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ABSTRACT 

 

In the southwestern United States, the North American monsoon (NAM) is the 

main driver of severe weather and accounts for nearly half the annual precipitation. How 

the monsoon has behaved in the past and how it will change in the future is a question of 

major importance for natural resource management and infrastructural planning. In this 

dissertation, I present the results of three studies that have investigated North American 

monsoon variability and change from the perspective of paleoclimate records, future 

climate change projections, and simulation of the low-frequency variability with the 

longest retrospective atmospheric reanalysis.  

In the first study, a monsoon-sensitive network of tree-ring chronologies is 

evaluated within its ability to reproduce NAM variability during the past four centuries. 

Matrix methods are used to detect the low-frequency spatiotemporal variability. The tree-

ring chronologies can reasonable characterizes the dominant modes of NAM climate 

variability. The monsoon tree-ring network is able to reproduce the interannual variability 

of cool and warm season precipitation, in a manner similar to the period of the 

instrumental record. Earlywood and latewood adjusted chronologies reveal low-

frequency climate variability at decadal and longer timescales that is beyond the ability of 

the instrumental record to temporally well resolve. This low-frequency climate variability 

seems to be part of a much larger cycle that coincides with the occurrence of multiyear 

persistent droughts.  

 In the second study, we consider the modes of natural climate variability 

identified in the previous study to objectively assess the degree of physical uncertainty in 

climate change projections for NAM from Regional Climate Models (RCMs) used in the 

North American Regional Climate Change Assessment Program (NARCCAP). Climate 

change projection models are evaluated mainly on their ability to represent warm season 

driven by quasi-stationary Rossby wave trains and El Niño Southern Oscillation – Pacific 

Decadal Variability (ENSO-PDV). It is concluded that use of the NARCCAP model 

ensemble mean for NAM climate projections is probably not suitable. NARCCAP RCMs 
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are largely a slave to their driving global models and their error in the specification of 

large-scale atmospheric circulation. Only one out of eight NARCCAP RCMs has a 

reasonable representation of the seasonal cycle of monsoon precipitation and ENSO-

driven interannual variability in both the 20th and 21st centuries. No decadal variability 

was observed in any of the NARCCAP RCMs. 

In the third study, the low-frequency drought signal found with tree-ring chronologies 

is further explored within the framework of a regional climate modeling. Version 2 of the 

Twentieth-Century Reanalysis (DD-20CR) is dynamically downscaled over a contiguous 

U.S.-Mexico domain. Statistic analysis of the DD-20CR suggests that the low-frequency 

drought signal in the Southwest is driven by atmospheric circulation changes on global to 

continental scales that affect precipitation in Central American as well. DD-20CR 

reproduces the spatial patterns of precipitation associated with climate variability at 

decadal and longer timescales in a manner that compares well with observational records 

and tree-ring chronologies. Low-frequency climate variability is therefore likely 

responsible for the multiyear persistent droughts in the last four centuries, as 

independently evaluated from the tree-ring monsoon-sensitive network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 12

 

 

CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 Climate variability of the southwestern U.S. is a key and important aspect of 

water resources management in the region. Annual precipitation over the southwestern 

U.S. shows two maxima, one during the summer monsoon season and one during the 

winter season. Winter precipitation in the southwestern U.S. provides 30% of the annual 

precipitation (Sheppard et al., 2002), and it is mainly driven by mid-latitude cyclonic 

systems. Summer precipitation in the Southwest is produced by convective storms as part 

of the seasonal march of the North American monsoon (NAM) system. The variability of 

precipitation in both seasons plays an important role in the sustainability of ecosystems in 

the region, which compete for water with a rapidly growing population. Understanding 

the physical drivers of climate variability is therefore a critical part in evaluating water 

resources availability necessary to sustain diverse activities such as urban water supply, 

agriculture, and ecosystems.  

 Interannual variability of cool season precipitation over the Southwest is driven 

by El Niño Southern Oscillation (ENSO) and the Pacific Decadal Variability (PDV), 

which can be identified in sea surface temperature (SST) records (McCabe and Dettinger, 

1999; Higgins and Shi, 2000; Ropelewski and Halpert, 1986; Ropelewski and Halpert, 

1987). Pacific SST variability impacts the convection in the tropics and alters large-scale 

atmospheric patterns over North America via quasi-stationary atmospheric wave trains, 

or Rossby wave teleconnections (Wallace and Gutzler, 1981; Horel and Wallace, 1981). 

Wet and dry conditions over the Southwest during the cool season are linked primarily to 

the Pacific North America (PNA) pattern.  The PNA wave trains of troughs and ridges is 

a continental scale pattern system with center of action in central north Pacific, 

northwestern United State, and western Canada. During El Niño years the PNA is 

typically in a positive phase and produces wet and cold winter seasons in the Southwest 

(Douglas and Englehart, 1981). A positive PNA pattern enhances the subtropical jet over 

southern U.S., favoring an increased frequency and intensity of mid-latitude cyclones 
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reaching the Southwest. During La Niña years the PNA tends to be in a negative phase, 

so drier and warmer winters are observed in the Southwest (Kiladis and Diaz, 1989). The 

rainfall regime in the Southwest is also modulated by the PDV, and constructively 

interferes with the ENSO. Therefore, wet (dry) seasons are observed when El Niño (La 

Niña) and the positive (negative) phase of the PDV are in-phase (Gershunov and Barnett, 

1998). 

 NAM early summer precipitation is inversely related to the precipitation in central 

U.S., so a wet (dry) late spring precipitation in central U.S. is associated with a dry (wet) 

early summer in the Southwest. This antiphase relationship in early warm season 

precipitation between central U.S. and the Southwest is strongly related to the position 

and strength of the mid-level subtropical ridge. When the subtropical ridge is located 

north of its climatological position, the Southwest tends to have a wet early monsoon 

season and the opposite when it is located south (Carleton et al., 1990). NAM 

precipitation has a statistical weak relationship with ENSO in comparison to the cool 

season (Higgins et al., 1999). However, the constructively interaction of ENSO and PDV 

do explain interannual variability of NAM to an extent (Castro et al., 2001). A dry NAM 

is expected during positive ENSO and positive PDV phases, and a wet NAM in a reversal 

manner. As in the cool season, variation in the tropical Pacific sea surface temperature 

driven by ENSO-PDV causes Rossby train-wave teleconnection patterns (Castro et al., 

2001).  The northward displacement of the monsoon ridge allows the transport of 

moisture from the Gulf of Mexico above approximately 700 mb (Schmitz and Mullen, 

1996). The northward displacement of the subtropical monsoon ridge is the main climatic 

driver of the monsoon onset (Douglas et al., 1993). The ridge displacement allows a 

change in direction of middle-level winds from westerly to easterly which facilitates 

moisture transport from the Gulf of Mexico. As the Sierra Madre mountains block the 

potential transport of moisture below 700 mb (Douglas et al., 1993), tropical moisture is 

transported through the Gulf of California via gulf surges, enhancing the convective 

outbreaks (Douglas and Leal, 2003). 

 

1.2 Tree-ring chronologies and low-frequency variability of the North American 

monsoon  
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 Natural variability of droughts is a big concern in light of increased demand of 

water in major cities in southwestern U.S. (Liverman and Merideth, 2002). Precipitation 

over the NAM region is highly related to large-scale variations of the climate system, 

such as the ENSO and PDV. Current persistent drought conditions in the southwestern 

U.S. could be driven by both interannual and low-frequency (decadal to multi-decadal 

scale) variability. Long-term drought or pluvial conditions, as well as the modulation of 

the inter-annual rainfall variability by low-frequency regimes are not yet well understood 

(Woodhouse and Overpeck, 1998). To understand drought variability, long records of 

climate parameters are needed. Analyzing low-frequency variability of the NAM requires 

long records, as instrumental records extend only about 100 years; thus, we can only 

observe frequencies of 50 years or less. This disadvantage can be overcome by using 

proxies of the climate variability. Recently, the Laboratory of Tree Ring Research at the 

University of Arizona has finished the dating and preparation of tree-ring chronology 

time series for analysis of NAM variations. With about 470-year length record, they are 

the most suitable information for a spatiotemporal variability analysis (Griffin et al., 

2011; Griffin et al., 2013; Ciancarelli et al., 2013; Woodhouse et al. 2013; Leavitt et al., 

2011). The first dense tree-ring chronology network sensitive to summer precipitation 

variations provides long-term records which could be used as proxies for rainfall that 

represents both cool and warm season precipitation.  

 Annual rings on most conifers in southwestern U.S. show two ring-bands: 

earlywood-width and latewood-width. Earlywood-width and latewood-width both have 

different physical characteristics. The earlywood width has large cells, thin walls, lower 

density and lighter wood. In contrast, the latewood width has small cells, thick walls, 

higher density, and darker wood. These differences are the indication of response to 

seasonal climate variability (Meko and Baisan, 2001).   

 Earlywood chronologies show a very robust ability to record the interannual 

variation of winter precipitation and have been used to reconstruct climatic parameters in 

the Southwest. Using a network located in southern Arizona and southern New Mexico, 

Woodhouse and Meko (1997) found that total tree-ring chronologies are able to explain 

71% of the variance for the number of precipitation days during the winter wet season, 

November through March. In their analysis, using the reconstruction of precipitation-day 
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frequency for 300 years, they demonstrated that chronologies also can retain information 

for low and high frequency variability. They found two peaks, 4-year and 21-year, as 

important temporal modes of variation, which is consistent with the analysis on 

reconstructed streamflow for the Salt and Verde rivers (Smith and Stockton, 1981).  

 Summer precipitation signals influenced by the NAM system (NAMS) are strong 

in latewood width. However, latewood width shows a dependence on earlywood width. 

Meko and Baisan (2001) demonstrated that latewood width, which is the portion of the 

tree-ring width that grows late in the tree growing season, are able to record the 

interannual climate variability of the NAMS. Using a network of five Pseudotouga 

menziesii chronologies, they found strong summer precipitation signals in latewood 

chronologies. This relationship is enhanced when the remaining earlywood signal 

existent in latewood chronologies is removed using an adjustment method. The 

correlation found in the NAM region between the latewood adjusted enhanced 

chronology and observed precipitation is about 0.6 (Meko and Baisan, 2001). This result 

is critically important because it settled the basis for large scale application of a dense 

network of tree-ring sites to reconstruct the NAM climate variability (Griffin et al., 2011; 

Griffin et al., 2013; Ciancarelli et al., 2013; Woodhouse et al., 2013; and Leavitt et al., 

2011). 

 

1.3 Future climate projections of the North American monsoon 

 Since the first assessment report issue by the Intergovernmental Panel on Climate 

Change (IPCC), evidences of global climate change have been confirmed with the use of 

dynamical modeling techniques. In arid regions like southwestern North America, 

climate models agree that the region will dry by the 21st Century (Seager et al., 2007; 

Cook and Seager, 2013). How well do Global Climate Models (GCM) simulate the NAM 

climate variability? From a GCM perspective, reproducing the NAM annual cycle is 

challenge. For instance, in a seasonal-interannual model evaluation, only one out of 17 

GCMs was able to reproduce the NAM annual cycle (Liang et al., 2008).  

 Regional climate models (RCMs), alternatively, may be used to dynamically 

downscale IPCC GCMs to generate NAMS climate change projections.  The principal 

advantage to the use of a RCM, at the scale of tens of kilometers, is the value added in 
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the representation of terrain-forced monsoon thunderstorms (Gutzler et al., 2009; Castro 

et al., 2007 and 2012), as this process is not physically represented well within a GCM.  

Castro et al. (2012) concluded that physical processes related to the development of 

thunderstorms, such as the diurnal cycle of convection, can be more realistically 

represented using regional climate models. To better capture monsoon thunderstorms, 

regional climate models (RCM) are considered. Even with the enhanced spatial resolution 

and model physics more appropriate for the mesoscale, RCMs are still challenged to 

physically represent the organized monsoon convection that accounts for more of the 

precipitation away from the mountains (e.g. Castro et al. 2012).  

   Climate model simulations generated as part of the North American Regional 

Climate Change Assessment Program (NARCCAP; Mearns et al., 2012) reflect the most 

comprehensive community research effort to date to generate dynamically downscaled 

climate projections using multiple global and regional atmospheric models. This effort 

was preceded by an early first initiative in North America (Project to Intercompare 

Regional Climate Simulations, PIRCS) to compare the performance of regional climate 

simulations (Takle et al., 1999). Phase I NARCCAP simulations force six RCMs with 

NCEP-NCAR Reanalysis 2 (Kanamitsu et al. 2002) boundary conditions during the 

historical period 1979-2003 to assess RCM sensitivity with “perfect” observed analysis 

conditions.  Phase II simulations use boundary conditions from four different fully 

coupled atmosphere-ocean global climate models (AOGCMs) from the Coupled Model 

Intercomparison Project (CMIP3) that consider the A2 greenhouse gas emission scenario 

(Community Climate System Model [CCSM], Third Generation Coupled Global Climate 

Model [CGCM], Geophysical Fluid Dynamics Laboratory GCM [GFDL], and Hadley 

Centre Coupled Model version 3 [HadCM3]).  

 Similar to the aforementioned studies, Bukovsky et al. (2013) recently showed 

that when the NARCCAP RCMs were forced with lateral boundary forcing from an 

atmospheric reanalysis, the climatological evolution of the NAMS is improved.  They 

also considered the NARCCAP RCMs that dynamically downscaled CMIP3 data to 

evaluate future changes in mean NAMS precipitation.  Consistent with Cook and Seager 

(2013), they found that ensemble mean NAMS precipitation is projected to decrease, but 

that the decrease was not statistically significant due to the wide spread in model 
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solutions.  Though the NARCCAP RCMs are forced with CMIP3 GCMs, to date their 

projections still represent the highest spatial resolution information generated by 

dynamical modeling. 

 At least for NARCCAP RCMs, a traditional climate projection approach that 

equally weights all the models to generate an ensemble mean change suggests that NAM 

precipitation will not substantially change in the future.  Such approach implicitly favors 

statistical confidence based on the level of multi-model agreement, over physically-based 

metrics of model performance of the individual contributing models. What has been 

absent in the discussion of NAMS climate projections thus far is how the contributing 

models, whether they be GCMs or RCMs, represent known sources of natural climate 

variability.  Should this also be considered as a physically-based metric to evaluate model 

quality? How would such information bear on the projected changes in NAMS 

precipitation?  Consideration of natural climate variability is extremely important for 

real-time resource decision making at seasonal timescales and for worst-case scenarios, 

for example long-term drought. 

 

1.4 Low-frequency climate variability of the North American monsoon in a 

modeling framework  

 Understanding past long-term climate variability is critically important as a 

benchmark by climate projections produced by dynamical modeling. There are hundreds 

of studies that have been done with climate data proxies such as tree-rings (e.g., Grissino-

Mayer, 1996; Meko et al., 2007; Cook et al., 1999; Meko, 1992; Stahle and Cleaveland, 

1988). In the southwestern U.S., Meko et al. (2007) reconstructed a millennium of annual 

flow of the upper Colorado River basin, to investigate extreme low-frequency droughts 

during the Medieval Climate Anomaly. They found a series of multi-year dry pulses of 

62-year period. Grissino-Mayer (1996) reconstructed over 2000 years of annual 

precipitation at El Malpais National Monument in New Mexico, and were able to 

reproduce the low-frequency trends in the Four Corners region. However, a 

comprehensive understanding of low-frequency climate variability requires resolving the 

temporal and spatial variability.    
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Using a millennium record of reconstructed Palmer Drought Severity Index (PDSI), 

Herweijer et al., (2007), have shown a potential existence of a centennial drought signal. 

In their analysis, the centennial signal exists for the Medieval Climate Anomaly (1000-

1450), but it vanishes for the Modern Era (1851-2010). This misrepresentation of the 

centennial drought during the Modern Era might be due to the misevaluation of the low-

frequency summer season as suggested by Griffin et al. (2013). In the southwestern 

United States, we have identified a low-frequency drought signal obtained by tree-ring 

chronologies (Carrillo et al., 2014a; in preparation). We used the first monsoon-sensitive 

tree-ring network of earlywood (EW) and latewood adjusted (EWadj) chronologies over 

the NAM region. This low-frequency scale signal, on the order of 50 to 100 years, seems 

to modulate the major droughts of the last 400 years. By analyzing the low-frequency 

variability for summer (LWadj) and winter (EW), the temporal component of this drought 

signal shows a strong covariability between both seasons. Griffin et al. (2013) proposed 

three potential sources of this low-frequency covariability between seasons, with one of 

the sources due potentially to a climatic signal in the low-frequency regime; however, 

they did not explore further this possibility. Carrillo et al., (2014a, in preparation) 

provided additional evidence on the possibility of the existence of this drought climatic 

signal. By using a sophisticated and robust spatiotemporal statistic technique, they 

isolated this drought signal, which is statistically significant and also the spatial pattern is 

coherent in the Southwest. In addition, a seesaw pattern between the southwestern and 

central U.S. is associated with the centennial signal during the observational era; 

however, the significance of the results on precipitation could not be assessed because the 

short length of observed precipitation, and exploring the spatiotemporal pattern of the 

centennial signal only with tree-rings is a challenge.  

 Herweijer et al. (2007) argue that the potential forcing of this centennial drought 

is associated with a persistent La Niña-like mode in SST. This same argument has been 

claimed by Coats et al. (2013), when using a millennium of fully coupled ocean-

atmosphere model. However, recent studies have shown the inability of fully coupled 

models to simulate low-frequency modes of variability (Ault et al., 2013). In recent 

evaluation of CMIP5, ENSO is generally well reproduced but teleconnections with North 

American climate varies among the fully-coupled models (Sheffield et al., 2013).  
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 Another alternative to explore how the low-frequency variability works in a 

large-scale modeling framework is using the twentieth-century reanalysis (Compo et al., 

2011; 20CR). The version 2 of the NCEP-NCAR Twentieth Century Reanalysis (20CR) 

project dataset, which is an international effort to produce retrospective analysis from 

global observed datasets from 1871 to the present at 6 hour and 2º degree resolutions 

(Compo et al., 2011). The 20CR is the first longest reanalysis currently available, which 

makes it the best candidate suitable to explore long-term climate variations. For instance, 

in its early version (version 1), it has been used to investigate the U.S. Dust Bowl impact 

(Cook et al., 2010). The 20CR employs an Ensemble Kalman Filter data assimilation 

(Whitaker and Hamill, 2002) to ingest observations of surface pressure from the 

International Surface Pressure Databank, and monthly sea surface temperature and sea-

ice concentration as boundary conditions from the Hadley Centre Sea Ice and SST dataset 

(Rayner et al., 2003). 

 Although, 20CR is limited to about 140 years of length, it might be enough to 

capture one complete cycle of the centennial drought signal. Individual drought events 

have already been identified with 20CR (Cook et al., 2010); however, the implications of 

the periodic cycles as we described with tree-ring chronologies is not well understood. A 

major issue of using 20CR is that 20CR precipitation is not suitable reliable to be used 

directly into analysis to characterize precipitation in the Southwest. However, 

dynamically downscaled precipitation from atmospheric reanalyses has shown good 

results and is comparable with observed precipitation (NARR; Mesinger et al., 2006). For 

example, Bukovsky et al. (2013) and Mearns et al. (2012) have shown, that suite of 

several dynamically downscaled RCM precipitation with a “perfect” imposed reanalysis 

boundary conditions can simulate well the current climate of the Southwest. In addition, 

Carrillo et al., (2014b, in preparation) have shown that the same NARCCAP phase I 

simulations can retain the ENSO and PDV variability, which is not possible with 

NARCCAP phase II (fully coupled GCM cases). 

 

1.5 Purpose 

 The scientific objective of this investigation is to characterize how natural climate 

variability and climate change affects North American monsoon precipitation in the 
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southwestern U.S.  Consistent with emerging work that has characterized recent 

observational changes in monsoon precipitation globally, it is hypothesized that 

anthropogenic climate change is synergistically interacting with natural climate 

variability to intensify extreme climate events—that may push the already vulnerable 

human and natural systems in the southwestern U.S. to a fail point.  In that respect, 

assessing how the North American monsoon will change in the future is a pressing and 

important research priority. Climate model projections must be considered within the 

scope of the existing observational and paleoclimate records to assess their uncertainty 

and credibility, both within the scientific community and by natural resource 

stakeholders. 

 In this dissertation, the NAM is considered as a unified framework from 

paleoclimate to future climate change projections. In that context, I am proposing the 

following three studies that are the main structure of the dissertation. In the first study, 

we identify the natural variability on observed precipitation and tree-rings with the 

intension of exploring low-frequency climate variability in the NAM region (Appendix 

A). In the second study, we explore the modes of climate variability, identified in the first 

study, on a set of high spatial resolution climate change projections existing at the 

moment of presenting this investigation (Appendix B). In the third study, we explore the 

limitation of a regional climate model to explicitly simulate the low-frequency regime on 

the southwestern United States (Appendix C). 
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CHAPTER 2: PRESENT STUDY 

 

 The methods, results, and conclusions of this investigation are presented in three 

manuscripts formatted for submission and appended in this dissertation. The following is 

a summary of the most relevant findings.  

 

2.1 Appendix A: Low frequency variability of the North American monsoon as 

diagnosed through earlywood and latewood tree-ring chronologies in the 

southwestern U.S.  

 In the first study, the research question is to evaluate if tree-ring chronologies can 

record the low-frequency variability of the NAM climate region. Interannual variation of 

the winter and summer precipitation over the NAM region is well represented by 

earlywood and latewood, consistent with previous studies (e.g. Meko and Basin, 2001; 

Griffin et al., 2013; Stahle et al., 2009; Woodhouse et al., 2013). Our analysis with this 

tree-ring network shows the well-known teleconnection patterns with SST and 

geopotential height for both seasons (Castro et al., 2001; Ciancarelli et al., 2013). For 

winter, the positive anomaly rainfall over the NAM is associated with a positive phase of 

the ENSO-PDV (McCabe and Dettinger, 1999). For summer, the negative phase of the 

ENSO-PDV is found to enhance monsoon precipitation (Castro et al., 2001). The effect 

of the SST interannual variability on the distribution of the Southwest precipitation 

through quasi-stationary Rossby wave teleconnection responses is very well portrayed by 

using earlywood and latewood chronologies. Our analysis shows that the tree-ring 

network is able to reproduce the spatiotemporal interannual variability for summer and 

winter over the Southwest. 

