
 

 

 

HIGH PERFORMANCE METHODS FOR 

FREQUENT PATTERN MINING 

by 

LAN VU 

B.A., University of Economics HCMC, 2004 

B.A., University of Social Sciences & Humanities HCMC, 2005 

M.S., University of Colorado Denver, 2009 

 

 

 

 

A thesis submitted to the 

Faculty of the Graduate School of the 

University of Colorado in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

Computer Science and Information Systems 

2014 

 

 

  



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3667246

Published by ProQuest LLC (2014).  Copyright in the Dissertation held by the Author.

UMI Number:  3667246



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

LAN VU 

ALL RIGHTS RESERVED 

  



iii 

 

 

 

 

 

 

This thesis for the Doctor of Philosophy degree by 

Lan Vu 

has been approved for the 

Computer Science and Information Systems Program 

by 

 

 

 

Gita Alaghband, Advisor 

Tom Altman, Chair 

Michael Mannino 

Ilkyeun Ra 

Tam Vu 

 

 

 

 

November 19th 2014 



iv 

 

Vu, Lan T (Ph.D., Computer Science and Information Systems) 

High Performance Methods for Frequent Pattern Mining 

Thesis directed by Professor Gita Alaghband 

ABSTRACT 

Current Big Data era is generating tremendous amount of data in most fields such 

as business, social media, engineering, and medicine. The demand to process and handle 

the resulting “big data” has led to the need for fast data mining methods to develop 

powerful and versatile analysis tools that can turn data into useful knowledge. Frequent 

pattern mining (FPM) is an important task in data mining with numerous applications 

such as recommendation systems, consumer market analysis, web mining, network 

intrusion detection, etc. We develop efficient high performance FPM methods for large-

scale databases on different computing platforms, including personal computers (PCs), 

multi-core multi-socket servers, clusters and graphics processing units (GPUs). At the 

core of our research is a novel self-adaptive approach that performs efficiently and fast on 

both sparse and dense databases, and outperforms its sequential counterparts. This 

approach applies multiple mining strategies and dynamically switches among them based 

on the data characteristics detected at runtime. The research results include two 

sequential FPM methods (i.e. FEM and DFEM) and three parallel ones (i.e. ShaFEM, 

SDFEM and CGMM). These methods are applicable to develop powerful and scalable 

mining tools for big data analysis. We have tested, analysed and demonstrated their 

efficacy on selecting representative real databases publicly available at Frequent Itemset 

Mining Implementations Repository.  



v 

 

The form and content of this abstract are approved. I recommend its publication. 

Approved: Gita Alaghband 

 

 

 

  



vi 

 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to my parents, my daughter Anh, my husband Thanh and my advisor 

Prof. Gita Alaghband who gave me unconditional love and support in every step of my 

way. 

  



vii 

 

ACKNOWLEDGEMENTS 

Working toward a PhD has been not only challenging but also the most exciting 

journey of my life. I have been lucky to receive so much love, supports, mentorships and 

encouragements from many people and organizations. 

The most important person who inspired my PhD study is my academic advisor, 

Prof. Gita Alaghband. She has opened the door and walked me through to the long, 

difficult but beautiful journey of becoming a researcher. Her broad and in-depth 

expertise, unlimited working energy, unconditional support and especially, the love for 

her students gave me solid background on my research domain, brought me a lot of 

opportunities to explore the research world in most every aspects and encouraged me on 

my daily research for the greatest results that I present in this dissertation. From the 

deepest place of my heart, I really love her, be grateful for what she has done for me, and 

always feel that I am fortunate to have her as my PhD thesis advisor. 

I would like to thank the thesis committee members Prof. Tom Altman, Prof. 

Ilkyeun Ra, Prof. Michael Mannino and Prof. Tam Vu. They are among my greatest 

professors that I have had opportunities to be their student and to learn from their 

valuable knowledge that I have applied to my study on high performance methods for 

frequent pattern mining. I believe when they read though this dissertation, they will find 

some parts of the knowledge that I have learned from them during my graduate study. I 

also would like to thank Dr. Beilei Xu for many meaningful career advices that have 

given me the visions for the career path that I have selected. 

My dream of doing PhD would never come true without generous supports from 

many organizations. I would like to give my special thanks to the Department of 



viii 

 

Computer Science & Engineering, College of Engineering & Applied Science, and 

University of Colorado Denver (UCD) for important financial supports of my study. In 

addition, I would like to acknowledge Computing Research Association (CRA-W), Anita 

Borg Institute, MIT, VMware, Microsoft, Xerox, Purdue University, Graduate School at 

UCD, NFS, ACM and the Altman family for numerous scholarships, travel awards, 

mentorships, etc. They have brought to me many opportunities to travel, meet and learn 

from researchers, professors, professionals, and talented friends from top-north 

universities and companies around the United States and the world. These wonderful 

learning experiences have helped me to sharpen my study plan and goals. 

I keep the final words for my family for their love, supports and encouragements. 

For Anh, my lovely daughter who energizes my daily work and life, I am thankful for her 

non-stop asking about my graduation day that gave the strong motivation on this rough 

journey. I hope that she will know all that I have done and will do are for her. I have been 

always grateful my mother, Oanh, who nourished my interest in academic work since my 

childhood and my father, Tuan, who brought me the love of computers since I was 

twelve. Playing and working with a lot of exciting software including Turbo Pascal that 

he installed on my first personal computer inspired me to select the computer and 

information sciences for my college study. My interest in doing research started at 

college when I joined several research projects with a special partner, Thanh, who is my 

husband now. The experiences that we shared during that time motivated me to continue 

studying at graduate level. As a life partner, he has brought countless encouragements 

and supports that helped me keep moving on with my study. 

  



ix 

 

TABLE OF CONTENTS 

Chapter 

 Introduction .............................................................................................................. 1 

1.1 Knowledge Discovery from Databases ..............................................................3 

1.2 Data Mining ......................................................................................................5 

1.3 Mining Frequent Patterns and Association Rules ...............................................6 

1.4 Computer Architectures for Sequential and Parallel Frequent Pattern Mining ....7 

1.5 Research Motivation ....................................................................................... 10 

1.5.1 Challenges of Frequent Pattern Mining ................................................. 10 

1.5.2 Motivation ............................................................................................ 11 

1.6 Research Contributions ................................................................................... 11 

1.6.1 FEM and DFEM Algorithms ................................................................. 13 

1.6.2 ShaFEM Algorithm ............................................................................... 14 

1.6.3 SDFEM Algorithm ................................................................................ 14 

1.6.4 CGMM Algorithm ................................................................................ 15 

1.7 Dissertation Overview ..................................................................................... 16 

 Sequential Frequent Pattern Mining Based on Data Characteristics ................................. 17 

2.1 Introduction .................................................................................................... 17 

2.1.1 Motivation ............................................................................................ 17 

2.1.2 Contributions ........................................................................................ 18 

2.2 Background ..................................................................................................... 19 

2.3 Related Literature Review ............................................................................... 20 

2.3.1 Apriori Based Algorithms ..................................................................... 22 



x 

 

2.3.2 Eclat Based Algorithms ......................................................................... 23 

2.3.3 FP-growth Based Algorithms ................................................................ 24 

2.4 Self-adaptive FPM Approach Based on Data Characteristics ........................... 25 

2.4.1 Observation and Analysis ...................................................................... 26 

2.4.2 Data Structures...................................................................................... 27 

2.4.3 The Proposed Approach ........................................................................ 29 

2.4.4 Constructing Conditional FP-tree and Bit Vectors ................................. 31 

2.4.5 FEM and DFEM Algorithms ................................................................. 33 

2.4.6 Switching Between Two Mining Strategies ........................................... 34 

2.4.7 Completeness of The Proposed Approach ............................................. 36 

2.5 FEM Algorithm............................................................................................... 37 

2.5.1 Algorithmic Description ........................................................................ 37 

2.5.2 Selecting Threshold K ........................................................................... 39 

2.6 DFEM Algorithm ............................................................................................ 42 

2.6.1 Adopting Dynamic Threshold K............................................................ 42 

2.6.2 Algorithmic Description ........................................................................ 45 

2.7 Optimizing FEM and DFEM ........................................................................... 47 

2.8 Performance Evaluation .................................................................................. 48 

2.8.1 Experimental Setup ............................................................................... 49 

2.8.2 Execution Time Comparison ................................................................. 50 

2.8.3 Memory Usage Comparison .................................................................. 52 

2.8.4 Impact of Applying Two Mining Strategies ........................................... 54 

2.9 Conclusion ...................................................................................................... 58 

 Parallel Frequent Pattern Mining on Shared Memory Multi-core Systems ........................ 59 

3.1 Introduction .................................................................................................... 59 



xi 

 

3.1.1 Motivation ............................................................................................ 59 

3.1.2 Contributions ........................................................................................ 60 

3.2 Background ..................................................................................................... 61 

3.2.1 Architecture of Multi-core Shared Memory System .............................. 61 

3.2.2 Parallel Programming Models for Multi-core Shared Memory Systems. 62 

3.2.3 FPM Challenges on Multi-core Shared Memory Systems ...................... 63 

3.3 Related Literature Review ............................................................................... 63 

3.3.1 Tree Projection Partition Algorithm ...................................................... 64 

3.3.2 MLPT Algorithm .................................................................................. 64 

3.3.3 FP-array Algorithm ............................................................................... 64 

3.4 ShaFEM Algorithm ......................................................................................... 65 

3.4.1 Overview .............................................................................................. 65 

3.4.2 Data Structures...................................................................................... 66 

3.5 Parallel XFP-Tree Construction....................................................................... 66 

3.6 Parallel Frequent Pattern Generation ............................................................... 70 

3.6.1 Parallel Frequent Pattern Generation Based on Data Characteristics ...... 70 

3.6.2 Switching Between Two Mining Strategies ........................................... 74 

3.7 Performance Evaluation .................................................................................. 74 

3.7.1 Experimental Setup ............................................................................... 74 

3.7.2 Execution Time ..................................................................................... 76 

3.7.3 Speedup ................................................................................................ 79 

3.7.4 Memory Usage...................................................................................... 81 

3.7.5 Sequential Performance Evaluation ....................................................... 84 

3.7.6 Analyzing Performance Merits of ShaFEM ........................................... 86 

3.8 Conclusion ...................................................................................................... 90 



xii 

 

 Frequent Pattern Mining Based on Multi-core Cluster ................................................... 91 

4.1 Introduction .................................................................................................... 91 

4.1.1 Motivation ............................................................................................ 91 

4.1.2 Contributions ........................................................................................ 92 

4.2 Background ..................................................................................................... 93 

4.2.1 Architecture of Multi-core Cluster......................................................... 94 

4.2.2 Parallel Programming Models for Multi-core Cluster ............................ 95 

4.3 Related Literature Review ............................................................................... 98 

4.4 SDFEM Algorithm ........................................................................................ 100 

4.4.1 Overview ............................................................................................ 100 

4.4.2 Parallel Projected XFP-tree Construction Stage ................................... 101 

4.4.3 Parallel Frequent Pattern Generation Stage .......................................... 104 

4.5 Multi-level Load Balancing of SDFEM ......................................................... 105 

4.5.1 Within-node Load Balancing............................................................... 106 

4.5.2 Between-node Load Balancing ............................................................ 108 

4.6 Algorithmic Description ................................................................................ 111 

4.7 Performance Evaluation ................................................................................ 116 

4.7.1 Experimental Setup ............................................................................. 116 

4.7.2 Execution Time ................................................................................... 117 

4.7.3 Speedup .............................................................................................. 119 

4.7.4 Impact of Hybrid MPI-OpenMP Programming Model ......................... 121 

4.7.5 Impact of Different Load Balancing Techniques ................................. 122 

4.8 Conclusion .................................................................................................... 124 

 Parallel Frequent Pattern Mining Based on GPU ........................................................ 126 

5.1 Introduction .................................................................................................. 126 



xiii 

 

5.1.1 Motivation and Related Literature ....................................................... 126 

5.1.2 Contributions ...................................................................................... 127 

5.2 Background ................................................................................................... 128 

5.2.1 GPU Architecture................................................................................ 128 

5.2.2 CUDA Programming .......................................................................... 130 

5.2.3 Frequent Pattern Mining Using GPU ................................................... 132 

5.3 Prior GPU-based FPM Algorithm ................................................................. 132 

5.3.1 CSFPM Algorithm .............................................................................. 133 

5.3.2 GPApriori Algorithm .......................................................................... 133 

5.3.3 gpuDCI Algorithm .............................................................................. 133 

5.4 New Frequent Pattern Mining Approach using a CPU-GPU Hybrid Model ... 134 

5.4.1 The Proposed Multi-strategy Approach ............................................... 134 

5.4.2 Overview of  CGMM .......................................................................... 135 

5.4.3 Switching Between the Two Mining Strategies ................................... 137 

5.5 CGMM Algorithm ........................................................................................ 138 

5.5.1 FP-tree construction and CPU Based Mining ...................................... 138 

5.5.2 GPU Based Mining ............................................................................. 139 

5.6 Performance Evaluation ................................................................................ 145 

5.6.1 Experimental Setup ............................................................................. 145 

5.6.2 Performance Evaluation ...................................................................... 146 

5.6.3 Impact of Applying Multi-Strategy Approach ..................................... 149 

5.6.4 Impact of Data Transfer Optimization ................................................. 150 

5.6.5 Impact of Threshold K ........................................................................ 151 

5.6.6 Impact of Data List Size ...................................................................... 153 

5.7 Conclusion .................................................................................................... 154 



xiv 

 

 Conclusion ........................................................................................................... 155 

References ……………………………………………………………………………………………...158 

 
  



xv 

 

LIST OF TABLES 

Table 

2-1: Execution time of three algorithms on sparse and dense databases .......................... 18 

2-2: A sample dataset and its frequent items with minsup = 20% ................................... 20 

2-3:  Comparison of FEM, DFEM, Eclat, and FP-growth ............................................... 34 

2-4: Measurements of FEM for Kosarak (minsup=0.07%) ............................................. 43 

2-5: Experimential datasets and their properties ............................................................. 49 

2-6: Descriptions of the experimential datasets .............................................................. 50 

2-7: Peak memory usage (megabytes) of FEM, DFEM and other algorithms ................. 53 

3-1: Experimental datasets of ShaFEM .......................................................................... 75 

3-2: Test machines ......................................................................................................... 76 

3-3: Time comparison (sec.) of ShaFEM vs. FP-array on different hardware.................. 79 

3-4: Performance of ShaFEM with dynamic vs. static scheduling on 12 cores ................ 89 

3-5: Performance of ShaFEM using lock vs. lock-free on 12 cores................................. 90 

4-1: Load balancing techniques applied in SDFEM...................................................... 106 

4-2: Experimental datasets of SDFEM ......................................................................... 117 

4-3: Time comparision of pure MPI vs. hybrid MPI-OpenMP (60 cores) ..................... 122 

4-4: Four versions of SDFEM with different load balancing techniques ....................... 123 

4-5: Running time of four versions of SDFEM (120 cores) .......................................... 123 

5-1: Experimental datasets of CGMM .......................................................................... 145 

5-2: Speedup of CGMM vs. other sequential algorithms .............................................. 148 

5-3: Running time of CGMM with single mining strategy or both................................ 150 

5-4: Performance of CGMM with and without data transfer optimization .................... 151 



xvi 

 

5-5: Execution time (sec.) of CGMM with different frequent pattern set list size ......... 153 

 

  



xvii 

 

LIST OF FIGURES 

Figure 

1-1: The growth of world’s largest databases ...................................................................1 

1-2: Knowledge discovery process ...................................................................................3 

1-3: Flynn's taxonomy of computer architectures .............................................................8 

1-4: Examples of different data types for FPM ............................................................... 10 

1-5: Proposed high performance FPM methods .............................................................. 12 

2-1: The data subsets with itemsets occurring and ending with c, e and de ..................... 26 

2-2: FP-tree constructed from the dataset in Table 2-2 ................................................... 28 

2-3: Bit Vectors constructed from the dataset in Table 2-2 ............................................. 29 

2-4: Mining model of the proposed mining approach ..................................................... 30 

2-5: Illustration of FP-tree and Bit Vector construction .................................................. 32 

2-6: The mining progress for the dataset in Table 2-2 with K=3. .................................... 36 

2-7: FEM algorithm ....................................................................................................... 37 

2-8: MineFPTree1 algorithm ......................................................................................... 38 

2-9: MineBitVector1 algorithm ...................................................................................... 39 

2-10: Running time of FEM with different values of K .................................................. 41 

2-11: UpdateK1 algorithm ............................................................................................. 44 

2-12: DFEM algorithm .................................................................................................. 45 

2-13:  MineFPTree2 algorithm ....................................................................................... 46 

2-14: Time comparision of FEM and DFEM with other algorithms ............................... 51 

2-15: Running time of using single mining strategy vs. using both ................................. 55 

2-16: Running time distribution of two mining strategies in DFEM ............................... 57 



xviii 

 

3-1:  Architecture of multi-core shared memory system ................................................. 61 

3-2:  Parallel construction of the global count list........................................................... 68 

3-3:  Local FP-tree construction ..................................................................................... 69 

3-4: The global shared XFP-tree .................................................................................... 70 

3-5: The frequent pattern generation model of each parallel process .............................. 71 

3-6: ParallelMinePattern1 algorithm .............................................................................. 72 

3-7: MineFPTree3 algorithm ......................................................................................... 73 

3-8: UpdateK2 algorithm ............................................................................................... 74 

3-9: Running time comparison of ShaFEM and FP-array ............................................... 78 

3-10: Speedup of ShaFEM and FP-array on 12 cores relative to FP-array 1 core ............ 79 

3-11: Speedup of ShaFEM on 12 cores compared to its time on 1 core .......................... 81 

3-12: Peak memory usage (megabytes) of ShaFEM and FP-array .................................. 83 

3-13: Sequential running time of ShaFEM compared to sequential methods .................. 85 

3-14: Speedup of ShaFEM on 1 core compared to sequential algorithms ....................... 86 

3-15: Time distribution for two mining strategies of ShaFEM ........................................ 88 

4-1: Architecture of a cluster with 12-core nodes with dual 6-core sockets ..................... 95 

4-2: Mapping of processes and threads to a multi-core cluster ........................................ 96 

4-3: Execution model of MPI program vs. hybrid MPI/OpenMP.................................... 97 

4-4: Overview execution model of SDFEM ................................................................. 102 

4-5: Computation of the global count by all processes (P = process; T= thread) ........... 103 

4-6: Construction of local FP-trees by each thread (T) of Process 2 (P) ........................ 103 

4-7: The project XFP-tree constructed by Process 2 ..................................................... 104 

4-8: The mining model of SDFEM within a process (T=thread) ................................... 105 



xix 

 

4-9: Within-node load balancing with work sharing ..................................................... 107 

4-10: Between-node load balancing with work stealing................................................ 109 

4-11: SDFEM algorithm .............................................................................................. 111 

4-12: ParallelMinePattern2 algorithm .......................................................................... 112 

4-13: MineFPTree4 algorithm...................................................................................... 113 

4-14: MineBitVector2 algorithm .................................................................................. 114 

4-15: LoadBalancing algorithm ................................................................................... 115 

4-16: UpdateK3 algorithm ........................................................................................... 116 

4-17: Running time of SDFEM (from 1 to 120 cores) .................................................. 118 

4-18: Speedup of SDFEM (from 1 to 120 cores) .......................................................... 120 

4-19: Running time and speedup of SDFEM when minsup varies ................................ 121 

4-20: Speedup of four versions of SDFEM compared to its sequential time ................. 124 

5-1: The architecture of Nvidia’s GPU ......................................................................... 129 

5-2: The execution model of CUDA ............................................................................ 131 

5-3: The overview of CGMM ...................................................................................... 136 

5-4: CGMM Algorithm ................................................................................................ 138 

5-5: CPUBasedMining algorithm ................................................................................. 139 

5-6: Data structures used by GPUBasedMining ........................................................... 140 

5-7: GPUBasedMining algorithm ................................................................................ 143 

5-8: Generating pattern candidates and computing their counts on GPU ...................... 144 

5-9: Running Time of CGMM vs. other sequential algorithms ..................................... 147 

5-10: Running time and speedup of CGMM vs. GPApriori .......................................... 149 

5-11 : Running time of CGMM with various values of threshold K ............................. 152 



xx 

 

 

LIST OF ABBREVIATIONS AND DEFINITIONS 

 

ARM  Association Rule Mining 

CGMM  CPU & GPU based Multi-strategy Mining  

Conditional 

Pattern Base  

Sub-database consists of sets of frequent patterns given the existence of a 

suffix pattern 

Count  Number of occurrences of an itemset given a set of transactions 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture, a parallel computing platform and 

programming model by NVIDIA 

DFEM Dynamic FPM algorithm, an improved version of FEM 

FEM FP-growth and Eclat based Mining 

FPM Frequent Pattern Mining 

GPGPU General Purpose GPU 

GPU Graphics Processing Unit 

HPC High Performance Computing 

Itemset A set of co-occurring items in database 

IDC International Data Corporation 

KDD Knowledge Discovery from Database 

MIMD Multiple Instruction Multiple Data 

MMX Matrix Math eXtension, a SIMD instruction set designed by Intel 

Minconf Minimum confidence threshold 

Minsup Minimum support threshold   

NUMA Non-Uniform Memory Access 

OpenCL Open Computing Language 



xxi 

 

PC Personal Computer 

SDFEM Shared and Distributed memory based FPM algorithm 

ShaFEM Shared memory based FEM algorithm 

SIMD Single Instruction Multiple Data 

SM Stream Processor 

SMP Symmetric Multiprocessing 

SMX Next Generation Streaming Multiprocessor 

SP Stream Multiprocessor 

SSE Streaming SIMD Extension, a SIMD instruction set extension by Intel 

Support Probability of an itemset x given a set of transactions 

UMA Uniform Memory Access 

 

  



1 

 

 Introduction 

In the current era of information explosion, the amount of data generated in 

numerous research domains, such as business, social media, life science, engineering, and 

medicine, is rapidly growing; some examples are indicated in Figure 1-1 [1], [2], [3], [4]. 

A study by International Data Corporation (IDC) in 2012 predicted that the digital 

universe will grow up to 40,000 exabytes, or 40 trillion gigabytes by 2020 [5]. The rise of 

Big Data has led to the development of fast and efficient data mining methods for 

powerful data analysis tools that explore the tremendous amount of data and turn them 

into useful knowledge.  

 

Figure 1-1: The growth of world’s largest databases  

In our study, we have addressed the frequent pattern mining (FPM) problem by 

proposing efficient high performance computing (HPC) methods to allow FPM on 

different database scales and various types of HPC machines, including clusters of 

personal computers (PCs), multi-core multi-socket servers, clusters and GPUs. The 



2 

 

resulting novel sequential and parallel FPM methods of our research are applicable to 

develop powerful data mining tools for data analysis on different computing platforms. 

Although our methods are neither application nor domain specific, we show that they run 

fast and save memory for many data types in various application domains such as web 

document processing, sale analysis, traffic prediction, chess game prediction and 

clickstream analysis as presented in the performance evaluation sections in this 

dissertation. It makes them promising candidates for multiple real world applications of 

FPM, which we review in the final chapter. 

In this chapter, we introduce a general overview of concepts related to this 

research including knowledge discovery and data mining (Sections 1.1 and 1.2). We also 

present the frequent pattern mining (FPM) problem which is the target of our research 

and the most computationally complex and intensive step of frequent patterns and 

association rules discovery from database (Section 1.3). Additionally, we present the 

architecture of HPC machines on which the FPM task is deployed (Section 1.4). Finally, 

we describe the motivation and main contributions of our work (Sections 1.5 and 1.6). 

Chapters 2, 3, 4 and 5 describe our five FPM methods, FEM, DFEM, ShaFEM, SDFEM 

and CGMM designed for different computing platforms and environments. All 

algorithms incorporate novel approaches to FPM designs namely dynamic adaptability to 

data characteristics, high performance and targeted design to exploit the underlying 

architectural characteristics. Each chapter will include introduction and analysis, related 

literature review and background, design, implementation, results and performance 

analysis. 



3 

 

In this dissertation, we use the terms method and algorithm; pattern and itemset as 

well as database and dataset interchangeably. 

1.1 Knowledge Discovery from Databases 

Knowledge discovery from databases (KDD) is a nontrivial process of identifying 

valid, novel, potentially useful, and ultimately understandable patterns in data  [6]. This 

process normally consists of multiple steps as shown in Figure 1-2, including data 

cleaning, data integration, data selection, data mining, evaluation and interpretation [6], 

[7]: 

 

Figure 1-2: Knowledge discovery process 

 

Data integration- In many cases, data to be mined are collected and unified from 

multiple data sources to provide cleansing, consistent and enough essential data for 

pattern discovery and to enhance the quality of extracted patterns. For large data projects, 

Preprocessed 

data 

Patterns 

Integration 

Cleaning 

Selection 

Transformation 

Data mining 

Evaluation 
Interpretation 

Knowledge 

Databases 

Data 

Warehouse 



4 

 

the integrated data can be stored in a data warehouse. This step can be ignored if the 

collected data meet certain data integration criteria. 

Data cleaning- The original databases may contain noise and inconsistent data 

which have significant impact on the quality of knowledge to be found by the mining 

task. This step is done to eliminate noise and errors when possible as well as to handle 

missing data and other issues of data integration such as mapping the data to a single 

naming convention. 

Data selection- A specific data analysis task may require a portion of available 

data instead of the entire data source. This step queries relevant data from the databases 

that will be used as input for the mining step.  

Data transformation- Data retrieved from database can be converted and 

consolidated into appropriate forms required by the mining step by operations like 

formatting, normalization, summarization and/or aggregation. In some cases, data 

dimensionality reduction methods are also applied to generate invariant representations of 

the data to reduce the workload and improve the quality of mined patterns. This step is 

sometimes performed before the data selection. 

Data mining- This is the central step of the KDD process where intelligent 

methods are applied to extract data patterns. The selection of the data mining methods 

and their appropriate parameters is done based on the data mining requirements and data 

formats. 

Evaluation and Interpretation- Pattern evaluation identifies the truly interesting 

patterns representing knowledge. We can utilize the assessment results to modify the 

computing methods used in each step or loop back to any step of the KDD process until 



5 

 

the generated patterns reasonably meet the application requirements. The interpretation, 

in addition, makes the mined patterns easier to understand by human beings by, but not 

limited to, using some visual forms. For many cases, the patterns are then used as the 

input of intelligent computing systems. 

This processing flow is applied in most KDD applications with some adjustments 

suitable to each situation. Because most data mining algorithms from statistics, pattern 

recognition, and machine learning assume that data are in the main memory, the other 

steps in KDD ensure that the required data are available for the mining step. We now 

focus on the data mining step which is the heart of KDD. 

1.2 Data Mining 

Data mining is the essential component of KDD. It concerns the development of 

methods and techniques for discovering knowledge from large databases [6]. A data 

mining task usually handles an amount of data whose size, dimensionality and 

complexity are so large that use of traditional data analysis methods is impractical. The 

knowledge extracted from data mining is mostly in the form of patterns and can be used 

as the knowledge base of intelligent computing systems or to support human decision 

making and planning processes. Data mining involves methods in multiple disciplines 

including artificial intelligence, machine learning, statistics, data visualization, database 

technology, high performance computing and other disciplines.  

In general, data mining tasks aim at discovering interesting patterns that can be 

used for two high level primary goals: description and prediction. Descriptive tasks 

characterize properties of the data in a target database. Predictive tasks perform induction 

on the data in order to find patterns that help with prediction of entities' behaviour. 



6 

 

Numerous data mining methods have been developed for these purposes and they can be 

grouped into five groups of data mining functionalities, which specify the kinds of 

patterns to be mined from data. They include (1) characterization and discrimination; (2) 

mining frequent patterns and associations rules; (3) classification and regression; (4) 

clustering analysis; and (5) outlier/abnormal analysis [8].  

1.3 Mining Frequent Patterns and Association Rules 

Frequent pattern mining (FPM) and association rule mining (ARM) are two 

important problems in data mining. FPM is a crucial part of ARM and other data mining 

tasks. Since their introduction for sale analysis by Agrawal et al.  [8], FPM has been 

broadly applied in various domains with many practical applications such as market 

analysis, biomedical and computational biology, web mining, decision support, 

telecommunications alarm diagnosis and prediction, and network intrusion detection  [9, 

10]. 

 Frequent Pattern Mining- FPM is used to discover many types of relationships 

among variables in large databases such as associations  [8], correlations  [11], causality  

[12], sequential patterns  [13], episodes  [14] and partial periodicity  [15]. FPM is not 

only an essential component of ARM but also helps with data indexing, classification, 

clustering, and other data mining tasks  [9]. It aims at searching for groups of itemsets, 

subsequences, or substructures that frequently co-occur in a database. A frequent pattern 

X is identified if the probability that X appears in the database, called support of X, is 

larger or equal to a user-specified minimum support threshold minsup. Because of the 

importance and challenges in solving this problem for large-scale databases, many studies 



7 

 

have focused on providing scalable FPM methods to be deployed in commercial 

computer systems. We present the fundamental knowledge of FPM in Chapter 2. 

Association rule mining- ARM aims at discovering all interesting rules from a 

database that have the form: X  Y | X ∩ Y = Ø where X and Y are the set of items in the 

database [16]. A sample association rule of retail data would be "If a customer buys milk 

and butter then she is 90% likely to also buy bread". Association rules are generated from 

a database by searching for all frequent patterns and using the two criteria, support and 

confidence, to identify the most important relationships. Confidence indicates conditional 

probability of finding Y given the transactions of which each contains X. In sale analysis, 

association rules are useful for analyzing and predicting customer behaviors. They also 

play an important part in shopping basket data analysis, product clustering, catalogue 

design and store layout  [9, 10]. Other applications of ARM includes large-scale gene-

expression data analysis [17], microarray data analysis [18], protein function prediction 

[19], risk factor prediction in business intelligence system [20], web user behaviour 

prediction [21]. 

1.4 Computer Architectures for Sequential and Parallel Frequent Pattern 
Mining 

Depending on the scale of a FPM application and the size of its database, we can 

select one computing platform for a specific FPM task such as PCs, workstations, servers, 

clusters, supercomputers (with or without GPUs). According to Flynn's taxonomy  [22], 

these computers can be categorized into four groups (Figure 1-3). We focus on 

developing FPM methods for computers of the three groups: SISD, SIMD and MIMD. 

MISD computers are not common and will not be considered as a platform for FPM. 



8 

 

 SISD (Single Instruction, Single Data stream): this computer architecture allows a 

single instruction stream and data stream at a time. Examples of SISD computers 

include conventional single processor computers, such as PCs with single core 

processor (modern PCs have multi-core processors) or old mainframes. Although our 

research aims at large computer systems with multiple multi-core processors and the 

capability of processing multiple data elements at a time, our sequential FPM 

methods, FEM and DFEM, can be used for, but is not limited to, SISD machines. In 

sequential execution mode, FPM performance gain mainly comes from the heuristics 

that help with reducing the search space, the efficiency of representing and 

manipulating data in memory (i.e. low memory usage, better cache optimization, 

faster operations like bitwise operations instead of add operations). 

 

Figure 1-3: Flynn's taxonomy of computer architectures 

 MIMD (Multiple Instruction, Multiple Data streams)- this parallel computer 

architecture allows simultaneous instruction execution of multiple processes on 

different data. Most modern computers have MIMD architecture. Examples of MIMD 

SISD MISD 

SIMD MIMD 

Single  

Data  

Stream 

Multiple 

Data  

Stream 

Single 

Instruction 

Stream 

Multiple 

Instruction 

Stream 



9 

 

include both low-end machines, such as mobile devices, PCs, and high-end ones, such 

as multi-core servers or clusters (i.e. machines that consist of multiple PCs or multi-

core servers, called nodes, connected via high speed interconnection network)  [23]. 

These machines, especially clusters, can potentially provide high performance for 

FPM and are commonly selected for deploying FPM in Big Data analysis. Because of 

the dominance of multi-core processor in which cores share main memory, most 

modern MIMD machines have shared memory architecture at some level. For 

example, a multi-core server, which has several multi-core chips/processors installed 

on a same mainboard, has MIMD shared memory architecture because its memory is 

accessible by all cores. Similarly, a multi-core cluster, whose nodes are multi-core 

machines, has distributed memory among nodes but shared memory within a node. 

We aim at developing parallel FPM methods that maximize the use of shared memory 

in MIMD systems to reduce overhead of synchronization, data communication and 

load balancing, which are critical issues for parallelizing FPM on large computer 

systems.  

