masson and LeBlond’s formulation was used by Perrie and Hu 

[14] together with another wave attenuation model proposed by Liu and Mollo-

Christensen [41] to study wave spectra evolution including wind source, wave breaking, 

and nonlinear interaction. They compared the calculated wave amplitude change with 

field data reported in [44], in which, a roll-over phenomenon was observed, i.e. 

attenuation did not monotonically increase with wave frequency, instead, after some peak 

value, further increase of wave frequency resulted in decrease of the attenuation rate. 

Perrie and Hu [14] were able to demonstrate the roll-over effect with respect to wave 

frequency. 

The non-conservative term nciceS ,  comes from ice induced damping. There have been 

several mechanisms proposed in the past: eddy viscosity beneath the ice cover [41], 

inelastic hysteresis effects within the ice cover [45], and floe-floe collisions [46]. Each of 

these terms needs to be modeled.  

In addition to these source/sink terms discussed above, the group velocity under 

different ice types has to be determined as well. 
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2.2 Types of sea ice covers 

 

Fig. 2-1  Sketch on the spatial distribution of sea ice 

 

As mentioned earlier, according to its proximity to land or sea, sea ice covers may 

be roughly divided into landfast ice (also called fast ice), the shear zone, and the marginal 

ice zone (MIZ), Fig. 2-1. Fast ice is frozen to the coast, often grounded by icebergs or ice 

ridges. In shear zone and the MIZ ice may drift. In the densely packed shear zone drifting 

causes divergence/convergence and shear. These large scale deformations create leads 

and ridges. In the marginal ice zone the ice thickness is relatively low, hence divergence/ 

convergence and shear do not change the surface morphology as significantly as in the 

shear zone. (See http://aspect.antarctica.gov.au/home/glossary-and-image-library, 

http://nsidc.org/gallery for examples of different ice types.) Here is the description of the 

three different sea ice zones from Wadhams [17]: 

http://aspect.antarctica.gov.au/home/glossary-and-image-library
http://nsidc.org/gallery
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“Fast ice: This is ice which grows seaward from a coast and which stays in place 

throughout the winter, while breaking up, drifting away or melting in spring. The fast ice 

is stabilized by the presence of grounded pressure ridges in its outermost parts. Only 

long waves may travel into this region. All high frequency waves are generally attenuated 

before they arrive at the coast. 

The shear zone: This ice forms when drifting pack ice moves against a coastal 

boundary which can be either fast ice or the land itself. The shearing and convergence of 

the pack’s motion generates a band of highly deformed ice which has a higher density of 

ridging than the ice further out in the ocean. Waves that propagate into this region can 

be severely scattered due to the ridges. 

The marginal ice zone (MIZ): the MIZ is that part of the ice cover which is close 

enough to the open ocean boundary to be affected by its presence. Ice in the MIZ has 

much greater freedom of movement than ice in the other two regions, and a number of 

ice-ocean-atmosphere interaction phenomena occur.” 

In the MIZ, due to the high wave energy, it is known that waves may fracture ice 

floes to change the floe size distribution. They may enhance frazil ice production by 

increasing heat transfer. They may regulate the pancake ice size, as well as causing floe 

rafting. Therefore, to model the ice-covered ocean dynamics in the marginal ice zone, we 

need to provide a wave ice interaction model. 

The MIZ is usually divided into three distinct subzones [47]: the edge zone, the 

transition zone and the interior zone. In the edge zone, the intensity of waves is high and 

floes are relatively small, from a few millimeters for grease ice to few meters for 

pancakes. In the transition zone, the wave amplitude and wavelength is moderate after the 
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incoming wave energy is dissipated, floes sizes increase with increasing distance from 

the ice edge. In the interior zone, the incoming wave has been attenuated significantly so 

that no floe fracture occurs, the floe sizes increase abruptly to form a continuous sheet. 

The evolution from open water to grease ice to a continuous sheet is called the “pancake 

ice cycle” [48]. It is observed during the early formation season. Once formed, the 

continuous sheet can break during episodes of strong waves, or pressure variations and 

shear. After breaking, the open water part can form new grease/pancake ice. Very freshly 

broken cover is just a collection of polygonal floes. If no wind and no complex wave 

spectrum, only gentle swells, the ice floe aggregates may remain that way, with open 

water in between if no new ice growth and with grease/pancake gradually forming in 

between otherwise. If there is strong wave, the floes can be pulverized into brash ice. As 

ice edge advances further into the open sea, previously formed collections of ice floes, 

pancake or grease ice, all freeze together to become a continuous ice sheet. Continuous 

ice sheets are populated with cracks, ridges and leads due to wind and current actions. 

The morphology of an ice cover in the MIZ is thus dynamically changing. 

2.3 Wave ice interaction model 

There are three classic wave propagation models in the MIZ: mass loading model, 

thin elastic plate model and viscous layer model. For continuous ice sheet, the thin elastic 

plate model is probably a good model. Mass loading model can describe the disconnected 

pancake ice region, since pancake ice is very small relative to the significant wavelength. 

The viscous layer model is probably a good model for the grease ice region, because the 

dominant effect from grease ice is viscous damping. All three models are useful under 

specific ice conditions. However, field ice conditions are usually a mixture of these 
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distinct types. Hence in an operational ocean wave model it is desirable to have a unified 

formulation to simulate all types of sea ice. Motivated by this need, Wang and Shen [47] 

proposed a viscoelastic sea ice model to include all three classic models into one sea ice 

model.  

2.3.1 Mass loading model 

The mass loading model was the first model for wave propagation under a sea ice 

cover. This model was developed by Peters [15] and Weitz and Keller [16]. The ice floes 

are assumed to be mass points. The material properties of these mass points are irrelevant. 

The dispersion relation derived is, 

kHk
hg icewater

water tanh
2

2


 


.                                         (2.11) 

Here, 
water  is the density of water, 

ice  is the density of ice, h  is the thickness of ice, 

and H  is the water depth. If the ice thickness goes to zero, the dispersion relation 

converges to the open water case when either the ice density or its thickness vanishes: 

kHkg tanh2  .                                              (2.12) 

2.3.2 Thin elastic plate model 

The thin elastic plate model [17] assumed that the ice cover was a very thin uniform 

elastic layer so that the bending theory for a thin elastic plate may be applied. The 

dispersion relation is, 

kHk
hgLk icewater

water tanh
24

2


 


                               (2.13) 
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Here, )1(12/ 23

pEhL  is the flexural rigidity, E  is the elasticity, and 
p  is the 

Poisson ratio. If the rigidity goes to zero, the thin elastic plate model converges to the 

mass loading model. Squire [49] compared the difference between the two models. 

2.3.3 Viscous layer model 

  The viscous layer model was first derived by Keller [21]. In this model, the ice 

cover was assumed as a layer of viscous fluid, and the water part was assumed as inviscid. 

The vertical velocity and stresses are matched along the interfaces of air-ice and ice-

water. Using these equations together with the matched boundary conditions, Keller obtained 

the dispersion relation. Because for a given wave frequency this dispersion relation yields 

complex wave numbers, the model predicts wave attenuation directly. Later, De Carolis 

and Desiderio [22] developed a two-layer viscous fluid model by assuming water part as 

a viscous fluid. However, both Keller’s model and the two layer model cannot predict the 

roll-over phenomenon observed in field data. Liu and Mollo-Christensen [41] assumed 

the ice layer as a thin elastic plate and water as a viscous fluid. The viscosity in water is 

assumed to be the eddy viscosity. The model is able to predict the roll-over phenomenon. 

The roll-over in spatial attenuation predicted from the model comes from the group 

velocity. The temporal decay rate from this eddy viscosity mechanism is in fact 

monotonically dependent on wave frequency. 

2.3.4 Viscoelastic model 

  All three classic models discussed above do reflect the properties of some ice 

covers, but in practice ice covers are continuously changing in space and time. At any 

given location a mixture of different ice type may be present. It is therefore desirable to 



16 

have a unified theory that can smoothly change between ice types by varying some 

phenomenological parameters. With this motivation, Wang and Shen [23] developed a 

viscoelastic model to generalize all three models. The viscoelastic model is similar to 

viscous layer model, but the effective viscosity contains the elasticity part as the 

following, 

 icee iG / .                                           (2.14) 

Here, G  is the shear modulus of ice layer, and   is the viscosity of ice layer. The 

dispersion relation for wave propagation under a viscoelastic ice cover has been 

developed in Wang and Shen [23]. The resulting equation that relates the complex wave 

number to the wave frequency is obtained from setting the determinant of the following 

matrix to zero: 





































LCiMSLSiMCSkNMCkCkNMSk

LikgkgN

SkCkCkikSkik

kik

)()(22

020
222222

222

 .      (2.15) 

In the above, khSk sinh , khCk cosh , hS  sinh , hC  cosh , 
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In Wang and Shen [2010] the above determinant was abbreviated to 

kHgkQc tanh2  ,                                            (2.18) 

in order to directly compare with the open water, mass loading, thin elastic plate theories. 

In this dispersion relation, if we let shear modulus equal to zero, the viscoelastic model 

becomes Keller’s viscous layer model.  

  Although the viscoelastic model provides a unified model for wave propagation 

under an ice cover, to apply the model is still a challenge. The problem is that the inputs 

of viscoelastic model are effective viscosity and effective shear modulus, which are the 

physical quantities of the sea ice region and cannot be measured directly. So far 

researchers have only used the inverse method to determine the model parameters for 

both viscous layer model and the thin elastic plate model [50-52]. Therefore, for the 

application of viscoelastic model, we need to establish a model to bridge the morphology 

of the ice cover to its effective viscosity and shear modulus through an inverse method. 

By directly measuring wave attenuation and wave speed change in an ice cover, through 

field or laboratory experiment, we solve for the viscoelastic parameters that can predict 

the observed wave property. In this way, we may establish the effective material 

properties of a given type of ice cover.  

2.4 Wave attenuation 

As discussed in subsection 2.1.4, to implement wave ice interaction model in an 

ocean wave model wave attenuation is a critical factor. Two wave attenuation 

mechanisms have been considered by researshers so far. 

2.4.1 Viscous attenuation 
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Fig. 2-2  Three mechanisms for viscous attenuation: (a) turbulence in the upper layer 

of the ocean; (b) boundary layer flows under ice cover; (c) interactions of ice particles. 

   

As shown in Fig. 2-2, there are three main mechanisms for viscous wave attenuation: 

turbulence in the upper layer of ocean; boundary layer flows under ice cover; and 

collisions of ice particles.  

The first mechanism is not related to ice cover. For the open water case, wave 

breaking and the subsequent generation of turbulence is the main cause of wave damping. 

This effect has been included in previous ocean wave models in the dissipation term. For 

partially ice covered region, due to the limited fetch, turbulence generation may be 

different from open water conditions. 

The second mechanism is the boundary layer created beneath the rough ice cover. 

The third mechanism is the various interactions between ice particles or ice floes. The 

second mechanism is present for small ice particles as well when we consider the drag 

effect. The third mechanism is present for both large ice floes and small ice particles. 



19 

Whenever there is relative motion between neighboring ice particles or floes from wind, 

wave, current, or the drifting of the ice cover, interactions between neighboring floes may 

occur. These interactions transfer the mechanical energy of ice and water into incoherent 

motion of ice floes. The wave energy is thus attenuated. For grease ice, the size of ice 

particle is small, and the ice concentration is high. Therefore, the ice particle interaction 

frequency is high. This situation is analogous to the origin of viscosity in ordinary fluids, 

hence viscous layer model is a highly plausible model for grease ice. 

Liu and Mollo-Christensen [41] suggested combine all attenuation mechanisms 

together into a phenomenological eddy viscosity and attributed all damping to the water 

body. However, a better approximation may be a thin turbulent boundary layer under the 

elastic or viscoelastic ice cover.  

2.4.2 Scattering attenuation 

 

Fig. 2-3  Sketch of the scattering mechanism: large left arrow represents incident 

wave; large right arrow represents transmission wave; small arrows represent reflected 

waves; particles represent ice floes. 

 

Wave scattering itself only redirects energy propagation. The total energy is still 

conserved. The measured attenuation in the wave propagation direction is always 
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influenced by wave scattering. Fig. 2-3 shows an example of wave scattering through an 

ice covered region. The ice floes reflect or scatter a part of wave energy from the incident 

wave, thus the transmitted wave energy is less than the incident wave. The reflected or 

scattered waves interact with each other. These incoherent interactions of multiple 

reflections from many floes are likely damped by the viscous effect. With this 

consideration, a viscous type of wave ice interaction model may also be suitable for the 

scattering attenuation by using a simple attenuation coefficient [17, 53, 54]. The viscosity 

for such a model may be very large (even larger than turbulent eddy viscosity), because 

the wave energy loss in the direction of the incident wave can be much large than direct 

viscous damping. This idea still needs further research. One can also keep the scattering 

term as the conservative term in the ice source term as discussed in section 2.4 and use 

the viscoelastic model to calculate the non-conservative term. In section 2.7, we will 

introduce some details about how to calculate wave scattering formally. 

2.4.3 Wave attenuation formulations 

Based on the above discussions, we have three methods to calculate the wave 

attenuation. The most direct method is to calculate the imaginary part of the root for 

viscous layer model or viscoelastic model. The imaginary part is the spatial viscous 

damping coefficient, i.e. the wave attenuation coefficient. The second method is from the 

thin elastic plate model. The wave attenuation from the viscous layer model and 

viscoelastic model comes from the effective viscosity. In the thin elastic plate model the 

sea ice part is pure elastic and water part is inviscid, there is no true wave attenuation. 

However, using wave scattering, Bennetts and Squire [53, 54] adopted a statistical 

method to calculate the change of forward propagating wave energy through a region of 
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ice floes. As mentioned earlier, the scattered wave energy is assumed to be attenuated 

rapidly from incoherent wave-wave interactions. The attenuation rate for scattering 

theory is calculated based on the remaining transmitted wave in the original wave 

direction. The third way to calculate wave attenuation also comes from thin elastic plate 

sea ice model, but for this method Liu and Mollo-Christensen [41] consider that the water 

part is viscous. Further, the effective viscosity is assumed to relate to the turbulence near 

the sea ice sheet. 

2.5 Wave reflection and transmission 

Wave reflection and transmission are physical processes that occur at any material 

interfaces. At floe scale, when the floe size is comparable with wavelength, the wave 

energy is split into transmitted part and reflected part at the open water and ice interface. 

This phenomenon is the basis of the wave scattering. There is another motivation for 

studying wave reflection and transmission: to mathematically model the wave 

propagation over a large expanse with varying physical conditions, a numerical method is 

required. All numerical methods discretize the computational domain into finite size 

“cells”. The ice cover is connected at the cell boundary, and the change in properties is 

abrupt. Within each cell, average properties of variables are considered. A continuously 

varying ice cover is thus discretized into cells of different thickness and material 

properties. Wave damping mechanisms contribute to the sink term within each cell. At 

the boundary between neighboring cells wave flux contributes to the energy transport. 

Both damping and flux terms are required for any numerical wave models. Transmission 

and reflection at cell boundaries are in fact part of the cumulative results of this process 

that take place at the floe scale, where all discontinuities contribute to this process. The 
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types of floe scale discontinuities and their scattering properties are considered in 

scattering attenuation. Part of the cumulative results is accounted for in the wave 

attenuation due to the average properties of the ice within the cell. The part due to the 

gradient of the ice properties within the cell is accounted for at the cell boundary. These 

two processes are the sink term has been modeled as part of the dispersion relation in 

wave ice interaction models, and the flux term is the focus of the present section. 

There are several methods to calculate the ocean wave reflection and transmission at 

the interface between two connected regions of open water or of different ice cover 

properties. In Squire and his colleagues’ papers, they used the Green function method 

[55], matched eigenfunction expansion method [56, 57] and the variational method [18-

20]. A more complete review of these methods can be found in Squire [11], which covers 

problems with the interfaces like: free ice edge, cracks, pressure ridges, refrozen leads, 

and abrupt change of ice thickness or the material moduli, all under the thin elastic plate 

assumption. Wang and Shen [58] employed an approximate solution method for open 

water connecting with a viscoelastic layer. The viscoelastic layer was finite with its own 

momentum equation. This method was extended to two connecting viscoelastic layer 

with different properties [59]. 

2.5.1 Exact solution method 

The Green function method is a general method for solving non-homogeneous linear 

boundary value problems exactly. Sarpkaya and Issacson [60] provided details of this 

method and its applications in solving wave and marine structure interactions. This 

method is used in Meylan and Squire [55, 61] to determine the exact solution of a two-

dimensional case with wave propagating under a finite size plate and a three-dimensional 
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case of a circular disk. In both cases the ice floe was assumed to be infinitely thin, where 

the boundary integral representation of the ice covered part was simple to treat.  

The eigenfunction expansion method was developed by Fox and Squire [18, 19] for 

a free end condition case using the thin elastic plate model. The method was extended by 

Kohout [56] to calculate simple, springed, and hinged connections among ice plates. This 

method first expands the velocity potential of the wave motion into eigenfunctions. One 

selects a series of orthogonal basis functions. Candidates of the basis functions are 

trigonometric functions. They integrate the boundary condition equation with the basis 

function to obtain a linear system for transmission and reflection coefficients.  

2.5.2 Approximate solution method 

In [58], Wang and Shen truncated the infinite series of eigenmodes to include only 

two closest to the open wave mode. The evanescent modes and all other roots of the 

dispersion relation were dropped. They obtained the reflection and transmission 

coefficients assuming only these two modes carry the entire wave energy. They studied 

the ocean wave propagation from open sea water to a semi-infinite ice-covered ocean 

based on a viscoelastic model. They first expanded the general solutions with 

eigenfunctions, they then matched the mean values of the boundary conditions at the 

interface to form a homogenous linear system. With the singular value decomposition 

method, the transmission and reflection coefficients were obtained. They showed that by 

using the same physical parameters, this approximate method provided good agreement 

with previous more rigorous solution methods. Also, a mode switching phenomenon was 

found for the viscoelasitic model. With the increasing of shear modulus, the energy 

partitions between the first mode and second mode switch. For small shear modulus, the 
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first mode dominates, and for large shear modulus, the second mode dominates. Later, 

this approximate solution method is extended by Zhao and Shen [59] to calculate wave 

reflection and transmission at the interface of two connecting ice covered regions of 

different properties. This work is a part of the present thesis. 