We have been able to isolate the low and high frequency variability in tree-ring 

chronologies as well as in precipitation records on the instrumental era. We also 

identified that the decadal modes for winter and summer have specific spectral 

signatures. The spectral signature for winter is in the range of 25-50 years and 10-15 

years for summer. The significance of the spectral peaks is better resolved in tree-ring 
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chronologies datasets than in precipitation. This also has been pointed out by Ciancarelli 

et al. (2013) by using rotated Empirical Orthogonal Function/Principal Component 

(EOF/PC) analysis with high resolution precipitation (PRISM, 2004).  

Using a longer tree-ring time record (400 years), we identified how persistent 

droughts in the past 400 years are strongly influenced by very low-frequency climate 

variability in the range of 50-100 years. As in recent studies (e.g. Griffin et al., 2013; 

Stahle et al., 2009), the variability of the 50-100 years climate regime represents the 

major southwest droughts: the Plueban drought in the 1670s, the 1770s and 1820s 

droughts, the late 1890s drought, and the 1950s drought (Griffin et al., 2013; Stahle et al. 

2009). All the above mentioned droughts have been identified in previous studies (e.g. 

Griffin et al., 2013) except for the very pronounced 1740s drought, which was 

documented by Hubert H. Bancroft in his Arizona and New Mexico History of Pacific 

States, as a two-year drought in the Yuma area (Bancroft, 1889).  

 

2.2 Appendix B: Pacific SST-related teleconnective influences on North American 

monsoon precipitation within North American Regional Climate Change 

Assessment Program (NARCCAP) models 

In the second study, we evaluate NARCCAP data to assess the uncertainty of 

NAM future climate projections. We proposed metrics to objectively identify the 

signature of ENSO-PDV climate variability in sea surface temperature of the driving 

GCMs and precipitation patterns of the RCMs.  This work logically follows from the 

recent study of Bukovsky et al. (2013), which considered the climatological performance 

of the NARCCAP models in representing the NAM.  They found that RCMs forced with 

Reanalysis, in the Phase I NARCCAP experiments, performed generally well over 

Mexico and the southwestern U.S.  An important question not addressed in Bukovsky et 

al (2013) is what is the role of natural climate variability in assessing the added value of 

the NARCCAP RCM projections? 

NARCCAP provides a unique source of numerical experiments to assess the 

uncertainty of IPCC CMIP3 scenarios. Precipitation is highly dependent on regionalized 

meteorological processes and natural climate variability.  Therefore consideration of just 

GCM-based ensemble model climate projections might not be an optimal way to proceed.  
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More physically robust results for projection of future NAM precipitation may be 

obtained by considering “well performing” dynamically downscaled GCMs that have a 

reasonable representation of NAM precipitation climatology and year-to-year 

precipitation variability. Even in the NARCCAP RCMs, not all models are able to 

reproduce a proper annual cycle of precipitation. For example, the NARCCAP RCMs 

forced with the CMIP3 GFDL GCM show an erroneous monsoon precipitation peak in 

September, which corresponds with the period of monsoon retreat. Though RCMs can 

improve the climatological representation of precipitation during the monsoon, the year-

to-year variability in RCM-simulated precipitation is still very dependent on the driving 

GCM.  For example, July-August precipitation anomalies in multiple NARCCAP RCMs 

are quite statistically similar, given boundary forcing from a single GCM.  If the driving 

GCM does not reasonably represent the observed large-scale atmospheric teleconnections 

during the warm season driven by ENSO-PDV, this error will adversely affect the ability 

of the RCM to represent year-to-year precipitation variability.  Aside of the lateral 

boundary forcing provided by the GCM, the RCM configuration also plays an important 

role in the ability of the RCM to represent warm season atmospheric teleconnections and 

their associated precipitation responses.  Better performing NARCCAP RCMs 

incorporate spectral nudging in the interior of the domain, as this helps retain the large-

scale atmospheric circulation patterns that exist in the driving GCM. 

We considered the future change in NAM precipitation in the NARCCAP models.  

The ensemble-mean difference in July-August precipitation in the Southwest from the 

historical to future projected period would indicate a statistically insignificant decrease. 

However the individual best performing model, in term of representation of NAM 

climatology and natural climate variability (HRM3-HadCM3), shows a larger 

precipitation decrease than the NARCCAP ensemble mean.  This is the most physically 

confident precipitation projection for the NAM from the NARCCAP models, and should 

be more heavily weighted for potential impacts assessment purposes.    However, GCMs 

still are quite challenged to represent natural climate variability driven by ENSO-PDV.  

Considering the dominant spatiotemporal modes of SSTs in these GCMs, for historical 

and future projected periods, only two of the four GCMs can capture ENSO with a 
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correct 3-7 year cycle of variability in both the past and future (HadCM3 and GFDL).  

None of the models has a reasonable representation of PDV, beyond a 10 year timescale.   

 

2.3 Appendix C: Low frequency climate variability in western North America as 

diagnosed in a dynamically downscaled twentieth century reanalysis 

 In the third study, we have investigated the low-frequency climate variability of 

the NAM in the version 2 of the Twentieth-Century Reanalysis (20CR). As 20CR has 

limitations to represent NAM precipitation, we have dynamically downscaled the 20CR 

using the Weather Research and Forecasting (WRF) model with the purpose of 

incorporating the best representation of the terrain-forced summer monsoonal 

precipitation highly dependent on the mesoscale and large-scale teleconnections.  

 We have hypothesized that 20CR contains low-frequency variability in a similar 

way obtained with tree-ring chronologies. Using the moist flux convergence (MFC), we 

were able to show that 20CR contains low-frequency climate variability. This is 

fundamentally important because RCMs cannot  be able to generate this variability as 

part of its internal dynamics. Our major research question is whether the major Southwest 

droughts are driven by very low-frequency climate variability. Using enhanced 

monsoonal precipitation by the dynamically downscaled RCM on 20CR (DD-20CR), we 

show a potential existence of the low-frequency variability modulating the American 

Southwest drought. Our evaluation shows that the DD-20CR can generally reproduce the 

annual cycle and cool and winter interannual variability of precipitation. It is therefore 

possible to use of DD-20CR to explore the NAM climate variability at low-frequency. 

Persistent droughts in North America are driven by large-scale atmospheric circulation 

and droughts and pluvials in the Southwest are inversely related to Central America.  

 From a seasonal perspective, DD-20CR precipitation confirms the coherent 

summer and winter co-variability of precipitation at decadal and longer timescales. It was 

found that this dual-season low-frequency variation in precipitation can be responsible 

for multiyear persistent droughts in the Southwest. The modeling approach provides 

additional support to confirm the existence of this dual-season covariability. The 

drought/pluvial temporal phases and spatial patterns over the Southwest and central U.S. 

are observed at multidecadal timescales. However, the spectral 50-100 year signature is 
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not completely resolved In addition, the atmospheric teleconnection show a CGT type of 

Rossby wave trains as in Ding et al. (2011) and in Ciancarelli et al. (2013). 
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Abstract 

Understanding low-frequency climate variability over the North American 

monsoon (NAM) region is challenging to assess by using only observational records. In 

this study, we have analyzed the climate variability of the NAM region cool and warm 

seasons through tree-ring chronologies. We have taken advantage of the first systematic 

monsoon-sensitive network of tree-ring chronologies for southwestern North America. 

Empirical Orthogonal Functions (EOF) and Multi-Taper-Method Singular Value 

Decomposition (MTM-SVD) analyses were applied on earlywood (EW) and latewood 

adjusted (LWadj) chronologies to determine the spatiotemporal dominant modes of 

variability as well as large-scale controlling mechanism as diagnosed with sea surface 

temperature and geopotential height at 500 mb. We present evidence of the capability of 

tree-ring chronologies to characterize the dominant modes of NAM climate variability in 

the interannual, decadal, and longer scales. In the instrumental era, the southwest tree-

ring network is able to describe the climate variability similar to that in the observed 

precipitation. This in-depth evaluation provides the necessary confidence to use this 

dataset for a long-term climate analysis in the low-frequency regime. Using the complete 

four century-long dataset, EW and LWadj chronologies reveal a low-frequency climate 

variability in the 50-100 year band that seems to be related to the occurrence of 

megadroughts.  
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1. Introduction 

The arid southwest of the United States is arguably one of the regions most 

sensitive to climate variability and change.  As summarized in a recent comprehensive 

regional climate change assessment report, the complex water delivery infrastructure and 

natural ecosystems have been taxed by sustained long-term heat and drought since the 

beginning of the twenty-first century, threatening Colorado River water supply and 

causing devastating wildfires (Garfin et al., 2013). Developing improved capability to 

both diagnose the causes of climate variability in the past and project how climate will 

behave in the future is essential for formulating resilient climate adaptation strategies.  In 

this work we focus our attention on the past climate, specifically investigating the 

commonalities in the statistical characteristics of climate variability between gridded 

precipitation products based on gauge observations and precipitation proxy data from tree 

rings, and then using the tree-ring data to examine the period of time prior to instrumental 

records. 

       The characteristics of southwest U.S. climate variability during the period of the 

instrumental record are fairly well known.  There are distinct climatological differences 

between cool and warm season precipitation, with the former associated with the passage 

of synoptic-scale mid-latitude cyclones and the latter with convective storms during the 

North American monsoon (Douglas and Englehart, 1981; Gershunov and Barnett, 1988; 

Carleton et al., 1990; Adams and Comrie, 1997).  For the cool season, it is has been 

firmly established, that the combination of the El Niño Southern Oscillation and Pacific 

Decadal Variability (henceforth ENSO-PDV) facilitate large-scale atmospheric 

teleconnection patterns, principally the Pacific North America (PNA) pattern and 
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displacement of the winter storm track (Wallace and Gutzler, 1981; Ropelewski and 

Halpert, 1986 and 1987; Gershunov and Barnett, 1988; Trenberth, 1990).  Wet (dry) cool 

seasons are therefore statistically significantly related to El Niño, and positive PDV (La 

Niña, negative PDV) (McCabe and Dettinger, 1999; Higgins and Shi, 2000; Gutzler et 

al., 2002).  During the warm season, monsoon precipitation is strongly related to the 

positioning of the North American monsoon ridge.  When the monsoon ridge is strong 

and displaced north of its mean climatological position in the Southwest, a wet and early 

monsoon occurs; dry, late monsoons correspond to a weak ridge, displaced to the south 

(Carleton et al., 1990). Previous work has described the nature of the warm season 

atmospheric teleconnection responses associated with ENSO-PDV, as quasi-stationary 

Rossby wave trains emanating from the western tropical Pacific (Castro et al., 2001 and 

2007; Ciancarelli et al., 2013).  The warm season teleconnection response modulates the 

strength and positioning of the monsoon ridge in early summer, such that a wet and early 

(dry and late) monsoon tends to occur during the negative (positive) phase of ENSO-

PDV.  Likely because of the changes in the ENSO-PDV atmospheric teleconnection 

responses between the cool and warm seasons, it has been generally observed during the 

late 20th century that a wet (dry) cool season is followed by a dry and late (wet and early) 

monsoon, providing some seasonal buffering capacity to the development of intense 

drought. However, the length of the instrumental record limits an assessment of this 

relationship over longer time scales.  Consequently, we do not have a complete 

understanding of low-frequency climate variability (decadal to multidecadal timescales) 

in the Southwest,  how such variability affects cool and warm season precipitation, and in 
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particular the occurrence of sustained dry conditions in both cool and warm seasons (i.e., 

dual-season droughts) which would profoundly impact human and  natural systems.    

 Tree-ring chronologies in the Southwest can provide a robust proxy for both cool 

and warm season precipitation over past centuries (e.g., Ni et al. 2002, Meko and Baisan, 

2001; Stahle et al., 2009; Faulstich et al. 2012, Griffin et al., 2013;  Woodhouse et al., 

2013).  Conifers in the Southwest generally exhibit annual growth rings that can be 

divided into two intra-annual growth increments.  The earlywood (EW) band reflects tree 

growth during the cool season, with relatively larger cells, lower density, and lighter 

wood; the latewood (LW) band more reflects tree growth during the warm season and has 

smaller cells, higher density, and darker wood.  Although EW chronologies are quite 

reliable proxies for cool season precipitation, LW widths, reflecting warm season 

precipitation, are not totally independent of the EW.  To obtain the best possible 

relationship with warm season precipitation, the LW is adjusted (LWadj) by removing the 

variance explained by EW (Meko and Baisan 2001; Griffin et al, 2011).  In this study, 

tree-ring data from a recently generated network of EW and LWadj chronologies 

(henceforth SW tree-ring network), updated to 2008, were used. These included tree ring 

sites located in monsoon region of the U.S., Arizona, New Mexico, Colorado, Utah, 

Texas, and Baja California Norte, Mexico, with an average record length of 400 years 

(Griffin et al., 2013) (Fig. 1). 

 Previous studies using this monsoon region network of tree-ring data indicate the 

period of instrumental record may not fully represent the range of variability over longer 

time scales. Griffin et al. (2013) established that the late twentieth century is relatively 

unique with respect to the predominant inverse relationship between precipitation 
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anomaly in the cool and warm seasons over a large portion of the southwestern U.S. in 

the context of the past 400 years. Cool and warm season precipitation reconstructions for 

this region also document the occurrence of dual season wetness or drought.  Notably, 

warm season droughts were found to occur during many of the previously documented 

cool season droughts (e.g., Stahle et al., 2009; Griffin et al., 2013).  

Other work has investigated the relationships between monsoon precipitation in 

the Southwest and ocean/atmospheric circulation, and the manifestation of this 

relationship in a preliminary version of the monsoon tree-ring network. Ciancarelli et al. 

(2013) identified several distinct warm season atmospheric teleconnection responses 

(quasi-stationary Rossby wave trains) that control the continental-scale spatial variability 

of U.S. warm season precipitation.  The most predominant of these is the aforementioned 

ENSO-PDV response in early summer that accounts for the anti-phase relationship in 

warm season precipitation anomalies between the central U.S. and the Southwest 

(Higgins et al., 1997 and 1998; Barlow et al., 1998; Castro et al., 2001, 2007, 2009, and 

2012; Ciancarelli et al., 2013).  It was additionally found that this same teleconnection 

exists in later summer but is more related to Indian monsoon convection. A preliminary 

analysis of LWadj tree-ring data from a subset of the southwestern tree-ring network 

showed a clear relationship to the known ENSO-PDV signal consistent with the 

instrumental record. 

 The present study addresses three main questions that directly follow from Griffin 

et al. (2013) and Ciancarelli at al. (2013).  First, considering the southwest tree-ring 

network, do the dominant spatiotemporal modes of variability in EW and LWadj tree-ring 

chronologies reflect equivalent modes of precipitation variability? If so, then the tree-ring 
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chronologies within the network could be a suitable proxy to characterize regional-scale 

patterns of cool and warm season precipitation variability.  Second, besides assessing the 

statistical relations between tree-ring chronologies and precipitation, do these 

spatiotemporal relationships in EW and LWadj correspond to controlling mechanism 

(such as ENSO-PDV) as portrayed in the atmospheric and oceanic circulation? Third, 

given the advantage of extending these proxies several centuries back in time, does the 

phenomenon of dual season wet and dry period reflect statistically significant very low-

frequency climate variability that cannot be resolved in the comparatively short period of 

the instrumental record?  

This paper is organized as follows. Data sources and statistical analysis 

methodologies are described in sections 2 and 3. An evaluative comparison between tree-

ring chronologies and precipitation interannual variability is presented in section 4. The 

linkages of tree-ring data and associated large-scale teleconnection patterns are explained 

in section 5. The low-frequency variability as revealed in the southwest tree-ring network 

is explored in section 6. A summary of relevant points is presented in sections 7. 

2. Data Sources  

a. Tree-ring chronology data 

The southwest tree-ring network described in Griffin et al. 2013 is used to 

describe the spatial patterns of tree growth as a proxy for precipitation, and to analyze the 

low frequency characteristics of the reconstructed cool and warm season precipitation.  

Although the full network includes 53 chronologies (Griffin et al. 2013), 39 were used in 

this study as many of the analyses were undertaken before the completion of the network.  

Site tree-ring chronologies were developed from primarily ponderosa pine (Pinus 
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pondersosa) and Douglas-fir (Pseudotsuga menzeisii).  Samples were processed, and 

earlywood and latewood widths were measured to develop site chronologies with the 

protocol described in Griffin et al. (2011). Locations are shown in Figure 1. The common 

period of time covered by all chronologies is from 1550 to 2008.  

b. Precipitation data and Standardized Precipitation Index (SPI) 

Monthly total precipitation data  are  from a new 0.5° by 0.5° gridded National 

Oceanic and Atmospheric Administration (NOAA) product (P-NOAA), provided by Drs. 

Russ Vose and Richard Heim. P-NOAA incorporates a terrain correction interpolation 

function, similar to the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) product (Daly et al., 1994), beneficial for the complex terrain of the Southwest. 

As we documented in Castro et al. (2012), P-NOAA appears to perform better in Mexico 

than the Climate Prediction Center (CPC) precipitation product (Higgins et al., 1997). 

The original dataset extends from 1895 to 2010 and covers the entire North America; 

however, we used the continental region from 15º to 50º N and 125º to 80ºW.  

The gridded precipitation data were used to generate the standardized 

precipitation index (SPI) to specify precipitation anomalies during the period 1895 to 

2008.  Cool season SPI is defined by the months November to April and warm season 

SPI from July to August. Note that June is not considered in our definition of the warm 

season because the onset of the monsoon in the NAM 2 region in the Southwest occurs 

climatologically in early July (Higgins et al., 1999), and in this region, JA precipitation 

accounts for 92% of the JJA season. Our analysis shows the low-frequency climate 

variability is insensitive to the selection of JA or JJA as monsoon season. SPI has been 

used to monitor short and long term droughts in the United States (Heim, 2002) and its 
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main advantage is the ability to identify spatial patterns of precipitation variability at 

regional and continental scales (Castro et al., 2009). We used the same methodology to 

compute SPI as in Castro et al. (2009) and Ciancarelli et al. (2013). 

c. Sea surface temperature and geopotential height data 

Global 2º by 2º gridded  sea surface temperature (SST) from NOAA is averaged 

for the periods June-July (JJ) and November to April (Nov-Apr) during 1854 to 2010 

(citation). SST is used to characterize the teleconnections between regional precipitation 

and remote SST forcing. Here, the period of early summer (JJ) is used instead of JJA 

because the influence of ENSO-PDV on monsoon precipitation in the Southwest is most 

statistically significant in June and early July and diminishes in late summer (Castro et al. 

2001, their Fig. 3).  Similarly, the atmospheric response to SST forcing is analyzed using 

summer (JA, July-August) and winter (Nov-Apr) geopotential height anomalies (GPHA) 

at 500 mb from the NCEP-NCAR reanalysis dataset for the years 1948-present (Kalnay 

et al., 1996).  

3. Statistical Analysis Methodologies 

a. Empirical Orthogonal Functions (EOF)/PC analysis and Multiple Taper Method 

(MTM) spectrum 

Empirical Orthogonal Function/Principal Component (EOF/PC) analysis is used 

to determine the dominant mode of spatial variability in SPI and tree-ring chronologies 

(e.g. Wilks, 2006). For all cases, the EOF domain is from 20ºN to 40ºN and 120ºW to 

100ºW as in Fig. 2a. The EOF maps show the pattern of spatial loading of leading modes 

of SPI.  We show spatial loading maps only for SPI.  For tree-ring chronologies, 

correlation maps between associated tree-ring PCs and gridded SPI are used to show 
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patterns corresponding to the   pattern of spatial loading of SPI.  The first dominant EOF 

mode is shown to demonstrate the effectiveness of the method, and the other modes are 

then considered by comparison with the prior REOF analysis with PRISM from 

Ciancarelli et al. (2013) and with canonical correlation analysis.   

The multi taper method (MTM) is used to evaluate the spectral signature of the 

temporal mode of variability (PCs) and to show clearly the associated temporal 

variability related to ENSO-PDV. The MTM for spectral analysis results in a better trade-

off between spectral resolution and statistical variance (Lees and Park, 1995). A Slepian 

taper is implemented in the MTM to minimize spectral leakage, where the choice of order 

for the taper represents a compromise between spectral resolution and variance and 

improves the efficiency of the signal detection (Mann and Lees, 1996). The MTM power 

spectrum is computed for the time series of the dominant mode, or first PC, for both the 

SPI and the tree-ring chronologies (MTM analysis tools were taken from 

http://www.atmos.ucla.edu/tcd/ssa/).  

b. Canonical correlation analysis (CCA) 

We use canonical correlation analysis (CCA) to evaluate the covariability 

between the tree-ring chronologies and SPI, and to characterize higher modes of 

variability. Once the dominant modes of SPI and tree-ring chronology are identified with 

EOF/PC analysis, their covariability is assessed using CCA, which is used to explicitly 

quantify the spatiotemporal similarity between the SPI and tree-ring chronologies. For 

each mode, CCA produces one singular vector for each field variable (e.g., cool season 

SPI and EW).  CCA results are presented as homogeneous and heterogeneous correlation 

maps, as defined in Wallace et al. (1992). The SPI homogeneous map is obtained by 
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correlating the singular vector of SPI with the original SPI.  The SPI heterogeneous map 

is generated by correlating the singular vector of SPI with EW or LWadj data, and 

similarly for EW. Although only the homogeneous correlation map is enough to describe 

similarities, the EW or LWadj heterogeneous correlation maps are needed to fully describe 

the spatial variability outside of the tree-ring site locations. The method used to compute 

CCA is the same as in Castro et al. (2009) and Ciancarelli et al. (2013), which are based 

on Professor Dennis Hartmann’s online notes at the University of Washington. Before 

constructing the covariance matrix for CCA, fifteen modes were retained from the 

independent EOF/PC analysis on SPI and tree-ring chronologies. That number was 

selected based on the relatively invariant behavior of the homogeneous and 

heterogeneous maps of the CCA dominant mode when a greater number of modes were 

retained.  

c. Principal component correlation analysis on large-scale teleconnection patterns  

To explore the linkage between EW and LWadj tree-ring chronologies during the 

instrumental period and the large-scale circulation, the Pearson correlation between the 

leading mode of temporal variability (PC1) and SST and 500-mb geopotential height 

anomalies (GPHA) fields is computed. We use these spatial correlation maps to 

determine the spatial pattern of SST forcing and its relation to atmospheric teleconnection 

patterns, as in our previous work (Ciancarelli et al., 2013).  In addition, a bandpass filter 

treatment is applied on EW and LWadj to evaluate a specific contribution or the 

variability related to the ENSO, PDV, and the combined ENSO-PDV mode. Local and 

field significance are respectively assessed with a t-statistic and the method of Livezey 

and Chen (1983), using a Monte Carlo technique with 500 iterations. 
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d. MTM-SVD analysis 

Multi-Taper-Method Singular Value Decomposition (MTM-SVD, Mann and 

Park, 1994 and 1996; Mann and Lees, 1996; Rajagopalan et al., 1998) is used to 

determine the dominant spatiotemporal variability of tree-ring chronologies and SPI. We 

use MTM-SVD for two reasons: 1) to specifically examine low-frequency temporal 

variability longer than the decadal timescale, and 2) to determine the spatial pattern with 

significant temporal variability. We consider the Local Fractional Variance (LFV) 

spectrum and reconstructed spatial pattern (Mann and Park, 1996). The LFV is a form of 

a power spectrum where the temporal and spatial variation is accounted for 

simultaneously. Statistically significant spectral peaks in the LFV spectrum are identified 

by including statistical significance intervals determined by bootstrap resampling. The 

reconstructed spatial pattern represents the spatial variability associated with a specific 

spectral band, or temporal frequency. For our analyses, we always consider the 

reconstructed spatial pattern for spectral bands that are statistically significant at the 90% 

level or above. The reconstructed patterns are plotted as vectors, where the vector length 

indicates the amplitude of the signal and the direction shows the phase in relation to a 

user-specified reference point in the domain.  The difference in angle between the vector 

at a given point in the domain relative to the reference point gives a sense of the temporal 

phasing of precipitation variability.  If the vector at a given point is pointing towards the 

east (west), precipitation variability is completely in-phase (out of phase) with the 

reference point.  If the given vector is pointing north or south precipitation variability is 

90 degrees out of phase with the reference point. The reference point for both datasets 

analyzed is located at the center of the North American Monsoon Experiment (NAME) 
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region 2 (32.75ºN, 110.25ºW) (Gochis et al., 2009). We use the same methodology to 

compute MTM-SVD as in Castro et al. (2009) and the codes obtained from the website of 

Professor Michael Mann at the Pennsylvania State University. The MTM-SVD technique 

and implementation is explained in further detail in Rajagolapan et al. (1998).  

