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The output characteristic of a photovoltaic (PV) module varies as the environmental conditions 

of the module’s operation change. Changes in operating temperature and incident sunlight 

dynamically change the maximum power available from a PV module, as well as the output 

voltage. The output voltage of the PV generating system must be regulated, in order to ensure 

proper power quality for connection to an electrical load, building electric power system, or the 

electric grid.  

PV modules are typically connected in series strings and parallel arrays to create PV 

generating systems. Non-uniform environmental conditions create voltage mismatches 

throughout PV generating systems. A mismatch between module voltages can severely reduce 

the amount of power available from the overall generating system. These system losses can be 

eliminated by regulating the output voltage of each module. 

This dissertation proposes a power electronic device that fulfills two objectives: 

extracting maximum power from the single PV module, and regulating the output voltage to 

ensure a constant value. This dissertation reviews the analytical design of such a system, and 

validates this design in simulation, utilizing MATLAB/SIMULINK and ANSYS Simplorer. 

DIRECT DC SOLAR INTEGRATION 

 

Emmanuel J. Taylor, Ph.D. 

University of Pittsburgh, 2014

 



 v 

TABLE OF CONTENTS 

1.0 INTRODUCTION ........................................................................................................ 1 

2.0 BACKGROUND AND SIGNIFICANCE .................................................................. 3 

2.1 APPLICATION CONTEXT: DATACENTERS .............................................. 7 

3.0 PROBLEM STATEMENT ......................................................................................... 9 

3.1 REGULATION OF THE INTERCONNECTION VOLTAGE ...................... 9 

3.2 OPTIMIZING POWER EXTRACTION ........................................................ 11 

3.3 PARTIAL SHADING ........................................................................................ 14 

3.4 MISMATCH LOSSES ...................................................................................... 18 

3.5 SUMMARY OF PV INTERCONNECTION ISSUES ................................... 18 

4.0 DESIGN CONSIDERATIONS ................................................................................. 20 

4.1 POWER ELECTRONIC CONVERTER TOPOLOGIES ............................ 20 

5.0 ANALYTICAL FRAMEWORK .............................................................................. 22 

5.1 AVERAGED CIRCUIT ANALYSIS ............................................................... 24 

5.2 EQUIVALENT CIRCUIT MODEL ................................................................ 28 

5.3 CANONICAL FORM REPRESENTATION ................................................. 32 

5.4 SUB-SYSTEM OPEN LOOP TRANSFER FUNCTIONS ............................ 35 

5.4.1 Summary of Boost Stage Equations ............................................................. 37 

5.4.2 Summary of Regulator Stage Equations ..................................................... 38 



 vi 

5.4.3 Summary of Output Stage Equations .......................................................... 39 

5.5 CASCADED CONVERTER STABILITY ...................................................... 40 

6.0 SYSTEM DESIGN ..................................................................................................... 42 

6.1 SYSTEM OPERATING POINT ...................................................................... 42 

6.2 FILTER SIZING ............................................................................................... 43 

6.3 OPEN LOOP TRANSFER FUNCTIONS ....................................................... 44 

6.3.1 Pole Values: .................................................................................................... 44 

6.3.2 Impedance Ratios: ......................................................................................... 47 

6.4 CONTROLLER DESIGN................................................................................. 48 

7.0 SOFTWARE VALIDATION .................................................................................... 50 

7.1 PV MODULE MODELING ............................................................................. 51 

7.1.1 Continuous Curve Modeling......................................................................... 51 

7.1.2 Piecewise-Linear PV Module Simulation Model ........................................ 55 

7.1.3 PV Model Choice and MPPT Strategy ........................................................ 59 

7.1.4 Load Variation During the Simulation ........................................................ 60 

7.2 ANALYSIS UNDER FULL ILLUMINATION .............................................. 60 

7.3 ANALYSIS UNDER PARTIAL SHADING ................................................... 63 

8.0 SUMMARY AND EXTENSIONS ............................................................................ 65 

APPENDIX A .............................................................................................................................. 67 

APPENDIX B .............................................................................................................................. 69 

BIBLIOGRAPHY ....................................................................................................................... 72 



 vii 

 LIST OF TABLES 

 

Table 1: PV Hardware Costs [4] ..................................................................................................... 5 

Table 2: Data Center Projects to Date [Unpublished] .................................................................... 7 

Table 3: Component Values During Canonical Form Transformations ....................................... 33 

Table 4: Canonical Circuit Parameters ......................................................................................... 34 

Table 5: Transfer Function Parameters ......................................................................................... 36 

Table 6: Steady-State Circuit Values ............................................................................................ 42 

Table 7: Reactive Component Sizes ............................................................................................. 44 

Table 8: PV Module Parameters ................................................................................................... 56 



 viii 

LIST OF FIGURES 

Figure 1: DOE Sunshot Goals [3] ................................................................................................... 3 

Figure 2: Global PV Module and Installed Price Trends [4] .......................................................... 4 

Figure 3: Installed Cost by Sector [4] ............................................................................................. 5 

Figure 4: Equipment for Solar Installation ..................................................................................... 6 

Figure 5: Concept for DC Solar Integration [8] .............................................................................. 8 

Figure 6: Module I-V Characteristic as a Function of Temperature [16] ..................................... 10 

Figure 7: Module I-V Characteristic as a Function of Insolation [16] ......................................... 11 

Figure 8: Module P-V Characteristic as a Function of Insolation [17]......................................... 12 

Figure 9: Module P-V Characteristic as a Function of Temperature [17] .................................... 12 

Figure 10: Illustration of MPPT .................................................................................................... 13 

Figure 11: MPPT Hardware Implementation [16] ........................................................................ 14 

Figure 12: NREL Partial Shading Study System Diagram [18] ................................................... 15 

Figure 13: Effect of Cell Shading on Power Production Reduction [18] ..................................... 16 

Figure 14: P-V Characteristic Under Partial Shading With Bypass Diodes [19] ......................... 17 

Figure 15: System Circuit Representation .................................................................................... 22 

Figure 16: System With Lumped PV Model ................................................................................ 23 

Figure 17: System With Equivalent Source Model ...................................................................... 23 

Figure 18: Converter Switching States ......................................................................................... 24 



 ix 

Figure 19: Karnaugh Map Showing Component Value Dependency .......................................... 27 

Figure 20: Equivalent AC Circuit ................................................................................................. 31 

Figure 21: Converter Canonical Form [27] .................................................................................. 32 

Figure 22: Circuit in Cascaded Canonical Form ........................................................................... 32 

Figure 23: Circuit Transformation into Canonical Form .............................................................. 34 

Figure 24: Cascaded Converter Impedances [29] ......................................................................... 40 

Figure 25: Boost Converter: Line Voltage to Output Voltage Transfer Function ........................ 45 

Figure 26: Boost Converter: Control to Output Voltage Transfer Function ................................. 45 

Figure 27: Cuk Converter: Line Voltage to Output Voltage Transfer Function........................... 46 

Figure 28: Cuk Converter: Control to Output Voltage Transfer Function ................................... 46 

Figure 29: Simplorer Circuit Diagram .......................................................................................... 50 

Figure 30: Simulink Model for PV Module .................................................................................. 52 

Figure 31: Module I-V Curve Modeled in Simulink .................................................................... 53 

Figure 32: Module P-V Curve Modeled in Simulink ................................................................... 53 

Figure 33: PV Module With Boost Converter in Simulink .......................................................... 54 

Figure 34: PV Model With Two Sub-Modules and Bypass Diodes ............................................. 56 

Figure 35: Modeled I-V Characteristic ......................................................................................... 57 

Figure 36: P-V Characteristic Under Full Illumination ................................................................ 58 

Figure 37: P-V Characteristic Under Partial Shading Conditions ................................................ 58 

Figure 38: Power Provided by the PV Module ............................................................................. 62 

Figure 39: Circuit Voltages During Simulation ............................................................................ 62 

Figure 40: Module Power Output Under Partial Shading Conditions .......................................... 63 

Figure 41: Circuit Voltages Under Partial Shading Conditions.................................................... 64 



 1 

1.0  INTRODUCTION 

This dissertation describes the design of a distributed power electronics device used for 

integrating photovoltaic (PV) generation into DC electrical systems. The operation of this 

distributed converter is analogous to the functions performed by a micro-inverter, for integrating 

PV generation into an AC electrical system.  

A micro-inverter eliminates the need to connect PV modules in series and parallel to 

create strings and arrays. Instead, all modules can be connected in parallel at the point of 

common coupling with the AC network [1]. The micro-inverter performs maximum power point 

tracking (MPPT) on each individual module, and regulates the output voltage from each module 

[1]. These two features act to minimize the effects of partial shading on the system performance, 

and to eliminate the mismatch losses in the system [1]. The use of micro-inverters results in PV 

generating systems with higher utilization, and lower system losses. 

The benefits of micro-inverters have been realized, through this work, for systems 

utilizing DC electrical distribution infrastructure. The designed power electronics system, 

henceforth referred to as a micro-converter, performs the tasks of MPPT and voltage regulation, 

producing a DC output, as opposed to an AC sine wave. 

This design is accomplished through the cascaded connection of two power electronic 

sub-systems: a boost converter that performs MPPT, and a Cuk converter that performs voltage 
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regulation. Cascaded converter systems often suffer from interactions which can lead to system 

instability. In this work, the stability of the cascaded system is considered 

The system is designed and analyzed analytically through the application of power 

electronics theory, AC equivalent circuit modeling, and linear control theory. The analytical 

model of the circuit predicts stable operation over the expected operating range of the system. 

The stability of the system is validated through simulation, using the MATLAB/SIMULINK 

software environment, in combination with Ansys/Simplorer. Simulation results show that the 

physical circuit behaves in accordance with the predictions made by the mathematical model.  
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2.0  BACKGROUND AND SIGNIFICANCE 

The United States Department of Energy (DOE) Sunshot program was formulated with the goal 

of making unsubsidized solar generation economically competitive in the country’s electrical 

supply [2]. When the program was first formulated, the installed cost of utility-scale photovoltaic 

(PV) generation was $8/W. In order to become cost competitive, the price of solar must drop to 

$1/W installed [3]. Figure 1 demonstrates the cost reductions required in order for this to be 

achieved. 

 

 

Figure 1: DOE Sunshot Goals [3] 
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Since 2008, the market price for solar panels has declined significantly, from a starting 

price near $4/W, to an end price near $1.00/W at the end of 2012 [4]. Figure 2 shows the overall 

trend.   

