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DETECTION AND EXPLANATION OF STATISTICAL DIFFERENCES

ACROSS A PAIR OF GROUPS

Yuriy Sverchkov, PhD

University of Pittsburgh, 2014

The task of explaining differences across groups is a task that people encounter often, not

only in the research environment, but also in less formal settings. Existing statistical tools

designed specifically for discovering and understanding differences are limited. The methods

developed in this dissertation provide such tools and help understand what properties such

tools should have to be successful and to motivate further development of new approaches

to discovering and understanding differences.

This dissertation presents a novel approach to comparing groups of data points. The

process of comparing groups of data is divided into multiple stages: The learning of maximum

a posteriori models for the data in each group, the identification of statistical differences

between model parameters, the construction of a single model that captures those differences,

and finally, the explanation of inferences of differences in marginal distributions in the form

of an account of clinically significant contributions of elemental model differences to the

marginal difference. A general framework for the process, applicable to a broad range of

model types, is presented. This dissertation focuses on applying this framework to Bayesian

networks over multinomial variables.

To evaluate model learning and the detection of parameter differences an empirical eval-

uation of methods for identifying statistically significant differences and clinically significant

differences is performed. To evaluate the generated explanations of how differences in the

models account for the differences in probabilities computed from those models, case stud-

ies with real clinical data are presented, and the findings generated by explanations are
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discussed. An interactive prototype that allows a user to navigate through such an explana-

tion is presented, and ideas are discussed for further development of data analysis tools for

comparing groups of data.
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1.0 INTRODUCTION

Groups of data collected on a given set of variables may reflect different underlying distri-

butions. It is often helpful to determine if those distributions differ, and if so, explain how

they differ. For example, a pair of variables may show correlation in one group, but indepen-

dence in another group; or we may see an association between a pair of variables preserved

across groups, but observe a difference in marginal distributions. There are other possibil-

ities, and when considering data over many variables, there are many more relationships

to consider. Cases where the statistical comparison of groups of data is of interest arise

in widely varying applications, including clinical research, quality assurance, comparative

effectiveness research, and many others. An example of a quality assurance scenario is one

where we observe that two intensive care units (ICUs) of the same type experience notably

different readmission rates. A quality assurance officer might want to discover whether par-

ticular differences in the operation of the ICUs contribute to the difference in readmission

rates. An example in the clinical research setting would be that of a cohort study that inves-

tigates the association of early dialysis and the mortality of renal disease patients. In such a

study a clinical researcher would want to identify those circumstances under which an effect

is present, and the extent to which the effect is positive or negative. Another example from

clinical research is that of a randomized controlled trial, where we want to identify patterns

in the response to a treatment. A biologist may seek to perform an exploratory analysis of

the differences between measurements of cancer cells and measurements of healthy tissue.

All of these scenarios share a common structure: there are two groups for which data are

available and the goals are to determine if the groups differ from each other, and if so, how

they differ.
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1.1 MOTIVATION

This dissertation develops and evaluates a method for analyzing data on two groups that

share a common set of variables in order to determine if the groups differ in their multivariate

distributions over those variables, and if so, how. The dissertation focuses on the problem

of comparing a pair of groups.

Many questions in research and everyday life can be framed as questions of difference

explanation. Interestingly enough, the statistical tools typically available to researchers are

not focused on this task, but rather are focused on either predicting an outcome, or classifying

cases, or clustering cases. Tests that do aim at difference identification are not typically

good as tools for explanation. Tests of statistical differences are generally either univariate

(chi-square, t-test, Kolmogorov-Smirnov test), or when they are multivariate (Hotelling’s

T-squared test, Kullback-Leibler divergence), they cannot relate the difference measure to

how variables individually contribute to that overall measure.

Take a simple example of explaining to a child how an elephant is different from a mouse.

A collection of univariate difference tests might detect that elephants are bigger, eat more,

drink more, move less swiftly, etc. A multivariate test might say that indeed, an elephant

is different from a mouse, but would not really give a reason as to why. A good classifier

would say that if it’s an animal that has a trunk, it’s probably an elephant.

None of these seem satisfactory. What explanation would we want to see? Something

along the lines of “elephants bigger mammals than mice, and bigger mammals tend to eat

more, drink more, move less swiftly because of their size. Elephants also have trunks, while

mice have pointed snouts.”

The key to this explanation is that it uses a model that captures the differences and

similarities between mice and elephants (a portion of the model is dedicated to correlating a

mammal’s size to diet and biophysical constraints, a relationship that is applicable to both

elephants and mice, while another portion captures the differences). We see a phenomenon

that a long list of univariate differences can be explained away by using the model and

tracing many differences to a difference in one key observable variable—size. Some differences

(trunk/snout) still need to be pointed out independently. We also see that what may be

2



sufficient for a classifier is not sufficient to providing a full account of differences of interest.

This observation suggests an approach to difference explanation that focuses on explicitly

modeling each of the groups we compare as well as their commonalities. This dissertation

focuses on identifying and explaining differences in groups of data, where a group of data

is defined as a collection of points of data, such as a collection of medical records, where

each data point, or record, consists of a set of measurements about, for example, a patient

that belongs to one of the groups we are comparing. The probabilistic approach taken in

this dissertation assumes that the records in each group are independent and identically

distributed samples that come from some joint probability distribution common for that

group, and that the individual measurements are the random variables governed by that

probability distribution. The general task of finding differences between two groups of records

is then framed as that of finding the differences between the probability distributions. Since

we rarely (if ever) know what the precise probability distribution for data is, I take a Bayesian

approach of estimating the probability distribution of each group by the expected value over

a distribution of posterior distributions based on the data and prior knowledge, which may

be informative or non-informative. A Bayesian approach also allows us to evaluate the

statistical significance of estimates that are based on a distribution of distributions. There

are various techniques for modeling probability distributions, and the sorts of models that

produce informative explanations are typically ones that represent the full joint probability

distribution in terms of local probability distributions, that is, ones that involve small subsets

of the full set of variables. For such models, an analysis of differences and their effects on

variables of interest consists of identifying differences in local distributions and explaining

how the effects of these differences combine to account for differences in the distributions of

the variables of interest.

The general hypothesis of this thesis is as follows: One can systematically produce expla-

nations that are more revealing and insightful than those obtained from traditional methods

by approaching the problem of comparing a pair of groups as that of identifying significant lo-

cal distributional differences between two multivariate distribution estimates for those groups

and explaining their effects on variables of interest.

3



1.2 CONTRIBUTIONS OF THIS THESIS

The main aim of this dissertation is to help address the general problem of detecting and

explaining differences between groups of records in terms of probability distributions. The

two major components to addressing the general problem and the general hypothesis stated

above are: the identification of the differences across the groups in the context of a model

(Chapters 4 and 5), and the utilization of this model to explain the differences in the data

and their interrelations (Chapters 6 and 7).

I describe broadly a framework for the identification of distributional differences across

groups in the context of a model that codifies those differences. George Box famously said

that “all models are wrong, but some are useful” (Box and Draper, 1987). The commitment

to a model that is ‘wrong’ by nature of being a model, then, introduces the risk that in-

ferences drawn from the model would not necessarily match direct observation. One might

wonder, then, especially with the current increasing availability of large datasets and the

computing power to query the data directly, whether querying the data for counts or ob-

served proportions is not a better method for identifying patterns of differences. In spite of

this concern, the use of a model is essential to producing an explanation that points to the

differences in the mechanisms which govern the data. If we view the data in the two groups

that we compare as produced by two generative models, the difference detection methods

here aim to find the similarities and differences between the processes that produce the data,

and relate the differences observed in the generated data to the differences that we find

between the processes. I do not believe that such an explanation is possible without the

construction of a model that captures the differences. Moreover, the risk of committing to a

model that has such a mismatch with the data can be mitigated by considering ensembles of

models, or Bayesian averaging over a space of models; Section 8.2.11 discusses the possibility

of applying these approaches in future work.

The framework for identifying differences in distributions that I describe can be applied

using a variety of probabilistic models of data, including Bayesian networks (BNs), Markov

random fields, Bayesian hierarchical models, probabilistic rule-based systems, and others.

In this dissertation, the focus is on applying this framework to BNs of random variables

4



that have multinomial distributions. The difference detection approaches developed here

can more broadly apply to any model that meets two criteria. The first is that the models

be described in terms of local parameters that are independent in their prior distributions.

In BNs, this corresponds to local and global parameter independence (Heckerman et al.,

1995). The second is that it be possible to match parameters across models for the different

groups. In BNs, this is easy to accomplish since parameters correspond to the conditional

distribution that a variable takes given the values of other variables. Given a model that

has such parameter distributions, the difference detection and explanation task is to identify

differences in those matching local parameters and explain their effect on the variables and

inferences of interest.

There are two types of criteria used to determine whether parameters being compared

are different: statistical significance and clinical significance. Statistical significance is a

measure of the evidence that the difference observed in data is not due to random chance

(Coolidge, 2012). “Clinical significance refers to the practical or applied value or importance

of the effect of an intervention” (Kazdin, 1999). In this dissertation, the term “clinical

significance” is used more broadly to mean that the effect size is large. In statistics, the

effect size is a quantitative measure of the strength of a phenomenon (Kelley and Preacher,

2012). Section 4.4 details the particular measures of effect size used in this dissertation.

They are used to evaluate the deviation of an observed quantity from its expected value

under a null hypothesis. The concepts of clinical and statistical significance are generally

applicable to various types of measurements.

To understand the distinction between these two types of significance in the context of

this dissertation, consider and example with a multinomial variable Xi, where the measure-

ment of interest is the difference in the proportion of cases for which Xi takes a value xik

across the two groups. This dissertation focuses on distinguishing the presence of differences

from the absence of differences. Therefore, one measure of effect size in which we are in-

terested is the deviation of the difference in probabilities from zero. Suppose that in one

group P (xik) = 0.100 and in the other, P (xik) = 0.101. It is entirely possible that with a

large amount of data, we may have enough evidence to conclude that the difference would

be statistically significant, that is, not likely to be due to random variation in the data. This
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difference, however, would probably not be considered to be clinically significant because the

two probabilities are too close for the difference to be of importance in practical purposes.

In this dissertation, statistical significance is used to determine relationships between

variables in the two groups. Statistical significance is used to determine which variables

are dependent on which, and whether model parameters are different across the two groups

compared. Clinical significance is used to further evaluate differences that were found to be

statistically significant.

Once a model of the data is constructed and the local parameter differences across the

groups have been identified (via statistical significance testing), explanation can be per-

formed. The explanation methods in this thesis are tailored for BNs with multinomial

variables, and while they may be extended to other models that are semantically similar

to BNs, ultimately, the semantics of a model will direct how an explanation regarding the

information it captured is performed. The explanation process consists of identifying clin-

ically significant marginal differences in variable distributions and tracing the difference to

its sources in the parametric differences in the model definition. Tests of clinical significance

are used to determine which elements are significant enough to include in the explanation.

To summarize, the specific contributions are as follows: the formal framing of the group-

difference problem in terms of model parameter difference identification, the evaluation of

methods for detecting statistically significant parameter differences and clinically significant

parameter differences, and the development and evaluation of methods for generating a

comprehensive explanation of differences that trace a difference of interest to fundamental

parameter differences in a model of the data.

1.3 DISSERTATION OUTLINE

The remainder of this dissertation is structured as follows. Chapter 2 presents background

concepts that are integral to the research and summarizes data and notation used. Chapter 3

reviews related research. Chapter 4 presents a conceptual framework for finding clinically

and statistically significant differences in data by leveraging model learning. I present two
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applications of this framework using BN models. Chapter 5 evaluates the detection methods

presented in Chapter 4. Chapter 6 presents three methods for generating explanations given

a model of the data and the parameter differences detected with respect to that model.

The approaches are presented in increasing order of complexity, with each building on the

previous ones. Chapter 7 describes the design and operation of a prototype interactive system

for difference detection and explanation, which implements the methods of Chapter 6. A

discussion of the prototype’s strengths and weaknesses and ideas for future development

concludes the chapter. Finally, Chapter 8 summarizes the findings and contributions of the

dissertation and discusses possible directions for future research.
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2.0 BACKGROUND

2.1 SUMMARY OF NOTATION

This section serves as a brief summary of all notation used in this document. Most of the

notation is also defined as it is introduced in the text.

2.1.1 Symbols and operators

• Logical operators ∧,∨,⊕,¬: and, or, exclusive or, and not, respectively.

• ¬ is overloaded to also flip the value of binary variables.

• Set operators ∪,∩, \: union, intersection, and set subtraction, respectively. Set operation

are also sometimes applied to vectors when the vectors are treated like sets (element order

does not matter in those cases).

• ∪ and ∩ are overloaded as symbols, usually in subscripts and superscripts, as indicators

of union/intersection-like variants e.g. D∪ indicates the concatenation of data groups,

hence D∪ is in that sense “union-like.”

• Probability theory operators ∼,⊥: “distributed as” and “independent of,” respectively.

• Probability operator P (·) is the probability of an event or the probability distribution of

a collection of events that correspond to the various values taken by random variables in

the expression on which the operator operates.

• Expectation operator ER[f(R)], for a random variable R represents the expectation of

f(R) that is obtained by averaging over the distribution of R.
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2.1.2 Variable naming conventions

• Uppercase Latin or Greek letters are random variables. Exceptions: H, J,K,N are

integers (see below).

• Bold symbols are vectors (ordered collections). Exception: Π, π, are not bold, but they

do indicate a collection.

• The above combine, for example: X is a vector of random variables (X1, . . . , Xn)

• Lowercase letters whose uppercase variant is a random variable indicate a particular

assignment of those variables to values. Examples: θijk is a particular value that Θijk

takes, θij is a vector representing particular value-assignment of the random vector Θij,

πij is the j-th assignment of Πi.

2.1.3 Variables with specific meanings

• N is the set of natural numbers.

• D represents data. The terms data, a group of data, and data-set all refer to a collection

of records (or data-points) over a set of random variables. Each record is an assignment

of the full set of random variables to values.

• Specifically, D1 and D2 represent the two groups of data to be compared, and D∪ is their

concatenation.

• M represents models, which, depending on context, means wither the abstract idea of a

model, or specifically, a Bayesian network structure.

• Z is a binary random variable taking the values {1, 2}, it is called the group-indicator

variable, and its value for a particular record is the group to which the record belongs,

i.e. Z = 1 for all records in D1 and Z = 2 for all records in D2.

• X is the collection of variables in a data-set, not including Z.

• n is the size of X.

• i ∈ {1, . . . , n} is the index of a variable Xi in the vector X.

• Ki is the number of values variable Xi takes.

• k ∈ {1, . . . , Ki} is the index of an assignment of a variable Xi to a value Xik

• Πi is the vector of variables that are the parents of Xi in a particular graph structure.
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• Ji is the number of possible assignments of Πi to values.

• j ∈ {1, . . . , Ji} is the index of an assignment of Πi to a value vector πij.

• θijk is a parameter in a Bayesian network representing the probability P (xik|πij).
• θij is the vector (θij1, . . . , θijKi).

• θi is the vector (θi1, . . . ,θiJi).

• θ is the vector (θ1, . . . ,θn).

• Nijk is the number of points in a data set for which Xi = xik and Πi = πij.

• Nij is the vector (Nij1, . . . , NijKi).

• Ni is the vector (Ni1, . . . ,NiJi).

• Nij· =
∑Ki

k=1Nijk.

• N =
∑n

i=1

∑Ji
j=1Nij·, the number of data points in a data set.

• t is the index of a parent Yt of Xi in Πi.

• Hi and η are analogous to Ji and j, see Section 4.3 for details.

2.2 BAYESIAN NETWORKS

A BN over a set of variables X = {X1, . . . , Xn} consists of a directed acyclic graph (DAG)

and a collection of conditional probability distributions. In the DAG, also called the BN

structure, each node represents a variable Xi.

The DAG defines an ancestry structure between nodes: a node has outgoing arcs to its

children, and incoming arcs from its parents; a parent is an ancestor, and a parent of an

ancestor is an ancestor; Xa is a descendant of Xb iff Xb is an ancestor of Xa; the parent set

of a node with no incoming arcs is the empty set; an undirected path through the network

is one that follows arcs while ignoring their direction; an undirected loop is an undirected

path that starts and ends at the same node, passes through at least one other node, and

does not cross itself.

Figure 1 is an example of a BN structure that illustrates these concepts. The figure is

showing the relationships between various nodes and X5 as well as an example of a loop and

an undirected graph: X3 and X4 are the parents of X5; X1, X2, X3, and X4 are the ancestors
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Figure 1: An example illustrating the anatomy of a BN and graph concepts relative to node

X5.

of X5; X7 and X8 are the children of X5; X7, X8, X9, X10, and X11 are the descendants of

X5; X6 is neither an ancestor nor a descendant of X5; the sequence of nodes (X5, X4, X2, X6)

forms an undirected path between X5 and X6; X1, X4, X5, and X3 form an undirected loop.

Each node Xi in a Bayesian network is associated with a conditional probability table

(CPT) defining the distribution of that node given its parent set Πi, P (Xi|Πi) (Heckerman,

1999). The numbers defining these conditional distributions are also referred to as the BN

parameters. The joint distribution of a BN is defined as a product of factors as follows:

P (X) =
n∏
i=1

P (Xi|Πi) . (2.1)

This factorized definition of the probability distribution entails the local Markov prop-

erty, that Xi is conditionally independent of its non-descendants given its parents Πi. This

property is a special case of d-separation, concept that is used to determine conditional inde-

pendences from observing the BN structure alone. For two variables Xa and Xb, and a set of

variables W, (Xa ⊥ Xb|W) holds whenever Xa and Xb are d-separated by W. Whether Xa
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Figure 2: Examples of various special BN structures: (a) a polytree, (b) a Chow-Liu tree,

and (c) a TAN.

and Xb are d-separated by W is determined as follows. Let a trail through the BN structure

be defined as a (potentially self-intersecting) path over the undirected structure of the BN.

A trail from a node Xa to a node Xb in the graph d-connects the nodes with respect to a

variable set W ⊂ X if for any triple of nodes Xα, Xβ, Xγ in the trail, either Xβ ∈ W and

the arc directions are Xα → Xβ ← Xγ, or Xβ 6∈W and the arc directions are in any other

configuration. Xa and Xb are d-separated by W if there exists no trail that connects Xa to

Xb (Geiger et al., 1990b).

There are several classes of BN structures that are notable to consider. Figure 2a shows

an example of a polytree, also called a singly-connected network (SCN). A network is a

polytree iff there exists no more than one undirected path between any pair of nodes in

the network. An important property of polytree BNs is that they allow exact inference in

polynomial time. Figure 2b shows an example of a Chow-Liu tree. A Chow-Liu tree is a

polytree in which every node has at most one parent, thus forming a tree (or multiple trees)

with arcs directed away from the root node. Chow and Liu (1968) showed that Chow-Liu

trees can be optimally learned in polynomial time. Figure 2c shows an example of the
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tree-augmented naive Bayes networks structure. The tree-augmented Naive Bayes (TAN)

network structure is often used for classification. There is a class variable Z with variables

as children. Those children form a tree structure. Friedman et al. (1997) showed that this

structure can be learned efficiently.

2.3 BAYESIAN DIRICHLET FRAMEWORK FOR BAYESIAN

NETWORKS

A Bayesian approach for estimating the probability distributions from the data is often

applied in the context of BNs. This is accomplished by treating BN parameters as random

variables with a posterior distribution rather than as point estimates. The idea of considering

the parameters of a BN to be governed by a prior Dirichlet distribution has been used in

multiple previous works (Heckerman et al., 1995), especially in the context of Bayesian

scoring metrics for BN structures. Formally, this can be represented by the notation

P (Xi = xik|Πi = πij) ≡ Θijk . (2.2)

In the context of a Bayesian Dirichlet measure, such as K2 (Cooper and Herskovits,

1992) or BDeu (Heckerman et al., 1995), the prior distribution of Θij = (Θij1, . . . ,ΘijKi) is

Dirichlet (Johnson et al., 2002), that is, the probability density of Θij is

p(θij) =
Γ
(∑Ki

k=1 αijk

)
∏Ki

k=1 Γ (αijk)

Ki∏
k=1

θ
αijk−1
ijk (2.3)

where Γ(·) is the Gamma function and αijk are the parameters of the Dirichlet distribution.

This is also denoted by the notation

Θij ∼ Dirichlet(αij) . (2.4)

Since the Dirichlet is a conjugate of the multinomial, the posterior distribution of the

parameters given N points of data D is also Dirichlet, specifically:

Θij|D ∼ Dirichlet(αij + Nij) (2.5)
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where Nij = (Nij1, . . . , NijKi) and Nijk is the number of points for which Xi = xik and

Πi = πij in the data. Because of the convenient updating pattern where each Dirichlet

parameter αijk in the prior distribution is updated by the corresponding count Nijk to ar-

rive at the corresponding posterior distribution parameter, αijk are also sometimes called

“pseudocounts.”

This dissertation focuses on the specific case where the prior Θij distributions are uni-

form, that is, where αijk = 1 for all values of i, j, k. In spite of this, all the methods used

are readily generalizable to other prior Dirichlet distributions.

2.4 DATA USED FOR CASE STUDIES IN THIS DISSERTATION

Throughout the dissertation I present case studies to illustrate the explanation methods I

develop. The following is an overview of the data used.

2.4.1 CEHC-PORT

The data used were collected in a prospective cohort study of hospitalized and ambula-

tory care patients conducted from October 1991 to March 1994 at five medical institutions

(Kapoor, 1996). Patients included in the study had to have one or more symptoms suggestive

of pneumonia, as well as radiographic evidence of pneumonia within 24 hours of presentation.

The variables available in the data include categorical variables, continuous variables, and

discretized versions of continuous variables. We restricted ourselves only to categorical vari-

ables and one discretization of each continuous variable, yielding 165 variables. The available

variables included demographic information, history and physical examination information,

laboratory results, chest X-ray findings, and outcomes. In using this data I selected two

of the five medical institutions that participated in the study as the two data groups to

compare.
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3.0 RELATED WORK

This chapter is an overview of related work. While, to my knowledge, this approach to

explaining distributional differences, especially in terms of contrast points, is novel, there

are many works that are relevant to the approach, including BN learning (Section 3.1) and

explanation (Section 3.3), as well as other statistical methods (Section 3.4).

3.1 BN LEARNING

A central component to the approach in this dissertation is the construction of a model of

the data. Learning the structure and parameter distribution of a BN model from data is a

necessary step in the difference detection methods I discuss in Chapter 4. In some situations

the structure or elements of the structure may be known, but in many situations the structure

must be learned from the data. This section discusses relevant previous work BN learning.

Learning a BN is an important step for detecting group differences and producing the model

used in the explanation, but it is merely a step, and the analysis methodology that I develop

in this dissertation work goes beyond that step. Nevertheless, the choice of BN structure

has a significant effect on guiding the resultant analysis.

Many approaches to BN learning have been explored in the literature. Daly et al. (2011)

provide an extensive review of BN learning and divide existing methods across multiple

categories: score search, where the space of BN structures is searched for a structure that

has the best score according to some scoring criterion; constraint-based methods, where

conditional independencies (CI) in the data are used to constrain the structure; and dynamic

programming, which would have been more appropriately named “exact score optimization”
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as opposed to the other score search methods, which are heuristic and do not guarantee

optimal solutions.

Constraint-based methods use CIs obtained from statistical tests on the data to eliminate

possible arcs in the network structure. Some of the earliest work is by Geiger et al. (1990a),

who developed an algorithm to recover polytrees from an oracle which can determine if

two variables are conditionally independent from each other. Systems for recovering DAGs

from data came later, with the SGS algorithm by Glymour et al. (1991) and its variations,

such as the PC algorithm by Spirtes and Glymour (1991). More recent work by Kalisch and

Bühlmann (2007) shows the applicability of PC to high-dimensional data. Related algorithms

for learning DAGs were also developed by Verma and Pearl (1992), and following the large

body of work on finding DAGs using CIs, many refinements for specialized situations were

developed by other authors (Bell et al., 2002; Cheng et al., 1997; Cooper, 1997; de Campos,

1998; de Campos and Huete, 1997, 2000b; Gou et al., 2007; Margaritis and Thrun; Meek,

1995).

Although these CI methods are appealing and often preferred for building causal BNs

because of the explicit CI tests used for finding relationships, they may require large sample

sizes to learn BNs effectively, and typically perform better when the graph to be found is

sparse, that is, when there are many CIs in the data. Conversely, score search methods

typically require less data to perform well and perform better on data that admit dense

graphs (Daly et al., 2011).

Score search techniques seek to optimize some score function of the graph based on the

data. The space over which most methods in this category search is that of possible DAGs,

however, there are some methods that search over variable orderings (Acid and De Campos,

1996; Chen et al., 2008; de Campos and Huete, 2000a; De Campos et al., 2008; Larrañaga

et al., 1996; Teyssier and Koller, 2012; Wallace and Korb, 1997), and some that search over

equivalence classes1 of BNs (Chickering, 2002; Chickering and Meek, 2006; Nielsen et al.,

2002).

The space of DAGs is combinatorial in the number of variables, which makes it infeasible

1 It is often possible to represent the same set of CIs using multiple different BN structures. Every such
collection forms an equivalence class of BNs that corresponds to a particular set of CIs.

16



to exhaustively search it for the optimally-scoring structure in most cases. In fact, Chickering

(1996) proves that such optimization is NP-hard in the general case. Hence, most search

methods apply various heuristics and do not perform an exhaustive search of the space,

and cannot guarantee to find the optimal structure. Notable exceptions, which are feasible

in the case of up to approximately 30 variables, include dynamic programming approaches

(Koivisto and Sood, 2004; Silander and Myllymaki, 2006; Singh and Moore, 2005) and an

application of A∗ search to the space of DAGs by Yuan et al. (2011).

Various heuristic search methods have been applied for learning BNs. All methods op-

erate on the common framework of applying operators to move from one DAG to another,

such as arc additions, removals, and reversals. Using these operators, the space of DAGs is

traversed until some criterion is met and the “best” structure is selected. The K2 algorithm

described by Cooper and Herskovits (1992) is one of the earliest works to use a greedy search

algorithm. It used the Bayesian scoring criterion that came to be known as the K2 score,

and required an ordering over the variables. Other greedy search approaches have been de-

veloped, such as K3 by Bouckaert (1993), and others more recently (Liu and Zhu, 2007; Liu

et al., 2007). Greedy methods that do not require an ordering over the variables have also

been developed (Chickering and Meek, 2006; de Campos et al., 2002; Hwang et al., 2002).

