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SUMMARY

Magnetic Resonance Elastography (MRE) is a non-invasive phase contrast MR imaging

method that captures the three-dimensional harmonic wave propagation introduced into subject

by external actuators. This wave propagation vector field is processed into stiffness maps

of various kinds that are used to assess the pathological changes that cannot be detected

otherwise with non-invasive imaging methods. As in all other MR imaging methods, long

acquisition duration is one of the important limiting factors for MRE. There are different

approaches to reduce the scan time, such as as reduced motion encoding MRE or fractional

multi-frequency MRE; however, these methods are all at the cost of the reduced signal to noise

ratio (SNR) or reduced phase to noise ratio (PNR). Recently we have introduced two accelerated

MRE methods, which do not compromise SNR or PNR while reducing the acquisition time

by a factor of three compared to the conventional MRE methods. The first one is Selective

Spectral Displacement Projection (SDP) MRE method that can encode a mechanical motion

of multiple frequency components at once. The second one is SampLe Interval Modulation

(SLIM) MRE which can encode the mono-frequency motion in multiple directions concurrently.

In this dissertation, I propose a final optimal method that integrates the technique developed in

SLIMMRE into SDP MRE, namely Unified sampLing Time Interval ModulATion (ULTIMATe)

MRE. This method is the optimal MRE method in the sense that it can reach the limit of time

efficiency without sacrificing SNR and PNR. A new mathematical framework was introduced

xiii



SUMMARY (Continued)

to accommodate all three methods while preventing any ambiguity which might otherwise can

occur with the existing MRE notation.

xiv



CHAPTER 1

INTRODUCTION

Magnetic Resonance Elastography (MRE) is a phase contrast based MR imaging method

that captures snapshots of harmonic wave propagation and encodes those wave images into the

phase part of the complex MRI image (1). These phase contrast images are obtained by placing

motion encoding gradients (MEG) synchronized with externally-driven harmonic wave motion

into an MR imaging pulse sequence (Figure 5).

Changes in tissue structure and composition can alter its elastic and viscous properties

(2). For centuries manual palpation has been used for detecting these changes successfully.

However, manual palpation has limitations. First of all, organs behind bones or behind other

organs cannot be palpated, such as brain, heart or lungs. In some cases fat tissue under the

skin makes it very difficult for physicians to execute manual palpation successfully. Another

issue is that changes in tissues should be sufficiently large enough for physicians to detect it.

On top all those problems, manual palpation is subjective (3).

MRI is already known for its capability of detecting changes in tissue structure and com-

position (4). However, these changes may not be evident in conventional T1, T2 or diffusion-

weighted MR imaging,etc (5) .

On the other hand, using MRE, as long as we can introduce mechanical motion into the

target organ, can measure the viscoelastic properties of that organ remotely, or in other words

without direct contact. Further, these measurements yield a quantitative viscoelastic map of

1
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the tissue based on the measured wave pattern such that numbers do not change from MRI

system to MRI system because wave images are independent of relaxation parameters of the

organ.

MRE is increasingly studied for detection, classification and monitoring of fibrotic diseases

and injuries to almost all anatomical regions, including liver, brain, breast, muscle, kidney,

heart, prostate and soft tissue (2) . MRE has also been utilized for non-invasive tracking

the development of engineered tissues (6). Besides studies involving in-vivo, ex-vivo and in-

vitro subjects, MRE is being used for increasing our understanding of relationship between

mechanical parameters the MRE estimates and underlying mechanical structures (7; 8; 9).

An MRE scan at one frequency can only yield mechanical parameters for that particular

frequency. These mechanical parameters are part of the projection of mechanical structure (or

mechanical model) of the subject for a given frequency, as in eigenvalues of a system. In order

to realize mechanical models, the mechanical parameters need to be determined at multiple

frequencies. The number of those frequency points are determined by the unknown parameters

in the mechanical model and the accuracy of the mechanical model increases as the frequency

spans get wider. Therefore in order to collect mechanical parameters for a range frequencies

and to understand the underlying mechanical structure of the subject, MRE scans need to be

repeated at different multiple frequencies. Although, in some cases the repetition process can

be eliminated at the cost of motion encoding efficiency, this will result in reduced SNR for

the acquired wave image (10; 11). The SNR of the wave image eventually affects the error of

mechanical parameter estimation, hence the error in mechanical model estimation.
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Since its inception in 1995 (1), MRE has been constantly refined. Early in the development,

scalar wave fields in two dimensions were acquired for a determination of the shear stiffness (a

value closely related to magnitude of complex shear modulus) at one specific mechanical excita-

tion frequency (1). Soon it was recognized that, since shear stiffness is a frequency-dependent

quantity, additional information at multiple frequencies would be needed to establish tissue ma-

terial parameters (e.g, by fitting rheological models to the measured, frequency-dependent wave

quantities) (12; 13). In addition, (14) pointed out that, since a compressional wave is always

present in an MRE experiment, it will introduce biases, when inverting the scalar wave images

to determine tissue stiffness. To overcome this problem, the curl operator needs to be applied to

the data, and this requires the acquisition of tissue vibrations along all three spatial directions

inside a volume. A recent study demonstrated that the acquisition of all displacement compo-

nents of a multifrequency vibration is very useful for increasing the spatial resolution and the

quality of MRE-derived elastograms by applying a new least square error-based reconstruction

method to 3D MRE data (15). Also, other current developments in both, multifrequency and

monofrequency MRE propose the acquisition of three components of the displacement vector

(16; 17; 18).

A single MRE image corresponds to a snapshot of the mechanical wave motion in tissue. A

sequence of such snapshots is needed at different time steps to calculate the vibration harmonics

of complex wave images. The array of images is then further processed to create elastograms.

When performing MRE, depending on the specific approach, an acquisition block of four to

eight individual phase-difference images is acquired in order to determine the complex wave



4

image for one sensitization direction. For recording all components of the displacement vector,

this acquisition block is typically repeated twice with MEGs applied along the remaining two

coordinate axes resulting in a total of twelve to 24 phase-difference images.

Time is always the limiting factor on MRI technology. Generally speaking MRE is increasing

the duration of an MRE scan compared with a standard MRI scan by a factor of 8 to 16. This

longer scan duration causes problems on many different levels. First of all, longer scan times

are not bearable nor feasible for most of the patients. Second, multiple scans over a longer

time period means increased possibility of image mis-registration. Actually, in most of the

cases image mis-registration already happens, so longer duration makes this misalignment even

worse. This causes artifacts, decreasing SNR and introducing unknown errors in wave images.

Third, cost per unit time of MRI scanner is already very high and this longer acquisition times

reduces the chances of patient or hospital affording these scans or forces the hospital to speed

up the scans by sacrificing the quality of scans.

In this dissertation, we present a novel MRE method and pulse sequence that can reduce

the acquisition duration by a factor of three without sacrificing motion encoding efficiency. To

be able to further compare this new method with the conventional methods, it is necessary

to introduce a new term, the ”Motion Information”. A mechanical motion can be composed

of multiple frequencies and/or multiple directions. A motion information is a wave image

(single slice, multi slice or volumetric) obtained by encoding mechanical motion at only one the

frequency across a particular direction. The MRE method we present in this study can acquire

multiple motion information while keeping the total acquisition time compared the conventional
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MRE. Although there are accelerated MRE methods presented in the literature, they are all at

cost of motion encoding efficiency to save time. The method presented in this study, keeps the

same motion encoding efficiency given the conditions such as, enough gradient power, enough

mechanical actuation strength.



CHAPTER 2

PREVIOUS WORK

There are multiple approaches in the literature to speed up MRE. They can be categorized

under two groups. In the first group (compromising accelerated methods), the methods reduce

the scan time of MRE by compromising encoding efficiency, or the Phase-to-Noise Ratio(PNR)

of the MRE images. In the second group methods (uncompromising accelerated methods), the

methods keep the same encoding efficiency and PNR, but provide more information compared

to the same duration of conventional MRE.

However, note that, the second group of methods are speeding up the total acquisition by

generating more motion information in the same duration of conventional MRE, rather than

reducing the acquisition time. In other words, the second group of methods are viable when one

needs to encode more than one motion information (direction and/or frequency). For almost all

of the cases, even in phantom studies, more than one motion information is needed. Therefore,

it would be more beneficial to chose the second group methods over first group.

2.1 Compromising Accelerated Methods

2.1.1 RME Reduced Motion Encoding

The reduced motion encoding method was introduced in (10). This study focused on how

to retrieve the motion information without aliasing or ambiguity with the minimum number

of time steps. It considers both evenly distributed time steps and non-evenly distributed time

6
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steps. It also investigated the gradual increase in the wave image quality as new time steps

are added to the overall scan. This allows the user to keep scanning until a desired quality of

wave image is obtain and then stop there. Similar to wavelets, the user decides what is the

acceptable quality and stops right at that point to avoid acquiring redundant information. But

this method encodes one motion information at a time. Therefore, increasing the number of

time steps would not allow user to encode more information, although a higher number of time

steps would yield higher PNR.

