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ABSTRACT

SEPARATION OF MIXED RADIOMETRIC LAND COVER TEM PERATURES 

IN TIME-DELAYED BI-ANGULAR VIEWS USING ESTIMATED 

FRACTIONAL DIFFERENTIAL COEFFICIENTS

BY

Scott Lawrence Williams, B.A., B.A., B.Sc., M.Sc.

Doctor of Philosophy 

New Mexico State University 

Las Cruces, New Mexico, 2014 

Dr. David DuBois, Chair

A dissertation is presented concerning the separation of radiometric tem 

peratures of sparse land covers from two views of mixed thermal and NDVI sam

ples with a time delay between the views. The research scope is limited to a 

simple binary land cover of vegetation canopy and bare soil. Previous methods 

have been developed using simultaneous views but little work has been done on 

time-delayed sampling, which is the focus of this study.



The dissertation hypothesis is based on the observation th a t the rate of 

change of a  mixed radiometric tem perature with respect to actual fractional vege

tation cover, originally constructed using spatially varying vegetation covers,
d /a

can also be constructed using bi-angular views of the same land parcel but with 

a different interpretation; th a t bi-angular samples provide a perceived fractional 

cover differential, The hypothesis is th a t ĵja- can be used for sub-pixel tem 

perature discrimination of binary land covers and, moreover, th a t the separate soil 

and vegetation to tal differential coefficients ^  and required in the algebraic 

system, can be characterized to sufficiently capture environmental influences be

tween samples in time. To test the hypothesis, this study heuristically derives a 

first-order estimation of the differential coefficients, required to decompose land 

cover tem peratures from mixed d a ta  points, for any time-delayed sampling span

ning the day. Applying the estim ated values on similar target days gives a high 

success rate for a local time span of at least a week.

This approach, once scaled up, could be used by platforms with inherent 

time delays, such as tandem  weather satellites, to  provide separate land cover 

tem perature estimates from low-resolution sensors.
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1 INTRODUCTION

1.1 Motivation.

The broader goal of this dissertation is to contribute, in some incremental 

way, to the scientific modeling of water evaporation from the surfaces of soil and 

vegetation, specifically over large sparse areas. Evaporation is a  key component in 

the hydrological process and is of keen interest to agronomists, climatologists, and 

other earth scientists. For the agronomist, water usage in crops is tied to evapora

tion and so knowing evaporation rates directly translates to  managing irrigation 

more efficiently. For climatologists and meteorologists, evaporation rates influ

ence regional effects (such as drought, cloud formations, humidity, dust storms, 

etc.) and so better quantification of evaporation over large areas improves climate 

and weather modeling. Because of modern concerns regarding water availability 

and management, the need for accurate values of evaporation over large areas is 

becoming more prominent in these, and other hydrological, studies and therefore 

serves as the motivation for this study.

Increasing the accuracy of evaporation estimates can be accomplished through 

better land cover tem perature determinations. However, low-resolution sensors 

used on modern satellites mix the land cover tem peratures, which, if discrimi

nated, could be applied separately to the surface energy balance models for better 

results in estim ating water usage. Separating the land cover tem peratures using

1



low-resolution, time-delayed, da ta  is the focus of this study.

1.2 Preamble.

From the start of agricultural practices, and probably before, humans have 

had a  rudim entary understanding of the relationships between soil, water, sun, 

and plants through simple observation: plants need the right amount of heat, light 

and water to  grow in fertile soil. Thousands of years of experience led to tried 

and true agricultural practices but, with little understanding of these relationships 

until the twentieth century when scientists, armed with functional theories and 

sensors, started to peer into the associated, and very complicated, physical and 

chemical processes involved.

Nevertheless, some great thinkers in ancient times did attem pt to explain 

these relationships though lacking the scientific tools of modern times. In his 

seminal treatise, Meteorology, the Greek philosopher Aristotle [2] weighs in on the

subject of evaporation:

The sun both checks the formation of winds and stimulates it.
When the evaporation is small in amount and faint the sun wastes 
it and dissipates by its greater heat the lesser heat contained in the 
evaporation. It also dries up the earth, the source of the evaporation, 
before the la tter has appeared in bulk: ju st as, when you throw a 
little fuel into a great fire, it is often burnt up before giving off any 
smoke. In these ways the sun checks winds and prevents them from 
rising a t all: it checks them  by wasting the evaporation, and prevents 
their rising by drying up the earth  quickly...

Aristotle, Meteorology Book II, Scroll 5, 350 BCE

Aristotle is saying tha t water vapor contains a “lesser heat” and in this

2



context he probably means a lesser sensible1 heat than to th a t felt from the sun. 

However, the ancients knew that it takes heat to melt ice, to boil water and th a t 

a wet cloth will cool the body as the cloth dries, so some association between 

heat and water state, or phase, was evident to them. It is tantalizing to  consider 

th a t Aristotle might have been referring to a different form of heat captured in 

the vapor, a heat necessary to change liquid water to water vapor but th a t is not 

expressed as sensible.

The partitioning of heat into sensible and non-sensible components during 

the water phase transition of evaporation was not evident until the late eighteenth 

century when the Scottish physician, Joseph Black, noticed th a t adding more heat 

to boiling water did not raise the water tem perature, but instead produced more 

steam. He theorized th a t the applied extra heat was “contained” in the transition 

and called it “latent” or hidden heat [29]. This realization laid the foundation for 

thermodynamic theory and later, his student, James W att, used it to launch the 

industrial revolution with the steam engine.

By the early twentieth century, science had advanced sufficiently in the

fields of fluid mechanics, chemistry and physics to address surface evaporation as

one component, of many, in energy and mass exchanges, or transfers. Light and

radiative heat were now unified as radiative energy phenomena. Potential diffusive

equations became widely used to describe energy fluxes2  and were analogous to

Capable of being perceived by the senses or sensors.
2Flux is defined as the flow rate of something (eg. charge, energy, particles, water) through
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each other, so th a t gravity, heat, electricity, magnetism, and even water flow in 

liquid or vapor form could be described with similar equations.

The ability to  abstractly reduce environmental influences to a currency of 

energy allowed the formulation of a simplified energy flux balance equation for a 

surface, such as soil or vegetation, where the energy fluxes to  and from a surface 

add up to zero. This is expressed in term s of energy fluxes (with positive values 

going into the surface and negative values going out) as,

R„ • (.* I II f L E  0  (1 )

with a description given below. Joseph Black’s realization th a t energy directly 

translates to evaporation, and by extension to water usage, allows for the estima

tion of water usage in terms of energy.