4. Tree-ring chronologies as proxy for precipitation in the NAM region 

In this section, spatial and time domain characteristics are explored first for the 

instrumental data, and then using the tree-ring  networks, to show the principal modes of 

seasonal precipitation variability, and their links to large-scale atmospheric 

teleconnection and SST forcing. Comparisons are made between the instrumental and 

tree-ring data to demonstrate the ability of the tree-ring network to capture features in the 

instrumental data over the modern period.  

a. Patterns of observed gridded precipitation 

In order to evaluate the spatial patterns in the instrumental data, we first consider 

dominant mode of variability (EOF 1) for the cool and warm season SPI in Fig. 2.   The 

dominant cool and warm season SPI modes respectively explain 39% and 17% of the 

total variance. The spatial differences in these dominant EOFs reflect the nature of cool 

and warm season precipitation variability. The cold season EOF shows a broader 

homogeneous spatial pattern due to the favored track of synoptic-scale mid-latitude 

cyclones across the Southwest and then north and eastward into the Great Plains that 

would occur during the positive phase of the mode. The warm season EOF, in its positive 

phase, shows a more regionalized pattern that corresponds to monsoon convective  

activity driven by enhanced flow around the south and west side of the upper-level 
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monsoon ridge. The associated PC temporal components are correlated with SSTA for 

the corresponding season in Figs. 2c and 2d. The correlation maps show the well-known 

relationships pattern between the southwest precipitation and ENSO-PDV. The field 

significance is higher for winter (99%) than for summer (79%).  

The power spectra of these dominant seasonal modes of precipitation (PC1) are 

shown (Fig. 3). For this study, spectral peaks at timescales more than 10 years are defined 

as low-frequency and spectral peaks at timescales less than 10 years are defined as high 

frequency.  For the cool season, three spectral bands are highlighted in yellow shading. 

They correspond to interannual (4 year), quasi-decadal (6-10 year), and inter-decadal (25-

50 year) climate signals. Only the interannual signal, corresponding to the ENSO band, is 

statistically significant at the 90% confidence level. The quasi-decadal signal (6-10 year) 

contains the cool season 9-year signal identified by Castro et al. (2009) on precipitation 

and modeled soil moisture. The inter-decadal signal (25-50 year) may be related to the 

influence of the decadal variability of SST on winter precipitation described by McCabe 

and Dettinger (1999). The importance of these spectral peaks confirms the strong 

relationship between southwest U.S. winter precipitation and tropical SST during cold 

and warm ENSO years (Ropelewski and Halpert, 1986 and 1987; Castro et al., 2001). For 

the warm season, three spectral bands are highlighted: 2-4 years, 6-8 years, and 12-25 

years.  The 2-4 and 6-8 year bands are statistically significant and similar to SPI modes 

identified by Castro et al. (2009).  As shown in Castro et al. (2009), the 6-8 year band is 

related to the anti-phase relationship in summer precipitation between the Southwest and 

central U.S. and the onset of the monsoon. Note that in both seasons the low-frequency 

(multidecadal) spectral peaks are just below the 90% confidence level, so how tree-ring 
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data may help to possibly enhance this signal is of interest. Later, we show the spatial 

pattern for each spectral band obtained with MTM-SVD.  

b. Analysis of tree-ring chronologies 

 In order to assess the ability of the tree-ring network to replicate the spatial 

patterns in the instrumental data, we apply EOF analysis to EW and LWadj chronologies 

with the Southwest monsoon region tree-ring network.  Because the domain of the tree-

ring data is limited to compare the main mode of variability of the tree-ring data with that 

of the gridded precipitation data, we show the correlation map of the dominant tree-ring 

modes for both with the EW and LWadj PCs and gridded SPI for the respective season 

(Figs. 4a-b).  The patterns are similar to those for EOF 1 of SPI in Figures 2a and 2b, but 

as they are not directly comparable, we show also the same correlation analysis maps 

based on SPI PCs correlated with gridded SPI for the same domain (Figs. 4c-d).  The 

spatial pattern of correlation with leading modes of tree-ring chronologies and SPI are 

broadly similar, especially in the area defined by the tree-ring network (Fig. 1) with 

relatively higher and locally significant positive correlation in the range of 0.5 to 0.7.  

Within the vicinity of the southwest tree ring network the correlation values are roughly 

comparable for both seasons.  However, in areas further away from the network the 

magnitude of correlation, not surprisingly, decreases since the tree-ring data are restricted 

to the southwestern U.S.  So patterns beyond the Southwest are due to spatial 

relationships between this region and adjacent areas. The continental-scale nature of the 

pattern in the dominant modes of EW and LWadj is less obvious.  For example, the 

antiphase relationship in the Southwest to central U.S. precipitation is clearly present in 

the dominant mode of JA SPI (Fig. 4d) but is diminished in the dominant mode of the 
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LWadj chronology network (Fig. 4b). Performing the equivalent EOF analysis using SPI 

taken only from grid points at the tree-ring site locations in Fig. 1, actually yields a nearly 

identical result as the EW and LWadj EOF analyses, as shown in Figs. 5a-b.  Thus, 

accounting for the observational limitations in the southwest monsoon tree-ring network, 

EW and LWadj capture the dominant modes of cool and warm season precipitation 

variability quite well.  

To confirm the strong degree of similarity between the EW and LWadj 

chronologies and the corresponding observed precipitation we show the time series (PCs) 

of the dominant modes for the cool and warm seasons (Figs. 5c and 5d, respectively). The 

Pearson correlation for the cool season is 0.81 and 0.66 for the warm season, both 

statistically significant at the 99% level. Previous work has demonstrated the skill of the 

tree-ring data in reconstructing cool and warm-season precipitation (Faulstich et al., 

2012; Griffin et al., 2013; Woodhouse et al., 2013). Our present results show that the 

monsoon tree-ring network is also able to capture well the dominant modes of interannual 

variability of cool and warm season precipitation.   

The MTM spectrums of the leading modes of EW and LWadj for the period 1895-

2008 are shown in Figure 6.  As in the observational data in Fig. 3, the same statistically 

significant decadal scale bands are observed (25-50 years in winter and 9-15 years in 

summer) at the 90% level or above.  There is also statistically significant variability at 

ENSO timescales as well for both the cool and warm season.  Therefore, considering the 

dominant modes of EW and LWadj, their time variability does generally reflect the same 

type of variability in the corresponding SPI.  .  
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 We used CCA to evaluate the covariability between EW and LWadj tree-ring 

chronologies and the corresponding cool and warm season SPI. The first two leading 

CCA modes for cool season SPI and EW, with the homogeneous and heterogeneous 

maps for SPI and the homogeneous map for EW are shown in Figure 7.  The first CCA 

mode matches the dominant cool season EOF associated with ENSO-PDV (Figs. 7a-c), 

with all the tree-ring sites showing the same sign of response.  The second mode (Figs. 

7d-f) shows maximum variability outside the monsoon tree-ring network, with a center of 

action in California and Nevada and another of opposite sign in Texas.  The second mode 

still shows a coherent spatial gradient across the tree ring sites with this mode.  The first 

two leading CCA modes for warm season SPI and LWadj equivalent are shown in Figure 

8.  The dominant warm season mode also matches the warm season EOF associated with 

ENSO-PDV, and abruptly ends around the continental divide, very similar to the spatial 

pattern found by Castro et al. (2007).  The strongest response in this first CCA mode of 

LWadj is in southeast Arizona, and the second CCA mode keys on precipitation variability 

in New Mexico and west Texas, east of the continental divide. 

5. Linkages between SST forcing and atmospheric teleconnection responses 

reflected by dominant EW and LWadj modes  

To establish the linkage between Pacific SST forcing and its atmospheric 

teleconnection response via the tree-ring network  dominant modes of EW and LWadj 

networks of tree-ring chronologies are correlated with the corresponding SSTA and 500-

mb geopotential height anomalies. The relationships with EW tree-ring chronologies in 

Figs. 9a and 9b show a very clear winter ENSO-PDV signature, just as in Fig. 2b and in a 

similar analysis by Ciancarelli et al. (2013)  Also, a well defined wave train from the 
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western Pacific into the southern hemisphere is observed.  Similarly, the relationship with 

LWadj tree-ring chronologies and these large-scale fields is shown in Figs. 9c and 9d. 

There are fewer areas of locally significant correlation and the field significance values 

are overall lower, in comparison to EW.  However the LWadj mode is still able to resolve 

the relationship between wet and early (dry and late) monsoons with negative (positive) 

phase of ENSO-PDV and the associated west Pacific quasi-stationary Rossby wave train 

response.  

We have shown that main modes of variability in tree-ring networks and SPI are 

comparable during both seasons (winter and summer). However, the matrix methods 

cannot explicitly relate the dominant spatial patterns to specific temporal frequencies. For 

our purpose of characterizing the low-frequency temporal variability this presents a 

problem because similar spatial patterns can be associated with significant temporal 

variability at different frequencies. MTM-SVD has the advantage of identifying the 

spatial pattern of variability associated with low frequencies, important in considering the 

tree-ring chronology. In this section, we repeat the comparison analysis on the 

instrumental period but using MTM-SVD. Although applying EOF and MTM-SVD 

might be seen redundant, it is important to demonstrate the robustness of the technique 

and is relevant when analyzing the low-frequency regime in the next section.  

LFV spectra for SPI and tree-ring data, during the period of observational record 

(1895-2008), are shown in Fig. 10. They are reasonably comparable and the dominant 

spectral bands that are comparable in some degree to Fig. 3 are highlighted.  Considering 

cool season SPI and EW, both data show a significant ENSO-related signal, maximized 

around 4-5 years.  As previously discussed, there is also significant variability in SPI at 
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the 9 year timescale, though this signal is not as strong in EW.  In EW there is 

statistically significant variability in the 25-50 year (interdecadal) band that is stronger 

than SPI.  For warm season SPI and LWadj, there is significant variability generally at the 

ENSO timescales (3-5 years) and decadal timescales (6-20 years), though the exact 

locations of spectral peaks differ.   

The reconstructed cool season SPI and EW patterns for the three identified 

spectral bands from the LFV analysis are shown in Fig. 11.  The spatial patterns across 

the entire domain can be clearly noted in gridded SPI, whereas for EW it is just at the 

tree-ring sites.  The patterns between the cool season SPI and EW are similar for all three 

significant spectral bands, with a coherent in-phase signal through the entire tree-ring 

network area in both sets of data.  The correlation maps of the three spectral 

reconstructed EW time series correlated on SSTA are shown in Fig. 12.  As expected, the 

interannual and quasi-decadal signals (3-6 and 6-12 years) are clearly related to ENSO-

PDV, with no significant correlation outside of the Pacific basin.  Multi-decadal 

variability (25-50 years) appears to be related to a PDV and AMO signal. Wet conditions 

in the cool season, as indicated by EW, occur in association with a positive phase of PDV 

and a negative phase of AMO, quite consistent with what has been already documented 

with analysis of observed precipitation data in the central and western United States (Hu 

and Feng, 2002 and 2008; Feng et al., 2011; Ciancarelli et al., 2013). 

Similar analysis of the warm season for the reconstructed patterns are shown in 

Fig. 13 and correlation maps with reconstructed LWadj time series with SSTA shown in 

Fig. 14.  Reconstructed patterns of warm season SPI and LWadj are generally in phase 

throughout the Southwest for all of the spectral bands.  The anti-phase relationship with 
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precipitation in the central U.S. is clearly evident in the 12-20 year band of JA SPI.  

Similar to what has already been shown in correlating the dominant mode of JA SPI and 

LWadj to SSTA in Fig. 7. The 10-15 and 6-9 year bands in LWadj appears to key most on 

the ENSO-PDV monsoon precipitation signal (Figs. 14b-c) and accounts for much of the 

spatial variability in the Pacific when considering all the significant spectral bands (Fig. 

14d). However, SSTA patterns associated with these bands are not a spatially coherent 

and are less statistically significant than they are in the winter season. 

6. Low-frequency climate variability as revealed by tree-ring network 

a. Spatial variability of long-term drought 

We have already demonstrated that EW and LWadj networks of tree-ring 

chronologies are able to capture the associated precipitation responses of cool and warm 

season atmospheric teleconnections within the instrumental period.  Given this good 

result, what insight do EW and LWadj provide for understanding the low-frequency NAM 

climate variability? The LFV spectrum for both EW and LWadj for the entire tree-ring 

chronology time series during the period 1650-2005 is shown in Figure 15.  As our focus 

in this part is on the low-frequency climate variability, the LFV spectrum is shown only 

for periods longer than 10 years.  Significant peaks that appeared in the previous analyses 

of EW and LWadj during the period 1895-2008 are for the most part retained for periods 

shorter than 15 years.  The MTM-SVD spectrum reveals the existence of a statistically 

significant very low-frequency variability in both EW and LWadj, especially in the 50-100 

year band.  

Spatial patterns for the three EW spectral bands identified with LFV (Fig. 15) are 

shown in Fig. 16.  They are spatial correlation maps for three spectral-band EW 
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reconstructed time series: 10-15, 15-25, and 50-100 years. The left panel shows 

correlation maps between each band-pass reconstructed EW and gridded JA SPI during 

the period of instrumental record. The right panel shows the same information, but with 

band-pass filtered EW and unfiltered EW for the entire tree ring record, shown as 

superimposed triangles at the tree ring sites. Irrespective of the spectral band, the 

variation in EW is of the same phase throughout the Southwest, so wet or dry conditions 

would occur throughout the entire region as a superposition of these modes of 

spatiotemporal variability. The spatial correlation pattern of EW with cool season SPI in 

the 50-100 year band strongly resembles the ENSO-PDV signal on winter precipitation, 

with an out-of-phase relationship between the Southwest and the Pacific Northwest.     

 An identical analysis is performed during the warm season for LWadj and these 

results are shown in Fig. 17.  The 10-15 year band reflects the anti-phase relationship 

between North American monsoon precipitation and precipitation in the central U.S., as 

shown in Fig. 13. Of relevance here is the precipitation variability in the 50-100 year 

band, with an out-of-phase relationship between the Southwest (positive) and central U.S. 

(negative), which is observed in the correlation map with JA SPI (left panel) for the 

observational period (1895-2005). Using the complete LWadj time series (right panel), the 

positive phase of this pattern is still observed at the tree-ring sites (triangle).   

b. Megadroughts during the past four centuries 

 The EW and LWadj time series of the decadal (10-15 year) and interdecadal (15-

25 and 50-100 years) modes identified with MTM-SVD are shown in Figure 18.  These 

time series were used for constructing correlation maps in Figs. 16 and 17.  The anti-

phasing of EW and LWadj that would be expected associated with ENSO-PDV tends to 
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occur more in the 10-15 year band.  This is particularly the case after 1950, the period 

over which this relationship has been established in the prior literature mentioned in the 

Introduction, but prior to 1950 the same time series reveals a transitional behavior from 

an in-phase to out-of-phase behavior which we are not able to explain.  In the 

interdecadal band, the variation of the 50-100 year band in EW and LWadj are in-phase.  

This in-phase relationship is consistent with the low-frequency covariability between 

reconstructed summer and winter precipitation over the NAM 2 region (Griffin et al., 

2013). Thus, the temporal variation of this time series and its associated spatial pattern 

strongly suggest that this mode represents the spatiotemporal variation of the droughts in 

the Southwest. This is better clarified by arrows located at the coincident local minima in 

EW and LWadj (Figure 18), which correspond to the following documented major 

droughts in the Southwest during the past four centuries (Woodhouse and Overpeck, 

1998; Seager et al. 2009; Stahle et al. 2009; Griffin et al., 2013;). 

7. Summary 

This work has considered dominant spatiotemporal modes of EW and LWadj 

variability using data from a southwestern U.S., monsoon region, tree-ring network. We 

address three questions by this analysis:  1) do the dominant spatiotemporal modes of 

variability in EW and LWadj tree-ring chronologies reflect equivalent modes of 

precipitation variability?; 2) do these spatiotemporal relationships in EW and LWadj 

correspond to large-scale forcing (such as ENSO-PDV) as portrayed in the atmospheric 

and oceanic circulation?; and 3) does the phenomenon of dual season wet and dry period 

reflect statistically significant very low-frequency climate variability that cannot be 

resolved in the comparatively short period of the instrumental record?  
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We assessed the first question by using EOF and CCA to present evidence that the 

monsoon region tree-ring network is able to reasonably represent the interannual 

variability of cool and warm season precipitation, during the period of recent 

instrumental record. At a continental scale, EW is able to resolve features better than 

LWadj, due to the more heterogenous nature of the monsoon precipitation, compared to 

cool season precipitation. This result is consistent with previous studies (e.g. Meko and 

Baisan, 2001; Stahle et al. 2009; Griffin et al. 2013).  

 The dominant mode of EW and LWadj unquestionably captures ENSO-PDV 

forcing on cool and warm season precipitation in the Southwest during the past 100 

years, which affirmatively answers the second question. The dominant mode of EW is 

related to quasi-stationary Rossby wave trains emanating from the west tropical Pacific, 

resembling the positive phase of the PNA pattern, and a split jet stream with an enhanced 

cool season storm track into the Southwest U.S. The dominant mode of LWadj is also 

related to the ENSO-PDV warm season teleconnection response that governs monsoon 

ridge position in early summer and the anti-phase relationship in precipitation the 

southwestern U.S. and central U.S. MTM-SVD confirms the distinct influences of 

ENSO-PDV on EW and cool season SPI and LWadj and warm season SPI at their 

expected temporal scale of variability. 

 We answer the third question by using MTM-SVD and the complete 400-year 

record of tree-ring chronologies. Our analysis reveals a very low-frequency (50-100 year) 

mode of climate variability, which may be a factor in synchronizing many of the major 

cool and monsoon season droughts over the last four centuries, as documented by Griffin 

et al. (2013).  The synchronous very low-frequency climate variability has been the 
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orchestrator of all the documented major long-term droughts in the Southwest. EW in the 

centennial spectral band resembles the ENSO-PDV signal on winter precipitation, as can 

be inferred from the out-of-phase spatial pattern between the Southwest and the Pacific 

Northwest. This result is entirely consistent with Herweijer et al. (2007) which suggested 

that persistent La Niña-like conditions is a likely influence on major cool season droughts 

in the western and central United States during the Medieval Climate Anomaly, Little Ice 

Age, and Modern eras. LWadj variability in the 50-100 year band, however, seems to 

more resemble the one phase of the Circumglobal Teleconnection (CGT) that the 

Southwest tree-ring network is able to detect and not the early warm season ENSO-PDV 

precipitation pattern. This is shown in Table 1 by comparing these spatial pattern modes 

with the CGT modes described in Ciancarelli et al. (2013), and further supported by 

Tables 2 and 3 (Also Fig. 19 shows the summer spatial patterns used to compute 

correlations in Tables 1 and 2).  

This finding is important given that the CGT likely arises as internal mode of 

variability in the warm season, to the best of current physical understanding (Ding and 

Wang, 2005; Ding et al., 2011). Is there some plausible physical mechanism that would 

cause the CGT to vary significantly on centennial timescales?  Consistent with current 

suggested ideas as described in Ding and Wang (2005) and Ding et al., (2011) two 

possibilities could be Indian monsoon variability and/or variation of the jet stream in the 

North Atlantic. Considering the dual influences of cool and warm season precipitation, 

long-term megadrought conditions, from this analysis, would appear to derive 1) from 

persistent La Niña, low PDV conditions that would tend to decrease winter precipitation 

and 2) from the persistent recurrence of the phase of the CGT pattern that would tend to 
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decrease monsoon precipitation in the intermountain west, while increasing precipitation 

in the central U.S. We propose that this very low-frequency mode is the mostly related to 

the occurrence of megadroughts, as supported by evidence showed in this study which 

cannot be resolved with observational record. We suggest that future research should be 

directed toward examining these hypothesized physical mechanisms in the context of 

long-term global climate model integrations on a millennial timescale. 
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Tables  

  JJ PRISM EOF Forcing Mechanism JA P-NOAA CORR Forcing Mechanism 
EOF1 -0.09 ENSO/PDV -0.16 ENSO/PDV 
EOF2 -0.11 GCT1 0.40 GCT1 
EOF3 -0.43 Climate Change? -0.08 not shown in Fig. 19 
EOF4 0.06 ENSO/PDV;AMO -0.55 Climate Change? 
EOF5  -0.20 CGT2 0.03 ENSO/PDV;AMO 

 
Table 1: Spatial correlation between the LWadj 50-100 mode and both JJ PRISM REOF 
and JA P-NOAA CORR patterns from Fig. 19.  
 

