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Abstract

Linear approaches for multivariate data are popular due to their lower complexity,

reduced computational time, and easier interpretation. In many cases, linear approaches

produce adequate results; however, non-linear methods may generate more robust

transformations, features, and decision boundaries. Of course, these non-linear methods

present their own unique challenges that often inhibit their use.

In this research, improvements to existing non-linear techniques are investigated

for the purposes of providing better, timely class separation and improved anomaly

detection on various multivariate datasets, culminating in application to anomaly detection

in hyperspectral imagery. Primarily, kernel-based methods are investigated, with some

consideration towards other methods. Improvements to existing linear-based algorithms

are also explored. Here, it is assumed that any classes in the data have minimal overlap in

the originating space or can be made to have minimal overlap in a transformed space, and

that class information is unknown a priori. Further, improvements are demonstrated for

global anomaly detection on a variety of hyperspectral imagery, utilizing fusion of spatial

and spectral information, factor analysis, clustering, and screening. Additionally, new

approaches for n-dimensional visualization of data and decision boundaries are developed.
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IMPROVING NON-LINEAR APPROACHES TO ANOMALY DETECTION,

CLASS SEPARATION, AND VISUALIZATION

I. Introduction

1.1 Problem Definition and Background

Hyperspectral imagery (HSI) sensors collect contiguous data across the electromag-

netic (EM) spectrum, where an area being imaged is divided into a grid with each grid

cell or pixel corresponding to a rectangular subregion of the image. HSI sensors record

radiance over many discrete intervals, referred to as spectral bands, across a subset of op-

tical wavelengths. The sensor records the radiance over the spectral bands for each grid

cell or pixel. This generates a cube of band images that contain both spatial and spectral

information about the objects and background in a scene. As materials may reflect EM

energy differently across the individual wavelengths in comparison to their surroundings

(e.g., camouflage as opposed to foliage), this information may serve to identify possible

objects or anomalous cells/pixels by analyzing the spectral signatures. Thus, objects of

interest can potentially be found by locating pixels that are statistically different than the

background.

The full HSI data cube can be very large depending on the number of spectral bands

and pixels in the image. Slices from an example data cube are shown in Figure 1.1. This

volume of information lends itself to the application of multivariate techniques, but can

also have a computational disadvantage without the use of dimension reduction or feature

selection. This is also a major consideration for real-time analysis, considering that a goal

may be to analyze the data as it is collected by the sensor. As a result, linear transformation
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or scoring methods have proven popular for HSI analysis. This is discussed further in

Section 3.11.

(a) Single Band. (b) HSI Cube.

Figure 1.1: HSI Image Radiance Example.

It should be clear that HSI poses several challenges, both due to the amount of data

and the nature of the data. The radiance maps corresponding to neighboring wavelengths

or bands are often highly correlated. This can cause issues within analytic techniques,

or simply is a source of redundant information. Spatial correlation can also exist as the

signature of terrain does not change wildly among some neighboring pixels. Images may

contain several distinct background classes, resulting in “soft” anomalies when a pixel from

one background class is compared to a pixel from another, or when sub-pixels contain

different terrain or materials. Further, matrices derived from all pixels, i.e., covariance or
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kernel matrices, can be expensive to compute and may need to be approximated in some

fashion.

Detecting and identifying an anomaly in HSI can be thought of in two stages:

1) detecting the anomaly, and 2) identifying whether or not the anomaly is actually a

target or natural clutter. This research focuses on both stages, although not necessarily

independently. That is, it is desirable to have some process or transformation that makes

it easy to distinguish a target anomaly from background and natural clutter. New spectral

anomaly detection algorithms and enhancement to existing techniques are investigated,

where it is assumed there is no prior spectral information about the pixels of interest a

priori.

1.2 Assumptions

Prior to undertaking this research, some assumptions were made about the images to

be processed. First, it must be assumed that the anomalies to be identified are sparse (or

at least not dense across the majority of the image), allowing for unsupervised methods

to yield a detector. This enables the treatment of detection as a search for rare pixels

whose information significantly differs from the local or global background. In the

pursuit of enhanced algorithms, other multivariate data sets are used to test and explore

various concepts. In these cases, it is assumed that classes within the dataset can be

transformed in some manner so as to have reasonable decision boundaries. That is, a level

of discrimination needs to be possible.

In reality, the radiation signal reaching the sensor is not as simple as described

previously; there are three components: 1) reflected radiance, 2) adjacency radiance, and

3) path radiance. Atmospheric correction calculates and removes the adjacency and path

radiance, while retrieving apparent pixel reflectance from the reflected radiance [33, 154].

For purposes of this research, the second assumption is that the data is this derived apparent

surface reflectance data, as given by established test images. In these data sets, the spectrum

3



of each pixel can be viewed as a vector of radiance values for the number of spectral bands.

This vector can then be treated as a vector of features, or as a signal representing the pixel

due to the large number of bands. Even this is an over-simplification of the HSI data, but

other issues are addressed in more detail in Sections 2.3.1 and 4.5.

Third, it is assumed that performance is preferable to speed, although efficiency is

a consideration. That is, some level of complexity is allowed in order to achieve gains

in identifying anomalies correctly, assuming methods used do not make image analysis

computationally intractable.

Finally, it is assumed that the image can be processed in total. The alternative would

be to treat the image as though only lines or segments of the image under consideration are

available to an analyst at any time due to the receive process from the sensor. In this case, if

such a process were to exist, it is assumed that the image sizes used here are representative.

1.3 Research Objectives

The process of finding anomalies has been done many different ways and under many

assumptions in the literature. Many of these methods are discussed in the subsequent

chapters. Despite the numerous approaches that have been taken, there is a lack of

a flexible, yet robust detection algorithm for arbitrary imagery. That is, some of the

better-performing algorithms that currently exist show varying performance once different

sensors, scene complexity, and/or anomaly density are considered. Further, many state-of-

the-art algorithms are limited to linear transformations or decision boundaries. A primary

purpose of this research is to explore enhancement or replacement of such algorithms

by incorporating non-linear methods. The development of proper means with which

to employ some of these non-linear methods is also an important part of this research.

As van der Maaten and van den Herik stated [149], although non-linear dimension

reduction techniques outperform their linear counterparts on certain complex artificial

tasks, successful applications on natural data sets have been scarce. Additionally, simple
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adjustments to existing algorithms are explored to find easy performance gains or removal

of unnecessary parameters.

1.3.1 Purposeful Visualization of High-Dimensional Data.

The total of this research can be generalized to three areas. First, the HSI data itself

is analyzed before any transformation or reduction. To do this, in part, n-dimensional

visualization techniques are used and developed. These same techniques are also used as a

means to visualize class boundaries and dataset complexity.

1.3.2 Improved Class Separation.

The second area of this research involves using various non-linear methods to generate

better unsupervised decision boundaries or spaces for the data under consideration.

As mentioned previously, many non-linear methods add complexity and computational

expense. Specifically, kernel methods can increase dimensionality, present scaling issues

for certain high-dimensional data, and perform very differently depending upon the choice

of kernel. In this vein of research the following are investigated:

1. Improved training set generation for Support Vector Data Description (SVDD).

2. Expanding kernel-based methods to the unsupervised case.

3. Selecting an optimal kernel for the kernel methods.

4. Skeleton generation for kernel-based methods.

5. Outlier sensitivity for the resulting non-linear methods.

6. Component selection for Kernel Principal Component Analysis (KPCA).

Here, investigations using other multivariate data sets are first performed to provide crucial

information towards translating these methods to larger-dimensional HSI. Additionally,

component selection is simultaneously an area of interest for the linear-based methods that

use components.
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1.3.3 Improvements to Global Anomaly Detection in Hyperspectral Imagery.

Although with HSI data it is known what signatures of different materials look like

in the spectrum, in a real-world collection it is not always known what materials may be

in the scene. Hence, in anomaly detection it can be more important to seek anomalies

without using any kind of spectral matching, at least initially. Numerous algorithms

have been developed for this purpose, but they often do not generalize beyond a certain

set of scenes, may be difficult to reproduce, or contain several user-defined parameters.

Endmember extraction is a related area, where the pixels are treated as combinations of

some set of source members. However, even once the endmembers are estimated, a method

for anomaly detection must still be performed. Therefore, the focus here is on finding

unsupervised factors or transformations that make detection easier, rather than an intense

focus on unmixing the pixels. In this research, the lessons learned from the previous areas

of research and adjustments to already existing algorithms are all explored. These methods

are explored in order to simplify or make existing algorithms more robust. A focus is also

to reduce the number of parameters necessary to adapt algorithms to varying image types.

The use of a fusion of spatial, spectral, and signal-to-noise information, as well as factor

analysis is investigated to provide a better global anomaly detection framework.

1.4 Dissertation Outline

The research that follows is very inter-related, but an attempt is made to present it

as linearly and sensibly as possible. First, the data sets used are presented in Chapter 2.

Next, some general methods that apply across areas or that recur, or that are traditionally

used heavily for a topic, are presented in Chapter 3. Investigation into the HSI data sets

themselves and identification of noisy features and bands is shown in Chapter 4. Chapter

5 includes a literature review of n-dimensional methods and development of adjustments

to provide more useful visualizations. Chapter 6 incorporates findings from Chapter 4,

as well as other methodologies, towards the development of an improvement to existing
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anomaly detection techniques. Chapter 7 discusses Kernel Principal Component Analysis

(KPCA), and investigates its use as an efficient replacement for linear methods. Chapter

8 includes a review of SVDD literature and the development of an algorithm for better,

pseudo-optimal two-class separation or anomaly detection. Finally, Chapter 9 provides a

summary of contributions and possible areas for future research.
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II. Overview of Data Sets

This Chapter discusses the different data sets that are analyzed throughout this

research. These data sets include both natural data and HSI, are real-valued, and are of

varying dimensions. Some have only two or three features so that they can be plotted for

interpretation, while most are n-dimensional, in that they have greater than three features.

Here, features correspond to the variables in the data and exemplars correspond to the

observations, or in terms of vector notation, each exemplar is a vector and each feature

is a component. For HSI, the bands may be interpreted as the features and each pixel is

an exemplar. Classes of data typically exist within each dataset, such as background and

anomaly classes in HSI.

2.1 Data Imputation

A few of the data sets used for this research have missing values or values that cannot

occur naturally. When exemplars are missing correct feature information, data imputation

can be used to replace these values using information already found in the full dataset.

For this research, a form of nearest-neighbor imputation was used for the applicable data

sets that were not hyperspectral. Let X denote the N × p data matrix, where there are N

exemplars and p features. Specifically, the following steps were performed:

1. Check for Not a Number (NaN) values, or values that do not occur naturally, in the

dataset. Return if none found.

2. Let xi denote the i-th exemplar in dataset X. Normalize the dataset by feature using

xnorm
i j =

xi j − µ∗ j

σ∗ j
, where ∗ indicates over all exemplars in X in feature j, and µ and σ

denote the mean and standard deviation, respectively.
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3. For an exemplar xi with missing data and of class type c, let Xc be the set of exemplars

with no missing data and also of class type c, not including xi. Let Xnorm
c be the

corresponding normalized data.

4. Define the nearest neighbor y to xi as that corresponding to:

argmin{ynorm∈Xnorm
c }

∑
j
|xnorm

i j − ynorm
j |, where j is only used if that feature is not missing.

5. Replace the missing feature values in xi with the values from y.

In other words, it is assumed that data with missing feature information is sparse and

that any exemplar in the set being imputed has a similar existing neighbor. The L1 norm, in

conjunction with the normalization, is used to ensure that a neighbor is not identified where

a large deviation occurs in some feature, while taking into account all deviations. This

simple imputation provides a quick technique to replace missing values. Alternate forms

of imputation do exist, other than using a different distance metric [183]. For example,

imputation by regression prediction assumes continuous features, which is an erroneous

assumption for the data sets that were imputed in this research. An additional method is to

replace missing data with the mean of the feature for the corresponding class. This latter

method, however, could skew the exemplar closer to the centroid of the dataset and could

also provide a feature value not physically or naturally possible.

2.2 Multivariate

This section describes the multivariate data sets used in this research to test various

algorithms. These were chosen due to known properties, or issues that they can present to

algorithms.

2.2.1 Breast Cancer Wisconsin (Diagnostic).

The Breast Cancer Wisconsin (Diagnostic) dataset contains 699 exemplars with nine

tumor features [19]. These nine features are: clump thickness, uniformity of cell size,

uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland
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chromatin, normal nucleoli, and mitoses. Tumors are classified as malignant or benign, and

the dataset in its original form has sixteen missing values. To correct these missing values

for this research, nearest-neighbor imputation, within class, is used as was discussed in

Section 2.1.

2.2.2 Chainlink.

The Chainlink dataset used is that taken from Burk [41], and has 500 exemplars in

each of two classes that form linked rings. This dataset is good for the investigation of

algorithm performance given a certain data geometry. The data is depicted in Figure 2.1.

2.2.3 Modified Banana.

The Modified Banana dataset is not a standard dataset, and was specially constructed

for this research. A banana dataset typically consists of a class of data taking a crescent

shape, and another challenging the class boundary in some manner. Here, one class of

data was constructed so as to have a fairly crescent shape, while also having an imperfect

boundary. Further, a second class was added so as to be within the crescent. Here, the

intent is to give a non-linear classifier difficulties should any data from the second class

erroneously be used to find the boundary, or should a too-perfect crescent shape be used.

The dataset consists of 400 exemplars, with 200 in each class. This set is shown in Figure

2.1.

2.2.4 Half-Moons.

The Half-Moons data, specifically that taken from Burk [41], has approximately 7500

exemplars in each of two classes. The classes form two non-overlapping crescents. This

dataset is also good for investigating algorithm performance given a certain data geometry.

It is also very similar to the banana dataset.

2.2.5 Fisher Iris.

Fisher Iris is a popular dataset in pattern recognition literature due to one class being

separable from the other two and the latter not being linearly separable. The dataset
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(a) Banana. (b) Half-Moons. (c) Chainlink.

Figure 2.1: 2-Class Geometric Problems.

contains three classes of fifty exemplars each. Sepal length, sepal width, petal length, and

petal width, all in cm, are features for iris setosa, versicolour, and virginica flower types

[19].

2.2.6 Pima.

The Pima Indian Diabetes dataset contains 768 exemplars with twelve features [19].

All patients are females at least 21-years old of Pima Indian heritage. The twelve features

are: number of times pregnant, plasma glucose concentration at two hours in an oral

glucose tolerance test, diastolic blood pressure (mm Hg), triceps skin fold thickness (mm),

two-hour serum insulin (mu U/ml), body mass index (weight in kg/(height in m)2), diabetes

pedigree function, and age (years). Patients are classified as having tested positive or not

for diabetes.

Although the dataset contains no missing values, there are zeros in places where they

are biologically impossible [19]. These zeros occur erroneously in the plasma glucose

concentration, diastolic blood pressure, and body mass index variables [93]. To correct

these erroneous values for this research, nearest-neighbor imputation, within class, is used

as was discussed in Section 2.1. 44 exemplars required imputation, but only seven of these

required imputation for more than one feature.
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2.2.7 Vertebral Column.

The Vertebral Column dataset contains 310 exemplars with six features [19]. The six

biomechanical features derived from the shape and orientation of the pelvis and lumbar

spine are: pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius,

and grade of spondylolisthesis. The dataset can be split into two or three classes. The

two-class version classifies by normal and abnormal, while the three-class version splits

the abnormal class into disk hernia and spondylolisthesis classes.

2.2.8 Hepta.

The Hepta dataset is a seven-class dataset for geometry investigation or clustering

testing. Each class consists of approximately 30 data points, where six of the classes

surround one. This dataset is shown in Figure 2.2 and was also taken from Burk [41].

Figure 2.2: Hepta dataset.

2.2.9 Wine.

The Wine dataset is the result of chemical analysis of wines grown in a region in

Italy derived from three different cultivars. Thirteen attributes were measured to classify
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these three cultivars: alcohol, malic acid, ash, alkalinity of ash, magnesium, total phenols,

flavanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue, OD280/OD315 of

diluted wines, and proline. This dataset is considered well-behaved for class structures

[19].

2.2.10 Wine Quality.

The Wine Quality dataset consists of 6,497, eleven-feature exemplars, where each

exemplar corresponds to a red or white variant of the Portuguese “Vinho Verde” wine

[60]. The eleven features used (based on physicochemical tests) are: fixed acidity, volatile

acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide,

density, pH, suplhates, and alcohol. In addition to classifying as red or white, a quality

(score between 0 and 10) output variable is also included. Unique values for this score lie

between 3 and 9.

2.2.11 MNIST.

The MNIST database of handwritten digits has a training set of 60,000 exemplars

and a test set of 10,000 exemplars [3, 4]. The digits are size-normalized and centered

in a fixed-size 28 pixel-squared image, where each image has been vectorized to have

784 pixels/features. An example digit image is shown in Figure 2.3. 65 pixels have no

value (black) over all exemplars and both the training and test sets. As these provide no

information, they were removed from the dataset, yielding a final 719 features.

2.2.12 Arcene.

The Arcene dataset was a part of the Neural Information Processing Systems (NIPS)

2003 feature selection challenge, and is a two-class problem with continuous input

variables. Specifically, the data is mass-spectrometric obtained using surface-enhanced

laser desorption ionization and was combined from National Cancer Institute and Eastern

Virginia Medical School sources [19]. The data was pre-processed before release so as to

build a valid benchmark, to include putting variables on a common range. The positive class
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Figure 2.3: Example MNIST Digit: 5.

includes patients with ovarian or prostate cancer, while the negative includes healthy or

control patients. 7,000 of the 10,000 features are real, indicating an abundance of proteins

in human sear having a given mass value. The remaining 3,000, referred to as probes, were

added as distractor features and have no predictive power. The order of all 10,000 features

was randomized.

The dataset includes 100-exemplar training and validation sets with full class

information, and a 700-exemplar test set where originally it was only known that 310

of the 700 exemplars were positive. For this research, the training and validations

sets were combined to generate a dataset, where 88 of the 200 exemplars are positive.

Additionally, a 900 exemplar dataset was generated by adding the 700 exemplar test set

and its corresponding class labels [91]. The Arcene data was chosen for this research for

several reasons: its distractor features, the fact that the exemplars can be treated as signals,

its difficult discrimination, and that the number of features is significantly larger than the

number of exemplars. The mean vectors for both exemplar classes are shown in Figure

2.4. Because the order of features was randomized, these no longer represent exemplar

signatures, as they would have if properly ordered.
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Figure 2.4: Arcene Class Mean Vectors.

2.3 Hyperspectral Imagery

For a HSI image, each channel or band wavelength of a pixel is typically in

micrometers or microns (µm), where this measurement represents the radiance. The peaks

and valleys of a pixel’s spectrum, not due to the Sun or the atmosphere, reveal information

on the chemical composition of the pixel under examination. Images from a variety of

sensors are used in this research.

2.3.1 Special Considerations for HSI.

HSI can present unique issues in comparison to other multivariate data sets. These

include atmospheric properties, scaling issues, and truth mask issues. Further, sensor

collection or correction error can cause occasional bad values in the data. One specific

example of this occurs in the HYDICE ARES imagery (Section 2.3.2), where negative

values occur in a sparse manner. As this is infrequent in the data, and because past

researchers have done the same [107, 111], here such data is set to zero. Correlation can

also present an obstacle for certain algorithms.
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2.3.1.1 Atmospheric Properties.

Spectral reflectance is the ratio of reflected to incident energy as a function of

wavelength. This varies with wavelength for many materials because energy at certain

wavelengths is scattered or absorbed to different degrees [193]. The locations of spectral

regions used to retrieve atmospheric and physical features are shown in Figure 2.5 for

reference. All natural materials exhibit some variability in composition and structure that

similarly yields variability in the reflectance spectra. Low values on spectral signatures

indicate wavelength ranges for which materials absorb the incident energy; these bands are

commonly called absorption bands.

Figure 2.5: Spectral Region Locations [81].

Measured reflectance by the sensor is affected by more than just the spectral

reflectance of surface materials and the spectrum of the input solar energy. Interactions

of the energy during its downward and upwards passages through the atmosphere,
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the geometry of illumination, and characteristics of the sensor system all affect the

measurement as well [193]. Of particular interest are the effects of the intervening

atmosphere on the surface reflectance estimate. Atmospheric absorption bands are

frequency bands at which the energy emitted is almost completely absorbed by the

atmosphere. As Smetek stated in his research [191], a sensor detects primarily random

noise in such bands.

At wavelengths below 2.5 µm, the incident solar flux is impacted by the absorption

by well-mixed gases (such as ozone, oxygen, methane, and carbon dioxide), absorption

by water vapor, scattering by molecules, and scattering and absorption by aerosols and

hydrometeors. Molecular scattering effects can be significant out to 0.75 µm, and aerosol

scattering continues to have an impact at 1.3 µm [81]. Mixed gases can be modeled

accurately and data is often corrected accordingly before being given for analysis, as had

been done with the images used here. Water vapor absorption has perhaps the most notable

remaining effect after such processing has been applied to the images. Two very weak

absorption bands are located at 0.6 and 0.66 µm, slightly stronger absorption bands are

located at 0.73, 0.82, and 0.91 µm, and at 0.94 and 1.14 µm water absorption is even

stronger. It is strongest near 1.375, 1.9, and 2.5 µm, such that retrieval of surface reflectance

is very difficult or impossible [81]. Due to this, data collected by the sensor near such bands

can be noise. Therefore, it is useful to remove these strong absorption bands from the data

cube before conducting analysis. Unfortunately, finding absorption or noisy bands is not

always as simple as removing only those bands containing these wavelengths.

Past researchers have in some way interpreted the relative noisiness of each band

to decide which bands to remove from an image, or have removed the same as their

predecessors. An attempt at developing a more rigorous approach to find absorption and

noisy bands is made for the different sensor images in Section 4.5, and identification results

are compared against those bands identified in the literature. In general, the strong water
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absorption bands mentioned correspond to much of what is removed for the HSI data sets

before analysis. Development of the approach was further necessitated by the fact that

some of the HSI images used in this research are not prevalent in the literature.

2.3.1.2 Scaling.

Due to the number of bands and the magnitude of the spectral values, in some cases

HSI can present unique issues for algorithms. In particular, the dot products between

exemplars often found in kernel methods can grow to be too large in scale. To prevent such

scaling issues, the hyperspectral data was also scaled by dividing by the maximum value

found across all pixels and all spectra. This maintained the shape and relative magnitude

of the signatures, while alleviating computational issues when necessary. Such a technique

was also used by Kwon and Nasrabadi [133] when using Kernel Principal Component

Analysis (KPCA) for a Kernel Reed-Xiaoli (KRX) algorithm. Scaling by a constant has

little effect on eigenvalues and eigenvectors for a covariance matrix when using methods

such as PCA (discussed in Section 3.2). Rather, it simply scales the eigenvalues, as for a

random variable X and constant c, Var(cX) = c2Var(X). This effect on the eigenvalues

is shown in Figure 2.6. This can cause its own problems, however. The scaled values

can become too small for an intended purpose, if trying to use a fixed magnitude-based

cut-off for dimension reduction, or the scaled data can become small enough that it causes

precision error in the estimation of the eigenvalues and eigenvectors. In any results shown,

it is made clear during discussion which version of an HSI dataset is being used, along

with any adjustments that had to be made. Alternatively, the data could be standardized.

However, that would change the relative information amongst features and thus the relative

spectral signatures.

2.3.1.3 Correlation.

Both spatial and spectral correlation can also present issues for algorithms when

working with HSI. Spatial correlation occurs because neighboring pixels may contain
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Figure 2.6: ARES1D Covariance Eigenvalues Comparison.

similar materials, and because shapes (versus magnitudes) of pixel spectral signatures are

often similar. Consider the 25 × 25 pixel window and its corresponding correlation matrix

shown in Figure 2.7. The window contains brush, road, and vehicle (anomaly) pixels that

are all highly correlated.

The similar shape of signatures is shown using another sensor and image in Figure 2.8,

where 1,000 pixels were randomly sampled. Although different materials have different

magnitudes across the bands, the shapes of these signatures are often similar. The spectral

correlation for segments of neighboring bands can also be seen using this same Figure.

Those bands where the signatures dip to near zero in many cases correspond to absorption

bands. Alternatively, when considering the band correlation matrix, shown in Figure 2.9,

and referring back to HYDICE data, it can be seen that bands are highly correlated with

their neighbors with some exceptions when an absorption band occurs or a certain new

range of the spectrum is reached. The segments just mentioned in the pixel signatures

become obvious from this matrix. Miller [160] used this property to determine a reduced

set of bands for his anomaly detection algorithm.
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(a) Window. (b) Pixel Correlations.

Figure 2.7: ARES1D Window Correlation.

Figure 2.8: AVIRIS Deepwater Scene1 Sample.
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Figure 2.9: ARES1D Band Correlation.

Window-based detection methods can suffer as a result of spatial correlation, as

background estimates may be based on pixels that look very much like anomalies. On

the other hand, spectral correlation can serve to mask subtle differences between anomalies

and non-anomalies.

2.3.1.4 Truth Masks.

As the real-world size of a pixel increases, so too does the likelihood that more than

one material is contributing to that pixel’s signature. That is, at higher altitude the sensor is

more likely to include several materials within one captured pixel. Therefore, an observed

pixel signature may, in fact, be a combination of a number of endmember spectra, or several

sub-pixel materials. This possibility can present difficulties in the generation of a truth mask

for such images. As a result, the archival truth masks for the ARES HYDICE and HyMAP

images reflect such sub-pixel or border anomalous pixels, in addition to the true anomalous

pixels. This has allowed researchers to treat these pixels differently when generating true

21



positives or false positives, making comparisons to previous results or algorithms difficult.

In order to standardize how these identified pixels are treated, they are investigated in detail

in Section 4.3.

2.3.2 HYDICE-Derived.

It should be noted that some of the data sets used have been passed on by previous

researchers. Therefore, in some cases these may be sub-images of an original image and

the origin truth masks presented may be a previous researcher’s interpretation. Graphics or

metrics are included as often as possible to provide clarification.

The Hyperspectral Digital Imagery Collection Equipment sensor-derived (HYDICE)

images have 210 spectral bands, between 0.397 and 2.5 µm, including visible through

short-wave infrared data. Images from this sensor used here are forest or desert-dominated

scenes. The HYDICE ARES1C and ARES2C images are from a rural environment with

no specific man-made objects of interest. Their corresponding natural images are shown in

Figure 2.10.

(a) ARES1C. (b) ARES2C.

Figure 2.10: Natural No-Target HYDICE Images.
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Nearly all of the remaining HYDICE-derived images used are from the Desert

radiance II (D) and Forest radiance I (F) collection events. The corresponding set of

natural images is shown in Figures 2.11 and 2.12. Most of these images also had target

border/neighborhood pixels in their truth masks, depicted here in white. Again, this issue

and the proposed resolution is further discussed in Section 3.13.

(a) ARES1D: 6. (b) ARES2D: 46. (c) ARES1F: 10.

Figure 2.11: Three HYDICE Images and Number of Targets.

The final HYDICE image used is run03m20. This image has no target border/neighborhood

pixels in the truth mask, and was taken at 5160.1 feet above ground level (AGL). The first
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(a) ARES2F: 30. (b) ARES3F: 20. (c) ARES4F: 29.

Figure 2.12: Three HYDICE Images and Number of Targets.

eight and final five pixel columns from the original image are removed, as they erroneously

contain only zero values. The natural image and its truth mask are shown in Figure 2.13.

Also shown is one of a few bands in the data where an artifact zero-line occurs. These

were retained going into the analysis found in Section 4.5, despite this issue, with the un-

derstanding that it would only make classification more difficult. This image is used due to

the amount of targets and their close proximity, yielding potential issues for window-based

methods. A summary of the HYDICE images is shown in Table 2.1, where anomalous

pixels do not include border pixels.
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(a) Natural. (b) Truth: 79 Targets. (c) Artifact Line.

Figure 2.13: HYDICE run03m20.

2.3.3 AVIRIS.

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data sets are used

courtesy of the National Aeronautics and Space Administration (NASA) and the Jet

Propulsion Laboratory of the California Institute of Technology. AVIRIS images contain

224 spectral channels between 0.4 and 2.5 µm.

Three Deepwater Horizon images are used, each with associated truth masks

developed to correspond with man-made objects in the scene. Scene1 contains 23 targets

and is from run f100517t01p00r11rdn b sc01 ort img. Ship1 contains 6 targets and is

from run f100710t01p00r08rdn b sc01 ort img. 4Ships2 contains 4 targets and is from
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Table 2.1: HYDICE Image Properties.

Image Dimensions Pixels Anomalies
Anomalous

Pixels

Border

Pixels

ARES1C 203 × 108 21, 924 0 0 0

ARES2C 124 × 198 24, 552 0 0 0

ARES1D 291 × 199 57, 909 6 235 437

ARES2D 215 × 104 22, 360 46 523 1942

ARES1F 191 × 160 30, 560 10 1, 007 973

ARES2F 312 × 152 47, 424 30 307 1221

ARES3F 226 × 136 30, 736 20 145 314

ARES4F 205 × 80 16, 400 29 109 339

run03m20 960 × 299 287, 040 79 8, 255 0

run f100929t01p00r13rdn b sc01 ort img. A fourth AVIRIS image of the Virgin Islands is

used, depicting 14 targets from run f051219t01p00r14c sc01 geo img. These four images

were chosen for the purposes of variety and due to their varying sizes. They also provide a

contrast in scene type relative to the HYDICE imagery. The natural images and their truth

masks are shown in Figure 2.14. A summary for the AVIRIS images is shown in Table 2.2.

2.3.4 Pavia.

The Pavia data sets are two scenes acquired by the ROSIS sensor during flights over

Pavia in northern Italy and were provided by the Telecommunications and Remote Sensing

Laboratory of Pavia University [1]. These provide an investigation of urban scenes from

a non-HYDICE sensor with ground truth. The Pavia Centre scene is 1096 × 715 pixels

and contains 102 bands, while the Pavia University scene is 610 × 340 pixels and contains
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(a) Scene1. (b) Ship1. (c) 4Ships2. (d) VirginIslands1.

Figure 2.14: AVIRIS Images.

Table 2.2: AVIRIS Image Properties.

Image Dimensions Pixels Anomalies Anomalous Pixels

Scene1 720 × 707 509, 040 23 887

Ship1 657 × 640 420, 480 6 1, 025

4Ships2 709 × 526 372, 934 4 332

VirginIslands1 144 × 163 23, 472 14 80

103 bands. The bands in both images are between approximately 0.43 and 0.86 µm [5].

In the Pavia Centre image, two collection areas are joined at line 223. The geometric

resolution is 1.3 m, and each image contains a set of nine determined classes and an

additional background class to serve as ground truth.
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In the case of the Pavia Centre scene, the background, water, and meadows classes

dominate the scene as approximately 95% of the scene. There is no true outlier class,

with remaining classes having between 2600 and 9200 pixels each. The Pavia Centre

scene, ground truth, and a small subset of randomly sampled class signatures are shown

in Figure 2.15. The Pavia University scene similarly has no true outlier class, however,

when analyzing the signatures it becomes apparent that classes such as trees, shadows, or

painted metal sheets might be treated as the outlier class (where in the Pavia University

image these have 3,064, 947, and 1,345 pixels, respectively). This scene, its ground truth,

and a small subset of randomly sampled class signatures are shown in Figure 2.16. It is

important to note, as depicted in these figures, the limitations of the given ground truth

masks. In the Pavia University image, some labeled pixels, to include some background,

have signatures that more resemble other classes. This may be due to sub-pixel traits

and simply the complication of labeling each pixel for an image taken over such a large

area. Figure 2.17 depicts two of the image’s bands, representative of many of the bands,

where certain pixels that are labeled as self-blocking bricks or background in the truth

mask have much higher radiance values than their within-class counterparts. Further, when

comparing the asphalt signatures between the two images, it can be seen from Figures 2.15

and 2.16 that the asphalt class behaves somewhat differently. This may be, in part, due to

the apparent altitude difference. Specific class memberships are shown for each image in

Table 2.3.

2.3.5 SpecTIR.

Three radiance data sets from SpecTIR Advanced Hyperspectral and Geospatial

Solutions are used in this research [6]. Reflectance hypercubes are also available with CO2

and Savitsky-Golay smoothing already applied, but such signatures have a different shape
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Table 2.3: Pavia Sets Truth Data.

Class Pavia Univ Number Pixels Pavia Centre Number Pixels

Background 164624 635488

Asphalt 6631 3090

Meadows 18649 42826

Gravel 2099

Trees 3064 7598

Painted Metal Sheets 1345

Bare Soil 5029 2863

Bitumen 1330 6584

Self-Blocking Bricks 3682 2685

Shadows 947 7287

Water 65971

Tiles 9248
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Figure 2.15: Pavia Centre Scene.

Figure 2.16: Pavia University Scene.

in comparison to those used for the HYDICE and AVIRIS images, and are also arguably

less unique among different materials.

The first dataset is a 600 × 320-pixel urban and mixed environment image of Reno,

NV with no associated truth mask. Values are over 356 spectral channels covering

approximately 0.39-2.45 µm [6]. The second image also has no associated ground truth

for objects or signatures, and was collected as a target of opportunity over the oil spill

crisis in the Gulf of Mexico on June 6, 2010. The scene is 1160 × 320 pixels. The image

is radiance collected at 2.2 m ground sample distance, over 360 spectral channels covering
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Figure 2.17: Pavia University Bands.

0.39-2.45 µm. The third image is an aquatic and coral reef sample over the Red Sea in Saudi

Arabia, 600 × 960 pixels in size. Radiance values are over 128 spectral channels covering

approximately 0.39-1 µm. The natural images are shown in Figure 2.18. Apparent objects,

and/or crests of the spill can be seen in the Oil Spill image, while the coral reef can be seen

in the Red Sea image.

(a) Reno. (b) Oil Spill. (c) Red Sea.

Figure 2.18: SpecTIR Images [6].
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2.3.6 HyMap.

The HyMap sensor data sets were released for the Target Detection Blind Test project

[194]. The scene is a 280×800-pixel image of Cooke City in Montana, USA over 126 bands

with wavelengths from 0.453 to 2.496 µm and an approximate ground sampling distance

of 3 m. Two data sets were provided: a self-test with truth/regions of interest of target

placement and a blind test with no truth for target placement. Here,the self-test radiance

dataset is used. Three vehicles types and four fabric panel colors with known signatures

were used for targets. Thus, these pixels are ideal for a matching scenario, but here are

also used as a reference for anomaly detection. Admittedly, this is limited in that the rural

town is not a clean background and there may have been other vehicles present in addition

to what was given as truth. The natural image and truth mask are shown in Figure 2.19.

Defined regions of interest, noted here all as target pixels, include full-pixel, sub-pixel, and

border pixels for a total of 145 target pixels. Similar to the HYDICE ARES images, these

potential target pixels are further investigated in Section 4.3 to form the final truth data used

in this research.

Next, in Chapter 3, general methods are discussed that recur throughout the remainder

of the research. These methods include dimension reduction techniques, clustering

techniques, and existing anomaly detection algorithms. Specific considerations for their

application to the data sets presented in this chapter are discussed.
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Figure 2.19: Cooke City, MT Image.
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III. General Methods

For consistency of this document, some upfront notation is necessary. Let the

hyperspectral data cube be denoted as a m×n×p array with p spectral values for each of the

m×n = N spatial locations, or pixels, of the image. For other multivariate data, let p denote

the number of features and N the number of exemplars, where the data matrix is N × p.

C denotes a covariance matrix, and K a Gram matrix, unless otherwise stated. k denotes a

number of centroids, neighbors, or exemplars being used within certain algorithms, or if it

is used as a function, denotes the kernel function. 1 denotes a vector of ones.

3.1 General Dimension Reduction Techniques

Table 3.1 depicts properties of many dimension reduction techniques as taken from

van der Maaten and van den Herik [149]. In the table, l denotes the number of local models

in a mixture, d denotes the target dimension, i is the number of iterations, w is the number

of weights, and r is the ratio of nonzero elements to total elements.

There are many linear and non-linear dimension reduction techniques, but Principal

Component Analysis (PCA), Kernel PCA (KPCA), and Local Linear Embedding (LLE)-

based techniques were explored in this research due to their accessibility and likeness to

other methods. For instance, classical multi-dimensional scaling (MDS) using Euclidean

distance for dissimilarity is related to PCA in that the MDS coordinates are the component

scores from PCA [61]. Isomap, LLE, Laplacian Eigenmaps, and Maximum Variance

Unfolding (MVU) can all be considered cases of KPCA using a specific kernel function

due to their relation to the more general problem of learning eigenfunctions [149]. Some of

these methods are related in that they involve building adjacency matrices based on nearest

neighbors. LLE has shown great resemblance to MVU in the mappings produced, and

diffusion maps with t = 1 are very similar to KPCA with a Gaussian kernel [149]. In fact,
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Table 3.1: Dimension Reduction Technique Properties [149].

Technique Convex Parameters Computational Memory

Principal Component Analysis (PCA) Y None O(p3) O(p2)

Multi-Dimensional Scaling (MDS) Y None O(N3) O(N2)

Isomap Y k O(N3) O(N2)

Max Variance Unfolding Y k O((Nk)3) O((Nk)3)

Kernel PCA (KPCA) Y kernel O(N3) O(N2)

Diffusion Maps Y σ, t O(N3) O(N2)

Autoencoders N netsize O(iNw) O(w)

Local Linear Embedding (LLE) Y k O(rN2) O(rN2)

Laplacian Eigenmaps Y k, σ O(rN2) O(rN2)

Hessian LLE Y k O(rN2) O(rN2)

Local Tangent Space Analysis Y k O(rN2) O(rN2)

Locally Linear Coordination N l, k O(ild3) O(Nld)

Manifold charting N l O(ild3) O(Nld)
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any technique that uses the eigen-pairs of a matrix of similarities or dissimilarities between

exemplars can be related to KPCA.

Van der Maaten, Postma, and van den Herik [149] did a comparative study of many

local and global dimension reduction techniques on a small variety of artificial and natural

data sets, and found local techniques to suffer from issues due to large dimensionality,

erroneous manifold assumptions, and the scale of eigenvalues complicating eigenproblems.

Some global methods suffered similar issues, while the criticality of parameter choice such

as with the correct kernel for KPCA, was highlighted.

3.2 Principal Component Analysis

Principal Component Analysis (PCA) generates a set of orthogonal vectors, any subset

of which can be used to project into a subspace and where each vector accounts for some

portion of the variance found in the data. Let X̂ denote the centered data. Then the

principal components are found by eigen-decomposing the covariance matrix C =
1
N

X̂T X̂

as C = VΛVT , where Λ is the diagonal matrix of eigenvalues of C and V is the matrix

of eigenvectors of C [68]. The eigenvector corresponding to the largest eigenvalue is the

linear combination of original features that accounts for the most variance. Additionally,

the eigenvector corresponding to λi accounts for the percentage
λi∑p

i=1 λi
of the total variance

found in the data. As a result of these properties and after sorting by eigenvalue magnitude,

a number of leading eigenvectors are often chosen so as to account for some percentage of

the total variance. The chosen eigenvectors, or components, are then a projection matrix

W. Assuming some subset of the eigenvectors was chosen, this matrix can be used to

approximately reconstruct the data, and squared residuals can be found for each exemplar

using the row sums of the matrix,

(
X̂ − X̂WWT

)
◦
(
X̂ − X̂WWT

)
, (3.1)
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where ◦ denotes the Hadamard product. The projection of the data onto the principal

components, or set of scores, is simply X̂W. The correlation of these scores with

the original features yields a loadings matrix that represents the degree to which each

component correlated with each feature [59].

In application to multi-spectral imagery, Green, et al. [80] investigated component

Signal-to-Noise ratios of Airborne Thematic Mapper simulator data. They noted no definite

trend relative to increasing noise with increasing component number once the components

were ordered by eigenvalue magnitude. In order to generate ordered components in terms

of image quality, they developed the maximum noise fraction (MNF) transformation, which

is PCA-based but requires good estimates for the signal and noise covariance matrices.

Cheriyadat and Bruce [54] argued that PCA is not the optimal method for feature

extraction in target detection applications. Specifically, they noted poor classifier

performance on major components when within-class scatter dominated between-class

scatter, where factors such as natural variation in the target material, environmental

conditions, and sensor angle could cause such large within-class variance. Additionally,

they argued that PCA may be poor in the multi-class case as local discriminatory statistics

may be ignored. Their suggestions for alternatives required supervision, and they assumed

that only major components (largest variance) were being used and that no additional

techniques were applied to the component scores [54]. Their arguments raise valid concerns

however, that are addressed beginning in Chapter 6. That is, how can good discriminatory

components or mappings be selected, and how might information found from PCA and

other techniques be fused such that those local discriminatory statistics are not lost?

3.3 Kernel Principal Component Analysis

One non-linear form of PCA uses kernels to perform standard PCA in a higher-

dimension feature space F . This enables a similar process for data with a non-linear

structure and is referred to as Kernel PCA (KPCA) [97]. Assume some non-linear map
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Φ : Rp → Rd, where d > p. This mapping sends the original data into an arbitrarily large,

possibly infinite dimensional space. In this space, each centered exemplar is defined as,

Φ̂
(
x j

)
= Φ

(
x j

)
−

1
N

N∑
i=1

Φ (xi) , (3.2)

for all j. The covariance matrix is then also,

C =
1
N

N∑
j=1

Φ̂
(
x j

)
Φ̂

(
x j

)T
. (3.3)

To perform linear PCA in this space, eigenvalues λ and eigenvectors v are solved for

in the higher dimensional space using the eigenproblem λv = Cv [97, 200]. This implies

that for any exemplar xk ∈ Rp,

λ
(
Φ̂(xk) · v

)
= Φ̂(xk) ·Cv. (3.4)

Each eigenvector v is a linear combination of the training exemplars in the new centered

space,

v =

N∑
j=1

α jΦ̂(x j). (3.5)

Using Equations 3.3 and 3.5 in 3.4 yields for every k = 1, . . . ,N,

λ
∑

j

α jΦ̂(xk) · Φ̂(x j) =
1
N

∑
j

α j

∑
i

{Φ̂(xk) · Φ̂(xi)}{Φ̂(xi) · Φ̂(x j)}. (3.6)

But defining K̂i j = Φ̂(xi) · Φ̂(x j) and α = (α1 . . . αN)T , this simplifies to,

λα =
1
N

K̂α→ (Nλ)α = K̂α. (3.7)

Therefore, if the dot products can be found, the eigenvalues Nλ and eigenvectors α

can be derived directly from K̂ and Φ does not need to be known. In fact, the dot products

are found using a kernel function. K̂ is the modified, or centered form of the Gram matrix

K, where Ki j =
〈
Φ(xi),Φ(x j)

〉
= k(xi, x j) for some kernel function k. Recalling that an

entry in K̂ is just the dot product of two vectors as found in Equation 3.2, by algebraic

reduction it can be shown that K̂ can be found from K as,

K̂ = K − 1N K − K1N + 1N K1N , (3.8)

38



where 1N is a N × N matrix with values 1/N [200]. This subtracts the column means and

the row means, and adds back the overall mean.

Because F is higher-dimensional than the original data, only non-zero eigenvalues

should be considered. In order to normalize α, non-zero v are required to be normalized as

v(l) · v(l) = 1. Using equation 3.5 in this equation simplifies to the normalized coefficients,

α̂(l) =
α(l)

√
(Nλl)

. (3.9)

To clarify, only α̂ and K̂ are needed to project onto v. This can be shown easily by

considering that for some test data y,

v(l) · Φ̂(y) =

N∑
i=1

α̂(l)
i

(
Φ̂(xi) · Φ̂(y)

)
=

N∑
i=1

α̂(l)
i K̂test(xi, y), (3.10)

where K̂test
i j is the similarly centered form of k(yi, x j). This is performed as,

K̂test = Ktest − 1M
N K − Ktest1N + 1M

N K1N , (3.11)

where 1M
N is M × N with all entries 1/N, for a test set with M exemplars [200].

One lingering question is what constitutes a kernel. To define this, Mercer’s theorem

is used [161]. Mercer’s theorem states that a symmetric function k(x, y) can be expressed

as an inner product,

k(x, y) = 〈Φ(x),Φ(y)〉 (3.12)

for some Φ if and only if k(x, y) is positive semidefinite,∫
k(x, y)g(x)g(y)dxdy ≥ 0,∀g ∈ L2 (3.13)

or equivalently, 
k(x1, x1) k(x1, x2) . . .

k(x2, x1) . . .

...

 (3.14)
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is positive semi-definite for any collection {x1, . . . , xN} of exemplars [113]. That is, the

Gram matrix is positive semi-definite for the set of data.

Some commonly used Mercer kernels include,

1. Polynomial: (x · y + c)d, where c ∈ R, d ∈ N,

2. Sigmoid: tanh(x · y + c), where c ∈ R,

3. Inverse Multiquadric:
1√

‖x − y‖2 + σ2
, for a given norm,

4. and the Gaussian/Radial Basis Function: exp
(
−
‖x − y‖2

2σ2

)
,

using the L2 norm where c is some real constant, d ∈ N is the power, and σ > 0 is the spread

parameter [146]. Within the context of KPCA, use of the Gaussian kernel only makes the

Normality assumption in the higher-order space, and not the originating space. The dot

product x · y is also a kernel, referred to as the linear kernel, but is closely tied to normal

PCA. If (λi, vi) are an eigen-pair for XT X, then λi and ui = λ−1/2
i Xvi are an eigen-pair for

XXT . Doing PCA in this latter manner, so that scores are computed for variables rather

than exemplars, has also been denoted as kernel eigenfaces when doing facial recognition

assuming alignment of certain features across the images [224]. Typically with kernel

eigenfaces, rather than computing a score for every pixel of an image, each image is

reshaped to be treated as a column of pixel values, and thus, the transpose causes each

column to be treated as an exemplar. Additionally, kernel eigenfaces differs from strict

KPCA in that projected exemplars are often compared against predefined face classes for

purposes of classification [162, 206]. Paiva, Xu, and Principe [170] showed that KPCA

with a Gaussian kernel provided optimum entropy projections in the input space.
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Li, et al. [138] introduced a similar concept for feature extraction of images.

Motivated by a Matrix norm, they proved the Gaussian function,

k(X,Y) = exp

−
n1∑
j=1

(
n2∑
i=1

(
xi j − yi j

)2
)1/2

2σ2

 , (3.15)

to be a kernel function for images X and Y . In this manner, a series of images (or bands)

could be reshaped to vectors in order to compute the kernel values and to perform KPCA

on the images (or bands) rather than the pixels.

Bengio, Vincent, and Paiement [26] made an additional, interesting observation

relative to KPCA. Based on learning the eigenfunctions of a kernel and the corresponding

relation to KPCA, they noted that the KPCA embedding attempts to preserve the largest

dot products in the feature space in the mean-squared error sense, e.g., colinear exemplars.