Rearranging the balance equation as Rn —G — H — L E  shows that 

the driver energy flux, R n (net radiation) is distributed among G  (ground heat 

conduction flux), H  (atmospheric sensible heat transfer flux), L E  (atmospheric 

latent heat transfer flux)3. The surface is considered infinitesimally thin, so ground 

heat storage is implicit in the calculation of ground conductive flux, G. If a plant 

surface is being considered then G is negligible. The difference between R„ and

G is considered to be the available energy and the terms H  and L E  are called

a unit surface area.
3See Appendix D for calculations used in surface flux models.
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turbulent fluxes. It is the latent heat flux, L E , th a t evaporates water. If water is 

not available then there is no evaporation (L E  =  0) and H  gets all the available 

energy. The latent heat flux captured in water evaporation is now modeled as part 

of a bigger partitioning of available energy fluxes and can be used to  estim ate the 

amount of water evaporated from either soil or vegetation surfaces.

Several methods for estim ating latent heat, L E , use the above balance 

equation as their foundation. In 1948, Howard Penman derived an explicit equa

tion which combined the energy balance and aerodynamic values of air tem per

ature, wind speed, and relative humidity to  calculate the evaporation from an 

open pan [28]. He then indexed, using a fractional coefficient, the evaporation of 

wet, bare soil and grass to the open pan evaporation. In 1965, John Montieth 

extended the Penman equation to include aerodynamic resistances to heat and 

vapor fluxes on a more general level [23]. Later work showed th a t many crops and 

their stages of growth could also be indexed to a reference crop with a full canopy 

and available water [1 [.

While the Penman-M ontieth formulation can be applied to either soil or 

vegetation surfaces separately, the practice of indexing to a full canopy crop 

through various stages of crop growth roughly mixes both soil and vegetation 

surface evaporations as one4 and does not discriminate between the land covers

which have different shortwave albedo, therm al emissivities, aerodynamic resis

4 Also known as “evapotranspiration”, a portmanteau combining soil evaporation and plant
transpiration.
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tances, and surface tem peratures. Nevertheless, the Penman-M ontieth approach 

has been successful and is probably the most widely used m ethod to  calculate 

evaporations worldwide5. In addition, sensors used in the field (flux towers) to 

verify calculations can only give mixed evaporation results so this is a compatible 

approach.

Another approach is to consider latent heat flux, L E , as a. residual from the 

energy flux balance equation, so th a t L E  -  —Rn — G — H. Given th a t values for 

Rn and G can be obtained accurately, the result relies on calculating the sensible 

heat value, H, expressed aerodynamically for soils and vegetation as

H  =  PCp^ ~ ~  Tg-} (2 )
fa

where H  is the heat flux, pCp is the volumetric heat capacity of the air, T„ 

is the air tem perature at some reference height, ra is the surface-to-atmospheric 

resistance to heat transport, and is a complicated function of wind friction velocity, 

displacement height, roughness coefficients based on shape, and other factors6. 

Interestingly, the aerodynamic surface tem perature, Tao, is not measurable, but 

instead must be calculated by measuring H  using sophisticated flux sensors. In 

the current literature, it is speculated tha t aerodynamic and radiometric values 

are the same however, many papers have been w ritten on the divergence of the 

two [5].

5In 1990, the United Nation’s Food and Agricultural Organization recommended the Penman- 
Montieth combination method as standard for reference evapotranspiration[l].

8 See Appendix (D) for more details.

6



The residual approach became popular with environmental scientists when 

artificial satellites, equipped with spectral sensors, began reporting land surface 

tem peratures (LST). Surface energy flux models began using the LST values as 

surrogates for the aerodynamic Tao, which gives H if the other param eters are 

known, and therefore latent heat, L E , by using the balance equation.

LST values from low-resolution7 satellite sensors give a “mixed” soil and 

vegetation radiometric tem perature value. Using this value as a surrogate for 

Too is a reasonable approach for dense vegetation cover, where canopy and soil 

tem peratures do not differ greatly [7]. Moreover, for dense covers, the radiometric 

tem perature remains fairly constant when viewed from different angles8. Due to 

the homogeneous presentation of dense cover to a  satellite therm al sensor, views do 

not have to be at nadir to  get reliable data  for surface flux models [12, 20, 27]. This 

increases overall pixel usage in the sensor and, by extension, increases temporal 

sampling frequency of a  terrestrial site9.

In contrast to a dense vegetation cover, a sparse cover behaves differently 

due to the large differences in tem perature between bare soil and vegetation and

to the gaps in the canopy. When sampling the co-centered areas at different view

7Current satellite sensor platforms have a thermal pixel resolution of ~  1 Akur  at nadir 
(looking down perpendicularly). This is a function of sensor resolution, optical distortions, and 
field of view.

8 Studies indicate that canopies with varying emissivities depending on view can be charac
terized and adjusted for[20, 7, 31].

9 Satellite sampling frequencies are a function of orbital periods and the optical field of view 
(FOV). For polar orbiting satellites, the wider the FOV the more frequent a land site will be 
sampled, but at different view angles. Increasing the number of acceptable sensor pixels (a 
subset of the optical FOV) therefore increases the sample frequency.
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angles, large radiometric tem perature differences are evident due to the perceived 

vegetation fraction presentation of land covers [14, 20]. To illustrate this, consider 

viewing a parcel of land (with sparse vegetation) from an oblique angle and then 

looking a t the same parcel from a nadir angle. The oblique view angle has more 

vegetation contribution than does the nadir view. Since the therm al vegetation 

contribution is typically cooler, due to wind exposure and transpiration10, an 

oblique radiometric reading of one pixel (a pixel th a t averages, or mixes, the field 

of view11) will be cooler than an overhead one. For example, a therm al sensor 

can give a mixed pixel’s LST value in a sparse cover a  value of 54°C  from one 

view angle (overhead angle) and 46° C  from another view angle (oblique angle); 

but within th a t pixel the soil cover has an average tem perature of 63°C while the 

average vegetation cover tem perature is a t 37°C. Substituting a mixed pixel value 

(54°C or 46°C') instead of the component cover tem peratures (63°C, 37°C) will 

produce large inaccuracies in surface flux calculations.

Operational success of surface flux models using satellite mixed pixel radio- 

metric tem peratures in place of aerodynamically derived tem peratures has been 

reported for dense, homogeneous, vegetation covers, but there has been less suc

cess reported using this substitution for sparse vegetation covers [15]. In mixed

10And, by extension, photosynthesis. A more precise description of land covers might be 
photosynthetic active (healthy plants) and non-active (dead biomass and bare soil) covers. This 
distinction also allows for a vegetation index for the estimation of a fractional cover and is due 
to the photosynthesis process absorbing more red light than near infrared light[32],

11A mathematical description of a mixed pixel is given in Section 2.3.
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pixel residual models, the mixed aerodynamic tem perature is replaced by the LST, 

but when compared to  measured H  (Equation (2)) this often showed large dispar

ities for sparse vegetation covers. A ttem pts were made to reconcile the difference 

by adjusting the atmospheric heat transfer resistance value, ra, through changing 

the roughness length and other factors. This proved to be operational only on 

a case-by-case basis, with extensive a priori knowledge on soil and vegetation 

characteristics required.

