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ABSTRACT

Seismic images and the geologic information they provide contribute significantly to our

understanding of the earth’s subsurface. In this thesis, I focus on methods relevant for con-

structing and interpreting seismic images, including methods for velocity estimation, seismic

imaging, and interpretation, which together address key aspects of reflection seismic data

processing. Specifically, I propose improved methods for semblance-based normal-moveout

velocity analysis, for seismic imaging by least-squares migration, and for the automatic ex-

traction of geologic horizons.

To compute a seismic image, an estimate of the subsurface velocity is needed. One com-

mon method for constructing an initial velocity model is semblance-based normal-moveout

(NMO) velocity analysis, in which semblance spectra are analyzed to identify peaks in sem-

blance corresponding to effective NMO velocities. The accuracy of NMO velocities obtained

from semblance spectra depends on the sensitivity of semblance to changes in velocity. By

introducing a weighting function in the semblance calculation, I emphasize terms that are

more sensitive to velocity changes, which, as a result, increases the resolution of semblance

spectra and allows for more accurate NMO velocity estimates.

Following velocity analysis, a seismic image of the subsurface is computed by migrating

the recorded data. However, while velocity analysis is an important step in processing

reflection seismic data, in practice we expect errors in the velocity models we compute,

and these errors can degrade a seismic image. Instead of minimizing the difference between

predicted and observed seismic data as is done for conventional migration, I propose to

minimize the difference between predicted and time-shifted observed data, where the time

shifts are the traveltime differences between predicted and observed data. With this misfit

function, an image computed for an erroneous velocity model contains features similar to

those obtained using a more accurate velocity.
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Once a seismic image is computed, a common task in interpreting the image is the

identification of geologic horizons. As an alternative to manual picking or autotracking, I

propose methods to automatically and simultaneously extract all horizons within an image.

To extract geologic horizons, a seismic image is unfaulted and unfolded to restore horizons

to an undeformed, horizontal state from which they can be easily identified and extracted.
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CHAPTER 1

INTRODUCTION

The primary goal of exploration seismology is to provide information about the earth’s

subsurface. Often, this information is obtained from a seismic image and from the geologic

knowledge provided by the image. Seismic imaging requires the conversion of seismic data,

recorded in time, to an image of the subsurface in depth. Because this conversion requires an

estimate of the velocity at which seismic waves propagate in the subsurface, a necessary task

in constructing an image of the subsurface is to perform velocity analysis. Following velocity

analysis, an image is computed by migrating the recorded seismic data in order to map the

data to subsurface reflectors from which they originated. Finally, once the image is computed,

it must be interpreted to identify geologic features of interest, such as geologic horizons. In

this thesis, I focus on the three aspects of reflection seismic data processing mentioned above:

velocity estimation, seismic imaging or seismic migration, and interpretation.

1.1 Velocity estimation

To compute a seismic image, it is necessary to first estimate the subsurface properties

that affect the kinematics of wave propagation. For example, in the simplest case in which

we assume an acoustic earth, the property that we must estimate is the P-wave velocity. A

common approach for conventional velocity analysis consists of two steps (Hill & Rüger, 2008;

Toldi, 1985): (1) stacking or normal-moveout (NMO) velocity analysis, and (2) conversion

of NMO velocities to interval velocities. While this approach is most appropriate for simple

subsurface models that are laterally invariant, it can also be used to construct starting

velocity models for more sophisticated methods of velocity analysis such as full-waveform

inversion (Lailly, 1983; Pratt et al., 1998; Tarantola, 1984), which seeks the velocity model

that best predicts the recorded seismic data, or migration velocity analysis (Al-Yahya, 1989;

Biondi & Sava, 1999; Fowler, 1985; Sava & Biondi, 2004; Shen, 2004; Symes & Carazzone,
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1991), which constructs an optimal velocity model by analyzing common image gathers. One

difficulty with migration velocity analysis and full-waveform inversion is that the associated

inverse problems can be highly nonlinear, and local minima in the objective functions can

result in unphysical and inaccurate models. In such cases, an improved starting model can

help to avoid local minima.

The focus of Chapter 2 is a method for improving the resolution of semblance-based

NMO velocity analysis (Neidell & Taner, 1971; Taner & Koehler, 1969). Semblance is a co-

herence measure that has similarities to normalized crosscorrelation and also to summation,

but, for the purpose of NMO velocity analysis, semblance has the greatest discriminating

power (Neidell & Taner, 1971). Because semblance spectra often are computed and used

to pick NMO velocities, higher resolution spectra are desirable because they can directly

improve one’s ability to identify, distinguish, and pick peaks in semblance corresponding to

optimal effective NMO velocities. To increase the resolution of semblance spectra, I intro-

duce a weighting function to minimize semblance, and, somewhat surprisingly, this weighting

function results in an increase in resolution. I demonstrate on synthetic and field data that

the use of this weighting function increases the resolution of semblance spectra, and I also

demonstrate on synthetic data that, along with the increase in resolution, the weighting

function also results in an increase in accuracy compared to conventional semblance.

1.2 Seismic imaging

Following velocity analysis, a subsequent step in processing reflection seismic data is to

construct a seismic image by migrating the recorded data. Methods for migration require

the solution of an appropriate wave equation, which are commonly obtained either by con-

structing a high-frequency asymptotic solution or by finite differencing. High-frequency, i.e.,

ray-based, methods are attractive because they are computationally efficient; a drawback,

however, is that the high-frequency assumption becomes less accurate in the presence of

complex subsurface structures. As a result, ray-based migration images tend to degrade

with increasing structural complexity.
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Finite-difference solutions of the wave equation are more accurate than ray-based so-

lutions, and finite-difference migrations can offer improved images compared to ray-based

migrations. Finite-difference migrations typically can be categorized as either one-way or

two-way migrations. One-way migrations are based on solutions of a one-way paraxial ap-

proximation to the wave equation, while two-way migrations are based on solutions of a

full, i.e., unapproximated, wave equation. Compared to ray-based migrations, both one-way

and two-way migrations yield improved images when the subsurface produces complex wave

propagation phenomena such as multipathing. In addition, compared to one-way migra-

tions, two-way migrations produce more accurate reflector amplitudes and improved images

of steeply dipping reflectors (Mulder & Plessix, 2004).

In Chapter 3, I propose a method for least-squares migration for velocity models that

contain errors. Least-squares migration (Dai, 2012; Kühl & Sacchi, 2003; Nemeth et al.,

1999; Østmo & Plessix, 2002; Plessix & Mulder, 2004) is a two-way migration that seeks to

invert for the seismic image by minimizing a data-domain objective function. Compared to

other methods such as reverse-time migration (Baysal et al., 1983; Levin, 1984; Loewenthal

& Mufti, 1983; McMechan, 1983; Whitmore, 1983) that compute images using the adjoint of

a linearized forward modeling operator, least-squares migration images offer improved reso-

lution and better balanced amplitudes by using the pseudoinverse of the forward operator.

Least-squares migration, like other methods for migration, relies on an accurate velocity

model to compute an accurate image. While velocity analysis is a critical step in reflection

seismic data processing, in practice we expect errors in the velocity models we compute.

Such errors can result from inadequacies in the methods used for velocity analysis, inaccu-

racies in our assumptions about the earth’s subsurface (e.g., the assumption of an acoustic

and isotropic earth), and insufficiencies in the data we record for constraining the relevant

subsurface properties. Because errors in velocity are unavoidable in practice, it is worthwhile

to consider the case of migration when the velocity model is erroneous.
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The method for least-squares migration proposed in Chapter 3 introduces a time-shift

operator into the objective function that is minimized to compute a seismic image. This

time-shift operator shifts the observed seismic data to reduce traveltime differences between

predicted and observed data that can result, for example, from errors in velocity, but more

generally result from an inability to exactly model seismic wave propagation in the sub-

surface. In any case, differences in traveltime between predicted and observed data lead

to degraded migration images. Thus, by introducing a time-shift operator to correct for

traveltime differences, I improve the migration images computed when using an inaccurate

velocity model.

1.3 Interpretation

Following the computation of a seismic image of the subsurface, we must interpret the

image to identify geologic features of interest. These features typically are structural or

stratigraphic features capable of forming hydrocarbon traps, and such features are com-

monly identified by picking, either manually or perhaps while aided by a computer, geologic

horizons. However, manual or computer-aided interpretation of geologic horizons can be

time-consuming and impractical, especially for large 3D images. Thus, automatic methods

for interpretation are preferable.

In Chapter 4 and Chapter 5, I propose methods for the automatic and simultaneous

extraction of all geologic horizons within a seismic image. Each geologic horizon corresponds

to an isochron surface — a surface of constant geologic time. Due to geologic deformation,

however, surfaces of constant geologic time are rarely aligned with axes of seismic images;

hence the need for interpretation or extraction of geologic horizons.

In Chapter 4, I propose a method for unfolding seismic images to restore geologic horizons

to an undeformed, horizontal state. In an unfolded image, surfaces of constant geologic time

are aligned with the vertical axis of the image, making the identification and extraction of

geologic horizons simple. This unfolding process is commonly referred to as seismic image

flattening, and most methods for seismic image flattening (Lomask et al., 2006; Parks, 2010;
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Stark, 2004) are limited to the use of vertical shifts only. Because of this limitation, these

methods have difficulty flattening seismic images that contain geologic features resulting

from non-vertical deformations without significantly distorting such features. The flattening

method that I propose in Chapter 4 uses non-vertical vector shifts to flatten a seismic image,

which results in less distortion of geologic features while flattening.

Another common limitation of methods for image unfolding or image flattening, including

the method proposed in Chapter 4, is their inability to properly handle geologic faults.

Methods for image unfolding require an estimate of the local orientation, e.g., the dip or

slope, of image features in order to flatten an image. The difficulty with geologic faults is

twofold: first, because local slopes are discontinuous across a fault, methods that estimate

slopes by averaging image features within a window may yield inaccurate slopes; and second,

because the slope at a fault is undefined, any slopes estimated at fault locations will be

inherently flawed.

I address this limitation in Chapter 5, in which I propose a method for unfaulting and

unfolding seismic images. First, a seismic image is unfaulted by shifting image features

according to dip-separation vectors computed at fault locations (Hale, 2013b) and then

interpolated at locations between faults. Then, the unfaulted image is subsequently unfolded

by flattening the image. The proposed method for image flattening is similar to that discussed

in Chapter 4, as it flattens an image using non-vertical shifts, but it differs in the form of the

partial-differential equations that are solved. To minimize distortions of geologic features, the

method proposed in Chapter 5 seeks to flatten an image while preserving metric properties

such as angle, length, and volume in the flattened image. Unfaulting and unfolding a seismic

image allows for the automatic simultaneous extraction of all geologic horizons, including

those interrupted by geologic faults.

1.4 Publications and proceedings

Over the course of my degree program, I have contributed several publications and con-

ference abstracts. Chapters 2, 3, and 5 of this thesis have been published in whole or in part
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in the journal Geophysics :

• Luo, S., and D. Hale, 2011, Velocity analysis using weighted semblance: Geophysics,

77(2), U15-U22.

• Luo, S., and D. Hale, 2013, Unfaulting and unfolding 3D seismic images: Geophysics,

78(4), O45-O56.

• Luo, S., and D. Hale, 2014, Least-squares migration in the presence of velocity errors:

Geophysics, 79(4), S153-S161.

The work discussed in Chapter 4 was one of several expanded abstracts presented at annual

meetings of the Society of Exploration Geophysicists:

• Luo, S., and D. Hale, 2010, Velocity analysis using weighted semblance: 80th Annual

Meeting of the Society of Exploration Geophysicists, Expanded Abstracts.

• Luo, S., and D. Hale, 2011, Non-vertical deformations for seismic image flattening:

81st Annual Meeting of the Society of Exploration Geophysicists, Expanded Abstracts.

• Luo, S., and P. Sava, 2011, A deconvolution-based objective function for wave-equation

inversion: 81st Annual Meeting of the Society of Exploration Geophysicists, Expanded

Abstracts.

• Luo, S., and D. Hale, 2012, Unfaulting and unfolding 3D seismic images: 82nd Annual

Meeting of the Society of Exploration Geophysicists, Expanded Abstracts.

• Luo, S., and D. Hale, 2013, Separating traveltimes and amplitudes in waveform in-

version: 83rd Annual Meeting of the Society of Exploration Geophysicists, Expanded

Abstracts.

• Luo, S., and D. Hale, 2014, Least-squares migration in the presence of velocity errors:

84th Annual Meeting of the Society of Exploration Geophysicists, Expanded Abstracts.
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CHAPTER 2

VELOCITY ANALYSIS USING WEIGHTED SEMBLANCE

Modified from a paper published in Geophysics, 2011, 77 (2), U15-U22

Simon Luo1 and Dave Hale1

2.1 Summary

Increasing the resolution of semblance-based velocity spectra, or semblance spectra, is

useful for estimating normal moveout velocities, as increased resolution can help to distin-

guish peaks in the spectra. The resolution of semblance spectra depends on the sensitivity

of semblance to changes in velocity. By weighting terms in the semblance calculation that

are more sensitive to changes in velocity, we can increase resolution. Our implementation

of weighted semblance is a straightforward extension of conventional semblance. Somewhat

surprisingly, we increase resolution by choosing an offset-dependent weighting function that

minimizes semblance. We test our method on both synthetic and field data, and our tests

confirm that weighted semblance provides higher resolution than conventional semblance.

2.2 Introduction

Normal moveout (NMO) velocity analysis using semblance spectra (Taner & Koehler,

1969) is an important first step toward building a velocity model. NMO velocity analysis

requires picking peaks in semblance spectra, and the resolution of these spectra affects one’s

ability to distinguish and pick individual peaks. For example, in cases where there are in-

terfering events such as multiples in a common midpoint (CMP) gather, it may be difficult

to differentiate the semblance peaks corresponding to the primary events from those corre-

sponding to the interfering events. Higher resolution would better distinguish the different

sets of semblance peaks in this situation.

1 Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines
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Semblance is a normalized, squared correlation of NMO-corrected seismic data with a

constant. Correlation with a constant implies an assumption that there is no amplitude

or phase variation with offset (Corcoran & Seriff, 1993; Sarkar et al., 2000). When this

assumption is violated, semblance may no longer be an accurate measure of NMO velocity.

To address this problem, modified semblance coefficients that measure correlation with a

trend (Fomel, 2009; Sarkar et al., 2002; Yan & Tsvankin, 2008) rather than a constant have

been proposed.

Correlation with a trend is equivalent to weighted correlation with a constant, and it has

been shown that weighting terms in a correlation coefficient calculation that are sensitive

to changes in velocity can increase the resolution of the corresponding velocity spectra. For

example, Celis & Larner (2002) introduce a selective-correlation sum that improves the reso-

lution of velocity spectra by discarding crosscorrelations between traces with relatively small

differential moveout of events. Selective-correlation is effectively a weighted crosscorrelation

sum with weights of either zero or unity, depending on the differential moveout between

traces.