2.1.2 Fractional Encoding

In conventional MRE the frequency of the motion encoding gradient (MEG) is matched to

the frequency of the harmonic (monofrequency) vibration; therefore, the minimum echo time TE

is increased by the duration of the MEG. This approach can suffer from low phase-to-noise ratio

(PNR), particularly when low vibration frequencies are applied in tissues with relatively fast

MR signal relaxation (short T2) such as occurs in the liver. Further, due to the long duration of

the MEG, conventional MRE is not suitable for the examination of non-static structures such

as the beating heart. To overcome this drawback, fractional encoding of harmonic motions,

also referred to as fractional MRE, was introduced (11). This method utilizes MEGs with

a duration shorter than the vibration period enabling fast data acquisition at the cost of a

decreased motion encoding efficiency. Fractional encoding schemes were applied in order to

examine the mechanical behavior of liver (12) and to reduce acquisition time in cardiac MRE

(19).
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Soon after, fractional MRE was refined for the simultaneous acquisition of multifrequency

vibrations along one spatial dimension within one temporally-resolved MRE experiment (20).

This approach is commonly referred to as multifrequency MRE. In multifrequency MRE, the

frequency-independent material parameters of the tissue are calculated either by fitting the

measured dispersion curves of the complex shear modulus to rheological models (20) or by

solving the inverse problem of viscoelasticity reconstruction employing an algebraic least-square

solution (21).

2.2 Uncompromising Accelerated Methods

2.2.1 SDP Selective Spectral Displacement Projection

In fractional encoding, studies employing the simultaneous acquisition of multifrequency

vibrations have been performed solely in 2D; only displacements perpendicular to the image

plane were measured. In spite of this limitation, the new insights gained by multifrequency 2D

MRE are significant, as a correlation of brain mechanics with the aging brain (22) as well as

with Multiple Sclerosis (23) and Normal Pressure Hydrocephalus (NPH) (24) has been revealed.

Recently, MRE studies were conducted in which the full 3D displacement field was acquired

(17; 25; 14). 3D MRE exhibits several advantages when compared with 2D MRE. For example,

in shear modulus-based approaches, the shear wave can be separated from the compression

wave by applying the curl-operator to the displacement field (14). In addition, using 3D MRE,

more realistic tissue models incorporating porosity can be considered (25) and tissue pressure

changes can be identified by analyzing the divergence of the 3D displacement field (17).



9

However, the benefits of 3D MRE are offset by a longer measurement time which increases

by a factor of three (the number of motion encoding directions) for each slice. Ultimately, for

the derivation of frequency-independent material parameters beyond the shear modulus, multi-

frequency 3D MRE data sets will have to be acquired. This further prolongs the measurement

time of conventional MRE, in which individual experiments are performed consecutively with

various monofrequency vibrations. An alternative would be to simultaneously excite and encode

multifrequency vibrations for each of the three motion encoding directions in successive steps,

reducing the number of individual experiments to three temporally-resolved MRE experiments

per image slice. However, this approach implies reduced motion sensitivity (motion encoding

efficiency) at vibration frequencies that do not match the MEG frequency (11). Further, a

higher number of MEG cycles does not increase the motion sensitivity, when the MEG and the

spectral components of the vibration have different frequencies. This issue is less of a prob-

lem using low mechanical vibration frequency MRE (fm ≤ 100 Hz) as is typically performed

in human scanners, where sufficient motion sensitivity can be provided using the fractional

technique.

In high mechanical vibration frequency MRE, however, a larger number of MEG cycles

needs to be applied for enhancing motion sensitivity, and the use of lower sensitivity fractional

encoding schemes is not reasonable (26; 9). These limitations were motivation for SDP MRE in

(27) to develop a fast algorithm for 3D motion encoding of a multifrequency signal composed

of three superposed sinusoidal vibrations. SDP-MRE method reduces the measurement time

without degrading motion sensitivity compared with conventional monofrequency MRE. In the
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SDP-MRE approach, three MEGs are applied simultaneously in the Read, Phase and Slice

directions. The sequence parameters are carefully chosen for exploiting the filter condition of

MRE, which has previously been applied to observe higher harmonics of a nonlinear shear wave

(28). This approach was named as selective spectral displacement projection (SDP)-MRE, since

the filter condition is exploited for selecting one frequency in each spatial direction. The selected

components are simultaneously encoded into the phase of the MR signal and the acquisition of

temporally resolved phase images enables the decomposition of the individual components.

2.2.2 SLIM SampLe Interval Modulation

SampLe Interval Modulation (SLIM-MRE) introduces a new motion encoding concept for

the displacement vector in monofrequency MRE (29). SLIM-MRE, is capable of acquiring all

components of the displacement vector from only eight phase-difference images. In SLIM-MRE,

the monofrequency vibration is encoded with different apparent frequencies for the three spatial

directions by intentionally mismatching the sampling intervals with respect to the three spatial

directions. In doing so, multidirectional data is encoded simultaneously and stored into the

same k-space, which was considered to be unfeasible since the inception of MRE, 20 years. Due

to the modulation of the sampling intervals, the individual displacement components can be

decomposed by applying a Fourier transform.



CHAPTER 3

BACKGROUND

3.1 Wave Propagation in Viscoelastic Materials

For an isotropic, homogeneous, viscoelastic compressible medium one can use the following

formulation of the equation of motion for small perturbations about an operating point (30).

(λ+ μ)∇∇ · u+ μ∇2 = ρ
δ2u

δt2
(3.1)

Here, u is the displacement vector, ρ is the density of the medium, ∂
∂t denotes a derivative with

respect to time, ∇2 is the spatial Laplacian operator dependent upon the chosen coordinate

system, and λ and μ are the Lamé constants of the medium for a given frequency. In general

Lamé constants are actually complex functions of frequency where real part signifies storage and

imaginary part denotes loss. Parameter μ is also called shear modulus and this will be the name

commonly used in the MRE literature. For a linear viscoelastic integer Voigt material model, the

rate-dependent Lamé constants are expressible as λ(t) = λ0+λ1
∂
∂t and μ(t) = μ0+μ1

∂
∂t where

λ0, λ1, μ0 and μ1 are coefficients of volume compressibility, volume viscosity, shear elasticity

and shear viscosity, respectively.

The wave equation in (Equation 3.1) is widely used in stiffness map estimations of various

kinds. Wave images obtained from the MRE scans provides u information. Since u is a harmonic

motion of known frequency and assuming we know the density ρ, we can solve (Equation 3.1)

11
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for remaining constants. Depending on the completeness of harvested motion information, such

as one dimensional or three dimensional, multiple or single slice of u, several simplifications

needed to be done in order solve (Equation 3.1). In some cases, due to strong simplifications

Lamé parameters are omitted or ignored out of wave equation and stiffness maps are estimated

only for the shear modulus.

3.2 Mechanical Models

With regard to μ, it was observed in this study and in many other materials in other studies

that the simple two-element Voigt or Maxwell models for shear viscoelasticity do not accurately

capture material shear dynamic behavior, in terms of experimentally-measured responses to

various elementary excitation waveforms, such as step inputs or periodic or random inputs

with broad spectral content (31; 32). Complex arrangements of multiple elastic (springs) and

viscous (dashpot) components may be employed empirically in order to more closely match

experimentally measured complex-valued shear modulus values over a range of frequencies. For

example, the Standard Linear Solid (SLS) Model, also known as the Kelvin or Zener model,

consists of a parallel combination of a Maxwell element (spring and dashpot in series) with a

spring. The three-element SLS model has more flexibility in representing dynamic viscoelasticity

over a broad frequency range as compared to the Voigt model. A more complex example is

the Generalized Maxwell model, comprised of a parallel combination of an SLS and a single

or multiple Maxwell models. Although it is known that Maxwell and Voigt models can not

represent wide frequency range viscoelastic responses, they have been included in the analysis

for the sake of completeness. Even if adding more components to the model increases the ability
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of the model to mimic experimental measurements, this improved ability is at the expense of

added model complexity and potentially non-uniqueness. Instead of increasing the constitutive

model complexity by increasing the number of components that comprise it, an alternative is to

consider that the material may exhibit rate-dependent shear deformation that is best described

by a single element, comprised of two constants, μα and α (20), whose behavior lies somewhere

between Hookean solid and Newtonian fluid. Specifically, fractional order viscoelasticity (a

springpot) can be specified as shown in the second term of the following:

μ = μ0 + μα
∂α

∂tα
, 0 < α < 1 (3.2)

(Equation 3.2) is referred to as a fractional order Voigt model. The mathematics above

extends the Rouse model (33) of polymer relaxation to a continuous distribution of relaxation

times, which falls off at higher frequencies as a fractional order power law. It is commonly used

to describe the elastic properties of rubbery and glassy polymers (34), such as Ecoflex, a type

of polysiloxane. It can be shown that this type of relation results asymptotically when using

a ladder-like fractal arrangement of integer-order elastic and viscous components (35). Indeed,

such an arrangement might be rationalized on the grounds that it represents multiscale rate-

dependent stress-strain interactions that one would inherently expect in some materials with

complex multiscale cellular and extracellular structure, such as biological tissues. Furthermore,

suitably defined fractional derivatives do not pose significant difficulty mathematically for well-
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conditioned functions. In this study the Weyl definition of the fractional order derivative is

used, which for harmonic functions such as f(t) = ejωt has the property that

∂αejωt

∂tα
= (jω)αejωt (3.3)

The expression in (Equation 3.3) is still linear in nature and thus all rules and techniques

afforded such relations, such as the validity of superposition, reciprocity, the Laplace and Fourier

transforms, with associated transfer and frequency response functions, are all still valid (36).