The variability of tem peratures for sparse covers at different views was 

considered by some researchers to be an impediment for mixed pixel radiom et

ric implementation in flux models [1 0 ], while others [1 1 ] have used this behavior 

to infer separate soil and vegetation tem peratures, which can then be used in 

two-source modeling of the covers. Knowing separate land cover tem peratures 

allows for the decoupled calculations of the residual latent heat, L E , for soil and 

vegetation surfaces individually, and therefore gives two sources to  the overall 

usage of water. Studies have shown th a t two-source energy balance flux models 

are better suited for modeling sparse vegetation covers than  single-source, mixed 

models [21, 26, 16, 33, 17, 18]. This binary separation of sources is a refinement 

which addresses the rough mixture of land covers both in the Penman-M ontieth 

m ethod and the radiometrically mixed residual energy flux balance method de

scribed above.

Using the two-source model with mixed thermal pixels requires separating



out the laud cover tem perature contributions in the mixed pixel. Remote sensing 

scientists have developed algebraic methods to  “unmix”, or disaggregate, pixels 

into component parts and is referred to as “sub-pixel analysis.” To accomplish 

this, radiative transfer models are used with two views a t different angles, and 

with known cover emissivities and perceived fractional cover of vegetation12. So 

far, this line of research has been limited to  near simultaneous sampling and to 

a  specific satellite platform 13. For this reason, the intent of this dissertation is to 

broaden the investigation of radiative transfer separation of cover tem peratures 

in a mixed pixel to include time-delayed sampling, possibly allowing the use of 

other aerial and orbital platforms.

1.3 Focus of study.

This study considers the estim ation of factors used in a novel non-linear 

algebraic system for separating land cover tem peratures, with samples derived 

from time-delayed, bi-angular mixed cover brightness tem perature views14. The 

proposed system extends the linear Stefan-Boltzmann formulation of two (near) 

simultaneous d a ta  samples by using the total derivative of mixed tem peratures 

with respect to fractional vegetation cover, as the second equation required for

discriminating average soil and vegetation tem peratures.

12Perceived fractional cover refers to the fractional vegetation cover as seen by the sensor. 
Actual and perceived fractional covers are equivalent at nadir but diverge as view angle increases.

13The Along Track Scanning Radiometer (ATSR) platform from the European Space Agency 
(ESA).

14A “brightness temperature” is what the radiometer sensor “sees”. Adjustments are made 
with emissivity values to get true surface temperatures for gray-body radiators.
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This non-linear system was cast with tandem  weather satellites in mind 

since their orbits can provide reasonably different view angles. However, this 

approach is saddled with the penalty of having to account for meteorological 

variances influencing the sample sites between views. Including the to tal derivative 

equation in the algebraic system addresses these influences when considering time- 

delayed sampling and is a feature lacking in current remote sensing models. This 

study focuses on the soil and vegetation tem perature differential factors, which 

cannot be observed directly in the mixed pixel, but must be inferred for the non

linear system to deliver accurate estimates.

It is im portant to note th a t the binary cover approach is a simplified version 

of sunlit and shaded land covers, or a quaternary 15 cover, and th a t the binary 

approach is used in most studies. The scope in this study is limited to the binary 

version of soil and vegetation covers and serves as a constructive step toward a 

quaternary implementation.

1.4 Background.

Modern satellite spatial resolutions in the therm al image bands are too 

coarse for addressing individual ground covers and their associated water dynam 

ics. Algebraic methods using bi-angular views have been developed by others, 

and expanded on by this researcher, to overcome this resolution limitation, so

that land cover tem perature values can be resolved w ithout spatial segmentation

15 Quaternary means to consist of four.
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of covers, hence a sub-pixel analysis16.

As the current literature suggests, these models can be used for water us

age purposes, but are practical only on large farm fields and range lands using 

currently available weather satellite d a ta17, since the spatial resolution and land 

registration accuracy of ± 2  km  (for AVHRR) limits applications to large homoge

neous expanses. However, as therm al resolutions become finer on future platforms, 

the techniques developed from this, and other works, could be applied to nominal 

crop fields18.

Bi-angular view methods have been developed which make use of visible 

and therm al bands to separate component cover tem peratures and have been 

tested using ESA’s ATSR platform. Li, et al. [22], uses algebraic inversion tech

niques with geometric knowledge19 of the target canopy, much like Kimes [13] 

and others have used. Jia, et al. [11], applies a simpler approach by using sensed 

cover fractions together with the sensed brightness tem perature, after atmospheric 

correction, in Planck’s equation. Results from this m ethod were considered good 

since non-stressed canopy tem peratures were tracking air tem peratures, generally 

considered as a good baseline [6 ].

Unfortunately, a t the time of this writing, the ATSR platform and its

16Put another way: what is in the pixel can be determined but not where in the pixel.
17Such as data from the Advanced Very High Resolution Radiometer (AVHRR) and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor platforms .
18By the same token, as thermal spatial resolutions approach decimeter levels, these techniques 

will not be required since direct individual segmentation will be achievable.
19 Such as plant structure, height and spacing.
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more advanced version, AATSR, have been decommissioned. Relatively few land 

products were developed using the ATSR d a ta  because the ATSR’s focus was on 

sea, and not land, tem peratures. The main use of ATSR bi-angular views was to 

correct for atmosphere effects on sea surface tem peratures, which are relatively 

more homogeneous when compared to land diversity in covers and topography. 

The ATSR platform had two radiometric sensors, one looking forward a t about 

fifty-two degrees and the other looking straight down, or a t nadir. From the time 

the forward view takes a sample it takes about two minutes for the nadir sensor 

to re-sample the area. This difference in time was considered negligible and so 

the samples are considered to be near simultaneous.

Sensor platforms other than the ATSR might be usable. Synoptic, coor

dinated aerial views could give simultaneous views a t different angles, or even an 

aerial emulation of the ATSR could be employed. Another approach might be 

to use existing polar orbiting weather satellites. These nadir and side viewing 

sensor platforms, when in tandem , could be usable if they are close in time and in 

orbital tracks. For example, if a twenty to forty minute separation is required, a 

satellite and its backup might be usable, such as NOAA-19 and NOAA-18, since 

the satellites fly close together in a slightly different orbital track, possibly pro

viding practical view angle differences, depending on orbital track difference. If 

a three or four hour time delay is required, then morning and afternoon passes, 

such M ETOP-A and NOAA-19, might be used depending on the orbital tracks.
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MODIS platforms could also be combined with the above for interm ediate time 

requirements.

Nevertheless, the time delay in using different satellites was considered 

problematic and little work has been done to address this potential use of bi- 

angular views from different satellites to determine land component tem peratures 

[2 2 , 35, 34]. The main objections are based on the requirement of many, and of

ten unobtainable, meteorological values used in highly deterministic models. This 

dissertation addresses these objections with basic research in two ways. First, 

by reinterpreting a previously developed algebraic system, and as a  result, im

plementing unused differential coefficients of th a t system which can encapsulate 

changes in surface tem peratures due to changes in meteorological influences, over 

time. Secondly, by investigating if these coefficients are correlated to difference 

values of readily available weather data, such as air tem perature and relative hu

midity. A reasonable correlation, or trending, would allow a  simplified approach 

for estim ating these coefficients.