3.4 Factor Analysis

Whereas PCA seeks a lower-dimensional representation that accounts for the variance

of the features, factor analysis seeks a lower-dimensional representation that accounts for

the correlations among features [68]. Thus, correlated features can be represented with a

smaller set of new unobserved features, called factors. Specifically, a factor analysis model

is,

X̂ = LF + E, (3.16)

of p observable features (variables) X̂ =
[
x̂1...x̂p

]T
, assumed zero-mean with finite variance,

as linear combinations of n common factors F =
[
f1... fn

]T , plus uncorrelated noise or

error terms E =
[
e1...ep

]T
[36]. These error components are zero-mean and mutually

uncorrelated, and are additional sources of variation. The factor loading li j in the matrix L

shows the degree to which feature i correlates with factor j, where high magnitude loadings

for a factor reveal the contributing features.
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In a way, PCA can be viewed as a similar model where no noise/error, i.e., perfect

data, is assumed. For feature Xi, Var(Xi) = l2
i1 + ...+ l2

in + ψi. The portion of the variance of

the i-th variable contributed by the n common factors, l2
i1 + ...+ l2

in, is then referred to as the

communality, where ψi is the specific variance [218].

To estimate the factors initially, several methods exist. Principal component-based

factor analysis uses the eigen-decomposition of C to estimate the factor loadings, where

here C typically denotes the correlation matrix, but can alternatively be the covariance [59].

Let Λ denote the diagonal matrix of eigenvalues of C, and V the matrix of corresponding

eigenvectors. Then C = VΛVT , as with PCA. The estimated factor loadings are given by

L̂ =
[ √

λ1v1, ...,
√
λpvp

]
. (3.17)

The estimated factor scores can be found numerous ways, most commonly through

unweighted least squares, maximum likelihood, or weighted least squares where the

specific variances are used to weight the solution. In the case of the unweighted least

squares solution, the factor scores are estimated by
(
L̂T L̂

)−1
L̂T X̂ [218]. Thus, to estimate

the specific variances, the following is used:

Ψ = C − L̂L̂T . (3.18)

The maximum likelihood method operates under the assumption that the common factors

and error terms are multivariate normal. Under this assumption, X̂ ∼ N
(
0,Ψ + L̂T L̂

)
and

the log-likelihood function to optimize is

−
N p
2

log 2π −
N
2

log |Ψ + L̂T L̂| −
N
2

tr
((

Ψ + L̂T L̂
)−1

C
)
, (3.19)

where tr (A) denotes the trace of matrix A [186].

The unweighted least squares technique has the advantage of not requiring iteration to

solve, and is thus more efficient. For this reason, and because of desirable results, it is used

in this research. If using the covariance matrix, variance values are still just a sum of the
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squared loadings and specific variance, as in Equation 3.18. In order to place the specific

variance on a [0, 1] scale in this case, it can be re-scaled by dividing by the variance as

ψi =

 n∑
j=1

l2
i j

 /Var(Xi). (3.20)

Once the factors and loadings are estimated, rotation can be applied to change

the coordinate system, and thus the loadings and scores. However, this rotation does

not affect the feature structure [186]. Varimax is a popular rotation that rotates the

factors orthogonally to maximize the variance of the squared loadings of a factor on the

features. Such a rotation produces primarily large or small loadings for any feature, making

interpretation of the factors more meaningful. In this research, this rotation is used in order

to provide the easiest interpretation and to group the features. Other orthogonal and oblique

rotations, where in the latter case, factors may be correlated, also exist [109, 151].

Although it is much more common to perform factor analysis using the standardized

data and the correlation matrix, in this research the centered data and covariance matrix are

used. If the data features are on the same scale with common variance, the two methods

are equivalent. Here, the HSI and Arcene data have features on a common scale. Although

the features do not have equal sample variance, the author found that not standardizing the

data provided nearly the same or sometimes better discrimination for anomaly detection

and feature selection on these data sets. For the HSI data, this is due in part to large

numbers of bands being highly correlated. Using the covariance adds more discrimination

amongst band coefficients.

Consider the ARES1F image as an example. Figure 3.1 shows the loadings matrices

for three sets of factors using a model of k = 10 factors. The unweighted and MLE

methods provide some similar factors for the correlation, while the covariance provides

more discrimination between bands. This implies that the covariance-based factor scores

truly use better subsets of bands to generate the scores, rather than just entire regions of

the EM spectrum as the correlation factors are sometimes subject to doing (i.e., the areas
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of the pixel signatures between absorption locations). To further exemplify this, scores for

various factors maps are shown in Figure 3.2. The first factor is similar across methods. The

unweighted method on the correlation matrix provided no good discriminating factor, and

so its best discriminating factor, F2, is shown for comparison in Figure 3.2(e). Meanwhile,

the unweighted method on the covariance matrix provided a better discriminating factor for

many of the targets than its MLE counterpart on the correlation matrix, in this case using

Factor 5 as an example. As shown, certain background pixels appear anomalous in the

MLE case.

(a) Correlation: MLE. (b) Correlation: Unweighted. (c) Covariance: Unweighted.

Figure 3.1: Loadings Comparison.

3.5 Locally Linear Embedding

Locally Linear Embedding (LLE) is a dimensionality reduction technique developed

by Roweis and Saul [181, 182]. The LLE algorithm assumes that each data exemplar

is sampled from some underlying manifold, that itself is sampled sufficiently, such that

each exemplar and its neighbors lies on or close to a locally linear patch of the manifold.

The corresponding local geometry is characterized using linear coefficients that reconstruct

each data point from its neighbors. A new neighborhood-preserving embedding is then
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(a) Correlation: MLE F1. (b) Correlation: Unweighted F1. (c) Covariance: Unweighted F1.

(d) Correlation: MLE F5. (e) Correlation: Unweighted F2. (f) Covariance: Unweighted F5.

Figure 3.2: Factor Score Comparisons.

computed using eigenvectors related to these coefficients. The algorithm in full is

shown as Algorithm 3.1. LLE allows for a non-linear reduction based on the geometry

of the neighbors, whereas a method like PCA is restricted to linear directions. The

resulting embedding is optimal in that the final eigen-problem equivalently optimizes∑
i |Yi −

∑
j Wi jY j|

2, where i is the current exemplar, Yi is the embedding, W is the

matrix of reconstruction coefficients, and j is a neighbor of i [182]. That is, using the

same reconstruction coefficients found in the original space, the reconstruction of an

exemplar from its neighbors is optimized in the new embedding. Of course, definition

of the neighborhoods can largely affect embeddings found. Figure 3.3 depicts a one-

dimensional embedding for the Banana dataset for two values of k, and their corresponding
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neighborhood determinations in the original dataset. This is not necessarily the best

example for a manifold method, as one class lies somewhat within the other, but the effect

of varying k can be seen on the neighborhoods and the resulting embedding.

Algorithm 3.1 Locally Linear Embedding [181, 182]
1: Find a set of neighbors Ui for each exemplar xi ,i = 1, . . . ,N, where xi is not a neighbor

of itself. The simplest means to do so is to use k-nearest neighbors.

2: Solve for reconstruction weights:

3: for i=1:N do

4: ∀x j ∈ Ui, let zi = x j − xi.

5: Compute the local covariance C = ZZT .

6: Solve for the column vector w of local weights by solving Cw = 1.

7: Normalize w such that
|Ui |∑
j=1

w j = 1. For each neighbor j, let Wi j equal the

corresponding entry from w. Remaining elements in the i-th row of W are set to 0

or the matrix is treated as sparse.

8: end for

9: Solve for the embedding:

10: Create the sparse matrix M = (I −W)T (I −W).

11: Compute the eigenvectors of M and remove the eigenvector corresponding to the

smallest eigenvalue (which has a value of zero and eigenvector of ones). Then the

q-th dimension of embedded coordinates is the eigenvector corresponding to the q-th

smallest eigenvalue.

In reference to LLE and similar methods, van der Maaten, Postma, and van den

Herik [149] noted the susceptibility of neighborhood graphs to outliers, over-fitting, and

dimensionality issues. Additionally, they observed that LLE has a tendency to collapse

large portions of data onto a single point if target dimensionality is too low. When the
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(a) 5-NNs. (b) Embedding.

(c) 10-NNs. (d) Embedding.

Figure 3.3: LLE Example for the Modified Banana Dataset.

number of neighbors, k is greater than the number of features p, the weight problem is

ill-posed, and so a regularization term is used. The embedding results have been shown to

be fairly insensitive to this term [187]. Note in Algorithm 3.1 that the smallest eigen-pair is

ignored because the eigenvalue is zero and eigenvector is ones. It can be shown that this is

always true by using the fact that W1 = 1, where this implies that (I −W)1 = I1−W1 = 0,

and so (I −W)T (I −W)1 = 0.
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LLE can be viewed as a special case of KPCA, as an eigen-problem is solved using

a similarity matrix for the exemplars. However, unlike conventional KPCA, new test

data cannot be immediately embedded into the new dimensions. Instead, new test data

still has to be reconstructed from its neighborhood in both the original and new spaces.

To solve this issue, He et al. [96] slightly modified the LLE algorithm. They instead

used the smallest eigenvectors as projection vectors to yield the embedding, where they

solved for the eigenvectors using the generalized eigenvector problem XT MXv = λXT Xv.

This technique is used in this research. Here, X is the data matrix, M is as defined

in Algorithm 3.1, and λ and v are the eigenvalue and eigenvector. Chen, Qu, and Lin

[53] instead used a Generalized Regression Neural Network to learn the mapping of the

training data in a supervised sense. This enabled them to embed the test data using the

network. Kouropteva, Okun, and Pietikäinen [128] presented three ways to handle test

exemplars. Two techniques were based on linear generalizations, as the main assumption

in the method is that the manifold is locally linear. Letting XN+1 be the matrix of k-nearest

neighbors for test point xN+1 and YN+1 be the embedding of those nearest neighbors, then

the equation YN+1 = XN+1Z would be approximately true, where Z is an unknown linear

transformation matrix that can be solved for by least squares. Z could then be applied to the

test point. Alternatively, the reconstruction weight vector for xN+1 was applied directly to

the embeddings of the nearest neighbors to yield its embedding. The third technique they

proposed was to update M only as needed due to changes in nearest neighbors with the

inclusion of a new test point. Denoting Y as the embedding, they assumed minimal change

to the eigenvalues with the inclusion of very few new test points at a time, and so treated

the eigenvalues as constants in order to avoid resolving the eigen-problem. This enabled

them to solve Y MYT = Λ for the new embedding of a few test points at a time.

LLE can be performed using any neighborhood determination, not just by using

k-nearest neighbors. A simple radius can also be used where for an exemplar xi, x j
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belongs to its neighborhood if ‖x j − xi‖ < δ, where δ > 0 [147]. Because a small

change in k can provide very different neighborhood structures, Lu [147] noted that 2-

or 3-nearest neighbors are often used for robustness with high-dimensional data, but that

this was still relatively random as was any choice for δ for the radius method. Due to

interest in also reducing sensitivity to noise in the data, and its effect on the resulting

nearest neighbor determinations, Lu [147] developed a Robust LLE (RLLE) algorithm.

In order to handle error caused by noise, three aspects were derived that need to be

compromised: 1) depression of noise (implying larger neighborhoods), 2) maximizing the

smallest eigenvalue (implying smaller neighborhoods), and 3) reducing the magnitude of

the weights. In order to do this, a neighborhood ball was proposed for better intrinsic

neighborhood determination as the change to the base LLE algorithm. For exemplar xi, let

ri = min
j=1,...,N,i, j

{
‖xi − x j‖2

}
. Using Lu’s neighborhood ball, x j is in the neighborhood of xi (a

nearest neighbor) if,

‖xi − x j‖2 ≤ ri + r j. (3.21)

Chen and Qian [50] improved computational speed of LLE on HSI by using a

neighborhood window within which to find neighbors, reducing the problem size when

finding k-nearest neighbors while also incorporating spatial information. However, they

admitted that the size of the window could determine the success of the method. Ziemann,

Messinger, and Albano [233] solved the k-nearest neighbor problem in LLE by using

natural nearest neighbors. First, the 1-nearest neighbor is found for each point xi. Then,

nb(i) is defined as the number of other points that exemplar i is the nearest neighbor for.

Next, the 2-nearest neighbors are found for each point, and nb(i) is updated to reflect how

many points exemplar i is a nearest neighbor for. This is done iteratively until every point

i has nb(i) > 0. The k-connectivity for each point i is then set as nb(i), meaning points in

dense regions use a large k and points in sparse regions use a small k.
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A supervised form of LLE was developed by de Ridder et al. [179] so as to shape

neighborhoods based on class information. They proposed enlarging the distance between

two points of different classes by adding a penalty αD, where 0 ≤ α ≤ 1 and D is the

maximum distance between any two points in the dataset. Zhang and Zhao [229] took this

to a partially supervised case by proposing to multiply this term by 1 − P, where P is the

probability that the two exemplars are of the same class. RLLE, and a new combination of

supervised and RLLE using α = 0.5 for the Banana dataset are shown in Figure 3.4.

3.6 Discriminant Analysis

Per Duda, Hart, and Stork [68], whereas a method such as PCA seeks directions for

representation, discriminant analysis seeks directions for discrimination. In particular,

(Fisher’s) linear discriminant analysis (LDA) seeks to maximize the distance between

projected class means, while minimizing variances of projected classes. In order to

optimize this measure of discrimination, the method must be supervised.

Consider a two-class problem. Let S B = (µ2 − µ1) (µ2 − µ1)T be the between-class

variance and S W =
2∑

i=1

∑
x∈Xi

(x − µi) (x − µi)T be the within-class variance for the data. Then

the criterion to optimize for a projection direction bmw, sometimes noted as the Rayleigh

coefficient or quotient[159], is,

J(w) =
wT S Bw
wTS Ww

. (3.22)

Equivalently, this is the ratio of between-class variance over within-class variance for the

projected data [68]. A vector w that maximizes this quotient satisfies,

S Bw = λS Ww, (3.23)

for some constant λ [68]. If S W is nonsingular, then there is an eigenvalue problem,

S −1
W S Bw = λw. (3.24)
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(a) Robust Neighborhoods. (b) Robust Embedding.

(c) Supervised-Robust Neighborhoods. (d) Supervised-Robust Embedding.

Figure 3.4: Banana Dataset RLLE and Supervised RLLE Example.

For the normal, equal-covariance case, the optimal decision rule using w can be provided

via a threshold [68].

With more than two classes, c, this process can be generalized to c − 1 discriminant

functions, often named Multiple Discriminant Analysis. Similarly to before, S W =
c∑

i=1

∑
x∈Xi

(x − µi) (x − µi)T . Now however, S B is changed so that the total scatter found in
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the data is S B + S W . This defines S B =
c∑

i=1
ni (µi − µ) (µi − µ)T , where µ is the overall

mean of the data and ni = |Xi| reflecting the size of each class. To generalize the Rayleigh

coefficient, the criterion becomes the quotient of determinants relative to the matrix of

optimal directions W,

J(W) =
|WT S BW |
|WT S WW |

. (3.25)

Each solution wi still satisfies Equation 3.23, and so they are the eigenvectors of S −1
W S B

similar to before [68]. However, note these formulations assume equality of class

covariance matrices.

Lu, Plataniotis, and Venetsanopoulos [146] noted the significance of the small sample

size problem in LDA towards the eigenface application. That is, with increasing space

dimensionality, one needs exponentially many patterns to sample the space properly to

avoid high variance in the estimation of S B and S W . They noted PCA as a common

pre-processing step, but commented that discarded components can contain significant

discriminatory information. In this research, it is desirable to avoid this issue by building

sufficiently large, yet representative skeletons and by evaluating the discriminatory nature

of eigenvectors. Here, there are often many more exemplars than are typically found for

facial recognition tasks.

Fukunaga and Mantock [77] proposed using nearest neighbors and associated

weighting functions to yield a nonparametric form of discriminant analysis. Zhu and

Hastie [230] proposed a nonparametric method based on a log-likelihood ratio relative

to the Rayleigh coefficient. The Rayleigh coefficient can also be generalized to the kernel

case, where the normality assumption would be made in the higher-order space and not the

originating space. This is referred to as Kernel LDA, Kernel Fisherfaces, or Generalized

Discriminant Analysis [146, 224]. Mika, et al. [159] first expanded this for the two-class

case.
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Recall, the Rayleigh coefficient from Equation 3.22, and let Φ be the non-linear

mapping and Ni be the number of exemplars in class Ci. Then w in the higher-dimensional

space is sought, where the scatter matrices are,

S B = (m2 − m1)(m2 − m1)T , mi =
1
Ni

∑
x∈Ci

Φ(x),

S W =
∑

i=1,2

∑
x∈Ci

(Φ(x) − mi)(Φ(x) − mi)T .
(3.26)

Fortunately, w can be written as a linear combination of the mapped data w =
∑

x∈X
αxΦ(x).

This yields, using a kernel to model the inner product,

wT mi =
1
Ni

∑
x∈X

∑
z∈Ci

αx(Φ(x) · Φ(z))

=
1
Ni

∑
x∈X

∑
z∈Ci

αxk(x, z) = αTµi where µi =
1
Ni

∑
x∈Ci

Kx.
(3.27)

Thus, the numerator of the Rayleigh coefficient becomes αT (µ2 − µ1)(µ2 − µ1)Tα =

αT Mα. In a similar fashion, the denominator of the Rayleigh coefficient becomes

αT
(
K(I − v1vT

1 − v2vT
2 )KT

)
α = αT Tα, where (v j)i = 1/

√
N j if exemplar i belongs to class

j and 0 otherwise, and T is used to denote K(I − v1vT
1 − v2vT

2 )KT [159].

This gives the Rayleigh coefficient in terms of α vice w,

J(α) =
αT Mα
αT Tα

. (3.28)

The optimal leading eigenvector α is then found from T−1M, analogous to its linear

counterpart. Projections onto the optimal w can be made using the kernel and α by

w · Φ(z) =
∑

x∈X
αxk(x, z).

With small sample size, the kernel discriminant problem can be ill-posed with respect

to inversion. To solve this Mika, et al. [159] proposed adding a multiple of the Identity

matrix to T . Others have done PCA (linear or kernel) before doing the discriminant analysis

[223].

3.7 Wavelets

Wavelets are a prevalent topic in the HSI literature and so are discussed here at

some length for completeness. Originally, this research also included investigations using
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wavelets. However, due to discovered flaws in those methodologies, that research is not

included in this document. Wavelets have been used for de-noising of images as well as

to generate another space for feature extraction, as wavelets can be considered a kernel in

KPCA.

For two-dimensional images, moments can be used as pattern features. Specifically,

the moment definition using a basis function or moment weighting kernel ψ(x, y), and an

image intensity function f (x, y) is given as,

Ψqr =

∫
x

∫
y
ψqr(x, y) f (x, y)dxdy, q, r = 0, 1, 2, . . . . (3.29)

Legendre and Tchebycheff moments, or more specifically, their discrete approximations,

have been used to generate image features [163]. This moment-representation is mentioned

here as it is similar to the method of wavelets, in its simplest form.

Let ψa,b(x), a ∈ R\{0}, b ∈ R be a family of functions defined as translations and

re-scales of a single function ψ ∈ L2 (R),

ψa,b(x) =
1
√
|a|
ψ

(
x − b

a

)
. (3.30)

The function ψ is called the mother wavelet and is assumed to satisfy the admissibility

condition,

Cψ =

∫
R

|Ψ (ω) |2

|ω|
dω < ∞, (3.31)

where Ψ (ω) is the Fourier transform of ψ(x). This implies that
∫
ψ(x)dx = 0 [208]. For

any L2 function f (x), the continuous wavelet transformation acting on f is defined as,

CWT f (a, b) =
〈

f , ψa,b
〉

=

∫
R

f (x)ψa,b(x)dx, (3.32)

where a and b vary continuously. The resolution of identity relation (or inverse) is then,

f (x) =
1

Cψ

∫ ∞

−∞

∫ ∞

0
CWT f (a, b)ψa,b(x)

1
a2 dadb. (3.33)
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To actually compute the continuous transformation efficiently, discrete values of a and b

can be used for critical sampling, and multiresolution analysis (MRA) can be used [208].

Wavelets easily extend to higher dimensions, such as for the transformation of HSI data.

Discrete forms also exist for wavelet transformations, and are advantageous in that

they are O(N). Different discrete transformations exist, but one popular method is the

cascade algorithm, which processes the image at different scales ranging from fine to coarse

in a tree-like algorithm [208]. Discrete transforms can often be described as a set of inner

products between a finite-length sequence and a discretized wavelet basis.

The Discrete Wavelet Transform (DWT) is often used for image compression, is

effective for multi-resolution decomposition, and has been used to extract features for face

recognition [162]. The DWT reduces image resolution, but maintains local information in

space and frequency domains. Admittedly, full development of the DWT can be complex,

and so a brief development follows. For full details, Vidakovic and Mallat [153, 208],

among others, have dedicated many pages in books to the subject.

For a two-dimensional image, one approach to compute the transform is to use four

different filters,

φ(n1, n2) = φ(n1)φ(n2),

ψH(n1, n2) = ψ(n1)φ(n2),

ψV(n1, n2) = φ(n1)ψ(n2),

ψD(n1, n2) = ψ(n1)ψ(n2),

(3.34)

where n1 is the horizontal direction, n2 the vertical direction, φ the scaling function which is

essentially a low-pass, or averaging, filter, and ψ the wavelet function which is essentially a

high-pass filter [162]. A low-pass filter allows low values, as determined by some criterion,

to pass unchanged and reduces high values. Similarly, a high-pass filter allows high values

to pass unchanged and reduces low values. The product φ(n1, n2) = φ(n1)φ(n2) is the

application of the low-pass filter to the horizontal direction and the vertical direction,

with similar meaning for the other products where the alphabetic exponent on the ψ filter
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denotes the direction of the high-pass filter (where D for diagonal represents horizontal and

vertical). Applying the four filters yields four sets of coefficients for a two-dimensional

image.

The scaling function φ(n1, n2) represents an approximation to the image, ψH(n1, n2)

and ψV(n1, n2) represent the respective changes of the image along the horizontal and

vertical directions, and ψD(n1, n2) represents the high frequency component of the image.

These latter three sets are sometimes referred to as detail coefficients. To further decompose

the image, the four filters can be re-applied to φ(n1, n2) [153]. An example of this is shown

in Figure 3.5, where subscripts denote the level of resolution. In facial recognition tasks,

the approximation images have been found to be the richest for finding common features

with which to classify [108, 162].

Figure 3.5: DWT Decomposition [162].

Wavelets have several nice properties. They generate local bases, and in many cases

they are either compactly supported or they decay exponentially. This is nice in that the

wavelets are most often orthogonal. Further, wavelets disbalance the energy in data while
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preserving the total energy due to the orthogonality of the transformation. This means that

the energy found in the original data is put into fewer coefficients in the wavelet coefficient

space, i.e., a more sparse or more concentrated representation [208]. Additionally, as

a consequence of orthogonality, orthogonal wavelet transformations map white noise to

white noise. Hence, correlated signals can become almost uncorrelated in the wavelet

domain. On the contrary, wavelets provide sets of detail and approximation coefficients

such that, although the wavelet coefficient space is more concentrated, it is also more

complex in that there are sets of coefficients.

3.7.1 Shrinking/Smoothing.

Wavelets are popular, in part, because they can be easily used to de-noise an image by

eliminating coefficients with a low magnitude. However, the exact means to do so without

significantly changing properties of the image is not always trivial. The process itself is

referred to as shrinkage, where the shrinkage function S is a non-decreasing function in

terms of a coefficient’s magnitude. Proper choice of shrinkage is very important, as it is

easy to show that different scales in an image can provide entirely different representations

of an object in a scene, but with the right choice of shrinkage, noise can be eliminated from

the scene without over-smoothing [208].

The simplest form of shrinkage is thresholding and takes two forms, soft and

hard. Hard-thresholding does not necessitate continuity of the shrinkage function and for

coefficients c and threshold λ, it takes the form,

S (c, λ) = c1 (|c| > λ) , λ ≥ 0, c ∈ R. (3.35)

Soft-thresholding is continuous, and takes the form,

S (c, λ) =
(
c − sgn(c) · λ

)
1 (|c| > λ) . (3.36)

The choice of threshold can be made several ways. Risk can be used as one basis for

this choice, where risk is the reconstruction error due to the shrinkage. If it is assumed that
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the signals are a realization of a random vector F with added Gaussian white noise W of

variance σ2, i.e., X = f + W, then a diagonal estimator of f in a basis B = {gm}0≤m<N is:

F̃ = DX =

N−1∑
m=0

am (XB [m]) XB [m] gm. (3.37)

In this representation, using am as the thresholding estimator, the risk of thresholding can

be analyzed. Specifically, it can be shown that a threshold smaller than σ
√

2logeN reduces

the risk associated with thresholding, although it is not optimal [153]. This is sometimes

referred to as the universal threshold.

Mallat [208] noticed that for a variety of images and signals, the distributions

of the wavelet coefficients were symmetric about zero and had a sharp peak at zero.

Therefore, he modeled the distributions using the exponential power family and designed

percentile-based thresholds. Several other methods exist, including cross-validation, block-

thresholding, and Lorentz Curve thresholding. For the latter, the Lorentz curve for the

distribution of the energy of the wavelet coefficients is used to define a threshold, where the

Lorentz curve for a random variable X is defined as L(q) = 1
µ

∫ ξq

0
xdF(x), where ξq is the

population qth quantile. Defining q̂0 as the proportion at which the gain by thresholding an

additional element is smaller than the loss in energy, the q̂0 ·100% coefficients with smallest

energy are replaced by zero [208]. Smooth shrinkage can also be used, where coefficients

are set according to some smooth function.

3.7.2 Application of Wavelets to HSI.

For HSI specifically, wavelets have been used to de-noise prior to dimension reduction,

and have also been used as a new space within which to perform dimension reduction

[21, 39, 175]. Liu [143], Shen and Jia [189], and Xie et al. [221] used various mother

wavelets for purposes of feature extraction and selection and multi-scale KPCA. In the

cases where they used wavelets to de-noise images, noise had been artificially added to the

image. Baghbidi et al. [20] performed variations of the RX detector on DWT coefficients,

and showed benefit vice the local RX detector. Gupta and Jacobson [87] proved the
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equivalence of PCA and PCA done on unscaled wavelet coefficients, as well as related

eigenspectra of smoothed wavelet coefficients. These equivalences are depicted in Figure

3.6.

Figure 3.6: Workflow Diagrams for PCA and PCA Involving Wavelets [87].

In this research, wavelets are not used for de-noising. The factor analysis method

constructed in Chapter 4 is designed specifically to remove the noisy bands. Although this

may leave some noise from the sensor in the image, in practice using ’optimal’ shrinkage
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methods from Section 3.7.1 on the resulting images did not seem to alter characteristics

of the images in a meaningful way. Higher levels of smoothing, meanwhile, appeared to

overly alter the pixel signatures. Wavelets are also not used as an input for dimension

reduction in this research as the presence of sets for the wavelet coefficients, even in the

MRA case, did not truly reduce dimension in a desirable enough way for the purposes here.

3.8 k-Nearest Neighbors

The concept of k-nearest neighbors is simple in that the k-nearest exemplars according

to some distance or similarity metric are sought for each exemplar in the dataset. However,

as the size of the dataset grows, so too does the computational expense of computing

the distances and determining the nearest neighbors. As this algorithm is often used for

neighborhood determination within techniques such as LLE and others explored in this

research, such as the visualization presented in Section 4.2, it is important to briefly discuss

speed improvements to the basic k-nearest neighbor algorithm.

The k-d tree structure splits nodes into subtrees based on a value for the i-th coordinate.

For example, consider Figure 3.7. The first coordinate is used to split the data, with 3 being

the split value. Next, each subtree is split. In the case of the left subtree, the data is split

at the median value of the second coordinate, 4. For the right subtree, there are only two

datapoints, and therefore one of the values is chosen to split the subtree. This yields a

tree structure for the datapoints that enables quicker searching vice building a full distance

matrix. The capability to generate such a tree is available within Matlab®, but search

performance still degrades exponentially with increasing dimensionality [166].

Nene and Nayar [166] proposed a simple algorithm to find neighbors by slicing

each dimension, one at a time, keeping points within some constant ε of the current

point. However, this algorithm does not guarantee k neighbors. Approximate nearest-

neighbor algorithms attempt better performance by only guaranteeing that distances used
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Figure 3.7: KD Tree Example [12].

are accurate to within some ε or factor of the true distances [16, 201]. Hwang and Wen

[102] did a partial distance search in the discrete wavelet domain to reduce the number

of features for the initial neighborhood determinations. Cheng, Fang, and Saad [51] used

divide and conquer approaches to approximate neighbors. For purposes of this research and

after some testing, only the kd-tree is used here to improve the k-nearest neighbor algorithm

(mentioned primarily for purposes of run-time analysis). Additionally, the author found that

chunking the data, in the case of large data sets, improved efficiency. That is, computing the

nearest neighbors in the data sets for only 1,000 or a few thousand exemplars at a time, in

conjunction with vector operations in Matlab®, vastly improved computational efficiency.

3.9 Clustering

A few prevalent clustering algorithms are presented in this section, as is some initial

analysis for k-means. There are many issues associated with clustering, especially for

purposes of this research. Some of these issues are introduced here, but further evaluation

is presented in Section 7.3

3.9.1 k-Means.

k-means is perhaps the most common clustering algorithm. In k-means, a number of

clusters k is chosen in advance. Given a similarity metric, each exemplar is assigned to its
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closest cluster as determined by its similarity to the cluster centroids. Once an assignment

is made for the data, the cluster centroids are recomputed, and the algorithm persists until

either a maximum number of iterations is met or until the centroids and/or memberships no

longer change [68]. The pseudocode is shown as Algorithm 3.2.

Algorithm 3.2 k-means [68]
1: Choose a similarity or distance metric s(x, y).

2: Set the number of clusters k and compute their centroids µ j, j = 1, ..., k.

3: Choose a maximum number of iterations M.

4: while Iterations< M do

5: for i=1:N do

6: Assign exemplar i to cluster ĵ by finding the centroid with closest similarity ŝ,

7: ĵ = argmin j=1,...,ks
(
xi,µ j

)
.

8: end for

9: Recompute µ j for j = 1, ..., k. If the centroids and/or memberships do not change,

exit the while loop.

10: end while

k-medoids is a related algorithm where cluster centroids are exemplars from the

dataset rather than the group means [171]. Advances in the k-means algorithm have

been made both for efficiency and robustness to starting centroids. Euclidean distance is

commonly used as the similarity metric, as was in this research due to investigations shown

in Section 4.1. Kuang [130] greatly accelerated the Matlab® k-means function simply by

noting that the distance expansion ‖x− y‖2 = ‖x‖2 − 2xyT + ‖y‖2 is much faster to compute.

Additionally, he removed some unnecessary computation. Elkan [69] made k-means more

efficient by applying the triangle inequality to avoid unneeded distance computations.
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As k-means can be sensitive to starting centroids, Bradley and Fayyad [37] developed

a refinement approach based on sub-sampling. Choosing J sub-samples of the data, each

sub-sample j is clustered to yield a set of centroids C j. Next,
⋃

j
C j is clustered using each

set of centroids C j as starting centroid solutions. This yields J centroid estimates, C j, and

is done to avoid solutions corrupted by outliers. The C j with minimal squared error or

distortion is chosen as best, and finally, k-means is performed for the entire dataset using

this best set of centroids as its initial guess for the centroids. A comparison of normal k-

means and this refined method is shown in Figure 3.8 for the Hepta dataset. As can be seen

for a random centroid start with k = 7, the refined method correctly ascertains the classes

while normal k-means does not. This was a representative result. Others have devised

(a) Normal, k=7. (b) Refined, k=7.

Figure 3.8: Refined K-Means Comparison: Hepta.

refinement starts, such as the affinity propagation start suggested by Zhu, Yu, and Jia [232].

Ding and He [65] proved that principal components are the continuous solution to the

cluster membership indicators in k-means clustering. That is, the subspace spanned by the

cluster centroids are given by the k−1 leading principal components and that this subspace

63



is the most discriminative. They proved this to be true for kernel k-means (k-means in the

kernel space) and KPCA as well. They also proved that in the cluster subspace, between

cluster distances remain nearly the same as in the original space, and that within-cluster

distances are reduced. What their work implies is that exemplars can be clustered on the

PCs or Kernel PCs with approximately the same result as the originating space or kernel

space. This can be a powerful fact to make clustering more efficient. Fern and Brodley

[72] developed an agglomerative clustering algorithm that combines the results of clusters

on random projections. However, the dimensionality benefit within the clustering for this

method can be achieved more directly via PCA, assuming the L2 similarity metric. Thus,

the k-means algorithm used in this research projects the data onto the first k − 1 principal

components if k − 1 < p, utilizes Kuang’s [130] code improvements, and when noted, also

utilizes Bradley and Fayyad’s [37] robust centroid start. Elkan’s [69] concept is not used,

as its implementation required checks that did not necessarily speed code execution.

Figure 3.9 depicts a comparison of these variants without and with PCA (where the

k − 1 leading components are retained) and refinement incorporated for different values

of k on the Pavia University image. k = 10 was chosen specifically as the ground truth

data contains 10 classes. As can be seen by the color-coded clusters, clustering on the

components does in fact yield the same cluster membership. The value of refinement is

not necessarily as obvious, but small changes can be seen where the refined clusters have

broader membership for larger background classes, and more refined membership for the

others. This is more obvious in Figure 3.10 for ARES1D. For k = 20, the refined clusters

are far less noisy. This implies that the refinement could be great use when constructing

skeletons, and is investigated in more detail in Section 7.3. This is in part also due to an

iteration limit of M = 100 being used, meaning the refinement can be of benefit to improve

the solution when trying to reduce run-time for very large data sets. These notably efficient
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run-times are included in the sub-figure titles. In all comparisons, the same vectors were

used for the initial centroid estimates.

(a) Normal, k=10. (b) PCA, k=10. (c) PCA Refined, k=10.

(d) PCA, k=20. (e) PCA Refined, k=20.

Figure 3.9: Clustering Applied to Pavia University.

3.9.2 X-means.

Due to k-means scaling poorly computationally, and because it is dependent on the

choice for k, and is prone to local minima, Pelleg and Moore [172] developed the X-means

65



(a) PCA, k=5. (b) PCA Refined, k=5.

(c) PCA, k=20. (d) PCA Refined, k=20.

Figure 3.10: Clustering Applied to ARES1D.

algorithm. The general idea of their algorithm is to run k-means for some initial k, and then

to split clusters where doing so would yield better cluster results. Specifically, for a given

k-cluster model Mk the Bayes Information Criterion (BIC) is computed as,

BIC(Mk) = l̂k(D) −
qk

2
log R, (3.38)
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where l̂k(D) is the log-likelihood of the set of exemplars D according to the model Mk,

qk = k + pk is the number of parameters in Mk, and R is the number of exemplars in D

[172]. Under an identical spherical Gaussian assumption for the clusters, the maximum

log-likelihood for a specific cluster j is,

l̂(D j) = −
R j

2
log(2π) −

R j p
2

log

 1
p(R j − 1)

∑
i

‖xi − µ(i)‖
2

 (3.39)

−
p(R j − 1)

2
+ R j log(R j) − R j log(R).

Fortunately, to compute the log-likelihood for a model with multiple clusters, the cluster

log-likelihoods can just be added.

The X-means algorithms begins with some number of clusters k and considers a split

for each cluster in the model that has yet to evaluated. If splitting improves the BIC,

then those clusters are split into two new clusters, at which point the process is repeated.

Typically there is some maximum k at which to stop splitting, although ideally k converges

before reaching that limit. BIC-means is a related algorithm to X-means that focuses on

the BIC improvement locally by only considering the split of one cluster at a time [99]. In

the version of X-means developed for this research, after each split or set of splits, k-means

with the new k is run to start the next iteration. This is done until splitting no longer yields

an improvement in BIC. Admittedly, this is not guaranteed to maintain parent-children

cluster memberships. However, BIC-means is used for that purpose and ensures children

belong to the parent cluster. It should be noted that X-means and BIC-means are still

vulnerable to the limitations of k-means, in that each cluster is assumed Gaussian. Sugar

and James [198] alternatively proposed locating the largest jump in distortion to detect k,

but this still requires a scaling and testing of several candidates.

3.9.3 Affinity Propagation.

Frey and Dueck [73] developed the Affinity Propagation (AP) algorithm to find

representative exemplars in a dataset. Input to the algorithm is a similarity matrix where
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s(i, j) denotes the similarity between exemplars i and j. Unlike many algorithms, s(i, i)

is also given an initial non-zero value to represent the preference of selecting exemplar i.

The basis of AP is to pass two types of messages between exemplars. The responsibility

r(i, j) sent from i to candidate representative exemplar j reflects how well-suited j is to

serve as the representative for i. The availability a(i, j) sent from candidate j to exemplar

i reflects how appropriate it is for i to pick j as its representative. These messages are

updated according to the rules,

r(i, j)← s(i, j) − max
j′, j′, j
{a(i, j′) + s(i, j′)} (3.40)

a(i, j)← min{0, r( j, j) +
∑

i′,i′<i, j

max{0, r(i′, j)}}.

These updates allow candidates to compete for ownership of an exemplar and for exemplars

to inform what candidates are truly representative.

The self-responsibility r(i, i) is set to s(i, i) minus the largest of the similarities between

point i and all other candidates. The self-availability is updated as,

a(i, i)←
∑
j′, j′,i

max{0, r( j′, i)}. (3.41)

After any number of iterations of these updates, ar = a(i, j) + r(i, j) can be used to identify

representative exemplars, where if the value of j that maximizes ar is exemplar i then i is a

representative exemplar. If this is not i, then the value for j that does maximize ar identifies

an exemplar that is representative for point i.

As numerical oscillations can occur in the computations during updates, the

responsibilities and availabilities are damped by setting them to a factor 0 < λ < 1 of

the previous value plus a factor of 1 − λ of the new value, where λ = 0.5 was suggested

[73]. A benefit of AP is that the number of representative exemplars does not need to be

chosen a priori.

68



3.9.4 Spectral Clustering.

Spectral clustering is a two-step method, where first a Gram matrix K is formed on

the data using a similarity, dissimilarity, or another kernel function. This is most often a

Radial Basis Function, or exponential function [167]. Where D is the diagonal matrix of

the row sums of K, K is normalized using L = D−1/2KD−1/2. Next, the projections Y of

the exemplars onto the major eigenvectors of L are clustered using a traditional clustering

algorithm. Ng, Jordan, and Weiss [167] also suggested re-normalizing the rows of Y to

have unit length before clustering. They noted that for spectral clustering to succeed, some

assumption of cluster tightness had to hold. Bengio, Vincent, and Paiement [26] showed a

direct equivalence, which was alluded to in Section 3.9.1, between the KPCA mapping and

spectral clustering embedding. Thus kernel k-means can also be thought of as a spectral

clustering.

Many other clustering methods exist in the literature, but those discussed here are

the most prevalent. Further, many of the others that had desirable properties proved to

be problematic on large-dimensional data. A general category of remaining methods is

hierarchal clustering. This is a general method where small clusters are merged, or large

clusters are divided, repeatedly [116]. X-means can be thought of as a specific example of

such an approach.

3.10 Independent Component Analysis

There are many forms of mixing models, where pixels may be treated as some mixing

of a set of source materials. Independent Component Analysis (ICA) seeks directions in

the feature space that are the most independent from one another [7]. Within the context

of signals, assuming some set of d independent source signals s and sensed signals x, the

multivariate density is p (s) =
∏d

i=1 p (si). The sensed signals are some mixture of the

source signals, x = As. Here, p is temporarily used to denote the density rather than a

number of features.
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The independent components (ICs) are the random variables making up s, and for

the model to hold these are statistically independent and have non-Gaussian distributions.

The latter assumption enables non-zero higher order statistics, which can be essential for

estimation of the model. One solution strategy is to find the projection of the data that

maximizes non-Gaussianity, s = Wx. A is then W−1. In order to simplify the process of

solving for the components, Hyvärinen [104] developed a fixed-point algorithm. Assuming

whitened data, FastICA uses an approximation to negentropy in order to maximize

non-Gaussianity (or equivalently, minimize mutual information) [103]. Specifically, the

following approximation is used:

J(x) = k (E[G(x)] − E[G(v)])2 , (3.42)

where G is some nonquadratic function that does not grow too fast, v is a Gaussian variable

of zero mean and unit variance, and k > 0. Johnson found G(x) =
1
4

x4 to work very well

within the FastICA algorithm [110].

Given some number of components to estimate and initial values for W, FastICA

repeats the following two steps until convergence:

1. Let w+
i = E[x · g(wT

i x)] − E[g′(wT
i x)]wi, where g is the derivative of G, and g′ is the

derivative of g.

2. Complete a symmetric orthogonalization of W.

The resulting components then define the projection. Varying forms of ICA exist, to include

a Bayesian method using multi-layer perceptrons by Lappalainen and Honkela [135].

Various forms of Kernel ICA (KICA) have also been implemented using the kernel trick.

Shen, Jegelka, and Gretton [188] optimized the Hilbert-Schmidt interdependence criterion

using a Newton-like algorithm to yield a fast version. Bach and Jordan [18] presented

algorithms based on using canonical correlation in the reproducing kernel Hilbert space.

Chunhui, Yulei, and Feng [58] used KICA for anomaly detection in HSI. Both ICA and
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KICA can be problematic in practice in that estimation of the independent components has

a probabilistic element based on the initial estimation and the optimization convergence.

3.11 Anomaly Detection in Hyperspectral Imagery

Anomaly detection for HSI is a diverse area, where a wide array of methods have

been applied. Some of the more popular detection methods that have been developed

model pixels as combinations of the pixel’s signature and background noise. Methods

have modeled this background both locally and globally, using windows, linear methods to

reduce spatial correlation, and by removing strong signatures as they are found (referred to

as causal or iterative). To classify outliers from the results, combinations of histogram

methods, signal-to-noise ratios (SNR), likelihood ratio tests, distances, and separation

transforms have been used. Figure 3.11 depicts the general process inherent to many of

these methods. Others have used mixing models as a precursor to consider pixels as some

combination of a set of endmembers in order to remove redundant information. In most

cases, spectral detection is the primary focus as an anomaly may occupy only part of a

pixel, and detecting solely on spatial information requires a target to be large relative to

pixel size. Robustness towards false positives or soft anomalies can be an important, yet

difficult task.

Figure 3.11: RX-Like Detectors.
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Many existing anomaly detectors are parametric or at least make some distributional

assumptions. Although these are typically simple and unsupervised, they can have a large

disadvantage in that they often produce an intolerable high number of detections per scene

[180]. For example, the Reed-Xiaoli (RX) algorithm assumes background pixels in a local

neighborhood around the pixel under test are independent identically distributed Gaussian

random variables, but it has been shown empirically that multiple classes of terrain in

the local background do not satisfy this assumption [22]. Further, Frontera-Pons et al.

[75] stated that in HSI the actual response of a detector to background pixels differs from

the theoretically predicted distribution for Gaussian backgrounds, and that the empirical

distribution typically has heavier tails that influence the observed false-alarm rate of a

detector. Non-parametric methods have been developed as an alternative, but are typically

based on some overarching hypothesis test. Wavelets have been applied so as to reduce

correlation and in order to use both spatial and spectral information.

3.11.1 RX-Based and Uniform Detectors.

One popular class of algorithms for finding anomalies in HSI is based on the RX

anomaly detector developed by Reed and Yu [177]. The standard RX algorithm moves a

window through the image in order to compute local background estimates to compare with

center pixel under test. This is popular due to its simplicity, but there can be a trade-off with

its computational expense depending on how exactly the pixel or local window under test

is compared to the current background estimate. Other methods, sometimes referred to as

uniform detectors or filters, also make a simple determination based on comparing a pixel

or local window under test against a current background estimate. These methods, unlike

the quadratic detector and matched filters, do not assume that information is known about

the anomaly class [154].
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3.11.1.1 RX-Based Detectors.

The basic RX algorithm models the image background as a Gaussian distribution with

zero mean and an unknown covariance matrix which can be estimated globally or locally

from the data. Any anomaly is modeled as a linear combination of the anomaly signature

and the background noise. Therefore, an anomaly spectral signature is represented by a

Gaussian distribution with a mean equal to that of the signature of the anomaly and an

additive noise equal to the background covariance matrix [195]. The detection process is

then based on exploiting the difference between the spectral signatures of a pixel x and its

surrounding pixels, in actuality the squared Mahalanobis distance,

δRX(x) = (x − µ)TC−1
p×p(x − µ), (3.43)

where µ is the global mean spectral vector (over the bands) and C is the sample spectral

covariance matrix. In the sense that small eigenvalues of C correspond to a large value for

δRX(x), Soobaf, et al. [195] noted this is an inverse operation to Principal Component

Analysis, where the search is for anomalies in minor components. This is interesting

because it assumes that pixels that occur with low probability in the data do not show

in major principal components. Stated differently, variances of anomalies contribute to the

sample variance in a minor fashion, and thus Hsueh and Chang [100] noted that standard

use of Principal Components could be ineffective in finding anomalies. Using spectral

decomposition of the covariance matrix, C can be decorrelated into a diagonal matrix Λ

such that VTCp×pV = Λ, where V is a unitary matrix. Then,

xTC−1
p×px =

p∑
l=1

λ−1
l y2

l , (3.44)

where y = VT x [46]. Thus, the RX detector can be interpreted as a matched filter, κdT x

operating on x − µ with the matched signal d = (x − µ)TC−1
p×p and the scale constant

κ = 1. Thomas [204] showed that the RX detection test came naturally from the Maximum

Likelihood when considering the spectral and spatial domains as continuous.
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The use of Mahalanobis distance can be powerful in that it considers the variance

structure of the data. Figures 3.12(a) and 3.12(b) compare Euclidean and Mahalanobis

distance for a common set of data, while Figure 3.12(c) shows the difference in distance

shape when the variance structure is changed.

(a) Euclidean - Data 1. (b) Mahalanobis - Data 1. (c) Mahalanobis - Data 2.

Figure 3.12: Distance Comparison on Two Data Sets.

Given PCA, Lee and Landgrebe [137] noted for multispectral and hyperspectral data

that the first few eigenvectors often contain much of the variance, and under a Gaussian

assumption the data is then an elongated hyperellipsoid. Under these conditions, they

argued for the use of second-order (and higher) statistics for a classifier, as is done with

RX.