 

 

Figure 2: Global PV Module and Installed Price Trends [4] 

  

The drop in panel prices has been so significant as to cause a shift in the cost reduction 

efforts related to PV technology. Figure 3 shows the installed cost for solar, in every market 

sector, during the last quarter of 2011, and again during the last quarter of 2012. As shown, at the 

end of 2012, the majority of the costs for PV installations was attributed to the balance-of-system 

costs, due to the sharp reduction in the price of panels. 
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Figure 3: Installed Cost by Sector [4] 

 

Table 1 shows a breakdown of the hardware costs for a PV installation in 2011. At that 

time, the PV panels accounted for roughly 2/3 of the installed hardware costs [4]. Holding all 

other hardware costs constant, and adjusting for the market price of PV panels ($0.7/W as of 

October 2013), PV panels account for only 39% of the system hardware costs [5].  

 

Table 1: PV Hardware Costs [4] 
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In this dissertation, I present a method for further reducing the hardware costs associated 

with PV installations. Figure 4 shows the hardware involved in a residential or commercial PV 

installation. Comparing the ‘Other electrical’ category from Table 1 to the picture in Figure 4, 

one can see that the remaining hardware consists primarily of protection equipment for the AC 

and DC stages of the system (the mounting equipment is not shown). By eliminating the AC 

stage of the PV integration process, roughly half of the ‘Other electrical’ and wiring costs 

become obsolete. Furthermore, the cost of the inverter disappears as well. Integrating PV 

generation directly into a DC distribution network immediately eliminates nearly 40% of the 

hardware costs associated with PV integration.  

 

Combiner 
Box

DC

AC

DC 
Disconnect

+ - + - + -

+ - + - + -

Solar 
Inverter

AC 
Disconnect

AC 
Junction 

Box

MPPT

Voltage 
Regulation Building 

System

 

Figure 4: Equipment for Solar Installation 

 

In place of the obsolesced equipment, I recommend utilizing the introduced micro-

converter. Additional protection equipment, like a DC circuit breaker, may be recommended or 

mandated by electrical code. The combined cost of the DC equipment still presents a significant 

savings potential, compared to the equipment used in the standard AC system. 
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2.1 APPLICATION CONTEXT: DATACENTERS 

Datacenters are physical facilities that house information technology (IT) equipment [6]. The 

main function of the datacenter is to provide reliable power, security, cooling, and network 

connectivity to computer equipment [7]. Compared to the electrical loads which have 

traditionally dominated the electric grid, IT equipment is more sensitive to fluctuations in the 

electric power supply [8]. Given the sensitivity of the equipment, datacenter facilities have strict 

requirements for their design and operation [6]. Many studies have shown the merits of using DC 

distribution within data centers, to improve reliability, efficiency, capital costs, and the 

utilization of space [8][9][10].  

Since 2006, almost 30 DC data center projects have been built worldwide, ranging in size 

from 10 kW to 1 MW. Table 1 summarizes the known projects that have been built to date. 

 

Table 2: Data Center Projects to Date [Unpublished] 

 

SYSTEM / PROJECT POWER RATING(kW) Voltage (V) Year LOCATION
1 Gnesta Municipality 9 350/380 2006 Gnesta, Sweden
2 Elicom 4.5 350 2006 Toreboda, Sweden
3 NTT NEDO Project 20 380 2007 Sendai, Japan
4 NTT University Microgrid 50 380 2007 Aichi, Japan
5 France Telecom 31.5 350/380 2007 Lannion, France
6 Ericsson 4.5 2008 Stockholm, Sweden
7 Soderhamm Teknikpark 6 350/380 2008 Soderhamn, Sweden
8 NTT Data Corp. 100 380 2009 Tokyo, Japan
9 NTT Lab. 100 380 2009 Tokyo, Japan

10 NTT Facilities 100 380 2009 Tokyo, Japan
11 Compare Test Lab 4.5 2009 Hammaro Karlstad, Sweden
12 Korea Telecom 300/380 2009 Seoul, Korea
13 UCSD 20 380 2009 San Diego, California
14 Syracuse University 150 380 2009 Syracuse, New York
15 Swedish Energy Agency 18 350 2010 Eskilstuna, Sweden
16 Compare Test Lab 500 350 2010 Hammaro Karlstad, Sweden
17 Duke Energy 30 380 2010 Charlotte, North Carolina
18 NTT East 100 380 2010 Tokyo, Japan
19 NTT 100 380 2011 Atsuigy City, Japan
20 Intel 400
21 Validus 550
22 China Telecom 240/380
23 China Mobile 380
24 ABB - Green 1000 380 2012 Zurich, Switzerland

DC DATACENTER PROJECT LISTING
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 DC data centers provide a context for direct DC solar integration. This idea has been 

proposed by others in the past [11]. Figure 5 shows one suggested architecture.  

 

 

Figure 5: Concept for DC Solar Integration [8] 

  

Although data centers are highlighted as an application area in this dissertation, there are 

many more possibilities. The 380V DC standard is rapidly emerging as a relevant architecture 

for telecom sites, for independent micro grids, and for military applications [12][13][14].  

 



 9 

3.0  PROBLEM STATEMENT 

This dissertation addresses the problem of effectively integrating PV generation into a DC 

electrical distribution network. Before determining an appropriate technical approach, the 

objectives of PV integration must be described. This section describes the two main objectives of 

PV integration, namely, maintaining a constant interconnection voltage, and extracting the 

maximum amount of available power from the installed PV modules. This section also describes 

some of the difficulties involved in performing these tasks, which include the effects of partial 

shading, and mismatch losses. This section describes the tasks which need to be accomplished, 

and the difficulties which need to be eliminated, in order to effectively integrate PV generation 

into a DC electrical network. 

3.1 REGULATION OF THE INTERCONNECTION VOLTAGE 

In mature electrical networks, like the US electric grid, power quality is well defined [15]. 

Electricity suppliers are expected to supply a constant voltage supply to their customers (in most 

cases, a constant RMS value for an AC supply), with minimal fluctuations in the supply voltage 

magnitude. The output voltage of a PV module can change, given the environmental conditions 

of the module’s operation. The output voltage must be regulated to ensure proper power quality 

at the point of interconnection with the larger electrical system. 
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Figure 6 and Figure 7 show the way in which a PV module I-V characteristic changes 

with environmental conditions. When the operating temperature, or solar insolation level, of the 

module vary, the open circuit voltage and short circuit current change in magnitude. Despite 

these changes, the interconnection voltage (output voltage of the aggregated PV generation 

system) must remain constant. 

 

 

Figure 6: Module I-V Characteristic as a Function of Temperature [16] 
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Figure 7: Module I-V Characteristic as a Function of Insolation [16] 

3.2 OPTIMIZING POWER EXTRACTION 

As environmental conditions change, and the I-V characteristic of the PV module changes, the 

power available from the module changes as well. Figure 8 and Figure 9 show the way in which 

the P-V characteristic of a PV module changes with temperature and insolation, respectively. 
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Figure 8: Module P-V Characteristic as a Function of Insolation [17] 

 

 

Figure 9: Module P-V Characteristic as a Function of Temperature [17] 

 

Note that these power characteristics are parabolic in nature. Given specific environmental 

conditions (operating temperature and insolation), there is always one unique operating point 
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(module output voltage and current) that produces the most power from the PV module. This 

unique point is referred to as the maximum power point (MPP). 

 When a constant impedance load is connected to a PV module, or array of modules, the 

system assumes a particular operating point, dictated by the intersection of the constant 

impedance load line, and the system I-V characteristic. An example I-V characteristic with a load 

line is shown in Figure 10. 

 

 

Figure 10: Illustration of MPPT 

 

In Figure 10, the vertical black line represents the voltage corresponding to the maximum power 

point of the array. The blue circles represent the natural operating points of the system. At 

various levels of solar intensity, the system voltage and current will change. If the system 

originally operates at 1200 W/sq-m of light intensity, the load will operate at the MPP of the PV 

module. If the light intensity suddenly drops to 600 W/sq-m (do to a passing cloud, for instance), 
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the system voltage will drop to near 15 V, and the current to 5 amps. The large red X indicates 

that the module has the potential to produce 4 amps at 25 V, 25% more power than the 

production at its natural operating point. In practice, PV modules and loads are buffered by 

feedback-controlled power electronic systems that maintain the system operating at the MPP. 

This active regulation at the MPP is referred to as maximum power point tracking (MPPT). 

Figure 11 demonstrates the concept of a MPPT system. 

 

 

Figure 11: MPPT Hardware Implementation [16] 

3.3 PARTIAL SHADING 

Maximum power point tracking becomes more complicated under partial shading conditions. 

Partial shading describes a time period in which a portion of a PV module experiences 

diminished illumination, compared to other sections of the same module. This can be the result 

of clouds slowly passing by, or nearby obstructions such as trees and buildings. Regardless of the 
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cause, partial shading can have profound effects on the amount of power produced from a PV 

generation system. 

A 2013 study by the National Renewable Energy Laboratory (NREL) sought to quantify 

the effects of partial shading of PV system power production [18]. The example system used by 

NREL is shown in Figure 12 below. 

 

 

Figure 12: NREL Partial Shading Study System Diagram [18] 

 

The study showed that shading a panel by as little as twenty percent was enough to reduce the 

power output of the  module by 40 percent [18]. Figure 13 shows the shading versus power 

reduction characteristic. 
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Figure 13: Effect of Cell Shading on Power Production Reduction [18] 

 

Solar panel manufacturers are familiar with this and have included bypass diodes in the PV 

modules that they sell. Typically, commercial modules contain up to 72 solar cells, wired in 

series [18]. Panel manufacturers tend to group these cells in sub-modules consisting of 12 – 24 

cells, paralleled by a bypass diode [18]. Commercial modules may contain one, two, or three 

bypass diodes [18].  

Bypass diodes effectively partition a PV module into distinct, separate sub-modules [19]. 

Under partial shading conditions, one sub-module can continue to produce power, while the 

other module is bypassed through the paralleling diode [19]. This changes the nature of the P-V 

characteristic, while the module is partially shaded. Figure 14 below shows the effect that partial 

shading has on a module with two bypass diodes. In effect, two P-V characteristics are produced, 

corresponding to the two sub-modules. 
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Figure 14: P-V Characteristic Under Partial Shading With Bypass Diodes [19] 

 

Under partial shading conditions, the P-V characteristic changes shape, resulting in a local and 

global maximum power point. Measurements have shown the global MPP to be on the order of 

13% percent higher than the local MPP [19]. However, the voltage reduction required in order to 

operate at the MPP tends to be on the order of 45% percent [19]. Many MPPT algorithms result 

in operation at the local MPP, instead of the global [19].  



 18 

3.4 MISMATCH LOSSES 

PV modules are connected in series (strings) in order to raise the output voltage of the system to 

the level required for interconnection (either with the building EPS, in the case of a DC power 

system; or with the PV inverter, in the case of an AC power system). PV strings are then 

connected in parallel to form arrays, in order to increase the total current injected into the system, 

and thus, the produced power. The total power injected into the system is the product of the 

voltage and current at the point of interconnection. 