In the Laplace (s) and frequency (jω) domains where j =
√−1 and ω is the circular frequency,

(Equation 3.2) respectively becomes

μ =μ0 + μα(s)
α (3.4a)

μ =μ0 + μα(jω)
α (3.4b)

Note a significant attribute of such fractional representations is that the temporal response

takes on characteristics of power-law behavior as opposed to the exponential response that one

obtains with the conventional Voigt representation. A power-law response in fact has been

observed in a number of biological and non-biological materials, further motivating this type of

model (32; 37).

Also note that, in the frequency domain, we have μ(ω) = μR(ω) + jμI(ω) (storage and loss

shear moduli) and both μR and μI are independent of what type of viscoelastic model is used

and whether it is of integer or fractional order.
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3.3 Conventional MRE

Magnetic Resonance Elastography is an MR imaging method that creates a stiffness map

of the target subject. Stiffness map can be composed of various values depending on which

parameter is estimated and this parameter is decided according to imaging the needs and

available data. MRE is composed of two stages: imaging of wave propagation and reconstruction

of the stiffness map. The wave imaging method is based on a phase contrast MRI method

that enables taking snapshots of the displacement vector field during steady state harmonic

mechanical motion. Reconstruction of the stiffness map can be done with several different

inversion algorithms depending on the motion information encoded into the MR image (38).

The stiffness map yields one or more mechanical properties, such as shear modulus, shear

stiffness, Lamé parameters, etc., of the material under investigation.

3.3.1 Encoding Motion Information into the MR Image

Motion information is encoded into the phase part of a complex MRI image. In order to

achieve this, harmonic gradient pulse shapes are inserted into a conventional MR imaging pulse

sequence. These gradient pulse shapes are called Motion Encoding Gradients (MEG) (Figure 5).

Motion accumulates as an additional phase, φ, into the complex MRI image. This extra

phase accumulation is equal to the time integral of the projection of displacement onto the

MEG direction multiplied by gyromagnetic ratio. The duration of integration T is usually an

integer multiple, M, of period, 1/f, of the mechanical motion.

φ = γ

∫ T

0
g(t) · u(t)dt, T =

M

f
, M ∈ Z

+ (3.5)
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There are two outcomes of (Equation 3.5). First , a one-dimensional projection of a three-

dimensional harmonic displacement can be encoded into the phase image by placing MEGs in

that particular dimension. So if three-dimensional displacement vector field is needed, all three

dimensions should be encoded independently. Second, the frequency of both motion and MEG

should be the same in order to achieve maximum motion encoding efficiency because the MEG

and displacement vectors are being integrated over time. An example of phase accumulation

for one-dimensional case is given in Figure 1. Numbers and scales are not important for this

example but it should be noted that as the integration time increases, the total accumulated

phase increases. On the other hand if there is a frequency mismatch between mechanical motion

and MEG, phase accumulation will not be monotonically increasing with time, as can be seen

from Figure 2. In Figure 2, the time axis was chosen to be longer than in Figure 1 in order to

demonstrate phase accumulation is bounded to an upper limit.

The importance of mismatched frequency is, for some clinical cases, due to excessive increase

in echo time for the given operating frequency, the frequency of the MEG cannot be matched to

the frequency of mechanical motion. This type of motion encoding is called fractional encoding

(11). As can be seen from Figure 2 one of the main drawbacks of this method is that it is not

possible to increase phase accumulation with longer MEG durations.

Almost all of the time, there will be extra random phase accumulation originating from

various factors including but not limited to inhomogeneous material, gradients and RF fields.

In order to eliminate this random phase accumulation, the same scan needs to be repeated

while reversing the sign of MEGs. Since MEGs are harmonic functions, this sign inversion is
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Figure 3: (a). Phase image of an MRE scan (b). Phase image of an MRE scan, where MEGs are shifted

180◦. (c). Difference between part a and part b, where all common phase accumulations cancelled each

other out but phase accumulation due to harmonic motion was added up. This image is called Wave

Image of one time step.

mathematically equal to 180◦ phase shifting of original MEG, therefore we call the first scan as

0◦ phase image (Figure 3a) and the second scan as 180◦ phase image (Figure 3b). When the

algebraic difference of these images are taken, the resultant image will be a linear function of

displacement function (Figure 3c).

Although one wave image is enough to capture an instant of mechanical wave motion, it

is not enough to separate more than one wave passing through the same voxel. To demon-

strate this problem, one-dimensional wave propagation domain will be used in the following

derivations. Extending these derivations into the two-dimensional case will be clear at the end
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of the derivation. Assuming that there are two waves propagating in opposite directions with

different amplitudes and phase. With one snapshot of wave motion it is not possible to separate

them from each other. However, if we know how this wave image changes in time, it would be

possible recover individual waves. Mathematically speaking if the summation on two waves are

denoted by function y(k)

y(k) = A1 cos(kx) +A2 cos(−kx+ θ) (3.6a)

= A1 cos(kx) +A2 cos(+kx− θ) (3.6b)

where k is the wave number and θ is the random phase value. For a single snapshot there is no

time information and it is not possible to recover A1 and A2. But, if we have time dependency

in the function y as

y(t, k) = A1 cos(ωt+ kx) +A2 cos(ωt− kx+ θ) (3.7a)

= A1
ej(ωt+kx) + e−j(ωt+kx)

2

+A2
ej(ωt−kx+θ) + e−j(ωt−kx+θ)

2

(3.7b)

=
ejωt

2

[
A1e

j(kx) +A2e
j(−kx+θ)

]

+
e−jωt

2

[
A1e

j(−kx) +A2e
j(kx−θ)

] (3.7c)
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it would be possible to calculate A1, A2 and θ via analytical signal of y(t, k) which is denoted

by y+(t, k). In general analytical signals can be written as a summation of the signal itself (y)

plus the Hilbert transform of signal (ŷ) multiplied by j,where j =
√−1 Equation 3.8 (39).

y+(t, k) = y(t, k) + jŷ(t, k) (3.8a)

= [A1 cos(ωt+ kx) +A2 cos(ωt− kx+ θ)]

j[A1 sin(ωt+ kx) +A2 sin(ωt− kx+ θ)]

(3.8b)

= [A1 cos(ωt+ kx) + jA1 sin(ωt+ kx)]

[A2 cos(ωt− kx+ θ) + jA2 sin(ωt− kx+ θ)]

(3.8c)

= A1e
j(ωt+kx) +A2e

j(ωt−kx+θ) (3.8d)

= ejωt
(
A1e

−jkx +A2e
−jθejkx

)
(3.8e)

Compared to the Fourier transform of (Equation 3.7c), (Equation 3.8e) is half of the spectrum.

The term A1e
−jkx +A2e

−jθejkx in (Equation 3.8e) can be obtained if Fourier transform of the

signal y(t, k) is obtained and negative frequencies are omitted. Another Fourier transform has

to be taken in the spatial domain (along x in one dimensional case) in order to separate A1

from A2 and to calculate θ. To summarize the process for the two-dimensional case in four

steps:

1. Take 1-D Fourier transform across time domain

2. Take positive frequency part of transformed signal and omit negative frequency part
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3. Take 2-D Fourier transform across spatial domain

4. Select particular region in spatial frequency domain to separate different directions from

each other

Since it is impossible to obtain y(t, k) in a continuous interval, we have to sample it for a finite

number of time points over a finite duration. In the MRE literature the number of time points

is called Number of Time Steps (NoTS). In Figure 4(a-h), a wave image can be seen at 8 equal

distant time steps. Combination of the same pixel across all slices is shown in Figure 4(i-p) with

a red line piercing through wave images across the time domain. The amplitude of those point

are plotted as red circles in Figure 4(q). Even if one takes a discrete Fourier Transform instead

of continuous one, it is still possible to obtain the complex term, A1e
−jkx + A2e

−jθejkx. Once

this term is obtained the discrete Fourier transform will be taken in discrete spatial domain

since wave images have finite resolution. Then, if we want to find A1 we take negative spatial

frequencies, otherwise we take positive spatial frequencies for A2 and θ.