In this dissertation I use greedy-thick-thinning—a similar method that maximizes the K2

score in a greedy fashion by starting with an empty graph, adding arcs that most increase

the score until no more arc additions can increase the score, and then performs arc removals

that increase the score most until no more removals increase the score. Another notable ap-

proach to search that has been applied is genetic algorithms (GA). Larrañaga et al. (1996)

used GAs to search over orderings and used K2 to find a DAG for each ordering. Others,

such as Wong et al. (1999) applied GAs directly to the DAG space. Hybrid approaches that

combine evolutionary algorithms with other techniques have also be explored, such as (Wong

and Leung, 2004).

All of the score search methods attempt to optimize some particular score of the DAG

structure that is based on data and prior belief. Various scores that have been used in the

literature include the Bayesian Dirichlet (BD) criterion, the Akaike information criterion

(AIC), and the Bayesian information criterion/minimum description length (BIC/MDL).

17



The main feature that all of these measures have in common is that they reward simpler

structures and a better fit to the data.

This dissertation uses BD scoring because of the natural interpretation of the score as a

posterior probability, and because it enables the treatment of network parameters as random

variables. Using these scores essentially consists of choosing the graph structure M that is

most probable given the data D and prior belief. By applying Bayes’ rule we obtain that

P (M|D) ∝ P (M,D) = P (M)P (D|M) (3.1)

where P (M) is a prior for the graph structure. Often the graph structure prior is assumed

to be uniform, and the goal becomes to maximize P (D|M), the probability of the data

given the structure. Under the Bayesian Dirichlet framework outlined in section 2.3, this is

computed in closed-form as

P (D|M) = EΘ|MP (D|Θ,M) =

=

∫
θ

p(D|M,θ)p(θ|M)dθ =
n∏
i=1

Ji∏
j=1

Γ(αij·)

Γ(αij· +Nij·)

Ki∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
. (3.2)

Different choices of the Dirichlet priors lead to different BD scores: for example, the K2 score

(Cooper and Herskovits, 1992) is obtained from using uniform priors (all αijk = 1), and the

BDeu score Heckerman et al. (1995) is obtained from using priors with αijk = α∗

JiKi
where α∗

is a hyperparameter known as the Equivalent Sample Size (ESS).

The methods developed in this dissertation are presented at a level of generality compat-

ible with any Bayesian Dirichlet scoring measure and any structure search method that aims

to maximize the measure. This dissertation applies the heuristic greedy-thick-thinning search

method for learning the BN structure using the K2 score in all evaluations and applications

of methods developed to data.
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3.2 WHAT IS “EXPLANATION”

A considerable body of literature on explanation exists in the context of artificial intelligence

and expert system development. Explanation is essential to productive communication be-

tween a human user and an intelligent system in order for the user to be able to understand

and trust the system’s conclusions. I believe that user understanding is equally important

when the system is not prescriptive or predictive (as intelligent and expert systems usually

are), but rather, descriptive, as in this dissertation. Lacave and Diez (2000) conclude that

explanation consists in “exposing something in such a way that it is understandable for the

receiver of the explanation – so that he/she improves his/her knowledge about the object of

the explanation – and satisfactory in that it meets the receiver’s expectations.” The “expo-

sition” component of explanation clearly maps to the tasks of parameter difference detection

and of showing how those differences interact. The goal of making this exposition “satisfac-

tory” has a considerable impact on the considerations of how explanations are generated in

the methods of Chapter 6 and the design considerations of the prototype in Chapter 7.

3.3 BN EXPLANATION

Most explanation methods are designed around the task of explaining inference. The task

of BN inference is that of computing a posterior probability P (d|e), where e is evidence –

an assignment of observed values to a subset of the variables in the network – and d is the

assignment of one or more of the other variables in the network, typically representing the

prediction of an event of interest, such as a disease diagnosis. Two major approaches to in-

ference explanation are abduction and influence-tracing. Abduction provides an assignment

of unobserved variables to values, usually the most probable values, essentially providing a

plausible scenario as an explanation. These methods include methods of total abduction

(Charniak and Shimony, 1994; Gámez, 2004; Pearl, 1988), where all unobserved variables

are assigned values, and methods of partial abduction (Gámez, 2004; Shimony, 1991), where

only variables that are relevant to the particular inference task are assigned values.
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Influence-tracing methods describe the relationships between variables in terms such as

positive or negative associations between variables and the strengths of those associations

(Lacave and Diez, 2000). There are influence-tracing methods for describing influences qual-

itatively (Druzdzel, 1993), which use verbal descriptions or visual cues to indicate whether

the relationship between one variable and another is positive or negative (whether higher

values of one variable correlate with higher values of the other), whether the relationships are

strong or weak, and whether a pair of variables is conditionally independent given the state

of another variable. There are also influence-tracing methods that quantify how a change

in the state of one variable affects the inference about the probable state of another. Mea-

sures used to quantify such changes include differences of probabilities (Lacave et al., 2007),

log-ratios of probabilities (Madigan et al., 1997), and other functions such as cross-entropy

(Suermondt and Cooper, 1993; Suermondt, 1992). The difference explanation methods in

Chapter 6 are similar to influence-tracing methods in that they also quantitatively compare

probabilities that are obtained by conditioning on the group compared. This approach is

novel since it aims at a descriptive analysis of the distribution of the data, which is con-

siderably different from the task of explaining the inference behind computing a posterior

probability. Moreover, the methods here provide an organized explanation of relevant differ-

ences in terms of the underlying parameter differences, which is a task that has not appeared

in previous explanation work.

3.4 OTHER STATISTICAL METHODS

There are various statistical methods that are applicable to the problem of identifying dif-

ferences across a pair of groups. The statistical approach that most closely relates to the

difference detection task set forth in this dissertation is that of contrast set mining. Bay and

Pazzani (2001) present contrast-set mining as the discovery of joint variable-value assign-

ments that have different levels of support in different groups. The approach taken paral-

lels association-rule mining in that the space of possible joint variable-value assignments is

searched to maximize a score (in association-rule mining, this score is the lift of a rule, while
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in contrast-set mining a chi-square test is used). The main challenge in contrast-set mining

is the search of the exponentially large space of possible sets (joint variable-value assign-

ments), and much of the literature is dedicated to discussing heuristics and pruning rules to

make the search feasible. The output of contrast-set mining is the list of joint variable-value

assignments (the sets) which have differing support across groups, ranked by the extent of

that difference and tested for significance. Webb et al. (2003) show that contrast-set mining

can be viewed as a special case of general association-rule mining, and later work by Novak

et al. (2009) relates the task to emerging pattern mining and subgroup mining. Somewhat

analogously, in Section 4.2 I show that under certain assumptions, difference detection is a

special case of BN structure learning. In a sense, even the less restrictive approach of Sec-

tion 4.3 can be viewed as a special case learning, specifically the learning of a BN structure

with context-specific independence, as discussed in Section 8.2.7.

It is important to note that while contrast-set mining is well-suited for characterizing the

differences across two groups of data, since it does not build a model of the data, there is no

framework for the explanation of how various differences relate to each other using contrast

sets.

Another natural statistical approach to difference detection is to treat the problem as a

classification problem, that is, let Z be a group indicator variable (as in 4.2) and find a good

set of predictors for Z. The reasoning is that the predictors of Z are those variables that

”behave differently” across the two groups. There are many different classification methods

that can perform such a task. Rule learning and frequent pattern mining provide logical

decision rules that describe which value of Z a record is most likely to match. In a similar

way, classification and regression trees (CART) can, for a given record, based on whether the

values of the predictors fall into specific ranges, say which value of Z it matches. Perhaps the

most widely used classification method is logistic regression, which builds a linear model of

the log-odds of a record corresponding to a particular value of Z. The linearity of the model

makes it possible to explain the model in terms of additive contributions of each prediction

to the log-odds (Poulin et al., 2006). The application of logistic regression for this task has

become fairly standard practice, for example Cleophas and Zwinderman (2012) recommend

using it as a means for post-hoc analysis in clinical studies. Poulin et al. (2006) also show
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that a similar explanation can be produced for other additive classifiers, such as support

vector machines and Naive Bayes models.

The main issue with approaching the problem as classification is that it answers a different

question from the one posed: the classification task is to find a small set of variables that

separates the two groups well, while the difference explanation task is to identify all those

variables that are significantly different between the groups. While these tasks are closely

related it is important to recognize that they are not the same task. Most classification

methods attempt to predict the class variable, the group, in this analogy, using a minimal

number of predictors, that is, if one predictor explains the difference there is no need to

introduce another predictor. In this sense, classifiers are good at identifying relationships

between predictors and group membership, modeling problems may arise when predictors are

highly correlated, or alternatively, all but one of a collection of correlated predictors may be

dropped. Hence, when the task, as it is here, is actually to find similarities and differences

among the relationships between the predictors themselves, the classification approach is

limited.

There is one type of classifier that can be applied almost directly to the task of difference

explanation. Various augmented Naive Bayes classifiers such as TAN (Friedman et al., 1997).

What is special about those models is that they build a model for the distribution of all

predictors given the classification variable. We can then use the learning phase of such a

classifier to learn the BN structure that defines distributions of the predictors given the group

variable, thereby giving us the parameter differences in each predictor variable across the

two groups. The main limitation of using augmented Naive Bayes classifiers in this manner

is that since they are optimized for prediction, the types of relationships they find between

other variables in the data are limited to those necessary to improve that prediction task.

This is in contrast to our focus on relationships between variables in the data in the task of

explaining differences across a pair of groups.

Traditional statistical methods can also be applied to detect differences in the distri-

butions of two groups. There are multiple traditional statistical tests that are designed to

compare distributions. For categorical variables, the Chi-Square test is applicable, it tests

whether two groups are independent. This can be used to determine if a variable has differ-
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ent distributions across two groups by testing whether it is dependent on the group variable.

More generally, for continuous variables, the Kolmogorov-Smirnov test is often used to deter-

mine equality of distributions. Note that these tests are univariate, and cannot therefore be

used to compare two multivariate groups of data directly. There are other measures of distri-

bution differences that are multivariate in nature, such as Hotelling’s T-squared test, mutual

information, or Kullback-Leibler divergence (Kullback and Leibler, 1951). These measures

are multivariate, but they do not allow for examining the contributions of differences in

individual variables to the overall measure of difference across the groups. The approach in

this dissertation bridges this gap with a method that can be used as a measure of overall

difference, while allowing for the contributions in the differences of individual variables to

the overall measure of difference to be quantified.
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4.0 DETECTING DIFFERENCES IN DISTRIBUTIONS

This dissertation approaches the problem of detecting differences from a statistical stand-

point, where given a pair of data groups D1 and D2 over a vector of random variables

X = (X1, . . . , Xn), we would like to identify variables that exhibit statistical differences. A

variable might have a different marginal distribution in the two groups and/or a different

conditional distribution when conditioning on the values of some of the other variables.

To clearly and simply illustrate goals and concepts of difference detection, consider the

“Balloons” data set from the UCI Machine Learning Repository (Bache and Lichman, 2013).

The data were originally used in an experiment about knowledge acquisition where subjects

were shown photographs of a person doing something with a balloon. The balloon in the

photograph might be yellow or purple, large or small; the person in the photograph might be

an adult or a child, and they might be dipping or stretching the balloon, and either inflating

or not inflating the balloon, based on some rule. In the knowledge acquisition experiment,

the task of the subjects was to predict whether the person in the photograph would inflate

the balloon (Pazzani, 1991). The data represents information from the photographs shown

to the subjects in a pair of experiments, and consist of the five binary variables color, size,

act, age, and inflated, which take the value pairs yellow/purple, large/small, stretch/dip,

adult/child, and T/F, respectively. We will focus on two groups of data labeled ‘adult-

stretch’ and ‘adult+stretch’ in the UCI data repository. I will refer to the two groups as

the or group and the and group, respectively. The difference between the two data groups

is that in the or group, inflated is T iff age is adult or act is stretch, while in the and

group, inflated is T iff age is adult and act is stretch. When comparing these two groups,

conceptually, this is the relationship that we wish to extract. In a statistical sense, we want

to identify that inflated is the variable that is behaving differently between the two groups,
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and moreover, that it is the conditional distributions of inflated given age and act that are

different between the two groups.

4.1 A CONCEPTUAL FRAMEWORK

Let us take the task illustrated with the Balloons example above and generalize it to an

empirically testable hypothesis.

4.1.1 Difference recovery hypothesis

Let us view D1 and D2 as two groups of data generated from two modelsM1 andM2. The

models might be statistical or (as in the Balloons example) rule-based. The models may differ

in various ways, for example, the value of a variable Xi may depend on one set of variables

in M1 and a different set of variables in M2. Another type of difference that is of interest

happens when the value of Xi depends on the same set of variables in both models, but, if

the model is rule-based, the rule for determining Xi is different between the models, or if

the model is statistical, the distribution of Xi is different between the models. I hypothesize

that such differences are reflected in the data D1 and D2, and that the differences between

the models can be recovered from the data. The statistical difference detection methods

developed in this chapter and tested in the next test this hypothesis by demonstrating such

recovery.

The difference recovery hypothesis is: given D1 and D2, groups of data generated from

models (either statistical or rule-based) M1 and M2, where there may be both differences

and similarities between the models. I hypothesize that we can accurately recover a statistical

representation of the differences and similarities between the models from the data D1 and

D2.
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4.1.2 Comparing parameters across models

Consider two groups of data D1 and D2 over the same set of variables X = (X1, . . . , Xn), and

denote the concatenation of D1 and D2 by D∪. If D1 and D2 are not different in a statistical

sense, they follow the same distribution, which is therefore the distribution of D∪. Let M1,

M2, M∪ denote maximum a posteriori (MAP) models within some space of models for

the data in D1, D2, and D∪ respectively. A MAP model M given data D is a model that

maximizes the likelihood P (D|M). In the case where D1 and D2 are the same, we expect

that P (D1|M1)×P (D2|M2) ≤ P (D∪|M∪) in the large sample limit, since modeling the two

groups as governed by independent distributions does not yield a better fitting model than

when the groups are modeled as coming from the same distribution. In the case where D1

and D2 are statistically different, we expect P (D1|M1) × P (D2|M2) > P (D∪|M∪) in the

large sample limit.

To address the problem posed by the difference recovery hypothesis of Section 4.1.1, I

extend this idea from the model level to the parameters of the models, an extension that can

be applied when the models have the following properties: the distribution of a variable Xi

is defined by a vector of parameters θi, parameters θi are drawn from a distribution Θi, and

parameter independence holds, such that, Θi ⊥ Θi′ for i 6= i′. BNs with Dirichlet parameter

priors have these two properties. These properties provide a means to match parameters from

M1, M2, and M∪ and pose the question of whether a variable Xi is distributed differently

across the two groups as that of whether

EΘi|M1 [P (D1|Θi,M1)]× EΘi|M2 [P (D2|Θi,M2)] > EΘi|M∪ [P (D∪|Θi,M∪)] . (4.1)

In the following two sections, I explore two approaches to applying this general framework

to BNs with Dirichlet priors, one that explicitly uses only one BN model, and is conceptually

equivalent to enforcing a shared structure for M1, M2, and M∪, and one that is less

restrictive, and only requires that the three models share a variable ordering.
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4.2 UNI-MODEL APPROACH

This section introduces an approach that provides a direct matching between the parameters

of M1, M2, and M∪ by ensuring they share a single structure. First I show that the task

of constructing this trio of models becomes equivalent to learning a single BN model with

group indicator variable Z that takes one value for records from D1 and another for records

from D2, subject to the constraint that Z is an orphan in the network structure. Next, I

discuss the implications of this orphan constraint for interpreting the learned BN. Finally, I

discuss the application of this model to the detection of statistically and clinically significant

differences.

4.2.1 Equivalence to learning a single BN model

Recall that generally, in a BN, the distribution of a variable Xi is defined in terms of a set

of conditional distributions Xi|πij, one for each variable assignment πij of the parents Πi of

Xi. Thus, given data D, if we have a model structureM that specifies the parent set Πi, we

can obtain the posterior distribution the parameter vector Θi that defines the conditional

distribution of Xi, and consequently we can compute the quantity of interest

EΘi|M[P (D|Θi,M)] =

Ji∏
j=1

Γ(αij·)

Γ(αij· +Nij·)

Ki∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
. (4.2)

Coming back to the problem of testing inequality (4.1) subject to the constraint of

identical structure, (4.2) gives us a direct way to compute each term. Particularly, note

that, denoting counts in D1 and D2 by N (1) and N (2), respectively, we obtain:

EΘi|M1 [P (D1|Θi,M1)]× EΘi|M2 [P (D2|Θi,M2] =

=

Ji∏
j=1

Γ(αij·)

Γ(αij· +N
(1)
ij· )

Ki∏
k=1

Γ(αijk +N
(1)
ijk )

Γ(αijk)
×

Ji∏
j=1

Γ(αij·)

Γ(αij· +N
(2)
ij· )

Ki∏
k=1

Γ(αijk +N
(2)
ijk )

Γ(αijk)
. (4.3)

Note that for z ∈ {1, 2}, N (z)
ijk is defined as the number of records in Dz for which Xi = xik

and Πi = πij. If we add a group indicator variable Z to the model, as described above,
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color size act age Z

inflated

Figure 3: The uni-model BN learned for the Balloons example.

letting Π′i = Πi ∪{Z} and denoting the parameters defining Xi given this new parent set by

Θ′i, we get that

EΘi|M1 [P (D1|Θi,M1)]× EΘi|M2 [P (D2|Θi,M2] =

=

Ji∏
j=1

Γ(αij·)

Γ(αij· +N
(1)
ij· )

Ki∏
k=1

Γ(αijk +N
(1)
ijk )

Γ(αijk)
×

Ji∏
j=1

Γ(αij·)

Γ(αij· +N
(2)
ij· )

Ki∏
k=1

Γ(αijk +N
(2)
ijk )

Γ(αijk)
=

=

J ′i∏
j′=1

Γ(αij′·)

Γ(αij′· +Nij′·)

Ki∏
k=1

Γ(αij′k +Nij′k)

Γ(αij′k)
= EΘ′i

[P (D∪|Θ′i)] . (4.4)

This means that when we use a score based on Dirichlet priors to learn a BN structure,

the learning algorithm performs our desired comparison between (M1,M2) and M∪ on a

local level whenever Z is considered as a candidate parent for a variable. We can ensure

that Z is always considered as a candidate by constraining it to be an orphan in the graph.

With this constraint, Z can potentially be a parent for any variable without violating the

acyclicity constraint of the BN structure.

Consider applying this to the Balloons example, with Z indicating whether the data

comes from the or group or the and group. K2 structure learning yields the BN in Figure 3.

The inflated variable is correctly characterized as dependent on act, age and Z. It is also

the only variable dependent on Z. This means that inflated is correctly identified as the

variable the distribution of which is different across these two groups.
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Figure 4: (a) Causal and (b) orphan-constraint-enforced graph structures for the candy-toy-

happiness example.

4.2.2 The orphan constraint on Z

This section discusses the appropriateness and implications of imposing the constraint that

Z must be an orphan. This constraint is justified when treating Z as a mathematical tool

to help identify parametric differences between two BNs of identical structure. However,

since Z is an added variable, it is important to understand the implications of including

it as an orphaned variable among the domain variables. There are a few situations where

it is causally appropriate for the variable Z to be orphaned, e.g. when it represents one

time period as opposed to another, or when it is the treatment in a randomized controlled

trial. In such situations, we are justified in assuming that no other variables can influence

the value of Z. Clearly, we do not want to be limited only to those cases, and I claim that

imposing the orphan constraint is indeed appropriate outside of those cases, provided that

we interpret the model properly.

In order to understand why the constraint is appropriate, it is important to understand

the apparent problem that is introduced by deviation from a causal graph. Suppose, for

example, that our data are about children and that we have three variables: toy, candy, and

happiness, indicating whether a child has received a toy, has received candy, or is happy,

respectively. Furthermore, suppose that children receive toys and candy independently, and

that both toys and candy have positive effects on happiness. The causal BN here would have

happiness as a child of both toy and candy, with no arc between toy and candy, as shown in
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Figure 4a. If we are tasked with the project of comparing the happy children in the data to

the unhappy ones, the group division dictates that Z = happiness , and that the happiness

node must be orphaned. The likely network that would be learned under that constraint is

one like that in Figure 4b, with both toy and candy as children of happiness as well as an

additional arc between toy and candy. This additional arc is representative of a dependency

that appeared: given that a child is happy, knowing that they received candy informs us

that it is less likely that they also received a toy, since the candy already explains the

happiness. The apparent problem with this learned structure is that it seems to contradict

our initial statement that children receive candy and toys independently, suggesting that the

relationship we found between toy and candy is not real.

It is important to interpret statistical relationships in the appropriate context. In the

context of a known happiness state, there is a very real statistical relationship between toy

and candy caused by conditioning on the happiness state. There is a dependence relationship

between toy and candy in the set of happy children, and there is a dependence relationship

between toy and candy in the set of unhappy children, and it is important to include that

relationship in the model. Similarly, relationships found when learning a BN with an orphan

constraint on the group indicator Z in any data may be ones due to confounding by Z.

These relationships exist within each of the two groups that are compared, even if these are

relationships between variables that are causally independent in the broader scope of the

entire data taken jointly.

Section 8.2.1 discusses some ideas for augmenting a network learned under such con-

straints with an explicit differentiation between relationships due to statistical dependence

and causation.

4.2.3 Statistical and clinical significance for differences

When data are assumed to follow some random distribution, some variability is expected.

Even if two groups of data are generated from the same distribution, we would almost always

expect to see some differences in the data. There are two notions of significance that are

often used to evaluate an effect (in this case, a difference) in the data: statistical significance
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and clinical significance.

An effect is considered statistically significant if there is sufficient evidence to conclude

that the effect is not due to random variability Coolidge (2012). An effect is considered

clinically significant if the effect size is large enough to matter in the practical sense Kazdin

(1999).

Note that the process of learning a BN structure, as described above, already performs

a sort of Bayesian statistical significance test. As discussed, when the BN structure learning

algorithm considers whether to add Z to the set of parents of Xi, it compares the likelihood

of the data subject to a model that allows different parameters for the two groups to a

likelihood of the data subject to a model that uses the same parameters for the two groups.

This constitutes a Bayesian statistical significance test, the outcome of which is reflected in

whether Z is a parent of Xi in the final learned BN.

Consider now a few approaches to testing whether a difference between parameters is

clinically significant. The most basic test is to examine whether a difference or a ratio

between the parameter estimates exceeds some threshold:

|θ(2)ijk − θ
(1)
ijk| > ε , or (4.5)

| log θ
(2)
ijk − log θ

(1)
ijk| > ε . (4.6)

Within a probabilistic framework, we can consider the posterior distribution of the parame-

ters, and compute the probability of the difference or ratio exceeding that threshold:

P (|Θ(2)
ijk −Θ

(1)
ijk| > ε) > 1− α , or (4.7)

P (| log Θ
(2)
ijk − log Θ

(1)
ijk| > ε) > 1− α . (4.8)

This probabilistic test combines statistical and clinical significance by evaluating not only

whether the effect size is sufficient, but also whether the observation that the effect size is

sufficient is itself not due to random variability.

I report the performance of these tests on the task of difference detection in Chapter 5.
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4.3 MULTI-MODEL APPROACH

The uni-model approach constrained the models M1, M2, and M∪ to share the same

model structure. The multi-model approach relaxes the identical structure constraint to

a variable ordering constraint. The ordering constraint can be enforced by learning M∪

without constraints and then constrainingM1 andM2 to have the same topological ordering

of variables as does M∪. There are many other possible approaches to enforcing these

constraints, ranging from obtaining an order a priori to more sophisticated approaches that

seek an order optimal for all three networks jointly. Exploring all of these alternatives is

outside the scope of this work.

This section describes the resulting approach which takes the three learned structures,

constrained as above, exploits parameter independence properties to match parameters, and

derives a Bayesian score for detecting whether groups of data are different at the full-model

level, at the variable level, and at a sub-variable (groups of parameters) level.

4.3.1 Measuring differences using Bayes factors

Given Dirichlet parameter priors over network parameters and uniform priors over network

structures, the MAP models M1, M2, and M∪ correspond to the structures learned by

maximizing the BD scores for the data groups D1, D2, and D∪ respectively, and, moreover,

the probabilities P (D1|M1), P (D2|M2), and P (D∪|M∪) correspond to those scores. Hence,

we can view the ratio

S

T
=
P (D1|M1)× P (D2|M2)

P (D∪|M∪)
=
E(Θ(1)|M1),(Θ

(2)|M2)
P (D1|Θ(1),M1)× P (D2|Θ(2),M2)

EΘ(∪)|M∪P (D∪|Θ(∪),M∪)

(4.9)

as a score that measures dissimilarity between the distributions governing D1 and D2.

The numerator S = P (D1|M1) × P (D2|M2) denotes the likelihood of the data subject

to the hypothesis that the two groups are modeled independently, and the denominator

T = P (D∪|M∪) denotes the likelihood of the data subject to the hypothesis that the

two groups are modeled as coming from the same distribution. Since each Bayesian score
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P (D|M) is obtained by averaging over a parameter space, the ratio S/T is the Bayes factor

(Jeffreys, 1998) for comparing these two hypotheses.

Another way to think of the hypotheses associated with the likelihoods S and T is in

terms of whether the parameter set Θ(1) for group 1 is independent or whether it is identical

to the parameter set Θ(2).

S = P (D1,D2|Θ(1) ⊥ Θ(2)) and (4.10)

T = P (D1,D2|Θ(1) = Θ(2)) . (4.11)

Due to global and local parameter independence, these likelihoods can be seen as a

product of per-variable likelihoods, each of which is a product of likelihoods defined by even

more local groups of parameters. This decomposition allows us to go further and measure

contributions to this score on a per-variable basis, as well as further analyze the contributions

of finer-scale local differences. Particularly:

EΘ|MP (D|Θ,M) =
n∏
i=1

EΘi|MP (D|Θi,M) (4.12)

where

EΘi|MP (D|Θi,M) =

Ji∏
j=1

Γ(αij·)

Γ(αij· +Nij·)

Ki∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
. (4.13)

This leads to the following decomposition of the Bayes factor (4.9):

S

T
=

n∏
i=1

Si
Ti

(4.14)

where

Si = P (D1,D2|Θ(1)
i ⊥ Θ

(2)
i ) = E

(Θ
(1)
i |M1),(Θ

(2)
i |M2)

P (D1|Θ(1)
i ,M1)× P (D2|Θ(2)

i ,M2)

Ti = P (D1,D2|Θ(1)
i = Θ

(2)
i ) = E

Θ
(∪)
i |M∪

P (D∪|Θ(∪)
i ,M∪) .

(4.15)

The ratio Si/Ti for a particular variable Xi is itself a Bayes factor that compares the two

modeling hypotheses as they pertain to defining the probability distribution of Xi.