1.5 Outline of Study.

C hapter 2 lays the theoretical foundation for the non-linear algebraic sys

tem used in this study and gives the hypothesis. Previously developed linear 

algebraic systems are described and a reinterpretation is developed and enhanced. 

Geometric and area issues are described when sampling from two views. A discus
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sion is presented on the param etrization of the differential coefficients and their 

estimation becomes the basis of this dissertation’s hypothesis.

Chapter 3 explains the methods used in the com putational implementation 

of the algebraic systems. Results using synthetic and laboratory d a ta  are given 

and discussed. C hapter 4 expands the methodology used in the field applications. 

Results are analyzed and discussed. Chapter 5 summarize, offers conclusions and 

recommendations for future work.
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2 THEORY

This chapter presents the theory used in separating binary land cover tem 

peratures, using two time-delayed radiometric samples with different views. The 

theory is first developed as a linear algebraic system but later enhanced into a 

non-linear system as components are introduced by this researcher in order to 

address view effects and time-delayed meteorological influences. Estim ating the 

differential coefficients associated with these components becomes the focus of 

study and is addressed in the subsequent chapters after the theoretical foundation 

is given below.

In this chapter, practical interpretations of vegetation fractional cover are 

discussed within the contexts of instantaneous and time-delayed sampling. Radia

tive mixed pixel transfers (linear and non-linear) are also discussed along with the 

algebraic methods used to unmix cover tem peratures with two radiometric views. 

Components introduced into the enhanced algebraic system are identified as de- 

scribable through empirical means for land parcels. The dissertation hypothesis 

is given thereafter.

2.1 Vegetation fractional cover.

A key point in this study is to distinguish between two interpretations of 

vegetation fractional cover and their usage. The actual fractional cover over soil 

is defined as the perpendicular projection of vegetation to the ground, so th a t the
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ratio of vegetation cover area to soil cover area is given as a fraction, /„, with the 

subscript “a” denoting actual coverage. Studies on cover tem perature behavior 

typically use actual vegetation fractional cover values [25].

A sensor’s view of a parcel of land introduces a  second and different inter

pretation of fractional cover: th a t the vegetation cover is now a function of view 

angle, 6 , from the surface perpendicular,

h  =  G(0)  (3)

with the subscript “0” denoting a sensor perceived value at some angle. At a 

nadir view, where 6  ~  0, we have f g  f a . For other view angles we have different 

fractional values, depending on vegetation canopy geometries.

Fractional Vegetative Cover vs View Angle
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(a) Six centimeter tall plot. (b) Twelve centimeter tall plot.

Figure 1: Typical graphs for sampled fractional vegetation cover as a  function of 
view angle, f g  —  G ( 9 ) ,  for marigold field plots.

Figure (1) shows typical values for two field plots of marigolds sampled with

view angles separated by intervals of approximately seven and a half degrees20.

One field plot had plants six centimeters tall while the other had plants twelve

20Sampling details are given in the Methods chapter.
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centimeters tall, depicted by Figures ( l)a  and (l)b  respectively. The graphs show 

th a t as the view angle increases so does the vegetation contribution to  the sensor. 

This is due to the three dimensional structure of the vegetation canopy since the 

angle is providing more of a  side view of the canopy. Side views also obscure soil 

cover; so as the angle increases, the soil contribution to  the sensor diminishes. 

A nother d a ta  sampling a ttribu te  is, th a t as the view angle increases so does the 

area sampled, so for an oblique angle of about fifty-two degrees the area sampled 

is twice as large as from nadir21.

The graphs in Figure ( l)a  show the sampling response for the six centime

ters tall plot indicating tha t, a t degree values less than  twenty-two, fractional 

values do not vary much. Beyond twenty-two degrees we see a monotonically in

creasing function up to  sixty degrees. Similar responses can be seen for the twelve 

centimeter tall field plot (shown in Figure (l)b ), except for the last sample a t sixty 

degrees, where soil contributions re-enter, due to  looking underneath the canopy. 

In general, view angles greater than  fifty-two degrees are problematic due to  the 

exponential increase in area sampled, described in Appendix (E). Limiting the 

view angle values from about twenty-two to fifty-two degrees allows for the use of 

the inverse function of Equation (3),

o - c r ' i f e )  (4)

21 Refer to Appendix E for an analysis.

18



because of the monotonically increasing behavior in this range. This will be used 

later for param etrization purposes, put forth in context of time-delayed sampling 

and is presented in Section (2.6).

2.2 Using NDVI as a fractional vegetation index.

Determining the vegetation fraction, fg, as seen by the sensor, is prob

lematic using current weather satellite sensors. This is due to  the lack of spatial 

resolution, in the visible bands, to discriminate between the land covers and is 

similar to  the lack of resolution in the therm al bands required to discriminate be

tween land cover tem peratures. For example, the MODIS sensors vary in spatial 

resolutions through the spectral bands so th a t infrared, near-infrared and visible 

bands have resolutions of about one kilometer, half kilometer, and quarter kilo

meter, respectively. The older AVHRR sensors have the same spatial resolution 

in all thermal and visible bands, a t about one kilometer.

In 1979, a  series of experiments [32] popularized a method known as the 

Normalized Difference Vegetation Index (NDVI) which gives a reasonable measure 

of healthy vegetation in low resolution da ta  by normalizing the ratio of two bands, 

red and near-infrared (ni r ). This method is based on the ability for vegetation 

to greatly absorb the red band (due to photosynthesis) and to reflect the near- 

infrared band. So, for pixels with mostly a vegetation cover contribution, we can 

expect >  1. Soil reflects both bands about equally, so for pixels with mostly

19



soil we can expect ^  «  1 . Also, water absorbs more n ir  than red, so for pixels 

with mostly water we can expect ^  <  1 . This simple ratio gives a  range of [0 , oc), 

while the normalized version,

N D V ,  „
n ir  +  red

gives an inclusive range of [—1 , 1 ] which removes the com putational hazard of 

dividing by zero. However, the real value of the normalized rearrangement is th a t 

it reduces solar angle effects.

Many methods have been proposed to derive an actual fractional cover, / a, 

from the NDVI ratio [9]. A frequently used method [37] is to observe minimum and 

maximum NDVI values throughout the growing season and then use the sensed 

NDVI as an index between the two extremes,

N D V I  -  N D V I min 
/ o  N D V I max -  N D V I mtn

but this approach requires a priori extreme values with seasonal repeatability. It 

is also based on nadir views and does not consider oblique views.