We can likewise increase the resolution of semblance spectra by weighting terms in the

conventional semblance calculation. Unlike Celis & Larner (2002), however, we do not discard

terms in the semblance calculation but instead weight all terms on the basis of their sensitivity

to changes in velocity. Our implementation of weighted semblance is based in part on work

presented by Hale (2009b). Hale defines a weighted semblance coefficient that conforms to

structural features apparent in seismic images. We define a different semblance coefficient

by choosing a different weighting scheme.

In this paper we describe a method to compute weighted semblance for the purpose of

increasing the resolution of semblance spectra. To increase resolution, we use an offset-

dependent weighting function to minimize semblance, while maintaining a normalized sem-

blance value between zero and one. We test the method on both synthetic and field data

to compare the resolution of weighted and conventional semblance. The method is easy to
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implement, and its computational cost is comparable to that of conventional semblance.

2.3 Semblance methods

Weighted semblance is a straightforward extension of conventional semblance. In this

section, we first discuss conventional semblance, and then introduce our implementation of

weighted semblance. We then derive the weighting function and show how it is used to

increase resolution.

2.3.1 Conventional semblance

Conventional semblance is a normalized coherency measure that was first defined by

Taner & Koehler (1969). A comparison of semblance and other coherency measures can be

found in Neidell & Taner (1971). Semblance is routinely used to estimate NMO velocity

as a function of zero-offset time. Following normal moveout correction of a CMP gather,

semblance as defined by Neidell & Taner (1971) is computed as

s[i] =

i+M∑
j=i−M

(
N−1∑
k=0

q[j, k]

)2

N
i+M∑

j=i−M

N−1∑
k=0

q[j, k]2

, (2.1)

where i and j are time sample indices, k is a trace number, and q[j, k] is the trace amplitude

at time index j and trace number k of the NMO-corrected gather. The inner sums over k

correspond to N NMO-corrected traces in a CMP gather, while the outer sums correspond

to a time-smoothing window with length 2M + 1 centered at time index i. Here, the time-

smoothing is performed by a boxcar filter.

In general, we are free to use any time-smoothing filter, but in practice, it is often a good

idea to replace a boxcar filter with one that decays more smoothly. For the examples shown

in this paper, the boxcar filter is replaced with a two-sided decaying exponential filter, which

we represent by an additional weighting function h[j]. The derivations are independent of
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the choice of h[j], so its exact form is not important. We write conventional semblance as

sc[i] =

∑
j

h[i− j]

(∑
k

q[j, k]

)2

N
∑
j

h[i− j]
∑
k

q[j, k]2
, (2.2)

where it is assumed that the unspecified summation limits include all indices for which the

summation terms are defined.

The semblance value reflects how well the moveout path corresponding to the trial NMO

velocity fits the moveout of signal in the data. A good fit produces a peak in the semblance

spectrum, whereas a poor fit produces semblance values closer to zero. Assuming there is no

noise and no signal amplitude variation with offset, semblance is maximized when the values

of q[j, k] do not vary with index k. That is, sc[i] = 1 when the NMO-corrected events are

aligned across traces at a single time index i.

The resolution of semblance spectra depends on the sensitivity of NMO times to changes

in velocity. If a small change in trial velocity results in a relatively large change in NMO

time, the semblance value will change rapidly with the mismatch between the NMO times

corresponding to the trial velocity and the correct velocity. The greater the change in NMO

time for a change in trial velocity, the higher the resolution of the semblance spectrum.

2.3.2 Conventional semblance rewritten

Before we consider weighted semblance, let us introduce an alternative expression for

conventional semblance. We express conventional semblance as a normalized correlation

coefficient by first defining a reference trace r[j] as a summation over trace number (equiv-

alently, a stack over offset) of the NMO-corrected traces in the CMP gather:

r[j] ≡
∑
k

q[j, k]. (2.3)

To simplify notation, we also define
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Crq[i] ≡
∑
j

h[i− j]
∑
k

r[j]q[j, k],

Crr[i] ≡
∑
j

h[i− j]
∑
k

r[j]2,

Cqq[i] ≡
∑
j

h[i− j]
∑
k

q[j, k]2.

(2.4)

Conventional semblance sc[i] can then be written as

sc[i] =
Crq[i]

2

Crr[i]Cqq[i]
. (2.5)

Equation 2.5 and equation 2.2 are equivalent expressions for conventional semblance.

2.3.3 Weighted semblance

To obtain weighted semblance, we modify conventional semblance by introducing weights

w[j, k] into equations 2.4:

Wrq[i] ≡
∑
j

h[i− j]
∑
k

w[j, k]r[j]q[j, k],

Wrr[i] ≡
∑
j

h[i− j]
∑
k

w[j, k]r[j]2,

Wqq[i] ≡
∑
j

h[i− j]
∑
k

w[j, k]q[j, k]2. (2.6)

Then, weighted semblance sw[i] is given by

sw[i] =
Wrq[i]

2

Wrr[i]Wqq[i]
. (2.7)

Note the similarity between equation 2.5 and equation 2.7, and note that weighted semblance

is equal to conventional semblance for w[j, k] = 1. Moreover, it can be shown using the

Cauchy-Schwarz inequality that weighted semblance is bounded between zero and one if the

weights w[j, k] and h[j] are non-negative.
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2.3.4 Weighting function

We choose a weighting function w[j, k] to emphasize terms in the semblance calculation

that are most sensitive to changes in velocity.

The form of the weighting function reflects the change in NMO time for a given change

in velocity. Consider the first-order Taylor series expansion of the hyperbolic moveout equa-

tion about the correct slowness-squared γ̃:

t[j, k] =
√
τ [j]2 + γ̃x[k]2 +

x[k]2

2
√
τ [j]2 + γ̃x[k]2

(γ − γ̃) , (2.8)

where τ [j] is the zero-offset time at time index j, x[k] is the offset at trace number k, and

γ ≡ 1/v2 where v is the velocity. A tilde indicates the correct value—i.e., γ̃ ≡ 1/ṽ2 where ṽ

is the correct velocity. The correct NMO time is given by t̃[j, k] =
√

τ [j]2 + γ̃x[k]2, and we

can rearrange equation 2.8 as

t[j, k]− t̃[j, k] =
x[k]2

2t̃[j, k]
(γ − γ̃) . (2.9)

Thus, the change in NMO time that results from a small change in velocity is proportional

to offset squared and inversely proportional to time.

To reflect this proportionality, we choose a weighting function w[j, k] that has a similar

dependency on offset and time:

w[j, k] = a+ b
c[j]x[k]2

t[j, k]
, (2.10)

where a and b are parameters to be determined, and c[j] is calculated as the ratio of the

zero-offset time to the average offset squared:

c[j] =
τ [j]N∑
k

x[k]2
. (2.11)

Multiplying by c[j] ensures that b is unitless.

The relative values of the parameters a and b in equation 2.10 effectively determine how

the far offsets are weighted. In cases where we expect large weights for the farthest offsets,
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the ratio of b to a must approach infinity. To satisfy this condition more easily, we choose

a = 1− b, (2.12)

so that

w[j, k] = 1− b+ b
c[j]x[k]2

t[j, k]
. (2.13)

In addition, we only allow b values between zero and one. Bounding b ensures that the

weighting function is non-negative, which is a sufficient condition for weighted semblance to

remain normalized between zero and one.

After substituting equation 2.13 for w[j, k] into equations 2.6, we have the weighted

semblance

sw[i] =
Wrq[i]

2

Wrr[i]Wqq[i]
, (2.14)

where

Wrq[i] = (1− b)Crq[i] + bBrq[i],

Wrr[i] = (1− b)Crr[i] + bBrr[i],

Wqq[i] = (1− b)Cqq[i] + bBqq[i], (2.15)

where Crq[i], Crr[i], and Cqq[i] are defined in equations 2.4, and Brq[i], Brr[i], and Bqq[i] are

defined as

Brq[i] ≡
∑
j

h[i− j]
∑
k

c[j]x[k]2

t[j, k]
r[j]q[j, k],

Brr[i] ≡
∑
j

h[i− j]
∑
k

c[j]x[k]2

t[j, k]
r[j]2,

Bqq[i] ≡
∑
j

h[i− j]
∑
k

c[j]x[k]2

t[j, k]
q[j, k]2. (2.16)

Weighted semblance is now a function of the parameter b. Note that when b = 0, the weight-

ing function w[j, k] = 1, and weighted semblance is equivalent to conventional semblance.

When b = 1, weighted semblance reduces to the expression given by equations 2.6 and 2.7,
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with weighting function w[j, k] = c[j]x[k]2/t[j, k]. We will refer to this case as fully-weighted

semblance, because the farthest offsets are given the most weight when b = 1.

Note that although the weighting function is derived from the hyperbolic moveout equa-

tion, we do not make any assumptions about how the seismic data are NMO-corrected.

Because semblance is calculated after NMO correction, we are free to use any moveout equa-

tion, hyperbolic or non-hyperbolic, to correct the data. Our method for increasing resolution

works in either case.

2.3.5 Increasing resolution

To increase the resolution of semblance spectra, we minimize semblance with respect to

b, with the constraint that 0 ≤ b ≤ 1. Bounding b ensures that the weights are non-negative,

which guarantees that weighted semblance is between zero and one.

It may seem somewhat counterintuitive that minimizing semblance would increase res-

olution, but recall that when the trial NMO velocity equals the correct velocity, semblance

is calculated along what are assumed to be constant trace amplitudes, i.e., amplitude is

independent of trace number. If amplitude q[j, k] is independent of trace index k, then

q[j, k] = r[j]/N can be pulled out of the summation over k in equations 2.4 and equa-

tions 2.16. Then, semblance is unity, regardless of the weighting function. Because sem-

blance peaks where sw[i] = 1 are not affected by the weighting function, we can increase the

resolution of semblance spectra by choosing a weighting function that minimizes semblance.

To minimize semblance sw[i] for any time index i, we set the derivative of semblance with

respect to b equal to zero (from here on, we omit the time index i to simplify equations):

dsw(b)

db
= 0. (2.17)

Solving the above equation, we find that semblance as a function of b has two stationary

points

b1 =
Crq

Crq − Brq

, (2.18)
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and

b2 =

(
1 +

2CrqBrrBqq − BrqA

2BrqCrrCqq − CrqA

)−1
, (2.19)

where

A = CrrBqq + CqqBrr. (2.20)

Because we are minimizing semblance, we are interested only in local minima. We compute

the second derivative of semblance with respect to b at the two stationary points to obtain

d2sw(b1)

db2
=

2(Brq − Crq)
4

(BrqCqq − BqqCrq)(BrqCrr − BrrCrq)
, (2.21)

and

d2sw(b2)

db2
= −2[Brq(BrrCqq + Crr(Bqq − 2Cqq)) + Crq(BrrCqq +Bqq(Crr − 2Brr))]

4

(BrqCqq − BqqCrq)(BrqCrr − BrrCrq)(BrrCqq − BqqCrr)4
. (2.22)

We see by inspection that equation 2.21 is positive—and therefore b1 corresponds to a local

minima—if

(BrqCqq − BqqCrq)(BrqCrr − BrrCrq) > 0. (2.23)

Similarly, equation 2.22 is positive and b2 corresponds to a local minima if

(BrqCqq − BqqCrq)(BrqCrr − BrrCrq) < 0. (2.24)

Thus to find the b value within 0 ≤ b ≤ 1 that minimizes semblance, we first compute either

b1 or b2 depending on whether inequality 2.23 or 2.24 is satisfied, and then if b is between

zero and one, we compute semblance using equation 2.14. If b is not between zero and one,

we simply choose the minimum value of sw(b = 0) and sw(b = 1). In this way, we obtain the

minimum value of semblance for 0 ≤ b ≤ 1.

For each zero-offset time, we also scale all weighted semblance values by a constant factor

not less than one. We do this because weighted semblance values obtained by minimizing

semblance will otherwise tend to be lower, for all moveout velocities, than conventional

semblance values. The scaling factor is a function of zero-offset time, and is defined as the
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minimum ratio of conventional semblance to weighted semblance. With this scaling factor,

weighted semblance never exceeds conventional semblance. Note that because we need to

compute Crr, Crq, and Cqq given in equations 2.4 to compute weighted semblance, we can

easily compute conventional semblance for little additional cost from equation 2.5.

2.4 Results

To illustrate the action of the weighting function w[j, k] on the resolution of semblance

spectra, we compare weighted semblance to conventional semblance for synthetic CMP gath-

ers and for field shot gathers.

2.4.1 Synthetic data examples

For all synthetic data examples, the CMP gathers have a cable length of 3 km, receiver

group interval spacing of 50 m, and a Ricker wavelet peak frequency of 25 Hz.

The first CMP gather shown in Figure 2.1(a) consists of a series of synthetic primary

reflections with linearly increasing NMO velocity. The velocity increases from 2 km/s at

zero-offset time τ = 0 s, to 3 km/s at τ = 4 s. Figure 2.1(b) depicts the b values used in

the weighting function w[j, k] that minimizes semblance. Recall that b = 0 corresponds to

conventional semblance, while b = 1 corresponds to fully-weighted semblance, which gives

the most weight to the farthest offsets. It is interesting to note that the minimum semblance

value is not always given by b = 1; in other words, simply weighting the far offsets does

not always minimize semblance. Figure 2.1(c) and Figure 2.1(d) show the conventional and

weighted semblance spectrum, respectively. Note the spread in spectral amplitude across a

range of velocities in the conventional semblance spectra. In comparison, in the weighted

semblance spectrum, the spread in spectral amplitude has decreased.

We can directly compare semblance peaks by plotting semblance as a function of trial

velocity for a chosen zero-offset time. Figure 2.2 depicts this plot for the first synthetic CMP

gather at zero-offset time τ = 3.2 s. In the figure, we see that minimizing semblance has

reduced the semblance values at velocities away from the peak. As a result, the weighted
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a) b)

c) d)

b

Figure 2.1: Synthetic CMP gather (a), plot of b values used in the weighting function (b),
conventional semblance (c), and weighted semblance (d).
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Conventional
Weighted

Figure 2.2: Semblance as a function of trial velocity at τ = 3.2 s, for the semblance spectra
shown in Figure 2.1.

semblance peak is sharper than the conventional semblance peak.

Next we add a second set of reflections to the synthetic CMP gather shown in Figure 2.1(a)

to simulate interfering multiples. The second set of reflections have NMO velocities that

increase linearly from 1.98 km/s at zero-offset time τ = 0 s, to 2.50 km/s at τ = 4 s.

Figure 2.3(a) depicts the CMP gather, and Figure 2.3(b) depicts a plot of the b values used

in the weighting function w[j, k]. Figure 2.3(c) and Figure 2.3(d) depict the conventional and

weighted semblance spectrum, respectively. Notice that with the second set of reflections, the

weighted semblance spectrum now has a smaller range of spectral amplitudes (i.e., smaller

peak semblance value) compared to the conventional semblance spectrum. This is a result

of minimizing semblance. A necessary assumption for this minimization was that the NMO-

corrected trace amplitudes are constant for the correct trial velocity. For these synthetic

data, and for field data especially, this assumption is not correct. Thus, in minimizing

semblance, we expect in some cases for the peak amplitudes to decrease. Nevertheless, as

confirmed by the semblance curve in Figure 2.4, the weighted semblance spectrum affords

higher resolution as it better distinguishes the two sets of semblance peaks.