Consider the Balloons data set example. The network structures learned using greedy-

thick-thinning with a K2 score turn out to be the same for D1 (16 cases), D2 (16 cases), and

D∪ (32 cases); that structure is shown in Figure 5. The value of S/T for this data is 4.873.
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inflated

Figure 5: The network structure that the learned models M1, M2, and M∪ share for the

Balloons example.

Jeffreys (1998), and later Kass and Raftery (1995), provide guidelines for interpreting Bayes

factors, and depending on the guideline used, this value indicates “substantial” (Jeffreys,

1998) or “positive” (Kass and Raftery, 1995) evidence in favor of modeling the distributions

as different. The values of Si/Ti are shown in Table 1.

We can see that the higher value of Si/Ti (53.00) for the inflated variable correctly

suggests that there is strong evidence in favor of the distribution of inflated being different

across the two groups.

Si/Ti can be further decomposed into terms that represent contributions to the likelihood

from differences in the local graph structure of the MAP models and differences in the

conditional counts in the data. Note that due to local parameter independence, the node-

wise likelihood is a product of likelihoods over parent configurations for that node:

EΘi|MP (D|Θi,M) =

Ji∏
j=1

EΘij |MP (D|Θij,M) (4.16)

where

EΘij |MP (D|Θij,M) =
Γ(αij·)

Γ(αij· +Nij·)

Ki∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
. (4.17)

In the case where the local structure coincides in the three models, that is, Xi has the same

parents in M1, M2, and M∪, we can compute the ratio

E
(Θ

(1)
i |M1),(Θ

(2)
ij |M2)

P (D1|Θ(1)
ij ,M1)× P (D2|Θ(2)

ij ,M2)

E
Θ

(∪)
ij |M∪

P (D∪|Θ(∪)
ij ,M∪)

(4.18)
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Table 1: Variable-wise scores obtained for the Balloons data.

Variable Bayes factor Si/Ti

inflated 53.00

act 0.8076

age 0.8076

color 0.3754

size 0.3754

to obtain a Bayes factor for whether Θ
(·)
ij , the parameter set that defines Xi|πij, is different

across the two groups. In the general case, however, the parent sets of Xi can be different in

the three models, and may have some partial overlap. In that case, we base a decomposition

of Si/Ti on the possible configurations of the intersection of the parent sets of Xi inM1,M2,

and M∪. Specifically, denote the parent sets of Xi in M1, M2, and M∪ by Π
(1)
i , Π

(2)
i , Π

(∪)
i

respectively. Let
∩
Πi denote Π

(1)
i ∩Π

(2)
i ∩Π

(∪)
i . Let J

(·)
i be the number of possible configurations

of Π
(·)
i , and enumerate those configurations by j = 1, . . . , J

(·)
i . Let Hi be the number of

possible configurations of
∩
Πi and and enumerate those configurations by η = 1, . . . , Hi. For

example, suppose that in data where all variables are binary, for a variable X1 we have Π
(∪)
1 =

{X2, X3, X4}, Π
(1)
1 = {X2, X3, X5}, and Π

(2)
1 = {X2, X4, X5}. Then we have that

∩
Π1= {X2},

and there are two possible configurations η = 1 and η = 2 for this set, corresponding to

x21 and x22. Let J ·i(η) indicate the subset of parent configurations j ∈ {1, . . . , J (·)
i } for the

variables in Π
(·)
i that are consistent with configuration η. For example, if η = 1 represents

x21 in our example, then J∪1 (1) is the set of j-values that correspond to the set of parent

assignments {(x21, x31, x41), (x21, x31, x42), (x21, x32, x41), (x21, x32, x42)}.
Grouping product terms by those that correspond with individual values of η, yields

Si
Ti

=

Hi∏
η=1

Siη
Tiη

(4.19)
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with

Siη =P (D1,D2|Θ(1)
iη ⊥ Θ

(2)
iη ) =

=

 ∏
j∈J1

i (η)

E
Θ

(1)
ij |M1

P (D1|Θ(1)
ij ,M1)

 ∏
j∈J2

i (η)

E
Θ

(2)
ij |M2

P (D2|Θ(2)
ij ,M2)



Tiη =P (D1,D2|Θ(1)
iη = Θ

(2)
iη ) =

∏
j∈J∪i (η)

E
Θ

(∪)
ij |M∪

P (D∪|Θ(∪)
ij ,M∪)

(4.20)

where Siη/Tiη is the Bayes factor for whether Θ
(·)
iη , the parameter set that defines Xi|πiη, is

different across the two groups.

Table 2 shows the Bayes factors Siη/Tiη for the Balloons example. Bayes factors for

inflated given age = adult, act = dip and given age = child, act = strech have values

indicative of strong evidence for differences in distributions. Indeed, those are the combi-

nations of values for which the two generating rules of and vs or yield different results:

age = adult, act = stretch is true for both ‘adult or stretch’ and ‘adult and stretch,’

and similarly, age = child, act = dip is false for both rules. However, the configurations

age = adult, act = dip and given age = child, act = stretch both yield true for the or rule

and false for the and rule. This shows that the approach correctly identifies the parameter

differences that explain the distribution-wide differences.

4.3.2 Detecting differences in partially similar models

One interesting and useful task is the detection of differences in distributions that have a mix

of parameters that are different across groups and parameters that are shared among groups.

The Bayes factor S/T in Equation (4.9), however, as stated above, compares the hypothesis

of sharing no parameters across the groups, to the hypothesis of sharing all the parameters.

Similarly, the Bayes factor Si/Ti compares these models at the node level, meaning that it

is a measure of whether every conditional distribution of Xi given its parents is different

across the two groups. However, we are often interested in obtaining a measure that is

sensitive to the presence of changes in only some conditional distributions of Xi, while other

conditional distributions may indeed be identical across groups. This section derives a score
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Table 2: Parameter-wise scores obtained for the Balloons data.

Variable Xi |πiη Siη/Tiη

inflated |age = adult, act = dip 25.20

inflated |age = adult, act = stretch 0.2889

inflated |age = child, act = dip 0.2889

inflated |age = child, act = stretch 25.20

act (no parents) 0.8076

age (no parents) 0.8076

color (no parents) 0.3754

size (no parents) 0.3754

for identifying such differences, and while the details are presented in the context of the

multi-model, they are equally applicable to the uni-model, since the latter is a special case

of the former with additional structural constraints.

At the variable level, what we are really interested in is the posterior odds of seeing

any difference between the groups in the conditional distribution of Xi given its parents.

Let piη = P (Θ
(1)
iη = Θ

(2)
iη ) denote the prior probability that the distribution of Xi|πiη is the

same across the two groups. Using these priors and applying Bayes’ rule we can derive a

posterior probability that all parameters defining the distribution of Xi are the same for the

two groups:

P (Θ
(1)
i = Θ

(2)
i |D1,D2) =

∏Hi
η=1 P (D1,D2|Θ(1)

iη = Θ
(2)
iη )P (Θ

(1)
iη = Θ

(2)
iη )

P (D1,D2)
(4.21)

where the numerator is
∏Hi

η=1 Tiηpiη. Denote the power set of {1, . . . , Hi} by P({1, . . . , Hi}).
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The denominator of (4.21) can be expressed as follows:

P (D1,D2) =
∑

A∈P({1,...,Hi})

∏
η∈A

Siη︷ ︸︸ ︷
P (D1,D2|Θ(1)

iη ⊥ Θ
(2)
iη )×

∏
η∈{1,...,Hi}\A

Tiη︷ ︸︸ ︷
P (D1,D2|Θ(1)

iη = Θ
(2)
iη )×

∏
η∈A

(1−piη)︷ ︸︸ ︷(
1− P (Θ

(1)
iη = Θ

(2)
iη )
)
×

∏
η∈{1,...,Hi}\A

piη︷ ︸︸ ︷
P (Θ

(1)
iη = Θ

(2)
iη ) =

=

Hi∏
η=1

(Siη(1− piη) + Tiηpiη) .

(4.22)

Note at the η-level, only two cases are considered: either all bΘiη (all conditional distributions

compatible with η) are different across the two groups, or all are the same. This is because

η is defined to be the finest level at which the conditional distributions of the two models

can be compared. From Equations (4.21) and (4.22) we can then obtain the posterior odds

of a difference in any parameter of Xi:

Oi =
1− P (Θ

(1)
i = Θ

(2)
i |D1,D2)

P (Θ
(1)
i = Θ

(2)
i |D1,D2)

=
1

P (Θ
(1)
i = Θ

(2)
i |D1,D2)

− 1 =

=

Hi∏
η=1

(Siη(1− piη) + Tiηpiη)

Hi∏
η=1

Tiηpiη

− 1 =

(
Hi∏
η=1

(
Siη(1− piη)
Tiηpiη

+ 1

))
− 1 . (4.23)

In the absence of information that would lead one to expect differences in some param-

eters more than in others, the priors piη can be related to the prior probability pi of seeing

no difference in the conditional distribution of variable Xi by the relation piη = p
1/Hi
i .

The same approach can be applied to the entire data to obtain posterior odds of observing

a difference anywhere in the network, expressed as

O =
1− P (Θ(1) = Θ(2)|D1,D2)

P (Θ(1) = Θ(2)|D1,D2)
=

(
n∏
i=1

Hi∏
η=1

(
Siη(1− piη)
Tiηpiη

+ 1

))
− 1 . (4.24)
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Table 3: Variable-wise Bayes factors and posterior odds obtained for the Balloons data.

Variable Si/Ti Oi

inflated 53.00 36.01

act 0.8076 0.8076

age 0.8076 0.8076

color 0.3754 0.3754

size 0.3754 0.3754

Using (4.24) entails that the prior for seeing no difference between the two groups is p =∏n
i=1

∏Hi
η=1 piη. Given such an overall prior p, a natural choice for noninformative priors is

piη = p1/(nHi): this choice of priors assumes that we are equally and independently likely to

see a difference in each variable, and equally and independently likely to see a change in each

conditional probability distribution of each variable.

4.3.3 Examples

I applied this approach to the Balloons example with priors set in this manner with all pi =

1/2. Computing the model-wise posterior odds for the Balloons example yields O = 227.8.

As a point of comparison, the model-wise Bayes factor is 4.872. This is not surprising since

in the Balloons example, the generating model is partially different between the groups, and

we expect the posterior odds to reliably detect this event. Table 3 shows the posterior odds

Oi obtained for the Balloons example with alongside the Bayes factors Si/Ti from Table 1.

For this particular prior choice, Oi = Si/Ti for variables that have no parents. In general,

when Hi = 1, that is, when the intersection of the parent sets of Xi from the three networks

is empty, Oi = Si(1 − pi)/(Tipi). We see that the Oi score correctly identifies the variable

inflated as the variable changed.

To illustrate what happens to the relationship between Oi and Si/Ti as Hi increases,
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X1 X2

X3 X4

X5

Figure 6: A network structure example.

consider the network in Figure 6, with probability distributions defined as follows:1

P (xiki |{x`k`|` ∈ N, ` < i}) =

0.7 if
⊕i

`=1 x`k` = T

0.3 otherwise.

(4.25)

Table 4 gives a summary of a 2000-point dataset generated from this network in terms of the

number of times each possible configuration of the variables appears. For the purposes of this

example, we compare this group to a copy of itself, meaning that D1 and D2 each contain the

data in Table 4. The modelsM1,M2,M∪ are all correct recoveries of the network structure

in Figure 6. Table 5 compares the scores Si/Ti obtained for each variable to the scores Oi

obtained using Equation (4.23) with pi = 1/2.

We can see that as the number of parents of Xi increases, Si/Ti exponentially decreases

for data that shows no difference between the two groups. This is to be expected, since

Siη/Tiη is always less than one for data that shows no change, and since Hi is exponential

in the number of parents of Xi, more such terms are multiplied. This effect is detrimental

to using the Bayes factor Si/Ti as a measure for detecting a difference in a variable. To

illustrate, consider the same network from Figure 6 with the same parameters from (4.25)

with the exception that one conditional probability distribution is changed to:

P (X5|X1 = T,X2 = T,X3 = F,X4 = F ) =

0.9 for X5 = F

0.1 for X5 = T

(4.26)

1N is the natural numbers 1, 2, 3, . . . and
⊕

is the ‘exclusive or’ operator. X1, . . . , X5 are binary variables
taking true/false values.
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Table 4: Summary of 2000-point dataset generated from the network in Figure 6.

X4 F T

X1 X2 X3 X5 F T F T

F F F 3 15 22 9

F F T 74 22 8 27

F T F 156 63 26 70

F T T 12 15 74 34

T F F 351 118 58 146

T F T 23 67 143 55

T T F 8 26 62 27

T T T 140 57 23 66

Table 5: Variable-wise scores obtained for comparing the data in Table 4 (D1) to a copy of

that data (D2).

Variable Si/Ti Oi

X1 3.680× 10−2 3.680× 10−2

X2 2.790× 10−3 4.500× 10−2

X3 3.750× 10−5 6.306× 10−2

X4 2.995× 10−8 9.267× 10−2

X5 3.093× 10−13 1.353× 10−1
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Table 6: Summary of the 2000-point dataset generated with the perturbed conditional dis-

tribution from (4.26).

X4 F T

X1 X2 X3 X5 F T F T

F F F 4 7 32 8

F F T 63 26 12 30

F T F 152 60 32 55

F T T 10 26 56 26

T F F 322 162 69 151

T F T 27 69 127 63

T T F 27 4 68 22

T T T 134 56 27 73

Table 6 shows a summary of a group of 2000 data points generated from this perturbed

version of the network. Let D1 be the previous data, from Table 4, and let D2 be the data

from Table 6, generated from the perturbed network. When comparing these two groups,

the models M1,M2,M∪ again recover the network structure of Figure 6 correctly, and the

scores shown in Table 7 are obtained.

We can see from Table 7 what happens with the scores and why Si/Ti is not a good

indicator for determining which variable was changed, since even though X5 is the only

variable the distribution of which is different across the two groups, S5/T5 is close to (and

less than) S2/T2 and is less than S1/T1 by orders of magnitude. This is because, even though

the S5η/T5η term in the product that corresponds to the difference introduced in (4.26) is

large (it is 310,400), its contribution to the product is drowned out by the other 15 S5η/T5η

terms (14 of which are between 0.1 and 0.7). The posterior odds Oi avoids this problem; the

posterior odds for X5 are much greater than 1, while the posterior odds for each of the rest

of the variables are below 1.
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Table 7: Variable-wise scores obtained for comparing the data in Table 4 to the data in

Table 6.

Variable Si/Ti Oi

X1 6.425× 10−2 6.425 × 10−2

X2 3.769× 10−3 5.383 × 10−2

X3 5.152× 10−5 6.773 × 10−2

X4 2.667× 10−6 2.487 × 10−1

X5 3.766× 10−3 1.936 × 105

In general, variable-level posterior odds score Oi is expected to be better than the Bayes

factor Si/Ti for detection of differences where we have a mix between parameters defining the

distribution of Xi that are and are not different between the two groups. If we are instead

interested in finding out whether all parameters associated with a variable Xi are different,

the variable-level Bayes factor is expected to be the better metric. At the parameter (Θiη)

level, the posterior odds score is more general than the Bayes factor, since the posterior odds

is just the Bayes factor multiplied by the prior odds (1−piη)/piη of a difference in Θiη, hence

with a choice of piη = 1/2, the two scores are equivalent. In general, the choice of priors will

affect the posterior odds, and the score will be best at detection when priors are close to the

distribution of the differences in the data, and may perform poorly when priors are vastly

different from the distribution of differences in the data.

4.3.4 Model synthesis for clinical difference detection

The posterior odds serves to find statistically significant differences. Having detected a sta-

tistically significant difference between two sets of parameters Θ
(1)
iη and Θ

(2)
iη , in order to find

clinically significant differences we must match up the appropriate parameters and compare

them to evaluate the size of the difference. It turns out that there is a straightforward

method for synthesizing a single BN model from the M1, M2, and M∪ using the results of

43



the statistical detection test. Once we have a single model, testing for clinical significance

becomes analogous to the uni-model case.

The synthesized model will contain the group indicator variable Z. The distribution of

Z can be easily estimated directly from the data. For variables that show no statistically

significant differences across the entire node (the posterior odds of observing a difference in

parameters is one), the variable keeps its parents and parameter distribution fromM∪. For

variables that are found to have a statistically different distribution, we group the parameters

by ηs: if the posterior of Θiη is found not to be statistically different, that group of parameters

is inherited from the M∪ network (and hence the Xi inherits the parents from M∪). For

parameter groups η where a statistical difference is found, Xi receives an incoming arc from Z,

and inherits the parents (and parameter distributions) fromM1 andM2 for the conditional

distributions associated with Z = 1 and 2 respectively. To summarize, the parents of Xi in

the synthesized network are

Πi =


if Oi ≤ 1 then Π

(∪)
i

otherwise

Hi⋃
η=1


Π

(∪)
i if

Siη(1− piη)
Tiηpiη

≤ 1

{Z} ∪ Π
(1)
i ∪ Π

(2)
i otherwise.

(4.27)

If Oi ≤ 1, the parameter distribution of Xi is simply the parameter distribution of Xi in M∪.

Recall that η corresponds to a variable assignment of
∩
Πi= Π

(1)
i ∩ Π

(2)
i ∩ Π

(∪)
i . Hence

∩
Πi is a

subset of Πi from (4.27), and each variable assignment πij matches exactly one η (but each

η may match many different js). Denoting the η that matches a j by η(j) we can express

the distribution of Xi when Oi > 1 as:

P (Xi|πij, z) ≡


P (Xi|π(∪)

ij ,M∪) if
Siη(j)(1− piη(j))
Tiη(j)piη(j)

≤ 1

P (Xi|π(z)
ij ,Mz) otherwise.

(4.28)

Consider the example in Figure 7, where inM1 (Figure 7a) X1 and X2 are parents of X4,

inM2 (Figure 7b) only X1 is a parent of X4, and inM∪ (Figure 7c) X1 and X3 are parents

of X4. Suppose that the variables are binary. Table 8 shows how the various combinations

of value assignments for X1, X2, and X3 map to the η-indexes and j-indexes in each model
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X1
X2 X3

(a)

X4

X1
X2 X3

(b)

X4

X1
X2 X3

(c)

X4

X1
X2 X3

Z

(d)

Figure 7: An example of three models (a) M1, (b) M2, and (c) M∪, as well as (d) a BN

synthesized from the three models.

Table 8: Mapping of indexes for the network synthesis example.

X1 X2 X3 j(1) j(2) j(∪) η

x11

x21
x31 1 1 1

1
x32 1 1 2

x22
x31 2 1 1

x32 2 1 2

x12

x21
x31 3 2 3

2
x32 3 2 4

x22
x31 4 2 3

x32 4 2 4
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Table 9: The conditional probability distribution of X4 in the synthesized network in the

network synthesis example. An asterisk in a variable’s column indicates that the probability

does not depend on the value of the variable.

η X1 X2 X3 Z P (X4|X1, X2, X3, Z)

1 x11

x21
* 1

P (X4|x11, x21,M1)

x22 P (X4|x11, x22,M1)

* * 2 P (X4|x11,M2)

2 x12 *
x31

*
P (X4|x12, x31,M∪)

x32 P (X4|x12, x32,M∪)

for X4. Furthermore, suppose that the posterior odds for X4 exceed one (O4 > 1), and that

S41(1−p41)
T41p41

> 1 and S42(1−p42)
T42p42

≤ 1. Based on these values for the variable and parameter-

group posteriors, (4.27) gives the network structure in Figure 7d, and (4.28) and conditional

probability distribution in Table 9.

The result of this network synthesis process is a BN with context-specific independence.

Context-specific independencies in BNs are independencies that are additional to the in-

dependence captured by the network structure. Boutilier et al. (1996) define local context-

specific independence in Bayesian networks as a conditional independence between a variable

Xi and a subset A ⊂ Πi of its parents given an assignment b of a subset B ∈ Πi of the

node’s remaining parents. This sort of independence cannot be represented in the BN struc-

ture when the conditional independence does not hold for some different value assignment

b′ of B. This is the sort of independence that is created by the synthesis process whenM1,

M2, and M∪ have different parents. Some instances of local contextual independence that

hold in the example above are (X4 ⊥ X3|x11, x21, z = 1), (X4 ⊥ X,(X4 ⊥ Z|x12, x31), and

(X4 ⊥ X2|x12, X32).

By the process above we construct a single BN that captures the statistical differences

between the groups that are identified as significant according to the posterior odds. Having
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a single BN that captures the differences allows us to apply tests of clinical significance

in the exact same manner we would for the uni-model approach. We can also apply the

explanation methods developed in Chapter 6 to this multi-model constructed BN. The case

study in Section 6.4.1 is an example.

4.4 LIST OF CLINICAL SIGNIFICANCE TESTS

Having a method to obtain a single probabilistic model using either uni-model or the multi-

model approach, we can in principle test the clinical significance not only of parameter

differences, but of any event e described in terms of an assignment of BN variables to values,

optionally conditioned on an assignment of other BN variables. When e is xik|πij, we test the

difference in the parameter θijk, but we can also test an event xik, πij (is a joint assignment of

a variable and its parents clinically significantly different?) or an event xik (is the marginal

probability of a variable taking a value clinically significantly different?)

For an event e, I look at two measures of effect size that quantify how different the

probability of e is between the groups: the difference and the ratio between the probabilities

in each group. Let PX|θ(e|z) denote the probability of event e in group z as computed

by a BN with parameters θ. As we have distributions over the parameters Θ of the BN,

the posterior distributions obtained from the data and Dirichlet priors, the probability of

an event e in group z given the random vector of parameters Θ as a random variable

PX|Θ(e|z). To get a point estimate of this probability, we can marginalize away Θ to obtain

PX(e|z) = EΘPX|Θ(e|z). Using this notation we can express the following clinical significance

tests:

1. Absolute difference test:

|PX(e|Z = 2)− PX(e|Z = 1)| > δ (4.29)

2. Probabilistic absolute difference test:

PΘ(|PX|Θ(e|Z = 2)− PX|Θ(e|Z = 1)| > δ) > 1− α (4.30)
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3. Absolute log-ratio test:

| log(PX(e|Z = 2))− log(PX(e|Z = 1))| > ε (4.31)

4. Probabilistic absolute log-ratio test:

PΘ(| log(PX|Θ(e|Z = 2))− log(PX|Θ(e|Z = 1))| > ε) > 1− α (4.32)

Given a Bayesian network, the absolute difference and absolute log-ratio tests for any

event e are simply computed by BN inference on the network. For example, when the event

e is xik, the absolute difference test is

|PX(xik|Z = 2)− PX(xik|Z = 1)| > δ (4.33)

or, when the event e is xik|πij, the log-ratio test is

| log(PX(xik|πij, Z = 2))− log(PX(xik|πij, Z = 1))| > ε , (4.34)

which one may also write as | log θ
(2)
ijk − log θ

(1)
ijk| > ε, the test in (4.6).

The probabilistic absolute difference test and the probabilistic log-quotient test are eval-

uated with respect to a fixed network structure and posterior distributions of network pa-

rameters. I approximate the posterior Dirichlet distributions of the parameters by sampling.

Parameter independence allows us to treat and sample the network parameters as indepen-

dent Dirichlet random variables. In this manner I can generate a collection of BNs with

parameters sampled from the corresponding Dirichlet distributions, all with the same struc-

ture.

The probabilistic tests have a common structure: there is an inner test, that corresponds

to one of the absolute tests, and an outer test of the probability of passing the inner test.

Given a sample of many BNs, I can then use BN inference in each network to perform the

inner test, and estimate the probability needed for the outer test by counting the proportion

of BNs for which the inner test passed.

Note that when the event e is xik|πij, we can avoid performing BN inference, and can

hence avoid sampling parameters for the entire network. Since the test in that case is

comparing only a pair of parameters, we need only sample those compared parameters from

their corresponding Dirichlet distributions.
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5.0 AN EMPIRICAL EVALUATION OF THE DETECTION OF

DIFFERENCES IN DISTRIBUTIONS

The aim of this empirical evaluation is to test the difference recovery hypothesis of Sec-

tion 4.1.1. I ran an array of experiments that compare data generated from pairs of BNs

that have known parametric differences (a conditional distribution Xi|πij is different) or

structural differences (an arc that is present in one BN is absent in the other). I focus on

quality of detection of variable-level differences, since that is the level of granularity at which

successful detection of a difference is well-defined for both the parametric and the structural

perturbations. The following section describes the data and the experimental setup in detail.

It is followed by the evaluations of the statistical difference detection methods and of the

clinical difference detection tests.

5.1 DATA AND EXPERIMENTAL SETUP

Since in real-world data the differences between groups of data are not known in advance,

for the evaluation I generated pairs of data groups from known distributions that are based

on real-world data. I chose to learn networks from which to generate data because pub-

licly available BN models are overwhelmingly diagnostic, meaning that only a handful of

variables in the network are intended to be observed and the relationships between them

are mediated by variables that are intended to be hidden, whereas I would like to have a

ground-truth model that directly relates observed variables to each other. I picked data

where all variables are categorical, since the BD score is designed for BNs that represent

multinomial distributions. In this evaluation I used several datasets available from the UCI
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Table 10: Description of data used.

Set # variables
# values

Min. Med. Max.

balance-scale 5 3 5 5

car 7 3 3 4

hayes-roth 5 3 4 4

nursery 9 2 3 5

Machine Learning Repository (Bache and Lichman, 2013). Table 10 lists the datasets and

provides brief descriptions in terms the number of variables in the data, and the minimum,

median, and maximum number of values per variable. I learned a BN from the data for each

of these sets, which is referred to as the “original BN” in the following description of the

data-generation process.

I ran blocks of tests, where each block is characterized by a data source (one of the UCI

datasets), a type of perturbation, the number of perturbations, and the number of samples

per group. Each block consists of 20 group pairs, where each pair consists of a group of points

generated from the original BN of the data source and a group of points generated from a

perturbed BN of a data source (a different perturbed BN is obtained for each group pair). The

original BN for a data source is the one mentioned above, learned directly from the original

data. The perturbed BN was obtained by performing perturbations to the original BN.

There are two possible categories of perturbations: parametric perturbations and structural

perturbations. A parametric perturbation was performed by uniformly randomly selecting

a variable Xi to perturb and then selecting a conditional distribution Xi|πij to perturb,

and then replacing its probability mass vector with a random non-trivial permutation of

itself. For example, if the probability mass vector of Xi|πij was (0.2, 0.5, 0.3), a possible

perturbed probability mass vector might be (0.5, 0.2, 0.3). The trivial permutation would be

(0.2, 0.5, 0.3), and we would not select it as a possible permutation. A structural perturbation
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was performed by randomly (with probability 1/2) deciding whether to remove or add an

arc, and then selecting a random arc to add (or remove) from the existing (or absent) arcs

in the network. A node (variable) is considered perturbed by a structural perturbation only

if an arc into the node is added or removed.