2.5.3 Variational method 

The variational method is developed by Fox and Squire [18] to calculate wave 

reflection and transmission from open water to a semi-infinite elastic ice cover. The 

method is further extended by Barrett and Squire [20] to compute the case for two 

connecting ice covers. The key step for the variational method is to define the error 

function from the boundary condition equations. By minimizing the error function one 

may obtain the linear equations to solve for the reflection and transmission coefficients. 

Zhao and Shen [62] also employed the variational formulations to calculate wave 

reflection and transmission with a viscoelastic model. This work is presented in chapter 5. 

2.6 Wave scattering and floe breaking 

Waves propagating into a sea ice field with sufficient amplitude can fracture a 

continuous ice sheet or a large floe into small ice floes, thereby reshape the ice cover 

morphology. Simultaneously, since floe size affects wave scattering and dissipation, the 

fracturing process also influences the wave propagation. As waves lose energy when 

propagating into an ice cover by various damping mechanisms, fracture is prevented in the 

interior ice. Hence floe size increases from the open ocean inward, usually with an abrupt 

change to a continuous sheet some hundreds of kilometers from the open ocean. 
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  An extensive catalogue of theoretical literature exists in modeling the scattering 

process. According to different scattering scales, the mathematical models can be 

generally divided into small and large scale models. 

For the former one, the focus is on solving both the hydrodynamics for the water 

part and the deformation field of the floe under a specified monochromatic incident wave. 

One standard short scale model is based on the assumption that an ice floe behaves as a 

single thin-elastic plate of negligible submergence. Meylan [63] proposed a solution by 

combining the boundary element method and finite element method for the scattering 

response of an ice floe with arbitrary shape. Small scale models of multiple ice floes are 

reported by Kohout and Meylan [64] and Kohout et al. [57]. The small scale models 

provide the scatting kernel which becomes the core part of the large scale models. An 

example of such theoretical results is shown in Fig. 2-4, using the analysis described in 

Meylan and Squire [61].  

In ice covered ocean the waves have multiple periods and wavelengths. The 

scattering process for problems in this scale is described by large scale models. Under the 

linear wave theory, superposition of effects from each wave component is assumed. 

Masson and LeBlond [13] used the single floe scattering as the kernel to integrate over a 

field of ice floes, each acted as a scatterer to calculate for the wave energy transport. 

Another model is proposed by Meylan et al. [42] using wave transport equation as well. 

These two methods have shown to be almost identical by Meylan and Masson [43].  

The same analysis developed in the small scale hydroelastic problems shown in 

Meylan and Squire [61] also provides the strain field inside the flexible ice floe. Such 
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information has been used in floe breaking models and integrated in large scale wave-ice 

interaction models [65-67]. 

 

Fig. 2-4 The scattered wave energy plotted in polar coordinate for 100m waves 

scattered by a circlar ice floe. The ice thickness is 1m. The floe diameter is 50m, and its 

Young’s modulus is 6GPa. (Reproduced by Sukun Cheng following Meylan.) 

 

Based on the above discussion, the operational ocean wave model needs to measure 

geometrical properties of sea ice, such as size distribution, thickness distribution, and 

shape properties for the input of ice related terms in an ocean wave model. Field and 

remote sensing technology are now capable of providing data for such quantities [68]. 

Once determined as the initial condition, floe breaking models integrated with wave 

propagation models can then predict the future evolution of the ice cover together with 

the wave climate. That is, if further freezing and other ice floe growth mechanisms are 

negligible. There currently is no research done in modeling or measuring floe size growth 

due to either thermal or mechanical processes.  

All of the floe breaking models are so far based on elastic plate theory, for 

applications that adopt the viscoelastic model, we also need to determine viscosity and 
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shear modulus from the geometrical properties, and then construct a breaking model for 

this type of material. 

2.7 Laboratory experiment 

 All theoretical studies need to be validated with data, hence experiments, either 

laboratory or field, are needed to complete any theoretical development before 

application. Laboratories provide a controlled environment under which mechanistic 

studies may be performed. There are a number of such studies that have been conducted 

around the world. Here we discuss some examples related to wave-ice interactions. These 

studies were carried out in refrigerated or outdoor facilities where real ice was created, or 

with artificial floating materials in wave tanks under room temperatures. 

Wave induced drift of an isolated floe was conducted by Harms [69] using 

polyethylene in a long wave tank. The motivations were to estimate the time-of-arrival of 

isolated objects in the ocean such as abandoned barges and ice floes; the dispersal of 

floating objects of different sizes; and impact energy of such objects with fixed or 

floating structures in the ocean. Similar experiments were conducted by Huang et al. [70, 

71] to determine the mean drift velocity in relation to the wavelength and amplitude. 

These experiments showed that floe size to wavelength and its aspect ratio, and the wave 

steepness affected the drift velocity, which exceeded the Stokes drift. Using PVC 

materials, Montiel et al. [72, 73] conducted a wave scattering experiment using a circular 

disk floating in a wide wave tank.  The disk was constraint from drifting via a fixed 

vertical rod that penetrated the center of the disk. They compared the results with the thin 

elastic plate theory to find reasonable agreement under small amplitude waves.  
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Single floe drifting over water surface does not affect the wave field except in the 

vicinity of the floe. In geophysical scale, interactions between ice covers and a wave field 

result from a large collection of individual ice floes. Sakai and Hanai [50] used 

polyethylene plate the width of a wave tank to study the effective rigidity behavior of a 

fragmented ice cover. They cut the plate into successively smaller sizes, in each case they 

kept the total solid coverage and solid concentration constant. They then measured the 

wave speed in each of these cases to determine that the effective rigidity of the cover 

reduced rapidly as the floe size reduced. Dai et al. [6] used plastic materials cut into small 

squares floating in a monochromatic wave field. The floes were free to move until they 

come to a comb-shape rack that blocked the floe but let the wave propagate with little 

impedance. In this study they addressed the issue of ice cover thickening due to wave 

rafting, a phenomenon that was believed to help early ice cover stabilization against 

diurnal heating. The wave pressure balanced the resistance of the ice pile quickly form an 

equilibrium thickness. The dimensionless thickness ( Lh / ) was found to be proportional 

to the square of the dimensionless wave amplitude ( LA / ) and the square of the 

dimensionless floe size ( Lli / ). For a typical storm condition in the Sea of Okhotsk [74], 

the amount of thickening agreed with this experiment.  

Cold room and outdoor facilities were both used for wave-ice studies. Newyear and 

Martin [51, 52] conducted such experiments using a cold room facility to determine the 

viscosity of grease ice. An outdoor pond at the US Army Cold Regions Research and 

Engineering Laboratory (CRREL) provided early observations of wave-ice interactions. 

In January-February clear and cold nights supplied natural cooling to rapidly form an ice 

cover from the open water condition. Overnight tests were made in several studies to 
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determine the feasibility of forming pancake ice found in nature as described by Lange et 

al. [48]. The wave paddle in this facility was much smaller than the width of the pond. 

Hence a complex two-dimensional wave from multiple wall reflections was produced. To 

better control the wave field, indoor experiments using a long wave flume was later 

conducted both at CRREL and at the Hamburgische Schiffbau-Versuchsanstalt GmbH 

(HSVA) in Germany. These wave flumes were in cold rooms where air temperature 

could be controlled. Ice covers were formed from open water conditions while 

maintaining a constant wave input. This type of experiments were made to determine the 

limiting pancake ice size [75], ice production rate under wave conditions [76], and the 

attenuation and wavelength change under different types of ice covers [77, 78]. 

2.8 Field measurement 

Field experiments are essential to developing theories of wave-ice interactions. They 

provide direct observations that guide and then validate theories, which inevitably are 

based on assumptions. Early observations of waves in sea ice were made by seafarers and 

explorers. The most famous of such observations is recorded in Endurance: Shackleton’s 

Incredible Voyage [79]. Organized scientific observations were made sporadically from 

the late 1970s, using ships, helicopters, and ice floes as platforms. Some were visual with 

still or video cameras, others were made with instruments installed in drifting buoys or 

packages that must be manually deployed, maintained, and retrieved from the ice covers. 

Because of the harsh conditions in the field, conducting such experiments is difficult. In 

recent years remote sensing from satellite has gradually increased its capability to get 

high resolution field data as well. Here we describe a number of field experiments that 

show some examples of data obtained concerning wave-ice interactions.  
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Squire and Moore [80] performed a wave attenuation study over a field of diffused 

broken ice floes in the Bering Sea. They used an accelerometer package sitting on top of 

ice floes to detect the heave motion at seven locations along a track perpendicular to the 

ice edge. Due to logistic reasons they had to make seven sequential measurements over 

an eight hour span. A wave rider buoy at the ice edge however was used during this 

period to ensure that the incoming wave energy was stationary. With this data set they 

verified that the ice fields attenuated wave approximately exponentially, with the 

attenuation coefficient increase with increasing wave frequency.  

Wadhams et al. [81, 82] summarized a large set of field studies conducted between 

1978 and 1983 in the east Greenland Sea, the Bering Sea, and the Fram Strait region. In 

all cases the field was a diffused broken ice cover with increasing ice concentration and 

floe size inward from the ice edge. The same accelerometer package as in Squire and 

Moore [80] was used in the earlier studies, but in later ones they were able to use 

directional buoys that could measure the full directional wave spectra. Using these data, 

they found two very important phenomena. One was that exponential attenuation of wave 

energy in an ice cover appeared to be true in call cases, but the attenuation rate was not 

monotonically increasing with increasing frequency. There was a peak attenuation, 

beyond which increasing frequency resulted in decreasing attenuation – what they called 

the “roll-over” effect. The other was that significant wave scattering was found that 

resulted in isotropic wave spectra a short distance into the ice cover. To this date, their 

work represents the most comprehensive field data set concerning wave attenuation and 

scattering in a broken ice field. Similar studies were also done by others. Frankenstein et 

al. [83] conducted a study in the Barents Sea. They used a six-degree-of-freedom 
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tiltmeter/accelerometer package deployed over ice floes embedded in a dense brash ice 

matrix. In addition to confirming similar wave attenuation as previously found, they also 

found that the total kinetic energy of a floe was nearly equally partitioned among each 

degree of freedom. Since for an isolated floe, the response in a planar wave field should 

be dominated by the heave motion, this observation suggested that floe-floe interactions 

contributed to the dynamics of the floes, which agreed with the visual observations. A 

long distance and long duration experiment was recently conducted by Kohout et al. [8]. 

In this study they used five buoys deployed on ice floes in the Southern Ocean. These 

buoys were then allowed to drift with these floes for several weeks. These buoys were 

equipped with three accelerometers coupled with a tri-axis Inertial Measurement Unit 

(IMU) and located using GPS. The vertical motion of the buoy was obtained from these 

sensors and then transmitted to the recording station via satellite. They then used the 

vertical displacement to analyze the wave attenuation characteristics. It was found that 

mild waves attenuated approximately exponentially with distance, as many theories 

suggested, but intense waves under storm conditions appeared to attenuate linearly with 

distance, indicating much longer energy penetration into the ice cover. 

Focusing on small scale mechanisms, Mckenna and Crocker [84] conducted a study 

in the Labrador Sea using similar tiltmeter/accelerometer package. Since floe collisions 

represent an energy sink to the wave field, they were interested in the frequency of floe-

floe collisions in a wave field. The ice cover was a collection of fragmented floes. 

Contrary to expectation, they did not find any conclusive evidence that increasing 

collision activities were associated with increasing wave amplitude. Similar study was 

also done by Rottier [85] in Barents Sea and the Fram Strait. He conducted direct 
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measurement of floe-floe collision rate in a wave field using a buoy equipped with a tri-

axial accelerometer package and two perpendicular tiltmeters. This buoy was deployed 

many times inside the ice cover near the ice edge. The vertical acceleration was used to 

obtain the wave spectrum and tiltmeters gave the wave direction. The horizontal 

accelerations indicated the floe-floe collisions. Using this data set, the frequency of 

collisions was compared with the wave energy and the floe concentration. It was found 

that the collision frequency was closely correlated with the ratio of wave amplitude and 

the spacing between neighboring floes. 

Land-based field observations are comparatively easier to make. In a recent study 

Campbell et al. [86] reported a stereo imaging method using video cameras fixed on the 

coast of Lake Mendota, Wisconsin. They were able to map out the entire wave field over 

various types of ice covers with high spatial and temporal resolution. They found that 

frazil/pancake ice covers affected waves differently from the brash ice cover. The former 

damped out high frequency waves and the latter appeared to transfer low frequency 

energy into high frequency bands.  

Remote sensing is another important source of field data for sea ice. With satellite 

altimetry and imagery and synthetic aperture radar data, one can obtain the sea ice 

information, such as, ice type [87], ice thickness [88], ice concentration [89], ice 

kinematics [90], and wave data [44]. 

2.9 Numerical simulation 

Because laboratory experiments and field measurements are time consuming, 

expensive, and often limited by the available facility size and other physical constraints, 

numerical simulations become an alternative to study the detailed mechanisms on wave 

http://onlinelibrary.wiley.com/doi/10.1029/91JC02652/full
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and ice interactions. The discrete element method is a popular method for this purpose 

[91]. The simplest approach is to model the ice floes as disk elements floating on the 

water surface. As the wave propagates through the ice cover, each of these floes 

experience drag and added mass effect from the water. They also collide and consume 

energy through their interactions.  The ice floe moves like a rigid body, but the 

interactions between floes are viscoelastic. So the wave damping effect can be measured 

from the collisions between floes [46]. Recently, this method is extended to simulate 

interaction among wave, ice and engineering structures [92]. All of the existing modeling 

studies have not included the feedback effect from the ice motion to the hydrodynamics 

part. For smaller ice floes over a large area, it is hard to use such method, because the 

number of ice floes is huge. Therefore, representing such discrete aggregates as continua 

becomes useful. Recently, Zhao and Shen [93] apply finite difference method and the 

level set method to simulate waves propagating under a floating viscoelastic material 

over water. This work is expected to simulate the two layers model for grease or pancake 

ice. In this simulation, the equations of motion for the three fluid regions: air, ice, and 

water, are integrated by the finite difference method, and the interfaces are captured using 

the level set method. Similar methods can also be employed to simulate elastic ice 

covered ocean. To numerically simulate wave ice interactions is a still a very new area. 

There is a lot more work required to mature this technique. There is high potential for this 

method to provide more detailed information on the validity of analytical models for 

wave attenuation and wave scattering. 
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CHAPTER 3 THREE LAYER VISCOELASTIC MODEL 

 

A three-layer model is presented to simulate free surface gravity wave 

propagation in an ice covered sea. Damping from a viscoelastic ice cover and turbulence 

in the boundary layer of the water body are considered. This model is shown to converge 

to three previous models: viscoelastic ice over inviscid water; thin elastic plate over 

viscous water; and viscous ice over viscous water. The non-monotonic attenuation 

behavior with respect to wave period shown previously in the thin elastic plate over 

viscous water appears in the present model as well, suggesting such phenomenon has a 

source from the water viscosity. 

3.1 Introduction 

Currently, WW3 ocean wave model provides two separate choices: the eddy 

viscosity model and the viscoelastic model. They simulate two different mechanisms of 

wave attenuation in the MIZ, each reflects some reality. De Carolis and Desiderio [22] 

provided another model which included viscous damping in the ice cover as well as that 

in the water body. The ice cover was assumed to be pure viscous hence this model may 

not be applicable to all ice types encountered in the MIZ. 

The aim of this chapter is to generalize the three existing wave-in-ice models 

mentioned above, i.e. the viscoelastic, eddy-viscosity, and viscous-ice-over-viscous-water, 

in order to include both energy dissipation effects from the water body and the ice cover. 

The ice cover may have viscous and elastic characteristics. Different from previous 

models, the present model divides the ice covered ocean into three-layers: viscoelastic ice; 

upper ocean part with an eddy viscosity; and lower ocean part as an inviscid fluid. This 
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model recognizes the main phenomena from both the ice region and the water region. In 

the ice region, the elasticity comes from the intact ice floes or ice sheets and viscosity 

comes from a variety of mechanisms, e.g. bending and fracturing of ice sheets, 

deformation of the ice slurry, and collision between ice floes. In the water region, it is 

known that under an ice cover there is in general a thin surface boundary layer and a 

substantial outer boundary layer. The eddy viscosity inside the surface boundary layer 

increases from zero at the water-ice interface to a finite value which equals to the nearly 

constant eddy viscosity in the outer boundary layer [94]. In our formulation we will 

ignore the thin surface boundary layer and consider the eddy viscosity is constant within 

the entire boundary layer. The rest of the water body is assumed inviscid. In addition to 

its application in wave modeling in the Arctic, this study also addresses a fundamental 

problem that involves complicated fluid/solid interactions. 