Two simple variants of the basic RX algorithm are the normalized and modified RX

methods. These divide δRX(x) by ‖x−µ‖ and ‖x−µ‖2, in essence changing κ [46]. When the

percentage of anomalous pixels is relatively large, the sample covariance matrix no longer

represents the background distribution. In this case, the weighted RX algorithm (WRX)

developed by Ren, Chen, and Chen [178] assigns a weight to each pixel in the sample
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covariance matrix using its distance to the data center. The weighted covariance matrix is,

Cw =

∑N
i=1 wi(xi − µw)(xi − µw)T∑N

i=1 wi
, (3.45)

where µw =

∑N
i=1 qixi∑N

i=1 qi
, qi =

1
1 + ‖xi − µ‖

, and wi =
1

1 + ‖xi − µw‖
[195]. The RX filter is

then,

δWRX(x) = (x − µw)TC−1
w (x − µw). (3.46)

Ashton and Schaum [17] showed that background subtraction could enhance the RX

detection algorithm. This led to the following detector [46],

δRXD−UT D(x) = (x − 1)TC−1
p×p(x − µ). (3.47)

If the spectral properties of an anomaly can be characterized only by first-order statistics,

then a better choice is to use the sample correlation matrix Rp×p instead of Cp×p and

x instead of x − µ in the various detectors to allow for first-order and second-order

statistics [46]. To enable “real-time” computation, computation of R−1
p×p is done using QR-

decomposition, processing a pixel as it is received. This is called Causal RX (CRX),

δCRX(xk) = xT
k (R−1

p×p(xk))xk, (3.48)

where xk denotes processing up to the k-th pixel. This is also better than using the

covariance matrix, as C−1 required computation of the mean for the entire image. Here,

the information used for data processing is up to the pixel being processed and updated on

pixels already processed [195]. If a detected anomaly with a strong signature remains, it can

dominate and obscure anomalies that could not be detected subsequently. To address this

issue, Hsueh and Chang [100] devised the Adaptive Causal Anomaly Detection algorithm

(ACAD). This algorithm is the same as CRX, except the causal sample correlation matrix

removes all detected anomalies up to the current pixel vector xk.

Given the inherent assumption of equal covariance matrices for the two hypotheses

in the RX algorithm, for sub-pixel targets it may be better to assume that the background
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has the same covariance structure but different variance. This approach led to the Adaptive

Coherence/Cosine Estimator (ACE) detector,

DACE(x) =
xTC−1

p×pS
(
S TC−1

p×pS
)−1

S TC−1
p×px

xTC−1
p×px

, (3.49)

where S is a known representation of the target subspace [154]. The detector and

hypotheses can be adjusted accordingly if the background is modeled by a subspace model,

assuming the subspace models are known. Wang et al. [213] used the relative fluctuations

in correlation coefficients for adjacent spectral bands to detect the modes in HSI pixel

signatures. Each of these was used to yield a band subspace, or a subset of bands, on which

to perform PCA. After projection, they used RX to detect anomalies for each subset and

fused the results for a final prediction.

In RX algorithms, in general, it is assumed that the background and target have the

same covariance matrix. This is not necessarily valid when trying to detect a particular

target, but is difficult to avoid as the statistical structure of any anomaly is undefined. To

take advantage of the spectral correlation provided in the RXD, Chang [45] suggested using

distances other than Mahalanobis, such as Bhattacharyya distance, to distinguish between

anomalies. Further variants of the RX algorithm exist, and a few of these and their aspects

are covered later in this chapter.

3.11.1.2 Low-Probability Detection Method.

Another basis method is the Low-Probability Detection method (LPD) [94]. Unlike

the RX detector (where the current pixel is used as the matched signal), LPD uses the unity

vector as the matched signal. If the sample correlation matrix is replaced with the sample

covariance matrix, a uniform target detector (UTD) can be defined as,

δUT D(x) = (1 − µ)TC−1
p×p(x − µ). (3.50)
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Here, no information is introduced to the detector, but an anomalous target is assumed

to have radiance uniformly distributed over all of the spectral bands, thus uniformly

distributed background signatures are extracted.

3.11.1.3 Kernel RX.

Kwon and Nasrabadi [133] developed the Kernel RX (KRX) algorithm utilizing

KPCA inside of the RX algorithm. They noted that in general, the Gaussian assumption

in the RX-algorithm is not valid. Therefore, they formulated a non-linear version where

a Gaussian distribution for the two hypotheses was assumed in the higher-dimensional

feature space. Thus, modeling the input data in this new feature space by a Gaussian

distribution was equivalent to representing the distribution of the input data with a more

complex model in the original space.

This yielded the RX-algorithm in the feature space,

RX (Φ(x)) =
(
Φ(x) − µbΦ

)T C−1
bΦ

(
Φ(x) − µbΦ

)
, (3.51)

where CbΦ
is the estimated covariance and µbΦ

is the estimated mean of the background

clutter samples in the feature space.

As with KPCA, this RX-algorithm can be implemented without explicitly using Φ.

Consider the eigen-decomposition CbΦ
= VΛVT where V is the set of eigenvectors and Λ is

the diagonal matrix of eigenvalues for CbΦ
. Then, C−1

bΦ
= VΛ−1VT . Thus, the KRX equation

becomes,

RX (Φ(x)) =
(
Φ(x) − µbΦ

)T VΛ−1VT (
Φ(x) − µbΦ

)
. (3.52)(

Φ(x) − µbΦ

)T V and VT (
Φ(x) − µbΦ

)
are just the kernel component scores. Recall from

Equation 3.10, these can be computed using the normalized eigenvectors of the centered

Gram matrix formed on the training data and the kernel values. Thus, only Λ−1 is needed

to complete the calculation. In fact, it is easy to show that Λ−1 = NΩ−1 where Ω−1 is the

diagonal matrix of non-zero eigenvalues of the centered Gram matrix.
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The General Likelihood Ratio Test can still be applied, and the kernel function used

needs to be valid so as to yield a positive semi-definite Gram matrix [133]. To try and

better meet the Gaussian assumption in the feature space, Kwon and Nasrabadi [133] used

a Gaussian kernel and they noted that the eigenvalues decayed quickly and that the kernel

is translation-invariant. They also estimated the kernel matrix K̂b globally and locally for

comparison. To estimate globally, k-means clustering was used to find centroids from

which to estimate the matrix. They used k = 600 so as to fully represent the background

and on their image of interest, found σ = 40 to work well. To estimate the kernel matrix

locally, a dual cocentric window approach was used. In both cases, they scaled the data

by the largest spectral value to try and best utilize the Gaussian kernel. They did not

provide an approach on selecting a subset of kernel principal components to use for the

KRX scores, but showed favorable detection improvement over linear-based RX algorithms

[133, 165]. Nasrabadi [165] presented KRX as an example of the more general linear

subspace-based anomaly detector. For some projection matrix W and outer window, the

associated projection separation statistic is,

s = (x − µout)T WWT (x − µout) . (3.53)

3.11.1.4 General Likelihood Ratio Test.

One remaining aspect of the RX detector is the actual identification of an anomaly.

In its simplest form, a pixel can be determined as an anomaly if the RX score is greater

than χ2
α,p where α and p are the corresponding quantile and degrees of freedom of the

Chi-squared distribution.

To develop this further, consider the formulation of the hypothesis test. Assuming

H0 : θ = θ0 and Ha : θ = θa based on a random sample from a distribution with

parameter θ, let L (θ) be the likelihood of the sample when the value of the parameter

is θ. The Neyman-Pearson Lemma states that for a given α, the test that maximizes

the power at θa has a rejection region determined by
L (θ0)
L (θa)

< t. t is chosen so that
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the test has the desired value for α. This is a most powerful α-level test for H0 versus

Ha [209]. Relating this to the hyperspectral problem, let the probability of detection

be PD = P (Ha; Ha) = probability decide Ha when Ha is true, and let the probability of

false alarm be PFA = P (Ha; H0) = probability decide Ha when H0 is true. Here, H0 is

relative to the background and Ha is relative to an anomaly. Using Neyman-Pearson, PD is

maximized subject to a desired fixed PFA = α, where the likelihood ratio test decides Ha if

the likelihood ratio [64],

L(x) :=
p (x; Ha)
p (x; H0)

> γ. (3.54)

γ is found from,

PFA =

∫
{x:L(x)>γ}

p (x; H0) dx = α. (3.55)

This approach is referred to as the Generalized Likelihood Ratio Test (GLRT).

A Bayesian approach could minimize the Bayesian risk (cost function) for arbitrary

costs C for deciding one hypothesis when the other is true, but this requires prior

probabilites for each hypothesis. Bayes Risk is,

R = E [C] =

1∑
i=0

1∑
j=0

Ci jP
(
Hi|H j

)
P

(
H j

)
, (3.56)

where i, j = 0 reflects the null hypothesis and i, j = 1 reflects the alternative hypothesis. In

RX detectors, these are background and signal plus background, respectively. Assuming

C10 > C00 and C01 > C11, the detector that minimizes R decides Ha if
p (x|Ha)
p (x|H0)

>

(C10 −C00) P (H0)
(C01 −C11) P (Ha)

= γ [64]. This Bayesian framework encompasses both minimum

probability of error or maximum a posteriori, PE or MAP, and maximum likelihood (ML).

For the former, Cii = 0, Ci j = 1 for i , j. Ha is decided if:

min PE :
p (x|Ha)
p (x|H0)

>
H0

Ha
= γ,

MAP : P (Ha|x) > P (H0|x) .
(3.57)

For ML, the costs are the same, but all priors P (Hi) are equal. The detector decides Ha if

P (x|Ha) > P (x|H0). Both Neyman-Pearson and this Bayes approach can be expanded to
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more than two hypotheses. This latter Bayesian approach does not appear to be prevalent

in the literature.

Thomas [204] used functional statistics to model anomaly detection using a

continuous spectral domain approach. He imposed Gaussian behavior and developed a

hypothesis test where the null hypothesis was the presence of only background noise, and

the alternative was the presence of a spatially patterned signal with added noise. Utilizing a

likelihood ratio under his model, he found optimality to be analogous to the GLRT as used

in RX.

3.11.1.5 Windows.

The RX-based algorithms are known as local or global depending on if the mean

spectrum is derived from all of the image data or from a local window around each pixel

during anomaly detection. Other methods also make use of windows to try and separate

anomalies from background. As scenes often have multiple land covers, the underlying

distributions are usually multimodal. Therefore, windows may sub-divide the scene such

that each class can be characterized by a unimodal distribution. Kwon, Der, and Nasrabadi

[131] developed the Dual Window-base Eigen-Separation Transform detector (DWEST)

using two local windows. These inner and outer windows are designed to maximize the

separation between anomalies and the background in a low-dimensional subspace, albeit

the exact formation of these windows is subjective. Typically, an inner window is meant

to be large enough to encapsulate a target. As these local windows are moved through the

image, a local mean (µin, µout) and covariance matrix (Cin,Cout) of each window are formed

and their differences taken. Figure 3.13 shows the general idea of a dual window approach.

In DWEST, anomalies are extracted by projecting the differential mean onto the eigenvector

Λi or set of eigenvectors with the largest positive eigenvalues ~λ of the differential covariance
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Figure 3.13: Dual Cocentric Window [133].

matrix Cdi f f = Cin −Cout:

δDWES T = |
∑

i

ΛT
i (µout − µin) (x)|. (3.58)

RX can also be implemented using the two-window approach simply by using:

δRX−DW(x) = |(µout − µin) (x)T
[
C−1

out(x)
]

(µout − µin) (x)|. (3.59)

Kwon, Der, and Nasrabadi [131] argued that the eigenvectors associated with a small

number of the large positive eigenvalues could successfully extract spectrally distinctive

materials present in the inner window.

Liu and Chang [144] used three nested windows in the Nested Spatial Window-

base Target Detector (NSWTD). An inner and middle window are used to extract the

smallest and largest anomalies, respectively, and the outer window is used to model the

local background. Instead of using Mahalanobis distance or an eigen-separation transform,

Orthogonal Projection Divergence (OPD) is used, given between two instances as:

OPD
(
xi, x j

)
=

√(
xiP⊥x j

xi + x jP⊥xi
x j

)
, (3.60)

81



where P⊥xk
= Ip×p − xk

(
xT

k xk

)−2
xT

k . First, OPD is implemented between inner and middle

windows, as:

δ2W−NS W
1 (x) = OPD (µin(x), (µout − µin) (x)) . (3.61)

The second implementation is between middle and outer windows,

δ2W−NS W
2 (x) = OPD (µmid(x), (µout − µmid) (x)) . (3.62)

The final thee-window NSWTD is,

δ3W−NS W(x) = maxi=1,2

[
δ2W−NS W

i (x)
]
. (3.63)

In a dual-window setting, Nasrabadi [165] noted that PCA would not exploit

information in the inner and outer windows simultaneously, and so proposed using the

linear discriminant or kernel linear discriminant to find an optimal direction to discriminate

between inner and outer window samples.

As another method similar to the DWEST algorithm, the Eigenspace Separation

Transform (EST) finds the eigenvectors and values of the difference correlation matrix,

which is the difference of the correlation matrices of the inner and outer windows. W

is then chosen as the set of d eigenvectors corresponding to the most positive or most

negative eigenvalues. Typically, this choice is made by choosing the set of eigenvalues

(positive or negative) with the largest absolute sum [205]. EST can also be adapted to a

higher-dimensional feature space by using the difference correlation matrix in the feature

space [78].

3.11.1.6 Iterative RX.

The iterative RX detector (IRX) by Taitano, Gaier, and Bauer [199] calculates

improved estimates of the mean vector and covariance matrix of the background pixels over

several iterations until the set of anomalies converges or a maximum number of iterations is

reached. Each iteration the standard RX algorithm is run, yielding a score for each testable

pixel in the image. Pixels selected as anomalies in the previous iteration are excluded from
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the data used to estimate the mean vector and covariance matrix of the background in that

iteration, and the process is repeated. This process is used to help eliminate the effect of

outliers on the mean and covariance estimates used for the RX-statistic. This was done

using a window.

3.11.1.7 Linear RX.

Linear RX (LRX) and Iterative LRX (ILRX) are similar to RX and IRX, respectively,

but instead of a window being moved through the image, a vertical line of pixels above and

below the current pixel is used [216, 217]. If the number of required pixels above or below

the pixel under test exceeds the height of the image, pixels are taken from the bottom of the

previous column or from the top of the following column. The use of this linear approach is

to increase the average distance between those pixels being used to estimate the background

and thus to mitigate spatial correlation. This also allows for reduction of bias and error in

the estimation of the background mean and covariance. This concept is shown in Figure

3.14. Taitano, Geier, and Bauer [199] also explored using these methods on the Principal

Components of the line of pixels.

3.11.2 Topology Anomaly Detector.

The Topology Anomaly Detector (TAD) was developed by Basener, Ientilucci, and

Messinger [23]. First, a random sample of reasonable size is taken from the HSI image

for the purpose of modeling the background. The distance between every pair of pixels in

this sample is computed and a graph is formed by adding an edge between the closest b1%

of pairs of pixels. From these adjacencies, the connected components (sub-graphs) of the

graph are found. These components are meant to represent materials in the image [66].

The largest components containing greater than b2% of the sample pixels are designated as

background, where b2 is assumed to also be the percentage of pixels in the image that are

background. In practice, b1 = 10 and b2 = 2 were recommended, citing network theory

and properties of components for the former [24].
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Figure 3.14: Window vs. Line.

The pixels in the components, being well-connected, are meant to form a topological

model for the image background. In order to measure each pixel against the background,

codensity is used. The k-th codensity δk for a pixel in the image is the distance to the k-th

nearest neighbor. The TAD ranking is defined as,

T AD(x) =

5∑
i=3

δi(x). (3.64)

This ranking is used to provide level sets of arbitrary topology and to allow detection of

pixels in the holes of the background convex hull [24]. Additionally, the codensity enables

pixels near background regions of low density to have a higher score than those near regions

of high density. In order to make a final anomaly decision for each pixel, the TAD ranking

is thresholded.

3.11.3 Autonomous Global Anomaly Detector.

One algorithm of significant interest to compare to is the Autonomous Global

Anomaly Detector (AutoGAD), originally developed by Johnson [110]. It is a fully
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unsupervised algorithm and is a combination of several methods. A general overview of

the algorithm is shown in Figure 3.15.

Figure 3.15: AutoGAD.

First, the data matrix is made into a pixel×band matrix, where each pixel vector is

made into a row in the data matrix. This is depicted in Figure 3.16. This matrix is reduced

through PCA and the components are whitened. In order to determine the number of

components to retain, the knee of the eigenvalue curve relative to the maximum distance

from the log secant line is found. This is referred to as Maximum Distance Secant Line

(MDSL) and the concept is shown in Figure 3.17.

In order to provide better components, given the likely non-Gaussian nature of the HSI

data, ICA is performed beginning with the scores of the retained principal components. In

order to select the resulting maps to use to actually flag the anomalies, maximum pixel

scores on the component are used to nominate components. Additionally, a threshold on
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Figure 3.16: Pixel×Band Representation.

Figure 3.17: Finding the Eigenvalue Cutoff [111].

the potential anomaly signal-to-noise ratio (PA SNR),

PA SNR = 10 · log10

(
Var(potential anomaly signal)

Var(background)

)
, (3.65)
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is used to nominate components, using mappings where pixels exceed the threshold. For

calculation of this ratio, pixels are split into background and potential anomalies through

the use of a first zero-bin detection histogram, similar in nature to the method later

described in Section 3.11.6.1. The potential anomalies are those that come after the first

empty zero-point bin from the histogram constructed from the signal, given some bin width.

Finally, given the mappings exceeding both a score and SNR threshold, an iterative

window-based Wiener filter can be applied in order to smooth the mappings, reducing

background noise and making anomalies more recognizable. The Wiener filter uses a

square window to make a neighborhood estimate for the mean and standard deviation,

and to estimate local Gaussian noise before filtering. In order to make anomalies more

recognizable, several iterations of the filter may be required. Johnson [111] chose this

method as it filters more heavily where the variance is close to system noise. The histogram

method is then used again for the final classification.

AutoGAD has been shown to have desirable results on several HYDICE images versus

algorithms such as RX, ILRX, and Support Vector Data Description, but it also involves

several user-defined parameters [111]. These include the bin-width(s) for the histogram,

the PA SNR threshold, the component score threshold, an adjustment to the dimensionality

assessment from MDSL, and several associated with the adaptive Wiener filter (such as

window size and number of iterations). Williams [216] investigated the use of Robust

Parameter Design (RPD) to better optimize these parameters for the HYDICE ARES

images.

Johnson [111] used Hyvärinen’s [104] FastICA to solve the ICA problem, using the

contrast function G(u) =
1
4

u4 with its derivative g(u) = u3. However, Hyvärinen [104]

noted that the kurtosis function was justified on statistical grounds only for estimating

sub-Gaussian independent components when there were no outliers. Jablonski [107] later

developed an algorithm inspired by AutoGAD where ICA was removed and obvious
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outliers removed after a first iteration, among other changes. This is presented in Section

3.11.4.

Jablonski [107] also noted an inconsistency in true positive rates in the results

presented by Johnson, Williams, and Bauer [111]. This led him to develop a method

to generate Receiver Operating Characteristic curves (ROC) for AutoGAD. He proposed

multiplying the zero-bin detection thresholds by a nominal factor that could vary. The

results led him to find that the bin widths needed to be adjusted according to the range of

the mapping scores and the number of pixels in the image. He then replaced the bin width

parameters with a number of pixels per bin parameter Y . This enabled the bin width ω to

vary for any given mapping as,

ω =
Y
N

(max(scores) −min(scores)) . (3.66)

Use of the Y parameter enabled him to yield better and more consistent results [107].

3.11.4 Multiple Principal Component Analysis.

Inspired by AutoGAD, IRX, reconstruction error-based methods, and general

investigation of the HYDICE ARES imagery, Jablonski [107] developed an autonomous

global anomaly detector named Multiple PCA (MPCA). Using an ensemble of four scores

derived from PCA, he used an iterative technique to remove potential anomalies from an

initial covariance estimate. The ensemble was used to make the response more robust to

different images and targets. These scores, D1 : D4, and a general overview of the algorithm

are shown in Figure 3.18, where Q denotes reconstruction error as previously explained in

Equation 3.1. Here, the zero-histogram detection is again the first zero-bin threshold as

used in AutoGAD.

In reality, the algorithm is more complicated than Figure 3.18. Jablonski [107] found

the Wiener filter and PA SNR from AutoGAD to also provide benefit in decreasing false

positives. The pseudocode to match his archival code is shown as Algorithm 3.3.

88



Algorithm 3.3 MPCA[107]
1: Remove absorption/noisy bands and reshape the data cube to N × p.

2: XS
N×p =

(
XN×p − 1N×1µ

T
)

D−1/2: data is centered and standardized.

3: Find eigenvectors V and eigenvalues Λ from cov
(
XS

N×p

)
: do PCA.

4: Use MDSL to determine the dimensionality k. Let TN×k denote the PC scores for the

major k components and TN×p denote all PC scores.

5: Let E = XS
N×p − TN×kVT

p×k. D3i = Qi =
p∑

j=1
E2

i j: squared reconstruction error based on

the first k components.

6: T̂N×p ⇐ Wiener
(
TN×p

)
: use window-based Wiener filter.

7: ZN×p = T̂N×pΛ
−1/2: standardize/whiten the scores. Ẑ = Z ◦ Z: square each element.

8: D1 =
k∑

j=1
Ẑ∗ j: sum the major squared scores. D2 =

p∑
j=k+1

Ẑ∗ j: sum the minor squared

scores. D4i = median(Ẑi∗): find the median for each row.

9: Dt ⇐ Dt/σt for t = 1, 2, 3: divide by the standard deviation of its vector.

10: Dt ⇐ Wiener (Dt) for t = 2, 3, 4: use window-based Wiener filter.

11: Dt ⇐
√

Dt for t = 1, 2, 3, 4: take the square root of every element in each score vector.

12: Construct histograms for Dt, t = 1, 2, 3, 4, and find first zero-bin using pixels per bin

parameter Yinitial. Dt > νt Location of 1st empty histogram bin are voted as anomalies (if true for

any single score).

13: if Any voted anomalies then (Begins 2nd Iteration)

14: Remove anomalies from XS
N×p. Do Step 3, and then Step 4 using previous k.

15: end if

16: Do Steps 5-11.

17: Construct histograms for Dt, t = 1, 2, 3, 4, and find first zero-bin using pixels per bin

parameter for each Dt, Y f inalt . Dt > νt Location of 1st empty histogram bin are voted as potential

anomalies.

18: If a pixel has greater than one vote on D1:4 then the pixel is classified anomalous.
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Figure 3.18: MPCA Overview [107].

Jablonski [107] chose the D1 score to find anomalies that inflate variance and

covariances, while D2 would catch anomalies that do not or that are inconsistent with the

covariance. Realizing the noise present in some of the minor components, he used D4 to

be less sensitive to this. In fact, he showed the relation of D4 to Mahalanobis distance. D3

was chosen to serve as an alternative to D2 where equal weighting is not given to all of the

principal component directions through whitening [107]. In order to determine settings for

the parameters, to include the pixels per bin parameters, he fit a second-order model to an

objective designed to maximize the average True Positive rate and minimize the average

and variance of the False Positive rate.

3.11.5 BACON and Other Detector Types.

Other anomaly detection methods exist in the literature, including more where

projections are used to dimension reduce and uncover latent structure. One such method

was developed by Wu and Zhang [218], where they used a smaller number of factors

to estimate the covariance matrix for use in a Mahalanobis distance detector to detect
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network intrusion. Gauss-Markov Random Fields (GMRFs) have been used to describe the

spectral and spatial correlations found in HSI, where the GLRT can be used with parameter

estimates of the GMRFs. This is efficient and makes use of spatial information, however,

the model assumes that the background is locally homogeneous and has poor performance

when targets are located along clutter boundaries [22]. Borghys et al. [34] tried to handle

images with more materials in scene by clustering or finding endmembers from a window

surrounding each pixel. Each pixel was evaluated by its distance to the cluster centroids, or

residual from its endmember linear combination.

Kim and Finkel [123] used LLE and clustering for HSI anomaly detection. First,

they used k-means to cluster the pixels, and chose a representative pixel from the center

of each cluster. These representative pixels served as the training set for LLE, and the

data was reduced to a gray-scale dimension, or three dimensions to be treated as a RGB

mapping. The image was mapped by using the cluster assignments and LLE mapping.

Zare-Baghbidi and Homayouni [226] split the spectra into two sub-images, and used

the maximum and minimum radiance values for each pixel in each sub-image to yield a

detector that performed relatively well on a few images.

Billor, Hadi, and Velleman [31] developed the blocked adaptive computationally

efficient outlier nominators algorithm (BACON) for identifying outliers in multivariate

data. In BACON, an initial basic subset of m = cp exemplars is chosen relative to the

entire dataset, where c = 4 or 5 typically. Next, two steps are iterated until convergence of

the basic subset. First, the Mahalanobis distances are computed using only the basic subset

to compute the mean and covariance matrices. Then, a new basic subset is formed by those

exemplars with Mahalanobis distance less than cnprχ
2
p,α/N , where cnpr is a correction factor

relative to the variance defined as,

cnpr = 1 +
p + 1
N − p

+
1

N − h − p
+ max 0, (h − r)/(h + r), (3.67)
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and r is the number of exemplars in the current basic subset. h is a parameter that was

suggested to be set as (N + p + 1)/2, but Smetek [191] suggested 0.75N because the

contamination level in HSI is usually low. He also suggested χ2
30,0.0001 for the threshold,

as otherwise target spectra would be put into the basic subset. The initial basic subset

can be chosen using those exemplars with minimal Mahalanobis distance, or those with

minimal distance from the coordinate-wise median. The latter proved to yield more robust

detection for Smetek [192] in his research with HSI, where he applied BACON to k-means

clusters to detect outliers. Béguin and Hulliger [28] used the squared Mahalanobis distance

within the BACON framework for their analysis of incomplete survey data.

3.11.6 Means of Identifying, Thresholding, and Comparing Anomalies.

3.11.6.1 Thresholding.

As the images generated by the RX Detector are typically grayscale, Chang [46]

developed an automatic thresholding method to find anomalies. A rejection region is

defined as R(α) = {x|δRXD(x) < α} for a grayscale value α and RX score δRXD(x), made

of all the image’s pixels in the RXD-detected image whose gray-level values were less

than α. Using a histogram of the detected image, a rejection probability P(α) is defined as

P(α) = Pr(R(α)). Then a threshold α0 for detecting anomalies is determined by first setting

a confidence coefficient γ such that P(α0) = γ, where if δRXD(x) > α0 then x is considered

an anomaly. This concept is shown in Figure 3.19.

In a similar way, Chiang, Chang, and Ginsberg [55] used a histogram to split

pixel scores into background and anomaly classes. Using some bin width determined

subjectively, the score corresponding to the first bin of the histogram with no pixels is

deemed the threshold value. Clearly, the bin width has to be chosen wisely. This concept is

used by both AutoGAD and MPCA for PA SNR and anomaly declaration [107, 110]. An

example of this process is depicted in Figure 3.20.
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Figure 3.19: (a)Plot of gray values from RXD. (b) Histogram of (a). (c) Enlargement of

right tail in (b) [46].

3.11.6.2 Semi-Parametric Test.

Rosario [180] focused on meaningful anomaly detection via indirect comparison

between observations. Assuming a local sampling mechanism where two samples are

drawn and compared, he determined three study cases as shown in Figure 3.21. The first

case is two relatively pure samples from the same population. The second case is two

relatively pure samples from belonging to distinct populations. The third case results from

a composite or mixture sample, and a single component sample of the mixture. Examples

of the first two cases were trees, and a motor vehicle and a grassy area, respectively.

To exemplify the third case, he used a sample with two components (e.g., a tree and its
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Figure 3.20: Zero-Bin Detection [107].

shadow) and a sample from one the components (e.g., shadow). Rosario [180] noted that

this third case appears often when using an inside/outside window mechanism, and that

it is responsible for generating a large number of false positives due to abundant region

discontinuities in scene imagery. That is, local detectors using conventional statistics

often declare a sample of a shadow anomalous relative to a sample with tree and shadow

components.

To correct this, Rosario [180] proposed comparing in some form the union of the

two samples to one of the individual observations. This would leave the first two cases

unaffected in the statistical sense, but would add more evidence about the single component

to make the composite a softer anomaly with respect to the union of the samples. First,

assume two sets of mutually exclusive observations, x1 and x2 with respective sizes n1 and

n2, are available from a general location. Treating these samples as statistically independent
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Figure 3.21: Comparison of Samples for Anomaly Detection [180].

random variables with independent and identically distributed (i.i.d.) components, their

distributions can be modeled by x1 =
[
x11, . . . , x1n1

]
∼ g1(x) and x2 =

[
x21, . . . , x2n2

]
∼

g2(x). Next, for purposes of building a hypothesis test, these distributions are modeled as

g2(x) = eα+βxg1(x). As α simply acts as a normalizing parameter, this enables the following

hypothesis test:

H0 : β = 0 (g2 = g1) anomaly absent

H1 : β , 0 (g2 , g1) anomaly present.
(3.68)

After showing the maximum likelihood estimate (MLE) of β, β̂, was asymptotically

Normal, Rosario [180] derived the the following test statistic to test H0 against χ2
1,

χ0 = (n1 + n2)
n2

n1

(
1 +

n2

n1

)−2

β̂2 ˆVar
([
~x1, ~x2

])
, (3.69)

where ˆVar denotes the variance estimate. Unfortunately, this detector (named SemiP),

requires the maximization of a log likelihood function (derived from the likelihood

function) to yield the MLEs for α̂ and β̂, and subsequently ˆVar
([
~x1, ~x2

])
. This

maximization is an unconstrained problem requiring parameter initialization to converge.
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3.11.6.3 Non-Parametric F-Distribution Test.

To overcome the limitation of SemiP, Rosario [180] derived a test called the Combined

F-Test (CFT) based on the F-distribution and utilizing the Central Limit Theorem (CLT).

Next, he modeled the random variables xi j as x1 j = θ1+ε1 j for j = 1, . . . , n1 and x2k = θ2+ε2k

for k = 1, . . . , n2. Here, it is assumed that E
[
εi j

]
= 0, Var

[
εi j

]
= σ2

i < ∞, Cov
(
εi j, εi′ j′

)
= 0

unless i = i′ and j = j′, and the εi j are independent. Letting the combined sample be

represented by y =
(
y1, . . . , yn1+n2

)
=

(
x11, . . . , x1n1 , x21, . . . , x2n2

)
, the expected value and

variance of the components are E
[
yi
]

= θ and Var
[
yi
]

= σ2 < ∞.

Now defining β1 = θ2 − θ1 and β2 = θ − θ2, the hypothesis becomes:

H0 :
β1 = β2 = 0

σ2
1 = σ2

2.
(3.70)

Citing his experience with HSI that any sample size greater than 40 satisfies the CLT,

he used the weak law of large numbers for consistent estimators on the parameters(
θ1, θ2, θ, σ

2
1, σ

2
2

)
with

(
x1, x2, y, s2

1, s
2
2

)
, also yielding β̂1 = x2 − x1 and β̂2 = y − x2 [180].

Using the independence assumptions, and the null hypothesis, two consistent estimators

were proposed for the common variance:

S 2
1 =

(n2 − 1) s2
2 + (n1 − 1) s2

1

(n2 − 1) + (n1 − 1)
(3.71)

and

S 2
2 =

(n − 1) s2 + (n2 − 1) s2
2

(n − 1) + (n2 − 1)
, (3.72)

where s2 = (n − 1)−1 ∑n1+n2
k=1 (yk − y)2. Utilizing the Slutsky theorem, the following test

statistic was shown to converge in law to a F1
1 distribution:

ZCFT =
(
[n1 + n2]−1 + n−1

2

) (
n−1

1 + n−2
2

)−1 β̂2
1

β̂2
2

S 2
2

S 2
1

. (3.73)

Here, rejection of the hypothesis for some chosen type I error indicates x1 and x2 are

sampled from different distributions, and are thus anomalous to each other. Rosario [180]
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showed good results in the univariate anomaly case relative to a basic RX detector when

using windows. For these results he applied a high-pass filter in the spectral domain to

an inside and outside window to promote statistical independence, formed the first sample

using the angle between the outside window filtered samples and the corresponding filtered

sample mean, and formed the second sample using the angle between the outside window

filtered samples and the corresponding filtered sample mean from the inside window.

3.11.6.4 Spectral Angle Mapper.

One potential issue with finding anomalies is the ability to distinguish between them,

perhaps for determination of a soft anomaly. Two basis hyperspectral measures exist for

this purpose (although Euclidean distance is another very basic, and as it turns out related,

method). Spectral Angle Mapper (SAM) attempts to obtain the angles α formed between

a reference spectrum Y and the image spectrum X, treating them as vectors in a space with

dimensionality equal to the number of bands [114]. The angle is determined as,

α = cos−1
∑

XY√∑
(X)2 ∑

(Y)2
= cos−1

(∑p
l=1 XilYil

‖X‖2‖Y‖2

)
, (3.74)

where cos(α) close to 1 represents similarity. Carvalho and Meneses [114] noted the

similarity of this metric to Pearson’s correlation coefficient, where Pearson’s centers the

vectors. They showed that SAM is limited by its inability to distinguish between positive

and negative correlation, and suggested also centering the vectors as with Pearson’s,

to suggest positive or negative relationships. The Euclidean Distance between two

pixels, that takes into account brightness difference between the two vectors, is relatedly

2
√

1 − cos(S AM(X,Y)) [156].

3.11.6.5 Spectral Information Divergence.

Alternatively, Chang [45] developed Spectral Information Divergence (SID) as a

criterion. Rather than a geometric focus, each pixel spectrum is treated as a random

variable, and the discrepancy of probabilistic behavior between two spectra is measured.

As each pixel vector may have unknown interference, the unpredictability caused by the
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interference can be described by randomness. First, the pixel vector x is normalized by the

sum of its bands to represent a probability vector q1. It is assumed that there is another

vector y that has been normalized in a similar fashion to be another probability distribution

q2. SID is defined as,

S ID(x, y) = D(x||y) + D(y||x), (3.75)

where D(x||y) =
p∑

i=1
q1i log

(
q1i

q2i

)
. D(x||y) is the relative entropy of y with respect to x, or

Kullback-Liebler divergence. Chang developed three discriminatory measures based for

any spectral measure m, to include SID. Relative Spectral Discriminality Power (RSDP)

compares the discriminality of two vectors s j and sk against a third vector x, by,

RS DP(s j, sk; x) = max
{

m(s j, x)
m(sk, x)

,
m(sk, x)
m(s j, x)

}
. (3.76)

A higher RSDP implies better discriminality. To investigate the likelihood a signature x

is identified by a set of signatures S , the Relative Spectral Discriminality Rate (RSDR) is

defined as a probability vector,

px,S ( j) =
m(x, s j)
|S |∑

k=1
m(x, sk)

. (3.77)

To measure the uncertainty of identifying x with respect to the reference signature set, the

Relative Spectral Discriminality Entropy (RSDE) is,

HRS DE(x; S ) = −

|S |∑
k=1

px;S (k)logpx;S (k) (3.78)

A higher HRS DE implies a lower chance to identify x.

3.12 Image Complexity

Considering the need for proper estimation of background in many anomaly detection

algorithms, it would be useful to have a way to classify the complexity of an image, scene,

or window. That is, some scenes may have high variability, a sensor may yield some corrupt

data, and certain scenes contain many more materials than others. This can all complicate
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the ability to remove outliers or fringe anomalies from background estimates. It would also

be useful to be able to determine if linear algorithms are sufficient to separate background

from anomalies.

In order to assess the non-linearity of pixels, Altmann, Dobigeon, and Tourneret [14]

devised a hypothesis test based on estimated source pixels. Assuming the pixel reflectances

to be non-linear functions of source spectral components contaminated with white Gaussian

noise, they approximated these non-linear functions with polynomials. Specifically, a pixel

x can be modeled as,

x = gb(Ma) + n, (3.79)

where gb(y) = y + by2, Ma represents a linear mixing of the endmembers in M ny the

proportions a, and n is the Gaussian noise. To estimate the parameters in a pixel’s model,

the following problem is solved,

min J(a, b) =
1
2
‖x − gb(Ma)‖2

subject to
∑

ai = 1, ai ≥ 0,
(3.80)

where the resulting parameter estimators are MLEs.

Nonlinearity detection for each pixel is tested via a hypothesis test on b , 0.

Developing the MLE for b̂, they derived a GLRT where a is estimated and the variance

of b̂ is estimated using a constrained Cramér-Rao bound. Endmembers were found using

Vertex Component Analysis. Unfortunately, this test does not directly adapt in terms of

determining whether PCA or KPCA is adequate for an image, and there are still parameters

to be determined, such as the number of endmembers.

Messinger, et al. [158] used an estimation of the volume of the convex hull enclosing

data in the hyperspace to measure image complexity. First, they noted that the determinant

of the Gram matrix, the Gramian, for any test set is the square of the volume of the

parallelepiped formed by the vectors. Breaking the image into small non-overlapping tiles,

from each tile they first extracted a large number of estimate endmembers and ordered
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them by magnitude. With the linear kernel, they then iteratively estimated the Gramian

by adding endmembers. They found this function to reach a peak at a small number of

endmembers and then to monotonically decrease. The peak in the Gramian curve was used

as the primary means to measure complexity and determine the correct dimensionality of

the tile. In this regard, the value could be used to depict the number of materials present in

the tile. However, the method relies on good estimation of endmembers and the tile size.

A simple estimate of classification complexity is to use the Fisher ratio, for the two

class problem,
p∑

i=1

(µ1i − µ2i)2

σ2
1i + σ2

2i

. (3.81)

Very similar to the Rayleigh coefficient and the F-statistic, one way to extend this to more

than two classes is by summing the Fisher scores of each feature [83]. This yields,

p∑
i=1


c∑

j=1
n j

(
µ ji − µ∗i

)2

c∑
j=1

n j

(
σ ji

)2

 , (3.82)

where n j is the number of exemplars in class j.

3.13 Receiver Operating Curves

Receiver Operating Characteristics (ROC) is a common method used in anomaly

detection to show performance of an algorithm. Given a truth mask, some measure of

target detection PD (True Positive) is plotted on the y-axis against some measure of false

detection PFA (False Alarm) on the x-axis to show the trade off as a parameter is varied. To

clarify further, a true positive is considered to be when a target pixel is correctly predicted

to be such, and a false positive is when a background pixel is predicted to be a target. In

this research, True Positive Fraction (TPF) and False Positive Fraction (FPF) are primarily
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used for such measures, defined as,

TPF =
Number of True Positives

Number of True Positives + Number of False Negatives
=

Number of True Positives
Number of Target Pixels

,

(3.83)

and

FPF =
Number of False Positives

Number of False Positives + Number of True Negatives
=

Number of False Positives
Number of Background Pixels

.

(3.84)

Johnson, Williams, and Bauer [111] also used Label Accuracy (LA) as an additional

measure for AutoGAD. They defined this as,

LA =
Number of True Positives

Number of True Positives + Number of False Positives
. (3.85)

Kwon and Nasrabadi [133] used a slightly different false detection metric when assessing

KRX. They defined the false alarm-rate as,

N f =
Number of False Positives

Number of Pixels
. (3.86)

Consider an image truth mask and some prediction as depicted in Figure 3.22. Here,

there are 57,909 total pixels in the image, with 672 true target pixels and 2,113 predicted

target pixels. For this example, TPF is 0.6696, FPF is 0.0291, LA is 0.213, and N f is

0.0287. The prediction appears like it would have had a higher false alarm measure, but the

numbers are so low due to the high number of background pixels and total pixels. This is

a consideration that should always be included when using these measures, and it becomes

clear that as the number of target pixels increases relative to the size of the image, N f tends

to lower the measure of false alarm. Therefore, TPF and FPF are used as main metrics.

Further considerations relative to specific truth masks and metrics are included in Chapter

4.
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(a) Truth. (b) Prediction.

Figure 3.22: Truth and Prediction Example: Targets White.
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IV. Investigating Hyperspectral Bands and Truth Masks

Before proceeding to any further analysis on the HSI data sets, it is necessary to

analyze their bands and in some cases, their truth masks. The HSI data sets in their

unprocessed form still include absorption and noisy bands that should be removed to

provide better detection and classification. To do this more rigorously than previously done,

a technique is devised to identify these bands. In addition, the majority of the HYDICE

images and the HyMAP image have border pixels included in their truth masks, where

these are often sub-pixel targets. These have not been consistently treated as background

or target necessarily, and so a thorough analysis is done here so as to establish a consistent

and correct treatment for this research.

First, a comparison of some similarity metrics is provided in order to justify the choice

of similarity used later for similarity-dissimilarity plots. Those plots are then developed

and used to show characteristics of the border pixels for the HYDICE and HyMAP images.

Finally, the bands of the HSI images are analyzed and a method is developed to identify

noisy and absorption bands in an image. These analyses are used to generate the final truth

masks and images used in this research, as well as a methodology that can be employed to

any image.

4.1 Similarity Metrics

When comparing exemplars, choice of the similarity metric can certainly impact an

algorithm. Common distance metrics for natural features include the Lp-norms, defined as,

Lp(x, y) =

 d∑
i=1

|xi − yi|
p

1/p

. (4.1)

Here, d is temporarily used to denote the dimensionality of the dataset and p > 0 to

represent the exponents, as this is common notation for the L-norm. In the case where
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p is infinite, the L-norm is defined as,

L∞(x, y) = maxi=1,...,d|xi − yi|. (4.2)

Figure 4.1(a) shows the effect of varying p. The contours shown reflect a constant distance

from the point (0.5, 0.5).

(a) Lp-norm Comparison. (b) Density Distance Comparison.

Figure 4.1: Distance Comparisons.

When the data of interest represents a probability density function (pdf), or can be

represented as a pdf, then many additional distance metrics exist. Since all of the pixels in

HSI are on the same radiance scale, each element j of a spectral signature can be rescaled

as
x j∑p

i=1 xi
. This rescaled signature can then be treated as a pdf. In this case, the general

shape of the pixel’s signature has been unchanged, however, the scales of different pixels

relative to one another may now be different.

There are many metrics to quantify the distance between pdfs; a thorough review was

given by Cha [43]. Bhattacharyya distance, shown in Equation 4.3, provides bounds on the
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Bayes misclassification probability [29].

Bhattacharyya(x, y) = −ln
d∑

i=1

√
xiyi (4.3)

Cha [43] showed a level of correlation between L2 and this Bhattachryya distance.

Divergence distance, Equation 4.4, belongs to the squared L2 family or χ2 family of metrics

[43].

Divergence(x, y) = 2
d∑

i=1

(xi − yi)2

(xi + yi)2 (4.4)

A common metric from the Shannon’s entropy family is Kullback-Liebler (K-L)

divergence. This is also referred to as relative entropy or information deviation and has

many ties with forms of entropy and mutual information [43].

K-L(x, y) =

d∑
i=1

xiln
xi

yi
(4.5)

K-L divergence is not symmetric, that is, K-L(x, y) , K-L(y, x). Thus, the value

is dependent on which distribution is the reference distribution x. A symmetric form

developed by adding the two K-L forms is called Jeffreys or J divergence,

Jeffreys(x, y) =

d∑
i=1

xiln
xi

yi
+

d∑
i=1

yiln
yi

xi
=

d∑
i=1

(xi − yi) ln
xi

yi
. (4.6)

These metrics are shown in reference to the point (0.25, 0.75) in Figure 4.1(b), where a

two-dimensional probability distribution is varied. Note that fewer points correspond to

a single distance in comparison to L-norms. This is exemplified by the two distributions

shown in Figure 4.1(a) that have the same distance as the L-norms shown. Bhattacharyya

and SAM distance are always between zero and one.

Figure 4.2 further exemplifies the issues of symmetry, and the similarity and

correlation of some of these measures. Here, two two-dimensional probability distributions

are varied. Note that by varying x1 for instance, x2 is automatically defined because

x1 + x2 = 1. It is clear from the figure that differences in the metrics become more
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pronounced simultaneously with differences in the distributions. Further, the symmetry

issue with K-L divergence is made clear by the different surface direction at the extremes.

(a) (b)

Figure 4.2: PDF Metric Comparisons.

Figure 4.3 compares some of these metrics with Mahalanobis distance, where the

covariances Σ12 = Σ21 = 0.75 and Σ12 = Σ21 = 0.1 are used for the comparison.

Mahalanobis distance has the added advantage that it takes into account the data’s

covariance structure. Figure 4.4 shows a comparison of a few of the mentioned metrics

on three different data sets. Here, the Vertebral Column has negative values, so the data

was shifted by a constant before converting to density form for the Jeffreys divergence.

In the case of the two HSI images, a random sample of 300 pixels were taken. For each

dataset, the similarity between all exemplars was taken, and then the correlation between

these similarity value vectors calculated. As expected, the Lp metrics are highly correlated,

while Jeffreys and the Mahalanobis distance provide a different look at the similarity. From
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Figure 4.3: Metric Type Comparisons.

algorithms such as RX, the usefulness of the Mahalanobis distance on HSI data has been

demonstrated.

(a) Vertebral Column. (b) ARES1D. (c) Pavia University.

Figure 4.4: Correlation of Similarity Metrics.
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Despite these insights into distance metrics, it is still not entirely obvious which

metric is best to compare exemplars in any multivariate dataset. However, the author

suggests that using L2 for clustering and similarity comparisons is generally sufficient,

and some support is given in the following section beyond what has already been discussed

to this point. Use of the L2 does make an assumption that either all data is on the same

scale, or that the features have been normalized, and/or that all of the features are equally

important to the analysis. This is entirely true for HSI data, and for when and how the

L2 is used in this research. Any of the metrics that require probability distributions can

be problematic, in that the data exemplars (if not already distributions) are changed in

magnitude relative to one another. For HSI data, this would be especially troubling, as the

radiance magnitudes are important to the characteristics of each pixel. Cha [43] compared

metrics using correlation of distances and a clustering dendogram. That analysis suggested

moderate relationships between many distance measures, but also showed some level of

distinction between L-norm and divergence-based distances. Mahalanobis distance can

be useful on HSI data where the background covariance matrix can be used as a tool to

better identify anomalies, but even this is problematic. The Mahalanobis distance is not as

efficient to compute in comparison to Lp metrics, and it assumes both a good class estimate

for the covariance as well as an inherent normality.

Considering again the application of HSI for comparison of bands, Figure 4.5 shows

the matrix of distance between all bands using SAM, L2, and K-L for the ARES4F image.

Those bands in the L2 metric matrix with high values are those where the bulk of the

variation in the image occur. The discussed issues are clear in these plots, and were

similarly present for all HYDICE imagery. Thus, L2 is used primarily for similarity in this

research as stated previously, although again, the issue of similarity is further investigated

as similarity/dissimilarity plots are explored next, followed by visualizations in Chapter 5,

and clustering in Chapter 7.
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(a) SAM. (b) L2. (c) K-L.

Figure 4.5: ARES4F Band-by-Band Distance.

4.2 Similarity/Dissimilarity Plots

Arif and Basalamah [15] developed the two-dimensional similarity-dissimilarity plot

to reveal class separation, or discrimination quality, in the higher-dimensional feature

space. Further, they postulated that it might be used to select an appropriate distance

measure for a dataset, with their focus primarily on biomedical data sets.

First, the data is standardized by feature to remove bias using x j =
x j − µ j

σ j
for

j = 1, . . . , p. Let X denote the entire dataset, Xc
i denote exemplar i of class type c, Xc

denote the set of exemplars in X of class type c, and X \ Xc denote the set of exemplars in

X not of class type c. Then to compute the visualization, the k nearest neighbors of Xc
i in

Xc(not including i) and in X \ Xc are found. The mean distances of these sets are used as

the similarity (comparison to same class) and dissimilarity (comparison to other classes)

values, respectively, and are plotted as the axes. This is depicted in Figure 4.6. A line of

equal similarity/dissimilarity is plotted as reference, to indicate that points below the line

may be difficult to discriminant from other classes as they have a smaller dissimilarity. Data

outliers can be spotted on the plot as having large distances.
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Figure 4.6: Example of Similarity/Dissimilarity Plot [15].