The difference between wave image and analytical wave image is very important in SDP,

SLIM and U-MRE as well as in conventional MRE. Wave images are obtained by subtraction

of 0◦ and 180◦ phase images from each other (Figure 3); they are real valued and there would

be NoTS many wave images. On the other hand, the analytical wave image is the complex

coefficients of one of the frequency bins in the frequency domain. Since frequency domains are

complex conjugate around π for real values functions, the number of unique analytical wave

images that can be obtained would be half of NoTS (or half of NoTS-1 if it is an odd integer).

Although it looks like there is information loss due to the statement above, there is not. Wave
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Figure 5: Phase difference between MEG(s) and mechanical motion. One or more MEG(s) can be active

depending on the direction of motion to be encoded.

to π/3 radians. Depending on the constraints, either or both of mechanical motion and MEG

can be shifted. For the sake of simpler mathematical notation, the angular phase of the MEG

function is set to 0 or π radians when it starts. This is also useful for practical execution for

avoiding discontinuities on the gradient shape. Although in 1st order gradient nulling techniques

(40) the angular phase starts at π/2 radians, we won’t introduce any moment nulling technique

in this study. However, the ideas introduced in this dissertation are still valid for gradient

shapes for moment nulling.

Although we can shift either or both MEG and mechanical wave, for the sake of simplicity,

the phase of mechanical motion was kept constant throughout the derivations. This simplifica-
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tion doesn’t effect the validity of the methods described in this study. In practice phase of the

mechanical motion can also be shifted with respect to phase accumulation.

The phase accumulation formula for a general case is given below. Here the delay introduced

to MEG(s) is denoted by s.

φ(s) = γ

∫ s+T

s
g(t− s) · u(t)dt ,

s =
n

fmN
,n ∈ Z

+

u(t) = u0 sin(2πfmt+ θu)êm

g(t) = G0 sin(2πfgt+ θg)êg

(3.9)

φ(s) = φ0 cos(2πfs+ θ) ,when fm = fg = f (3.10)

,where θ is the phase accumulation, g is the vectoral gradient shape function, u is the displace-

ment vector, s is the starting time of MEG(s), T is the duration of MEG(s), fm is the frequency

of mechanical motion, fg is the frequency of the gradient shape, θu phase of mechanical motion,

θg phase of gradient shape, êm and êg are unit direction vectors of mechanical motion and

gradient shape respectively, and t is the time domain variable.

Given that the mechanical motion frequency and gradient shape function frequency are

equal, the resultant accumulated phase is also going to be a harmonic function at the same

frequency with a certain phase θ. This phase of the phase accumulation function is a function

of position for a particular voxel and phase difference between mechanical motion and gradient

shape. The amplitude of this phase accumulation, φ0, is a function of displacement amplitude,
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gradient strength, duration, gyromagnetic ratio and angle between displacement vector and

gradient shape vector (Equation 3.10).

After φ(s) is obtained the same scan is repeated with inverted gradient shapes. The first

one is called 0◦ wave image and the later one is called 180◦ wave image. As described earlier

(Figure 3), these two phase images are subtracted from each other to obtain the wave image of

a time step that belongs to the time delay of s.

3.3.2 Stiffness Map Estimation

A stiffness map can be estimated by processing the displacement vector field obtained with

MRE pulse sequence given some mechanical properties of the target object, such as its Poissons

ratio, density, and making assumptions about steady state harmonic motion, porosity (or no

porosity) and local homogeneity. Although stiffness maps were used in order to compare the

performance of the new algorithm with conventional ones, the details of the methods are out

of scope of this dissertation. However, the major stiffness map estimators are listed below in

order to give basic insight to the reader. There are mainly three types of stiffness estimation

methods.

Image Processing

The two most common examples are Local Frequency Estimation (LFE) and phase gradi-

ent (PG) methods. These methods measure the wavelength via image processing methods

rather than solving the wave equation. There are even simpler versions of image process-

ing based methods such as taking a linear profile across a wave image and measuring the

wavelength and attenuation manually. Wave speed can be calculated from wavelength
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knowing the mechanical frequency. Shear modulus would be density times square of wave

speed. Basically all these methods based on the wave image itself without considering

actual wave propagation, interference, inhomogeneity, anisotropy.

Direct Inversion of Wave Equation

These methods directly try to solve the wave equation under various assumptions. De-

pending in the type of wave displacement at hand, there can be variations of this method.

Although this method is better at finding contours and small objects, it is very sensitive

to noise, hence performs poorly under low SNR and requires accurate pre-filtering, which

requires preliminary information about the wavelength to be estimated. But when these

methods can be successfully applied, they can reveal the complex parameters in the wave

equation, which image processing methods cannot.

Finite Element Modeling (FEM)

This method requires accurate information about geometry and boundary conditions prior

to processing. Detailed image segmentation helps to construct a three-dimensional model

of the target but precise boundary condition depends both on the actuation mechanism

and other unknowns in the mechanical system. It may solve more complicated prob-

lems, but it may take too much time to solve the given problem, hence sometimes, it is

unreasonable for clinical applications with the current computer technology.



CHAPTER 4

ULTIMATE MRE

The U-MRE method is a combination and generalization of two previously published meth-

ods, namely Spectral Displacement Projection (SDP) MRE (27) and Sampling Interval Mod-

ulation (SLIM) MRE (29). The SDP method allows multiple motion information at different

frequencies and directions to be encoded at the same time. SLIM MRE, on the other hand,

allows multiple motion information at the same frequency but in different directions to be en-

coded at the same time. U-MRE merges these two methods in the sense of maximum utilization

of all frequency bins, hence filling up all signal space with the maximum information possible

without increasing the total acquisition time. This means that, it is not possible to encode

more information into signal space without sacrificing efficiency and/or SNR. There are alter-

native speed enhancements in the literature (11; 10); but, those are all at the cost of encoding

efficiency.

In SDP MRE, provided that all MEG shapes are orthogonal for the duration of motion

encoding, each frequency can be placed in their respective frequency bins. In order to avoid any

overlap, frequencies and number of sampling points should be chosen accordingly. Depending

on the frequencies and limitations on encoding duration, this method might end up with more

time steps than the optimum number of time steps. For example for the frequencies 4, 5 and

6 kHz the minimum MEG time is 1 ms (to provide orthogonality) and the minimum sampling

28
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number is 14, in other words 14 time steps. On the other hand for the frequencies 1, 2 and 3

kHz we only need 8 time steps, while minimum MEG time is still 1 ms.

SLIM MRE utilizes an ambiguity, which originates from multiplication of frequency and

phase difference between mechanical motion and MEG in the equation of total accumulated

phase (Equation 3.10). A component of mechanical motion can be virtually shifted into any

frequency bin. For example given 100 Hz mechanical motion, all read, phase and slice gradients

are run at 100 Hz but their time shift amount with respect to mechanical frequency is different.

The time shift of each MEG depends on which frequency component one wants to place the

displacement information at that particular direction. Therefore, if one wants to place motion

in the read direction into the first frequency bin corresponding to 100 Hz , motion in the phase

direction into 200 Hz and motion in the slice direction into 300 Hz, time shifts with respect

to mechanical motion should be 12.5 Hz, 25 Hz and 37.5 Hz, respectively for 8 time step case.

Note that the minimum number of time steps should be chosen according to the number of

directions to be encoded.

U-MRE combines the SDP and the SLIM MRE in the most general encoding scheme. In

other words, U-MRE method allows one to capture n dimensional motion ofmmany mechanical

motion frequencies without sacrificing any encoding efficiency with respect to classical MRE

techniques given enough gradient strength and displacement.

4.1 Notation

As will be seen in the following sections, some of the notations related to time and frequency

will become insufficient or ambiguous for advanced MRE methods. Therefore, an expanded set
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of notations will be presented. These new notations will clear any ambiguity that will emerge

from generous usage of time and frequency terms in mathematics of conventional MRE.

fm Mechanical Motion Frequency

fg MEG Frequency

NoTS Number of Time Steps

MEG Shape An MEG function created to en-

code single motion information.

VTD Virtual Time Domain

VFD Virtual Frequency Domain

t Time domain index

n Virtual time domain index

f Frequency domain index

α Virtual frequency domain index

4.2 Phase Accumulation

Considering multiple mechanical frequencies and multiple gradient shapes encoding mul-

tiple directions for each frequency component, the conventional phase accumulation formula

(Equation 3.9) can be extended as a summation of individual phase accumulation components,

φmv(s).

φ =

M∑
m=1

Vm∑
v=1

φmv , φmv = Φmv cos(2πfmsmv + θmv), (4.1)
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whereM is the total number of mechanical motion at different frequencies, m is the mechanical

frequency index, Vm is the number of motion directions to be encoded for the mth frequency

and the the v is the index for direction. smv is the delay between mechanical motion of the mth

frequency and the gradient shape of the mth frequency and the vth direction for the nth time

step.