          LWadj EOFs    Forcing PRISM 
 EOF1 EOF2 EOF3 EOF4 EOF5 Mechanism  Exp.Var. 
JJ PRISM REOF1 0.51 0.32 -0.40 0.52 -0.12 ENSO-PDV 24% 
JJ PRISM REOF2 -0.25 0.38 0.09 -0.23 0.15 CGT1 23% 
JJ PRISM REOF3 0.03 -0.32 -0.07 0.49 0.32 Climate Change? 19% 
JJ PRISM REOF4 0.10 0.26 0.13 -0.15 0.06 ENSO-PDV;AMO 17% 
JJ PRISM REOF5 -0.47 0.46 -0.01 -0.01 -0.23 CGT2 16% 
 36% 10% 7% 5% 4% LWadj EOF Exp. Var.  

 
Table 2: Spatial correlation of JJ PRISM REOFs PRISM versus LWadj correlation. LWadj 
correlation was obtained from correlation between LWadj PCs against gridded JA SPI. 
 

       JA PNOAA EOFs    Forcing  PRISM 
 EOF1 EOF2 EOF3 EOF4 EOF5 Mechanism Exp.Var. 
JJ PRISM REOF1 0.81 -0.04 -0.34 -0.08 -0.05 ENSO-PDV 24% 
JJ PRISM REOF2 0.33 0.49 0.06 -0.21 0.03 CGT1 23% 
JJ PRISM REOF3 0.19 -0.75 -0.10 0.48 0.12 Climate Change? 19% 
JJ PRISM REOF4 -0.32 0.58 0.24 0.12 0.40 ENSO-PDV;AMO 17% 
JJ PRISM REOF5 0.33 0.49 0.06 -0.21 0.03 CGT2 16% 
 17% 14% 11% 6% 24% JA EOF Exp. Var.  

 
 
Table 3: Spatial correlation of JJ PRISM REOFs versus JA SPI correlation. JA SPI 
correlation is obtained from correlation between JA SPI PCs against gridded JA SPI. 
  
 
Figure Captions 

Figure 1: Location of tree-ring sites are shown in triangles: blue and red are for 
ponderosa pine and Douglas-fir respectively. Other pine and fir in grey. Terrain elevation 
is shaded.  
 
Figure 2: Leading mode of spatial variability of SPI, EOF1(SPI:NOAA) winter (a), 
November through April, and summer (b), July and August. Spatial correlation between 
the temporal dominant mode of SPI, PC1(SPI:NOAA) and sea surface temperature 
anomalies, ∆SST, for both winter (c) and summer (d). Local significance at the 90% level 
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is indicated in oblique lines and its field significance is shown in the lower left on each 
plot.  
 
Figure 3: Power spectrum (Multiple Taper Method-MTM) of the temporal leading mode 
(PC1) of SPI obtained with EOF analysis for both winter (a) and summer (b).  
 
Figure 4: Left panel: spatial correlation between the dominant mode of tree-ring 
chronologies, PC1(earlywood and latewood), and gridded SPI, for both winter (a), and 
summer (b) seasons. Right panel: spatial correlation between the dominant mode of SPI, 
PC1(winter and summer), and gridded SPI, for both winter (c), and summer (d). 
 
Figure 5: Spatial correlation between the dominant mode of SPI at sites, PC1[site], and 
gridded SPI, SPI, for both winter (a) and summer (b) seasons. Time series of the leading 
mode for both earlywood index (blue) and superimposed with winter SPI (red) (c). Also 
similar as (c) but for latewood adjusted index and winter SPI (d). 
 
Figure 6: Power spectrum (Multiple Taper Method-MTM) of the temporal leading mode 
(PC1) of tree ring chronologies obtained with EOF analysis for earlywood (a) and 
latewood (b).  
 
Figure 7: Upper panel: Homogeneous correlation map of dominant NA SPI singular 
vector (a). Homogeneous correlation map of dominant Earlywood singular vector (b). 
Heterogeneous correlation map between Earlywood  singular vector and NA SPI (c). 
Singular vectors were obtained from CCA analysis on NA SPI and Earlywood. Lower 
panel: as in upper panel but for second CCA mode.  
 
Figure 8: Upper panel: Homogeneous correlation map of dominant JA SPI singular 
vector (a). Homogeneous correlation map of dominant Latewood singular vector (b). 
Heterogeneous correlation map between Latewood  singular vector and JA SPI (c). 
Singular vectors were obtained from CCA analysis on JA SPI and Latewood. Lower 
panel: as in upper panel but for second CCA mode.  
 
Figure 9: Spatial correlation maps between the temporal leading mode of EW 
chronologies and both winter sea surface temperature anomalies, ∆SST, [PC1(EW) 
versus ∆SST(N-A)], (a) and geopotential height anomalies, ∆GPH, [PC1(EW) versus 
∆GPH(N-A)], (b). Also, spatial correlation maps between the temporal leading mode of 
LWadj chronologies and both summer sea surface temperature anomalies, ∆SST, 
[PC1(LWadj) versus ∆SST(JJ)], (c) and geopotential height anomalies, ∆GPH, 
[PC1(LWadj) versus ∆GPH(JA)], (d). Local significance at the 90% level is indicated in 
oblique lines and its field significance is shown at lower left on each plot. 
 
Figure 10: Left panel: Local Fractional Variance (LFV) spectrum of the SPI leading 
modes obtained by MTM-SVD analysis for both winter (a) and summer (b). Right panel: 
LFV spectrum of the tree-ring chronology leading modes obtained by MTM-SVD 
analysis for both earlywood (c) and latewood (d). 
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Figure 11: Upper panel: Reconstructed spatial pattern (U component in shade and total 
component in vector) of NA SPI as highlighted in Fig. 11 for three spectral bands: 3-6 
year (a), 6-12 year, and 25-50 year (c). The reference point is located near the center of 
the NAME 2 zone (32.75°N; 110.25°W). Lower panel: as in upper panel but for 
Earlywood chronology.  
 
Figure 12: Spatial correlation maps between the MTM-SVD reconstructed temporal 
pattern of Earlywood and winter sea surface temperature anomalies, N-A  ∆SST, for the 
identified spectral bands: 3-6 year (a), 6-12 year (b), 25-50 year (c), and all modes (d). 
The Earlywood temporal pattern was reconstructed over a site near the center of the 
NAME 2 zone (32.75°N; 110.25°W). Local significance at the 90% level is indicated in 
oblique lines and its field significance is shown in the lower left on each plot.  
 
Figure 13: Upper panel: Reconstructed spatial pattern (U component in shade and total 
component in vector) of JA SPI as highlighted in Fig. 12 for three spectral bands: 2-5 
year (a), 6-9 year, and 10-15 year (c). The reference point is located near the center of the 
NAME 2 zone (32.75°N; 110.25°W). Lower panel: as in upper panel but for Latewood 
chronology.  
 
Figure 14: Spatial correlation maps between the MTM-SVD reconstructed temporal 
pattern of Latewood and summer sea surface temperature anomalies, JJ  ∆SST, for the 
identified spectral bands: 2-5 year (a), 6-9 year (b), 10-15 year (c), and all modes (d). The 
Latewood temporal pattern was reconstructed over a site near the center of the NAME 2 
zone (32.75°N; 110.25°W). Local significance at the 90% level is indicated in oblique 
lines and its field significance is shown in the lower left on each plot.  
 
Figure 15: Power spectrum (Local Fractional Variance-LFV) of the leading mode of 
tree-ring chronologies obtained with MTM-SVD analysis for both earlywood (a) and 
latewood (b). For a tree-ring record of 360 years. 
 
Figure 16: Left panel: spatial correlation map for the historical period (1895-2005) 
between winter SPI and band-pass reconstructed EW for 10-15 year (top), 15-25 year 
(middle), and 50-100 year (bottom). Right panel: same as right panel but for EW and 
band-pass reconstructed EW (1650-2005) showed inside the triangles. Results from the 
left panel are superimposed in right panel. 
 
Figure 17: Same as Fig. 16 but for summer SPI and LW chronologies. 
 
Figure 18: Time series of MTM-SVD dominant reconstructed modes for both EW in 
read and LW in blue. For decadal (top: 10-15 year), inter-decadal (middle: 15-25 year 
[EW] and 25-50 year [LW]), and centennial (bottom: 50-100 year) modes. Blue arrows 
indicate extreme drought event in southwestern U.S. 
 
Figure 19: Left panel: JJ PRISM SPI EOF modes as in Ciancarelli et al. (2013) with its 
mode name labeled for each EOF. Central panel: JA P-NOAA correlation pattern 
obtained by correlating JA SPI temporal PCs and its gridded JA SPI. Right panel: LWadj 
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correlation pattern obtained by correlating LWadj temporal PCs and gridded JA SPI. The 
EOF/PC explained variance for each case is indicated in blue, and the spatial correlation 
between PRISM EOF pattern and both P-NOAA and LWadj correlation pattern for each 
case in magenta. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Location of tree-ring sites are shown in triangles: blue and red are for 
ponderosa pine and Douglas-fir respectively. Other pine and fir in grey. Terrain elevation 
is shaded.  
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Figure 2: Leading mode of spatial variability of SPI, EOF1(SPI:NOAA) winter (a), 
November through April, and summer (b), July and August. Spatial correlation between 
the temporal dominant mode of SPI, PC1(SPI:NOAA) and sea surface temperature 
anomalies, ∆SST, for both winter (c) and summer (d). Local significance at the 90% level 
is indicated in oblique lines and its field significance is shown in the lower left on each 
plot.  
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Figure 3: Power spectrum (Multiple Taper Method-MTM) of the temporal leading mode 
(PC1) of SPI obtained with EOF analysis for both winter (a) and summer (b).  
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Figure 4: Left panel: spatial correlation between the dominant mode of tree-ring 
chronologies, PC1(earlywood and latewood), and gridded SPI, for both winter (a), and 
summer (b) seasons. Right panel: spatial correlation between the dominant mode of SPI, 
PC1(winter and summer), and gridded SPI, for both winter (c), and summer (d). 
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Figure 5: Spatial correlation between the dominant mode of SPI at sites, PC1[site], and 
gridded SPI, SPI, for both winter (a) and summer (b) seasons. Time series of the leading 
mode for both earlywood index (blue) and superimposed with winter SPI (red) (c). Also 
similar as (c) but for latewood adjusted index and winter SPI (d). 
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Figure 6: Power spectrum (Multiple Taper Method-MTM) of the temporal leading mode 
(PC1) of tree ring chronologies obtained with EOF analysis for earlywood (a) and 
latewood (b).  
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Figure 7: Upper panel: Homogeneous correlation map of dominant NA SPI singular 
vector (a). Homogeneous correlation map of dominant Earlywood singular vector (b). 
Heterogeneous correlation map between Earlywood  singular vector and NA SPI (c). 
Singular vectors were obtained from CCA analysis on NA SPI and Earlywood. Lower 
panel: as in upper panel but for second CCA mode.  
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Figure 8: Upper panel: Homogeneous correlation map of dominant JA SPI singular 
vector (a). Homogeneous correlation map of dominant Latewood singular vector (b). 
Heterogeneous correlation map between Latewood  singular vector and JA SPI (c). 
Singular vectors were obtained from CCA analysis on JA SPI and Latewood. Lower 
panel: as in upper panel but for second CCA mode.  
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Figure 9: Spatial correlation maps between the temporal leading mode of EW 
chronologies and both winter sea surface temperature anomalies, ∆SST, [PC1(EW) 
versus ∆SST(N-A)], (a) and geopotential height anomalies, ∆GPH, [PC1(EW) versus 
∆GPH(N-A)], (b). Also, spatial correlation maps between the temporal leading mode of 
LWadj chronologies and both summer sea surface temperature anomalies, ∆SST, 
[PC1(LWadj) versus ∆SST(JJ)], (c) and geopotential height anomalies, ∆GPH, 
[PC1(LWadj) versus ∆GPH(JA)], (d). Local significance at the 90% level is indicated in 
oblique lines and its field significance is shown at lower left on each plot. 
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Figure 10: Left panel: Local Fractional Variance (LFV) spectrum of the SPI leading 
modes obtained by MTM-SVD analysis for both winter (a) and summer (b). Right panel: 
LFV spectrum of the tree-ring chronology leading modes obtained by MTM-SVD 
analysis for both earlywood (c) and latewood (d). 
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Figure 11: Upper panel: Reconstructed spatial pattern (U component in shade and total 
component in vector) of NA SPI as highlighted in Fig. 11 for three spectral bands: 3-6 
year (a), 6-12 year, and 25-50 year (c). The reference point is located near the center of 
the NAME 2 zone (32.75°N; 110.25°W). Lower panel: as in upper panel but for 
Earlywood chronology.  
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Figure 12: Spatial correlation maps between the MTM-SVD reconstructed temporal 
pattern of Earlywood and winter sea surface temperature anomalies, N-A  ∆SST, for the 
identified spectral bands: 3-6 year (a), 6-12 year (b), 25-50 year (c), and all modes (d). 
The Earlywood temporal pattern was reconstructed over a site near the center of the 
NAME 2 zone (32.75°N; 110.25°W). Local significance at the 90% level is indicated in 
oblique lines and its field significance is shown in the lower left on each plot.  
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Figure 13: Upper panel: Reconstructed spatial pattern (U component in shade and total 
component in vector) of JA SPI as highlighted in Fig. 12 for three spectral bands: 2-5 
year (a), 6-9 year, and 10-15 year (c). The reference point is located near the center of the 
NAME 2 zone (32.75°N; 110.25°W). Lower panel: as in upper panel but for Latewood 
chronology.  
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Figure 14: Spatial correlation maps between the MTM-SVD reconstructed temporal 
pattern of Latewood and summer sea surface temperature anomalies, JJ  ∆SST, for the 
identified spectral bands: 2-5 year (a), 6-9 year (b), 10-15 year (c), and all modes (d). The 
Latewood temporal pattern was reconstructed over a site near the center of the NAME 2 
zone (32.75°N; 110.25°W). Local significance at the 90% level is indicated in oblique 
lines and its field significance is shown in the lower left on each plot.  
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Figure 15: Power spectrum (Local Fractional Variance-LFV) of the leading mode of 
tree-ring chronologies obtained with MTM-SVD analysis for both earlywood (a) and 
latewood (b). For a tree-ring record of 360 years. 
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Figure 16: Left panel: spatial correlation map for the historical period (1895-2005) 
between winter SPI and band-pass reconstructed EW for 10-15 year (top), 15-25 year 
(middle), and 50-100 year (bottom). Right panel: same as right panel but for EW and 
band-pass reconstructed EW (1650-2005) showed inside the triangles. Results from the 
left panel are superimposed in right panel. 
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Figure 17: Same as Fig. 16 but for summer SPI and LW chronologies. 
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Figure 18: Time series of MTM-SVD dominant reconstructed modes for both EW in red 
and LW in blue. For decadal (top: 10-15 year), inter-decadal (middle: 15-25 year [EW] 
and 25-50 year [LW]), and centennial (bottom: 50-100 year) modes. Blue arrows indicate 
extreme drought event in southwestern U.S. 
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Figure 19: Left panel: JJ PRISM SPI EOF modes as in Ciancarelli et al. (2013) with its 
mode name labeled for each EOF. Central panel: JA P-NOAA correlation pattern 
obtained by correlating JA SPI temporal PCs and its gridded JA SPI. Right panel: LWadj 
correlation pattern obtained by correlating LWadj temporal PCs and gridded JA SPI. The 
EOF/PC explained variance for each case is indicated in blue, and the spatial correlation 
between PRISM EOF pattern and both P-NOAA and LWadj correlation pattern for each 
case in magenta. 
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Abstract 

Natural climate variability over the North American monsoon (NAM) region is 

associated with El Niño Southern Oscillation (ENSO) and Pacific Decadal Variability (PDV). 

Wet and dry conditions over the southwestern U.S. are determined by atmospheric Rossby wave 

teleconnections driven by the ENSO-PDV, through modulation of the subtropical ridge position.  

Bukovsky et al. (2013) performed an in-depth analysis of the North American Regional Climate 

Change Assessment Program (NARCCAP) simulations over the NAM region. They found that 

NARCCAP regional climate models forced with reanalysis performed well but performance 

degrades with dynamically downscaled global climate model projections. However, the large-

scale forcing mechanism was not evaluated in association with the future NAM precipitation 

change. This study evaluates the continental-scale patterns of warm season precipitation 

variability within the NARCCAP simulations. We investigated whether the known dominant 

mode of warm season precipitation is connected to ENSO-PDV and its associated Rossby wave 

teleconnection. Multivariate statistics analyses are applied on multiple sea surface temperature 

and precipitation datasets to determine the dominant modes of variability at a continental scale, 

with focus on the Southwest. Our analysis shows that NARCCAP simulations are able to portray 

the spatial pattern in a similar way to observations for the NARCCAP models forced by a 

reanalysis dataset. However, all simulations forced by fully coupled global climate models from 

CMIP3, except one, generally fail to reproduce this climate variability.  An inevitable question 

that rises is how relevant is the use of the ensemble model mean. We suggest more physically-

based metrics to evaluate model quality are needed in assessment of uncertainty of future climate 

change. Although including all possible NARCCAP model simulations increases the statistical 

degree of confidence, not necessary better physical reliability is achieved. 
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1. Introduction 

How the North American monsoon System (NAMS) is going to change in the 

future is an important and pressing question because of its impact on severe weather and 

water resources (Garfin et al. 2013, Ray et al. 2007).  Climate change projections, based 

on the global climate models (GCMs) used for the Coupled Model Intercomparison 

Project version 5 (CMIP5, Taylor et al. 2012), currently project a seasonal delay in 

NAMS.  A more intense subtropical high, or monsoon ridge, leads to greater atmospheric 

stability and decreased precipitation in early summer (June-July).  Increased precipitation 

in late summer occurs once the atmosphere becomes sufficiently unstable to support 

convection (Cook and Seager 2013).  The CMIP5 NAMS projections conform to the 

broader paradigm of more abrupt transitions in monsoonal climates (Cook and Seager, 

2013), with increased contrast between the dry and wet regimes.  However, there are 

some caveats to this projection. It has been demonstrated that most CMIP models do not 

faithfully reproduce NAMS intraseasonal variability (Lin et al. 2008, Sheffield et al., 

2013).  Though CMIP5 models reasonably represent NAMS precipitation during the 

onset period in early summer, they generally overestimate precipitation during late 

summer (Geil et al. 2013), precisely the period that is projected to become wetter.   

Regional climate models (RCMs), alternatively, may be used to dynamically 

downscale CMIP GCMs to generate NAMS climate change projections.  The principal 

advantage to the use of a RCM at the scale of tens of kilometers is the value added in the 

representation of terrain-forced monsoon thunderstorms (Gutzler et al., 2005 and 2009; 

Castro et al., 2007 and 2012), as this process is not physically represented well within a 

GCM.  Even with enhanced spatial resolution and model physics more appropriate for the 
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mesoscale, RCMs do not faithfully physically represent the organized propagating 

monsoon convection that accounts at a distance away from the mountains (e.g. Castro et 

al., 2012).  This paper specifically considers RCM data generated as part of the North 

American Regional Climate Change Assessment Program (NARCCAP, Mearns et al., 

2012), to be described in further detail later.  Similar to the aforementioned studies, 

Bukovsky et al. (2013) showed that when the NARCCAP RCMs were forced with lateral 

boundary forcing from an atmospheric reanalysis, the climatological evolution of the 

NAMS is improved.  Also Bukovsky et al. (2014) recently considered NARCCAP RCMs 

that dynamically downscaled CMIP3 data from the A2 emission scenario, to evaluate 

future changes in mean NAMS precipitation.  Consistent with Cook and Seager (2013), 

they found that mean NAMS precipitation is projected to decrease, considering the 

ensemble of all NARCCAP RCM-GCM combinations, but that the decrease was not 

statistically significant.  Though the NARCCAP RCMs are forced with CMIP3 GCMs, to 

date their projections still represent the highest spatial resolution information generated 

by dynamical modeling.   

At least for NARCCAP RCMs, a traditional climate projection approach that 

equally weights all the models to generate an ensemble mean change suggests that NAM 

precipitation will not substantially change in the future.  Such an approach implicitly 

favors statistical confidence based on the level of multi-model agreement, over 

physically-based metrics of model performance of the individual contributing models. 

What has been absent in the discussion of NAMS climate projections thus far is how the 

contributing models, whether they be GCMs or RCMs, represent known sources of 

natural climate variability.  Should this also be considered as a physically-based metric to 
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evaluate model quality? How would such information bear on the projected changes in 

NAMS precipitation?  As we have argued previously in Carrillo et al. (2014a, in 

preparation), consideration of natural climate variability is extremely important for real-

time resource decision making at seasonal timescales and for worst-case scenarios, for 

example long-term drought.   

Our prior work, along with others, has characterized NAMS climate variability in 

the context of observational analyses, and downscaled atmospheric reanalyses and a 

global seasonal forecast model (e.g. Castro et al., 2001; Castro et al., 2007; Castro et al., 

2012; Bukovsky et al., 2013).  In particular, Castro et al. (2012) showed that a 

downscaled global seasonal forecast model was able to statistically represent the 

dominant mode of early warm season precipitation in North America.  This mode reflects 

the anti-phase relationship between precipitation in the southwestern U.S. and central 

U.S., related to an atmospheric teleconnection (quasi-stationary Rossby wave train) 

emanating from the western tropical Pacific.  Variability in the El Niño Southern 

Oscillation and Pacific Decadal Variability (ENSO-PDV) govern the teleconnection 

response, such that a positive (negative) phase of ENSO-PDV during early summer is 

associated with wet (dry) conditions in the central U.S. and a dry and delayed (wet and 

early) North American monsoon.  We assert that a “well performing” climate model 

should reasonably represent the spatial and temporal structure of this dominant mode of 

warm season climate variability, especially given that a very recent community 

assessment of CMIP5 models by Sheffield et al. (2013) has explicitly considered ENSO 

and PDV-driven winter precipitation variability in North America.  They generally 
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conclude that only a relative few number of CMIP5 models are able to physically 

represent such variability. 