18



a) b)

c) d)

b

Figure 2.3: Synthetic CMP gather (a), plot of b values used in the weighting function (b),
conventional semblance (c), and weighted semblance (d).
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Conventional
Weighted

Figure 2.4: Semblance as a function of trial velocity at τ = 3.2 s, for the semblance spectra
shown in Figure 2.3.

For our last synthetic example, we contaminate the synthetic gather shown in Fig-

ure 2.3(a) with additive noise. We add bandlimited random noise to the CMP gather with

a signal-to-noise ratio of 1, where the signal-to-noise ratio is computed as the ratio of the

root-mean-square (rms) amplitude of the signal to the rms amplitude of the noise. Fig-

ure 2.5(a) depicts the noise-contaminated synthetic CMP gather, and Figure 2.5(b) depicts

the b values used in the weighting function. Figure 2.5(c) and Figure 2.5(d) show the conven-

tional and weighted semblance spectrum, respectively. Compared to the noise-free synthetic

(Figure 2.3), the semblance values overall are lower because of the additive noise, but again,

as evidenced by the semblance curve in Figure 2.6, we see an increase in resolution and a

decrease in the range of semblance values going from conventional to weighted semblance.

To compare the accuracy of conventional and weighted semblance, we generate 1000

different synthetic CMP gathers with the same NMO velocity and signal-to-noise ratio as

the gather shown in either Figure 2.3(a) or Figure 2.5(a), and we compute the error in NMO

velocity as the difference between the NMO velocity of the picked semblance peaks and the

correct NMO velocity. From these errors, we compute the rms error (for all 1000 gathers)
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c) d)

b

Figure 2.5: Synthetic CMP gather (a), plot of b values used in the weighting function (b),
conventional semblance (c), and weighted semblance (d).
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Conventional
Weighted

Figure 2.6: Semblance as a function of trial velocity at τ = 3.2 s, for the semblance spectra
shown in Figure 2.5.

as a function of zero-offset time. Figure 2.7(a) shows the rms error of primary reflections for

CMP gathers with no noise, while Figure 2.7(b) shows the error of primary reflections for

gathers with a signal-to-noise ratio of 1. In the figure, the gray and black lines correspond

to conventional and weighted semblance, respectively. For the primary reflections (and also

for the multiple reflections, which are not shown), the rms errors for weighted semblance

generally are less than that of conventional semblance. However, keep in mind that these rms

errors are computed from 1000 different gathers, and so for any single gather, we may expect

to see smaller or larger errors for conventional and weighted semblance. That said, these

results suggest that at least for gathers similar to our synthetic CMP gathers (i.e., gathers

with no amplitude or phase variation with offset and with perfect hyperbolic moveout),

weighted semblance is overall more accurate than conventional semblance.

2.4.2 Field data examples

To compare conventional and weighted semblance for real seismic data, we selected four

shot gathers from Seismic Data Analysis by Oz Yilmaz (2001). These data were selected
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a) b)

Figure 2.7: Root-mean-square error of NMO velocities of semblance peaks for noise-free syn-
thetic CMP gathers (a), and for synthetic CMP gathers with signal-to-noise ratio equal to one
(b). Gray and black lines correspond to conventional and weighted semblance, respectively.

because they are publicly available, and as such they allow our examples to be easily re-

produced. Note that because these examples are shot gathers rather than CMP gathers,

the NMO correction applied prior to the semblance calculation is not entirely appropriate.

However, the comparison between conventional and weighted semblance is still valid.

Figure 2.8(a) shows Yilmaz’s shot record #3, which contains reflections with near-perfect

hyperbolic moveout; Figure 2.9(a) shows shot record #8, which contains significant linear

noise; Figure 2.10(a) shows shot record #16, which contains long-period multiples between

1 and 3 s; and Figure 2.11(a) shows shot record #30, which is a deep-water shot record

containing strong first-order water bottom multiples (Yilmaz, 2001). Figure 2.8(b), Fig-

ure 2.9(b), Figure 2.10(b), and Figure 2.11(b) show the b values used in the weighting func-

tion; Figure 2.8(c), Figure 2.9(c), Figure 2.10(c), and Figure 2.11(c) show the conventional

semblance spectra; and Figure 2.8(d), Figure 2.9(d), Figure 2.10(d), and Figure 2.11(d)

show the weighted semblance spectra. Again, we see that the weighted semblance spectra

have higher resolution compared to the conventional semblance spectra, and also that the

23



a) b)

c) d)

b

Figure 2.8: Shot record #3 from Seismic Data Analysis (a), plot of b values used in the
weighting function (b), conventional semblance (c), and weighted semblance (d).
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a) b)

c) d)

b

Figure 2.9: Shot record #8 from Seismic Data Analysis (a), plot of b values used in the
weighting function (b), conventional semblance (c), and weighted semblance (d).
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a) b)

c) d)

b

Figure 2.10: Shot record #16 from Seismic Data Analysis (a), plot of b values used in the
weighting function (b), conventional semblance (c), and weighted semblance (d).
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a) b)

c) d)

b

Figure 2.11: Shot record #30 from Seismic Data Analysis (a), plot of b values used in the
weighting function (b), conventional semblance (c), and weighted semblance (d).
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locations of corresponding semblance peaks remain mostly unchanged. However, for these

examples, it is difficult to assess the accuracy of the semblance spectra, since we do not know

the correct velocity.

It is worth noting that for both the field data and synthetic data examples, the b values

that minimize semblance are mostly nonzero, and moreover tend to be closer to one, indicat-

ing that our algorithm prefers fully-weighted semblance over conventional semblance. This

seems to confirm that minimizing semblance indeed increases resolution, since far offsets are

more sensitive to changes in NMO velocity and thus can potentially afford higher resolution.

2.5 Conclusion

Our implementation of weighted semblance increases the resolution of semblance spec-

tra by using a weighting function to minimize semblance while maintaining a normalized

semblance value bounded between zero and one.

Minimizing semblance increases the resolution of semblance spectra because semblance

peaks for which the semblance value equals one are not affected by the weighting function.

For semblance peaks with semblance value less than one, minimizing semblance does decrease

the peak value, but to a lesser extent than it does for semblance peaks closer to zero.

Because we are minimizing semblance, the weighted semblance value will never exceed the

corresponding conventional semblance value, and for this reason, weighted semblance will not

produce new semblance peaks that are not seen in the conventional semblance spectrum—it

will only increase the resolution of existing peaks.

Implementing the weighted semblance calculation requires a small change to the conven-

tional semblance implementation. The cost of computing weighted semblance is at least twice

that of conventional semblance, but their costs are still comparable, as the computational

complexity of calculating weighted semblance remains on the order of Nx ×Nt ×Nv, where

Nx, Nt, and Nv are the number of offset, time, and velocity samples, respectively. More-

over, if one computes weighted semblance, it is easy to simultaneously compute conventional

semblance for little additional cost.
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Finally, it is worth noting that the use of our weighted semblance coefficient does not

preclude the use of other modified semblance coefficients that perform better in cases of, say,

signal amplitude or phase variation with offset. In fact, our method for increasing resolution

by minimizing semblance could be extended to work in conjunction with these modified

semblance coefficients, by formulating a coefficient that measures correlation with a trend

and also increases resolution by minimizing semblance.

2.6 Acknowledgements

Thanks to the sponsors of the Center for Wave Phenomena at the Colorado School of

Mines. Thanks also to the reviewers of this paper, including Ken Larner, Jeff Godwin,

Debashish Sarkar, and another anonymous reviewer, for many helpful comments and sug-

gestions.

29



CHAPTER 3

LEAST-SQUARES MIGRATION IN THE PRESENCE OF VELOCITY ERRORS

Modified from a paper published in Geophysics, 2014, 79 (4), S153-S161

Simon Luo1 and Dave Hale1

3.1 Summary

Seismic migration requires an accurate background velocity model that correctly predicts

the kinematics of wave propagation in the true subsurface. Least-squares migration, which

seeks the inverse rather than the adjoint of a forward modeling operator, is especially sensi-

tive to errors in this background model, which can result in traveltime differences between

predicted and observed data that lead to incoherent and defocused migration images. We

propose an alternative misfit function for use in least-squares migration that measures am-

plitude differences between predicted and observed data, i.e., differences after correcting for

nonzero traveltime shifts between predicted and observed data. We demonstrate on syn-

thetic and field data that, when the background velocity model is incorrect, the use of this

misfit function results in better focused migration images. Results suggest that our method

best enhances image focusing when differences between predicted and observed data can be

explained by traveltime shifts.

3.2 Introduction

Seismic migration can be described as the adjoint of a linearized forward modeling op-

erator applied to observed data (Claerbout, 1992). Migration produces a reflectivity image,

an image of a perturbation to the background velocity model (Cohen & Bleistein, 1979),

that approximates the true reflectivity insofar as the adjoint of the forward operator approx-

imates the pseudoinverse. Typically, the adjoint is a poor approximation, and the accuracy

1 Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines

30



of the computed reflectivity image can be significantly improved by using the pseudoinverse

of the forward operator rather than the adjoint. The use of the pseudoinverse of the forward

operator in migration is known as least-squares migration (Dai, 2012; Kühl & Sacchi, 2003;

Nemeth et al., 1999; Østmo & Plessix, 2002; Plessix & Mulder, 2004).

Least-squares migration requires the inverse of the Hessian matrix (the normal operator)

of second derivatives of a misfit function with respect to model parameters. The Hessian,

however, is prohibitively expensive to compute and store for most practical-sized problems.

Approximations of the inverse Hessian (Chavent & Plessix, 1999; Gray, 1997; Guitton, 2004;

Plessix & Mulder, 2004; Rickett, 2003; Shin et al., 2001; Symes, 2008; Valenciano, 2008)

are more feasible, and are often used to improve the quality of final migration images or

to precondition iterative least-squares migration. In this paper, we focus on iterative least-

squares migration, which can be used in conjunction with or in place of approximations

of the Hessian. An advantage of iterative migration algorithms is that they typically are

straightforward to implement; a disadvantage is that they can be more computationally

expensive compared to an efficient approximation of the Hessian, or compared to a single

application of the adjoint operator as is done, for example, in reverse-time migration (Baysal

et al., 1983; Levin, 1984; Loewenthal & Mufti, 1983; McMechan, 1983; Whitmore, 1983).

The quality and accuracy of migration images depends greatly on the accuracy of the

background velocity model, and errors in this background model can lead to an incoherent,

defocused image. Ideally, the background velocity model should correctly predict the trav-

eltimes of observed data, and should be sufficiently smooth so as not to generate reflected

waves. These requirements derive from the conditions under which the Born approximation

is valid (Symes, 2009), and under these conditions, migration can accurately image subsur-

face structures. However, when these conditions are violated, migration images are degraded

and become defocused and incoherent. One reason for this degradation is that migration

inverts for the perturbation to the background velocity model that controls only the ampli-

tudes of predicted data; if the background model contains errors, then the predicted data
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will contain errors in both traveltime and amplitude compared to the observed data, and

both these types of errors — instead of only the amplitude errors — will contribute to the

migration image.

Often, separating these types of errors, and perhaps discarding a certain type of error,

can improve inversion results. For example, for full waveform inversion (Pratt et al., 1998;

Tarantola, 1984), authors advocate using only phase or traveltime information (Bednar et al.,

2007; Choi & Alkhalifah, 2011; Kamei et al., 2011; Shin & Min, 2006), especially to update

the low-wavenumber background model that is difficult for full waveform inversion to recover

from reflection seismic data (Hicks & Pratt, 2001; Ma, 2012; Snieder et al., 1989; Xu, 2012).

Our task in least-squares migration is complementary to that of full waveform inversion for

the background model: we seek to invert for the high-wavenumber component of the model,

i.e., the perturbation to the background model. Thus, analogous to the use of phase or

traveltime information to recover the low-wavenumber component of the velocity model, we

propose to use amplitude information to recover the high-wavenumber component.

Figure 3.1: A simple example. The (a) predicted data (black) and observed data (red);
(b) predicted data (black) and shifted observed data (blue); (c) normalized misfit function
computed with the predicted and observed data shown in (a); and (d) normalized misfit
function computed with the predicted and shifted observed data shown in (b). A local
optimization method beginning at the position indicated by the white circle will converge to
a local minimum in (c), but will find the global minimum, indicated by the magenta star, in
(d).
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The utility of this amplitude and traveltime separation is easily illustrated. Consider the

task of estimating a traveltime shift and an amplitude scale between two 1D signals, shown

in Figure 3.1. In Figure 3.1a and Figure 3.1b, the black curve represents the predicted data,

the red curve represents the observed data, and the blue curve represents the observed data

shifted so that its traveltime matches that of the predicted data. The conventional least-

squares misfit function, i.e., the L2-norm of the difference between predicted and (possibly

shifted) observed data, for two model parameters (the amplitude scale and the traveltime

shift) is shown in Figure 3.1c and Figure 3.1d. Notice in Figure 3.1c and Figure 3.1d the

location of the global minimum, indicated by the magenta star. Figure 3.1c shows the nor-

malized misfit function computed between predicted and observed data (Figure 3.1a). With

this misfit function, a local optimization method beginning at the location of the white circle

will descend to a local minimum, indicated by the white arrow. In comparison, the normal-

ized misfit function computed between predicted and shifted observed data (Figure 3.1b)

shown in Figure 3.1d enables the global minimum to be found.

This simple example suggests that by first correcting for traveltime shifts between pre-

dicted and observed data, we are better able to estimate the component of the model that

controls the amplitude (in this case, the amplitude scale). This is the approach we wish to

pursue for the more complicated problem of least-squares migration. The simple example

relied on the fact that we could correctly estimate the traveltime shift between predicted

and observed data. For migration, we require an accurate and robust method for estimat-

ing traveltime shifts between two (not necessarily 1D) signals, and for this purpose we use

dynamic warping (Hale, 2013a).

We propose a simple modification of the conventional least-squares misfit function used

in iterative least-squares migration. Rather than minimize the difference between predicted

and observed data, we propose to minimize their difference after correcting for nonzero

traveltime shifts. Assuming estimated traveltime shifts between predicted and observed data

are accurate, this misfit function quantifies mostly amplitude differences. We demonstrate
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that the use of this amplitude misfit function in least-squares migration results in more

coherent and better focused images when the background velocity model used for migration

differs from the true background velocity model.

3.3 Methods

In this section, we first briefly review linearized waveform inversion and then discuss

dynamic warping, the method we use to estimate traveltime shifts, before presenting our

method for amplitude-only inversion.

3.3.1 Linearized waveform inversion

Wave propagation in the subsurface is described approximately by the constant-density

acoustic wave equation,

σ0
∂2u0

∂t2
−Δu0 = f , (3.1)

where u0 is the wavefield, σ0 is the squared background slowness, and f is the source function.