The approach for this study is more pragmatic and follows the method 

described in Section (2.1) describing fe  as a function of view angle, 6 . T hat is, 

for each view angle sample, vegetation and soil covers were segmented in order 

to derive fe  and a  NDVI value was calculated by averaging red  and n ir  values
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in the scene (to emulate a low resolution pixel). This is a  local approach, in 

both time and area, to  characterize the ( N D V I ,  fe) relationship by using higher 

resolution sensors to  segment out covers and can be used operationally for periodic 

calibrations in situ. Scatter plots in Appendix (F.5) of N D V I  and fe  show high 

correlation of determ ination values, R 2, (~  0.94) for experimental field values 

and the trend function developed was used as a  surrogate for fe- Section (4.4.2) 

discusses the results using this method.

2.3 Mixed thermal pixel.

The concept of a mixed therm al pixel is presented in this section. A ra

diometric sensor quantifies the radiant therm al energy th a t falls on it, over time, 

as an intensity value. When sensors are arranged together as a two-dimensional 

array they can render an image of therm al emissions. Each of the array sensors 

can be considered as a “pixel”, or picture element, of the image. This is similar to 

the output pixel of a computer monitor, but is an input pixel on the sensor.

A pixel with intensity contributions from different sources is called a “mixed 

pixel”, as opposed to a  “pure” pixel with just one source. These sub-pixel source 

components are called end-members and their contributions to the pixel’s inten

sity, Ip, can be defined linearly as:

N - 1

ip — y '  fi° i
I 0

where N  is the number of end-members, a, is the areal intensity contribution from
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end-member i, is the fractional cover of the end-member over the total source 

area, with the constraints of Y lo ~ l /* ~  1 and 0  <  / , <  1 .

For a therm al sensor pixel, the areal intensity, an is based on the Stefan- 

Boltzmann gray-body energy equation F  = s a T 4, where F  is the radiant energy 

flux, e is the emissivity of the surface, a  is the Stefan-Boltzmann constant, and 

T  is the surface tem perature of the source. Therefore, exposing the sensor pixel 

to therm al radiation over time yields an energy intensity value th a t is directly 

proportional to  surface tem perature.

For a  binary cover with two flux end-members, we can construct the ra

diative component transfer equation as:

Frn — /oFo +  f\F \

where m  denotes a “mixed” value. Substituting F  s a T 4 into the above equation 

gives,

£m< 7 -  fo£o<rT4 + f iS ia T 4 

and, for a binary land cover of vegetation and soil end-members, we can write

em(rT4 = f e£va T 4 I (1 -  fe)es<rT4 

where fe  is the sensor perceived vegetation fraction and sm, s v and s a are the
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mixed, vegetation and soil emissivity values respectively. The cover tem peratures, 

Tv and Ts, are the average tem perature for each cover. Since the Stefan-Boltzmann 

constant, a, appears on both sides of this equation it can be omitted, so that,

e „ n ,  = f ee X  + ( l - A k . 7 ? .  (5)

To illustrate the radiative transfer process from cover components to mixed 

therm al values, consider the images given in Figure (2). On the left of Figure (2)a 

is a therm al image of a twelve centimeters tall marigold field plot taken at nadir. 

The therm al camera (a radiometer m atrix) has a resolution of 320 x 240 pixels, 

with each pixel reporting a brightness tem perature value. On the right of Figure 

(2 )a is the one pixel rendering of the left image as a mixed tem perature value, 

Trn. The rendering was done by segmenting canopy from soil, assigning known 

emissivities to each cover, and calculating true tem peratures for each cover. The 

averaged cover tem peratures are used on the right-hand side of Equation (5) along 

with the perceived fractional vegetation cover, fe, th a t was obtained during the 

cover segmentation. Defining the mixed emissivity as em = fe sv 1 ( 1 -  f e)cs allows 

the mixed value, Tm, to  be calculated.

Similarly, the therm al image on the left of Figure 2b is an oblique view of 

the field plot and the image on the right is the mixed pixel tem perature value. 

Since there is more canopy presented to the sensor in this view the mixed pixel is 

brighter.
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(a) Nadir view (left) and mixed pixel (right).

(b) Oblique view (left) and mixed pixel (right).

Figure 2: Thermal images of marigolds and corresponding mixed pixel.

To reiterate, our task is to separate out land cover tem peratures using 

mixed pixel samples, like those found in low-resolution satellite radiometers. The 

approach taken is to  characterize the process with a  high resolution radiometer 

and then to  emulate the mixed pixel. This process is explained in more detail in 

the M ethods chapter.

2.4 Prior work using radiative transfer mixing.

Separation of soil and vegetation tem peratures is a  key component in two- 

source surface flux models and accurate discrimination is essential to  the models, 

as discussed in the introduction. Algebraic methods have been developed which 

make use of bi-angular views, and most require aerodynamic contributions to  sep

arate  out the radiation loads in low-resolution mixed pixels [26, 16, 19]. Another



approach requires canopy gap and atmospheric radiation values [22]. Some of 

these methods have been implemented using the ATSR satellite platform, where 

an area of interest is sampled twice at different angles along the same orbital track, 

with a time lag of about two minutes.

In particular, Jia, et al. [11], developed an ATSR application th a t ignores 

aerodynamic and radiation effects between samples and assumes Lambertian sur

faces22. An algebraic system of equations is constructed based on Planck’s equa

tion for a black body,

— ehc/\kbT __ ^

where B X{T) is the radiance2 3  a t some wavelength, A, and tem perature T. The 

constants h, kb and c are Planck’s, Boltzmann’s and speed of light values, respec

tively. So, for some wavelength A and two (near) simultaneous views, the system 

of equations can be expressed as,

B \(T m0) =  f 0o^\vB\(T,.o)-\-{I — fgo)s\sBx(Tgo) (6 )

B x(Tm l) =-- f 0iSXvB x(Tvl) i ( l - f ei)£xsB x(Tsl)

where fgn is the perceived (sensed) fractional vegetation cover for a  sample n,

Tvn,T sn are the real averaged tem peratures for vegetation and bare soil covers,

22 A Lambertian surface emits radiation equally in all directions.
23Defined as the energy per second per surface area per steradian,
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and £xvi £ \a are the surface emissivity factors for the covers. Near simultaneous 

sampling allows the assumption th a t cover tem peratures do not change signifi

cantly, so Tvo «  Tv\ «  Tv and Ts0 «  Tsi «  Ta. Tmn is the brightness tem per

ature as seen by a  radiometer and is defined as Tmn = B ^ ] (s\mB{TmT)), where 

£ \m = f n£ \v +  (1 — f„ )c \s and Tmr is the real mixed tem perature. This system 

can be solved for averaged Ts and Tv by a Newton-Raphson iteration using the 

approximation B \(T m)  =  crT^ as the initial value [11].