3.2 Formulation 

3.2.1 Governing equations 

We consider a two-dimensional three-layer system in which a homogeneous 

viscoelastic ice layer of finite thickness h overlays the water of finite depth H with a 

turbulent boundary layer of thickness b under the ice cover as shown in Fig. 3-1. Gravity 

wave propagating through this material with a small amplitude linear wave assumption is 

considered. For the ice cover, we use a Voigt viscoelastic continuum model shown below, 

mniceicemnmnmn SGSp  22  .                               (3.1) 

where 
ice  is the density of the ice layer; 

mn , 
mnS  and mnS  represent the stress tensor, 

the strain tensor and the strain rate tensor, respectively; m  and n represent x  or z ; G  
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and 
ice  are the shear modulus and the kinematic viscosity of the ice layer, respectively; 

p  is the pressure and 
mn  the Kronecker delta. The linearized equations of motion for 

the three-layers are  

gU
U





nnn

n

n p
t

21



,                               (3.2) 

where n =1, 2, 3, 
nU  is the velocity vector, 

np  it the pressure, g  the gravitational 

acceleration, and 
n  is the effective viscosity. In the ice layer, 

 iceice iG /1  , 
ice 1

                             (3.3) 

where   is the angular wave frequency. In the upper part of the water, i.e. the turbulent 

boundary layer under the ice cover, 

t 2
, 

water 2
 ,                                         (3.4) 

 

Fig. 3-1 The sketch of the three-layer viscoelastic model. 
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where 
t  is the kinematic eddy viscosity, and 

water  is the density of water. In the lower 

part of the water, 

03  , 
water 3

.                                          (3.5) 

Using the decomposition with potential function 
n , and stream function 

n  for the 

velocity [95], 

 0,,0 nnn  U ,                                   (3.6) 

we obtain 

02  n ,                                                   (3.7) 

nn
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 2
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
,                                           (3.8) 


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

n

nn p

t 


,                                            (3.9) 

Here, gz  is the gravitational potential. In the lower part of water, the stream function 

03  . In the two-dimensional system, the velocity has following expressions, 

 nnn wu ,0,U .                                       (3.10) 
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
.                 (3.11) 

3.2.2 Boundary conditions 

At the air-ice free surface, the dynamic boundary conditions are as the following, 

hzzzxz  ,011  .                                           (3.12) 

The linearized kinematic boundary condition is 

hz
t

w 



 ,1

1


.                                            (3.13) 
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At the ice-water interface, the dynamic boundary conditions are as the following, 

0,, 2121  zzzzzxzxz  .                                    (3.14) 

The kinematic boundary condition is 

t
ww




 2

21


, 0,21  zuu .                             (3.15) 

At the water-water interface, the dynamic boundary conditions are as the following, 

bzzzzzxzxz  ,, 3232  .                                    (3.16) 

The kinematic boundary condition is 

t
ww




 3

32


, 0z .                                 (3.17) 

For the rigid bottom boundary, the vertical velocity vanishes, 

Hzw  ,03
.                                      (3.18) 

In above, the stresses in terms of pressure and velocity are 
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


  2 .                              (3.20) 

3.2.3 Dispersion relation 

Decompose the wave elevations at the interfaces into simple harmonics, 

)( tkxi

nn ea   , n =1, 2, 3.                           (3.21) 

The general solutions for (3.7) and (3.8) can be taken as 

  )(sinhcosh tkxi

nnn ekzBkzA   ,                  (3.22) 

  )(sinhcosh tkxi

nnn ezDzC   ,               (3.23) 
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Here, nik  /22  , n =1, 2. For the lower part of water, with (3.18) and (3.5) we 

obtain 

)(

33 )(cosh tkxieHzkE   .                         (3.24) 

Substitute (3.9) into the normal stress (3.20) to eliminate pressure, and with (3.13), (3.15) 

and (3.17) we eliminate the elevations by taking time derivative of the normal stress 

boundary conditions. By noting that 
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2 
,                 (3.25) 

we obtain eight equations for 
n , and 

n  (n=1,2) as shown in Appendix A. Using the 

general solutions (3.22) and (3.23) in the obtained eight equations, we get a homogeneous 

88 linear system for coefficients 
nA , 

nB ,
nC , and 

nD  (n=1,2). The dispersion relation 

for   and k  is obtained by imposing that the determinant of the coefficients matrix 

vanishes. Solution of this dispersion relation for a given wave frequency   is in general 

a complex number, iqk   , where the real part is the propagating wave number and 

the imaginary part is the attenuation coefficient. 

3.3 Results 

Convergence to the viscoelastic model - We now discuss the effect of viscous 

boundary layer on wave number and wave attenuation. Figure 3-2 shows the results of 

the current model for boundary layer thickness, b , varying from 10
-6

m to 10m, and the 

eddy viscosity varying from 10
-6

m
2
/s to 10

-2
m

2
/s. The wave number   is found to be 

insensitive to the eddy viscosity and the boundary layer thickness for the range of 

parameters tested. The attenuation coefficient, q , increases significantly with boundary 
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layer thickness and the eddy viscosity. It is interesting to note that for long wave periods, 

the gradient of wave decay is milder than the intermediate wave periods. There is also a 

slight “bump” in the attenuation trend when T  is between 5sec and 10sec. The location 

and the size of this bump depend on the shear modulus as will be discussed later. The 

current results converge to those from the viscoelastic ice over inviscid water when the 

eddy viscosity and the boundary layer thickness decrease, as expected. 

Convergence to the eddy viscosity model - By letting the boundary layer thickness 

approach the water depth, and the viscosity of the ice cover vanish, the current model 

conceptually approaches the eddy viscosity model of Liu and Mollo-Christensen, where a 

uniform viscous water body under a thin elastic plate is assumed. Figure 3-3 gives the 

results of cases where the ice rigidity is fixed at 10
9
Pa with no viscosity, and the eddy 

viscosity is fixed at 
t =0.001m

2
/s. The boundary layer thickness varies from 0.01m to 

100m, with water depth at 100m. The wave number calculated from the present model is 

again insensitive to b . The attenuation, which is sensitive to the boundary layer, indeed 

converges to that from the eddy-viscosity model when b approaches the total water depth. 

This approach is quite rapid. For b >1m, which is in fact much smaller than most of the 

boundary layer thickness in the field, the results become insensitive to b. Because of the 

exponential decay of wave induced velocity field, the velocity gradient and thus the 

viscous energy loss in the water body drops very quickly. 
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Fig. 3-2 Normalized wave numbers, 
0/ k , and wave attenuation, q , plotted against 

wave period T  for h  = 0.5m, H  = 100m, G =10
9
Pa, 

ice =0.01m
2
/s, 

ice  = 917kg/m
3
, 

and 
water =1000kg/m

3
. Here, 

0k  is the wave number for open water case. 

 

Fig. 3-3 Normalized wave numbers, 
0/ k , and wave attenuation, q , plotted against 

wave period T  for h  = 0.5m, H  = 100m, G =10
9
Pa, 

ice =0m
2
/s, 

t =0.001m
2
/s,

ice  = 

917kg/m
3
, and 

water =1000kg/m
3
. Here, 

0k  is the wave number for open water case. 

 

Convergence to the viscous-ice-over-viscous-water model - Now, we show the 

convergence from the three-layer model to the two layer viscous model. There are two 

main differences between the three-layer model and the two layer viscous model: the 
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non-slip bottom boundary condition for velocities in the viscous-ice-over-viscous-water 

model; the shear modulus effect in the ice layer of the three-layer model. To avoid the 

singularity at the bottom, when boundary layer thickness exactly equals to water depth, 

we employ non-slip boundary conditions at the sea floor. With this addition, we compare 

the results with the viscous-ice-over-viscous-water model and then study the effect of 

shear modulus in the three-layer model. In figure 3-4 we present the results when ice 

thickness is 0.5m, boundary layer thickness equals to that of the water depth 100m and 

the viscosities of the ice layer and the eddy viscosity are 
ice =0.01m

2
/s, 

t =0.001m
2
/s. 

Over the entire range of wave period, the present model converges to that of the viscous-

ice-over-viscouswater case when the shear modulus approaches 0. As the shear modulus 

increases, an interesting phenomenon occurs. The bump mentioned earlier becomes 

prominent. In particular for the case G =10
6
Pa. This bump is seen both in the 

wavenumber curve and the wave attenuation curve, at approximately the same wave 

period. For different G values, the location of the bump differs. This phenomenon, named 

“roll-over” has been observed both in theory and in the field [44]. The wave attenuation 

is not a monotonic function of the wave period, but has a maximum at some T. So far, 

among all the existing theories that consider some kind of damping mechanism, only the 

eddy-viscosity theory that has ever demonstrated roll-over. The present model, which 

includes the eddy viscosity, unsurprisingly is also able to show this effect. 
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Fig. 3-4 Normalized wave numbers, 
0/ k , and wave attenuation, q , plotted against 

wave period T  for h =0.5m, b =100m, H =100m, 
ice =0m

2
/s, 

t =0.001m
2
/s,

ice  = 

917kg/m
3
, and 

water =1000kg/m
3
. Here, 

0k  is the wave number for open water case. 

 

Fig. 3-5 Wave attenuation, q , plotted against wave period T : for all curves h =0.5m, 

H =100m, 
t =0.00045m

2
/s, 

ice =917kg/m
3
, and 

water =1000kg/m
3
. For the two layer 

viscous model, 
ice =1m

2
/s. For the viscoelastic model, 

ice =1m
2
/s, and G =10

4
Pa. For the 

eddy viscosity model, Young’s modulus E  = 8.410
8
Pa. For the three-layer model, 

ice

=0.01m
2
/s, G =210

8
Pa, and b =10m. 
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Origin of the “roll-over” on wave attenuation - Next we test how the present 

model performs when compared directly with field data. Figure 3-5 shows a comparison 

with wave attenuation obtained in the Bering Sea in 1979 [80, 82]. The ice layer 

thickness was 0.5m consisting of a variety of floe sizes and concentration. The wave 

spectra were measured at 8 locations over 65.1km distance. The data provided attenuation 

for a range of wave periods. We use an optimization procedure to determine the best-fit 

parameters of each model. The field water depth was not reported. We have found that 

beyond 100m water depth does not affect the results, hence it is fixed at 100m for the 

comparison. As can be seen, only the eddy viscosity and the three-layer model can 

reproduce the observed roll-over, which strongly suggests that water body viscosity is the 

source of this phenomenon. The three-layer model is slightly better than the eddy 

viscosity model for the data fitting. The disagreement at long wave periods cannot be 

explained by the current theories. 

3.4 Conclusions 

We provided a theoretical solution for wave-in-ice models. This theory is based 

on mechanisms from both the ice cover and the water body. In the ice cover there are 

processes which contribute to wave speed change and wave attenuation. These include 

viscous interaction of small ice crystals, ice floe collisions, ice sheet bending and 

fracturing. In the water body there is turbulence generated in the boundary layer which is 

parameterized by an eddy viscosity. We model this situation by dividing the ice covered 

ocean into three-layers: the ice, the boundary layer, and the rest of the water body. In 

which, the ice layer is viscoelastic, the boundary layer is viscous, and the rest of the water 

body is inviscid. We show that this general model reproduces results of all existing 
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models that considered these mechanisms separately, and under more simplified 

conditions. This general model alleviates the need of wave modelers to choose between 

eddy viscosity and viscoelastic ice models for their simulations. In fact both are present 

in nature. With future experiments, both in the field and in laboratories, we expect direct 

measurement of eddy viscosity and boundary layer thickness will be systematically 

obtained in ice covered seas. The viscoelastic parameters for ice covers need to be 

determined by field and experimental data and an inverse method. Though the task of 

determining the parameter values is challenging, we at least have a theoretical framework 

to guide experiments and integrate measured data into a coherent model. Finally, for 

application purpose, it is necessary to have an efficient way to take any input set: the 

water depth, ice thickness, ice properties, boundary layer thickness and its eddy viscosity, 

to determine the resulting wave number and attenuation coefficient. The analytical 

solution given in Appendix A is in the form of a matrix. Its determinant cannot be 

simplified into a short closed-form expression. An efficient numerical procedure was 

used in all the results shown here. 
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CHAPTER 4 APPROXIMATE METHOD  

 

An approximate solution for wave transmission and reflection between open 

water and a viscoelastic ice cover was developed earlier, in which both the water and the 

ice cover were treated as a continuum. The interface conditions included matching 

velocity and stresses between the two continua. The analysis provided a first step towards 

modeling the wave-in-ice climate on a geophysical scale, where properties of the ice 

cover change with time and location. In this chapter, we derive the wave transmission and 

reflection from one viscoelastic material to another. Only two modes of the dispersion 

relation are considered and the horizontal boundary conditions are approximated by 

matching the mean values.  

4.1 Introduction 

In this chapter, we extend the previous work to investigate wave propagation from 

one viscoelastic cover into another. The motivation for this study is evident: to 

mathematically model the wave propagation over a large expanse with varying physical 

conditions, a numerical method is required. All numerical methods discretize the 

computational domain into finite size “cells”. The ice cover is connected at the cell 

boundary, and the change in properties is abrupt. Within each cell, average properties of 

variables are considered. A continuously varying ice cover is thus discretized into cells of 

different thickness and material properties. Wave damping mechanisms contribute to the 

sink term within each cell. At the boundary between neighboring cells wave flux 

contributes to the energy transport. Both damping and flux terms are required for any 

numerical wave models. Transmission and reflection at cell boundaries are in fact part of 
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the cumulative results of this process that take place at the floe scale, where all 

discontinuities contribute to this process. The types of floe scale discontinuities and their 

scattering properties are shown in Bennetts and Squire [53, 54]. Part of the cumulative 

results is accounted for in the wave attenuation due to the average properties of the ice 

within the cell. The part due to the gradient of the ice properties within the cell is 

accounted for at the cell boundary. These two processes are shown schematically in Fig. 

4-1, where the sink term has been studied as part of the dispersion relation in Wang and 

Shen [23]. The flux term is the focus of the present study. 

 

Fig. 4-1 Schematic of a discretized field of wave propagation into a continuous 

heterogeneous ice cover. 

 

The study in this chapter also helps to expand floe scale investigations. Wave 

scattering theory developed by Wadhams [96, 97] and later extensively studied by Squire 

and colleagues [11, 53, 54] considered ice floes dispersed in open water. The present 

work may expand these theories to situations of ice floes imbedded in a grease or brash 

ice field. These two different types of ice covers are shown in Fig.4-2. 
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Fig. 4-2 (Left) A photo of a broken up ice cover interspersed in open water. The 

narrow range of size distribution suggests a wave induced breakage. (Credit: Vernon 

Squire). (Right) A photo of ice floes interspersed with pancake ice. (Credit: Don 

Perovich). 

 

To determine the flux between two adjacent ice covers with different viscoelastic 

properties, in this study we will use the same approximate approach as given in Wang 

and Shen [58]. We will consider two leading modes only to determine the partition of 

energy of each mode for a linear monochromatic gravity wave. Our treatment of the 

horizontal boundary conditions will also follow the same approximation method. A linear 

wave regime is assumed in this study. 

4.2 Theoretical formulation 

4.2.1 Definition of the domain 

The problem to be analyzed is two dimensional. The two ice covers are assumed 

to be fully submerged. This assumption is based on the results from Williams and Porter 

[98], where it is shown that the draft of a floating ice cover affects the wave transmission 

and reflection. The small amount of ice cover exposed in air is ignored in this study. The 

http://www.wikiwaves.org/index.php/Category:Wave_Scattering_in_the_Marginal_Ice_Zone
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coordinate system used in this study is shown in Fig.4-3. The x direction is aligned with 

the incoming wave direction, and the z  direction is opposite to gravity. The origin is set 

at the top of the ice cover right between the two ice regions. As shown in Fig.4-3, there 

are four regions: ice region 1 and 3; water region 2 and 4. A monochromatic wave 

propagates from left to right. The ice thickness for region 1 and 3 are 1h  and 
3h , 

respectively. The total depth of the domain is H . 

 

Fig. 4-3 Schematic of the coordinate frame of the problem.  

 

4.2.2 Governing equations 

For the ice cover, we use a Voigt viscoelastic continuum model shown below [23, 

58]: 

mnicemnmnmn SGSp  22  ,                                (4.1) 
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where 
ice  is the density of the ice layer; 

mn , 
mnS  and mnS  represent the stress tensor, 

the strain tensor and the strain rate tensor, respectively;  m  and n  represent x  or z ; G  

and   are the effective shear modulus and the effective kinematic viscosity of the ice 

layer, respectively; p  is the pressure and 
mn  the Kronecker delta. The equation of 

motion is  
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where 
iU  is the velocity vector,  g  the gravitational acceleration, and 

ei  the viscoelastic 

parameter:   

 iceiiei iG /     i=1,3                      (4.3) 

In which,  
i  and 

iG  are the effective parameters in each respective region i, and   is 

the angular frequency of the incoming wave. Using the decomposition with potential 

function 
i  and stream function 

i  for the velocity [95], 

)0,,0( iii  U         i=1,3                           (4.4) 

we obtain 
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Here, gz is the gravitational potential.  

For water regions 2 and 4, we assume an inviscid fluid. The governing equations 

are 
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The water velocity is related to the velocity potential only: 

                         
ii U         i=2,4                                   (4.11) 

In terms of the Fourier modes, the solution for a sinusoidal wave with two modes can be 

written as [58] 
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for the ice region 3,1i  and 0 zhi
, and  
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for the water region 4,2i and 
ihzH  . The coefficients )(nAi

, )(nBi
, )(nCi

, 

)(nDi
, and )(nEi

  are complex constants. As shown in Appendix C the solution of these 

constants can be obtained by using the vertical boundary conditions described in 

subsection 6.2.3. In the above, eiii inkn  /)()( 22   for 3,1i  and 2,1n  from Eq. 

(6).  Here )(nki
 is the wave number for each ice-covered region. 

4.2.3 Boundary conditions 
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We now proceed to determine the horizontal boundary conditions between two 

different viscoelastic regions. In the horizontal direction between the two ice regions and 

the two water regions, we need to match the displacements, velocities, and stresses.  

(a) Water-Water interface 

The boundary condition between water region 2 and 4 includes continuity of the 

potential and the horizontal velocity 

),,0(),0( 42 zz      
3hzH                                   (4.20) 

x

z

x

z








 ),0(),0( 42 
, 

3hzH                                 (4.21) 

(b) Water-Ice interface 

For the time being we assume 
31 hh  , the same analysis may be applied to other 

cases. Between water region 2 and ice region 3, the kinematic condition is  

),0(),0( 32 zuzu  , 
13 hzh  ,                             (4.22) 

Likewise, the dynamical boundary condition is 

),0(),0( 32 zz xxxx   ,
13 hzh                              (4.23) 

These two conditions are the same as in Wang and Shen [58] for wave propagating from 

open water to an ice covered region. Additionally, we also include the continuity 

condition of shear stress at the interface: 

0),0(3 zxz , 
13 hzh                                   (4.24) 

(c) Ice-Ice interface 

Between ice region 1 and ice region 3, we use the continuity conditions of 

horizontal and vertical velocities, and normal and shear stresses:  

),0(),0( 31 zuzu  , 01  zh                                   (4.25) 
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),0(),0( 31 zwzw  , 01  zh                                    (4.26) 

),0(),0( 31 zz xxxx   , 01  zh                                 (4.27) 

     ),0(),0( 31 zz xzxz   , 01  zh                                  (4.28) 

(d) Summary of boundary conditions 

The above nine equations, Eqs. (4.20-4.28), will be used to determine the 

transmission and reflection coefficients for a given wave. If freeboard is modeled instead 

of the current full submergence assumption, we will also need to include the stress free 

conditions over the exposed air-ice interface at 0x .  