This work evaluates the continental-scale patterns of warm season precipitation 

variability within the NARCCAP simulations, using similar objective analysis 

approaches that have been applied to observational data sources in our aforementioned 

work.  Our main research question of interest is: Is the known dominant mode of early 

warm season climate variability, and its connection to ENSO-PDV, reasonably 

represented each component NARCCAP RCM?   More broadly, is it appropriate to 

consideration natural climate variability as an additional metric to assess physical 

uncertainty in NARCCAP model-generated climate projections?   

This paper is organized as follows. The methodology and datasets are described in 

section 2. A review of the climatological behavior of NARCCAP simulation during the 

warm season is presented in section 3. The warn season SST variability in NARCCAP 

AOGCMs is described in section 4. The impact of spectral nudging in representing 

ENSO-PDV warm season precipitation in Phase I NARCCAP simulations is explained in 

section 5. The ENSO-PDV warm season precipitation response in Phase II NARCCAP 

RCMS is described in section 6. Concluding points and discussion are presented in 

section 7. 

2. Methodology and datasets  

2.1 NARCCAP models 

 We use regional climate model simulations generated as part of the North 

American Regional Climate Change Assessment Program (NARCCAP; Mearns et al., 

2012), because these data reflect the most comprehensive research effort to date to 
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generate dynamically downscaled climate projections using multiple global and regional 

atmospheric models.  A summary of NARCCAP model simulations used in this study is 

shown in Tables 1 and 2. Phase I NARCCAP simulations force six RCMs with NCEP-

NCAR Reanalysis 2 (Kanamitsu et al. 2002) boundary conditions during the historical 

period 1979-2003 to assess RCM sensitivity with “perfect” observed analysis conditions.  

Phase II simulations use boundary conditions from four different fully coupled 

atmosphere-ocean global climate models (AOGCMs) from the Coupled Model 

Intercomparison Project (CMIP3) that are forced by the A2 greenhouse gas emission 

scenario (Community Climate System Model [CCSM], Third Generation Coupled Global 

Climate Model [CGCM], Geophysical Fluid Dynamics Laboratory GCM [GFDL], and 

Hadley Centre Coupled Model version 3 [HadCM3]). There are two periods of 

simulation, a twentieth century historical (1971-2000) and a twenty-first century climate 

change period (2038-2070). Eight of the twelve possible AOGCM-RCM combinations 

were generated (Table 3) with a grid spacing of 50 km.  Additional NARCCAP 

experiments force some of the GCMs with observed sea surface temperatures, as 

described in Bukovsky et al. (2013), but are not considered here. 

 In considering how the NARCCAP models represent natural climate variability, it 

is important to note that two (CRCM and ECP2) of the participating RCMs utilize 

spectral nudging in both NARCCAP Phases I and II (Mearns et al., 2012).  The spectral 

nudging approach may be advantageous because it preserves the properties of the 

synoptic-scale circulation of the driving atmospheric reanalysis or AOGCM (Castro et 

al., 2005 and 2012).  When specifically considering NARCCAP Phase I experiments, the 

spectrally nudged RCMs generally outperform the non-spectrally nudged models with 
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respect to the representation of the mean climate (Mearns et al., 2012; Bukovsky et al., 

2013).   

2.2 NARCCAP warm season precipitation 

This study considers NARCCAP RCM-generated precipitation during the period 

of July-August, as the majority of North American monsoon-related precipitation occurs 

during this time.  Precipitation from each RCM is interpolated to a common grid of 0.5° 

because of the different model grid projections used (Mearns et al., 2012). To consider 

interannual variability, gridded JA precipitation is converted to a two-month standardized 

precipitation index (SPI; McKee et al. 1993), following the identical procedures we have 

used in prior analysis of gridded precipitation products in North America (Castro et al. 

2009; Ciancarelli et al. 2013).  The gamma distribution of precipitation for SPI 

computation of NARCCAP Phase II data is obtained independently for the twentieth and 

twenty-first centuries. Ciancarelli et al. (2013) showed that the dominant spatial modes of 

warm-season SPI in North America derived from PRISM precipitation data (PRISM 

Climate Group, 2004) are tied to distinct large-scale atmospheric teleconnections, or 

quasi-stationary Rossby wave trains.  We consider equivalent observed precipitation 

obtained from a new NOAA precipitation (P-NOAA) product that covers the entire U.S. 

and Mexico, provided by Dr. Russ Vose.  P-NOAA incorporates a terrain interpolation 

function similar to PRISM.  We utilized the P-NOAA precipitation data previously in the 

evaluation of dynamically downscaled data from the Climate Forecast System (CFS) 

model, Version 1, reforecast (Castro et al. 2012).   

 Observed and GCM-derived sea surface temperature is considered only for the 

early summer (JJ).  The main reason for the slight lead in time for SSTs is because of the 
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relative stronger influence of ENSO-PDV variability on North American warm season 

precipitation in early summer (Castro et al., 2001).  Our guiding premise is that 

NARCCAP CMIP3 models may have a reasonable representation of the ENSO-PDV 

forced atmospheric teleconnection response, in reference to what we previously found 

considering a global atmospheric reanalysis (Ciancarelli et al. 2013).  The level of 

correspondence in the warm season atmospheric teleconnection response may be used as 

a subjective physically-based measure of NARCCAP model quality.   Observed SST is 

obtained from the two-degree NOAA Extended Reconstructed SST dataset (Smith et al., 

2008) 

2.3 Dominant spatial modes of variability 

 Dominant spatial modes of variability JA SPI and JJ SST are determined using 

two complementary statistical analysis tools.  As in Ciancarelli et al. (2013), we apply 

empirical orthogonal function, principal component analysis (e.g. Wilks, 2006).  The 

dominant principal component (PC) of SPI can be regressed onto 500-mb height and sea 

surface temperature anomalies, to reveal atmospheric teleconnection patterns and their 

relationship to SST.  Where point source correlation is determined, local significance is 

determined by a t-test and field significance is determined by a Monte Carlo technique 

consistent with Livezey and Chen (1983) using 500 iterations.  To isolate significant 

temporal variability in the dominant mode, we apply a multiple taper method (MTM) 

spectrum. MTM attempts to maximize both spectral resolution and variance by use of a 

Slepian taper to the data (Mann and Lees 1996).  MTM toolkit for spectral analysis was 

taken from the Theoretical Climate Dynamic group at the University of California, Los 
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Angeles. The MTM toolkit is explained in further details in Ghil et al. (2002), and can be 

access at http://web.atmos.ucla.edu/tcd//ssa/. 

 Multi-taper method singular value decomposition (MTM-SVD) is a multivariate 

method that uses spectral and spatial disaggregation simultaneously.  Low-frequency 

signals are enhanced by applying multiple Slepian data tapers.  Conceptually, MTM-SVD 

first transforms time-space data to spectral domain and then finds dominant spatio-

temporal variability by solving a complex eigenvalue problem. The three main outputs of 

MTM-SVD analysis are: 1) the local fractional variance (LFV) spectrum, similar to a 

power spectrum of a time series of point source data but applicable to the entire spatial 

domain, which statistical significance of spectral peaks are assessed by bootstrap 

resampling (Rajagopalan et al., 1998); 2) the reconstruction time series, determined 

typically for the specific spectral bands that are statistically significant; 3) the phase 

pattern map, which provides the phasing information for a spatial pattern in a given 

frequency band with respect to a designated reference point in the domain and can be 

shown as a vector plot.  In Castro et al. (2009) we applied MTM-SVD in North America 

during the warm season to gridded observed precipitation (SPI), soil moisture (from 

National Land Data Assimilation System), and satellite derived normalized difference 

vegetation index (NDVI).  Significant temporal variability in all of these fields was found 

at interannual to decadal timescales, corresponding to ENSO-PDV forced climate 

variability.  Here, we essentially want to know if similar behavior exists within the 

NARCCAP AOGCMs and RCMs. 
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3. Review of climatological behavior of NARCCAP models during the warm season 

The climatological behavior of Phase I and II NARCCAP models with respect to their 

representation of the NAMS during the warm season (JJAS) has been previously 

evaluated by Bukovsky et al. (2013).  Considering the RCMs in the Phase I experiments, 

these generally showed a salient NAMS in the core region, with a rapid increase in 

precipitation in early summer and seasonal peak in rainfall in late July and August. 

However, Arizona was noted as a geographic area that exhibits a dry precipitation bias 

due to inadequate low-level moisture transport from the Gulf of California. The Phase II 

NARCCAP RCM simulations do not represent the NAMS well during the twentieth 

century historical period, in terms of the timing and amount of monsoon precipitation, 

and there is considerable variation in performance among the various RCM-GCM 

combinations.  The most well-performing NARCCAP Phase II models, by the metrics of 

NAMS precipitation timing and amount, are CRCM[cgcm3], RCM3[cgcm3], 

WRFG[cgcm3], and HRM3[hadcm3].  The RCMs that utilized GFDL boundary forcing 

were by far the worst performing and comparatively a major outlier to other Phase II 

RCMs simulations, with summer monthly precipitation amounts exceeding observed 

values by a factor of two to three.   

Before we consider the performance of the NARCCAP models with respect to their 

representation of year-to-year climate variability, we first briefly revisit some aspects of 

their climatological performance that augment what has already been done by Bukovsky 

et al. (2013).  The most critical issue for the NAMS region is the representation of the 

annual cycle of precipitation, and this is also true when considering the CMIP3 and 

CMIP5 models directly (Geil et al., 2013).  Figure 1 (left panels) shows the monthly 
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mean precipitation in the NAMS 2 region (Gochis et al., 2009) during the historical and 

climate change projection periods for all NARCCAP Phase II RCMs.  Corresponding P-

NOAA observations are shown in the light blue histogram on the top left panel.  The 

observed precipitation shows an abrupt jump from 0.3 mm day-1 in June to 1.6 mm day-1 

in July.  Considering the ensemble mean of all NARCCAP Phase II RCMs (thick red 

line), this abrupt precipitation transition is absent.  Removing the four NARCCAP RCMs 

that have the largest precipitation biases yields a more physically reasonable result, as 

shown on the right of Figure 1.  The better performing NARCCAP RCMs are those 

forced by CGCM3 and HadCM3 while the poorer performing RCMs are those forced by 

GFDL and CCSM.  This performance evaluation is in concurrence with Bukovsky et al. 

(2013).  However, even the four better performing NARCCAP RCMs do not accurately 

represent monsoon onset and retreat.  Only CRCM-CGCM3 and HRM3-HadCM3 are 

able to do this.  The climatological performance of the NARCCAP RCMs also does not 

substantially change from the historical to future period (bottom panels of Figure 1).  As 

previously stated, we use JA as our period of analysis for consideration of year-to-year 

climate variability in the following subsections because monsoon precipitation is 

maximized at this time and ENSO-PDV is known to significantly influence monsoon 

precipitation during the onset period in July.  Our guiding supposition in the proceeding 

analyses is that the NARCCAP Phase II models which have the best representation of the 

NAMS climatology would also have the best representation of year-to-year climate 

variability. 

 The spatial distribution of JA precipitation for all eight Phase II NARCCAP 

models during the historical and future periods, along with the difference, is shown in 
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Figure 2.  These precipitation maps confirm that there is a wide variation in the 

climatological representation of the NAMS in these RCMs, with some models  

generating little to no monsoon precipitation at all.  As shown by Bukovsky et al. (2013), 

the ensemble mean difference of Phase II NARCCAP RCMs exhibits little to no change 

in NAMS precipitation with a low level of confidence due to the lack of model 

agreement.  However, the NARCCAP RCMs that have the best NAMS precipitation 

climatology (CRCM-CGCM3 and HRM-HadCM3) also show the largest projected 

decreases in monsoon precipitation during JA.  The results from these two particular 

NARCCAP models are actually the most consistent with recent NAMS projections from 

CMIP5 models (Cook and Seager, 2013), which as a whole improve the climatological 

representation of the NAMS in comparison to CMIP3 models.   

To further illustrate the spread in NAMS precipitation projections in the 

NARCCAP models and the potential impact of distinguishing models by their physical 

performance, Figure 3 shows the JA mean precipitation for NAMS precipitation region 2 

(Arizona) for the historical and future periods (yellow and red bars, respectively).  The 

three models that project wetter conditions are highlighted in dark blue and the five 

models that project drier conditions are highlighted in light blue.  Error bars at the top of 

the histogram are one standard deviation about the mean, as an indication of the degree of 

spread in the data.  The models which project wetter conditions in the future are those 

with the least faithful climatological representation of the NAMS, forced by GFDL and 

CCSM.  Inclusion of these models in the ensemble mean projection causes the NAMS 

precipitation change to be negligible.  However, if just those models with the best 

climatological representation of the NAMS are considered (HRM3-HadCM3 and CRCM-
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CGCM3), then there is a projected decrease in NAMS precipitation that exceeds one 

standard deviation in both models.  Thus, applying some basic physical performance 

metrics of NAMS behavior to the NARCCAP models may have substantial bearing on 

the degree of statistical confidence of a projected climate change. 

Dominance of boundary forcing on NARCCAP interannual climate variability 

Bukovsky et al. (2013) also have previously noted that the sign of projected 

precipitation changes in the NARCCAP Phase II RCMs is largely consistent with that of 

the driving AOGCM.  To further illustrate the influence of the driving AOGCM on the 

RCM solutions we consider the time evolution of the NARCCAP RCM simulated SPI for 

the historical and future periods in Figure 4 for the NAME 2 precipitation region.  RCM 

SPI solutions are grouped according to their parent driving AOGCM.  As these are each 

free running, coupled AOGCMs with their own unique representations of natural climate 

variability, we do not expect any deterministic correspondence of the SPI time series 

when comparing NARCCAP RCM simulations forced by different AOGCMs.  When 

comparing RCMs driven by the same parent AOGCM, the SPI time series are always 

statistically significantly correlated at the 90% level or above in both periods (correlation 

coefficients shown on plot).  The interannual variability of the NARCCAP RCM 

precipitation solution is largely a slave to the large-scale atmospheric circulation of the 

driving AOGCM.  This is the case irrespective of whether or not spectral nudging is 

applied to the RCM.  We submit that a “well performing” AOGCM-RCM system should 

reasonably represent the spatial structure of known atmospheric teleconnection patterns 

and their continental-scale precipitation responses.  We reached basically the same 
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conclusion in our previous consideration of dynamically downscaled global seasonal 

forecast model data in Castro et al. (2012).   

 
4. Warm season SST variability in NARCCAP AOGCMs 

Given that interannual variability of NARCCAP RCM precipitation substantially 

depends on the imposed boundary forcing from a reanalysis or AOGCM, we consider 

how each of the four NARCCAP Phase II AOGCMs represent interannual variability in 

global SSTA in comparison to observations.  Figure 5 shows the leading EOF of JJ SSTA 

(right) and the corresponding MTM spectrum of the principal component.  The spatial 

pattern of the leading model of observed JJ SSTA shows a clear ENSO-PDV signal (top 

of Fig. 5) with maxima in spatial loading in the eastern tropical Pacific and central North 

Pacific.  This leading mode has statistically significant temporal variability at a typical 

ENSO timescale of 3-5 years.  Additional, but not statistically significant peaks in the 

MTM spectrum occur between approximately 6-9 years and 12-16 years.  All of the 

NARCCAP AOGCMs have at least some representation of ENSO variability in their 

corresponding dominant mode.  HadCM3 and GFDL appear to have the better 

representations, with statistically significant peaks in their MTM spectra at a reasonable 

ENSO timescale of approximately 3-7 years.  CCSM incorrectly represents ENSO as a 

biennial cycle, a problem that has been previously documented in the literature (Hu et al., 

2012).  CGCM3 has relatively low spatial loading in the eastern tropical Pacific, though 

the mode peaks at a timescale of 5 years. 

 A limitation of EOF analysis of global SSTA is that ENSO-PDV variability may 

be present in more than one dominant mode.  We apply MTM-SVD to specifically isolate 
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ENSO and PDV-related signals at their known timescales of temporal variability.  The 

MTM-SVD analysis of observed SSTA is shown in Fig. 6.  Consistent with other 

analyses of observed global SSTA, statistically significant temporal variability is mostly 

present in two bands, an ENSO band (2-6 years) and a decadal band (greater than ten 

years), as highlighted on the LFV spectrum at the top of the figure.  As the analysis 

period considered here is limited to fifty years, the lowest possible resolvable frequency 

is 25 years.  Figs. 6c and 6d shown of both the SSTA patterns associated with these two 

frequency bands, reference to a grid point in the eastern tropical Pacific (center of the 

Niño 3.4 region). These reconstructed SSTA pattern maps show a clear distinction 

between ENSO and PDV signatures in the Pacific Ocean, as compared to just 

consideration of the dominant EOF in Fig. 5a.  Also of note in the reconstructed decadal 

band is the presence of statistically significant variability in the Atlantic basin, which 

suggests the Atlantic Multidecadal Oscillation (AMO).  The combination of both 

interannual and decadal SSTA bands is shown in Fig. 6a, revealing the combined ENSO-

PDV SSTA signature similar to that of Castro et al. (2007), their Figure 4. 

 MTM-SVD analysis is similarly applied to global SSTA for the NARCCAP 

AOGCMs for the historical and future climate periods in Figs. 7 and 8.  The number of 

years considered in these analyses is more than the period of simulation of the 

NARCCAP RCMs.  We use 40-50 year periods as denoted on the figure to resolve any 

possible statistically significant decadal variability.  None of these four AOGCMs have 

significant temporal variability in their LFV spectra, shown by the yellow bars, beyond a 

timescale of 10 years.  Generally speaking, the only significant SSTA variability in these 

four CMIP3 models is associated with ENSO, similar to what has been found in prior 



 99

studies (Sheffield et al., 2013).  For that reason, the figures of reconstructed SSTA 

patterns associated with significant temporal variability are not so substantially different 

from the EOF dominant modes presented earlier in Fig. 5.  HadCM3 and GFDL both 

show significant temporal variability in JJ SSTA at an ENSO timescale.  The 

reconstructed SSTA patterns in the 2-6 year bands for these models show a well-defined 

ENSO signal in the eastern equatorial Pacific.  Though CGCM3 and CCSM also have 

ENSO signals, these occur at a higher frequency and the SSTA signature in the eastern 

equatorial Pacific is comparatively less extensive.  CCSM incorrectly represents ENSO 

as a biennial oscillation, consistent with the EOF analysis, as has been previously 

documented (Hu et al., 2012). For the future period, only HadCM3 and GFDL retain 

significant ENSO-related SSTA variability.  There is not statistically significant 

spatiotemporal variability in SSTA for CGCM3 and CCSM in the future period, though 

reconstructed SSTA is shown for the bands that were significant in the historical period.  

HadCM3 shifts ENSO variability to a slightly longer timescale (6-10 years).  From these 

analyses, we conclude that only HadCM3 and GFDL models have reasonable 

representations of ENSO variability, in terms of frequency and spatial distributions of 

SSTA.  These models also retain ENSO as a statistically identifiable feature proceeding 

into the future. 

Warm season atmospheric teleconnections 

 The next step in assessment of NARCCAP AOGCMs with respect to their 

representation of warm season climate variability is the examination of atmospheric 

teleconnection patterns.  Fig. 9 shows the regression of ENSO-PDV associated SSTA on 

JA 500-mb geopotential height anomalies in a band of 2-6 years and greater than 10 
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years, according to the significant bands in the LFV spectrum of observed SSTA.  

Consistent with our previous work (Castro et al. 2007; Ciancarelli et al. 2013) there is the 

signature of a quasi-stationary Rossby wave train emanating from the western tropical 

Pacific that affects the large-scale atmospheric circulation pattern over North America.    

The spatial structure of the teleconnection does not appear unique to either of significant 

temporal bands.  The regressed patterns are field significant at the 95% level or above.   

 The equivalent results during the historical period for the four NARCCAP 

AOGCMs, for just the 2-6 year band, are shown in Fig. 10 and their pattern correlation 

with the observed map in Fig. 9 is shown in Table 4.  Only two of the NARCCAP 

AOGCMs have field significant regression of 500-mb height anomalies that statistically 

compare well to observations.  Not surprisingly, these two models are HadCM3 and 

GFDL, as these two models have the best representations of ENSO SST variability.  

CGCM3 and CCSM do not exhibit atmospheric teleconnective structures that are field 

significant.  The future period yields similar results, as shown in Fig. 11 and Table 4.  

The teleconnection in HadCM3 tends to have a weaker statistical relationship to that of 

the atmospheric reanalysis as compared to GFDL, but is still statistically significant.  It is 

worth noting that we are just considering the warm season atmospheric teleconnections 

that are associated with ENSO in these AOGCMs, since that is the dominant control on 

the year-to-year early warm season precipitation variability.  We acknowledge that there 

are higher order warm season teleconnection responses, namely the Circumglobal 

Teleconnection (CGT; Ciancarelli et al. 2013, Ding and Wang, 2005; Ding et al., 2011), 

but these likely arise as free stochastic modes.  Though these other modes are important 

as well, they are not considered in this work.  
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5. Impact of spectral nudging in representing ENSO-PDV warm season 

precipitation response in Phase I NARCCAP models. 

 The observed spatial structure of precipitation anomalies associated with ENSO-

PDV is determined by regressing SSTA in the significant spectral bands from MTM-

SVD analysis.  The regressed patterns shown in Fig. 12 reveal the expected antiphase 

relationship between precipitation in the Southwest and the regions of the central U.S. 

and northern Rockies.  There is also a statistically significant relationship to precipitation 

in the Southeast U.S.  These precipitation patterns are very similar to the dominant mode 

of early warm season precipitation in the U.S. found by Ciancarelli et al. (2013), their 

Figures 2 and 3.  Note that we choose to orient the maps to reflect a negative phase of 

ENSO-PDV, with positive precipitation anomalies in the Southwest. 