4.3 Sampled Phase Accumulation

In practice we can only measure φmv(s) for a finite number of s and from a mathematical

point of view this process is no different than sampling of an analog signal. Therefore MRE

wave images across different time offsets (in other words different s values) are actually time

samples of wave propagation. The number of the samples is also called the number of time

offsets in MRE literature. If we denote the sampling interval for the vth direction of the mth

mechanical frequency as ΔTmv, the sampled phase accumulation will be as follows,

φmv[n] = φmv(nΔTmv) (4.2)

In general, the timing of the sampling operation can be controlled for each motion infor-

mation individually because we have the control of ΔTmv via MEG programming (Appendix

B). This allows us to acquire and arrange sampled time instances of each motion information

independently. Since sampling time instances do not need to be consecutive and equally spaced

in time, we will name this discrete domain (n) as the Virtual Time Domain (VTD) to avoid

ambiguity with actual time domain (t).
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4.4 Phase Accumulation in Frequency Domain

In order to separate different motion information, the sampled phase accumulation should be

analyzed in the frequency domain. In this dissertation the discrete frequency domain is named

the ’virtual frequency domain’ (VFD) because the placement of information into frequency bins

can be controlled by choice and not limited by the actual frequency of the sampled signal. This

feature of MRE sampling can be possible because the sampling interval is multiplied by actual

frequency (Equation 4.3). Therefore, the actual frequency can be multiplied or divided by the

sampling interval ΔTmv to change the location of that information in the virtual frequency

domain.

φmv[n] =Φmv cos (2πfm (nΔTmv) + θ) (4.3a)

φmv[n] =Φmv cos (2πn(fmΔTmv) + θ) (4.3b)

In order to obtain VFD, a discrete Fourier transform is applied to the sampled phase accu-

mulation in VTD. It is important to clarify that VFD is not directly related to the frequencies

of mechanical motion or frequencies of MEG as VTD is not directly related to actual time

domain.
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wherem is the mechanical frequency index, v is the gradient shape index,M is the total number

of frequencies, Vm is the total number of gradient shapes for the mth frequency component, n

is the time step and φmv[n] is the phase accumulation due to gradient shape gmv. For a given

m all gradient shapes have different directions, therefore the index v can also be addressed as

a direction index of gradient shapes for the mth frequency. The phase accumulation created by

individual gradient shapes is the integration of the projection of mechanical displacements on

that particular gradient vector multiplied by gyromagnetic ratio is given in (Equation 4.5).

φmv[n] = γ

∫
gmv(n, t) · um(t)dt, (4.5)

where γ is the gyro magnetic ratio, gmv (Equation 4.6) is the gradient shape for the mth

frequency in the vth direction and um is the mechanical motion vector of the mth frequency.

gmv (n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Gmv sin (2πfmt− θmv (n)) êmv, smv(n) < t < smv(n) + T

0, otherwise

(4.6)

The piecewise continues gradient shape function given in (Equation 4.6) avoids any discontinuity

in gradient shapes given that smv(n) = θmv(n)/(2πfm) and T = k/fm, where k ∈ Z
+. The

amplitude of the gradient shape gmv is denoted by Gmv, which is a real valued scalar. This
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study does not cover 1st moment nulling techniques, therefore the gradient shapes are designed

to start from 0◦ phase as can be seen from the limits given in (Equation 4.7).

gmv (n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Gmv sin (2πfm (t− smv(n))) êmv, smv(n) < t < smv(n) + T

0, otherwise

(4.7)

The displacement vector field in the subject due to mechanical motion is broken down into

individual frequency components (Equation 4.8) indexed by m

um(t) = Um sin (2πfmt+ ψm) êm, (4.8)

where Um is a real valued scalar indicating the amplitude of the mth mechanical motion for the

given pixel, ψm is the phase of the mechanical motion relative to t = 0 and êm is the unit vector

for the direction of the mth mechanical motion. Please note that although ψm is eventually

the source of the wave image pattern, it doesn’t play a role in formulation of U-MRE pulse

sequence.

All the derivations were done pixel wise because the spatial dimension is independent of

all the parameters used in this section, other than the phase and the amplitude of mechanical

motion at a particular pixel, which are ψm(t, r) and Um(r) respectively. Therefore, the spatial

dependencies of Um and ψm are omitted in the derivations.
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4.6 Frequency Bin Placement

Since we are assuming all mechanical motions and gradient shapes are composed of linear

combinations of harmonic functions, it is possible to work with complex exponential forms of

signals rather than taking discrete Fourier transforms. If a harmonic signal a(t) is sampled at

N points over b many periods it can be expressed as follows in discrete domain,

a[n] = real
{
ej2π

n
N
b
}

, n ∈ {0, ..., N − 1} (4.9)

This signal would fall into the bth frequency bin if a discrete Fourier transform is taken. Please

note that there would be another complex conjugate component due to the symmetry of the

frequency domain but the complex conjugate symmetric part of signals are of no use in the

context of this dissertation. Therefore, we will only use first N
2 (N is even) or N−1

2 (N is odd)

frequency bins and ignore the complex conjugate symmetric part of frequency domain.

If we rewrite (Equation 4.3) in complex exponential form,

φmv[n] = Φmv cos(2πfmΔTmvn+ θ) (4.10a)

= Φmvreal
{
e−j(2πfmΔTmvn+θ)

}
(4.10b)
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and place φmv[n] into the bth frequency bin, (Equation 4.10) should be solved for ΔTmv using

(Equation 4.9) as follows,

e−j(2πfmΔTmvn+θ) =e−j(2π n
N
b+θ) (4.11a)

nfmΔTmv =
n

N
b (4.11b)

ΔTmv =
b

Nfm
(4.11c)

The start time of a particular gradient shape, smv(n) (Equation 4.7), is the variable in our con-

trol while programming the gradient shapes. Therefore, smv(n) can be derived using calculated

ΔTmv as follows,

smv(n) =
θmv(n)

2πfm
, θmv(n) = ((n− 1)ΔTmv) 2πfm ,ΔTmv =

b

Nfm
(4.12a)

smv(n) =b

(
n− 1

N

)
1

fm
, (4.12b)

where b is the frequency bin , N is the number of time steps (NoTS) and fm is the frequency

of mechanical motion.

This completes the derivation of a gradient shape (Equation 4.7), which encodes the vth

direction component of the mth mechanical frequency into the bth frequency bin via adjusting

the start time, smv(n), and thus the time shift, ΔTmv(n) of a gradient shape for each time step.



CHAPTER 5

METHODS

5.1 Experimental Setup

This study was conducted using a 500 MHz (11.74 Tesla) vertical bore Bruker(ID = 56

mm) micro imaging MRI system. A saddle RF coil (ID = 12mm) and micro imaging gradient

coils (ID 19 mm) were used. Maximum gradient strength per coil was 300 Gauss per cm.

The sample was oscillated into harmonic motion by a piezo ceramic stack that provides 11.6

μm displacement at 100 volts(6.5 x 6.5 x 18 mm, Thor Labs Inc). A counter mass was placed

on the other side of the Piezo stack in order to reduce recoil by providing inertial ground

(Figure 8). The Piezo stack was driven by an audio power amplifier (P3500S Power Amplifier,

Yamaha Corporation of America, Buena Park, CA). The power amplifier is driven by a function

generator (33220A Function / Arbitrary Waveform Generator, 20 MHz, Agilent Technologies

Test and Measurement, Englewood, CO), which was triggered from the MRI system. The

output of the audio power amplifier is biased by a DC power supply (E3634A 200W Power

Supply, Agilent Technologies Test and Measurement, Englewood, CO) in order to prevent a

negative voltage at the terminals of the piezo stack. A negative voltage potential in the piezo

stack may create more non-linear motion while degrading the performance of piezo stack in

time.
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5.3 Image Acquisition

A gradient echo based MRE pulse sequence was used in this experiments. The signal

generator was triggered before the RF pulse, therefore the displacement vector field reaches

steady state harmonic mechanical motion by the time MEGs begin motion encoding. Six axial

slices of thickness 1 mm were acquired with 128 x 128 resolution over 1 cm x 1 cm field of view.

The flip angle was 30 degrees (check this) and the echo time (TE) was 3.95 ms plus the duration

of longest MEG. Some of the scans were completed with 4 time steps while others used 8 or 20

time steps depending on the experiment. Also, all scans were repeated with inverse polarization

of MEGs and the resultant images were divided (this will subtract phase components since the

resultant images are complex valued) to each other to eliminate any common phase artifact and

bias originating from anything other than MEGs.