A simplified, analogous, version of System(6 ) 2 4  can be rendered, as de

scribed above in Section (2.3), by using the Stefan-Boltzmann formulation of a 

mixed pixel with two end-members (soil and vegetation) where the partitions have 

negligible energy and water exchange. This implies separate water availability for 

surface soil and vegetation, which is reasonable for rooted plants with respect to 

soil skin2 5  surface [26]. To recap, the linear tem perature mixing function to  the 

sensor is defined as,

£mT4 = f6s X  + (1 -  f0)e X  (7)

where Tm is the mixed real surface tem perature26. Assuming the emissivities can 

be determined or estimated, the equation can be used twice in the system, as

above, with different values from separate views,

24Henceforth, a system of equations will be referred to as a “System.”
25 A term used to indicate infinitesimally thin.
26 Satellite products provide this value with atmospheric corrections.
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£moTrll0 — foo£vT*0 f  ( 1  — f ^ S s T ^  (8 )

=  fo \£vT^x +  (1 — fg \ )£sT ^ .

Both samples are close in time for the ATSR (<2 minutes), so again, the 

assumption for System (8 ) is th a t Tv0 «  Tv\ »  T v and Ts0 «  «  Ta. System (8 )

can be expressed in m atrix notation as,

fe o £ v (1 -  f e o )£ s
rrt^

V £ m 0T ^ 0

f v l £ v ( l - M S s  .
rp4

. s c  T 4<- ml  ml

2.5 Extending the radiative transfer system  to include differential co
efficients.

Zhang, et al. [35, 36, 37], extends System (8 ) for use with a single satellite 

pass, using a differential equation as the second equation. Zhang’s hypothesis is 

tha t within a sampled region of land there exist pixels with same water availability, 

and given similar surface characteristics and radiation loads, the separate soil and 

vegetation tem peratures are expected to remain constant as the vegetation cover 

varies. This allows for a  differential equation to be used in a  linear system.

Studies have shown that mixed tem perature values of land covers for differ

ent fractional covers fall within a trapezoid distribution constructed over (Tm./„ )  

space [24, 4, 8 ], as shown in Figure(3). Zhang’s approach makes use of this (Tm. f a) 

space from a single satellite pass in tha t theoretical wet-cool and dry-warm bound-
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Trapezium Structure

0.3 0.90 0.6
actual vegetation fraction f.

Figure 3: Theoretical position of lines in (Tm, / 0) space: 1, absolute dry line; 2, 
actual dry line; 3, actual wet line; 4, absolute wet line; 5, vegetation fraction 
isoline; 6 , scatter plot envelope of mixed pixel tem peratures in (Tm,/„ )  space; 7, 
isolines of with constant water availability. From Zhang, et al., [35, 37].

aries of the trapezium  distribution can be estim ated by sample points if a sufficient 

spread in da ta  values exists. However, Zhang also explains th a t more accurate 

boundaries can be calculated by using extreme wet and dry sample points, on both 

bare soil and full vegetation cover values, a t the corners of the trapezium. A sam

ple point between these boundaries is used to determine an isoline of constant soil 

and vegetation tem peratures with varying coverage (by virtue of ratios obtained 

from the equal vegetation fraction isoline), with the assumption of constant water 

availability. M aintaining constant soil and vegetation tem peratures over varying 

fractional cover then constrains the measured mixed tem perature value as an iso

line in (Tm, fa) space. Calculating the slope of the constant water availability and 

constant cover tem perature isoline, gives a  coefficient necessary in a system
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of equations for solving the cover tem peratures, as described below.

An algebraic linear system is constructed with the first equation based on 

the Stefan-Boltzmann formulation of a mixed pixel, Equation (7). Taking the 

to tal derivative of Equation (7) with respect to  actual fractional vegetation cover, 

f a, gives the second equation for the new algebraic system,

-  u ,.t ? + (i -  m s . t ;  (io)

, dT„ <fcmAp T   — -l y 4  ™ ~ c T  — ? T 4
™  m  i f  '  m  t r  ' ~ v 1 v  * - s J s -

d fa  d f a

Here, the rate of change of the mixed emissivity is defined as ^  - s v -  s . f7. 

Assuming the cover tem peratures do not change with respect to  actual vegetation 

fraction then fL. = o and — 0 , and are not part of the second equation28,
fl/ o  a

allowing for system closure.

2.5.1 Reinterpreting the mixed temperature differential coefficient,
no dTm

d f a  “  d f e  *

This study addresses issues concerning time-delayed sampling, in addition 

to the sensor-perceived changes from two views. However, this section addresses 

only the sensor-perceived changes and does so by this researcher’s reinterpreta

tion of dZp- as the change in mixed tem perature with respect to perceived 

fractional vegetation cover from different view angles, and leaves consideration

27See Equation (29) in Appendix (C)
28 Refer to Appendix C for full calculations.
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for the changes between samples over time, due to energy loads and aerodynamic 

differences, for Section 2.6. These perceived changes are generated by geometric 

effects, and possible non-Lambertian surface attributes, and are henceforth called 

“view effects”.

Consider, for the moment, th a t soil and vegetation tem peratures remain 

constant for simultaneous different views on a Lambertian surface so tha t, as 

above, the cover tem peratures do not change with respect to perceived fraction, 

so th a t ^  =  0, ^  =  0. Then, for both the Zhang approach and the two- 

view reinterpretation, System (10) can be used to solve for vegetation and soil 

tem peratures, Tv and Ts. So, for different views and in m atrix notation, the 

system becomes,

fe£v rr4
Vrp\

C T'^'-m± m
Ac Y 3 I T l ^

m dfe 1 dfe

This is congruent with System (10) but with the fractional differential coefficient, 

influenced by perceived view effects.

2.5.2 Factoring for view effects.

The mixed tem perature ra te  of change with respect to perceived fraction, 

can now be calculated from two views and this would be sufficient for system 

closure if the view effects are restricted to only an increase of vegetation tem per

ature contribution and a decrease of soil tem perature contribution from oblique
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views29. However, this is unrealistic since the view effects include outright differ

ent sampling of vegetation and soil covers from a centered nadir view to a centered 

oblique view. As more vegetation cover is introduced into the oblique views, the 

soil cover contribution is diminished, restricting the amount of soil being sampled. 

Moreover, depending on the canopy structure, an oblique view angle can include 

sub-canopy influences, such as canopy tem perature gradients. Non-Lambertian 

effects are also expected. These inherent sampling variances contribute to a  di

vergence in tem perature values for each land cover in simultaneous samples at 

different views. To address these issues, the terms and ^  are reintroduced 3 0  

in this study into System (10) which gives,

emT Am -  + - f 0) s X  (H )

^ ^  + 7 ^  =  erT r e , T ;  + fe l e , T ! ^ U l - m e , T ^

and becomes non-linear due to the different degrees in the variables, Tv and T,. 

This system can be solved for any point in /  by substitution and with known 

differential coefficients along the continuum of / .  A discrete implementation of 

System (11) is discussed in detail in the Methods chapter.

C.

29See the Methods chapter for verification using synthetic data.
^FVom the total derivative with respect to perceived fractional cover, dt,ê n \  see Appendix
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2.6 Parametrization of the temperature function and coefficients.