I provide the ordering of the variables in the generating model to the logistic regression

method (see Section 5.2.1) so that it may take advantage of that information to improve

computational efficiency and detection performance. For the difference detection methods

of Chapter 4, I show results obtained both with and without using the ordering information

provided to the introduced methods. It is expected that ordering information would improve

detection quality, however, it is also of interest to evaluate the detection quality without

knowledge of the variable ordering, since we often do not know the ordering perfectly when

we examine real-world data.

5.2 EVALUATION OF STATISTICAL SIGNIFICANCE TESTS

I evaluated the performances of the uni-model variable selection and of the multi-model

posterior odds Oi in Equation 4.23 as a score for detecting variable-level differences. I

compared the performance of both scores with and without variable ordering information to

the baseline method which I describe below.

5.2.1 Baseline Method

As a point of comparison for the statistical difference detection methods, I chose to simulate

a process often followed by analysts, statisticians, and researchers, where logistic regression

models with interactions are constructed to predict a variable Xi using candidate predic-

tors, and the researcher would judge a predictor’s relevance based on the strength of its

corresponding weight.

I detect variable-wise differences across two pre-defined groups using lasso-regularized

logistic regression. To do so, I add the group indicator Z to the data. Lasso regularization
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solves

min
β0,β

1

N
Deviance(β0, β) + λ

p∑
i=1

|βi| (5.1)

for a model with p predictors where β0 and β are the weights corresponding respectively

to the constant term and the predictors in the logistic model, and λ is the regularization

parameter. To detect differences across groups, I use this model for predicting each variable

Xi given all the other data variables Xj : j ∈ {1, . . . , i − 1} that precede it in the variable

ordering, the group indicator Z, and interactions of Z with each of the data variables Xj.

I handle more-than-binary Xi by using multinomial logistic regression, and I handle more-

than-binary Xj’s by binary-coding them.

The effect of regularization is that as λ decreases from +∞, predictors enter the model

(β terms change from zero to nonzero). The largest value of λ at which a given predictor

becomes nonzero can then be used as a score of how useful that predictor is for predicting

Xi. Hence, for each Xi we can use the largest λ that corresponds to a nonzero β value for Z

or an interaction with Z as the score for seeing a difference in the distribution of Xi across

groups.

5.2.2 Results

First, let us compare the fitness of the Bayes factor as compared to the posterior odds at the

detection of statistical differences. Tables 11, 12, 13, and 14 show the areas under the ROC

curves (AUCs) for statistical difference recovery on the 72 blocks of tests using the Bayes

factor and using the posterior odds for the uni-model approach.

Next, tables 15, 16, 17, 18, 19, 20, 21, and 22 show the AUCs for statistical difference

recovery using logistic regression approach, and using the posterior odds with the uni model

and the multi-model.

AUCs were computed by obtaining ROC curves based on a score. For each pair of data

groups compared, each method gave a score for each variable in the data. For the posterior

odds scores, the posterior odds Oi with a prior of pi = 1/2 was used. For the uni-model

Bayes factor scores, the ratio of the marginal likelihood of including Z as a parent of the

variable Xi or not including it was used. For the logistic regression approach, the λ described
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above was used as the score. The semantics of obtaining an ROC curve from a score are that

all cases that fall below a certain score are identified as negative, and those that fall above it

are identified as positive. The ROC curve is then a curve of plotting the proportion of true

positive cases against the proportion of false negative cases for the full range of scores that

appear in the data (Fawcett, 2004). Each variable in each pair of groups (there are 20 pairs

in each block) constitutes a “case” for the purposes of the ROC. The gold standard for each

case is whether the variable was perturbed when generating that particular pair of groups.

Each table corresponds to a UCI Repository data source and is structured as follows: The

first column indicates the perturbation type (structural or parametric), the second column

indicates the number of perturbations, and the third column indicates the number of data

points per group used in each test. For comparing the Bayes factor to the posterior odds,

Tables 11, 12, 13, and 14 have two groups of columns, results when no variable ordering

information is provided to the tests on the left and results when variable information is

provided on the right. For comparing the logistic regression method, the uni-model, and the

multi-model, Tables 15, 17, 19, and 21 show the results when no variable ordering information

is provided to the tests from Chapter 4, while tables 16, 18, 20, and 22 show the results

when the true variable ordering is provided. The logistic regression method is provided with

the true variable ordering in all cases. The AUCs for the the logistic regression method

(indicated by λ), the uni-model detection method (Uni/U), and the multi-model detection

method (Multi/M) were compared. The tables also show the p-values for two-tailed tests of

the difference between the AUCs of each pair of methods, based on (DeLong et al., 1988).

The p-values that are significant at α = 0.05 are displayed in bold.

The results show that generally, when there are less data points per group and more

variables in the data, the detection performance is lower. This is in part because the models

use structure learning, since it is more difficult to recover a structure accurately when there

is less data and when the structure to recover is more complex (due to more variables). The

typical issues of attempting to make inferences about a distribution from small samples apply

as well. Also note that all methods are generally better at detecting structural differences

than parametric ones. This is because a structural difference reflects a more substantial

distributional difference than a simple parametric one, since it can be expressed as a collection
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of parametric differences in a network containing the removed or added arcs.

The comparison of the Bayes factor to the posterior odds confirms that, as expected, the

posterior odds is better suited for this task, since we are interested in detecting differences

in similar models. The Bayes factor performs well, and sometimes better, than the posterior

odds at detecting structural perturbations. This is likely because a structural perturbation

constitutes a change in all parameters associated with a variable.

In comparing the uni-model, multi-model, and logistic regression methods, overall, the ex-

periments show consistently good AUCs for the multi-model score over the various generated

group pairs. Of the 72 blocks of tests, when the models are not given ordering information,

the multi-model method performed better than the uni-model method in 28 blocks, with

none of the differences being significant at the α = 0.05 level, and the uni-model performed

better than the multi-model in 34 blocks, with only one difference being significant at the

α = 0.05 level. The two models had equal performance in 10 blocks. When the models are

given ordering information, the multi-model method performed better than the uni-model

method in 26 blocks, with four of the differences being significant at the α = 0.05 level, and

the uni-model performed better in 18 blocks, with only two differences being significant at

the α = 0.05 level. Given the ordering, the two models had equal performance in 28 blocks.

As expected, higher AUCs are obtained when the multi-model and the uni-model use

ordering information. Interestingly, Tables 15 and 16 are almost identical. It appears that

this happens because the correct variable ordering is recovered in the model construction

phase for the data generated based on the balance-scale dataset.

Compared to the logistic regression baseline, the multi-model AUC is higher in 52 of the

72 test blocks when no ordering information is provided, and it is higher in 61 of the 72 test

blocks when ordering information is provided. At the α = 0.05 significance level, without

ordering information, the multi-model performed statistically significantly better than the

logistic regression baseline in 21 test blocks, and statistically significantly worse in only 8

test blocks. With ordering information, the multi-model performed statistically significantly

better in 34 test blocks, and worse in only one block.

The uni-model AUC is higher than the logistic regression AUC in 48 of the 72 test blocks

when no ordering information is provided, and in 55 test blocks when ordering information

54



is provided. At the α = 0.05 significance level, without ordering information, the uni-model

performed statistically significantly better than the logistic regression baseline in 23 test

blocks, and statistically significantly worse in 9 test blocks. With ordering information, the

uni-model performed statistically significantly better in 33 test blocks, and worse in 3 blocks.

Overall, the multi-model approaches gives the best results, with the uni-model approach

performing almost as well, with both methods performing better than logistic regression on

both tests. The very close performance of the multi- and uni-models is likely a result of

learning very similar networks. For any variable for which the multi-model learns the same

parents in M1, M2, and M∪, the two scores are equivalent, which explains why we see

these models get identical AUCs for many of the parametric perturbations. The uni-model

tends to perform better or as well as the multi-model in most parametric tests. This is

likely because the multi-model incorrectly learns a structural difference where there is none

in those cases where it performs worse on parametric perturbation detection.

The cases in which the uni- and multi-model approaches underperform relative to logistic

regression are those where they are not provided an ordering and the perturbations are

structural. One possible explanation is that when a structure is learned with the wrong

ordering, the multi-model approach identifies that a difference in the dependence between

two variables exists, but attributes it to the wrong variable. For example, if the generating

model for one group is Xa Xb (no arc) and for another is Xa → Xb, but the model learned

for the latter group is Xa ← Xb (which can still accurately model the dependence relationship

in the statistical sense), the detected variable-level difference would be attributed to Xa, but

the gold standard difference would be considered a difference in Xb, counting against the

detection. The fact that the logistic regression method is provided with the correct ordering

prevents it from making this mistake.

In Tables 17, 19, 21 and 22, when logistic regression performs better, it often does so

when there are smaller samples. This may possibly be explained by the fact that logistic

regression does not build a full conditional probability table for each node, and the number

of parameters it fits is linear in the number of predictors, while the other methods which

use BNs, fit a full multinomial conditional probability table, the size of which is exponential

in the number of predictors. Since a model with less parameters can be more reliably fit
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given less samples, this difference in the number of parameters may account for the better

performance of logistic regression on smaller sample sizes.

In spite of underperformance in detecting structural perturbations without ordering in-

formation, the uni- and multi-model approaches performs better than the logistic regression

method on average when they are provided with ordering information. The uni- and multi-

model approach are much better than logistic regression at the detection of parametric

perturbations.
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Table 11: Statistical difference detection AUCs comparing the Bayes factor to the posterior

odds score under the uni-model approach on the balance-scale data.

Without ordering With ordering

BF AUC PO AUC p-value BF AUC PO AUC p-value

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.8431 0.8931 0.1382 0.8431 0.8931 0.1382

1000 0.8925 0.9444 0.1229 0.8925 0.9444 0.1229

5000 0.9175 0.9563 0.1846 0.9175 0.9563 0.1846

3

500 0.7431 0.8099 0.1760 0.7483 0.8295 0.0781

1000 0.7743 0.7963 0.5473 0.7747 0.8043 0.3999

5000 0.8291 0.8936 0.0112 0.8291 0.8936 0.0112

5

500 0.8224 0.8988 0.0596 0.8264 0.9142 0.0205

1000 0.8433 0.8780 0.3558 0.8433 0.8780 0.3558

5000 0.8571 0.8973 0.1882 0.8571 0.8973 0.1882

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.9712 0.9650 0.8474 0.9712 0.9669 0.8941

1000 0.9575 0.9706 0.3385 0.9575 0.9706 0.3385

5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3

500 0.9555 0.9800 0.0897 0.9555 0.9800 0.0897

1000 0.9555 0.9840 0.1377 0.9555 0.9840 0.1377

5000 0.9916 0.9992 0.3250 0.9916 0.9992 0.3250

5

500 0.9333 0.9571 0.2926 0.9333 0.9571 0.2926

1000 0.9487 0.9908 0.0263 0.9487 0.9908 0.0263

5000 0.9829 0.9921 0.1907 0.9829 0.9921 0.1907
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Table 12: Statistical difference detection AUCs comparing the Bayes factor to the posterior

odds score under the uni-model approach on the car data.

Without ordering With ordering

BF AUC PO AUC p-value BF AUC PO AUC p-value

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.6554 0.7058 0.6540 0.6458 0.6954 0.6627

1000 0.7258 0.7183 0.9415 0.7017 0.7212 0.8562

5000 0.7579 0.7308 0.7944 0.7771 0.7188 0.5284

3

500 0.7126 0.7887 0.2468 0.7297 0.7797 0.4326

1000 0.7574 0.8180 0.3211 0.7587 0.8193 0.3149

5000 0.8309 0.8291 0.9731 0.7955 0.8368 0.4590

5

500 0.6656 0.7471 0.1583 0.7020 0.7626 0.3013

1000 0.6532 0.7638 0.0686 0.7089 0.8038 0.1222

5000 0.7430 0.7887 0.3581 0.7728 0.8447 0.1984

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.8954 0.9250 0.5971 0.9008 0.9308 0.5956

1000 0.8833 0.9463 0.1666 0.9158 0.9521 0.3455

5000 0.9475 0.9804 0.3250 0.9533 0.9854 0.3185

3

500 0.9128 0.8263 0.0505 0.9253 0.8621 0.1435

1000 0.9214 0.8872 0.2866 0.9506 0.9368 0.6459

5000 0.9549 0.9497 0.7820 0.9832 1.0000 0.1597

5

500 0.9095 0.8164 0.0046 0.9371 0.8768 0.0709

1000 0.9191 0.8881 0.1402 0.9483 0.9487 0.9871

5000 0.9063 0.9079 0.7851 0.9763 0.9961 0.1577
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Table 13: Statistical difference detection AUCs comparing the Bayes factor to the posterior

odds score under the uni-model approach on the hayes-roth data.

Without ordering With ordering

BF AUC PO AUC p-value BF AUC PO AUC p-value

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.5525 0.7244 0.0997 0.6456 0.7844 0.2083

1000 0.5700 0.7625 0.0720 0.7231 0.8194 0.3405

5000 0.5888 0.6713 0.3952 0.6663 0.8006 0.2318

3

500 0.5925 0.7768 0.0074 0.7306 0.8462 0.0827

1000 0.5990 0.7202 0.0671 0.7098 0.8422 0.0506

5000 0.6246 0.6925 0.1726 0.7407 0.8515 0.0952

5

500 0.5833 0.7183 0.0484 0.7098 0.8482 0.0441

1000 0.6518 0.7371 0.2629 0.7217 0.8591 0.0469

5000 0.6766 0.7326 0.2205 0.7143 0.8621 0.0220

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.6531 0.8219 0.0472 0.9106 0.9137 0.9564

1000 0.7500 0.8156 0.3298 0.9269 0.9044 0.6487

5000 0.8619 0.8425 0.5360 0.9644 0.9475 0.6434

3

500 0.8498 0.9103 0.1211 0.9267 0.9111 0.6280

1000 0.8918 0.9038 0.6816 0.9487 0.9131 0.2114

5000 0.8894 0.8978 0.4924 0.9808 0.9411 0.0203

5

500 0.8555 0.9049 0.0544 0.9440 0.9405 0.8449

1000 0.9119 0.9288 0.4366 0.9457 0.9418 0.8098

5000 0.9119 0.9128 0.6391 0.9549 0.9497 0.7490
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Table 14: Statistical difference detection AUCs comparing the Bayes factor to the posterior

odds score under the uni-model approach on the nursery data.

Without ordering With ordering

BF AUC PO AUC p-value BF AUC PO AUC p-value

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.5425 0.7369 0.0824 0.5269 0.7291 0.0720

1000 0.5659 0.7388 0.0565 0.5697 0.7453 0.0543

5000 0.5372 0.8641 0.0009 0.5372 0.8641 0.0009

3

500 0.5846 0.6503 0.3238 0.6108 0.6552 0.4944

1000 0.6179 0.6944 0.2484 0.6391 0.7023 0.3441

5000 0.6782 0.7774 0.0789 0.6852 0.7896 0.0646

5

500 0.5561 0.6479 0.1396 0.5646 0.6413 0.2092

1000 0.5483 0.6655 0.0617 0.5773 0.6815 0.0907

5000 0.5769 0.7293 0.0068 0.5919 0.7310 0.0127

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.7331 0.6528 0.4082 0.7406 0.6538 0.3529

1000 0.6678 0.7688 0.2595 0.6850 0.7647 0.3166

5000 0.7919 0.8678 0.3200 0.7928 0.8700 0.3115

3

500 0.6788 0.7329 0.3684 0.6794 0.7220 0.4806

1000 0.7734 0.7900 0.7526 0.7754 0.7937 0.7309

5000 0.8966 0.8967 0.9970 0.9089 0.9028 0.8748

5

500 0.8157 0.7745 0.3046 0.8279 0.7740 0.1772

1000 0.8323 0.7622 0.1125 0.8323 0.7622 0.1125

5000 0.9193 0.9351 0.4895 0.9345 0.9418 0.7314
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Table 15: Statistical difference detection AUCs comparing the uni-model (using no variable

ordering information), multi-model (using no variable ordering information), and logistic

regression (using variable ordering information) approaches on tests using the balance-scale

data.

AUC p-value

λ Uni Multi U v. λ M v. λ U v. M

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.7031 0.8931 0.8931 0.0074 0.0074 1.0000

1000 0.7981 0.9444 0.9444 0.0303 0.0303 1.0000

5000 0.8056 0.9563 0.9563 0.0542 0.0542 1.0000

3

500 0.6457 0.8099 0.8303 0.0052 0.0007 0.2982

1000 0.6675 0.7963 0.7895 0.0203 0.0336 0.6896

5000 0.7319 0.8936 0.8936 0.0024 0.0024 1.0000

5

500 0.7217 0.8988 0.9038 0.0006 0.0003 0.7784

1000 0.7733 0.8780 0.8780 0.0248 0.0248 1.0000

5000 0.7827 0.8973 0.8973 0.0131 0.0131 1.0000

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.9788 0.9650 0.9956 0.6251 0.1481 0.2895

1000 0.9888 0.9706 0.9981 0.5227 0.2029 0.3198

5000 0.9981 1.0000 1.0000 0.3850 0.3850 1.0000

3

500 0.9836 0.9800 0.9868 0.6323 0.7843 0.3265

1000 0.9804 0.9840 0.9964 0.8271 0.1088 0.3201

5000 0.9892 0.9992 0.9992 0.1684 0.1684 1.0000

5

500 0.9721 0.9571 0.9825 0.5306 0.4884 0.1709

1000 0.9812 0.9908 0.9958 0.2584 0.1509 0.2200

5000 0.9975 0.9921 0.9921 0.4761 0.4761 1.0000
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Table 16: Statistical difference detection AUCs comparing the uni-model, multi-model, and

logistic regression (all using variable ordering information) approaches on tests using the

balance-scale data.

AUC p-value

λ Uni Multi U v. λ M v. λ U v. M

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.7031 0.8931 0.8931 0.0074 0.0074 1.0000

1000 0.7981 0.9444 0.9444 0.0303 0.0303 1.0000

5000 0.8056 0.9563 0.9563 0.0542 0.0542 1.0000

3

500 0.6457 0.8295 0.8303 0.0008 0.0007 0.4127

1000 0.6675 0.8043 0.7895 0.0123 0.0336 0.3189

5000 0.7319 0.8936 0.8936 0.0024 0.0024 1.0000

5

500 0.7217 0.9142 0.9038 0.0001 0.0003 0.3203

1000 0.7733 0.8780 0.8408 0.0248 0.2020 0.3186

5000 0.7827 0.8973 0.8973 0.0131 0.0131 1.0000

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.9788 0.9669 0.9981 0.6727 0.0888 0.2790

1000 0.9888 0.9706 0.9981 0.5227 0.2029 0.3198

5000 0.9981 1.0000 1.0000 0.3850 0.3850 1.0000

3

500 0.9836 0.9800 0.9868 0.6323 0.7843 0.3265

1000 0.9804 0.9840 0.9964 0.8271 0.1088 0.3201

5000 0.9892 0.9992 0.9992 0.1684 0.1684 1.0000

5

500 0.9721 0.9571 0.9825 0.5306 0.4884 0.1709

1000 0.9812 0.9908 0.9958 0.2584 0.1509 0.2200

5000 0.9975 0.9921 0.9921 0.4761 0.4761 1.0000
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Table 17: Statistical difference detection AUCs comparing the uni-model (using no variable

ordering information), multi-model (using no variable ordering information), and logistic

regression (using variable ordering information) approaches on tests using the car data.

AUC p-value

λ Uni Multi U v. λ M v. λ U v. M

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.5033 0.7058 0.6587 0.0008 0.0282 0.2110

1000 0.5744 0.7183 0.7171 0.0009 0.0008 0.8740

5000 0.6477 0.7308 0.7221 0.0409 0.0604 0.2153

3

500 0.6296 0.7887 0.7544 < 10−4 0.0026 0.1901

1000 0.6595 0.8180 0.7981 < 10−4 0.0001 0.1675

5000 0.7136 0.8291 0.8260 0.0001 0.0001 0.6288

5

500 0.6149 0.7471 0.7540 0.0001 0.0001 0.7480

1000 0.6867 0.7638 0.7567 0.0151 0.0265 0.2126

5000 0.7209 0.7887 0.8079 0.0235 0.0018 0.0673

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.8525 0.9250 0.9229 0.1220 0.1168 0.8424

1000 0.9096 0.9463 0.9367 0.2765 0.6049 0.7143

5000 0.9442 0.9804 0.9788 0.0640 0.0696 0.3634

3

500 0.8952 0.8263 0.8272 0.0453 0.0439 0.9635

1000 0.8920 0.8872 0.8739 0.8835 0.6019 0.5784

5000 0.9572 0.9497 0.9606 0.7599 0.8760 0.5549

5

500 0.8891 0.8164 0.7774 0.0395 0.0034 0.1285

1000 0.9340 0.8881 0.8695 0.1261 0.0593 0.3612

5000 0.9538 0.9079 0.9043 0.1257 0.1347 0.8486
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Table 18: Statistical difference detection AUCs comparing the uni-model, multi-model, and

logistic regression (all using variable ordering information) approaches on tests using the car

data.

AUC p-value

λ Uni Multi U v. λ M v. λ U v. M

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.5033 0.6954 0.6650 0.0001 0.0136 0.4363

1000 0.5744 0.7212 0.7271 0.0008 0.0005 0.2162

5000 0.6477 0.7188 0.7188 0.1006 0.1006 1.0000

3

500 0.6296 0.7797 0.7716 < 10−4 0.0004 0.7681

1000 0.6595 0.8193 0.8105 < 10−4 < 10−4 0.7072

5000 0.7136 0.8368 0.8368 < 10−4 < 10−4 1.0000

5

500 0.6149 0.7626 0.7767 < 10−4 < 10−4 0.5582

1000 0.6867 0.8038 0.8073 0.0002 0.0001 0.8155

5000 0.7209 0.8447 0.8447 < 10−4 < 10−4 1.0000

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.8525 0.9308 0.9421 0.0912 0.0495 0.1832

1000 0.9096 0.9521 0.9504 0.1783 0.4317 0.9504

5000 0.9442 0.9854 0.9854 0.0207 0.0207 1.0000

3

500 0.8952 0.8621 0.9164 0.2731 0.5592 0.2214

1000 0.8920 0.9368 0.9778 0.0853 0.0105 0.2053

5000 0.9572 1.0000 1.0000 0.0049 0.0049 1.0000

5

500 0.8891 0.8768 0.9555 0.6474 0.0012 0.0016

1000 0.9340 0.9487 0.9820 0.3705 0.0203 0.0906

5000 0.9538 0.9961 0.9961 0.0101 0.0101 1.0000
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Table 19: Statistical difference detection AUCs comparing the uni-model (using no variable

ordering information), multi-model (using no variable ordering information), and logistic

regression (using variable ordering information) approaches on tests using the hayes-roth

data.

AUC p-value

λ Uni Multi U v. λ M v. λ U v. M

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.6944 0.7244 0.7256 0.6862 0.6718 0.9212

1000 0.7375 0.7625 0.7750 0.7222 0.5904 0.1877

5000 0.6275 0.6713 0.6713 0.5563 0.5563 1.0000

3

500 0.5889 0.7768 0.7648 0.0002 0.0012 0.4124

1000 0.5990 0.7202 0.7210 0.0311 0.0277 0.9536

5000 0.5978 0.6925 0.6973 0.0839 0.0634 0.5583

5

500 0.6766 0.7183 0.7560 0.4247 0.1211 0.1793

1000 0.7088 0.7371 0.7490 0.5580 0.4394 0.4339

5000 0.6830 0.7326 0.7331 0.2620 0.2590 0.9563

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.8844 0.8219 0.7763 0.1116 0.0401 0.2518

1000 0.9137 0.8156 0.8081 0.0070 0.0047 0.4521

5000 0.9237 0.8425 0.8344 0.0092 0.0058 0.2232

3

500 0.8998 0.9103 0.8814 0.6764 0.6295 0.3540

1000 0.9026 0.9038 0.9387 0.9666 0.2959 0.1712

5000 0.9131 0.8978 0.8666 0.6553 0.2554 0.2377

5

500 0.9479 0.9049 0.8546 0.0471 0.0137 0.0752

1000 0.9505 0.9288 0.9214 0.1113 0.1106 0.5842

5000 0.9674 0.9128 0.9136 0.0248 0.0297 0.8917
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Table 20: Statistical difference detection AUCs comparing the uni-model, multi-model, and

logistic regression (all using variable ordering information) approaches on tests using the

hayes-roth data.

AUC p-value

λ Uni Multi U v. λ M v. λ U v. M

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.6944 0.7844 0.7844 0.2031 0.2031 1.0000

1000 0.7375 0.8194 0.8194 0.2125 0.2125 1.0000

5000 0.6275 0.8006 0.8006 0.0109 0.0109 1.0000

3

500 0.5889 0.8462 0.8442 < 10−4 < 10−4 0.6747

1000 0.5990 0.8422 0.8422 < 10−4 < 10−4 1.0000

5000 0.5978 0.8515 0.8515 < 10−4 < 10−4 1.0000

5

500 0.6766 0.8482 0.8388 0.0002 0.0004 0.3266

1000 0.7088 0.8591 0.8591 0.0003 0.0003 1.0000

5000 0.6830 0.8621 0.8621 0.0001 0.0001 1.0000

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.8844 0.9137 0.9163 0.1662 0.1434 0.2769

1000 0.9137 0.9044 0.9044 0.7820 0.7820 1.0000

5000 0.9237 0.9475 0.9475 0.0208 0.0208 1.0000

3

500 0.8998 0.9111 0.9159 0.6443 0.5198 0.2536

1000 0.9026 0.9131 0.9131 0.5281 0.5281 1.0000

5000 0.9131 0.9411 0.9411 0.0553 0.0553 1.0000

5

500 0.9479 0.9405 0.9440 0.6045 0.7906 0.2388

1000 0.9505 0.9418 0.9418 0.3462 0.3462 1.0000

5000 0.9674 0.9497 0.9497 0.0985 0.0985 1.0000
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Table 21: Statistical difference detection AUCs comparing the uni-model (using no variable

ordering information), multi-model (using no variable ordering information), and logistic

regression (using variable ordering information) approaches on tests using the nursery data.