5.4 Motion Encoding

Motion encoding gradients need to have sinusoidal shape to avoid encoding higher harmonics

of mechanical motion, which will be generated due to the non-linear nature of mechanical actu-

ators. The most common cause of for non-linearity would be due to clipping or non-symmetric

behavior of actuator motion. On top of that it is expected to have non-linearity in tissue

mechanics (41). Hence, although the trapezoidal MEG shape is common across MRE experi-

ments because of its higher motion encoding efficiency, we would not suggest using any shape

other than sinusoidal. Please note that the above discussion doesn’t exclude windowing. It is

naturally expected to obtain better results with windowing via better frequency and dynamic

response of gradient coils. For simplicity, we didn’t use any windowing function over the gradi-
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ent shapes. Depending on the number of information to be acquired, that many gradient shapes

should be created and distributed across the gradient coils based on the direction of component

of motion. Each gradient shape should have its own frequency, duration and time offset values.

Each gradient coil may have a linear combination as many gradient shapes as needed. The

frequency of each gradient shape should match the frequency of motion to be encoded. The

duration and time offset values for each gradient shape is explained in the Unified sampLing

Time Interval ModulATion section. A generic C language code for creating ULTIMATe MRE

gradient shapes is given in Appendix B.

5.5 Reconstruction

Acquired k-space data was reconstructed into complex images off-line using a commercial

software package (MATLAB 8.1, The MathWorks Inc., Natick, MA, 2013). Each image is di-

vided by its inverse polarized MEG reciprocal to eliminate common phase artifacts. Depending

on time step number 4, 8 or 20 snapshots of wave propagation were obtained throughout the

time. In this study 4, 8 or 20 analytical wave images were obtained in Virtual Frequency Do-

main (VFD) depending on the time step number. This number can be any value as long it

allows enough empty frequency bins in the VFD for the information to be encoded (Figure 10).

Experiment parameters were adjusted such that each frequency bin contains harmonic displace-

ment information of one frequency in one particular direction. In other words each frequency

bin in VFD contains single information, which cannot be resolved into independent components

in terms of frequency and/or direction.





CHAPTER 6

RESULTS

6.1 Encoding Multiple Frequencies in Single Direction

Three frequencies (5000 Hz, 6000 Hz and 7000 Hz) were encoded for a single direction, slice

direction, of an axial imaging slice. This process was done in two different ways. In the first

one, they were encoded individually as in conventional MRE (First row in Figure 11). In the

second way, they were encoded all at once, using ULTIMATe MRE (Second row in Figure 11).

Both methods had 8 time steps. Each gradient shape uses 25 % of the maximum gradient

power. This means that, in conventional MRE the maximum level of total MEG does not get

higher than 25 % at a given time, while in ULTIMATe MRE, it reaches up to 75 % at some

time instances, when the gradient shapes add up (Figure 19).

6.2 Encoding Multiple Frequencies in Multiple Directions

The performances of conventional MRE and ULTIMATe MRE were investigated for multiple

frequencies and multiple directions. For conventional MRE, 4 time steps have been used except

for slice direction encoding where both 4 time steps and 8 time steps were used. For ULTIMATe

MRE four different cases were investigated. The first one was 8 time step SDP MRE where

different frequencies for the three directions were encoded at once, in other words, one frequency

per direction. So there were a total of 3 SDP scans to cover all three directions at three

frequencies. The second one was 8 time step SLIM MRE where three directions for the same
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frequency encoded at once. For SLIM MRE, as in the case of SDP MRE, a total of 3 scans

were used to cover all three directions at three frequencies. The third one was 8 time step

ULTIMATe MRE, where three frequencies were encoded for one direction at a time. As in the

previous two cases, a total all of three scans were needed to cover all three directions. The last

one is 20 time step ULTIMATe MRE, where all three directions and all three frequencies were

encoded at once in a single scan.

TABLE I: Time Comparison of MRE methods

Method Time Steps Scans Wave Images Phase Images

MRE 4 9 4x9=36 72

MRE 8 9 8x9=72 144

SDP 8 3 8x3=24 48

SLIM 8 3 8x3=24 48

U-MRE 8 3 8x3=24 48

U-MRE 20 1 20x1=20 40

6.3 Stiffness Estimations
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TABLE II: Motion Information Encoding Comparison of MRE Methods

Method Time Step
Direction

Scan

Frequency

Scan

Frequency

Direction

Direction

Frequency

Information

Scan

MRE 4 1 1 1 1 1

MRE 8 1 1 1 1 1

SDP 8 3 3 1 1 3

SLIM 8 3 1 1 3 3

U-MRE 8 1 3 3 1 3

U-MRE 20 3 3 3 3 9
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TABLE III: Information Encoding Map of MRE Methods

Method 5000 Hz 6000 Hz 7000 Hz

read phase slice read phase slice read phase slice

MRE •
MRE •
MRE •
MRE •
MRE •
MRE •
MRE •
MRE •
MRE •

SDP • • •
SDP • • •
SDP • • •

SLIM • • •
SLIM • • •
SLIM • • •

U-MRE(8) • • •
U-MRE(8) • • •
U-MRE(8) • • •

U-MRE(20) • • • • • • • • •











CHAPTER 7

DISCUSSION

7.1 Speed Enhancements

Given the N time steps, conventional MRE yields only one analytical wave image. In

ULTIMATe MRE and its special cases, such as SDP and SLIM, the number analytical wave

images increases with increasing number of N (Equation 7.1). If we define speed efficiency as

the number of wave images per MRE scan, in Table IV we can compare the time efficiencies

for conventional MRE and ULTIMATe MRE for N = 4, 8, 16, 20 and N → ∞.

Number of Wave Images for Conventional MRE =1, N ∈ (Z+) (7.1a)

Number of Wave Images for ULTIMATe MRE =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N
2 − 1, N ∈ even(Z+)

N+1
2 − 1, N ∈ odd(Z+)

(7.1b)

7.2 Stiffness Estimation Performances

In this study the performance of different pulse sequences were compared using a robust

method developed in (8). Since the sample was a uniform gel in axi-symmetric motion in a

cylindrical tube, a closed form solution of the shear modulus estimation exists. We did not use

other well known methods such as direct inversion or local frequency estimation because direct

inversion suffers greatly from its assumptions that are not satisfied and the local frequency
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estimation algorithm can only provide shear stiffness values, which is just an output of the

image processing method rather than a wave equation related parameter.

In the method defined in (8), linear profiles passing through the center of the test tube, are

fitted to the closed form solution of the wave propagation. This fitting is done by optimizing

curve parameters by minimizing mean square error between the estimated curve and the actual

wave profile. Although there are more parameters than the shear modulus, we present the shear

modulus estimation in this study since the rest of the parameters are related to geometric and

time offsets needed for compensating errors introduced while taking linear profiles.

For 5 kHz and 6 kHZ the real and imaginary parts of shear modulus yields almost the same

results for the median and distribution with different outliers. The difference we believe comes

from the error from linear profiles because the center of the tube was aligned manually. So it

is expected to have few pixels shift in the selection of center of the cross section of the tube for

each scan. The 7 kHz results do not match as well as the 5 kHz and 6 kHZ; but, considering

the lower SNR due to higher attenuation at higher frequencies estimated values are still very

close.

Hence, although ULTIMATe MRE and it derivatives end up with less SNR than conventional

MRE, this does not affect the performance of stiffness estimation. Therefore, conventional MRE

scans can be replaced with ULTIMATe MRE scans to reduce total acquisition time without

sacrificing stiffness estimation accuracy.
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7.3 Limitations

Depending on the configuration of frequencies and directions to be encoded ULTIMATe

MRE may introduce some limitations to the amount of motion encoding. These limitations

cause less phase accumulation and less phase to signal ratio, which would affect the performance

of stiffness estimation algorithm (11). We can categorize these limitations under four titles.

The first one is Gradient coil power distribution. This would be an issue when there is more

than one gradient shape per gradient coil. The second one is multiple frequency excitation of

the mechanical actuator. As the name implies, when there is more than one frequency to be

encoded at the same time, they need to be introduced from the same actuator with limited

output capability. The third one is increased echo time. In the case of encoding of a frequency

in more than one direction, an increase in echo time is inevitable, although there are ways to

keep this at minimum. And there are other issues with operating multiple gradients at the

same time and driving them at higher powers and higher frequencies.

7.3.1 Gradient Power Distribution

There is a limit on the magnetic field strength that gradient coils can generate. When we

are using multiple gradient shapes on one gradient coil, these shapes add up to a maximum

level at some point in time and this level cannot be larger than the gradient coil amplifier limit.

Therefore, amplitudes of each gradient shape must be adjusted such that, summation should

be under an upper limit. This will result in less phase encoding per frequency compared to

single frequency encoding. Although there is no way around this problem, other than accepting

clipping of gradient shapes (Figure 19), which will introduce unexpected encoding distortion
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and degrades the phase to noise ratio, we can distribute the amplitudes of gradient shape so

that we would have a uniform phase encoding performance for each frequency. Most of the time

higher frequencies will attenuate faster, so it would be more efficient to reserve a larger portion

of the gradient strength for higher frequencies to compensate lower displacement amplitudes at

higher frequencies.