 A reasonable expectation would be that the Phase I NARCCAP RCMs are able to 

reasonably reproduce this dominant spatial pattern of precipitation variability, since they 

are forced with “perfect” boundary conditions from an atmospheric reanalysis.  We have 

already demonstrated, by dynamically downscaling the NCEP-NCAR reanalysis with the 

Regional Atmospheric Modeling System (RAMS) for a 50-year period, that this mode 

can be well reproduced in a RCM simulation (Castro et al. 2007).  Given the fact that our 

previous RAMS model simulations utilized internal nudging, as motivated by findings in 

Castro et al. (2005) and Rockel et al. (2008), it is also reasonable to assume that those 

NARCCAP phase I RCMs that incorporate spectral nudging would have the best 

representation of year-to-year precipitation variability.  Mearns et al. (2012) reported that 

the spectrally nudged Phase I NARCCAP RCMs have the lowest root mean square error 

when compared with observed precipitation.  The two NARCCAP RCMs that incorporate 
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spectral nudging are CRCM and ECP2.  Fig. 13 shows the correlation maps between 

ENSO and PDV associated SST and RCM-generated JA SPI, in the identical manner as 

done for observed precipitation in Fig. 12  Results combining ENSO-PDV are shown in 

Fig. 14  The spatial correlation (r) from these model generated precipitation results to the 

corresponding observed precipitation result is included on each plot.  A value of r that 

exceeds 0.3 is considered statistically significant at the 90% level or above, given the 

sample size of the data.  

 For the ENSO band, the spectrally nudged models yield the closest result to the 

observed precipitation pattern, with r = 0.54 for CRCM and r = 0.36 for ECP2.  HRM3 (r 

= 0.3) also exhibits significant pattern correlation.  For the PDV band, the pattern 

correlations in WRFG (r = 0.33) and CRCM (r = 0.36) are statistically significant, with 

ECP2 and MM5 being the next best (r = 0.24).  There may be two reasons why the PDV-

associated precipitation pattern has generally less of a correspondence with observations.  

The observed pattern has relatively high spatial loading in the Great Plains (Fig. 12b), 

and RCMs generally have a problem in representing organized, propagating convection 

there (Castro et al., 2012).  The length of record considered also may not be long enough 

to robustly assess decadal variability.  In any case, those models which are not spectrally 

nudged generally present a lower correspondence with observed precipitation patterns 

associated with ENSO-PDV variability in the warm season (combined mode shown in 

Fig. 14).  If spectral nudging is not included, RCMs will not be able to reproduce as well 

the observed, continental-scale spatial patterns of precipitation variability that are driven 

by atmospheric teleconnection responses.  
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6. ENSO-PDV warm season precipitation response in Phase II NARCCAP RCMs 

 The relatively short period of the NARCCAP Phase II RCM data limits the range 

of observable frequencies when considering year-to-year precipitation variability.  

Decadal variability is not temporally well resolved in a thirty year period and none of the 

NARCCAP GCMs exhibited significant SST variability at the decadal timescale.  For 

these two reasons, we only can consider the relationship of Phase II NARCCAP RCM-

generated precipitation within the temporally significant ENSO-related band in the 

general range of 2-6 years (with some minor variation therein among the models).  We 

repeat the same type of analysis as in the previous section, regressing Phase II 

NARCCAP model simulated JA SPI on ENSO-band associated SSTA from MTM-SVD 

analysis in Section 3.3.  The regressed SPI patterns for all Phase II NARCCAP RCMs are 

shown in Fig. 15 along with the pattern correlation (r) with the equivalent observed 

precipitation pattern as shown in Fig. 12a.  The pattern correlations for Phase II 

NARCCAP RCMs, overall, are generally lower than what we found for the Phase I 

RCMs, and this is to be expected since the Phase I RCMs utilize “perfect” reanalysis 

boundary forcing.  Considering first the historical period, the best performing model by 

the metric of pattern correlation is HRM3-HadCM3 (r = 0.38), and this value of pattern 

correlation actually slightly exceeds the equivalent Phase I NARCCAP RCM (r = 0.3).  

This is the only exception to the aforementioned general behavior of the pattern 

correlation in Phase II NARCCAP results.  All of the other NARCCAP Phase II models 

in the historical period are not able to reproduce the spatial pattern of JA precipitation 

anomalies associated with ENSO variability. RCM3-CGCM3 does capture the nature of 

the antiphase relationship in precipitation between the southwest U.S. and the regions of 
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the Great Plains and Northern Rockies, but incorrectly represent the phasing of the 

precipitation anomaly in the Southeast.  The worst performing model by the pattern 

correlation metric is CRCM-CCSM (r = -0.33), which has totally opposite phase of 

precipitation anomalies to the observed pattern and therefore a statistically significant, 

but negative value.  

 We attribute the good performance of HRM-HadCM3 with respect to its 

representation of warm season precipitation variability the fact that: 1) the driving 

AOGCM HadCM3 has a reasonable representation of the ENSO warm season 

atmospheric teleconnection response and 2) HRM-HadCM3 has one of the best 

climatological representations of the NAMS.  For the future period, recall that only two 

of the NARCCAP Phase II AOGCMs are able to simulate significant temporal variability 

SST at the ENSO timescale (HadCM3 and GFDL).  If just the RCMs which utilize these 

two GCMs as boundary forcing are considered, HadCM3-HRM3 retains the highest 

pattern correlation (r = 0.25).  Though the value of the pattern correlation exceeds 0.3 for 

CRCM-CGCM3 and RCM3-CGCM3, the driving CGCM3 AOGCM does not exhibit any 

significant ENSO-related SST variability and does not capture the associated warm 

season atmospheric teleconnection response.  Though these two RCMs do capture the 

spatial pattern of the ENSO-related precipitation response at least from the standpoint of 

statistical correspondence, they do so with incorrect underlying physics that would cause 

the response, at least as we presently understand that within the observed instrumental 

record.   
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7. Concluding points and discussion 

 This work has evaluated whether or not NARCCAP models can reasonably 

represent the continental-scale pattern of North American monsoon precipitation 

variability associated with ENSO-PDV.  Per previous studies of the observational record, 

this pattern is basically the anti-phase relationship in precipitation between the southwest 

U.S. and Central U.S. that is dominant in the early part of the warm season.  NARCCAP 

Phase I models with imposed reanalysis boundary forcing can represent it in a manner 

that similar to observations, consistent with our previous findings considering a 

dynamically downscaled 50-year retrospective reanalysis (Castro et al. 2007).  However, 

when Phase II NARCCAP models are considered with boundary forcing imposed from 

CMIP3 GCMs only one of them (HRM3-HadCM3) is able to satisfy this condition.  This 

particular NARCCAP model simulation exhibits a correct pattern and phasing of 

precipitation anomalies and a statistically significant atmospheric teleconnection that has 

a clear tie to Pacific SST forcing, in both the historical climate and climate change 

projection periods.  HRM3-HadCM3 is also one of the most well performing Phase II 

models with respect to the climatology of warm season precipitation, in accordance with 

our hypothesis posed in Section 2.    

 Generally speaking, NARCCAP Phase I models are able to better represent the 

influence of large-scale atmospheric teleconnections in the warm season when spectral 

nudging in the RCM is applied.  The nudging ensures that the structure of the large-scale, 

or synoptic-scale, atmospheric circulation as it exists in the driving GCM is preserved, 

especially and including the teleconnective structures.  It also ensures that there is still 

added value on mesoscale by a better representation of diurnally-generated convective 
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precipitation.  Even if spectral nudging is applied for a Phase II model, if the known 

dominant atmospheric teleconnections that drive warm season precipitation are absent in 

that driving GCM, there would be absolutely no hope of representing the associated 

continental-scale precipitation response in any RCM.  We basically came to the same 

conclusion in Castro et al. (2012) with respect to dynamically downscaled warm season 

seasonal forecasts from the Climate Forecast System model.  Though we are considering 

free-running, fully coupled atmosphere-ocean global climate models in the case of 

CMIP3, the paradigm is essentially the same. 

 We have suggested in this work that an appropriate standard for a “well 

performing” NARCCAP Phase II model for North American monsoon is that the model 

simulations have a reasonable representation of warm season precipitation climatology 

and year-to-year variability driven by natural climate variability.   Again, only HRM3-

HadCM3 mostly satisfies these criteria by the analysis presented here.  With respect to 

the latter criterion, let us presuppose that CMIP3 models should be expected to at least 

represent ENSO and its associated atmospheric teleconnection responses, but probably 

not the other coupled ocean-atmosphere modes that vary on decadal timescales (PDO, 

AMO).  These expectations would conform to recent overviews of CMIP5 performance 

in North America (Sheffield et al. 2013).  In our case, only two of the four NARCCAP 

CMIP3 GCMs meet this condition (GFDL and HadCM3).  But the errors in the 

climatological representation of warm season precipitation in the Phase II NARCCAP 

RCMs with GFDL imposed boundary forcing are quite large relative to the NARCCAP 

RCMs forced with the other three GCMs and observations.  In our own experience 

working with water resource providers in Arizona, we have concluded it is problematic to 
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use the GFDL-forced RCMs in a climate change impacts assessment, as they simulate 

more than twice the normal amount of monsoon precipitation and it erroneously occurs 

mostly during September (Shamir et al., 2014).   

 NARCCAP does provide a unique source of dynamically downscaled climate 

change projection data from an ensemble of models.  As it represents the best presently 

available, community generated source of such information in North America, it has been 

employed to estimate changes in mean climate in North America in the context of 

regional climate change assessments (e.g. Garfin et al. 2013).  We do not disagree with 

the well established paradigm that a multimodel ensemble approach is necessary to 

robustly characterize statistical uncertainty.  However, we question the notion that adding 

more models to ensemble mean projections should be done because this helps “cancel 

out” the errors among models due to their varying representations of natural variability 

and parameterized physics (Pierce et al., 2009).   If we do so, a more statistically 

confident climate change projection can achieved, but it may not be based on models 

with robust physical performance.  It is even more important to establish a well-defined 

standard of physical performance in dynamically downscaled climate change projections, 

since overarching purpose of the dynamical downscaling is to add value with respect to 

mesoscale meteorological processes that are more dependent on the surface boundary 

conditions, like convective precipitation.  If RCM-GCM combinations are ultimately 

shown to be physically unreasonable, then why proceed with considering them as part of 

a model ensemble within climate change impacts assessment analyses?  In the case of 

North American monsoon precipitation, Bukovsky et al. (2013) established that there is 

little statistical confidence in projected changes in North American monsoon 
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precipitation, based on the level of model agreement.  We would add that from the work 

presented here that there is low physical confidence in these projected changed as well, 

because the wide variation in Phase II results is attributable in great part to an inadequate 

representation of the warm season precipitation climatology and natural climate 

variability (ENSO-PDV).  We acknowledge that our conclusion is somewhat 

disconcerting from the perspective of climate change impacts assessment for the 

southwest U.S., given the pressing need for more confident North American monsoon 

climate projections.  We also would emphasize it is not universally applicable across the 

entire NARCCAP simulation domain.  Areas of the western United States that are not 

influenced by North American monsoon precipitation exhibit a much greater level of 

model agreement with respect to projected decreases in warm season precipitation.  

 It may be possible to differentially weight GCMs or RCMs, using physically 

based metrics, prior to constructing the ensemble mean climate projection  In the case of 

North American monsoon precipitation simulated by NARCCAP GCM-RCM model 

combinations, the historical performance of HRM-HadCM3 far exceeds that of the other 

NARCCAP combinations—which would limit the value of weighting.  We hope that 

CMIP5 models are able to better physically represent natural climate variability during 

the warm season, and North American warm season precipitation; this would make 

constructing an ensemble mean climate projection that would include physically “well 

performing” GCMs, per the criteria established here, more practicable.  The results of 

Cook and Seager (2013) and Geil et al. (2013) collectively suggest that the climatology 

of North American monsoon precipitation has been improved in CMIP5, especially in 

models with higher spatial resolution.  It remains to be seen, though, if the CMIP5 
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models can reasonably represent warm season atmospheric circulation variability.  We 

hope our work here provides guidance for future analysis of dynamically downscaled 

CMIP5 models from the North American Coordinated Regional Climate Downscaling 

Experiment (NA-CORDEX; Mearns et al., 2013), in a continuing effort for more 

statistically and physically confident projections of the North American monsoon in the 

future. 
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Tables 

 

CCSM Community Climate System Model 
CGCM3 Third Generation Coupled Global Climate Model 
GFDL Geophysical Fluid Dynamics Laboratory GCM 
HadCM3 Hadley Centre Coupled Model, Version 3 

 

Table 1: General Circulation Models 

 
CRCM Canadian Regional Climate Model Spectral nudged 
ECP2 Experimental Climate Prediction Center Regional Spectral Model Spectral nudged 
HRM3 Hadley Regional Model 3 Non-spectral nudged 
RCM3 Regional Climate Model Version 3 Non-spectral nudged 
WRFG Weather Research & Forecasting Model  Non-spectral nudged 
MM5I PSU/NCAR mesoscale model at Iowa State University  Non-spectral nudged 
 

Table 2: Regional Climate Models 

 

1 WRFG-CGCM3 WRFG driven by CGCM3 
2 RCM3-CGCM3 RCM3  driven by CGCM3 
3 CRCM-CGCM3 CRCM driven by CGCM3 
4 RCM3-GFDL RCM3 driven by GFDL 
5 ECP2-GFDL ECP2 driven by GFDL 
6 CRCM-CCSM CRCM driven by CCSM 
7 WRFG-CCSM WRFG driven by CCSM 
8 HRM3-HadCM3 HRM3 driven by HadCM3 

 

Table 3: NARCCAP simulations  

 20C 21C 
CGCM3 0.05 0.02 
CCSM 0.16 0.30 
HadCM3 0.57 0.44 
GFDLl 0.66 0.72 

 
Table 4: correlation of spatial patterns of 500-mb GPHA between observed and 
NARCCAP GCMs. 500-mb GPHA patterns were obtained by regressing original GPHA 
against the SST ENSO mode obained with MTM-SVD. 
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Figure Captions 

 
Figure 1:Upper panel: annual cycle of NARCCAP precipitation for the NAM region for 
all the NARRCAP models (left) and selected models which best represent the monsoon 
(right) both for the 20th century. Histogram is for observed precipitation. Lower panel: as 
in upper panel but for the 21st century. 
 
Figure 2: Seasonal mean (July-August) of NARCCAP precipitation for the 20th century 
(left panel), 21st century (central panel), and difference between 20th minus 21st century 
(right panel) for each NARCCAP model. The units for the mean and difference 
precipitation is mm/day.  
 
Figure 3: Seasonal mean  (July-August) of NARCCAP precipitation  for individual 
NARCCAP simulations for the 20th century (yellow bars) and the 21st century (red bars). 
Dark blue background highlight positive change (wet) and light-blue background 
negative change (dry). In grey background are the multi-model ensemble mean for both 
cases: all models (ALL) and well-performing (WELL). The area average is highlighted 
by the blue box in the upper right corner. Error bars are calculated as ±1 standard error of 
the mean for each case.  
 
Figure 4: SPI area average time series for each NARCCAP model for the 20th century 
(left panel) and the 21st century (right panel). NARCCAP simulations with same GCM 
boundary condition forcing are grouped with same color. Correlation between a time 
series and the leader of the group is indicated in the plot by σ.  
 
Figure 5: Right panel: EOF leading mode of spatial variability for observed (top) and 
IPCC GCM SST (below: gfdl, hadcm3, ccsm, and cgcm3) for summer (JJ) SST for the 
1951-2000 period—but 1968-2008 for hadcm3. Left panel: MTM spectrum of the 
temporal leading mode, PC1, of the cases defined in the right panel. Significance levels 
of 90% and 99% confidence are superimposed in cyan lines.  
 
Figure 6: Upper: LFV spectrum of the spatiotemporal leading MTM-SVD mode for 
observed JJ SST (a). Lower: Spatial correlation between the JJ SST gridded dataset and 
the MTM-SVD reconstructed temporal pattern of JJ SST for the ENSO spectral band (b), 
the PDV spectral band (c), and the combined ENSO-PDV band (d). Local significance is 
shown with oblique lines and field significance in percentage in lower left corner.  
 
Figure 7: LFV spectrum of the spatiotemporal leading MTM-SVD mode for JJ SST for 
each IPCC GCMs used to force NARCCAP models during the 20th century: from 1951 
to 2000—but from 1968 to 2008 for hadcm3. Peaks statistically significant passing the 
90% level of confidence are highlighted with yellow. Right panel: Spatial correlation 
between the JJ SST gridded dataset and the MTM-SVD reconstructed temporal pattern of 
JJ SST for the ENSO spectral band. Local significance is shown with oblique lines and 
field significance in percentage in lower left corner. 
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Figure 8: Similar to Fig. 7 but for the 21st century: from 2021 to 2070.  
 
Figure 9: Spatial correlation between the JA GPHA at 500 mb and the MTM-SVD 
reconstructed temporal pattern of JJ SST for the ENSO (a) and combined ENSO-PDV (b) 
spectral bands. Local significance is shown with oblique lines with oblique lines and field 
significance in percentage in lower left corner.  
 
Figure 10: Spatial correlation between the JA NARCCAP GPHA at 500 mb and the 
MTM-SVD reconstructed temporal pattern of JJ NARCCAP SST for the ENSO spectral 
band: cgcm3(a), hadcm3(b), gfdl(c), and ccsm(d) during the 20th century. Local 
significance is shown with oblique lines with oblique lines and field significance in 
percentage in lower left corner.  
 
Figure 11: Similar to Fig. 10 but for the 21st century.  
 
Figure 12: Spatial correlation between the JA SPI gridded dataset and the MTM-SVD 
reconstructed temporal pattern of JJ SST for the ENSO spectral band (a), the PDV 
spectral band (b), and the combined ENSO-PDV spectral band (c). Local significance is 
shown with oblique lines. 
 
Figure 13: Spatial correlation between the JA SPI for each NARCCAP model 
dynamically downscaled with NCEP-Reanalysis and the MTM-SVD reconstructed 
temporal pattern of JJ NCEP-Reanalysis SST for the ENSO (left panel) and PDV (right) 
spectral bands. Local significance is denoted with oblique lines and spatial correlation 
with the corresponding observed spatial pattern (from Figs. 12a and 12b) are indicated in 
the lower right corner. The bottom two panels are the spectral nudged cases: CRCM and 
ECP2. 
 
Figure 14: As in Fig. 13 except for the combined ENSO-PDV mode.  
 
Figure 15: Similar to Fig. 13 but for JA SPI for each NARCCAP model dynamically 
downscaled with IPCC GCMs for the 20th century (left panel) and 21st century (right 
panel). For both centuries only ENSO spectral band spatial pattern is shown. 
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Figure 1:Upper panel: annual cycle of NARCCAP precipitation for the NAM region for 
all the NARRCAP models (left) and selected models which best represent the monsoon 
(right) both for the 20th century. Histogram is for observed precipitation. Lower panel: as 
in upper panel but for the 21st century. 
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Figure 2: Seasonal mean (July-August) of NARCCAP precipitation for the 20th century 
(left panel), 21st century (central panel), and difference between 20th minus 21st century 
(right panel) for each NARCCAP model. The units for the mean and difference 
precipitation is mm/day.  
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Figure 3: Seasonal mean  (July-August) of NARCCAP precipitation  for individual 
NARCCAP simulations for the 20th century (yellow bars) and the 21st century (red bars). 
Dark blue background highlight positive change (wet) and light-blue background 
negative change (dry). In grey background are the multi-model ensemble mean for both 
cases: all models (ALL) and well-performing (WELL). The area average is highlighted 
by the blue box in the upper right corner. Error bars are calculated as ±1 standard error of 
the mean for each case.  
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Figure 4: SPI area average time series for each NARCCAP model for the 20th century 
(left panel) and the 21st century (right panel). NARCCAP simulations with same GCM 
boundary condition forcing are grouped with same color. Correlation between a time 
series and the leader of the group is indicated in the plot by σ.  
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Figure 5: Right panel: EOF leading mode of spatial variability for observed (top) and 
IPCC GCM SST (below: gfdl, hadcm3, ccsm, and cgcm3) for summer (JJ) SST for the 
1951-2000 period—but 1968-2008 for hadcm3. Left panel: MTM spectrum of the 
temporal leading mode, PC1, of the cases defined in the right panel. Significance levels 
of 90% and 99% confidence are superimposed in cyan lines.  
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Figure 6: Upper: LFV spectrum of the spatiotemporal leading MTM-SVD mode for 
observed JJ SST (a). Lower: Spatial correlation between the JJ SST gridded dataset and 
the MTM-SVD reconstructed temporal pattern of JJ SST for the ENSO spectral band (b), 
the PDV spectral band (c), and the combined ENSO-PDV band (d). Local significance is 
shown with oblique lines and field significance in percentage in lower left corner.  
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Figure 7: LFV spectrum of the spatiotemporal leading MTM-SVD mode for JJ SST for 
each IPCC GCMs used to force NARCCAP models during the 20th century: from 1951 
to 2000—but from 1968 to 2008 for hadcm3. Peaks statistically significant passing the 
90% level of confidence are highlighted with yellow. Right panel: Spatial correlation 
between the JJ SST gridded dataset and the MTM-SVD reconstructed temporal pattern of 
JJ SST for the ENSO spectral band. Local significance is shown with oblique lines and 
field significance in percentage in lower left corner. 
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Figure 8: Similar to Fig. 7 but for the 21st century: from 2021 to 2070.  
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Figure 9: Spatial correlation between the JA GPHA at 500 mb and the MTM-SVD 
reconstructed temporal pattern of JJ SST for the ENSO (a) and combined ENSO-PDV (b) 
spectral bands. Local significance is shown with oblique lines with oblique lines and field 
significance in percentage in lower left corner.  
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Figure 10: Spatial correlation between the JA NARCCAP GPHA at 500 mb and the 
MTM-SVD reconstructed temporal pattern of JJ NARCCAP SST for the ENSO spectral 
band: cgcm3(a), hadcm3(b), gfdl(c), and ccsm(d) during the 20th century. Local 
significance is shown with oblique lines with oblique lines and field significance in 
percentage in lower left corner.  
 