 SIMD (Single Instruction, Multiple Data streams)- this parallel computer architecture 

allows multiple data streams per single instruction stream, allowing execution of 

multiple identical operations on different data elements (also known as vector 

operation) at a time  [22], [24]. Typical examples of SIMD are array processors and 

modern GPUs. Most modern general CPU processors have special registers integrated 

to support vector operations (e.g. MMX, SSE - Streaming SIMD Extensions by Intel). 

To fully utilize the vector computing power of SIMD processors (e.g. GPU), we 

design the parallel FPM method to have its data structures and computation suitable 



10 

 

for SIMD, particularly GPU architectures. This is a challenging problem because 

most existing CPU-based FPM methods use tree data structures to reduce memory 

usage and computation [25], [26], [27], [28], [29], [30]. This data structure, however, 

is not suitable for SIMD architectures. 

1.5 Research Motivation 

1.5.1 Challenges of Frequent Pattern Mining 

FPM is usually applied to mining large databases whose size and number of 

distinct items are very large. For example, databases containing sale, biological and web 

document data (Figure 1-4) have from hundreds to millions of items and their size ranges 

from megabytes to terabytes. As a result, the search space for frequent patterns is 

extremely large. For example, given a database with 55 distinct items, there are up to 255= 

36,028,797,018,963,968 different combinations, which can be frequent pattern 

candidates. The problem becomes more complex with larger number of items and 

transactions in the databases. Hence, FPM requires large computing resources in terms of 

both CPU time and memory usage. Developing efficient sequential and parallel methods 

to handle large databases becomes important to provide high performance FPM on 

existing computing platforms. 

        

(a) Sale data                (b) Biological data            (c)Web document data 

Figure 1-4: Examples of different data types for FPM 



11 

 

1.5.2 Motivation 

Current scalable approaches for FPM have three main limitations: 

1. Studies have shown that the existing mining methods (sequential and parallel) can 

work well only on either sparse or dense databases but not both [8], [31], [25], 

[26], [27], [28], [32].  

2. For data-intensive problems like FPM, efficiently utilizing shared memory 

resources can significantly improve the mining performance. However, most 

parallel FPM methods were developed for distributed memory models  [33], [34], 

[35], [36],  [37],  [38], even when shared memory is available in the system. The 

focus on distributed memory model eliminates the benefits of exploiting shared 

memory.  

3. GPU is emerging as a ubiquitous computing device and has become an important 

component in HPC systems as well as data centers to support data analysis, 

including FPM. Although the computing power of GPU is large,  designing 

efficient FPM algorithms for GPU is challenging due to the unpredictable 

workload and complex data structures of FPM. Hence, it is essential to have new 

efficient FPM methods that can leverage the computing power of this device.  

1.6 Research Contributions 

We develop novel sequential algorithms that have capability of detecting the 

density of data at runtime and dynamically switching to a mining strategy best suited for 

each subset of data being processed. We further develop parallel FPM methods that run 

fast and are scalable on different computer architecture platforms (e.g. cluster of PCs, 

multi-core shared memory servers, multi-core clusters, GPUs). These methods apply our 



12 

 

newly developed sequential mining method, which is described in details in Chapter 2, 

are able to adapt to the data characteristics for best performance on both sparse and dense 

databases. The significance and innovation of our research that are unique and 

distinguished from prior work can be highlighted in: (1) applying a multi-strategy mining 

approach and selecting a suitable one for each data subset upon the detection of data 

characteristics at runtime, (2) maximizing the use of shared memory to reduce data 

communication and load balancing overheads and enhance the mining performance, (3) 

exploiting the properties of the computing platforms on which the FPM tasks are 

deployed to provide mining solutions that can effectively exploit the underlying computer 

architectures. Figure 1-5 depicts an overview of our research that includes five new 

sequential and parallel FPM methods as follows: 

 

Figure 1-5: Proposed high performance FPM methods 

 FEM and DFEM: two novel sequential FPM methods that self-adapt to data 

characteristics for fast performance on different data types. 



13 

 

 ShaFEM: a novel parallel FPM method for multi-core shared memory systems, 

which inherits mining features of DFEM and efficiently exploits the benefits of 

shared memory. 

 SDFEM: a novel parallel FPM method for multi-core clusters that inherits mining 

features of ShaFEM and efficiently exploits the low latency communication via 

shared memory and the scalability of clusters consisting of multiple multi-core 

nodes/servers. 

 CGMM: A novel parallel FPM method for GPU that is an enhancement of FEM 

and utilizes the computing power of both CPU and GPU for the FPM task. 

We have presented our research results at several international conferences and 

some of these results in seven peer-reviewed publications [39], [40], [41], [42], [43], 

[44], [45]   including two journals [42], [44]. 

1.6.1 FEM and DFEM Algorithms 

Recognition that the characteristics of various data subsets within a database vary 

during the mining process is original to our work and the basis on which this research is 

built. We propose a new FPM approach that can detect the data characteristics during 

runtime of mining process and apply a suitable mining strategy for each data subset to 

generate all frequent patterns from these data. We develop two novel sequential self-

adaptive FPM methods, FEM and DFEM based on the proposed methods that perform 

well on both sparse and dense databases. We show that FEM and DFEM outperforms 

(1.02 –  202.43 times faster in our experiments) and consumes less memory than many 

state-of-the-art methods including the well-known algorithms, namely Apriori, FP-

growth and Eclat, for different types of databases. Four publications  [39], [40],  [41], 



14 

 

[42] including one journal paper [42] are among the results of our research for sequential 

FPM, which is presented in details in Chapter 2. 

1.6.2 ShaFEM Algorithm 

We develop ShaFEM, a novel parallel self-adaptive FPM method for multi-core 

shared memory machines (i.e. shared memory MIMD). This method is distinguished 

from the related works in its use of a new efficient parallel lock free method and a new 

data structure called XFP-tree to enhance parallelism, minimize the need for 

synchronization, and improve the cache utilization. In addition, ShaFEM can self-adapt to 

data characteristics at runtime similarly to DFEM. Our results on a 12-core multi-socket 

server show that ShaFEM runs 2.1 - 5.8 times faster and uses 1.7 – 7.1 times less memory 

on both dense and sparse databases compared to FP-array, the state-of-the-art parallel 

FPM method for multi-core shared memory systems. ShaFEM on 12 cores run 6.1 – 10.6 

times faster than its sequential time (i.e. DFEM). This method, published in  [43] and  

[44], is presented in Chapter 3. 

1.6.3 SDFEM Algorithm 

For very large-scale applications whose databases do not fit in the memory of a 

single server, we present a new parallel FPM method named SDFEM for multi-core 

clusters (i.e. shared and distributed MIMD), which runs fast and scales well on modern 

cluster architecture. Some features of SDFEM that make it more advanced than existing 

methods includes: (1) utilizes both shared and distributed memory to take advantage of 

low latency in-node communication; (2) applies multiple load balancing strategies to 

enhance the mining performance and scalability; (3) applies the FPM approach based on 

DFEM to enable SDFEM to work efficiently on different data types. In other words, 



15 

 

SDFEM is a deployment of ShaFEM on multiple nodes of a cluster with many 

enhancements for distributed computing environment of the cluster. In our experiments, 

SDFEM shows its efficiency by increasing the mining speed from 45.4 to 64.8 times on 

10 twelve-core nodes (i.e. 120 cores) of a test cluster compared to its sequential 

execution. We describe SDFEM more details in Chapter 4. Our concepts of combining 

distributed and shared memory programming models for FPM was first introduced in 

[45]. The results of SDFEM have been submitted and is currently under review [46]. We 

are in preparation an extended version of the this research be submitted for publication as 

a journal article. 

1.6.4 CGMM Algorithm 

GPU with massive multi-threaded many-core architecture and SIMT(Single 

Instruction, Multiple Thread; SIMT model of execution on GPU is closely related to 

SIMD from the computational design and performance perspective) execution model 

makes it ideal for data processing. However, developing FPM method that can utilize 

GPU computing benefits is nontrivial. We design and implement CGMM, a new parallel 

FPM method that utilizes the computing power of both CPU and GPU for high 

performance. CGMM inherits FEM, uses GPU to mine dense data subsets of database 

and uses CPU to mine the sparse ones. The computing model of CGMM employs bit 

vector data structure to exploit the GPU's SIMD parallelism and to accelerate mining 

operations. The experimental results show that CGMM runs up to 229 times faster than 

six sequential algorithms on six real datasets. Additionally, CGMM runs 7.2-13.9 times 

faster than GPApriori, a GPU based algorithm for FPM. CGMM is a better option 



16 

 

compared to DFEM when mining with low minsup values. Chapter 5 presents the details 

of this method. The research results will be submitted for publication  [47].  

1.7 Dissertation Overview 

The chapters 2, 3, 4, and 5 of this dissertation present our research including five 

novel FPM methods, related background, priori related works, implementation, 

experimental results and performance analysis of each method. Specifically, Chapter 2 

presents our sequential FPM approach based on data characteristics and two resulting 

FEM and DFEM algorithms. We describe our parallel solutions ShaFEM for multi-core 

shared memory systems and SDFEM for multi-core clusters in Chapters 3 and 4 

respectively. Our FPM method using hybrid GPU and CPU model is presented in Chapter 

5. We introduce a brief review of FPM applications, summarize our research 

contributions and discuss directions for future work in Chapter 6, which is followed by a 

list of references of our study.  



17 

 

 Sequential Frequent Pattern Mining Based on Data Characteristics 

2.1 Introduction 

FPM is an important data mining task for frequent pattern discovery that has been 

applied in numerous applications. However, FPM on databases with large number of 

items and transactions can lead to an explosion in computational time and memory usage. 

This  problem is more challenging when FPM is applied with a small minimum support 

threshold as the requirements of the real-world applications, Google’s query 

recommendation system for example [33]. In such a case, the search space and the 

number of generated frequent patterns can be very large. Therefore, developing scalable 

and efficient FPM methods for effective discovery of frequent patterns from databases 

has been a major focus of research in data mining. 

2.1.1 Motivation 

Several studies have shown that existing FPM methods have typically performed 

fast for certain types of databases. Most methods performed efficiently on either sparse or 

dense databases but poorly on the other [8], [25], [26], [27], [28], [31], [32], [48]. . 

Table 2-1 presents the execution time of three well-known algorithms Apriori [8], 

Eclat [31] and FP-growth [25] on sparse and dense databases. The results shows Eclat 

performs best on dense data while FP-growth runs fastest on the sparse ones (the best 

execution times among the three algorithms are underlined). Because each algorithm 

performs differently on sparse and dense databases, it is difficult to select a suitable 

algorithm for specific applications. In addition, for commercial database systems like 

Oracle RDBMS, MS SQL Server, IBM DBS2 and statistical software like R, SAS and 

SPSS Clementine, which use FPM [49], [50], [51], [52], [53], the database characteristics 



18 

 

vary depending on the real applications on which they are built. For the efficiency of 

these systems and applications of frequent pattern mining, it is essential to have 

algorithms that work efficiently for most database types. 

Table 2-1: Execution time of three algorithms on sparse and dense databases 

Databases Type Minsup 

(%) 

Apriori 

(sec.) 

Eclat 

(sec.) 

FP-growth 

(sec.) 

Chess Dense 20% 1924 77 89 

Connect Dense 30% 522 366 403 

Retail Sparse 0.003% 18 59 10 

Kosarak Sparse 0.08% 4332 385 144 

 

2.1.2 Contributions 

Most databases consist of both sparse and dense data portions that can only be 

detected during the mining process [40]. Applying single mining strategy for FPM, as 

existing methods do, ignores this feature and does not provide best performance for 

different data types. In this chapter, we present a novel high performance approach for 

FPM that can adapt its mining behaviors to the characteristics of databases to efficiently 

find all short and long patterns from various database types. The main contributions of 

our study include: 

1. The recognition of various characteristics of databases and the fact that this 

characteristics may change during the mining process is our original idea. We 

present a novel FPM approach that can detect the data characteristics at various 

stages of the mining process, and select one of the two mining strategies for each 

data subset (Section 2.4). This new FPM approach performs fast on both sparse and 

dense databases. Based on this mining approach, we develop and present two 



19 

 

algorithms FEM (Section 2.5) and DFEM (Section 2.6). DFEM dynamically 

computes the best threshold value to switch its mining strategy best suitable for 

data subset being processed while FEM applies a fix threshold for this purpose. 

2. We suggest optimization techniques for FEM and DFEM implementation in order 

to speed up the mining process, reduce the memory usage and optimize the I/O cost 

(Section 2.7). 

3. We demonstrate the efficiency of FEM and DFEM in both execution time and 

memory usage via benchmarks of our algorithms (FEM [39] and DFEM [40]) with 

six other algorithms Apriori [8], Eclat [31], FP-growth [25], FP-growth* [26], FP-

array [29], AIM2 [32]. The analysis of performance merits of FEM and DFEM is 

also presented (Section 2.8). 

The remaining sections of this chapter, Sections 2.2, 2.3 and 2.9, present 

background, related literature review and our conclusions respectively.   

2.2 Background 

The FPM problem is defined as follows: Let I = {i1, i2,. . . , in} be the set of all 

distinct items in the transactional database D. The support of an itemset α, a set of items, 

is the percentage of transactions containing α in D. A k-itemset α, which consists of k 

items from I, is frequent if α’s support is larger or equal to minsup, where minsup is a 

user-specified minimum support threshold. Given a database D and a minsup, FPM 

searches for the complete set of frequent itemsets in D. For example, given the database 

in Table 2-2 and minsup=20%, the frequent 1-itemsets include a, b, c, d and e while f is 

infrequent because the support of f is only 11%.  Similarly, ab, ac, ad, ae, bc, bd, cd, ce, 

de are frequent 2-itemsets and abc, abd, ace, ade are the frequent 3-itemsets.  



20 

 

FPM requires data to be in transactional format where each data record consists of a 

group of items of the same transaction. For data that originally are not in this format, data 

pre-processing may be required. For example, given a web document database with 

numerous web pages, the data of this database need some pre-processing to turn the web 

pages into transactions and the web page key words into items. The size of the FPM 

problem in such a case can be very large because the web document database can have up 

to billions of transactions and millions, or more, of items. The search space of itemsets is, 

therefore, extremely huge, making the FPM task a computational challenge. Hence, much 

research have focused on developing efficient and scalable heuristics FPM algorithms.   

Table 2-2: A sample dataset and its frequent items with minsup = 20% 

Transaction ID (TID) Items Sorted Frequent Items 

1 b,d,a a,b,d 

2 c,b,d b,c,d 

3 c,d,a,e a,c,d,e 

4 d,a,e a,d,e 

5 c,b,a a,b,c 

6 c,b,a a,b,c 

7 f  

8 b,d,a a,b,d 

9 c,b,a,e,f a,b,c,e 

 

2.3 Related Literature Review 

Most current FPM approaches [8], [25], [26], [27], [28], [31], [32], [48] utilize the 

downward closure property, in which a k-itemset is frequent only if its sub-itemsets are 

frequent, to significantly reduce the search space of frequent itemsets. First, the database 

D is scanned to determine all frequent items (or 1-itemsets) in D based on the minsup 

value. After this step, only data of frequent items are used to determine the frequent 



21 

 

itemsets (i.e. frequent patterns). This considerably reduces the memory usage and 

computation by avoiding a large amount of infrequent data from being loaded into 

memory. Next, the frequent (k+1)-itemsets, initially with k=1, are discovered using 

frequent k-itemsets X of the previous step. For this purpose, the datasets DX which are 

subsets of D and contain frequent items Y co-occurring with X (X   Y = ) are 

retrieved and used to determine the frequency of (k+1)-itemsets. Depending on the 

mining methods being applied, DX can be represented in memory in many different data 

structures such as TID-list [31], Bitmap Vectors [10], FP-tree [25], FP-array [29], etc. or 

even be obtained by re-scanning the original database D from disks as in the Apriori 

method [8]. The characteristics of these data structures and the behaviour of their mining 

methods are quite different which result in different performance for a given database. 

For example, algorithms like Apriori [8], FP-growth [25], H-mine [27], nonordfp [28] 

and FP-array [29] exploit horizontal format of data and perform efficiently on sparse 

databases (e.g. web document data or retail data) while Eclat [31], Mafia [10], AIM2 [32] 

present data in vertical format and run faster on the dense ones (e.g. biological sequence 

data).  These mining methods perform unstably on different data types as demonstrated in 

Table 2-1. Furthermore, the characteristics of data subsets DX used to mine (k+1)-

itemsets can change from very sparse to very dense as the mining task proceeds. Hence, 

applying a suitable mining strategy for each DX is essential to improving the performance 

of FPM. We present Apriori, FP-growth, Eclat and their variants, as key FPM methods 

and discuss their advantages and weaknesses that motivate our research.  



22 

 

2.3.1 Apriori Based Algorithms 

Apriori proposed by Agrawal et al. [8] is a FPM algorithm that is widely used for 

its simplicity. It deploys a breadth-first search to compute the support of k-itemsets 

generated from frequent (k-1)-itemsets. By utilizing the downward closure property that a 

k-itemset is frequent only if all of its sub-itemsets are frequent, Apriori achieves good 

performance by sharply reducing the search space. This algorithm consists of the 

following main steps: 

1. Generate length (k+1)-candidate itemsets by joining two frequent k-itemsets if they 

share a common (k-1)-prefix. 

2. Prune candidate itemsets that contain an infrequent subset 

3. Count to compute the support of candidates and identify the frequent patterns by 

rescanning the database. Infrequent candidates are eliminated and frequent ones are 

reported.  

4. Repeat the above steps with k=k+1 until no more frequent itemsets are discovered. 

The candidate generation-and-test approach of Apriori usually requires huge 

computational time and memory usage when too many candidate itemsets are created. In 

addition, the multiple database scan strategy of Apriori is very I/O intensive when mining 

for large databases and/or long patterns. In spite of its disadvantages, this algorithm is 

considered an important milestone that opened new doors for many FPM and ARM 

applications. For this reason, many variants of Apriori have been proposed to address the 

limitations of Apriori, e.g. direct hashing and pruning (DHP) [54] , sampling technique 

[55], and dynamic itemset counting (DIC) [56], BitApriori [57], and Hybrid Search 

Based Association Rule Mining [58]. Although we do not rely on the mining approach of 



23 

 

Apriori for our proposed work in this chapter, its breadth first search and candidate 

generation-and-test is employed for our parallel GPU based mining strategy presented in 

Chapter 5. 

2.3.2 Eclat Based Algorithms 

Eclat is an efficient FPM algorithm developed by Zaki et al. [31]. This algorithm 

utilizes the TID-list data structure, a vertical data format, for its mining task.  A TID-list 

of an item or itemset is a list that stores all IDs of transactions containing that item or 

itemset. Eclat applies the depth-first approach to search for frequent patterns and needs 

only one database scan. For example, Eclat reports frequent patterns following order d, 

cd, cbd, acd, cb, b, ab, a instead of the order a, b, c, ab, cd, cd, cbd, acd like Apriori, a 

the breath-first solution, does. However, two database scans can be conducted to avoid a 

large database loaded into memory.  

The Eclat algorithm is briefly described as below: 

1. Scan database D once to find all frequent items. 

2. Scan database D a second time to generate the TID-lists of the frequent items. 

3. Join pairs of frequent k-itemsets from the same classes of common k-prefixes to 

generate candidate (k+1)-itemsets. Then, intersect the TID-lists of frequent k-

itemsets to compute the support of (k+1)-itemsets and to specify the frequent 

(k+1)-itemsets. 

4. Recursively repeat step 3 until all frequent itemsets are found. 

In Eclat, the support of an itemset is computed easily without multiple database 

scans as needed in the Apriori approach. Hence, the I/O cost is reduced considerably. 



24 

 

Eclat has been shown to be one of the best algorithms for long patterns and/or dense 

databases [59], [32], [48]. Although this method takes advantage of the candidate 

generation approach, its depth-first search order requires more infrequent itemsets 

generated and tested than Apriori does. As a result, Eclat’s efficiency is reduced for 

sparse databases with short patterns where most itemsets are infrequent. Mafia [10], AIM 

[60], and mining using diffsets [61] are variant approaches using the vertical data format. 

Because of the efficiency of mining dense databases using vertical format, we utilize this 

mining feature as a component of our work for mining the dense data portions. 

2.3.3 FP-growth Based Algorithms 

FP-growth proposed by Han et al. [25] utilizes FP-tree, an extended prefix-tree that 

compresses all transactions of database in horizontal data format in memory, to search for 

the complete set of frequent patterns without the requirement of generating a large 

number of itemsets as Apriori and Eclat do. FP-growth involves the following steps:  

1. Scan database D once to find all frequent items and generate the header table of 

FP-tree 

2. Re-scan database D to collect the frequent items in each transaction and sort them 

in the frequency descending order. If the appropriate node of an item exists, its 

count is increased by one. Otherwise, a new node is inserted in the FP-tree. 

3. Construct the conditional pattern base and the conditional FP-tree of each frequent 

item. These two data structures represent the sub dataset extracted from a FP-tree. 

The frequent items of new conditional FP-tree are combined with the suffix-pattern 

to generate the new frequent itemsets 



25 

 

4. Repeat step 3 on newly generated conditional FP-trees in a recursive manner until 

all frequent itemsets are found. 

Studies have shown that FP-growth outperforms previously developed methods 

including Eclat and Apriori [25], [26], [27], [28], [62]. For some dense databases or 

mining with low minimum support, the number of frequent patterns is very large. For 

each frequent k-itemset, FP-growth creates s set of conditional FP-tree used to find the 

frequent (k+1)-itemsets. Thus, the cost of generating a large number of FP-trees results in 

the degradation of performance. In such cases, FP-growth does not work as well as Eclat 

[32], [48], [60]. The extensions of FP-growth include an array technique to reduce the 

FP-tree traversal time [26], H-mine [27], nonordfp [28], the use of FP-array data structure 

[29] and FP-growth with database partition projection [30]. 

Because each algorithm performs differently on sparse and dense databases, it is 

difficult to select a suitable algorithm for specific applications. For FPM application to 

perform efficiently, it is essential to have algorithms that work well for most database 

types. 

2.4 Self-adaptive FPM Approach Based on Data Characteristics 

This section lays the groundwork for our algorithms. We present our observations 

and analysis of the characteristics of various databases with respect to frequent patterns to 

motivate our new approach. We present a high-level description of our method, the 

relevant data structures used and the data transformation needed to switch between the 

two mining tasks of our approach.  



26 

 

2.4.1 Observation and Analysis 

Most FPM methods work by generating data subsets Dx from the original 

database D and finding all frequent patterns from these data subsets. Studying many real 

databases and their characteristics, we observed that most consist of a group of items 

occurring much more frequently than the others. In the dense databases, most items have 

high frequency and appear in most transactions. In the sparse ones, the ratio of items with 

high frequency is considerably small compared to the total number of items. Data subsets 

DX containing most frequent items have the characteristics of dense data while the ones 

containing less frequent items have characteristics of sparse data. For example, Figure 

2-1 shows the data subsets with itemsets occurring and ending with c, e and ed (marked 

in black) which are extracted from Table 2-2. The data subset of c has highest density 

(i.e. density= (black cells / total cells)*100%) because it has two of the most frequent 

items a, b while the one of e, de is less dense because they contains some less frequent 

items like c, d. In real databases, the density of DX can vary from low to high. 

 

Figure 2-1: The data subsets with itemsets occurring and ending with c, e and de 

In the FP-growth algorithm, the FP-tree is constructed with the nodes of the most 

frequent items on the top because items are added into FP-tree in a frequency descending 

Items a b 

b   

a   

ab   

ab   

ab   

 

Items a b c d 

a,c,d     

a,d     

a,c,b     

 

Items a c 

a,c   

a   

 

data subset of c 

(density = 80%) 

data subset of e 
(density = 66.7%) 

 

data subset of de 

(density = 75%) 



27 

 

order. During the FP-growth mining process, conditional FP-trees (i.e. described in 

Section 2.4.4) are recursively constructed from parent trees. The shape of these FP-trees 

is usually wide for sparse databases and more compact for the dense ones. In either case, 

newly generated trees are much smaller than their parents because the less frequent items 

are trimmed out. Our studies show that the size of these trees reduces to a level where 

mining with alternative data structure and strategy are more efficient. At this level, the 

conditional FP-trees mostly consist of items with high frequencies and have the 

characteristics of small dense databases. Furthermore, these trees can be easily converted 

into vertical data structures that can be used by a mining strategy suitable for dense data. 

Mining these data structures are also more cache-friendly than manipulating the FP-trees 

with linked lists and pointers. We therefore have devised a new mining method that 

employs two mining strategy and dynamically switches between them based on data 

characteristics of DX. 

2.4.2 Data Structures 

FPM is a data intensive task whose data presentation and manipulation have a 

large impact on mining performance. In our mining approach, we apply two main data 

structures: FP-tree and Bit Vector. 

FP-tree is a prefix tree that compacts all sets of ordered frequent items from 

database into memory. This tree consists of a header table storing the frequent items with 

their count, a root node and a set of prefix sub-trees. Each node of the tree includes an 

item name, a count indicating the number of transactions that contain all items in the path 

from the root node to the current node, and a link to its parent node. Each linked list 

starting from the header table links all nodes of the same item. If two itemsets share a 



28 

 

common prefix, the shared part can be merged as long as the count properly reflects the 

frequency of each itemset in the database. Figure 2-2 illustrates an FP-tree constructed 

from the dataset in Table 2-2 where a pair <x:y> indicates item name and its count. 

 

Figure 2-2: FP-tree constructed from the dataset in Table 2-2 

Bit Vector is used to store data in memory using the vertical format in which data 

is presented column-wise and each column is associated with an item. This data structure 

includes item name, count and vector of binary bits associated with an item or itemset. 

The ith bit of this vector indicates if the ith transaction in the database contains that item or 

itemset (1: exist, 0: does not exist). For example, the dataset in Table 2-2 can be 

presented in five bit vectors as in Figure 2-3. The bit vector of the item f is removed 

because this item is infrequent. This structure not only saves memory but also enables 

low-cost bitwise operations for computations. In addition, our mining approach use a 

more compact form of these bit vectors, which reduces computation and memory cost 

even more.   

 

 

 

a:7 

T

 

 

 

 

root 

Header  

table 

a:7 

b:6 

c:5 

d:5 

e:3 
 

b:5 

c:3 

e:1 

d:2 

b:1 

c:1 

d:1 

e:1 e:1 

d:1 

c:1 

d:1 



29 

 

  
 

Bit Vectors 

TID Frequent Items a b c d e 

1 a,b,d  1 1 0 1 0 

2 b,c,d  0 1 1 1 0 

3 a,c,d,e  1 0 1 1 1 

4 a,d,e  1 0 0 1 1 

5 a,b,c  1 1 1 0 0 

6 a,b,c  1 1 1 0 0 

7   0 0 0 0 0 

8 a,b,d  1 1 0 1 0 

9 a,b,c,e  1 1 1 0 1 

Figure 2-3: Bit Vectors constructed from the dataset in Table 2-2 

2.4.3 The Proposed Approach 

We combine two mining strategies: (1) the first strategy applied for sparse data 

subsets presents data as FP-tree and uses a divide and conquer approach to generate 

frequent patterns; (2) the second strategy  used to mine the dense data portions stores data 

into Bit Vectors and performs ANDing bitwise operations on pairs of vectors to specify 

the frequent patterns. It has been shown that while the former works better on sparse data 

[25], [26], [28], the latter is more suitable for dense ones [31], [32], [48]. Our approach 

detects the characteristics of each data subset (not whole database) and applies a suitable 

strategy per data subset dynamically. In general, our approach includes three main 

subtasks as shown Figure 2-4: 

 



30 

 

 

Figure 2-4: Mining model of the proposed mining approach 

FP-tree construction- Database is scanned for the first time to find the frequent 

items and create the header table. A second database scan is conducted to get frequent 

items of each transaction. Then, these items are sorted and inserted into the FP-tree in 

their frequency descending order. During the top-down traversal for tree construction, if a 

node presenting an item exists, its count will be incremented by one. Otherwise, a new 

node is added to the FP-tree. 

MineFPTree- This generates frequent patterns by concatenating the suffix pattern 

of the previous step with each item  of the input FP-tree. Then, it constructs a child FP-

tree for every item   using a data subset (i.e. DX as mentioned in the previous section, 

also called conditional pattern base as described in Section 2.4.4) which is extracted from 

the input FP-tree and consists of sets of frequent items co-occurring with the suffix 

pattern. The new tree is then used as the input of this recursive mining task. This mining 

approach explores data in the horizontal format and does not require generating a large 

number of candidate patterns. It has been shown to perform well on sparse databases. 

However, unlike the related works [25], [26], [28] that perform mining on FP-tree only, 

MineFPTree can switch to the second mining strategy when it detects that the current 

MineBitVector MineFPTree 

FP-Tree 

construction 
FP-tree of 

entire database 

 Bit Vectors of 

a data subset 

 

Is the data subset 

sparse? 

No 

 

Yes 

 
FP-tree of 

a data subset 

Database 

Recursively 

  
Recursively 

  



31 

 

data subset is dense and suitable for a second mining strategy. In this case, the data subset 

is converted into bit vectors and MineBitVector is invoked. A weight vector w whose 

elements indicate the frequency of sets in the conditional pattern base is added as the 

input of MineBitVector. 

MineBitVector generates frequent patterns by concatenating the suffix pattern 

with each item of the input bit vector. It then joins pairs of bit vectors using logical AND 

operation and computes their support using the weight vector to specify new frequent 

patterns. The resulting bit vectors are used as the input of MineBitVector to find longer 

frequent patterns. The mining process continues in a recursive manner until all frequent 

pattern are found. The efficiency of using the vertical data format on dense data has been 

shown in, [10], [31], [32], [48]. MineBitVector is distinguished from the previous works 

because it uses a compact form of bit vectors where the compactness is presented in the 

weight vector described in next section. 

In this dissertation, we use the terms MineFPTree and MineBitVector to refer to 

two different mining strategies as described above. These two strategies are applied in 

our newly developed sequential and parallel FPM methods with some adaptions based on 

target computing platforms. Therefore, each method has its own algorithms for 

MineFPTree and MineBitVector which are distinguished by the algorithm names.   

2.4.4 Constructing Conditional FP-tree and Bit Vectors 

Conditional pattern base- is a "sub-database" that consists of sets of frequent 

items co-occurring with a suffix pattern [25]. Each frequent item of a FP-tree has an 

equivalent conditional pattern base derived from that tree. For example, the conditional 

pattern base of item d, extracted from the FP-tree in Figure 2-2, consists of the 4 sets  



32 

 

{a:2,b:2}, {a:1, c:1}, {a:1} and {b:1, c:1} (Figure 2-5-a.) which has d as the ending item 

in their patterns, {a , b} occurs twice. This base is equivalent to the dataset represented in 

Figure 2-5b.  

 

Figure 2-5: Illustration of FP-tree and Bit Vector construction 

Construction of conditional FP-tree- conditional FP-tree is a FP-tree constructed 

from a conditional pattern base. All frequent patterns mined from such a tree must consist 

of its suffix pattern. In the MineFPTree task, many conditional FP-trees are created using 

conditional pattern bases derived from the original FP-tree or their parent conditional FP-

tree.  Figure 2-5c shows the conditional FP-tree of item d derived from the FP-tree in 

Figure 2-2. 

Construction of Bit Vectors and a Weight Vector- If MineFPTree is selected, the 

conditional FP-tree of item d is constructed as in Figure 2-5c. Otherwise, the bit vectors 

a, b, c and the weight vector w (Figure 2-5d and Figure 2-5e) are created instead to be 

   (a) Conditional                            (b) Dataset equivalent to the   

 pattern base of item d                        conditional base of item d               

{a:2,b:2} 

{a:1, c:1} 

{a:1} 

{b:1, c:1} 

b 
1 
0 
0 
1 

c 
0 
1 
0 
1 

w 
2 
1 
1 
1 

TID Items Frequency 

1 

2 

3 

4 

a,b 

a,c 

a 

b,c 

2 

1 

1 

1 

 

       (c) Conditional FP-tree of item 

d              

a 
1 
1 
1 
0 

a:4 

root 

Header  

table 

a:4 

b:3 

c:2 
 

b:2 b:1 

c:1 c:1  (d) Bit Vectors   (e)Weight vector    



33 

 

used by MineBitVector. The transformation to bit vectors is executed in the following 

steps: 

1. Given a conditional pattern base with sets of n items, create n bit vectors whose 

size are equal to the number of sets and initialized to zero. 