Perturbing σ0 by a scattering potential m and linearizing about m yields

σ0
∂2u

∂t2
−Δ u = −m ∂2u0

∂t2
, (3.2)

where u is the scattered or perturbation wavefield. Often m is referred to as the reflectivity

model or simply the reflectivity.

Let us denote the discretized solution of equation 3.2 for a source function at position s.

The wavefield us is linear in the reflectivity m:

us = Lsm , (3.3)

where Ls is a linear prediction operator describing the evolution of the scattered wavefield

in equation 3.2. The predicted data ps,r are a subset of the wavefield us:

ps,r = Srus , (3.4)

where Sr is a sampling operator that extracts the wavefield at receiver position r.
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To solve equation 3.4 for the reflectivity model m, we minimize, in a least-squares sense,

the difference between predicted data ps,r and observed data ds,r:

min
m

J(m) =
∑
s,r

Es,r(us(m)) , (3.5)

where

Es,r(us) =
1

2
‖Srus − ds,r‖2 . (3.6)

To minimize equation 3.5, we can pursue the negative of the gradient direction

∂J

∂m
=
∑
s,r

LT
s

(
∂Es,r

∂us

)
, (3.7)

where

∂Es,r

∂us

= ST
r (Srus − ds,r) (3.8)

is the data residual. The adjoint of the prediction operator Ls is a migration operator

(Claerbout, 1992), and so we obtain the well-known result (Lailly, 1983; Tarantola, 1984)

that the gradient of the least-squares misfit function can be computed by a migration of the

residuals.

3.3.2 Dynamic warping

Before we can consider an amplitude misfit function, we require a method for estimating

time-varying traveltime shifts between predicted and observed data. For this purpose, we

use dynamic warping (Hale, 2013a). Dynamic warping is robust and remains accurate in

the presence of noise, and compared to more conventional methods for estimating traveltime

shifts based on windowed crosscorrelations, dynamic warping is more accurate, especially

when traveltime shifts vary rapidly as a function of time (Hale, 2013a).
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Dynamic time warping (Sakoe & Chiba, 1978) is a method for computing integer time

shifts τ = (τ1, τ2, · · · , τn) between two sequences p = (p1, p2, · · · , pn) and d = (d1, d2, · · · , dn)
such that

A =
1

2

∑
i

(pi − di+τi)
2 (3.9)

is minimized with respect to τ subject to the constraint

|τi − τi−1| ≤ 1/c , (3.10)

where c is a positive integer. An attractive feature of dynamic time warping is that the

algorithm is guaranteed to find the traveltime shifts τ that minimize equation 3.9 subject to

constraint 3.10, and these shifts are such that ∂A/∂τ = 0 when the constraint is inactive.

Although we could use dynamic time warping to independently estimate traveltime shifts

between all pairs of predicted and observed traces, in practice we find that using dynamic

image warping (Hale, 2013a) to estimate traveltime shifts between predicted and observed

common shot gathers yields more accurate shifts, especially when predicted and observed

data are not simply shifted versions of each other (as is often the case even with synthetic

data, and certainly always is the case with recorded field data). Dynamic image warping

(Hale, 2013a) approximately solves the extension to higher dimensions of the constrained op-

timization problem specified by equations 3.9 and 3.10, and in doing so, imposes constraints

both in time (equation 3.10) as well as in distance or offset on the estimated traveltime shifts.

3.3.3 Inversion of amplitude errors

To formulate an inversion of amplitude errors, we modify the observed data to include a

time-shift operator:

bs,r = Ts,rds,r , (3.11)

where Ts,r is a linear operator, e.g., a sinc interpolation operator, that shifts the observed

data ds,r by the traveltime shifts τ s,r estimated using dynamic warping. Note that Ts,r

depends implicitly on the model m, because the traveltime shifts τ s,r are computed using
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the predicted data ps,r, which depend on the model.

The shifted observed data bs,r can be viewed as a secondary dataset obtained by pro-

cessing the observed data. Processing of the observed data prior to migration is standard

practice, even for conventional migration. The purpose of this processing is essentially to

remove from the observed data any components that are due to an inconsistent model of

wave propagation in the true subsurface. For example, just as an acoustic wave equation

cannot explain shear waves in elastic data, the linearized wave equation (equation 3.2) with

an incorrect background model cannot explain the traveltimes of the observed data. Migra-

tion using an incorrect background model is equivalent to migration using forward modeling

that is inconsistent with the observed data, and so to properly migrate these data, we must

first remove those components that cannot be explained by our forward modeling. Those

components are the traveltimes.

Thus, we seek to minimize the difference between predicted data ps,r and time-shifted

observed data bs,r:

min
m

JA(m) =
∑
s,r

As,r(us(m), τ s,r(m)) , (3.12)

where

As,r =
1

2
‖Srus −Ts,rds,r‖2 . (3.13)

Note that if the estimated traveltime shifts τ s,r are accurate, then equation 3.12 measures

only amplitude errors between predicted and observed data. If the traveltime shifts are zero,

then equation 3.12 reduces to equation 3.5.

To minimize the misfit function in equation 3.12, we require its gradient with respect to

model parameters:

∂JA
∂m

=
∑
s,r

LT
s

(
∂As,r

∂us

)
, (3.14)
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where

∂As,r

∂us

= ST
r (Srus −Ts,rds,r) . (3.15)

Although As,r depends on the estimated traveltime shifts τ s,r, we need not consider this de-

pendence when computing the residual in equation 3.15 because dynamic warping minimizes

equation 3.13 (or equation 3.9) subject to constraint 3.10, so that ∂As,r/∂τ s,r is mostly zero.

We refer to equation 3.15 as the amplitude residual and equation 3.12 as the amplitude misfit

function, as they measure only amplitude errors between predicted and observed data.

3.4 Results

We compare conventional least-squares migration (LSM) with the proposed method of

least-squares migration of amplitude errors (LSMA) on a 2D synthetic dataset, and on a 2D

field dataset.

For least-squares migration, the data are linear in the reflectivity, and thus LSM images

can be computed by minimizing equation 3.5 with (linear) conjugate gradient iterations. To

compute LSMA images by solving equation 3.12, however, is a nonlinear problem because

the reflectivity m depends on the traveltime shifts τ s,r, but the traveltime shifts also depend

on the reflectivity. We can compute LSMA images either by minimizing equation 3.12 using

a gradient-based descent method (e.g., steepest descent or nonlinear conjugate gradient),

or alternatively, by first solving equation 3.12 with fixed traveltime shifts τ s,r, then recom-

puting the traveltime shifts and solving equation 3.12 with the new shifts, repeating until

convergence.

Note that when the traveltime shifts τ s,r are zero, equation 3.12 is equivalent to equa-

tion 3.5. This is the case for the first nonlinear iteration or the first solution of equation 3.12

with fixed τ s,r, in which the reflectivity is zero and hence the traveltime shifts are zero.

After the first nonlinear iteration or the first solution of equation 3.12, we obtain a nonzero

reflectivity image from which to predict data and to estimate possibly nonzero traveltime
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shifts.

3.4.1 Synthetic data example

The background slowness used for modeling and migration is shown in Figure 3.2(b), and

is computed by smoothing a modified Marmousi model (Lailly & Versteeg, 1990) shown in

Figure 3.2(a) along both the depth and distance axes using a two-sided exponential filter

with width 100 m. The true reflectivity shown in Figure 3.2(c) is then computed as the

difference between the true slowness (Figure 3.2(a)) squared and the true background slow-

ness (Figure 3.2(b)) squared. Using the true background slowness and true reflectivity, we

simulate observed data by solving equations 3.1 and 3.2 for a Ricker source function with

peak frequency 10 Hz. To facilitate comparison of LSM and LSMA, all migration images for

these synthetic data are computed using 20 nonlinear conjugate gradient iterations. Hence,

as the cost of dynamic warping is small compared to the cost of modeling and migration,

the LSM and LSMA images computed for these synthetic data come at comparable costs.

Figure 3.2: The (a) true slowness model, (b) true background slowness model, (c) true reflec-
tivity computed as the difference between the true slowness squared and the true background
slowness squared, and (d) LSM image.

The first example shown in Figure 3.2 demonstrates conventional LSM using the true

background slowness for migration. The reflectivity image shown in Figure 3.2(d) is obtained
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Figure 3.3: The (a,b) difference between the true background slowness shown in Figure 3.2(b)
and the background slowness used for migration; (c) LSM image computed for the back-
ground slowness with error shown in (a); (d) LSM image computed for the background
slowness with error shown in (b); (e) LSMA image computed for the background slowness
with error shown in (a); and (f) LSMA image computed for the background slowness with
error shown in (b).
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after 20 nonlinear conjugate gradient iterations (Nocedal & Wright, 2000) of LSM using

the true background slowness with 153 shots and 767 receivers evenly spaced along the

surface. As expected, this computed reflectivity matches well the true reflectivity shown in

Figure 3.2(c) because the background slowness model used for migration was exactly the

true background slowness. In practice, we expect the background slowness model used to

migrate the data to differ from the true background slowness model.

Figure 3.3 illustrates the effects of erroneous background slowness models on the reflec-

tivity images obtained using LSM and LSMA. Figure 3.3(a) and Figure 3.3(b) show the

differences between the true background slowness model (Figure 3.2(b)) and the background

slowness models that we use for migration. The slowness error shown in Figure 3.3(a) was

computed by smoothing a random slowness model, while the error shown in Figure 3.3(b)

resulted from scaling the true background slowness by 95%.

Figure 3.3(c) and Figure 3.3(d) show the reflectivity images computed using 20 iterations

of LSM with the erroneous background slowness models with errors shown in Figure 3.3(a)

and Figure 3.3(b), respectively. Compared to the reflectivity image (Figure 3.2(d)) computed

using the true background slowness, the image in Figure 3.3(c) is degraded, and shows uneven

illumination and defocused reflectors, especially at greater depths where traveltime errors

resulting from the erroneous background slowness are more severe. This degradation is also

seen in the reflectivity image shown in Figure 3.3(d). The quality of this image is worse than

the image shown in Figure 3.3(c) because the slowness errors (Figure 3.3(b)) all have the same

sign, and so traveltime errors in the predicted data accumulate more quickly than traveltime

errors for data predicted with the slowness model with error shown in Figure 3.3(a).

Figure 3.3(e) and Figure 3.3(f) show the reflectivity images computed with 20 iterations

of LSMA. Compared to the conventional LSM images (Figure 3.3(c) and Figure 3.3(d)), the

LSMA images show improved illumination of deeper portions of the model, and better fo-

cused and more continuous reflectors throughout. For example, Figure 3.4(a), Figure 3.4(b),

and Figure 3.4(c) show zoomed views of the areas enclosed by yellow boxes in Figure 3.3(c),
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Figure 3.3(e), and Figure 3.2(c), respectively. Compared to the LSM image shown in Fig-

ure 3.4(a), reflectors in the LSMA image shown in Figure 3.4(b) are more focused and

better match the true reflectivity shown in Figure 3.4(c). Similarly, zoomed views shown

in Figure 3.5(a), Figure 3.5(b), and Figure 3.5(c) of the areas enclosed by green boxes in

Figure 3.3(d), Figure 3.3(f), and Figure 3.2(c), respectively, demonstrate that even for a

large and biased slowness error (Figure 3.3(b)), minimizing the amplitude misfit function

yields an interpretable reflectivity image with features that match those apparent in the true

reflectivity.

a)

b)

c)

Figure 3.4: Zoomed views of the areas enclosed by yellow boxes in the (a) LSM image in
Figure 3.3c, (b) LSMA image in Figure 3.3e, and (c) true reflectivity in Figure 3.2c.
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a)

b)

c)

Figure 3.5: Zoomed views of the areas enclosed by green boxes in the (a) LSM image in
Figure 3.3d, (b) LSMA image in Figure 3.3f, and (c) true reflectivity in Figure 3.2c.
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Note, however, that the positions of features in LSMA images (Figure 3.3(e) and Fig-

ure 3.3(f)) are shifted compared to their positions in the true reflectivity (Figure 3.2(c)). For

example, compare the position of the reflector located at distance 3.5 km and depth 1 km in

Figure 3.4(b), or the reflector located at distance 4.5 km and depth 1 km in Figure 3.5(b), to

their positions in the true reflectivity This mispositioning is expected, however, since LSMA

images are computed using erroneous background slowness models.

The presence of remaining traveltime shifts between predicted and observed data, as

well as spatial shifts between image features in computed LSMA images and those in the

true reflectivity, is confirmed by the misfit functions shown in Figure 3.6 and Figure 3.7.

Figure 3.6(a) and Figure 3.7(a) show normalized data and amplitude misfit functions, while

Figure 3.6(b) and Figure 3.7(b) show normalized model misfit functions (the L2-norm of the

difference between the computed reflectivity and the true reflectivity) for LSM and LSMA

images computed using either the true background slowness model shown in Figure 3.2(b) or

the erroneous background slowness model with error shown in Figure 3.3(a) or Figure 3.3(b).

In Figure 3.6(a) and Figure 3.7(a), note that the data misfit is not used in LSMA, but more

importantly, notice that the data misfit increases in iteration 7 in Figure 3.6(a) and in

iteration 2 in Figure 3.7(a). This indicates that the better-focused LSMA images shown in

Figure 3.3(e) and Figure 3.3(f) cannot be obtained with conventional LSM, which minimizes

the data misfit.

The model misfits shown in Figure 3.6(b) and Figure 3.7(b) indicate that, for the erro-

neous background slowness models shown in Figure 3.3(a) and Figure 3.3(b), the LSM images

(Figure 3.3(c) and Figure 3.3(d)) more closely match the true reflectivity (Figure 3.2(c)) than

do the LSMA images (Figure 3.3(e) and Figure 3.3(f)). Indeed, a zero-reflectivity image is

closer to the true reflectivity than the LSMA image shown in Figure 3.3(f). However, the

large model misfits for LSMA images simply reflect the fact that features in these images

are shifted relative to the corresponding features in the true reflectivity. Although image

features in LSMA images are shifted, it is clear that the amplitudes (but not the positions)
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Figure 3.6: Normalized (a) data and amplitude misfit and (b) model misfit for LSM and
LSMA. Here, true background refers to the true background slowness shown in Figure 3.2(b),
while incorrect background refers to the background slowness with error shown in Fig-
ure 3.3(a).

Figure 3.7: Normalized (a) data and amplitude misfit and (b) model misfit for LSM and
LSMA. Here, true background refers to the true background slowness shown in Figure 3.2(b),
while incorrect background refers to the background slowness with error shown in Fig-
ure 3.3(b).
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of these features better match those of the true reflectivity.

3.4.2 Field data example

Next we test our method for amplitude-only migration on a subset of a field dataset

provided by Eni E&P. The entire 2D dataset contains 3661 shots with a shot spacing of 12.5

m, and was recorded using a streamer with 99 receivers with a receiver spacing of 12.5 m

and maximum offset of 1.225 km. The subset of the data that we migrate consists of 431

shots with shot spacing of 25 m. The data have been regularized, and multiples have been

attenuated. We estimate a zero-phase wavelet from the amplitude spectrum computed from

a subset of the recorded data (Claerbout, 1992), and we apply a bandpass filter to both

the estimated wavelet and the recorded data to remove frequency content below 20 Hz and

above 80 Hz prior to migration.