To quantify the expected accuracy of a classifier, the percentage of data points above

the similarity-dissimilarity line was suggested as a metric[15]:

PAS =
100
N

N∑
i=1

I{Simdist(xi) < Dissimdist(xi)}. (4.7)

This visualization shows much promise in terms of describing classification complex-

ity for a dataset with known classes or for comparing transformations, but it also has in-

herent limitations. First, a proper distance metric and k need to be chosen for the k nearest

neighbors algorithm. In particular, the means could be sensitive to the choice of k for a

dataset. Secondly, exact k nearest neighbors can be computationally inefficient for large

N. Techniques to help mitigate this with some effect, such as KD-trees, were discussed in

Section 3.8.

Figure 4.7 shows the similarity-dissimilarity plot for the Fisher Iris dataset, with k = 5

using the L2 norm. The versicolor and virginica exemplars that are often problematic for

classification purposes are evident below the line, and the ease of classification for the

setosa class is clear from its PAS of 1. Table 4.1 and Table 4.2 show PAS values for varying
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k and similarities for the Breast Cancer and Pima data sets. Some level of insensitivity to

k and among Lp norms is present, although this is a small sample and the sensitivity of k

could be relative to the size and geometries of the data. It is clear that spectral angles are not

appropriate for this natural data, while the probability-based similarities yield PAS values

that are not strikingly different. These PAS values also seem to reflect known complexities

of these data sets. Figure 4.8 shows a few of the plots for the Breast Cancer dataset.

Figure 4.7: Fisher Iris Similarity-Dissimilarity Plot.

Figures 4.9 and 4.10 show similarity-dissimilarity plots for the ARES4F image and

image masks for the ratios of similarity values over dissimilarity values. Note, the distances

for the SAM metric can be negative, as it is an arc cosine. The author found these ratios

to serve as a good alternative view to the similarity-dissimilarity plots. Here, border pixels

were also treated as target pixels. A few things can be noticed. First, the L2 norm provides a

better similarity metric in general, even though it is related to SAM. It would be concerning

that many of the background pixels have a ratio near one using SAM. This, in conjunction
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Table 4.1: Breast Cancer PAS.

Similarity k Benign Malignant

Mahalanobis 5 0.98 0.88

L∞ 5 0.97 0.95

L1 5 0.97 0.96

L1 10 0.97 0.95

L1/5 5 0.97 0.93

L2 5 0.97 0.97

L2 1 0.97 0.91

SAM 5 1 0

SID 5 0.9 0.98

K-L 5 0.87 0.99

Table 4.2: Pima PAS’.

Similarity k Negative Positive

L2 10 0.84 0.56

L2 5 0.83 0.57

L2 1 0.78 0.56

SAM 5 0.91 0.07

SID 5 0.76 0.54

K-L 5 0.77 0.57
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Figure 4.8: Breast Cancer Similarity-Dissimilarity Plots.

with the previous results suggest that the L2 norm is a sufficient similarity metric. Second,

the border pixels are clearly identifiable in both cases. In the case of the L2 norm, the

border pixels appear to be closer to background then full pixel targets. These trends were

consistent across HYDICE images, and so a further analysis was required.

(a) Sim-Dissim. (b) Sim/Dissim Ratio.

Figure 4.9: Similarity-Dissimilarity Plot - SAM, k = 5: ARES4F.
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(a) Sim-Dissim. (b) Sim/Dissim Ratio.

Figure 4.10: Similarity-Dissimilarity Plot - L2, k = 5: ARES4F.

4.3 Analysis of Truth Masks and Border Pixels

As was shown in Table 2.1, many of the HYDICE images have pixels classified as

border, and in some cases these outnumber the full-pixel targets. Even after comparing

pixel signatures to nearby full-pixel targets and background pixels, it is not obvious how

to treat these pixels. Additionally, the HyMAP image has pixels classified as guard pixels

accompanied by the same issues.

4.3.1 HYDICE.

One immediate use of the Similarity/Dissimilarity plots is to be able to better

investigate the truth masks for the HYDICE-derived and HyMAP imagery (and ROSIS

and AVIRIS imagery). In previous research using the HYDICE imagery [74, 107, 110],

based on archived code and run analysis, these border pixels were treated favorably. That

is, border pixels predicted as anomalous were included in True Positives, but border pixels

were not included in False Negatives. This boosted TPF values. Similarly, border pixels

were included in True Negatives if not classified as anomalous. This decreased FPF values.
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Treatment of the border pixels in this manner is highly favorable, and it is not obvious how

these pixels really should be treated so as to provide fair ROC curves. Therefore, a more

rigorous analysis is required.

First, let us compare the Fisher ratios (Equation 3.81) for background, border, and

target pixels, shown in Table 4.3. With the exception of ARES3F, these numbers indicate

that the border pixels are further separated from the target pixels than the background

pixels. Table 4.4 shows the ratios when the border pixels are treated as background

and when they are treated as target pixels. Again, in all cases except ARES3F, these

metrics seem to indicate the border pixels may truly be more like the background than

any significant sub-pixel targets. In the case of ARES3F, the Fisher ratios are near equal in

both cases.

Table 4.3: HYDICE ARES Fisher Ratios.

Image Background/Target Background/Border Target/Border

ARES1D 161.09 36.31 263.56

ARES2D 9.32 0.41 9.45

ARES1F 54.45 1.85 60.86

ARES2F 186.49 35.93 168.70

ARES3F 50.30 66.24 30.08

ARES4F 10.95 6.91 16.43

Now, removing the noisy and absorption bands from these HYDICE images as

determined by Smetek [191] and used by Johnson [110] (145 bands remaining), using

the L2 metric, and k = 5, the PAS values are explored. Table 4.5 shows the PAS values

treating each image as two-class, where background is compared against combined target
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Table 4.4: Modified HYDICE Fisher Ratios.

Image Border as Background Border as Target

ARES1D 161.59 6.56

ARES2D 9.32 1.43

ARES1F 54.54 13.42

ARES2F 185.07 52.18

ARES3F 49.67 51.45

ARES4F 10.96 4.25

and border, target by itself, border by itself, and border and target are compared. These

values again suggest that the border pixels are generally more similar to background pixels

than target pixels, and here also in the case of ARES3F. Admittedly, these are at a global

level, but attempting to generate PAS values for local windows to also incorporate spatial

information (comparing background, target, and border inside of windows like in RX) is

problematic in that those windows would not always contain different classes of pixel or

to have anything from another class relatively nearby. This global evaluation is very much

relevant anyways, as the methods evaluated in this research are largely global detectors and

methods.

Figure 4.11 shows the similarity-dissimilarity plots for ARES3F. As can be seen, the

distribution of the distances are relevant to the analysis as a high PAS could have many

dissimilarities that are only slightly larger than similarities, and as seen in these cases, the

scales of the distances are also important to consider. Figure 4.12 shows the plot when

combining the target and border pixels to treat as a target class. The histograms, where the

bin counts shown are the maximum bin count, make it clear that many of the pixels are near

the line. These various plots together, which was common amongst images, indicate that
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Table 4.5: HYDICE PAS Values.

Class/Image ARES1D ARES2D ARES1F ARES2F ARES3F ARES4F

Background 0.999 0.994 0.999 0.999 0.999 0.999

Target/Border 0.388 0.261 0.559 0.204 0.253 0.165

Background 0.999 0.999 1.000 1.000 0.999 1.000

Target 0.919 0.901 0.935 0.788 0.703 0.404

Background 0.999 0.995 0.999 0.999 0.999 0.999

Border 0.073 0.074 0.129 0.047 0.013 0.038

Border 0.966 0.996 0.928 0.994 0.984 0.976

Target 0.940 0.904 0.950 0.824 0.897 0.587

there is no clear distinction between the border pixels and some of the background pixels.

Additionally, there is a higher level of distinction between many of the border pixels and

many of the target pixels.

Figure 4.11: ARES3F Similarity-Dissimilarity Plots.

To further exemplify these points, a plot based on unstandardized data and a plot with

k = 10 are shown for ARES1D in Figure 4.13. There is little change when not standardizing
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Figure 4.12: ARES3F Plot: Target and Border vs. Background.

due to HSI bands already being on the same scale, and a larger k did not have substantial

effect. Also, the divide between target and border pixels is more pronounced here, as would

be expected based on the Fisher ratios.

In the cases where not all of the exemplars belong to the two classes in the visualization

(i.e., three of the four cases from Table 4.5), the different data standardizations make it such

that the dissimilarity distances are not directly comparable. Thus, to make this comparison

fairly and even more extensively, the data can be standardized based on all exemplars

and then the dissimilarities can be computed for the border pixels. This enables a plot

and Percent Closer to Background (PCB) metric analogous to the similarity-dissimilarity

concept, to be defined as,

PCB =
100

NBorder

NBorder∑
i=1

I{Dissim to Backgrounddist(xi) < Dissim to Targetdist(xi)}. (4.8)

A table of PCB values for the ARES images is shown as Table 4.6 for k = 5 and

k = 20, where now all non-zero bands are used for the computations. Again, these indicate

that the border pixels are more dissimilar to the target pixels than the background pixels.

118



(a) Unstandardized. (b) Unstandardized.

(c) k = 10. (d) k = 10.

Figure 4.13: ARES1D Similarity-Dissimilarity Plots.

Figure 4.14 depicts the associated dissimilarities and dissimilarity ratios (border-target over

border-background) for ARES2D and ARES1F. These had the largest outliers of all images

by far in terms of a point with high dissimilarity to background. It is clear that most of the

border pixels are significantly closer to background pixels. This is particularly interesting

in the case of ARES2D, due to the number of targets in the image. The ratio heat plots also

indicated no clear trend relative to the locations of the border pixels.
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Table 4.6: HYDICE PCB Values.

k ARES1D ARES2D ARES1F ARES2F ARES3F ARES4F

5 0.986 0.997 0.939 0.991 0.997 0.994

20 1.000 0.999 0.941 0.996 1.000 1.000

(a) ARES1F Dissims. (b) ARES1F Dissim Ratio.

(c) ARES2D Dissims. (d) ARES2D Dissim Ratio.

Figure 4.14: Border Pixel Dissimilarities with k = 5.
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These analyses indicate a lack of clear break between the border pixels and

background pixels. Perhaps more importantly, they indicate that including the border pixels

in True Positives may in fact be ignoring False Positives. The absolute sub-pixel make-up

of these pixels is impossible to determine. Therefore, for the remainder of this research

these border pixels are treated as background for TPF and FPF measures, vice what has

been done in the past in the literature, unless otherwise denoted. This makes the ROC

curves and measures more conservative, treats the border pixels consistently, and places a

desired emphasis on finding the full-pixel targets. However, the percent of border pixels

declared anomalous is also measured. This enables conversion to previous measures if

ever necessary, as TPFs are potentially lower and FPFs higher as a result of this decision.

Additionally, the number of targets detected including the full-pixel targets only, and then

including border pixels is also used as a set of two measures. These are described in full in

Section 4.4.

The run03m20 image has no border pixels. The PAS for the background is 0.960

and for the targets is 0.403. The latter value and the accompanying similarity-dissimilarity

ratio plot indicated the possibility that certain target pixels are similar in nature to the border

pixels from the ARES set. However, no effort is made to adjust the truth mask here as there

were no border pixels in the original mask, and this dataset can be thought of as a case

where the border pixels are treated as targets instead of background.

4.3.2 HyMAP.

The HyMAP image also has border pixels, and in fact, only has four full-pixel target

pixels. In this case, the 141 border pixels are broken out into sub-pixel and guard categories

in the truth mask. Treating these as targets, and comparing targets to background, the PAS

value for background is 0.999 and for targets is then 0.207. In this case the Fisher ratio is

also 57.94, whereas if the border pixels are treated as background, the Fisher ratio becomes

182.29. Figure 4.15(a) shows the signatures of these pixels and 200 random background
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pixels from the image. Clearly both the full-pixel targets and border pixels are difficult

to distinguish from background at the global level. Figure 4.15(b) shows a portion of the

similarity-dissimilarity plot for this data with k = 5 and the L2 metric, where the three non-

background pixel types were compared individually against all other classes. This further

clarifies that although these pixels are close to background, in some cases they are closer

in nature to one another than any background pixel.

(a) HyMAP Signatures. (b) HyMAP Sim-Dissim Plot.

Figure 4.15: HyMAP Truth Mask Analysis.

Despite the findings here, this image still has extremely few target pixels to detect

even with inclusion of the border pixels. Therefore, for purposes of this research the border

pixels are still treated as targets.

4.3.3 AVIRIS & Pavia.

The remaining HSI images in this research either have no border pixels or no truth

masks. Removing 45 bands from the AVIRIS images for this analysis, due to covering

areas of known absorption [2], the AVIRIS target classes all have a PAS between 0.7 and
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0.85 with k = 5 and the L2 norm, and background PAS of 0.999. This indicates decent

separation of target from background. Their respective two-class Fisher ratios are: 4Ship2

with 79.40, Scene1 with 84.26, Ship1 with 21.30, and VirginIslands1 with 235.58. Figure

4.16 depicts the similarity-dissimilarity plots for these images and reflect these findings. In

some cases, the axes were scaled so as to show the majority of the data because a few pixels

have extremely high similarity and dissimilarity distances. As a result of this analysis, the

truth masks for these images are modified in no way for this research.

The Pavia (or ROSIS) data sets have no anomaly-background truth masks. Instead,

they have 10-class material truth masks. Table 4.7 shows the PAS values with L2 norm

for these classes in the Pavia University image, where each class was compared against all

other classes. This reveals that the Painted Metal Sheets class could potentially be treated as

an anomalous class. A plot of the similarity-dissimilarity ratios, Figure 4.17, reveals pixels

that may be more prone to being detected as anomalous. Of course, this would depend on

the scale of dissimilarity relative to what a given algorithm considers anomalous.

4.4 Additional ROC Metrics

Given the pixel analysis for the various images with truth data, metrics, in addition to

TPF and FPF, seemed suitable to provide better analysis. Again, in the TPF and FPF metrics

for this research, the border pixels for each image set are treated as just discussed. Although

these choices on how to treat the border, sub, and guard pixels for the various image sets

have been defended, the tracking of certain metrics that use the original truth masks also

make the impact of these decisions on the TPF and FPF more obvious. This is important

because although it has been shown that the border pixels are closer to background, that

is not to say that there are no sub-pixel targets or mixed pixels. Further, the new metrics

provide an alternative view of the success of any detector. The following three metrics are
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(a) VirginIslands1. (b) 4Ships2.

(c) Scene1. (d) Ship1.

Figure 4.16: AVIRIS Similarity-Dissimilarity: k = 5.

proposed:

PT NB =
Number Targets Detected (Not Including Border Pixels)

Number of Targets
, (4.9)

PT IB =
Number Targets Detected (Including Border Pixels)

Number of Targets
, (4.10)

PBDA =
Number Border Pixels Declared Anomalous

Number of Border Pixels
. (4.11)
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Table 4.7: Pavia University PAS Values.

Class k = 5 k = 25 k = 50

Background 0.948 0.967 0.972

Meadows 0.642 0.598 0.553

Asphalt 0.433 0.329 0.293

Bare Soil 0.308 0.122 0.080

Self-Blocking Bricks 0.459 0.399 0.352

Trees 0.286 0.128 0.082

Gravel 0.458 0.245 0.151

Painted Metal Sheets 0.848 0.906 0.914

Bitumen 0.683 0.712 0.684

Shadows 0.387 0.187 0.124

The Percent Target No Border metric (PTNB) tracks what percentage of targets were

detected, using only the full-pixel or non-border target pixels. The Percent Target Including

Border metric (PTIB) yields a similar metric, but also allows the border pixels (and guard

and sub pixels for HyMAP) to be treated as target pixels. Both of these metrics enable

an alternative success measure that evaluates if all targets are detected vice just a large

percentage of target pixels. The third metric, Number Border Pixels Declared Anomalous

(PBDA), is a measure that directly enables other treatments of TPF and FPF based on how

one wishes to view the border pixels. Further, all of these are metrics can be used as part

of a ROC curve to evaluate parameters.

4.5 Hyperspectral Band Selection and Analysis

Band selection is a research area in and of itself for HSI, and can even be an alternative

to dimension reduction [47]. When using PCA and other dimension reduction techniques,
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Figure 4.17: Pavia Univ Similarity/Dissimilarity Ratio: k = 5.

the objective is often to try and find some underlying structure that can simplify the

problem. Such techniques may also reveal bands that contain little information useful

towards the designated purpose, or data redundancy. With or without pre-processing, the

images may still contain absorption or noisy bands as well, that provide little benefit.

A common approach is to identify and remove absorption/noisy bands based on

properties of the spectrum, possible materials in the scene, and properties of the sensor

before applying any technique to the data. The intent of such a ‘supervised’ approach

is to ensure that these bands do not contribute any unnecessary complexity. However,

there appears to be no consensus on how to actually perform this identification, and it

is not uncommon to see different bands removed on the same images in the literature.

Additionally, there appears to be a misconception between actual absorption bands, and

bands that appear to be noisy due to error in collection or other factors. Examples of

this with the HYDICE ARES images are provided shortly in Section 4.5.1. Ideally, any
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methodology used would remove absorption bands, remove noisy bands that would be of

little value to any anomaly detection algorithm, and not be flexible to different sensors and

areas of the EM spectrum. Similar concepts can be applied to any dataset with features to

remove noisy or low-information features. To demonstrate this, the technique developed

here is applied to the Arcene dataset as well in Section 4.5.6.

Lavanya and Sanjeevi [136] used factor analysis and correlation analysis to evaluate

bands with little discriminatory information for a hyperspectral image of an agricultural

area. Their process is depicted in Figure 4.18. First, correlations between bands were

computed, and subsets of bands with correlation above 0.8 were removed. From the

correlation matrix of the retained bands, principal component-based factor analysis was

performed, keeping only two factors. The resulting high loadings were compared with

other metrics to determine a final band set. Importantly, known water absorption bands

were removed before any of their analysis. The technique developed here also leverages

factor analysis, but does not assume the location of absorption bands are known.

Pu and Gong [173] summed the squared PCA loadings for a varying number of

eigenvectors, selecting those bands with highest value for retention. Miller [160] used

correlation in an attempt to reduce the number of bands fed into ICA during the AutoGAD

algorithm, after absorption bands had already been removed. Noting that neighboring

bands often had correlated information, he defined clusters of bands by using a correlation

threshold and comparing bands in sequence until the threshold was not met. This

breakpoint indicated the start of a new cluster. Each cluster could then be used to define

a representative band. Cai [42] noted that neighboring absorption bands might have low

correlation and used a threshold to identify them. Chang [47] developed a series of methods

primarily based on constrained energy minimization (CEM) to select bands, finding a

general correlation of the band to the image. However, some of these required computation
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Figure 4.18: Band Selection Methodology [136].

and inversion of the N × N pixel correlation matrix, while the others developed to avoid

such a large computation yielded an entirely different band selection.

Martinez-Uso, et al. [155] clustered on the bands using mutual information between

bands and Jeffreys divergence between bands. The mutual information between two bands

was defined as the sum of entropy for each band minus their joint entropy. Jeffreys

divergence was as defined in Section 4.1. Their use of mutual information had the added

complexity of needing to build a histogram in order to yield the joint entropy for the bands.

Also note that to use entropy on the bands, they must be normalized by the sum of elements

so as to reflect a probability distribution. This changes the relative magnitude of pixels to

one another, emphasizing the shape of the signature. Datta, et al. [63] selected bands in a

process finding highest correlated partitioned bands, and removing those with largest K-L
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distance from a Gaussian image. This process is problematic as the Gaussian assumption

does not always hold in HSI [76].

Kesheva [120] used the Spectral Angle Mapper to find bands that would best

discriminate between known materials. Sotoca, et al. [196] devised a criterion named

the Minimization of the Dependent Information (MDI), based on entropy, as a means to

measure the dependency of a set of bands. The measure, the joint entropy of a set minus

the conditional entropies for the bands in the set, could be used to determine the information

gain by adding bands in a forward approach. Unfortunately, the method was designed for

multi-spectral images where the number of bands is much lower and calculating the MDI is

not intractable. Wang, et al. [210] used a spatial correlation to choose bands, but used class

information in aid of this spatial mutual information. Zeng and Durrani [227] used copulas

to calculate the mutual information of bands and to provide a band selection procedure.

Efficiency of such a technique could be an issue however, as the copula function has to be

integrated or summed over all values of each band distribution, i.e., the pixels. Zare [225]

developed a method to simultaneously estimate endmembers and perform band selections

using sparsity promoting priors. This approach involves a quadratic program, however, and

has tunable parameters.

Faulconbridge, Pickering, and Ryan [71] developed an unsupervised method in

an attempt to yield an automation that would remove bands that provide little aid to

classification. First, they normalized the data cube for an AVIRIS image (a different

image than those in this research) using the image mean and standard deviation. Next,

k-means with k = 10 and the L2 norm was used to cluster the pixels. In order to quantify

the separation between clusters in each band vice the entire set of bands, a modified

Bhattacharyaa distance was used,

Bi j,p =

(
Ci,p −C j,p

)2

4
(
σ2

i,p + σ2
j,p

) +
1
2

ln

σ2
i,p + σ2

j,p

2σi,pσ j,p

 , (4.12)
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where Bi j,p is the distance between cluster i and cluster j at band p, Ci,p is the centroid

of cluster i at band p, and σi,p is the standard deviation of cluster i at band p. As this

distance is by band, they then used a threshold on the maximum distance between any two

clusters to nominate bands for removal where there was little statistical separation. This

technique was problematic in that there was no obvious way to determine an appropriate

threshold. Nonetheless, later this method without the threshold is used to aid validation of

the algorithm developed in retaining the correct bands.

None of the methods in the literature seem to be a truly robust way to identify

absorption, noisy, and low-information bands in the unsupervised setting. Yet, the concepts

have been shown to be useful, and might be used in some fashion so as to explore and

identify bands for removal. To reiterate, this removal serves as a pre-processing step before

employing any anomaly detection algorithm. Removal of the low-information bands may

still leave bands that contain much of the same information, but if these bands aid in

anomaly detection then the redundancies present are not necessarily a negative quality. A

possible method to be quickly investigated shortly is the use of signal-to-noise ratio (SNR).

Before proceeding, it is necessary to calculate a table of known weak and strong

absorption locations for the various sensor types, given in Table 4.8, to have for comparison.

These locations are calculated exactly based on the spectrum ranges, number of bands, and

information and sources previously presented in Section 2.3.1.1. As an example, if the

sensor collected on the spectrum from 0.39 to 1 µm over 128 bands, the band location for

0.6 µm is approximately,
0.6 − 0.39

(1 − 0.39)/128
= 44.07. (4.13)

Locations are rounded to the nearest integer, and in some cases, not all of the

mentioned absorption spectrum locations occur within the sensor’s collected range. It

should be mentioned that the absorption is likely in surrounding bands as well. In the cases

of ROSIS and SpecTIR, images in this research have a slightly different number of bands
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(103 and 102, 356 and 360), so ranges are given when appropriate to cover all images.

Also, the Red Sea image is made distinct from other SpecTIR images as its bands cover a

different range of the spectrum from the others. As a rule of thumb, absorption increases

from weakest to strongest, to some extent, as µm increases.

Table 4.8: Absorption Band Number Locations.

µm HYDICE AVIRIS ROSIS SpecTIR(Not Red Sea) Red Sea HyMAP

0.600 20 21 40 : 41 36 : 37 44 9

0.660 26 28 55 47 57 13

0.730 33 35 71 : 72 59 71 17

0.820 42 45 93 74 : 75 90 23

0.910 51 54 89, 91 109 28

0.940 54 58 95 : 96 115 30

1.140 74 79 130 : 131 42

1.375 98 104 170, 172 57

1.900 150 160 261, 264 89

2.500 210 224 126

Before developing a methodology fully, it must also be considered that not every

image has an entire set of valid bands. In other words, due to collection error or very strong

absorption a band may consist entirely of zeros or have a large portion of the image that has

zero radiance recorded. These bands are of no use, and in the case where a large portion

of the band is zero, can confuse the factor analysis-based method that is developed here.

The variance presented by having many zeros and some non-zero pixels can sometimes be

misinterpreted as informational by an algorithm. Table 4.9 shows the bands for HYDICE

and AVIRIS images that have more than 50% zero pixels (or erroneous pixels that have
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negative value and were set to zero). No bands have this characteristic for the images from

other sensors. It can be seen that these bands are all very near, or are, the “exact” locations

of absorption from Table 4.8. 50% was chosen as the threshold both observationally based

on the data sets in this research, and because it makes sense operationally that any band

with 50% zero pixels has a large amount of noise or error.

Table 4.9: Bands with > 50% Zero Pixels.

Image Bands

ARES1F 141 : 149, 207 : 210

ARES2F 104 : 108, 139 : 151, 207 : 210

ARES4F 207 : 210

ARES1D 142 : 149, 209 : 210

ARES3F 208 : 210

ARES2D 104 : 108, 139 : 152, 208 : 210

ARES1C 147 : 148, 206 : 210

ARES2C 140 : 150, 200, 202 : 210

run03m20 104 : 108, 139 : 152, 208 : 210

4Ships2 154 : 168, 223 : 224

Scene1 108 : 110, 153 : 169, 219 : 224

Ship1 153 : 168, 223 : 224

VirginIslands1 107 : 115, 152 : 169, 218, 220 : 224

Figure 4.19 shows the correlation magnitude between bands for images ARES1D and

ARES4F. As can be seen, some of the strong absorption areas including those with many

zero pixels are obvious due to extremely low correlation. Additionally, some of the weaker

areas are clear by the blocking present. This suggests that covariance or correlation could be
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a key to finding the noisy and absorption bands as is developed shortly. This also displays

the limitations of some of the correlation methods currently in the literature. Neighboring

sets of bands can still sometimes be highly correlated to one another, making a neighbor

approach prone to missing noise or absorption if noise happens to be highly correlated to

its neighbors, despite the presence of the block effect. This suggests the need for a more

global model without a neighbor pre-processing.

(a) ARES1D. (b) ARES4F.

Figure 4.19: Band-by-Band Correlation Magnitude.

4.5.1 Band Selection Method and HYDICE-Derived Data.

In order to help develop and justify the technique presented, the HYDICE imagery

is used as an example. The HYDICE images have 210 bands between 0.397 and 2.5 µm.

For the ARES set of images, Smetek [110, 191] devised that the 145 bands 5:72, 78:85,

92:99, 116:134, and 158:199 should be used, as he deemed the others to be absorption or

too noisy based primarily on very low values [30]. This set of bands became a standard

used by Johnson [110], Jablonski [107], and many others for their respective algorithms.
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Interestingly, Friesen [74] used a slightly different set of retained bands for these HYDICE

images: 10:97, 115:132, and 158:200. Bihl, et al. [30] identified 104 bands: 18, 20,

24:25, 27:28, 30, 38:61, 65, 66, 69:73, 78:85, 93:102, 116:133, 162:184, 188:191, 194:196,

and 199. To make this determination they used, in part, signal-to-noise ratio, windowing,

and neighboring band correlation and they took into consideration a specific algorithm’s

performance. Kwon and Nasrabadi [133] used a fourth set on HYDICE images different

than the images in this research (one of these images was very similar to ARES1D): 23:101,

109:136, and 152:194. Further, Miller [160] noted that bands 73:77 and 87:91 showed

no obvious indication of noise or lack of information on the ARES images, indicating a

set closer to that of Kwon and Nasrabadi [133]. These slight variations are likely not of

huge concern, but they also serve as an opportunity to investigate a methodology to find

absorption and noisy bands, other than simply looking at the pixel radiance in each band

visually and making a subjective decision.

First, consider S NRp = µp/σp, where µp and σp are the mean value and standard

deviation band p, as a simple way to detect low-information bands. The ratio of the mean

to the standard deviation of the pixel signatures is an estimate for the image SNR, although

it is often an underestimate due to interpixel variability [157]. Absorption causes signatures

to drop and noise yields variability, and so variability of a band, by itself, is not necessarily

a good metric. As seen in Figure 4.20(a), the use of any threshold on this SNR varies by

characteristics of the image and it is not obvious how to adjust a threshold. For instance,

variations on using the standard deviation and range of bands to commonly scale the SNR

did not provide a consistent SNR measure. This is not surprising, as the materials and

abundance of materials in an image varies the relation of the mean to the variance. Further,

only the high absorption bands become obvious by using this technique, as evidenced by

sharp drops in the SNR in bands 140:150 ( near 1.9 µm) and 203:210 (near 2.45 µm).

Entropy is another approach to try and determine the information content of each band.
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If each band is made into a vector b and normalized to a probability-like vector such that
N∑

i=1
bi = 1, then the entropy of the band can be calculated as,

−

N∑
i=1

bi log (bi) . (4.14)

Using entropy as a direct measure of band information, again only the latter two strong

absorption areas are obvious. However, as shown in Figure 4.20(b), the third major

absorption area of the spectrum near 1.375 µm is noticeable. Although these techniques

may identify absorption bands, literature suggests that there are other areas of absorption

or noise that they do not identify.

(a) SNR. (b) Entropy.

Figure 4.20: Simplistic Band Selection.

Before proceeding, it is useful to try and further evaluate the bands of the HYDICE

images to see if there is an ‘ideal’ set of bands to maintain, especially given the variation

in those used within literature. Figure 4.21 depicts the multi-class Fisher ratios and

correlations to full-pixel targets or anomalies for each band, for the HYDICE images with

anomalies in the image. Here, this correlation was calculated between radiance values and

the truth mask. There are no consistent trends, aside from the clear absorption near band
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150. Figure 4.22 shows the maximum Bi j,p (Equation 4.12) for each band. The problem

with thresholding this metric, as mentioned previously, is clear from this plot. This also

provides no consistency across images, aside from confirming an area of absorption near

band 150 and a possible area of noise after band 100. Certain band sets do appear to

be better discriminators for specific images, however. In conclusion, for HYDICE these

metrics do not really help identify a set of bands desirable to retain across all images.

(a) Multi-Class Fisher Ratio. (b) Correlation to Full-Pixel Anomalies.

Figure 4.21: HYDICE Band Metrics.

Now, recall that band signatures tend to group on the spectrum. That is, subsets of the

bands are usually highly correlated, as was shown back in Figure 2.9. Miller [160] used

this fact to find these correlated segments and select a subset of bands accordingly. This

correlation structure might also be utilized to search for absorption and noisy bands by

using Factor Analysis. Using MDSL to select the number of factors for the model, Figure

4.23 depicts the specific variance of each band for each ARES image using two variants

of factors. Here, 0.8 specific variance on the y-axis denotes 80% and the MDSL threshold

was adjusted by −1 to reflect the setting from AutoGAD.
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Figure 4.22: HYDICE: max
i, j

Bi, j,p.

The three major areas of absorption bands are clear in the specific variance plots,

corresponding to high specific variance, although they are more pronounced in the PC-

based model. The bands removed by Smetek and Miller resemble an aggregate across

images where the specific variance rises. It is evident that a threshold may be able to

identify absorption and noisy bands. Additionally, from these plots it would seem that a

threshold could also be flexible to different image characteristics.

The factor analyses are based on the leading k0 factors of the centered data, where k0

is determined using MDSL. Thus, it is important to assess the sensitivity of the specific

variances to k0, i.e., does a small change in k0 significantly affect which bands are retained

given a constant threshold. Figure 4.24 shows the effect of varying the number of factors on

the specific variances for ARES1D and ARES2F, as examples due to their differences. The

sensitivities in these plots are representative of all of the HYDICE images, where some

images displayed even less sensitivity. As can be seen, the specific variances are fairly

robust to changes in k0. However, they do change enough that as the change in k0 increases,

so too does the change in which bands are retained. Of course, this change in retention

does not become pronounced (> 10) until the change in k0 exceeds 5, in which case the

137



(a) PC-Based Factor Analysis.

(b) Normal-Based Factor Analysis.

Figure 4.23: Specific Variance: ARES Images.

factor models are likely becoming too large or too small. Thus, whereas AutoGAD uses

a dimension adjustment parameter in the MDSL algorithm, no adjustment to the MDSL

cutoff is proposed and used from here on for simplicity.

Based on these observations and experimentation, the process shown in Figure 4.25

was developed. After reshaping the image, the largely-zero bands are removed so as to not
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(a) ARES1D. (b) ARES2F.

Figure 4.24: Specific Variance: MDSL Effect.

provide false variance into the model. That is, bands with many zeros and some high values

could mistakenly be retained if not removed a priori. Next, a factor model is built using a

number of factors as determined by the MDSL algorithm. After a varimax rotation so as

to yield high loadings and group the bands best onto factors, the specific variance is used

to identify bands that are highly noisy or that provide little to the model. Admittedly, the

varimax rotation is an unnecessary step because the specific variances are rotation invariant.

However, it is included such that the resulting factors can also be interpretable.

The remaining issue is how to determine a valid threshold. Figure 4.26 shows the

number of images in which each band would be removed, given a threshold. Clearly,

the bands to remove are not entirely consistent across all images, aside from the main

absorption areas. This makes sense when also looking at the individual bands of the images.

Given this information and those bands removed in the literature, the threshold of interest

lies below 0.05. In fact, experimentation indicated that a threshold of t = 0.02 was ideal.

Therefore, if ψi ≥ 0.02, band i is removed.
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Figure 4.25: Band Selection Methodology.

This is supported by Figure 4.27. Here, the colors denote the band being removed if

that threshold was used. That is, the red bands would be removed for all three thresholds in

each plot, and blue would be removed for the blue and green thresholds. Across all images,

a threshold of 0.02 eliminates bands in all three high absorption areas of the spectrum (the

latter three exact absorption locations). Additionally, on an aggregate level, this threshold

covers much of what was determined to be noisy in the literature. It can also be seen that

this method allows flexibility to the image as not all images are noisy in the same areas of

the spectrum, which matches what occurs within the images.
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Figure 4.26: HYDICE Images: Threshold Sensitivity.

In reality, the exact threshold, similar to the literature, can become a subjective

decision as to how high radiance values need to be in order to deem a band noise. In

some cases, it appeared that bands were removed in the literature due to the presence of

very slight artifacts in the band, even though the band is arguably not noisy. Here, 0.02 was

chosen because it removed unquestionably noisy bands, retained bands that distinguished

objects well within the radiance levels, and covered the locations from literature very

well. For example, Figure 4.28(a) shows a band from ARES1D typically removed in the

literature that is no longer removed, whereas Figure 4.28(b) shows a band from ARES1F

that is typically retained that is now removed. The radiance values are extremely low in the

ARES1F band, while the ARES1D band has reasonable radiance values and distinguished

objects. The true criticality of retaining certain bands or removing them is lessened by

the fact that several neighboring bands that were retained/removed in the literature, in

comparison to any opposites here, are highly correlated share some of the same feature

information.
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(a) (b)

(c)

Figure 4.27: HYDICE Threshold Sensitivities.

Based on the HYDICE data, the factor analysis method presented shows great

promise. Resulting removals, including zero bands, for all HYDICE images are shown

in Table 4.10. Note that cumulative across images, as evidenced by the figures, these

bands are very similar to those removed in the literature. However, the factor analysis

method provides more flexibility to an specific image when determining what bands to

remove. Instead of using a broad range for all images, the method evaluates each image

individually. One caveat does need to be mentioned. Some of the HYDICE images contain

a few non-noise bands where a sensor artifact or collection error occurred, yielding a line

of noise and erroneous pixels in those bands. These bands are not necessarily truly noisy as

142



(a) ARES1D: Retained. (b) ARES1F: Removed.

Figure 4.28: HYDICE Band Examples: Radiance Values.

they still provide good information for the remaining pixels. However, they can present

issues for specific algorithms. The band-selection algorithm here only found some of

these for removal. Others such as Smetek [191], Johnson [110], and Jablonski [107] have

included some of these bands as well when running their algorithms. More specifics on this

occurrence and its impact are included in Chapter 6, but for now those few such bands that

were not detected are left in the image. Next, the other HSI data sets are investigated.

4.5.2 AVIRIS.

AVIRIS has 224 bands over 0.4 to 2.5 µm. This range yields peaks in the green

wavelengths and diminishes in the higher and lower wavelengths. For the AVIRIS

spectrum, deep valleys that go down to near zero occur around 1.4 and 1.9 microns due to

water absorbing these wavelengths [2]. Additionally, water absorption also occurs strongly

at 2.5 µm [81]. This is obviously the same as the areas of high absorption in HYDICE.

Figure 4.29 depicts these wavelengths, where a sub-sample of 1000 random pixels are
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Table 4.10: HYDICE Bands ≥ 0.02 Threshold.

Image Bands Removed
Number Bands

Retained

ARES1D 104 : 110, 138 : 153, 157 : 158, 187 : 210 161

ARES1F 10 : 11, 103 : 109, 138 : 152, 156 : 157, 180 : 210 153

ARES2D 2 : 11, 104 : 108, 139 : 152, 201, 204, 206, 208 : 210 175

ARES2F 1 : 8, 104 : 108, 139 : 151, 204, 206 : 210 178

ARES3F 103 : 107, 139 : 151, 204 : 210 185

ARES4F 1, 103 : 108, 138 : 151, 200, 202 : 210 179

ARES1C 104 : 109, 138 : 152, 187 : 210 165

ARES2C 103 : 109, 138 : 152, 189 : 210 166

run03m20 4 : 6, 104 : 108, 139 : 152, 208 : 210 185

shown for each of the four AVIRIS images investigated. The absorption is obvious after

Band 100 and Band 150, and it can be seen how bands with low magnitudes (such as

180:200) can at first appear to be noise.

Figure 4.30 shows the correlation of band radiance values to anomalies, as well as

the band Bhattacharyya metric. Moderate correlation exists for the Scene1 image, but the

correlation magnitudes are still not high. Similar to HYDICE, the Bhattacharyya metric

reveals some absorption (for non-zero bands), however, there is no consistency of well-

classifying bands across images. Specifically, bands 50-70 for 4Ships2 may be the highest

discriminating, while it is not clear if noise or high discrimination is truly responsible for

the high values found in Scene1.

Now, using the new factor analysis-based methodology and looking at the number of

AVIRIS images that retained a given band when varying the threshold, it was clear that
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Figure 4.29: AVIRIS Pixel Signatures Sample.

(a) Correlation. (b) max
i, j

Bi, j,p. (c) max
i, j

Bi, j,p.

Figure 4.30: AVIRIS Band Metrics.

again the correct threshold might be t = 0.02. Figure 4.31 shows the impact of varying

the threshold. Again, all major absorption areas are found, as are potentially noisy bands.

To exemplify the importance of removing bands with largely zero pixels before the factor

analysis, Band 220 can be considered. This band is a suspected strong absorption band, and
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is still removed from every image except Scene1 if largely zero pixel bands are not removed

prior. However, Band 220 in Scene1 should be removed, as there are only a few non-zero

pixels. These inflate the variance given their magnitude, and become well accounted for in

the factor model if kept under consideration.

(a) (b)

Figure 4.31: AVIRIS Threshold Sensitivities.

To further verify the findings from the HYDICE data, various aspects were again

evaluated for the factor analysis algorithm on the AVIRIS data. Figure 4.32 shows both the

effect of varying the MDSL cut-off, as well as varying the percent-zero pixel band cut-off

for the VirginIslands1 image with a t = 0.02 specific variance threshold. This image had the

most change in specific variances when varying the MDSL cut-off. As can be seen, these

remain fairly consistent until the cut-off is changed significantly. Interestingly, varying the

percent-zero pixel cut-off does not affect which bands are ultimately removed (represented

by gray fill). This suggests a certain robustness to the method.

It has also been shown that certain, less obvious noisy bands are picked up by the

method. Figure 4.33 depicts Bands 81 and 82 for the VirginIslands1 scene. Band 82 has
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(a) 0.25% Zero-Pixel Cut-Off.

(b) 0.5% Zero-Pixel Cut-Off.

Figure 4.32: AVIRIS Specific Variance Sensitivities.

lower radiance values, and a sort of blurring effect. Table 4.11 shows the bands removed

using the t = 0.02 threshold.

4.5.3 Pavia.

The Pavia bands lie between 0.43 and 0.86 µm, and thus only very weak absorption

occurs [5]. In fact, when varying the specific variance threshold using the factor analysis

method, only a very small threshold would remove any bands from consideration. This
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(a) Band 82. (b) Band 81.

Figure 4.33: VirginIslands1 Band Comparison.

Table 4.11: AVIRIS Bands >= 0.02 Threshold.

Image Bands Removed
Number Bands

Retained

Scene1 108 : 113, 153 : 169, 219 : 224 196

Ship1 107 : 117, 152 : 170, 216, 218 : 224 186

4Ships2 107 : 116, 153 : 170, 175, 216 : 224 186

VirginIslands1 3, 82, 107 : 120, 152 : 170, 173 : 175, 210 : 224 171

is shown in Figure 4.34. As this occurs below t = 0.01, indicating no presence of noisy

bands, none are removed from the Pavia images for this research.
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Figure 4.34: ROSIS Images: Threshold Sensitivity.

4.5.4 SpecTIR.

The SpecTIR image collection used in this research consists of three images of varying

characteristics, and none have a truth mask. The Reno image covers 0.39-2.45 µm over 356

bands. The Oil Spill image has 360 bands covering 0.39-2.45 µm, collected at 2.2 m ground

sample distance. Th Red Sea image, meanwhile, has 128 bands over 0.39-1 µm. Figure

4.35 shows the Bhattacharyya metric for the bands in these images. These indicate general

areas of interest in the spectrum that may be desirable to retain.

Applying the factor analysis-based method to these images and varying the specific

variance threshold yields removals per Figure 4.36. For the images covering 0.39-2.45 µm,

the three strong absorption areas are found with a low enough threshold. Additionally,

absorption or noisy bands appear present for the Red Sea image. Investigating around

t = 0.02 further yields those results shown in Figure 4.37.

Lowering the threshold below 0.015 removed all bands in the 300’s for the Oil Spill

image. Again, t = 0.02 appears to be a suitable threshold on the specific variance. Here, all
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(a) Reno. (b) Oil Spill. (c) Red Sea.

Figure 4.35: SpecTIR Images’ max
i, j

Bi, j,p.

(a) Reno & Oil Spill. (b) RedSea.

Figure 4.36: SpecTIR: Threshold Sensitivity.

strong absorption areas are identified, possible moderate absorption is identified in the Oil

Spill image, and noisy bands and moderate absorption are identified in the Red Sea image.

As an example, consider the bands shown in Figure 4.38 for the Red Sea image. Band 70
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(a) Reno & Oil Spill. (b) RedSea.

Figure 4.37: SpecTIR: Specific Variance Threshold.

is considered strong over most thresholds, while Band 80 would be considered noisy if the

threshold was set to 0.015. In the case of t = 0.02, this would not be the case, although

band 95 is considered to be noisy. Despite the higher radiance values in band 95 than band

80, the uniqueness of anything within that band is far less pronounced and general noise

seems more obvious. Band 1 is a generally noisy band, as can also be seen. The t = 0.02

threshold also removes this band.

And so, the t = 0.02 threshold and factor analysis-based method developed seems

very robust across sensors and image characteristics. The specific bands removed for

the SpecTIR images are shown in Table 4.12. Note, none of the bands that had a high

Bhattacharyya metric previously are removed. Specifically, bands 155-179 and 206-250 in

Oil Spill, bands 10-50 in Reno, and bands 25-50 in Red Sea. This is another indication of

the strength of this method and its ability to retain discriminating portions of the spectrum

where there is not strong absorption and there is not a large amount of noise.

151



(a) Band 95. (b) Band 80.

(c) Band 70. (d) Band 1.

Figure 4.38: RedSea Band Comparison.

Table 4.12: SpecTIR Bands >= 0.02 Threshold.

Image Bands Removed
Number Bands

Retained

Reno 180 : 190, 255 : 274, 350 : 351, 355 : 356 321

Oil Spill 1 : 3, 145 : 152, 180 : 205, 251 : 289, 294 : 295, 315 : 360 236

Red Sea 1 : 4, 94 : 95, 97 : 106 112
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4.5.5 HyMap.

The HyMAP image has 126 bands over 0.453 to 2.496 µm, and Figure 4.39 shows

various metrics for this image. The bands have little correlation to non-background pixels,

but this is largely due to the small number of such pixels in the image. The Bhattacharyya

metric indicated that bands 20-60 may be the best discriminating bands. Using the factor-

analysis based method with t = 0.02, these bands are retained. In fact, this image showed

little sensitivity to varying the threshold, with only three bands removed consistently around

the t = 0.02 threshold: bands 63, 64, and 126. These correspond to two of the three strong

absorption areas in the spectrum, where interestingly and upon visual inspection, the third

near 1.9 µm does not manifest in the image. Band 63, to showcase that the method can

detect an obvious noise/absorption band that has less than 50% zero pixels, is shown in

Figure 4.40. Removal of the three bands leaves 123 retained.

(a) Correlation. (b) Bhattacharyya. (c) Sensitivity.

Figure 4.39: HyMAP Bands.

In conclusion, across images and sensors, a threshold of 0.02 works very well within

the factor analysis process. This means that bands with 2% or more specific variance, or

equivalently, less than 98% communality in the factor model may be considered noisy or
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Figure 4.40: HyMAP Band 63.

absorption. This also implies that the factor model is a good model for the HSI image.

Lowering the threshold seemed to remove too many bands, while raising it did not remove

enough. In seeking another way to automatically find this threshold, the number of bands

removed as a function of the threshold was explored. These results are shown in Figure

4.41. Although there is a bend in the curves, somewhat akin to how MDSL is done on PCs,

this bend occurs too early on many images such that too many bands might be removed.

Once considering that areas of neighboring bands are highly correlated, using a lower

threshold corresponding to the bend might leave only the bands needed for a classification

task. However, some of those removed would not be truly noisy, perhaps just redundant.

As the lower threshold removes entire areas of the spectrum on certain images, this is

not desirable for purposes of this research. Rather, any further removal is accomplished

equivalently by dimension reduction and other techniques developed and used.

4.5.6 Arcene.

Thus far, only the process from Figure 4.25 has been used on the HSI imagery to

remove the absorption and noisy bands. Given that the Arcene dataset has 3,000 false
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(a) HYDICE. (b) HYDICE Zoom. (c) Non-HYDICE.

Figure 4.41: Number of Bands Removed By Threshold.

features (probes) mixed within its 10,000 features, it may also be good to explore this

methodology on that dataset to see just how robust it is to difficult data. With the HSI

data, all features are on the same scale, there are far fewer features than exemplars, and

features with many zeros are likely among those that should be removed due to radiance

generally being positive. The features of the Arcene data are again all on the same scale, but

there are far fewer exemplars than features, making it a Small Sample Size (SSS) problem.

Additionally, many real features have a large number of zeros. The impact this has on the

feature removal process is explored shortly. First, various metrics for the 900-exemplar

Arcene dataset are shown in Figure 4.42.

It turns out that these results are fairly similar to what occurs for the 200-exemplar

version. As can be seen, very few of the 10,000 total features have a high separation

between the two classes, few have even moderate correlation to the truth vector, and few

have a high Bhattacharyya metric value. This shows that the real features are not easily

found amidst the combined set of probes and real features.