2. For each item in the ith set, set the ith bit of its vector to one. 

3. Repeat step 2 for every available sets in the conditional pattern base. 

Furthermore, each set in a conditional pattern base has a frequency value indicating 

the number of its occurrence. We combine all frequency values into a weight vector 

which is then used to compute the support of items or itemsets. In the given example, the 

weight vector is {2, 1, 1, 1} (Figure 2-5e). Thus, the data structures used in the 

MineBitVector task include a number of TID bit vectors and a weight vector w. 

Transforming a conditional pattern base into bit vectors and a weight vector is 

performed without information loss.  By considering a conditional pattern base as a “sub-

database”, we can represent it in a table with three fields TID, Items and Frequency. For 

example, the conditional pattern base of item d in Figure 2-5a can be presented as a 

dataset in Figure 2-5c. This dataset can be converted into three bit vectors (Figure 2-5d) 

and a weight vector (Figure 2-5e) without information loss because we can reconstruct 

the conditional pattern base from these bit vectors and the weight vector. 

2.4.5 FEM and DFEM Algorithms 

Based on the proposed approach, we introduce two FPM algorithms: FEM and 

DFEM where DFEM is a dynamic version of FEM. The key problem is how to decide to 

switch between MineFPTree and MineBitVector. We address this problem by using a 



34 

 

threshold K as the condition for switching between the two strategies (Section 2.4.6). 

FEM uses a predefined threshold K while DFEM dynamically computes K as 

computation proceeds and adjusts K for optimal switching decisions. Comparison of 

FEM, DFEM, Eclat and FP-growth is shown in Table 2-3.  

Table 2-3:  Comparison of FEM, DFEM, Eclat, and FP-growth 

Features FEM DFEM Eclat FP-growth 

Number of Database Scans 2 2 1 or 2 2 

Search Order 
Depth-

first 
Depth-first Depth-first Depth-first 

Data Structures 
FP-tree & 

Bit Vector 

FP-tree & 

Bit Vector 
TID-list FP-tree 

Format of Data Structures Both Both Vertical Horizontal 

Threshold K Fixed Vary at runtime N/A N/A 

Good Choice when Datasets Both Both Dense Sparse 

Good Choice when Patterns Both Both Long Short 

 

2.4.6 Switching Between Two Mining Strategies 

Effective determination of how and when to switch between the two mining 

strategies is important for our mining approach to perform efficiently on different 

database types. During the mining process of MineFPTree, a large number of new FP-

trees are constructed from their parent trees. A FP-tree is organized in such a way that the 

nodes of the most frequent items are closer to the top. The newly generated trees are 

much smaller than their parents because the less frequent items whose nodes are at 

bottom of the parent trees are removed. The size of a conditional pattern base which is 

used to construct new FP-tree, also reduces to a level where it contains mostly the most 

frequent items. In these cases, the conditional pattern base has the characteristic of a 



35 

 

dense dataset. Therefore, only small conditional pattern bases are considered for 

transforming into bit vectors and weight vector. The size of a conditional pattern base is 

specified by the number of sets in that base which is similar to the number of transactions 

in a dataset. If this size is less than or equal to a threshold K, bit vectors and a weight 

vector are constructed and the mining process switches to MineBitVector. For the FEM 

algorithm, the value of K is manually selected prior to execution and remains fixed while 

for the DFEM, this K is dynamically computed and adjusted during the mining process. If 

K is set to small, most of conditional pattern bases will satisfy the condition to be mined 

with MineFPTree. In contrast, when K is set to a large value, MineBitVector will be 

utilized more to mine the frequent patterns.  

Figure 2-6 illustrates the mining process and the switching between the two 

mining strategies for the dataset in Table 2-2 when K = 3. In this case, only conditional 

pattern base of item d satisfies the condition to be mined with MineFPTree because this 

data subset has 4 sets whose count is larger than 3. All other conditional pattern bases 

have 3 or fewer number of sets and, therefore, are mined with MineBitVector. In Figure 

2-6, (a),(f) is mined using MineFPTree while (b), (c), (d), (g), (h), (j), (k) and (l) are 

mined using MineBitVector. 



36 

 

 

Figure 2-6: The mining progress for the dataset in Table 2-2 with K=3. 

2.4.7 Completeness of The Proposed Approach 

 Lemma 1. Given a transactional database D and a minimum support threshold, a 

mining method combining MineFPTree and MineBitVector generates a complete set of 

frequent patterns in the database D. 

 Proof. If no conditional pattern base satisfies the condition for the mining process 

to switch to MineBitVector, the proposed method continues with FP-growth to generate 

the complete set of frequent patterns because only the MineFPTree task is used to find 

the frequent patterns in the database D. Given a conditional pattern base, whether it is 

used to create conditional FP-tree for MineFPTree or is transformed into TID bit vectors 



37 

 

for MineBitVector, the new frequent patterns found in either case are identical because of 

the integrity of data transformation and the completeness of FP-growth and Eclat. Hence, 

our method guarantees to generate a complete set of frequent patterns in D. 

2.5 FEM Algorithm 

2.5.1 Algorithmic Description 

The FEM algorithm uses the method described in Section 2.4 and includes three 

sub algorithms: FEM (Figure 2-7), MineFPTree1 (Figure 2-8) and MineBitVector1 

(Figure 2-9). FEM first constructs the FP-tree from the database and then calls 

MineFPTree1 to start searching for frequent patterns and dynamically switch to 

MineBitVector1 if appropriate. We recommend to use a default value K=128 (Line 3) 

upon our analysis in Section 2.5.2. 

FEM algorithm 

Input: Transactional database D and minsup 

Output: Complete set of frequent patterns  

1:    Scan D once to find all frequent items 

2:    Scan D a second time to construct the FP-tree T 

3:    K = 128 

4:    Call MineFPTree1(T,,minsup) 

Figure 2-7: FEM algorithm 

  MineFPTree1 algorithm (Figure 2-8) includes steps to perform the MineFPTree 

task described in Section 2.4. Line 6 in Figure 2-8 is a traversal of FP-tree T to specify 

the conditional pattern base of item α.The size in line 7 uses the number of nodes in the 

linked list of item α to present the size of the conditional pattern base. This size can be 

either computed during the execution of the task in Line 6 or during the construction of a 

FP-tree. Lines 8-14 show the switching between two mining tasks: 

 



38 

 

 MineFPTree1 algorithm 

Input: Conditional FP-Tree T, suffix, minsup 

Output: Set of frequent patterns  

1:    If T contains a single path P 

2:    Then For each combination x of the items in T 

3:                 Output  = x  suffix 

4:    Else For each item  in the header table of T 

5:    {    Output  =  suffix   

6:          Construct 's conditional pattern base C 

7:          size = the number of nodes in the linked list of  

8:          If size>K 

9:          Then {  Construct 's conditional FP-tree T’  

10:                      Call MineFPTree1(T’,,minsup)} 

11:        Else  {  Transform C into TID bit vectors V 

12:                                             and weight vector w 

13:                      Call MineBitVector1 (V,w,,minsup) } 

14:    } 

Figure 2-8: MineFPTree1 algorithm 

MineBitVector1 algorithm (Figure 2-9) performs the MineBitVector task 

described in Section 2.4. It recursively use MineBitVector1 until no new frequent 

patterns are found. In order to specify whether all uj in U are identical to vi as in Line 9, 

we count the number of uj whose support is equal to vi. 

 

  



39 

 

MineBitVector1 algorithm 

Input: Bit vectors V, weight vector w, suffix, minsup 

Output: Set of frequent patterns  

1:    Sort V in support-descending order of their items  

2:    For each vector vi in V 

3:    {     Output  = item of vi  suffix 

4:           For each vector vj in V with j < i 

5:           {    uj = vi AND vj 

6:                supj = support of uj computed using w 

7:                If supj  minsup Then add uj into  U 

8:            }  

9:            If all uj in U are identical to vi 

10:          Then For each combination x of the items in U  

11:                          Output ’ = x 

12:          Else If U is not empty 

13:          Then Call MineBitVector1(U,w,,minsup)     

14:    } 

Figure 2-9: MineBitVector1 algorithm 

2.5.2 Selecting Threshold K 

 

We investigate the impact of varying values of K on various databases in this 

section. Selecting a good value of K also depends on the minimum support specified by 

the user. This raises the question of how to select a good value of K without testing all 

possible values?. To answer this question, we conduct an experiment from which we 

suggest a “good” default value of K for FEM. In this experiment, we measure the 

performance of FEM on eight real datasets for varying values of K. The eight datasets 

selected for these test cases consist of a mix of four dense, three sparse and one moderate 



40 

 

to represent a variety of database characteristics. The detailed characteristics of these 

datasets are presented in Table 2-5 (Section 2.8.1). Values of K are selected in the range 

of 0-256 as multiples of 32 so that the maximum size of TID bit vectors are also 

multiples of 32 (4 bytes) for optimal memory utilization. Figure 2-10 indicates the 

running time of FEM on every dataset for varying values of K. 

As shown in the results, FEM performs better with K in 32 – 128 range for seven 

of the datasets. For the Kosarak dataset, FEM performs best with a value of K in 128 – 

256 range. These reflect the execution time with the selected minsup values. Based on 

extensive tests not presented here, we observed that when minsup varies, the range of K 

for each dataset to produce best performance also changes but it remains within the 

overall range of 0 – 256. For this reason, we recommend K=128 as a default value for 

good performance on various databases and different minsup values. For K=128, the 

maximum size of a TID bit vector is 128 bits (16 bytes.) This is smaller than or equal to 

the size of FP-tree with many nodes where size of each node needs at least 16 bytes for 

item name (4 bytes), count (4 bytes), a link to parent node (4 bytes) and a link to the next 

node of its linked list (4 bytes). The total memory size of all TID bit vectors is therefore 

not greater than the number of items in the conditional pattern base multiplied by 16 

bytes. This data structure requires much less memory space than an equivalent 

conditional FP-tree does. Furthermore, the bitwise operations on TID bit vectors will 

perform faster than creating and manipulating FP-trees. 



41 

 

 

Figure 2-10: Running time of FEM with different values of K 

 

 

 



42 

 

2.6 DFEM Algorithm 

DFEM is a major improvement of FEM. Unlike FEM, it computes the value of K at 

runtime as mining proceeds to determine a more near optimal switch point between 

MineFPTree and MineBitVector [40]. 

2.6.1 Adopting Dynamic Threshold K 

In FEM, a K value of 128 performs well on many databases. However, K=128 

does not guarantee the best performance on all types of data.  The second column in 

Table 2-4 shows the runtime of FEM for Kosarak dataset with different values of K and 

minsup=0.07%. As can be seen, for K=224, the running time of FEM is 871 seconds, 

significantly faster than its running time of 1206 seconds for K=128. This execution time 

difference becomes significantly larger when the minimum support threshold (minsup) is 

set to lower levels as required by many applications such as Google’s query 

recommendation [33]. Therefore, it is important to try to find the best possible value of K 

dynamically as the program runs on a specific database with the required minsups to gain 

near-optimal performance. However, finding this value of K cannot incur overhead to 

offset the resulting performance gain. 

In Table 2-4, when K increases, the number of frequent patterns found solely by 

the MineFPTree task reduces because more of the mining workload is shifted to 

MineBitVector. Let {K0, K1,…Kn} be the set of K values where Ki= Ki-1+32. Denote by Pi 

the number of frequent patterns generated by MineFPTree using the threshold value Ki, 

and Ri the ratio Pi-1 to Pi, defined as: 

 Ri = Pi-1/Pi       , i = 1…n       (2-1) 



43 

 

To study the impact of varying Ki and its relationship to Ri, we ran numerous 

experiments on many datasets. Our empirical study indicates that the best Ki is one 

satisfying:  

Ri<2  (∄ Rj  2, j > i)  (2-2) 

In other words, FEM will perform best (near optimal) at the smallest Ki where 

increasing K does not result in a sharp drop in the number of frequent patterns found by 

MineFPTree.  

Table 2-4: Measurements of FEM for Kosarak (minsup=0.07%) 

Thres. Ki 
Running time 

(second) 

# patterns by the 

MineFP-tree task ( Pi ) 
Ratio Ri 

0 3341 2776266097 N/A 

32 2939 1316339679 2.1 

64 2146 206479285 6.4 

96 1664 26795140 7.7 

128 1206 2413815 11.1 

160 1005 407051 5.9 

192 934 86575 4.7 

224 871 63876 1.4 

256 870 58304 1.1 

 

In the example shown in Table 2-4, the Ki value of 224, of which the running time 

is 871 seconds, satisfies the condition (Eq. 2-2). This result is promising. However, the 

challenge is that such a value of Ki can only be determined after the mining process 

completes and all Pi’s and Ri’s have been computed. We have developed a practical 

heuristics method to predict a near optimal value of K. The prediction is based on all Pi‘s, 



44 

 

which are estimated dynamically at runtime, and is described in the UpdateK1 algorithm 

(Figure 2-11). 

UpdateK1 algorithm 

Input: NewPatterns and Size 

Output:  updated value of threshold K 

1:   newK = 0 

2:   P[0] = P[0] + NewPatterns 

3:   For i = 1 to N – 1 step 1 

4:   {  If Size >i*Step 

5:      {   P[i] = P[i] + NewPatterns 

6:           If P[i-1] >= 2* P[i] Then newK = (i+1)*Step 

7:       } Else Exit Loop          

8:   }  

9:   i = K/Step - 1 

10: If  (i>0 AND P[i-1]  < 2*P[i] ) Then K = 0 

12: If newK > K Then  K = newK 

Figure 2-11: UpdateK1 algorithm 

In this algorithm, K is the global threshold initialized to zero; N is the number of 

different threshold values, Ki, i=1…N, to be considered (N is set to 9 by default); Step is 

the distance between Ki and Ki-1 (Step is set to 32 by default) and P[N] is an array. The ith 

element of P, Pi, stores the number of frequent patterns generated by MineFPTree using 

the threshold Ki. All Pi’s are initialized to zero and are regularly updated using UpdateK1 

each time a new conditional pattern base is processed. K is then set to the new value 

newK that satisfies the condition (Eq. 2-2). The UpdateK1 algorithm is described in 

Figure 2-11; NewPatterns indicates the number of new frequent patterns and is equal to 

the number of items in C (conditional pattern base); Size is the size of C. Instead of all the 

Ki values in [1:N], we check only Ki of {0, 32, 64, … N} for two reasons: (1) to reduce 



45 

 

the number of computations and (2) to have a good match with most machine’s word and 

cache block sizes because the bit vectors of MineBitVector are presented as arrays of 32 

bit words.  

2.6.2 Algorithmic Description 

The DFEM algorithm uses UpdateK1 (Figure 2-11) to dynamically compute a 

value of K at runtime that provides a more optimal decision point to switch between the 

mining strategies best matching the characteristics of processed data. DFEM (Figure 

2-12) consists of UpdateK1 (Figure 2-11), MineFPTree2 (Figure 2-13) and 

MineBitVector1 (Figure 2-8). The MineBitVector1 algorithm of DFEM is similar to that 

of FEM. DFEM builds the FP-tree, initializes the variables used by UpdateK1 and 

invokes MineFPTree2. The variables in Lines 3 must be declared in a scope that 

UpdateK1 can access and update. Line 6 is used to set all elements of P[N] to the number 

of frequent items in the database D. This step is essential for the stability of the DFEM 

algorithm. 

DFEM algorithm 

Input: Transactional database D and minsup 

Output: Complete set of frequent patterns  

1:    Scan D once to find all frequent items 

2:    Scan D a second time to construct the FP-tree T 

3:    N = 9, Step = 32, K = 0 

4:    Create P[N] and set all elements to zero 

5:    items = the number of frequent items in D 

6:    Call UpdateK1(items, N*Step) 

7:    Call MineFPTree2(T,,minsup) 

Figure 2-12: DFEM algorithm 



46 

 

 MineFPTree2 is similar to MineFPTree1 except that it uses UpdateK1 to 

regularly update K (lines 4-5, 11-13).  

MineFPTree2 algorithm 

Input: Conditional FP-Tree T, suffix, minsup 

Output: Set of frequent patterns  

1:  If FP-tree T contains a single path P 

2:  {    For each combination x of the items in P 

3:        {   Output  = x  suffix  } 

4:        n = the number of outputs  

5:        Call UpdateK1 (n,1)                                  }     

7:  Else 

8:  {    For each item  in the header table of FP-tree T 

9:     {   Output  =  suffix   

10:          Construct 's conditional pattern base C 

11:          n = the number of items in C 

12:          size = the number of nodes in the linked list of  

13:          Call UpdateK1 (n,size) 

14:          Ifsize >K    Then  

15:          {   Construct 's conditional FP-tree T’  

16:               Call MineFPTree2(T’,,minsup)   } 

17:          Else 

18:          {   Transform C into TID bit vectors V 

19:                                       and weight vector w 

20:               Call MineBitVector1(V,w,,minsup) } 

21:      }  

22: } 

Figure 2-13:  MineFPTree2 algorithm 



47 

 

2.7 Optimizing FEM and DFEM  

The mining strategies and their data structures are the most important elements that 

decide the performance of a frequent pattern mining algorithm. The architecture of the 

machine on which a frequent pattern mining program runs also has a significant impact 

on its runtime. It is essential to have implementation techniques that not only reduce the 

computational time of the CPU but also optimize the usage of cache, memory and I/O. In 

this section, we present a combination of optimization techniques that we have 

incorporated in the implementation of FEM and DFEM.  

FP-tree construction- In the second database scan, FEM and DFEM pre-load the 

frequency descending sorted sets of frequent items into a lexicographically sorted list, a 

variant of the optimization suggested in [62]. One copy of similar transactions is kept 

with its count. For very large databases, the transaction list size is set at runtime to fit the 

available memory. We organize this list in a binary tree and maintain its order while the 

list grows in size. When its size limit is reached, the sets of frequent items and their 

counts are extracted from the list one by one to build the FP-tree. Therefore, the 

construction time of FP-tree is significantly reduced because similar itemsets are added 

into FP-tree only once. Moreover, the lexicographical order of the transaction list makes 

the FP-tree nodes most visited together to be allocated close together in memory 

optimizing the use of cache and speeding up the mining stage as well. 

FP-tree mining task- We improve the technique proposed in [26] to implement an 

additional array associated with each FP-tree to pre-compute the count of new patterns. It 

helps to reduce the traversal cost of parent FP-trees when constructing the child FP-trees. 

The resulting performance improvement is due to maximizing locality of consistent 



48 

 

memory access patterns. However, for the trees with large number of frequent items, the 

array size is very large which consequently consumes a large amount of memory and 

increases the execution time. Therefore, we only enable this technique in FEM and 

DFEM whenever the array size does not grow beyond a predefined limit; default value is 

64KB.  

Memory management- For better memory utilization, large chunks of memory are 

allocated to store data of all FP-trees and bit vectors similar to the technique used in [26]. 

When all frequent patterns from a FP-tree or bit vectors and their child FP-trees or bit 

vectors have been found, the storage for these data structures are discarded. The chunk 

size is variable. This technique minimizes the overhead of allocating and freeing small 

pieces of data and prevents data scattered in memory. 

Output processing- The most frequent output values are pre-processed and stored in 

an indexed table as proposed in [32]. In addition, the similar part of two frequent itemsets 

outputted consecutively is processed only once. This technique considerably reduces the 

computational time on output reporting, especially when the output size is large.  

I/O optimization- Data are read into a buffer before being parsed into transactions. 

Similarly, the outputs are buffered and only written when the buffer is full. This 

technique reduces much of the I/O overhead.  

2.8 Performance Evaluation 

We present three experiments using eight datasets to evaluate performance and 

efficiency of FEM and DFEM and compare them to six other efficient algorithms. These 

experiments include an execution time comparison, a memory usage comparison and an 



49 

 

analysis of the reason for performance merits of FEM and DFEM for different types of 

databases. 

2.8.1 Experimental Setup   

Datasets: A total of eight real datasets with various characteristics and domains 

were selected. They include four dense, three sparse and one moderate datasets and are 

publicly available at the Frequent Itemset Mining Implementations Repository [59], a 

well-known data repository for benchmarking FPM methods. The datasets are reported in 

Table 2-5 and further described in Table 2-6. 

Table 2-5: Experimential datasets and their properties 

Datasets Type # Items 
Average 

Length 

# 

Transactions 

Chess Dense 76 37 3196 

Connect Dense 129 43 67557 

Mushroom Dense 119 23 8124 

Pumsb Dense 2113 74 49046 

Accidents Moderate 468 33.8 340183 

Retail Sparse 16470 10.3 88126 

Kosarak Sparse 41271 8.1 990002 

Webdocs Sparse 52676657 177.2 1623346 

 

Software: A total of eight algorithms were benchmarked: FEM, DFEM and six 

frequent pattern mining algorithms: Apriori [8], Eclat [31], FP-growth [25], FP-growth* 

[26], FP-array [29], AIM2 [32]. FEM and DFEM are implemented using our proposed 

methods and the optimization techniques introduced in Section 2.7. We used the 

implementations of Apriori, Eclat, FP-growth by Borgelt [63] as they are the state-of-art 

implementations of these algorithms. FP-growth* is an optimized version of FP-growth 

that applies an array technique to reduce FP-tree traversal time. FP-array is an 

improvement of FP-growth* that implements the data structure of FP-tree in the form of 



50 

 

arrays. AIM2 is an improvement of Eclat [61] and a combination of many optimization 

techniques. 

Table 2-6: Descriptions of the experimential datasets 

Datasets Descriptions 

Chess Chess Endgame data  

Connect All legal positions in the game of connect-4 

Mushroom Samples of 23 species of gilled mushrooms data 

Pumsb Census population and housing data 

Accidents Traffic accident data 

Retail Retail market basket data 

Kosarak On-line click-stream data 

Webdocs Web document data 

 

Hardware: The eight algorithms were tested on an Altus 1702 machine with dual 

AMD Opteron 2427 processor, 2.2GHz, 24GB memory and 160 GB hard drive. The 

operating system is CentOS 5.3, a Linux-based distribution. We use g++ for compilation.  

2.8.2 Execution Time Comparison 

The execution time of eight algorithms on eight datasets with various minsup are 

presented in Figure 2-14. The experimental results show that FEM and DFEM run stably 

and outperform the others in almost all cases, while the other algorithms behave 

differently for different datasets. Apriori runs slowest on eight datasets but it does better 

than FP-growth* and FP-array for two dense datasets, Chess and Mushroom. For Retail 

the sparse dataset, Apriori has longer execution time compared to FEM, DFEM and FP-

growth but runs faster than the others (Eclat, AIM2 and FP-array). Eclat performs better 

than all except AIM2, FEM and DFEM on the dense datasets. However, for sparse 

datasets such as Retail and Kosarak, Eclat runs slower than all except Apriori. Compared 

to Eclat, three algorithms FP-growth, FP-growth* and FP-array run faster for the dense  



51 

 

 
Figure 2-14: Time comparison of FEM and DFEM with other algorithms 

 

 
 

 

 
 

 
 
 

0

25

50

75

100

50 40 30 20

T
im

e 
(s

ec
o

n
d

s)

Minsup (%)

Chess (dense)

0

200

400

600

800

60 50 40 30

Ti
m

e 
(s

ec
o

n
d

s)

Minsup (%)

Connect (dense)

0

40

80

120

160

200

80 70 60 50

Ti
m

e
 (

se
co

n
d

s)

Minsup (%)

Pumsb (dense)

0

25

50

75

100

3.5 2.5 1.5 0.5
Ti

m
e

 (
se

co
n

d
s)

Minsup (%)

Mushroom (dense)

0

50

100

150

200

9 7 5 3

Ti
m

e
 (

se
co

n
d

s)

Minsup (%)

Accidents (moderate)

0

10

20

30

40

0.015 0.011 0.007 0.003

Ti
m

e 
(s

ec
o

n
d

s)

Minsup (%)

Retail (sparse)

0

800

1600

2400

3200

0.1 0.09 0.08 0.07

Ti
m

e 
(s

ec
o

n
d

s)

Minsup (%)

Kosarak (sparse)

0

5000

10000

15000

20000

10 8 6 4

Ti
m

e 
(s

ec
o

n
d

s)

Minsup (%)

Webdocs (sparse)

FEM DFEM Apriori Eclat
FP-growth FP-growth* FP-array AIM2



52 

 

datasets but slower for the sparse ones. AIM2, a variant of Eclat, performs well for some 

dense and sparse datasets but worse for others. 

Based on the execution times in this experiment, we found that FEM and DFEM 

run faster than Apriori - most commonly used ARM method- from 3.4 to 202.43 times. In 

comparison to Eclat and AIM2 whose mining approach use vertical data format, our 

algorithms run from 1.02 to 45.3 times faster. Our algorithms performed 1.2 to 23.4 times 

better than FP-growth, FP-growth* and FP-array which are among the best methods for 

ARM. This experiment demonstrates the efficient performance of FEM and DFEM for 

both sparse and dense data. 

2.8.3 Memory Usage Comparison 

In order to evaluate the memory usage of FEM and DFEM, we measure their peak 

memory usage in comparison to the other six algorithms for the eight datasets by using 

the memusage command of Linux. Table 2-7 shows the memory usage of all algorithms 

for the test cases with low minimum supports so that the result can better reflect the large 

difference in memory usage among different algorithms. As in Table 2-7, FEM and 

DFEM, (in bold), consume much less memory than Apriori in every case. Their memory 

requirements are closer to the average memory usage of Eclat and FP-growth in most 

cases. For the Accidents and Connect dataset, our algorithms use less memory than both 

Eclat and FP-growth. For Chess dataset, FEM and DFEM need slightly more memory 

because our implementation includes some additional buffers to enhance performance. 

However, these buffers have fixed size and do not require much memory. Compared to 

FP-growth*, FEM and DFEM require more memory for the dense datasets but less 

memory for the sparse ones. In contrast, compared with FP-array, the memory usage of 



53 

 

FEM and DFEM is smaller for the dense datasets but larger for the sparse cases. The 

memory usage of AIM2 is smallest in most cases. However, the memory usage of AIM2 

for Webdocs, where memory optimization is critical due to its large memory 

requirements, is a significantly lager than the others.  

To sum up, the two experiments show that FEM and DFEM not only significantly 

improve the mining performance and outperform the existing “efficient” algorithms for 

both sparse and dense datasets they also compare well in memory requirements. Their 

memory consumption is much less than Apriori and FP-growth and is on average on par 

with the other algorithms. These results demonstrate the efficiency and efficacy of our 

algorithms. DFEM performs better than FEM, especially when minsup is low. Therefore, 

for mining applications that requires low minsup [33], DFEM is a better choice. 

Table 2-7: Peak memory usage (megabytes) of FEM, DFEM and other algorithms 

Datasets Minsup 

F
E

M
 

D
F

E
M

 

A
p

ri
o
ri

 

E
cl

a
t 

F
P

-G
ro

w
th

 

F
P

-G
ro

w
th

*
 

F
P

-a
rr

a
y
 

A
IM

2
 

Chess 20% 4 4 1139 2 3 3 33 1 

Connect 30% 11 11 31 13 16 2 43 3 

Mushroom 0.5% 4 4 20 3 5 2 33 1 

Pumsb 50% 15 15 921 15 15 6 46 10 

Accidents 3% 181 181 368 232 305 198 154 40 

Retail 0.003% 30 30 1203 25 33 350 59 32 

Kosarak 0.07% 141 141 16406 138 154 160 133 130 

Webdocs 4% 4707 4707 24576 3996 5103 5581 4256 7544 

 



54 

 

2.8.4 Impact of Applying Two Mining Strategies 

To study the performance merit of our mining approach, we measured the mining 

time of our approach in three separated cases. The first case (Case 1), only MineFPTree 

is applied to generate the complete set of frequent patterns while MineBitVector is 

disabled (setting K=0 in FEM and DFEM). The second case (Case 2), only 

MineBitVector is used. The third case (Case 3) use both strategies by dynamically switch 

between MineFPTree and MineBitVector (our proposed approach). The results for DFEM 

on both dense and sparse data (Figure 2-15) show that it performed better than the cases 

where single mining strategy was used. Because the results for FEM were close to that of 

DFEM, only results for DFEM are presented here. For example, by applying both 

MineFPTree and MineBitVector DFEM runs 2.1 – 8.9 times faster for Chess dataset and 

4.7 - 6.4 times faster for Kosarak when compared with the cases of using single mining 

strategy (Figure 2-15). This is explained by the ability of DFEM to select the suitable 

strategy (i.e. either MineFPTree or MineBitVector) for each subset of data being mined 

based on their characteristics. In Case 1, MineFPTree is applied to mine all data subsets 

although it is only suitable for sparse datasets. Performance loss occurs when 

MineFPTree mines the dense data subsets. In Case 2, all data subsets are mined using 

MineBitVector which is more suitable for dense data subsets. As a result, the performance 

loss occurs when it mines the sparse data portions. DFEM applies both mining strategies; 

it selects MineFPTree for the sparse and MineBitVector for the dense portions to improve 

the overall performance. It is important to note that data characteristics of mining data 

vary as minsup changes. For both Chess and Kosarak, Case 1 runs faster than Case 2 for 

the larger minsup values but slower for smaller minsup. This is because when minsup 



55 

 

value is reduced, more frequent patterns are generated and the number of small dense 

data subsets to be processed will be larger than the number of sparse data subsets making 

MineBitVector a more suitable option. In such a case, using MineFPTree only (Case1) 

not only result in a large performance loss but also it will perform worse than using 

MineBitVector only (Case 2). DFEM can detect the change of data characteristics to 

balance the use of its two mining strategies and hence run faster and stably for various 

minsup values. 

 

 

 

 

Figure 2-15: Running time of using single mining strategy vs. using both 

To provide insight into the performance merits of FEM and DFEM, running times 

of MineFPTree and MineBitVector are measured separately to observe the contribution of 

each mining task to the final performance. Figure 2-16 presents the result of this 

experiment for three datasets Chess (dense), Accident (moderate) and Webdocs (sparse). 

Because the time of FEM and DFEM are not much different for these datasets, we used 

one set of charts to present the running time distribution. The results show that 

MineBitVector is responsible for 93% - 99% of the mining time for the dense dataset 

Chess. This is because the shape of the FP-tree of dense datasets is usually compact and 

0

400

800

1200

1600

25 20 15 10 5

M
in

in
g

 ti
m

e 
(s

ec
o
n

d
s)

Minsup (%)

Chess (dense)

0

800

1600

2400

3200

0.09 0.085 0.08 0.075 0.07

M
in

in
g

 T
im

e 
(s

ec
o
n

d
s)

Minsup (%)

Kosarak (sparse)

MineFPTree only BitVector only MineFPTree + MineBitVector



56 

 

most conditional pattern bases satisfy the condition to switch from MineFPTree to 

MineBitVector. In contrast, for the very large and sparse dataset Webdocs, MineFPTree 

is responsible for 90% - 99% of the mining time because many large FP-trees are 

generated and most of them do not satisfy the switching condition. For the Accidents 

dataset whose density is moderate, the running time distribution of FEM and DFEM is 

balanced between the two mining strategies. We found that this running time distribution 

pattern of dense, moderate and sparse datasets is consistent for the other datasets as well. 

It must be noted that the running time distribution does not indicate the amount of work. 

In fact, MineBitVector, by using faster bitwise operations and more cache-friendly data 

layout, will process larger amounts of data than FP-Tree mining does in the same unit of 

time. 

The running time distribution changes when minimum support varies. When the 

minimum support is set to lower levels, the FP-tree constructed from the original dataset 

is larger with more branches of new frequent items added to the bottom of the tree. These 

branches are usually small if the minimum support is very low. As a result, more small 

conditional FP-trees are generated which satisfy the condition to switch from 

MineFPTree to MineBitVector. This explains why the running time percentage of 

MineBitVector increases as the minimum support is reduced (Figure 2-16). In conclusion, 

FEM and DFEM have the ability to switch between strategies at runtime by distributing 

the mining workload to the appropriate mining strategy that fit the characteristics of the 

database being processed. 