We compare LSM and LSMA for two slowness models. The first slowness model, shown

in Figure 3.8(a), is laterally invariant (except near the sea floor), while the second, shown in

Figure 3.8(b), is an optimized slowness model that was provided with the recorded data. The

LSM and LSMA images computed for the laterally invariant slowness model (Figure 3.8(a))

are shown in Figure 3.9(a) and Figure 3.9(b), respectively. Comparing these images, we

observe that reflectors in the LSMA image are more continuous and better focused than

corresponding reflectors in the LSM image. Moreover, image features in the LSMA image

(Figure 3.9(b)) are similar to features seen in the LSM image (Figure 3.9(c)) computed for

the optimized slowness model (Figure 3.8(b)), despite the use of a much simpler slowness

model for LSMA. Differences between the migration images shown in Figure 3.9(a) and Fig-

ure 3.9(b) are most apparent in the areas enclosed by yellow boxes, in which the slowness dif-

ferences (Figure 3.8(c)) between the models used for migration are relatively large. Zoomed

views of the areas enclosed by yellow boxes in Figure 3.9(a), Figure 3.9(b), and Figure 3.9(c)

are shown in Figure 3.10(a), Figure 3.10(b), and Figure 3.10(c), respectively. Elsewhere,

where slowness errors are smaller, differences between the migration images are less signifi-

cant, as one would expect.
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Figure 3.8: The (a) laterally invariant and (b) optimized slowness models used for migration,
and the (c) difference between (b) and (a).
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It is worth noting that, for this example, it was necessary to use 3D dynamic warping

in LSMA. For 3D warping, rather than independently warp predicted to observed shot

gathers as was done for the synthetic examples shown in Figure 3.3, we instead warped

simultaneously all predicted shot gathers to all observed shot gathers, at each iteration of

LSMA. A 3D warping enables us to constrain changes in estimated traveltime shifts with

shot location, which results in more accurate shifts. For synthetic tests in which the same

forward modeling code is used to simulate both predicted and observed data, this additional

constraint is perhaps unnecessary. For field data, however, an additional constraint on the

traveltime shifts can significantly improve the accuracy of estimated shifts, especially in cases

where the data quality is low.

Because we compute LSMA images by minimizing the difference between predicted and

shifted observed data (equation 3.12), the predicted data in general will not have the same

traveltimes as the original observed data. An example of these traveltime differences for data

corresponding to the shot located at distance 1.85 km is shown in Figure 3.11. Figure 3.11(a)

shows the observed data, Figure 3.11(b) shows the predicted data computed using the lat-

erally invariant slowness model (Figure 3.8(a)) and the LSMA image (Figure 3.9(b)), and

Figure 3.11(c) shows the traveltime shifts between the data shown in Figure 3.11(a) and Fig-

ure 3.11(b). The maximum frequency content of the data is 40 Hz, which corresponds to a

period of 25 ms. Thus we observe from Figure 3.11(c) that the remaining traveltime shifts

between predicted and observed data exceed one half period. This confirms that LSMA

yields an image that explains the dynamics, but not the kinematics, of the observed data.

3.5 Discussion

The improvement in LSMA images compared to conventional LSM images depends on the

nature of the background slowness error, and also on the acquisition geometry. A comparison

between the images shown in Figure 3.3(e) and Figure 3.3(f) suggests that LSMA provides

a greater improvement in image quality and reflector focusing for small, systematic errors

in background slowness (e.g., Figure 3.3(b)), perhaps because in such situations, traveltime
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Figure 3.9: The (a) LSM image and (b) LSMA image computed for the laterally invariant
slowness model shown in Figure 3.8(a), and the (c) LSM image computed for the optimized
slowness model shown in Figure 3.8(b).
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Figure 3.10: Zoomed views of the areas enclosed by yellow boxes in (a) Figure 3.9(a), (b)
Figure 3.9(b), and (c) Figure 3.9(c).
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Figure 3.11: For the shot located at distance 1.85 km, the (a) observed data, (b) predicted
data computed using the laterally invariant slowness model shown in Figure 3.8(a) and the
LSMA image shown in Figure 3.9(b), and (c) traveltime shifts between (a) and (b).

shifts can explain well the differences between predicted and observed data. When the

background slowness error is more complex or is too large, predicted and observed data

might be inconsistent, i.e., events in one dataset do not have corresponding events in the

other, making it difficult to estimate accurate shifts; or, predicted and observed data might

differ by significant horizontal spatial shifts in addition to vertical traveltime shifts, in which

case estimating only traveltime shifts for use in LSMA might be inadequate. While dynamic

warping can also be used to estimate horizontal shifts, only vertical traveltime shifts were

used in the examples shown above.

The improvement in LSMA images also depends on acquisition geometry. Traveltime

differences between observed and predicted data in LSM arise from errors in the background

slowness model used for migration, but more specifically, they arise from inconsistencies

between different images of the same subsurface geologic structures, e.g., images computed for

neighboring individual shots. Thus, we expect LSMA to provide greater improvement over

conventional LSM when the recorded data provide redundant information about subsurface

geologic structures. Conversely, we expect LSMA and LSM images to be more similar when

data provide independent information, for example, when shots are sparsely located or shot

spacing is large, or when the maximum source-receiver offset or the offset-to-depth ratio is

small.
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Although LSMA images can provide an improved estimate of the amplitudes of the true

reflectivity, ultimately we seek a complete model of the subsurface, which includes not only an

accurate reflectivity model but also an accurate background slowness model. The proposed

method could potentially be extended and used to aid an inversion for the background

slowness. A simple approach might be to hold the reflectivity model constant following

LSMA, and then invert the remaining traveltime shifts between predicted and observed data

in order to update the background slowness.

Finally, it is perhaps worth mentioning that a method similar to LSMA can be formulated

by introducing a time-shift operator T−1s,r to the right-hand-side of equation 3.4, to be applied

after computing the predicted data. The resulting forward modeling equation, in which the

time-shift operator can be considered a residual modeling operator, leads to an inversion

scheme similar to LSMA, the main difference being that the predicted data rather than the

observed data are shifted in the computation of the gradient. The resulting image, however,

in general differs from the LSMA image (in fact, they are equivalent only in the case of

constant shifts). We tested this alternate method on the examples shown above, but the

results we obtained were inferior, i.e., image features were less similar to features in the

image computed using the best available slowness model, to those obtained with LSMA.

3.6 Conclusion

We have presented a method for least-squares migration that minimizes an amplitude

misfit function defined with differences between predicted data and shifted observed data,

with traveltime shifts between predicted and observed data estimated using dynamic warp-

ing. The use of this amplitude misfit function results in a more coherent and better focused

migration image when the background slowness model used for migration contains errors.

These LSMA images contain image features with amplitudes that match those of the true

reflectivity, but with positions that are shifted relative to the positions of corresponding fea-

tures in the true reflectivity. LSMA images thus perhaps are better suited for interpretation

of geologic structures, but in order to correctly position interpreted structures, we would
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need to first correctly position LSMA image features. One way to correct for the misposi-

tioning of image features is to first align features with measurements of subsurface properties

obtained from well logs, and then interpolate alignment shifts between well-log locations to

generate shifts for an entire image.
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CHAPTER 4

NON-VERTICAL DEFORMATIONS FOR SEISMIC IMAGE FLATTENING

Simon Luo1 and Dave Hale1

4.1 Summary

Seismic image flattening produces subsurface images in which sedimentary layering is hor-

izontal. With flattened images, interpretation of stratigraphic features is straightforward,

and horizon picking is trivial. Most flattening methods are limited to vertical shearing and

stretching of an image. Because of this limitation, these methods may have difficulty flat-

tening seismic images that contain non-vertical deformations without significantly distorting

image features. We propose a new image flattening method that uses a vector shift field,

instead of a scalar field of vertical shifts, to represent deformation in an image. The method

can flatten by vertically shearing or by rotating portions of an image, or by a combination

of vertical shear and rotation. Because it is not limited to vertical shearing, the method can

flatten in ways more consistent with geologic deformation.

4.2 Introduction

To interpret stratigraphic features in a seismic image, it is helpful to view an isochron

image—an image of constant geologic time. However, because of structural deformation,

the axes of seismic images are rarely aligned with geologic time. Thus, it is necessary to

identify isochrons. This can be accomplished by manual picking of horizons, or alternatively,

by automatic seismic image flattening.

Most methods for automatic flattening are limited to vertical shearing of images (Lo-

mask et al., 2006; Parks, 2010). These methods can flatten well images in which the geologic

1 Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines
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deformation itself contains only vertical shifts, but for images with more complicated de-

formations, flattening by vertical shearing may significantly distort image features. For

example, non-vertical shifts are necessary to flatten horizons that are faulted, folded, or

overturned. A flattening method should be consistent with geologic deformation; but meth-

ods that are limited to vertical shearing of an image clearly cannot represent all manner of

such deformation.

We propose a new method for automatic flattening of seismic images that represents

deformation in an image using a shift vector field instead of a scalar field of vertical shifts,

and then flattens the image by reversing the deformation. Because the method is not limited

to vertical shearing, it can better represent actual geologic deformation, and can thereby

minimize non-geologic distortions of image features.

4.2.1 Structure tensors

To flatten image features, we need a measure of their orientation. We use the structure

tensor (Fehmers & Höcker, 2003; van Vliet & Verbeek, 1995) to compute normal vectors

perpendicular to locally linear features in 2D images or locally planar features in 3D images.

The structure tensor, also called the gradient-squared tensor, is a smoothed outer product

of image gradients. In 2D, the structure tensor T for a single image sample is a 2 × 2

symmetric positive-semidefinite matrix:

T =

[
t11 t13
t13 t33

]
, (4.1)

where tij is a smoothed product of image derivatives in the xi and xj directions.

The eigendecomposition of T describes the orientation of features in an image (Fehmers

& Höcker, 2003). For a 2D image, the eigendecomposition is

T = λuuu
T

+ λvvv
T

, (4.2)

where λu and λv are the eigenvalues corresponding to eigenvectors u and v, respectively. By

convention, λu ≥ λv ≥ 0.
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The eigenvector u corresponding to the largest eigenvalue describes the direction of the

highest image derivative, and therefore is orthogonal to linear features in an image. In other

words, eigenvector u is the normal vector. Figure 4.1a shows a subset of the normal vectors

computed for a 2D seismic image.

(a) (b)

Figure 4.1: Normal vectors (a) and linearity (b) computed for a 2D seismic image.

The eigenvalues λu and λv provide a measure of the linearity of image features. The

linearity λ1 is computed as

λ1 = (λu − λv)/λu. (4.3)

Note that 0 ≤ λ1 ≤ 1. For coherent, linear features (λu � λv) linearity approaches unity,

whereas for incoherent features (λu = λv) linearity approaches zero. Figure 4.1b shows

linearity computed for the seismic image shown in Figure 4.1a. Notice that in noisy areas

(e.g., the lower right corner of the image) and in areas where features are less coherent (e.g.,

near faults), linearity is closer to zero. When flattening, we use linearity to give more weight

to coherent, linear image features.

In 3D, we compute image derivatives in three orthogonal directions. Accordingly, each

structure tensor is a 3× 3 symmetric positive-semidefinite matrix:

T =

⎡
⎣ t11 t12 t13

t12 t22 t23
t13 t23 t33

⎤
⎦ , (4.4)
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with eigendecomposition

T = λuuu
T

+ λvvv
T

+ λwww
T

. (4.5)

For 3D image flattening, we are interested in planar, rather than linear, features. Planarity

is given by

λ2 = (λu − λv)/λu. (4.6)

As for linearity in 2D, we use planarity to give more weight to coherent, planar image features

when flattening in 3D.

4.3 Image flattening

Let f(x) denote an input image and let g(u) denote the flattened image, where x is a point

in present-day coordinates and u a point in the flattened coordinates. In 2D, x = (x1, x3)

and u = (u1, u3); in 3D, x = (x1, x2, x3) and u = (u1, u2, u3). Subscripts 1 and 2 denote

horizontal axes, while subscript 3 denotes the vertical depth axis.

To flatten an image, we need a mapping x(u) that specifies the present-day location x

of any point u in the flattened space. Given x(u), we may compute the flattened image by

g(u) = f(x(u)). (4.7)

In the flattened space, constant u3 corresponds to constant geologic time. Thus, the corre-

sponding surface x(u) for constant u3 is a geologic horizon.

Consider a point x = x(u) located on a geologic horizon, located in the infinitesimal

neighborhood of a point x0 = x(u0) on the same horizon. The first-order Taylor series

approximation for x is

x = x0 + J (u− u0), (4.8)

where J = ∂x/∂u is the Jacobian of the transformation x(u). Let n denote the unit normal

vector at x0, and let m denote the corresponding normal vector at u0. Then, because

n
T

(x− x0) = n
T

J (u− u0) = m
T

(u− u0) = 0, (4.9)
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we have

J
T

n = m. (4.10)

Because the normal vector in the flattened space must point downward for the image to be

flat, all components of m except for m3 must be zero. Note that we compute normal vectors

n from the input image, so that n = n(x), not n(u).

4.3.1 Flattening in 2D

The mapping x(u) may be written in terms of a shift vector field r(u):

x(u) = u− r(u). (4.11)

The Jacobian for this mapping in 2D is

J =

[
∂x1/∂u1

∂x1/∂u3

∂x3/∂u1
∂x3/∂u3

]
, (4.12)

which, in terms of the shift field r(u), is

J =

[
1− r11 −r13
−r31 1− r33

]
, (4.13)

where rij ≡ ∂ri/∂uj. From equation 4.10, we have

n1(1− r11)− n3r31 = 0 (4.14)

n3(1− r33)− n1r13 = m3 (4.15)

where m3 is the vertical component of the normal vector after flattening, and is related

to the type of deformation in the shift vector field r(u). Equation 4.14 can be considered

the flattening equation—if the shift vector field r(u) satisfies this equation for n1 and n3

computed from an image, then applying the shifts r(u) will flatten the image. We write

equation 4.13 as

J = I−R, (4.16)
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where I is a 2× 2 identity matrix, and R is a matrix of partial derivatives of the shift vector

field r(u):

R =

[
r11 r13
r31 r33

]
. (4.17)

Solving equation 4.16 for R gives

R = I− J. (4.18)

To find R, we need an appropriate Jacobian that satisfies equation 4.10.

We consider separately two different methods: flattening by vertical shearing, and flat-

tening by rotation. The Jacobian for vertical shearing in 2D is

Jv =

[
1 0

−n1/n3 1

]
, (4.19)

where n1 and n3 are the components of the unit normal vector n, and the subscript v indicates

vertical shearing. For rotation, the Jacobian is

Jr =

[
n3 n1

−n1 n3

]
, (4.20)

where the subscript r indicates rotation. Figure 4.2 shows the mapping produced by these

Jacobian matrices. In the figure, n is the normal vector in present-day space, and j1 and

j3 are, respectively, the first and second column of the Jacobian. Figure 4.2b shows the

rotation Jacobian Jr, while Figure 4.2c shows the vertical shear Jacobian Jv. Both rotation

and vertical shear are area-preserving transformations; thus, a unit area in flattened space

maps to either a rotated or sheared unit area in present-day space. Note that thickness

measured in the direction of the normal vector is preserved only in the case of rotation.