AUC p-value

λ Uni Multi U v. λ M v. λ U v. M

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.6153 0.7369 0.6234 0.1164 0.9283 0.1347

1000 0.6247 0.7388 0.6644 0.1718 0.6983 0.2101

5000 0.6931 0.8641 0.8263 0.0088 0.0499 0.4076

3

500 0.5845 0.6503 0.6460 0.2208 0.2978 0.9006

1000 0.5596 0.6944 0.7179 0.0089 0.0035 0.4679

5000 0.5852 0.7774 0.6833 0.0006 0.0987 0.0008

5

500 0.6105 0.6479 0.6156 0.4293 0.9226 0.2958

1000 0.5776 0.6655 0.6149 0.0644 0.4796 0.1172

5000 0.5755 0.7293 0.7198 0.0019 0.0032 0.7119

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.7984 0.6528 0.5897 0.0035 0.0035 0.4192

1000 0.8469 0.7688 0.7781 0.2244 0.2932 0.8752

5000 0.8372 0.8678 0.8534 0.6061 0.7410 0.5878

3

500 0.8148 0.7329 0.7686 0.0498 0.2443 0.3103

1000 0.8527 0.7900 0.8487 0.0987 0.8924 0.0790

5000 0.8895 0.8967 0.9251 0.8485 0.2596 0.4133

5

500 0.8326 0.7745 0.8142 0.0855 0.5419 0.1060

1000 0.8345 0.7622 0.8125 0.0355 0.4145 0.0818

5000 0.8919 0.9351 0.9270 0.0566 0.1333 0.6407
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Table 22: Statistical difference detection AUCs comparing the uni-model, multi-model, and

logistic regression (all using variable ordering information) approaches on tests using the

nursery data.

AUC p-value

λ Uni Multi U v. λ M v. λ U v. M

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.6153 0.7291 0.6291 0.1378 0.8796 0.1995

1000 0.6247 0.7453 0.6703 0.1497 0.6545 0.2146

5000 0.6931 0.8641 0.8263 0.0088 0.0499 0.4076

3

500 0.5845 0.6552 0.6577 0.1927 0.2214 0.9426

1000 0.5596 0.7023 0.7364 0.0062 0.0011 0.3041

5000 0.5852 0.7896 0.6953 0.0003 0.0654 0.0009

5

500 0.6105 0.6413 0.5977 0.5152 0.8015 0.1626

1000 0.5776 0.6815 0.6115 0.0278 0.5199 0.0322

5000 0.5755 0.7310 0.7108 0.0014 0.0055 0.4102

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.7984 0.6538 0.5916 0.0041 0.0041 0.4414

1000 0.8469 0.7647 0.8122 0.1744 0.5994 0.4848

5000 0.8372 0.8700 0.8553 0.5787 0.7134 0.5565

3

500 0.8148 0.7220 0.7913 0.0250 0.5498 0.0680

1000 0.8527 0.7937 0.8656 0.1198 0.6607 0.0402

5000 0.8895 0.9028 0.9455 0.7250 0.0597 0.2175

5

500 0.8326 0.7740 0.8281 0.0825 0.8767 0.0380

1000 0.8345 0.7622 0.8301 0.0355 0.8729 0.0186

5000 0.8919 0.9418 0.9418 0.0242 0.0292 1.0000
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5.3 EVALUATION OF CLINICAL SIGNIFICANCE DETECTION

I evaluated the performances of the four test in Section 4.4. These evaluations used the semi-

synthetic data described in Section 5.1. Recall that in order to apply a clinical significance

test, we must first have a BN model. The BN model used for applying the tests is the one

constructed using the multi-model method, as in Section 4.3.4.

As above, the evaluation metric used is the AUC, where AUC’s were computed by scoring

each node in each of the 20 pairs of groups of data in each test block. The score of a variable

Xi used for evaluating computing the AUC for each of the tests in Section 4.4 was defined

as:

Ji
max
j=1

Ki
max
k=1
|P (xik|πij, Z = 2)− P (xik|πij, Z = 1)| (5.2)

for the difference test,

Ji
max
j=1

Ki
max
k=1
| logP (xik|πij, Z = 2)− logP (xik|πij, Z = 1)| (5.3)

for the ratio test,

arginf
δ

Ji
max
j=1

Ki
max
k=1

P (|P (xik|πij, Z = 2)− P (xik|πij, Z = 1)| > δ) > 1− α (5.4)

the probabilistic difference test, and

arginf
ε

Ji
max
j=1

Ki
max
k=1

P (| logP (xik|πij, Z = 2)− logP (xik|πij, Z = 1)| > ε) > 1− α (5.5)

for the probabilistic ratio test, with α = 0.05 for both probabilistic tests.

The AUCs obtained for all tests therefore correspond to varying the δ and ε thresholds.
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5.3.1 Gold standard

To evaluate the detection of clinically significant differences, we must first determine which

differences are clinically significant in the generating models of the data. From the experi-

mental setup we know which variables are perturbed in the generating models of each pair

of semi-synthetic groups of data. However, perturbation of the generating network alone

does not guarantee that the conditional probabilities of a variable were changed sufficiently

to constitute a clinical difference.

In order to determine which perturbations of the generating model caused clinically sig-

nificant differences to appear, we must compare the corresponding conditional probabilities.

For the probabilities of variables to which parametric perturbations were applied, the com-

parison is simple: Xi shares the same parents in both generating BNs, and we can therefore

compare each P (xik|πij) in one BN against P (xik|πij) in the second BN. For variables to

which a structural perturbation was applied, however, the parent sets in the two BNs, Π
(1)
i

and Π
(2)
i , are different. Let Π∗i = Π

(1)
i ∪ Π

(2)
i . To determine whether Xi has a clinically

significant perturbation, I compare each P (xik|π∗ij) between the the two networks, over all

instantiations of the union of parent sets.

For the purposes of this evaluation, I defined the threshold for clinical significance as

follows: a pair of conditional probabilities (compared as above) is considered to have a

clinically significant difference if one is greater than the other by a factor of more than two.

5.3.2 Results

Tables 23, 24, 25, and 26 show the AUC’s for clinical difference recovery on the 72 blocks

of tests. Each table corresponds to a UCI Repository data source and is structured as

follows: The first column indicates the perturbation type (structural or parametric), the

second column indicates the number of perturbations, and the third column indicates the

number of data points per group used in each test. Since a model is required for the clinical

significance tests, the results show AUCs from the four tests both using a multi-model

learned without ordering informations and a multi-model learned with ordering information.

For each of the two groups of tests I show in bold those AUCs which are best for the group.
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When multiple AUCs are tied for best, all are shown in bold.

Overall, of 72 test blocks, when the underlying model was learned without ordering infor-

mation, the absolute difference test performed best (ties included) in 30 blocks, the absolute

ratio test performed best in 38 blocks, the probabilistic difference test performed best in 11

blocks, and the probabilistic ratio test performed best in 13 blocks. When the underlying

model was learned with ordering information, the absolute difference test performed best in

38 test blocks, the absolute ratio test performed best in 36 test blocks, and the probabilistic

tests each performed best in only 9 test blocks.

The most surprising result that the evaluation reveals is that more often than not, the

probabilistic tests perform worse than the non-probabilistic tests. The results above only

show that the probabilistic tests have poorer detection at the α = 0.05 threshold. It is

possible that better AUCs for the probabilistic tests can be obtained by varying not only

the ε and δ thresholds, but also the α threshold.

Trends that are common to all tests are that less variables, more data points per group,

and ordering information, all yield higher detection AUCs.
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Table 23: AUCs for the various clinical significance tests using the balance-scale data.

Without ordering information With ordering information

Diff. Rat. P. Diff. P. Rat. Diff. Rat. P. Diff. P. Rat.

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.9992 1.0000 0.9975 0.9892 0.9992 1.0000 0.9975 0.9892

1K 0.9975 0.9958 0.9900 0.9743 0.9975 0.9958 0.9900 0.9743

5K 1.0000 1.0000 0.9867 0.9751 1.0000 1.0000 0.9867 0.9743

3

500 0.9807 0.9812 0.9741 0.9696 0.9807 0.9812 0.9741 0.9696

1K 0.9762 0.9807 0.9543 0.9330 0.9762 0.9807 0.9538 0.9330

5K 0.9939 1.0000 0.9508 0.9300 0.9939 1.0000 0.9508 0.9300

5

500 0.9134 0.9134 0.9034 0.9006 0.9134 0.9134 0.9034 0.9006

1K 0.9396 0.9420 0.9207 0.9147 0.9396 0.9420 0.9215 0.9147

5K 0.9960 0.9984 0.9541 0.9424 0.9960 0.9984 0.9541 0.9420

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.9087 0.9063 0.9081 0.9056 0.9184 0.9159 0.9203 0.9178

1K 0.9688 0.9750 0.9750 0.9750 0.9688 0.9750 0.9750 0.9750

5K 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3

500 0.9804 0.9804 0.9804 0.9804 0.9804 0.9804 0.9804 0.9804

1K 0.9706 0.9706 0.9706 0.9706 0.9706 0.9706 0.9706 0.9706

5K 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5

500 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746 0.9746

1K 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831

5K 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 24: AUCs for the various clinical significance tests using the car data.

Without ordering information With ordering information

Diff. Rat. P. Diff. P. Rat. Diff. Rat. P. Diff. P. Rat.

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.7965 0.7973 0.7935 0.7950 0.8392 0.8377 0.7746 0.7777

1K 0.8954 0.8923 0.8815 0.8862 0.9419 0.9335 0.8635 0.8850

5K 0.9946 0.9923 0.9831 0.9915 1.0000 0.9915 0.8169 0.8385

3

500 0.8847 0.8838 0.8650 0.8675 0.9011 0.8960 0.8192 0.8224

1K 0.9809 0.9812 0.9777 0.9761 0.9901 0.9844 0.8948 0.9059

5K 0.9866 0.9904 0.9751 0.9831 0.9745 0.9809 0.8504 0.8565

5

500 0.8643 0.8592 0.8526 0.8526 0.8604 0.8563 0.8380 0.8355

1K 0.8679 0.8577 0.8529 0.8549 0.9350 0.9241 0.8726 0.8842

5K 0.9586 0.9573 0.9259 0.9221 0.9695 0.9627 0.8035 0.8116

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.8635 0.8615 0.8644 0.8552 0.9075 0.9104 0.8796 0.8621

1K 0.9342 0.9363 0.9375 0.9283 0.9442 0.9413 0.9075 0.9013

5K 0.9644 0.9610 0.9569 0.9548 0.9648 0.9715 0.8931 0.8535

3

500 0.8036 0.8101 0.7934 0.8133 0.8809 0.8779 0.8653 0.8641

1K 0.8485 0.8782 0.8313 0.8526 0.9612 0.9704 0.9161 0.9111

5K 0.9370 0.9733 0.9219 0.9192 0.9939 1.0000 0.9049 0.8922

5

500 0.7498 0.7567 0.7365 0.7296 0.9054 0.9085 0.8962 0.8944

1K 0.8612 0.8827 0.8441 0.8614 0.9874 0.9877 0.9562 0.9542

5K 0.8873 0.9167 0.8920 0.8914 0.9953 0.9992 0.9167 0.9178
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Table 25: AUCs for the various clinical significance tests using the hayes-roth data.

Without ordering information With ordering information

Diff. Rat. P. Diff. P. Rat. Diff. Rat. P. Diff. P. Rat.

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.8764 0.8804 0.8723 0.8818 0.7242 0.7473 0.5693 0.5353

1K 0.8621 0.8662 0.8662 0.8743 0.7351 0.7527 0.5530 0.5951

5K 0.9606 0.9755 0.9606 0.9783 0.9443 0.9443 0.6318 0.6223

3

500 0.7582 0.7550 0.7574 0.7560 0.7046 0.7001 0.5826 0.5201

1K 0.7646 0.7567 0.7597 0.7423 0.6731 0.6277 0.5675 0.5308

5K 0.8924 0.8735 0.8452 0.8418 0.8395 0.8167 0.6094 0.5434

5

500 0.7743 0.7671 0.7730 0.7823 0.6990 0.6944 0.6608 0.5931

1K 0.7814 0.7806 0.7928 0.7617 0.7053 0.6915 0.6566 0.6259

5K 0.8869 0.8840 0.8558 0.8567 0.8806 0.8436 0.6818 0.6028

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.5014 0.4943 0.4979 0.5106 0.8717 0.8753 0.5443 0.5514

1K 0.6531 0.6304 0.6347 0.6283 0.8887 0.8738 0.5138 0.5656

5K 0.8731 0.8866 0.8200 0.8859 0.9787 0.9724 0.5507 0.5734

3

500 0.8212 0.8258 0.8315 0.8563 0.9632 0.9682 0.8408 0.8727

1K 0.8743 0.8739 0.8396 0.9074 0.9804 0.9779 0.7848 0.8191

5K 0.8131 0.8111 0.7561 0.7979 0.9979 0.9975 0.7400 0.7916

5

500 0.8847 0.8746 0.8360 0.8045 0.9223 0.9199 0.8466 0.8539

1K 0.9585 0.9642 0.9328 0.9662 0.9269 0.9261 0.8368 0.8380

5K 0.9340 0.9263 0.8788 0.8893 0.9477 0.9469 0.8349 0.8450
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Table 26: AUCs for the various clinical significance tests using the nursery data.

Without ordering information With ordering information

Diff. Rat. P. Diff. P. Rat. Diff. Rat. P. Diff. P. Rat.

P
ar

am
et

ri
c

p
er

tu
rb

at
io

n
s 1

500 0.8670 0.8663 0.8554 0.8590 0.8568 0.8539 0.8234 0.8328

1K 0.8714 0.8670 0.8568 0.8656 0.8641 0.8597 0.8307 0.8430

5K 0.9033 0.8997 0.8517 0.8946 0.9033 0.8997 0.8517 0.8939

3

500 0.7476 0.7522 0.7483 0.7486 0.7015 0.7110 0.6806 0.6904

1K 0.7679 0.7728 0.7601 0.7728 0.7519 0.7594 0.7300 0.7496

5K 0.7766 0.7945 0.7223 0.7926 0.7681 0.7890 0.6952 0.7857

5

500 0.7471 0.7528 0.7316 0.7517 0.7053 0.7119 0.6589 0.6937

1K 0.7272 0.7281 0.7007 0.7277 0.7318 0.7322 0.6781 0.7172

5K 0.8082 0.8100 0.7031 0.7908 0.7812 0.7844 0.6639 0.7659

S
tr

u
ct

u
ra

l
p

er
tu

rb
at

io
n
s 1

500 0.5404 0.5404 0.5397 0.5404 0.5768 0.5765 0.5680 0.5700

1K 0.6067 0.6074 0.6028 0.6080 0.6702 0.6734 0.6496 0.6626

5K 0.8395 0.8571 0.8343 0.8542 0.8415 0.8578 0.8326 0.8535

3

500 0.6710 0.6740 0.6631 0.6743 0.7110 0.7126 0.7036 0.7126

1K 0.7285 0.7336 0.7175 0.7317 0.7588 0.7637 0.7447 0.7551

5K 0.9012 0.9102 0.8662 0.9064 0.9269 0.9304 0.9026 0.9181

5

500 0.7149 0.7172 0.7076 0.7163 0.7273 0.7285 0.7193 0.7253

1K 0.7897 0.7904 0.7750 0.7871 0.8322 0.8322 0.8142 0.8290

5K 0.9091 0.9107 0.8690 0.9078 0.9152 0.9170 0.8734 0.9053
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6.0 EXPLAINING DIFFERENCES OF DISTRIBUTIONS

As discussed in the Chapter 1, a good answer to the question of what is different between two

groups of data consists not only of listing the differences, but of using a model that captures

the differences and similarities, and showing how differences and similarities in the model

combine to explain the observed data. Chapter 4 developed two approaches (uni-model and

multi-model) to detecting statistical differences and incorporating those differences in a BN

model. In this chapter, I present methods that use such models to explain differences.

Particularly, the differences that I focus on explaining are the differences in the marginal

distribution of a variable Xi. The difference in the marginal distribution of a variable is one

of the easiest differences to identify directly from data, but without further explanation, the

presence of such a difference can become puzzling. I call the explanation approaches devel-

oped here “explanation by traversal” because of the relationship between the explanation

process and the BN structure of the model used to explain a marginal difference.

The general process of an explanation by traversal requires as input a BN model produced

using either the uni-model approach or the model construction process from the multi-model

approach. The explanation process starts by examining a difference in the marginal prob-

ability of Xi taking a value xik, as computed according to the model. The next step is to

explain the local factors that contribute to the observed difference in terms of the proba-

bilistic relationship between Xi, the parent set Πi, and the group indicator Z. Subsequent

steps consist of examining the parents of Xi, relating the differences in their distributions

individually to the difference of interest, and if necessary, repeating the process. The process

of explanation starts at Xi and traverses upwards in the ancestry of Xi. It can also be seen

as tracing the BN inference process of computing the difference in probabilities of xik.

A broader view of how this fits with the methods in Chapter 4 is that the tests of
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statistical significance determine which parametric differences appear in the BN model. The

BN model structure determines which variables are included in the explanation for the

observed difference in each variable. The tests of clinical significance determine which factors

that contribute to a difference are important enough to be included in the explanation of

the difference.

The parameter differences found by statistical difference testing are used to determine

which variables have Z as a parent, and hence, which variables in the model have conditional

distributions that are different across the groups. With respect to the model, such differences

are elementary in the sense of having no explanation in terms of any other information present

in the model. These elementary differences also determine which variables in the model can

in principle have different marginal distributions across the groups, namely, only variables

that have Z as an ancestor (but not necessarily a parent) can have differences in their

marginal distributions. Therefore, the most detailed explanation possible of the difference

in the marginal probability of xik, as computed according to the model, is an account of how

each elementary difference in each ancestor of Xi that has Z as a parent contributes to the

difference in the marginal probability of xik. When Xi has multiple ancestors that depend

on Z, a full account of this form becomes quite unwieldy in the amount of detail that it

includes. Moreover, it is in practice often the case that only some of the many elementary

parameter differences across the two models are driving most of the observed difference in the

marginal probability of xik. For this reason, in the explanation methods developed below, I

filter contributions using clinical significance test, to focus the explanation only on clinically

significant contributions.

The hypothesis explored by developing such explanation methods is that by traversing

the structure of a BN generated using the uni-model or multi-model approach, showing how

the elementary differences in the model contribute to the calculation of the difference in

the marginal probability of xik, and focusing only on clinically significant elements of the

calculation, we can provide useful insights into the reason for the marginal difference in the

probability ofxik.

To evaluate this hypothesis, I present case studies of the explanation methods developed

here to real clinical data. This chapter describes three approaches to difference explanation
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by traversal that I have developed. Ordered from the simplest to the most complex, they

are: CPR (Comparison of Probabilistic Relationships), EDAPD (Explanation of Differences

Across a Pair of Datasets), and DECC (Difference Explanation by Condition Carrying). In

CPR I introduce the concept of explanation of a difference by local decomposition based on

a BN model; in EDAPD I introduce the application of recursion in order to generate deeper

explanations, but introduce constraints on the network structure to facilitate recursion; fi-

nally, after discussing potential alternate approaches, I introduce DECC, which does not

require these structural constraints.

6.1 COMPARISON OF PROBABILISTIC RELATIONSHIPS

CPR is an approach to difference explanation that aims to explain the difference in the dis-

tribution of a variable of interest Xi using the local BN structure. It presents an explanation

in terms of contributions from differences in the the parameters of Xi between the two groups

and contributions from the differences in the distributions Xi’s parents in the BN (Sverchkov

et al., 2012).

Here we are interested in explaining the difference in Xi’s distribution between D1 and

D2. The approach taken in CPR is to look for large terms that contribute to the mathemat-

ical difference between P (xik|Z = 1) and P (xik|Z = 2) for each value xik that Xi takes. For

simplicity and consistency, I try to always represent positive differences (and when the dis-

cussion moves on to quotients, terms will be arranged to keep quotients above 1). To achieve

this, let z1 := argmaxz P (xij|z), making P (xik|z1) the larger probability and P (xik|¬z1) the

smaller probability. The difference P (xik|z1) − P (xik|¬z1) then becomes the quantity that

we want to explain.

When the node Xi has parents other than Z in the BN, we explain the difference in the

distribution of Xi between the two groups in terms of its parents. Noting the equality

P (xik|z) =

Ji∑
j=1

P (xik, πij|z) (6.1)
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it is clear that the difference of interest decomposes as follows:

P (xik|z1)− P (xik|1− z1) =

Ji∑
j=1

[P (xik, πij|z1)− P (xik, πij|¬z1)] . (6.2)

Let us refer to the difference P (xik|z1) − P (xik|¬z1) as the marginal difference term, and

refer to each difference of the form P (xik, πij|z1)− P (xik, πij|¬z1) as a joint difference term.

Equation (6.2) shows that for each assignment of the parents πij, the joint difference term

contributes either towards or against the marginal difference term, depending on its sign.

Since the number of parent configurations Ji grows exponentially with the number of parents

|Πi|, the number of joint terms can be quite large. In order to keep the explanation at a size

that is manageable for a user to view and understand, CPR filters the explanations, and to

further facilitate the presentation, the joint terms that pass the filter are grouped by sign and

sorted by magnitude in descending order. The filter used in (Sverchkov et al., 2012) is the

absolute difference test (4.29) described in Section 4.4 on the event xik, πij. The threshold

δ described there indirectly controls the number of terms in the sum that are displayed: a

smaller δ displays more terms (δ = 0 displays all terms) and a larger δ displays less terms

(δ > 1 displays no terms). Other filtering rules are also possible, for example, one could only

show enough terms to account for a certain proportion of the marginal difference term, or

one could filter by any other test discussed in Section 4.4. Conceptually, there is an appeal

to using tests based on a difference of the probabilities, since the sum of the differences is

the observed marginal difference.

Figure 8 is an algorithmic summary of the process of generating the explanation, where:

1. Report(xik|Z) is a report of the marginal probability of xij in each group. In (Sverchkov

et al., 2012) this included listing the probabilities P (xik|Z = 1), P (xik|X = 2) and the

difference P (xik|Z = 2) − P (xik|X = 1). A more detailed report might also include

Bayesian credibility intervals for this difference, and similar statistics for the ratio of the

two probabilities.

2. ClinicalSignificanceTest((xik, πij) is the filtering test discussed above.

3. Report(xik, πij|Z) is a report of the joint probability of xik, πij in each group, discussed

in detail below.
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1: procedure CPR(i,k)

2: Print Report(xik|Z)

3: PositiveReportList ← ∅
4: NegativeReportList ← ∅
5: Let z1 := argmaxz P (xik|z)

6: for j ∈ {1, . . . , Ji} do

7: if ClinicalSignificanceTest(xik, πij) then

8: Report ← Report(xik, πij|Z)

9: if P (xik, πij|z1) ≥ P (xik, πij|¬z1) then

10: Append(PositiveReportList, Report)

11: else

12: Append(NegativeReportList, Report)

13: Sort(PositiveReportList)

14: Sort(NegativeReportList)

15: Print(PositiveReportList)

16: Print(NegativeReportList)

Figure 8: Main CPR procedure.
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The explanation does not stop at listing these filtered joint difference terms. The joint

difference terms are one way to measure how the joint probabilities xik|πij differ across the

groups. Another measure that we can consider is the ratio of these probabilities, the joint

ratio term.1 The joint ratio terms can be further broken down into contributions from

different factors. Each joint probability P (xik, πij|z) has a natural decomposition that is

provided by the BN:

P (xik, πij|z) = P (xik|πij, z)P (πij|z) . (6.4)

Here, the conditional probability term P (xik|πij, z) is a conditional probability of an assign-

ment of Xi given its parents. When Z is not a parent of Xi, the fact that Xi cannot be

an ancestor of Z implies that conditioning on Xi’s parents and not conditioning on any de-

scendants of Xi d-separates Xi from Z, making the probability equal to P (xik|πij), meaning

that even though the conditional probability term is expressed with conditioning on z, it

corresponds to a network parameter both when Z is and when Z isn’t a parent of Xi. The

term P (πij|z) is the joint probability of the assignment of the parents within one of the

groups.

Let z2 := argmaxz P (xik, πij|z). The decomposition in (6.4) leads to the decomposition

of the joint ratio term as follows:

P (xik, πij|z2)
P (xik, πij|¬z2)

=
P (xik|πij, z2)
P (xik|πij,¬z2)

P (πij|z2)
P (πij|¬z2)

. (6.5)

I refer to the term
P (xik|πij ,z2)
P (xik|πij ,¬z2)

as the conditional ratio term. Consider the right-hand side of

Equation (6.5): testing whether a ratio is greater or less than 1 shows whether it contributes

towards or against the ratio
P (xik,πij |z2)
P (xik,πij |¬z2)

. Moreover, we obtain a measure of the magnitude

of the contribution as a multiplicative factor by looking at the value of the ratio for terms

1 While in general, knowing the ratio between two quantities is insufficient to determine the difference
between them (or vice versa), with respect to a fixed joint probability in group z, a linear relationship
between the joint difference term and the joint ratio term holds:

(P (xik, πij |¬z)− P (xik, πij |z))
1

P (xik, πij |z)
=
P (xik, πij |¬z)
P (xik, πij |z)

− 1 . (6.3)

Due to this relationship, factors that contribute to a increasing or decreasing the joint ratio term also
contribute to increasing or decreasing, respectively, the joint difference term.
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Figure 9: A fragment of the BN learned from the CEHC-PORT data by the greedy thick-

thinning algorithm.

that contribute towards
P (xik,πij |z2)
P (xik,πij |¬z2)

and at the inverse of the value for terms that contribute

against the ratio.

Representing the variables in Πi as Y1, . . . , Ym and their respective assignments in πij by

y1j, . . . ymj, the term P (πij|z) can be decomposed into the product

P (πij|z) =
m∏
t=1

P (ytj|y1j, . . . , yt−1,j, z). (6.6)

Using this decomposition, we can arrive at a decomposition of the ratio as a product of

parent ratio terms :

P (πij|z2)
P (πij|¬z2)

=
m∏
t=1

P (ytj|y1j, . . . , yt−1,j, z2)
P (ytj|y1j, . . . , yt−1,j,¬z2)

. (6.7)

The parent ratio terms are organized into contributions towards and against the joint ratio

term for presentation purposes.
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6.1.1 Clinical data case study

CPR was applied to the CEHC-PORT data described in section 2.4. To demonstrate CPR,

data from two of the five medical institutions that appear in the dataset were selected as the

pair of groups to compare. I will refer to these institutions as hospital A and hospital B, or

simply as values of the hospital variable, A and B. The indicator variable Z corresponds to

the hospital variable.

The uni-model approach was used. To model the data a single BN was learned using the

greedy-thick-thinning BN-learning algorithm (Heckerman, 1999) with the K2 score and the

constraint of at most five parents per node and with constraints over the variable ordering.

The order of the variables in the network was, ordered from ancestors to descendants, con-

strained as follows: the hospital variable was first, followed by demographic variables such

as age and sex, followed by variables that describe the patient’s history and state at admis-

sion such as smoke (whether the patient smokes) and influenza (whether the patient had

influenza within six weeks prior to presentation), followed by other variables which represent

findings such as test results and other information about the patient’s state while in the

hospital, and outcome variables such as dead30 and dead90 (whether the patient has died

within 30 or 90 days after presentation) were last. While the order constraints have a loosely

causal and temporal justification, the resultant network is not guaranteed to be causal, and

the results must be interpreted probabilistically rather than causally.