It is because of the perceived differences in the d a ta  from two views th a t 

useful information can be extracted and understanding the composition of the 

factors inducing these differences becomes key in applying the above methods 

toward more complex situations. Simultaneous bi-angular view sampling has its 

own set of variance factors (due to geometric and non-Lambertian effects), but for 

large time spans in view sampling, as in tandem  satellite passes, the aerodynamic 

and energy interactions are also expressed in the da ta  and cannot be ignored. This 

section describes how System (11) can be used in situations with environmental 

effects in addition to view effects.

2.6.1 Environmental effects over time.

So far, this study’s reinterpretation and adaptation of System (10) allows 

for a perceived to be calculated from two simultaneous views. Extending the 

algebraic System (10) with the terms ^  and ^  is proposed above to compensate 

for view effects in System (11), if their values are known. However, using time- 

delayed samples also introduces additional meteorological effects through varying 

radiation, moisture, and aerodynamic contributions from one point in time to 

another and, strictly speaking, these influences are derived from meteorological 

differences rendered in the time slices and not directly from time itself. A further 

extension is proposed in tha t the differential coefficients, ^  and can also
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encapsulate environmental influences over time.

The suggestion tha t the differential coefficients, ^  and take on in

fluences driven by the environmental over tim e seems abstract because the coef

ficients are expressed with respect to fractional cover and not to environmental 

variables or even time. A reconciliation becomes necessary and is put forth below.

Consider rearranging Equation (2) so th a t for either a soil or vegetation 

surface the cover aerodynamic tem perature, Tao, can be expressed as

T  -  T  +x  a o  ± a  i

p (  p

where pCp is the volumetric heat capacity of the air, Ta is the air tem perature at 

some reference height, ra is the surface-to-atmospheric resistance to heat trans

port (and is a function of wind friction velocity, displacement height, roughness 

coefficients based on shape, and other factors). The sensible heat flux H, from the 

energy balance Equation (1), is a function of net radiation, R„, possible ground 

conduction, G, and latent heat, LE. The latent heat is also a  functions of relative 

humidity, / 4 , wind velocity, 1 4 , air pressure, Pa. and other weather variables. 

So, in general, the surface aerodynamic tem perature, Tao, can be expressed as a 

function of almost innumerable and difficult to obtain environmental values as,

Tao — F(T„, Rn, Rh<Vw, Pa...) 

where the ellipses indicate other variables. Assuming th a t radiometric surface
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tem peratures, T r o , are related to aerodynamic tem peratures, T a o , and subject to 

view effects as a function of view angle, we have T r o  =  C { T n o . 9 ) .  The above 

general equation can be rewritten to describe what the radiometer senses as,

Tro ~ F(9,  Ta, Rn, Rh, 14, Pa...).

Equation (4) gives 6  —  G ~ 1 ( f g ) ,  so now T r o  can be expressed generally as,

T r o  =  T ( f e , T a , R n ,  R h , V 4 ,  P a , ( 1 2 )

2.6.2 Identification of components.

Introducing the variable f g  into the cover tem perature function is a key feature 

which allows the differentiation of the other variables with respect to  f g .  Tak

ing the total derivative of Equation (12) with respect to f g ,  and dropping the r 

subscript in Tro, gives

d T 0  O T o  0 T o  d T „  0 T o  d R , ,  d T a  d R h  0 T o  d V w  d T 0 d P a

d f g  ~  d f g  d T a  d f e  0 R n  d f e  d R h  d f 0  d V w  d f e  0 P a  d f g  { j

The partial differential term  is now identified as the view effect component 

and the remaining terms are identified as the environmental effect components 

contributing to the total derivative The term T0 will now be used as a 

generic reference to  either soil or vegetation cover.
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2.7 Theory chapter summary.

2.7.1 Overview

This chapter began by distinguishing between actual vegetation fractional 

cover, f a , and perceived vegetation fractional cover, f g .  Then, the vegetation 

index, NDVI, was introduced for later use as a  surrogate for f g  and to convey 

a simple way on how sub-pixel information can be extracted. Afterwards, ra

diative transfer mixing functions were defined explaining how areal components 

contribute to a mixed therm al pixel.

The narrative goes on to describe how previous studies used algebraic sys

tems, based on Planck and Stephan-Boltzmann radiative transfer equations, to 

separate land cover tem peratures using two views. Later, a single view method 

was described which enhanced the algebraic system by introducing a  differential 

equation using changes in f a .

The study then showed how the coefficient, in the differential equation, 

can be reinterpreted in terms of f g  and th a t two simultaneous views can be used 

in the enhanced system. View effects were later factored in by introducing the 

coefficients ^  and ^  into the differential equation. Finally, the param etrization 

of the generic surface aerodynamic tem perature, T ao, with f g  showed how view 

effects and environmental effects both contribute to the radiometric value of 

in time-delayed sampling, and therefore encapsulate those effects.
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2.7.2 A practical interpretation of

To prepare the above development by this study for practical use, a tran 

scription of Equation (13) into a discrete formulation is proposed using the Mean 

Value Theorem in differential calculus. Here, the differentials 

etc., are assumed to  have approximately the same mean value point, f 0r- This is a 

reasonable approach since most environmental variables exhibit sinusoidal or lin

ear tendencies under smooth weather patterns, with both functions conveniently 

approximating f 0c as the mid-point between fractional values. This does not mean 

th a t th a t the variables are in phase with each other, nor th a t they necessarily track 

each other. The discrete version of Equation (13) is therefore expressed at f 0c as

AT0  0 T o d T 0 A T n c)T0 A R n  i ) T 0 A R h 0 T o A V W 0 T o A P a

A f 0 ~  d f 0 + d T a A f e  + O R *  A f e +  d R k A f e +  0 V W A f e + d P a A f e +

where etc., are the averaged rates of change between samples and

the partials etc., are unknown. The above equation can be cast as

a hyper-surface in ( A T a , A R n , A/?/,, A I',.. A  P „ ,...) orthogonal space using a one- 

to-one correspondence, such tha t ( \  — |A ,  ( '2 C3 = etc. This

gives

A T
= ( \  4  C2 AT„ 4  C\AR,n  (  CiARh  4  C5AVu, 4  G>AP„ 4 ... (14)

&Je
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and suggests th a t a  deterministic approach to obtain ^  is worth exploring, if 

the coefficients C i,C 2,...,C„ can be sufficiently characterized and weather differ

ential (eg. dTa fa A Ta) are known. These observations lead to the dissertation 

hypothesis below.

2.8 Hypothesis.

The dissertation hypothesis is based on the observation th a t the rate of 

change of a mixed radiometric tem perature with respect to actual fractional veg

etation cover, originally constructed from spatially distributed land parcels, 

can also be constructed from bi-angular views of co-centered land parcels, but with 

the interpretation tha t bi-angular samples provide a geometrically and environ

mentally influenced fractional cover differential, ^ L. It is also observed th a t two 

other fractional differential coefficients, ^  and are required to account for 

these effects when using time-delayed sampling, but whose values are not known 

when using mixed radiometric samples.