  



57 

 

 

 

 

 

Figure 2-16: Running time distribution of two mining strategies in DFEM 

 

97%

99%

99%

0

5

10

15

20

25

30

35

50 45 40 35 30 25 20

M
in

in
g
 ti

m
e 

(s
ec

o
n

d
s)

Minsup (%)

Chess (dense)

MineFPTree

MineBitVector

48% 51% 55%
61%

67%

62% 56%
52%

49%
45%

39%

33%

0

25

50

75

100

9 8 7 6 5 4 3

M
in

in
g

 ti
m

e 
(s

ec
o
n

d
s)

Minsup (%)

Accidents (moderate)

MineFPTree

MineBitVector

99%

97%

90%

0

2000

4000

6000

8000

10 9 8 7 6 5 4

M
in

in
g
 ti

m
e 

(s
ec

o
n

d
s)

Minsup (%)

Webdocs (sparse)

MineFPTree

MineBitVector



58 

 

2.9 Conclusion 

FEM and DFEM are two novel FPM algorithms that run fast and save memory on 

both sparse and dense databases by applying our data characteristics based approach. We 

have introduced a combination of several optimization techniques for FEM and DFEM to 

further enhance their performance. The experimental results show that FEM and DFEM 

significantly improve FPM performance and outperform previous developed efficient 

algorithms on both sparse and dense databases. In addition, they consume much less 

memory than Apriori and FP-growth. Of the two, DFEM runs faster in most test cases. 

The proposed methods presented in this chapter are not limited to efficient sequential 

FPM, it is important that they can be used as the base mining strategies for our parallel 

FPM methods presented in Chapters 2, 3 and 5. 

  



59 

 

 Parallel Frequent Pattern Mining on Shared Memory Multi-core Systems 

3.1 Introduction 

In Chapter 2, two new effective and efficient sequential FPM methods, FEM and 

DFEM, were described and analyzed. Although these methods provide better 

performance than the compared sequential methods  [8],  [25],  [26],  [29], [31],  [32], 

their sequential execution time is large when mining large databases or with small minsup 

input values due to the computational intensive nature of FPM. Parallel computing 

provides much needed computing power for which new FPM algorithms can be designed 

to speed up the FPM mining computation. We present in this chapter our parallel FPM 

solution for machines that have multiple cores where cores share single memory space 

(i.e. shared memory MIMD). 

3.1.1 Motivation 

For a data intensive problem like FPM, efficient use of memory can dramatically 

speed up the execution time [29]. However, most existing parallel FPM algorithms under-

utilize the benefits of shared memory as they are mostly designed to use only the 

distributed memory programming model  [33], [34], [35], [36],  [37],  [38]. This is 

usually attributed to the ability to run applications developed for a distributed memory 

environment on shared memory platform. The opposite is not easily accomplished. 

Recent surveys  [34], [35] show that very few studies are conducted on parallel FPM 

algorithms for shared memory multi-core computers although they constitute the compute 

node of high-end HPC machines. None of existing parallel FPM work take into account 

the data characteristics to improve the performance for different database types and based 

on the data characteristics of datasets being mined. 



60 

 

3.1.2 Contributions 

To address these issues, we develop ShaFEM, a novel parallel method for mining 

frequent patterns that performs efficiently on multi-core shared memory systems. In 

ShaFEM, we employ the mining approach of DFEM (Chapter 2) and redesign the way 

that data are processed so that we can best utilize the available shared memory to obtain 

high performance of FPM on sparse and dense databases. We develop a new data 

structure, XFP-tree, to enhance the locality of data processed by multiple cores in the 

system. The main contributions of this work are: 

1. ShaFEM is a new efficient parallel lock free approach that applies newly developed 

data structures to enhance independence of parallel processes, minimize 

synchronization and improve cache utilization (Section 3.4). Its dynamic job 

scheduling for load balancing enhances CPU utilization and scalability of FPM on 

multi-core shared memory systems. This is an important contribution because 

FPM, which has many dependent subtasks, unpredictable workload and complex 

data structures, is a challenging HPC problem. 

2. A new XFP-tree data structure designed to enhance parallelism provides 

independence between parallel processes where they work on their sub datasets 

(Section 3.5); independently and dynamically switch between two mining 

strategies (one suitable for sparse and the other suitable for dense datasets), 

allowing for more accurate and optimal switch decisions (Section 3.6). 

3. We demonstrate the efficiency of ShaFEM by conducting intensive experiments to 

benchmark ShaFEM and other state-of-the art FPM methods. An in-depth analysis 

of ShaFEM performance characteristics is conducted and presented (Section 3.7). 



61 

 

3.2 Background 

3.2.1 Architecture of Multi-core Shared Memory System 

Multi-core architectures are equipped with multi-core processors where each 

processor (also referred to as chip or socket) consists of two or more cores. The number 

of cores typically varies from 2 to 8 in low-end machines (e.g. mobile devices, PCs, etc.) 

and from 4 to 64 in high-end computers (e.g. multi-core multi-socket servers) where the 

system memory is shared. Each core in a processor can independently execute a process 

or thread belonging to a parallel program (or independent jobs). All cores of the systems 

access the same memory space. Large servers usually include two or more sockets 

connected via very high speed interconnection network. The memory access methods in 

these systems may be either UMA (Uniform Memory Access) or NUMA (Non-Uniform 

Memory Access) [64]. Figure 3-1 demonstrates a 12-core shared memory system 

equipped with dual 6-core sockets; cores of a socket have private L1/ L2 cache and share 

L3 cache. The twelve cores share the system memory. 

 

Figure 3-1:  Architecture of multi-core shared memory system 

 

 

     Socket 1          Socket 2 

  

Memory 

L3 Cache 

L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 

Core Core Core Core Core Core 

L3 Cache 

L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 

Core Core Core Core Core Core 



62 

 

3.2.2 Parallel Programming Models for Multi-core Shared Memory Systems 

In order to leverage the computing power of multi-core shared memory systems, 

the parallel programs must have the ability of creating processes, partitioning and 

assigning the workload to processes so that they can cooperatively execute on multiple 

cores. The two most commonly used programming models in development of parallel 

programs for these systems are shared-memory programming and distributed-memory 

programming models. 

Shared memory programming model- parallel programs of this model create a 

group of threads/processes to execute concurrently the parallel code regions on many 

cores/processes. Their threads/processes access same memory address space. This model 

has two advantages. First, it enables low latency and transparent data communication 

between parallel execution units (i.e. threads or processes) using shared memory. Second, 

use of shared memory provides an easy and efficient way to implement dynamic job 

scheduling and load balancing, the two critical problems in developing parallel FPM 

methods. A common problem of parallel FPM programs is synchronization of concurrent 

memory accesses, which is costly and is needed to ensure data integrity. In our research, 

we propose to use OpenMP  [65] & C++, a widely used shared memory parallel 

language. 

Distributed memory programming model- parallel programs of this model create a 

group of processes with private memory address space. The data communication among 

them are therefore, done via messages passing which has higher latency, compared to 

shared memory. Since message passing is the only means for job scheduling and load 



63 

 

balancing in these programs, they do not utilize the system shared memory. We discuss 

about this programming model in more detail in Section 4.2.2 of Chapter 4. 

3.2.3 FPM Challenges on Multi-core Shared Memory Systems 

FPM has irregular and unpredictable workload which poses major challenges 

when one considers partitioning the workload for assigning and distributing to parallel 

processes for balanced load and optimal performance. Due to data dependence in 

multiple reduction steps, large synchronization cost may be incurred which limits the 

scalability as the number of cores used to run FPM increases. Since memory is 

intensively used in FPM, it is essential to design data structures that allow parallel 

processes to work independently to maximize the parallelism. However, these data 

structures usually require more memory than those of the sequential FPM methods, 

resulting in more cache miss and hence performance reduction. The trade-offs between 

memory usage and synchronization are often made to enhance performance. When many 

processes have to write data to the same memory address at the same time, they use 

synchronization, typically implemented by ”lock”, a special type of data-oriented 

synchronization in parallel programs, to control processes to access the shared memory 

elements one at a time. Heavy use of synchronizations, however, can slow down the 

execution as processes compete for the lock. 

3.3 Related Literature Review 

Very few studies proposed parallel FPM methods for multi-core shared memory 

machines [34], [35]. Among those are the ones inspired by FP-growth [33] because the 

divide-and-conquer approach of FP-growth naturally lends itself to parallelism [37], [66], 

[67]. In the traditional FP-growth-based parallel approach, parallel processes 



64 

 

cooperatively build a shared global FP-tree, resulting in extensive use of costly 

synchronization locks to access each node of the tree [35]. We present three parallel FP-

growth based FPM methods for shared memory systems.  

3.3.1 Tree Projection Partition Algorithm 

Tree Projection method by Chen et al. partitions the FP-tree into subsections with 

small portions shared among processes. Only access to the small shared sections would 

require synchronization locks [68]. Although this approach reduces the synchronization 

cost considerably, it adds the overhead of extra partitioning of the workload and is harder 

to load balance. Moreover, updating of the shared portion constitutes a considerable 

workload of the FP-tree construction which can reduce scalability of the algorithm as the 

number of processes increases.  

3.3.2 MLPT Algorithm 

Multiple Local Parallel Trees (MLPT) by Zaiane et al. is the first algorithm not 

requiring locks by constructing local FP-trees separately and mining the frequent patterns 

from these trees [69]. This approach has shown good scalability on shared-memory 

multi-core machine.  

3.3.3 FP-array Algorithm 

The parallel version of FP-array by Liu et al. [29]  by is another efficient 

algorithm that uses locks for FP-tree construction. It then converted this data structure 

into arrays for better cache optimization. This method significantly improves 

performance compared to the previous parallel methods and has been integrated into the 

PARSEC Benchmark [70]. Frequent patterns are generated by recursive construction of 

child FP-trees from the parent FP-tree. Because of the divide-and-conquer approach of 



65 

 

FP-growth, the mining workload can be partitioned and distributed to parallel processes 

without data dependence conflicts. 

Due to inheriting the mining characteristic of FP-growth, the above parallel 

methods have poor performance on dense databases. In our study, we focus on solving 

this issue and propose a parallel solution that works efficiently on shared memory multi-

core machine architecture. 

3.4 ShaFEM Algorithm 

3.4.1 Overview 

ShaFEM, our new parallel FPM for multi-core share memory systems, performs 

its mining task in the following two stages: 

 XFP-tree construction stage- ShaFEM applies the FP-tree based approach to 

compact all data in memory to avoid high cost of I/O due to multiple database 

scans. The database is divided into equal parts; each parallel process reads its 

portion of data to construct its local FP-tree. The local FP-trees are then merged 

into a global XFP-tree that is shared among processes. The trees are implemented 

and constructed without the need for locks for minimizing synchronization cost 

and enhancing scalability. 

 Frequent pattern generation stage- all frequent patterns are found using divide-

and-conquer approach. The frequent items in the header table of the XFP-tree are 

dynamically obtained by the parallel processes as they become available in order 

to balance the workload. This self-scheduling helps to balance the workload 

among the processes. Each parallel process recursively and independently 

generates all frequent patterns ending with one item being assigned and continues 



66 

 

with the next item. Similar to DFEM, ShaFEM uses two mining strategies for 

frequent pattern generation: FP-tree that uses a horizontal data format, and bit 

vector that uses a vertical data format. A process will dynamically switch between 

the two strategies in the course of mining for frequent patterns depending on the 

density of the remaining data to be mined. 

3.4.2 Data Structures 

FP-tree is a prefix tree storing all sets of ordered frequent items as described in 

Chapter 2. 

XFP-tree is an extension of FP-tree newly introduced in ShaFEM. This data 

structure stores all sets of frequent items retrieved from the database, and differs from 

FP-tree because some degree of node duplication is allowed. It is constructed by 

combining several FP-trees into a single tree described in detail in Section 3.5. An XFP-

tree (Figure 3-4) is purposely designed so that it is not as compact as a FP-tree (Figure 

2-2) in order to achieve higher degree of parallelism and scalability. This data structure is 

customized for parallel access and does not require synchronization during concurrent 

construction as processes can create replicated nodes instead of updating the same node. 

Bit Vector presents occurrence of a set of items in databases in vertical format. 

The data structures of bit vector and its supplement weight vector are described in 

Chapter 2. 

3.5 Parallel XFP-Tree Construction 

In the first stage of ShaFEM, the global XFP-tree, shared among all cores, is built. 

This process involves three main steps: 

Step 1 - Finding the frequent items:  



67 

 

1. The database is evenly divided into horizontal partitions and is distributed to 

parallel processes. For example, assuming three processes, the dataset in Table 2-2 

is partitioned into 3 parts (Figure 3-2a)   

2. Each process reads its data partition and computes a local count list of all items in 

the databases (Figure 3-2b). Data is read in parallel by all processes without 

synchronization because the database is equally partitioned and each process can 

determine its data partition using its process ID. Data are read and processed in 

blocks to reduce I/O overhead. 

3. A parallel summation is performed to reduce the local count lists into a shared 

global count list.  Each process Pi is responsible for a number of elements in the 

global count list to compute their count (Figure 3-2c). We do not need to 

implement locks for reduction because each process works on separate set of items. 

4. The frequent items are identified and sorted in the descending order using their 

count and the user-supplied minsup (Figure 3-2c). In the example, given minsup = 

20%, a, b, c, d, and e are frequent items and f is infrequent because its count is 1 

and its support is 11.1% which is smaller than the specified minsup. 

 



68 

 

 

Figure 3-2:  Parallel construction of the global count list 

Step 2 - Constructing the local FP-trees: 

1. Each process creates a local header table consisting of the sorted frequent items 

and their local counts. 

2. Each process reads the transactions from its data portion for the second time to get 

frequent items of each transaction and inserts them into an FP-tree in their 

frequency descending order. This is the most time consuming step of the first stage 

and in our design, all processes work independently to build their local FP-trees. 

Figure 3-3 presents the three local FP-trees created concurrently from the same 

dataset. 

TID Items Proc # 

1 b,d,a 

P1 2 c,b,d 

3 c,d,a,e 

4 d,a,e 

P2 5 c,b,a 

6 c,b,a 

7 f 

P3 8 b,d,a 

9 c,b,a,e 

 

(a) Data partition 

 
 

(b) Local  

count lists 

P1  P2  P3 
a 2  a 3  a 2 

b 2  b 2  b 2 

c 2  c 2  c 1 

d 3  d 1  d 1 

e 1  e 1  e 1 

f 0  f 0  f 1 
 

 
 

 

 

(c) Global  

count list 

P1 
a 7 

b 6 

P2 
c 5 

d 5 

P3 
e 3 

f 1 
 
 



69 

 

 

Figure 3-3:  Local FP-tree construction 

Step 3 - Merging local FP-trees into a global XFP-tree: 

1. The construction of the global XFP-tree is initialized by converting the header table 

of one local FP-tree into the header table of the global XFP-tree. The frequent 

items in this table are divided into even subsets and assigned to the parallel 

processes. For example, a, b are assigned for P1; c, d for P2 and e for P3. Each Pi 

updates items of this table with the global count using the global count list of Step 

1. 

2. Each process Pi then joins the local linked lists of their assigned items in the local 

FP-trees into the global ones by starting from the existing linked list of the global 

a:3 

 

 

 

 

 

root 

Header  

table 

a:3 

b:2 

c:2 

d:1 

e:1 
 

b:2 

c:2 

e:1 

d:1 

a:2 

 

 

 

 

 

root 
Header  

table 

a:2 

b:2 

c:1 

d:1 

e:1 
 

b:2 

c:1 

e:1 

d:1 

P2 

P3 

TID Items 

1 b,d,a 

2 c,b,d 

3 c,d,a,e 

4 d,a,e 

5 c,b,a 

6 c,b,a 

7 f 

8 b,d,a 

9 c,b,a,e 
 

P1 
a:2 

 

 

 

 

 

root 

Header  

table 

a:2 

b:2 

c:2 

d:3 

e:1 
 

b:1 

d:1 

b:1 

c:1 

d:1 

e:1 

d:1 

c:1 



70 

 

header table. When all processes complete their work, the XFP-tree is created as in 

Figure 3-4. The time to perform this step is negligible because the manipulation of 

linked lists can be performed in parallel without changing the local FP-trees. 

Because the next pattern mining stage uses this XFP-tree by traveling in bottom-up 

direction, the root node of XFP-tree is not needed and will not be created. 

 

Figure 3-4: The global shared XFP-tree 

3.6 Parallel Frequent Pattern Generation 

3.6.1 Parallel Frequent Pattern Generation Based on Data Characteristics 

The second stage is similar to the multiple strategies introduced in DFEM. 

ShaFEM generates all frequent patterns by exploring a very large number of data subsets 

extracted from the database and applying one of the two mining strategies MineFPTree 

or MineBitVector for each data subset based on its data characteristics. This approach is 

distinct from prior related parallel works [35], [68], [70], [69] which applied a single 

mining strategy. 

Figure 3-5 presents the overview of the parallel frequent pattern generation 

process. After global XFP-tree is constructed, parallel processes independently start 

searching for frequent patterns using the three tasks ParallelMinePattern, MineFPTree 

and MineBitVector as described following in more details 

 Header  

table 

P1 
a:7 

b:6 

P2 
c:5 

d:5 

P3 e:3 
 

a:2 

 

 

 

 

 

b:1 

d:1 

b:1 

c:1 

d:1 

e:1 

d:1 

c:1 

a:3 

b:2 

c:2 

e:1 

d:1 

a:2 

b:2 

c:1 

e:1 

d:1 



71 

 

 

Figure 3-5: The frequent pattern generation model of each parallel process 

ParallelMinePattern initializes the frequent pattern generation stage and 

manages the work distribution of parallel processes using dynamic job scheduling. Each 

parallel process Pi is assigned a frequent item  in the header table of the XFP-tree. It 

then traverses the XFP-tree in a bottom up direction, starting from the nodes in the linked 

list of the assigned item, to retrieve its conditional pattern base C. The dynamic decision 

making to switch between the two mining strategies, MineFPTree and MineBitVector, is 

based on the size of the conditional pattern bases in comparison with a threshold value, 

MineBitVector 

 Report frequent patterns. 

 Generate candidate patterns 

by ANDing pairs of input bit 

vectors. 

 Identify new frequent patterns 

using the resulting bit vectors. 

 

MineFPTree 

 Report frequent patterns. 

 Generate new frequent 

patterns based on the input 

FP-trees. 

 Compute the threshold Ki to 

be used for switching 

decision. 

 

ParallelMinePattern 

 Obtain a set of frequent items in the XFP-tree using dynamic scheduling. 

 Report frequent items. 

 Compute the threshold Ki to be used for switching decision 

The global shared XFP-tree 

local FP-tree local Bit Vectors 

    P2 

 

P1 

 

P3 … 

 

Recursively mine 

 

Size of the frequent 

 pattern base > Ki  ? 
 

Recursively 

mine 

 

 

Yes 

 
No 

 



72 

 

Ki, which is estimated and updated at runtime using the number of frequent patterns 

found by the two mining strategies. If MineFPTree is invoked, the parallel process will 

build the local conditional FP-tree of item . Otherwise, local bit vectors are generated 

using the base C and MineBitVector is applied. A weight vector w whose elements 

indicate the frequency of sets in base C is added as input to MineBitVector; this vector is 

used to compute the count of candidate patterns. Each parallel process Pi maintains its 

own threshold Ki which reflects the characteristics of the local data being processed. All 

parallel cores work independently until the mining process is complete. The 

ParallelMinePattern1 algorithm is presented in Figure 3-6. 

ParallelMinePattern1 algorithm 

Input: shared XFP-tree XT, minsup 

Output: frequent items 

1:   Ki = 0 

2:   Parallel Self-Scheduled For j= 1 to number of items in XT 

3:    {    = jth item in XT 

4:         Output  

5:         Size = the size of ’s conditional pattern base 

6:         Compute and update threshold Ki 

7:         If  Size>Ki  Then  

8:                 Construct ’s local conditional FP-tree T  

9:                 Call MineFPTree3(T, ,minsup)    

10:        Else  

11:                 Construct ’s local bit vectors V and w 

12:                 Call MineBitVector1(V,w,,minsup)  

13:          End if 

14:    } 

Figure 3-6: ParallelMinePattern1 algorithm 



73 

 

MineFPTree generates frequent patterns using MineFPTree3 algorithm and is a 

parallel version of MineFPTree2 algorithm of DFEM. MineFPTree3 of ShaFEM executes 

concurrently on many cores of the machine to mine the data portions distributed by 

ParallelMinePattern and compute its corresponding private threshold Ki values at 

runtime. This mining strategy concatenates the suffix pattern of the previous steps with 

each item  in the header table of the input FP-tree and reports them as frequent patterns. 

It then constructs the conditional FP-tree of each item in the input FP-tree and recursively 

mines new frequent patterns from the new tree. Figure 3-7 shows the algorithmic details 

of MineFPTree3. The value of Ki is updated using the method described in Figure 3-8.  

MineFPTree3 Algorithm 

 Input: FP-tree T, suffix, minsup 

Output:  set of frequent patterns 

1:   If  T contains a single path P then 

2:   For each combination x of the items in P 

3:              Output  = x  suffix   

4:              Compute and update threshold Ki 

5:   Else Foreach item  in the header table of FP-tree T 

6:              Output  =  suffix   

7:              Size = the size of ’s conditional pattern base 

8:              Compute and update threshold Ki 

9:              If  Size > Ki Then  

10:           {     Construct ’s conditional FP-tree T’  

11:                  Call MineFPTree3(T’,,minsup)   } 

12:            Else  

13:            {     Construct ’s  local bit vectors V and w                              

14:                   Call MineBitVector1(V,w,,minsup)     } 

15:    Endif 

Figure 3-7: MineFPTree3 algorithm 



74 

 

MineBitVector- ShaFEM reuses MineBitVector1 algorithm presented in Figure 

2-9 of Chapter 2.  

3.6.2 Switching Between Two Mining Strategies 

Similar to DFEM, ShaFEM switches between the two mining strategies based on 

a heuristic that uses a threshold K. Each parallel process Pi maintains its own Ki and 

computes it by applying UpdateK2 (Figure 3-8) on the locally processed data, making 

more parallelism and accurate estimation of Ki because the local data characteristics vary 

among processes. 

UpdateK2 Algorithm 

Input:  NewPatterns and Size 

Output: Updated values of Ki 

 (*Initialization for the first call to UpdateK2 for process Pi: 

Create a private array X with N elements, Set all X[j] to zero *) 

1:   For j = 0 to N – 1 

2:   If Size > j*Step then X[j] = X[j] + NewPatterns 

3:   Else Exit Loop     

4:   Ki = 0 

5:   For j = N-1 to 1 

6:   If X[j-1] ≥ 2*X[j] then Ki = (j+1)*Step and Exit Loop 

Figure 3-8: UpdateK2 algorithm 

3.7 Performance Evaluation 

In this section, we evaluate the performance of ShaFEM and compare it with prior 

related work.  

3.7.1 Experimental Setup 

Datasets: The six datasets used in FEM and DFEM evaluation are used to 

evaluate ShaFEM. These are real datasets with various characteristics and domains, 



75 

 

which include three sparse, one moderate and two dense databases obtained from the 

FIMI Repository [59]. The dataset features are reported in Table 3-1. 

Hardware: We evaluate ShaFEM on two 12-core shared memory dual-socket 

servers: one with Intel Xeon processors and the other with AMD Opteron processors. 

Their specifications are listed in Table 3-2. Because the experimental results on both 

machines are consistent, for simplification and due to our AMD cluster being dedicated 

to parallel processing without interference from other jobs, we mostly present the results 

collected from the machine with AMD processors. A performance comparison of 

ShaFEM on the two machines to show the performance consistency of our algorithm is 

provided. 

Table 3-1: Experimental datasets of ShaFEM 

Dataset Type 
# of  

Items 

Average  

Length 

# of  

Trans. 

Chess Dense 76 37 3196 

Connect Dense 129 43 67557 

Accidents Moderate 468 33.8 340183 

Retail Sparse 16470 10.3 88126 

Kosarak Sparse 41271 8.1 990002 

Webdocs Sparse 52676657 177.2 1623346 

 

Software: ShaFEM has been implemented using our computational method 

presented in Sections 3.4 and 3.5. Furthermore, we have applied some optimization 

techniques presented in Section 2.7. We study the performance of ShaFEM and compare 

it with FP-array [29], a state-of-the-art parallel mining method for FPM based on FP-

growth. The implementation of FP-array can be found in the PARSEC Benchmark Suite, 



76 

 

publicly available at [70]. In addition, we have benchmarked ShaFEM, running 

sequentially on one core, with the sequential algorithms Apriori [8], Eclat [31], FP-

growth [25] and FP-growth* [26] to compare their performance on sparse and dense 

databases. The implementations of these algorithms are available at [59], [63], [70]. The 

algorithms were implemented using C/C++. ShaFEM and FP-array are parallelized using 

OpenMP. We use g++ for compilation.  

Table 3-2: Test machines 

Name Machine 1 Machine 2 

Total cores  12 12 

Num. of sockets 2 2 

Cores/socket 6 6 

Processor Model AMD Opteron 2747 Intel Xeon E5-2640  

Architecture Istanbul Sandy Bridge-EP 

Clock rate 2.2Ghz 2.5Ghz 

LLC/socket 6MB 15MB 

Memory 24GB 128GB 

OS Cent OS 5.8 (Linux) CentOS 6.4 (Linux) 

 

3.7.2 Execution Time 

To demonstrate the efficiency of our proposed method, we study the performance 

of ShaFEM and compare it with FP-array [29], one of the best parallel FPM methods for 

multi-core shared memory architectures. FP-array inherits the mining features of FP-

growth and was shown to run sequentially much faster than many sequential mining 

methods including FP-growth [25], nonordfp [28], AIM2 [32], kDCI [71] and LCM2 [72] 

on sparse databases. Unlike ShaFEM, that constructs a new data structure named XFP-

tree, FP-array constructs the FP-tree in parallel and distributes its data to parallel 



77 

 

processes using a tiling technique. Then, it converts the global FP-tree into arrays and 

mines frequent patterns from this data structure. We present the execution time of 

ShaFEM and FP-array for the test datasets in Figure 3-9.  

ShaFEM outperforms FP-array for all test cases for different number of cores and 

different datasets. ShaFEM runs 2.1 -5.8 times faster than FP-array for the same number 

of parallel processes in every case for all datasets. It is important to note that for large 

datasets such as Kosarak, this speedup of 2.8 for 12 cores translates to a savings of 12.8 

execution hours.  Sequentially, our code runs faster by 117.3 hours or 4.9 days. Although 

the size of Kosarak is smaller than Webdocs, this dataset was benchmarked with very low 

minsup, and thus, its execution time was longer than Webdocs. 



78 

 

 

Figure 3-9: Running time comparison of ShaFEM and FP-array 

 

Table 3-3 shows the result of running ShaFEM and FP-array on two machines 

with Intel and AMD processors described in Table 3-2 using 12 cores. The results show 

that ShaFEM performs better than FP-array for all datasets on both machines. 

 

 

0

100

200

300

400

500

2 4 6 8 10 12

R
u

n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

cores

Chess (dense , minsup=5%)

FP-array

ShaFEM

0

2

4

6

8

2 4 6 8 10 12

R
u

n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

cores

Connect (dense , minsup=15%)

FP-array

ShaFEM

0

250

500

750

1000

2 4 6 8 10 12

R
u

n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

cores

Accidents (moderate, minsup=1%)

FP-array

ShaFEM

0

5

10

15

20

25

2 4 6 8 10 12

R
u

n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

cores

Retail (sparse, minsup=0.001%)

FP-array

ShaFEM

0

200000

400000

600000

800000

2 4 6 8 10 12

R
u

n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

cores

Kosarak (sparse, minsup=0.05%)

FP-array
ShaFEM

0

200000

400000

600000

800000

1 2 3 4 5 6 7 8 9 10 11 12

R
u

n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

cores

Webdocs (sparse, minsup=2.5%)

FP-array

ShaFEM



79 

 

Table 3-3: Time comparison (sec.) of ShaFEM vs. FP-array on different hardware 

Dataset Minsup 

Time on Machine 1 (AMD)  Time on Machine 2 (Intel) 

ShaFEM FP-array 
Time 

difference 
ShaFEM FP-array 

Time 

difference 

Chess 5% 21 60 39 17 35 18 

Connect 15% 0.2 1.2 1 0.2 0.7 0.5 

Accidents 1% 41 94 53 32 53 21 

Retail 0.001% 0.9 2 1.1 0.7 1.5 0.8 

Kosarak 0.05% 25941 72092 46151 19719 40713 20994 

Webdocs 2.5% 47631 62893 15262 32434 36274 3840 

 

3.7.3 Speedup 

Figure 3-10 shows the speedup on 12 cores of ShaFEM and FP-array compared 

with the sequential running time of FP-array. These results show that ShaFEM runs 

significantly faster than both sequential and parallel FP-array. Compared to the execution 

time of FP-array on one core, ShaFEM on 12 cores performed 13 – 31.3 times faster 

while FP-array on 12 cores has been 5.6 – 10.0 times faster than its sequential execution 

time. 

 

Figure 3-10: Speedup of ShaFEM and FP-array on 12 cores relative to FP-array 1 core 

7.5
5.6

9.4 10.0 9.4

21.2

31.3

21.9 22.6

26.9

0.0

10.0

20.0

30.0

40.0

Chess Connect Accidents Retail Kosarak

S
p
ee

d
u
p

FP-array ShaFEM



80 

 

Figure 3-11 shows the speedup of ShaFEM for different number of cores 

compared to its sequential time on one core. When all 12 cores were used, ShaFEM runs 

6.1 - 10.6 times faster than it does on a single core. ShaFEM scales better for sparse 

datasets with near linear scalability for Accidents, Retail and Kosarak. For the dense 

datasets Chess and Connect, speedup increases slower when 8 - 12 cores are used. This is 

due to the nature of the dense (compact) data structure that makes achieving good load 

balance for higher number of cores difficult.  FP-array suffers from similar situation as 

can be seen from its speedup of 5.6 on 12 cores for dense dataset Connect. Both Figure 

3-10 and Figure 3-11 demonstrate effectively that the ShaFEM is scalable and its 

performance will continue to improve with additional cores and larger datasets. 



81 

 

 

Figure 3-11: Speedup of ShaFEM on 12 cores compared to its time on 1 core 

3.7.4 Memory Usage 

In order to evaluate the memory usage of ShaFEM, we measure the peak memory 

usage in comparison to FP-array for the six datasets by using the memusage command of 

Linux. Figure 3-12 shows their memory usage for different number of cores. As the 

 

0

1

2

3

4

5

6

7

2 4 6 8 10 12

S
p
ee

d
u
p

cores

Chess (dense , minsup=5%)

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12

S
p
ee

d
u
p

cores

Connect (dense , minsup=15%)

0

2

4

6

8

10

12

2 4 6 8 10 12

S
p
ee

d
u
p

cores

Accidents (moderate, minsup=1%)

0

2

4

6

8

10

2 4 6 8 10 12

S
p
ee

d
u
p

cores

Retail (sparse, minsup=0.001%)

0

2

4

6

8

10

12

2 4 6 8 10 12

S
p
ee

d
u
p

cores

Kosarak(sparse, minsup=0.05%)

0

2

4

6

8

10

12

2 4 6 8 10 12

S
p
ee

d
u
p

cores

Webdocs(sparse, minsup=2.5%)



82 

 

figure shows, ShaFEM consumes much less memory than FP-array in most test cases. 

Specifically, the peak memory usage of ShaFEM was 1.5 – 7.1 times less than FP-array 

for Chess, Connect, Retails, Kosarak and Webdocs. For Webdocs dataset using 12 cores, 

ShaFEM used 7GB of memory less than FP-array. The only case that ShaFEM used more 

memory than FP-array was for Accidents dataset; their memory usage difference was 

23% – 39%.   

Although the memory usage of ShaFEM is 23%-39% higher than FP-array in this 

case, ShaFEM runs faster than FP-array. The way in which the allocated memory is 

accessed and processed has a high impact in the execution time. The new XFP-tree data 

structure allows for more lock free parallel access, less memory contention and better 

cache locality. The bit vector data structure allows for better memory/cache alignment. 

Our profiling information for Accidents using the CodeAnalyst tool [73] shows that, 

compared to FP-array, ShaFEM had 61% less data cache access, 59% less miss alignment 

access, 40% fewer branches and 21% less branch miss predictions.  

The memory usage of both ShaFEM and FP-array increased as more parallel 

cores were employed, but the rate of memory usage increase for ShaFEM was smaller 

than that of FP-array. For the memory intensive problems like FPM, efficient utilization 

of memory has significant impact on the execution time. We use the bit vector structure 

to save memory and arrange data elements to increase data locality for cache 

optimization, and as results show for most cases use less total memory than FP-array and 

have faster execution time for all cases. 