    0),0(),0(  zz xzxx  , 
freeboard0 hz                                   (4.29) 

These conditions are ignored at present. 

In a previous study of wave propagation from one ice cover to another, Barrett 

and Squire [26] represented both ice covers as thin elastic plates each with its own 

properties. Their boundary conditions between the two ice covers are the continuity of the 

vertical displacement, slope, bending moment and shear force. The integral of normal 

stress distribution is the bending moment and the integral of shear stress distribution is 

the shear force, hence the boundary conditions used in Barrett and Squire [26] for a thin 

plate correspond one to one with our continuum boundary conditions.  

Equations (4.20-4.28) represent nine sets of infinite equations which cannot be 

solved exactly. Instead, a least-square method based on the variational method is 

commonly used to minimize the error function [18, 19]: 

dzFF
n

u

l

n

a

n

bn

n

n
 



9

1

2

                                         (4.30) 
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where 
n  are the Lagrange multipliers, 

nl  and 
nu  are the bounds of the domain where 

the matching conditions are applied, 
n

aF , 
n

bF  are the corresponding functions that must 

be matched at two sides, a  and b , of each boundary. However, in this study we use a 

simpler but less accurate approach. We adopt the same approximation as in Wang and 

Shen [58], in keeping with the fact that we only include two of the multiple modes in the 

dispersion relation Eq. (2.19). The boundary conditions are approximated by setting the 

integrals of the required conditions to zero. In this way, we do not minimize the error but 

require the mean values of both sides of the respective functions be the same. By 

comparing with the limiting case of pure elastic ice covers, we will get a sense of how 

well this approximation works. 

To summarize, the following equations are the approximated nine horizontal 

boundary conditions in terms of the potential and stream functions. The derivation of the 

normal and shear stresses in terms of the potential and stream functions is given in 

Appendix B. 
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4.3 Solutions 

In general, the full solution of the wave propagation through a viscoelastic cover 

consists of an infinite series of modes, each with a different wave number, all of them 

roots of the dispersion relation shown in Eq. (4.19). Truncation of this infinite series 

provides approximate solutions. Following Wang and Shen [58], from solutions of Eq. 

(4.19) the two wave numbers closest to the open water case are chosen to form the 

approximate solution. Each of these two modes on the left side of the domain shown in 

Fig.4-3 is represented by an incoming magnitude I . When entering the right side with a 

different viscoelastic property, the wave reflects in part represented by R , and transmits 
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the rest represented by T . Thus the total potential function and the stream function may 

be written in terms of these two modes as follows, where the individual modes denoted 

by 2,1n  are given in Eqs. (4.12-4.14). 
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In the above, 

eiii inkn  /)()( 22  , 3,1i  and 2,1n                       (4.46) 

The solution matrix for )(nAi
, )(nBi

, )(nCi
, )(nDi

 and the equation for solving )(nEi
 

can be found in Appendix C. After which we can substitute the solutions of )(nAi
, )(nBi

, 

)(nCi
, )(nDi

, )(nEi
 into the horizontal boundary conditions to form nine linear 
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equations for )1(I , )1(R , )2(R , )1(T , and )2(T  as in Appendix D. Since a linear 

wave regime is assumed, we may focus on the incoming wave one mode at a time.The 

procedure for solving )2(I  is identical. Following the above steps, substituting equations 

(4.40-4.45) into equations (4.31-4.39) gives an under-determined system of nine 

equations involving only five unknowns )1(I , )1(R , )2(R , )1(T , and )2(T . We solve 

this using singular value decomposition method based on the least-square error method to 

find the pseudo-inverse.  

With the continuity condition of the vertical displacement at the interface, we can 

derive the transmission and reflection coefficients for the surface profile as in Appendix 

E.  
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In the next section we will investigate several special cases for which previous 

results may be used for comparison. 

4.4 Wave transmission and reflection – pure elastic covers 

In this section we study the behavior of wave propagation involving pure elastic 

ice covers. The results are compared with existing theories. For all cases shown in this 
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study, 
3/917 mkgice  , 

3/1000 mkgwater  , mH 100 . Because )2(R  is very small 

for large shear modulus, it is dropped from the discussion in this section. )1(R  is denoted 

as R  in the results shown below. 

4.4.1 Between open water and elastic ice 

We first consider the case of wave propagation from open water to an elastic ice 

cover. We use the formulation described in Section 4.2, where no limitations of the ice 

thickness is imposed. The transmission and reflection coefficients are defined in Eqs. 

(4.47-4.50). Figure 4-4 shows the reflected and transmitted coefficients with respect to 

the wave period for sm /0 2 , 1G  =0.001Pa,  
3G =5GPa, 1h =0.001m, and 

3h =0.5m. 

Because of the extremely small values of 1G  and 1h , our solution should converge to that 

of the open water connecting to an elastic cover given in Wang and Shen [58], as indeed 

shown in Fig. 4-4. In this figure, the more accurate solutions using the Eigenfunction 

Expansion Matching Method by Kohout et al. [57] are also shown for comparison.  
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Fig. 4-4 Comparison between previous and the present studies of the reflection and 

transmission coefficients from open water to an elastic cover with respect to wave period. 

Here  =0m
2
/s for both regions,  1G  =0.001Pa,  

3G  =1GPa, 1h =0.001m, and 
3h =0.5m.  

In this and the rest of the figures,  
3/917 mkgice  , 

3/1000 mkgwater  , mH 100 . 

(The dark solid line coincides with the circles. The dark dash line coincides with the 

triangles. The dark dash-dot line coincides with the diamonds.) 

 

4.4.2 Between thin and thick elastic ice 

Next we consider a case with a vanishing 1h  and a finite 
3h  but keeping the same 

shear modulus in both ice regions. This case represents the wave propagation from an 

elastic membrane into an ice cover. The resulting reflection and transmission coefficients 

are plotted in Figs. 4-5 and 4-6. From Fig. 4-5, it is clear that when 1h  decreases wave 

transmission converges to that of the case from open water to an ice cover. However, the 
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reflection coefficient is different. Convergence is still observed when 
1h  decreases, but 

the results differ from the open water case except for long waves. The constitutive 

behavior of the membrane affects the reflection even though its thickness is negligible. 

This effect diminishes when the shear modulus of the membrane approaches zero, as 

observed earlier in Fig. 4-4. 

 

Fig. 4-5 Transmission coefficient with respect to wave period between a thin elastic 

cover and finite thickness elastic cover. Here  =0m
2
/s  for both regions,  1G  = 

3G  

=5GPa, 
3h =0.5m. (The dash-dot line coincides with the circles.) 
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Fig. 4-6 Reflection coefficient with respect to wave period between a thin elastic 

cover and finite thickness elastic cover. Here  =0m
2
/s  for both regions,  1G  = 

3G  

=5GPa, 
3h =0.5m.  (The dash-dot line coincides with the circles.) 

 

4.4.3 Between arbitrary elastic ice covers 

We now consider two linear elastic ice covers with different properties. This case 

has been studied by Barrett and Squire [20] using the thin elastic plate theory. First we 

present the case where the shear modulus differs between the two ice regions, all other 

parameters are identical. The results are shown in Fig. 4-7. We have also tested the case 

where two ice regions are identical. The results show 1T  and 0R  for all wave 

periods, as expected. Next we examine the case when the ice thickness is different 

between the two regions, the rest of the parameters are identical. The results are shown in 

Fig. 4-8.  



62 

 

Fig. 4-7 Reflection and transmission coefficients with respect to wave period 

between two elastic ice regions with   =0m2/s  in both regions,  1G  =2.5GPa,  
3G  

=5GPa, and 1h =
3h =1m.  

 

The above reflection and transmission coefficients are qualitatively the same as in 

Barrett and Squire [20] if their smoothly joined sheet boundary conditions are used. The 

quantitative difference is substantial at low wave periods but diminishes at high periods. 

The difference is particularly noticeable for the reflection coefficient. For example, for a 

1 sec wave, the reflection coefficient for the case shown in Fig. 4-7 is about 0.05 from 

Barrett and Squire [20] but from the present calculation it is about 0.25. The difference in 

transmission is less. For a 1 sec wave, it is about 0.9 from Barrett and Squire [20] and 0.7 

from the present calculation. The differences in both reflection and transmission become 

negligible for long wave periods. This difference may be a combination of our 

approximation in treating the boundary conditions, in ignoring the evanescent modes, as 
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well as the continuum considerations used in the ice regions (instead of the thin elastic 

plate assumption). Further investigation to identify the source of these differences awaits 

a more complete mathematical study currently underway. 

 

Fig. 4-8 Reflection and transmission coefficients with respect to wave period 

between two elastic ice regions with  =0m
2
/s  in both regions,  1G  = 

3G  =5GPa, and 1h

=1m, 
3h =2m.  

4.5 Viscoelastic cases 

We next study the full viscoelastic case. Each ice region is now considered as a 

viscoelastic material with different properties. In this section, both )1(R and )2(R are 

included. 

4.5.1 Between viscoelastic ice  
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Fig. 4-9 Reflection and transmission coefficients with respect to viscosity between 

two thin elastic ice covers with T =6s, G =10
4
Pa, and 1h =1m, 

3h =2m.  

 

First we examine regions of two different thicknesses. This case corresponds to an 

ice cover of the same physical composition but varying thickness. In each case, we let 1h

=1m , 
3h =2m. Properties in these two regions are otherwise identical. We study the 

influence of viscosity for three different shear moduli: low, intermediate, and high. These 

results are shown in Figs. 4-9, 4-10, and 4-11, respectively. As shown in Fig. 4-9, for low 

shear modulus, over a very large range, viscosity has strong effect on the transmission 

and reflection coefficients. Such dependence on viscosity appears to vanish as shear 

modulus increases for all three cases. However, looking close at the smaller range of 

viscosity, as shown in the insets of each figure, a different picture is found. The viscosity 

effect for 0< <1m
2
/s is most pronounced for the case with highest shear modulus. In fact, 
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upon close examination, viscosity does change the behavior of the transmission and 

reflection, but its influence is pushed down towards lower values of viscosity as the shear 

modulus grows.  

 

Fig. 4-10 The same as in Fig. 4-9, except that G =10
5
Pa . ( )2(R  and )2(T are both 

very close to zero) 
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Fig. 4-11 The same as in Fig. 9, except that G =1GPa. ( )2(R  and )2(T are both very 

close to zero.) 

 

4.5.2 Effect of shear modulus 

In studying wave propagation from open water to a viscoelastic cover, a mode 

switching phenomenon was observed between the two modes included in the 

approximate solution [58]. One of the two modes having most of the transmitted energy 

was called the dominant mode. It was found that between open water and an elastic cover, 

as the shear modulus increased, the dominant mode changed from one to the other. In this 

section, we investigate the energy partition between these two modes between 

viscoelastic covers. The transmission and reflection coefficients are shown in Figs. 4-12 

and 4-13 for the two modes over a range of the shear modulus. Just like in the previous 

case between open water and an elastic cover, the mode with a greater transmission 
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switched from one to the other in the range of G = 10
4
-10

5
Pa. The viscosity can influence 

the presence of mode switching. Between  =0 and 5m
2
/s, there is little difference as 

shown in Fig. 4-12. Increasing the viscosity to 50m
2
/s, the mode switching stops as 

shown in Fig. 4-13. Having such a large viscosity is unlikely for the ice cover. However, 

when considering the ice cover together with the boundary layer underneath, the full 

dissipation mechanism of this upper layer in the wave field may result in a large effective 

viscosity. Whether what found in the current model is physically observable remains to 

be seen. 

 

 

Fig. 4-12 Reflection and transmission coefficients between two viscoelastic ice 

covers with  =0m2/s or 5m
2
/s , T =6s, and 1h =0.1m, 

3h =0.5m. (Two )2(R are both very 

close to zero.) 
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Fig. 4-13 The same as in Fig.6-12 except that  =0m2/s or 50m
2
/s . (Two )2(R are 

both very close to zero.) 

 

We also tested the case when water depth is 1000m. There is no discernible 

difference from the H =100m case. The insensitivity to water depth may be an artifact of 

the approximation, since we keep only two modes in the solution. 

4.5.3 Grease ice and elastic ice 

As mentioned in the introduction, although this study is intended for a 

geophysical scale model, the same analysis is also applicable to floe scale process. We 

thus study a relevant case here. Figures 4-14 and 4-15 show results of a wave propagating 

from a pure viscous layer to a pure elastic cover. This situation corresponds to an ice floe 

surrounded by grease ice. We test a pure viscous case 1 =0.01m
2
/s  in region 1 and let 
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regions 3 be pure elastic. This viscosity is chosen based on the experimental study of 

grease ice covers [52]. The results are compared to the wave propagation from open 

water (with  =0m2/s and 
1G =0Pa) to the same elastic cover in region 3. We choose two 

cases for the elastic region: an intermediate shear modulus (
3G =0.05GPa ) and a high 

shear modulus (
3G =5GPa ). As shown in Figs. 4-14 and 4-15, )2(R  is non-zero for small 

period, but the transmission and reflection coefficients for the dominant mode are 

unaffected whether it is from open water or from a grease ice layer.   

 

Fig. 4-14 Reflection and transmission coefficients with respect to wave period from 

open water or a pure viscous ice to a pure elastic ice with 1G =0Pa, 1 =0m
2
/s or 

0.01m
2
/s , 

3G =0.05GPa, 
3 =0m2/s , and 1h =1m, 

3h =1m.  
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Fig. 4-15 The same as in Fig.4-14, except that 
3G =5GPa. 

 

4.6 Summary 

In the present study, the approximate mode decomposition method for solving 

ocean wave propagating from open water to an ice-covered region is extended to two 

connected ice-covered regions. In each region the ice cover is modeled as a viscoelastic 

continuum. 

4.6.1 Boundary conditions 

The boundary conditions in the vertical direction are the same as in Wang and 

Shen [58]. These conditions have been used to obtain the dispersion relation. In which, 

the attenuation coefficient and the wavelength have been obtained. The boundary 

conditions in the horizontal direction included more constraints from the previous study 
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of Wang and Shen [58]. In addition to requiring the continuity conditions of horizontal 

velocity and normal stress, we also consider the continuity conditions of shear stress and 

vertical velocity. Equivalent conditions were included by Barrett and Squire [26] for thin 

elastic plate models. For ice-ice interface, we also include the vertical velocity continuity 

condition to achieve the non-slip boundary condition. In Wang and Shen [58], continuity 

of shear stress was first included in the solution procedure. The solutions showed no 

influence of including this condition in the case of open water connecting to a 

viscoelastic cover. Hence this condition was dropped later in that study. For the present 

case we have kept this condition. However, because the magnitude of shear stress is 

proportional to the shear modulus, with its large value this constraint makes the 

convergence to the solution extremely difficult. To avoid the divergence of the results 

when solving for the reflection and transmission coefficients, we use a weighting factor 

of G/1.0  for the shear stress boundary condition when applying the singular value 

decomposition procedure. With this weighting factor, the solutions converge easily.  

Instead of requiring a minimum overall error throughout the boundaries as in Fox 

and Squire [18, 19], we only require the mean values on both sides of the interface be the 

same. This approximation as adopted in Wang and Shen [58] makes the solution 

procedure much simpler. Because of the approximation, results for shorter waves 

presented here are less accurate.  

To investigate the amount of error introduce by this approximation, Fig. 4-16 

shows the contribution of error from each of the boundary conditions in Eqs. (4.20-4.28). 

For the selected example, the parameters are 1G =
3G =5GPa, 1 =

3 =0m
2
/s, 1h =1m, 

3h

=2m and H =100m. In this figure, we plot the integrals in Eq. (4.30) one term at a time. 
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The behaviors of the errors can be separated into four distinct groups. The first group is 

the errors from Eqs. (4.20) and (4.21) for water-water interface. This group shows a fast 

decay with increasing period, hence they are the main error sources for low period waves. 

The second group is Eqs. (4.22), (4.25) and (4.26). These equations represent the velocity 

boundary conditions. This group is flat with a small magnitude, hence does not contribute 

significantly to error. The third group contains the normal stress terms, Eqs. (4.23) and 

(4.27), and the shear stress term, Eq. (4.28). Similar to the second group, the third group 

is also flat with very small magnitude. The fourth group is from the shear stress boundary 

condition, Eq. (4.24). This error increases with increasing period, thus becomes the main 

error source for large periods.  Of the nine boundary conditions, Eq. (4.24) is the most 

challenging. It represents the matching of shear stress between the vertical interface of 

water and ice. Referring to Fig. 4-3, this interface is below water. On the left side the 

shear stress must be uniformly zero due to the inviscid water. Thus the shear stress must 

also vanish on the ice side where it meets water. However, above the water-ice interface, 

still at 0x , is the ice-ice interface where the shear stress is not zero. The normal stress 

at the same interface does not suffer this jump condition, because the continuity of 

normal stress between regions 1 and 2 and regions 1 and 3 helps to smoothly connect the 

normal stress between regions 2 and 3. Nevertheless, the increase of error from Eq. (4.24) 

with wave period is mild. Its magnitude is small even for long period waves thus should 

not influence the solution significantly as is evident from Fig. 4-4. We also study the 

errors for other parameters, and we found the distributions of the errors for other cases 

are very similar as Fig. 4-16. 
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Fig. 4-16 Error terms from different boundary conditions: 1G =
3G =5GPa, 1 =

3

=0m
2
/s, 1h =1m, 

3h =2m and H =100m. 

 

Improvement of the solution using the variational method to solve the boundary 

conditions together with including more modes from the dispersion relation is underway 

and will be presented in the future. The errors discussed above are expected to reduce 

with the improved solution procedure. Partial submergence is also desired in order to 

more closely describe floating ice covers. 

4.6.2 Wave transmission and reflection between two elastic covers 

To compare with previously established wave transmission and reflection, we 

investigate the case between two elastic covers and compare the present results with the 

thin elastic plate model. The cases for changes on ice thickness and shear modulus 
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between the two ice-covered regions are studied as shown in Figs. 4-7 and 4-8. We find 

that present results are qualitatively the same as in Barrett and Squire [20] under their 

smoothly joined sheet boundary conditions. The quantitative difference may come from 

our ignoring the evanescent modes, keeping only two modes, and possibly our inclusion 

of the constitutive relation and the resulting boundary conditions between the ice regions. 