Originally, Arcene was used as a part of the Neural Information processing Systems

(NIPS) 2003 contest, where the goal was to identify as few features as possible for good
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(a) Fisher Ratio. (b) Correlation to Class. (c) Bhattacharyya.

Figure 4.42: Arcene Feature Metrics.

classification on two variants of the Arcene data, as well as other data sets [90]. Lal,

Chappelle, and Schölkopf [134] tried to find the best features for classification tasks using,

in part, correlation coefficients and Fisher ratios. Their feature subsets contained 47% of

the real features, but approximately 6-14% of the probes for Arcene. This is not surprising

given the metric values in Figure 4.42. The winning entry found and used 100% of the real

features with 30% of the probes in one case, and 11% real and 1% probe in another [134].

Whereas the contest sought a minimal subset of features for classification and also scored

based on classification performance, the goal of the factor analysis process here is primarily

to find and eliminate the probes, assuming they truly are noisy. Ideally, the process also

identifies noisy real features.

With the HSI data, bands with a large percentage of zero values for the radiance were

removed in the first step because it is safe to assume that such HSI bands contain noise or

collection error, and they can negatively affect the variance in the factor model. In removing

these bands, it was shown that it becomes easier to identify remaining bands with large

absorption or noise present. For the Arcene data, both the 200 exemplar training/validation

set and the 900 exemplar training/test/validation set, this step warrants investigation. 2,723
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of the real features have more than 50% zeros, as do 1,692 of the fake features (probes).

Further, 535 of the real features have more than 90% zeros, as do 248 of the probes. In

fact, 30 real features are entirely zero, as are nine of the probes. Thus, although eliminating

the features with a large percent of zero values could still help eliminate probes, it also

eliminates some of the real features. For example, Figure 4.43 shows the factor analysis

process with varying thresholds t on the 200 and 900-exemplar data sets, including the

removal of features with more than 50% zeros.

(a) Real vs. Probe. (b) All Features.

Figure 4.43: Number of Features Removed: Original Process.

A few things are clear from these plots, where it needs to be noted that entire zero and

greater than 50% zero exemplar features were assigned a ψi of 1 to effectively remove them.

All probes are removed until the specific variance threshold goes above 0.7. In addition, no

real features, beyond those initially removed, have a specific variance above approximately

0.3. If only the all-zero features are removed in the first step instead, the results change

to those shown in Figure 4.44. Again, up to a very high threshold all probes are removed
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across data sets. Meanwhile, the threshold has to be higher than before in order to not

remove any real features.

(a) Real vs. Probe. (b) All Features.

Figure 4.44: Number of Features Removed: Modified Process.

In both cases, the desired threshold appears significantly higher than 0.02, at least

at first. Figure 4.45 shows the exemplar values, in a 30 × 30 grid, for certain features

of the 900-exemplar set. Figure 4.45(a)-(c) shows three features with less than 50% zero

values and their corresponding specific variances. It seems clear that as the specific variance

lowers, there is more information and discrimination present for the exemplars. In contrast,

Figure 4.45(d) shows one of the probes with less than 50% zero values. Although the range

of values is larger than some of the previous features shown, there also appears to be less

discriminating information present for the exemplars. Now, consider Figure 4.45(e)-(f).

Feature 9890 has greater than 50% zero values, and appears to have much less information

than the previous real features shown. Feature 9895 has less than 50% zero values but
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a much higher specific variance than the other real features shown. Again, upon visual

inspection it appears this feature has less discriminating information.

(a) Real: ψ4 = 0.007. (b) Real: ψ9994 = 0.046. (c) Real: ψ41 = 0.131.

(d) Probe: ψ39 = 0.912. (e) Real: ψ9890 = 0.055. (f) Real: ψ9895 = 0.31.

Figure 4.45: Feature Examples.

This analysis implies that the factor process is, in fact, robust to data such as Arcene.

Here, convergence for the varimax rotation can require many more iterations due to the

number of features. As it is unnecessary unless interpretation of the factors is a goal, this

step of the process should probably be removed for large data sets in practice. It is difficult

to quantify exactly which of the real features are good for classification, but it is clear that

no matter how the first step of the process is treated, a specific variance threshold of 0.3
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would remove all probes and relatively few real features. Arguably, an even lower threshold

would also remove noisy or low information real features based on looking at the features.

It is not entirely clear as to whether all real features with more than 50% zero values should

be removed as a first step, but there is some evidence to support no change to the process

in this regard. This also makes sense intuitively. However, it is important to mention that

a threshold higher than 0.02 does need to be used on this data, vice HSI, because it would

remove too many features. Fortunately, this can be explained.

Recall, Arcene is a SSS problem. When doing the MDSL cut-off before creating the

factors and rotation, only 86 components are kept for the 900-exemplar data, and only

36 are kept for the 200-exemplar data. Although this maintains a large percentage of the

variance found in the data in both cases, thousands of features are being condensed into

tens of factors for only hundreds of exemplars. This is very different than in HSI. Whereas

if N > p, p factors can be estimated, here the process is limited by N. In the case of the

original process, i.e., when removing all features with more than 50% zeros values, t = 0.02

would leave less than 2200 of the real features. Although these may be the ’best’ features,

t = 0.1 or slightly higher could be a better choice for the threshold as it would leave most

of the remaining real features while also removing all probes, as evidenced in Figure 4.43.

As a result, the process shows great promise in identifying noisy features, or features that

are unlikely to help discriminate between classes.
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V. n-Dimensional Visualization

5.1 Literature Review

With large-dimensional data sets, visualization of the data, its structure, and any

discrimination caused by methods becomes very difficult. Dimension reduction techniques

allow for the plotting of a smaller number of dimensions, but without simple data, often

more than three dimensions are still required for any intended purpose. Although PCA

and other methods optimize based on data characteristics, they are not guaranteed to

yield a meaningful representation of class information in two or three dimensions. This

visualization problem has been approached several ways in the literature, none without

limitation. Some become computationally expensive as the number of data features

increases, others are not very intuitive, and more do not lend themselves to visualizing

greater than a moderate number of features. Surveys of various methods include those

by Chan [44], Kehrer and Hauser [118], Keim [119], Kromesch and Juhasz [129], and

Grinstein, Trutschl, and Cvek [82].

The high-dimensional data visualization problem has been approached both from

the standpoint of multivariate data, as well as for visualization of Pareto fronts in multi-

objective optimization. A few techniques from both of these areas are leveraged here.

Originally, the visualization research in this chapter was formulated with the purpose of

being able to visualize the decision boundaries for high-dimensional data and non-linear

methods. However, as the research progressed, it became apparent that the techniques were

more generalizable and useful for multivariate data as a whole. For example, one purpose

is to use the visualization to identify general characteristics of a multivariate dataset such

as class overlap and outliers. In the application of classification, a purpose is to enable

data complexity comparisons, possible class identification, and an evaluation of linear or

non-linear algorithm appropriateness.
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In order to develop an improved n-dimensional visualization, it is necessary to first

review existing visualizations and their limitations. Perhaps the simplest method is to use

a ‘3-at-a-time’ approach in order to generate
(

p
3

)
plots, one for each set of three features,

for investigation of a total set of p dimensions or components. A full set of scatterplots

is a common method, where each feature is plotted against other feature [129]. Both of

these techniques are problematic in that it can be very difficult to evaluate total class and

structure differences across the many plots. Another simple method is referred to as Parallel

Coordinates, where each feature is normalized according to its range and plotted on a tick

of the x-axis, connecting exemplars’ feature values with lines [105]. This is shown in

Figure 5.1 for the Fisher Iris data. Parallel Coordinates has clear limitations as the number

of exemplars and features increases [169]. Variants of parallel coordinates also exist, such

Figure 5.1: Parallel Coordinates Example.

as connecting normalized feature values radiating from the center of a circle akin to a radar

graph [129], or using parallel dual plots as presented by Xu et al. [222]. These results can

still be difficult to interpret as the number of features grows due to overlapping lines and

points.
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Several other methods have been developed. These include: iconographic (or glyph)

displays, multi-line graphs, by-feature heat maps, polar charts (a circular form of parallel

coordinates), logic diagrams of the features, survey plots of the features, and hierarchal

methods [44, 82]. Additional methods include mosaic matrices [126], using a hyperbox

[13], multiple frames and non-linear magnification [117], and table lens where a line has

length based on an attribute and a color based on another [174]. All of these methods

have interpretation and clutter issues as the number of features grows. Principal curves

is a method that uses a smooth 1-D average of the data points allowing for a non-linear

representation, but it does not necessarily provide advantage over using self-organizing

maps to provide a better non-linear reduction and it does not even fully separate a dataset

such as Fisher Iris [48, 95].

RadViz is a technique that places dimensional anchors (the features) around a circle,

with spring constants utilized to represent relational values among points [98]. Each spring

is attached to an anchor and a data point, where the data is then displayed where the sum of

all spring forces is zero. PolyViz is a similar construct, with each feature anchored instead

as a line [82]. These latter visualizations are shown in Figure 5.2 for the Fisher Iris dataset.

Again, these become less useful as the number of features and exemplars grow.

Yet another method, developed for Pareto front visualization is Hyperspace Diagonal

Counting and the Hyperspace Pareto Frontier. This method, developed by Agrawal, Lewis,

and Bloebaum [11] is based on the premise of Cantor’s counting method. Exemplars are

mapped to a line by counting along hyperdiagonal bins that move away from the origin,

as shown for two features in Figure 5.3(a). Features are split into two groups, one for

each axis, before each group is counted independently. The bins and their counts, moving

away from the origin on these diagonals are then plotted. This representation thus can also

give a density along the respective hyperdiagonals. A sample is shown in Figure 5.3(b).
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(a) RadViz. (b) PolyViz.

Figure 5.2: Anchor-Based Visualizations [82].

Unfortunately, this method is not necessarily efficient, is variable depending on the groups

chosen, and sometimes gravitates values towards the axes [169].

As mentioned, any focus on visualizations in this research serves two purposes:

to provide a representation that can depict decision boundaries or changes in these

boundaries in a meaningful and comparable way, and to evaluate the complexity of

a dataset. Ideally, the visualization is also intuitive so that results can be interpreted

easily. Bertini, Tatu, and Keim [27] suggested the evaluation of high-dimensional data

visualizations via: 1) the extent to which data groupings are maintained (clustering), 2) the

extent to which systematic changes in one dimension are accompanied by changes in the

others (correlation), 3) the maintenance of outliers, 4) the clutter of the visualization, 5)

feature preservation, and 7) complex pattern (a literal catch-all). In Section 4.2, a useful

visualization that satisfies (3) and (4) to evaluate dataset complexity was discussed and
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(a) Diagonal Counting. (b) Visualization.

Figure 5.3: Hyperspace Diagonal Counting [11, 169].

applied. In Section 5.3, a visualization that could potentially satisfy all of the above

properties is further developed and applied.

5.2 Dimensionality Reduction and Random Projections

Before proceeding to development of the visualization, it is important to discuss

dimension reduction. Clearly, if the data can be reduced in dimensionality then the lower-

dimensional data would be easier to visualize. However, using dimensionality reduction

in this manner, as an input to the visualization, can cause two issues. First, properties

of the original data need to be maintained in the lower-dimensional representation for the

visualization to have meaning. Second, the reduced data needs to be interpretable such that

the resulting coordinates have a meaning to the user.

Johnson and Lindenstrauss [112] showed that any set of N points in high-dimensional

Euclidean space can be mapped into an O
(
log N/ε2

)
-dimensional Euclidean space such
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that all pairwise distances between points are preserved to within a factor of (1 ± ε). Such a

mapping would prove powerful when generating a visualization for high-dimensional data.

Dasgupta and Gupta [62] later proved a related result shown here as Theorem 5.2.1.

Theorem 5.2.1. [62] For any 0 < ε < 1 and N ∈ N, let k be a positive integer such

that k ≥ 4
(
ε2/2 − ε3/3

)−1
ln N. Then for any set V of N points in Rp, there is a map

f : Rp → Rk such that for all u, v ∈ V, (1 − ε) ‖u − v‖2 ≤ ‖ f (u) − f (v)‖2 ≤ (1 + ε) ‖u − v‖2.

Furthermore, this map can be found in randomized polynomial time.

Unfortunately, no way to explicitly and consistently generate this mapping has

been determined. There have been several random methods developed, however,

to find projections that satisfy the Johnson-Lindenstrauss Lemma and related results

probabilistically. An empirical study of several of these methods was conducted by

Venkatasubramanian and Wang [207], where they found distance errors to be distributed

exactly as predicted by the lemma. They also found a target dimension of d2 ln N/ε2e

sufficient for a desired error rate. These findings already point to issues with such methods,

as target dimensionality is quite large even for moderate N and ε. Further, the projections

are random in nature, meaning that to achieve the desired error many projections may need

to be formed. As Fern and Brodley noted [72], random projection is highly unstable. One

specific instance of such methods is the Fast Johnson-Lindenstrauss Transform, where a

randomized Fast Fourier Transform is followed by a sparse projection [10]. Blum [32]

showed that random projection could maintain linear separability, assuming the original

data had a large separation margin.

Achlioptas [8, 9] developed a simple and efficient projection that satisfies the Lemma,

shown in Theorem 5.2.2, where the Lemma holds probabilistically as a function of the

number of sample points and a parameter β.

Theorem 5.2.2. [9] Let V be an arbitrary set of N points in Rp, represented as a N × p

matrix X. Given ε, β > 0 let k0 =
4 + 2β

ε2/2 − ε3/3
ln N. For an integer k ≥ k0, let R be a p × k
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random matrix with R(i, j) = ri j where
{
ri j

}
are independent random variables from either

one of the following two probability distributions:

ri j =


+1 with probability 1/2,

−1 with probability 1/2,

ri j =



+
√

3 with probability 1/6,

0 with probability 2/3,

−
√

3 with probability 1/6.

Let E =
1
√

k
XR and let f : Rp → Rk map the i-th row of X to the i-th row of E. With

probability at least 1−N−β, for all u, v ∈ V, (1 − ε) ‖u−v‖2 ≤ ‖ f (u)− f (v)‖2 ≤ (1 + ε) ‖u−v‖2.

Li et al. [140] adjusted the probability distributions for the Achlioptas projections

to yield a more efficient sparse projection that still maintained local distances in the

expectation. Some algebraic manipulation of the Achlioptas result enables a more direct

evaluation of such a random projection, and leads to the new Corollary 5.2.2.1. This enables

a lower bound on k as a function of N, ε, and the probability that distance is maintained q.

Corollary 5.2.2.1. For any 0 < ε < 1, any set of N points V in Rp, and p ≥ k ≥

4
(
ε2/2 − ε3/3

)−1
ln N, there exists a map f : Rp → Rk that can be found in randomized

polynomial time such that for all u, v ∈ X ⊂ Rp, (1 − ε) ‖u − v‖2 ≤ ‖ f (u) − f (v)‖2 ≤

(1 + ε) ‖u − v‖2. Specifically, the projection from Achlioptas is such a mapping for

k ≥
(
4 −

2 ln (1 − q)
ln N

) (
ε2/2 − ε3/3

)−1
ln N, where q is the lower bound on the probability

that the distance between any two points in V is maintained to within a factor of (1 ± ε).

Proof The first part of the Corollary is simply a restatement of Theorem 5.2.1.

For the result on Achlioptas’ projection, recall from Theorem 5.2.2 that q ≥ 1 − N−β.

⇒ N−β ≥ 1 − q⇒ −β ln N ≥ ln(1 − q)⇒ β ≤ −
ln(1 − q)

ln N
.

This also implies that β is non-negative, which maintains that q ∈ [0, 1].

Now, this new result for β can be applied to the bound for k.
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From Theorem 5.2.2 it follows that k ≥ k0 =
4 + 2β

ε2/2 − ε3/3
ln N.

This yields that k ≥ k0 ≥

(
4 −

2 ln (1 − q)
ln N

) (
ε2/2 − ε3/3

)−1
ln N.�

These findings are important to discuss, because although they suggest the existence

of projections that maintain local information for all points, in practice such methods often

exhibit high error. For example, Figure 5.4 shows the bound, k0, from Corollary 5.2.2.1

over different ranges of ε, N, and q. Even with a relatively small number of points, the

required dimensionality for the reduction is very high, and this holds with low probability

and high error in the maintenance of local distances. Considering the case of N = 200,

ε = 0.9 and q = 0.1, k0 ≥ 132; and, in fact, the bound increases with larger N and q and as

ε decreases.

(a) (b)

Figure 5.4: k0 Values as a Function of ε, q, and N.

Whereas Johnson-Lindenstrauss focuses on local information, methods such as PCA

can yield a global guarantee on error, i.e., reconstruction error. Although this can be useful

in certain applications, for data visualization this is problematic in that the relationships
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between points may change. Additionally, direct interpretation of the components, the

linear combinations of features, can be problematic. Multi-dimensional scaling is another

technique that tries to approximate the Johnson-Lindenstrauss mapping, but when using

L2 for similarity, the embedding is the same as PCA scores and does not guarantee the

maintenance of local information [61]. van der Maaten and Hinton [150] developed

the t-Stochastic Neighborhood Embedding (t-SNE) algorithm in an effort to maintain

the relational structure of data when embedding in a lower-dimensional space. They

used t-SNE to generate a relatively successful cluster visualization of a 6,000 exemplar

subset of the MNIST dataset. However, t-SNE models Kullback-Liebler divergence

between neighborhood conditional probabilities for all exemplars in the original and

transformed spaces. Such an approach is computationally expensive, as the conditionals are

computed for all exemplars and the transformed space is updated iteratively via a gradient

approach. Further, feature information is lost and only a measure of aggregate proximity

is maintained. The algorithm also attempts to mitigate crowding of points, thus artificially

adjusting the closeness of certain exemplars and clusters in the visualization. Nonetheless,

t-SNE and projections are used for comparison, on occasion, to the visualization developed

here. The t-SNE code used to generate those visualizations was taken directly from van der

Maaten and Hinton [148].

5.3 Hyper-Radial Visualization and Improvements

Chiu and Bloebaum [56] developed Hyper-Radial Visualization (HRV) in order to

yield a straightforward method that would not suffer any of the problems of other n-

dimensional visualizations for Pareto fronts when evaluating solutions to multi-objective

optimization problems. Their intent for the visualization was to be able to compare design

solutions to one another and desirability relative to a utopia, or ideal, solution. Here, as

HRV is improved, the focus for the visualization becomes more about feature groupings and
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identifying data structure. First, HRV is introduced within the multi-objective optimization

problem context. Then, it is expanded to multivariate data.

Letting Fi denote the i-th objective function in the multi-objective problem, Chiu and

Bloebaum [56] began by normalizing these objective function values for p objectives using,

F̃i =
Fi − Fi,min

Fi,max − Fi,min
∈ [0, 1] (5.1)

for i = 1, . . . , p, where Fi,min and Fi,max were the minimum and maximum values of the

set of solutions in that objective. This normalization changes the scale of features relative

to one another, but maintains information found within each feature. It also later ensures

coordinates in a [0, 1] interval for the visualization, helping to prevent outliers from greatly

skewing the visualization.

Next, they grouped objectives into two sets,

G1 =
{
F̃1, F̃2, . . . , F̃s

}
(5.2)

and

G2 =
{
F̃s+1, F̃s+2, . . . , F̃p

}
, (5.3)

where s = dp/2e. These groups were typically not chosen in any special way other than

by a current order of objectives. For each group, a Hyper-Radial Calculation (HRC) value

was computed for each solution as,

HRC j =

√√√√ ∑
i∈G j

F̃2
i

n j
, (5.4)

where j = 1 or 2 for G j, and n j is the number of objectives in the group j. For an

unbiased representation, the two groups were kept equal in size. This meant that for an

odd number of objectives, one group was given a dummy objective consisting entirely of

zeros. Additionally, they used a third overall Hyper-Radial value,

R = HRC2
1 + HRC2

2. (5.5)
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This represented the squared radius of a solution from the minimum reference point (the

overall minimum objective values in the set). The HRC and R values then constituted

metrics that helped determine the quality of a solution relative to an ideal solution. Curves

of constant distance were also added to the HRV visualization to enable color-coding of

distance regions from the ideal solution.

The HRV has great promise, in that it is easily interpretable and efficient to generate.

The coordinates themselves are simple weighted Euclidean distances from the minima for

each group of normalized objectives. This representation maintains relative geometry of

the data without a true transformation taking place. Further, minima occur at zero and

maxima occur at one on the coordinates, making it easy to relate positioning of solutions

to one another. This simplicity inspired an investigative look into possible improvements

to HRV for purposes of visualizing multivariate data. Of course, it is clear that the HRV

algorithm can be applied directly to a N × p dataset X, where the features take the place

of objectives. The exemplars of Fisher Iris, using HRV without the R value and treating

each feature as an objective and each exemplar as a solution, are depicted in Figure 5.5(a).

Here, the axes labels denote the group number followed by the feature numbers within that

respective group.

In order to improve the visualization, its limitations first needed to be understood.

One limitation is HRV’s reliance on appropriate groups for the HRC values. A way to

overcome this was to identify a criterion for optimal groups. This is discussed in Section

5.3.1. Another limitation is that different data can map to the same point and that many

points can map to the same radial, e.g., Figure 5.6, although the latter is not necessarily as

much of an issue. It is true for any visualization/mapping that only so much information

can be displayed in two or three dimensions. Thus, the possibility of mapping to the same

point is generally unavoidable no matter the approach. However, in order to mitigate this

issue somewhat, stacked class histograms are added to the HRV visualization axes. The
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(a) Old. (b) Improved.

Figure 5.5: HRV: Fisher Iris.

Figure 5.6: HRV Radial [164].

maximum number of class exemplars over all bins is added as a legend to the histogram to

give a notion of scale. The bin widths are chosen by Scott’s rule [185]. This, coupled

with the optimal groupings helps to avoid unnecessary crowding of exemplars in the

visualization for the purposes here. t-SNE tried to mitigate this crowding issue within its

approach, but it is shown that the method developed here still provides a better visualization

on many data sets. Fisher Iris, with optimal HRV groupings and improvements, is depicted
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in Figure 5.5(b). This visualization is deemed optimal in that the three classes have clear

class boundaries, with the Setosa class being obviously different than the others even in an

unsupervised setting.

The importance of the Euclidean metric to the visualization was also assessed.

Consider again the Fisher Iris data, where it is normalized and split into two groups

as before. However, instead using the Mahalanobis distance (x̃ − µ̃)T C̃−1 (x̃ − µ̃) with

C̃ and µ̃ denoting the covariance matrix and mean vector for the normalized data X̃,

respectively, Figure 5.7 is the generated visualization. Note, the distance was scaled to

[0, 1] after computation for direct comparison. Because the covariance weights the distance

values, true outliers become more pronounced. This ends up condensing portions of the

visualization, and makes it most effective at outlier identification. Many other distance

metrics, inclduing several of those from Section 4.1 were investigated, but the resulting

visualizations demonstrated a high correlation to the L2-based results, or they did not

decompose as cleanly and/or spread the data as well as the L2 norm on a common [0, 1]

scale.

Figure 5.7: HRV Using Mahalanobis Distance.
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5.3.1 Determining Optimal Groupings.

For purposes of comparison and evaluation in this section and following sections, the

data sets from Table 5.1 are used primarily. The ratio shown to quantify complexity is

that of Equation 3.82, and all zero features are removed as they provide no value to a

visualization.

Table 5.1: Datasets Extended Fisher Ratios.

Name Ratio (/p)

Fisher Iris 30.78 (7.70)

Vertebral Column (3 Class) 2.98 (0.50)

Breast Cancer (Diagnostic) 10.93 (1.21)

Wine Quality 3.45 (0.31)

Wine 13.93 (1.07)

MNIST 106.60 (0.15)

In order to find criteria for optimal groupings, as well as a methodology to determine

these optimal feature groupings for the visualization, it is important to determine a

formulation of the problem. Assuming some objective that can be optimized as a function

of the coordinates, each feature can be placed in one of two groups via a binary variable.

This formulation is shown in Equation 5.6, where Jt is the objective indexed by t so

different objectives can be used, xi is the value of the exemplar x in the i-th feature, x̃i is its

normalized value, hi is the j-th HRC axis coordinates HRC j, and yi is a binary variable that

corresponds to which group the feature belongs.
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max Jt (X, y) = Jt (h1(X), h2(X)) (5.6)

subject to
p∑

i=1
yi = dp/2e

yi ∈ {0, 1} , for i = 1, . . . , p

x ∈ X,

where h1(x) = HRC1(x) =

√√√√√√√√√√ p∑
i=1

yi x̃2
i

p∑
i=1

yi

,

h2(x) = HRC2(x) =

√√√√√√√√√√ p∑
i=1

(1 − yi) x̃2
i

p∑
i=1

(1 − yi)

This formulation is still correct when a dummy variable is used for an odd number of

features, as p = dp/2e × 2. The formulation enables a means to solve the group selection

problem while also yielding the visualization. However, with non-linear objectives of h(X),

optima are far from trivial. Linear under-estimators [40] or strict psuedo-boolean methods

[35] cannot necessarily be used here to simplify or to make the non-linear optimization

more efficient. After presentation of various objective functions, this topic is revisited in

this research.

In the event of having class labels for each exemplar, i.e., supervised data, a technique

related to discriminant analysis can be used. Recall, the Rayleigh quotient in Equation 3.22,

where it is maximized in order to best separate projected class means while also minimizing

within-class variance. Rather than solving for an optimal projection and projecting the

data, instead, the groupings and corresponding visualization coordinates that best separate

class means and minimize within-class variance in the hyper-radial space can be solved

for directly. Therefore, the intuitive nature of the hyper-radial methodology is maintained

without adding the need for the additional interpretation of projections. Let the within-class

variance for the visualization be
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S W =

c∑
i=1

∑
x∈Xi

(h(x) − µi)T (h(x) − µi) , (5.7)

where the subscripts denote the class and µi is the mean of the HRC coordinates, in row

vector form, for exemplars in class i. Let the between-class variance S B be defined so that

the total scatter found in the visualization data is S B + S W . Therefore,

S B =

c∑
i=1

ni (µi − µ)T (µi − µ) , (5.8)

where µ is the overall mean of the HRC coordinates and ni reflects the number of exemplars

in class i [68]. Then the ratio of interest to optimize is

J1 (h1(X), h2(X)) =
|S B|

|S W |
, (5.9)

where |A| = det(A) =
∏

l
λl and λl are the eigenvalues of the matrix A. Thus, this uses

the products of the ‘variances’ in the principal directions, or square of the hyperellipsoidal

scattering volume [68]. Again, this is analogous to multiple discriminant analysis (MDA)

except that instead of a projection, the solution is for optimality in the visualization

coordinates. Unfortunately, unlike MDA where optimality is found via an eigen-problem,

optimality for Equation 5.6 using J1 is not as straightforward. This is discussed shortly.

The solution for J1 best linearly separates the data. However, this solution is not

guaranteed to also spread the data well across the axes. For this purpose, consider the

objective,

J2 (h1(X), h2(X)) =
tr(S B)
tr(S W)

, (5.10)

where tr(A) =
∑
i

Aii =
∑
l
λl. This objective still tries to separate class means and minimize

within-class scatter, but it does so at more of an aggregation across the HRC axes by using

the sums of the ‘variances’ in the principal directions.

With p features and assuming two groups, there are
(

p
dp/2e

)
ways to assign the features

into groups. For small p, this makes complete enumeration possible. For example, there
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are only 20 total possibilities for the Vertebral Column dataset. The optimal visualization

for J1 on this dataset is depicted in Figure 5.8. There is clear overlap of classes in the

visualization, and some level of clustering. This moderately low level of separation may

help to explain both the low Fisher ratio for the dataset as well as moderate classification

accuracies found in literature [176].

Figure 5.8: Vertebral Column J1.

The Wine Quality dataset can also be evaluated for true optima as there are only

462 possible groupings. Figure 5.9 depicts the optimal visualizations for J1 and J2.

Large portions of the White and Red wines separate, with a few obvious outliers. These

visualizations also showcase another benefit to the improved HRV visualization, as it is

clear that the features in Group 1 form a strong discriminatory group. Here, J1 and J2 yield

extremely similar group solutions. This is also useful to note as J1 can take on extremely

small function values for certain high-dimensional data, whereas J2 yields another viable

alternative to meet the same intent of class separation, without the possibility of precision

issues.
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(a) J1. (b) J2.

Figure 5.9: Wine Quality.

Class information is not always present for data, and sometimes little is known about

the data a priori. Therefore, it is also key to investigate unsupervised objectives. In order to

help reveal class structure, outliers, and other useful information, three additional objectives

are developed with the intent of maximally spreading the data across the visualization.

The first technique maximizes entropy over the HRC coordinates, where maximal entropy

indicates uniformity of the data across the HRC axes. First, define a grid of Ng centers over

the [0, 1] × [0, 1] HRC axes. A density du is computed using Radial Basis Functions for

each grid center u as,

du =
∑
x∈X

1

σ
√

2π
e‖h(x)−u‖2/(2σ2), (5.11)

In order for these densities to act as probabilities for a larger entropy calculation, a

normalization is performed as,

d̃u =
du∑

u∈Grid
du
. (5.12)

This yields an entropy for the grid as

H = −
∑

u∈Grid

d̃u ln d̃u, (5.13)
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where ln Ng is the maximum possible value of H on the grid. Therefore, H can be scaled

by this maximum to form another objective to maximize,

J3 (h1(X), h2(X)) =
H

ln Ng
. (5.14)

Whereas maximizing J3 seeks the most uniform spread of the data across the

groupings, a minimization would seek the most Gaussian representation and could be

used to help identify outliers. The apparent limitation of this objective is the choice of σ.

Fortunately, it is known that the coordinates are always within the interval [0, 1], no matter

the groupings. This makes selection of σ a desired sensitivity that only causes issues if

there are many outliers or singleton points in cells. Figure 5.10 shows the optimal J3 for

the Breast Cancer data withσ = 0.025 and a 33×33 grid. The benign and malignant classes

(a) J3. (b) Densities.

Figure 5.10: Breast Cancer.

are noticeable by the two separated areas with large density, and in the HRV visualization

the presence of two classes is made obvious by the histograms. Figure 5.11 shows the

densities with different spread parameters. Although the optimal visualization in this case
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would be the same, it can be seen that a σ < 0.025 identifies too many regions of interest,

while a σ > 0.05 is too smooth. In practice, σ = 0.025 worked well on data.

(a) σ = 0.01. (b) σ = 0.05.

Figure 5.11: Breast Cancer σ Comparison.

A few other objectives, more simple than J3, also serve to spread the data as best as

possible within the visualization. Such approaches can be particularly useful in trying to

identify outliers. Maximizing the absolute value of the correlation between axes would

best spread the data along the (h1, h2) diagonal, but likely also makes the visualization very

linear and makes it harder to see data characteristics. A similar idea is to maximize the

combined (h1, h2) spread. One way to do this is to multiply the variances found in each

direction,

J4 (h1(X), h2(X)) =

2∏
i=1

Var(hi(X)). (5.15)

Another is to force the spread to the extremes in both directions simultaneously while trying

to avoid bias in any one direction,

J5 (h1(X), h2(X)) =

2∏
i=1

(
max
x∈X

hi(x) −min
x∈X

hi(x)
)
. (5.16)
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These objectives are shown for the Wine Quality dataset in Figure 5.12. The groups

found are different than with the supervised objectives, with significantly more overlap

between classes for this dataset. However, outliers are clear from these visualizations,

and the groupings indicate a subset of features that make these outliers so different. With

well-separated data, these objectives would also still yield valuable visualizations for class

structure exploration.

(a) J4. (b) J5.

Figure 5.12: Wine Quality.

All of the objectives presented may yield valuable insight into class structure, outliers,

possible clusters, and discriminatory features. Additionally, they can be used in an

interative fashion to find small groups of discriminatory features. However, for truly high-

dimensional data, techniques need to be developed to solve Equation 5.6 because complete

enumeration is likely not possible. To do this, two methodologies are developed here.

First, a simple heuristic is proposed to generate an optimal or pseudo-optimal visualization,

shown as Algorithm 5.1.
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Algorithm 5.1 Local Search with Random Poll
1: Parameters: m = Max Iterations, q = Mutate Probability

2: i← 1, s← dp/2e

3: y1, y2, . . . , ys ← 1, ys+1, ys+2, . . . , ys×2 ← 0

4: J ← Jt (X, y)

5: while i < m or until convergence do

6: ỹ← y

7: G1 ←
{
j : y j = 1

}
, G2 ←

{
j : y j = 0

}
8: r1, r2, r3 ← random(0, 1)

9: if r3 ≥ q (Switch features between groups) then

10: r1 ← ds × r1e, r2 ← ds × r2e

11: ỹG1(r1) ← 0, ỹG2(r2) ← 1

12: else (Consider random permutation)

13: Rp ← Random Permutation(1 : 2s)

14: ỹRp(1:s) ← 1, ỹRp(s+1:2s) ← 0

15: end if

16: J̃ ← Jt (X, ỹ)

17: if J̃ > J then

18: J ← J̃, y← ỹ

19: end if

20: i← i + 1

21: end while
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The heuristic proposed is very similar to a simulated annealing algorithm, with the

exception that there is no cooling to allow for movement to a bad solution. Instead, the

random poll is used more frequently in lieu of allowing a move to a worse solution. The

random poll can also be thought of as a mutation, as an entirely new permutation of features

is generated for the two groups. This algorithm is beneficial over many heuristics in that

the number of parameters is minimal. Although a genetic algorithm would yield more

diversity initially, the random poll arguably provides more diversity over time and this

algorithm requires less data storage at any iteration. This could be of particular concern for

J3, and because the objectives are not easily updated when the groups change. Therefore,

to maintain efficiency while allowing for some method of escape from local optima, more

of a stochastic optimization approach is used. On a non-mutation or non-poll iteration,

features are swapped between groups. As with any heuristic, convergence is dependent on

the starting iterate and the number of iterations used, perhaps moreso the latter due to the

stochastic approach. This is necessary however, as the size of the feasible solution space

grows very large as the number of features increases.

As an alternative to Algorithm 5.1, non-linear programming methods can also be used

if the binary constraints are relaxed, making Equation 5.6 a highly non-linear objective over

continuous variables. In this case, an interior point or active set method, as two examples,

can be used on the problem. After solving the relaxed problem, the yi variables can be set

to 0 or 1 based on magnitude such that the largest dp/2e become 1 and the remaining are

set to 0. A comparison of these approaches is discussed in Section 5.3.3

5.3.2 3-Dimensional Hyper-Radial Visualization.

The R from original HRV was not used for the improved two-dimensional HRV

visualization. This was for two reasons: 1) it provides redundant information and

2) removal freed a third axis for another HRC coordinate. This third coordinate can

help to alleviate crowding as the number of classes, features, and exemplars increases.
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Incorporating a third group is enabled in Equation 5.6 by adding another set of binary

variables, and using dummy features as needed to ensure equal group size (and thus, no

bias). To expand the formulation to three groups, the binary constraints become,

p∑
i=1

yi = dp/3e (5.17)

p∑
i=1

zi = dp/3e

yi + zi ≤ 1 for i = 1, . . . , p

yi, zi ∈ {0, 1} , for i = 1, . . . , p.

The Wine dataset is a good example of the benefit provided by adding the third group.

The dataset is generally thought to have well-behaved class structure [19], but with only

two groups there is still class overlap in the visualization. However, using a third group

distinguishes the class boundaries better, as shown in Figure 5.13. In both cases, these

visualization were found using Algorithm 5.1 with m = 8500 and q = 0.4. The three-

dimensional visualization suggests that the third cultivar can be largely distinguished by

the seventh, ninth, eleventh, and twelfth features. Figure 5.14 provides a comparison to the

t-SNE visualization and the first three major components from PCA. As can be seen, the

improved HRV provided a clearer distinction between classes.

The MNIST dataset has a much larger number of features. With all ten classes

included, the visualization is still too crowded, but consider the full training 0 and 1 classes.

Removing pixels that are zero for all exemplars from both of these classes, the number

of possible groupings is still
(

617
206 206 205

)
= 617!/

(
(206!)2 205!

)
. Figure 5.15 depicts two

solutions solving the relaxed problem with an interior point method.

Using the J1 objective, the 1-digits present distinctly lower across Groups 1 and 3,

and it is obvious that there are two classes present even without class information in the

visualization. Using J2, Group 1 is highly discriminatory and the 1-digits present distinctly
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(a) Two Groups. (b) Three Groups.

Figure 5.13: Wine J1.

(a) t-SNE. (b) PCA.

Figure 5.14: Wine Visualizations.

lower in Group 2. The heuristic with a similar number of iterations to that used by the

interior point method, 2000 ≤ m ≤ 4000, typically provided a J1 visualization that did not

discriminate as well in the pure visual sense, and a J2 visualization that was very similar to
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(a) J1. (b) J2.

Figure 5.15: MNIST.

Figure 5.15(a). In the unsupervised case using the heuristic, J5 typically yielded the same

visualization as Figure 5.15(a).

Previously, data projections were discussed both as visualizations themselves and

inputs to visualizations. As MDA provides the optimal linear linear projections for class

separation, the MDA component scores should visualize better in HRV than PCs scores if

the improved HRV is a ‘good’ visualization. Using a random sample of 600 exemplars from

each class in MNIST for sparsity purposes, Figure 5.16 shows the J1 optima on the PC and

MDA scores for the nine major components in each case, where here the histograms are not

included so as to provide more space. The PC scores are more compact and have significant

overlap in any direction, while the MDA scores break out nicely by class. Further, the MDA

scores provide a better geometry that in the unsupervised setting might suggest the presence

of multiple classes. This is a validation of the improved HRV visualization.

5.3.3 Further Visualization Analysis.

The improved HRV visualization can also be applied to HSI data after it has been

reshaped to pixel-by-band. First, consider Figure 5.17. Here, all target pixels and an

additional random sampling of background pixels from ARES1D were chosen, for a total
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(a) PCA. (b) MDA.

Figure 5.16: MNIST J1.

of 1,000 pixels. This sample is shown in Figure 5.17(a). t-SNE on this sample separate the

targets and background fairly well, but not as well as HRV using J1 or J4 where there is clear

linear separation between the two classes. Figure 5.17(c) shows that the first two PCs also

nearly separate the data, but not as well. Using the first 18 PCs from the MDSL cut-off and

their scores, the separation becomes far less obvious within the HRV visualization. This

showcases the strength of the improved HRV method and its ability to maintain desirable

properties of the data.

Now, recall from Section 4.3.1 the various complexities of the HSI images. From the

metrics that were shown, it was implied that ARES2D has more class overlap and is more

complex than ARES1D. The J1 visualizations for these images are shown in Figure 5.18. It

is clear from these visualizations that ARES1D is more linearly separable than ARES2D,

as suspected, although a subset of the targets in ARES2D are significantly different than

background.
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(a) Sample. (b) t-SNE. (c) PCs 1 and 2.

(d) PCs J1. (e) HRV J1. (f) HRV J4.

Figure 5.17: ARES1D Visualization.

At this juncture, further investigation of Algorithm 5.1 and the relaxation seems

warranted. For the heuristic, an experiment with 30 replications of each setting was

conducted, where m, q, the number of groups (2 or 3), the objective, the dataset, and the

starting iterate were varied. The starting iterate was selected based on the original order

of features or by calculating the extended Fisher ratios for each feature, choosing that with

the highest ratio remaining, and grouping it with all other features that were absolutely

correlated 0.8 or higher. The intent for this alternative starting iterate was to guess at

which features would provide good discriminatory groups. The Wine Quality, Wine, and

MNIST data sets were used for the experiment, where only the 0 and 1 classes were used
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(a) ARES1D. (b) ARES2D.

Figure 5.18: ARES1D and ARES2D Comparison.

for MNIST. m was varied within [500, 10, 000] and q was varied within [0, 1]. In general,

Algorithm 5.1 showed better objective values when q was non-zero and as m increased, and

was fairly efficient in converging to local maxima. The alternative starting iterate did not

conclusively provide better solutions.

For the relaxed version of the formulation, the objective, starting iterate, number of

groups, optimization algorithm, and method of setting the yi after solution were varied

across the three data sets. Both an interior point method and active set method were used to

solve the non-linear program, so as to achieve at least local maxima. The yi variables were

set to 1 and 0 by sorting the final relaxed solution by magnitude and splitting them into

appropriate groups, or by applying the same methodology at the end of each iteration of

the optimization process. As one might hope, this methodology had little impact on either

the solution or the efficiency. Further, the yi only sometimes broke into distinct groups once

sorted by magnitude, where other times the distribution was very linear in nature. These

solutions may have suggested local maxima that could be far from the global maximum, or
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at least that the technique of taking the largest variables and putting them into one group

may not always be the best solution. However, solving the relaxed problem proved to

be highly efficient as well despite the presence of so many variables, is less random, and

found better solutions than the heuristic in some cases. The active set method provided

better solutions for the three-group case with J1, but otherwise the interior point method

provided slightly better solutions.

Unfortunately, deeming one method or setting entirely better than another proved

extremely difficult during analysis due to the variability. The heuristic often found better

values for the J1 objective on the data sets, but the interior point method found a few better

solutions, and more consistently, for the J2 objective. A table with best objective function

values found for J1 and J2 specifically is shown as Table 5.2 for lack of a better analytic

synopsis. The best values found for the Wine Quality and Wine data sets were, in fact,

Table 5.2: Algorithm Comparison.

Dataset

(Number of Groups)
Heuristic - J1 Relaxed - J1 Heuristic - J2 Relaxed - J2

Wine Quality (2) 1.19 × 10−9 1.37 × 10−10 1824.72 1824.72

Wine (2) 6827.86 6100.36 119.75 119.75

MNIST (2) 4.36 × 10−8 1.6 × 10−9 4654.09 9765.89

Wine Quality (3) 3.89 × 10−22 8.7 × 10−27 1788.25 1290.06

Wine (3) 4.85 × 10−10 1.73 × 10−11 120.81 116.53

MNIST (3) 9.78 × 10−20 6.2 × 10−21 6187.81 11918.34

optimal. Again, no optimal settings or trends beyond those already discussed were evident

from the experiment. Improvement in the objective from the starting iterate was always

observed, however.
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In general, the visualization methodologies proposed work best with a moderate

number of features and a few classes. As with any visualization, its capability is

constrained by the amount of feature information that can be maintained in a low

dimensionality. However, improved HRV seems very useful and intuitive in identifying

data outliers, structure, discriminatory feature groupings (even dynamically), comparing

transformations, and comparing potential classification complexity. The technique is

very simple and does not change the inherent properties of the data, making it easy to

interpret. Additionally, the visualization is computationally efficient given the formulation

and solution methodologies presented.

With band removal, truth mask analysis, and now visual interpretation of the HSI

data achieved, focus is put primarily on developing anomaly detection algorithms. The

improved HRV is used again in Chapter 7 to contrast data skeletons, but first, a global

anomaly detection framework is developed.
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VI. Factor-Based Global Anomaly Detection

Johnson’s AutoGAD [111] and Jablonski’s MPCA [107] algorithms have been shown

to perform extremely well on certain HYDICE imagery. In fact, Jablonski [107] also

showed that re-defining one of Johnson’s parameters could greatly increase AutoGAD’s

TPF, although it also increased the FPF. Both of these methods rely heavily on measures

generated from principal components, where the resulting mappings are not easily

interpreted. Due to their high performance, these techniques are used as the primary

comparisons for methods developed here.

Given the strong performance of the factor model in Chapter 4 for purposes of

band selection, investigation into using factors within related frameworks is warranted.

Whereas PCA yields the direction of principal variance in the image, factor analysis with

a rotation groups the variables according to a predetermined notion of structure. This

enables more direct interpretation of the components, while not affecting reconstruction

error. Ideally, these components reveal better or more efficient mappings with which to

identify anomalies, as certain bands and areas of the spectrum are grouped together.

Before proceeding, recall that in this research a slightly different set of bands are

being used for the HSI analysis than in the originating AutoGAD and MPCA research.

Experimentation showed that this had little impact on the TPF and FPF rates for the

AutoGAD and MPCA algorithms at their published optimal settings. Also, recall that

border pixels in ARES images that have such pixels in their truth masks, are treated entirely

as background due to the insights from Chapter 4. As discussed previously, in general, this

reduces TPF rates and increases FPF rates in comparison to the originating AutoGAD and

MPCA research. In those cases, border pixels were used in the numerator for the TPF and

denominator for the FPF. Thus, such rates in this research are more conservative.

192



This Chapter begins by discussing the AutoGAD and MPCA algorithms and

investigating direct application of Factor Analysis (FA) into those methodologies. A

technique is also established for experiments on the respective algorithms. Next, specific

areas of those algorithms are discussed and experimented with in more detail, in order to

help shape a refined framework in which to use FA. Finally, the resulting framework is

analyzed and optimized to provide a new global anomaly detection algorithm for HSI.

6.1 Existing Component-Based Global Anomaly Detection

The AutoGAD and MPCA algorithms, previously presented in Sections 3.11.3 and

3.11.4, are used as primary points of comparison and motivation for the algorithms

developed here. The AutoGAD and MPCA have several concepts in common, and neither

provides mappings that are directly interpretable. The AutoGAD algorithm begins by

converting the major principal components (PCs) into independent components. This is

done via Fast ICA, and is not deterministic. From the set of resulting components, those

with a maximum score above a threshold and potential anomaly (PA) SNR above another

threshold are selected for IAN filtering. The PA SNR is calculated by finding the first zero

count bin from the center in a histogram of the component scores, and splitting the pixels

into background and potential anomaly based on this location. The PA SNR is defined as,

PA S NR = 10 log10
var (potential anomalies)

var (background)
. (6.1)

Nominated components are filtered using a moving smoothing window, or neighbor-

hood, of size w × w pixels. For each pixel’s neighborhood, a mean and variance estimate

are taken and the current pixel score is replaced with a filtered score,

scorenew = µ +
σ2 − v2

σ2

(
scoreorig − µ

)
, (6.2)

where µ is the neighborhood mean, σ2 is the neighborhood variance estimate, and v2 is the

average of the neighborhood variances, treated as an estimate for the system noise variance

[110]. Depending on how many times this is done, it can significantly affect the mapping,
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and is used to better separate anomalies from background. It is advantageous in that it

provides a spatial element the algorithm. After filtering, each component is thresholded

again using the first zero-bin histogram in order to determine anomalous pixels. Both

negative and positive scores can be thresholded and evaluated by performing the zero-bin

detection on each side of the center of the scores. After experiments on both the HYDICE

and AVIRIS imagery, the author can confirm that the ICA step is important to success of

this algorithm, in comparison to only using the PCs.

Alternatively, MPCA builds four new, aggregate components from the IAN filtered

PCs, using reconstruction error, sums of the major components and minor components,

and medians. These new four components are then filtered themselves, and thresholded

based on the first zero-bin histogram method. Potential anomalies are removed from the

covariance estimate that was used to build the original PCs, and the process occurs again,

where on the second iteration, PA SNR is used to remove components that may yield high

false positives. Upon completion, a vote is taken of the remaining components in order to

derive anomalies.