83 

 

 

Figure 3-12: Peak memory usage (megabytes) of ShaFEM and FP-array  

0

100

200

300

400

2 4 6 8 10 12

M
em

o
ry

 u
sa

g
e 

(M
B

)

cores

Chess (dense , minsup=5%)

FP-array

ShaFEM

0

100

200

300

400

2 4 6 8 10 12

M
em

o
ry

 u
sa

g
e 

(M
B

)

cores

Connect (dense , minsup=15%)

FP-array

ShaFEM

0

150

300

450

600

2 4 6 8 10 12

M
em

o
ry

 u
sa

g
e 

(M
B

)

cores

Accidents (moderate, minsup=1%)

FP-array

ShaFEM

0

150

300

450

600

2 4 6 8 10 12

M
em

o
ry

 u
sa

g
e 

(M
B

)

cores

Retail (sparse, minsup=0.001%)

FP-array

ShaFEM

0

120

240

360

480

2 4 6 8 10 12

M
em

o
ry

 u
sa

g
e 

(M
B

)

cores

Kosarak (sparse, minsup=0.05%)

FP-array

ShaFEM

0

6000

12000

18000

24000

2 4 6 8 10 12

M
em

o
ry

 u
sa

g
e 

(M
B

)

cores

Webdocs (sparse, minsup=2.5%)

FP-array

ShaFEM



84 

 

3.7.5 Sequential Performance Evaluation 

ShaFEM also outperforms other well-known sequential FPM algorithms. This is 

demonstrated by benchmarking ShaFEM with Apriori [8], Eclat [31], FP-growth [25] and 

FP-growth* [26], FP-array [29]. The features of these algorithms are described in Section 

2.3. Section 2.8 shows the performance of these algorithms, compared with that of FEM 

and DFEM. In this experiment, all algorithms run on a single core for test cases of 

various minimum support values (minsup). It is important to note that, when running in 

sequential mode, ShaFEM also uses FP-tree for finding frequent patterns, its performance 

is, therefore, not much different from that of DFEM and FEM. 

Results show that ShaFEM outperforms the compared methods for all test cases. 

In addition, we also observe the performance inconsistency of the other methods for 

different database characteristics and minsup values. We take the performance results on  

Chess (dense) and Kosarak (sparse) datasets (Figure 3-13) as an example. While ShaFEM 

performed best for all cases, FP-growth, FP-growth* and FP-array performed better than 

Eclat on the sparse dataset but worse on the dense ones. Apriori performed worst for all 

cases. 

 



85 

 

 

 
Figure 3-13: Sequential running time of ShaFEM compared to sequential methods  

Figure 3-14 presents the speedup running ShaFEM sequentially compared to the 

test algorithms for Chess (dense) and Kosarak (sparse) datasets. ShaFEM runs much 

faster than the compared methods on both dense and sparse dataset for various minsup 

inputs. For example, in our test cases, ShaFEM runs 43.8 – 323.4 times faster than 

Apriori; 2.2 – 19.9 times faster than Eclat; 2.0 – 9.0 times faster than FPgrowth, 2.6 – 

17.4 times faster than FP-growth* and 1 – 18 times faster than FP-array for the range of 

minsup values indicated in Figure 3-14. 

0

250

500

750

1000

40 30 20

R
u
n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

Minsup (%)

Chess (dense)

Apriori
Eclat
FP-growth
FP-growth*
FP-array
ShaFEM

0

15000

30000

45000

60000

0.09 0.08 0.07

R
u
n
n
in

g
 t

im
e 

(s
ec

o
n
d
s)

Minsup (%)

Kosarak (sparse)

Apriori
Eclat
FP-growth
FP-growth*
FP-array
ShaFEM



86 

 

 
Figure 3-14: Speedup of ShaFEM on 1 core compared to sequential algorithms 

3.7.6 Analyzing Performance Merits of ShaFEM 

We analyze the key elements that play important roles in performance 

enhancement of ShaFEM including (1) the application of two mining strategies in 

ShaFEM to better adapt to data characteristics; (2) the dynamic scheduling method of 

ShaFEM to obtain better load balance; and (3) adoption of a new lock free approach in 

the construction of XFP-tree. 

 

 

1

10

100

1000

S
p
ee

d
u
p

Chess (dense)

minsup = 40 %

minsup = 30 %

minsup = 20 %

1

10

100

1000

S
p

ee
d

u
p

Kosarak (sparse)

minsup = 0.09 %

minsup = 0.08 %

minsup = 0.07 %



87 

 

3.7.6.1 The impact of combining two mining strategies 

To study the self-adaptive ability of ShaFEM to data characteristics, we measure 

the amount of time that ShaFEM spends on each of its two mining strategies separately 

when both strategies have been applied. Figure 3-15 presents the percentage of time 

distribution for the six test datasets. The results show that both mining strategies of 

ShaFEM contributed to generate the frequent patterns. However, their percentage of 

contributions varied depending on the data characteristics of each dataset. The mining 

strategy using Bit Vector was utilized mostly for the dense datasets. However, the time 

percentage of this strategy reduced when the data were sparse. This workload distribution 

for the two mining strategies is done automatically due to dynamic switching between 

them. The mining strategy using Bit Vector is more suitable for dense data as the low 

cost bitwise operations are used to generate large number of frequent patterns as are 

usually found from this type of data. The bit vector data structure is more cache friendly, 

saves memory usage and boosts the mining performance. For the sparse portions of the 

datasets, the number of frequent patterns is smaller. Therefore, FP-tree is a better choice 

because it does not require to generate very large number of infrequent candidate 

patterns. 

 



88 

 

 
Figure 3-15: Time distribution for two mining strategies of ShaFEM 

3.7.6.2 Impacts of dynamic scheduling 

Generating frequent patterns, which occurs in the second stage of ShaFEM, 

normally accounts for much of the execution time. In this stage, load balancing is a 

critical issue. The divide and conquer approach is used in this stage to enhance 

parallelism by enabling parallel processes to work independently and select small work 

portions one at a time. Because the workload of each portion varies, dynamic scheduling 

is used to balance the load. In order to study the effectiveness of this scheduling method, 

we measure the execution time with two cases: (1) using static scheduling and (2) using 

dynamic scheduling and report the results in Table 3-4. Applying dynamic scheduling 

can increase the mining performance 114%-489% in our test cases.  

10

33 35
45

90
98

90

67 65
55

10

0%

25%

50%

75%

100%

Chess Connect Accidents Retail Kosarak Webdocs

T
im

e 
(%

)

MineFPTree MineBitVector



89 

 

 

Table 3-4: Performance of ShaFEM with dynamic vs. static scheduling on 12 cores 

Databases Minsup 

Static 

Scheduling 

(1) 

(seconds) 

Dynamic 

Scheduling 

(2) 

(seconds) 

Time 

Difference 

(3) = (1)-(2) 

(seconds) 

Performance 

Improvement 

(4) = (3)*100/ (2) 

(%) 

Chess 5% 45 21 24 114% 

Connect 15% 0.51 0.2 0.31 155% 

Accidents 1% 161 41 120 293% 

Retail 0.001% 5.3 0.9 4.4 489% 

Kosarak 0.055% 15802 6902 8900 129% 

Webdocs 3% 48183 7862 39086 497% 

 

3.7.6.3 Impacts of lock-free approach in constructing XFP-Tree 

We use a lock-free approach to construct XFP-tree, a new data structure derived 

from FP-tree to reduce synchronization needs and enhance parallelism. To evaluate the 

performance benefits of this approach, we implement a variant of ShaFEM in which 

parallel processes construct a single shared FP-tree (instead of XFP-tree) by using a lock 

for each node of the tree, where node updated are done atomically. Table 3-5 presents the 

execution time of ShaFEM in two cases: (1) build FP-tree with lock; (2) build XFP-tree 

without lock (i.e. our proposed solution). The results show that the version using XFP-

tree increases the overall performance and in one case up 22.2%.  

  



90 

 

Table 3-5: Performance of ShaFEM using lock vs. lock-free on 12 cores 
 

Databases Minsup 

Build FP-tree  

with lock  

(1)  

(seconds) 

Build XFP-tree 

without lock 
(2) 

(seconds) 

Time 

Difference 
(3) = (1)-(2) 

(seconds) 

Performance 

Improvement 

(4) = (3)*100/ (2) 

(%) 

Chess 5% 21.38 21.2 0.18 0.8% 

Connect 15% 0.2 0.2 0 0.0% 

Accidents 1% 42.69 41 1.69 4.1% 

Retail 0.001% 1.14 0.9 0.24 22.2% 

Kosarak 0.055% 8033 6902 1131 16.4% 

Webdocs 3% 8789 7862 927 11.8% 

 

3.8 Conclusion 

We have presented ShaFEM, a novel parallel FPM method for multi-core share 

memory machine, evaluated and demonstrated that its performance on different database 

types via a number of experimental results on a 12-core machine. This dynamic parallel 

method that combines two mining strategies runs faster and consumes less memory than 

the state-of-the-art methods. It performs stably on both sparse and dense databases. 

ShaFEM allows the FPM task to self-adapt to the data characteristics and utilize the 

benefits of shared memory features in multi-core computers. 

  



91 

 

 Parallel Frequent Pattern Mining on Multi-core Cluster 

4.1 Introduction 

With growth of data repositories in numerous fields, such as biology, business 

administration, internet, social networks, entertainment, telecommunication, etc., [1],  [2],  

[3],  [4], high performance computing (HPC) methods that use large cluster computers or 

supercomputers are essential. These computing platforms provide massive computing and 

memory resources, making them ideal for large data analysis. However, development of 

FPM methods for HPC requires platform-specific design to efficiently leverage 

platform's powerful resources. 

4.1.1 Motivation 

Our study of parallelizing FPM for large-scale data mining applications on multi-

core clusters addresses three critical problems that have not been thoroughly investigated 

in previous studies. 

1. In the current trend of computer architecture development, multi-core architecture 

has become the dominant computing platform. Most HPC machines are clusters of many 

symmetric multiprocessing (SMP) nodes (multi-core PCs or multi-core servers) 

connected through high-speed interconnection network. The memory in each node is 

shared by its cores but is inaccessible by other nodes. Recent studies have shown that a 

hybrid parallel programming method that applies both shared and distributed memory 

programming models for this architecture deliveries better performance than parallel 

methods using only distributed memory model  [23],  [64],  [74],  [75],  [76]. For FPM, 

data manipulation in memory is an important factor of mining performance and an 

efficient use of shared memory for data communication of the jobs running on cores of 



92 

 

the same node can enhance performance. However, most FPM methods designed for 

cluster computing environment use “shared nothing” parallel model; communication 

among parallel processes is, therefore, done by message passing [10],  [29],  [34],  [35], 

[36],  [37],  [66],  [77], [78],  [79],  [80],  [81] ,  [82],  [83],  [84]. As a result, benefits of 

shared memory available within each node is ignored. 

2. Load balancing is highly critical for parallel FPM in cluster computing 

environment. FPM incurs high message passing communication cost making load 

balancing a great challenge. Irregular and imbalanced computation loads may result in 

sharp degradation of the overall performance [66]. As shown in Chapter 3, mining 

without dynamic job scheduling is at least five time slower than static scheduling on 

shared memory multi-core systems. An efficient workload balancing solution is critical 

for FPM scalability on cluster architectures. 

3. FPM with multiple mining strategies and dynamic detection of switching among 

the mining strategies based on dataset characteristics is essential for good performance on 

various types of databases. We derive our FPM design from FEM and DFEM (Chapter 2) 

and ShaFEM (Chapter 3), and modify it to map best to cluster (combination of shared and 

distributed memory) computing model. 

4.1.2 Contributions 

In this chapter, we present a novel parallel FPM algorithm, SDFEM, to address 

the above-mentioned issues. SDFEM efficiently adapts to the architecture of multi-core 

clusters and maximizes utilization of the available computing resources. SDFEM is 

distinguished from prior work due to the following features: (1) exploits the use of shared 

memory within a node of the cluster, (2) applies multi-level load balancing and (3) uses a 



93 

 

self-adaptive mining approach based on data characteristics. Highlights of our 

contributions include: 

 SDFEM algorithm, a hybrid parallel method utilizing both shared and distributed 

memory programming models that performs communication within-node via 

shared memory and between-node via message passing. Using shared memory 

inter-process communication cuts down the communication cost which is quite 

high for message passing communication among parallel processes and reduces 

load balancing overhead. SDFEM also inherits the mining features of ShaFEM 

(Chapter 3) for faster FPM performance on both sparse and dense data. (Section 

4.4 and 4.6) 

 A multi-level load balancing method that uses four different strategies: dynamic 

job scheduling and work sharing for load balancing among cores within a node, 

and cyclic job scheduling and work stealing for load balancing among nodes in 

the cluster. The multi-level load balancing method is designed to match the 

features of hybrid mining model to minimize the overhead of the load balancer as 

well as to enhance the scalability of FPM (Section 4.5). 

 Implementation of the algorithms using MPI (message passing interface) and 

OpenMP (shared memory), and performance evaluation using real-world datasets 

used in Chapters 2 and 3 on clusters consisting of multi-core nodes (Section 4.7). 

4.2 Background 

In this section, we briefly describe multi-core cluster architectures and related 

issues for development of the FPM for this type of machine. 



94 

 

4.2.1 Architecture of Multi-core Cluster  

Multi-core clusters are dominant in high performance computing architecture. 

From 2002 to 2009, the percentage of top 500 world’s fastest computers [85] identified as 

cluster grew from 18.6% to 83.4%  [23]. At the same time, the number of cores within 

nodes of clusters has been increasing as well. Large-scale applications use HPC machines 

to support their computationally intensive data analysis. According to an IDC study in 

2013, 67% of the HPC sites perform FPM Big Data analysis in their computing systems  

[86]. 

Multi-core clusters consist of multiple compute nodes connected by high-speed 

network infrastructures such as Gigabit Ethernet/Infiniband. Each node consists of 

several multi-core processors. Cores within a node access the node’s shared memory 

space which may be configured as UMA or NUMA  [64]. Cores of a single CPU often 

have private and shared caches. The resulting architecture is a hybrid memory hierarchy 

with distributed and shared memory. Figure 4-1 shows an example architecture of a 

cluster with dual six-core AMD Opteron processors per node sharing main memory; six 

cores of a processor share L3 cache, each core has private L1 and L2 caches. 

The communication latency among cores on a same socket is smaller than that 

among cores on different sockets due to longer path to cache. The communication latency 

among cores of different nodes, however, is longest [45]. Using a shared memory 

programming model, process communication is done by reading and writing shared 

memory locations. Using a distributed memory model (between nodes for example) 

messages must be formed by processes and explicitly sent and received between cores of 



95 

 

different nodes. Message formation and communication through the interconnection 

network incur overhead similar to I/O operations. 

 

Figure 4-1: Architecture of a cluster with 12-core nodes with dual 6-core sockets 

4.2.2 Parallel Programming Models for Multi-core Cluster  

 Parallel programming models for multi-core clusters require communication and 

cooperation among processes to be done via interconnection network using messages 

[22]. MPI (Message Passing Interface)  [87] is a message passing parallel programming 

standard that provides a library interface, including communication routines, to develop 

parallel programs for distributed memory multiprocessors and assumes all memory is 

private to parallel processes. Ideally, each process is mapped to run on a processor (one-

to-one mapping). Applications developed for clusters commonly use this MPI 

programming model. Although, MPI programs can run on shared memory 

multiprocessors they incur message passing overhead. 

. . . 

In
te

rc
o

n
n
ec

ti
o
n

 N
et

w
o

rk
 

 

Memory 

 Core Core Core 

L3 Cache 

Core Core Core 

Socket 2 

  Core Core Core 

L3 Cache 

Core Core Core 

Socket 1 

Node 1 

Node N 

  

Memory 

  Core Core Core 

L3 Cache 

Core Core Core 

Socket 2 

  Core Core Core 

L3 Cache 

Core Core Core 

Socket 1 



96 

 

  Given the availability of shared memory in each node and increasing number of 

cores per node, a hybrid model with MPI and OpenMP  [65] will provide the means to 

design applications that can take advantage of features of a cluster architecture [74],  

[75],  [76],  [64],  [23]. Figure 4-2a illustrates a typical mapping of parallel processes of 

an MPI program to the cores in a multi-core cluster with 12-core nodes.  

 
Figure 4-2: Mapping of processes and threads to a multi-core cluster 

P
1
 P

2
 P

3
 

P
4
 P

5
 P

6
 

P
7
 P

8
 P

9
 

P
10
 P

11
 P

12
 

P
2N-11

 P
2N-10

 P
2N-9

 

P
2N-8

 P
2N-7

 P
2N-6

 

P
2N-5

 P
2N-4

 P
2N-3

 

P
2N-2

 P
2N-1

 P
2N

 

. . . . . . 

 

Node 1 

  

Node N 

P
1
 

T T T 
T T T 

P
2
 

T T T 
T T T 

P
2N-1

 
T T T 
T T T 

P
2N

 
T T T 
T T T 

. . . . . . 

  

Node 1 

  

Node N 

. . . 

P
1
 

T T T 
T T T 

T T T 
T T T 

P
N
 

T T T 
T T T 

T T T 
T T T 

  

Node N 

  

Node 1 

(a) MPI (1 process (P) per core) 

(b) Hybrid MPI+OpenMP 

(6 threads (T) per process, 2 processes (P) per node) 

(c) Hybrid MPI+OpenMP 



97 

 

 

 A hybrid MPI–OpenMP program combines both distributed and shared memory 

programming paradigms and uses MPI for nodes and OpenMP (Chapter 3) for cores of 

the same node  [64]. In this context, we define a process context to be created by MPI 

which must then fork threads that can be assigned to executed on a core. Execution of 

hybrid MPI-OpenMP programs starts with invoking a group of MPI processes, each of 

which forks a number of threads to run in parallel and join  upon completion of 

computation (Figure 4-3b).  

 

Figure 4-3: Execution model of MPI program vs. hybrid MPI/OpenMP 

A hybrid program can be mapped onto hardware architecture with different 

configurations for best performance. For example for the machine with N 12-core nodes 

of Figure 4-1, one may create a total of N MPI processes where each process can create 

12 threads to assigned to the 12 cores of the node (Figure 4-2c). Alternatively, we can 

create 2N processes, 6 threads each, and map 2 processes onto a single node (Figure 

4-2b). The best process/thread to core mapping configuration will be the one minimizing 

communication overhead and taking best advantage of fast shared memory accesses. 

(a) MPI (b) Hybrid MPI/OpenMP   

Core
1
 Core

2
 Core

3
 Core

4
 

P1         P2        P3        P4 
MPI 

MPI 

… … … … 

Core
1
 Core

2
 Core

3
 Core

4
 

P
1
 

T
1
         T

2
        T

3
        T

4
 

MPI 

MPI 

OpenMP 

… 



98 

 

 For data-intensive applications, especially FPM, this model of programming can 

provide significant performance gains because it reduces the need for transferring large 

amounts of data among the processes. The load balancing cost is therefore significantly 

decreased. 

4.3 Related Literature Review 

A number of parallel methods have been developed for distributed memory 

systems  [10],  [29],  [34],  [35],  [36],  [37],  [66],  [67], [77],  [78],  [79],  [80],  [81] ,  

[82],  [83],  [84]. They have been shown to be efficient in specific contexts. The existing 

methods do not take advantage of the shared memory within a node. Most methods 

succeed in reducing data communication and increasing data independence among 

parallel processes but suffer from load imbalance since their load balancing strategy is 

heavily based on data partitioning. As a result, they may not scale well in cases like 

mining with small minsup. 

Iko et al.  [67] proposed a parallel shared nothing FPM method based on FP-

growth for PC clusters. It partitions data equally among nodes to construct local FP-trees 

and deploys a model similar to MapReduce to map conditional pattern bases from send 

process to receive process. The method utilizes a characteristic called “path depth” to 

determine the size limit of conditional pattern bases to balance the workload among 

processes. Work balance is maintained by random selection of receive process for work 

distribution. This approach is efficient when a good selection of path depth is made. The 

load balancing strategy with random selection of process is similar to one of load balance 

strategies in our proposed method. Yu et al. presented a parallel FPM solution for a 

homogeneous PC cluster  [66] based on FP-growth  [82]. It uses sampling technique for 



99 

 

load balancing. However, they used synthetic data for experiments and reported poor 

performance. The method proposed by Tanbeer et el.  [37] also based on FP-growth 

required a single I/O scan only using PP-tree (Parallel Pattern Tree). This study did not 

described a load balancing strategy and its scalability was only demonstrated for up to 6 

processors. 

Sucahyo et el.  [88] proposed a parallel method based on Eclat for mining dense 

databases. Database is partitioned into projections, one for each item, and each 

projection, whose size depends on data characteristics, is stored on the local disk of a 

node in the cluster. Load balancing is done by distributing the projections to nodes in a 

round-robin fashion and all nodes follow the same order to decide the destination node to 

send the conditional pattern bases, which might potentially cause blocking  [67]. Similar 

to the method by Iko  [67], O¨zkural et al. presented a parallel solution using vertical data 

layout  [84] and applied a top-down data partitioning scheme in such a way that entire 

database could be divided into parts with some replications so that they could be mined 

independently. The data were partitioned to minimize replications and maintain storage 

balance and computational load. Similar to the FP-growth based methods  [37],  [82],  

[67], the benefit of shared memory in multi-core clusters was ignored and good 

performance was obtained for dense data. 

PPS  (partial-support-tree) by Souliou et al. [89] was based on a sequential 

method named partial purport (PS) [90] to compute frequent pattern support. Each 

process handled a part of database, constructed a local tree and mined frequent patterns 

from this data structure. Data were distributed to parallel processes using round robin 

scheme [79]. This method was shown to scale well for dense data. However, when it 



100 

 

mined the test databases with very low minsup, its scalability reduced sharply (e.g. its 

speedup is 1 for Mushroom database with minsup=20%). 

DPA (Distributed Parallel Apriori) proposed by Yu et al.  [66] is one of few FPM 

methods that parallelized Apriori. Because DPA use a breadth first mining, it is easier to 

maintain load balancing than in methods using depth first mining strategy. However, this 

approach requires multiple database scans and suffers from large synchronization 

overhead because of multiple iterations of the mining loop. Furthermore, Apriori usually 

has lower performance than most other mining methods; its parallel version (DPA) 

exhibits a similar poor performance level. 

In summary, most existing methods supply their own strategies for data partitioning 

and job scheduling to balance workload and minimize communication among parallel 

processes. However, none of them considers the situation where load balance cannot be 

obtained via work partitioning, particularly when mining with very small minsup. This 

together with the three issues described in Section 4.1.1 motivate the development of a 

new parallel FPM method. 

4.4 SDFEM Algorithm 

4.4.1 Overview 

 

SDFEM performs FPM by deploying a group of parallel processes and mapping 

each process to a multi-core node. Each process creates a group of shared memory 

threads, mapping each thread to a core. Threads of the same process collaborate to 

construct the process’s local projected XFP-tree which is built from transactions 

projected to a group of items assigned to its process. Each thread uses this data structure 

to generate its own frequent patterns. SDFEM finally aggregates frequent patterns 



101 

 

generated by all threads for the final results. SDFEM combines features of both 

distributed memory and shared memory programming models where between-node 

communication is done using message passing and within-node communication is done 

using shared memory. Figure 4-4 illustrates the execution model of SDFEM. 

SDFEM model can significantly reduce the overhead of data communication and 

allow more efficient load balancing. We develop a multi-level load balancing method for 

SDFEM using four different techniques to increase the CPU utilization and enhance 

performance. SDFEM performs FPM in two stages 

4.4.2 Parallel Projected XFP-tree Construction Stage 

Each process constructs a local projected XFP-tree from its data partition. In the 

first database scan, data is partitioned equally into M*N parts and each part is assigned to 

a thread where N is the number of processes and M is the number of threads per process. 

The process and its threads collaborate to compute the global count of all items, identify 

the frequent items and sort them in frequency descending order. SDFEM distributes the 

frequent items to processes in cyclic fashion [91]. In this second database scan, each 

process reponse for entire database; each thread reads a 1/M of database and filters 

transactions containning the assigned frequent items to construct local projected XFP-

tree. For example, if we have two processes, P1 and P2, and a list of frequent items a, b, c, 

d, e then P1 will mine all frequent patterns ending with item a, c, e and P2 will mine all 

frequent patterns ending with b, d. Because of this scheduling method, the projected 

XFP-tree constructed by each process is much smaller than the complete XFP-tree 

(Chapter 3). This tree also ensures that each process can work independently. The cyclic 

scheduling balances the data size of each tree. Figure 4-5, Figure 4-6, Figure 4-7 



102 

 

respectively illustrate the three main steps of constructing projected XFP-trees in FPM 

for the sample dataset in Table 2-2 and the execution model of 2 processes and 2 threads 

per process. In Figure 4-7, header table shows items assigned to P2. 

 

Figure 4-4: Overview execution model of SDFEM 

  

… 

 

Node 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Process P1 
 

 … 
 

Thread 1 

 
Thread M 

 

Memory 

  

… Core 1 Core M 

Node N 

  

  

  

  

  

  

  

  

Process P
N
 

  
… 

  

Thread 1 

 

Thread M 

 

Memory 

  

… Core 1 Core M 

Input Database 

       

Output 

… 

  

… 

 

Projected XFP-tree  
FP-trees 

Bit Vectors 

Projected XFP-tree  
FP-trees 

Bit Vectors 



103 

 

 

Figure 4-5: Computation of the global count by all processes (P = process; T= thread) 

 

 

 

Figure 4-6: Construction of local FP-trees by each thread (T) of Process 2 (P) 

 

TID Items 
Process 

Thread ID 

1 b,d,a 
P1 – T1 

2 c,b,d 

3 c,d,a,e 
P1 – T2 

4 d,a,e 

5 c,b,a 
P2 – T1 

6 c,b,a 

7 f 

P2 – T2 8 b,d,a 

9 c,b,a,e 

 

(a) Data partition 
 (b) Local  

count lists 

P1- T1  P1- T2  P2- T1  P2- T2 

a 1  a 2  a 2  a 2 

b 2  b 0  b 2  b 2 

c 1  c 1  c 2  c 1 

d 2  d 2  d 0  d 1 

e 0  e 2  e 0  e 1 

f 0  f 0  f 0  f 1 
 
 

 

 

 
(c) Global  

count list 

a 7 

b 6 

c 5 

d 5 

e 3 

f 1 
 

 

 
 

 

 

Thread 2 

of P2 

 

TID Items 

Projected 

Items 

b & d 

1 b,d,a a,b,d 

2 c,b,d b,c,d 

3 c,d,a,e a,c,d 

4 d,a,e a,d 

5 c,b,a a,b 

6 c,b,a a,b 

7 f  

8 b,d,a a,b,d 
9 c,b,a,e a,b 

 

Thread 1 of 

P2 

a:4 

 

 

 

root 

Header  

table 

a:3 

b:2 

c:0 

d:1 

 

b:4 

d:1 

a:3 

 

 

 
 

root 

Header  

table 

a:3 

b:2 

c:2 

d:4 

 

b:1 

d:1 

c:1 

d:1 d:1 

b:1 

c:1 

d:1 



104 

 

 

Figure 4-7: The project XFP-tree constructed by Process 2 

4.4.3 Parallel Frequent Pattern Generation Stage 

After the first stage, each process has a projected XFP-tree in its memory and 

starts to independently generate frequent patterns using a multi-strategy mining approach 

similar to the second stage of ShaFEM (Section 3.5, Chapter 3). The mining process 

includes four tasks ParallelMinePattern, MineFPTree, MineBitVector and 

LoadBalancing (Figure 4-8). Load balancing among processes is necessary because the 

workload associated with each item or itemset vary depending on the minsup input value 

even with best initial work distribution scheme. Hence, in each SDFEM process, 

LoadBalancing interacts with all threads during the mining process to maintain workload 

balance.  

Similar to ShaFEM, SDFEM inherits the mining features of our sequential method, 

DFEM, and applies a parallel mining model using two mining strategies MineFPTree and 

MineBitVector as described in Chapters 2 and 3. SDFEM conducts the mining model of 

ShaFEM within each process with several enhancements in data distribution, work 

partition and load balancing, and scales well on multi-core clusters.  

a:4 

b:4 

d:1 

a:3 

  

  

  
  

Header  

table 
a:7 
b:6 
c:2 
d:5 

b:1 

d:1 

c:1 

d:1 d:1 

b:1 

c:1 

d:1 

T
1 

 

T2
 



105 

 

 

Figure 4-8: The mining model of SDFEM within a process (T=thread) 

4.5 Multi-level Load Balancing of SDFEM 

SDFEM is designed with two levels of parallelism: thread parallelism on shared 

memory multicores, and process parallelism on cluster nodes, which require minimizing 

communication for scalability. Therefore, load balancing in SDFEM also includes two 

levels: within-node load balancing for threads and between-node load balancing for 

processes. Balancing workload in a parallel task that can be done implicitly with job 

scheduling and explicitly with load balancing techniques such as work sharing or work 

stealing. To maximize workload balance, we apply four load balancing techniques in 

SDFEM (Table 4-4). For simplicity, we implement a single data structure called load 

MineBitVectorr MineFPTree 

ParallelMinePattern 

Projected XFP-tree 

local FP-tree local Bit Vectors 

    TM 
 

T1 
 

recursively 
mine 

 
Size of the 

frequent 

 pattern base >Kij? 

 

recursively 
mine 

 

 

Yes 

 

No 

 

… 

  

LoadBalancing 

Load Balancing 

Data Buffer 



106 

 

balancing data buffer (LBDB) used by LoadBalancing for both within-node and between-

node load balancing purposes. 

Table 4-1: Load balancing techniques applied in SDFEM 

  

Within-node  

load balancing 

Between-node 

load balancing 

Implicit techniques 
Dynamic Job 

Scheduling 

Static Cyclic 

Scheduling 

Explicit techniques Work Sharing Work Stealing 

 

4.5.1 Within-node Load Balancing 

SDFEM applies dynamic job scheduling and work sharing to maintain the 

workload balance and optimal CPU utilization among the threads of the same process. 

4.5.1.1 Dynamic job scheduling 

Threads of the same process dynamically obtain the next available item from the 

header table of the projected XFP-tree and complete mining all frequent patterns ending 

with this item. This dynamic scheduling scheme, ParallelMinePattern, is implemented the 

same way as in ShaFEM (Chapter 3). In OpenMP, this is implemented by simply 

defining dynamic directive for the parallel loop.  

4.5.1.2 Work sharing 

Dynamic job scheduling is efficient. It however does not ensure load balance for 

cases where number of frequent items is considerably small, dense databases for 

example. Hence, a load balancer is added to each process; it maintains a load balancing 

data buffer holding shared data subsets. Busy threads within a process share their 



107 

 

workload. Available threads seek additional work from this buffer. Because this data 

structure is shared among threads of the same process, it can easily be updated by all 

threads within a process. Figure 4-9 illustrates the load balancing using work sharing. 

 
Figure 4-9: Within-node load balancing with work sharing 

 During the frequent pattern generation stage, threads periodically check this data 

buffer via LoadBalancing. If it is empty or if the number of data subsets is smaller than a 

certain limit MaxLBDB, threads will add their newly generated data subsets to the buffer, 

which are either FP-tree or Bit Vectors depending on the mining strategy being used (i.e. 

MineFPTree or BitVector). When a thread completes mining its data, it increments its 

counter, TC, by one. It then checks the data buffer to take a data subset and recursively 

mines this data subset. If the buffer is empty, the thread will wait until new data subsets 

are added, or until process status changes to terminating. This load balancing method 

ensures that threads of the same process remain busy until they are all done with 

Projected  

XFP-tree 

Process Pi 

ParallelMinePattern 

 

  

LoadBalancing 

Load Balancing 

Data Buffer 

… 

  

Thread 1 

 

Thread M 

 

Data  

subset 

Data  

subset 



108 

 

generating frequent patterns for the process’s data partition.  To minimize memory usage 

and the overhead of maintaining data buffer, we keep the number of buffer entries as 

small as possible. For example, in our experiments, the maximum number of buffer 

entries was set to the total number of threads of all processes. 

4.5.2 Between-node Load Balancing 

SDFEM applies static cyclic job scheduling and work stealing techniques to 

balance workload among the processes. 

4.5.2.1 Cyclic job scheduling 

Due to the large amount of processed data, dynamic job scheduling may result in 

huge communication overhead and bottleneck. We apply static job scheduling to 

distribute work among processes because it is simple, has practically no overhead and 

does not require communication and synchronization optimization. In the first stage of 

projected XFP-tree construction after the frequent items are found and sorted in 

frequency descending order, they are distributed to processes in a cyclic fashion as 

illustrated in Stage 1, Section 4.4. Process filters database using the assigned items to 

construct XFP-tree. 