The absolute-difference-test threshold selected to use for the purposes of these evalua-

tions was δ = 0.01, as it provided an informative yet manageable level of detail. In a practical

application, the threshold would be selected based on the user’s (e.g., clinical researcher’s)

goals and preference for level of detail. In the learned BN, among the 165 variables. To

illustrate instances where contributions to a difference come both from conditional proba-

bility terms and parent probability terms, I concentrated on examining the variables that

were children of the hospital variable. There were 15 such variables, each of which values for

which the marginal differences exceeded the threshold. In a general exploratory analysis of

a dataset, however it may be of interest to also focus on other variables. A clinical signifi-

cance test may be applied on each variable in the dataset to search for differences of interest
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that may require explanations, and CPR can be applied to each value assignment of each of

those variables. In the current case study, I selected two of the 15 children of the ‘hospital’

variable, influenza and aspiration (aspiration event), to illustrate the features of CPR.

For the influenza variable, the marginal probability for the value influenza = yes,

P (influenza = yes|hospital), is 0.130 for hospital A and 0.326 for hospital B, yielding a

difference of 0.196. In the BN, the variable has only one parent besides hospital, namely,

age. The additive terms that contribute to this difference take the form

P (influenza = yes, age|hospital = B)− P (influenza = yes, age|hospital = A) . (6.8)

The values of age (as discretized into ranges) corresponding to terms that have a positive

difference that exceeds the 0.01 threshold are: 30-44 years old, 0.082; 18-29 years old, 0.056;

75-90 years old, 0.037; 60-74 years old, 0.011. No terms exceeded the threshold and con-

tributed negatively to the difference.

Proceeding to the second level of analysis for the first of these terms, we compute the

ratio
P (influenza = yes, age = 30-44|hospital = B)

P (influenza = yes, age = 30-44|hospital = A)
= 3.307 , (6.9)

which is further decomposed into the conditional part

P (influenza = yes|age = 30-44, hospital = B)

P (influenza = yes|age = 30-44, hospital = A)
= 2.713 (6.10)

and the parent part
P (age = 30-44|hospital = B)

P (age = 30-44|hospital = A)
= 1.415 . (6.11)

Thus, both parts contribute to the joint ratio term, with the conditional part contributing

more, meaning that the difference for the subgroup of patients between 30 and 44 years of age

is mostly explained by a higher proportion of 30-44 year-olds who had influenza recently, but

the fact that there are proportionally more patients that are 30-44 also contributed to the

difference. Similar numbers are observed for the terms corresponding to an age value of 18-

29 and 75-90, with the notable exception that the parent part of the 75-90 ratio contributes

slightly against the additive term’s ratio:

P (age = 75-90|hospital = B)

P (age = 75-90|hospital = A)
= 0.987 . (6.12)
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These results show that the higher proportion of patients with influenza at hospital B is

explained by the observation that hospital B patients who were 18-29, 30-44, and 75-90 had

more influenza recently than hospital A patients, and additionally, there were proportionally

more patients with age 18-29 and 30-44 at hospital B than hospital A.

The analysis for the aspiration variable is both more interesting and more complex (see

Figure 9). The marginal distribution difference is 0.083 for aspiration = yes, with hospital

A seeing proportionally more aspiration events. The aspiration variable has alertness (pa-

tient alertness level), swallow (presence of swallowing disorders), nutrition (malnutrition or

poor nutritional status), and seizures (seizures) as parents. Only two additive terms exceed

the difference threshold of δ = 0.01, both correspond to absence of swallow, nutrition and

seizures, and both contribute positively to the marginal difference. One term corresponds

to alertness = alert (patient is alert) and the other to alertness = lethargic (patient is

lethargic). The decomposed ratios of both terms show that the contribution of the condi-

tional term (with a factor between 8 and 9) outweighs the contribution of the parent terms

(all with factors close to 1).

These results show that the higher proportion of aspiration events at hospital A is pri-

marily explained by the observation that among patients without malnutrition, swallowing

disorders, or seizures, who are either alert or lethargic (but not unconscious or comatose),

more experience aspiration events at hospital A than at hospital B. These results could have

practical implications to a health official wanting to reduce the rate of aspiration events at

hospital A. The analysis suggests that while alertness, malnutrition, swallowing disorders,

and seizures are predictive of aspiration, the difference in aspiration pneumonia across the

hospitals is not due to a difference in the prevalence of these factors between hospitals.

It appears that the difference in the prevalence of aspiration pneumonia is either due to

a difference in the general care within the hospitals, or due to other factors that are not

recorded in the data (such as environmental factors). If the cause is the former, there may

be an opportunity to improve the general care of patients without these predisposing factors

to prevent aspiration pneumonia. Clearly, if the analysis had shown that a difference in

the presence of predisposing factors accounts for the observed difference, it would suggest

different corrective actions to explore further.
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6.2 EXPLANATION OF DIFFECENCES ACROSS A PAIR OF DATASETS

With EDAPD I aimed to generate deeper explanations that trace influences (inferences) to

the underlying parameter differences in the model, in contrast to CPR’s explanations that are

more local, terminating at the parents of the node of interest. Conceptually, once we explain

the difference in the marginal distribution of a variable Xi as having contributions from the

differences in the conditional distribution of Xi given its parents Πi and contributions from

the differences in the distributions of the parents Πi, the next logical step is to explain the

differences in the distributions of the parents. In CPR, however, once we trace the difference

to the contribution from the joint probability term of the parents Πi of the node Xi having

a particular state of the parents πij, the potential for conditional dependence between the

parents precludes us from breaking up the contribution into independent contributions from

individual parents. Mathematically, this is because in general

P (πij|z) =
m∏
t=1

P (ytj|y1j, . . . , yt−1,j, z) 6=
m∏
t=1

P (ytj|z) . (6.13)

6.2.1 Almost singly connected networks

There is, however, a class of BN structures for which the inequality in (6.13) becomes an

equality. I introduce the term “Almost Singly-Connected Network” (ASCN) to describe a

specific class of networks that can be described in terms of SCNs: We define an ASCN as a

directed acyclic graph with a special node Z such that Z has no parents, and if Z and the

links to its children are removed from the DAG, the resulting network is singly-connected.

Figure 10 shows and example of an ASCN and the corresponding SCN that is obtained by

removing Z. Figure 11 shows a greedy algorithm for learning an ASCN from data D over

an ordered list of variables X with respect to a group indicator variable Z.

The algorithm builds the network up starting from a DAG the sole node of which is Z,

adding Xi’s one-by-one in order. The algorithm therefore requires the variables to be ordered.

In addition to the DAG, the algorithm keeps track of the set of connected components of all

the variables excluding Z, which is initially empty.
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Figure 10: An example of (a) an ASCN, and (b) the SCN that is obtained from it by removing

Z.

For each variable Xi, the algorithm iterates over all possible ways to select one or less

variable from each of the connected components collected thus far. The algorithm then

considers these variables as potential parents of Xi, and computes the score associated with

Xi having these variables as parents, and the score associated with Xi having these variables

and Z as parents. Having computed the scores for all possible parent-set selections, the

highest-scoring parent-set is selected, and the corresponding arcs are added to the network.

The set of connected components is updated: the connected components that had a variable

in the parent set are merged, and Xi is added to the resulting component. Once the algorithm

completes iteration over all Xi’s, the resulting DAG is returned as the learned ASCN.

While the search for the potential parents of Xi at each step is exhaustive, the algorithm

is greedy in nature and does not guarantee optimality since once the parents for a node are

chosen, the set remains fixed for the remainder of the search. This algorithm has a worst-

case exponential time complexity because of the exhaustive search over subsets of the set of

connected components. In practice, it appears that the number of connected components is

typically small. I have used the algorithm to learn an ASCN of over a hundred variables to
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1: function LearnASCN(D, X, Z)

2: DAG ← {Z}
3: ConnectedComponents ← ∅ . A set of sets of variables.

4: for i ∈ {1, . . . , n} do

5: AddNode(Xi, DAG)

6: s← −∞ . Score of candidate parent set.

7: Parents . Best candidate parent set.

8: for all Parents′′: a selection of one or less variables from each member of Con-

nectedComponents do

9: for Parents′ ∈ {Parents′′,Parents′′ ∪ {Z}} do

10: s′ ← Score(D, Xi|Parents′)

11: if s′ > s then

12: Parents ← Parents′

13: s← s′

14: end for

15: end for

16: NewComponent ← {Xi}
17: for all Xr ∈ Parents do

18: Let C ∈ ConnectedComponents such that Xr ∈ C

19: NewComponent← NewComponent ∪C

20: ConnectedComponents← ConnectedComponents\{C}
21: AddArc(Xr → Xi, DAG)

22: end for

23: ConnectedComponents← ConnectedComponents ∪ NewComponent

24: end for

25: return DAG

Figure 11: ASCN structure learner.

88



learn the BN model in the case study in Section 6.1.1, demonstrating feasibility for practical

applications. Other, more greedy and less time complex algorithms are also possible.

6.2.2 Explanation with recursion

To a first approximation, EDAPD is CPR with the addition of recursion for explaining

the differences in the distributions of the parent terms, under the assumption that the BN

structure is an ASCN. EDAPD is given a variable of interest Xi, the variable whose difference

in marginal distribution across the two groups we seek to explain. For each possible value xik

of Xi, EDAPD reports the variable, including any relevant statistics such as point estimates

of the probabilities, the expected difference between the probabilities, credibility intervals

for the difference, etc.

Next it decomposes the difference into its additive joint components defined by all pos-

sible configurations of parents as in (6.2). Typically, a few of the many joint difference

terms in the sum dominate the difference; significant terms are filtered using a test from

Section 4.4 on the event xik, πij. Difference tests are perhaps the most appropriate for this

stage since it is the sum of the differences across the groups which adds up to the difference

observed in xik. Again, for each significant joint difference term, the term’s expected value

and credibility interval are reported.

For each significant joint difference term, EDAPD proceeds by providing a multiplicative

decomposition corresponding joint ratio term. Since the network structure is an ASCN, we

can express the multiplicative decomposition as follows:

P (xik, πij|z2)
P (xik, πij|¬z2)

=
P (xik|πij, z2)
(xik|πij,¬z2)

m∏
t=1

P (ytj|z2)
P (ytj|¬z2)

. (6.14)

The ASCN assumption guarantees independence between the parents of Xi: since the parents

are connected via Xi, they must have no common ancestors other than Z and they cannot

be ancestors to each other. Without the ASCN assumption, only a decomposition analogous

to equation (6.7) would be valid in general.

The conditional ratio terms and parent ratio terms on the right side of (6.14) can be

filtered to reduce the size of the explanation and bring out the most significant terms con-

tributing to the ratio. However, each term has a qualitatively different meaning. The first
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procedure EDAPD(xik)

Report(xik|Z)

Let z1 := argmaxz P (xik|z)

for j ∈ {1, . . . , Ji} do

if ClinicalSignificanceTest(xik,πij) then

Report(xik, πij|Z)

Report(xik|πij, Z)

for t ∈ {1, . . . ,m} do

Report(ytj|Z)

if ClinicalSignificanceTest(ytj) then

EDAPD(ytj)

Figure 12: The recursive EDAPD analysis procedure.

term is a network parameter, and its contribution is considered to be an elementary cause

with respect to the underlying model. The rest of the terms are individual contributions

from variables other than Xi. For this reason it is helpful to list all the multiplicative terms.

It is clearer to explicitly state that while Xi is dependent on the value of Yt, Yt has simi-

lar distributions across the two groups, rather than (possibly confusingly) omit Yt from the

explanation altogether.

While it is important to list all the multiplicative terms, only those that show significant

differences need to be explained. We can use any of the clinical significance tests listed in

Section 4.4 on the event ytj to decide whether to generate a further, deeper explanation for

each parent ratio term. Since these are terms in a multiplicative decomposition, ratio tests

are more appropriate. Once we decide that the marginal difference in a variable Yt needs

to be explained, we repeat the process above, treating ytj as we did xik. Figure 12 is an

algorithmic summary of the explanation procedure. For simplicity I omit explanation sorting

and grouping from the pseudocode.
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Figure 13: A fragment of the ASCN learned from the CEHC-PORT data.

6.2.3 Clinical data case study

EDAPD was applied to the CEHC-PORT clinical data described in Section 2.4. The uni-

model approach was used and a single network structure to capture the data was learned

using a greedy ASCN learner and the K2 score. The order of the variables in the structure

was the same order used in the case study in Section 6.1.1.

The clinical significance tests applied were the probabilistic absolute difference test with

δ = 0.01 and α = 0.05 for filtering the additive xik, πij terms, and the probabilistic absolute

log-ratio test with ε = 1.01 and α = 0.05 for filtering marginal parent terms ytj. These

numbers were picked because they were expected to lead us to find likely and notable dif-

ferences while maintaining a reasonable level of detail. In practice, the thresholds can be

specified based on the user’s needs. A sample of 1000 BN parameterizations were generated

by random sampling of the underlying posterior Dirichlet distributions and used to estimate

the probabilities in probabilistic clinical significance tests (see Section 4.4).

Of the 165 variables, EDAPD found 57 that showed significant differences at the marginal

level. That is, there were 57 variables Xi that had some state xik which passed the probabilis-

tic absolute difference test. I selected one variable which indicates chronic renal insufficiency

(CRI ) as the variable to examine in this case study, since it is both clinically interesting and

since its analysis illustrates recursive analysis performed by EDAPD. Figure 13 shows the

fragment of the learned ASCN that is relevant to the analysis of CRI. Note that the nodes

shown in the figure have additional child nodes that are not shown here for brevity.
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The probability for the value CRI = yes, P (CRI = yes|hospital), is 0.081 for hospital

A and 0.052 for hospital B, yielding a difference of 0.028, with a 95% credibility interval of

(0.017, 0.042).

The only parent of the CRI variable in the network is the hypertension (Htn) variable.

The only joint term contributing to the difference is the P (CRI = yes,Htn = yes|hospital)
term, which evaluates to 0.0651 for hospital A and 0.032 for hospital B, yielding a difference

of 0.033, with a 95% C.I. of (0.021, 0.048). Thus, the presence of hypertension is accounting

for most of the difference in the presence of chronic renal disease between the sites. This

translates to a ratio of 0.065
0.032

= 2.043 with a C.I. of (1.653, 2.460).

Since the hospital variable is not a direct parent of CRI, according to the model, there

is no conditional component that contributes to the ratio, and the full contribution to the

ratio comes from the parent component P (Htn = yes|hospital). This latter probability

is 0.378 for hospital A and 0.185 for hospital B, yielding a quotient contribution of 2.043

(1.653, 2.460) and a difference of 0.193 (0.130, 0.254). At this point, EDAPD recursively

focuses on explaining this difference in the hypertension rate between the two sites.

The Htn variable has both the hospital and the age variable as parents in the net-

work. The joint P (Htn = yes, age|hospital) terms for all age values that fall between

ages 18 and 74 contribute significantly to the Htn difference. The difference contributions,

P (Htn = yes, age|hospitalA) − P (Htn = yes, age|hospitalB) were significant for the four

age groups that cover the ages 18-74 out of the six possible age groups. Decomposition

of the quotients P (Htn = yes, age|hospitalA)/P (Htn = yes, age|hospitalB) revealed that

the conditional and parent components contribute about equally for the age group of 30-44,

while the conditional component dominates the quotient for the other age groups.

To summarize, EDAPD traces the difference in chronic renal insufficiency between the

institutions to differences in hypertension between the institutions. In turn, there are two

reasons that hypertension differs between the two hospitals. One is that there are higher

rates of hypertension at hospital A for four of six different age groups, 18-29, 30-44, 45-59,

and 60-74 (the other age groups cover ages 75 and up). Another reason is that the proportion

of patients who are 30-44 is higher at hospital A.
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6.3 RECURSION WHEN PARENTS ARE DEPENDENT

Recursion in EDAPD is straightforward because the parents of a node are guaranteed to

be independent when conditioned on Z. The ability to express the joint distribution of the

parents of Xi as a product of marginal distribution of individual parents ensures consistency

across the various stages of the explanation. In general BN’s, however, there is no such

guarantee of independence, and we are therefore tasked with finding a different approach to

ensuring consistency across explanation stages if we are to allow for recursion.

Dependencies between parents are manifested as loops in the undirected structure of

a BN. For example, when two parents, Y1 and Y2, of a node Xi have a common ancestor

other than Z, or if one is an ancestor of the other, we can no longer claim that P (Y1|z) is

independent of P (Y2|z) and can no longer use these quantities to fully account for P (Y1, Y2|z).

This problem is analogous to one in exact BN inference: belief propagation can be used to

exactly and efficiently perform inference on polytrees (Rebane and Pearl, 1987), but not in

general BNs due to dependencies that are introduced by loops.

Pearl (1988) introduced the method of cut-set conditioning to address this inference

problem. Cut-set conditioning conditions on a set of variables (called the cut-set) that breaks

these problematic loops. One can turn a BN into a polytree with a different parameter set for

each assignment of the cut-set variables, perform exact inference on the polytrees, and then

combine the results to answer the original inference query. One can use a similar approach

with EDAPD: one would first find a cut-set that turns the graph structure into an ASCN

under conditioning, and then perform the analysis for each cut-set assignment in a manner

similar to that of EDAPD. The results of such an analysis would then be explanations of

differences in the subsets defined by the cut-set assignments across the two data sets.

Implementation of cut-set conditioning and the application to the CEHC-PORT data

immediately revealed that direct application of cut-set conditioning in this manner is prob-

lematic. The nature of the learned network is such that there are some well-connected

regions, that yield fairly large (sometimes as many as 8) variables in a cut-set. Since the

number of cut-set instantiations is exponential in the number of cut-set variables, this ex-

plodes the number of ASCN-explanations generated. The large amount of explanations
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becomes difficult to perceive and understand. Another issue is that significant contributions

to differences become less identifiable, as the effect of a contribution often becomes split

across many smaller effects spread across the various cut-set instantiations.

There are other approaches to addressing the loop problem in BN inference, notably, the

approach of converting the DAG into a different representation of the joint distribution, the

factor tree. Inference is then performed on the factor tree by applying belief propagation

in a straightforward manner (Lauritzen and Spiegelhalter, 1988). I discuss the possibility of

taking a similar approach to explanation of differences in future work in Section 8.2.9.

Considering the problematic nature of cut-set based explanations, I decided to take a

different approach to explanation, which focuses on maintaining intelligibility, even if at the

cost of deviating from the tracing of inference. In this approach, as the explanation recurses

from child to parent, it gains terms (value assignments of the child’s other parents) on which

the probabilities are conditioned throughout the traversal. For example, suppose variable A

has parents B and C which themselves have parents in common. Then in the explanation of

the marginal term P (a) we would look at a joint probability term P (a, b, c). In explaining

the joint term, we would break up contributions to the ratio into contributions from the

conditional term P (a|b, c) and a joint among parents P (b, c). The term P (b, c) might, if C is

not an ancestor of B, be broken up into P (b)× P (c|b), in which case the conditioning on b

would be carried through the explanation regarding c. We could also, in principle, condition

b on c instead, possibly yielding a different explanation. As described below, the approach

remains sound regardless of the order in which we condition on variables, but there are

advantages to conditioning variables that are generally lower in the topology of the graph

on those that are higher.

6.4 DIFFERENCE EXPLANATION WITH CARRIED CONDITIONING

The DECC procedure follows the same general process as EDAPD, with the addition of a

conditioning term that is carried along. To understand where this conditioning is coming

from, and how to deal with it, look back to the decomposition that CPR yields: Starting at
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a variable Xi, seeking to explain the difference in P (xik) across the two groups, the difference

is broken down into contributions from each of the joint probability terms P (xik, πij) corre-

sponding to the possible assignments of the parents of Xi to values xik. The difference in a

joint probability term P (xik, πij) is in turn broken down to a contribution to the ratio from

the conditional ratio term and the contributions of each parent ratio term ytj|y1j, . . . , yt−1,j.
In CPR, we stopped the explanation at that stage. In EDAPD, we generated an explana-

tion for each parent term by guaranteeing independence among the parents during model

construction, which allowed us to recursively apply the procedure to each ytj.

In DECC, the EDAPD procedure is modified to allow this recursive application without

restricting the model structure. This is accomplished by accounting for additional condi-

tioning from the very beginning. Suppose that our goal is to explain an observed difference

in a probability of the form P (xik|c) where c is the assignment of a subset C ⊂ X\{Xi} of

variables to particular values. In a process analogous to that of CPR and EDAPD, we have

that

P (xik|c) =

Ji∑
j=1

P (xik, πij|c) (6.15)

which, letting z1 := argmaxz P (xik|c, z), yields the following decomposition of the difference:

P (xik|c, z1)− P (xik|c,¬z1) =

Ji∑
j=1

(P (xik, πij|c, z1)− P (xik, πij|c,¬z1)) (6.16)

where in the context of DECC we refer to the left-hand-side as the marginal difference term,

and refer to the terms in the sum on the right-hand-side as the joint difference terms. Some

parent assignments πij may be inconsistent with c, meaning that C contains a parent of

Xi and this parent’s value in the assignment πij is different from its value in c. Since this

makes the probability P (xik, πij|c, Z) zero, these terms can be safely omitted as having no

contribution. As in EDAPD and CPR, the remaining terms can be filtered by any of the

tests in Section 4.4 and organized (grouped and sorted) for presentation purposes.

Let z2 := argmaxz P (xik, πij|c, z). The ratio across groups for each joint term is broken

up into the product of the conditional ratio term, and the product of parent ratio terms.

P (xik, πij|c, z2)
P (xik, πij|c,¬z2)

=
P (xik|πij, c, z2)
P (xik|πij, c,¬z2)

m∏
t=1

P (ytj|y1j, . . . , yt−1,j, c, z2)
P (ytj|y1j, . . . , yt−1,j, c,¬z2)

(6.17)
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There are two notable situations that warrant additional consideration regarding the parent

terms. First, note that in the event that Yt ∈ C, since we previously eliminated inconsisten-

cies, we have that ytj ∈ c, in which case P (ytj|y1j, . . . , yt−1,j, c, z) = 1 for any z, resulting in

a ratio of 1 and no contribution from that term, meaning that it could be omitted from the

explanation. For the remaining terms, depending on the network structure, the conditioning

in ytj|y1j, . . . , yt−1,j, c can often be simplified.

We can potentially find a smaller set of conditions c′ which satisfies

P (ytj|y1j, . . . , yt−1,j, c, z) = P (ytj|c′, z) ∀z . (6.18)

This simplified form would improve the clarity of presentation of the term to the user.

Specifically, the set c′ guarantees to satisfy (6.18) when it is the assignment of a set of

variables C′ ⊂ C to the values they take in c, such that C′ d-separates Yt from C.

To find this subset of variables, I present the algorithm in Figure 14. Given a node Y

and a set of nodes W in a BN, the algorithm finds W′ ⊂W such that it d-separates Y from

W\W′ (the remaining nodes in W). It is a breadth-first search of all trails that originate

at Y and are d-connected by W.

The search is performed as follows. In order to follow all possible trails, two queues (an

‘up’ queue and a ‘down’ queue) are kept. Initially, each queue contains only the node Y .

The ‘up‘ queue contains nodes from which search trails proceed upwards (towards parents),

while the ‘down’ queue contains nodes from which search trails proceed downwards (towards

children). Recall that a trail in a DAG is d-connected by W iff for every triple of consecutive

nodes A,B,C in the trail, whenever B is a collider (the arc directions are A → B ← C)

it holds that B ∈ W (Geiger et al., 1990b). When we pop a node U from the ‘up’ queue,

we consider each parent P of U . If the parent is in W, the parent is added to the result

set. Additionally, if P ∈ W, the trail terminates at the parent (since P d-separates both

U ← P ← · trails and U ← P → · trails). If P 6∈ W, neither U ← P ← · trails nor

U ← P → · trails are d-separated, and hence P is added to both the ‘up’ queue and the

‘down’ queue. When we pop a node D from the ‘down’ queue, we consider each child C of

D. If the child is in W, the child is added to the result set. Additionally, if the child is in W,

then it d-separates D → C → · trails, and d-connects D → C ← · trails. We therefore add
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1: function Simplify(Y ,W)

2: Qu ← (Y ) . The queue of ‘up’ nodes.

3: Qd ← (Y ) . The queue of ‘down’ nodes.

4: Vu ← ∅ . The set of visited ‘up’ nodes.

5: Vd ← ∅ . The set of visited ‘down’ nodes.

6: W′ ← ∅ . The set that will contain the result.

7: while Qu 6= ∅ ∨Qt 6= ∅ ∧ |W′| < |W| do

8: if Qu 6= ∅ then

9: U ← Pop(Qu)

10: if U 6∈ Vu then

11: Vu ← Vu ∪ {U}
12: P← Parents(U)

13: W′ ←W′ ∪ (W ∩P)

14: Push(P\W, Qu) . Follow U ← P ← · trails.

15: Push(P\W, Qd) . Follow U ← P → · trails.

16: if Qd 6= ∅ then

17: D ← Pop(Qd)

18: if D 6∈ Vd then

19: Vd ← Vd ∪ {D}
20: C← Children(D)

21: W′ ←W′ ∪ (W ∩C)

22: Push(C ∩W, Qu) . Follow D → C ← · trails.

23: Push(C\W, Qd) . Follow D → C → · trails.

24: return W′

Figure 14: Algorithm for simplifying a set of conditioned variables using d-separation.
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C only to the ‘up’ queue. Conversely, if the child is not in W, then it d-connects D → C → ·
trails, and d-separates D → C ← · trails, and we add it only to the ‘down’ queue.

To avoid unnecessarily re-visiting nodes, a set of nodes visited for each queue is main-

tained and checked every time a node is popped from the corresponding queue. The search

terminates either when all nodes that can be reached by d-connected trails are visited, or

when all members of W enter the result set W′. When the search terminates, W′ contains

all members of W that are d-connected to Y by W; therefore, Y is d-separated by W′ from

W\W′.

This algorithm gives us c′ that satisfies (6.18). We can then apply a significance test

from Section 4.4 to the event ytj|c′, and, if the term is found to be significant, recursively

apply DECC to ytj|c′.
The Simplify function can also be used to reduce the number of conditions in the

xik|πij, c term by applying it to find a subset of conditions a s.t. πij ⊂ a ⊂ πij ∪ c and

P (xik|πij, c, z) = P (xik|a, z) ∀z . (6.19)

Figure 15 summarizes the process. Since the aim of the procedure is to use it to explain

a difference in the marginal probability of a variable assignment xik, DECC is initially called

with c = ∅. From that point onward, the conditioning term c in each step is determined in

the recursive call to DECC. While it is theoretically possible for DECC to be called a number

of times exponential in the number of variables, pruning by the statistical significance tests

make such an event unlikely in practice.