Referring to the diagram in Figure 12, one can see that the voltage of each string must be 

identical at the point of interconnection. Consider the case that one panel in the first string 

becomes partially shaded. The voltage output of the panel will be reduced, and the total voltage 

of string one will reduce by the same amount. Since the string voltages must match, string two 

will be forced to change its operating point, until a voltage equilibrium is found between the two 

strings [19]. At the new equilibrium point, all panels have adjusted their operating points, 

deviating from their respective MPPs, all because of the partial shading on one panel [19]. It has 

been shown that shading one panel in row one by 33 % can reduce the power output of row two 

by 3 to 9 %, due to the mismatch in string voltages [19]. 

3.5 SUMMARY OF PV INTERCONNECTION ISSUES 

In real PV systems, issues like partial shading and mismatch losses are interrelated. In the case of 

a single panel becoming partially shaded, the drop in voltage can cause mismatch losses between 

parallel strings. So there is a balance between the power and voltage of a single module, and the 
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power and voltage of a large array. It is not always straightforward to determine the optimal 

operating point. Therefore, the goal of effective interconnection can become complicated, as the 

optimal operating voltage, and the ability to extract maximum power from the system, can be set 

at odds with each other. 

 The effects of partial shading can be minimized by performing MPPT on each individual 

module. In this way, the reduced illumination of one panel does not produce a reduction in the 

power produced by another module. Each individual panel can be regulated to extract its 

maximum power, independent of the operation of the other panels in the system. 

 Furthermore, the effects of voltage mismatch can be eliminated by ensuring that the 

output voltage of each module is regulated to a constant value, regardless of the environmental 

conditions. If all modules always operate at a constant and equal voltage, mismatch becomes 

impossible.  
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4.0  DESIGN CONSIDERATIONS 

A number of design considerations must be balanced, in creating a solution for DC solar 

integration. Most notably, suitable power electronic circuit topologies must be chose, and 

appropriate controls must be designed. This section will discuss the chosen topologies, while the 

control strategies are addressed in later chapters. 

4.1 POWER ELECTRONIC CONVERTER TOPOLOGIES 

MPPT algorithms can be implemented in a variety of power electronic circuit topologies. Buck, 

boost, and buck-boost topologies have all been demonstrated [20]. However, it has been shown 

that the boost converter operates at the highest efficiency, and with a large input voltage range 

[21] Other advantages include a simple, single switch architecture, which reduces component 

count, leading to more cost effective hardware implementation. The boost converter has been 

demonstrated as a logical choice for implementing MPPT algorithms in power electronic 

systems. 

MPPT algorithms regulate the terminal voltage of the PV module. Given an input voltage 

to the boost stage, and a varying duty cycle, the output voltage of the boost converter will 

change, as the boost converter performs the task of regulation. The voltage swings on the output 

of the boost stage must be regulated for proper interconnection into a DC system. Depending on 



 21 

the module output voltage, the magnitude of the voltage swings introduced by the MPPT 

algorithm, and the interconnection voltage, the regulator may need to increase, or decrease the 

output voltage. Therefore, it is beneficial to perform the voltage regulation task with a power 

electronics converter that can either buck or boost its input voltage. Candidate converters include 

the buck-boost converter, Cuk converter, and SEPIC converter, amongst others. 

 To perform the task of regulation, a Cuk converter was chosen. The Cuk converter has a 

buck-boost voltage conversion ratio, but with an inverted output polarity. This inverted output 

ensures easy integration into -48 V DC telecom systems. For systems requiring a positive output 

voltage, the wiring is reversed when connecting the PV modules to the boost converter. Cuk 

converters have been utilized for PV integration in a number of scenarios previously 

[22][23][24][25][26]. 
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5.0  ANALYTICAL FRAMEWORK 

The cascaded converter system is shown in Figure 15 below. The PV module is represented by 

an equivalent circuit network. The shown system models a 72 cell panel, configured with three 

bypass diodes. An isolation capacitor separates the PV module from the converter system. The 

buck converter and Cuk converter are cascaded, followed by an equivalent load resistance. This 

chapter details the design of the converter sub-systems.  

 

+

+

++

Equivalent Solar Cell Isolation Capacitor Boost Converter Cuk Converter

 

Figure 15: System Circuit Representation 

 

Figure 16 shows a modified version of the circuit, wherein the PV module is lumped into one 

equivalent cell.  
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+

+

++

Lumped Solar Cell

 

Figure 16: System With Lumped PV Model 

 

The 72 cell model is necessary when quantifying the effects of partial shading on the system’s 

operation. However, for steady-state modeling, an equivalent behavioral model offers sufficient 

detail. Figure 17 shows an equivalent model which replaces the input current source, bypass 

diode, and isolation capacitor with a voltage source. Under steady-state conditions, the input 

terminal of the system can be accurately represented using an equivalent voltage source, whose 

voltage is equivalent to the terminal voltage of the PV module. This equivalent circuit model is 

used in developing the analytical framework for the converter’s operation. 

 

+

+

+
+

-

Equivalent Source Model

 

Figure 17: System With Equivalent Source Model 
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5.1 AVERAGED CIRCUIT ANALYSIS 

This section presents a DC steady-state analysis of the converter system. The system has two 

independent switching devices, resulting in four switching states. Figure 18 shows the equivalent 

circuit diagrams for each of the four converter states. 

 

+

+

+
+

-

Switch One: Open – Switch Two: Open

+ + +
+

-

Switch One: Open – Switch Two: Closed

+

+

+
+

-

Switch One: Closed – Switch Two: Open

+ + +
+

-

Switch One: Closed – Switch Two: Closed

 

Figure 18: Converter Switching States 
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Based on the given diagrams, the following equations can be written for the dynamic 

components in the circuit during each switching state. Note that this system has three inductors 

and three capacitors. The description of the converter is  segmented into three stages: the boost 

stage (containing the boost inductor and boost capacitor), the regulator stage (containing the 

regulator inductor and regulator capacitor), and the output stage (containing the output filter 

inductor and output filter capacitor). The dynamic equations are shown below: 

 

State One - Switch One Off, Switch Two Off: 

 

𝑉𝐿𝐵 = (𝑑1′ ∗ 𝑑2′ ) ∗ �𝑉𝑔 − 𝑉𝐶𝐵� (1) 

𝑉𝐿𝑅 = (𝑑1′ ∗ 𝑑2′ ) ∗ (𝑉𝐶𝐵 − 𝑉𝐶𝑅) (2) 

𝑉𝐿𝑂 = (𝑑1′ ∗ 𝑑2′ ) ∗ (𝑉𝑜) (3) 

𝐼𝐶𝐵 = (𝑑1′ ∗ 𝑑2′ ) ∗ (𝑖𝐿𝐵 − 𝑖𝐿𝑅) (4) 

𝐼𝐶𝑅 = (𝑑1′ ∗ 𝑑2′ ) ∗ (𝑖𝐿𝑅) (5) 

𝐼𝐶𝑂 = (𝑑1′ ∗ 𝑑2′ ) ∗ �𝑖𝐿𝑂 −
𝑉𝑜
𝑅
� 

(6) 

 

State Two - Switch One Off, Switch Two On: 

𝑉𝐿𝐵 = (𝑑1′ ∗ 𝑑2) ∗ �𝑉𝑔 − 𝑉𝐶𝐵� (7) 

𝑉𝐿𝑅 = (𝑑1′ ∗ 𝑑2) ∗ (𝑉𝐶𝐵) (8) 

𝑉𝐿𝐵 = (𝑑1′ ∗ 𝑑2) ∗ �𝑉𝑔 − 𝑉𝐶𝐵� (9) 

𝐼𝐶𝐵 = (𝑑1′ ∗ 𝑑2) ∗ (𝑖𝐿𝐵 − 𝑖𝐿𝑅) (10) 

𝐼𝐶𝑅 = (𝑑1′ ∗ 𝑑2) ∗ (−𝑖𝐿𝑂) (11) 
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𝐼𝐶𝑂 = (𝑑1′ ∗ 𝑑2) ∗ �𝑖𝐿𝑂 −
𝑉𝑜
𝑅
� 

(12) 

 

State Three - Switch One On, Switch Two Off: 

𝑉𝐿𝐵 = (𝑑1 ∗ 𝑑2′ ) ∗ �𝑉𝑔� (13) 

𝑉𝐿𝑅 = (𝑑1 ∗ 𝑑2′ ) ∗ (𝑉𝐶𝐵 − 𝑉𝐶𝑅) (14) 

𝑉𝐿𝑂 = (𝑑1 ∗ 𝑑2′ ) ∗ (𝑉𝑜) (15) 

𝐼𝐶𝐵 = (𝑑1 ∗ 𝑑2′ ) ∗ (−𝑖𝐿𝑅) (16) 

𝐼𝐶𝑅 = (𝑑1 ∗ 𝑑2′ ) ∗ (𝑖𝐿𝑅) (17) 

𝐼𝐶𝑂 = (𝑑1 ∗ 𝑑2′ ) ∗ �𝑖𝐿𝑂 −
𝑉𝑜
𝑅
� 

(18) 

 

State Four - Switch One On, Switch Two On: 

𝑉𝐿𝐵 = (𝑑1 ∗ 𝑑2) ∗ �𝑉𝑔� (19) 

𝑉𝐿𝑅 = (𝑑1 ∗ 𝑑2) ∗ (𝑉𝐶𝐵) (20) 

𝑉𝐿𝑂 = (𝑑1 ∗ 𝑑2) ∗ (𝑉𝐶𝑅 + 𝑉𝑜) (21) 

𝐼𝐶𝐵 = (𝑑1 ∗ 𝑑2) ∗ (−𝑖𝐿𝑅) (22) 

𝐼𝐶𝑅 = (𝑑1 ∗ 𝑑2) ∗ (−𝑖𝐿𝑂) (23) 

𝐼𝐶𝑂 = (𝑑1 ∗ 𝑑2) ∗ �𝑖𝐿𝑂 −
𝑉𝑜
𝑅
� 

(24) 

 

In the equations above, the value of each component is represented as a function of the duty 

cycles of both switches. However, the value of each component is only dependent on the duty 

cycle of one switch. Figure 19 demonstrates the relationship between the switching states, and 

the value of each component. 
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Figure 19: Karnaugh Map Showing Component Value Dependency 

 

From the figure, it can be deduced that the average value of the regulator capacitor current can be 

expressed as: 

 

𝐼𝐶𝑅 = 𝑑2′ 𝑖𝐿𝑅 + 𝑑2𝑖𝐿𝑂 (25) 

 

 

Using the same method, the average values of each element, over one switching period, can be 

defined. It is assumed that the two switches have the same switching period, although their duty 

cycles are independent. The equations are shown below. 