4.5.2.2 Work stealing 

In most cases when the number of frequent items are large, cyclic job scheduling 

is good for initial work partition among parallel processes.  We apply work stealing to 

maintain better load balance, especially for the cases where mining workload is 

associated with significantly varied frequent items or the number of frequent patterns is 

small. Based on work stealing techniques, idle processes actively look for busy processes 



109 

 

to request for more work. Since only idle processes attempt to communicate, the amount 

of communication is reduced and the overhead is well tolerated compared to idle time of 

processes without work  [78]. Both work sharing and work stealing use the same data 

buffer.  

On starting frequent pattern generation, each process keeps a process status list 

whose elements indicate the status of all processes (i.e. working: a process is still 

generating frequent patterns from its pre-schedule data, balancing: a process completes 

its work portion and is requesting for job from a remote process, terminating: a process 

completes its work and there is no working process to request for job) and are initialized 

with working status. If a process Pk completes generating all frequent patterns from its 

projected XFP-tree (i.e. a balancing process) it will pick up a victim process Ph among 

the working processes and sends a job request to Ph. Figure 4-10 depicts the load 

balancing model with work stealing between Pk and Ph. 

 
 

Figure 4-10: Between-node load balancing with work stealing 
 

Upon receiving the request, Ph can either accept or deny in following scenarios: 

 If Ph is working and its load balancing data buffer (LBDB) has more than M 

subsets where M is the number of parallel threads of Ph, it will reserve M data 

Process Pk 

ParallelMinePattern 

 

  LoadBalancing 

Load Balancing 

Data Buffer 

Data  

Subsets 

Process P
h
 

ParallelMinePattern 

  
LoadBalancing 

Load Balancing 

Data Buffer 

Job Request 

Accept/Deny 



110 

 

subsets, pack the remaining ones and send them to Pk together with an acceptance 

notice. Pk receives the data sent by Ph, puts them into its LBDB and continues its 

mining process on the received data. 

 If Ph is working and its LBDB has less or equal than M subsets, Ph sends to Pk a 

denial notice. Ph always keeps at least M data subsets in its LBDB to ensure that 

the between-node load balancing does not interrupt the within-node load 

balancing process. When Pk receives the denial response, it will select another 

working process in its list to ask for job.  

 If Ph is balancing, it will send a denial response together with its status to Pk. 

When Pk receives the response, it will update the status of Ph in its process status 

list to avoid requesting Ph for job in future and look for another randomly selected 

working process to request for job. 

 If a balancing process Ph cannot find a working process in its list because all 

processes are marked as either balancing or terminating, its status will switch to 

terminating by sending a broadcast to all other processes to inform them of its 

status and exits the frequent pattern generation stage. The other processes update 

status of Ph in their list. 

Although work stealing technique requires communication among processes, its 

overhead is always small because of the following reasons. First, SDFEM employs the 

hybrid programming model that create fewer parallel processes (i.e. usually equal to the 

number of nodes in the cluster). Because the number of processes involved in load 

balancing is small and data communication is decentralized due to work stealing, the 

overhead of load balancing is much smaller than that of parallel programming with pure 



111 

 

message passing. Second, in SDFEM, only one thread, the master thread, of each process 

participates in work stealing while the other threads continue its mining work. 

4.6 Algorithmic Description 

SDFEM algorithm (Figure 4-11) consists of five sub algorithms 

ParallelMinePattern2 (Figure 4-12), MineFPTree4 (Figure 4-13), MineBitVector2 

(Figure 4-14) and LoadBalancing (Figure 4-15), UpdateK3 (Figure 4-16). SDFEM starts 

by creating a group of processes; each process then creates a group of threads and 

executes the SDFEM algorithm (Figure 4-11). 

SDFEM algorithm 

Input: Transactional database D and minsup 

Output: Complete set of frequent patterns 

1:    Threads scan their partitions of D and cooperate to find all frequent items 

2:    Threads re-scan D to construct projected XFP-tree XT (1 tree each process) 

3:    N = 9, Step = 32,  items = the number of frequent items in D, TCi = 0 

4:    Kij = 0 where Kij is private to each thread, i is process id and j is thread id 

5:    Each thread calls UpdateK3(items, N*Step) 

6:    Each thread calls ParallelMinePattern2(XT,,minsup,TCi) 

Figure 4-11: SDFEM algorithm 

  



112 

 

ParallelMinePattern2 algorithm (Figure 4-12) is invoked after each process 

completes constructing its projected XFP-tree, which is private to the process and shared 

among threads.  

ParallelMinePattern2 algorithm 

Input: shared projected XFP-tree XTi , minsup , thread counter TCi,  

Output: frequent items 

1:   Kij = 0 where i is process id and j is thread id 

2:   Flag = true 

3:   Parallel Self-Scheduled For each item  assigned to Process i  

4:   {    Output  

5:         SizeC = the size of ’s conditional pattern base C 

6:         Compute and update threshold Kij  

7:         If  SizeC >Kij  Then  

8:                 Construct ’s local conditional FP-tree T  

9:                 Call MineFPTree4(T,,minsup)    

10:        Else  

11:                Construct ’s  local bit vectors V and weight vector w 

12:                Call MineBitVector2(V,w,,minsup)  

13:         End if    

14:   } 

15:   TCi  = TCi + 1 (*using atomic operation*) 

16:   While Flag = true  

17:          Flag = LoadBalancing (, TCi ) 

18:   End while     

Figure 4-12: ParallelMinePattern2 algorithm 

MineFPTree4 and MineBitVector2 algorithms (Figure 4-13 and Figure 4-14) 

mine frequent patterns using the similar approach presented in Chapter 3. However, these 



113 

 

algorithms perform additional load balancing task using LoadBalancing algorithm 

(Figure 4-15). 

MineFPTree4 Algorithm 

 Input: FP-tree T, suffix, minsup, thread counter TCi 

Output:  set of frequent patterns 

1:   If  T contains a single path P then 

2:   For each combination x of the items in P 

3:              Output  = x  suffix   

4:              Compute and update threshold Kij 

5:   Else Foreach item  in the header table of FP-tree T 

6:              Output  =  suffix   

7:               Size = the size of ’s conditional pattern base C 

8:               DS = {C,  }  

9:               Flag = LoadBalancing(DS, TCi) 

10:               If Flag=false then 

11:                       Compute and update threshold Kij 

12:                       If  Size > Ki Then  

13:                               Construct ’s local conditional FP-tree T’  

14:                               Call MineFPTree4(T’,,minsup,TCi)    

15:                       Else  

16:                                Construct ’s  local bit vectors V and w                              

17:                                Call MineBitVector2(V,w,,minsup,TCi)  

18:                       End if 

19:              End if 

20:   End if 

Figure 4-13: MineFPTree4 algorithm 

 

 



114 

 

MineBitVector2 algorithm 

Input: Bit vectors V, weight vector w, suffix, minsup, thread counter TCi 

Output: Set of frequent patterns  

1:    Sort V in support-descending order of their items  

2:    For each vector vi in V 

3:    {     Output  = item of vi  suffix 

4:           For each vector vj in V with j < i 

5:           {    uj = vi AND vj 

6:                 supj = support of uj computed using w 

7:                 If    supj  minsup Then add uj into  U 

8:            }  

9:            If all uj in U are identical to vi 

10:          Then For each combination x of the items in U  

11:                  Output ’ = x 

12:          Else If U is not empty Then  

13:                  DS = {U,  }  

14:                  Flag = LoadBalancing(DS, TCi) 

15:                   If Flag=false then  

16:                               Call MineBitVector2(U,w,,minsup) 

17:                   End if                                      

18:          End if                                      

19:    } 

Figure 4-14: MineBitVector2 algorithm 

LoadBalancing algorithm (Figure 4-15) performs work sharing and work 

stealing as described in Section 4.5. All threads involve in work sharing (Line 2 – 16) 

while only one thread of a process perform work stealing (Line 17 – 29).  Line 4, 8, 24 

are performed using a synchronization method such lock or critical section as many 

threads can update LBDBi at the same time. 



115 

 

LoadBalancing algorithm 

Input: data subset DS, thread counter TCi, 

Output: Flag 

(* Create shared load balancing data buffer LBDBi & process status list PSLi *) 

1:        Flag =  false 

2:        SizeLBDBi  = the number of conditional pattern in C 

3:        If C  ≠    and size < MaxLBDBi then   

4:              Add C and its suffix into LBDBi critical section/lock  

5:              Flag =  true 

6:        End if C  =   then 

7:        If  SizeLBDBi > 0 then 

8:                  Extract DS = {C, suffix} from LBDBi  critical section/lock 

10:                 If  DS was created by MineFPTree4 previously Then  

11:                 {      Construct conditional FP-tree T from C 

12:                         Call MineFPTree4(T, suffix, minsup, TCi)   } 

13:                Else                      

14:                         Call MineBitVector2(C,w, suffix,minsup, TCi)   

15:                End if   

16:       End if           

17:       If Thread id = 0 then 

18:              Check and serve a work stealing request from a remote process 

19:              Check for status message from a remote process and update PSLi 

20:              Update process status based on TCi , SizeLBDBi, PSLi  

21:              If  status = loadbalancing then 

22:              {       Send a work stealing request to a remote working process 

23:                       Wait and receive response from the remote process 

24:                       If  request is accepted then  

25:                             Add received data into LBDBi using critical section/lock } 

26:              Else if  status = terminating then 

27:              {       Send status message to other processes inform its status 

28:                       Flag = true    } 

29:       End if     

Figure 4-15: LoadBalancing algorithm 



116 

 

Similar to DFEM and ShaFEM, SDFEM use switches between the two mining 

strategies based on a heuristic that uses a threshold K. Each parallel thread maintains its 

own Kij and measures Kij based on the locally processed data where i is process id and j is 

thread id. UpdateK3 algorithm (Figure 4-16) is used to update Kij as mining proceeds.  

UpdateK3 Algorithm 

Input:  NewPatterns and Size 

Output: Updated values of Ki 

 (*Initialization for the first call to UpdateK3: 

    Create a private array X with N elements, Set all X[h] to zero *) 

1:   For h = 0 to N – 1 

2:   If Size > h*Step then X[h] = X[h] + NewPatterns 

3:   Else Exit Loop     

4:   Kij = 0 

5:   For j = N-1 to 1 

6:   If X[h-1] ≥ 2*X[j] then Kij = (h+1)*Step and Exit Loop 

Figure 4-16: UpdateK3 algorithm 

4.7 Performance Evaluation 

4.7.1 Experimental Setup 

Datasets: The five real datasets from Chapter 2 and 3 are used for our 

experiments: two sparse, one moderate and two dense databases obtained from the FIMI 

Repository [59], a well-known repository for FPM. The database features are reported in 

Table 4-1. 

Software: SDFEM can be implemented using different programming platforms 

like OpenMPI [92]. MPICH [93], LAM/MPI [94], which are different implementations of 

MPI, as well as OpenMP, Pthread or other multi-threading platforms. In our experiments, 

we choose OpenMPI and OpenMP to implement SDFEM.  



117 

 

 

Table 4-2: Experimental datasets of SDFEM 

Dataset Type 
# of  

Items 

Average  

Length 

# of  

Trans. 

Chess Dense 76 37 3196 

Pumsb Dense 2113 74 49046 

Accidents Moderate 468 33.8 340183 

Kosarak Sparse 41271 8.1 990002 

Webdocs Sparse 52676657 177.2 1623346 

 

Hardware: We use a cluster of many Altus 1702 machines where each node is 

equipped with dual AMD Opteron 2427 processor, 2.2GHz, 24GB memory and 160 GB 

hard drive. In our experiments, the benchmarks of SDFEM with up to 120 cores (i.e. 10 

nodes of our cluster) were conducted. The operating system is CentOS 5.3, a Linux-based 

distribution. 

4.7.2 Execution Time 

We demonstrate the performance of SDFEM by measuring its execution time for 

various number of cores of the test cluster on six datasets. The sequential test mode was 

done on 1 core. The parallel one was done by running the program on varying number of 

nodes from 1 to 10, each node runs up to 12 cores, providing a range of 12 to 120 threads 

or cores (Figure 4-2c). The test results show that the sequential execution times of 

SDFEM are close to DFEM. Hence, the overhead of parallel implementation of SDFEM 

is small. Experimental results of SDFEM with various number of cores are shown in 

Figure 4-17.  



118 

 

 

Figure 4-17: Running time of SDFEM (from 1 to 120 cores) 

The results show significant reduction in execution time is obtained for all test 

cases. In the experiments, SDFEM reduces the mining time on Webdocs databases from 

   

    

         

 

0

50

100

150

200

250

300

1

12 24 36 48 60 72 84 96

10
8

12
0

R
u

n
n

in
g 

ti
m

e 
(s

ec
o

n
d

s)

cores

Chess (dense , minsup=2.5%)

0

3000

6000

9000

12000

15000

1

12 24 36 48 60 72 84 96

10
8

12
0

R
u

n
n

in
g 

ti
m

e 
(s

ec
o

n
d

s)

cores

Pumsb (dense , minsup=30%)

0

100

200

300

400

500

1

12 24 36 48 60 72 84 96

10
8

12
0

R
u

n
n

in
g 

ti
m

e 
(s

ec
o

n
d

s)

cores

Accidents (moderate,minsup=1%)

0

4000

8000

12000

16000

1

12 24 36 48 60 72 84 96

10
8

12
0

R
u

n
n

in
g 

ti
m

e 
(s

ec
o

n
d

s)

cores

Kosarak (sparse , minsup=0.06%)

0

2000

4000

6000

8000

1

12 24 36 48 60 72 84 96

10
8

12
0

R
u

n
n

in
g 

ti
m

e 
(s

ec
o

n
d

s)

cores

Webdocs (sparse , minsup=4%)



119 

 

6460 seconds on 1 core to 130 seconds on 120 cores which saves 97.98% of time that 

sequential execution requires (i.e. 97.98% = (6460-130)/6460*100%). The time of 

SDFEM on Kosarak database is cut down 98.4% (from 15234 seconds on 1 core to 238 

seconds on 120 cores). Similarly, the percentage of execution time savings for Chess, 

Pumsb and Accidents are 97.79%, 98.08%, 97.95% respectively. This performance 

improvement has come from sharing mining workload for large number of cores and 

reducing the amount of data that each parallel process/thread has to handle. Because 

SDFEM inherits the mining features of DFEM, its performance gain is consistent for both 

dense and sparse databases. 

4.7.3 Speedup 

To evaluate scalability of SDFEM to the size of cluster, we compute its speed up 

by dividing the sequential time of SDFEM by the parallel execution time (i.e. for 12, 24, 

36,…120 cores) and present the results in Figure 4-18. We can see that for most cases, 

speed up increases when the number of cores is increased. Speed up values of six datasets 

on 120 cores are 45.4 (Chess), 52.1 (Pumsb), 64.8 (Kosarak), 48.7 (Accidents), 49.6 

(Webdocs). Many factors limit scalability of most parallel FPM methods like 

synchronization, load balancing and data communication overheads or limitations of test 

hardware like serial I/O. It is important to note that, as the number of nodes (multiples of 

12 in plots of Figure 4-18) is increased, higher speedups are obtained which shows 

SDFEM scales for lager machines.  



120 

 

 

Figure 4-18: Speedup of SDFEM (from 1 to 120 cores) 

 

 

   

 

0

10

20

30

40

50

1

12 24 36 48 60 72 84 96

10
8

12
0

Sp
e

e
d

u
p

cores

Chess (dense , minsup=2.5%)

0

10

20

30

40

50

60

1

12 24 36 48 60 72 84 96

10
8

12
0

Sp
e

e
d

u
p

cores

Pumsb (dense , minsup=30%)

0

10

20

30

40

50

60

1

12 24 36 48 60 72 84 96

10
8

12
0

Sp
ee

d
u

p

cores

Accidents (moderate , minsup=1%)

0

10

20

30

40

50

60

70

1

12 24 36 48 60 72 84 96

10
8

12
0

Sp
ee

d
u

p

cores

Kosarak (sparse , minsup=0.06%)

0

10

20

30

40

50

60

1

12 24 36 48 60 72 84 96

10
8

12
0

Sp
ee

d
u

p

cores

Webdocs (sparse , minsup=4%)



121 

 

As mentioned in the previous chapters, performance of FPM is significantly 

impacted by the minsup value; the smaller minsup, the larger execution time. That is 

because more transactions are load into memory in the second database scan and more 

candidates statisfy the condition to be frequent pattern. Therefore, we also examined 

scalability of SDFEM when the minsup input value varies. Figure 4-19 presents  running 

time (for 1 core and 120 cores) and speedup (Time1 core / Time120 cores) of SDFEM on 

Webdocs database (our experimental results on the other databases show similar trend). 

According to these results, as minsup values decrease, execution time of SDFEM also 

increases for both test cases with 1 core and 120 cores. Furthermore, speedup increases 

when data are mined with smaller misup. This feature is important as it shows mining 

with small minsup scales well on Big Data.  

  

Figure 4-19: Running time and speedup of SDFEM when minsup varies 

4.7.4 Impact of Hybrid MPI-OpenMP Programming Model 

Application of hybrid MPI-OpenMP programming model is an important feature 

of SDFEM, making it distinguished from related work. We study the impact of this 

programming model in comparison with the traditional pure MPI model. For this 

0

2000

4000

6000

8000

10 9 8 7 6 5 4

R
u

n
n

in
g

 ti
m

e 
(s

ec
o
n

d
s)

Minsup (%)

Webdocs (sparse)

120 cores

1 core

0

10

20

30

40

50

60

10 9 8 7 6 5 4

S
p

ee
d

u
p

Minsup (%)

Webdocs (sparse)



122 

 

purpose, SDFEM has been benchmarked using 5 compute nodes with 60 cores in total in 

two scenarios (as depicted in Table 4 3): 

Scenario 1- 1 process per core and total processes = 60 

Scenario 2- 12 threads per process, 1 process per node and total threads = 60 

In Scenario 1, SDFEM performs exactly like a MPI program. In Scenario 2, 

SDFEM applies the hybrid programming model presented in Sections 4.2.2 and 4.4. The 

comparison results in Table 4-3 shows clear evidence that using hybrid model can 

improve significantly FPM performance. Compared to pure MPI, the hybrid mode with 

12 threads per process enhance 70.0% up to 329.5% of mining performance. For 

Kosarak, SDFEM with the hybrid model runs much faster than its pure MPI version (474 

seconds vs.  2036 seconds).   

Table 4-3: Time comparision of pure MPI vs. hybrid MPI-OpenMP (60 cores) 

Datasets MinSup 

Scenario 1 

Pure MPI 
Scenario 2 

Hybrid 
Time 

Difference 

Performance 

Improvement 

(1) (sec.) (2) (sec.) (3)=(2)-(1) (4)=(3)*100/(2) 

Chess 2.50% 42 11 31 281.8% 

Pumsb 30% 128 68 60 88.2% 

Accidents 1% 25 14 11 78.6% 

Kosarak 0.06% 2036 474 1562 329.5% 

Webdocs 4% 436 220 216 98.2% 

 

4.7.5 Impact of Different Load Balancing Techniques  

Another important factor impacting FPM performance is load balancing. We 

evaluate the efficiency of the four load balancing techniques applied in SDFEM (Section 

4.5) by implementing 4 different versions of SDFEM where each integrates a 

combination of different techniques as listed in and benchmarking them using 120 cores 

(12 threads/cores per process, 1 process per nodes). In Table 4-4, the underlined values 



123 

 

indicate load-balancing techniques in Section 4.5. All load balancing techniques are 

applied in SDFEM-V4 while fewer are used in the others: SDFEM-V1 (1 technique), 

SDFEM-V2 (2 techniques) and SDFEM-V3 (3 techniques). The test results presented in 

Table 4-5 indicate that SDFEM-V4 runs much faster the other three versions, showing 

clearly the importance of load balancing techniques. 

Table 4-4: Four versions of SDFEM with different load balancing techniques 

Techniques SDFEM-V1 SDFEM-V2 SDFEM-V3 SDFEM-V4 

Within-node job scheduling Static (cyclic) Dynamic Dynamic Dynamic 

Within-node load balancing N/A N/A Work Sharing Work Sharing 

Between-node job scheduling Static (cyclic) Static (cyclic) Static (cyclic) Static (cyclic) 

Between-node load balancing N/A N/A N/A Work Stealing 

 

 

Table 4-5: Running time of four versions of SDFEM (120 cores) 

Datasets MinSup 
SDFEM-V1 

(sec.) 
SDFEM-V2 

(sec.) 
SDFEM-V3 

(sec.) 
SDFEM-V4 

(sec.) 

Chess 2.5 % 42.2 42.3 7.5 5.2 

Pumsb 30 % 3153 3152 341 252 

Accidents 1 % 44 27 9.7 8.1 

Kosarak 0.06 % 2153 2020 304 248 

Webdocs 4 % 637 316 130 129 

 

We measure speed up of the four versions by dividing the sequential execution 

time of SDFEM by the parallel time of each version. Figure 4-20 shows that the 

performance of SDFEM is enhanced for each added technique. Among those, applying of 

within-node load balancing using work sharing introduces the most significant 

performance and speed up gain compared to the other techniques on most test databases 

because we observe the large increase in speed up (SDFEM_V3). This also demonstrates 



124 

 

that use of shared memory not only reduces data communication but also improves 

workload balance by providing an environment suitable for work sharing technique. The 

impact of other techniques vary depending on the database. For example, sharp increases 

in SDFEM on Chess, Pumsb and Kosarak are observed with work stealing (SDFEM_V4). 

  

Figure 4-20: Speedup of four versions of SDFEM compared to its sequential time 

4.8 Conclusion 

We present SDFEM, a novel parallel FPM for multi-core clusters, as a high performance 

FPM solution for large-scale applications. SDFEM has three main features which have 

not been investigated by the prior parallel work. They include (1) use of hybrid 

programming model to leverage the benefits of shared memory and enhance the mining 

performance; (2) application of multiple load balancing techniques to achieve high 

performance and scalability; and (3) utilization of data characteristics based mining 

0

10

20

30

40

50

60

70

Chess Pumsb Accidents Kosarak Webdocs

S
p
ee

d
u
p

Speedup Comparision

SDFEM_V1

SDFEM_V2

SDFEM_V3

SDFEM_V4



125 

 

approach, that we developed and presented in Chapter 2, to perform efficiently on 

different types of data. Our performance evaluation has shown that in our test cases, 

SDFEM can save 97.79% - 98.4 % compared to sequential time. SDFEM on 120 cores of 

our cluster run 45.4 – 64.8 times faster its sequential time for the test datasets.   



126 

 

 

 Parallel Frequent Pattern Mining on GPU 

5.1 Introduction 

General-Purpose Computing on Graphics Processing Units (GPGPU, referred to as 

GPU in this Chapter) have emerged as powerful computing resources for general–

purpose computing applications. They have been increasingly used as co-processors to 

provide parallel processing capability that was once dominated by CPUs  [95], [96]. 

GPGPU applications can be developed by using either CUDA [97] or OpenCL [98].As 

the volume of data generated in most fields is fast growing, applying high performance 

techniques to enhance the overall performance of FPM has become important. 

5.1.1 Motivation and Related Literature 

Modern GPUs are designed with up to hundreds of computing units to be able to 

process a massive number of data elements in parallel at very high speed. GPUs support 

SIMT, a Single Instruction Multiple Thread model of computation, where groups of 

concurrent threads of execution created through a kernel launched from CPU on GPU 

will execute their assigned instruction streams in parallel. GPUs work well for 

applications exhibiting regular patterns. Most efficient FPM algorithms, which are 

designed and optimized for CPU, use complex data structures and do not lend themselves 

well to be ported to GPU.  

Most existing methods for GPU  [99], [100],  [101],  [102], [103], [104], [105], 

[106], [107], [108] are based on Apriori because they use breadth-first strategy and 

candidate generation-and-test approach to create a large amount of workload with data 

suitable for presentation on GPU and are easily parallelizable. However, for very large 



127 

 

databases, the Apriori-like methods are significantly slower and consume much more 

memory in comparison to sequential methods like Eclat  [31], FP-growth  [25], and 

specially our proposed methods, FEM  [39] and DFEM [40]. In many cases, Apriori-like 

methods are hundred times slower than FP-growth or its variants like the FP-tree 

traversal time  [26], H-mine  [27], nonordfp  [28], the use of FP-array data structure  [29] 

and FP-growth with database partition projection [30]. This means that for certain 

databases, even the best GPU Apriori-like algorithm using hundreds of parallel 

computing units may perform at best as well as some sequential methods running on a 

single CPU. While Apriori-like methods have been shown to perform efficiently on 

sparse data they do not perform well on the dense databases [59], [32], [48]. Similarly, 

these GPU based Apriori methods for FPM exhibit the same poor performance on sparse 

datasets as well. 

5.1.2 Contributions 

We propose CGMM (CPU & GPU based Multi-strategy Mining), an extended 

version of DFEM which utilizes both CPU and GPU for its computation. CGMM works 

on the machine equipped with GPU and is an alternative method for DFEM when mining 

with low minsup values. The following features of CGMM contribute to its improved 

performance and distinguish it from the prior work: 

1. CGMM consists of two different mining strategies, CPUBasedMining and 

GPUBasedMining, specifically designed to exploit the computing power of CPU and 

GPU. It inherits the mining feature of FEM that uses a heuristic approach to 

dynamically select a suitable strategy for each data subset of the database based on its 

density characteristics during the execution.  



128 

 

2. The CPUBasedMining strategy uses only CPU to mine the frequent patterns by 

recursively constructing FP-trees without generating a large number of candidates. It 

is applied for data portions with sparse characteristics.  

3. The GPUBasedMining strategy uses GPU as the main computing engine to mine the 

data portions with dense characteristics using a hybrid solution that consists of a new 

adaptive breadth-first approach, bit vector data structures, and candidate generation 

and test approach.   

5.2 Background 

5.2.1 GPU Architecture 

GPU has becomes a popular computing device and is embedded in most computer 

systems (e.g. mobile devices, PCs, servers, cluster, etc.) [101]. They are broadly known 

as the special type of processor used to accelerate graphics applications. Figure 5-1 

depicts a typical design of computer systems equipped with GPU devices. In this 

architecture, one or more GPUs (i.e. co-processors referred as device) connect with CPUs 

(main processors referred as hosted) via peripheral component interconnect express (PCI-

e).  



129 

 

 

Figure 5-1: The architecture of Nvidia’s GPU 

Modern GPUs have between dozens to hundreds of computing units/cores and 

can deliver much larger performance than a CPU for the right type of application. Their 

architectures typically consist of several streaming multiprocessors (SM) sharing same 

device memory. Each SM can have eight or more computing units/cores (most often 

referred to as streaming processor – SP) depending on the device model. Nvidia’s GPUs 

with CUDA architecture are dominantly used at the time of this writing. Development of 

none-graphics applications for GPUs have become easier by programming tools like 

CUDA [97], OpenCL [98], Access 3. The architecture of a CUDA-enabled GPU consist 

of one or many stream multiprocessors (SMs or SMXs) as shown in Figure 5-1. Each SM 

or SMX is a SIMD processor with 8-32 CUDA cores called streaming processors (SPs). 

For example, Tesla C2050 has 14 SMs with total 448 SPs (i.e. 32 SPs per SM). Each SM 

has a fast shared memory (which is a type of on-chip local memory) and is shared by all 



130 

 

of its SPs. GPU also has a read-only constant cache and texture cache shared by all the 

SPs on the GPU (not shown in the figure). A set of local 32-bit or 64-bit registers is 

available for each SP. The SMs communicate through the global/device memory. The 

global memory can be read or written by the host, and is persistent across kernel launches 

by the same application. Shared memory is managed explicitly by the programmers 

[101]. 

5.2.2 CUDA Programming 

CUDA (Compute Unified Device Architecture) developed by Nvidia was 

designed to efficiently support both graphical and non-graphical operations on GPU. 

CUDA’s software interface provides ease of building and executing general applications 

on GPUs. The CUDA software stack is composed of a hardware driver, an application 

programming interface (API) and runtime library. CUDA applications are written in “C” 

and use the CUDA APIs to access the GPUs at runtime to get device information, copy 

data and load the computing workload to GPUs. The programming and execution model 

of CUDA applications usually involve the following steps: 

1. Copy input data from main memory to GPU memory.  

2. Launch kernel to be executed on GPU. Each kernel is a computational unit doing 

a specific task.  

3. GPU executes the kernel that has been launched. 

4. Copy output data back from GPU memory to main memory. 

In CUDA, computation is written as a kernel on the CPU which is launched on 

GPU with a massive amount of similar computational units known as threads [99]. When 

a kernel is launched to execute on GPU, it is referred as a grid of computation. A grid 



131 

 

consists of multiple thread blocks; a block is a group of threads. A thread block is 

assigned to a multiprocessor SM. SM’s execution model is SIMT (Single Instruction, 

Multiple Threads). Figure 5-2 depicts CUDA’s execution model. Threads within the 

same thread block are divided into groups, called warps, each of which contains 32 

threads. A warp of threads can combine accesses to consecutive data items in one device 

memory segment into a single memory access transaction called coalesced access. When 

a grid is executed on GPU, its thread blocks are distributed and assigned to execute on 

SMs; threads within a block are mapped into SPs of a single SM. 

 

Figure 5-2: The execution model of CUDA 

As a co-processor, GPU relies on the CPU for memory allocation. As such, the 

common practice for efficiency is to allocate the GPU memory statically before initiating 

the kernel and to avoid dynamic allocation or reallocation during kernel execution. Due 



132 

 

to the limited bus bandwidth between GPU and CPU memories, it is best to eliminate 

frequent, small-sized data transfers between CPU and GPU. 

5.2.3 Frequent Pattern Mining Using GPU 

Mining frequent patterns is nontrivial due to the necessity for amount of data and 

computational intensity over exponential search space. The GPU SIMT computational 

model (which for most practical purposes is very similar to SIMD: Single Instruction, 

Multiple Data  [91]) works great for applications with massive amount of repetitive 

parallelism with regular access patterns. Performance penalties occur on GPUs due to 

irregular workloads, irregular access patterns, needs for synchronization among threads 

belonging to different blocks, and needs to move and access data in different levels of 

memory hierarchy. These pose significant challenges for FPM using GPU as computing 

resource. 

The traditional FPM methods developed for sequential execution on CPU must be 

redesigned so that their computational model and data structures can exploit the type of 

parallelism provided by GPU architectures. GPU requires data representation that can be 

processed uniformly and independently by a large number of concurrent threads. In 

addition, data pre/post processing in CPU and transferring data between CPU and GPU 

can add a large enough overhead to the total execution time of FPM to negate the benefits 

of GPU.  

5.3 Prior GPU-based FPM Algorithms 

A review of sequential FPM algorithms is given in Section 2.3. Several GPU-based 

FPM methods have been developed. In this section, we research three most relevant GPU 

FPM algorithms CSFPM  [103], GPApriori [106] and gpuDCI [104]. 



133 

 

5.3.1 CSFPM Algorithm 

Candidate Slicing Frequent Pattern Mining (CSFPM)  [103] is one of Apriori-like 

methods for GPU. It off-loads the most time consume phase of counting to compute the 

supports to the GPU to speed up the total execution time. For better load balancing, the 

algorithm parallelizes and distributes the candidate itemsets to the GPU threads; each 

thread checks its own transaction in a candidate item. This reduces the processor waiting 

time since the load between processing units is more balanced. 

5.3.2 GPApriori Algorithm 

GPApriori by Zhang et al. [106] is also an Apriori-like method for GPU. It  maps 

the Apriori algorithm to the SIMD execution model by using a “static bitset” memory 

structure to represent the input database. This data structure improves upon the traditional 

approach of the vertical data layout in state-of-the art Apriori implementations. Similar to 

CSFPM, GPApiori parallelizes only support counting step on the GPU while the 

remaining steps are executed on CPU. GPApriori applies several optimization techniques 

in its implementation: (1) before support counting is performed on GPU, candidates are 

preloaded to shared memory to prevent repeating global memory read, manual, (2) hand-

tuned loop unrolling to further improve the kernel speed; and (3) hand-tuned block size 

[106]. 

5.3.3 gpuDCI Algorithm 

gpuDCI  [104] is an adoption of the DCI algorithm  [71], a sequential mining 

approach that combines Apriori and Eclat. This algorithm starts its computation on CPU, 

as in DCI, and moves the pruned datasets to the GPU as soon as the bitwise vertical 

dataset fits into the GPU global memory. Afterwards the support computation is 



134 

 

performed on GPU. However, after switching to GPU, the CPU still manages patterns, 

generates candidates and stores patterns that are frequent according to the supports 

computed by the GPU. Two parallel techniques have been investigated: (1) for the 

transaction-wise technique, all GPU cores independent of the GPU multiprocessor they 

belong to, work on the same intersection or count operation; (2) for the candidate-wise 

technique, each GPU multiprocessor intersects and counts a different candidate. The 

candidate-wise technique has shown to perform better than the transaction-wise 

technique because it requires fewer synchronization operations. 