From equation 4.18 with J = Jv, we obtain the matrix of partial derivatives of the shift

vector field for vertical shearing:

Rv =

[
0 0

n1/n3 0

]
. (4.21)
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(a) (b) (c)

j3

n

j1

j3 j1

n

x3 x3

x1x1

Figure 4.2: A unit area (a) in flattened space maps to a rotated unit area (b) or a sheared
unit area (c) in present-day space.

Similarly, equation 4.18 with J = Jr gives the partial derivative matrix for rotation:

Rr =

[
1− n3 −n1

n1 1− n3

]
. (4.22)

MatricesRv andRr describe the shift vector fields for pure vertical shear or for pure rotation;

but to represent more complex geologic deformations, we must combine both methods. One

simple combination is

Rc = (1− α)Rv + αRr. (4.23)

In terms of the components of the normal vector and the parameter α,

Rc =

[
α(1− n3) −αn1

αn1 + (1− α)n1/n3 α(1− n3)

]
. (4.24)

If we know (or assume) the type of geologic deformation that occurred, then we may choose

the corresponding α ∈ [0, 1]. Note that α = 0 produces vertical shearing, while α = 1

produces rotation. We equate equation 4.17 and equation 4.24

R = Rc, (4.25)

to obtain four equations for the partial derivatives of the shift vector field
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r11 = α(1− n3) (4.26)

r13 = −αn1 (4.27)

r31 = αn1 + (1− α)n1/n3 (4.28)

r33 = α(1− n3), (4.29)

which we solve for r(u) by weighted least-squares. Note from equation 4.14 that r11 and r31

are related to flattening. The remaining two equations for r13 and r33 are related to area

preservation, as they determine the length of normal vector m in the flattened space. If we

weight all four equations equally, the method will attempt to flatten an image while scaling

locally the area of the image by the determinant of the Jacobian. For most seismic images,

it is not possible to flatten everywhere if we constrain the area. Thus, when solving for r(u),

we give more weight to equations 4.26 and 4.28 to ensure flattening.

It is simple to verify that the Jacobian for Rc satisfies equation 4.10. The composite

Jacobian is

Jc = I−Rc, (4.30)

and for J
T

cn, we have

[
1− α (1− n3) −αn1 − (1− α)n1/n3

αn1 1− α (1− n3)

] [
n1

n3

]
=

[
0

α + n3 (1− α)

]
.

As expected, the horizontal component of the normal vector m in the flattened space is zero.

Note that for α = 1, m is also a unit vector, which indicates that flattening by rotation

preserves the thickness (measured perpendicular to bedding) of sedimentary layers. This is

not the case for flattening by vertical shear (α = 0).

One problem with equation 4.25 is that that shifts r(u) are a function of u, so that

R = R(u); but the normal vectors n(x) are functions of x, so that Rc = Rc(x). Therefore,

the equation we must solve is

R(u) = Rc(x) = Rc(u− r(u)). (4.31)
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This equation is nonlinear, because the right-hand-side depends on the solution r(u). In

practice, we use a simple fixed-point iteration to handle this (generally weak) nonlinearity.

We begin with r(u) = 0, compute Rc(u), solve for r(u), compute Rc(u − r(u)), solve for

r(u), and so on until converged. Convergence is fast when the normal vectors vary slowly,

i.e., when n(u) ≈ n(x).

Figure 4.3 and Figure 4.4 show, respectively, examples of flattening by vertical shear and

flattening by rotation for a synthetic seismic image. Notice that for the vertical shear case,

the horizontal component of the shift vector field r(u) shown in Figure 4.3c is zero, which

indicates traces are being shifted only vertically. Notice also that thickness measured in the

direction normal to the layering is preserved only in the case of rotation (Figure 4.4b).

Figure 4.5 and Figure 4.6 show examples of flattening by vertical shear and flattening by

rotation for a 2D slice from a 3D seismic image of Teapot Dome. Note that the images for

these examples are stretched vertically, and that if we were to plot the input seismic image

with a 1:1 aspect ratio, we would see that the image is nearly flat. Because flattening by

vertical shear and flattening by rotation produce identical results for an already flat image,

it is not surprising that Figure 4.5 and Figure 4.6 are similar.

We may exaggerate the structure in a seismic image by increasing the sampling interval

in the depth direction. Figure 4.7 shows an example of flattening by rotation for the same

2D seismic image shown in Figure 4.5a and Figure 4.6a, but with the depth sampling interval

increased from 4 m to 25 m. Notice that the horizontal components r1(u) of the shift vector

field r(u) shown in Figure 4.7c are larger than those shown in Figure 4.6c, which are nearly

zero.
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(a) (c)

(b) (d)

Figure 4.3: A synthetic image (a) flattened by vertical shear (b) with the horizontal (c) and
vertical (d) components of the shift vector field r(u).
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(a) (c)

(b) (d)

Figure 4.4: A synthetic image (a) flattened by rotation (b) with the horizontal (c) and
vertical (d) components of the shift vector field r(u).
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(a) (c)

(b) (d)

Figure 4.5: A seismic image (a) flattened by vertical shear (b) with the horizontal (c) and
vertical (d) components of the shift vector field r(u).
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(a) (c)

(b) (d)

Figure 4.6: A seismic image (a) flattened by rotation (b) with the horizontal (c) and vertical
(d) components of the shift vector field r(u).
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(a) (c)

(b) (d)

Figure 4.7: A seismic image (a) flattened by rotation (b) with the horizontal (c) and vertical
(d) components of the shift vector field r(u).
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4.3.2 Flattening in 3D

The extension of our flattening method to 3D is straightforward. In 3D, the Jacobian

matrix for a mapping x(u) is

J =

⎡
⎣ ∂x1/∂u1

∂x1/∂u2
∂x1/∂u3

∂x2/∂u1
∂x2/∂u2

∂x2/∂u3

∂x3/∂u1
∂x3/∂u2

∂x3/∂u3

⎤
⎦ , (4.32)

which, from equation 4.11, is equivalent to

J =

⎡
⎣ 1− r11 −r12 −r13
−r21 1− r22 −r23
−r31 −r32 1− r33

⎤
⎦ . (4.33)

where rij ≡ ∂ri/∂uj. From equation 4.10, we have

n1(1− r11)− n2r21 − n3r31 = 0 (4.34)

n2(1− r22)− n1r12 − n3r32 = 0 (4.35)

n3(1− r33)− n1r13 − n2r23 = m3. (4.36)

Equations 4.34 and 4.35 are the flattening equations; given normal vectors computed from

an image, applying any shift vector field r(u) that satisfies both equations will flatten the

image. Equation 4.33 may be written as

J = I−R, (4.37)

where I is a 3× 3 identity matrix, and R is a matrix of partial derivatives of the shift vector

field:

R =

⎡
⎣ r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤
⎦ . (4.38)

Solving equation 4.37 for R, we obtain

R = I− J. (4.39)

To find R, we need a Jacobian matrix that satisfies equation 4.10.
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Figure 4.8: A 3D seismic image (a) flattened by rotation (b) with the inline shift r1 (c),
crossline shift r2 (d), and vertical shift r3 (e) of the shift vector field r(u).

69



Again, we consider separately the Jacobian matrix for flattening by vertical shear and

flattening by rotation. For vertical shear in 3D, the Jacobian is

Jv =

⎡
⎣ 1 0 0

0 1 0
− n1/n3

− n2/n3 1

⎤
⎦ , (4.40)

and for rotation

Jr =

⎡
⎣ n3 + n2

2/(1 + n3)
− n1n2/(1 + n3) n1

− n1n2/(1 + n3) n3 + n2
1/(1 + n3) n2

−n1 −n2 n3

⎤
⎦ . (4.41)

From equation 4.18 we obtain the corresponding matrix of partial derivatives for vertical

shear

Rv =

⎡
⎣ 0 0 0

0 0 0
n1/n3

n2/n3 0

⎤
⎦ , (4.42)

and for rotation

Rr =

⎡
⎣ n2

1/(1 + n3)
n1n2/(1 + n3) −n1

n1n2/(1 + n3) n2
2/(1 + n3) −n2

n1 n2 1− n3

⎤
⎦ . (4.43)

We form a composite matrix as a linear combination of Rv and Rr:

Rc = (1− α)Rv + αRr. (4.44)

Equating equation 4.38 and 4.44 gives nine equations for the partial derivatives of the shift

field:

r11 = αn2
1/(1 + n3) (4.45)

r12 = αn1n2/(1 + n3) (4.46)

r13 = −αn1 (4.47)

r21 = αn1n2/(1 + n3) (4.48)

r22 = αn2
2/(1 + n3) (4.49)

r23 = −αn2 (4.50)

r31 = αn1 + (1− α)n1/n3 (4.51)

r32 = αn2 + (1− α)n2/n3 (4.52)

r33 = α(1− n3) (4.53)

70



The flattening equations 4.34 and 4.35 contain terms r11, r12, r21, r22, r31, and r32. Thus,

when solving for r(u), we give more weight to the corresponding equations 4.45, 4.46, 4.48,

4.49, 4.51, and 4.52. The remaining equations for r13, r23 and r33 determine the length of

the normal vector m, and therefore are related to volume preservation. These equations

are usually given less weight in order to ensure flattening. Figure 4.8 shows an example

of flattening by rotation (α = 1) for an image of Teapot Dome, with the depth sampling

interval increased from 4 m to 25 m to exaggerate the structure in the image.

4.4 Inverse shift vectors?

For image flattening using vector shifts, we considered the mapping

x(u) = u− r(u), (4.54)

which describes the deformation of a point u in the flattened space. Alternatively, we may

consider the inverse mapping

u(x) = x+ s(x), (4.55)

where s(x) is a shift vector field that satisfies

s(x) = r(u) = r(x+ s(x)). (4.56)

One advantage of using s(x) rather than r(u) is that the normal vectors n are functions of

x. Thus, it may be possible to obtain a linear set of equations for s(x) that can be solved

without the fixed-point iterations required when solving for r(u). In fact, this is the approach

used by Parks (2010) to solve for a scalar shift field for vertical shearing only.

Unfortunately, it is difficult to flatten while preserving this linearity when solving for a

more general vector shift field. To see this, consider flattening in 3D using the inverse shift

vectors s(x). Analogous to equation 4.8, we write the first-order Taylor series approximation

for u as

u = u0 +K (x− x0), (4.57)
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where K is the Jacobian of the transformation u(x). From equation 4.55, we have

K =

⎡
⎣ 1 + s11 s12 s13

s21 1 + s22 s23
s31 s32 1 + s33

⎤
⎦ = I+ S. (4.58)

where sij ≡ ∂si/∂xj. The normal vectors before and after flattening are related as

n = K
T

m, (4.59)

which gives

K−T

n = m. (4.60)

Note that the inverse of the Jacobian of the transformation u(x) is equal to the inverse of

the Jacobian of x(u):

K−1 = J, (4.61)

and that equation 4.60 is equivalent to equation 4.10, except that it is written in terms of

the shift vectors s(x) instead of r(u). For a flattened image, all components of the vector m

except for m3 must be zero. Thus to form flattening equations, we need the inverse of the

Jacobian K:

K−1 =
1

detK

⎡
⎣ k11 k12 k13

k21 k22 k23
k31 k32 k33

⎤
⎦ , (4.62)

where

k11 = (1 + s22)(1 + s33)− s23s32 (4.63)

k12 = s13s32 − s12(1 + s33) (4.64)

k13 = s12s23 − s13(1 + s22) (4.65)

k21 = s23s31 − s21(1 + s33) (4.66)

k22 = (1 + s11)(1 + s33)− s13s31 (4.67)

k23 = s13s21 − s23(1 + s11) (4.68)

k31 = s21s32 − s31(1 + s22) (4.69)

k32 = s12s31 − s32(1 + s11) (4.70)

k33 = (1 + s11)(1 + s22)− s12s21. (4.71)
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From equation 4.60, the flattening equations corresponding to the zero-valued horizontal

components of m are

k11n1 + k12n2 + k13n3 = 0 (4.72)

k21n1 + k22n2 + k23n3 = 0. (4.73)

Unlike flattening equations 4.34 and 4.35 for r(u), which contained only six elements of the

matrix R, these equations contain all nine elements of the matrix S. So to flatten, we need

to satisfy all nine equations for the partial derivatives sij. Recall that if we weight equally

all nine equations, then the method will attempt to both flatten and preserve volume. For

most images, it is not possible to flatten and preserve volume everywhere.

By solving for shifts r(u), we avoided this problem by simply weighting the flattening

equations. For the inverse shifts s(x), we cannot separate the flattening equations from the

volume preserving equations. For this reason, we solve for shifts r(u) instead.

4.5 Conclusion

The flattening method described in this report is versatile, in that it can flatten an image

by vertically shearing the image, by rotating portions of the image, or by a combination of

vertical shear and rotation. Because the method solves for a shift vector field, rather than a

scalar field of vertical shifts, it is not constrained to flatten by vertical shearing only. A shift

vector field can more accurately represent geologic deformation, and can be used to flatten

images while minimizing non-geologic distortions of image features.

However, in order to flatten an image according to the true geologic deformation, our

method currently requires that we specify the type of deformation that occurred. In practice,

it may be difficult to determine the true deformation, even when provided with relevant

geologic information. But this shortcoming suggests an interesting research question: can

we estimate the type of deformation from the image itself?

One potentially useful measure of the correctness (relative to the true geologic defor-

mation) of a flattening method is the determinant of the Jacobian matrix. In 2D, the
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determinant gives the ratio between an infinitesimal area in present-day space and the corre-

sponding area in flattened space. In 3D, the determinant gives the ratio between infinitesimal

volumes. Thus, if the determinant is unity, then area or volume has been preserved while

flattening. Assuming that the true deformation is area- or volume-preserving, we might

use the determinant of the Jacobian to quantify how well a flattening method reflects true

geologic deformation.

For now we must either assume, or we must use geologic information to estimate, the

type of deformation. In any case, for most images, geologic deformation cannot be described

with only a scalar field of vertical shifts. Solving for a vector shift field as described in this

report is a simple way to flatten images with non-vertical deformations.
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CHAPTER 5

UNFAULTING AND UNFOLDING 3D SEISMIC IMAGES

A paper published in Geophysics, 2014, 78 (4), O45-O56

Simon Luo1 and Dave Hale1

5.1 Summary

Identifying and extracting geologic horizons is useful for interpretation of stratigraphic

features as well as analysis of structural deformation. To extract horizons from a seismic

image, we develop methods for automatically unfaulting and unfolding an image to restore

all horizons to an undeformed, horizontal state. First, using fault surfaces and dip-separation

vectors estimated from an image, we interpolate dip-separation vectors at locations between

fault surfaces, and then use the interpolated dip-separation vectors to unfault an image.