Note that both EDAPD and CPR are special cases of DECC: DECC gives the CPR

explanation if we set the ClinicalSignificanceTest test for the parent marginal to always

fail, and it gives the EDAPD explanation when the ancestry graph of Xi is an ASCN.

6.4.1 Clinical data case study

This section presents a case study of applying the DECC explanation method to the CEHC-

PORT clinical data described in Section 2.4. Using the multi-model approach, a BN was

learned with order constraints on the variables as described in Section 6.1.1.
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1: procedure DECC(xik,c)

2: Report(xik|c, Z)

3: Let z1 := argmaxz P (xik|c, z)
4: for j ∈ {1, . . . , Ji} do

5: if Consistent(πij, c) then

6: if ClinicalSignificanceTest(xik, πij|c) then

7: Report(xik, πij|c, Z)

8: a← πij ∪ c

9: A← Simplify(Xi,A)

10: Report(xik|a, Z)

11: for t ∈ {1, . . . ,m} do

12: if Yt 6∈ C then

13: c′ ← c ∪ {y1j, . . . , yt−1,j}
14: C′ ← Simplify(Yt,C

′)

15: Report(ytj|c′, Z)

16: if ClinicalSignificanceTest(ytj|c′) then

17: DECC(ytj,c
′)

Figure 15: The recursive DECC analysis procedure.
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hospital

glucose

insurance

admit

policy

LDH pregnant

ICU-asthma

insurance-type

Figure 16: The fragment of the multi-model BN learned from the CHEC-PORT data which

is relevant to the explanation of the marginal probability difference in the glucose variable.

Clinical significance was determined by using the tests from Section 4.4, specifically, the

absolute difference test for joint difference terms at a threshold of δ = 0.1 and the absolute

ratio test for parent ratio terms at a threshold of ε = log 1.1. These thresholds were picked

because they were expected to provide an informative but manageable level of detail for the

purposes of this case study.

Let us examine the glucose variable. The model indicates a significant difference in the

marginal probability that a patient has a glucose level of glucose = 70–110, a probability of

0.488 in hospital A and 0.593 in hospital B, yielding a difference of 0.105. Figure 16 shows

the part of the multi-model BN that is relevant to explaining this difference.

The glucose variable has six parents in the network, including the hospital node. The

other parents are pregnant, insurance, admit (admission source), LDH (lactic dehydroge-

nase), and ICU-asthma (ICU admission due to asthma in the past year). The largest sig-

nificant joint difference term that contributes towards the marginal difference corresponds

to the parent assignment [admit = missing, pregrant = no, ICU-asthma = no, insurance

= yes, LDH < 170]. Joint probability of glucose = 70–110 and this parent assignment is
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0.268 in hospital A and 0.382 in hospital B, yielding a difference of 0.114. The ratio of

these probabilities is 1.427. The conditional term has no contribution to the ratio, but the

association between the glucose level and the parent assignment is strong. The conditional

probability of glucose = 70–110 given this parent assignment is 0.929.

Note that the conditional independence between glucose and hospital here is an instance

of context-specific independence due to the multi-model network construction. There is an

arc from hospital to glucose in the network structure, and, for example, for a different parent

assignment, where admit = ER, we do see a difference in the conditional probabilities (0.288

in A and 0.347 in B).

The contributions of the individual parent terms to the joint ratio term above are: No

contribution for pregnant = no, 1.001 (not clinically significant) for ICU-asthma = no given

pregnant = no, 1.087 (not clinically significant) for insurance = yes given pregnant = no

(conditioning simplification eliminated the conditioning on ICU-asthma), 1.09 (not clinically

significant) for admit = missing, and 1.156 (clinically significant) for LDH = < 170 given

pregnant = no, admit = missing, and insurance = yes. The probabilities for the LDH term

are 0.838 in hospital A and 0.968 in hospital B, yielding a difference of 0.13.

LDH has five parents: insurance-type, policy, pregnant, admit, and insurance. We con-

tinue to examine the joint terms that contribute to this difference. Note that three of the

parents of LDH have their states determined by the conditioning that was carried along. The

joint term that accounts for most of the difference has the parent assignment insurance-type

= Q2, policy = no given pregnant = no, admit = missing, and insurance = yes. The joint

probability of LDH < 170 and this parent assignment is 0.001 in hospital A and 0.953 in

hospital B. The contribution from this joint term to difference in the LDH term is 0.952,

and it is balanced out by a significant term that contributes 0.754 against the difference

(with insurance-type = Q′).

The joint ratio term for [LDH < 170, insurance-type = Q, policy = no given pregnant

= no, admit = missing, and insurance = yes] is 717.412. The conditional probability of

LDH < 170 given the parent assignment is 0.5 in hospital A and 0.976 in hospital B. The

contribution of the conditional term to the ratio is 1.951.

2I encode the actual insurance type to anonymize the data
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Due to the carried conditioning, only two of the five parent terms can, in principle,

contribute to the joint ratio term. The contributions from those parent terms are broken

down as follows: 1.001 (not significant) from policy = missing, and 367.304 (accounts for

most of the ratio) from insurance-type = Q given pregnant = no and insurance = yes. The

probabilities for insurance-type = Q given pregnant = no and insurance = yes are 0.003 in

hospital A and 0.978 in hospital B. The only parents of insurance-type are hospital, pregnant,

and insurance, meaning that this contribution is an elementary difference in the model.

There are two strong relationships that play a central part in the explanation of differ-

ences. One is the strong link between LDH and glucose. We see a strong association between

normal glucose levels (70–110) and normal to low LDH levels (< 170). Examining the data

further, for other values of glucose reveals that similarly, high glucose levels correlate with

high LDH levels. This relationship makes sense from a medical standpoint since LDH and

glucose participate in related metabolic pathways.

The second strong relationship that contributes to the difference is not biological in nature

at all, but has to do with a difference between the economic environments surrounding the

hospitals: most patients in hospital A have insurance type Q, while most patients in hospital

B have a different insurance type. I conjecture that the reason for the appearance of this

variable in the explanation, is that this strong relationship has made the insurance-type

variable act as a proxy for the hospital variable in the M∪ model in the multi-model. This

inclusion then propagated to the synthesized model. This observation suggests that multi-

model approach can be sensitive to this sort of effect from variables that highly correlate

with the group division.

Variables that are related to information about a patient’s health insurance can also

be associated with an individual patient’s medical condition. The presence or absence of

insurance and type of insurance can act as a proxy for indicating the patient’s socio-economic

status, which would be strongly related to their general ability and tendency to get treatment

and their level of access to preventive healthcare.
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7.0 BUILDING AN INTERACTIVE GRAPHICAL USER INTERFACE

As we see, the explanation generated by the algorithms above may be fairly complex objects,

even for medium-sized data (dozens to hundreds of variables). This makes static presentation

of the explanation somewhat cumbersome. This chapter discusses the development of an

interface to facilitate interactive exploration of these explanations, presents a prototype that

I have implemented, and discusses some next steps that would be helpful to turn the system

into an application for general use.

7.1 DESIGN CONSIDERATIONS

Let us first consider the most basic manner in which an explanation can be presented, the

static textual report, since it is the limitations of this method that motivate the need for an

interactive system for presenting the explanation.

Consider the case study from Section 6.2.3. The following is an excerpt of the report that

EDAPD generated the CRI variable, using the Bayesian difference test (4.30) with δ = 0.01

and α = 0.05 for filtering joint terms:

*** Analyzing CRI ***

*** Difference threshold 0.01 ***

*** Significance level 0.05 ***

(Q)P( CRI=yes | HOSPITAL ):

0.081(A) / 0.052(B) = 1.547

C.I: (1.324,1.796)

(D)P( CRI=yes | HOSPITAL ):

0.081(A) - 0.052(B) = 0.028
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C.I: (0.017,0.041)

=== Terms contributing towards the difference ===

(D)P( CRI=yes, HTNA: yes | HOSPITAL ):

0.065(A) - 0.032(B) = 0.033

C.I: (0.021,0.047)

(Q)P( CRI=yes, HTNA: yes | HOSPITAL ):

0.065(A) / 0.032(B) = 2.043

C.I: (1.65,2.489)

Conditional part:

P( CRI=yes | HTNA: yes | HOSPITAL ):

0.172(A) / 0.172(B) = 1

C.I: (1,1)

=== Terms contributing towards the quotient ===

(Q)P( HTNA=yes | HOSPITAL ):

0.378(A) / 0.185(B) = 2.043

C.I: (1.65,2.489)

(D)P( HTNA=yes | HOSPITAL ):

0.378(A) - 0.185(B) = 0.193

C.I: (0.132,0.253)

=== Terms contributing towards the difference ===

(D)P( HTNA=yes, AGEPRES6: 30-44 | HOSPITAL ):

0.129(A) - 0.089(B) = 0.041

C.I: (0.011,0.069)

(Q)P( HTNA=yes, AGEPRES6: 30-44 | HOSPITAL ):

0.129(A) / 0.089(B) = 1.456

C.I: (1.115,1.884)

Conditional part:

QP( HTNA=yes | HOSPITAL ):

0.487(A) / 0.439(B) = 1.11

C.I: (0.906,1.354)

=== Terms contributing towards the quotient ===

(Q)P( AGEPRES6=30-44 | HOSPITAL ):

0.266(A) / 0.202(B) = 1.312

C.I: (1.102,1.561)
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(D)P( AGEPRES6=30-44 | HOSPITAL ):

0.266(A) - 0.202(B) = 0.063

C.I: (0.022,0.106)

HOSPITAL is the only parent of AGEPRES6

=== Terms contributing against the quotient ===

(D)P( HTNA=yes, AGEPRES6: 45-59 | HOSPITAL ):

0.054(A) - 0.015(B) = 0.039

C.I: (0.016,0.065)

(Q)P( HTNA=yes, AGEPRES6: 45-59 | HOSPITAL ):

0.054(A) / 0.015(B) = 3.61

C.I: (1.861,6.832)

Conditional part:

QP( HTNA=yes | HOSPITAL ):

0.467(A) / 0.107(B) = 4.356

C.I: (2.353,8.139)

=== Terms contributing towards the quotient ===

=== Terms contributing against the quotient ===

(D)P( HTNA=yes, AGEPRES6: 60-74 | HOSPITAL ):

0.081(A) - 0.015(B) = 0.065

C.I: (0.022,0.109)

(Q)P( HTNA=yes, AGEPRES6: 60-74 | HOSPITAL ):

0.081(A) / 0.015(B) = 5.342

C.I: (2.151,12.99)

Conditional part:

QP( HTNA=yes | HOSPITAL ):

0.381(A) / 0.051(B) = 7.505

C.I: (3.061,17.606)

=== Terms contributing towards the quotient ===

=== Terms contributing against the quotient ===

(Q)P( AGEPRES6=60-74 | HOSPITAL ):

0.297(B) / 0.211(A) = 1.405

C.I: (1.181,1.674)
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(D)P( AGEPRES6=60-74 | HOSPITAL ):

0.297(B) - 0.211(A) = 0.086

C.I: (0.043,0.128)

HOSPITAL is the only parent of AGEPRES6

(D)P( HTNA=yes, AGEPRES6: 18-29 | HOSPITAL ):

0.033(A) - 0.002(B) = 0.031

C.I: (0.018,0.046)

(Q)P( HTNA=yes, AGEPRES6: 18-29 | HOSPITAL ):

0.033(A) / 0.002(B) = 13.799

C.I: (4.32,129.642)

Conditional part:

QP( HTNA=yes | HOSPITAL ):

0.214(A) / 0.027(B) = 8.013

C.I: (2.496,71.793)

=== Terms contributing towards the quotient ===

(Q)P( AGEPRES6=18-29 | HOSPITAL ):

0.154(A) / 0.09(B) = 1.722

C.I: (1.346,2.349)

(D)P( AGEPRES6=18-29 | HOSPITAL ):

0.154(A) - 0.09(B) = 0.065

C.I: (0.035,0.102)

HOSPITAL is the only parent of AGEPRES6

=== Terms contributing against the quotient ===

=== Terms contributing against the difference ===

=== Terms contributing against the quotient ===

=== Terms contributing against the difference ===

The main issue with such a report is that even with the filtering of less significant terms,

and even in this relatively simple case, it is long. Yet, all the details are necessary for

understanding the explanation. In my presentation of the case study, I verbally summarized

this report into prose. Even such a summary is problematic, not only because it hides details

in an attempt at brevity and clarity, but also because on its own it reads almost like a riddle
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that a reader needs to parse to work out the relationships between the variables. With the

aid of the relevant network structure (Figure 13), the nature of the relationships between

variables is much clearer, but the graph itself does not provide essential information regarding

the degree to which the distributional differences across hospitals in each age group and in

hypertension contribute to the observed difference in rates of CRI.

7.1.1 Importance and challenges of the graph visual

These considerations suggest that the a good explanation presentation should include the

graphical structure of the BN, and supplement it with the details that are not represented

in the graphical structure. This turns out to be a nontrivial challenge when considering

that networks such as the one learned from the PORT Data are difficult to lay out in any

intelligible way because of how highly connected they are. Moreover, adding elements to the

visualization of such a network would exacerbate the issue. Interactivity presents an elegant

solution to the problem of viewing a complicated BN: we can limit the portion of the BN

explained to those nodes that are relevant to the explanation, in much the same way that

Figure 13 is a relevant fragment from a network of over a hundred nodes, specifically, it is

the ancestry graph of the CRI node. While that is not the case in the EDAPD case study,

the ancestry graph of a node can still be quite large and complex. I will return to this issue.

It is very tempting to seek an approach that does not augment a textual explanation

with a graph structure, but rather represents all the information in the context of the graph

structure.

The main issue with incorporating the information within an explanation into the graph

structure is that the probabilities considered in the explanation are dependent on particular

values of variables. It is not entirely accurate to say, for example, that “hypertension differs

across the hospitals when controlling for age” because we see a significant difference when

conditioning on some age groups, but not on others. This level of detail cannot be captured

in an intuitive way by techniques such as coloring or styling the edges and nodes in the BN

graph, since there are many different, possibly even opposing, effects that an edge or node

would be associated with (e.g., hypertension being more prevalent in hospital A for one age
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group, in hospital B in another, and having equal prevalence across hospitals in another).

These issues lead to a presentation design where the BN structure is present, but it is

augmented with an independent display of the explanation which is suited for the level of

detail that we wish to convey.

7.1.2 Explanations are tree-structured

While text can indeed provide the level of detail desired, its sequential nature makes it

less than optimal for our task. Conceptually, the explanation is not a flat sequence of

statements, but is tree-structured. Figure 17 shows an abstraction of this structure. The

display above uses indentation to hint at the structure. However, for longer explanations, it

may become difficult to keep track of the structure with indentation alone, without a more

explicit representation of the structure. Let us take the case study above and augment it

with the explicit tree structure.

Figure 18 shows a fragment of this explanation put into its explicit tree structure. We

can see that the tree visualization helps see how each block, which corresponds to a decom-

position term, relates to its parent block, which is the term to which it contributes. The

explanation length, however, is still an issue. Even though Figure 18 is only a fragment of

the full explanation generated, it still takes considerable effort to parse and understand it

in its entirety. This is another aspect of the explanation presentation that can benefit from

interactivity. With an interactive tree that allows for expanding and collapsing branches,

the user can get a better sense of the overall picture.

In summary, effective explanation presentation challenges us to handle the size of the

explanation as well as stay well-oriented within it, with awareness of the context of each

explanation atom. These challenges have led me to adopt a design that has two main

components: an interactive tree-structured display of the explanation, and a display of the

BN graph structure that is relevant to the explanation atom that a user is examining at a

given moment.
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ytj |y1j , . . . , yt−1,j

. . .

...

ymj |y1j , . . . , ym−1,j

. . .

...

Figure 17: Abstract illustration of the tree structure of an explanation.
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P( CRI=yes | HOSPITAL ):
0.081(A) / 0.052(B) = 1.547
C.I: (1.324,1.796)
0.081(A) − 0.052(B) = 0.028
C.I: (0.017,0.041)

P( CRI=yes, HTNA: yes | HOSPITAL ):
0.065(A) − 0.032(B) = 0.033
C.I: (0.021,0.047)
0.065(A) / 0.032(B) = 2.043
C.I: (1.65,2.489)

Conditional part:
P( CRI=yes | HOSPITAL ):
0.172(A) / 0.172(B) = 1
C.I: (1,1)

P( HTNA=yes | HOSPITAL ):
0.378(A) / 0.185(B) = 2.043
C.I: (1.65,2.489)
0.378(A) − 0.185(B) = 0.193
C.I: (0.132,0.253)

P( HTNA=yes, AGEPRES6: 30-44 | HOSPITAL ):
0.129(A) − 0.089(B) = 0.041
C.I: (0.011,0.069)
0.129(A) / 0.089(B) = 1.456
C.I: (1.115,1.884)

Conditional part:
P( HTNA=yes | HOSPITAL ):
0.487(A) / 0.439(B) = 1.11
C.I: (0.906,1.354)

P( AGEPRES6=30-44 | HOSPITAL ):
0.266(A) / 0.202(B) = 1.312
C.I: (1.102,1.561)
0.266(A) − 0.202(B) = 0.063
C.I: (0.022,0.106)

P( HTNA=yes, AGEPRES6: 45-59 | HOSPITAL ):
0.054(A) − 0.015(B) = 0.039
C.I: (0.016,0.065)
0.054(A) / 0.015(B) = 3.61
C.I: (1.861,6.832)

Conditional part:
P( HTNA=yes | HOSPITAL ):
0.467(A) / 0.107(B) = 4.356
C.I: (2.353,8.139)

Figure 18: A tree representation of a part of the EDAPD explanation for the CRI case study.
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7.2 PROTOTYPE

The design consideration above guided the creation of a prototype application for interactive

explanation presentation. I implemented the prototype in the Java programming language,

using jSMILE1 for BN inference and the JUNG library2 for graph visualization. In this

section I discuss the appearance and function of the prototype.

Figure 19 shows the initial view that a user sees when loading data to explain. There are

two panes, the right-hand side is a tree-structured view of the explanation, where the top

level tree nodes correspond to the variables that appear in the data. The left-hand side is

used to display relevant graph structure, it is initially empty. As I show below, the selection

of explanation elements on the right-hand pane triggers the display of graph elements on the

left-hand side.

One important feature to note is that the variables are sorted in the list by descend-

ing magnitude of the differences of marginal probability across groups (in this case, across

hospitals). That is, by descending order of

Ki
max
k=1
|P (xik|Z = 2)− P (xik|Z = 1)| . (7.1)

This implies that the first variable listed will always be Z, and the rest of the variables

follow, each having a larger marginal difference than the next, with variables that have no

difference across the groups at the bottom. For completeness, I show in Figure 20 what one

can see by expanding the HOSPITAL (Z) node, which is merely tautological (P (z|z) = 1

and P (z|¬z) = 0).

The left-hand side of Figure 20 demonstrates the triggering of the graph display. Selecting

the CLDH variable in the tree on the right-hand side triggered the display of all the parents

of CLDH in the BN, as well as any direct arcs among the parents. Note that the absence of

arcs in this display does not preclude the existence of indirect dependence among the parents

mediated by variables that are not presently displayed.

1jSMILE is the Java API for the SMILE reasoning engine for graphical probabilistic models contributed
to the community by the Decision Systems Laboratory, University of Pittsburgh and available at http:

//genie.sis.pitt.edu/.
2JUNG—the Java Universal Network/Graph Framework—is a software library for the modeling, analysis,

and visualization of graphs, available at http://jung.sourceforge.net/.
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Figure 19: The prototype, initial view.
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Figure 20: The prototype with CLDH selected and expanded to list its values, and with

HOSPITAL fully expanded.
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Figure 20 also shows that expanding a variable in the tree, in this case, the CLDH node,

reveals two child nodes that group the values that the node (CLDH) can take into values

showing ‘high’ and ‘low’ differences. I use a clinical significance test to determine whether a

difference is ‘high’ or ‘low’. In the prototype, xik is considered as showing a ‘high’ difference

if

|P (xik|Z = 2)− P (xik|Z = 1)| > δ (7.2)

with δ = 0.1, and considered as showing a ‘low’ difference otherwise. By expanding these

grouping nodes in the explanation tree we see that CLDH takes three values, < 170, 170-

500, and > 500. Note that within the groupings, the values are also sorted in descending

magnitude of the absolute difference of marginal probabilities across groups.

Selecting a particular value of a variable, e.g. selecting ‘< 170’ for CLDH, updates the

graph labels on the left-hand pane to indicate the selection, as shown in Figure 21. The

figure also shows that expanding the node reveals details about the explanation term for

‘CLDH < 170,’ specifically, probabilities in each group, and the ratio and difference between

the probabilities. Since the explanation procedure is based on the decomposition of P (xik|Z)

into a sum of P (xik, πij|Z) terms, I made the difference term expandable. Expanding the

difference node reveals two nodes that represent groupings of those terms that make up the

difference. There is one group that lists terms accounting for most of the difference, and a

second group for all remaining terms. Terms are included in the former group as follows:

the xik, πij terms are added one by one to the group of “terms accounting for most of the

difference” in descending order of magnitude until the sum of the included terms accounts

for more than half of the difference in P (xik|Z). I found that in practice, the difference is

often dominated by only a few terms. A grouping such as the one in Figure 22 seems to be

common. This makes it very easy for a user to concentrate only on the terms that drive the

difference of interest.

Note the left-hand pane in Figure 22 that selecting particular xik, πij term updates the

graph labels to show the particular assignment of parents to values that is associated with

the selection. Expanding a xik, πij node in the explanation tree node shows the probabilities

associated with it in each group and the difference and ratio of probabilities. The next level of

explanation is to break down the ratio associated with the xik, πij term into the contributions
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Figure 21: The prototype with CLDH< 170 selected and expanded.
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Figure 22: The prototype with a difference node expanded and a xik, πij node selected.

116



to the ratio from a conditional term xik|πij and a joint term over the parent assignment πij.

I show in Figure 23 that the probabilities, difference, and ratio of probabilities is reported

for the conditional term. The contribution of all the parents jointly to the ratio is reported,

and expanding the πij node reveals individual parent terms. Each parent term is analogous

to the xik terms that we encountered when we selected a specific value after expanding the

variable nodes that are at the top of the explanation tree. This stage is analogous to the

recursion step in DECC, and just as we do in DECC, we list the parents in topological order

and, when necessary, add a conditioning term to account for dependence among parents.

When these individual parent terms are selected, the graph structure is updated to in-

clude their immediate parents, as in Figure 24, which shows the graph update in response to

the selection in Figure 25. Figure 25 shows that expanding the recursive nature of the expla-

nation: expanding the individual parent term reveals an expandable difference term, which

reveals terms contributing to the difference, each of which has its own ratio decomposition,

and so on.

7.3 DISCUSSION

In this section I discuss the strengths and weaknesses of the prototype. I collected preliminary

feedback from a clinical research expert regarding the prototype. I incorporate this feedback

along with more general observations, as well as notable details regarding implementation. I

discuss ideas regarding what future development would be required to evolve the prototype

into an application that can become a part of a clinical researcher’s standard analysis toolbox.

A technical strength demonstrated in the prototype is that by interactively revealing

only those components of an explanation that a user chooses to explore, the computational

burden of generating an explanation is reduced. While the generation algorithms in Chap-

ter 6 can potentially require exploring the explanation tree fully, creating the necessity for

pruning to reduce this burden, an interactive display of the explanation tree can limit the

generation only to those parts of the tree that are visible on-demand. Indeed, in the proto-

type implementation, the expansion of a node in the explanation tree triggers the generation
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Figure 23: The prototype (explanation tree only) with a πij term highlighted and expanded.

118



Figure 24: The prototype (graph only) showing the addition of the INSURYN node as a

result of examining the PTINSURA node.

of additional explanation layers under that node, thus deferring, and potentially reducing,

the amount of computation that needs to take place.

Feedback about the prototype interface was overall positive. As hypothesized in Sec-

tion 7.1, the presence of a graph visualization was helpful and enhanced the clarity of pre-

sentation of the relationships found in the data. However, while it was apparent that the

graph visualization responded to navigation through the explanation tree, the exact nature

of the updates was not immediately obvious. For future development, therefore, it would

help to add elements that would further clarify the correspondence between e.g. the variable

the differences of which are being explained and its place in the graph, or the value assign-

ments corresponding to a given explanation term and the appearance of those assignments

in the graph visualization. This sort of correspondence can be pointed out by displaying

an annotated tutorial example to the user as an aid to using the software. Another, more

streamlined approach would be to highlight the correspondence using visual cues, such as

using matching colors to match terms in the explanation tree to terms in the graph visu-
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Figure 25: The prototype (explanation tree only) with an individual parent term selected

and expanded.
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alization. One could also mark changes in the graph (the appearance or disappearance of

nodes, the changes of labels) with visual cues. When a user sees a response in a graph to a

navigation action in the explanation tree, such marks that draw attention to the change in

the graph will help associate the change in the graph with a step in the explanation tree.

Direct feedback revealed that some other features present in the prototype are perhaps

not clear to a user first encountering it. One such feature appears in Figure 19, the very first

screen. A question that came up is whether there is an easy way to see all the variables that

show differences at once. The answer is that it is in fact very easy, since the variables are

sorted in order of the magnitudes of the differences, and the list of all variables that have

different distributions is indeed at the top of the variable list the user first sees.

This indicates that the sorting needs to be made more apparent. One option is to include

instructions explaining the sorting for the user. A more intuitive approach is to show the

quantity by which the variables are sorted. Another feature that may improve utility in this

area is that of marking all variables that fall above or below a certain threshold. Yet another

related feature, which was suggested by the expert, is that of including an option to change

the measure by which the variables are sorted, switching between magnitude of differences

and magnitude of ratios.

This applies not only to sorting the top-level list of variables, but also the sorting and

grouping of the additive xik, πij terms in the difference decomposition and the multiplicative

terms in the ratio decomposition. The rule by which terms are sorted and grouped needs to

be spelled out, and while there is a logical argument for sorting additive terms by absolute

differences and not some other measure, it is not necessarily an argument against allowing

the user to sort and group the terms by other criteria.

There is another way to interpret the question of which variables have different distri-

butions across the groups, in terms of which variables are conditionally dependent on the

group variable, which is essentially asking the question that the difference detection meth-

ods answer. A related question that arose when discussing an example is whether there are

factors other than those in the parent set that contribute to a particular variable. This sug-

gests that it is important to make the user aware of the assumptions behind the generated

explanation. The system first builds a BN model (using either the uni-model or multi-model

121



method from Chapter 4), a process during which a search of possible parents sets for each

variable is performed, and a maximum-a-posteriori parent set is selected. The explanation is

then generated subject to those parent sets. Both the question of whether factors other than

the parents directly influence a variable and the question of whether there is conditionally

dependent on the group are both questioning the model construction phase, something that

is beyond the scope of generating an explanation with respect to a settled-upon model.