 

〈𝑉𝐿𝐵〉 = 〈𝑑1′ 〉 ∗ �〈𝑉𝑔〉 − 〈𝑉𝐶𝐵〉� + 〈𝑑1〉 ∗ 〈𝑉𝑔〉 (26) 

〈𝑉𝐿𝑅〉 = 〈𝑑2′ 〉 ∗ (〈𝑉𝐶𝐵〉 − 〈𝑉𝐶𝑅〉) + 〈𝑑2〉 ∗ 〈𝑉𝐶𝐵〉 (27) 

〈𝑉𝐿𝑂〉 = 〈𝑑2′ 〉 ∗ 〈𝑉𝑜〉 + 〈𝑑2〉 ∗ (〈𝑉𝐶𝑅〉 + 〈𝑉𝑜〉) (28) 

〈𝐼𝐶𝐵〉 = 〈𝑑1′ 〉 ∗ (〈𝐼𝐿𝐵〉 − 〈𝐼𝐿𝑅〉) + 〈𝑑1〉 ∗ −〈𝐼𝐿𝑅〉 (29) 

〈𝐼𝐶𝑅〉 = 〈𝑑2′ 〉 ∗ 〈𝐼𝐿𝑅〉 + 〈𝑑2〉 ∗ −〈𝐼𝐿𝑂〉 (30) 

〈𝐼𝐶𝑂〉 = �〈𝐼𝐿𝑂〉 −
〈𝑉𝑜〉
𝑅
� 

(31) 

 

0 1 S2
0
1
S1
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5.2 EQUIVALENT CIRCUIT MODEL 

An AC equivalent circuit model can be derived by perturbing the system and then linearizing 

around an operating point. The average circuit values are replaced by their steady-state (DC) 

values, plus a small signal AC variation. Small signal implies that the magnitude of the AC 

variations are smaller than the DC quantities for each variable. The following substitutions are 

made to the DC circuit equations from the prior section: 

 

〈𝐼𝐿𝐵〉 = (𝐼𝐿𝐵 + 𝚤̂𝐿𝐵) (32) 

〈𝐼𝐿𝑅〉 = (𝐼𝐿𝑅 + 𝚤̂𝐿𝑅) (33) 

〈𝐼𝐿𝑂〉 = (𝐼𝐿𝑂 + 𝚤̂𝐿𝑂) (34) 

〈𝑉𝐶𝐵〉 = (𝑉𝐶𝐵 + 𝑣�𝐶𝐵) (35) 

〈𝑉𝐶𝑅〉 = (𝑉𝐶𝑅 + 𝑣�𝐶𝑅) (35) 

〈𝑉𝐶𝑂〉 = (𝑉𝐶𝑂 + 𝑣�𝐶𝑂) (36) 

〈𝑉𝐿𝐵〉 = (𝑉𝐿𝐵 + 𝑣�𝐿𝐵) = 𝐿 ∗ [
𝑑
𝑑𝑡

(𝐼𝐿𝐵) +
𝑑
𝑑𝑡

(𝚤̂𝐿𝐵)] 
(37) 

〈𝑉𝐿𝑅〉 = (𝑉𝐿𝑅 + 𝑣�𝐿𝑅) = 𝐿 ∗ [
𝑑
𝑑𝑡

(𝐼𝐿𝑅) +
𝑑
𝑑𝑡

(𝚤̂𝐿𝑅)] 
(38) 

〈𝑉𝐿𝑂〉 = (𝑉𝐿𝑂 + 𝑣�𝐿𝑂) = 𝐿 ∗ [
𝑑
𝑑𝑡

(𝐼𝐿𝑂) +
𝑑
𝑑𝑡

(𝚤̂𝐿𝑂)] 
(39) 

〈𝐼𝐶𝐵〉 = (𝐼𝐶𝐵 + 𝚤̂𝐶𝐵) = 𝐶 ∗ [
𝑑
𝑑𝑡

(𝑉𝐶𝐵) +
𝑑
𝑑𝑡

(𝑣�𝐶𝐵)] 
(40) 

〈𝐼𝐶𝑅〉 = (𝐼𝐶𝑅 + 𝚤̂𝐶𝑅) = 𝐶 ∗ [
𝑑
𝑑𝑡

(𝑉𝐶𝑅) +
𝑑
𝑑𝑡

(𝑣�𝐶𝑅)] 
(41) 

〈𝐼𝐶𝑂〉 = (𝐼𝐶𝑂 + 𝚤̂𝐶𝑂) = 𝐶 ∗ [
𝑑
𝑑𝑡

(𝑉𝐶𝑂) +
𝑑
𝑑𝑡

(𝑣�𝐶𝑂)] 
(42) 
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〈𝑉𝑔〉 = (𝑉𝑔 + 𝑣�𝑔) (43) 

〈𝑉𝑜〉 = (𝑉𝑜 + 𝑣�𝑜) (44) 

〈𝑑1〉 = (𝐷1 + �̂�1) (45) 

〈𝑑1′ 〉 = (𝐷1
′ − �̂�1) (46) 

〈𝑑2〉 = (𝐷2 + �̂�2) (47) 

〈𝑑2′ 〉 = (𝐷2
′ − �̂�2) (48) 

 

Perturbation of the system results in the following circuit equations: 

𝐿 ∗ [
𝑑
𝑑𝑡

(𝐼𝐿𝐵) +
𝑑
𝑑𝑡

(𝚤̂𝐿𝐵)] = (𝐷1
′ − �̂�1) ∗ �(𝑉𝑔 + 𝑣�𝑔) − (𝑉𝐶𝐵 + 𝑣�𝐶𝐵)� + (𝐷1 + �̂�1) ∗ (𝑉𝑔 + 𝑣�𝑔) (49) 

𝐿 ∗ [
𝑑
𝑑𝑡

(𝐼𝐿𝑅) +
𝑑
𝑑𝑡

(𝚤�̂�𝑅)] = (𝐷2
′ − �̂�2) ∗ (𝑉𝐶𝐵 + 𝑣�𝐶𝐵) − (𝑉𝐶𝑅 + 𝑣�𝐶𝑅) + (𝐷2 + �̂�2) ∗ (𝑉𝐶𝐵 + 𝑣�𝐶𝐵) (50) 

𝐿 ∗ [
𝑑
𝑑𝑡

(𝐼𝐿𝑂) +
𝑑
𝑑𝑡

(𝚤̂𝐿𝑂)] = (𝐷2
′ − �̂�2) ∗ (𝑉𝑜 + 𝑣�𝑜) + (𝐷2 + �̂�2) ∗ (𝑉𝐶𝑅 + 𝑣�𝐶𝑅) + (𝑉𝑜 + 𝑣�𝑜) (51) 

𝐶 ∗ [
𝑑
𝑑𝑡

(𝑉𝐶𝐵) +
𝑑
𝑑𝑡

(𝑣�𝐶𝐵)] = (𝐷1
′ − �̂�1) ∗ (𝐼𝐿𝐵 + 𝚤�̂�𝐵) − (𝐼𝐿𝑅 + 𝚤̂𝐿𝑅) + (𝐷1 + �̂�1) ∗ −(𝐼𝐿𝑅 + 𝚤�̂�𝑅) (52) 

𝐶 ∗ [
𝑑
𝑑𝑡

(𝑉𝐶𝑅) +
𝑑
𝑑𝑡

(𝑣�𝐶𝑅)] = (𝐷2
′ − �̂�2) ∗ (𝐼𝐿𝑅 + 𝚤�̂�𝑅) + (𝐷2 + �̂�2) ∗ −(𝐼𝐿𝑂 + 𝚤̂𝐿𝑂) (53) 

𝐶 ∗ [
𝑑
𝑑𝑡

(𝑉𝐶𝑂) +
𝑑
𝑑𝑡

(𝑣�𝐶𝑂)] = �(𝐼𝐿𝑂 + 𝚤�̂�𝑂) −
(𝑉𝑜 + 𝑣�𝑜)

𝑅
� 

(54) 

 

By factoring, grouping the DC terms, grouping the 1st order AC terms, and eliminating the higher 

order terms, insights into the circuit behavior can be found.  The following equations describe the 

DC circuit behavior. 

 

𝐿
𝑑
𝑑𝑡

(𝐼𝐿𝐵) = 𝑉𝑔 − 𝐷1′ ∗ 𝑉𝐶𝐵 
(55) 
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𝐿
𝑑
𝑑𝑡

(𝐼𝐿𝑅) = 𝑉𝐶𝐵 − 𝐷2′ ∗ 𝑉𝐶𝑅 
(56) 

𝐿
𝑑
𝑑𝑡

(𝐼𝐿𝑂) = 𝑉𝑜 + 𝐷2 ∗ 𝑉𝐶𝑅 
(57) 

𝐶 ∗
𝑑
𝑑𝑡

(𝑉𝐶𝐵) = 𝐷1′ ∗ 𝐼𝐿𝐵 − 𝐼𝐿𝑅 
(58) 

𝐶 ∗
𝑑
𝑑𝑡

(𝑉𝐶𝑅) = 𝐷2′ ∗ 𝐼𝐿𝑅 − 𝐷2 ∗ 𝐼𝐿𝑂 
(59) 

𝐶 ∗
𝑑
𝑑𝑡

(𝑉𝐶𝑂) = 𝐼𝐿𝑂 −
𝑉𝑜
𝑅

 
(60) 

 

Note that the left-hand side of the prior equations all equal zero in the steady-state. From these 

equations, the following DC conversion ratios can be deduced: 

 

𝑉𝐶𝐵
𝑉𝑔

=
1
𝐷1′

 
(61) 

𝑉𝐶𝑅
𝑉𝐶𝐵

=
1
𝐷2′

 
(62) 

𝑉𝑂
𝑉𝐶𝑅

= −𝐷2 
(63) 

 

The following equations represent the AC behavior of the circuit. 