Then, using a method for automatic seismic image flattening, we unfold the unfaulted image

to obtain a new image in which sedimentary layering is horizontal and also aligned across

faults. From this unfaulted and unfolded image, we can automatically extract geologic

horizons.

5.2 Introduction

Extracting isochronal geologic surfaces—geologic horizons of the same age—is a common

problem in geophysics and geology. Such horizons are useful for interpretation of strati-

graphic features and analysis of structural deformation, as well as interpolation and correla-

tion of subsurface properties. Here we consider geologic horizons deposited across much of

the area of the seismic survey, such as maximum flooding or other high-stand surfaces. If

such surfaces are sequentially subjected to faulting and folding, it is necessary to quantify

this deformation in order to extract geologic horizons.

1 Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines
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Perhaps the most straightforward way to extract a geologic horizon is by manual picking.

Manual picking is often used in conjunction with autotracking methods (e.g., Howard, 1990),

which track seismic events by following local extrema or zero crossings in amplitude in a

seismic image. Most autotracking methods are not fully automatic, and an experienced

interpreter is often required, for example, to identify seed points of coherent events to track,

or to correlate events across faults. An obvious disadvantage of manual interpretation is that

the process can be slow, because human interaction is required. The advantage, however, is

that an experienced interpreter can pick horizons in areas in which a fully automatic method

might have difficulty. Such areas could arise from a combination of geological (e.g., faults,

unconformities, and complex stratigraphy) and geophysical (e.g., imaging and processing

artifacts, noise, and multiples) complications (R. Howard, personal communication).

Alternatives to horizon autotracking methods include volume interpretation methods

(e.g., Stark, 1996), which, rather than tracking single events, process simultaneously an

entire seismic volume. Automatic seismic image flattening (Lomask et al., 2006; Parks,

2010; Stark, 2004) is an example of a volume interpretation method. Automatic seismic

image flattening could potentially identify all horizons in an image, but the method is unable

to match horizons across faults unless additional information (e.g., fault slip) is provided.

Moreover, most automatic flattening methods are limited to only vertical shearing of an

image, but images with non-vertical faults such as the one shown in Figure 5.2(a) clearly

cannot be flattened by vertical shear alone.

A fully automatic method (e.g., Tnacheri & Bearnth, 2007) for extracting geologic hori-

zons is ideal. Toward this end, we propose an automatic method that can be used to

extract all geologic horizons in an image, consisting of two steps: image unfaulting followed

by image unfolding (i.e., image flattening). To unfault a seismic image, we first use the

method described by Hale (2013b) to estimate fault locations and dip-separation vectors,

the displacement vectors along the dip direction of a fault surface. Then, after interpolating

estimated dip-separation vectors at locations between faults, we unfault the image. To un-
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fold an unfaulted image, we use non-vertical image flattening (e.g., Luo & Hale, 2011). By

unfaulting and then unfolding an image, we obtain an image in which a surface of constant

relative geologic time maps to a geologic horizon.

List of Symbols

x = Coordinates in present-day space.

w = Coordinates in unfaulted space.

u = Coordinates in unfolded space.

t̃(w) = Dip-separation vectors.

t(w) = Interpolated dip-separation vectors.

h̃(w) = Unfaulted image computed using t̃(w).

h(w) = Unfaulted image computed using t(w).

n(x) = Normal vectors.

r(u) = Unfolding shifts.

s(u) = Combined unfaulting and unfolding shifts.

J(u) = Jacobian matrix corresponding to w(u).

Jr(u) = Jacobian matrix for rotation.

5.3 Image unfaulting

To unfault an image, we must first estimate fault locations and fault slip. For the

examples shown in this paper, we use the method described by Hale (2013b) to automatically

compute fault surfaces and dip separation, the component of fault slip along the dip direction

of a fault, from a 3D seismic image. Although we choose to use Hale’s (2013b) method, other

methods (e.g., Admasu, 2008; Aurnhammer & Tönnies, 2005; Borgos et al., 2003; Liang et al.,

2010) could also be used to estimate fault locations and fault slip.

For an image f(x), where x = (x1, x2, x3) are coordinates in the present-day space,

the estimated dip-separation vectors t̃(w), where w = (w1, w2, w3) are coordinates in the
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Figure 5.1: A fault dip-separation vector. At wf on the footwall side of the fault, the dip
separation is zero. At wh on the hanging wall side of the fault, the dip-separation vector
t̃(wh) specifies the location of the image sample that aligns with the sample on the footwall
side.

unfaulted space, can be used to compute an image

h̃(w) = f(w + t̃(w)) (5.1)

in which seismic events are aligned across faults where t̃(w) is specified. An example of a

dip-separation vector for a synthetic 2D seismic image is shown in Figure 5.1. In the figure,

wf indicates the location of an image sample on the footwall side of the fault, while wh

indicates the location of the corresponding sample on the hanging wall side of the fault. The

dip-separation vector t̃(wh) specifies the location of the image sample that, once shifted to

wh on the hanging wall side, aligns with the image sample at wf on the footwall side. Note

from equation 5.1 that events are shifted only at locations where the dip separation t̃(w) is

specified. Because we estimate dip separation only at locations where we have identified a

fault surface, we must interpolate dip-separation vectors at locations between faults to avoid

creating new discontinuities in an image when unfaulting.

Our convention is that dip-separation vectors t̃(w) specify the separation on the hanging

wall side of a fault. Because we will interpolate these dip-separation vectors (e.g., Fig-

ure 5.3(a)) between faults, we must also specify dip-separation vectors on the footwall side
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of a fault so that the relative separation on opposing sides of a fault do not change after

interpolation. Because dip-separation vectors specify the separation on only the hanging

wall side of a fault, the dip separation on the footwall side must be zero (see Figure 5.1).

For example, Figure 5.2(a) shows a subsection of a 3D seismic image from offshore Nether-

lands with the vertical component of estimated dip-separation vectors, i.e., the fault throw,

overlaid. Notice that on the hanging wall sides of faults, the fault throws are nonzero, while

on the footwall sides, the fault throws are zero. Note that Figure 5.2(a) and Figure 5.3(a)

show the same fault throws on the hanging wall sides of faults, but only Figure 5.2(a) shows

the zero-valued fault throws on the footwall sides of faults.

To interpolate dip-separation vectors at locations between faults, we use blended neigh-

bor interpolation (Hale, 2009a). For Euclidean distances, blended neighbor interpolation

is similar to natural neighbor interpolation (Sibson, 1981) and discrete Sibson interpola-

tion (Park et al., 2006). Although we use blended neighbor interpolation, in principle any

smooth interpolation would suffice. However, it is important that the interpolation satisfies

the interpolation condition, which requires that the interpolant at known locations matches

exactly the known values, because we must make sure that interpolation does not change

the dip separation estimated at fault locations.

To interpolate a vector field, we interpolate separately each vector component. Fig-

ure 5.2(b) shows the blended neighbor interpolation of the estimated fault throws shown in

Figure 5.2(a). Using the interpolated dip-separation vectors t(w) estimated from an input

image f(x), the unfaulted image h(w) is computed as h(w) = f(w + t(w)). Figure 5.3(b)

shows the unfaulted image computed from the interpolated dip-separation vectors shown in

Figure 5.2(b) and the input image shown in Figure 5.2(a). Similarly, Figure 5.6(b) shows

the unfaulted image computed from the input image shown in Figure 5.6(a) and the blended

neighbor interpolation of the dip-separation vectors whose vertical component is overlaid on

the image in Figure 5.6a.
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Figure 5.2: A seismic image (a) overlaid with the fault throw, and the blended neighbor
interpolation (b) of the fault throw.
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Figure 5.3: A seismic image (a) overlaid with the fault throw, and the unfaulted image (b).
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Figure 5.4: The seismic image shown in Figure 5.3(a) is unfaulted and unfolded (a) using
the composite shift vectors (b).
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Figure 5.5: The inline (a) and crossline (b) components of the composite shift vectors used
to unfault and unfold the seismic image shown in Figure 5.3(a).
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Figure 5.6: A seismic image (a) overlaid with the fault throw, and the unfaulted image (b).
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Figure 5.7: The seismic image shown in Figure 5.6(a) is unfaulted and unfolded (a) using
the composite shift vectors (b).
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5.4 Image unfolding

To unfold an image, we develop a new method for automatic image flattening (Lomask,

2003; Lomask et al., 2006; Parks, 2010; Stark, 2004), which is used to compute seismic

images in which sedimentary layering is horizontal. Most methods for automatic flattening

are limited to only vertical shearing of an image. Flattening by vertical shear, however, can

significantly distort image features (Luo & Hale, 2011). Moreover, for seismic images such as

the one shown in Figure 5.2(a) with non-vertical faults, the true geologic deformation clearly

is not vertical. For this reason, we do not limit our unfolding method to vertical shear only,

but instead allow for non-vertical shift vectors.

To unfold an (unfaulted) image h(w), we must find a mappingw(u), where u = (u1, u2, u3)

are coordinates in the unfolded space, such that the image

g(u) = h[w(u)] (5.2)

is flat, i.e., all horizons in the image are horizontal. We write the mapping w(u) in terms of

an unknown shift vector field r(u):

w(u) = u− r(u) , (5.3)

which has a corresponding Jacobian matrix J = ∂w/∂u:

J =

⎡
⎣ 1− ∂r1/∂u1 −∂r1/∂u2 −∂r1/∂u3

−∂r2/∂u1 1− ∂r2/∂u2 −∂r2/∂u3

−∂r3/∂u1 −∂r3/∂u2 1− ∂r3/∂u3

⎤
⎦ . (5.4)

The Jacobian matrix J contains partial derivatives of the desired shift vector field r(u).

Next, given unit normal vectors n = [n1 n2 n3 ]
T that we compute for every image sample

using structure tensors (Fehmers & Höcker, 2003; van Vliet & Verbeek, 1995), we can write

the Jacobian matrix for rotation, which depends on the normal vectors:

Jr =

⎡
⎣ n3 + n2

2/(1 + n3) −n1n2/(1 + n3) n1

−n1n2/(1 + n3) n3 + n2
1/(1 + n3) n2

−n1 −n2 n3

⎤
⎦ . (5.5)
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The matrix Jr is a rotation matrix for a rotation about an axis [n2 − n1 0 ]T by an angle

arccos(n3). Normal vectors n transform with the transpose of the Jacobian (Luo & Hale,

2011; Parks, 2010), so the transformed normal vectors m (the normal vectors in the unfolded

space) are given by

m = JTn . (5.6)

If all normal vectors m point downward in the transformed image, i.e., m = [ 0 0 1 ]T

everywhere, then the image is flat. It is straightforward to check that JT
r n = [ 0 0 1 ]T, so

that if J = Jr, then applying the shifts r(u) will unfold the image from which the normal

vectors n were computed.

Rather than solve J = Jr for the shifts r(u) contained in J, however, we instead choose

to solve

JTJr = I , (5.7)

because equation 5.7, as we will see, leads to explicit equations that determine the flatness of

a transformed image g(u). Solving equation 5.7 gives an approximately isometric mapping

w(u) that satisfies the so-called flexural slip constraints (Mallet, 2004), which assume that

the deformation mechanism for geologic folding is flexural slip. Isometric mappings are

desirable because they preserve metric properties. That is, if we could isometrically map an

image to an unfolded flattened image, then all metric properties (e.g., length, angle, area,

and volume) of features in the original image would be preserved in the unfolded image.

Isometric mappings, however, exist only in special cases (Floater & Hormann, 2005), so in

general, we solve for a mapping w(u) that is only approximately isometric.

The columns of J contain vectors D1w, D2w, and D3w:

J = [ D1w D2w D3w ] , (5.8)

where
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Figure 5.8: At any point w on a smooth surface, there exist vectors D1w and D2w tangent
to the surface and orthogonal to a normal vector n. The mapping w(u), with inverse
mapping u(w), determines local metric properties around points w and u. For seismic
image flattening, we solve for an approximately isometric mappingw(u) that flattens geologic
horizons.
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D1w =
∂w(u)

∂u1

=

(
1− ∂r1

∂u1

, − ∂r2
∂u1

, − ∂r3
∂u1

)
,

D2w =
∂w(u)

∂u2

=

(
− ∂r1
∂u2

, 1− ∂r2
∂u2

, − ∂r3
∂u2

)
,

D3w =
∂w(u)

∂u3

=

(
− ∂r1
∂u3

, − ∂r2
∂u3

, 1− ∂r3
∂u3

)
.

(5.9)

Vectors D1w and D2w are tangent to a surface (e.g., a horizon) at u and thus are orthogonal

to a vector n(u) normal to the surface at u (see Figure 5.8). The vector D3w is tangent to

the line for which the horizontal coordinates u1 and u2 in the unfolded space are constant,

i.e., the line in coordinates w that maps to a vertical line in coordinates u (Mallet, 2004). For

an exactly isometric mapping w(u), tangent vectors D1w, D2w, and D3w are orthonormal

vectors, and the corresponding Jacobian matrix is orthogonal. Next, if we denote the columns

of Jr by D1ŵ, D2ŵ, and D3ŵ, then

Jr = [ D1ŵ D2ŵ D3ŵ ] , (5.10)

and equation 5.7 states

⎡
⎣ (D1w)T(D1ŵ) (D1w)T(D2ŵ) (D1w)T(D2ŵ)

(D2w)T(D1ŵ) (D2w)T(D2ŵ) (D2w)T(D2ŵ)

(D3w)T(D1ŵ) (D3w)T(D2ŵ) (D3w)T(D2ŵ)

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ . (5.11)

Note that vectors D1ŵ, D2ŵ and D3ŵ are orthonormal, and so Jr is an orthogonal ma-

trix. The matrix JTJr characterizes local metric properties such as length, angle, area, and

volume, so by setting this matrix equal to the identity, we constrain the type of deforma-

tion parameterized by the mapping w(u). Equation 5.11 gives nine linear equations for

three unknowns—the components of the shift vector field r(u)—to be solved at each image

sample:

n1

(
1− ∂r1

∂u1

)
− n2

∂r2
∂u1

− n3
∂r3
∂u1

= 0 ,

−n1
∂r1
∂u2

+ n2

(
1− ∂r2

∂u2

)
− n3

∂r3
∂u2

= 0 ,

(5.12)
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and

α

(
1− ∂r1

∂u1

)
− γ

∂r2
∂u1

+ n1
∂r3
∂u1

= 1 ,

γ

(
1− ∂r1

∂u1

)
− β

∂r2
∂u1

+ n2
∂r3
∂u1

= 0 ,

−α ∂r1
∂u2

+ γ

(
1− ∂r2

∂u2

)
+ n1

∂r3
∂u2

= 0 ,

−γ ∂r1
∂u2

+ β

(
1− ∂r2

∂u2

)
+ n2

∂r3
∂u2

= 1 ,

(5.13)

and

−α ∂r1
∂u3

− γ
∂r2
∂u3

− n1

(
1− ∂r3

∂u3

)
= 0 ,

−γ ∂r1
∂u3

− β
∂r2
∂u3

− n2

(
1− ∂r3

∂u3

)
= 0 ,

−n1
∂r1
∂u3

− n2
∂r2
∂u3

+ n3

(
1− ∂r3

∂u3

)
= 1 ,

(5.14)

where

α = n3 + n2
2/(1 + n3) ,

β = n3 + n2
1/(1 + n3) ,

γ = −n1n2/(1 + n3) .