Both AutoGAD and MPCA use a large number of parameters. Optimal settings for

AutoGAD, based on a RPD for several HYDICE images, are shown in Table 6.1. Jablonski

replaced the bin width parameters bS NR and bi for the zero-bin histogram steps with a re-

defined single bin width size parameter Y that adjusted the width to the range of scores for

the component and number of pixels in the image N, such that this bin width ω was found

for any mapping by,

ω =
Y
N

(max(scores) −min(scores)) . (6.3)

Using Y = 300, he found higher TPF rates than the RPD optimal settings on the same

imagery, but also increased FPF rates [107]. This was due to zero-bin detection becoming

more sensitive on certain components and less sensitive on others. Larger values of Y
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Table 6.1: Base AutoGAD Parameter Settings [111].

Parameter Name Setting

ck MDSL Dimension Adjust -1

bS NR Bin Width SNR 0.03

tS NR PA SNR Threshold 3

tMS Max Score Threshold 9

tl Low PA SNR 10

Ih IAN Filtering Iterations (High SNR) 100

Il IAN Filtering Iterations (Low SNR) 20

w Window Size for IAN Filter 3

bi Bin Width Identify 0.06

yielded even higher TPFs, but began to greatly inflate the FPFs. Due to the high margin

of improvement on the TPF rates for some images such as ARES4F and ARES2F (> 0.2

increase), this version of AutoGAD with Y = 300 and the Table 6.1 settings otherwise, is

used as a base comparison in this research.

In order to optimize the MPCA algorithm, Jablonski fit a second order model without

interaction terms to a three-level full-factorial design using the response,

(µT PF − 1)2 + 3µ2
FPF + 3σ2

FPF , (6.4)

where this was a function of mean TPF rate, mean FPF rate, and sample variance for the

FPF rates across a training set of images [107]. This was designed to generate low false

alarm rates. His resulting optimal settings for MPCA are shown in Table 6.2.

When validating MPCA on images with no targets, originally he saw a higher FPF.

For example, ARES1C had a 0.106 FPF and ARES2C had a 0.073 FPF. To negate this, he

thresholded Johnson’s Potential Anomaly SNR measure from AutoGAD [110], Equation

195



Table 6.2: Base MPCA Parameter Settings [107].

Parameter Name Setting

ck MDSL Dimension Adjust -4

Yinitial Initial Detection Sensitivity 0.249

Y f inal,D1 D1 Final Detection Sensitivity 3.5

Y f inal,D2 D2 Final Detection Sensitivity 2.774

Y f inal,D3 D3 Final Detection Sensitivity 2.856

Y f inal,D4 D4 Final Detection Sensitivity 2.295

ID,23 D2,3 IAN Filtering Iterations 8

ID,4 D4 IAN Filtering Iterations 2

Ipc PC IAN Filtering Iterations 2

w Window Size for IAN Filter 3

6.1, on the components Di, where the background and potential anomalies were again

chosen by the first-zero-bin histogram method. This threshold improved MPCA’s FPF on

test and validation images, and included reducing the FPF for ARES1C and ARES2C to

0. After experiments in this research, it was confirmed that it also affected his training

images’ rates only slightly, with the exception of the ARES1D image. Using the optimistic

truth mask as he did in his research (i.e., treat border pixels as targets if they are declared

targets), the ARES1D TPF reduced from 0.988 to 0.926 while the FPF reduced from 0.043

to 0.029. As it turns out, this is partly due to the homogeneity of the target pixels in some

of the primary components for the ARES1D image, thus yielding a low PA SNR. Baseline

MPCA results shown in this chapter include the SNR threshold.

AutoGAD and MPCA are of such high interest, because factor analysis may provide

more interpretable components than these existing methods and ideally better separates
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background and anomaly as a result. The groupings of bands found after rotation, assuming

that the fundamental assumption of anomalies being significantly different than background

holds, should yield mappings that reveal where in the spectrum anomalies are different

than background. PCA does this in part, but the components are entirely based on variance

distribution. Varimax rotated factors take these components and highly load the bands

onto respective factors. Specifically, the Varimax rotation maximizes the variance of the

loadings, while constraining the factors to be uncorrelated [115]. Thus, where anomalies

are significantly different in radiance on the spectrum, because materials reflect differently

in different areas of the spectrum, should be revealed by respective factors. As a result,

these factor mappings may provide better distinction between background and anomaly,

and representations of the materials found in the image. In the case of AutoGAD, an

additional advantage is that if factors could be used instead of independent components,

this increases the efficiency of the algorithm and removes the random component of its

performance.

6.2 Component Generation and Selection

Investigation can begin by evaluating components at different stages of the existing

algorithms, and by evaluating versions of AutoGAD where ICA is not performed, or only

PCA or Factor Analysis (FA) are performed within a similar framework. Table 6.3 shows

the maximum two-class Fisher ratio (Equation 3.81) of components for different stages

and versions of each algorithm, comparing full pixel targets to background, for many of

the HYDICE and AVIRIS images. Here, the PCA, ICA, and Factor Analysis (FA) rows

depict those variations of AutoGAD, where the respective components are used. For factor

analysis, the Varimax rotation is applied. The ICA case is a mean of twenty repetitions

of standard AutoGAD, where there was negligible variability. The Thres rows of the table

list the maximum ratio among only those components meeting the maximum score and PA

SNR thresholds from Table 6.1, IAN denotes after the IAN filtering iterations, and MPCA
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is split into before and after removal of potential anomalies towards constructing the Di

components. The mean and standard deviation of all components under consideration were

also computed for each of these variants, but did not provide a great deal more information.

Table 6.3: Max Component 2-Class Fisher Ratio.

Table 6.3 provides useful insight. First, the separation of target and background on

any single component is not critical to the success of AutoGAD or MPCA. Rather, the

fusion of information across several good components is more important. For instance,

based on experimentation it was found that MPCA truly has better results after the second

iteration, yet the Fisher ratios are all lower after the iteration. This suggests components

that represent different characteristics of the image would be most useful, perhaps such as

those found by FA. The fact that these ratios were not always higher after IAN filtering

for AutoGAD with ICA also supports this. The benefit of filtering was shown when

AutoGAD’s parameters were optimized by Johnson, yet lower Fisher ratios suggest that

only certain target pixels are being accentuated for different components.
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Before investigating these algorithms further, consider the ARES1D, ARES1F, and

ARES4F images specifically. Figure 6.1 depicts IAN filtered factor scores for the three

factors with the highest loadings for ARES1D. The first factor seems to represent the

(a) Loadings. (b) Factor 1: 2 IAN Iters.

(c) Factor 2: 10 IAN Iters. (d) Factor 4: 2 IAN Iters.

Figure 6.1: ARES1D Factors.
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background in total, with full pixel targets revealed on the mapping. The second factor

reveals brush, and the third reveals vehicles and brush. Thus, these each represent different

materials in the image. The IAN filtered versions are shown here so as to simultaneously

reflect how increasing smoothing affects mappings. At first, it is tempting to think that

factors with the very highest loadings are those desirable to use in order to find anomalies.

However, in practice this seems to be very much a function of the image. For example,

with ARES4F and ARES1F, the best discriminating factors for anomalies do not have

the very highest loadings. Figure 6.2 shows the loadings matrix (band-by-factor), and

scores for two of the ARES4F factors before any filtering is applied. The second factor

(a) Loadings. (b) Factor 2. (c) Factor 6.

Figure 6.2: ARES4F Factors.

reveals a material in the image and a few targets, while the sixth represents all background

materials, thus yielding many more of the targets. When compared with three of the best

discriminating PCs from that image, shown in Figure 6.3, it is clear that the factor scores

200



are more meaningful. The PCs represent a mix of materials in the image, and have more

pixels at both ends of the score range or near many target pixels within a small interval of

the score range.

(a) (b) (c)

Figure 6.3: ARES4F PCs.

This does not imply that all factors provide great discrimination of materials. Some

are still noisy and yield little discrimination, thus describing regions of the spectrum where

many of the materials in the image are similar. However, in practice, various materials

of each image were consistently represented by factor mappings within a MDSL cut-off

set of factors. This also suggests that the factors could be used to estimate the number of

materials, or endmembers, in an image. Figure 6.4 depicts three of the better discriminating

ICs for ARES1F (for a given ICA run), excluding two where the road and only some of the

targets were revealed. Provided for contrast is one of the factors before any smoothing is

applied, shown in Figure 6.5. The factor represents the entire background and reveals all
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targets, and admittedly a slight amount of vegetation on the edge, while a combination of

the ICs must be used to find all targets.

(a) (b) (c)

Figure 6.4: ARES1F ICs.

Factor analysis is promising, as even the Varimax rotation is not that computationally

expensive and the mappings shown discriminate well. However, the same problem as other

methods exists. A methodology needs to be used in order to find the specific factors that

can discriminate target from background, i.e., the background factors. Further, these factors

may need to be smoothed or adjusted so as to make it easier to autonomously identify

the potential anomalies. In this research, it is desirable for such a process to be entirely

unsupervised. Aside from those methods used by Johnson and Jablonski, a few others exist

in the literature for an unsupervised image. Gu, Liu, and Zhang [84, 145] used the Local

Singularity rule, a threshold on kurtosis and skewness within local windows, to pick best

PCs for RX. This made sense in such a context, as anomalies would break the RX Gaussian

assumption for a window. Unfortunately, this does not work if applied globally outside of
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Figure 6.5: ARES1F Factor.

RX, as it is already known that HSI images are typically not Gaussian. They also cited the

Minimum Noise Fraction rule, but such a rule requires an estimate on the noise. Given the

strength of the maximum score and PA SNR rules utilized within AutoGAD and MPCA, it

makes sense to also try and apply them to the factors.

Relatedly, brief investigation into generating new features from the factors is

warranted. Kotwal and Chaudhuri [127] developed an optimization process to find the best

linear combination of spectral bands and pixels in order to visualize an HSI image. They

optimized a function of entropy and variance, where each band had a set of coefficients to

optimize for each pixel. At first glance, this technique may seem useful to also generate a

new fusion feature for anomaly detection, somewhat akin to MPCA. However, in modifying

this technique to optimize over the factors instead of the bands, and using only one

coefficient per band, this optimization becomes nearly equivalent to finding a PC or IC.
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The component ideas from MPCA can also be applied directly to the factors from FA,

yielding a multiple factor analysis algorithm. The reconstruction component D3 would be

the same, as the factors are just rotations of the PCs. The D1 component can be applied

directly to the factor scores. The D2 and D4 components can either remain as they were as

a function of the minor PCs, or a larger factor model can be assessed and these components

can be estimated based on the minor factors of the factor model. This idea, smarter use of

maximum score and PA SNR, and factor analysis within AutoGAD are all explored next.

6.3 Direct Application of Factor Analysis

Algorithm 6.1 shows the AutoGAD-like factor analysis framework used in these

initial experiments. Note, this is very similar to AutoGAD with FA replacing ICA. FA

is performed using the covariance matrix and the unweighted least squares solution for

the scores, as presented in Section 3.4. An initial smoothing was added, and maximum

scores were taken before any smoothing. The bin width parameters were set without using

the range of scores, setting the bin width to a pixels per bin Y divided by the number of

pixels in the image. Both negative and positive scores were thresholded when assessing for

potential anomalies.

Table 6.4 shows TPF and FPF results for several variations of the AutoGAD and

MPCA algorithms on a set of ten images. Again, these TPFs and FPFs treat any border

pixels as background. Best TPF and FPF values are highlighted by image. The AutoGAD

(ICA) column is a mean of 20 runs, and using Y = 300/N = bS NR = bi for a common bin

size parameter within the first zero-bin detection algorithm. The first two MPCA columns

are Jablonski’s full MPCA algorithm with the value used for YInitial in parentheses. The

MPCA (Simple) column uses the simplified form without the minor nuances he added to

greater avoid false positives, i.e., Algorithm 3.3. All parameters were set to those from

Table 6.1 and Table 6.2 unless otherwise denoted. Of note is that focusing on full-pixel

targets for the TPF greatly reduces the MPCA TPF on certain problems. For example, the
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Algorithm 6.1 Test FA AutoGAD
1: Remove absorption/noisy bands and reshape the data cube to N × p.

2: Xc
N×p ←

(
XN×p − 1N×1µ

T
)
: data is centered.

3: bi = bS NR ← YID/N = YS NR/N.

4: Find eigenvectors V and eigenvalues Λ from cov
(
Xc

N×p

)
: do PCA.

5: Use MDSL to determine the dimensionality k. Lp×k ← Vp×kΛ
1/2 denotes the factor

loadings.

6: Varimax rotate the loadings to yield L̂p×k.

7: Compute the factor scores: FN×k ← Xc
N×pL̂p×k

(
L̂T

p×kL̂p×k

)−1
.

8: For any 1 ≤ i ≤ k:

9: if |min(F i)| > max(F i) then

10: F i ← −F i.: Negate the i-th set of factor scores.

11: end if

12: For each factor mapping F i, mi ← max(F i).

13: snri ← PA S NR(F i).

14: Retain F i if mi ≥ tMS and snri ≥ tS NR, otherwise discard this factor.

15: F i ← IAN(F i), with Il iterations if snri < tl. Otherwise use Ih.

16: for r ∈ {−1, 1} (Check both positive and negative scores) do

17: Define ηi ← PA S NR(r × F i) as the threshold from the first-zero bin histogram,

using scores separated into background and potential anomalies.

18: if r × F i
j > ηi then

19: Declare pixel j anomalous.

20: end if

21: end for
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TPF for ARES4F reduced from 0.887 to 0.679. This was true for a few images, indicating

that AutoGAD is perhaps more competitive with MPCA than originally thought. The effect

of the PA S NR threshold and slight nuances in MPCA are also evident in reducing the FPFs

from Simple MPCA. Finally, it can be seen that YInitial = 0.239, which Jablonski used to

help lower FPFs, greatly affects the TPFs rates in a few cases. These drops aren’t quite as

dramatic as they first appear due to the small number of target pixels, but they are of note

nonetheless.

Table 6.4: Algorithm Comparison.

The remaining columns of Table 6.4 are variants of Algorithm 6.1, and MPCA with

factors in some form instead of PCs. The MPCA (FA:0.1) column used a set of the rotated

factors (MDSL criterion plus ck retained) for D1 and YInitial = 0.1. This provides no benefit,

and could be partly due to the mix of factors and PCs in the Di components. Not included

in the table, but investigated, was rotating all of the PCs for a full-factor model within

the MPCA framework. This lowered the TPF for ARES4F to 0.6422 and the TPF for
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ARES1D to 0.7106, while other rates remained approximately the same. This could be

due to the rotation incorporating too many factors and removing meaning of the factors,

or simply because the parameters were not re-optimized, even though most of the rates

remained similar. The final column used factors instead of PCs within Simple MPCA,

where the trailing factors were the last k, and the major factors the first k, of a 2k-rotated

factor model. This generally increased the FPFs, but provided a better TPF on ARES1D.

Using a full rotated factor model within the MPCA framework was also investigated, both

in rotating the first k independently of the rest, and rotating all p factors simultaneously.

Neither of these methodologies showed benefit.

The FA AutoGAD variants shown removed ICA entirely, as ICA on factors yields the

same ICs as the PC case. Upon initial investigation, it became evident that the previous PA

SNR and maximum score thresholds from Table 6.1 were too high for the factor scores. For

example, the first factor for ARES1D that had such desirable properties and was previously

shown in Figure 6.1(b), has a PA SNR below two and a maximum score below nine.

Such occurrences suggested a certain homogeneity of the target factor scores. Further

investigation revealed that PA SNR thresholds even as low as zero and −∞ (equivalent

to ignoring the threshold) still provided reasonable results across problems while only

slightly increasing FPF. Reducing the maximum score threshold also helped, as did varying

the IAN iterations, as shown by the AutoGAD (FA:0,20) column where tS NR = 0 and Ih

was lowered to 20 from the usual 100. This made sense in that too much filtering could

smooth out targets where targets are more homogeneous, even though they are distinct from

background. In these AutoGAD with FA results in Table 6.4, a maximum score threshold

of 7 was used.

Clearly, for a factor-based technique the parameters required a new investigation and

optimization, and the methodology required refinement. Part of the allure of MPCA is

that it uses information from all PCs. Unfortunately, the Di components are not directly
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interpretable. FA also utilizes all information found in the image, in a way, by rotating the

components to have high loadings. This is additionally beneficial in that the factors are then

interpretable in terms of regions of the spectrum, and thus, materials in the image. Another

consideration is the size of the factor model, and as to whether a full, rotated factor model

is necessary. In practice, the desirable factors seemed somewhat invariant to small changes

in ck for retention, and the minor factors only seemed to duplicate information found in

the primary factors or added noise. As anomalies contribute noise to the data, trailing PCs

and factors may have anomalies contributing to them such that some background materials

could score high. In this sense, it is not important to maintain any factors from outside a

MDSL-criterion reduced model. Given the results from Table 6.4 and experimentation, and

because a revised AutoGAD framework is highly reproducible, developing a new form of

algorithm based on the AutoGAD framework was the best path forward. Admittedly, the

FA-based MPCA algorithms were not optimized necessarily, but they are also problematic

because the factor scores are combined and uninterpretable. Again, as on certain problems

the factor scores are more homogeneous within-factor than they were in the PC case, this

can further adversely affect the resulting Di components for purposes of discrimination.

In order to improve AutoGAD, first, ICA is replaced with Varimax rotation factor

analysis. This removes all randomness from the algorithm, assuming convergence of

the rotation. This convergence was never an issue in practice. The factor analysis step

also avoids the computational expense from ICA in not having to solve the statistical

independence problem. There is still some expense due to the factor rotation, but it is

very minimal. Next, IAN filtering is added immediately following the factor rotation, and

before any factor thresholding. This takes place for Iinitial iterations between steps 12 and

13 in Algorithm 6.1. Such a technique showed promise in MPCA, and in experimentation

helped to improve the PA SNR values on images and discriminatory factors where they

were otherwise very low. Next, an initial set of RSM experiments were performed to
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investigate the parameters and feasibility of this modified algorithm, as well as for purposes

of developing a good operating point for further development. Experimentation in this

manner was necessary as the interactions between parameters can be significant.

First, a 36 full-factorial design was run using the initial settings in Table 6.5 for seven

images as a training set: ARES1F, ARES2F, ARES3F, ARES4F, ARES1D, ARES2D, and

VirginIslands1. The ARES images were used due to their different characteristics and

because they have truth masks, and the AVIRIS image was added to provide a different

type of scene and sensor. ck was not varied, as the specific eigenvalue cut-off did not

affect the factors that greatly in initial experimentation. The low PA SNR threshold for

smoothing was not varied or changed either here. Iinitial was set fairly low, keeping in mind

those images like ARES1D where too much filtering could have an adverse effect on the

scores. The two component threshold parameters were both varied over a range less than or

equal to previous AutoGAD optimal settings as a result of the prior analysis and findings.

The IAN filtering window size was not varied due to it being optimal in both AutoGAD

and MPCA, and representing a desired smoothing sensitivity for the filter.

After these runs were complete, a second order response model with two-way

interaction terms was constructed:

J(x) = β0 +

s∑
i=1

βixi +
∑

i, j,i< j

βi, jxix j +

s∑
i=1

βi,ix2
i , (6.5)

where s is the number of varied parameters. All terms except five of the interaction

terms were statistically significant using α = 0.05, and the resulting 23-term model had

a R2
ad j = 0.994. Originally, to explore higher TPFs, the response and objective function to

minimize was set to,

J(µT PF , µFPF , σT PF , σFPF) = 1 − µT PF + σT PF + 2µFPF + 2σFPF , (6.6)

where these means and standard deviations were over the seven training images. This

yielded optimal settings of approximately tMS = 6.19, tS NR = −3, YS NR = YID = 350,
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Table 6.5: Experiment 1 and 2 Settings.

Parameter Name Experiment 1 Experiment 2

ck MDSL Dimension Adjust -1 -1

YS NR, YID Average Number Pixels/Bin 150, 300, 450, 200, 350, 500

tS NR PA SNR Threshold -3, 0, 3 -3

tMS Max Score Threshold 5, 7, 9 6.19

tl Low PA SNR 10 10

Ih IAN Filtering Iterations (High SNR) 0, 25, 50 31

Il IAN Filtering Iterations (Low SNR) 0, 10, 20 20

Iinitial IAN Filtering Iterations Initial 0, 2, 4 3

w Window Size for IAN Filter 3 3

Ih = 31, Il = 20, and Iinitial = 3. Beyond this optimization, given that original AutoGAD

yielded such low FPF rates when using different bin widths for component selection and

anomaly declaration, the idea to allow YID , YS NR needed to be explored. Again, a three

level design and resulting model were used, but now only the two bin parameters were

varied. These were centered at the optimal just found. These settings are shown in Table

6.5 as Experiment 2. For this second test, a response similar to that used by Jablonski was

used to emphasize lower FPFs, with an additional term added to provide more consistent

TPFs:

J(µT PF , µFPF , σT PF , σFPF) = (1 − µT PF)2 + σ2
T PF + 3µ2

FPF + 3σ2
FPF . (6.7)

Only one term in the resulting model was statistically insignificant, yielding a model with

R2
ad j = 0.999, and the settings YS NR = YID = 500. This was somewhat surprising as it may

have been expected that this would greatly increase the FPF rate. In fact, this gave lower

FPFs on the AVIRIS data. The specific results using these new optimal settings for several
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problems were already shown in Table 6.4 in the AutoGAD (FA Opt) column. These results

showed great promise in providing better rates in some cases than MPCA or the original

AutoGAD algorithm. For the results in the AutoGAD (FA Opt Abs) column of Table 6.4,

one additional adjustment was made to the methodology. Here, the absolute value of each

factor mapping was taken before any histogram construction. This aided FPF rates, but

affected the TPF in a significant manner for ARES1D. Using the absolute value, only one

side of a score map had to be checked for potential anomalies with a large magnitude

while still considering the scores on both sides of the original score map. However, this

also reduced TPFs because more variation was added to the background estimates in the

histograms.

6.4 Investigating Specifics of the Framework

The experiments done in the previous section revealed a decent setting and algorithm

for anomaly detection using factor analysis. However, they also suggested that a more

rigorous approach and further deviation from the standard AutoGAD framework could

provide more improvement. Specifically, that rules adapting to the images and factors

would yield better results for certain images such as ARES1D, ARES1C, ARES2C, and

ARES4F.

Trying to develop a way or rules to identify images and/or factors that require special

consideration proved very difficult. Figure 6.6(a) shows the maximum factor scores, sorted

by magnitude, for the set of 10 images. Likewise, Figure 6.6(b) shows the PA SNR for

those factors in the same order.

From these plots, it can be seen that ARES1D, ARES1C, and ARES2C are

significantly more homogeneous than the other images. This is to be expected for

ARES1C and ARES2C as they have no anomalies. Meanwhile, the AVIRIS images have

a generally higher PA SNR and maximum scores, especially so for Scene1 and Ship1,
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(a) Max Scores. (b) PA SNR.

Figure 6.6: Training Set Max Scores and PA SNRs.

as shown in Figure 6.7. From the experiments so far, it has been shown that changing

parameters to increase TPF on ARES1D and others also increases FPF on ARES1D,

ARES1C, and ARES2C. The interactions amongst parameters makes optimizing all images

simultaneously much more complex.

FPF rates are generally higher on the AVIRIS images, and so similarly it could be

desirable to detect and distinguish such data sets. Interestingly, MPCA had TPFs of 0.586

and 0.321, and FPFs of 0.001 and 0.003 on the Scene1 and Ship1 images, while the thus far

optimal factor analysis algorithm had TPFs of 0.9977 and 0.9844, and FPFs of 0.0584 and

0.1033, respectively. The factor analysis appears to be somewhat better at detecting full-

pixel targets, while MPCA is somewhat better at reducing false positives. Now, consider

the PA SNRs after initial IAN filtering for the training set of images, shown in Figure 6.8.

The PA SNRs of ARES1C, ARES2C, and ARES1D improve after the filtering. This is

beneficial for ARES1D, but not images ARES1C and ARES2C that have no targets, as this

leads to false positives by making certain background pixels further separated.
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(a) Max Scores. (b) PA SNR.

Figure 6.7: Other Images’ Max Scores and PA SNRs.

Figure 6.8: Training PA SNRs After Iinit = 3.

In order to try and develop a set of rules to detect characteristics of an image and

adjust parameters accordingly for a more robust algorithm, the seven-image training set

was split into two subsets based on mean PA SNR. ARES1D, ARES1C, and ARES2C have
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the lowest mean PA SNRs for the retained factors. Meanwhile, the AVIRIS images have

the highest. These are shown for the training set in Table 6.6.

Table 6.6: Mean PA SNRs.

Image Mean Pre-IAN Mean Post-Initial IAN

ARES1F -0.4641 4.8604

ARES2F 6.0941 8.9990

ARES3F 1.9905 4.8934

ARES4F 8.7720 11.1967

ARES1D -1.2688 3.5736

ARES2D 7.5211 10.9008

ARES1C -4.0207 2.0793

ARES2C -6.0631 -0.5746

4Ships2 4.4274 7.8261

VirginIslands1 9.7433 9.6085

It seems that images with factors that likely need to be smoothed less have generally

lower PA SNRs, and images with factors that likely need to be smoothed more have

generally higher PA SNRs. Additionally, this mean metric is more telling after the initial

IAN filtering has been applied. Due to having the lowest means, ARES1F, ARES3F, and

ARES1D were chosen as one subset (from the seven-image training set used previously). A

37 full-factorial design was done over the parameters and settings in Table 6.7, performed

over wide ranges on the seven test images to try and learn over-arching trends. Again a

second-order model was fit, evaluated, and optimized using Equation 6.7 as a response.
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Table 6.7: Experiment 3 and Optimal Settings.

Parameter Name Settings Optimal

ck MDSL Dimension Adjust -1 -1

YS NR YID Average Number Pixels/Bin 200, 450, 700, 241

tS NR PA SNR Threshold -27, -12, 3 -27

tMS Max Score Threshold 2, 7, 12 5.5

tl Low PA SNR 0, 7.5, 15 15

Ih IAN Filtering Iterations (High SNR) 10, 55, 100 58

Il IAN Filtering Iterations (Low SNR) 5, 20, 35 12

Iinitial IAN Filtering Iterations Initial 0, 3, 6 0

w Window Size for IAN Filter 3 3

However, this response, model, and optimization was done three ways. First, using all

seven images, then using ARES1F, 3F, and 1D as a training set Low, and then using the

remaining four images as a training set High. This was done in this manner to investigate

if different sets of parameters could enable flexibility towards those images with lower PA

SNRs, assuming some criterion such as mean PA SNR could be used to choose a set of

parameters. Figure 6.9 depicts the TPF and FPF rates at each design point for the seven

images.

The optimal design point in all cases did not yield consistently improved rates across

images for this experiment number 3, as depicted in Table 6.8, despite models with

R2
ad j > 0.97. Here, a comparison is given to AutoGAD, MPCA with Yinitial = 0.1 due

to its increased TPFs, and the previous optimal settings (i.e., Table 6.4). The seven-

image optimal improved some TPFs with minimal impact to corresponding FPFs, but a

few images had significant drops in TPFs or increases in FPFs. The three-image optimal

215



(a) Design Points Set 1. (b) Design Points Set 2.

Figure 6.9: Experiment 3 Rates.

did improve those three images somewhat, but not necessarily to a significant effect. On

the contrary, the four-image optimal vastly decreased false positives, but at the expense of

true positives. This suggested that a decision rule for an entire image on the PA SNR may

not be adaptive enough to improve results.

The effect of smoothing was clear at this point, and so for a fourth experiment the

smoothing iterations were set equal to one another. In order to further investigate whether

the algorithm should adapt to an image as a whole, or its factors, the experiment with

settings and subsequent optimal as shown in Table 6.9 was performed. Here, the bin widths

were allowed to vary according to being above (Yhigh) or below (Ylow) the PA SNR threshold

tl. A model was fit and optimized for all three sets of images again, where the design

responses were as shown in Figure 6.10. Previous models had shown that interactions

between most of the parameters are significant, and this was evident in the results here.

All parameters were significant by themselves or as part of an interaction, with R2
ad j values

over 0.98 for the three models with statistically significant terms included. In this case,
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Table 6.8: Experiment Comparison.
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the settings were in no way ideal. Primarily, these experiments indicated that adjusting

parameters on characteristics of the entire image may not be sensitive enough, rather, that

it is more important to consider the individual factors. Aside from score homogeneity

influencing PA SNR, additional concepts were also affecting the algorithm performance.

Table 6.9: Experiment 4 and Optimal Settings.

Parameter Name Settings Optimal

ck MDSL Dimension Adjust -1 -1

Ylow Average Number Pixels/Bin 200, 400, 600, 200

Yhigh Average Number Pixels/Bin 200, 400, 600, 600

tS NR PA SNR Threshold -27, -15, -3 -15.25

tMS Max Score Threshold 5, 6, 7 7

tl Low PA SNR 15 15

Ih = Il IAN Filtering Iterations 10, 35, 60 60

Iinitial IAN Filtering Iterations Initial 0, 3, 6 5

w Window Size for IAN Filter 3 3

Consider Algorithm 6.1 again. In step 12, the maximum score was taken before

filtering. After quick investigation, it was confirmed that this should take place after

the initial filtering. The first zero-bin histogram also has an interesting sensitivity when

determining PA SNR. Figure 6.11 shows an example histogram of scores from ARES1F.

The first zero-bin histogram method finds the first zero count bin to the right of the center

of the scores, and uses this to separate the pixels into potential anomalies and background.

Therefore, if a component has different sets of anomalies, one set can alter the background
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(a) Design Points Set 1. (b) Design Points Set 2.

Figure 6.10: Experiment 4 Rates.

variance and make it more difficult to detect a component with true high SNR. Alternatively,

a first zero-bin on each side of the center could be found, where the scores in between could

be used to build the background variance. Although this latter “double-zero” method did

positively affect PA SNR estimates for a few components across images, in practice, it was

not significant and in some cases it also served to increase false positives. For those factors

with multiple classes of targets, there was typically another factor on which one of the

sets was also anomalous. Figure 6.11 is a good reference to show how bin width size can

affect the histogram method. Larger widths move the first zero to the right, this decreasing

FPF and TPF, while smaller widths move it to the left, increasing TPF and FPF. Given a

decision rule, this could be the best way to dynamically adjust the over-arching algorithm to

characteristics of the factor. In other words, factors with well-separated anomalies and high

PA SNR can support larger bin widths, while those with lower PA SNR that are not well

separated require a smaller bin width. Therefore, intelligent choices of smoothing iterations
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and bin width for each individual factor can appropriately adjust the scores and sensitivity

of the histogram, resulting in easier detection of anomalies and less false positives.

Figure 6.11: Zero-Bin Considerations.

Other factors not yet discussed also affect algorithm performance: anomalies in the

covariance estimate, thresholding both sides of the scores, using a fixed bin width for

each histogram, and sensor error present in pixels. Table 6.10 shows results for variations

involving some of these aspects and some already discussed, where the optimal from

Experiment 2 (Opt1) was used as a basis. Using a double-zero histogram (DBZH) for a

better background variance estimate provided little benefit over the improvement shown

by just thresholding the positive side of the factor scores (1 Side). Iteration, by removing

potential anomalies with a score ≥ 2.5 × tMS on any retained factor, helped to reduce false
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positives. Doing so repeatedly however, waiting for convergence of anomalies (Iter Conv),

did not prove beneficial and yielded factors that were too clean such that more background

was erroneously identified as anomalous. Eliminating all of the IAN filtering, except for

the initial smoothing, yielded exceptional TPF rates for ARES1D and ARES4F, making

it obvious that smoothing on those images can actually make it more difficult to identify

anomalies. Such a case is shown in Figure 6.12, where potential anomalies are shown

before and after a low number of iterations of IAN filtering for the ARES1D image. Using

a variable bin width without scaling according to the number of pixels, i.e., Equation 6.3

times N, with Y = 0.0008×N to be near Y = 500, provided benefit in some cases (Var Bin).

However, given the greater homogeneity of factor scores for images such as ARES1D, it

also causes issues in some cases, where fitting to the range of scores makes the histograms

too sensitive or not sensitive enough. This again points towards the need to develop a

decision rule that increases sensitivity for certain images, and decreases sensitivity for

others. Jablonski’s original variable bin width, Equation 6.3, is also investigated shortly.

(a) Original. (b) After Smoothing.

Figure 6.12: Potential Anomalies.
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Table 6.10: Techniques Investigation Results.

The bands kept in Chapter 4 included a few where the sensor yielded an artifact

or line of erroneous pixels and where the remainder of the pixels in the band are not

noisy. A few of these bands were also retained by Smetek [191] and Johnson [110] in

their band selection analysis. Interestingly, AutoGAD and MPCA are not affected by

the presence of these bands. However, these pixels present themselves as anomalous on

any factor that has those bands highly weighted. For example, the final score maps for

MPCA and the Opt1 FA framework are shown in Figure 6.13 for ARES1F, where the

heat map number represents the number of components on which that pixel was declared

anomalous. As it turns out, a large number of false positives for the FA algorithms were

due to this phenomena, and removal of those three or four bands reduced false positives

in many cases for the HYDICE data. Identification of these bands is very easy to do

visually, should such artifacts be present in a hyperspectral image being analyzed with

222



a FA method. Alternatively, experimentation showed that a slightly different framework

and better understanding of the interactions between parameters could also help to reduce

the false positives.

(a) MPCA Original. (b) FA Original.

(c) MPCA Fewer Bands. (d) FA Fewer Bands.

Figure 6.13: Comparison With/Without Sensor Error.

6.5 Global Factor Analysis-Based Anomaly Detector (GFAAD)

The previous findings ultimately lead to an improved methodology, referred to as

the Global Factor Analysis Anomaly Detector (GFAAD). The framework is shown in
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Figure 6.14, and the algorithm is shown in full as Algorithm 6.2. The primary change

to methodology was the idea to adapt the bin width and the smoothing iterations for each

factor based on its scores’ PA SNR. Note, a PA SNR threshold was no longer used to

nominate factors for consideration either. This was designed to aid detection in those

images with more homogeneous pixels.

Figure 6.14: General GFAAD Process.

Again, this algorithm shares many characteristics with AutoGAD and MPCA.

However, ICA and its expense and variability have been removed, an initial filtering has

been added, and decision steps have been added to adapt to the image. In MPCA, Jablonski
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Algorithm 6.2 GFAAD Algorithm

1: Xc
N×p ←

(
XN×p − 1N×1µ

T
)
: data is centered.

2: Find eigenvectors V and eigenvalues Λ from cov
(
Xc

N×p

)
: do PCA.

3: k ← MDS L(Λ). Lp×k ← Vp×kΛ
1/2 denotes the factor loadings. Varimax rotate the

loadings to yield L̂p×k. Compute the factor scores: FN×k ← Xc
N×pL̂p×k

(
L̂T

p×kL̂p×k

)−1
.

4: if |min(F i)| > max(F i) for 1 ≤ i ≤ k then

5: F i ← −F i.

6: end if

7: F i ← IAN(F i), with Iinitial iterations. For each factor mapping F i, mi ← max(F i).

8: Retain any factor mapping with mi ≥ tMS .

9: snri ← PA S NR(F i) with bin width YInitial/N using first zero-bin histogram.

10: if snri ≤ tS NR then

11: Y i ← Ylow. snri ← PA S NR(F i) with bin width Ylow/N.

12: else

13: Y i ← Yhigh. snri ← PA S NR(F i) with bin width Yhigh/N.

14: end if

15: if snri ≤ τ then

16: F i ← IAN(F i), with Ih iterations.

17: else

18: F i ← IAN(F i), with Il iterations.

19: end if

20: Repeat Steps 9-14 using Y i as the initial bin width.

21: Define ηi ← PA S NR(F i) as the threshold from the first zero-bin histogram, using Y i.

22: If first iteration, remove any pixel j with F i
j > 2.5 × tMS from data used for covariance

estimate and go to Step 2. Otherwise, proceed.

23: if F i
j > ηi then

24: Declare pixel j anomalous.

25: end if
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added steps to ignore components if SNR was too low, but here, the algorithm adapts before

assessing factors.

In order to assess this algorithm, first, a 36 full factorial design was used to vary

parameters in the case of no IAN filtering after the initial smoothing. This lack of filtering

also saves computational expense. Parameter settings are shown in Table 6.11 for this

experiment as Experiment 5. All parameters were significant directly or in an interaction

in a second-order model with interaction terms, with the exception of Yinitial. This makes

sense, as this parameter is used mainly to determine how to adapt to each factor. R2
ad j

of the resulting model was 0.9889. Optimization of Equation 6.7 yielded an optimal of

tMS = 7.05, tS NR = 15, Iinitial = 5, Yinitial = 500 = Ylow, and Yhigh = 650.

Table 6.11: GFAAD Experiment Settings.

Parameter Name Experiment 5 Experiment 6

tMS Max Score Threshold 4, 6.5, 9 7.05

tS NR Bin Width PA SNR Threshold 0, 7.5, 15 5, 12.5, 20

Iinitial Initial IAN Iterations 0, 3, 6 5

Ih IAN Iterations High 0 0, 30, 60

Il IAN Iterations Low 0 0, 15, 30

Yinitial Pixels Per Bin Initial 400, 500, 600 500

Ylow Pixels Per Bin Low 200, 350, 500 200, 350, 500

Yhigh Pixels Per Bin High 500, 650, 800 400, 550, 700

τ Smoothing PA SNR Threshold 0 -10, 0, 10

Results on the seven image training set and six other images are shown in Table 6.12.

Experiment 6 used this optimal as a basis, and varied the filtering iterations and bin sizes

per the settings shown in Table 6.11. In this case, every varied parameter had an associated
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statistically significant term, and the optimized response for Equation 6.7 yielded settings

of Ih = 40, Il = 0, Ylow = 381, Yhigh = 546, and τ = 3. The resulting TPF and FPF rates are

highly competitive with MPCA and AutoGAD, while being more computationally efficient.

Additionally, AutoGAD ran into memory issues during the ICA step on very large problems

such as AVIRIS Scene1, while MPCA did not perform well on those problems. Here, the

algorithms were being run on an IntelTM Core i7 CPU Q840@1.87 GHz, 64-bit OS, with 8

GB RAM. Times shown for AutoGAD are an average of 20 runs, or represent the point at

which memory was deemed too full.

GFAAD shows a flexibility to work well on a large variety of images with common

settings. Yet, when analyzing the factor maps, it seemed false positives could still be made

lower for certain images, and true positives in problems such as ARES1D could be made

higher. Investigation showed that the interaction of IAN smoothing and bin size were

critical to these issues. Additionally, it became clear that certain low PA SNR factors

inflated false positives after smoothing, as the filtering generated false positives. Using a

modified bin size equation, Y × (max(scores) −min(scores)) also helped to reduce false

positives on a few problems, to include yielding a TPF of 1 and FPF of 0.0034 in 4Ships2.

Unfortunately, this bin size yielded poor results on many of the other AVIRIS images; for

example, a less than 0.1 TPF on Ship1. It was clear that given some added complexity to

Algorithm 6.2, in general, FPFs could be reduced and problems with low TPFs such as

ARES1D could be improved. To do this, better consideration for PA SNR and smoothing

were added into the algorithm. Figure 6.15 depicts the new, resulting framework and

Algorithm 6.3 shows the algorithm in full. This refined algorithm is referred to as the

Improved Global Factor Analysis Anomaly Detector (IGFAAD).

In IGFAAD, a few considerations are added. Step 6 is added before the initial IAN

filtering in order to remove very low SNR factors that can become prone to false positives

after smoothing. This also can aid in efficiency as fewer factors are being smoothed. The
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Table 6.12: GFAAD Optimization Results.
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Algorithm 6.3 IGFAAD Algorithm

1: Xc
N×p ←

(
XN×p − 1N×1µ

T
)
: data is centered.

2: Find eigenvectors V and eigenvalues Λ from cov
(
Xc

N×p

)
: do PCA.

3: k ← MDS L(Λ). Lp×k ← Vp×kΛ
1/2 denotes the factor loadings. Varimax rotate the

loadings to yield L̂p×k. Compute the factor scores: FN×k ← Xc
N×pL̂p×k

(
L̂T

p×kL̂p×k

)−1
.

4: if |min(F i)| > max(F i) for 1 ≤ i ≤ k, then F i ← −F i, end if.

5: snri ← PA S NR(F i) with bin width Yinitial/N using first zero-bin histogram.

6: if snri > tS NR, then retain F i, end if.

7: F i ← IAN(F i), with Iinitial iterations. For each factor mapping F i, mi ← max(F i).

8: Retain any factor mapping with mi ≥ tMS . If none satisfy this, declare no anomalies

and stop. Otherwise, go to Step 9.

9: snri ← PA S NR(F i) with bin width Yinitial/N using first zero-bin histogram.

10: if snri ≤ τ1, then Y i ← Ylow and snri ← PA S NR(F i) with bin width Ylow/N; else

Y i ← Yhigh and snri ← PA S NR(F i) with bin width Yhigh/N, end if.

11: if snri ≥ τ2 & mi ≥ ts, then F i ← IAN(F i), with Il iterations; else if snri ≤ τ2, then

F i ← IAN(F i), with Ih iterations, end if.

12: Repeat Steps 9-10 using Y i as the initial bin width.

13: Define ηi ← PA S NR(F i) as the threshold from the first zero-bin histogram, using Y i.

14: If first iteration, remove any pixel j with F i
j > 2.5 × tMS from data used for covariance

estimate and go to Step 2. If no such pixels exist, or second iteration, go to Step 15.

15: if F i
j > ηi, then declare pixel j anomalous, end if.
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Figure 6.15: IGFAAD.

bin width is still chosen according to PA SNR in order to reduce false positives in high SNR

factors and to increase true positives in low SNR factors. Step 11 is modified here, in order

to take into better consideration which factors to smooth and how much to smooth them.

Factors are now split into three cases at this step: 1) low SNR, 2) high SNR with low scores,

and 3) high SNR with high scores. Low SNR factors are still highly smoothed to generate

detection, and this is now more useful because the very low SNR factors were removed in

Step 6. Thus, smoothing should mainly reveal true positives. High SNR factors with high

230



scores are smoothed a low number of iterations in order to reduce false positives, while not

decreasing detection, as they already discriminate well. High SNR factors with low scores

are not smoothed at all. This is because smoothing only serves to make anomalies more

like the background in such a case. Note, the τ1 parameters functions much like the tS NR

parameter used to, and now tS NR is used to remove very low SNR factors. The ts parameter

is new, and is used to determine the large score criterion for high SNR factors. Again,

2.5 × tMS was used for the iteration screen because it was found to work well in practice.

Table 6.13 shows the settings for two experiments on IGFAAD. The first, Experiment

7, was performed to find optimal smoothing and bin parameters. Previous experiments,

and additional investigation, gave that certain settings for tMS and Yinitial were near optimal.

Iinitial was previously optimized to five, but investigation showed that Iinitial = 4 gave

similar results and provided benefit to TPF on ARES1D. The tS NR threshold was chosen by

looking at all of the factor mappings for the same seven training problems used previously.

ARES1D was most sensitive to this threshold, but tS NR = −1 removed the bulk of the

factor mappings providing large false positives to the seven problems, without removing

those mappings that could provide TPF increases. This threshold makes sense intuitively,

as it implies that the potential anomaly variance is smaller than the background variance.

Fixing these parameters allowed for a 37 full-factorial design, again fitting and optimizing

Equation 6.7 as a response. The range for ts was chosen based on investigation of the factor

maps, with a number larger than 20 seeming to provide little benefit.

The optimal for Experiment 7 is also shown in Table 6.13. The reduced model had 26

significant terms at α = 0.05 and a R2
ad j = 0.9825, with all parameters significant linearly,

quadratically, or within a two-way interaction. Results at this optimal setting are shown in

Table 6.14, where the training images are highlighted. Results were extremely competitive

with AutoGAD and MPCA, often yielding similar or better TPFs, and lower FPFs. In fact,

results were more consistent than either of the MPCA settings. The only problem where
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Table 6.13: IGFAAD Experiment Settings.

Parameter Name Experiment 7 Opt Experiment 8 Opt

tMS Max Score Threshold 7.05 7.05 7.05 7.05

tS NR Bin Width PA SNR Threshold -1 -1 -1 -1

Iinitial Initial IAN Iterations 4 4 4 4

Ih IAN Iterations High 0, 25, 50 45 0, 25, 50 40

Il IAN Iterations Low 0, 15, 30 12 0, 10, 20 11

Yinitial Pixels Per Bin Initial 500 500 50 50

Ylow Pixels Per Bin Low 200, 350, 500 356 10, 30, 50 10

Yhigh Pixels Per Bin High 500, 650, 800 540 50, 70, 90 50

τ1 Bin Choice SNR Threshold 0, 7.5, 15 7.17 0, 7.5, 15 0

τ2 Smoothing Choice SNR Threshold 0, 5, 10 10 0, 7.5, 15 7.48

ts Score Magnitude Threshold 10, 15, 20 20 20 20
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MPCA showed a true advantage was the 4Ships2 image, where the FPF for IGFAAD was

significantly higher. However, IGFAAD vastly outperforms MPCA on the Scene1, Ship1,

and HyMAP images. In order to further improve TPFs, Ih was set to 20 and Ylow was set

to 300. The effect of this change had been observed throughout experimentation. These

changes led to the results shown in the Exp 7 Mod column. This greatly boosted the TPF

for ARES1D while minimally affecting most of the other images. Meanwhile, this also

shortened computational times, as fewer iterations of smoothing were being performed.

Experiment 8, with settings and optimal in Table 6.13, was performed to investigate

the use of Equation 6.3 within the framework to choose the bin width. Recall, IGFAAD

uses Y/N for the bin width, whereas that equation also adjusts according to the range of

scores. Again, certain parameters were not varied because they were likely near optimal

based on previous experiments. Interestingly, the smoothing iterations came out to be

nearly identical to Experiment 7. The final reduced response model had 16 significant

terms, R2
ad j = 0.9915, and all parameters significant in some form. Using the algorithm

at these optimal settings and with the variable bin width provided the best FPFs on many

problems, but at the expense of the TPF rate (thus, why these are highlighted in blue in

Table 6.14).

Further, TPF rates for some of the AVIRIS images and the HyMAP image were very

poor, just as in the MPCA case. Adjusting the bin width to be Y/(2N)(max(scores) −

min(scores)) improved results slightly, but also began to noticeably increase FPFs on all of

the images. This is shown as the Exp 8 Mod column. Upon more inspection of the AVIRIS

and HyMAP imagery, the reasons for the poor performance of MPCA and the IGFAAD

with a variable bin parameter (variable to the score range) became clear. These images

have many more pixels than the HYDICE imagery, and also yield much larger scores.

Thus, whereas the score ranges for the ARES images are typically between 20-30 at most

for a factor, they can be as high as 1000 for these larger images. Therefore, it becomes
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Table 6.14: IGFAAD Optimization Results.
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much harder to provide a common, optimal bin width parameter for these images and the

ARES images because they require different sensitivities relative to their score ranges. The

widths that work well for ARES generate mappings for some of the AVIRIS imagery where

only very extreme target or background pixels are identified. This is why Y/N works so well

in the IGFAAD framework, as this sensitivity adapts appropriately according to the size of

the image and is not biased by the score magnitudes. MPCA also suffers because the larger

images have more significant components that get aggregated into its mappings. It should

be clear that the SNR thresholding is key to IGFAAD, as the common maximum score

threshold becomes less critical for those images with very high scores. In other words, one

of IGFAAD’s main advantages over MPCA and AutoGAD is that it better adapts to the

components, and can handle scores from images that behave differently than a training set

of images.