 

𝐿
𝑑
𝑑𝑡

(𝚤̂𝐿𝐵) = 𝑣�𝑔 + 𝑉𝐶𝐵 ∗ �̂�1 − 𝐷1′ ∗ 𝑣�𝐶𝐵 
(64) 

𝐿
𝑑
𝑑𝑡

(𝚤̂𝐿𝑅) = 𝑣�𝐶𝐵 + 𝑉𝐶𝑅 ∗ �̂�2 − 𝐷2′ ∗ 𝑣�𝐶𝑅 
(65) 
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𝐿
𝑑
𝑑𝑡

(𝚤̂𝐿𝑂) = 𝑣�𝑜 + 𝑉𝐶𝑅 ∗ �̂�2 + 𝐷2 ∗ 𝑣�𝐶𝑅 
(66) 

𝐶
𝑑
𝑑𝑡

(𝑣�𝐶𝐵) = −𝚤̂𝐿𝑅 − 𝐼𝐿𝐵 ∗ �̂�1 + 𝐷1′ ∗ 𝚤̂𝐿𝐵 
(67) 

𝐶
𝑑
𝑑𝑡

(𝑣�𝐶𝑅) = −𝐷2 ∗ 𝚤̂𝐿𝑂 − 𝐼𝐿𝑅 ∗ �̂�2 − 𝐼𝐿𝑂 ∗ �̂�2 + 𝐷2′ ∗ 𝚤̂𝐿𝑅 
(68) 

𝐶 ∗
𝑑
𝑑𝑡

(𝑣�𝐶𝑂) = 𝚤̂𝐿𝑂 −
𝑣�𝑜
𝑅

 
(69) 

 

Each of these equations represents either a voltage loop containing an inductor, or a current node 

containing a capacitor. From these six equations, the following behavioral circuit model can be 

constructed: 

 

+
+

-

+ +

+- +- +-

 

Figure 20: Equivalent AC Circuit 

 

From inspection, the following current relationships can be deduced: 

𝐼𝐿𝐵 =
𝑉𝐶𝐵

𝐷1′ ∗ 𝑅𝐵𝑖𝑛
 

(67) 

𝐼𝐿𝑅 =
𝑉𝐶𝑅
𝑅𝐵𝑖𝑛

 
(68) 

𝐼𝐿𝑂 =
𝑉𝐶𝑂
𝑅𝐿𝑜𝑎𝑑

 
(69) 
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5.3 CANONICAL FORM REPRESENTATION 

The AC equivalent circuit model contains three DC transformers, and three sets of inductors and 

capacitors. The circuit can be re-arranged to form three cascaded circuits, each in the canonical 

form shown in Figure 22.  

 

 

Figure 21: Converter Canonical Form [27] 

 

Again, these three sections of the circuit are referred to as the boost stage, the regulator stage, 

and the output stage. The equivalent circuit, shown in cascaded canonical form, is shown in 

Figure 22 below. 

 

+
+

-

+ +

+- +- +-

 

Figure 22: Circuit in Cascaded Canonical Form 
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The following chart shows the values of all of the circuit components, and the way that each 

component value changes when transforming the circuit into canonical form. Figure 23 shows 

the circuit arrangement during the five steps in the transformation process. 

 

Table 3: Component Values During Canonical Form Transformations 

 
1 2 3 4 5 

Vg Vg Vg Vg Vg Vg 

LB 𝐿𝐵 
𝐿𝐵
𝑁12

 
𝐿𝐵
𝑁12

 
𝐿𝐵
𝑁12

 
𝐿𝐵
𝑁12

 

VEB 
 

𝑉𝐶𝐵 ∗ �̂�1 
 

𝑉𝐶𝐵 ∗ �̂�1 𝑉𝐶𝐵 ∗ �̂�1 𝑉𝐶𝐵 ∗ �̂�1 
�̂�1 ∗ (𝑉𝐶𝐵 + 𝑠 ∗ 𝐼𝐿𝐵 ∗

𝐿𝐵
𝑁1

) 

VEBW - - 

𝑠 ∗ 𝐼𝐿𝐵
∗ �̂�1 ∗

𝐿𝐵
𝑁1

2 

𝑠 ∗ 𝐼𝐿𝐵 ∗ �̂�1
∗
𝐿𝐵
𝑁1

 
- 

CB 𝐶𝐵 𝐶𝐵 𝐶𝐵 𝐶𝐵 𝐶𝐵 

IJB 𝐼𝐿𝐵 ∗ �̂�1 𝐼𝐿𝐵 ∗ �̂�1 𝐼𝐿𝐵 ∗ �̂�1 
𝐼𝐿𝐵 ∗ 𝑑�1
𝑁1

 
𝐼𝐿𝐵 ∗ 𝑑�1
𝑁1

 

LR 𝐿𝑅 𝐿𝑅 𝐿𝑅 𝐿𝑅 𝐿𝑅 

VER 𝑉𝐶𝑅 ∗ �̂�2 𝑉𝐶𝑅 ∗ �̂�2 
𝑉𝐶𝑅 ∗ �̂�2 𝑉𝐶𝑅 ∗ �̂�2 

�̂�2 ∗ (𝑉𝐶𝑅 + 𝑠 ∗ 𝐿𝑅 ∗ 𝐼𝐿𝑅 ∗ 𝑁2) 

VERW - - 
𝑠 ∗ 𝐿𝑅
∗ 𝐼𝐿𝑅 ∗ �̂�2 

𝑠 ∗ 𝐿𝑅 ∗ 𝐼𝐿𝑅
∗ �̂�2 ∗ 𝑁2 - 

CR 𝐶𝑅 𝐶𝑅 𝐶𝑅 𝐶𝑅 𝐶𝑅 

IJR 𝐼𝐿𝑅 ∗ �̂�2 𝐼𝐿𝑅 ∗ �̂�2 𝐼𝐿𝑅 ∗ �̂�2 
𝐼𝐿𝑅 ∗ 𝑑�2
𝑁2

 
𝐼𝐿𝑅 ∗ 𝑑�2
𝑁2

 

LO 𝐿𝑂 𝐿𝑂 𝐿𝑂 𝐿𝑂 𝐿𝑂 

VEO 

𝑉𝐶𝑅 ∗ �̂�2 𝑁3 ∗ 𝑉𝐶𝑅

∗ �̂�2 𝑁3 ∗ 𝑉𝐶𝑅
∗ �̂�2 

𝑁3 ∗ 𝑉𝐶𝑅
∗ �̂�2 𝑁3 ∗ 𝑉𝐶𝑅 ∗ �̂�2 

CO 𝐶𝑂 𝐶𝑂 𝐶𝑂 𝐶𝑂 𝐶𝑂 
IJO 𝐼𝐿𝑂 ∗ �̂�2 𝐼𝐿𝑂 ∗ �̂�2 𝐼𝐿𝑂 ∗ �̂�2 𝐼𝐿𝑂 ∗ �̂�2 𝐼𝐿𝑂 ∗ �̂�2 
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+
+

-

+ +

+
+

-

+ +

+
+

-

+ +

+- +- +-

+- +- +-

+- +- +- +- +-

+
+

-

+ +

+
+

-

+ +

+- +- +- +-

+-

+- +- +-

 

Figure 23: Circuit Transformation into Canonical Form 

 

When each stage of the cascaded system is written in canonical form, and when the appropriate 

DC current equations are substituted, the canonical circuit parameters can be expressed as: 

 

Table 4: Canonical Circuit Parameters 

Sub-System N M(D) Le e(s) j 

Boost 𝐷1′ :1 
1
𝐷1′

 
𝐿𝐵

𝐷1
′ 2

 �̂�1 ∗ 𝑉𝐶𝐵 ∗ (1 + 𝑠 ∗
𝐿𝐵

𝐷1′
2 ∗ 𝑅𝐵𝑖𝑛

) �̂�1 ∗
𝐼𝐿𝐵
𝐷1′

 

Regulator 𝐷2′ :1 
1
𝐷2′

 
𝐿𝑅 

�̂�2 ∗ 𝑉𝐶𝑅 ∗ (1 + 𝑠 ∗
𝐿𝑅 ∗ 𝐷2′

𝑅𝐵𝑖𝑛
) �̂�2 ∗

𝐼𝐿𝑅
𝐷2′

 

Output 1:−𝐷2 −𝐷2 𝐿𝑂 
−�̂�2 ∗ (

𝑉𝐶𝑅
𝐷2

) �̂�2 ∗ 𝐼𝐿𝑂 
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5.4 SUB-SYSTEM OPEN LOOP TRANSFER FUNCTIONS 

As described in [27], the line-to-output transfer function and control-to-output transfer function 

for the canonical form circuit can be expressed as: 

 

𝐺𝑉𝐺 = 𝑀(𝐷) ∗ 𝐻𝑒(𝑠) (70) 

𝐺𝑉𝐷 =
𝑒(𝑠)
�̂�(𝑠)

∗ 𝐺𝑉𝐺  
(71) 

 

As described in [28],  𝐻𝑒(𝑠) for each sub-section is of the form: 

 

𝐻𝑒(𝑠) =
1

1 + 𝑠 ∗ 𝐿𝑒𝑅 + 𝑠2 ∗ 𝐿𝑒𝐶
 

(72) 

 

For each converter, the transfer functions take the following forms: 

 

𝐺𝑉𝐺 = 𝐺𝑔0 ∗
1

(1 + 𝑠
𝜔1

)(1 + 𝑠
𝜔2

)
 

(72) 

𝐺𝑉𝐷 = 𝐺𝑑0 ∗
(1 + 𝑠

𝜔𝑧
)

(1 + 𝑠
𝜔1

)(1 + 𝑠
𝜔2

)
 

(73) 

 

The parameters for each converter subsystem are listed in Table 5, where 𝑅𝐵𝑖𝑛 refers to the input 

impedance seen across the terminals of the boost stage output capacitor, and 𝑅𝑅𝑖𝑛 refers to the 



 36 

input impedance seen across the terminals of the regulator stage output capacitor. 𝑅𝐿𝑜𝑎𝑑 refers to 

the equivalent resistance of the load attached to the cascaded system. 

 

Table 5: Transfer Function Parameters 

Sub-
System 𝐺𝑔0 𝐺𝑑0 𝜔1 𝜔2 𝜔𝑧 𝜔0 Q 

Boost 
1
𝐷1′

 
𝑉𝐶𝐵
𝐷1′

 
𝐷1′

2 ∗ 𝑅𝐵𝑖𝑛
𝐿𝐵

 
1

𝑅𝐵𝑖𝑛 ∗ 𝐶𝐵
 

𝐷1′
2 ∗ 𝑅𝐵𝑖𝑛
𝐿𝐵

 
𝐷1
′

�𝐿𝐵 ∗ 𝐶𝐵
 𝐷1′ ∗ 𝑅𝐵𝑖𝑛�

𝐶𝐵
𝐿𝐵

 

Regulator 
1
𝐷2′

 
𝑉𝐶𝑅
𝐷2′

 
𝑅𝑅𝑖𝑛
𝐿𝑅

 
1

𝑅𝑅𝑖𝑛 ∗ 𝐶𝑅
 

𝑅𝑅𝑖𝑛
𝐿𝑅 ∗ 𝐷2′

 
1

�𝐿𝑅 ∗ 𝐶𝑅
 𝑅𝑅𝑖𝑛�

𝐶𝑅
𝐿𝑅

 

Output −𝐷2 −𝑉𝐶𝑅 
𝑅𝐿𝑜𝑎𝑑
𝐿𝑂

 
1

𝑅𝐿𝑜𝑎𝑑 ∗ 𝐶𝑂
 ∞ 

1
�𝐿𝑂 ∗ 𝐶𝑂

 𝑅𝐿𝑜𝑎𝑑�
𝐶𝑂
𝐿𝑂

 

 

Note that every steady-state duty cycle, resistance, capacitance, and inductance represents a 

positive, real-valued quantity. Therefore, the roots of each transfer function lie in the left-hand 

side plane, and each open-loop converter sub-system is shown to have stable operation. 