(5.15)

In total, we have 9N equations for 3N unknowns, where N is the number of image samples.

These equations can be represented in matrix form as

WAGr = b, (5.16)

where r is a (3N × 1) unknown shift vector, G is a (9N × 3N) matrix containing finite-

difference derivative approximations,A is a (9N×9N) diagonal matrix containing coefficients

specified in equations 5.12 through 5.14, W is a (9N × 9N) diagonal matrix containing

weights for each equation, and b is a (9N × 1) vector containing known constants specified

in equations 5.12 through 5.14. Then, the least-squares solution of equation 5.16 satisfies

(WAG)TWAGr = (WAG)Tb. (5.17)

90



The matrices W, A, and G are sparse, and in practice we do not explicitly form these

matrices. We solve equation 5.17 using a conjugate gradient solver, which requires only the

computation of vectors WAGy and (WAG)Tz, where y and z are arbitrary (3N × 1) and

(9N × 1) vectors, respectively.

Equation 5.7 describes an isometric mapping of an image to a unfolded image, but in

general, we cannot expect to find an exactly isometric mapping for all images. In fact, the

only image for which we can find an exactly isometric mapping is one in which the normal

vectors are constant. For all other images, equations 5.12, 5.13, and 5.14 cannot be satisfied

exactly, and we must decide which equations to emphasize.

Equations 5.12, 5.13, and 5.14 correspond to entries in the matrix JTJr on the left side

of equation 5.11, and they characterize the lengths of and angles between tangent vectors

D1w, D2w, and D3w. Specifically, the diagonal entries of the metric tensor characterize

lengths of tangent vectors, while the off-diagonal entries characterize angles between tangent

vectors. For image unfolding, we give most weight to equations 5.12, which determine the

angle between the surface tangent vectors D1w and D2w and the normal vector n(u). If

these equations are satisfied, then the image g(u) = h(w(u)) = h(u − r(u)) obtained by

applying the shifts r(u) will be flat, and all horizons will be horizontal.

We give less weight to equations 5.13. The four corresponding entries in the matrix JTJr

resemble what is referred to as the first fundamental form (Floater & Hormann, 2005), which

characterizes lengths, areas, and angles measured on a surface. If the first fundamental form

equals the identity, then the surface is said to be locally developable, meaning it is isometric

to a plane. Assuming that a geologic horizon was initially deposited as a horizontal layer

(i.e., a plane), a developable geologic horizon would indicate that metric properties measured

on the horizon have been preserved since its initial deposition.

Finally, we give least weight to equations 5.14, which determine the length of tangent

vector D3w and the angles it forms with surface tangent vectors. Recall that D3w is tangent

to the line in coordinates w that maps to a vertical line in the unfolded coordinates u. Thus,
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if D3w is a unit vector parallel to the normal vector n, then the thickness of sedimentary

layers measured perpendicular to bedding will be preserved in the unfolding process. For

most images, we cannot preserve thickness while unfolding, so we give the corresponding

equations least weight.

Figure 5.4(a) and Figure 5.7(a) show unfolded unfaulted images computed from the

unfaulted images shown in Figure 5.3(b) and Figure 5.6(b), respectively. The weights given

to equations 5.12, 5.13, and 5.14 for both examples were 1.0, 0.1, and 0.01, respectively.

Normal vectors were computed using structure tensors with Gaussian smoothing filters (Hale,

2009c) with a vertical half-width of 32 ms and horizontal half-widths of 50 m. An additional

weight computed from eigenvalues of the structure tensor provides a measure of the planarity

of image features, and is used to give more weight to coherent, locally planar image features.

In addition, when solving equations 5.12, 5.13, and 5.14, we used smoothing preconditioners

as described by Parks (2010) to speed convergence. The smoothing filter in the vertical

direction had a half-width of 24 ms, while the filters in the horizontal directions had half-

widths of 150 m.

5.5 Horizon extraction

Once we obtain an unfolded unfaulted image, the corresponding unfolding shift vectors,

and the interpolated dip-separation vectors, we can extract geologic horizons such as those

shown in Figure 5.9.

We extract a horizon by first selecting a horizontal slice of constant u3 in an unfolded

unfaulted image g(u). Next we form a composite mapping x(u) by combining the mapping

x(w) = w + t(w) used to unfault an image with the mapping w(u) = u − r(u) used to

unfold an image to obtain

x(u) = u− s(u) , (5.18)

where s(u) are the composite shift vectors

s(u) = r(u)− t(u− r(u)) , (5.19)
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Figure 5.9: Geologic horizons extracted using the composite shift vector fields shown in
Figure 5.4(b) and Figure 5.5(a) and Figure 5.7(b) (b). On each horizon, colors represent the
vertical component of the corresponding composite shift vector field.

which allows for a direct mapping from an image f(x) to an unfolded unfaulted image g(u)

with

g(u) = f(u− s(u)) . (5.20)

The image g(u) is computed from f(x) using 3D sinc interpolation. We used equation 5.20

to compute the unfolded unfaulted image shown in Figure 5.4(a) from the seismic image

shown in Figure 5.3(a) using the composite shift vectors whose vertical component is shown

in Figure 5.4(b) and whose inline and crossline components are shown in Figure 5.5(a) and

Figure 5.5(b), respectively. Similarly, Figure 5.7(a) shows the unfolded unfaulted image

computed from the seismic image shown in Figure 5.6(a) using the composite shift vectors

shown in Figure 5.6(b). Note that in the chaotic region located between 1.2 and 1.4 seconds

in Figure 5.6(a), it is difficult to estimate accurate normal vectors, and for this reason some

of the small-scale folds in this region are not completely unfolded. Using the composite shift

vectors s(u), we map a surface of constant u3, which corresponds to constant geologic time

or constant depositional time, to a geologic horizon in present-day coordinates. Figure 5.9(a)

shows a geologic horizon extracted from the composite shift vectors shown in Figure 5.4(b)

and Figure 5.5, while Figure 5.9(b) shows a geologic horizon extracted from the composite
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shift vectors shown in Figure 5.7(b). In the horizon in Figure 5.9(a), notice the en échelon

faults that can also be clearly seen in the seismic image in Figure 5.3(a). In the horizon in

Figure 5.9(b), notice the roughly circular fault polygons, which correspond to the conical

fault surfaces described by Hale (2013b). Note that although we show only a single horizon

for each image, it is trivial to extract another horizon by simply choosing a different horizontal

slice of constant u3 from an unfolded unfaulted image.

5.6 Conclusion

We have presented a method to automatically unfault and unfold seismic images. The

method requires an estimate of fault locations and dip-separation vectors, which, for the

examples shown in this paper, we obtain using the method described by Hale (2013b).

Unfolded, unfaulted images are images in which horizontal slices correspond to a constant

geologic time, and the geologic age of horizontal slices increases with increasing time. The

cost of the method depends somewhat on the complexity of the geology in an image, but

for the previous examples which contained 90×221×220 image samples, the total runtime

was on the order of a few minutes on an 8-core workstation, which was roughly the same

amount of time required to locate faults and estimate dip-separation vectors using Hale’s

(2012) method. For an image with 1000×1000×1000 samples, the total runtime is on the

order of a few hours.

Some limitations remain in our method. One is that we are currently using only the

estimated dip separation to unfault an image, but in reality, fault slip consists of both dip

and strike separation. Strike separation, however, is more difficult to estimate not only be-

cause strike separation tends to be parallel to sedimentary layering, but also because seismic

images have lower lateral than vertical resolution. There are also difficulties with estimating

dip separation for certain fault geometries, e.g., intersecting faults, which require multiple

dip-separation vectors at a single location on a fault surface to accurately describe the fault-

ing process. Another limitation arises from the way in which we compute normal vectors.

Because normal vectors are computed in local windows (and, moreover, are constrained to
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point in the positive time or depth direction), they cannot distinguish overturned or recum-

bent horizons. This limitation could be overcome by using a different method for computing

normal vectors or by filtering normal vectors computed using structure tensors to distinguish

overturned or recumbent horizons.

Our two-step process of image unfaulting followed by image unfolding might suggest

that true geologic deformation is also a two-step process, i.e., deposited sediments are first

deformed during a period of folding that is temporally separate from a subsequent period

of faulting. Of course this is not the case, as faulting and folding do not occur as distinct

events. Thus, our method does not truly reverse the geologic deformation resulting from, for

example, syntectonic sedimentation, although it is still able to unfault, unfold, and extract

horizons from images containing such deformation.

Although our method consists of two steps—image unfaulting followed by image unfolding—

it is possible to combine these two steps into one, by solving for shifts that unfold an image

while constraining the shift vectors to be equal to dip-separation vectors estimated at fault

locations, or alternatively by changing the equations we solve at the known locations of fault

surfaces. Recall that when unfolding an image, we try to preserve surface metric properties

(equation 5.13) and sedimentary layer thickness (equation 5.14), while emphasizing image

flatness (equation 5.12). The unfolding process, however, can only preserve surface metric

properties and layer thickness with respect to the input image, which, for the examples

shown in this paper, was an unfaulted image. Preserving surface metric properties and layer

thickness with respect to the original faulted and folded image would be more appropriate,

but to do so would require a one-step image unfaulting and unfolding process.
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CHAPTER 6

SUMMARY AND SUGGESTIONS

Seismic images provide relevant geologic information that aid in our understanding of the

earth’s subsurface. In this thesis, I developed improved methods for reflection seismic data

processing, including methods for velocity estimation, seismic migration, and interpretation

of seismic images. The main results of this thesis, as well as suggestions for future research,

are summarized below.

Performing velocity analysis to estimate the velocity model is a key step in processing

reflection seismic data. In Chapter 2, I proposed a method for NMO velocity analysis

using weighted semblance spectra. The weighting function introduced in the semblance

calculation was designed to minimize semblance, and, as was demonstrated, this weighting

function increased not only the resolution but also the accuracy of the resulting semblance

spectra. The weighting function used in the semblance calculation was derived by analyzing

the change in NMO time for a small change in velocity, i.e., the weight was a function of

both offset and time. For future work, it would be worthwhile to investigate other weighting

functions, for example, those with weights that depend on reflection angle rather than offset,

that might offer superior sensitivity to changes in velocity.

Weighted semblance can also be viewed as a weighted stack. With this in mind, we could

follow a similar approach with other types of gathers besides common midpoint gathers.

For example, by introducing a weighting function when stacking common image or common

angle gathers, we could potentially increase the resolution of the resulting seismic image. This

would improve our ability to identify and interpret geologic features from seismic images,

and could also serve to reduce the uncertainty in information obtained from images.

In Chapter 3, I demonstrated that, by computing a seismic image by minimizing the

difference between predicted data and time-shifted observed data, I was able to use an
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erroneous velocity model to obtain an image with features similar to those computed using a

more accurate velocity. A primary motivation for this work was the observation that errors

in the velocity models we compute, which are unavoidable in practice, lead to differences

between the traveltimes of predicted and observed data that, in turn, degrade the seismic

image. However, it is worth noting that traveltime differences generally result from more

than just velocity errors. For example, an inaccurate assumption of the model of wave

propagation in the subsurface can also lead to significant traveltime differences. In fact, one

of the primary motivations for using a more accurate, and typically more expensive, model of

wave propagation is the resulting reduction in traveltime differences and the corresponding

improvement in the quality and accuracy of migration images.

The examples shown in Chapter 3 were computed by solving the acoustic constant-density

wave equation in two dimensions. The earth, of course, is neither acoustic with constant

density, nor two-dimensional. Thus, areas for future research include the extension of the

method proposed in Chapter 3 to more accurate wave equations, and the extension to three

dimensions. Although both extensions would require an increase in computational effort, I

expect them to otherwise be straightforward.

Another potential topic for future research is the extension of the method for migration

proposed in Chapter 3 to velocity analysis. Following the computation of an image using

our proposed method, there remained significant differences in traveltime between predicted

and observed seismic data. These traveltime differences were indicative of the errors in the

velocity model used for migration. Thus, to update the velocity model, we might invert the

traveltimes to find the optimal velocity model for which the traveltimes of predicted and

observed data best match.

In Chapters 4 and 5, I proposed methods for automatic horizon extraction to aid in the

interpretation of seismic images. In Chapter 4, I presented a novel method for seismic image

flattening using non-vertical shifts, which are necessary to flatten without distorting image

features resulting from non-vertical geologic deformation. An advantage of the proposed
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method is its flexibility; one has the ability to flatten an image by vertical shear, by rotation,

or by a combination of vertical shear and rotation of image features. Unfortunately, this

flexibility also presents a limitation, because the true type of deformation must be known

and specified beforehand in order for an image to be flattened according to the true geologic

deformation. In practice, it might be difficult to determine the true deformation.

However, the framework for seismic image flattening proposed in Chapter 4 could perhaps

be used to invert for the type of geologic deformation that occurred. One approach might be

to seek the deformation that minimizes the distortion of certain image features, for example,

to solve for the deformation that best preserves image features within geologic horizons.

Other approaches could also be devised, given some a priori knowledge of the type of geologic

deformation that occurred.

Due in part to the difficulty in determining the true geologic deformation, in Chapter 5, I

proposed a method for unfaulting and unfolding seismic images, in which the unfolding step

was performed by solving for unfolding vector shifts that yield an approximately isometric

mapping between a seismic image and the corresponding flattened image. Choosing to

always solve for an approximately isometric mapping eliminates the need to specify the type

of deformation, while also minimizing the distortion of image features while flattening.

For the method proposed in Chapter 5, a seismic image is first unfaulted by shifting image

features according to a vector field computed by estimating (at fault locations) and inter-

polating (between fault locations) dip-separation vectors. One limitation of this approach is

that all faults within a seismic image are unfaulted simultaneously. In reality, the faulting

observed in an image may have occurred in distinct episodes at different times. As a result,

some fault systems created by multiple episodes of faulting cannot be correctly unfaulted

with the proposed approach. For example, intersecting faults cannot be correctly unfaulted

by simultaneously shifting image features according to interpolated dip-separation vectors.

After unfaulting, an image is unfolded by solving for an approximately isometric mapping

that best preserves metric properties such as angle, length, and volume, while also flattening
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the image. Seeking to preserve metric properties while flattening minimizes the distortion

of image features. With our approach, however, these properties are preserved with respect

to only the input seismic image, which was an unfaulted image in the examples shown in

Chapter 5. This presents another limitation, because ideally we should seek to preserve

metric properties, and thereby minimize the distortion of image features, with respect to the

present-day seismic image prior to unfaulting.

One way to address the two limitations mentioned above is to unfault and unfold a seismic

image in one single step, perhaps by constraining the unfolding shift vectors to be equal to

estimated dip-separation vectors at fault locations, or by constraining corresponding image

samples separated by a fault to lie on the same geologic horizon. In any case, it is more

appropriate to minimize distortions of image features relative to the seismic image of the

present-day subsurface, rather than an unfaulted image.
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