When we set the thickness and shear modulus of the upstream side of the ice region to 

zero, the results converge to open water connecting to an elastic cover as shown in Figs. 

4-4, 4-5, 4-6.  

4.6.3 Effect of viscosity 

After validating the current formulation and solution procedure by comparing the 

results with previously published work, we calculate the viscoelastic case. Several 

interesting phenomena are found. First, the mode switching that occurs as shear modulus 

increases stops at very high viscosity (see Fig. 4-13). Interest in such phenomena is at 

present only academic, because no evidence of such high effective viscosity is physically 

possible. Second, the transmission from a pure viscous cover to an elastic cover is the 

same as that from open water to an elastic cover, Figs. 4-14, 4-15. The reflection of the 

dominant mode is also unaffected whether it is from open water or from a viscous layer. 

The non-zero )2(R  is more pronounced for shorter waves. Solutions of the transmission 

and reflection are influenced by evanescent modes more for shorter waves. Hence the 

magnitude of )2(R  may change when these modes are included. When the propagation 

direction is reversed, i.e. from the elastic cover to open water or a viscous cover, we need 

to determine if the same insensitivity to open water or grease ice still holds. If so, then 

results from wave scattering in a dispersed floe field should apply to cases of floes 
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dispersed in a slurry. Although not intended in this study, this result is relevant for floe 

scale models. 

Finally, viscosity does have an effect on wave transmission and reflection when 

the ice cover is not pure viscous. As shown in Figs. 4-9, 4-10, 4-11, the influence of 

viscosity in a viscoelastic cover is evident.  

4.6.4 Application of viscoelastic model in the numerical wave model  

Assuming water depth is constant, based on Eq.(2.1) the evolution equation of the 

wave spectra is 

),,,(
),,,(

txfS
Dt

txfDN 





                                           (4.51) 

where N  is the wave action density and S  is the source-sink term. At present, the effect 

of ice is considered via an artificial blocking of energy flux between computational cells. 

Specifically, the advection of energy Ncg


 between computational cells is modified by a 

“transparency” coefficient which depends on the ice concentration. In the above,  gc


 is 

the group velocity. A process-based wave-ice interaction model will improve the 

parameterization of the existing wave models. The viscoelastic model presented here has 

the ability to include the elastic characteristics of a solid ice cover and the viscous 

characteristics of a fragmented ice field. It also has the ability to include other damping 

mechanisms such as the scattering, floe-floe interactions and flexing hysteresis. The 

dispersion relation given in Wang and Shen [58] provides a way to calculate gc


 and S . 

The transmission and reflection developed in the present study provides a way to 

calculate the “transparency” coefficient. Instead of using ice concentration as the single 

parameter, the wave model will use the shear modulus and viscosity as new parameters. 
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The advantage is that frequency-dependent damping and transmission of energy may be 

more realistically modeled. The challenge will be to determine the effective shear 

modulus and viscosity for a given ice field subject to a given wave frequency. 

4.7 Conclusions 

In this chapter a solution procedure is developed for the transmission and 

reflection between two dissimilar ice covers. The ice covers are conceptually represented 

by two parameters: shear modulus and viscosity. For extreme cases such as grease ice, 

the shear modulus vanishes and the ice cover behaves as a viscous material; for a 

consolidated ice cover the shear modulus approaches that of the solid ice and the cover 

behaves as an elastic material. The infinite series of all admissible modes of the 

dispersion relation is truncated to two closest to the open water mode. For very large or 

small shear modulus, only one of these modes is significant. The other has extremely low 

wave number associated with near zero transmission. But for intermediate shear modulus, 

there is a transition phenomenon between the two modes. These phenomena have been 

discovered in the earlier work for wave propagation from open water into a viscoelastic 

ice region [58]. In the present study, it is found that at large viscosity the mode switching 

phenomenon disappears. It also disappears for long period waves. The work presented 

here is a natural extension to the previous study of Wang and Shen [58]. The method 

shown may be used to prepare a numerical scheme for wave modeling under a 

heterogeneous ice cover. The results shown also provides evidence that at floe scale, 

wave scattering from elastic ice floes dispersed in a grease/brash ice field is nearly the 

same as those dispersed in open water. Due to the nature of the approximation, for short 
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period waves the solutions are less accurate. Improvements may be made by including 

more modes and better treating the boundary conditions, the subject of the next chapter. 
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CHAPTER 5 VARIATIONAL METHOD  

 

Modeling ice covers as viscoelastic continua, in chapter 4 we apply an 

approximate method to determine the transmission and reflection between two different 

ice covers. This approximate solution considered only two modes of the dispersion 

relation, and the horizontal boundary conditions were satisfied by matching mean values 

over the interfaces. In this chapter, we employ a more rigorous variational method [18] to 

calculate the wave transmission and reflection from two connecting viscoelastic ice 

covers of different properties. The variational approach minimizes the overall error 

function at the interface of two ice covers. The effect of additional travelling and 

evanescent modes are also investigated. We compare results from different matching 

methods, as well as the effects of including additional modes. From the study of this 

chapter, we find that additional modes do not always improve the results. For all cases 

tested, two modes appear to be sufficient. These two modes represent the open-water-like 

and the elastic pressure wave behavior. The approximate method and the variational 

method have similar results except at very short wave periods. 

5.1 Intorduction 

The approximate method in chapter 4 has the obvious advantage of being simpler 

and computationally faster. However, its accuracy is uncertain until we compare the 

results with a better mathematical procedure that includes more admissible modes and 

treats the boundary conditions more rigorously. In this chapter, we examine the effect of 

including more modes that exist in the dispersion relation, including both propagating 

and evanescent modes. We also improve the matching criterion by using a variational 
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method as in Fox and Squire [18]. We compare these new results with the approximate 

method, and previous studies that assumed ice covers as pure elastic materials. A linear 

wave regime is assumed in this study. 

5.2 Theoretical formulation 

The problem to be analyzed is two dimensional as shown in chapter 4. The two 

ice covers are assumed to be fully submerged. The x  direction is aligned with the 

incoming wave direction, and the z  direction is opposite to gravity. The origin is set at 

the top of the ice cover right between the two ice regions. As shown in Fig. 4-1, there are 

four regions: ice region 1 and 3; water region 2 and 4. A monochromatic wave propagates 

from left to right. The ice thicknesses for regions 1 and 3 are 1h  and 
3h , respectively. 

The total depth of the domain is H . The special case corresponding to open water wave 

propagating into an ice cover is represented by setting 01 h . The governing equations 

and boundary conditions are the same as in the chapter 4. 

5.3 Solutions 

The variational method is developed to solve transmission and reflection from 

open water to a thin elastic plate [18]. Using this method, Fox and Squire were able to 

examine the importance of matching boundary condition through the water depth instead 

of just at the free surface, as well as the inclusion of the two damped traveling modes and 

evanescent modes. Here, we extend the method to the viscoelastic model. This method is 

more rigorous than the approximate method used in Wang and Shen [58]. In the 

approximate method, we satisfy all horizontal boundary condition by forcing the average 

values across the interface to be equal. In the variational method we minimize the 
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differences across the entire interface. As in Fox and Squire [18], we define the error 

function based on the horizontal boundary conditions as follows 
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       (5.1) 

where  9

1nn  are the Lagrange multipliers which are chosen to optimize the convergence. 

The key difference of the approximate method and the variational method is this error 

function. Let 
iRiL FF  ,  be any property 

iF  at the left and right side of an interface, 

respectively. In the approximate method the error is defined as  
i

iRiL dzFF )(  and in 

the variational method as    
i

iRiLi dzFF
2

  where the integral is taken over the 

interface along z . Obviously the error requirement defined in Eq. (5.1) is more stringent. 

In addition, we will include more propagating modes than the two closest to the open 

water case as well as N  evanescent modes to form the general solution. In the 

approximate method [58, 59], we included only two propagating modes and none of the 

evanescent modes. Thus, for the present study, the total potential function and the stream 

function may be written in terms of these NM   modes as follows, where the individual 

modes are denoted by NMn  ,,2,1  . 
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The coefficients )(nAi
, )(nBi

, )(nCi
, )(nDi

, )(nEi
 are solved with the singular 

value decomposition method. We then substitute them into the horizontal boundary 

conditions to form error function in terms of )1(I , )(nR , and )(nT . The error function 

contains 1)(2  NM  unknowns )1(I ,   NM

nn


1)(R , and   NM

nn


1)(T . In vector form 

these unknowns are 

 TNMNMI )(,),2(),1(),(),2(),1(),1(  TTTRRR u .        (5.8) 

The error function can be rewritten as follows 

 uQQQQQQQQQu 998877665544332211   T
. (5.9) 

The matrix 
nQ  is calculated analytically as in Appendix F. To set the constraint of 

1)1( I , we introduce a square matrix K , which projects the coefficients vector u  onto 

the incident wave coefficient vector v : 

vKu  .                                                     (5.10) 
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The vector v  contains coefficients corresponding to 1)1( I  and all others being zero. In 

all, these constraints can be written as follows: 

0 vvu2vKuu TT T
.                                       (5.11) 

Minimizing   subject to the constraints (5.11) is performed by minimizing  

  uvuKQQQQQQQQQu
TT   2998877665544332211 . 

(5.12) 

Here   is the Lagrange multiplier corresponding to the 1)1( I  constraint. Minimizing 

Eq. (5.12) is equivalent to solving the following: 

vQu  ,                                                 (5.13) 

where 

KQQQQQQQQQQ   998877665544332211
. (5.14) 

With the continuity condition of the vertical displacement at the interface, we can derive 

the transmission and reflection coefficients for the surface profile.  
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where Mn ,..2,1 .  

5.4 Results of wave transmission and reflection - pure elastic case 

In this section we use the above solution procedure to study the behavior of wave 

propagation involving pure elastic ice covers. The results are compared with existing 

theories. For all cases shown, 917ice kg/m
3
, 1000water  kg/m

3
, 100H m. Based 
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on the estimation of the magnitude for each error term, we choose the Lagrange 

multipliers as 01.01  , 17432   ,
2

39865 /1 G  , and 1000 . 

5.4.1 Between open water and elastic ice 

We first consider the case of wave propagation from open water to an elastic ice 

cover. At this point we let 2M  and 0N , i.e. include only two propagating modes 

closest to the open water case as in chapter 4. The only improvement is that we adopt the 

new error function shown in Eq. (5.1). We thus focus on the effect of the more rigorous 

boundary matching criterion. Fig. 5-1 shows the reflected and transmitted coefficients 

defined in Eqs. (5.49, 5.50) with respect to the wave period for 03,1  m
2
/s, 1G  0Pa,  

3G 1GPa, 1h 0m, and 3h 0.5m. The results compare the approximate method, the 

variational method, and a different model based on the thin elastic plate theory where the 

matched eigenfunction expansion method was used [57]. In their study 20 eigenmodes 

were included. However, due to the thin elastic plate assumption, they reduced the shear 

and bending boundary conditions at the interface to a point. Treatment of such boundary 

condition is closer to matching the mean values at the interface as done in Wang and 

Shen [58]. Consequently Wang and Shen agreed better with Kohout et al. than the current 

results. Comparing Figs. 5-1a and 5-1b, all three cases converge to each other when 
3h  

reduces.  
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Fig. 5-1 Comparison between previous and the present studies of the reflection and 

transmission coefficients from open water to an elastic cover with respect to wave period. 

Here  0m
2
/s for both regions, 1h 0m,  3G  1GPa, and (a) 3h 0.5m; (b)  3h 0.1m. 

In this and the rest of the figures, 
3/917 mkgice  , 

3/1000 mkgwater  . (The dark and 

grey dash-dot lines coincide.) 
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We next examine what happens if we include more modes. First we locate these 

modes in the complex k -space. Fig. 5-2 shows the map of contours of the residual 

function )(Detabs  defined by the full dispersion relation as shown in Eq. (2.16). The 

parameters used in Fig. 5-2 are the same as in Fig. 5-1 The “islands” of these contours are 

either poles or zeros of )(Detabs . The zeros are admissible modes of the dispersion 

relation. Unlike the thin elastic theory where only one real root exists, there are three 

roots on the real axis. These three roots approach the single one shown in the thin elastic 

plate theory if either the elasticity increases or the ice thickness decreases. In the 

approximate solution we included only two of these modes. We now expand this to 

include five modes: three on the real axis and one pair of symmetric damped travelling 

waves, Fig. 5-2(a,b). We also examine the effect of evanescent modes, i.e. modes near 

the imaginary axis. We include 0, 10, and 100 of these modes. Fig. 5-3 shows the result 

of these different solutions. It is seen that the effect of additional modes is small. In fact, 

including a large number of additional modes seems to introduce fluctuations in the 

solution. From Fox and Squire [18], the evanescent modes are critical to obtain high 

accuracy solutions for thin elastic plate models. We will return to this issue in section 5.6. 

Since additional modes do not seem to change the accuracy of the transmission/reflection 

calculations, in the following discussions we keep only two modes and focus on 

comparing the approximate and variational methods. 
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Fig. 5-2 Contour lines of the residual function )(Detabs . Here  0m
2
/s,  G

1GPa,  and h 0.5m.  (a) Wide-angle view where evanescent modes, two damped 

traveling modes, and the third mode on the real axis is seen near 1.0rk m
-1

; (b) Close-

up view where the two modes on the real axis are seen. 

 

(a) 

(b) 
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Fig. 5-3 Effect of including additional modes on transmission/reflection from open 

water to an elastic sheet with the same parameters as in Fig.7-1 (2 modes: include 2 

propagating modes; 5 modes: add 1 additional propagating mode and 2 symmetrical 

damped propagating modes; 15 modes: add 10 evanescent modes to the 5 modes case. 

105 modes: add 100 evanescent modes to the 5 modes case. Fox and Squire’s results used 

100 evanescent modes. Sukun Cheng reproduced Fox and Squire’s results.) 

 

5.4.2 Between arbitrary elastic ice covers 

We now consider two linear elastic ice covers with different properties. This case 

has been studied by Barrett and Squire [20] using the thin elastic plate theory and the 

variational method. First we present the case where the shear modulus differs between the 

two ice regions, all other parameters are identical. The results are shown in Fig. 5-4a. 

Next we examine the case when the ice thickness is different between the two regions, 

the rest of the parameters are identical. The results are shown in Fig. 5-4b. In each case, 

the reflection and transmission coefficients are qualitatively the same as in Barrett and 
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Squire [20] if their smoothly joined plate boundary conditions are used. The quantitative 

difference is substantial at short wave periods but diminishes at long periods. The 

difference is particularly noticeable for the reflection coefficient. This difference is 

caused by the continuum considerations used in the ice regions instead of the thin elastic 

plate assumption in Barrett and Squire [20]. Using the variational method to more strictly 

match the boundary condition does not consistently bring the two models closer to each 

other.  
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Fig.5-4 Reflection and transmission coefficients with respect to wave period between 

two elastic ice regions with   0m
2
/s  in both regions. (a) 1G  2GPa,  3G  5GPa, and 

 31 hh 1m; (b)  31 GG  5GPa, 1h 1m, 3h 2m.  (In both cases, )2(R  and )2(T  are 

zero for both approximate method and variational method.) 

 

5.5 Energy partitions among modes in elastic ice and viscous ice 

We now consider the energy partitions among three main modes and the “mode-

switching” phenomenon as shown in Wang and Shen [23, 58]. Consider the case of wave 

propagating from open water to a pure elastic or pure viscous ice plate. In Fig. 5-5 we 

present the open water to pure elastic ice case by letting 01 h m, 5.03 h m , 3 0m
2
/s , 
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3 1010 G Pa, 6T  s. In this case there are three real roots from the dispersion 

relation Eq. (5.22). These are the main modes of the propagating waves. At low G  one 

mode contains the majority of the transmitted energy. At high G  the other does. The 

third mode which is included in the variational method but not the approximate method 
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has negligible energy. Between the variational and approximate methods there is little 

difference of the resulting energy partition between the other two modes. The two 

dominant modes switch their energy partitions in the range from 10
4
Pa to10

5
Pa. Although 

the 3rd mode does contain some energy, it does not change the partition between the 

other two modes appreciably. In Fig. 5-6 we present the open water to pure viscous ice 

case by letting 01 h m, 5.03 h m,  5003  m
2
/s, 03 G Pa, 6T  s . Because of the 

similarity, we present only those results from the variational method. Unlike the pure 

elastic ice case, increasing viscosity does not create a mode switch in energy partitions. 

With the increasing of viscosity, the reflected wave slightly increases its energy, while 

the transmitted waves decrease their energies. The mode closest to the open water 

solution always dominates the transmitted energy, and the second mode also has certain 

amount of energy. The third mode is negligible.  

 

Fig. 5-5 Reflection and transmission coefficients with respect to shear modulus 

between open water and elastic ice with 1h 0m, 3h 0.5m, 3 0m
2
/s, and T 6s. 
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Fig. 5-6 Reflection and transmission coefficients with respect to viscosity between 

open water and viscous ice with 1h 0m, 3h 0.5m, 3G 0Pa, and T 6s. 

 

To further understand these modes, we examine them as a function of the shear 

modulus G . As an example, we solve the full dispersion relation for the case 6T  s, 

0 m
2
/s and obtain the three real roots in the contour map for each G . In Fig. 8 the 

behavior of the three modes are shown. Let them be ordered such that 
321 rrr kkk  . As 

G  increases from 0, in the beginning the first transmitted mode appears to follow that of 

the open water solution. The second mode has much greater wave number to begin with, 

but approaches that of the open water as G  increases. At around 
4103G Pa for this 

case, both modes are close to each other. Further increasing G  makes the first mode turn 

downward sharply to follow the trend of the second mode while the second mode turns to 

approach the open water case.  Eventually as G  becomes very large the second mode 

begins to drop and coincide with the thin elastic plate theory. All this time, the third mode 
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constantly decreases. The third mode in this log-log plot is a straight line. Using these 

data we solve for its equation in the form of b

r aGk  . It is found that  Gk icer   

which is the elastic shear wave solution. The tangent to the asymptotes of the first and 

second mode is also well fitted by a straight line. Its best fit b

r aGk   yields 

GGk icer 3/2.16  . Since we assumed that the ice cover is incompressible, its 

Poisson’s ratio is 0.5 and the Young’s modulus is G3 , indicating that the nature of this 

branch of mode 1 or mode 2 is the elastic pressure wave. The above results are from a 

pure elastic case. This conclusion should hold for viscoelastic cases at lease when the 

viscosity is not too large. 