 As derived in [28], for each converter sub-system, the output impedance takes the form: 

 

𝑍𝑜 =
1

1
𝑅 + 1

𝑠𝐿𝑒
+ 𝑠𝐶

 
(74) 

 

For the boost stage, 𝑅 = 𝑅𝐵𝑖𝑛, and 𝐶 = 𝐶𝐵. For the regulator stage, 𝑅 = 𝑅𝑅𝑖𝑛, and 𝐶 = 𝐶𝑅. For 

the output stage, 𝑅 = 𝑅𝐿𝑜𝑎𝑑, and 𝐶 = 𝐶𝑜. The values for𝐿𝑒 are identical to those found in Table 4. 

The 𝑅𝐵𝑖𝑛 and 𝑅𝑅𝑖𝑛 values represent the effective input impedances from the subsequent sub-

systems. These values are defined as follows. 
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𝑅𝑅𝑖𝑛 = 𝑍𝑖𝑛,𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑡𝑎𝑔𝑒 = 𝑠𝐿𝑜 +
1

1
𝑅𝐿𝑜𝑎𝑑

+ 𝑠𝐶𝑜
 

(75) 

𝑅𝐵𝑖𝑛 = 𝑍𝑖𝑛,𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟 𝑠𝑡𝑎𝑔𝑒 = 𝑠𝐿𝑅 +
1

1
𝑅𝑅𝑖𝑛

+ 𝑠𝐶𝑅
 

(76) 

 

5.4.1 Summary of Boost Stage Equations 

The following is a summary of the equations related to the boost stage of the converter system. 

 

𝐻𝑒𝐵(𝑠) =
1

1 + 𝑠 ∗ 𝐿𝐵
𝐷1′

2 ∗ 𝑅𝐿𝑜𝑎𝑑𝐵𝑜𝑜𝑠𝑡
+ 𝑠2 ∗ 𝐿𝐵

𝐷1′
2 ∗ 𝐶𝐵

 
(77) 

𝐺𝑉𝐺𝐵 =
1
𝐷1′

∗
1

1 + 𝑠 ∗ 𝐿𝐵
𝐷1′

2 ∗ 𝑅𝐿𝑜𝑎𝑑𝐵𝑜𝑜𝑠𝑡
+ 𝑠2 ∗ 𝐿𝐵

𝐷1′
2 ∗ 𝐶𝐵

 
(78) 

𝐺𝑉𝐷𝐵 = 𝑉𝐶𝐵 ∗ (1 + 𝑠 ∗
𝐿𝐵

𝐷1′
2 ∗ 𝑅𝐵𝑖𝑛

) ∗
1
𝐷1′

∗
1

1 + 𝑠 ∗ 𝐿𝐵
𝐷1′

2 ∗ 𝑅𝐿𝑜𝑎𝑑𝐵𝑜𝑜𝑠𝑡
+ 𝑠2 ∗ 𝐿𝐵

𝐷1′
2 ∗ 𝐶𝐵

 
(79) 

 

 

 

 

The poles are given as: 

𝜔1 ≈
𝑅
𝐿

=
𝑅𝐿𝑜𝑎𝑑𝐵𝑜𝑜𝑠𝑡

𝐿𝑒𝐵
=
𝐷1′

2 ∗ 𝑅𝐿𝑜𝑎𝑑𝐵𝑜𝑜𝑠𝑡
𝐿𝐵

 
(80) 
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𝜔2 ≈
1
𝑅𝐶

=
1

𝑅𝐿𝑜𝑎𝑑𝐵𝑜𝑜𝑠𝑡 ∗ 𝐶𝐵
 

(81) 

𝜔𝑧 ≈
1
𝑅𝐶

=
𝐷1′

2 ∗ 𝑅𝐿𝑜𝑎𝑑𝐵𝑜𝑜𝑠𝑡
𝐿𝐵

 
(82) 

 

5.4.2 Summary of Regulator Stage Equations 

The following is a summary of the equations related to the regulator stage of the converter 

system. 

𝐻𝑒𝐵(𝑠) =
1

1 + 𝑠 ∗ 𝐿𝐵
𝐷1′

2 ∗ 𝑅𝐿𝑜𝑎𝑑𝐵𝑜𝑜𝑠𝑡
+ 𝑠2 ∗ 𝐿𝐵

𝐷1′
2 ∗ 𝐶𝐵

 
(83) 

𝐺𝑉𝐺𝑅 =
1
𝐷2′

∗
1

1 + 𝑠 ∗ 𝐿𝑅
𝑅𝐿𝑜𝑎𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟

+ 𝑠2 ∗ 𝐿𝑅 ∗ 𝐶𝑅
 

(84) 

𝐺𝑉𝐷𝑅 = 𝑉𝐶𝑅 ∗ (1 + 𝑠 ∗
𝐿𝑅 ∗ 𝐷2′

𝑅𝐵𝑖𝑛
) ∗

1
𝐷2′

∗
1

1 + 𝑠 ∗ 𝐿𝑅
𝑅𝐿𝑜𝑎𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟

+ 𝑠2 ∗ 𝐿𝑅 ∗ 𝐶𝑅
 

(85) 

The poles are given as: 

𝜔1 ≈
𝑅
𝐿

=
𝑅𝐿𝑜𝑎𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟

𝐿𝑅
 

(86) 

𝜔2 ≈
1
𝑅𝐶

=
1

𝑅𝐿𝑜𝑎𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟 ∗ 𝐶𝑅
 

(87) 

𝜔𝑧 ≈
1
𝑅𝐶

=
𝑅𝐵𝑖𝑛
𝐿𝑅 ∗ 𝐷2′

 
(88) 
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5.4.3 Summary of Output Stage Equations 

The following is a summary of the equations related to the output stage of the converter system. 

 

𝐻𝑒𝑂(𝑠) =
1

1 + 𝑠 ∗ 𝐿𝑂
𝑅𝐿𝑜𝑎𝑑

+ 𝑠2 ∗ 𝐿𝑂 ∗ 𝐶𝑂
 

(89) 

𝐺𝑉𝐺𝑂 = −𝐷2 ∗
1

1 + 𝑠 ∗ 𝐿𝑂
𝑅𝐿𝑜𝑎𝑑

+ 𝑠2 ∗ 𝐿𝑂 ∗ 𝐶𝑂
 

(90) 

𝐺𝑉𝐷𝐵 = (
𝑉𝐶𝑅
𝐷2

) ∗ −𝐷2 ∗
1

1 + 𝑠 ∗ 𝐿𝑂
𝑅𝐿𝑜𝑎𝑑

+ 𝑠2 ∗ 𝐿𝑂 ∗ 𝐶𝑂
 

(91) 

 

The poles are given as: 

𝜔1 ≈
𝑅
𝐿

=
𝑅𝐿𝑜𝑎𝑑
𝐿𝑂

 
(92) 

𝜔2 ≈
1
𝑅𝐶

=
1

𝑅𝐿𝑜𝑎𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟 ∗ 𝐶𝑅
 

(93) 
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5.5 CASCADED CONVERTER STABILITY 

Although the operation of each sub-system can be shown to be stable, even under closed loop 

operation, the cascading of the two sub-systems can introduce instability. The Middlebrook 

criterion is sufficient to ensure that the cascaded system remains stable. A cascaded system can 

be represented by the diagram in Figure 24 [29].  

 

 

Figure 24: Cascaded Converter Impedances [29] 

 

In the system shown, the total input-output transfer function can be expressed as: 

 

𝐺𝐴𝐵 = 𝐺𝐴 ∗ 𝐺𝐵 ∗
𝑧𝑖𝑛𝐵

𝑧𝑖𝑛𝐵 + 𝑧𝑜𝑢𝑡𝐴
= 𝐺𝐴 ∗ 𝐺𝐵 ∗

1
1 + 𝑇𝑀𝐿𝐺

 

 

(107) 

Where 𝑇𝑀𝐿𝐺, the minor loop gain is defined as:. 

 

𝑇𝑀𝐿𝐺 =
𝑧𝑜𝑢𝑡𝐴
𝑧𝑖𝑛𝐵

 (108) 
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The Middlebrook Criterion ensures that the system exhibits stable behavior, if the following 

condition is met: 

 

‖𝑇𝑀𝐿𝐺‖ = �
𝑧𝑜𝑢𝑡𝐴
𝑧𝑖𝑛𝐵

� ≪ 1 
(109) 
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6.0  SYSTEM DESIGN 

In this chapter, component sizes are specified for each stage in the system. The stability criteria 

are evaluated based on the design. MATLAB/SIMULINK is used to validate the stability of the 

open loop transfer functions and cascaded converters. 

6.1 SYSTEM OPERATING POINT 

In this section, the general system operating parameters are described. This includes the input 

and output voltages, the power ratings, the devices modeled, and the switching frequency. The 

following parameters define the system steady-state operating point. 

 

Table 6: Steady-State Circuit Values 

Name Symbol Value 
Input Voltage Vg 34 
Switching Frequency f 100000 
Load Power Consumption Pload 150 
Resistance of Load Rload 20 
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6.2 FILTER SIZING 

The inductor and capacitor values were chosen in order to minimize the output voltage ripple, 

and the inductor current ripple throughout the circuit. The ripple equations are shown below, as 

derived in [28]. Component values are also listed below. 