 
 
 



 126

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Similar to Fig. 10 but for the 21st century.  
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Figure 12: Spatial correlation between the JA SPI gridded dataset and the MTM-SVD 
reconstructed temporal pattern of JJ SST for the ENSO spectral band (a), the PDV 
spectral band (b), and the combined ENSO-PDV spectral band (c). Local significance is 
shown with oblique lines. 
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Figure 13: Spatial correlation between the JA SPI for each NARCCAP model 
dynamically downscaled with NCEP-Reanalysis and the MTM-SVD reconstructed 
temporal pattern of JJ NCEP-Reanalysis SST for the ENSO (left panel) and PDV (right) 
spectral bands. Local significance is denoted with oblique lines and spatial correlation 
with the corresponding observed spatial pattern (from Figs. 12a and 12b) are indicated in 
the lower right corner. The bottom two panels are the spectral nudged cases: CRCM and 
ECP2. 
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Figure 14: As in Fig. 13 except for the combined ENSO-PDV mode.  
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Figure 15: Similar to Fig. 13 but for JA SPI for each NARCCAP model dynamically 
downscaled with IPCC GCMs for the 20th century (left panel) and 21st century (right 
panel). For both centuries only ENSO spectral band spatial pattern is shown. 
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Abstract 

Our previous work considered North American monsoon climate variability with 

a monsoon-sensitive network of tree-ring chronologies in the Southwest. We were able to 

identify a very low-frequency centennial scale climate signal responsible for 

megadroughts of the past four centuries. Here we continue to investigate very low-

frequency climate variability, at the decadal scale and longer, within the context of a 

twentieth-century atmospheric reanalysis that has been dynamically downscaled with the 

Weather Research and Forecasting (WRF) model. We apply spectral domain matrix 

methods technique (Multiple-Taper-Method Singular Value Decomposition; MTM-SVD) 

to these data to identify dominant and statistically significant spatiotemporal cool and 

warm season precipitation patterns. Our main question of interest is to ascertain whether 

the major western U.S. droughts in the last 140 years are driven by very low-frequency 

climate variability on the decadal to centennial time scale. We present evidence that the 

answer to this question is affirmative and that major droughts are tied to coherent changes 

in atmospheric circulation at a planetary scale in this very-low frequency regime. Use of 

a regional atmospheric model is necessary to resolve the spatial variability in 

precipitation patterns that are associated with the droughts. The downscaled 20th century 

reanalysis product is thus suitable to be applied to a hydrologic model to estimate impacts 

of historical dry and wet periods in the 20th century on water resources. 
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1. Introduction  

Droughts in the southwestern U.S. have been a recurrent hindrance to economic 

development and living conditions in the region (e.g. Garfin et al., 2013). It has been 

historically documented that extreme and prolonged drought may be the major cause of 

the migration and eventual loss of the Anasazi people (Dean, 1994). In terms of monetary 

loss, it has been estimated that a fluctuation of about 3.4% of the annual U.S economic 

activity is attributable to weather and climate variability (Lazo et al., 2011). At the state 

level, the current 2014 drought in California has cost 2.2 billion dollars and 17100 

seasonal jobs (Howitt et al., 2014). Therefore, a better understanding about the variability 

and causes of American southwestern droughts is critical so our society can develop more 

resilient strategies for natural hazard management, agriculture, public heath, and water 

management (Ray et al., 2007).  

 One major limitation for understanding of long-term drought dynamics is the 

scarcity of reliable information that can account for long-term climate variability, at the 

timescale of several centuries. However, in recent decades, an intensive effort has been 

taken to understand mechanisms that govern droughts, particularly with the use of 

proxies that record long-term variability of climate (e.g. Woodhouse and Overpeck, 

1998). In most of these studies, historical documents, lake-core sediments (Laird et al., 

1996), geomorphic data, and tree-ring chronologies (Grissino-Meyer, 1996) have been 

used. Tree-ring chronologies are particularly advantageous as a climate proxy because of 

their ability to register the climate variability from year to year (Douglas, 1914). This 

advantage had been used to reconstruct climate parameters as far as several millennia 
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(D’Arrigo and Jacoby, 1991; Herweijer et al., 2007; Meko et al., 2007; Stahle et al., 

2009). 

  In the southwestern United States, summer and winter variability of decadal 

droughts have been identified using earlywood and latewood chronologies for the last 

five centuries. Griffin et al. (2013) showed that the 1570s, 1660s, 1770s, 1820s, 1890s, 

and early 2000s droughts not only experienced a cool-season precipitation deficit but also 

a monsoonal precipitation failure. In their study, they explored the ability of latewood 

width tree-rings to explain monsoonal precipitation variability (Meko and Basin, 2001; 

Griffin et al., 2011) and discovered that monsoon drought events in the previous centuries 

were more extreme than during the instrumental era. The American Southwest drought is 

not an isolated phenomenon, but part of a continental-scale pattern of climate variability. 

An out-of-phase relationship of precipitation anomalies exist between northern Mexico 

(near the southwestern U.S.) and Central America (Méndez and Magaña, 2010; their Fig. 

2) regions at low temporal frequencies has been proposed. During the 1950s, relatively 

dry conditions occurred in northern Mexico that contrasted with the anomalous wet 

conditions further south. Similarly, using a 500 years record of reconstructed tree-ring 

Palmer Drought Severe Index (PDSI; Cook et al. 2004) they also showed that persistent 

droughts in northern Mexico correspond with wet conditions in Central America.  

 The causes of the American droughts at the seasonal timescale are fairly well 

understood, but persistent droughts of several years (e.g. 1930s) and decadal order are not 

(Woodhouse and Overpeck, 1998). Recently, two major mechanisms have been proposed 

as relevant to explain multiyear droughts in the instrumental era: oceanic forcing and 

internal atmospheric variability (Seager and Hoerling, 2014). For example, the 1930s 
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drought has been related to cool tropical SST and warm North Atlantic SST (Schubert et 

al., 2004), which confirms the influence of the Pacific Decadal Oscillation (PDO; Mantua 

et al., 1997) and the Atlantic Multidecadal Oscillation (AMO; Enfield et al., 2001)  as the 

sources of American droughts.  Similarly, drought in Central America seems to be also 

related to out-of-phase configuration between the positive PDO and negative AMO 

phases (Méndez and Magaña, 2010).  

 By using tree-ring chronologies to explore the low-frequency climate variability, 

Griffin et al. (2013) have found an important characteristic of the climate variability in 

the southwestern United States: a dual summer-winter season coherence co-variability on 

tree-rings that characterized simultaneous cool-season precipitation deficit and failure of 

summer monsoon precipitation. This characteristic might be relevant to explain the 

occurrence of persistent droughts during the last five centuries in the Southwest. 

However, they also discuss three major caveats on the approach used to reconstruct the 

precipitation: 1) tree physiology related to root and crow mass (Fritts, 2001), 2) 

standardization of the ring-width time series (Cook et al., 1995), and 3) true low-

frequency climate variability. All of these factors may adversely bear on the ability to 

characterize low-frequency climate variability in tree-ring records. Carrillo et al., (2014a, 

in preparation) provide additional evidence to support possible existence of this dual-

season drought signal. By using an alternative statistical approach, they explicitly isolated 

this very low-frequency drought signal, and showed it to be statistically significant and 

spatially coherent within the Southwest. In addition, a seesaw spatial pattern at a 

continental scale between the Southwest and central U.S. was found to be associated with 

this drought signal during the observational era. However, the significance of these 
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results on precipitation only could not be assessed because of the short length of record. 

Exploring the continental spatiotemporal pattern of the drought signal only with tree-

rings is a challenge as the tree-ring network is confined into the southwestern American 

region. 

 Therefore to assess the reliability of this low-frequency climate variability it is 

critically important to understand the mechanisms of persistent droughts. Can drought 

behavior in tree-ring dataset be confirmed in an independent dataset? In this work, we 

take an alternative approach to address low-frequency climate variability using a 

dynamical modeling approach. Based on our previous research, we assert that the best 

option at present is to consider the entire record of the new twentieth century reanalysis 

(20CR; Compo et al. 2011).  Although the 20CR is limited to about 140 years in length it 

might be sufficient to capture several cycles of long-term drought (Cook et al. 2010).  

The major limitation found in 20CR is the improper representation of the precipitation 

features at regional and local scale. However, to bypass this limitation another variable, 

such as moisture flux convergence, may be used in lien of precipitation (e.g. Castro et al., 

2001). In addition, we dynamically downscale the 20CR, as to better simulate the 

physical mechanism of precipitation generation on the mesoscale.  The utility of 

dynamical downscaling of atmospheric reanalyses to represent North American climate 

in the cool and warm season has been firmly established by a wide body of literature and 

research efforts (Gutzler et al., 2005 and 2009; Castro et al., 2007 and 2012; Bukovsky et 

al., 2013). The North American Regional Climate Change Assessment Program 

(NARCCAP; Mearns et al. 2012) is a recent example.  This would include a reasonable 

representation of climate variability due to coupled-ocean atmosphere interactions, as we 
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showed for NARCCAP regional climate models in Carrillo et al. (2014b, in preparation).  

In this research we hypothesize that very low-frequency variability may potentially be 

found in both the 20CR and DD-20CR, as a dominant mode of variability that explains 

droughts in the southwestern U.S. during the cool and warm season. If we can show that 

this low-frequency variability exist in a RCM as tree-ring suggest, we can use the model 

data to potentially assess drought dynamics related to this low-frequency variability at a 

continental scale.  

This paper is organized as follows. The data and methodology are described in 

sections 2 and 3. The dominant low-frequency mode diagnosed on moisture flux 

convergence simulated by 20th century Reanalysis is explained in section 4a and 4b. A 

description of the simulated annual cycle and variance of the dynamically downscaled 

20th-century Reanalysis is presented in section 4c. The low-frequency precipitation mode 

in dynamically downscaled 20th-century Reanalysis as well as the drought covariability 

signal between summer and winter are explored in section 4d. Teleconnection patterns 

associated with sea surface temperature and geopotential height are described in section 

4.e. Concluding points are presented in section 5. 

 
2. Data  

a. Twentieth-century reanalysis  

 We use the version 2 of the NCEP-NCAR Twentieth Century Reanalysis (20CR) 

project dataset, which is an international effort to produce a retrospective analysis from 

1871 to the present.  20CR data are available every 6 hours at 2º degree resolution 

(Compo et al., 2011). The 20CR is the longest atmospheric reanalysis product currently 

available, and has already been used to investigate long-term climate variations.  For 
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example Version 1 20CR has been used to investigate the U.S. Dust Bowl of the 1930s   

(Cook et al., 2010). The 20CR by assimilates available observational data by use of an 

Ensemble Kalman Filter (Whitaker and Hamill, 2002).  Ingested observations include 

surface pressure from the International Surface Pressure Databank and monthly sea 

surface temperature and sea-ice concentration from the Hadley Centre Sea Ice and SST 

dataset (Rayner et al., 2003).  

b. Sea surface temperature and geopotential height data 

Sea surface temperature (SST) from the Hadley Centre Sea Ice SST dataset 

(Rayner et al., 2003), is used for two purposes in this study: 1) to specify the surface 

boundary condition in the regional climate model and 2) to link large-scale remote 

forcing RCM-simulated precipitation.  The SST is averaged for respective warm and cool 

season period of July-August (JA) and November to April (NA) during 1871 to 2010. We 

investigate the different large-scale modes of variability precipitation in North America 

related to sea surface temperatures, similar to our previous work (Castro et al. 2001, 

Castro et al. 2007, Ciancarelli et al. 2013).   The atmospheric response to SST forcing is 

also analyzed using geopotential height anomalies (GPHA) at 500-mb from 20CR.  

c. Dynamical downscaling of 20CR with WRF 

The 20CR is dynamically downscaled with the Weather Research and Forecasting 

(WRF) model (DD-20CR).  A continuous simulation is performed over a domain that 

extends the contiguous U.S. and Mexico with 35 km grid spacing.  Boundary conditions 

are updated every six hours. The WRF model is used with similar parameterizations to 

the operational forecasting configuration of the Department of Atmospheric Sciences at 

the University of Arizona, as previously described in Castro et al. (2012).  We include 
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one important update to the WRF model simulation design from Castro et al. (2012), 

within the Gulf of California (GoC), sea surface temperatures are bias corrected to the 

observed satellite record.  If this is not performed, GoC sea surface temperature will be 

too cold and act to suppress convective precipitation during the warm season, consistent 

with Mitchell et al. (2002).   We also emphasize that spectral nudging is imposed on the 

interior of the RCM domain to conserve the large-scale synoptic variability, including 

any stationary wave train atmospheric teleconnections, from the driving 20CR. Prior 

studies have generally found better skill in the representation of the climate variability in 

North America when implementing the spectral nudging approach (e.g. Castro et al., 

2012; Mearns et al., 2012; Bukovsky et al., 2013; Carrillo et al., 2014b).  

d. Precipitation data 

Precipitation data is from a new 0.5° gridded National Oceanic and Atmospheric 

Administration (NOAA) product (P-NOAA), provided by Drs. Russ Vose and Richard 

Heim. P-NOAA covers the entire area of study (U.S and Mexico) and incorporates a 

terrain correction interpolation function, similar to the Parameter-elevation Regressions 

on Independent Slopes Model (PRISM Climate Group, 2004), beneficial for the complex 

terrain of the Southwest. We previously considered the P-NOAA product in Castro et al. 

(2012) in evaluation of a dynamically downscaled global seasonal forecast model for the 

warm season period. 

3. Statistical Analysis Methodologies 

a. Moisture flux convergence and water vapor budget analysis 

In lieu of precipitation from the 20CR, as in Castro et al. (2001) and Castro et al. 

(2007), we consider moisture flux convergence (MFC) because of its stronger tie to the 
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underlying atmospheric dynamics.  Evaporation, precipitation, and MFC are directly 

related to the water vapor budget equation (Schmitz and Mullen, 1996; Higgins et al., 

1997).   
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water. MFC from 20CR is used to identify the regions that are associated with spatial 

variability in precipitation on continental and larger scales.   

b. Standardized Precipitation Index (SPI)  

The standardized precipitation index (SPI) is used to specify precipitation during 

the period 1871 to 2010.  SPI is a gamma-normalized value that characterizes anomalous 

precipitation (McKee et al., 1993), and was originally designed to characterize droughts 

in the western United States. Cool season SPI is defined for the period November to April 

(NA) and warm season SPI is defined from July to August (JA). SPI has been used to 

monitor short and long term droughts in the United States (Heim, 2002). Its main 

advantage is the ability to identify spatial patterns of precipitation variability at regional 

and continental scales (e.g. Castro et al. 2009). We used the same methodology to 

compute SPI as in Castro et al. (2009) and Ciancarelli et al. (2013) in P-NOAA and the 

DD-20CR. 

 

 



 141

c. MTM-SVD analysis 

Multi-Taper-Method Singular Value Decomposition (MTM-SVD) (Mann and 

Park, 1994 and 1996; Mann and Lees, 1996; Rajagopalan et al., 1998) is used to 

determine the dominant spatiotemporal variability of MFC, observed SPI, and DD-20CR 

SPI. The MTM-SVD technique and implementation is explained in further detail in 

Rajagolapan et al. (1998). In our analysis, we consider the Local Fractional Variance 

(LFV) spectrum, the reconstructed spatial pattern, and the reconstructed temporal time 

series (Mann and Park, 1996). The LFV is a form of a power spectrum where the 

temporal and spatial variation is accounted for simultaneously. Statistically significant 

spectral peaks in the LFV spectrum are identified by statistical significance intervals 

determined by bootstrap re-sampling (Rajagolapan et al., 1998). The reconstructed spatial 

pattern represents the spatial variability associated with a specific spectral band, or 

specific frequency. For our analyses, we consider the reconstructed spatial pattern for 

spectral bands that are statistically significant at the 90% level or above.  The 

reconstructed spatial patterns are plotted as correlation maps, where the correlation fields 

were computed by Pearson correlation between the raw field and the reconstructed 

temporal time series. The reconstructed temporal time series are obtained at point in the 

domain specified at reference point. The reference point for both datasets analyzed is 

located at the center of the North American Monsoon Experiment region 2 (NAME 2) 

(32.75ºN, 110.25ºW) (Gochis et al., 2009). We used the same methodology to compute 

MTM-SVD as in Castro et al. (2009) and the codes we obtained from the website of 

Professor Michael Mann at the Pennsylvania State University. 
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d. Correlation, local significance, and field significance  

 Spatial correlation patterns for MFC, observed SPI, DD-20CR SPI, SSTA, and 

GPHA are portrayed by the Pearson correlation coefficient.  Local significance is 

determined by a Student’s t-test and field significance is assessed as in as in Livezey and 

Chen (1983). The threshold for local significance is the 90% confidence level (p < 0.10) 

and the field significance is obtained by a Monte Carlo technique that randomizes the 

maps of 500 times.  The field significance value, displayed as a percentage, is indicated 

on each correlation map.  The methodology is quite consistent with our prior work in 

Castro et al. (2007b) and Ciancarelli et al. (2013).   

4. Results  

 The major purpose of this paper is to show whether 20CR and DD-20CR are able 

to reasonably represent drought variability in at low temporal frequencies that is maybe 

responsible of multiyear precipitation deficit. The major problem we face is the limitation 

of 20CR to produce realistic precipitation in the Southwest. However, the 20CR and 

moisture flux still reflects atmospheric circulation variability at continental and global 

scales (Compo et al., 2011; Cook et al., 2010). In this analysis, two steps were used to 

validate the existence of low-frequency climate variability.  First, we analyze the low-

frequency variability on 20CR. Second, the same analysis is applied to the dynamically 

downscaled 20CR. The first step is necessary to guarantee that low-frequency climate 

variability exists within the 20CR and it is able to be transferred to the DD-20CR. The 

second step is relevant to obtain an improved precipitation in the spatial and temporal 

domain, especially in regions with terrain-related thunderstorms such as the Southwest 

during the monsoon.  
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a. Evidence of the dominant low-frequency drought mode as diagnosed by moisture 

flux convergence  

 Moisture flux convergence (MFC) can be used as alternative parameter instead of 

precipitation to evaluate 20CR moisture variability on global and continental scales. As 

previously mentioned in the Introduction, persistent droughts in the Southwest show a 

seesaw pattern with Central America and Great Plains (Méndez and Magaña, 2010; Cook 

et al., 2004). The association in the climatology (annual cycle) between the Southwest 

and Central America is not that evident. Central America has a bimodal summer 

precipitation, with one peak during June-July and the other in September (Magaña et al., 

1999; Karnauskas and Busalacchi, 2009),  a decrease in between corresponding to the 

period of the midsummer drought (Mosiño and Garcia, 1966; Hastenrath, 1967). In 

contrast, the southwestern U.S. presents a mono-modal summer precipitation peak with 

an abrupt transition in late June and early July, driven by the onset of the North American 

monsoon (Adams and Comrie, 1997).  

 MFC has been used to characterize NAM variability with Reanalysis I (Castro et 

al., 2001). They found that MFC can portray NAM interannual variability related to 

ENSO and PDV. The variability in MFC is associated with changes in tropical 

convection, in the central tropical Pacific (Fig. 1).  In reference to our North American 

analysis here, we consider the location of local maximum variability in MFC located over 

Central America during the warm season.  This is highlighted by the red box labeled as 

CA in Fig. l, which will be target of further analysis here. We calculated the combined 

Pacific SST variability index (P-SST), from Castro et al. (2001) their equation 1, for 

20CR cool and warm season.  P-SST is correlated with cool and warm season MFC in 
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Figure 2 to analyze convective activity associated to SST forcing at large scale.  

Irrespective of the season, there is a clear out-of-phase (seesaw) pattern in the MFC and 

P-SST correlation field between the central Pacific and both the western Pacific and 

equatorial Atlantic that generally reflects the dominant influence of ENSO on 

precipitation in the tropics and the mid-latitudes during the cool and warm seasons 

(Ropelewski and Halpert, 1986 and 1987).  Therefore, 20CR MFC is a good proxy to 

capture at least the global scale distribution of precipitation associated with ENSO, so it 

probably also contains information on low-frequency climate variability. 

 We consider the region of local maximum MFC variability in Central America 

(CA) as target to explore the low-frequency variability on 20CR.  The 10-year running 

mean filtered and raw time series of JA MFC spatially averaged over CA is shown at the 

bottom of Fig. 3.  We can infer that the 10-year running mean captures only low-

frequency climate variability.  The positive sign of MFC is associated with a pluvial and 

a negative sign a drought in Central America as confirmed in Fig. 5.  We identify three 

distinct periods of interest in which the low-frequency variability is dominant: the 1888-

1901 pluvial, 1917-1932 drought, and the 1942-1952 pluvial (Méndez and Magaña, 

2010).  The composite spatial patterns of MFC for these three periods are shown at the 

top of Figure 3.  Positive values represent convergence and negative divergence, which 

are emphasized with vectors. In general, wet (dry) periods in Central America are 

associated with moisture flux divergence (convergence) in the central equatorial Pacific, 

which would be consistent with La Niña-like (El Niño-like) conditions.  There is a more 

inconsistent relationship with MFC in areas near the Indian Monsoon region. Even this 

region shows opposite values during the Central American pluvials (1888-1901 and 



 145

1942-1952). However, the phases agree in Central America and central tropical Pacific 

for all three periods.  Fig. 4 shows the same information as Fig. 3 but for the cool season 

(NA).  As in the warm season, MFC over Central America during the identified droughts 

and pluvials shows the same inverse relationship with MFC over the central equatorial 

Pacific at least for the 1917-1932 and 1942-1952 periods. It is important to note that the 

time series (Fig. 4) does not show the pronounced peak in this period.  The summer and 

winter seasonal patterns of the drought and pluvial are in-phase in the low-frequency in a 

similar way proposed by Griffin et al. (2013) in the Southwest. The cool season droughts 

and pluvials are also in phase with the warm season ones.  The warm season precipitation 

anomalies (Fig. 5) during the identified droughts and pluvials in Central America show 

that enhanced (suppressed) precipitation occurs with a more northward displacement of 

the Intertropical Convergence Zone (ITCZ; Karnauskas and Busalacchi, 2009) that would 

again tend to occur with more La Niña-like (El Niño-like) conditions (Giannini et al., 

2000).  Albeit with parameterized precipitation physics, the 20CR is able to capture this 

salient difference in ITCZ positioning.  The precipitation anomaly in Central America 

during JA matches the signal in MFC shown earlier in Fig. 3.  We will show later in the 

manuscript that the ENSO signatures in Pacific SST are present at least for two of these 

periods. 