 

Fig. 5-7 Wave number of pure elastic ice with 
3 =0m

2
/s, T=6s and 

3h =0.5m, 

mH 100 . 
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5.6 Summary 

We discuss the main findings of the present study which is based on assuming 

that ice covers are a viscoelastic continuum.  

5.6.1 Comparison between different methods 

Without changing the qualitative behavior, different methods do change the 

quantitative transmission/reflection between ice covers. This difference increases with the 

ice thickness (Fig. 5-1) due to the matching conditions at the interface: one uses the mean 

and the other minimizes the square differences. Between the thin elastic plate and the 

current solutions the differences come from a combination of boundary condition 

matching and the assumption of the constitutive behavior of the ice cover. This difference 

is less when the approximate method is used, because the boundary matching methods 

are very close to each other.   

5.6.2 Effect of damped travelling and evanescent modes 

The viscoelastic dispersion relation has many modes. Upon examining the effect 

of including two damped travelling and different numbers of evanescent modes on the 

transmission/reflection coefficients, we find the additional effect is small (Fig. 5-3). In 

fact, including more evanescent modes for viscoelastic model introduces an accumulate 

error from root finding procedure, which causes fluctuations in the results, in particular 

the reflection coefficient. This situation is different from what was found from the thin 

elastic theory, where if we require error 0.1%, we need to include many evanescent 

modes [18]. In Fox and Squire, the free-end boundary conditions at the ice edge are 

matched at a point, while in the present study they are matched over the entire interface. 
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This finding suggests that more modes are required to approximate the abrupt change of 

material properties from open water to elastic plate when one point is used then over a 

finite surface. This situation is analogous to the Gibbs phenomenon, i.e. for a box 

function to be approximated by Fourier series, the shorter the span the longer the series is 

required for the same accuracy.  

5.6.3 Energy partitions in three modes 

As discussed in Wang and Shen [58] and chapter 4 and Fig. 5-5 of the present 

study, there is a mode switching phenomenon associated with increasing G . That is, at 

low G one of the three modes for the dispersion relation dominates, as G  increases the 

other mode becomes dominant. This switching occurs when the third mode approaches 

the other two. In close examination of the nature of these three modes as shown in Fig. 5-

2, the two dominant modes are from the simplified dispersion relation Eq. (2.18) and the 

third is from the remaining terms of Eq. (2.16). Fig. 5-5 and Fig. 5-6 show the partition of 

energy among these three roots. The third root contains little energy and thus can be 

dropped from further analysis.  

5.6.4 A remark on the difference between pure viscous and pure elastic ice 

An interesting and unexpected result is shown in Fig. 5-6. Even for viscous ice 

with small viscosity the reflection can be significant. For elastic ice, the rigidity has to be 

relatively high to have the same effect. Hence when we model wave propagation from 

open water to an ice zone, we need to carefully consider the reflection from viscous ice 

like grease or brash ice at the edge.  
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5.7 Conclusions 

In conclusion, for practical applications of the viscoelastic model in wave 

propagation through an ice cover, one can ignore the evanescent modes to save 

considerable computational time. Of the many other propagating modes, the two from the 

simplified dispersion relation are sufficient for representing the wave transmission/ 

reflection. Between the approximate method and the variational method, there is no 

difference in the computational cost, hence the variational method is preferred to more 

accurately match the boundary conditions. Finally, we emphasize that further study of the 

dominant modes in the viscoelastic dispersion is needed. So far, we have found that for 

pure elastic plates the two modes from the simplified dispersion relation always switch 

their dominance as G increases. For pure viscous covers this mode switching depends on 

the water depth. In case of a full viscoelastic material, whether there is mode switching 

between these two modes depends on the viscosity, the elasticity, and the water depth.  
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CHAPTER 6 EXPERIMENTAL STUDY  

 

To obtain the viscoelastic parameters from an inverse method, we need to have 

experimental or field data. The results from previous experiments for grease/pancake ice 

field show that the grease ice cover followed that of a viscous layer model, but under a 

pancake ice field it did not. New experimental data are now available for three different 

types of ice covers: frazil/pancake ice, pancake ice, and fragmented ice. The wave 

number and attenuation are obtained for several monochromatic waves over a range of 

frequencies. Using an optimization procedure to inversely determine the model 

parameters, we obtain the equivalent viscoelastic properties of these ice covers. We show 

that different ice covers require different parameterization to reflect the observed 

dispersion. The present results provide information to establish a direct relation between 

ice morphology and its mechanical parameters.  

6.1 Introduction 

To parameterize and validate models for the new Arctic Ocean, laboratory 

experiment provides a much more controlled and less expensive supplement to field 

studies. The experiment at HSVA in 2008 [99] measured wave propagation through a 

grease/pancake ice field. The results were compared with a model that assumed ice 

covers as a pure viscous material. Though this model agreed well with laboratory data 

taken with a soft grease ice cover under warm temperature [52], it did not agree with the 

grease/pancake ice cover under cold temperature [100].  

In 2013, an experiment was conducted at HSVA again. As part of a larger two-

week study entitled “Oil Detection Under Sea Ice” led by Jeremy Wilkinson of the 
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British Antarctic Survey, tests were performed to measure wave-ice interactions for three 

different ice covers: frazil/pancake ice, pancake ice, and fragmented ice floes. The 

experimental data were collected by Chris Callinan and detailed in Callinan et al. [77]. In 

this chapter, these data are used to illustrate the data processing and the inverse method 

used to determine the rigidity and viscosity parameters from the measured dispersion data.  

6.2 Experiment 

In the 2013 HSVA experiment, there were two wave tanks as shown in Fig. 6-1. 

The majority of the data reported here is from tank 3. Tank 2 was dedicated to other 

purposes unrelated to the present study. There were occasional cases where waves were 

propagated in tank 2. These occasional data are also included. Before the experiment, the 

voltage signals from the pressure sensors in Fig. 6-2 are calibrated with the water 

elevation. In the following sections the ‘raw data’ refers to the calibrated water elevation. 

The water depth in the tank was 0.94m and 0.93m with the nominal depth of all sensors 

at 0.24m and 0.23m on December 12 and 13, respectively. Three types of ice covers were 

formed during the experiment: frazil/pancake ice, pancake ice, and fragmented ice, as 

shown in Fig. 6-3. Detailed information of the facility, the formation of ice and collection 

of experimental data can be found in an experimental report [77, 101]. Ice thickness and 

floe size were sampled with a mesh-scoop. This tool was used in all our previously 

reported experiments [75, 100]. Water was drained from the mesh bottom of the square 

scoop shown in Fig. 6-4 after inserting the tool sideways through the thickness of the ice 

cover and gently lifting it off the surface. The thickness of the whole ice cover, which 

consisted of a slushy bottom layer and one or more pancakes on top (if pancakes were 

formed), and the diameter of the pancake ice were estimated using the scale on the tool. 
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Another sampling of the in-situ ice thickness as reported by Smedsrud and Skogseth [102] 

was also used in the frazil ice stage. This method involved using an open cylinder to 

puncture through the ice cover vertically, then plugging the submerged end and lifting the 

cylinder off the wave tank. The ice thickness floating on top of water in the cylinder was 

then estimated using the scale on the cylinder wall. After pancakes formed the in-situ 

measurement was stopped due to its difficulty of puncturing the relatively rigid ice cover. 

Using the 2008 data from both methods, we determine that the drained thickness using 

the mesh-scoop was about 2/3 that of the un-drained values using the cylinder.  

 

Fig. 6-1 Basin configuration and pressure transducer locations. 

             

Fig. 6-2 (Left) Sample time series in voltage. All data are displaced to aid 

visualization. (Right) the first frazil/pancake ice cover tested. Wave in tank 3 is visible.  
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The three types of ice covers shown in Fig. 6-3 are named: test 1 for the 

frazil/pancake ice, test 2 the pancake ice, and test 3 the fragmented ice. Within each test, 

the frequencies used were roughly from 0.5 to 1.1 Hz. At each frequency we repeat the 

test run at least once. Under some ice conditions, high frequency waves were damped 

significantly before they reached the sensors hence no measurements were obtained. We 

used a stop-go procedure to avoid the reflected wave from the beach. Only the first part 

of the time series shortly after the arrival of the waves at the sensor locations was utilized. 

The sampling frequency was 100Hz, and each wave run was 60s, starting from the 

quiescent condition. Each run was followed by a 2min resting period. A longer rest 

period was impractical and unnecessary. The sensors registered mainly noise after this 

period. 

 

Fig. 6-3 (Left) Frazil/pancake ice mixture with a meter stick shown at the bottom of 

the photo. (Center) Pancake ice. (Right) Fragmented ice floe. 
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Fig. 6-4 Mesh-scoop ice sampling. One pancake is shown lying on top of the slushy 

ice accumulation. The stick label shows the sample is picked up at the 16m mark location 

along the tank. 

 

6.3 Data processing 

We first apply an eleven point running average filter to the raw data. To avoid 

phase-shift, the average is centered at each point. The filter width is 0.1s, corresponding 

to a low pass filter of 10Hz cutoff. Hence it removes noise from equipment and the 

environment, but preserves all wave signals. We will use one run corresponding to a 

0.5Hz wave from the second test to illustrate the procedure used to determine the wave 

characteristics. 

6.3.1 Wave Frequency  

Since beach reflection does not change the wave frequency, any portion of the 

time series after the arrival of a wave at any sensor could be used to determine frequency. 
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As shown in Fig. 6-5, a 5s range is selected to start from the beginning of the wave signal 

at each sensor. In Wang and Shen [100], they employed four estimators to determine the 

wave frequency and found the differences among the methods were negligible. We use 

one of the four: the discrete Fourier transform (DFT) to convert the time series )(ns  to its 

Fourier components )( fS .  
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Here, L and M are the length and total number of the selected time series, f  is 

frequency. The energy spectrum is  

)()()( * fSfSfE                                                    (6.2) 

The peak of the energy spectrum corresponds to the wave frequency. Figure 6 shows that 

the frequency for this data set is at 0.502 0.0024Hz from all sensors.  

 

Fig. 6-5  Selected range of the wave signal at sensor B for analysis.  
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Fig. 6-6 (a) The energy spectrum and (b) the frequency of the wave signal.  

6.3.2 Wave Number 

The wave number rk  is determined from measuring the celerity c and relating it 

to the angular frequency f 2 as follows: 
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t
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


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
                                                     (6.3) 

Here, l  is the distance between a chosen pair of sensors and t  is the time lag of the 

signal between this pair of sensors. The distances between sensors are given in Fig. 6-1. 

To obtain the time lag, we maximize the time correlation between two time series 

obtained at sensors m , n :  

dtttststC
L

nm 
0

)()()(                                      (6.4) 

Here sL 5 , and the starting point for sensor m  is at the first trough after the arrival of 

the wave. Figure 6-7(a) shows )( tC   between three pairs of sensors. The resulting 

celerity between different pairs of sensors is given in Fig. 6-7(b). The mean and standard 

deviation of the celerity for this run is 2.63 0.22m/s. From Eq. (3), the resulting wave 

number is 1.20 0.10m-1. The first pair for sensor B and C is expected to be the most 

accurate due to the strength of the signals. Celerity from this pair is used for the 

subsequent calculations. 
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Fig. 6-7 (a) The time correlation and (b) the celerity between two sensors. 

 

6.3.3 Wave Amplitude 

To calculate the wave amplitude at each location, in the present study we use the 

DFT method again. As before, we select a 5s portion after the arrival of the wave to 

calculate the amplitude for each sensor. The starting point of this 5s period for the leading 

sensor, B , is set at the first trough after the arrival of the wave. For each subsequent 

sensor it is based on the group velocity estimated using the open water condition. This is 

a conservative estimate since the true group velocity is in fact larger, as shown in the 

measured c . The amplitude of the wave is  

dffEa p )( .                                                    (6.5) 

We tested the sensitivity of the amplitude results with respect to different processing 

method by using the Butterworth and Spectrum functions in Matlab. We applied a 3rd 

order filter with [0.02, 1.25] Hz window to the raw data as adopted in Wang and Shen 

[100]. The estimated wave amplitudes are very close to each other. For example at B for 
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this run the Matlab spectrum function with the more aggressive filter yields 1.89cm and 

the DFT method yields 1.95cm.  

6.3.4 Wave Attenuation 

For the wave attenuation calculation we assume that the wave has an exponential 

decay along the propagation direction. In Wang and Shen [100], three pairs of sensors 

were used to calculate the attenuation coefficient. In this study, during calibration we 

found that sensor A  was not reliable, hence deleted from the data analysis. The 

attenuation is thus estimated as 

l
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where sa  represent amplitudes at the respective sensor locations and l  is the distance 

between the center of sensor group G , 7  and B ,C . We calculate the wave attenuation 

to be 0.0373m
-1

 for this run. 

6.3.5 Inverse Method for Estimation on Viscosity and Shear Modulus 

Substituting Eq. (2.17) into (2.18), the viscoelastic sea ice model we will try to 

parameterize using the present experimental data is shown below. 
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 icee iG / , eik  /22   
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where khSk sinh , hS  sinh , khCk cosh , hC  cosh , eikN  22 , h  is 

the ice thickness, and H  is the water depth. The complex wave number is 
ir ikkk   

where 
rk  is related to the wave phase speed and 

ik  is the attenuation coefficient. The 

equivalent mechanical properties of the ice cover are:    the effective viscosity, and G  

the effective shear modulus. To determine   and G  for this example case where the 

measured complex wave number is 
-1m0373.020.1 iikkk ir  , we substitute the 

laboratory data m02.0h , m94.0H , Hz14.3 , 
3kg/m917ice ,  and  

3kg/m1032water  into Eq. (6.7) and plot the contours of the residual defined as the 

difference between the left and right side of Eq. (6.7). There are three roots for the 

estimated   and G  which correspond to the measured wave number rk  and the 

attenuation 
ik . Mathematically, all roots are acceptable since they produce the same 

observed wave characteristics. However, only the second root is physically consistent 

with ice properties: the first test should have the lowest and the third the highest shear 

modulus. Hence in all inverse solutions this root was chosen for all cases. 

6.4 Results 

6.4.1 Wave Number and Attenuation 

The wave number rk and attenuation 
ik  are dependent on the wave frequency. 

These results are shown in Fig. 6-8 and Fig. 6-9, respectively. The dependency is 

different for different ice covers. For wave number, the first test is closer to open water 

due to the very thin and soft ice cover. For the second test, the wave number becomes 

smaller than open water for Hz8.0f . In the third test with fragmented floes, the wave 
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number is clearly much smaller than other cases. The attenuation results show increasing 

trends with frequency in all three tests. From Fig. 6-9, it is obvious that both ice thickness 

and ice type affect damping. The ice cover in Wang and Shen [100] was very similar to 

the first test, but the thickness was similar to the third test show in Table 1. 

Wave/Ice 

Parameters 

Frazil/Pancake 

Ice 

Pancake Ice Fragmented 

Ice 

Wang and Shen 

[96] 

Ice Thickness (cm) 2.5 4 7.5 8.5 

Ice Diameter (cm) 2 2.5 20 20 

Table 6-1. The comparison on ice parameters among different ice covers. 

 

Fig. 6-8 Wave number with respect to wave frequency. 

 



108 

 

Fig. 6-9 Wave attenuation with respect to wave frequency. 

 

6.4.2 Viscosity and Shear Modulus 

We now use the method shown in section 6.3 to inversely determine the viscosity 

and the shear modulus for different ice covers. There are two purposes for this calculation. 

First, we need to examine if the viscoelastic model could simulate these different ice 

conditions. The other is to establish a direct relation between ice morphology and its 

mechanical parameters. This relation is important for further application of viscoelastic 

model in ocean wave models. Based on the mean wave number and attenuation results in 

Fig. 6-8 and Fig. 6-9, we inversely calculate the viscosity and the shear modulus for each 

test case and different wave frequency as shown in Fig. 6-10 and Fig. 6-11.  
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Fig. 6-10 Effective shear modulus with respect to wave frequency by inverse method. 

 

Fig. 6-11 Effective viscosity with respect to wave frequency by inverse method. 
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Although with these results the calculated ( G , ) precisely reproduce the 

measured  ),( ir kk , frequency dependent   (G , ) is impractical for applications. It is 

much more desirable to have a direct relationship between a given ice morphology and its 

equivalent mechanical properties. We thus look for a best fit ( G , ) pair to each of the 

ice covers for the whole range of frequencies tested. This is done with the Levenberg–

Marquardt algorithm. We minimize the overall error defined as the following 

   
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Here n

rk  and 
n

ik  are measured wave number and attenuation and rk , 
ik  are the 

calculated values corresponding to a ( G , ) pair . The results are shown in Fig.6-12-

Fig.6-15. The wave number is better fitted than the attenuation.  

 

Fig. 6-12 Data fitting by viscoelastic model for the first test using Levenberg–

Marquardt algorithm (LMA). Pa21G ; /sm014.0 2 . 
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Fig. 6-13 Data fitting by viscoelastic model for the second test using Levenberg–

Marquardt algorithm (LMA). Pa101.5 5G ; /sm1.61 2 . 

 

 

Fig. 6-14 Data fitting by viscoelastic model for the third test using Levenberg–

Marquardt algorithm (LMA). Pa100.1 6G ; /sm3.139 2 . 
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Fig. 6-15 Data fitting by viscoelastic model for Wang and Shen (2010a) using 

Levenberg–Marquardt algorithm (LMA). Pa24.48G ; /sm04.0 2 . 