Given the analysis, and pending future, more in-depth research of the parameters and

their interactions, it is recommended that the settings shown in Table 6.15 be used for an

arbitrary image. These settings do have some possible trade off of TPF and FPF, but seem

to work well across many image types and also provide more computational efficiency.

Again, this efficiency and increased TPF can come at the cost of a slightly increased FPF.

The GFAAD algorithm is extremely efficient and has fewer parameters, but the IGFAAD

algorithm provides slightly better rates. In both cases, if the few bands with sensor artifacts

are also removed, the FPFs improve slightly.

For a final set of results, IGFAAD with the settings from Table 6.15 was run on all of

the imagery used in this research. Recall, these settings emphasize a higher TPF at possible

expense of slightly increased FPF. Results are shown in Table 6.16. Here, the metrics from

Section 4.4 are also included.

Only the run03m20 image was problematic, but this is not unique to the factor analysis

method. MPCA with Yinitial = 0.249 achieved a TPF of 0.5954 and FPF of 0.0153 on the
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Table 6.15: GFAAD and IGFAAD Recommended Settings.

Parameter Name GFAAD IGFAAD

tMS Max Score Threshold 7.05 7.05

tS NR Bin Width PA SNR Threshold 15 -1

Iinitial Initial IAN Iterations 5 4

Ih IAN Iterations High 0 20

Il IAN Iterations Low 0 12

Yinitial Pixels Per Bin Initial 500 500

Ylow Pixels Per Bin Low 500 300

Yhigh Pixels Per Bin High 650 540

τ1 Bin Choice SNR Threshold (τ) 0 7.17

τ2 Smoothing Choice SNR Threshold N/A 10

ts Score Magnitude Threshold N/A 20
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Table 6.16: IGFAAD Imagery Results.
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same image. Figure 6.16 shows these two results, where the heat map intensity is according

to the number of components or factors on which the anomaly was declared. Again,

the sensor artifacts are declared anomalous by IGFAAD, inflating the FPF value. Using

Ylow = 50 raised the TPF for IGFAAD to a similar 0.56, but also raised the FPF further.

This image performed in this manner for several reasons. First, there is a large number

of targets in the image and the image is larger than the other ARES images. Additionally,

these targets are more homogeneous to the background, as reflected by the improvement

when lowering the bin size. Fortunately, a high percentage of the targets were still found.

(a) MPCA. (b) IGFAAD.

Figure 6.16: run03m20 Anomaly Declarations.

The HyMAP image was a case where IGFAAD significantly outperformed MPCA,

where MPCA is used as a prime comparison due to its lack of randomness. Figure 6.17

depicts the two results. It can be seen that although IGFAAD is more prone to finding false
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positives in background, it also focuses more precisely on the full-pixel targets. Meanwhile,

MPCA identifies larger areas with anomalies contained therein, likely as a by-product of

its use of aggregation of the principal components and subsequent local filtering. Similar

results occurred with ARES2D, shown in Figure 6.18, and other ARES imagery.

(a) MPCA. (b) IGFAAD.

Figure 6.17: HyMAP Anomaly Declarations.

This was not necessarily the case for every image. Ship1 is shown for MPCA and

IGFAAD in Figure 6.19. Here, MPCA was not sensitive enough to find a large percentage

of the target pixels, while IGFAAD was perhaps too sensitive in also identifying many land

pixels as anomalous due to them being highly different from the water pixels. It is clear that

optimizing these algorithms to different sets of images would be ideal, but the IGFAAD

algorithm appears more robust across images to a single set of parameter settings. The

AVIRIS images, in general, have much higher scores and SNR values, and are larger in

size. Thus, they often require differently tuned bin widths and smoothing than the ARES

images to achieve best TPF and FPF rates. They also have the added complication that the

land background class is significantly different in signature than water pixels. Again, to

achieve absolute best TPF and FPF rates, parameter settings have to be different than the
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(a) MPCA. (b) IGFAAD.

Figure 6.18: ARES2D Anomaly Declarations.

ARES imagery to account for the different image characteristics. The dynamic bin width

and smoothing in GFAAD and IGFAAD help to start account for this.

(a) MPCA. (b) IGFAAD.

Figure 6.19: Scene1 Anomaly Declarations.
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Anomaly declarations for those images without known target masks are shown in

Figure 6.20 using IGFAAD. As before, intensity reflects the number of factors on which the

pixel was nominated. ARES1C and ARES2C are not shown, although IGFAAD declared

no targets for ARES1C. In the oil spill, what could potentially be oil slick in the water is

identified. Buildings are primarily identified in the Reno and Pavia images. Some of the

coral reef is identified in the Red Sea image. The full metal sheets class, as well as what

appear to be cars in parking lots and a metal structure are identified in the Pavia University

image.

For a final comparison, ROC curves were built for ILRX, TAD (using recommended

settings from Basener and Messinger [24]), BACON, AutoGAD by varying the bin size,

and MPCA by varying Yinitial. IGFAAD proved difficult to generate a relevant ROC

curve for due to the significant interactions amongst parameters. Fixing Ylow = Yhigh

and varying a single common bin width would provide a fuller curve, but this would not

reflect the intended adaptive nature of the algorithm. Varying Ylow and Ih by themselves

generated only a few points, while tMS generates a large variation. The latter was varied

to provide the curve shown in Figure 6.21 for ARES1F, while the former were used for

ARES2D. Unfortunately, or fortunately if considering performance, due to the significance

of parameter interactions these ROC curves are not necessarily representative. However,

what Figure 6.21 does show is that the AutoGAD, MPCA, and IGFAAD operating points

analyzed throughout this chapter are located in a very high region of the performance space

relative to other algorithms.

GFAAD and IGFAAD show great promise, and are very competitive with existing

algorithms. They appear to be more robust to different image types than existing

algorithms, while maintaining a high TPF and relatively low FPF. Additionally, the

mappings they generate and use to identify anomalies have a corresponding meaning to the

materials in the image, are deterministic, and are relatively interpretable as a result of using
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(a) Oil Spill. (b) Reno. (c) Red Sea.

(d) Pavia. (e) Pavia Univ.

Figure 6.20: IGFAAD Anomaly Declarations.

factor analysis and having highly loaded bands. However, to fully reach potential, further

investigation into the interactions of the many aspects of the algorithms is warranted. A

final SNR filter at the end of each algorithm, to remove factors that yield false positives

after smoothing, may also be warranted. Unfortunately, again, this is not straightforward

due to significant parameter interaction and due to the differing SNR characteristics of

factors generated from different images. Next, a non-linear form of this factor analysis-
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(a) ARES1F. (b) ARES2D.

Figure 6.21: ROC Comparisons.

based framework is developed in order to utilize the better discrimination that a non-linear

mapping can provide.
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VII. Large-Scale Kernel Principal Component Analysis

7.1 Literature Review

7.1.1 Eigen-Decomposition.

Kernel Principal Component Analysis (KPCA) can be problematic, in that the Gram

matrix is N ×N in size for a dataset with N exemplars. Thus, for example, in order to build

global KPCs for an image with N pixels, eigen-decomposition of the N×N similarity matrix

has to occur. Obviously, for even moderately sized images or data sets this is prohibitive,

despite the fact that only a subset of the r < N non-zero eigenvalues and corresponding

eigenvectors may be of interest.

The power method and Lanczos method are both iterative methods that approximate

eigenvectors of a square matrix. Each typically require some form of matrix vector

multiplication that with large N can be computationally expensive. Lanczos can be subject

to roundoff error, but can be very useful if a matrix is sparse [79]. For Gram matrices, this

is typically not the case, although they do have the nice properties of being symmetric and

normal. Standard methods to find the eigenvectors take O(N3) time, which is prohibitive

for large N. Schölkopf, Achlioptas, and McSherry [184] proposed random sparsification

and random rounding methods to speed computation of the kernels and KPCs, but these

can be subject to higher error with large data sets.

The Nyström method approximates the Gram matrix K by sampling m << N columns

from K [139]. This generates a sample of columns from K, or a sub-matrix A that can

rearranged such that K and A are written as

A =

 W

S

 and K =

 W S T

S B

 , (7.1)

where W is m × m, S is (N − m) × m, and B is (N − m) × (N − m). If the singular

value decomposition (SVD) of W is UΣUT , where the singular values σi of W are in non-
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increasing order on the diagonal of Σ, then the rank r ≤ m Nyström approximation for K

is,

K̃r = AW+
r AT . (7.2)

Here, W+
r =

r∑
i=1
σ−1

i U (i)U (i)T and U (i) is the i-th column of U. W+
r is also referred to as a

Moore-Penrose pseudo-inverse [67]. This approximation is O(Nmr + m3) but also requires

large m to ensure sufficient sampling [139]. Drineas and Mahoney [67] developed a data-

dependent non-uniform sampling methodology for the columns that ensured the bound

‖K − AW+
r AT ‖ζ ≤ ‖K − Kr‖ζ + ε

N∑
i=1

K2
ii, (7.3)

where the norm could be L2 or Froebenius, with high probability if choosing O(r/ε4)

columns. For small ε and large eigenvalues this bound becomes less useful. The sampling

of columns is not computationally prohibitive, as at no point does the full Gram matrix

have to be generated.

Halko, Matinsson, and Tropp [92] developed a randomized SVD algorithm to estimate

the kernel eigenvectors that they showed performed well in practice, but that requires a

complete pass over the data. Specifically, given scalars r, q1, and q2, let Y = Kq2−1KZ,

where Z is a N × (r + q1) standard Gaussian random matrix. An orthonormal matrix

Q is found by QR decomposition such that Y = QQT Y . Next, SVD is performed on

QT WQ = VΛVT to yield the eigenvector estimates QV and eigenvalue matrix estimate Λ

for K.

Li, Kwok, and Lu [139] combined the randomized SVD and Nyström methods in order

to retain the efficiency of Nyström while also retaining the accuracy of the randomized

SVD. In their algorithm, they sampled m columns of K uniformly at random without

replacement, and built W as in Nyström. Next, they used random SVD on W to yield a

set of eigenvectors V and an eigenvalue matrix Λ, using q1 = 5 and q2 = 2 in practice.
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These could be used to reconstruct an approximate K̃ as

K̃ =

(√
m
N

AVΛ+

) (N
m

Λ

) (√m
N

AVΛ+

)T

. (7.4)

For this reconstructed Gram matrix K̃, they showed that,

E‖K − K̃||2 ≤ ζ1/q2‖K − Kr‖2 + (1 + ζ1/q)
N
√

m
max

i
Kii (7.5)

where ζ =

(
1 +

√
r

q1 − 1
+

e
√

r + q1

q1

√
m − r

)
. This method also saved time complexity,

in only requiring O(Nmr + r3) operations. They showed favorable approximation error

and computational time on data sets including MNIST versus the standalone Nyström and

randomized SVD algorithms, and an ensemble method [139]. Although their algorithm was

unnamed, for this research it is referred to as NyApprox, denoting Nyström Approximation.

The rank-r approximation can also be used to generate approximate scores. In the case

of NyApprox, these are computed as AVlΛ
−1/2
l for the leading l ≤ r eigenvectors, where

the N − 1 constant from the covariance is often ignored because it only scales values

[70, 168, 215].

Thus far, these eigen-decompositions and scores are relative to the original Gram

matrix, and not its centered version, which is required to accurately model the covariance

in the higher-dimensional space for purposes of KPCA. Decomposing the original matrix,

i.e., K = Φ(X)Φ(X)T is also referred to as solving the dual problem, while decomposing

Φ(X)T Φ(X) is the primal [168]. In order to easily convert the low-rank solutions from the

dual to the primal, consider the N × r scores matrix, E = AVrΛ
−1/2
r . K can be equivalently

approximated as K̃ = EET . The full Gram matrix is centered by,

K̂ = HKH, (7.6)

where H = I −
1
N

1N
N , I is the N × N identity matrix and 1N

N is a N × N matrix of ones

[228]. Given the rank-r approximation EET to K, K̂ can be approximated using HE (HE)T .
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Therefore, the leading l score vectors can be centered as,

Ê = HAVlΛ
−1/2
l . (7.7)

Equivalently, the Nyström approximation can be performed on the appropriately centered

versions of Equation 7.1, where A and W are centered by subtracting the kernel column

means. Note, this entire process is very similar to the development previously shown in

Section 3.3, where here Ŵ is similar to the centered training kernel matrix and Ŝ is similar

to the centered test kernel matrix, but where they were previously centered only in regard

to the training matrix. In other words, with the Nyström method the goal is to try and

best approximate the full N-exemplar eigenvector, while using a subset of exemplars as a

training matrix only uses the corresponding m-exemplar eigenvector as an approximation.

Nonetheless, these are very similar as they both use a m-exemplar skeleton to approximate

the desired kernel eigenvectors.

Other Nyström approximations also exist, such as greedy sampling where columns

are sampled based on constructing the best rank-1 approximation for a current residual

matrix [70]. However, the NyApprox and clustering based approximations discussed in

Section 7.1.2 are used primarily due to their efficiency and their published, generally better

performance [70, 139, 228].

Other approximation methods also exist for the kernel eigenvectors. Kim et al. [124]

developed an iterative KPCA method, or Hebbian algorithm, using a learning rate for

reconstruction. Gunter et al. [85] tried to enhance this by adding a gain vector, but their

algorithms still required hours to converge on data sets such as MNIST. As MNIST is

not necessarily larger in dimension than HSI data, it is clear that these approaches are not

desirable here.

7.1.2 Landmark Points.

Landmark points, the building of which are referred to synonymously in this research

as skeleton generation, are exemplars taken or derived from the data and are meant to
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represent the data in some way. Referring back to the Nyström approximation and its use

of a subset of columns, the exemplars corresponding to the selected columns are generally

equivalent to landmark points, except that they are chosen randomly whereas landmark

points are typically chosen according to criteria.

Zhang and Kwok [228] developed the Nyström approximation using k-means

centroids to provide the W sub-matrix, using the centroids as landmark points. Similarly,

Kwon and Nasrabadi [133] used k-means centroids of the data to represent background, and

to provide a kernel version of the RX algorithm using the covariance KPCs corresponding

to the centroids for a kernel Mahalanobis distance. This was previously discussed in more

detail in Section 3.11.1.3.

Brandes and Pich [38] used landmark points in Multi-Dimensional Scaling, and found

that maximizing the minimum distance to previous landmarks as more landmarks were

added worked well in constructing their projections. Chen and Cai [52] used both cluster

centroids and random exemplar selection for landmark points in spectral clustering.

As with Kwon and Nasrabadi’s [133] centroid approach to kernel Mahalanobis

distance, landmark points generated in any manner can be used explicitly to build the KPCs.

The kernel scores then reflect projections onto the directions of variance for the landmark

points in the higher-dimensional feature space. With a good choice of landmark points,

such as those well representing the background, these projections should reveal anomalous

pixels.

Landmark points can also be integral to Affinity Propagation (AP) for large data.

Recall from Section 3.9.3, that several N×N matrices are used to generate the representative

exemplars. This can clearly be computationally prohibitive. To aid in finding centers

in very large data sets, Xia et al. [220] used landmark points to develop a global

Landmark Affinity Propagation (LAP) algorithm. Specifically, they randomly sampled

m < N exemplars from the dataset and applied AP to them, where the centers found
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were a subset of the m landmark exemplars. Xia et al. [220] also developed a Partition

Affinity Propagation (PAP) algorithm designed to utilize local information in order to speed

efficiency. Here, they split the input similarity matrix into m subsets of exemplars and

performed AP on each, resulting in m local availability matrices. These were then used

to yield an initial sparse global availability matrix, where exemplars from different subsets

had zero availability. This initial, sparse availability matrix was then used in AP on the

entire dataset. Both of these methods inspired the two large-scale AP approaches developed

shortly in Section 7.3.

7.1.3 Optimal Kernels.

KPCA, and any kernel method for that matter, is subject to the choice of kernel.

Different kernels can yield very different projections and decision boundaries. In the

application of HSI anomaly detection, often when KPCA is used the kernel is chosen

experimentally. For example, Chunhui, Yulei, and Feng [58] varied the spread parameter

σ in a Gaussian kernel in order to better detect anomalies in a KICA RX-based detector.

Kwon and Nasrabadi [133] did the same for KRX.

Given a Gaussian kernel and class information, Wang et al. [211] used the KFDA

criterion (previously discussed in Section 3.6) to provide a way to optimize theσ parameter.

They optimized the function,

σopt = arg max
σ

tr
(
S −1

W S B

)
, (7.8)

in order to best separate the class means with minimal within-class variance in the kernel

space, where the scatter matrices S W and S B were as defined in Equation 3.26. They also

derived a partial derivative for J with respect to σ so that the problem could be solved with

a quasi-Newton algorithm.

Kim, Magnani, and Boyd [125] developed a slightly more general optimal kernel

algorithm for two classes, but still using KFDA. Rather than optimizing a single kernel,

they proposed optimizing over a convex set of kernels. Zhu et al. [231] used a similar idea
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in kernel Canonical Correlation Analysis, using a polynomial kernel for global estimation

and a Gaussian for local. In Kim, Magnani, and Boyd’s method [125], they noted that

the optimal kernel projection vector using the kernel Fisher ratio is known, and so the

maximum achievable kernel discriminant ratio for a given kernel and training set can be

explicitly calculated. This is,

1
γ

[
aT KJ (γI + JKJ)−1 JKa − aT Ka

]
, (7.9)

where γ is a very small regularization parameter, I is the identity matrix, K is the m × m

kernel matrix for the m training exemplars,

a =

 (1/N1)1N1

−(1/N2)1N2

 , (7.10)

N1 and N2 are the number of exemplars in each class, 1N1 is a N1 × 1 vector of ones, and

J =


1
√

N1

(
I −

1
N1

1N11T
N1

)
0

0
1
√

N2

(
I −

1
N2

1N21T
N2

)
 . (7.11)

Therefore, for K̃ =
c∑

i=1
θiKi with

c∑
i=1
θi = 1, i.e., a convex set of c candidate kernels,

an optimal kernel can be found by plugging K̃ into Equation 7.9 and minimizing (it is

formulated as a minimum) over the weights θ while enforcing non-negativity and the

convexity constraint [125]. This gives the optimal kernel k∗(x, y) =
c∑

i=1
θ∗i ki(x, y). There are

two limitations to this method. First, class information is required. Second, formulation

of the Gram matrices becomes expensive as the number of exemplars under consideration

grows. An example of using this optimization technique is given in Figure 7.1 for the

Banana Dataset and a set of thirteen kernels. Here the dataset is small enough that all data

could be used in the training set, but for larger data sets the support vectors greatly define

the boundaries found. This makes a good estimate for a single class necessary to ensure the

support is not too small or too large. Three of the candidates are shown to depict the effect

of various Gaussian kernels.
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(a) σ = 0.01. (b) σ = 0.05. (c) σ = 0.1.

(d) Optimal σ. (e) Optimal θi.

Figure 7.1: Optimal Kernel Example.

7.1.4 Further Algorithmic Considerations.

When using kernel methods, several issues can affect results. As mentioned, the choice

of kernel can drastically affect results. In Section 3.3 a few of the more common kernels

were presented, to include the Gaussian, linear, polynomial, inverse multi-quadric, and

hyperbolic tangent kernels. Liang and Lee [142] showed that higher-order polynomial

kernels are very sensitive to outliers via general eigen-analysis.

Note that with the exception of the linear kernel, all have associated parameters

themselves. In general, any constant parameters are set to zero in this research. The

spread parameter σ is of particular interest. Not to be confused with singular values,

this parameter defines the decay rate for several kernel types. As such, it needs to be
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smaller than the size of the decision space. Even when optimizing the kernel as in Section

7.1.3, candidates are necessary. Nielsen and Canty [168] suggested that σ be larger than a

typical distance between exemplars. Shi and Malik [190] used 10−20% of the range of the

distances between exemplars. Kwon and Gurram [132] expanded the concept of an optimal

set of bandwidths for KRX by first using cross-validation on probable background pixels

and simulated anomalies to find a single σ∗. The simulated anomalies were generated by

adding noise to probable background pixels, and σ was optimized relative to increasing the

probability of detection and minimizing false alarms. Then, an individual σi for each band

within the kernel calculation was determined by scaling σ∗ according to the variance of the

band. Regardless of how kernel parameters are chosen, correct values can also depend on

the technique they are being applied within and what the scaling of the data is.

Yet another consideration is how to handle singular or near singular K or W. In such

a case, it is common to replace K (or similarly W) by K + cI where I is the identity matrix

and c is a very small constant [215]. As just alluded to, the scale of the data can also play

a role in a KPCA algorithm, as the dot product of vectors with large numbers can result in

extremely high similarity values that may cause issues in eigen-decomposition. To aid in

mitigating this for HSI, Kwon and Nasrabadi [133] scaled the data by the largest overall

radiance value found in the image.

7.1.5 Choosing Discriminating Components.

Even once the KPCs are found or approximated, if the desire to use them as mappings

on which to identify anomalies, there needs to be a way to identify useful KPCs. Some

techniques were discussed in Chapter 6, but warrant discussion again here, as the nature

of KPC can sometimes make it more difficult to find meaningful components. In the

supervised case, the best component/eigenvector could potentially be chosen using the

LDA-equivalent criterion,
tr (S B)
tr (S W)

, based on the scores or its kernel counterpart [212].

However, this is not useful in an unsupervised setting.
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Chiang, Chang, and Ginsberg [55] used projection pursuit to find optimal projections

of HSI for anomaly detection. In projection pursuit, data is projected into a lower-

dimensional space while retaining some information of interest via a Projection Index (PI).

In particular, κ2
3, κ2

4, κ2
3 +κ2

4/12, and (κ3κ4)2 were used for their PIs, where κ3 is skewness and

κ4 is kurtosis. After whitening the data, they used an evolutionary algorithm to optimize the

projection for a given PI. They then used a first zero-bin detection histogram to threshold

the projection and find anomalies. Gu, Liu, and Zhang [84, 145] also utilized skewness

and kurtosis in an effort to find effective components for anomaly detection. With RX in

mind, they noted that if the data in local windows followed a Gaussian distribution then

the skewness and kurtosis would be zero. They also noted that if there were anomalies in

the local windows, then the data would not be Gaussian distributed and the absolute values

of the skewness and kurtosis would be large. They defined thresholds to devise a Local

Singularity (LS) rule. Specifically, let θs >> 1 and θk >> 1 be constants, τs =
√

6/n,

and τk =
√

24/n where n = n1 × n2 is the size of the local window. Then the respective

thresholds for absolute skewness and kurtosis are defined as Ts = τsθs and Tk = τkθk [145].

These metrics make sense for the RX algorithm, where a Gaussian assumption is used,

but as HSI data is generally not Gaussian, it is not useful for a general detector. Further,

in this research, global detectors are of high interest in order to maintain efficiency given

that kernel methods are more computationally expensive than their linear counterparts. A

projection with a low global LS can be eliminated as there are no potential anomalies, but

a projection with high global LS does not insinuate a good mapping for anomaly detection.

The specific thresholds also have to be chosen.

Chen and Qian [50] used entropy values to measure information content on image

channels. They defined image entropy as,

−

n∑
i=1

pilog2 pi, (7.12)
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where n was the number of grey levels and pi was the probability that the grey level

i occurred. This metric, like LS, does not necessarily yield good projections because

noisy projections can yield a discriminating value for such a metric. Johnson’s PA SNR

metric [110] in combination with a zero-bin histogram, discussed heavily in Chapter 6, is

another potential way to identify useful KPCs by finding those where a subset of pixels are

significantly different from the rest.

Izenman and Shen [106] proposed using minor kernel PCs to detect outliers, as outliers

are a common source of noise. To devise a fixed threshold, they only used the Gaussian

kernel. This enabled them to use λ = 1 as a cut-off for ‘large’ vice ‘small’ components,

where λk and λk+1 were the eigenvalues surrounding 1. Next, the subset of eigenvalues

λk+1, . . . , λN were taken as candidates. As many of these may be zero, only those values

and corresponding KPCs that explained ≥ 0.01% of the variance were retained, where the

set of all considered variance proportions was S =


λk+1
N∑

i=1
λi

, . . . ,
λN

N∑
i=1
λi

. This gave a subset

S ′ = {λk+1, . . . , λN′}, where N′ was the index of the smallest eigenvalue explaining at least

0.01% of the variance. Next, a threshold was constructed as,

t =

(
N′∑

i=k+1
λi

)
/ (N′ − k)

N∑
i=1
λi

. (7.13)

This approximated the average proportion of variance explained by the small KPCs. The

smallest selected KPC on which to find outliers then corresponded to the first element of

S ′ above t. The second smallest selected corresponded to the second element of S ′ above

t, and so forth [106].

Although this cut-off appears promising, it does not extend well to KPCA on HSI

for several reasons. First, both whether the image has been scaled and the particular σ

influence if an eigenvalue as high as λ = 1 exists. Second, even with the correct scaling

there may be very few eigenvalues greater than one. k = 200 with k-means for a landmark
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set on ARES1F yielded only two eigenvalues greater than one. Therefore, nearly every

eigenvector was minor. Finally, even if using a more dynamic cut-off such as MDSL from

which to start, the minor KPCs for HSI data often are highly noisy. This observation is

made here based on a great deal of experimentation on different images and skeleton types.

Even medians or squared sums of the minor components provided little more than noise. In

those cases where some discrimination was present, it often also appeared in one or more

of the major components.

7.2 Approximate Kernel Factor Analysis

In order to also formulate a kernel factor analysis (KFA) method, recall the

development in Section 3.4. The loadings in the linear case with a PC solution were

L̂ = Λ1/2T , where T were the eigenvectors of the covariance C and Λ was a diagonal

matrix of the corresponding eigenvalues. The loadings in the non-linear case using a KPC

solution are then

L̂ = Λ1/2T = Λ1/2Λ−1/2Φ̂(X)T D = Φ̂(X)T D, (7.14)

where D are the eigenvectors of K̂ and T are the eigenvectors of the primal covariance

problem. D can similarly be rotated using a Varimax rotation, where now the high loadings

reflect emphasis on specific exemplars or landmark points [86]. Let this rotated matrix be

denoted as D̂.

In the linear case, the unweighted least squares solution for factor scores was(
L̂T L̂

)−1
L̂T X̂T . In the non-linear space this yields,

(
D̂T Φ̂(X)Φ̂(X)T D̂

)−1
D̂T Φ̂(X)Φ̂(X)T =

(
D̂T K̂D̂

)−1
D̂T K̂. (7.15)

This can be problematic for a few reasons. First, whether using Nyström or a skeleton

to approximate K̂, it is not desirable to construct the actual K̂ or its approximation in full

if there is a large number of exemplars. This reconstruction is limited computationally

by the matrix-matrix multiplication. Furthermore, estimates for D are based on either
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a training set or low-rank approximation. Therefore, instead, the factor scores can be

approximated using the eigenvectors V of Ŵ, where this matrix is the kernel matrix for

the m landmark points or chosen columns from the initial approximation. This is not as

exact in constructing the factors or scores, but should still provide useful factor mappings

if the skeleton is sufficient. Thus, V is m × l if l factors were retained, and Ŵ replaces K̂.

However, scores for every exemplar, and not just the training data, are also necessary in the

application for this research. To do this, the latter K̂ can be replaced by the m × N kernel

matrix AT . In other words, again rotating V to provide V̂ , this yields

(
V̂T ŴV̂

)−1
V̂T ÂT . (7.16)

This yields a l × N matrix of scores, where centering is also taken into account. Again, as

the loadings now emphasize specific exemplars, the success becomes very much dependent

on the choice of skeleton with which V and Ŵ are generated.

7.3 Skeleton Generation

For results in this chapter, runs were on an IntelTM Core i7 CPU Q840@1.87 GHz,

64-bit OS, with 8 GB RAM unless otherwise denoted. Again, in this research, skeleton

generation is defined so as to be synonymous with landmark point generation. The Nyström

approximation can use these skeletons to build low-rank approximations to the full Gram

matrix and eigen-decomposition for a dataset, while the skeleton can more directly be used

as a training set to generate KPCs against which exemplars not in the skeleton (test set)

can be projected. These two methods are highly related, but the Nyström technique tries to

approximate the full N-exemplar kernel eigenvectors. In order for a skeleton to be useful, it

needs to represent characteristics of the full dataset in some manner. Typically this means

encapsulating the principal directions of variance of the full dataset or, in the anomaly

detection problem, background directions of the data against which anomalies are obvious.

In this research, clustering is considered as a primary means of skeleton generation. Large-
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scale clustering approaches are presented next, followed by analysis of the skeletons they

yield on various data sets and the resulting KPC mappings.

7.3.1 Development of Large-Scale Skeleton Approaches.

One large-scale k-means clustering approach was already developed in Section 3.9.1,

for input to the large-scale X-means and BIC-means methods discussed in Section 3.9.2.

There, computational speed-ups were added to the k-means framework for use as a stand-

alone algorithm and in X-means, to include using PC scores if the number of clusters k

is less than the number of features p. Robust forms to make cluster assignment more

deterministic and accurate were also developed by incorporating the refinement strategy of

Bradley and Fayyad [37].

X-means and BIC-means are advantageous in that k is found by optimizing a BIC

criterion. However, the k found can be much larger than desired for computational or

operational purposes. With HSI data, this is very relevant because larger k take substantially

more time to evaluate and compute. Li, Prasad, and Fowler [141] navigated the BIC issue

by using a maximum number of clusters, ten, for which to estimate the BIC criterion, and

calculating a BIC difference between different cluster numbers,

BICdi f f =
‖BIC(i) − BIC(i − 1)‖1

‖BIC(i)‖1
≤ τBIC, (7.17)

where τBIC was a threshold set to 0.02 for the Pavia University data. Their optimal number

of clusters was then the smallest i that minimized BICdi f f under τBIC = 0.02. In the case

of the Pavia University image, this was seven. This approach is still problematic in that

the threshold is subjective and a range of possible k has to be chosen. Here, X-means

and BIC-means are used, initially, with an upper bound on k that serves only to limit the

computational expense.

Affinity Propagation for large-scale data also warrants special attention for purposes

of generating a skeleton. The algorithm is of interest as a competitor to the k-means

approaches because resulting centers are actual data exemplars and k is still chosen
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automatically. Unfortunately, the algorithm requires storage and manipulation of three

N × N matrices. A first approach to mitigating this is to use Xia et al.’s LAP algorithm

[220]. However, instead of randomly choosing a skeleton, a version of Brandes and Pich’s

[38] landmark approach is used. That is, to generate the skeleton that is input to AP (the set

of candidates for centers), first the exemplar nearest the median of the data is identified as

the first landmark. Next, until a desired number of landmarks are found, the exemplar with

the furthest minimum distance to any of the current landmarks is added to the skeleton. L2

is used for distance, given the prior analysis in Chapter 4. This skeleton generation and

subsequent use of Xia et al.’s LAP algorithm [220], is referred to as LAP in this research.

A second approach, using the idea of partitioning but distinct from the PAP algorithm,

is shown as Algorithm 7.1. Here, a number of unique subsets of the data are chosen based

on a desired subset size. This size parameter is primarily to help with computational burden,

but also gives an upper bound on how many centers the algorithm yields. These subsets

are not exactly a partition, as a small number of exemplars are not considered at all, unless

N is exactly divisible by m. This is done partially for implementation purposes, but as

HSI images and other very large data sets are such that any non-outlier exemplar should

have a similar exemplar elsewhere in the data, removing a small number of exemplars from

consideration does not affect the end result greatly. Once the subsets are chosen, according

to uniform random sampling, each subset is clustered using AP. The resulting centers across

all subsets are combined into a single set of candidate centers. Now, if the number of

candidates is too large, then the partitioning and AP process is repeated on the candidates

until either there is no change in candidates or until ≤ m candidates remain. Finally, AP

is performed on the candidates to yield a final set of centers for the data. Essentially,

this Partition Landmark Affinity Propagation (PLAP) algorithm forms a minimal skeleton

estimate for the large-scale dataset by forming skeletons for subsets of the dataset, and

then forming a skeleton of the skeletons. This is beneficial because it allows some control
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over the number of centers in the skeleton, and it fuses information across the subsets used

initially. Examples of the stages of landmarks for the LAP and PLAP algorithm are shown

in Figure 7.2 for the Half-Moon dataset, where a Gaussian kernel was used for similarity.

Algorithm 7.1 Partition Landmark Affinity Propagation (PLAP)
1: Let m be a desired number of exemplars for each initial subset, and overall.

2: Randomly sample without replacement to provide bN/mc subsets of the original N × p

dataset X.

3: for i = 1 : m do

4: Ci ← AP(Xi), where Xi is the i-th subset and Ci is the corresponding set of

estimated centers. This performs affinity propagation on each subset.

5: end for

6: C ← ∪m
i=1Ci.

7: if |C| > m, where |C| is the number of centers then

8: Do Steps 1-6, using N ← |C|. This yields the centers C′. C ← C′.

9: if |C| > m and at least one center in C changed then

10: Go to Step 8.

11: else Proceed.

12: end if

13: else Proceed.

14: end if

15: C ← AP(C).

7.3.2 Skeleton Analysis.

In order to evaluate how to choose the best skeleton with which to generate the KPCs

for HSI, a starting point is to evaluate methods on lower dimensional data sets from Chapter
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(a) LAP: Initial Landmarks. (b) LAP: Final Landmarks. (c) PLAP: Initial & Final Landmarks.

Figure 7.2: LAP and PLAP Half-Moon Example.

2. Figure 7.3 shows the data and centers for three of the lower-dimensional data sets, where

a linear and Gaussian kernel were used to build similarities for AP. For the Gaussian, σ

was set as a function of the average distance of exemplars from the mean of the data.

Specifically,

σ =

√√ N∑
i=1

‖xi − x̄‖22

 /(2N). (7.18)

In some cases, the centers overlap exactly. The AP with linear kernel does the worst,

missing halves of the rings in the chain link data, and only finding the outer edge of the

classes in the Banana dataset. Here, L2 is not used to build the similarity matrix because it

was found to yield similar results to the linear and quadratic polynomial kernels, in that it

often identified centers on the extremes of the variable space.

Comparing the number of centers found more exactly across more than just these

three problems, results are shown in Table 7.1. Here AP was used on all problems except

for the Half-Moon dataset, where LAP and PLAP were used because there are over 14,000

exemplars. Again, in the large-scale AP techniques an initial set of landmark points is found

using maximin beginning nearest the median and using the L2 metric. Once that initial set
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(a) Banana. (b) Chain. (c) Hepta.

Figure 7.3: Center Comparisons.

is constructed, then the similarity matrix for a specific kernel is input to AP. Three things

are of primary interest. First, the linear kernel yields centers that are not as desirable in

AP. This is supported by the centers shown in Figure 7.4 for the Half-Moon dataset. The

linear kernel, and in fact the quadratic polynomial kernel and L2 similarity also, generates

centers on the extremes of the variable space. Although these shape the boundary of the

data, they do not shape the boundaries of objects in the data. Second, Xmeans finds a

large number of singleton clusters on the Pima dataset, and overestimates k comparatively.

Robust Xmeans, with its multiple starts, avoids this. Finally, the centers found by LAP and

PLAP on the Half-Moon dataset are much more useful than the two found by Xmeans for

purposes of determining class structure. Again, looking at Figure 7.4, both LAP and PLAP

with Gaussian similarity generate centers that find the shape of the two classes. Here,

m = 1, 000 was used. LAP also approximates the borders of the two classes very well.

Other kernels for similarity focus on the edges of the data. Meanwhile, Xmeans correctly

estimates that there are two groups, but the centers are not of high informational value. The

centers from LAP and PLAP on the Chain Links dataset, where m = 100, are shown in

Figure 7.5. LAP perfectly finds the shape of each ring.
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Table 7.1: Center Number Comparisons.

Figure 7.4: Half-Moons Comparison.

For HSI, some representation of what Xmeans and k-means centers correspond to was

already analyzed in Section 3.9.1. Unlike their k-means counterparts, the AP centers are

actually exemplars from the dataset. Therefore, they are directly interpretable. Figure 7.6

shows the 38 centers found for ARES1D using m = 1000 and LAP, overlaid in red onto

the RGB image. Here, the Gaussian kernel was again used for the similarity matrix, with σ

again set using the average distance to the mean of the data. Pixels from different materials

are selected, including a couple of target pixels. Figure 7.7 shows the pixel signatures for
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Figure 7.5: Chain Links Landmark Version Comparison.

the 47 centers found for VirginIslands1 using m = 500 and LAP. They appear to be evenly

spaced spectra, and this is confirmed in Figure 7.8(a). Pixels corresponding to ships, water,

and land are all included in the centers. The other plots in Figure 7.8 depict the centers for

the cases of m = 1000, using the normalized pixel signatures, and PLAP. Using m = 1000

instead of m = 500 increased the number of centers from 47 to 62. Using normalized

data with m = 100 increased the numbers of centers from 62 to 86. The PLAP algorithm

reduced the candidate centers to a total of only nine pixels. In all cases, ships, water, and

land are represented.

LAP is advantageous in comparison to PLAP because it is not random, yields more

centers in general, and it is more computationally efficient, scaled linearly according to

the number of subsets used in PLAP. PLAP may be more advantageous in that it gives a

heavily reduced skeleton. Both methods may be advantageous in comparison to Xmeans

because they yield a lower number of centers and use actual exemplars for the centers.
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Figure 7.6: ARES1D LAP with m = 1000.

Figure 7.7: VirginIslands1 LAP Centers.
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(a) m = 500. (b) m = 1000.

(c) m = 1000, PLAP. (d) m = 1000, Normalized Data.

Figure 7.8: VirginIslands1 LAP Center Comparisons.

However, they may be disadvantageous if they include anomalies, as X-means averages the

clusters and reduces the negative effect of any anomalies. Table 7.2 shows estimated k and

the time to estimate these k centers for various skeleton generating methods for a forest,

desert, and water dominated image. For Xmeans, a set of full cluster splits was allowed

until 600 clusters were under consideration for splitting. This desired upper bound was

chosen because the size of the Gram matrix needs to be limited for KPCA due to memory
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and computational constraints. Only the LAP algorithm is truly deterministic, and so the

remaining results are means of ten runs where the variation observed was not high. The

k-means frameworks, despite their performance enhancements, are still computationally

inefficient once k increases to a moderately large value. BIC-means is more efficient,

because the whole set of clusters is only re-evaluated after the splitting is done. The bulk

of its computational expense is due to the last clustering at the estimated k. In practice,

this suggests that it may be more prudent to use a fixed k rather than trying to estimate

one, basing this number either on a possible number of materials in the image or on an

acceptable size for the resulting Gram matrix.

Table 7.2: HSI Mean Center Numbers and Times.

The LAP and PLAP results are interesting because they suggest that a very small

number of exemplars may constitute an acceptable skeleton. To further understand how

these are being chosen, Figure 7.9 shows the 1000 landmarks from the initial maximin

skeleton, on which AP is used, overlaid in red onto the natural image. In the VirginIslands1

image, both targets and land are heavily present, while water pixels seem to be less

prevalent. Similarly, in ARES1D the landmarks include a large number of target and brush

pixels, but also includes road and dirt pixels. This is in contrast to the k-means algorithms,

where Figure 7.9(b) and (d) depicts each cluster’s pixel index as a color for k = 64. The
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cluster centroids are generally the mean of pixels with the same color. These results suggest

that using k-means centroids may be better for constructing background estimates, while

AP centers may be better for distinguishing target pixels from background pixels that are

more likely to be identified as false positives, assuming the target centers are either removed

at some stage or do not negatively affect score maps for this purpose. Further discussion

and success of these methods in generating good KPCs is evaluated next.

7.3.3 Resulting KPCs Analysis.

Again, smaller data can be used to help investigate. Figure 7.10 shows the true

KPC scores, and NyApprox estimates for the Pima dataset using a Gaussian kernel, the

standardized data, and σ = 1.99. Figure 7.11 shows the scores from small clustering

skeletons. In the case of NyApprox, it is clear that as the skeleton gets smaller relative to

the size of the data, more error is incurred. However, the scores themselves are still fairly

accurate. Meanwhile, the cluster skeletons yield similar behaving scores, but that are much

different than the scores from NyApprox. Arguably, this is favorable, as a certain subset

of exemplars appear to be different than the rest. This suggests that although these cluster

centroids are not as favorable for approximating the true eigenvectors, they may be useful

in providing more meaningful mappings.

Now, consider the ARES1D image. Figure 7.12 shows sample ‘best’ mappings from

KFA using a Gaussian kernel, and LAP and k-means skeletons. In Figure 7.12(a) and (c),

σ was set as a function of the average distance of the data to its mean, while in (b) and (d)

it was set as a function of the average distance of the centers to their mean. Thus, σ ≤ 4510

for these maps, and they are shown without any smoothing applied. These mappings all

appear to show the anomalies.

Figure 7.13 shows sample maps from KFA using σ =
√

20 and using the scaled

images. The first row shows maps on which targets are obvious for k-means and LAP
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(a) VirginIslands1 Maximin. (b) VirginIslands1 k-means.

(c) ARES1D Maximin. (d) ARES1D k-means.

Figure 7.9: Maximin Landmarks & k-means Assignments.

skeletons. The LAP skeleton contained four targets. Therefore, the second row shows

corresponding LAP maps where these were removed; note the improvement in score

268



(a) True. (b) NyApprox: m = k = 500.

(c) NyApprox: m = k = 20. (d) Eigenvalues.

Figure 7.10: Pima Eigenvectors and Values.

magnitudes and noise. After much experimentation, a few things were clear. The data

skeletons are sensitive to outliers, as evidenced here. The choice of σ and whether or not

to scale the data also has a big impact on the quality of the maps. Figure 7.14 further

exemplifies this, where these maps correspond to ARES1F. The KPC scores for ARES1F,

here constructed using NyApprox with m = 600 and r = 500, do not cleanly break out

the target class. Instead, the road and other materials also appear potentially anomalous.

Applying FA, certain targets appear on different maps, but not strongly. Using KPCA and

KFA with a much larger spread, the targets become more obvious, but the background is
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(a) k-means: k = 10. (b) AP: 12 Centers. (c) Eigenvalues.

Figure 7.11: Pima Eigenvectors and Values.

not as clean on the maps. However, reducing the spread again and using a relatively small

k-means provides cleaner maps where the targets appear more obvious.

Other than to say that the choice of σ, kernel, and skeleton size greatly impact the

quality of the mappings, it is very difficult to quantify how these affect the scores in a

general sense, accurately. A KPC or factor with high scores is not necessarily a good

component for finding anomalies. Similarly, a component with high SNR is not always

the best. The n-dimensional technique from Chapter 5 can be used in an effort to show

the benefit of different skeletons and size. For example, Figure 7.15 depicts resulting

factor scores for k-means skeletons with MDSL applied after the KPCA. It can be seen

that more separation is achieved between anomaly and background with smaller skeleton

size. This is because, in part, there are fewer maps to rotate. Figure 7.16 show skeletons

in a similar fashion for ARES1F. Again, smaller is better, and k-means appears to give a

cleaner set of maps than NyApprox. Further analysis revealed k = 50 to be psuedo-optimal

for skeleton size, as fewer centroids did not generate enough quality maps, while more
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(a) LAP: k = 56, Data Mean. (b) LAP: k = 56, Center Mean.

(c) k-means: k = 500, Data Mean. (d) k-means: k = 500, Center Mean.

Figure 7.12: ARES1D KFA Scores.

enabled anomalies to spread across maps and be more difficult to detect. This is discussed

further shortly, during analysis of the final algorithm.

Regardless of the difficulty of quantification, it has been shown that desirable

mappings are possible using the non-linear techniques. Further, if k-means is used to build

the skeleton with a moderate k (i.e., < 250), it is, relatively, computationally inexpensive or

equivalent in comparison to AP and NyApprox. Any form of AP is problematic due to the

sensitivity of the mappings to outliers, and the possibility that AP uses an anomaly in the

271



(a) k-means: k = 500. (b) LAP: m = 1000. (c) LAP: m = 1000.

(d) LAP: m = 1000 (No Targets). (e) LAP: m = 1000 (No Targets). (f) LAP: m = 1000 (No Targets).

Figure 7.13: ARES1D KFA Scores: σ =
√

20.

skeleton. Meanwhile, k-means only uses an average of anomalies in the worst-case, thus

slightly mitigating the outlier sensitivity. Table 7.3 shows run-times for the various skeleton
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(a) PC σ =
√

20. (b) FA σ =
√

20.

(c) FA σ = 5207. (d) k-means: k = 100, σ =
√

20.

Figure 7.14: ARES1F Scores.

generation techniques, with and without factor analysis applied to the kernel components,

where statistics were taken over ten values of σ ranging from 21 to 8000.

In the experimentation of these mappings and factors, a few things became clear.

Using the scaled data and smaller σ was generally a better approach. In Chapter 8, larger σ

perform better, but this is due to a difference in the algorithms. There, finding a boundary is

important, while here, generating maps that show the anomalies is important. The Gaussian
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Table 7.3: Skeleton Generation Times(s).
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(a) k = 50, MDS L = 12. (b) k = 100, MDS L = 20.

(c) k = 500, MDS L = 36.

Figure 7.15: ARES1D k-Means Skeleton Comparisons.

kernel was also the best performer, where the polynomial kernel never provided maps with

information not found by the Gaussian. NyApprox and k-means also seemed to provide the

best skeletons, most consistently. This was because AP directly allows outliers as landmark

points; although NyApprox can as well, in that algorithm eigenvectors are approximated

across all exemplars. Applying approximate factor analysis was also necessary in order to

consistently provide better score maps. It is clear that non-linear mappings can provide

components that reveal anomalies well, but that parameter and sub-algorithm choices

greatly affect success. This also leads to the conclusion that it may be difficult to standardize

settings of an algorithm across images.
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(a) k-means: k = 50, MDS L = 12. (b) NA: m = 50, MDS L = 49.

(c) NA: m = 100, MDS L = 94. (d) NA: m = 500, MDS L = 98.

Figure 7.16: ARES1F k-means and NyAppox (NA) Skeleton Comparisons.

Before proceeding, recall from Section 3.5 that Local Linear Embedding (LLE)

is a special form of KPCA, where it is assumed that the data lies on a manifold and

local linear reconstruction based on neighbors is used to produce the lower-dimensional

embedding. Therefore, it also warrants consideration because it uses similarity and

manifold information. Given the ARES1D image, LAP produces 56 centers. Using these

centers as training, or the centers from k-means with k = 56 as training, the resulting

LLE embeddings are highly noisy. This, and similar results on other images suggests

that LAP produces too few landmarks to provide a good approximation with LLE. Figure

7.17 shows specific embeddings generated using a training set of 250 and 500 centroids
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from k-means with those respective k’s, various numbers of nearest-neighbors for the

reconstruction, and with/without using robust LLE. The numbers in parentheses in the

caption denote the embedding number in terms of smallest eigenvalue magnitude. The most

useful embedding is that based on the largest number of centroids and nearest neighbors. In

general, increasing the number of centroids for the training set improved the embeddings

on different images. Unfortunately, larger skeletons and nearest-neighbors greatly increase

the computational expense for LLE. Additionally, the mapping in Figure 7.17 is still not

as clean as those from factor analysis in Chapter 6, as the brush has higher scores than the

true anomalous pixels. Therefore, LLE is likely not appropriate here, and so next the use

of KPCA and KFA is investigated further within the IGFAAD framework.