7.3.2 Multiple Frequency on Mechanical Actuator

Similar to the previous section, the mechanical actuator also has a finite displacement limit.

If that limit is reached, displacement will be clipped and it will introduce harmonics of input

frequencies, which will eventually contaminate the spectrum.

The solution to this problem, as in the previous section, is reserving more power for higher

frequencies that in return would distribute the phase accumulation more uniformly in the phase

image. But we are just not limited to this solution in the mechanical actuator case. Although

it is very difficult to introduce a new set of gradients for each frequency, it is quite easy to use

different actuators for different frequencies as long as the space in the RF coil permits.

Depending on the actuator type, it would be possible to place different actuators inside the

imaging area. This is especially feasible in pneumatic applications while, not so easy for piezo

stack or rod-based actuators.

7.3.3 Implications on Echo Time (TE)

In MRE, the duration of MEGs placed in the pulse sequence adds upto the echo time.

Shifting the MEG with respect to mechanical motion can be achieved by shifting the mechanical

motion itself, shifting the start instance of pulse sequence or both. But this trick is not viable
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anymore for ULTIMATe MRE. To be more exact, it is not applicable if a frequency needs to

be encoded for more than one direction.

If we consider SLIM MRE, three directions are encoded for a single frequency and each

MEG shape should be shifted with respect to mechanical motion by different amounts. This

is not possible by simply shifting the mechanical motion, the MEGs themselves should also be

shifted with respect to each other. This shifting would introduce an extra increase in echo time

on top of the MEG duration. This may create a significant SNR decrease if not taken care of

carefully.

Fortunately, since the signals we are encoding are steady state harmonic motions and gra-

dient shapes themselves are harmonic functions, we can utilize symmetry of phase shifts to

minimize the TE increase along with controlling the phase of mechanical motion.

In Table V a standard example of SLIM MRE is given, where one frequency is encoded for

three directions. Each gradient shape has it’s own phase shift θi, i ∈ {1, 2, 3}. For each time

step n the required phase shift, modulo 2π and modulo π is given. We can take modulo π

due to the fact that π phase shift is just multiplying the result of 0 phase shift by −1. The

minimum of these three phase shift can be subtracted from the phase of the mechanical motion

and that leaves the last three rows, which are the minimum required phase shifts for three

gradient shapes. As can be seen from last three rows, in the worst case scenario only π/2 phase

shift is necessary.
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However, SDP type ULTIMATe MRE methods (single direction per frequency) are not

affected by this issue since the phase of each frequency can be shifted from the signal generator

itself while keeping the MEG phases constant with respect to pulse sequence.

7.3.4 Other Drawbacks

7.3.4.1 Concomitant Fields

When a linearly changing gradient field is applied, concomitant magnetic fields occur with

non-linear special dependence (42). This is because of Maxwell’s equation where the divergence

of a magnetic field has to be zero. On top of this whenever a Z gradient runs along with an X

and/or a Y gradient, cross terms occurs (Equation 7.2).

BC{x, y, z, t} =
1

2B0

{(
Gxz − Gzx

2

)2

+

(
Gyz − Gzy

2

)2
}

(7.2a)

BC{x, y, z, t} =
1

2B0

{
G2

xz
2 +G2

yz
2 +

G2
z

(
x2 + y2

)
4

−GxGzzx−GyGzzy

}
, (7.2b)

where BC is the concomitant field function of spatial variables x, y, z and time variable, t. B0

is the main magnetic field and Gx, Gy, Gz are the gradient field strengths of x, y and z gradient

coils, respectively.

Since in an MRE application it is desirable to have maximum available gradient power to

achieve maximum encoding efficiency, concomitant fields would be introduced more than most

of other imaging methods. However, if we compare the strength of these unwanted concomitant
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Eddy currents can be compensated by adjusting the shape of the current function. There-

fore, to generate a gradient pulse, a current shape consisting of three or more exponential

functions are used (43). The amplitude and time constants of these exponential functions need

to be tuned precisely to reduce the image artifacts due to eddy currents.

This is done with pre-emphasize circuitry. In human MRI scanners this process has been

greatly improved since they need to run the gradients at high power and high switching rates

all the time, as in EPI-based pulse sequences. But this may not be the case for animal scanners

or smaller bore magnets.

Therefore, ULTIMATe MRE is expected to have less SNR than conventional MRE due to

fact that it would cause more eddy currents. The strength of gradient power should be chosen

carefully depending on the magnet, in order to get maximum encoding efficiency and maximum

PNR.

7.4 Trade-Off between Time Efficiency and SNR Increase

Since MRI is one of the slowest imaging systems in clinical applications the time vs SNR

trade-off is always an issue. Such trade-offs apply to MRE, where more time is needed.

It is already expected to have lower SNR with MRE due to longer TEs and MEGs. ULTI-

MATe MRE introduces more noise into system by means of eddy currents, diffusion and other

reasons. On the other hand ULTIMATe MRE saves time by a factor of three in most cases. If

we define the time efficiency as the number of motion information that can be encoded for given

number of time steps, Table IV presents what would be the time efficiency of conventional MRE

and ULTIMATe MRE for various times step values. So, instead of saving time, ULTIMATe
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MRE can also be used to increase the SNR. If we use the SNR definition as signal strength S

over σ, the standard deviation (Equation 7.3),

SNR =
S

σ
=

S√
σ2

(7.3)

increasing the number of averages by utilizing the time saved can be written as follows

SNR =
nS√
nσ2

=
√
n
S

σ
(7.4)

For n = 3 the ratio of the SNR of averaged ULTIMATe MRE and single conventional MRE

will be as follows:

SNR Ratio =

√
3 SNRULTIMATe MRE

SNRConventional MRE
=

√
3 ≈ 1.73; (7.5)

assuming ULTIMATe MRE and conventional MRE have the same variance. In practice this is

not the case. It should be expected to have less SNR increase than
√
3 for three averages.
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TABLE IV: Time Efficiency of MRE methods

Number of Time Steps MRE ULTIMATe-MRE

4
1

4
= 0.2500

1

4
= 0.2500

8
1

8
= 0.1250

3

8
= 0.3750

16
1

16
= 0.0625

7

16
= 0.4375

20
1

20
= 0.0500

9

20
= 0.4500

∞ 1

∞ = 0.0000
∞
2∞ = 0.5000
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TABLE V: Minimum Increase in Echo Time (TE) Lookup Table for Three Directions

n 0 1 2 3 4 5 6 7

θ1 0 2π/8 4π/8 6π/8 8π/8 10π/8 12π/8 14π/8

θ1 0 1π/4 1π/2 3π/4 1π/1 5π/4 3π/2 7π/4

θ1 0 1π/4 1π/2 3π/4 0 1π/4 1π/2 3π/4

θ2 0 4π/8 8π/8 12π/8 16π/8 20π/8 24π/8 28π/8

θ2 0 1π/2 1π/1 3π/2 0 1π/2 1π/1 3π/2

θ2 0 1π/2 0 1π/2 0 1π/2 0 1π/2

θ3 0 6π/8 12π/8 18π/8 24π/8 30π/8 36π/8 42π/8

θ3 0 3π/4 3π/2 1π/4 1π/1 3π/4 0 3π/4

θ3 0 3π/4 1π/2 1π/4 0 3π/4 0 3π/4

min θ1, θ2, θ3 0 1π/4 0 1π/4 0 1π/4 0 1π/2

θ1 −min 0 0 1π/2 1π/2 0 0 1π/2 1π/4

θ2 −min 0 1π/4 0 1π/4 0 1π/4 0 0

θ3 −min 0 1π/2 1π/2 0 0 1π/2 0 1π/4



CHAPTER 8

CONCLUSION

Simultaneous multi-directional MRE encoding has been considered to be unfeasible since

the introduction of MRE, about 20 years ago. To solve this problem, we have developed two

new methods to override this limitation and successfully encoded motion in three directions

concurrently. The first method was multi-directional motion encoding (27) with a different

frequency in each direction. The second method was introduced, shortly after the first method,

and it enabled encoding a single frequency (29) for all three directions simultaneously. The

first method is called Selective Spectral Displacement Projection, SDP-MRE. The latter one is

called Sample Interval Modulation, SLIM-MRE.

In this study, the technique developed in SLIM-MRE was integrated into SDP-MRE to

achieve the most general and optimal motion encoding MRE pulse sequence, Unified sampLing

Time Interval ModulATion, ULTIMATe MRE. It is shown that, motion of any number of

frequencies in any number of directions can be encoded simultaneously without any redundant

time step, keeping the motion encoding efficiency as high as possible.