 Our previous investigations of cool and warm season precipitation variability in 

the southwestern U.S. (Griffin et al. 2013, Carrillo et al., 2014a in preparation) 

considered EW and LWadj tree-ring indices for a 400-year record to describe statistically 

significant low-frequency climate variability, as shown in Carrillo et al. (2014a in 

preparation; their Fig. 18).  By comparing these results we assert that major droughts and 
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pluvials in the Southwest are inversely related to MFC and precipitation in Central 

America within the 20CR record as in Méndez and Magaña (2010). Thus, the long-term 

droughts in the Southwest would be associated with persistent La Niña-like conditions in 

the Pacific, consistent with Herweijer et al. (2007).  Though the 20CR precipitation signal 

in Central America is quite evident in Fig. 5, there is not a comparably inverse 

relationship in 20CR precipitation over southwestern North America.  We will later 

demonstrate that the DD-20CR is able to capture this out-of-phase relationship in a way 

that supports the analysis of the southwestern U.S. tree-ring record.    

b. Assessment of statistically significant low-frequency variability in 20CR MFC 

using MTM-SVD 

 The composite analyses of MFC during major droughts and pluvials are quite 

physically suggestive of low-frequency climate variability.  Basically an anti-phase 

relationship between MFC in Central America and the central tropical Pacific tied to 

ENSO exist.  Is this spatiotemporal variability in MFC statistically significant at the 

decadal timescale and longer?  We apply MTM-SVD to the JA global MFC field for the 

entire record of the 20CR.  Three main results are shown in Fig. 6: the LFV spectrum, the 

reconstructed time series for low-frequencies (decadal and longer) in the Central America 

region, and the pattern correlation map of the reconstructed time series with MFC.  The 

LFV reveals statistically significant low-frequency variability, particularly in the range of 

25-50 years.  The reconstructed time-series of low-frequency MFC reveals a very similar 

result as shown in the previous section with time 10-year running mean time series. The 

spatial correlation map in Fig. 6b also shows essentially a similar anti-phase relationship 

in MFC between Central America and the central tropical Pacific, but the negative center 
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is shifted south at 40º S.   Therefore we conclude that low-frequency climate variability 

exist in the 20CR dataset that drives the droughts and pluvials in Central America and the 

southwestern U.S. and it is statistically significant (Méndez and Magaña, 2010).   

Repeating the same exact analysis on a more restrictive 25-50 year band yields 

basically the same result with an even stronger spatial loading pattern in the MFC 

correlation map (Fig. 7).  To verify that this global-scale pattern of MFC is associated 

with southwestern U.S. drought during the warm season, the MFC reconstructed time 

series (Fig. 7b) is correlated with JA SPI (from P-NOAA). A statistically significant 

negative correlation with JA SPI exists throughout much of the southwestern U.S., 

demarcating the geographic areas with the U.S. that are influenced by the North 

American monsoon (e.g. Adams and Comrie, 1997). When performed the MTM-SVD 

analysis for the cool season (Fig. 8), the results are similar to the warm season in terms of 

the pattern of MFC, though the statistically significant spatiotemporal variability at low 

frequencies is only apparent in a 10-15 year band.   Cool season variability in NA SPI 

will be considered later when analyzing the DD-20CR. 

c. Precipitation annual cycle in WRF DD-20CR 

 Though the 20CR can portray the global-scale low-frequency variability in MFC, 

MFC and 20CR are probably not sufficient to characterize the climatology of the 

continental U.S., based on our prior comparisons of the NCEP-NCAR reanalysis to 

observed and RCM-generated warm season precipitation (Castro et al. 2007b).  A 

necessary requirement of a robust physical modeling system must be a reasonable 

climatological representation of precipitation, prior to any consideration of year-to-year 

variability. Fig. 9 shows variance of monthly precipitation for the period 1985-2010 for 
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P-NOAA, DD-CR, and 20CR.  Note that the 20CR tends to underestimate precipitation 

variability in the southwestern U.S. and this is improved upon in the DD-20CR.  In 

general, DD-20CR shows more precipitation variability with a clear terrain influence 

throughout the western U.S. and northern Mexico.  We consider the annual cycle of 

monthly precipitation in the western Pacific Northwest (A1) and Arizona (A2) regions 

(Fig. 10) for P-NOAA, DD-20CR and 20CR.  In the western Pacific Northwest the 

monthly mean precipitation is nearly identical between the 20CR and DD-20CR.  Both 

products underestimate cool season precipitation, especially during the DJF period.  In 

Arizona, DD-20CR does a better job of reproducing the annual cycle of precipitation.  In 

comparison to 20CR, DD-20CR helps to reduce the positive winter precipitation bias and, 

more importantly, simulates a distinct North American monsoon where none exists in the 

20CR.  The value added of a RCM to represent the North American monsoon by 

dynamically downscaling an atmospheric reanalysis is entirely consistent with prior work 

from the North American Monsoon Experiment (Gutzler et al. 2009) as well as Castro et 

al. (2007a).  The differences in precipitation variability in Fig. 11 are mainly accounted 

for by differences during the warm season.   

d. The low-frequency variability in the DD-20CR  

 It seems reasonable to expect that the statistically significant low-frequency 

spatiotemporal variability in precipitation would be nearly identical between P-NOAA 

and DD-20CR precipitation.  After all, 20CR just has an additional 30 years of data prior 

to 1900.  MTM-SVD analysis of P-NOAA JA SPI is shown in Fig. 12.  The only 

statistically significant low-frequency variability occurs at a timescale of 15 years.  The 

regressed pattern of JA SPI does shown an expected anti-phase relationship between 
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precipitation in the southwestern U.S. and central U.S./Pacific Northwest that is driven in 

great part by ENSO and Pacific Decadal Variability (e.g. Castro et al., 2001; Castro et al. 

2007b; Castro et al. 2009).  Performing the identical analysis on DD-20CR precipitation 

reveals a somewhat different result, however (Fig. 13).  The LFV spectra has more 

statistically significant temporal variability beyond a timescale of 10 years and the spatial 

loadings in the SPI correlation maps show several new characteristics. The continuity 

between the Southwest and northern Mexico is better resolved, but the negative sign over 

the Great Plains is shifter north. The loading over western Pacific Northwest is lost but 

the out-of-phase relationship between Central America and the Southwest is explicitly 

resolved for both seasons. The reconstructed time series also more closely matches the 

known sequencing of droughts and pluvials in southwestern U.S. from the tree-ring 

record, as described earlier.  Why might DD-20CR precipitation yield a result for low-

frequency precipitation variability in North America that has better correspondence with 

the tree-ring record and global MFC, in comparison to P-NOAA?  Most obvious is the 

fact that the additional time length of 20CR allows for consideration of the late 1890s 

drought, so even the seemingly inconsequential addition of 30 years of data actually does 

allow us to capture an important climate event that P-NOAA cannot.  But perhaps less 

obvious is the fact that the dynamically downscaled precipitation is a result of consistent 

large-scale dynamical forcing mechanisms (i.e. atmospheric teleconnections) as input 

boundary forcing to the RCM.  Though we consider P-NOAA as observational truth, it is 

subject to data limitations in the station site availability where precipitation data would 

have been recorded, especially during the early part of its record.  An identical analysis 

performed for the cool season is shown in Fig. 14 for just the DD-20CR.  Statistically 
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significant low-frequency spatiotemporal variability in cool season precipitation is in 

phase with that of the warm season, with the peaks of the 1890s drought, 1917-1932 

pluvial and 1942-1952 drought present.  

This synergistic phasing in the low-frequency regime is statistically assessed by 

the temporal (r=0.58) and spatial (ρ=0.43) correlations between the winter and summer 

spatiotemporal patterns. How this could impact on our understanding of the climate of the 

Southwest? The ability to simulate the spatiotemporal pattern of low-frequency climate 

variability in DD-20CR is important because: 1) it confirms the low-frequency variability 

in EW and LWadj tree-ring data from the Southwest U.S. network is not an artifact of the 

biological processes in the trees themselves, 2) it permits consideration of the possible 

forcing mechanisms for the variability with a consistent physical modeling framework, 

and 3) it demonstrates that long-term droughts and pluvials in the southwestern U.S. is a 

result of the synergistic phasing of cool and warm season precipitation anomalies.            

e. Associated sea surface temperature anomalies and atmospheric teleconnections 

 The associated sea surface temperature anomalies during the identified droughts 

and pluvials are shown in Figs. 15 and 16, respectively for the warm and cool seasons.  

The SSTA patterns between two periods are quite consistent (1917-1932 and 1942-1952).  

An ENSO-like signal is present in the central tropical Pacific for the 1917-1932 (El Niño) 

and 1942-1952 (La Niña) periods, consistent with the change in ITCZ positioning noted 

earlier and North American drought variability described by Herweijer et al. (2007).  

However, there is no ENSO signal apparent for the 1888-1901 drought. As has been 

pointed out by Seager and Hoerling (2014), the 1888-1901 drought is most related to 

internal atmosphere variability. There do not appear clear and consistent linkages to PDO 
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for these droughts either, at least by the composite analysis.  More physically consistent 

results are revealed by correlated the reconstructed low-frequency SPI time series for the 

Southwest U.S. for warm and cool season with global SSTA (top of Figs. 17 and 18).  

Low frequency cool season precipitation variability in the Southwest is associated with El 

Niño-like conditions in the central equatorial Pacific and Pacific Decadal Variability.  

The corresponding warm season precipitation variability is more associated with just 

Pacific Decadal Variability, but the pattern is not field significant.  In contrast to the 

composite analysis, the SSTA associated with sustained dual season drought in the 

Southwest U.S. do not appear to be persistent from the cool to warm season, in agreement 

with Griffin et al. (2013). 

 Finally, we regressed the warm and cool season SPI on the corresponding 500-mb 

20CR geopotential height anomalies (lower panels of Figs. 17 and 18).  Coherent 

stationary wavetrains are present for both seasons, field significant above the 80% level.  

During the cool season, a circumglobal PNA-like pattern is observed over western North 

America, which has connection to ENSO. During the warm season, the Western Pacific 

North America (WPNA) pattern is present, as described in Ding et al. (2011) and 

Ciancarelli et al. (2013).  Somewhat similar to the PNA pattern in winter, WPNA is a 

quasi-stationary Rossby wavetrain that emanates from the western tropical Pacific and 

Indian monsoon region and modulates the strength and positioning of the North 

American monsoon ridge.  Castro et al. (2007) and Ciancarelli et al. (2013) suggest this 

warm season teleconnection response is more connected to ENSO-PDV variability in the 

early part of summer (JJ).  Though the exact physical mechanism(s) of how WPNA is 

generated during the warm season is still a subject of active research, it clearly bears 
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heavily on low-frequency variability in Southwest U.S. monsoon precipitation.  The 

teleconnection patterns just described considering the DD-20CR also appear in a similar 

way with respect to the dominant modes of EW and LWadj tree-ring data in the 

Southwest U.S. network (Carrillo et al., 2014a in preparation).    

5. Concluding points 

 The major purpose of this investigation was to evaluate whether there is 

coherency in warm and cool season precipitation variability at low frequencies in the 

Southwest that may be responsible for decadal droughts. As has been described 

previously with a new monsoon-sensitive network of tree-ring chronologies (Griffin et 

al., 2013; Carrillo et al., 2014a), our study present solid evidence to support this idea. We 

took an alternative approach by using not only the new Twentieth-Century Reanalysis 

(20CR), but also its dynamically downscaled product. In the first part, we utilized MFC 

because of the limitation of 20CR precipitation to resolve terrain-related convective 

precipitation. MFC resolves well the water budget on tropical regions, so a good strategy 

is to validate the low-frequency variability in 20CR by exploring the ability of MFC to 

describe the persistent drought in Central America, because they are related to the 

Southwest droughts at low frequencies (Méndez and Magaña, 2010). In the second part, 

we have used a dynamically downscaled version of the Twentieth-Century Reanalysis 

(DD-20CR) to investigate the low-frequency climate variability associated with droughts 

on the NAM region. The dynamically downscaled of 20CR was done with the WRF 

model with the purpose of incorporating the best representation of the terrain-forced 

summer monsoonal precipitation highly dependent on the mesoscale and large-scale 

teleconnections.  
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 We have hypothesized that 20CR contains low-frequency variability. By using the 

moist flux convergence (MFC), as moist integrator variable, we were able to show that 

20CR contains similar low-frequency variability as previously identified in Carrillo et al. 

(2014a) with tree-ring chronologies. This is fundamentally important, because a RCM 

such as WRF is not able to generate this variability as part of its internal dynamics, 

because the low-frequency regime must to be part of a large-scale process. The answer to 

our research question related to whether multiyear persistent Southwest droughts are 

driven by very low-frequency climate variability is a categorical yes. Using enhanced 

monsoonal precipitation by the DD WRF on 20CR, we portrayed how low-frequency 

variability modulates the American Southwest droughts. Therefore, the evidence 

presented in this paper suggests this possibility. An evaluation of the climatology shows 

that the DD-20CR can reproduce well the annual cycle and summer/winter interannual 

variability with some caveats. This makes possible to use 20CR and DD-20CR to explore 

the NAM climate variability at low frequencies. The precipitation generated by the DD-

20CR is synchronized with the low-frequency variability in the 20CR. This evidence 

suggests that the low-frequency drought signal is part of the climate system not only in 

the Southwest, but part of a continental-scale pattern.  

 From a seasonal perspective, 20CR MFC and DD-20CR precipitation confirm the 

coherence of summer and winter co-variability at the low frequencies. It was found that 

this dual-season low frequency regime can be responsible for persistent droughts in the 

Southwest. Thus, the modeling approach provides additional support to confirm the 

existence of this dual-season precipitation covariability. The drought and pluvial 

temporal phases and spatial patterns over the Southwest and central U.S. are observed; 
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however, the spectral 50-100 year signature is not completely solved, as can be the case 

with tree-ring chronologies, due to the length record limitation in 20CR but the phases 

are evident.  

 The forcing mechanism for the cool season seems to be related to the El Niño-like 

variability in central tropical Pacific. However, for the warm season it seems to be more 

related to the high latitude Pacific Decadal Variability. The covariability between seasons 

that is suggested by the composite analysis is complicated to assess because of the 

limitation of the time series length. In addition, the atmospheric teleconnection for 

summer shows a CGT type of Rossby wave trains as in Ding et al. (2011) and in 

Ciancarelli et al. (2013), and for winter a circumglobal PNA-like pattern is observed.  

 As this longest retrospective reanalysis is able to capture the low-frequency 

variability in a quite similar manner tree-ring chronologies do, we propose it could be 

potentially used to evaluate the synergistic impact on extreme droughts by natural 

variability on a warming future climate in the Southwest. We suggest that by explicitly 

including these changes in a pseudo global warming modeling framework (DD-20CR) 

that already is able to simulate drought variability, it can be a better approach to evaluate 

the impact of extreme droughts under a future climate in change. Maybe we can benefit 

more from this approach than current CMIP5 model simulation, which struggle to 

reproduce variability in the order of decadal scale due to the complexity of fully coupled 

AOCGMs.  
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Figure Captions 

 

Figure 1: Variance of Moisture Flux Convergence for the Twentieth Century Reanalysis 
(20CR). Summer (top) is defined during July-August and winter (bottom) during 
November-April. A box in Central America is defined as CA for analysis. 
 
Figure 2: Spatial correlation between the combined Pacific SST index (P-SST) as 
defined in Castro et al. (2001) and the cool and warm Moisture Flux Convergence (MFC) 
for summer (top) and winter (bottom) during the period 1871-2012. Local significance is 
shown with oblique lines and field significance with percentage in lower left corner.    
 
Figure 3: JA MFC composite anomaly for the periods 1888-1901, 1917-1932, 1942-
1952 (upper), which are defined for the positive and negative anomalies in the JA MFC 
time series (bottom). Vectors show the convergence/divergence of the flux. The JA MFC 
time series is calculated over the Central America (CA) area in Fig. 1. Arrows highlight 
the intensity of these peaks associated with pluvial and drought regimes. Bars are the 
interannual variation and solid line the 10-year running mean.  
 
Figure 4: Similar to Fig. 3 but for the cool season.  
 
Figure 5: Similar to Fig. 3 but for 20CR precipitation anomaly. Vector of the MFC in 
Fig. 3 is conserved for comparison purpose.  
 
Figure 6: LFV spectrum of the spatiotemporal leading MTM-SVD mode for the warm 
20CR MFC (a). Spatial correlation between JA 20CR MFC and its reconstructed 
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temporal pattern for frequencies greater than 10 years (b). Local significance is shown 
with oblique lines and field significance in percentage. Reconstructed JA 20CR MFC 
temporal pattern for frequencies greater than 10 years (c). Same boxes and arrow defined 
in Fig. 3 are superimposed.  
 
Figure 7: Spatial correlation between JA 20CR MFC and its reconstructed temporal 
pattern for the 25-50 year spectral band (a). Reconstructed JA 20CR MFC temporal 
pattern for the 25-50 year spectral band (b). Spatial correlation between time series 
defined in (b) and JA SPI (from P-NOAA). Local significance is shown with oblique 
lines and field significance in percentage.  
 
Figure 8: Similar to Fig. 6 but for the cold season.  
 
Figure 9: Variance of monthly precipitation for P-NOAA (a), DD-20CR (b), and 20CR 
(c). During periods 1985-2010 for P-NOAA and 1871-2010 for both DD-20CR and 
20CR. Two boxes are highlighted A1 defined at [35-50ºN; 125-120ºW] and A2 at [30-
37.5ºN; 115-107.5ºW].    
 
Figure 10: Annual cycle of monthly precipitation for the western Pacific Northwest (A1; 
first column) and Arizona (A2; second column) regions as defined in Fig. 9 for P-NOAA 
(a), DD-20CR (b), and 20CR (c). 
 
Figure 11: Variance of summer (JA, first column) and winter (NA, second column) 
precipitation for P-NOAA (upper), DD-20CR (middle), and 20CR (bottom).  
 
Figure 12:  LFV of the spatiotemporal leading mode for observed JA SPI (a). The 
reconstructed temporal mode for frequencies higher than 10 years (b). Spatial correlation 
between the reconstructed time series defined in (b) and the original observed JA SPI (c). 
Local significance is shown in oblique lines.     
 
Figure 13: Similar to Fig. 2 but for JA DD-20CR.  
 
Figure 14: Similar to Fig. 13 but for winter (NA). 
 
Figure 15: Warm season (JA) composite sea surface temperature (SST) anomalies for  
periods 1888-1901, 1917-1932, and 1942-1952 as defined in Fig. 3.   
 
Figure 16: Similar to Fig. 15 but for the cold season (NA).  
 
Figure 17 : Warm season spatial correlation between the reconstructed time series of JA 
DD-20CR SPI defined in Fig. 13b and both JA sea surface temperature (upper) and JA 
geopotential height at 500 mb (bottom). Local significance is shown in oblique lines and 
filed significance in percentage.  
 
Figure 18: Similar to Fig. 17 but for the cool season (NA).  
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Figure 1: Variance of Moisture Flux Convergence for the Twentieth Century Reanalysis 
(20CR). Summer (top) is defined during July-August and winter (bottom) during 
November-April. A box in Central America is defined as CA for analysis. 
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Figure 2: Spatial correlation between the combined Pacific SST index (P-SST) as 
defined in Castro et al. (2001) and the cool and warm Moisture Flux Convergence (MFC) 
for summer (top) and winter (bottom) during the period 1871-2012. Local significance is 
shown with oblique lines and field significance with percentage in lower left corner.    
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Figure 3: JA MFC composite anomaly for the periods 1888-1901, 1917-1932, 1942-
1952 (upper), which are defined for the positive and negative anomalies in the JA MFC 
time series (bottom). Vectors show the convergence/divergence of the flux. The JA MFC 
time series is calculated over the Central America (CA) area in Fig. 1. Arrows highlight 
the intensity of these peaks associated with pluvial and drought regimes. Bars are the 
interannual variation and solid line the 10-year running mean.  
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Figure 4: Similar to Fig. 3 but for the cool season.  
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Figure 5: Similar to Fig. 3 but for 20CR precipitation anomaly. Vector of the MFC in 
Fig. 3 is conserved for comparison purpose.  
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Figure 6: LFV spectrum of the spatiotemporal leading MTM-SVD mode for the warm 
20CR MFC (a). Spatial correlation between JA 20CR MFC and its reconstructed 
temporal pattern for frequencies greater than 10 years (b). Local significance is shown 
with oblique lines and field significance in percentage. Reconstructed JA 20CR MFC 
temporal pattern for frequencies greater than 10 years (c). Same boxes and arrow defined 
in Fig. 3 are superimposed.  
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Figure 7: Spatial correlation between JA 20CR MFC and its reconstructed temporal 
pattern for the 25-50 year spectral band (a). Reconstructed JA 20CR MFC temporal 
pattern for the 25-50 year spectral band (b). Spatial correlation between time series 
defined in (b) and JA SPI (from P-NOAA). Local significance is shown with oblique 
lines and field significance in percentage.  
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Figure 8: Similar to Fig. 6 but for the cold season.  
 
 
 
 



 170

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Variance of monthly precipitation for P-NOAA (a), DD-20CR (b), and 20CR 
(c). During periods 1985-2010 for P-NOAA and 1871-2010 for both DD-20CR and 
20CR. Two boxes are highlighted A1 defined at [35-50ºN;125-120ºW] and A2 at [30-
37.5ºN;115-107.5ºW].    
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Figure 10: Annual cycle of monthly precipitation for the western Pacific Northwest (A1; 
first column) and Arizona (A2; second column) regions as defined in Fig. 9 for P-NOAA 
(a), DD-20CR (b), and 20CR (c). 
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Figure 11: Variance of summer (JA, first column) and winter (NA, second column) 
precipitation for P-NOAA (upper), DD-20CR (middle), and 20CR (bottom).  
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Figure 12:  LFV of the spatiotemporal leading mode for observed JA SPI (a). The 
reconstructed temporal mode for frequencies higher than 10 years (b). Spatial correlation 
between the reconstructed time series defined in (b) and the original observed JA SPI (c). 
Local significance is shown in oblique lines.     
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Figure 13: Similar to Fig. 2 but for JA DD-20CR.  
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Figure 14: Similar to Fig. 13 but for winter (NA). 
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Figure 15: Warm season (JA) composite sea surface temperature (SST) anomalies for  
periods 1888-1901, 1917-1932, and 1942-1952 as defined in Fig. 3.   
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Figure 16: Similar to Fig. 15 but for the cool season (NA).  
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Figure 17 : Warm season spatial correlation between the reconstructed time series of JA 
DD-20CR SPI defined in Fig. 13b and both JA sea surface temperature (upper) and JA 
geopotential height at 500 mb (bottom). Local significance is shown in oblique lines and 
filed significance in percentage.  
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Figure 18: Similar to Fig. 17 but for the cold season (NA).  
 

 

 