5.4 New Frequent Pattern Mining Approach using a CPU-GPU Hybrid Model 

5.4.1 The Proposed Multi-strategy Approach 

Among many sequential frequent pattern mining methods that are traditionally 

developed for machines without GPU, FP-growth and its variants  [26],  [27],  [28],  [29], 

[30] are most efficient, especially for sparse large databases. They do not require 

generating a very large number of candidate itemsets as Apriori and Eclat do and hence 

save both memory and computation.  The main mining computation of FP-growth is 

based on recursively generating FP-trees [25]. 

While the benefits of applying FP-growth can not be ignored, developing a 

method based on FP-growth for FPM poses a lot of challenges for GPU due to FP-tree 

data structure, recursive tree construction, and tree traversal need. GPUs perform best for 

tasks whose data structures are linear and computations lend themselves well to vector 

processing. Moreover, it has been shown that FP-growth does not perform as well as 

Eclat when mining dense databases or mining with low minsups where the number of 

generated frequent pattern is very large [60], [32],  [48]. For such cases, manipulating a 



135 

 

very large number of FP-trees in FP-growth becomes more costly than intersecting the 

TID-lists of Eclat. It is important to keep in mind that for TID-lists, the vertical and linear 

data formats and list intersection operations of Eclat are quite suitable for GPU but the 

depth-first approach does not allow creation of enough parallel workload, compared to 

Apiori, to fully utilize the large computing resources of GPU.  

Therefore, we combine and redesign the advanced features of FP-growth, Eclat, 

MAFIA [10] and Apriori into a new mining method, CGMM, that applies both CPU and 

GPU computing to provide high FPM performance. As in DFEM, CGMM consists of 

two mining strategies and dynamically selects a suitable mining for each data portion of a 

database. 

5.4.2 Overview of CGMM 

CGMM consists of three main tasks: FP-tree construction, CPUBasedMining and 

GPUBasedMining described below. It starts with constructing the corresponding FP-tree 

followed by dynamically selecting between CPUBasedMining and GPUBasedMining 

similar to DFEM as depicted in Figure 5-3. 



136 

 

 

Figure 5-3: The overview of CGMM 

FP-tree construction (on CPU) reads the database to build the corresponding FP-

tree. Using this data structure significantly reduces the I/O cost because it compacts the 

database in memory before mining is performed. It also enables multiple mining 

strategies to be employed with relative ease as subsets of data from this tree can be used 

to create independent sub-mining tasks where each may use a different mining strategy. 

CPUBasedMining (on CPU) extracts from the FP-tree the data subsets to 

recursively construct child FP-trees. The frequent patterns are identified based on newly 

GPUbasedMining 

CPUbasedMining 

FP-Tree 

construction 

FP-tree 

 
Is the  

data subset 

sparse? 

No 

Yes 
 

Child FP-tree of 

the data subset 

Database 

 Is size limit of 

the lists 

reached ? 

Data Lists 

No 
  

Yes 
  

Frequent Pattern Set 

Weight Vector Set 



137 

 

generated FP-trees without the requirement of generating a large number of frequent 

pattern candidates. Because FP-tree data structure is complex and inefficient for mining 

on GPU, only CPU is used to process the mining task. CPUBasedMining is distinct from 

the other mining methods because it is applied to sparse data subsets only. Determination 

of whether a data subset is sparse or dense is described in following section. 

GPUBasedMining uses a new hybrid mining model designed for GPU applied to 

the dense data subsets. It presents data used to compute the support as bit vectors and 

maintains input and output data in data lists including Frequent Pattern Set List and 

Weight Vector List. The new frequent patterns are generated by applying candidate 

generation-and-test approach using a self-adaptive breath-first solution. Only a subset of 

frequent patterns is used to generate frequent pattern candidates at a time as long as their 

input and output data fit in the GPU memory. It addresses GPU memory limitation 

problem. Unlike the existing GPU solutions that off-load only the support counting phase 

to GPU, GPUBasedMining performs both the candidate generation and the support 

counting on GPU to increase GPU utilization and reduce overall processing on CPU as 

well as data transfer between CPU and GPU memories. 

5.4.3 Switching Between the Two Mining Strategies 

The multi-strategy approach of CGMM is enabled by the ability of switching 

between its two mining strategies CPUBasedMining and GPUBasedMining. It reapplies 

the switching condition for DFEM (Section 2.4.6). However, CGMM is different from 

DFEM, ShaFEM and SDFEM because the two mining strategies are executed on 

different computing devices, CPU and GPU. In Section 5.5, we present the data 



138 

 

structures used in CGMM and the impact of threshold K on CGMM performance and 

how to choose a good threshold in Section 5.6. 

5.5 CGMM Algorithm 

The CGMM algorithm is performed in two stages. The first stage is loading data 

into memory by constructing the FP-tree. Then, frequent patterns are generated using the 

two mining strategies in our algorithms by initially invoking CPUBasedMining, Figure 

5-4. 

CGMM algorithm 

Input: Transactional database D and minsup 

Output: Complete set of frequent patterns  

1:    Scan D once to identify all frequent items 

2:    Scan D a second time to construct the FP-tree T 

3:    Call CPUBasedMining(T,,minsup) 

Figure 5-4: CGMM Algorithm 

5.5.1 FP-tree construction and CPU Based Mining 

The FP-tree construction phase is similar to that of FEM and DFEM, described in 

Section 2.4. CPUBasedMining is similar to MineFPTree2 for DFEM, described in 

Section 2.6.2.  For the FPTree mining approach, the switching stage is redesigned for 

GPU applications. 

CPUBasedMining does not process data subsets which have dense characteristics. 

Instead, it converts them into Frequent Pattern Set and Weight Vector and adds them into 

the Frequent Pattern Set List and Weight VectorList managed by GPUBasedMining. As 

mining proceeds and when CPUBasedMining finds these lists full, it invokes 



139 

 

GPUBasedMining to start on GPU. The algorithmic description of CPUBasedMining is 

depicted in Figure 5-5. 

CPUBasedMining algorithm 

Input: FP-Tree T, suffix, minsup 

Output: Set of frequent patterns  

1:    If T contains a single pathP 

2:    Then For each combination x of the items inT 

3:                 Output  = xsuffix 

4:    Else For each itemin the header table ofT 

5:    {    Output =suffix  

6:          Construct 's conditional pattern base C 

7:          size = the number of nodes in the linked list of  

8:          If size > K 

9:          Then { Construct 's conditional FP-tree T’  

10:                     Call CPUBasedMining (T’,,minsup)} 

11: Else  { Create Frequent Pattern Set S and  

12:                               Weight Vector W from C  

13:              Add S into Frequent Pattern Set List LS 

14:              Add W to Weight Vector List Lw 

15:              If (LS   is full)   Call GPUBasedMining(LS, Lw, minsup) 

16:              } 

17:    } 

Figure 5-5: CPUBasedMining algorithm 

5.5.2 GPU Based Mining 

GPUBasedMining mines the dense data portions of the database. It uses the GPU 

co-processor for most of its computational intensive needs, and CPU for the complicated 

tasks with data dependence to exploit the power and flexibility of GPU and CPU 

respectively. 



140 

 

 

5.5.2.1 Data structures 

 

GPUBasedMining uses several data structures to manage the mining data 

including Frequent Pattern Set, Frequent Pattern Set List and Weight Vector List (Figure 

5-6). 

 

Figure 5-6: Data structures used by GPUBasedMining 

Frequent Pattern Set is a set of frequent patterns that have same length k (i.e. they 

have k items in their itemsets) in which (k– 1) items are common and one item is 

different among the frequent patterns in the set. For example, three frequent patterns abc, 

abd, abe can form a Frequent Pattern Set because they have ab in common. It contains a 

Weight Vector List 
  

 

 

{a:1,b:1, c:1} 
{a:1,c:1, d:1} 

{a:1, d:1} 
Conditional pattern 

base of item e 

{a:3,b:3} 

{a:1} 

{b:1} 
Conditional pattern  

base of item c 

  

be 
1 
0 
0 

ae 
1 
1 
1 
  

Frequent Pattern Set 1 

 Size = 2 

 Length=2 

 Bit vectors 
 

 

 

 

 Weights vector = W
1
 

W
1
 

3 
1 
1 
  

W
2
 

1 
1 
1 
  

Frequent Pattern Set List 
  
  
  
  

… 
  
 

Frequent Pattern Set 1 

  
Frequent Pattern Set 2 

  

Frequent Pattern Set 2 

 Size = 4 

 Length=2 

 Bit vectors 
 

 

 

 

 Weight vector = W
2
 

 

  

bc 
1 
0 
1 

ac 
1 
1 
0 
  

  

de 
0 
1 
1 

ce 
1 
1 
0 
  



141 

 

set of bit vectors where each presents the occurrence of a frequent pattern in the database. 

This data structure is used to generate new (k+1) length frequent pattern candidates and 

compute their supports. Some additional information of a Frequent Pattern Set includes 

size - the number of frequent patterns in the set, and length - the number of items in a 

frequent pattern. Figure 5-6 demonstrates two Frequent Pattern Sets that are created from 

the conditional pattern bases of items e and c extracted from the FP-tree. A Frequent 

Pattern Set is only created if it satisfies the condition for GPUBasedMining and contains 

the data of at least two frequent patterns. 

Frequent Pattern Set List works as a container (buffer) that holds all Frequent 

Pattern Sets generated during the mining process and is updated by both 

CPUBasedMining and GPUBasedMining. In our example, two Frequent Pattern Sets are 

added into the Frequent Pattern Set List. 

 Weight Vector List: the weight vector is a portion of Frequent Pattern Set that is 

used to compute the support of the patterns and is created by collecting the frequency 

values of sets in the conditional pattern base. Because many Frequent Pattern Sets that 

are newly generated by GPUBasedMining may share a same weight vector, we store this 

data in a separate list called Weight Vector List and add a reference in Frequent Pattern 

Set to its weight vector in the list to avoid duplication and save memory. 

5.5.2.2 Algorithmic description 

During the execution of CPUBasedMining, small data subsets that meet the 

condition to be mined using GPUBasedMining are converted to Frequent Pattern Sets 

and added into the Frequent Pattern Set List. When the number of items in this list 

reaches a predefined limit, GPUBasedMining is invoked by CPUBasedMining to start 



142 

 

generating all new frequent patterns using Frequent Pattern Sets in the list. In Section 

5.6, we present experiments showing the impact of different size limits on the 

performance of CGMM. The discovery of new frequent patterns from Frequent Pattern 

Set List involves the following steps; note that Steps 2 and 3, which comprise the most 

computational intensive phases of the program, are executed on GPU:  

1. Extract a group of Frequent Pattern Sets from the list 

2. Generate frequent pattern candidates using Frequent Pattern Sets  

3. Compute the supports of candidates using Frequent Pattern Sets and Weight 

Vectors  

4. Identify new frequent patterns from the candidates. 

5. Add new Frequent Pattern Sets created from the new frequent patterns and 

repeat step 1 until no more Frequent Pattern Set is found from the list. 

GPUBasedMining processes a group of Frequent Pattern Sets at a time by 

extracting multiple Frequent Pattern Sets from the list as long as their total memory size 

of newly generated candidates, their bit vectors and Frequent Pattern Sets used to 

generate them do not exceed the available memory on GPU. This workload computation 

helps CGMM flexibly scale to the memory size of physical device which is a major 

challenge in GPU computing. In addition, applying the data list structure allows 

GPUBasedMining to work without recursion (recursive procedures do not generally yield 

high performance on GPUs). Figure 5-7 presents the algorithmic description of 

GPUBasedMining. In this figure, the computation steps involving the GPU include lines 

1, 6 – 9 and 13 respectively and are detailed in the following section. 

 



143 

 

 

 

GPUBasedMining algorithm 

Input: Frequent Pattern Set List LS ,Weight Vector List LW, minsup 

Output: Set of frequent patterns  

1: M = Available memory on GPU 

2:  Copy  LW to the GPU 

3:  While LS is not empty 

4:  {    Specify S  Ls where m ≤ M 

5:                       m = size of memory needed for S and candidates of S 

6:        Copy S to memory of GPU  

7:        Generate candidates on GPU using S 

8:        Compute support of candidates on GPU using S 

9:        Copy support of candidates back to CPU 

10:      FP = new frequent patterns with support ≥ minsup 

11:     Output FP 

12:      Snew= new Frequent Pattern Sets created using FP 

13:      Consolidate bit vectors of FP on GPU using Snew 

14:      Remove S from LS 

15:      Add Snew to LS 

16: } 

Figure 5-7: GPUBasedMining algorithm 

5.5.2.3 Generating frequent pattern candidates and computing their Supports on 

GPU 

The Frequent Pattern Sets and the Weight Vectors are copied to GPU and 

distributed among the thread blocks. Each concurrent thread in a thread bloc will identify 

the candidates it needs to work on, using the information of Frequent Pattern Sets 



144 

 

assigned to its block, and determine necessary information of these candidates such as the 

two parent frequent patterns, their input bit vectors and its output bit vector to store the 

result of ANDing the parent’sbit vectors. Candidates are then generated in parallel by 

concurrent threads on GPU and their supports are computed. Each thread is responsible 

for the support of one or more candidates independently. Figure 5-8 illustrates the 

computations on GPU to generate the frequent pattern candidates and computation of the 

supports using the Frequent Pattern Sets and Weight Vectors in Figure 5-6. 

 

Figure 5-8: Generating pattern candidates and computing their counts on GPU 

5.5.2.4 Data transfer optimization 

An important feature of GPUBasedMining is that the output bit vectors of bitwise 

operations on GPU are not copied back to the main memory. Instead, the bit vectors 

belonging to the new frequent patterns are consolidated and used as the inputs in the next 

iteration. For this reason, the new Frequent Pattern Sets (Snew in line 12 of Figure 5-7) 

  

  

  

  

  

  

  

  

 

 
 

 

3 

1 

1 

Input Bit Vector Weight Vectors 

Output  

Bit Vectors 

1 

1 

1 

1 

0 

0 

1  

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

1 

0 

0 

0 

0 

1 

0 

T
1
 T

2
 T

3
 T

4
 T

5
 T

6
 T

0
 

1 

1 

0 

1 

0 

1 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

1 3 2 2 2 0 1 Count 

ac  ab  ae  be ce de  

a
b

c
(3

3
%

) 
 

a
b

e
(1

1
%

) 

a
c
e

(2
2

%
) 

a
d

e
 (

2
2

%
) 

b
c
e
 (

2
2

%
) 

b
d

e
 (

0
%

) 

c
d

e
 (

1
1

%
) 

1 

1 

0 

0 

1 

1 

a
d

e
  

a
c
e 

 

Input Bit Vectors 

of next iteration 

Thread Block 

Thread 

Candidates 

&Supports 



145 

 

which are stored in main memory do not include bit vector data. This technique 

minimizes the communication cost between CPU and GPU, saves memory on the CPU 

side and enhances the overall performance of CGMM. For example, for minsup=20%, the 

new frequent patterns are abc, ace, ade, bce because their supports > 20%. Among those, 

abc, ade are used to create a new Frequent Pattern Set to add to the Frequent Pattern Set 

List because they can be used to create the candidates acde in the next iteration. 

Therefore, the bit vectors of abc, ade are kept and unified in GPU memory.  

5.6 Performance Evaluation 

5.6.1 Experimental Setup 

Datasets: The six real datasets from Chapters 2, 3 and 4 are used as test cases. 

They represents various characteristics and domains of interest for our experiments: three 

sparse, one moderate and two dense databases all obtained from the FIMI Repository 

[59], a well-known repository for FPM. The database features are reported in Table 5-1. 

Table 5-1: Experimental datasets of CGMM 

Dataset Type 
# of  

Items 

Average  

Length 

# of  

Trans. 

Chess Dense 76 37 3196 

Pumsb Dense 2113 74 49046 

Accidents Moderate 468 33.8 340183 

Retail Sparse 16470 10.3 88126 

Kosarak Sparse 41271 8.1 990002 

Webdocs Sparse 52676657 177.2 1623346 

 

Software: CGMM can be implemented using different programming platforms like 

CUDA [97] or OpenCL [98]. In our experiments, we choose CUDA to implement 

CGMM because CUDA delivers better performance for the Nvidia GPUs used in our 



146 

 

experiments. We have carefully tested our implementation and have verified that it 

generates correct outputs in every case; this is often a challenge for complex applications 

developed on GPUs. 

Hardware: We use an Altus 1702 machine with dual AMD Opteron 2427 

processor, 2.2GHz, 24GB memory and 160 GB hard drive. This machine is equipped 

with NVIDIA Tesla Fermi C2050 GPU that has 3GB memory, 14 multiprocessors and 

each multiprocessor consists of 32 CUDA cores 1.5GHz. The operating system is 

CentOS 5.3, a Linux-based distribution. 

5.6.2 Performance Evaluation 

 

To evaluate performance of CGMM, we benchmarked it with six state-of-the-art 

FPM algorithms Apriori [8], Eclat [31], FP-growth [25], FP-growth* [26], AIM2 and 

DFEM (Section 2.6). Unlike CGMM with multi-strategy approach using both CPU 

(sequential execution) and GPU (parallel execution), these algorithms apply only one 

mining strategy and use CPU as the only computing engine. The running time of the 

seven methods on six datasets with various minsups are given in Figure 5-9. The 

experimental results show that CGMM outperforms the other algorithms including 

Apriori, Eclat, FP-growth, FP-growth* and AIM2 on both dense and sparse datasets for 

most test cases. Please note that the y-axis of the graphs is in logarithmic scale. CGMM 

does not run as well as DFEM for larger minsup values but it outperforms DFEM when 

minsup reduces. Hence, we recommend to apply CGMM for applications that uses low 

minsup values. 

 



147 

 

 
Figure 5-9: Running Time of CGMM vs. other sequential algorithms  

 

 

 

 
 
 

0

1

10

100

1000

10000

40 35 30 25 20

R
u
n

n
in

g
 T

im
e 

(s
ec

o
n

d
s)

Minsup (%)

Chess (dense)

0

1

10

100

1000

10000

70 65 60 55 50

R
u
n

n
in

g
 T

im
e 

(s
ec

o
n

d
s)

Minsup (%)

Pumsb (dense)

1

10

100

1000

7 6 5 4 3

R
u

n
n

in
g

 T
im

e 
(s

ec
o
n

d
s)

Minsup (%)

Accidents (moderate)

0

1

10

100

0.011 0.009 0.007 0.005 0.003

R
u

n
n

in
g

 T
im

e 
(s

ec
o
n

d
s)

Minsup (%)

Retail (sparse)

1

10

100

1000

10000

100000

0.09 0.085 0.08 0.075 0.07

R
u
n

n
in

g
 T

im
e 

(s
ec

o
n

d
s)

Minsup (%)

Kosarak (sparse)

1

10

100

1000

10000

100000

1000000

12 10 8 6 4

R
u
n

n
in

g
 T

im
e 

(s
ec

o
n

d
s)

Minsup (%)

Webdocs (sparse)

1100000Apriori Eclat FP-growth FP-growth*

AIM2 DFEM CGMM



148 

 

For test cases with low minsup values, CGMM runs 1.0 – 229 times faster five 

compared algorithms except DFEM on test datasets (Table 5-2). It runs faster than DFEM 

1.0 – 1.8 times on Chess, Pumsb, Accidents, Kosarak and Webdocs datasets. For Retail, 

DFEM performs better than CGMM. However, their time difference reduces as minsup is 

set to smaller values. When minsup is set to smaller values, the number of data subsets 

mined by GPUBasedMining of CGMM is large and GPU is more efficiently utilized. 

When minsup is larger, the amount of work delegated to GPU is small and this device is 

under-utilized. In such cases, the highly optimized DFEM is a better FPM solution.  

Table 5-2: Speedup of CGMM vs. other sequential algorithms 

Datasets Minsup 
vs. 

Apriori 

vs. 

Eclat 

vs.  

FP-growth 

vs.  

FP-growth* 

vs. 

AIM2 

vs. 

DFEM 

Chess 20% 78.4 3.1 3.5 19.2 1.9 1.1 

Pumsb 50% 229.2 2.0 2.5 13.3 5.7 1.3 

Accidents 3% n/a 1.3 1.6 6.8 7.2 1.0 

Retail 0.003% 3.7 12.2 2.0 7.8 11.7 0.7 

Kosarak 0.08% 15.8 14.6 6.7 12.3 1.0 1.8 

Webdocs 4% 45.5 1.1 1.3 2.4 3.3 1.1 

 

 

 We compares CGMM with GPApriori, a GPU based FPM algorithm (Section 

5.3.2). Figure 5-10 shows CGMM runs 7.2 - 13.9 times faster than GPApriori on Retail 

dataset. In this test case, GPApriori uses GPU for entire dataset while CGMM uses GPU 

for only mining dense data subsets. GPApriori failed to run on other datasets because of 

the internal errors of this program. Upon the results on Retail, we find that for FPM 

problem, benefits of GPU is only obtained when we use it with suitable data structure and 

mining solution that can best leverage the computing power of GPU and adapt well to its 

limitation of memory and large data communication (e.g. mining dense data subset and 

low minsup values).  



149 

 

  
Figure 5-10: Running time and speedup of CGMM vs. GPApriori  

 
 

5.6.3 Impact of Applying Multi-Strategy Approach 

To study the benefits of applying the two mining strategies, we measured the time 

of CGMM in three separate cases: (1) using CPUBasedMining only, (2) using 

GPUBasedMiningonly and (3) using the combination of CPUBasedMining and 

GPUBasedMining as intended. The experimental results in Table 5-3 show that 

combining the two mining strategies significantly reduces the execution times for both 

sparse and dense databases compared to the cases where only one of the mining strategies 

were used. For example, CGMM with only CPUBasedMining took 1160 seconds to mine 

the Chess dataset while CGMM with both strategies ran in only 107 seconds which is 

10.8 times faster. Similarly, for Accidents dataset, CGMM with both strategies performed 

39.4 times faster than CGMM with only GPUBasedMining (i.e. 419 seconds vs. 16503 

seconds). This performance gain comes from the ability to select the suitable strategy for 

each subset of data being mined to optimize the mining performance.  

 

1

10

100

1000

0.011 0.009 0.007 0.005 0.003

R
u
n

n
in

g
 ti

m
e 

(s
ec

o
n

d
s)

Minsup (%)

Time on Retail (sparse)

CGMM

GPApriori

7.2

13.7 13.1 13.1
13.9

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.011 0.009 0.007 0.005 0.003

S
p

ee
d

u
p

Minsup (%)

Speedup on Retail (sparse)



150 

 

Table 5-3: Running time of CGMM with single mining strategy or both 

Dataset 
CPUBasedMining 

(seconds) 

GPUBasedMining 

(seconds) 

CGMM 

(seconds) 

Chess 1160 180 107 

Pumsb 2310 664 377 

Accidents 547 16503 419 

Retail 226 19 18 

Kosarak 2773 841 680 

Webdocs 6736 56017 6496 

 

Additionally, we find that utilizing GPU for FPM does not always yield better 

performance. Although the computing throughput of GPU is hundred times larger than 

CPU. Use of GPU may sometimes downgrade the overall performance of a FPM task 

because of its memory limitations and data transfer overhead. That explains why for 

Accidents and Webdocs with very large memory requirements, GPUBasedMining 

performs much slower than CPUBasedMining. A combination of the two with a dynamic 

switching between them results in an improved overall performance. 

5.6.4 Impact of Data Transfer Optimization 

In designing GPU applications, attention to memory and data transfer 

requirements between CPU and GPU is a major part of algorithm design. In CGMM, 

grouping the output bit vectors of new frequent patterns on GPU memory and using them 

as input data in the next iteration, described in Section 5.5.2.3, results in significant 

performance improvement. As indicated in Table 5-4, this optimization step has a large 

impact in reducing cost of data transfer between the CPU and GPU memories. Otherwise, 

the output bit vectors of a large number of frequent pattern candidates are copied back to 

CPU memory which can later be copied back to GPU in order to compute the support in 



151 

 

the next iteration. In general, our optimization increases the overall performance between 

10% - 210% for both sparse and dense databases in our experiments. 

Table 5-4: Performance of CGMM with and without data transfer optimization  

Dataset 
No Opt. 

(1)(seconds) 

With Opt. 

(2)(seconds) 

Time Difference 

(3) = (1)-(2)(seconds) 

Speedup 

(4) = (1) / (2) 

Chess 176 107 69 1.6 

Pumsb 687 377 310 1.8 

Accidents 599 419 180 1.4 

Retail 38 18 20 2.1 

Kosarak 1029 680 349 1.5 

Webdocs 6929 6496 433 1.1 

 

5.6.5 Impact of Threshold K 

Switching between two mining strategies of CGMM is based on a threshold K 

indicating the size of data subset as well as the data density characteristics. We study the 

impact of varying values of threshold K on the mining performance by measuring the 

execution time of CGMM with values of K ranging 128 – 4096. Results shown in Figure 

5-11  indicate that for most cases CGMM runs faster as K increases (up to a point) 

because more dense data subsets meet the condition to mine using GPUBasedMining. For 

example, for Pumsb, CGMM runs at 1071 seconds for K = 128. Its execution time is 

reduced to 376-391 seconds when K ranges from 768 to 1024. However, when the value 

of K is increased to a certain point, especially for K≥1024 in our experiments, execution 

time of CGMM start to increase. This is caused by many data subsets with large sizes and 

sparse characteristics are selected to be mined with GPUBasedMining on GPU while 

CPUBasedMining is a better strategy for them. Although CGMM behaves differently for 



152 

 

different datasets, selecting a value of K within the range 640 – 1024 provides good 

performance for most datasets. 

 

Figure 5-11 : Running time of CGMM with various values of threshold K 
 

 

 



153 

 

5.6.6 Impact of Data List Size 

In GPUBasedMining, multiple Frequent Pattern Sets stored in Frequent Pattern 

Set List are processed as once so that GPU resources can be fully utilized. We tested 

CGMM with various maximum size of Frequent Pattern Set List to study its impact to 

the execution time of CGMM. Table 5-5 presents the experimental results. Note that the 

data list size indicates when GPUBasedMining can be invoked by CPUBasedMining.  

Table 5-5: Execution time (sec.) of CGMM with different frequent pattern set list 

size 

Dataset 
Size of Frequent Pattern Set List (LS)  

LS=1 LS=10 LS=100 LS=1000 LS=10000 

Chess 112 110 108 107 107 

Pumsb 394 380 377 364 344 

Accidents 893 502 418 423 429 

Retail 18 15 15 16 17 

Kosarak 685 652 645 679 577 

Webdocs 11582 8003 6738 6419 6427 

 

From Table 5-5, we observe that the best performance for most test cases is when 

the size limit is between 1000 and 10000. Selecting a very large data list size results in 

more memory usage and larger GPU idle time, which in turn reduces the performance of 

CGMM. In contrast, selecting a small data list size, the amount of workload off-loading 

to GPU is not enough to fully utilize this device. We suggest to select a size limit that is 

larger than the number of computing units/cores in GPU for good performance of 

CGMM.   



154 

 

5.7 Conclusion 

We have presented CGMM, a new CPU-GPU hybrid method for FPM. CGMM 

inherits FEM and uses GPU to mine dense data subsets of database. Its CPU based 

mining strategy sequentially mines sparse data similar to MineFPTree of FEM and its 

GPU based mining strategy deploys breath-first approach and bit vector data structure to 

parallel mine dense portions of database on GPU. Our experimental results show that 

CGMM runs up to 229 times faster than six sequential algorithms on six real datasets. 

Additionally, CGMM runs 7.2-13.9 times faster than GPApriori, a GPU based algorithm 

for FPM. Compared to DFEM, CGMM performs better DFEM in the test cases with low 

minsup values but worst in the other cases. We recommend to use CGMM as an 

alternative solution to DFEM for FPM applications that require low minsup input values. 

  



155 

 

 Conclusion 

Frequent Pattern Mining (FPM) has recently been used in many applications within 

different research domains, such as computational biology, computational biomedical 

imaging and business intelligence. The most common use of FPM in computational 

biology is discovery of frequent patterns of biological sub-sequences [109], [110], [111], 

gene expression correlations [17], [18], [20], [112], [113], [114] and functional 

annotations [19], [111], [113], [115], [116]. The use of FPM provides the foundation for 

effective solutions to the domain problems, namely motif finding, gene regulation 

prediction and gene/protein function prediction, without an essential requirement of a 

priori specifications of problem parameters, such as motif format, set of 

genes/experimental conditions of interest or group of functional annotations or limitations 

of analysis protocols. In Business Intelligence (BI), FPM is applied on transaction 

databases to search for frequent patterns of sold items, user's daily behaviour [21], [117], 

and tourism behaviour under various travel and living conditions [118]. Application of 

FPM in business data analysis allows providing customer-oriented information for 

promotion of a particular product, supporting business control decision making as well as 

fine-tuning business goals such as improving customer retention, or offering better 

personalized traveling experiences and services. 

Due to the large amount of data generated in real-world applications, it is essential 

to have efficient high performance FPM methods for large-scale databases and for 

different computing platforms to support the data analysis and knowledge discovery from 

Big Data. In this dissertation, we have presented our newly developed and efficient FPM 

methods that address this demand and provide high performance for the FPM task on 



156 

 

different modern computer architectures such as multi-core multi-socket shared memory 

servers, multi-core clusters, and machines equipped with GPUs, etc. The research results 

include two new sequential FPM methods (FEM and DFEM) and three new parallel FPM 

methods (ShaFEM, SDFEM and CGMM) where each one is for a specific type of 

computers. We have shown the efficiency of these methods and analyzed the impact 

factor contributing the performance gain of our methods via many experiments presented 

in each chapter. Our research is unique and more advanced than existing methods for two 

main reasons: 

 We develop a novel FPM approach that can self-adapt to the data based on their 

characteristics by applying multiple mining strategies and dynamic switching 

between them at runtime to provide best FPM performance on both sparse and 

dense databases. We integrate this mining approach in our five new FPM methods 

so that they can work efficiently on different data types. The novelty of detecting 

the characteristics of datasets as mining proceeds is a feature that can be applied 

with many mining strategies. Newly developed strategies can take advantage of 

this ability and adjust/adapt their mining using the most appropriate for the 

underlying dataset at runtime. 

 We consider the advantages and disadvantages of different modern HPC 

computer architectures in designing our sequential and parallel FPM methods so 

that they can effectively leverage their computing power and memory resource. 

For example, we present optimization techniques to obtain best performance of 

FEM and DFEM (Chapter 2). Another example is applying shared memory 

programming model in ShaFEM and SDFEM to better utilize the benefits of 



157 

 

shared memory and to improve the FPM performance (Chapter 3 and 4). CGMM  

applies the breath–first approach for the GPU based mining strategy and the 

depth–first approach the CPU based one because the differences of hardware 

architecture makes each strategy be suitable for either GPU or CPU only (Chapter 

5). 

In future, we plan to extend our work on FPM to other hardware architectures like Intel’s 

Xoen Phi co-processor or the multi-core cluster with GPUs. We will develop a 

MapReduce approach for FPM that bases on DFEM. Finally, we will investigate applying 

our newly developed FPM methods for Big Data applications. 

  



158 

 

REFERENCES 

 

[1]  "Top 10 Largest Databases in the World," in 
http://www.comparebusinessproducts.com/fyi/10-largest-databases-in-the-world, 
2010.  

[2]  "You Tube's Statistic," in https://www.youtube.com/yt/press/statistics.html, 2014.  

[3]  "Google Search Statistics," in http://www.internetlivestats.com/google-search-
statistics/, 2012.  

[4]  "How Big Is Facebook’s Data? 2.5 Billion Pieces Of Content And 500+ Terabytes 
Ingested Every Day," in http://techcrunch.com/2012/08/22/how-big-is-facebooks-
data-2-5-billion-pieces-of-content-and-500-terabytes-ingested-every-day/, 2012.  

[5]  J. Gantz and D. Reinsel, "The Digital Universe in 2020: Big data, Bigger Digital 
Shadow's, and Biggest Growth in the Far East," in IDC, December 2012.  

[6]  U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth, Advances in knowledge 
discovery and data mining, U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. 
Uthurusamy, Eds., Menlo Park, CA, USA: American Association for Artificial 
Intelligence, 1996, pp. 1-34. 