 Each inductor was sized to limit the current ripple through the inductor to 10% of the 

steady-state value. The equations used are as follows: 

 

𝐿𝐵 =
𝑉𝑔 ∗ 𝐷𝐵𝑜𝑜𝑠𝑡
2 ∗ 𝑓 ∗ ∆𝐼𝐿𝐵

 
(110) 

𝐿𝑅 =
𝑉𝑚𝑖𝑑 ∗ 𝐷𝐶𝑢𝑘
2 ∗ 𝑓 ∗ ∆𝐼𝐿𝑅

 
(111) 

𝐿𝑂 =
𝑉𝑚𝑖𝑑 ∗ 𝐷𝐵𝑜𝑜𝑠𝑡
2 ∗ 𝑓 ∗ ∆𝐼𝐿𝑂

 
(112) 

 

Each capacitor was sized to limit the voltage ripple through the capacitor to 5% of the 

steady-state value. The equations used are as follows: 

 

𝐶𝐵 =
𝑉𝑔 ∗ 𝐷𝐵𝑜𝑜𝑠𝑡2

2 ∗ 𝑓 ∗ 𝐷𝐵𝑜𝑜𝑠𝑡′ ∗ 𝑅𝐵,𝑒𝑞𝑢𝑖𝑣 ∗ ∆𝑉𝐶𝐵
 

(113) 

𝐶𝑅 =
𝑉𝑚𝑖𝑑 ∗ 𝐷𝐶𝑢𝑘2

2 ∗ 𝑓 ∗ 𝐷𝐶𝑢𝑘′ ∗ 𝑅𝑅,𝑒𝑞𝑢𝑖𝑣 ∗ ∆𝑉𝐶𝑅
 

(114) 

𝐶𝑂 =
∆𝐼𝐿𝑂

8 ∗ 𝑓 ∗ ∆𝑉𝐶𝑂
 

(115) 

𝐶𝑖𝑠𝑜 =
𝑃𝑚𝑝𝑝

2 ∗ 𝜋 ∗ 𝑉𝑚𝑝𝑝 ∗ ∆𝑉𝑚𝑝𝑝
 

(116) 
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The filter component sizes are given below. 

 

Table 7: Reactive Component Sizes 

Name Symbol Value 
Boost Stage Inductor LB 2.91E-04 
Boost Stage Capacitor CB 9.91E-06 
Regulator Stage Inductor LR 5.66E-04 
Regulator Stage Capacitor CR 6.43E-06 
Output Stage Inductor LO 3.54E-04 
Output Stage Capacitor CO 1.09E-06 

 

6.3 OPEN LOOP TRANSFER FUNCTIONS 

In this section, the open loop transfer functions are evaluated using MATLAB. Pole locations, 

phase and gain margins, and impedance ratios are evaluated. 

 

6.3.1 Pole Values: 

The following figures show the locations of the poles and zeros for the transfer functions defined 

in the previous chapter. As shown, all poles lie in the left-hand plane, meaning the open-loop 

transfer functions are stable. However, the control-to-output transfer functions for both the boost 

and Cuk converters exhibit a right-hand-plane pole, which can have a destabilizing effect in 

some applications. 
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Figure 25: Boost Converter: Line Voltage to Output Voltage Transfer Function 

 

Figure 26: Boost Converter: Control to Output Voltage Transfer Function 
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Figure 27: Cuk Converter: Line Voltage to Output Voltage Transfer Function 

 

 

Figure 28: Cuk Converter: Control to Output Voltage Transfer Function 

 

 



 47 

6.3.2 Impedance Ratios: 

The minor loop gains were calculated to determine whether converter interactions affected the 

stability of the system.  The minor loop gain was evaluated for the boost and regulator stage 

interfaces, and for the regulator and output stage interfaces. The minor loop gains are defined as: 

 

𝑇𝑀𝐿𝐺,𝐵𝑅 =
𝑧𝑜𝑢𝑡,𝐵𝑜𝑜𝑠𝑡

𝑧𝑖𝑛,𝑅𝑒𝑔
 (117) 

𝑇𝑀𝐿𝐺,𝑅𝑂 =
𝑧𝑜𝑢𝑡,𝑅𝑒𝑔

𝑧𝑖𝑛,𝑂𝑢𝑡
 (118) 

 

Using the parameter values given in this chapter, and the definitions provided in Table 4, the 

following MATLAB script was used to evaluate the converter input and output impedances, as 

well as their ratios 

. 

 %% Script 

ZoB=1/((1/(s*LeB))+(s*CB)); 

ZinO=(s*LO)+(1/((1/Rload)+(s*CO))); 

ZinR=(s*LR)+(1/((1/ZinO)+(s*CR))); 

ZoR=1/((1/ZoB)+(1/(s*LeR))+(s*CR));  

ratioOne=abs(ZoB)/abs(ZinR); 

ratioTwo=abs(ZoR)/abs(ZinO); 

%% end script 

 

The output of the script is provided below: 
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 %% MATLAB output 

ratioOne =   4.5206e-004 

ratioTwo =   4.4052e-004 

%% end MATLAB output 

 

Note that in each case, the impedance ratio is orders of magnitude less than one, guaranteeing 

that control interactions will affect the performance of the cascaded system. 

6.4 CONTROLLER DESIGN 

In order to verify correct system operation, yet simplify the design and simulation, dynamic 

feedforward controllers were used in the system analysis. Using this method, the reference 

values for key parameters were dynamically adjusted, and the converter duty cycles were 

adjusted accordingly. This is not a true feedback control system, but serves the purpose of this 

analysis. The design of a true feedback system would involve the design of compensator circuits 

to account for the right-hand plane poles in the converter transfer functions. This work is left for 

future consideration, while the present work establishes the validity of the converters 

functionality. The method for calculating the duty cycle needed for operation at the maximum 

power point is discussed in the section on software simulation.  

For the task of voltage regulation in the Cuk converter stage, a simple mathematical 

relationship can be derived from the converter’s voltage conversion ratio, which is repeated 

below: 
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𝑉𝑜
𝑉𝐶𝐵

=
𝐷2
𝐷2′

 
(119) 

 

Rearranging terms: 

 

𝐷2 =
𝑉𝑜

𝑉𝑜 − 𝑉𝐶𝐵
 

(120) 

 

 

As the MPPT controller operates in the boost stage, the midpoint voltage (the voltage across the 

boost capacitor, which serves as the input voltage to the Cuk stage) will fluctuate. By actively 

measuring the midpoint voltage, and maintaining a fixed reference for the desired output voltage, 

the required duty cycle can easily be calculated and updated.  
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7.0  SOFTWARE VALIDATION 

Ansys Simplorer was used to verify the circuit behavior. This chapter describes the simulation 

setups used, and the results of these analyses. Figure 29 shows the PV module and converter 

system, as implemented in Simplorer. To the left, a model of the PV module is implemented. In 

the center, a boost converter with its PWM control, and to the right, a Cuk converter with its 

PWM control. All components used in the model were available from the Simplorer libraries.  

 

 

Figure 29: Simplorer Circuit Diagram 
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7.1 PV MODULE MODELING 

PV modules can be modeled in a variety of ways, each being suitable for power system studies. 

PV modules can be modeled by equivalent equations that produce continuous I-V curves. 

Alternatively, piecewise-linear curves have been proposed in the literature. The choice between 

either modeling method involves a tradeoff between model accuracy and simulation time.  

7.1.1 Continuous Curve Modeling 

A continuous time PV module was implemented in MATLAB/Simulink using the method 

described in the following reference [30]. The reference implements the I-V characteristics by 

solving a transcendental equation for the photo-generated PV cell current. This equation must be 

solved at each time step. This requirement slows the computation process, increasing the 

simulation run time. The code for the PV model was implemented in C-code. The script can be 

found in the referenced paper. 

 To increase simulation speed, the code was translated from C into the MATLAB 

scripting language, yielding a quicker simulation time. The PV module, written in the MATLAB 

scripting language, can be found in Appendix A. A resistive load was varied across the terminals 

of the PV module, and the terminal voltage and source current were measured at every instance 

of load. Figure 30 shows the model implemented in Simulink. A counter was used to increment 

the resistor value at each time step.  
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Figure 30: Simulink Model for PV Module 

 

The voltage and current measurements at each time step were used to generate the I-V and P-V 

characteristics for the module. Figure 31 shows the resulting I-V characteristic. The x-axis shows 

voltage in volts, while the y-axis displays the module current in amps. Figure 32 shows the 

resulting P-V characteristic. Again, the x-axis shows the voltage in volts, while the y-axis shows 

the module power in watts. 
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Figure 31: Module I-V Curve Modeled in Simulink 

 

 

Figure 32: Module P-V Curve Modeled in Simulink 
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Figure 33 shows the PV module connected to a boost converter model. The boost converter 

switches at 100 kHz, requiring a small time step to accurately capture the circuit dynamics. 

Simultaneously, the continuous-time PV module requires a numerical solution to the voltage and 

current equations at each time step, which is a computationally intensive procedure. The 

combination of high computational load and small simulation step size results in long simulation 

run times, making the proposed simulation model impractical. A piecewise-linear PV module 

simulation model was used in place of the continuous-time model. 

 

 

Figure 33: PV Module With Boost Converter in Simulink 
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7.1.2 Piecewise-Linear PV Module Simulation Model 

The equivalent circuit of the PV model is modeled after the methodology referenced here [31]. 

This approach develops a piecewise-linear approximation to the module’s I-V characteristic. 

This method is employed due to ease-of-implementation, and to overcome the limitations 

described in the previous section. As noted, alternative modeling approaches involve solving 

transcendental equations at every time step of the simulation, to accurately recreate continuous-

time I-V curves. This approach drastically increases simulation time and for some power system 

studies, the resulting level of accuracy is unnecessary [31]. 

 The framework for modeling the PV modules was amended from the reference, in order 

to accurately reflect the effects of partial shading on PV modules with bypass diodes. The entire 

model given in the reference was duplicated to create two sub-modules. These sub-modules were 

each placed in parallel to a bypass diode, and the two sub-modules were then connected in series. 

The circuit parameters provided in the reference were adjusted so that each sub-module produced 

the rated short circuit current, but only half of the open-circuit voltage of the full array. A 

MATLAB script was used to solve for the circuit parameters. This script is shown in Appendix 

A. 

 The PV module that was modeled in this work, is the BP 2150S. The operating 

characteristics of this module are given in Table 8. 
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Table 8: PV Module Parameters 

 

 

The following figures show the software model of the PV module, as well as its I-V 

characteristic, as calculated during the simulation. Note that the critical points provided on the 

datasheet; including the open-circuit voltage, short-circuit current, and the voltage and current at 

maximum power; are all identical to the parameters on the I-V characteristic of Figure 31.  