 

6.5 Discussions  

There are several observations from the present study. First it is reconfirmed that 

the type of ice cover does affect its dispersion behavior. Frazil/pancake ice covers do not 

change the wave numbers as much as the fragmented ice. Attenuation is strongly 

dependent on ice cover thickness and the type of ice. Which of the two is the dominant 

factor is difficult to conclude with the limited data. Rigidity is an important parameter to 

include for ice covers except the soft grease ice. For this HSVA experiment, due to the 

continuous cooling throughout the tests, in addition to growing thickness, the surface of 

the ice became harder as its temperature dropped. An infrared camera was in the plan for 

the oil detection part of the experiment but it was not operational in time for the reported 

tests. Even though there is no sufficient knowledge to relate the ice surface temperature 

to its mechanical properties, with the coldness of the ice cover we might be better 
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informed of their physical rigidity. Direct mechanical measurements of the viscoelastic 

properties of the ice covers, such as the vibrational tests or creep tests, have been 

performed for consolidated ice sheets [103]. For the present types of ice such tests are not 

possible. 

Concerning the inverse method and the resulting viscoelastic parameters, the 

frequency by frequency results match precisely the measured wave data.  Due to potential 

experimental uncertainties from many sources, including the environment and the sensor 

performance, variance of the inversely determined ( G , ) is expected. However, the 

trend is probably robust. For application purpose, frequency by frequency ( G , ) is not 

practical at least for the time being. What we need is a direct relationship between the 

measurable ice characteristics, such as the type of ice and the cover thickness, and its 

equivalent mechanical properties. Using an optimization procedure we thus determined 

( G , ) for the three types of ice covers. The results are reasonable because the rigidity 

increased as the ice cover evolved from the frazil/pancake stage to pancakes and finally 

to the most rigid fragmented floes. The viscosity parameter also increased simultaneously. 

The same method is used to test the previous data from Wang and Shen [96] which had 

an ice cover type very similar to test 1 but with very different ice cover thickness. The 

resulting ( G ,  ) are nearly identical to the present values. Viscosity is a 

phenomenological parameter that embraces all rate dependent damping mechanisms. The 

underlying assumption of the current model shown in Eq. (6.7) is that these mechanisms 

are all linearly dependent on the rate of deformation, which is subject to further scrutiny. 

Nonetheless, before more realistic theories are developed, the viscoelastic model does a 

reasonable job fitting the measured data and providing estimates for the mechanical 
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properties for three types of ice cover. The only consistent discrepancy between the 

viscoelastic model and the measured data is the damping at lower frequencies. We did try 

to change the objective function defined in Eq. (6.8) by weighting the 
ik  term more. 

However, by increasing the weight of the error from 
ik  the fit for 

rk becomes worse 

while 
ik  is still consistently underestimated. 

Another phenomenon worth noting is that in processing the data, we found that 

fragmented ice cover behaved very differently from the frazil/pancake ice covers. Even 

though higher frequency runs were made, wave speed and attenuation calculations were 

not feasible. The wave energy at the paddle frequency decayed over very short distance. 

We compare the surface elevation signal at sensor B for the first test and the third test. 

For the first test, clear wave form with a single frequency lasts for the whole duration. 

But for the third test, the wave becomes random like from the beginning with multiple 

frequencies. Visual observations suggest that wave scattering and ice collision may have 

influenced the wave condition in the third test. The high frequency wave data from the 

third test is too weak for reliable estimates. 

From the curve-fitting results, the under predictions from viscoelastic model for 

attenuation at long wave shows that the current wave ice interaction model still misses 

some important mechanism to damp the wave energy. The possible sources for such 

damping may be the wave scattering by ice floes or the nonlinear interaction among 

different wave numbers. 

6.6 Conclusions 

In summary, we tested three different types of ice covers: frazil/pancake ice, 

pancake ice, and fragmented ice over a range of wave frequencies. The wave number and 
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attenuation are obtained for each wave frequency. Using an inverse method, we obtain 

the equivalent viscoelastic properties of different ice covers under different wave 

frequencies. A least square fitting method is used to inversely determine viscosity and 

shear modulus for each ice condition. The viscoelastic model did a reasonable job 

simulating the three different ice covers. The frazil pancake ice is shown to have the least 

equivalent elasticity and viscosity. The fragmented ice cover has the highest equivalent 

elasticity and viscosity. The pancake ice cover lies in between the two. The present study 

provides useful information to establish a direct relationship between ice morphology and 

the mechanical parameters of the ice cover. Appropriate scaling analysis needs to be 

developed to extrapolate the laboratory results to field conditions. 
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CHAPTER 7 GOVERNING EQUATIONS OF WAVE SCATTERING  

 

In this chapter, we derive the governing equations for wave scatterings with the 

Eddington approximation or diffusion approximation. The advantage of such 

approximation is to avoid calculating the complex integral kernel in the integral-

differential equation of the wave action density function. The diffusion approximation, or 

the Eddington approximation, is commonly used in the radiation transfer problem in a 

random medium. With three-term decomposition for the wave action density function, we 

obtain three differential equations for the wave action density. To evaluate the scattering 

coefficient, we employ a statistical method to get consistent results with previous 

scattering theories. 

7.1 Decomposition of wave action density function 

Recall that the wave energy balance equation is 


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If we ignore all other processes and focus on the scattering process alone, the above 

equation becomes [104, 105], 
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Here, 
s  is scattering attenuation, gc  is the group velocity, and 

kS is the kernel of wave 

energy redistribution. The right hand side of the above is the conservative wave source 

term mentioned in Chapter 2 : 
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The energy conservation condition leads to 
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Thus, the redistribution of energy is exactly the loss of energy in the given wave direction. 

Now, we linearly decompose the wave action density function into two parts as the 

following, 

),,,(),,,(),,,(  ktBktAktN xxx                                      (7.4) 

),,,( ktA x  is the incident part or the transmitted part, and ),,,( ktB x  is the scattered 

part or the reflected part. The governing equations for these two parts are as the following, 
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Then, we decompose B  with directional average part and fluctuating part as the 

following, 
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Using Eddington approximation in radiative transfer [104, 105], we have 

),,(
1

),,,( ktBktB
s

xx  


                                    (7.9) 
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7.2 Derivations of governing equations 

To obtain the governing equation of ),,( ktB x , we take the directional average of 

the equation of ),,,( ktB x which yields 
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Using the energy conservation condition Eqn. (7.3), we obtain 
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Eliminating the first and second terms on the right hand side of the above equation, we 

get 
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For the second term of the left hand side in the above equation, we substitute equations 

(7.7) and (7.9). 
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The first term of the right hand side in the above equation equals to zero. 
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Then we have 
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If the scattering attenuation is isotropic, we can rewrite the equation as the following 
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This directly leads to 
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Here, the diffusion coefficient is defined as 
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If the scattering attenuation is anisotropic, we have the diffusion coefficient tensor as the 

following 
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Substituting the above equation into Eq. (7.12), we get 
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In summary, we obtain the governing equations for energy density function as the 

followings, 
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7.3 Evaluation of scattering attenuation 

Now, we need to evaluate the scattering attenuation coefficient 
s . Because there 

is no well defined differential equation for one wave reflection event, we use the discrete 

version for the evolution equation of the wave action density function. 

),,,(),,,(),,,(),,,(),,,(  ktAktrtktAcktAkttA g xxxxx   (7.27) 

Here, ),,,(),,,( 2  ktRktr xx   is a random value for randomly distribted ice floe field, 

and ),,,( ktR x is the wave reflection coefficient. This equation assumes that in t  there 

is only one wave reflection event. But if the time step t  is large, we have 

),,,,( tktM x  wave reflection events. Thus, the energy loss from wave reflection can 

be expressed as the following 
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Here,  ttktM  ),,,,(x , gcl  is the characteristic time step for one wave 

reflection event. l  is the distance between two ice floes. In terms of these variables we 

have such discrete equation: 
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Next we divide the above equation with t  
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Let 0t , 
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From the above, we have the temporal scattering attenuation coefficient  
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The spatial scattering attenuation coefficient is thus 
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This result is consistent with Wadhams’ scattering theory [17] and Squire’s statistical 

calculation [53, 54]. 

7.4 Eddington approximation and multipole expansion 

In this section, we show Eddington approximation is that the second order 

approximation in the mulptipole expansion of “spherical harmonics”.  For any function 
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defined on a sphere, the function can be represented as the sum of standard spherical 

harmonics: 
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Here, sY m

i )',(   are standard spherical harmonics, and sC m

i '  are constant coefficients 

which depend on the function. Equivalently, the series also can be written as the 

following, 

 lkji

ijkl

kji

ijk

ji

ij

i

i nnnnCnnnCnnCnCCf ),(           (7.35) 

Here, sni '  represent the components of a unit vector in the direction given by the angles 

),(  . Similarly, for a three dimensional function the series expainsion is as the 

following, 
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Considering the scattered part of the wave action density function of ocean waves, the 

expansion is, 
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The governing equations for each term without assuming gc  is isotropic are, 
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If we igore the time derivative term and directional redistribution term in Eq. (7.42), the 

equation directly leads to Eddington approximation. 
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CHAPTER 8 IMPLEMENTATION TO WW3 MODEL 

 

To implement the theories developed in this study into the WW3 (or any other 

wave models) we need to have first the mechanical parameters,   and  , of the ice covers 

and second an efficient way to solve for the wave number and attenuation,    and   . The 

former is linked to the group velocity    and the latter to the source term in Eq. (2.1). The 

dispersion relation is shown in Eq. (2.16). Once we have ice parameters for the region of 

interest, we can input these parameters into the wave ice interaction models to compute 

the wave speed and attenuation. This procedure is not straitforward, because for 

operational purpose we need to have a fast algorithm to find the solution for any 

parameter combination. In this chapter, we provide two possible parameterization to 

estimate   and  . We then present a procedure to speedily implement the dispersion 

relation of the viscoelastic model into any wave models without the need to use pre-

calculated lookup tables. This direct calculation is shown to converge quickly.  

8.1 Introduction 

The ice cover is modeled as a viscoelastic continuum with two parameters: shear 

modulus and viscosity. With five parameters (wave period, ice thickness, water depth, 

shear modulus, and viscosity) each over a broad range, it is not efficient to pre-calculate 

the wave speed and attenuation for all possible cases and present the results in a lookup 

table. Albeit such pre-calculation can be done once and for all, to access a lookup table in 

runtime can slow down the simulation considerably. Here we introduce a fast algorithm 

to solve the dispersion relation quickly. The speed of convergence for different parameter 

ranges is determined. This algorithm can easily be implemented in any wave models. The 
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unknown rheological parameters, i.e. the shear modulus and viscosity, need to be 

determined by measured data and more fundamental theories that relate the ice 

morphology to its mechanical properties. 

8.2 Model description and the numerical procedure 

In this section, we revisit the governing equations of ocean surface wave model, 

and explain how to implement viscoelastic wave ice interaction model in an ocean 

surface wave model. 

8.2.1 Governing equation of ocean surface wave model  

The dispersion relation for wave propagation under a viscoelastic ice cover has 

been developed in Wang and Shen [2010] as shown in subsection 2.3.4.  

This dispersion relation has multiple modes as shown in chapter 5. The dominant 

mode is chosen to be used in WW3 because it contains most of the wave energy. This 

dominant mode is the one closest to the open water case. 

8.2.2 Numerical procedure 

In this section, we will introduce the numerical procedure to solve the roots of the 

dispersion relation, Eq. (2.16), from the viscoelastic model. We employ the Muller 

method [107]. There are multiple solutions. In the present analysis, we consider only the 

dominant mode, i.e. the mode closest to the open water case. It was found that the mode 

closest to the open water case contains the majority of the propagating wave energy, 

hence is an appropriate approximation for the full solution. 

Muller's method uses a quadratic function to determine the roots as shown in 

Appendix G. This recursive method converges faster than the secant method which uses a 
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linear function. Starting with three initial values 
0z , 

1z  and 
2z , the first iteration 

calculates the first approximation 
3z . Each iteration uses the last three generated 

approximations to obtain the next.  

The key step is to design a method that gives reasonable initial values 
0z , 1z  and 

2z  since they determine which root will be found and the convergence rate. From the 

previous study [23], we know that the dominant wave number under a viscoelastic cover 

is very close to the wave number of open water for wave periods greater than 10s. But for 

smaller wave periods, there is a large difference between the region under the viscoelastic 

cover and open water. Therefore, we separate the calculation procedure for initial values 

to two cases.  

(1) If the wave period T is larger than 10s, we first solve the open water  
0k  under 

the given angular frequency and water depth with initial values 01.00 z , 1.01 z  and 

12 z . Since the open water case has only two roots, one of them is negative hence 

unphysical, to ensure that we converge to the positive root, we use three positive initial 

values. The solving procedure is not sensitive to the initial values as long as they are 

positive. After 
0k  is found, we then set 

00 9.0 kz  , 
01 kz   and 

02 1.1 kz  as the initial 

values for the covered case to proceed.   

(2) If wave period T is smaller than 10s, we first obtain the dominant root of Eq. 

(2.16) for a 10s wave with the given parameters using the method in case (1). We then 

approach T  with an increment of s1.0T  . At the 
thn  increment, we let the three 

initial guesses be 
10 9.0  nkz , 

11  nkz  and 
12 1.1  nkz  where 

1nk  is the root for the 

thn )1(   increment or a period of T)1(10  n .  
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In regional or global wave models, a spectrum of wave periods needs to be 

followed in time and space. In step (2) above, if at each wave period one restarts from the 

10s wave, there would be a lot of unnecessary repetition. To speed up, a period sweeping 

in the simulation should start from the lowest frequency and highest frequency. Once the 

solution of k  is found, it should be saved for the next period. As long as the stepping size 

is maintained at s1.0T   convergence to the desired root is confirmed. 

The present algorithm is an alternative to constructing a lookup table. We have 

not tested the speed of using a lookup table to make a quantitative comparison.  

8.3 Sample results 

To test the numerical procedure in the above section, we calculate the real and 

imaginary part of the wave number and the group velocity with respect to wave period 

from 1s to 100s. Several viscoelastic parameters are selected. From Fig. 8-2 to Fig. 8-7, 

we show the sample results for the wave group velocity, wave attenuation and real wave 

number. Figure 8-8 provides the real part of the wave number normalized by the wave 

number of open water. This figure shows the numerical methods always converge to the 

dominant mode, which is close to open water case. The subsequent figures provide 

solutions for different viscoelastic materials with various equivalent shear moduli. 
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Fig. 8-2 Real part   and imaginary part q  and group velocity gV  with respect to 

wave period T . smice /05.0 2 , PaG 0 . mh 1 , mH 100 . 

 

      

Fig. 8-3 Real part   and imaginary part q  and group velocity gV  with respect to 

wave period T . smice /05.0 2 , PaG 410 . mh 1 , mH 100 . 
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Fig. 8-4 Real part   and imaginary part q  and group velocity gV  with respect to 

wave period T . smice /05.0 2 , PaG 510 . mh 1 , mH 100 .    

 

    

Fig. 8-5 Real part   and imaginary part q  and group velocity gV  with respect to 

wave period T . smice /05.0 2 , PaG 5105 . mh 1 , mH 100 .    
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Fig. 8-6 Real part   and imaginary part q  and group velocity gV  with respect to 

wave period T . smice /05.0 2 , PaG 610 . mh 1 , mH 100 .   

 

 

Fig. 8-7 Real part   and imaginary part q  and group velocity gV  with respect to 

wave period T . smice /05.0 2 , PaG 910 . mh 1 , mH 100 .  
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Fig. 8-8 Real part 
0/ k  with respect to wave period T . mh 1 , mH 100 . 

 
From these results there are two phenomena worth noting: 

As the period increases, not all three parameters, qVg ,, behave monotonically. 

As G increases, group velocity develops a minimum at some T . 

The case PaG 410  as shown in Fig. 8-4 and Fig. 8-8 is peculiar. The reason for 

the bumps in the curves is the mode switching phenomenon described in Wang and Shen 

[23]. In the regions where the bumps occur, a single dominant mode is insufficient to 

describe the wave propagation. At least two modes share similar energy and thus must be 

included. We consider these as special cases that require further study.  

8. 4 Convergence rate  

The convergence rate for the Muller method depends on the set convergence error. 

There are two convergence criteria: 1
1 




 

n

nn

z

zz

z

z
; 21)()()(  nn zFzFzF . 

The root computation is assumed to be achieved by satisfying both criteria. If the 
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convergence errors 
1 and 

2  are both set at 510 , the solution converges in about 3 steps 

for T 10s. Figure 8-9 shows the computational time for different periods using an Intel 

Core2 Duo CPU T8300 @ 2.40GHz. If we do not sweep from long period to short period 

and save the solution for the next period, the time requirement increases with each shorter 

period. If we save the solution of the previous period and use it to construct the initial 

three values for the next period, the speed of convergence is constant for each period.  

 

Fig. 8-9 Computational time with respect to wave period for original method and 

speed up method. 

8.5 The viscoelastic parameter 

To implement the above viscoelastic wave ice interaction model into a wave 

model, we need to estimate the viscoelastic parameter  iceicee iG / . In other 

words, we need to determine the viscosity   and shear modulus G  from the physical 

composition of the ice cover. As discussed in chapter 6, field and laboratory studies are 

needed to bridge the ice cover morphology to its mechanical parameters. To date, there 

have been no theories, whether empirical or from the first principles, to relate the shear 



133 

modulus of an ice cover to its physical composition. Below we will make some 

recommendations based on very limited amount of study.  

Sakai and Hanai [50] conducted wave flume experiment using polyethylene 

sheets as artificial ice floes. They propagated monochromatic wave over a group of floes. 

By changing the individual floe size while keeping the total covered area constant, the 

resulting phase velocity of the waves was measured. Using the dispersion relation from a 

pure thin elastic cover, they then determined the equivalent Young’s modulus E  of the 

fragmented ice cover as follows: 


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where  

   cic lllhIF /log/
2/1

                                                 (8.4) 

   4/123 112/ piceinc ghEl                                              (8.5) 

inE  is the Young’s modulus for individual ice floe, and p  is the Poisson ratio for 

individual ice floe.  
ice  is the density of ice, and g  is the gravity acceleration. Knowing 

the typical ice floe thickness h  and length 
il , we can then obtain the equivalent Young’s 

modulus of the ice-covered region E . The shear modulus and Young’s modulus have the 

following relation: 

 pv

E
G




12
                                                          (8.6) 

For the viscosity of an ice cover region ice , de Carolis et al. [106] derived a 

theory based on rigorous fluid mechanics of two-phase flows: 
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)(max iceice cf                                                             (8.7) 

Here 
max is the maximum value of the viscosity, and )( icecf   is a function of 

icec , which 

is the concentration of the ice crystals in the water body. This theory is more appropriate 

for frazil ice where the composition of the ice cover is similar to a slurry. Before more 

advanced theories are developed, we may, based on the above study, suppose a linear 

function for 
iceice ccf  )(  and set sm /05.0 2

max  .  