[7]  J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, 3rd ed., San 
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.  

[8]  R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules in 
Large Databases," in Proceedings of the 20th International Conference on Very 
Large Data Bases, San Francisco, CA, USA, 1994.  

[9]  J. Han, H. Cheng, D. Xin and X. Yan, "Frequent Pattern Mining: Current Status 
and Future Directions," Data Mining and Knowledge Discovery, vol. 15, no. 1, pp. 
55-86, Aug 2007.  

[10]  D. Burdick, M. Calimlim, J. Flannick, J. Gehrke and T. Yiu, "MAFIA: A Maximal 
Frequent Itemset Algorithm," IEEE Transactions on Knowledge and Data 
Engineering, vol. 17, no. 11, pp. 1490-1504, 2005.  

[11]  S. Brin, R. Motwani and C. Silverstein, "Beyond Market Baskets: Generalizing 
Association Rules to Correlations," in Proceedings of the 1997 ACM SIGMOD 
international conference on Management of data, New York, NY, USA, 1997.  

[12]  C. Silverstein, S. Brin, R. Motwani and J. Ullman, "Scalable Techniques for 
Mining Causal Structures," Data Mining and Knowledge Discovery, vol. 4, no. 2-3, 
pp. 163-192, Jul 2000.  

[13]  R. Agrawal and R. Srikant, "Mining Sequential Patterns," in Proceedings of the 



159 

 

Eleventh International Conference on Data Engineering, Washington, DC, USA, 
1995.  

[14]  H. Mannila, H. Toivonen and A. Inkeri Verkamo, "Discovery of Frequent Episodes 
in Event Sequences," Data Mining and Knowledge Discovery, vol. 1, no. 3, pp. 
259-289, jan 1997.  

[15]  J. Han, G. Dong and Y. Yin, "Efficient Mining of Partial Periodic Patterns in Time 
Series Database," in Proceedings of the 15th International Conference on Data 
Engineering, Washington, DC, USA, 1999.  

[16]  R. Agrawal, T. Imieliski and A. Swami, "Mining Association Rules Between Sets 
of Items in Large Databases," in Proceedings of the 1993 ACM SIGMOD 
International Conference on Management of data, New York, NY, USA, 1993.  

[17]  C. Becquet, S. Blachon, B. Jeudy, J.-F. Boulicaut and O. Gandrillon, "Strong-
Association-rule Mining for Large-scale Gene-expression Data Analysis: A Case 
Study on Human SAGE Data," Genome Biology, vol. 3, no. 12, pp. research0067.1-
research0067.16, 2002.  

[18]  E. Georgii, L. Richter, U. Rückert and S. Kramer, "Analyzing Microarray Data 
Using Quantitative Association Rules," Bioinformatics, vol. 21, no. suppl 2, pp. 
ii123--ii129, 2005.  

[19]  Y.-R. Cho and A. Zhang, "Predicting Protein Function by Frequent Functional 
Association Pattern Mining in Protein Interaction Networks," IEEE Transactions 
on  Information Technology in Biomedicine, vol. 14, no. 1, pp. 30-36, 2010.  

[20]  M. J. Tarokha and E. Teymournejada, "Using Association Rules for Evaluation and 
Predicting Risk Factors in Business Intelligence System," Business Intelligence 
Journal, vol. 5, no. 2, 2012.  

[21]  W. Zhao, J. Liu, D. Ye and J. Wei, "Mining User Daily Behavior Patterns from 
Access Logs of Massive Software and Websites," in Proceedings of the 5th Asia-
Pacific Symposium on Internetware, 2013.  

[22]  G. Alaghband, "Parallel Architectures," in Wiley Encyclopedia of Computer 
Science and Engineering, John Wiley & Sons, Inc., 2007.  

[23]  M. J. Chorley and D. W. Walker, "Performance Analysis of a Hybrid 
MPI/OpenMP Application on Multi-core Clusters," Journal of Computational 
Science , vol. 1, no. 3, pp. 168-174, 2010.  

[24]  M. Sung, "SIMD Parallel Processing," Architectures Anonymous, vol. 6, p. 11, 
2000.  

[25]  J. Han, J. Pei and Y. Yin, "Mining Frequent Patterns Without Candidate 
Generation," in Proceedings of the 2000 ACM SIGMOD international conference 
on Management of data, New York, NY, USA, 2000.  



160 

 

[26]  G. Grahne and J. Zhu, "Efficiently Using Prefix-trees in Mining Frequent 
Itemsets," in Proceedings of the 2003 Workshop on Frequent Pattern Mining 
Implementations, 2003.  

[27]  J. Pei, J. Han, H. Lu, S. Nishio, S. Tang and D. Yang, "H-Mine: Hyper-Structure 
Mining of Frequent Patterns in Large Databases," in Proceedings of the IEEE 
International Conference on Data Mining, 2001.  

[28]  B. Racz, "nonordfp: An FP-Growth Variation without Rebuilding the FP-Tree," in 
Proceedings of the 2004 Workshop on Frequent Pattern Mining Implementations, 
2004.  

[29]  L. Liu, E. Li, Y. Zhang and Z. Tang, "Optimization of Frequent Itemset Mining on 
Multiple-Core Processor," in Proceedings of the 33rd international conference on 
Very large data bases, 2007.  

[30]  R. Moriwal, "FP-growth Tree for large and Dynamic Data Set and Improve 
Efficiency," Information and Computing Science, vol. 9, no. 2, 2014.  

[31]  M. Zaki, S. Parthasarathy, M. Ogihara and W. Li, "New Algorithms for Fast 
Discovery of Association Rules," in Proceedings of the 3rd International 
conference on Knowledge Discovery and Data Mining, 1997.  

[32]  S. Shporer, "AIM2: Improved Implementation of AIM," in Proceedings of the 2004 
Workshop on Frequent Itemset Mining Implementations, 2004.  

[33]  H. Li, Y. Wang, D. Zhang, M. Zhang and E. Y. Chang, "PFP: Parallel FP-growth 
for Query Recommendation," in Proceedings of the 2008 ACM conference on 
Recommender systems, New York, NY, USA, 2008.  

[34]  M. Zaki, "Parallel and Distributed Association Mining: A Survey," IEEE 
Concurrency, vol. 7, no. 4, pp. 14-25, Oct. 1999.  

[35]  R. Garg and P. K. Mishra, "Some Observations of Sequential, Parallel and 
Distributed Association Rule Mining Algorithms," in Proceedings of the 2009 
International Conference on Computer and Automation Engineering, Washington, 
DC, USA, 2009.  

[36]  H. D. K. Moonesinghe, M. Chung and P. Tan, "Fast Parallel Mining of Frequent 
Itemsets," in Michigan State University.  

[37]  S. K. Tanbeer, C. F. Ahmed and B.-S. Jeong, "Parallel and Distributed Frequent 
Pattern Mining in Large Databases," in Proceedings of the 2009 11th IEEE 
International Conference on High Performance Computing and Communications, 
Washington, DC, USA, 2009.  

[38]  J. Li, Y. Liu, W. keng Liao and A. Choudhary, "Parallel Data Mining Algorithms 
for Association Rules and Clustering," in CRC Press, 2006.  



161 

 

[39]  L. Vu and G. Alaghband, "A Fast Algorithm Combining FP-Tree and TID-List for 
Frequent Pattern Mining," in Proceedings of the 2011 International Conference on 
Information and Knowledge Engineering, 2011.  

[40]  L. Vu and G. Alaghband, "Mining Frequent Patterns Based on Data 
Characteristics," in Proceedings of the 2012 International Conference on 
Information and Knowledge Engineering, 2012.  

[41]  L. Vu and G. Alaghband, "An Efficient Approach for Mining Association Rules 
from Sparse and Dense Databases," in Proceedings of the 2014 International 
Conference on Information and Knowledge Management, IEEE, 2014.  

[42]  L. Vu and G. Alaghband, "Efficient Algorithms for Mining Frequent Patterns from 
Sparse and Dense Databases," Intelligent Systems, 2014.  

[43]  L. Vu and G. Alaghband, "Novel Parallel Method for Mining Frequent Patterns on 
Multi-core Shared Memory Systems," in Proceedings of the 2013 International 
Workshop on Data-Intensive Scalable Computing Systems, ACM, 2013.  

[44]  L. Vu and G. Alaghband, "Novel Parallel Method for Association Rule Mining on 
Multi-core Shared Memory Systems," Parallel Computing, 2014.  

[45]  L. Vu and G. Alaghband, "High Performance Frequent Pattern Mining on Multi-
Core Cluster," in Proceedings of the 2012 International Conference on 
Collaboration Technologies and Systems, IEEE, 2012.  

[46]  L. Vu and G. Alaghband, "New Parallel Method for Frequent Pattern Mining on 
Multi-core Cluster," in in submission, 2014.  

[47]  L. Vu and G. Alaghband, "A Self-Adaptive Method for Mining Frequent Patterns 
using a CPU-GPU Hybrid Model," in preparation for submission, 2014.  

[48]  L. Schmidt-Thieme, " Algorithmic Features of Eclat," in Proceedings of the 2004 
Workshop on Frequent Itemset Mining Implementations, 2004.  

[49]  W. Li and A. Mozes, "Computing Frequent Itemsets Inside Oracle 10g," in 
Proceedings of the Thirtieth international conference on Very large data bases - 
Volume 30, 2004.  

[50]  C. Utley, "Introduction to SQL Server 2005 Data Mining," in Microsoft SQL server 
9.0 technical articles, 2005.  

[51]  T. Yoshizawa, I. Pramudiono and M. Kitsuregawa, "SQL Based Association Rule 
Mining using Commercial RDBMS (IBM DB2 UDB EEE)," in Proceedings of the 
Second International Conference on Data Warehousing and Knowledge Discovery, 
2000.  

[52]  M. Hahsler, B. Grun and K. Hornik, "arules - A Computational Environment for 
Mining Association Rules and Frequent Item Sets," Journal of Statistical Software, 



162 

 

vol. 14, no. 15, pp. 1-25, 9 2005.  

[53]  L. Hen and S. Lee, "Performance Analysis of Data Mining Tools Cumulating with 
a Proposed Data Mining Middleware," Journal of Computer Science, pp. 826-833, 
2008.  

[54]  J. S. Park, M.-S. Chen and P. S. Yu, "An Effective Hash-Based Algorithm for 
Mining Association Rules," in Proceedings of the 1995 ACM SIGMOD 
International Conference on Management of data, New York, NY, USA, 1995.  

[55]  H. Toivonen, "Sampling Large Databases for Association Rules," in Proceedings of 
the 22th International Conference on Very Large Data Bases, San Francisco, CA, 
USA, 1996.  

[56]  S. Brin, R. Motwani, J. D. Ullman and S. Tsur, "Dynamic Itemset Counting and 
Implication Rules for Market Basket Data," in Proceedings of the 1997 ACM 
SIGMOD international conference on Management of data, New York, NY, USA, 
1997.  

[57]  N. Le, T. Nguyen and T. C. Chung, "BitApriori: An Apriori-Based Frequent 
Itemsets Mining Using Bit Streams," in Procceedings of the 2010 International 
Conference on Information Science and Applications (ICISA), 2010.  

[58]  A. Ghanem and H. Sallam, "Hybrid Search Based Association Rule Mining," in 
Procceedings of 2011 IEEE Pacific Rim Conference on Communications, 
Computers and Signal Processing (PacRim), New York, NY, USA, 2011.  

[59]  "Frequent Itemset Mining Implementations Repository," in Proceedings of the 
Workshop on Frequent Itemset Mining Implementation, 2003-2004.  

[60]  A. Fiat and S. Shporer, "AIM: Another Itemset Miner," in Proceedings of the 2003 
Workshop on Frequent Itemset Mining Implementations, 2003.  

[61]  M. Zaki and K. Gouda, "Fast Vertical Mining Using Diffsets," in Proceedings of 
the ninth ACM SIGKDD international conference on Knowledge discovery and 
data mining, New York, NY, USA, 2003.  

[62]  C. Borgelt, "An Implementation of the FP-growth Algorithm," in Proceedings of 
the 1st International Workshop on Open Source Data Mining: Frequent Pattern 
Mining Implementations, New York, NY, USA, 2005.  

[63]  C. Borgelt, "Frequent Pattern Mining Implementations," http://www.borgelt.net.  

[64]  R. Rabenseifner, G. Hager and G. Jost, "Hybrid MPI/OpenMP Parallel 
Programming on Clusters of Multi-Core SMP Nodes," in Proceedings of the 2009 
17th Euromicro International Conference on Parallel, Distributed and Network-
based Processing, Washington, DC, USA, 2009.  

[65]  OpenMP, http://openmp.org.  



163 

 

[66]  K.-M. Yu, J. Zhou, T.-P. Hong and J.-L. Zhou, "A Load-balanced Distributed 
Parallel Mining Algorithm," Expert Systems with Applications , vol. 37, no. 3, pp. 
2459-2464, 2010.  

[67]  I. Pramudiono and M. Kitsuregawa, "Parallel FP-growth on PC Cluster," in 
Proceedings of the 7th Pacific-Asia Conference on Advances in Knowledge 
Discovery and Data Mining, Berlin, Heidelberg, 2003.  

[68]  D. Chen, C. Lai, W. Hu, W. Chen, Y. Zhang and W. Zheng, "Tree Partition Based 
Parallel Frequent Pattern Mining on Shared Memory Systems," in Proceedings of 
the 20th international conference on Parallel and distributed processing, 
Washington, DC, USA, 2006.  

[69]  O. R. Zaiane, M. El-Hajj and P. Lu, "Fast Parallel Association Rule Mining without 
Candidacy Generation," in Proceedings of the 2001 IEEE International Conference 
on Data Mining, Washington, DC, USA, 2001.  

[70]  C. Bienia, S. Kumar, J. P. Singh and K. Li, "The PARSEC Benchmark Suite: 
Characterization and Architectural Implications," in Proceedings of the 17th 
international conference on Parallel architectures and compilation techniques, 
New York, NY, USA, 2008.  

[71]  S. Orlando, C. Lucchese, P. Palmerini, R. Perego and F. Silvestri, "kDCI: a Multi-
Strategy Algorithm for Mining Frequent Sets," in Proceedings of the 2003 
Workshop on Frequent Itemset Mining Implementations, 2003.  

[72]  T. Uno, M. Kiyomi and H. Arimura, "LCM ver. 2: Efficient Mining Algorithms for 
Frequent/Closed/Maximal Itemsets," in Proceedings of the 2004 Workshop on 
Frequent Itemset Mining Implementations, 2004.  

[73]  AMD, "CodeAnalyst," http://developer.amd.com/tools-and-sdks/archive/amd-
codeanalyst-performance-analyzer.  

[74]  Y. He and C. H. Ding, "MPI and OpenMP Paradigms on Cluster of SMP 
Architectures: The Vacancy Tracking Algorithm for Multi-Dimensional Array 
Transposition," in Supercomputing, ACM/IEEE 2002 Conference, 2002.  

[75]  X. Wu and V. Taylor, "Performance Characteristics of Hybrid MPI/OpenMP 
Implementations of NAS Parallel Benchmarks SP and BT on Large-scale Multicore 
Supercomputers," SIGMETRICS Perform. Eval. Rev., vol. 38, no. 4, pp. 56-62, 
Mar. 2011.  

[76]  G. Hager, G. Jost and R. Rabenseifner, "Communication Characteristics and 
Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP 
Nodes," in Proceedings of Cray User Group Conference, 2009.  

[77]  M. El-hajj and O. R. Zaïane, "Parallel Leap: Large-scale Maximal Pattern Mining 
in a Distributed Environment," in Proceeding of the 12th International Conference 
on Parallel and Distributed Systems (ICPADS’06), 2006.  



164 

 

[78]  J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan and C.-W. Tseng, "Dynamic 
Load Balancing of Unbalanced Computations Using Message Passing," Parallel 
and Distributed Processing Symposium, International, vol. 0, p. 391, 2007.  

[79]  K.-M. Yu, J. Zhou and W. Hsiao, "Load Balancing Approach Parallel Algorithm 
for Frequent Pattern Mining," in Parallel Computing Technologies, vol. 4671, V. 
Malyshkin, Ed., Springer Berlin Heidelberg, 2007, pp. 623-631. 

[80]  B. Manaskasemsak, N. Benjamas, A. Rungsawang, A. Surarerks and P. Uthayopas, 
"Parallel association rule mining based on FI-growth algorithm.," in ICPADS, 
2007.  

[81]  B. Janaki Ramaiah, A. Rama Mohan Reddy and M. Kamala Kumari, "Parallel 
Privacy Preserving Association rule mining on pc Clusters," in Proceedings of the 
IEEE International Advance Computing Conference (IACC 2009), 2009.  

[82]  K.-M. Yu and J. Zhou, "Parallel TID-based Frequent Pattern Mining Algorithm on 
a PC Cluster and Grid Computing System," Expert Syst. Appl., vol. 37, no. 3, pp. 
2486-2494, Mar. 2010.  

[83]  F. S. Tseng, Y.-H. Kuo and Y.-M. Huang, "Toward boosting distributed association 
rule mining by data de-clustering," Information Sciences , vol. 180, no. 22, pp. 
4263-4289, 2010.  

[84]  E. Ozkural, B. Ucar and C. Aykanat, "Parallel Frequent Item Set Mining with 
Selective Item Replication," IEEE Transactions on Parallel and Distributed 
Systems, vol. 22, no. 10, pp. 1632-1640, 2011.  

[85]  "Top 500," in http://www.top500.org.  

[86]  "IDC Market Study Shows Strong Gains for Co-Processors and Big Data at High 
Performance Computing Sites," in 
http://www.idc.com/getdoc.jsp?containerId=prUS24176213, 2013.  

[87]  "Message Passing Interface Forum, MPI: A Message-Passing Interface Standard," 
in http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, 2012.  

[88]  Y. Sucahyo, R. Gopalan and A. Rudra, "Efficiently Mining Frequent Patterns from 
Dense Datasets Using a Cluster of Computers," in AI 2003: Advances in Artificial 
Intelligence, vol. 2903, T. Gedeon and L. Fung, Eds., Springer Berlin Heidelberg, 
2003, pp. 233-244. 

[89]  D. Souliou, A. Pagourtzis, N. Drosinos and P. Tsanakas, "Computing frequent 
itemsets in parallel using partial support trees," Journal of Systems and Software , 
vol. 79, no. 12, pp. 1735-1743, 2006.  

[90]  G. Goulbourne, F. Coenen and P. Leng, "Algorithms for computing association 
rules using a partial-support tree," Knowledge-Based Systems , vol. 13, no. 2–3, pp. 
141-149, 2000.  



165 

 

[91]  L. E. Jordan and G. Alaghband, "Fundamentals of Parallel Processing," Prentice 
Hall Professional Technical Reference, 2002.  

[92]  "Open MPI: Open Source High Performance Computing," in http://www.open-
mpi.org/.  

[93]  "MPICH," in http://www.mpich.org/.  

[94]  "LAM/MPI Parallel Computing," in http://www.lam-mpi.org/.  

[95]  T. Morgan, "Top 500 supers The Dawning of the GPUs," in 
http://www.theregister.co.uk/2010/05/31/top_500_supers_jun2010/, May 2010.  

[96]  R. Hou, T. Jiang, L. Zhang, P. Qi, J. Dong, H. Wang, X. Gu and S. Zhang, "Cost 
effective data center servers," in In the Proc. of the 2013 IEEE 19th International 
Symposium on High Performance Computer Architecture (HPCA), Feb. 2013.  

[97]  Nvidia, "CUDA Programming," in Best practices guide, 
http://www.nvidia.com/cuda, 2013.  

[98]  A. Munshi, "OpenCL 1.0 Specification," in Khronos OpenCL Working Group, 
2008.  

[99]  Q. Cui and X. Guo, "Research on Parallel Association Rules Mining on GPU," in  
Proceedings of the 2nd International Conference on Green Communications and 
Networks 2012, vol. 224, pp. 215-222, 2010.  

[100]  G. Teodoro, N. Mariano, W. M. Jr. and R. Ferreira, "Tree Projection-Based 
Frequent Itemset Mining on Multicore CPUs and GPUs," in Proceedings of the 
Symposium on Computer Architecture and High Performance Computing, vol. 0, 
pp. 47-54, 2010.  

[101]  L. Jian, C. Wang, Y. Liu, S. Liang, W. Yi and Y. Shi, "Parallel data mining 
techniques on Graphics Processing Unit with Compute Unified Device Architecture 
(CUDA)," Supercomputing, vol. 64, pp. 942-967, June 2013.  

[102]  Y. Kozawa, T. Amagasa and H. Kitagawa, "Parallel and Distributed Mining of 
Probabilistic Frequent Itemsets Using Multiple GPUs," Lecture Notes in Computer 
Science, Database and Expert Systems Applications, vol. 8055, pp. 145-152, 2013.  

[103]  C.-Y. Lin, K.-M. Yu, W. Ouyang and J. Zhou, "An OpenCL Candidate Slicing 
Frequent Pattern Mining algorithm on graphic processing units.," in Procceedings 
of the 2011 IEEE International Conference on Systems, Man, and Cybernetics 
(SMC), 2011.  

[104]  C. Silvestri and S. Orlando, "gpuDCI: Exploiting GPUs in Frequent Itemset 
Mining," 2012.  

[105]  Y.-S. Huang, K.-M. Yu, L.-W. Zhou, C.-H. Hsu and S.-H. Liu, "Accelerating 



166 

 

Parallel Frequent Itemset Mining on Graphics Processors with Sorting," Lecture 
Notes in Computer Science, Network and Parallel Computing, vol. 8147, pp. 245-
256, 2013.  

[106]  F. Zhang, Y. Zhang and J. Bakos, "GPApriori: GPU-Accelerated Frequent Itemset 
Mining," in Procceedings of the 2011 IEEE International Conference on Cluster 
Computing, Washington, DC, USA, 2011.  

[107]  Y. Kozawa, T. Amagasa and H. Kitagawa, "Fast Frequent Itemset Mining from 
Uncertain Databases using GPGPU," in Procceedings of the Fifth International 
VLDB Workshop on Management of Uncertain Data, 2011.  

[108]  J. Zhou, K.-M. Yu and B.-C. Wu, "Parallel Frequent Patterns Mining Algorithm on 
GPU," in Procceedings of the 2010 IEEE International Conference on Systems 
Man and Cybernetics (SMC), 2010.  

[109]  W. Liu and L. Chen, "Efficiently Detecting Frequent Patterns in Biological 
Sequences," in Web Information Systems and Applications Conference (WISA), 
2011 Eighth, 2011.  

[110]  K. M. Mutakabbir, S. S. Mahin and M. A. Hasan, "Mining Frequent Pattern Within 
a Genetic Sequence using Unique Pattern Indexing and Mapping Techniques," in 
Proceedings of the 2014 International Conference on Informatics, Electronics & 
Vision (ICIEV), 2014.  

[111]  H. Motameni, H. A. Rokny and M. M. Pedram, "Using Sequential Pattern Mining 
in Discovery DNA Sequences Contain Gap," American Journal of Scientific 
Research, pp. 72-78.  

[112]  V. S. Tseng, H.-H. Yu and S.-C. Yang, "Efficient Mining of Multilevel Gene 
Association Rules from Microarray and Gene Ontology," Information Systems 
Frontiers, vol. 11, no. 4, pp. 433-447, 2009.  

[113]  R. Alves, D. S. Rodriguez-Baena and J. S. Aguilar-Ruiz, "Gene Association 
Analysis: A Survey of Frequent Pattern Mining from Gene Expression Data," 
Briefings in bioinformatics, vol. 11, no. 2, pp. 210-224, 2010.  

[114]  C. Creighton and S. Hanash, "Mining Gene Expression Databases for Association 
Rules," Bioinformatics, vol. 19, no. 1, pp. 79-86, 2003.  

[115]  Y.-H. Liu, "Mining Frequent Patterns from Univariate Uncertain Data," Data \& 
Knowledge Engineering, vol. 71, no. 1, pp. 47-68, 2012.  

[116]  P. Carmona-Saez, M. Chagoyen, F. Tirado, J. M. Carazo and A. Pascual-Montano, 
"GENECODIS: A Web-based Tool for Finding Significant Concurrent Annotations 
in Gene Lists," Genome biology, vol. 8, no. 1, p. R3, 2007.  

[117]  J. Song, T. Luo and S. Chen, "Behavior pattern mining: Apply Process Mining 
Technology to Common Event Logs of Information Systems," in Proceedings of 
the IEEE International Conference on Networking, Sensing and Control (ICNSC 



167 

 

2008), 2008.  

[118]  D.-s. Liu and S.-j. Fan, "Tourist Behavior Pattern Mining Model Based on 
Context," Discrete Dynamics in Nature and Society, vol. 2013, 2013.  

[119]  R. Rabenseifner, G. Hager and G. Jost, "Hybrid MPI/OpenMP Parallel 
Programming on Clusters of Multi-Core SMP Nodes," in Proceedings of the 2009 
17th Euromicro International Conference on Parallel, Distributed and Network-
based Processing, Washington, DC, USA, 2009.  

[120]  A. Javed and A. Khokhar, "Frequent Pattern Mining on Message Passing 
Multiprocessor Systems," Distributed and Parallel Databases, vol. 16, no. 3, pp. 
321-334, 2004.  

[121]  A. Don, E. Zheleva, M. Gregory, S. Tarkan, L. Auvil, T. Clement, B. Shneiderman 
and C. Plaisant, "Discovering Interesting Usage Patterns in Text Collections: 
Integrating Text Mining with Visualization," in Proceedings of the Sixteenth ACM 
Conference on Conference on Information and Knowledge Management, New 
York, NY, USA, 2007.  

[122]  J. Lifflander, S. Krishnamoorthy and L. V. Kale, "Work Stealing and Persistence-
based Load Balancers for Iterative Overdecomposed Applications," in Proceedings 
of the 21st International Symposium on High-Performance Parallel and 
Distributed Computing, New York, NY, USA, 2012.  

[123]  TMPGEnc, http://tmpgenc.pegasys-inc.com.  

[124]  Mathematica, http://www.wolfram.com/mathematica.  

[125]  badaboom, http://www.badaboomit.com.  

[126]  J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn and T. 
Purcell, "A survey of general-purpose computation on graphics hardware," in 
Computer Graphics Forum 07, 2007.  

[127]  B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo and P. Sander, 
"Relational Joins on Graphics Processors," in Procceedings of the 2008 ACM 
SIGMOD International Conference on Management of Data, New York, NY, 
USA, 2008.  

[128]  L. Sun, R. Cheng, D. W. Cheung and J. Cheng, "Mining Uncertain Data with 
Probabilistic Guarantees," in Procceedings of the 16th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 
2010.  

[129]  N. Govindaraju, J. Gray, R. Kumar and D. Manocha, "GPUTeraSort: High 
Performance Graphics Co-processor Sorting for Large Database Management," in 
Procceedings of the 2006 ACM SIGMOD International Conference on 
Management of Data, New York, NY, USA, 2006.  



168 

 

[130]  L. Geng and H. J. Hamilton, "Interestingness Measures for Data Mining: A 
Survey," ACM Computing Survey, vol. 38, no. 3, Sep. 2006.  

[131]  C. Lucchese, "DCI Closed: A Fast and Memory Efficient Algorithm to Mine 
Frequent Closed Itemsets," in Procceedings of the IEEE ICDM 2004 Workshop on 
Frequent Itemset Mining Implementations (FIMI 2004), 2004.  

[132]  S.-M. Yu and S.-H. Wu, "An Efficient Load Balancing Multi-core Frequent 
Patterns Mining Algorithm," in Proceedings of 2011 IEEE 10th International 
Conference on Trust, Security and Privacy in Computing and Communications, 
2011.  

[133]  R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, "Fast 
Discovery of Association Rules," Advances in knowledge discovery and data 
mining, pp. 307-328, 1996.  

[134]  S. Parthasarathy, M. Zaki, M. Ogihara and W. Li, "Parallel Data Mining for 
Association Rules on Shared Memory Systems," Journal of Knowledge and 
Information Systems, vol. 3, no. 1, pp. 1-29, Feb. 2001.  

[135]  R. Dass and A. Mahanti, "An Efficient Algorithm for Real-Time Frequent Pattern 
Mining for Real-Time Business Intelligence Analytics," in Proceedings of the 39th 
Annual Hawaii International Conference on System Sciences (HICSS'06), 2006.  

[136]  M. A. Upadhyay and M. B. Purswani, "Web Usage Mining has Pattern Discovery," 
International Journal of Scientific and Research Publications, vol. 3, no. 2, 2013.  

[137]  S. S. Jain, B. Meshram and M. Singh, "Voice of Customer Analysis Using Parallel 
Association Rule Mining," in Proceedings of the 2012 IEEE Students' Conference 
on    Electrical, Electronics and Computer Science (SCEECS), 2012.  

[138]  Y.-C. Liu, C.-P. Cheng and V. S. Tseng, "Discovering Relational-based 
Association Rules with Multiple Minimum Supports on Microarray Datasets," 
Bioinformatics, vol. 27, no. 22, pp. 3142-3148, 2011.  

[139]  T.-M. Chan, K.-C. Wong, K.-H. Lee, M.-H. Wong, C.-K. Lau, S. K.-W. Tsui and 
K.-S. Leung, "Discovering Approximate-associated Sequence Patterns for Protein--
DNA Interactions," Bioinformatics, vol. 27, no. 4, pp. 471-478, 2011.  

[140]  H. R. H. Motameni and M. Pedram, "Using Sequential Pattern Mining in Discovery 
DNA Sequences Contain Gap," American Journal of Scientific Research, vol. 25, 
p. 72–78, 2011.  

[141]  R. V. Spriggs, Y. Murakami, H. Nakamura and S. Jones, "Protein Function 
Annotation from Sequence: Prediction of Residues Interacting with RNA," 
Bioinformatics, vol. 25, no. 12, pp. 1492-1497, 2009.  

[142]  C. Yu, N. Zavaljevski, V. Desai, S. Johnson, F. J. Stevens and J. Reifman, "The 
Development of PIPA: An Integrated and Automated Pipeline for Genome-wide 



169 

 

Protein Function Annotation," BMC bioinformatics, vol. 9, no. 1, p. 52, 2008.  

[143]  R. Martinez, N. Pasquier and C. Pasquier, "GenMiner: Mining Non-redundant 
Association Rules From Integrated Gene Expression Data and Annotations," 
Bioinformatics, vol. 24, no. 22, pp. 2643-2644, 2008.  

[144]  I. I. Artamonova, G. Frishman, M. S. Gelfand and D. Frishman, "Mining Sequence 
Annotation Databanks for Association Patterns," Bioinformatics, vol. 21, no. Suppl 
3, pp. iii49--iii57, 2005.  

[145]  P. Weichbroth, M. Owoc and M. Pleszkun, "Web User Navigation Patterns 
Discovery from WWW Server Log Files," in Proceedings of the 2012 Federated 
Conference on Computer Science and Information Systems (FedCSIS), 2012.  

[146]  W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin and E. Chang, "Parallel Spectral Clustering 
in Distributed Systems," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 33, no. 3, pp. 568-586, March 2011.  

[147]  T. White, "Hadoop: The Definitive Guide: The Definitive Guide," O'Reilly Media, 
2009.  

[148]  J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large 
Clusters," Communication. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.  

[149]  Z. Farzanyar and N. Cercone, "Efficient Mining of Frequent Itemsets in Social 
Network Data Based on MapReduce Framework," in Proceedings of the 2013 
IEEE/ACM International Conference on Advances in Social Networks Analysis and 
Mining, New York, NY, USA, 2013.  

[150]  F. Kovacs and J. Illes, "Frequent Itemset Mining on Hadoop," in Proceedings of the 
2013 IEEE 9th International Conference on  Computational Cybernetics (ICCC), 
2013.  

[151]  Z. Zhang, G. Ji and M. Tang, "MREclat: An Algorithm for Parallel Mining 
Frequent Itemsets," in Proceedings of the 2013 International Conference on 
Advanced Cloud and Big Data (CBD), 2013.  

[152]  H. Chen, T. Y. Lin, Z. Zhang and J. Zhong, "Parallel Mining Frequent Patterns 
Over Big Transactional Data in Extended Mapreduce," in Proceedings of the 
Granular Computing (GrC), 2013.  

[153]  R. Ivancsy and I. Vajk, "Frequent Pattern Mining in Web Log Data," Acta 
Polytechnica Hungarica, vol. 3, no. 1, pp. 77-90, 2006.  

 

 

 