 

 

Figure 34: PV Model With Two Sub-Modules and Bypass Diodes 
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Figure 35: Modeled I-V Characteristic 

 

Figure 32 shows the P-V characteristic of the module, as calculated during the simulation. Figure 

33 shows the P-V characteristic when the second sub-module is partially shaded by 50%. Note 

that Figure 33 bears the same shape as the partial shading example provided in Figure 14. 
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Figure 36: P-V Characteristic Under Full Illumination 

 

 

Figure 37: P-V Characteristic Under Partial Shading Conditions 
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7.1.3 PV Model Choice and MPPT Strategy 

The two most commonly implemented MPPT algorithms are referred to as “Perturb and 

Observe” (P&O) and “Incremental Conductance” [17]. Essentially, both of these methods are 

gradient based search algorithms. Each algorithm effectively computes the rate of change of a 

measured or calculated circuit quantity. When using a piecewise-linear approximation for the PV 

module I-V characteristic in simulation, the instantaneous derivative of the current and voltage 

will always be zero, except at the points of discontinuity, where two line segments meet. At these 

points, numerical integration will produce very large magnitude non-zero values. Either way, the 

calculated rates of change will not be accurate reflections of the true circuit quantities. As the 

number of line segments in the approximation becomes large, the simulation values more closely 

match the expected circuit values. But for the piecewise-linear model used, with only four line 

segments representing the I-V characteristic, a gradient-based search method will not accurately 

reflect the desired control action within the converter system.  

 For this reason, the dynamic feed-forward approach was used with the boost converter 

section for operating the system at the maximum power point. For a given level of insolation, 

and a desired output voltage, the required boost converter duty cycle is calculated and the PWM 

generator is assigned this value. This method is equivalent to using a look-up table to implement 

the controller. This approach simplifies the control design, verifies the system operation, and 

allows for reduced simulation runtime and design complexity. 
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7.1.4 Load Variation During the Simulation  

Along with variations in the converter duty cycles, the converter operating points are established 

by varying the load resistance across the Cuk stage terminals. It would seem as though a 

straightforward comparison of operating states would involve a design that uses converters at 

differing operating points to service an identical load. However, variations in load resistance 

values are representative of actual operating dynamics for load circuits.  

Furthermore, the variation in load mimics the behavior of an infinite bus. For large 

building systems, or integration into a DC grid, the network to which the micro-converter system 

connects can be modeled as an infinite bus. An infinite bus has the ability to absorb all of the 

power instantaneously produced by the PV module. This is equivalent to saying that the load 

impedance value (the input impedance from the DC electrical network) changes to match the 

resistance at maximum power for the micro-converter system. So in the subsequent section, 

during the simulation testing of the converter system, both the converter duty cycles, and the 

load resistance change, during the verification of the system operating points.  

 

7.2 ANALYSIS UNDER FULL ILLUMINATION 

The goal of the simulation study was to verify that the converter system could simultaneously 

operate at the maximum power point of the PV module, while maintaining a constant output 

voltage. There are many MPPT algorithms that have been  proposed for PV integration. In this 

study, the choice of algorithm was irrelevant. It was only required that the boost converter 
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parameters be set to allow the PV module to operate at its MPP. For the sake of this study, the 

required duty cycle was calculated and fed to the converter via feed forward control.  

 Three parameters were specified to establish the operating point of the system, namely, 

the boost converter duty cycle (DB), the Cuk converter duty cycle (DCUK), and the load 

resistance (Rload). The value of DB was arbitrarily chosen to 0.55. 

 The value of DCUK was chosen using the expression given in equation (120). To 

evaluate this expression, the midpoint voltage must be known, when the system operates at the 

maximum power point. To obtain the value of the midpoint voltage, the PV module and boost 

converter were connected in series, with a variable resistance load attached to the terminals of 

the boost converter. With DB fixed, the load resistance was varied over a wide range. Analyzing 

the power produced by the panel over the course of the simulation, it was identified that one 

unique resistive load value, 48 ohms, corresponded to operation at the MPP. Moreover, the 

voltage across this resister was 82 V when the system operated at the maximum power point. 

 With a midpoint voltage of 82V, DCUK was evaluated at a value of 0.368. This duty 

cycle ensures that the Cuk converter produced a -48 V output, while the boost converter ensured 

operation at the MPP. The following figures show the power delivered by the PV module, and 

the voltages at the PV module terminals, the circuit midpoint, and the load. Note that there is a 

delay in the control operation of the Cuk converter, which is apparent in the initial values of the 

measured parameters. Note that there is less than 5% error between the expected and calculated 

value of every output parameter in the circuit. 
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Figure 38: Power Provided by the PV Module 

 

 

Figure 39: Circuit Voltages During Simulation 
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7.3 ANALYSIS UNDER PARTIAL SHADING 

For the analysis under partial shading conditions, a similar procedure was followed, but with the 

second PV sub-module half shaded. Under partial shading conditions, the load resistance value is 

increased to 40 Ohms to maintain optimal operating conditions. The simulation shows that under 

partial shading conditions, it is possible to operate the module at its maximum power point, 

while maintaining a constant output voltage. The following figures show the power delivered by 

the PV module, and the voltages at the PV module terminals, the circuit midpoint, and the load. 

 

 

Figure 40: Module Power Output Under Partial Shading Conditions 
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Figure 41: Circuit Voltages Under Partial Shading Conditions 
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8.0  SUMMARY AND EXTENSIONS 

This dissertation confirms the validity of a design approach for creating a micro-converter 

system. This system of cascaded power electronic converters can be used to effectively integrate 

PV generation into DC systems. This dissertation established that the micro-converter system 

can be used to extract maximum power, and regulate the interconnection voltage, under 

conditions of full illumination and partial shading. 

 To extend upon the work described herein, and create a product with commercial 

potential, a robust feedback control system must be implemented for the converter system. An 

MPPT algorithm must be implemented in the boost stage, and a voltage feedback loop must be 

implemented in the Cuk stage. Given the right-hand plane pole present in the Cuk converter line-

to-output transfer function, a simple PI compensator will not suffice to stabilize the converter 

system.  

The Cuk converter was chosen, in part, because of its excellent filtering capabilities 

provided from input and output filters, and from the use of the capacitor for energy transfer. The 

end result is a converter with non-pulsating input current from the PV module, and low voltage 

ripple in the output voltage. A transformer isolated Cuk converter would offer an additional 

degree of system protection, while providing for a higher voltage conversion ratio, via the 

transformer turns ratio.  
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Furthermore, the concept must be demonstrated in hardware. Alternative converter 

topologies may be considered, to provide a balance between physical size, heat management, 

efficiency, and cost.  In addition, different operating points may be considered. Of particular 

interest would be a micro-converter with a regulated 380 V DC output, for use in data center 

facilities.  

It is hoped that developments in DC integration technologies will allow for growth in the 

area of DC facility design. Better DC integration technology can provide more attractive ROIs 

for PV systems, making PV affordable in new commercial, industrial, and even residential 

developments, using DC distribution technology. Through a micro-inverter device, DC facilities 

with PV generation can offer greater ease-of-implementation, compared to traditional AC 

installations. And with localized MPPT, and no mis-match losses, DC integrated PV can offer 

high system utilization, and near ideal system efficiency.   
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APPENDIX A 

PV PARAMETER EVALUATION 

 

 

 

 

PV module implemented as a MATLAB FUNCTION: 

 

 function Iout = fcn(V, T, S) 

%% variable declarations 

Isc0=3; 

Voc0=22; 

Impp0=2.77; 

Vmpp0=17.98; 

a=0.0004; 

b=-0.0033; 

c=0.066; 

%Rs=0.085; 

Sref=1000; 

Tref=25; 

%% derived parameters 
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Rs=(Vmpp0+((Impp0*(Voc0-Vmpp0))/((Isc0-Impp0)*log(1-

(Impp0/Isc0)))))/(Impp0+((Impp0+(Impp0^2))/((Isc0-Impp0)*log(1-(Impp0/Isc0))))); 

dT=T-Tref; 

Isc=Isc0*(S/Sref)*(1+(a*dT)); 

Voc=Voc0*(1+b*dT+c*log(S/Sref)); 

k=(1-Impp0/Isc0)^(Voc0/(Vmpp0-Voc0+Rs*Impp0)); 

Iref=1.5; 

DIref=1.5; 

V1=Voc-Rs*Iref*Isc/Isc0+Voc0*log(1-Iref/Isc0)/log(k); 

%% numerical solution for Iref 

n=0; 

for n=0:1:50 

    DIref=DIref/2; 

    if V1<V 

        Iref=Iref-DIref; 

    elseif V1>V 

        Iref=Iref+DIref; 

    else 

        n=100; 

    end 

    V1=Voc-Rs*Iref*Isc/Isc0+Voc0*log(1-Iref/Isc0)/log(k); 

end 

Iout=Iref*Isc/Isc0; 
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APPENDIX B 

PIECEWISE LINEAR PV MODEL 

 

 

 

 

MATLAB script for evaluating parameters of the piecewise-linear PV module: 

 

%% Beginning of MATLAB script 

%% declarations 

clear all; 

clc; 

syms Rmid Rtop A B N1 N2 D1 D2 Rs Rsh R2 R3 

%% input parameters 

% from Sandia Database 

% BP SolarBP2150s 

Voc=42.8; 

Vsc=0; 

Vmpp=34 

% half module for partial shading 

Voc=Voc/2; 

Vsc=Vsc/2; 
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Vmpp=Vmpp/2 

% comment the above if modeling a full module 

Isc=4.75 

Impp=4.45 

Ioc=0; 

Ix=4.71; 

Ixx=3.2; 

Rmpp=Vmpp/Impp 

Pmpp=Vmpp*Impp 

%% resister values 

Rsh = ((0.5*Voc)-Vsc)/(Isc-Ix) 

Rs = (Voc-(0.5*(Voc+Vmpp)))/(Ixx-Ioc) 

R2 = (Vmpp-0.5*Voc)/(Ix-Impp); 

R3 = (0.5*(Voc+Vmpp)-Vmpp)/(Impp-Ixx); 

N1 = Rsh*(0.001+((1e6*Rmid)/(1e6+Rmid))+((1e6*Rtop)/(1e6+Rtop))); 

D1 = Rsh+((1e6*Rmid)/(1e6+Rmid))+((1e6*Rtop)/(1e6+Rtop)); 

A = Rs-R2+(N1/D1); 

Rmid = solve(A,Rmid); 

N2 = Rsh*(0.001+((0.001*Rmid)/(0.001+Rmid))+((1e6*Rtop)/(1e6+Rtop))); 

D2 = Rsh+((0.001*Rmid)/(0.001+Rmid))+((1e6*Rtop)/(1e6+Rtop)); 

B = Rs-R3+(N2/D2); 

Rtop = solve(B,Rtop); 

Rmid = subs(Rmid); 
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Rtop=eval(Rtop); 

Rtop=Rtop(2) 

Rmid=eval(Rmid); 

Rmid=Rmid(2) 

%% forward voltages 

Vbot = ((0.5*Voc)+Ix*Rs)/(1+(Rtop+Rmid)/1e6) 

Vmid = (Vmpp-0.5*Voc+Rs*(Impp-Ix))*(1-(Rtop+0.001)/(Rtop+Rmid+0.001)) 

Vtop = Voc-Vbot-Vmid 

 %% end of MATLAB script 
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