A comparison of ULTIMATe-MRE and conventional MRE was done on a homogeneous gel

sample using a high field vertical MRI system. Performance was compared by calculating a

shear modulus value via curve fitting the linear profiles taken from the wave image to the closed

form solution of cylindrical wave propagation. Shear modulus estimations across the different

method vary within the variance of each estimation.
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ULTIMATe MRE has been demonstrated to reduce the scan time of MRE by reducing the

necessary number of MRE scans by a factor of three compared to a conventional MRE protocol

of 8 time steps without compromising the PNR on the wave images or performance on stiffness

estimation.
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Appendix A

A GUIDE TO SNR

A.1 Introduction

Signal to noise ratio (SNR) is the ratio of the average power of the signal to the average

power of the noise acquired at same time instances. If the mean values of both the signal and

the noise are zero, SNR can be defined as ratio of the signal variance to the noise variance. In

different applications the definition of the SNR may change depending on how the user defines

the signal and the noise. In the following section, various SNR definitions are introduced for

the different stages of the MRE process. These definitions are not absolute; they are presented

to provide a guideline to users and present what an SNR value may mean depending on the

stage of an MRE process.

A.2 SNR in MRE

In MRE, the term SNR can appear in several different stages of data acquisition and data

processing, and each of them requires a different definition. These stages can be categorized

into six groups. The first stage is creating FID, the second stage is digitizing FID, the third

stage is constructing complex MRI image, the fourth stage is constructing wave images, the

fifth stage is construction analytical wave image, and the final stage is stiffness map estimation.

Although factors affecting SNR in the first, the second and the third stages are out of the

scope of this dissertation, they are listed in order to understand the differences of the SNR in
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Appendix A (Continued)

between stages. It should be noted that there are many more factors affecting the SNR, which

are not necessary for the purpose of this chapter; hence, they are not introduced, but rather

the main contributions are listed. Also, this compartmentalization of the whole MRE process is

not unique; it is chosen this way to minimize ambiguity of the SNR term used in these stages.

In the first stage, the noise added to the FID ideally comes from thermal noise. However,

in reality there are other factors contributing to noise originating from the artifacts in the

magnetic fields (B0, B1, gradient fields), transmitter/receiver imperfections, filter non-linearity,

errors originating from demodulation, etc. The SNR can be defined as the ratio of the average

power of the FID to the average power of the noise sources mentioned above.

In the second stage, the FID is sampled and quantized. Besides the thermal noise added to

the FID signal in analog circuitry components, sampling and quantization processes also intro-

duce their own errors such as aliasing, aperture, jitter and quantization error. The definition of

the SNR can be same as in the first stage but it is in discrete domain rather than continuous

time domain.

In the third stage, the digitized FID is rearranged into k-space and then transformed to

image space. Some transformation algorithms, which are not one-to-one, may introduce addi-

tional errors in the MRI image. Although power of the image data over the power of noise seems

to be the definition of the SNR at this stage, the actual definition of SNR differs depending on

what the user is looking for in the image. The reason for that is strong signals may saturate

the analog to digital converter and can obscure the area user needs to analyze due to dynamic

range of digitizer. Therefore, sometimes, it may be necessary to sacrifice the FID strength to
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unbury the hidden information in the FID signal. This can be done via adjusting some of the

imaging parameters, such as but not limited to TR and TE. In another case, the user might

be interested only in the phase part of complex MR image rather than the magnitude part of

it. Therefore, SNR should be defined as the power of the information user looking for in the

phase image over the power of noise in the phase image. A relation for the SNR and the PNR

in MRI can be found in (44).

In the fourth stage the SNR definition is the ratio of the power of wave information in

the wave image to the power of noise in the wave image. The wave images are created from

the phase component of the complex MR images by linearly subtracting the phase part of two

separate scans where every parameter of the scans are the same, other than polarization of the

MEGs. Therefore, the SNR of the phase part of the complex MRI images directly affects the

SNR of corresponding wave image. However, any coherent noise components that may exist

in the phase components of the complex MR images, with different origin than MEGs, are

eliminated by this linear subtraction operation. Hence, it is expected to have a higher value for

SNR in a wave image than a simple averaging operation of two phase images.

The fifth stage, constructing the complex wave image, yields an improved SNR of the same

kind as in stage four because complex wave images are obtained by combining coherent parts

of wave images using either filtering or Fourier transform followed by frequency bin selection,

which results in elimination of unwanted frequency components and the noise in that part of

the spectrum.
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In the last stage, SNR cannot be measured in terms of the power of the stiffness map because

values in the stiffness map indicate properties of material under investigation rather than any

sort of signal strength. In other words, a lower value in a stiffness map doesn’t mean weak

signal but low stiffness in the respective voxel. On the other hand, it is viable to evaluate noise

originating from stiffness map estimation algorithms due to imperfections in the algorithms

themselves and/or the noise in the complex wave image, which is used as the input for stiffness

map estimation algorithms. Hence, one can use the term SNR as inverse power of noise in

this stage. Note that, in this stage SNR only depends on the noise generated by the inversion

algorithm; so, we assume the signal has unity power.

In conclusion, in each stage of MRE, SNR may have different definitions because the defi-

nition of the signal and the noise changes throughout the stages. Therefore, when comparing

multiple SNR values in a context, one must make sure that all the SNR values belong to the

same stage of the MRE process.



76

Appendix B

PROGRAMMING MOTION ENCODING GRADIENTS

An example of how to create the Motion Encoding Gradients (MEGs) was given in the code

below. The code was written in C programming language syntax, however, it can be easily

translated into any other programming languages. Comments embedded into the code and

explanatory variable names are sufficient for reader to examine and replicate the code.

/* ----- Set MRE Parameters into D,L arrays ----*/

ACQ_trim [10][0]=100;

ACQ_trim [10][1]=100;

ACQ_trim [10][2]=100;

ACQ_trim [11][0]=100;

ACQ_trim [11][1]=100;

ACQ_trim [11][2]=100;

ACQ_trim [12][0]=100;

ACQ_trim [12][1]=100;

ACQ_trim [12][2]=100;

L[8]=1; /* Counter for 180 phase shift condition */
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/* ****** MRE Gradient Shape Functions *************************** */

int i, j, k, TotalGradientPoints;

double SampleInterval;

double t, pi , Tshift , f, T, delta , Ts_min;

i=0; j=0; pi = 3.14;

// *** Note that "MEGTotalDuration" is in miliseconds

// Minimum time interval between points of a gradient shape ,

// limited by system

Ts_min = 4e-3;

// maximum points we can use to create gradient shape

// for a give duration

TotalGradientPoints =(int)floor(MEGTotalDuration/Ts_min );

// this is the time between sample points

// for calculated total gradient shape points

SampleInterval = MREDuration /1000/ TotalGradientPoints;

// Create an Empty array for a single frequency temporary MEG

double MonoMEG[TotalGradientPoints ];

// Following two lines are specific to Bruker system

// (Can be safely ignored to understand the code)
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// total number of elements in gradient shape

L[12]= TotalGradientPoints;

// Number of time steps

L[7]= MEGTimeOffsetNum;

// These are 2D arrays which would have gradient shapes

// for each time steps

PARX_change_dims("MEGread" ,MEGTimeOffsetNum ,TotalGradientPoints );

PARX_change_dims("MEGphase",MEGTimeOffsetNum ,TotalGradientPoints );

PARX_change_dims("MEGslice",MEGTimeOffsetNum ,TotalGradientPoints );

// Reset MEGread , MEGphase and MEGslice to zero

for (i=0;i<MEGTimeOffsetNum;i++)

{

for (k=0;k<TotalGradientPoints;k++)

{

MEGread[i][k]=0;

MEGphase[i][k]=0;

MEGslice[i][k]=0;

}

}

// Fill out mono MEG then place
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// it in MEGread , MEGphase and MEGslice

for (i=0;i<MEGTimeOffsetNum;i++)

{

for (j=0;j<MEGFreqNum;j++)

{

f = MEGFreqList[j]; // Frequency

T = (float )1/f; // Period

// Requires time offset for given frequency and frequency bin

Tshift =( float)MEGFreqBinPlacementList[j]*i/MEGTimeOffsetNum/f;

for (k=0;k<TotalGradientPoints;k++)

{

// real time instance

t = (float)k*SampleInterval;

// shift amount in real time

delta = t-(Tshift -T*(int)( Tshift/T));

// Outside the given time MEG is zero

if ((delta >=0)&&(f*delta <MEGNumList[j]))

{

MonoMEG[k]=( float)sin (2*pi*f*delta);

// MEGPowerList is previously calculated , such that the

//total power per gradient cannot be greater than 100

MonoMEG[k]*=( float)MEGPowerList[j]/100; // Scale the power
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}

else

{

MonoMEG[k]=0;

};

// Fill out MEGread , MEGphase and MEGslice

switch ( MEGDirectionList[j] ){

case DirectionRead:

MEGread[i][k] += MonoMEG[k];

break;

case DirectionPhase:

MEGphase[i][k] += MonoMEG[k];

break;

case DirectionSlice:

MEGslice[i][k] += MonoMEG[k];

break;

default:

DB_MSG (("**Error: Invalid direction "));

break;

};};};};}
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