Another approach to estimate the viscoelastic parameters of the ice cover for use 

in the wave dispersion has been suggested by Erick Rogers of the Naval Research 

Laboratory [personal communication]. This idea is described below. The oceanic general 

circulation model (OGCM) is a numerical model to study the behavior of ocean at the 

mesoscale and global scale. In which, the movement of ice covers is an integral part of 

the model. The rheology of ice covers provides the necessary constitutive relation 

between the unknown internal ice stress to its kinematics, which then completes the 

momentum equation. This rheology is based on the theories developed by Hibler [108]. 

In this rheology, viscoelastic paramters have been calibrated to best reproduce the 

observed large scale ice kinematics. If indeed these paramters are reflections of the ice 

cover properties, there is no reason why they should be different in the wave-ice 

interaction process. Hence, we may also try to use the same parameterization as in the 

OGCM ice models for predicting wave under ice covers. The procedure for such 

estimates is shown in Appendix H with a sample data set provided by Rogers. What we 

have found is that the rheology in the OGCM yields very high viscosity parameter but 

reasonable elasticity parameters. It is worthwhile noting that OGCM ice products are 

mainly focused on the large scale ice cover motion, while wave propagation in ice covers 
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is mainly a marginal ice zone phenomenon. Once entered into the ice cover, attenuation 

rapidly decays the wave amplitude. The importance of waves is quickly diminished. In 

the marginal ice zone, where the ice cover meets the open ocean, the OGCM model and 

its parameterization may not work well. In fact, this topic is under active research at 

present (http://www.apl.washington.edu/project/project.php?id=miz ). 

8.6 Summary and conclusions 

In the study of this chapter, we introduce a systematic algorithm to implement a 

viscoelastic wave ice interaction model into ocean wave models. This algorithm provides 

a speedy alternative to lookup table. This method is needed to extend the current 

“approximate” solution to include more modes. Two approaches are explained to provide 

parameterization. Both are highly speculative. More accurate methods to determine the 

shear modulus and viscosity of ice covers await further research. Two parameterization 

ideas are presented. Data from the field and laboratory experiments are needed to relate 

the ice cover morphology to their mechanical properties. 

 

http://www.apl.washington.edu/project/project.php?id=miz
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CHAPTER 9 SUMMARY AND FUTURE WORK 

 

In this thesis, we briefly introduce the classification of sea ice based on their 

spatial distribution and their property. A three layer viscoelastic model which can 

simulate different kinds of ice covers is derived. This model can coverge to other wave 

ice interaction models under limiting conditions. Also, we provide an efficient algorithm 

to implement such kind of wave ice interaction model into the operational ocean wave 

models. In this thesis, we show how to analytically calculate the coefficients of reflection 

and transmission waves with approximate method and variational method. The behavior 

of these coefficients in relation to the mechanical properties of the ice cover is examined. 

Finally, we develop a set of governing equations to prepare the implementation of wave 

scattering into WW3 model with a diffusion approximation.  

The finished research consists of eight tasks: 

1. Review previous theories and research on wave ice interaction; (Chapter 2) 

2. Develop a three-layer viscoelastic model to generalize previous six classic wave 

ice interaction models; (Chapter 3) 

3. Design an efficient numerical method to implement viscoelastic model into ice 

covered ocean wave model; (Chapter 8) 

4. Investigate the reflection and transmission coefficients between two connected 

ice-covered ocean region using the approximate solution method; (Chapter 4) 

5. Investigate the reflection and transmission coefficients between two connected 

ice-covered ocean region using the variational method;  (Chapter 5) 
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6. Derive the governing equations for wave scattering by randomly distributed ice 

floes for global ocean wave model; (Chapter 7) 

7. Experimentally study the wave propagation under ice covers; (Chapter 6) 

8. Apply sea ice model in the oceanic general circulation model to parameterize 

physical parameters in viscoelastic model. (Chapter 9) 

 

There are several important future improvements required as listed below: 

1. Study the source terms of wind input, dissipation and nonlinear interaction for 

ocean wave models in the ice covered region. 

2. Apply the governing equations for wave scattering to be implemented into a 

global ocean wave model. 

3. Study the “roll over” behavior of attenuation with full ocean wave model. 

4. Apply the optimization inverse method to estimate the physical parameters in 

viscoelastic models from the laboratory and field data. 

5. Establish the direct relation between ice morphology and physical parameters in 

the viscoelastic model. 

6. Apply ocean wave model with wave ice interaction model for different kinds of 

ice covers to examine the existing models; 

7. Examine other viscoelastic models different from the Voigt model. 

 

We elaborate the above needs as follows.  

Presently in all global wave models the wind energy input and wave breaking 

dissipation are simply reduced by the fraction of open water in the ice covered seas. The 
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nonlinear wave interaction term is unchanged. Theories developed for these terms are all 

based on the air-sea interactions. The presence of ice may significantly modify these 

physical processes.  

Wave scattering effect is calculated for different kinds of regular ice floes and 

even for floes of arbitrary shapes. A linear Boltzmann equation is derived based on this 

calculation. This is expected to simulate the conservative term of sea ice source term for 

WW3 ocean wave model. But an exact model for wave scattering at single ice floe scale 

is computationally too expensive for a global ocean wave model. Probably, a statistical 

model based on scattering theory is more practical, because wave reflection/scatter is 

discontinuous and random both in time and space in the real ice covered ocean. This 

statistical model should be formulated as a governing equation for a continuum. Present 

three terms decomposition formulation is one option. We will integrate the three 

governing equations for wave scattering to compare with exact model to examine its 

accuracy. 

Most wave ice interaction models cannot predict the roll-over effect of wave 

attenuation except Liu and Mollo-Christensen’s eddy viscosity model [41]. The roll-over 

effect is only observed in field measurements, but in laboratory research such effect has 

not been found. On the other hand, including nonlinear wave interaction and wind effect, 

Perrie and Hu [14] also produced the roll-over effect. So it is interesting to check whether 

the roll-over is caused by wave-ice interaction alone, or by the combined effect of 

nonlinear wave interactions and wind wave generation.  

The viscoelastic model is shown to incorporate all three distinct classic models. It 

has the capability to describe all different ice types by tuning the two materials 
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parameters: rigidity and viscosity. These two parameters are extremely difficult to derive 

from first principles. We propose to use an inverse method, i.e. directly measure wave 

number and wave attenuation as two inputs, through the dispersion relation, we may 

calculate the rigidity and viscosity. In this way we expect to find the relation between ice 

morphology and rheological parameters. Hence, extensive field and laboratory study is 

needed to provide sufficient data for both wave attenuation and wave number under 

various ice covers.  

For viscous attenuation, the viscoelastic model can simulate different ice covers, 

such as grease ice, pancake ice, and continuous ice sheet. This model is already 

implemented into the most recent version of WW3 ocean wave model. The reflection 

phenomenon due to ice edge or inhomogeneous ice distribution is studied. We expect to 

also include such effect into WW3 to simulate a real ice covered ocean. 

Finally, the calculation of the viscoelastic model is based on the Voigt model. We 

need to investigate the differences between Voigt model and other models, such as 

Maxwell-Voigt model [112] to see if there is any fundamental differences between the 

resulting dispersion relation. 
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Appendix A:  Reduced boundary conditions in the three layer 

viscoelastic model 

 

This appendix contains the reduced boundary condition equations in terms of 

potential functions and stream functions for the three-layer viscoelastic model. 
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For the boundary condition equations for the two layer model, the first six 

boundary conditions are the same as the equations (A.1)-(A.6). The rest two equations are 

replaced by the non-slip boundary conditions. 
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Appendix B: Derivations of normal stresses and shear stresses in terms 

of the potential and stream functions 

 

Substitute the velocity potential and stream functions into the expressions for 

stresses, we get 
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Appendix C: Matrix for solving )(nAi
, )(nBi

, )(nCi
, )(nDi

 and )(nEi
 

 

Substituting the general solution into vertical boundary conditions, we obtain the 

matrix for solving the coefficients )(nAi
, )(nBi

, )(nCi
, )(nDi

 as follows. 
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Since the ice cover is considered as a continuum, the vertical velocity at the 

interface between two adjacent regions must be continuous. Therefore,  
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With these relations we can obtain )(nEi
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Appendix D: Matrix for solving )1(I , )1(R , )2(R , )1(T , )2(T  

 

Substituting the general solutions into the horizontal boundary conditions, we 

obtain the matrix for solving coefficients )1(I , )1(R , )2(R , )1(T , )2(T  as follows. 
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Appendix E: Derivation for transmission and reflection coefficients 

 

Due to the continuity requirement at the origin between ice region 1 and ice 

region 3, 

),0(),0( 31 tt   .                                                (E.1) 

Here 1  and 
3  are the displacement at the top of ice region 1 and ice region 3, 

respectively. This implies 

t

t
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 ),0(),0( 31 
.                                              (E.2) 

Hence the vertical velocity is continuous at the origin: 

)0,0()0,0( 31 ww  .                                                (E.3) 

Substituting the potential and stream functions for velocity into Eq. (E.3), we can 

obtain: 
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 We then substitute the general solution into Eq. (E.4) to get: 
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Simplify Eq. (E.5), we obtain the relation between reflection coefficient and 

transmission coefficient: 

))2()2()2()2()(2())1()1()1()1()(1(

))2()2()2()2()(2(

))1()1()1()1()(1())1()1()1()1()(1(

33333333

1111

11111111

CikBkCikBk

CikBk

CikBkCikBkI







TT

R

R

;     (E.6) 

The following equations can be obtained: 
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Appendix F: Matrix 
nQ  for solving coefficients vector u  

 

If we substitute the general solutions into the error function, we can analytically 

calculate the matrix  9

1nnQ . 

 

The calculation of elements of matrix
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We definne the vectors e  and k  as follows 
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The calculation of elements of matrix 2Q  
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We define new e  and k  for this calculation 
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The calculation of elements of matrix
3Q  
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We define vectors a , b , c , d , k  and α  as follows 
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The calculation of elements of matrix 4Q  
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We define new vectors a , b , c , d , k  and α  as follows 
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Then we can obtain 
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The calculation of elements of matrix
5Q  
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We define new vectors a , b , c , d , k  and α  as follows 
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Then we can obtain 
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The calculation of elements of matrix
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We define new vectors a , b , c , d , k  and α  as follows 
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Then we can obtain 
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The calculation of elements of matrix
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We define new vectors a , b , c , d ,e , k  and α  as follows 
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The calculation of elements of matrix
8Q  

 

 

 
























































2

1

3333333

2

1

3333

2

33

2

1

3333

2

1

1111

3

2

2

3

2

332

32

)(cosh)()(sinh)()()()(2

)(sinh)()(cosh)()()(2

)(sinh)()(cosh)()(

))((cosh)()())(1(cosh)1()1(

),0(),0(
2),0(),0(

),0(),0(

N

n

eice

N

n

eice

N

n

ice

N

n

waterwater

eiceicewater

xxxx

znnDznnCnTnnki

znknBznknAnTnk

znknBznknAnTi

HznknEnRiHzkEIi

zx

z

x

z
zizi

zz














 

(F.53) 

We define new vectors a , b , c , d ,e , k  and α  as follows 
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Then we can obtain 
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The calculation of elements of matrix
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We define new vectors a , b , c , d , k  and α  as follows 
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Then we can obtain 
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Appendix G: Muller method 

 

                In the present study, we employ the Muller method to find the roots of the 

dispersion relation. Because for large period wave the viscoelastic model’s dominant 

roots are very close to open water case, we can first calculate the roots for the open water 

case and use it as the initial guess for the Muller method. The Muller method will find the 

accurate location of the roots for viscoelastic model. 

Muller's method is a recursive method which generates an approximation of the 

root z  of )(zF  at each iteration. Starting with three initial values 
0z , 1z  and 2z , the first 

iteration calculates the first approximation 1z , the second iteration calculates the second 

approximation 2z , the third iteration calculates the third approximation 
3z , etc. Hence 

the kth iteration generates approximation 
kz . Each iteration takes as input the last three 

generated approximations and the value of )(zF  at these approximations. Hence the kth 

iteration takes as input the values 
1kz , 

2kz  and 
3kz  and the function values )( 1kzF , 

)( 2kzf   and )( 3kzf . The approximation 
kz  is calculated as follows. 

A parabola )(zyk
 is constructed which goes through the three points (

1kz , 

)( 1kzF ), (
2kz , )( 2kzF ) and (

3kz , )( 3kzF ). )(zyk
 is 

],,[))((],[)()()( 321212111   kkkkkkkkkk zzzFzzzzzzFzzzFzy   (G.1) 

where ],[ 21  kk zzF  and ],,[ 321  kkk zzzF  denote divided differences:  
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http://en.wikipedia.org/wiki/Zero_of_a_function
http://en.wikipedia.org/wiki/Divided_differences
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Eq. (G.1) can be rewritten as 

2

132111 )](,,[)()()(   kkkkkkk zzzzzFzzwzFzy               (G.4) 

where 

],[],[],[ 323121   kkkkkk zzFzzFzzFw                         (G.5) 

The next iterate 
kz  is given as the solution closest to 

1kz  of the quadratic equation 

0)( zyk
. This yields the recurrence relation 
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In this formula, the sign should be chosen such that the denominator is as large as 

possible in magnitude. We do not use the standard formula for solving quadratic 

equations because that may lead to loss of significance. 

We note that 
kz  can be complex, even if the previous iterates were all real. 

This is in contrast with other root-finding algorithms like the secant method, Sidi's 

generalized secant method or Newton's method, whose iterates will remain real if one 

starts with real numbers. Having complex iterates can be an advantage (if one is looking 

for complex roots) or a disadvantage (if it is known that all roots are real), depending on 

the problem. 

http://en.wikipedia.org/wiki/Recurrence_relation
http://en.wikipedia.org/wiki/Quadratic_equation
http://en.wikipedia.org/wiki/Quadratic_equation
http://en.wikipedia.org/wiki/Loss_of_significance
http://en.wikipedia.org/wiki/Secant_method
http://en.wikipedia.org/wiki/Sidi%27s_generalized_secant_method
http://en.wikipedia.org/wiki/Sidi%27s_generalized_secant_method
http://en.wikipedia.org/wiki/Newton%27s_method
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Appendix H: A parameterization based on OGCM 

 

The oceanic general circulation model (OGCM) is a numerical model to study the 

behavior of ocean at the mesoscale and global scale. The two-dimensional momentum 

equations for sea ice are obtained by integrating the 3D equations through the thickness 

of the ice in the vertical direction. In this model, the momentum equation of the ice cover 

needs to be solved as an integral part of the model [108, 109]. In the ice momentum 

equation, the internal stress in sea ice dynamics model was an active research topic 

during the 1980s [108]. The most widely used ice dynamics model at present is the one 

adopted in the model CICE [109]: the Los Alamos sea ice model, in which, the internal 

stress follows that developed by Hibler [108] where for viscous-plastic model: 

  mnllmnmnmn SSp   22/                                   (H.2) 

or equivalently: 
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p 


 









 442

1
                                (H.3) 

and for elastic-viscous-plastic model [105] 
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11
                     (H.4) 

Here, τ is the internal stress tensor of sea ice, p is the average of normal stresses from 

the internal ice stress, and mnS  is the strain rate tensor.   and   are the nonlinear bulk 

and shear viscosities. E  is Young’s modulus. 

This formulation is based on phenomenological arguments. It has been calibrated 

using the observed ice kinematics via remote sensing. Since the internal ice stress is a 

physical quantity, as suggested by Erick Roger of the Naval Research Office [personal 
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communications] its formulation should be consistent whether it appears in the ice 

dynamics or in the wave ice interactions. The study of such ice model may provide 

additional information to improve parameterization in wave ice interaction models.  

The physical parameters in elastic-viscous-plastic sea ice model are as the 

following [110] 




2

P
 ,  

22 e

P


 .                                           (H.5) 

Here, 

  2222 / eDDD STD                                        (H.6) 

2211 SSDD
                                                (H.7) 

2211 SSDT
                                               (H.8) 

122SDS
                                                 (H.9) 

ijS is the strain rate tensor. In the spherical coordinate, we have [111] 
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Here, 
0  is latitude, and 

0  is longitude. 
0r  is the radius of earth. First order finite 

difference method is employed to calculate spatial derivative. Then, the elasticity and 

viscosity are 

cT
E


 , 

ice

ice



                                       (H.13) 
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Here, P , u  and v are read from input file. Parameter settings are as sTc 1200 , 2e . 

We used a data set provide by Rogers to test this idea. The resulting elasticity and 

viscosity paramters are shown in the figure below. 

  

Fig. H-1 computed effective elasticity of Arctic ice cover in log scale. 

 

 

Fig. H-2 computed effective viscosity of Arctic ice cover in log scale. 
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From Fig. H-1 and H-2, the magnitude of the elasticity is found to be reasonable, 

but the viscosity has a very large order magnitude. But this is also obtained from oceanic 

general circulation model, in which the maximum cutoff value of the effective viscosity 

is 10
9
 m

2
/s. The large magnitude for the viscosity may be caused by the setting of e . e  

is the yield curve aspect ratio. For most sea ice models, e  equals to 2 fits the observed 

ice kinematics well. Since the fitting is largely controlled by the over-all ice kinematics, 

for marginal ice zone applications, different calibration values may apply. 

The method for parameterization is a simple way to obtain viscoelastic parameters. 

This is based on the assumption that the sea ice model in oceanic general circulation 

model is well calibrated for the parameters. However, lacking such calibration 

information, we still need to explore the direct relation of ice morphology and ice 

parameters to examine the parametrization method described in this study.  