7.4 KIGFAAD

The IGFAAD framework from Chapter 7 can be extended easily to the kernel case, as

the mappings from the skeleton seem to behave in a similar fashion, although anomalies

spread more widely across the factors and they are not as interpretable (due to being

loaded on landmarks). The modified framework is shown in Figure 7.18. Here, the only

changes to the algorithm framework are that the data is scaled by its maximum value in

the first step, a data skeleton is used for the eigen-analysis, and that the covariance eigen-

decomposition and subsequent factor analysis occurs in the kernel space. For a skeleton

choice, consider that NyApprox is still very much random, and can have singularity issues

in practice. k-means is random because of its initial solution, but the refined start reduces

the randomness. For moderate k, k-means and NyApprox have a similar computational

expense. Additionally, k-means essentially smooths the skeleton by using the centroids

instead of exemplars, and so k-means is more resistant to outliers. Therefore, it is chosen

to generate the skeletons. The LAP algorithm was also tested, using m = 1000, but did not

277



(a) k = 250, knn = 5, Robust (1). (b) k = 250, knn = 5, Robust (3).

(c) k = 250, knn = 10, (3). (d) k = 500, knn = 10, (3).

Figure 7.17: LLE Scores.

perform well in general and showed an influence by outliers, often having at least a few in

the skeleton that weakened results.

Kernel RX (KRX) is initially the best comparison for any kernel-based algorithm, as

its global version has been shown to perform very well on certain HYDICE images [133].

In their work, Kwon and Nasrabadi [133] used σ =
√

20 for the Gaussian kernel, and a

k = 600 k-means centroids training matrix for KRX on an image very similar to ARES1D.
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Figure 7.18: KIGFAAD Process.

In experimentation of the images in this research, that value forσ also appears to be psuedo-

optimal, while k < 600 is still suitable. Figure 7.19 shows the ROC curves for the basic

seven problem test set used throughout this research, using k = 200 for k-means. It can be

seen that KRX performs fairly well overall, but better on some problems than others.

Also shown in Figure 7.19 are initial guesses at operating points for KIGFAAD, where

they were set according to the settings in Table 7.4, and with a k-means skeleton for k = 50.

In practice, having at least 20 to 30 factors available seemed to provide reasonable maps,

and so k = 50 was chosen initially to ensure that number of maps and to keep the clustering
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Figure 7.19: KRX ROCs vs. Initial KIGFAAD Operating Points.

efficient. σ =
√

20 was still used for the Gaussian kernel on the scaled data. Actual TPF

and FPF values are shown in Table 7.5. Here, previous settings were taken from IGFAAD,

except that the score magnitude thresholds were reduced, the pixels per bin values were

reduced, and the dynamic factor adjustments were eliminated by using the same bin widths

at all stages. The score thresholds and pixels per bin have to be reduced here because the

kernel factor maps are different in nature than their linear counterparts. In general, they

have lower scores and lower SNR. Given, that several parameter values were copied from

the linear case, and that the dynamic aspects of the algorithm were essentially turned off, the

results also indicate that these initial settings are far from optimal. Interestingly, the settings

are still on or to the left of the KRX ROC curves, which is very promising. The ARES1D

results in particular are already at an extremely good performance level. Additionally,

simply due to the nature of clustering with k = 50 versus k = 200, the algorithm is more
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efficient than KRX. In addition to indicating competitiveness with KRX, this indicates that

KIGFAAD is advantageous over KRX because an actual operating point can be found.

Table 7.4: KIGFAAD Experiment Settings.

Parameter Name Initial Experiment

tMS Max Score Threshold 0.5 0.1,0.55,1

tS NR Bin Width PA SNR Threshold -1 -3,1,1

Iinitial Initial IAN Iterations 4 0,3,6

Ih IAN Iterations High 20 0 20 40

Il IAN Iterations Low 12 0 10 20

Yinitial Pixels Per Bin Initial 100,200 50,150,250

Ylow Pixels Per Bin Low 100,200 24,74,124

Yhigh Pixels Per Bin High 100,200 100,150,200

τ1 Bin Choice SNR Threshold (τ) 7.17 3 7 11

τ2 Smoothing Choice SNR Threshold 10 5 10 15

ts Score Magnitude Threshold 10 1,4,7

Table 7.5: Initial KIGFAAD Results.
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To better optimize the KIGFAAD algorithm, a similar approach to that used in Chapter

6 is taken here. For an RSM experiment with which to optimize the KIGFAAD algorithm,

experiments using three-level full-factorials over the settings shown in Table 7.4 were

performed. After adjusting ranges and optimizing, the settings in Table 7.6 were found.

This provided competitive TPF and FPF rates to the linear algorithm, however, these

experiments were done over a fixed instance of the robust clustering for each image. Upon

repetition, it was discovered that even small changes to the skeleton (one different centroid,

for example) could greatly impact results. Changes in the TPF up to 0.2 occurred. This

does make sense, as the skeleton is very small, and approximates the kernel factors for all

N pixels. Therefore, any skeleton with randomness, even if minimal, is not desirable.

Table 7.6: KIGFAAD Optimal Settings.

Parameter Name Optimal

tMS Max Score Threshold 0.55

tS NR Bin Width PA SNR Threshold 1

Iinitial Initial IAN Iterations 5

Ih IAN Iterations High 32

Il IAN Iterations Low 6

Yinitial Pixels Per Bin Initial 123

Ylow Pixels Per Bin Low 111

Yhigh Pixels Per Bin High 120

τ1 Bin Choice SNR Threshold 6.5

τ2 Smoothing Choice SNR Threshold 13.5

ts Score Magnitude Threshold 6
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In order to resolve this issue, the deterministic method developed by Su and Dy

[197] was used. They found that using PCs of the data could be used to yield a low

distortion initial guess for centroids. In particular, the data is iteratively split into clusters by

choosing the cluster at a given iteration with maximum distortion, projecting the cluster’s

membership onto its first major principal component, and then splitting the cluster’s

membership into two new clusters according to which side of the component’s mean it falls

on. This is beneficial because it is efficient, deterministic, and has low distortion because

the principal components are already sum square error optimal in terms of reconstruction.

Using this to build the skeleton, k, the iteration score threshold, using MDSL or not as

an eigenvector cut-off, σ, the number of iterations, using BACON as a pre-screen to remove

anomalies from the skeleton, and the general algorithm parameters were all tested using the

RSM framework again in a very large series of experiments. Removing eigenvectors before

the rotation with MDSL generated too few maps for k ≤ 50 on many of the problems, and

even did so for a few problems with k up to 200. One example was ARES1F, where the TPF

dropped to 0.507 with only 34 retained maps of the possible 200. Changing the iteration

criterion as a function of tMS , i.e., deviating from the constant 2.5 in the criterion, as well

as increasing iteration led to increased false positives on some problems. Although that

occurred, leaving the iteration as it was in IGFAAD did generally improve results, though it

simultaneously decreased TPF and FPF rates on certain problems. Using BACON as a form

of pre-screen made the centroids too clean, and led to increased false positives. In general,

decreasing k from a 45-50 range did not allow enough variation into the skeleton to model

the background properly, such that TPFs reduced. Similarly, increasing k allowed pixels

nearer the outliers into the skeleton on some problems, and reduced TPFs or increased

FPFs. With larger k, more maps (factor score sets) are rotated, such that the resulting maps

provide less meaning. In fact, the range of k = 45 to 50 seemed to balance the trade-

off between not allowing outliers to overly influence the skeleton, with providing enough
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maps for discrimination and few enough such that the rotation would yield few good maps.

The rotation itself was not a problem, as testing the KPCs without factor analysis applied

yielded maps of lesser quality. It must also be remembered that the loadings for kernel FA

are on the skeleton exemplars, thus making selection of the skeleton so important. σ also

had some slight impact, but again, interacted with other parameters. σ was varied from
√

10 to
√

35.

The best general parameters based on RSM experiments turned out to the same as

those shown already in Table 7.6, as those particular skeletons were very similar to the

deterministic version. Results from a few different investigations and kernel algorithm-

specific parameter settings are shown in Table 7.7. Here, the headers denote the number of

centroids, whether or not iteration was performed, and σ, in that order. Each row is also

conditionally formatted by magnitude, where green reflects ‘best’ and red reflects ‘worst’

performance. It is clear that the non-linear algorithm is more sensitive to changes in image

characteristics than the linear, and that certain settings for one image are not optimal for

another. However, with k = 50, one iteration, and σ = 5, the algorithm is generally and

most competitive, yielding promise that further investigation could lead to a version that

more consistently outperforms the linear.

KIGFAAD, in algorithmic form is given as Algorithm 7.2. A final comparison of this

algorithm at its new settings to the published KRX is shown as Figure 7.20. As shown,

KIGFAAD operates at a much better point in the TPF/FPF space.

KIGFAAD results on the remaining images with truth masks are given in Table 7.8.

It has higher detection, but higher false positives on run03m20, and does arguably better

than IGFAAD on 4Ships2 and Scene1. Meanwhile, the skeleton is highly inaccurate for

the Ship1 and HyMAP images. In the case of HyMAP, there are only 145 target pixels, and

so the skeleton is not representative enough of the entire background to prevent the high

false positives. In the case of Ship1, the scene is dominated by water but also has land.
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Algorithm 7.2 KIGFAAD Algorithm

1: Xs
N×p ← XN×p/

(
max

1≤i≤N,1≤ j≤p
xi j

)
: data is scaled by its maximum value.

2: Generate data skeleton S k×p with k centroids using deterministic k-means on Xs
N×p.

3: Find kernel eigenvectors V and eigenvalues Λ of K̂k×k formed on S k×p.

4: Perform approximate kernel factor analysis with Varimax rotation on the kernel factor

loadings Λ1/2V . Compute the unweighted least squares estimate scores FN×k.

5: if |min(F i)| > max(F i) for 1 ≤ i ≤ k, then F i ← −F i, end if.

6: snri ← PA S NR(F i) with bin width Yinitial/N using first zero-bin histogram.

7: if snri > tS NR, then retain F i, end if.

8: F i ← IAN(F i), with Iinitial iterations. For each factor mapping F i, mi ← max(F i).

9: Retain any factor mapping with mi ≥ tMS . If none satisfy this, declare no anomalies

and stop. Otherwise, go to Step 10.

10: snri ← PA S NR(F i) with bin width Yinitial/N using first zero-bin histogram.

11: if snri ≤ τ1, then Y i ← Ylow and snri ← PA S NR(F i) with bin width Ylow/N; else

Y i ← Yhigh and snri ← PA S NR(F i) with bin width Yhigh/N, end if.

12: if snri ≥ τ2 & mi ≥ ts, then F i ← IAN(F i), with Il iterations; else if snri ≤ τ2, then

F i ← IAN(F i), with Ih iterations, end if.

13: Repeat Steps 10-11 using Y i as the initial bin width.

14: Define ηi ← PA S NR(F i) as the threshold from the first zero-bin histogram, using Y i.

15: If first iteration, remove any pixel j with F i
j > 2.5 × tMS from data used for covariance

estimate and go to Step 2. If no such pixels exist, or second iteration, go to Step 16.

16: if F i
j > ηi, then declare pixel j anomalous, end if.
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Table 7.7: KIGFAAD Results.

Figure 7.20: KRX ROCs vs. KIGFAAD Operating Points.

The centroids end up being more representative of the water pixels, but there are some that

are heavily influenced by land and ships. This, at the current parameter settings, skews
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the skeleton so as to provide very few useful maps. Although the other AVIRIS images

have land, water, and ships, the exact cluster size here, coupled with the factor rotation,

is a combination that provides a less useful skeleton and results in loading too heavily on

centroids that do not fully represent any of the classes.

Unfortunately, the nature of the algorithm and its many interactions amongst steps

and parameters make it difficult to realize a way to perform optimally across all images,

although performing well across most is certainly possible. Nonetheless, the results are

still promising, both due to the results on other images, and because these high FPFs did

not always occur with different skeletons and/or parameter settings. One way to mitigate

this would be to automatically change parameter settings if such a high TPF and FPF were

found during the course of the algorithm. A true benefit of the non-linear algorithm is that

it is not as susceptible as its linear counterpart to declaring anomalies because of sensor

error in a few bands. The use of pixels, rather than bands, to build the covariance helps to

avoid this.

Table 7.8: KIGFAAD Results on Other Images.

287



Next, use of kernel methods within the context of an entirely different framework is

discussed. There, anomaly detection is formulated as a boundary problem, where the focus

becomes to estimate boundary exemplars in the higher-dimensional space. Data skeletons

and kernel selection are still very relevant in this alternative framework.
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VIII. Support Vector Data Description

8.1 Literature Review

Support Vector Data Description (SVDD) assumes that non-linear mapped data in a

higher-dimensional space can be separated using a hypersphere. This is not in conflict

with the consideration that hyperspectral data may not take the shape of an elongated

hyperellipsoid, as that observation is largely based on PCA with a Gaussian assumption

in the originating space, and not the non-linear mapped space [137]. SVDD is a supervised

method, but it is desirable to develop an unsupervised version as class information is not

always known.

8.1.1 SVDD for Anomaly Detection.

Banerjee, Burlina, and Diehl [22] extended SVDD for use as an anomaly detector in

part using the kernel trick. In order to remove the homogeneous, Gaussian background

assumption that is made by detectors such as RX (and the accompanying high false-alarm

rates due to multiple terrain classes breaking the Normal assumption), their SVDD detector

incorporated a nonparametric background model. The ultimate goal is to estimate the

shape and size of the support region for the background. Using Support Vector Machines

(SVMs) fewer training samples are needed to accurately characterize the background, no

parametric assumption is made in the feature space, over-fitting is avoided, and the support

of nontrivial multi-modal distributions can be modeled.

The non-linear SVDD maps the data from the input space to a higher-dimensional

feature space using a mapping Φ(x), and models the support of the distribution as a

minimum enclosing hypersphere in the feature space. This can add flexibility that the

hypersphere based on the original input space does not provide. The resulting hypersphere

corresponds to a tighter boundary for the support region in the original input space.
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Sampling a set of N exemplars x to use as background, SVDD attempts to determine

the smallest hypersphere S (R, c) =
{
Φ(x) : ‖Φ(x) − c‖2 < R2

}
that contains the set of

mapped training exemplars. This is obtained by solving,

min (R) subject to Φ(xi) ∈ S , i = 1, ...,N. (8.1)

The objective can be equivalently replaced with R2. At first glance this problem seems easy

to solve. However, c is unknown and in general, c cannot be estimated directly from the

exemplars xi. As it turns out, the radius R and center c can be determined by maximizing the

infimum of the Lagrangian dual with respect to the Lagrangian multipliers αi (expanding

the hypersphere norm),

L(R, c, αi) = R2 −
∑

i

αi

{
R2 − (〈Φ(xi),Φ(xi)〉 − 2〈c,Φ(xi)〉 + 〈c, c〉)

}
. (8.2)

To satisfy the Karush-Kuhn-Tucker (KKT) conditions for an optimal solution
(
R̂, ĉ, α̂i

)
,

∂L
∂R

= 0 = 2R̂ − 2R̂
∑

i

α̂i ⇒
∑

i

α̂i = 1, (8.3)

and
∂L
∂c

= 0 = −
∑

i

α̂i (2Φ(xi) − 2ĉ)⇒ ĉ =
∑

i

α̂iΦ(xi). (using 8.3) (8.4)

Using these necessary optimality conditions back in L yields,

L =
∑

i

αi〈Φ(xi),Φ(xi)〉 −
∑

i

∑
j

αiα j〈Φ(xi),Φ(x j)〉, (8.5)

with αi ≥ 0 and
∑

i αi = 1. Incorporating the Kernel trick to evaluate the inner products,

where k denotes the kernel function, this becomes,

L =
∑

i

αik(xi, xi) −
∑

i

∑
j

αiα jk(xi, x j), (8.6)

with αi ≥ 0 and
∑

i αi = 1. Or, letting Ki j = Φ(xi)T Φ(x j) = k(xi, x j), this is equivalently,

max inf L =
∑
i
αiKii − α

T Kα

subject to
∑
i
αi = 1.

(8.7)
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The decision rule to detect an anomaly (or target class) for a test exemplar y is to see

if it falls outside the hypersphere (which now represents the background or training class).

Plugging in c and k for the dot products, this yields,

S VDD(y) = ‖Φ(y) − c‖2 ≥ R2 ⇒

S VDD(y) = k(y, y) − 2
∑

i αik(y, xi) +
∑

i
∑

j αiα jk(xi, x j) ≥ R2.
(8.8)

Use of the Gaussian Radial Basis Function (RBF), k(x, y) = exp
(
−‖x − y‖2

σ2

)
simplifies L

to,

L = 1 −
∑

i

∑
j

αiα jk(xi, x j), (8.9)

and the decision rule to,

S VDD(y) = 1 − 2
∑

i

αik(y, xi) +
∑

i

∑
j

αiα jk(xi, x j) ≥ R2. (8.10)

SVDD can be run using a window-method, but is much more efficient if done globally

to save computation (as with any algorithm). Of note, is that the kernel parameters must still

be estimated, a detection threshold has to be chosen because R2 vanished in the objective,

and solving for the αi coefficients is a quadratic programming problem. R2 can be estimated

from the training set by using the maximum from Equation 8.10, but ROC curves are most

often generated by varying this threshold.

Minimizing L is a quadratic program for the αi. Denote the Gram matrix for the

kernels evaluated on the training set as K. Then the quadratic program is,

min − Diag(K)Tα + αT Kα:
∑

i

αi = 1, αi ≥ 0. (8.11)

So long as the rows of K are linearly independent, it is positive definite by definition

of a Gram matrix. This is important, as this leads to global convergence for many

quadratic programming solvers. For example, the Frank-Wolfe algorithm applied to the

corresponding KKT conditions yields a global optimal, albeit with sub-linear or linear
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convergence (if modified) [25]. Otherwise, K is only guaranteed semi-positive definite,

and convergence for this formulation is only guaranteed to a local minimum.

This Banerjee, Burlina, and Diehl formulation [22] for SVDD assumes that a

hyperplane exists such that the different classes can be separated without misclassification.

That is, it is assumed that the resulting hypersphere truly encapsulates its training class and

separates one class from another. Therefore, the training data must be separable from other

classes and not contain outliers that would contaminate the optimization in that regard,

and the training data must be from the known “background” class. In reality, these are

very strong assumptions. In fact, SVDD for anomaly detection is a simplified form of the

originating SVDD algorithm.

The original SVDD formulation from Tax and Duin [203] allowed for misclassifica-

tion by using slack variables in the primal problem. Specifically, (8.1) was,

min R2 + ζ
N∑
i
ξi

subject to ‖Φ(xi) − c‖2 ≤ R2 + ξi, i = 1, . . . ,N,

ξi ≥ 0, i = 1, . . . ,N,

(8.12)

where ζ is a user-specified parameter that penalizes infeasibility relative to the hypersphere

encapsulating the training data. Thus, a tighter hypersphere could be formed if the penalty

was not too great relative to the amount of infeasibility. This formulation also gave the

additional benefit of bounding the decision variables in the dual using ζ. That is, the

corresponding Lagrangian dual to (8.7) is,

max inf
N∑
i
αiKii − α

T Kα

subject to
N∑
i
αi = 1,

0 ≤ αi ≤ ζ, i = 1, . . . ,N.

(8.13)

Therefore, ζ has to be less than or equal to one, and any choice of penalty also serves to

define the number of support vectors used such that a lower ζ enforces a tighter hypersphere
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to the training data. ζ is often chosen to be 1/(nη), where η is an expected rejection rate

in the training set and n is the number of exemplars in the training set [122]. Chang, Lee,

and Lin [49] showed that the primal (8.1) is not a convex formulation due to the case of

R = 0, but their resulting primal and dual formulations were generally equivalent assuming

non-zero R and enforcing the convexity constraint on α.

8.1.2 Training Set and Spread Parameter Considerations.

Typically in SVDD, it is assumed that truth data is known and a training set is chosen

from the set of background pixels [22, 199, 203]. With the class data known, it is easier

to estimate an optimal σ using a Gaussian kernel. Polynomial kernels are not used as

prevalently because their magnitude scales with both the magnitude of the data and the

number of features in the data. Further, the Gaussian simplifies the formulation and is

translation-invariant, and so the absolute positions of exemplars are not important [133]. In

this research, the goal is to select the training set and any parameters in an unsupervised

manner.

Banerjee, Burlina, and Diehl [22] proposed a cross-validation and minimax approach

using false alarm rates to select a pseudo-optimal σ. In particular, given a number of

training sets M of size n, the σ providing the least false alarm was approximated by that

with the smallest average number of support vectors,

σ̂ = min
σ

1
M

M∑
i=1

S Vi

n
, (8.14)

where S Vi was the number of support vectors found for the i-th training set. This mean is an

upper bound for the probability of false alarm. Wanga et al. [214] used an estimate based

on the Fisher discriminant function to best separate the classes. Khazai et al. [121] scaled

the maximum L2 distance between all pairs of background samples. Later, they used,

σ̂i =

 p∑
i=1

Var
(
X j

)1/2

, (8.15)
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where X j denotes the j-th feature of the training class data X [122]. This was designed

to model the standard deviation in a p-dimensional circular Gaussian probability density

function with independent variables.

Gurram and Kwon [88, 89] proposed to find the optimal σ, and an optimal convex

combination of kernels for SVDD by including σ and the kernel weights θ in Equation

8.7. They derived gradients with respect to these parameters using the partial derivatives

and used a reduced gradient method to find a descent direction. Again, however, it was

assumed that class information was known. Further, without class information, such fine-

tuning of the parameters could greatly overfit the hypersphere boundary.

Xiao, Liu, and Cao [219] built the training set by trying to find the boundary of the

training class first. They used a function of k-furthest neighbors in the non-linear space to

find those exemplars likeliest to be near the hypersphere boundary. They used a M-tree data

structure to speed calculations, but also used the class information to pre-identify candidate

training exemplars. Chu, Tsang, and Kwok [57] used core sets to iteratively build a training

set. Specifically, they randomly sampled a core set from the training class and estimated

a center. Then, exemplars from the core set within some radius were added into a training

set, and the center was re-estimated. This was done iteratively until the size of the training

set was some desired cardinality. As this generation does not emphasize the boundary, and

because class information is assumed to be known, it is not useful for this research.

Hua and Ding [101] proposed to incrementally build the training set, so that very large

data sets could be used without limiting training to a small sample of the data. To do this,

they noted that only background exemplars that violate the Karush-Kuhn-Tucker (KKT)

conditions at any step need to be incorporated. That is, an initial training set could be

used, and then any remaining training exemplars would either be within the hypersphere

boundary, on it, or outside of it. Those outside of it would then be incrementally added

to expand the boundary. Tavakkoli et al. [202] developed a similar techniques for use on
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video frames, where single exemplars were added to the training set. These incremental

approaches are only useful if there is high confidence in class labels.

8.1.3 SemiBoost.

In this research, class information is assumed to be unknown. However, it may be that

certain exemplars can be assumed to be anomalous or background with high confidence.

In this case, the data could be split into three subsets: likely anomalous, likely background,

and unknown. The unknown exemplars can remain unlabeled, while the others can be

labeled with their likely class. Such an approach allows for a semi-supervised training

method.

Mallapragada et al. [152], inspired by the power of boosting methods in a fully

supervised case, developed the SemiBoost algorithm to boost classification on a mix of

labeled and unlabeled data. Let yu
i denote the class label prediction for the i-th exemplar

that is unlabeled and yl
i denote the class label for the i-th labeled exemplar. Here, class

labels are either −1 or 1. Then, a reasonable objective is for similar points to be labeled the

same. They developed the objective,

nu∑
i, j=1

S i, j exp
(
yu

i − yu
j

)
+ C

nl∑
i=1

nu∑
j=1

S i, j exp
(
−2yl

iy
u
j

)
, (8.16)

for this purpose, where C = nl/nu and S i, j is the similarity between xi ad x j. Now, after

assuming T weak classifiers ht(x) are used to build a stronger classifier H(x) =
T∑

i−1
αtht(x),

they showed that optimizing Equation 8.16 is the same as minimizing,

nu∑
i=1

exp (−2αhi) pi + exp (2αhi) qi, (8.17)

where

pi =

nl∑
i=1

S i, je−2Hiδ(y j, 1) +
C
2

nu∑
j=1

S i, jeH j−Hi , (8.18)

and

qi =

nl∑
i=1

S i, je2Hiδ(y j,−1) +
C
2

nu∑
j=1

S i, jeHi−H j . (8.19)

295



Additionally, they derived the optimal weights for the weak classifiers as,

α =
1
4

ln
∑nu

i=1 piδ(hi, 1) +
∑nu

i=1 qiδ(hi,−1)∑nu
i=1 piδ(hi,−1) +

∑nu
i=1 qiδ(hi, 1)

, (8.20)

where δ is an indicator function. They proved that using these weights the objective

function follows an exponential decay [152]. In order to best reduce the objective function

each iteration, the weights |pi − qi| are used to select the most confident unlabeled data

exemplars, and the algorithm stops if αt ≤ 0 due to such a low performance classifier

breaking the convergence properties. The SemiBoost algorithm is shown as Algorithm 8.1.

Algorithm 8.1 SemiBoost [152]
1: Let X be a set of (nl + nu) exemplars, where nl are labeled and nu are unlabeled.

2: Compute the pairwise similarity matrix between all exemplars, S i j.

3: 0← H(X).

4: for t = 1 : T do

5: For each exemplar i in X, compute pi and qi using Equations 8.18 and 8.19.

6: sign(pi − qi)← zi.

7: Sample exemplar xi for use in training the weak classifier according to weight

|pi − qi|.

8: Train weak classifier ht(x) using sampled examples and class labels zi.

9: Compute αt using Equation 8.20.

10: H(X) + αtht(X)← H(X)

11: end for

8.2 Unsupervised Training Set Generation and Parameter Optimization

SVDD is typically not performed without known class information, due to its fitting

of a decision boundary to the supports of the training set. The algorithm itself is fairly

efficient with good results, and estimates a geometry for the data. Therefore, it may
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be beneficial to develop SVDD for the unsupervised case. In order to do this, one

consideration is that finding the supports for the background class may be primarily a

function of finding those exemplars with a large margin to the anomalous class. k-furthest

neighbor and incremental methods are likely too inefficient without class information to

guide the approach. Unsupervised support vector machines often try to find a largest

margin, but this is problematic if an image is more cluttered. In other words, an image

with water, land, and ships likely has the largest margin between the water pixels, and the

land and ship pixels. The land class acts like a weak anomaly class, whereas the ship pixels

are the strong anomaly class of interest.

Instead, an entirely different approach can be considered. The BACON algorithm

(Section 3.11.5) screens outliers as a function of the Mahalanobis distance, making it

very efficient. However, even with variation of its parameters it does not always perfectly

separate background and anomaly classes. Further, results can be inconsistent across image

types if using a single, fixed set of parameters. Consider the results for the percentage of

pixels detected at outliers for a fixed v = 30 degrees of freedom, shown in Figure 8.1,

varied by significance. ARES1C and ARES2C have no targets, yet BACON is prone to

false positives on those images.

Despite these findings, BACON is useful in finding background. That is, a screening

most often detects targets and the more anomalous background pixels. This can be used

to an advantage by double screening. Figure 8.2 depicts the first part of this concept.

First, a normal iteration of BACON is performed to identify potential anomalies. After

experimentation across several images, it seemed best to do this at the α = 0.05 significance

with 20 degrees of freedom. This iteration separates clean background from the rest of the

pixels. Next, BACON is applied to the pixels identified as anomalous in the first iteration,

but at a changed sensitivity. This serves to separate the more anomalous background from

the real anomaly class. In practice, for best results across images, α = 0.1 and 10 degrees
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Figure 8.1: BACON with v = 30.

of freedom were used for the cut-off in the second iteration. By itself this could be used as

an anomaly detection algorithm, but in practice this does not always identify all anomalous

pixels, nor does it always remove all false positives from the estimate. Instead, it is used

here to begin to characterize the background and anomalous classes.

Figure 8.2: BACON Double-Screening Approach.
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Figure 8.3 shows results at the end of each iteration for ARES1F and VirginIslands1.

Whereas the results are very desirable for ARES1F, the nature of the land and water pixels

in the VirginIslands1 image makes it more difficult to screen out false positives, resulting

in a very large number. In such a case, a skeleton technique that could help to mitigate

this is necessary. Additionally, if very few pixels are identified as anomalous in the second

iteration, then the image can be considered to have no anomalies. This resolves one of the

main issues with any form of SVDD, in that by nature of the training set’s hypersphere

boundary, a target class is always assumed.

In Section 7.3.1, a large-scale affinity propagation technique based on landmark points

was presented, denoted as LAP. It was shown that this method was adept as finding the

boundaries of classes in the data, and that a related partitioning counterpart, PLAP, was

adept at finding a centroid skeleton for these boundaries. Here, it is proposed to use these

algorithms to form skeletons on the results of the previous BACON screening, in order

to yield probable boundary solutions with which to train an unsupervised SVDD. Taking

into consideration the nature of the hypersphere boundary, it is more desirable to use LAP

on those pixels not identified as anomalous, so as to provide a larger background support.

Even in the supervised case, LAP could provide a better boundary than the standard method

of randomly sampling from the background.

Any boundary is still dependent on the choice of kernel. In order to better select

the kernel, but again without class information, the technique from Section 7.1.3 can be

used. However, this requires some labeled subset with which to calculate the kernel fisher

criterion. To do this, LAP and PLAP can again be used. Similar to before, LAP performed

on those pixels not identified as anomalous by the BACON screening yields exemplars that

shape the boundaries of the background. Meanwhile, PLAP performed on the potential

anomalies yields exemplars that represent the shape of the anomaly class, but that are not

necessarily nearest the boundaries. This helps to limit the amount of over-training for the
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(a) ARES1F 1st. (b) ARES1F 2nd.

(c) VirginIslands 1st. (d) VirginIslands 2nd.

Figure 8.3: BACON Double Screening Results.

kernel. This is depicted in Figure 8.4. Given these considerations and frameworks, a full

unsupervised SVDD (USVDD) method is presented next.

8.3 Unsupervised SVDD (USVDD)

The unsupervised SVDD algorithm is given as Algorithm 8.2. After each BACON

iteration, if there are no potential anomalies or if the number is below some threshold as a

function of the percentage q of the image pixels, then it is determined that the image has
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Figure 8.4: Landmark Generation for Optimal Kernel.

no anomalies. As SVDD always fits to a training set, this is a necessary step. On ARES1C,

only 124 pixels, or 0.0057% of the image’s pixels are detected as potentially anomalous

on the first BACON iteration. On ARES2C, another image with no targets, 0.0682% are

falsely detected after the second screening. Other ARES images generally have 0.01 to

0.03% detected. Therefore, unfortunately, this threshold is not entirely straightforward, but

q = 0.01 may work well in most cases.

To select an optimal kernel, ten Gaussian candidates were generated for the

optimization according to log scale, using 0.001 and one half of the squared range between

minimums and maximums in the dataset as the endpoints. This set, and the corresponding

optimal linear combination, is shown in Figure 8.5 for ARES2D. Larger numbers of

candidates, and including a first, second, and third-order candidate polynomial kernel were

tested as well, but most often only the Gaussian kernels were chosen to have non-zero

contribution in the optimization. Using only Gaussian candidates can also be advantageous

in that the optimal kernel is itself a Gaussian (treating the candidates as independent).
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Algorithm 8.2 Unsupervised SVDD
1: Let X be the set of N pixels in the image, and 0 < q << 1.

2: Perform BACON with α = 0.05 and v = 20 d.o.f. on X, yielding a subset Xb of

probable background pixels and a subset Xa of potential anomalies.

3: if Xa = ∅ or |Xa| < qN then

4: Declare no anomalies, and end.

5: end if

6: Perform BACON with α = 0.1 and v = 10 d.o.f. on Xa, yielding a subset X∗a of

potentially anomalous pixels.

7: if X∗a = ∅ or |X∗a | < qN then

8: Declare no anomalies, and end.

9: end if

10: Xb ← LAP(Xb ∪
(
Xa \ X∗a

)
).

11: (Optional: Optimal Kernel) X∗a ← PLAP(X∗a). Labeling Xb and X∗a as distinct classes,

solve for the optimal kernel.

12: Xa ← S VDD(Xb).

302



(a) Candidates. (b) Optimal Combination.

Figure 8.5: Kernel Selection: ARES2D.

To generate comparisons for USVDD, three supervised SVDD methods were applied.

The first two were a baseline SVDD with settings as employed by Taitano, Gaier, and

Bauer [199], and framework developed by Banerjee, Burlina, and Diehl [22]. 500 training

exemplars were randomly chosen from known background and the Lagrangian multipliers

were bounded by 1/(0.01N), where again, 0.01 represented an expected false alarm rate.

In the first case, a single training set was used where σ was set as a function of the average

distance to the mean of Xb. In the second, the minimax approach was used to find a best σ

over a candidate set of 40 values on a range of 20 to 8000, where M = 3. As can be seen in

Table 8.1, even with these small numbers, this approach greatly increased the expense of

the algorithm. These two standard SVDD approaches were replicated 10 times due to their

inherent randomness, and a mean was taken.

LAP was also used to generate the training data for supervised SVDD in a third

variation, where the clustering took place on known background using the truth data.

Again, σ was set as a function of the average distance to the mean of Xb. The USVDD

algorithm with and without optimal kernel, and using m = 1000 in the LAP algorithm
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was also run. The computational expense of the algorithms, in seconds, on seven test

problems are shown in Table 8.1, where experiments were done using a IntelTM Core

i7 CPU Q840@1.87 GHz, 64-bit OS, with 8 GB RAM. The LAP algorithm and use of

multiple training sets are the primary contributor to computational expense. Although

larger skeletons may be desirable for LAP, its expense scales with m. Smaller m yields

a smaller decision boundary and so is not necessarily desirable.

Table 8.1: SVDD Computational Time Comparisons.

ROC curves for these four techniques are shown in Figures 8.6 and 8.7. It is clear that

the optimal kernel often over fits, yet it performs the best on ARES3F. USVDD is highly

competitive with all of the algorithms, often out-performing its supervised counterparts,

although further decreases in FPF rates could prove very beneficial. It also outperforms its

initial BACON estimate, as evidenced by the VirginIslands1 image (ref: Figure 8.3). In this

case, the land class is also anomalous when compared to the water. Therefore, the double

screening helps to separate the true targets from the entirety of the background. Using

Equation 7.18 to set σ instead of using a minimax approach appears to be very competitive

and saves a great deal of computational expense. The values for σ were not typically

equal between the two methods, which suggests multiple competitive candidates. This

phenomena could also be partly due to the random nature of the baseline SVDD method.
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(a) ARES1F. (b) ARES2F.

(c) ARES3F. (d) ARES4F.

Figure 8.6: SVDD Comparison: Forest Scenes.

Next, a SemiBoost approach to USVDD was taken. The LAP and PLAP approach

from the kernel optimization was used to yield a set of labeled pixels. To form a third class

of unlabeled pixels, those pixels not in the labeled classes were clustered again using LAP.

Given these three sets of pixels, SemiBoost could be performed directly. Unfortunately,

the sparsity of the affinity propagation skeletons are a detriment in SemiBoost, as there are

very few labeled and unlabeled exemplars under consideration relative to the total number

of pixels. This provides weak classifiers that do not contribute a large amount of useful

information to the overall strong classifier. Results for the SemiBoost algorithm using
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(a) ARES1D. (b) ARES2D.

(c) VirginIslands1.

Figure 8.7: SVDD Comparison: Desert and Water.

SVDD for the weak classifier are shown in Figure 8.8 for ARES1F. m = 2000 in the

LAP sub-algorithm for the background estimates was also used, but this did not improve

the ROC curves. Different sampling methodologies were also employed to try and affect

the classifiers, to include sampling background and probable background pixels only, but

this had little effect on the ROC curve. Again, this suggests a different, fuller skeleton

approach is required for the SemiBoost technique to work here. Increasing the iterations

does improve the ROC curve, but the algorithm with five iterations took 192 seconds while
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for 20 iterations it took 256 seconds. Relative to USVDD without a boosting approach, the

computational expense is not a worthwhile trade-off.

Figure 8.8: SemiBoost USVDD.

As a final investigation for a semi-supervised SVDD, the predictions from IGFAAD

(Table 6.16) were input to USVDD, using predicted background as assumed background

and predicted target as assumed target. Then LAP was used on the assumed background

to generate the training set for USVDD. Due to the good performance of IGFAAD, this

was intended as an approximate semi-supervised technique or fusion to try and boost the

IGFAAD algorithm’s performance. With and without the optimal kernel step, resulting

ROCs generally had solutions less desirable than the original IGFAAD predictions, where

TPFs were as high only if allowing for increased FPFs. One of the better performing

images was VirginIslands1, where this ROC curve is shown in Figure 8.9. Even still, in

the original IGFAAD results, the FPF was 0.07 and the TPF was 0.95. ARES3F is also

shown, and it is clear that this fusion is not desirable, as the original results had a TPF

of 0.8552 and FPF of 0.07. This could be because the background pixels do not all truly

fall within an exclusionary hypersphere in the non-linear space. This further shows that
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although USVDD is competitive with its supervised SVDD counterparts, the GFAAD and

IGFAAD methods from Chapter 6 operate at a much better point in the TPF and FPF space.

Figure 8.9: Fused IFGAAD and USVDD Results.

Investigating the sensitivity of USVDD to the bound ζ on the dual variables is also

necessary. Recall, this is often chosen as 1/(ηN), where η is an expected false alarm rate.

0.01 was used previously based on the bound used by Taitano, Gaier, and Bauer [199]. The

results of USVDD are fairly invariable to this bound. In fact, varying η from 0.1 to 0.2,

many results are identical. Figure 8.10 shows the three images where ROC curves differ

slightly, depicting the range of η, and clearly there is only small variation. This may be

partly due to the fact that the LAP background estimate used to train is so small.
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(a) ARES1F. (b) ARES1D.

(c) ARES2D.

Figure 8.10: USVDD Dual Variable Bound Comparison.
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IX. Summary of Contributions

9.1 Review

In this research, approaches to better understanding multivariate data and their

anomalies were developed. Specifically, the following contributions were made:

1. An unsupervised algorithm was developed to find noisy features, using factor

analysis.

2. HSI truth masks were analyzed so as to better measure true and false positives.

3. Improvements were made to an existing n-dimensional visualization, where it was

re-formulated as an optimization problem and several techniques were developed to

provide solutions.

4. A new global anomaly detection algorithm was developed utilizing a fusion of

spectral, spatial, and SNR information, and factor analysis, filtering, and zero-bin

histogram techniques.

5. A non-linear form of the new anomaly detection algorithm was developed,

where a data skeleton methodology was tested and incorporated to make it more

computationally competitive with its linear counterpart.

6. An unsupervised support vector anomaly detection algorithm was developed,

utilizing clustering and screening methods that were also newly developed.

In Chapter 4, the factor-analysis based feature selection technique was developed to

identify noisy features and absorption bands successfully. Specific variance thresholding

was shown to remove undesirable bands from HSI. This technique is very efficient, and

proved relatively robust to the number of features under consideration and to different types
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of data. In particular, it was shown to also work on a dataset with 3,000 noise features,

where all 3,000 were clearly identified. The truth masks for many HSI images were also

evaluated in depth, revealing that many pixels typically treated as background or target to

fit an algorithmic need, are in fact more like background.

Development of a new n-dimensional visualization formulation and method was

provided in Chapter 5, where this visualization is highly intuitive. Objective functions

for the formulation were provided for both supervised and unsupervised data. Heuristics

with which to optimize the visualization in order to reveal class and object structure were

presented and demonstrated across a set of natural and HSI data sets.

Chapter 6 developed and discussed the GFAAD framework. The use of factor analysis

in a global detection algorithm proved to be highly competitive, and more robust across

image types, than existing algorithms. The resulting framework used many concepts from

AutoGAD and MPCA in a revised manner, creating a process that adapts to individual

score maps under consideration. This adaptation was enabled by determination of three

categories of factor score maps. Spectral, spatial, and SNR information was fused within

the algorithm to dynamically adjust to specific factors of an image. The new algorithm

removed randomness from the detection, increased full-pixel anomaly determination,

and provided interpretable components. Additionally, a version of the algorithm with

only slightly increased false positives was shown to be more computationally efficient

than existing methods. A single set of parameter settings was established for desirable

performance across a suite of 19 HSI images with varying characteristics and complexities.

Chapter 7 introduced a new kernel factor analysis technique, and presented compar-

isons of various skeleton generation techniques in order to make it computationally compet-

itive. It was shown that these non-linear methods can provide useful mappings with which

to identify anomalous pixels, and that sacrificing skeleton size to save computational ex-

pense does not significantly affect results, to a point. In fact, these reduced skeletons were
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shown to sometimes be more useful, in that there are fewer mappings to evaluate and, at

times, fewer false positives. The IGFAAD framework was expanded to the kernel case, and

shown to outperform and be comparatively efficient to other non-linear techniques.

Unsupervised techniques for the SVDD algorithm were developed in Chapter 8.

Although not as powerful as the factor analysis methods presented previously, they were

shown to perform competitively and in some cases better than standard supervised SVDD

algorithm variants. Additionally, these unsupervised techniques removed randomness from

the SVDD framework and were comparatively efficient. A unique training set generation

technique was developed using a new hybrid of BACON and AP clustering methods.

9.2 Insights

Factor analysis, a method not prevalently used in anomaly detection, proved to be

a powerful technique. Varimax rotated factors yielded certain clean mappings against

which anomalies were more easily identifiable. The fusion of spectral, spatial, and SNR

information, as in methods such as AutoGAD and MPCA, also proved to be highly useful.

Using this set of characteristics allows an algorithm to find locations in the spectrum where

certain pixels are significantly different from the majority, to evaluate whether a pixel is

also distinct from its neighbors, and to determine which mappings may be useful for the

detection problem.

Factor analysis was also very useful in determining noisy features. The method

developed is not entirely robust to sparse outliers, however, as evidenced by the retention of

certain spectral bands in HSI where the sensor generated a line of erroneous pixels. These

are easily visually identified, but are not clear from the specific variance threshold.

Many of the methods developed in this research, such as IGFAAD and USVDD, can

likely be further optimized. Their current high performance is promising towards this end,

and the factor analysis-based methods specifically were shown to be better performing than

many existing algorithms. Although the non-linear methods also exhibit good performance,
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their current computational expense in comparison to well-performing linear methods

may still prohibit their use under certain conditions. The new global affinity clustering

techniques developed here are simple, yet very accurately find the shape and boundaries

of data. Most of the techniques developed have the additional advantage that they are not

random, and are entirely unsupervised.

Using hyper-radials to visualize data was seen to be extremely effective. Although the

formulation to find an optimal set of axes is complex, pseudo-optimal solutions often reveal

information about class structure or outliers in the data. These more advanced methods

easily extend back their original purpose of evaluating design solutions in multi-objective

optimization as well.

It is also important to note here that image size does not appear to be as important

to the success of the algorithms developed here as one might imagine. Variation in how

images ARES1D and the AVIRIS imagery perform makes it clear that characteristics such

as PA SNR of mappings are more heavily influenced by the make-up of the scene in the

image.

9.3 Potential Future Research

9.3.1 HSI Band Selection Refinement.

The factor analysis-based band selection algorithm from Chapter 4 did not always

detect bands containing sensor error, where a partial line of pixels was corrupted. Future

research into automating removal of such bands could prove useful, as it was shown that

they contributed to the FPF of the GFAAD framework.

9.3.2 GFAAD Refinement.

The GFAAD and IGFAAD algorithms in Chapter 6 showed great promise across a

variety of images and sensors in identifying full-pixel anomalies and maintaining relatively

low false positives. However, the SNR and smoothing parameters used in the frameworks

have significant interactions and can influence the factor maps for images with different
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characteristics in significant, various ways. A Robust Parameter Design (RPD) analysis

is warranted, as is a more thorough investigation into characteristics other than SNR with

which to adapt the algorithm to different image or factor types. Images with very high

score ranges and high SNR would benefit from increased smoothing, for example, but

the adjusted settings need to be automated such that those images with mostly low SNR

and score factors maps are not affected. The RPD could serve to reduce the number of

parameters while minimizing loss in performance, as well as to boost performance across

different image types. This is also true for the kernel version from Chapter 7, KIGFAAD.

Additionally, more research into dynamic processes that further adapt to complexities of the

image, such as soft anomaly classes or not well-separated anomalies, should be performed.

9.3.3 Finding Better Unsupervised Boundaries for SVDD.

The BACON screening and affinity propagation methods provided very reasonable

training sets for an unsupervised SVDD algorithm. However, the affinity propagation in

particular adds a significant amount of computation. Ways to speed this skeleton generation

could be very useful, for this purpose and for skeleton generation in non-linear applications

in general. The optimal kernel technique developed here typically over-trained, but did not

always. Development of a slack term in the formulation could be useful to ensure that the

kernel boundary does not over-fit to estimated class labels. Ways to decrease false positives

in general should also be investigated for the unsupervised algorithm.

9.3.4 Improving Non-Linear Anomaly Detection.

Despite the relative efficiency of using skeletons vice trying to estimate the exact, full

kernel eigenvectors, non-linear components are still somewhat inefficient when compared

to their linear counterparts. Investigation into a smarter fusion of non-linear components,

or of generation of a skeleton more robust to differing image characteristics and outliers is

warranted. The current skeleton generation can prove to be very sensitive. Better mappings

are necessary in order for there to be sufficient performance improvement to warrant the
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additional computation time. The optimal kernel problem is still very much open, and

could a key to this goal as well.

Investigation into whether USVDD can even compete with linear methods is also

warranted. That is, there is the possibility that some of the HSI images do not have

background and target classes that truly separate by a hypersphere boundary in a higher-

dimensional space. If it can be proven somehow that they can be separated in such a

manner, then further investigation on how to improve the SVDD framework should be

performed.

9.4 Conclusion

Simpler methods, such as linear factor analysis, have been shown to be very powerful

across different types, sizes, and complexities of data. When fused with spatial information

by filtering, and SNR information by using zero-bin histograms, the linear methods can

be made to act very much like non-linear methods. Similar fusion of spatial and SNR

information was also shown to be powerful for non-linear methods.

Several new approaches to anomaly detection, visualization, clustering, and feature

selection were developed in this research. Many are new combinations of, or frameworks

for, existing methodologies. It has been shown that these new approaches are generally

efficient, and highly competitive with state-of-the-art algorithms in their respective

areas. Further, they have been shown to perform well across a variety of HSI data.

Experimentation has indicated that these approaches may not yet be at their optimal

operating point, yielding even greater promise for future development.
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