This brings up a wider question of whether we should provide a user with model-

questioning tools in addition to the current tool which is designed specifically for model

explanation with respect to a settled-upon model. Moreover, if it is important to provide

such model-questioning tools, are those tools something that should be integrated into the

workflow of difference explanation, or should they be treated as stand-alone applications for

editing the ‘input’ to the difference explanation application?

Providing more analysis tools and capability to question more of the various stages of the

computations that lead to the displayed explanation would expand the user’s capacity for

exploring the data and models. Exploration, however, also has the disadvantage of having

a cost in terms of time and mental effort expended by the user. An attractive feature of

the textual explanation summaries I provide in the case studies in Chapter 6 is that there is

no exploration burden on the reader. Indeed, discussion with the expert also indicated that

there is a desire to jump to “the explanation.” There is a sense in which exploration may be

seen as a burden to be overcome on the way to “the explanation.” In settings where users

have such a mindset, the solution is not to enable deeper and more detailed exploration,

but rather, to attempt to reduce the amount of information the user needs to process to

reach a conclusion. The logical course for such settings is the development of an automated

generation of an explanation summary that is simple, yet at just the right depth to find the

relevant contributing factors. How to do so in an automated manner is an open question.

Picking good testing thresholds for a report generator such as DECC goes a long way towards

this goal, but what may work as a good threshold for one set of data may not be appropriate

for another, necessitating a certain degree of expert involvement.
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8.0 CONCLUSIONS AND FUTURE WORK

8.1 CONTRIBUTIONS

This dissertation is concerned with the task of explaining differences across groups. This is a

task that people encounter often, not only in the research environment, but also in less formal

settings. Existing statistical tools designed specifically for discovering and understanding

differences are limited, as discussed in Chapter 3. The purpose of the methods developed in

this dissertation is to provide such tools, and the broader aims of this work are to understand

what properties such tools should have to be successful and to motivate further development

of new approaches to discovering and understanding differences.

Throughout this dissertation, I take the approach that the detection and explanation

of differences between two groups should be performed in the context of data-derived mod-

els. I formalize this task by taking a probabilistic approach and defining the task as that

of detecting parametric differences in models that (a) have clearly defined associations of

parameters to variables, and (b) have independent prior distributions over those parameters.

Chapter 4 presents a general conceptual framework for difference detection using any such

model. Within this framework, I state the difference recovery hypothesis: Given data gen-

erated from two models that have similarities and differences between them, we can recover

those model differences from observing the data.

This dissertation focuses on applying this framework to BN models with Dirichlet pa-

rameter priors. Two novel approaches for difference detection using BNs are developed,

the uni-model approach, which reduces to a specialized type of BN structure and parame-

ter learning, and the more general multi-model approach. These approaches to statistical

difference detection have some notable properties. They provide a measure of the overall
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difference between two groups of data, a measure for each variable of how much the differ-

ences in conditional distributions of that variable contribute to the overall difference, and a

measure of how much the differences in a subset of the conditional distributions of a variable

contribute to the measure for each variable. Additionally, they can be applied with no prior

knowledge about the data. Most other statistical methods that can be applied for difference

detection do not have all of these properties There are many univariate methods that can

measure individual variable differences, but they do not provide an overall score of difference;

on the other hand there are various measures of the multivariate distributions, but they do

not have a means to represent individual variable contributions.

Chapter 5 describes an empirical evaluation that tests the difference recovery hypoth-

esis in terms of a statistically-significant-difference-detection task on the multi-model and

uni-model approaches, and compares them to a regularized logistic regression baseline. Em-

pirical tests show that the multi-model approach is overall the best for detecting statistically

significant differences. It demonstrates that the differences between the generating models

can be reliably recovered in many cases. There is, however, room for improvement on the

multi-model’s detection quality (as measured by detection AUC), and there is a need for the

development of better methods.

I also performed an empirical evaluation of the quality of the multi-model approach

when combined with measures of clinical significance on the detection of clinically significant

differences between datasets. This is a narrower test of the difference recovery hypothesis,

where the task is to recover only differences that are clinically significant in the generating

models. The evaluation revealed the surprising result that the simpler, non-probabilistic

clinical significance tests had better detection performance. The performance measured for

the probabilistic tests took the form of computing AUCs by varying the threshold of the

probabilistic test’s inner test, and keeping the probability threshold constant. It is possible

that the probabilistic tests would yield better AUCs if both thresholds were varied. A

possible avenue for future work is the testing of other measures of clinical significance for

this task.

The detection of model parameter differences is essential to correctly modeling the dif-

ferences between two groups. However, the questions of interest to researchers examining
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the data are not always about the differences in the model. Rather, they are about whether

inferences derived using the model yield statistically and clinically significant differences.

Chapter 6 describes novel methods for explaining a difference in the inference of the marginal

probability of a variable, as computed by a model of the similarities and differences. What

I define to be an explanation, in this context, is an account of how the elementary model

differences, those that where found using the difference detection methods presented in Chap-

ter 4, contribute to the observed difference we seek to explain. The ‘insightful explanation’

hypothesis is that the explanations produced in this manner can shed light on important

relationships in the data and provide useful insights.

For BN models, this translates to tracing the BN inference used to calculate the marginal

probability of interest. The methods I developed accomplish that by traversing the BN struc-

ture from the node of interest through its ancestry. Additionally, the difference explanation

methods focus on only including clinically significant terms in the explanations.

I presented three explanation methods of increasing complexity. The first, CPR, intro-

duced the concept of explanation by decomposition. A marginal term is explained by the

joint terms (the joint probabilities of a node and its parents) that contribute to it, and each

joint term is explained by a conditional term and a collection of individual parent terms. The

second method, EDAPD, introduced the idea of recursion—explanation of each individual

parent term in the same way the initial marginal term is explained. The challenge with

recursion is that in order for EDAPD’s explanation to be coherent, independence between

parent terms is required. I defined a class of BN structures, ASCNs, that ensures the in-

dependence between parents. I also presented a greedy algorithm for learning ASCNs from

data by maximizing a BD score. The third explanation method, DECC, generalizes EDAPD

by including a conditioning term which makes it applicable to general BN structures. I pre-

sented case studies in which each explanation method is applied to real clinical data. The

case studies demonstrated that clinically meaningful relationships can be uncovered by the

explanation methods.

The findings demonstrated in the case studies provide support for the ‘insightful ex-

planation’ hypothesis. The explanations appear to reveal meaningful relationships between

variables. A more thorough evaluation of the hypothesis is an open problem for future work.
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One would need to establish a standard for comparison against alternatives; currently, no

such standard exists. Once such a standard is established, a large-scale evaluation of the

methods on a wide range of datasets could be performed.

In addition to developing CPR, EDAPD, and DECC, which statically generate an ex-

planation of the marginal difference in the distribution of a variable, I created an interactive

prototype that allows the user to navigate through an explanation. The main advantage of

such an interface is that instead of selecting explanation elements based on pre-determined

clinical significance tests, it gives the user flexible access to all elements of the explanation.

In this manner a researcher has the freedom to guide the explanation and focus on elements

found to be insightful in accounting for differences between the two groups.

The prototype developed is a proof-of concept interactive interface to difference explana-

tion. I discussed the strengths and weaknesses of the prototype, and specified some features

that would need to be added for developing an interface that a clinical researcher or data ana-

lyst could use in their data analysis workflow. An interactive interface can also aid in further

addressing the ‘insightful explanation’ hypothesis. A thorough user study could evaluate the

success of the explanation methods at conveying the information about the differences in the

data to the users, providing a natural metric for insightfulness.

Together, the difference recovery hypothesis and the ‘insightful explanation’ hypothesis

address the general hypothesis that this thesis set out to explore: One can systematically

produce explanations that are more revealing and insightful than those obtained from tradi-

tional methods by approaching the problem of comparing a pair of groups as that of identifying

significant local distributional differences between two multivariate distribution estimates for

those groups and explaining their effects on variables of interest. This dissertation developed

and explored methods for the systematic generation of explanations that describe differences

of interest between a pair of groups in terms of local distributional differences. There was

not a thorough evaluation of how insightful such explanations are, but case studies demon-

strated that important relationships in the data are revealed in the explanation. It is an

open problem to explore further the degree and frequency to which explanations generated

in this manner are insightful.
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8.2 FUTURE WORK

There were various technical challenges encountered throughout the development of the

methods in this dissertation that can be addressed in many ways. In this section I discuss

alternate or extended approaches to these challenges, which are beyond the scope of this

dissertation work.

8.2.1 Confounding relationships in the uni-model approach

Section 4.2.2 discusses that the uni-model approach to difference detection is designed to

detect statistical differences that may or may not be causal differences.

There is a clear path to the development of explanation faculties that explain whether

differences are causal or not. One could learn a network without constraints on the placement

of Z, compute the network changes that are required to produce a network with an orphaned

Z but statistically equivalent relationships, and when generating an explanation using the

new network, trace newly found relationships back to their counterparts in the unconstrained

network. An explanation produced in this manner would make explicit whether a given

relationship is causal (assuming causal sufficiency), or merely statistical due to the fixing of

Z within each group or whether it is present as-is in the joint data.

8.2.2 Extension of the multi-model approach to many groups

This dissertation has focused on comparing a pair of data groups. While the pairwise com-

parison of groups of data is widely applicable, there are many situations in which there are

more than two groups to compare. Often in such situation the comparison of interest is

how one group (e.g. D1) differs from the average of the rest of the groups (e.g. D2, . . .DD).

In such cases the current approach is still applicable since the comparison of interest is the

binary comparison of D1 to
⋃D
d=2Dd.

In some cases, however a truly multi-way comparison is of interest, and the methods

presented in this dissertation can extend to such cases. The posterior odds that we obtain for

pairs of groups in the multi-model approach can be obtained for a larger collection of groups
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by a straightforward extension: Suppose that we are given D groups of data, D1, . . . ,DD.

We can similarly learn D+ 1 MAP models,M1, . . . ,MD from each group individually, and

M∪ from the complete data.

For a variable Xi, we extend the notation to indicate its parent sets inM1, . . . ,MD, and

M∪ by Π
(1)
i , . . . ,Π

(D)
i , and Π

(∪)
i , respectively. Let

∩
Πi=

(⋂D
d=1 Π

(d)
i

)
∩ Π

(∪)
i and enumerate

the configuration of this subset of parents as η = 1, . . . , Hi. Then define Tiη, Ti, T as before,

and Siη, Si, S as:

Siη =
D∏
d=1

 ∏
j∈Jdi (η)

BDij(Md,Dd)

 (8.1)

Si =

Hi∏
η=1

Siη (8.2)

S =
n∏
i=1

Si. (8.3)

Using these extensions to the notation, posterior odds for the presence of a difference can be

obtained using (4.24) and (4.23).

This comparison, however, only compares the hypotheses of whether a parameter group

Θiη is different across all groups, or shared among all groups. There are other combinations

that may be considered: a set of parameters may be shared among one subset of groups,

while another subset of groups shares a different set of parameter. A more comprehensive

approach would account for all such possibilities. That means that, for example, if we have

three groups of data D1, D2, and D3 to compare, we would have to learn six MAP models:

M1,M2,M3,M1∪2,M1∪3,M2,∪3 and M∪. We would then have to make a comparison for

each parameter group Θiη between

EΘiη |M1P (D1|Θiη,M1)× EΘiη |M2P (D2|Θiη,M2)× EΘiη |M3P (D3|Θiη,M3) , (8.4)

EΘiη |M1∪2P (D1,D2|Θiη,M1∪2)× EΘiη |M3P (D3|Θiη,M3) , (8.5)

EΘiη |M1∪3P (D1,D3|Θiη,M1∪3)× EΘiη |M2P (D2|Θiη,M2) , (8.6)

EΘiη |M1P (D1|Θiη,M1)× EΘiη |M2∪3P (D2,D3|Θiη,M2∪3) , (8.7)

and EΘiη |M∪P (D1,D2,D3|Θiη,M∪) . (8.8)

128



Searching over all such possibilities is a nontrivial problem, since the number of possible

groupings is exponential in the number of elements to group.

8.2.3 Extending to data with differing variable sets

In this dissertation the focus was on comparing two groups of data that share a single

variable set X where all variables are observed. In some cases we might have differing

variable sets X(1) and X(2) available for D1 and D2, respectively. Such situations may arise

when information in each group is collected differently, or different information is collected

about the two groups. This may happen, for example, when comparing two hospitals that

collect different information about their patients.

When the variable sets X(1) and X(2) overlap, the multi-model approach may point to a

method of comparing these groups. We can construct the MAP models M1, M2, and M∪

over the variable sets X(1), X(2) and X(1)∩X(2) respectively, a posterior odds for a difference

in the parameters defining each variable in X(1) ∩X(2) can be obtained, and the synthesis

process of Section 4.3.4 can be used to build a BN modeling both sets of data. This approach

has the effect of assuming that the variables that are not observed in one group have the

same conditional distribution in the other group; in some situations this assumption may

be a reasonable approach. The result is a model of a joint distribution over X(1) ∪ X(2),

which we may use to generate explanations. In addition to explanation of differences, this

constructed model has potential uses as a method for imputation.

8.2.4 Learning multi-model ASCN

An ASCN is a type of BN structure that EDAPD requires for operation. The ASCN learning

algorithm I presented in Section 6.2.1 follows the uni-model approach. There is no direct

analogy for multi-model learning: we cannot apply the multi-model approach to ASCNs,

since, even ifM1,M2 andM∪ are SCNs, there is no guarantee that model synthesis would

not create loops in the network structure. It would be interesting to develop a method that

allows the learning of an ASCN structure, while having the ability of the multi-model to

compare variables that have one set of parents in one group and another in the other.
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A possible way to approach this is to perform the model learning jointly. Recall that to

synthesize a single BN model from M1, M2, and M∪, we consider each variable Xi indi-

vidually, and determine the parents of Xi based on the posterior odds of seeing a difference

in Xi generally, as well as the posterior odds that each parameter group Θiη differs. All we

need to know about the structure ofM1,M2, andM∪ to compute these odds is the parent

set of Xi in each model. A greedy learner that iterates through the variables in topological

order and locks in the parent sets for X1, . . . , Xi−1 before searching for the set of parents

for Xi (analogously to the greedy ASCN learner in Section 6.2.1) could constrain the sets

of possible parents for Xi in each of M1, M2, and M∪ in such a way as to ensure that the

parent set resulting from the synthesis of the models would not violate the ASCN structure

constraint.

Other approaches to multi-model ASCN learning are also possible, as are additional

approaches to uni-model ASCN learning not explored in this dissertation.

8.2.5 Other approaches to explanation with multi-models

The approach I present of constructing a single BN from the three compared networks in the

the multi-model approach allows for running the explanation procedure on the multi-model.

It may be possible to combine the explanation method and the multi-model approach in

other ways, that do not require the consolidation of the networks into one.

8.2.6 Using context-specific independence in the explanation process

Section 4.3.4 discusses that the multi-net approach to synthesizing a single BN which captures

the differences between the distributions created context-specific independence (CSI) in those

nodes where statistically significant parameter differences were detected. Boutilier et al.

(1996) discuss methods for efficient representation of CSIs as well as methods for exploiting

CSIs to increase the efficiency of probabilistic inference. In the current dissertation work,

however, the BN built from the multi-model approach does not take advantage of these

methods, and is treated as a BN with full conditional probability tables throughout the

explanation process.
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Another way to conceptualize the synthesized BN is to see the joint states of the parents

of Xi that are common toM1,M2, andM∪ as turning arcs from the other parents on and

off. Ideas for BN-like models where the structure itself may be dependent on the value of

a variable in the model have been explored before. Bayesian multinets discussed by Geiger

and Heckerman (1996) and similarity networks discussed by Heckerman (1990) are examples

of such models.

It would be interesting to explore whether any of the specific methods developed for

CSIs, multinets, and similarity networks can be applied to the improve on the methods for

explanation of differences developed here.

8.2.7 Learning context-specific independence

Because of the potential computational and modeling advantages of local CSI in BNs, the

learning of CSI from data has been a topic of research interest (Chickering et al., 1997;

Friedman and Goldszmidt, 1998).

The network synthesis method in Section 4.3.4 builds nodes with context-specific in-

dependence: the partial parent assignment associated with η determines which remaining

parents of the variable will be used in determining the conditional distribution of Xi. Ad-

ditionally, note that the synthesis takes three models M1, M2, and M∪ over the set of

variables X and produces a single model over the set of variables X ∪ {Z}.
This suggests that we may view the synthesis method as a process for incorporating a

new variable into a model. A logical extension is to consider whether we could add multiple

variables in this manner. Indeed, let the notation Synthesized(M1,M2,M∪, Z) represent

the synthesized single BN containing Z created from M1, M2, and M∪, which do not

contain Z. Let us suppose that the variables X = (X1, . . . , Xn) are binary, where xi1 and

xi2 are the possible values of each Xi. Let the notation (D|xik) denote the set of records in

D for which Xi = xik. Consider the following algorithm:

function Learn(D, (Xi, . . . , Xn)) . Learn a BN over Xi, . . . , Xn.

if i = n then

return a model with a single node Xn
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else

M1 ← Learn((D|xi1), (Xi−1, . . . , Xn))

M2 ← Learn((D|xi2), (Xi−1, . . . , Xn))

M∪ ← Learn(D, (Xi−1, . . . , Xn)))

return Synthesized(M1,M2,M∪, Xi)

Calling Learn(D,X) would then learn a full BN where each node has the sort of context-

specific independence with respect to all of its parents that each node in the synthesized BN

from Section 4.3.4 has with respect to Z.

It is easy to see that the näıve implementation above has time complexity that is ex-

ponential in the number of variables. It is possible that with the aid of techniques such

as branching and bounding the search space or dynamic programming, a more efficient ap-

proach can be developed. Additionally, it may be possible to develop heuristic methods

that use the same basic network construction principles, but improve on the computational

complexity by sacrificing optimality.

8.2.8 Extending explanation to complex inferences

The explanation methods presented here have all focused on providing an account of how

a difference in the marginal distribution of a single variable is derived from the elemental

differences in the model. It is possible, however, that a researcher may be interested in a

more complex query, the most general form of which is an account of why P (a|e, Z = 1)

differs from P (a|e, Z = 2) according to the model. In principle, DECC may be applied to

such a query. For a = (a1, . . . , am), we have the decomposition

P (a|e, z) =
m∏
t=1

P (at|a1, . . . , at−1, e, z) (8.9)

in which each term on the right-hand side can act as input to DECC.

Potential future research would include the evaluation of how well such explanations

perform and the development of extensions for addressing any challenges that arise in such

application.
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8.2.9 Explanation using a factor tree

Section 6.3 discusses the problem that loops in the undirected BN structure introduce. Loops

may create dependence between parents, which would create inconsistency in an explanation

generated by EDAPD, since EDAPD explains the contribution of the joint ratio term as a

product of the conditional ratio term and a product of marginal parent terms. I discussed

the idea of using cut-set conditioning to address the problem and pointed out the challenges

with this approach. Finally, a different approach where conditioning terms are carried with

the explanation is used in DECC.

Another approach to tackling the loop problem in BN inference is the conversion of the

BN into a factor tree. Lauritzen and Spiegelhalter (1988) present a method whereby a BN is

converted into a tree of factors, where each of the factors is a group of original BN variables.

The multivariate distribution represented by the BN can instead be represented as a product

of value assignments of those factors. The advantage of switching to this representation is

that inference can then be performed by straightforward belief propagation over the factor

tree.

It may be possible to apply the same approach to explanation: instead of traversing a

BN structure, the traversal happens over factors, and differences are explained in terms of

numerical contributions from differences in the values of the factors across groups. Such an

approach would ensure a consistent explanation of differences throughout explanation steps

and have a direct correspondence to the inference process. Moreover, such an explanation

would be EDAPD-like because the factor tree is singly-connected. The disadvantage of this

approach is that directionality is absent in the factor tree, and the explanation would not

be necessarily directed “upwards” in the ancestry, potentially making proper interpretation

challenging. Another disadvantage is that factors can potentially represent the joint proba-

bilities of many variables, making the contribution of any one factor difficult to interpret.

8.2.10 Adding statistical significance testing during explanation

Throughout the explanation generation processes, we test marginal probabilities and joint

probabilities for clinical significance. In contrast to this, only the conditional distributions—
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the BN parameters—are tested for statistical significance. When a difference or ratio of

probabilities is reported to the user, when it is comparing the conditional probability of a

variable given its parents, it corresponds to a BN parameter and is therefore known to have

been tested for statistical significance. When the difference or ratio is of another sort, such

as that of joint probabilities, or marginal probabilities that have parents other than Z in the

explanation BN, the probabilities used are a result of inference. While the inference is based

on a BN in which all parameters have been tested for statistical significance, the difference

or ratio of the probability of interest has only been directly tested for clinical significance.

Hence, it may be of interest to add tests of statistical significance throughout the ex-

planation process. For example, for each probability, difference of probabilities, and ratio of

probabilities that is reported we can estimate a Bayesian credibility interval by sampling net-

work parameters from their posterior Dirichlet distributions, the same process used in the

probabilistic clinical significance tests of Section 4.4. Another, complementary approach,

is to check the probabilities obtained from inferences against the proportions obtained by

checking the corresponding counts in the data. This has the added benefit of checking how

well the model fits the data, particularly in regard to the query of interest.

Some questions to explore in this line of research are: how commonly are statistically

insignificant marginal and joint probabilities found clinically significant by the existing tests,

how much explanations are improved by various statistical significance filters, whether such

filters can help understand an explanation better, and whether the presence and statement

of statistical significance tests affect a user’s trust in the explanation provided.

8.2.11 Model averaging and ensemble models

In this dissertation, a model that codifies the differences between the distributions of the

two groups is used to compute the probabilities used throughout the explanation process;

namely, the network containing Z produced either directly from learning in the uni-model

approach, or by construction based on MAP models in the multi-model approach. Section 1.2

briefly discusses the potential pitfalls of committing to a single model. If the model does not

accurately represent the data, the probabilities that result from inference may not match

134



the proportions of counts in the data, and in the extreme worst case this mismatch may

lead to incorrect conclusions. Moreover, committing to a single model that dictates a single

explanation leaves the user blind to potential alternative explanations that may be as good

or almost as good at explaining the differences observed.

The idea of adding statistical testing at the explanation level in Section 8.2.10 is one

approach to mitigating the risk of drawing incorrect conclusions from an inaccurate model.

An approach that can improve the Bayesian statistical significance tests (and credibility

intervals) is that of averaging not only over model parameters, but also over model structures.

There are multiple ways to define the space of structures to average. A simple averaging

can be done over the two possibilities of including or excluding Z as a parent of each node;

more general averaging can be done by averaging over all possible parent sets of each node

subject to a node ordering; or the most general averaging can be done by averaging over all

structures and orderings. The main challenge in the latter two approaches is to find a way to

handle (both in terms of computational complexity and explanation clarity) the large space

over which to average. One approach is to approximate the average by only averaging over

a few of the most probable structures.

Model averaging can be used not only as a tool for statistical significance testing, but also

as an alternative means to guide the explanation. This is one way to move away from the

commitment to a single model, since the averaging reflects conclusions based on all models

in the space over which we average. It is possible to develop an explanation that would give

the user a distribution over possible parents and present distributions of contributions to a

difference in each step of the explanation. A challenge in developing such a method is to

define what quantities should be presented at each step and how. An observed difference

is the result of potentially different divisions of contributions between different terms for

models with different parent sets. To average all these contributions and associate them

with a distribution over possible parent sets, a novel approach to appropriately aggregating

and presenting the information would need to be developed.

Another means of moving away from the commitment to a single model is to look at an

ensemble of best models. Instead of averaging the information from many models to obtain

a single answer and a single explanation, we would look at the ensemble as a collection
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of alternatives. These models and their corresponding explanations can be ranked by how

well they fit the data, by the complexity or size of the explanation. We could also search

for patterns and relationships that are common to many of the models and explanations,

and report those (since we expect a pattern that reliably reappears in various models to

indicate a strong relationship in the data). Considering an ensemble of models also has the

advantage of allowing us to present a user with multiple alternative explanations. Having

multiple explanations can be very useful: it can guide further investigation and help present

a more complete picture of the space of likely possibilities.

8.3 CONCLUDING REMARKS

This dissertation presented a novel approach to comparing groups of data points. The

process of comparing groups of data was divided into multiple stages: The learning of MAP

models for the data in each group, the identification of statistical differences between model

parameters, the construction of a single model that captures those differences, and finally, the

explanation of inferences of differences in marginal distributions in the form of an account of

clinically significant contributions of elemental model differences to the marginal difference.

A general framework for the process was presented, and while this dissertation focuses on

BNs over multinomial variables, the framework provides guidelines for its application to a

broad range of model types.

The methods for detecting statistical differences in parameters, particularly the multi-

model approach which computes the posterior odds of parameter differences at multiple

levels, has a combination of properties that to my knowledge no other statistical meth-

ods for comparing groups have. It measures whether the group distributions differ overall,

clearly expresses how differences at the variable and parameter-group level contribute to

the measure, and requires no prior knowledge for application. This motivates further de-

velopment of statistical methods that can fulfill the same combination of properties. The

method presented for constructing a single BN model based on the multi-model approach

builds a network with local context-specific independence, which can also be viewed as a
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model where the graphical structure is dependent on the values of variables, in a manner

akin to Bayesian multinets and similarity networks. The BN synthesis method suggests a

novel approach to learning BNs with context-specific independence from data, and may have

similar implications for learning Bayesian multinets or similarity networks from data.

This dissertation presented methods for the explanation of differences captured by a BN.

The methods focused on explaining the differences in a marginal probability distribution

that was computed from the model by inference. Case studies on clinical data demonstrated

that the methods revealed medically sensible accounts of the differences of the differences

observed in the data. There are many possible aspects of the explanation methods that can

be extended in interesting and useful ways, such as the explicit representation of causal and

non-causal relationships in the models, explicit statistical testing at various stages of the

explanation procedure, and the leveraging of context-specific independencies in the model.

Other interesting avenues for future work are the extension of explanation to explaining

differences in more general inferences, and the application of explanation-by-traversal to

models other than BNs, for example, to the factor tree of a BN.

A prototype analysis tool that implements the detection and explanation methods was

developed and implemented. The discussion of the design considerations throughout the

development process, as well as the strengths and weaknesses of the prototype and of desired

features for future development, are intended to help future researchers in developing similar

data analysis tools for performing comparisons between groups.

In addition to the direct contribution of the research presented of providing methods

for detecting and explaining differences between groups of data, the research opens many

avenues for future work, both in the form of extensions of and improvements on the method,

and in the form of discoveries relevant to related topics.
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