The hypothesis is th a t the differential coefficients, ^  and can be 

sufficiently characterized at a local tem poral scale for the accurate separation of 

cover tem peratures in mixed samples, by trending their response to  a  minimum 

of environmental influences using high resolution sensors.

If the hypotheses is correct, then the trending can give insights into de

veloping a  more general method. This study presents a first-order approximation
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m ethod to estim ate these differential coefficients.
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3 METHODS and RESULTS (Part I)

This chapter develops practical computing methods for the above theory 

and describes their experimental applications, first by using synthetic da ta  and 

then laboratory data.

A brief description is given of the pre-processing approach and computing 

environment used for this study. A linear discrete version of the unmixing System 

(1 1 ) is developed, in conjunction with synthetically generated data, as a first 

iteration in transitioning from a continuous context to  a  discrete sampling space. 

This is later extended to the quartic version and results are compared for residual 

closure.

Next, laboratory simulations were performed using potted plants and a 

therm al camera. Overhead and oblique view angles were exercised with the dis

crete implementations and evaluated. Later, in Methods (Part II), field plot ac

quisition and processing methods are described using both therm al and NDVI 

cameras. Associated experimental and da ta  processing errors are discussed.

3.1 Data pre-processing.

The main com putational goal is to separate out sub-pixel land cover tem 

peratures given two mixed thermal views, possibly from two time-delayed satellites 

with different orbital tracks. Algorithms were developed in this study which ex

ercise the above unmixing systems, and are discussed in detail below, but, for
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analytic and verification purposes, pre-processing of higher resolution da ta  is also 

required.

The approach is to pre-process high resolution d a ta  before applying the 

unmixing algorithms to an emulated mixed pixel. This is done in order to have 

the necessary information for closure verification and later characterization of the 

differential coefficients, ^  and T hat is, a  high enough resolution is used to 

segment out a binary cover of soil and vegetation and then the mixed pixel value 

is emulated and used in the unmixing systems.

This pre-process segmentation allows for fractional cover determination 

and average cover tem perature calculations, a priori. In addition, cover tem pera

tures are adjusted by user given emissivity values and a mixed emissivity value is 

calculated by s m =  fe sv +- ( 1  — fe )ss, so tha t a mixed pixel value can be determined 

using Equation (5) with the averaged values of the cover tem peratures.

For each image view presented to the pre-processing programs, a line of 

output da ta  is produced which lists the perceived vegetation coverage, fe, actual 

average soil and vegetation tem peratures, (TS,T V), emissivities, (cm. c . a n d  

the mixed pixel tem perature value Tm. This information allows for the calculations 

of =  ^ 2 “ - and — sv -  ss, used in the unmixing algorithms, and which 

would be available from two views of satellite data.

The differential coefficients, ^  and can also be approximated from 

the output information as and respectively. Characterizing these now
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obtainable coefficients, with respect to environmental changes, is the subject of 

our study. Before proceeding with the methods of characterization, the computing 

platforms, algorithmic development and methods for verification are first described 

below.

3.2 Processing platforms used.

The operating system used for this study is the GNU/Linux based Ubuntu. 

The image processing platform used is called Python On Line Imaging (POLI) 

and was designed and authored by this researcher31. POLI is based on NumPy, an 

extension to  the programming language Python, which has sophisticated m athe

matical functions capable of operating on large multi-dimensional arrays.

POLI is designed for multi-band images and is based on the “piping” con

cept used in GNU/Linux, where small filter programs can be sequenced, on the 

command line, to achieve some end. T hat is, the ou tput from one filter operator 

serves as the input for the next filter down the pipe, denoted by the “|” character. 

The strength of this approach is th a t small, yet known to  work, filters can be 

arranged in many flexible ways for reliable execution.

For example, to implement the data  pre-processing described above in 

Section (3.1), a user would smooth an image, segment it by thresholding and

then assign emissivity values to the binary covers. The command would be:

% f l i r _ s o u r c e  —i i m a g e ,  c sv  | t e e  i m a g e ,  p o l i  \

31 The source code (in alpha version) for POLI and other programs associated with this study 
can be found in this dissertation’s accompanying data disk.
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| b l u r  —t g a u s s  | t h r e s h  —1 0 —h 20 .9  \
| e mi s s  —s 0 .95  - v  0 .9 9  - i  i ma ge ,  p o l i

The command starts  by reading a therm al image which pipes it to a filter tha t 

copies the image into a readable form for later use. The image continues down 

the pipe to a filter for a slight Gaussian smoothing and then is segmented to 

provide a mask for the “emiss” filter, which applies the mask to  the previously 

stored image, finally outputting the necessary pre-processing information. The 

backslash character, “\ ”, indicates a line continuation.

In POLI, images and filter programs can be retrieved locally or from in

ternet servers. Each filter is designed to be used in either the command line, as 

above, or directly as a  class for batch applications, or to be dynamically loaded 

into a graphical user interface (GUI) for interactive analysis. Figure (4) shows 

the POLI GUI containing the same filters as in the above command line. In the 

GUI version, filters produce their own tabbed panel, housing param eter values 

which are adjustable by the user. Clicking on the filter’s tab  renders the output  

at th a t point in the processing pipe, for the user’s inspection. This allows for 

quick analysis and param eter settings th a t can be later implemented using batch 

scripts on large amounts of data. The GUI and batch versions of POLI do not 

actually pipe the images, but simply point to the data.

Simple statistical analysis was done in the Gnumeric spreadsheet program. 

Advanced analysis was programmed in the statistical language “R”.
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(a) Nadir v iew  (left) and thermal mask (right).

9 3

J

(b) Oblique view (left) and thermal mask (right).

Figure 4: POLI image processing of therm al nadir and oblique views.

3.3 Algorithmic development.

Three algorithms implementing the Systems (8 ), (10), and (11) were de

veloped and exercised using synthesized and sensed data, with the methods and 

laboratory results given below.
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3.3.1 Synthetic data.

D ata were synthesized to emulate a binary land cover with varying cov

erage and tem peratures. The synthesized d a ta  consists of a  background, repre

senting bare soil, and rectangular parcels representing vegetation cover. Constant 

tem peratures within the background and individual parcels is assumed and repre

sents the average tem perature of the components. Successive addition of ‘Vegeta

tion” parcels emulates the increase in vegetation contribution from different views 

through a spatial change of vegetation, dem onstrated in the series of images of 

Figure (5). This is the interpretation given in Section (2.5.1).

(a) Increasing ‘Vegetation” cover with con- (b) Increasing ‘Vegetative” cover with vary-
stant component temperatures. ing component temperatures.

Figure 5: Synthetic images used for emulating fractional cover changes for different 
samples. The smaller rectangles represent vegetative cover. The resulting “mixed” 
tem perature varies with fractional cover.

Figure (5)a shows a  series of images with a constant soil (white background) 

tem perature within the image and also across the series. The black rectangles, 

representing vegetation, are also constant in tem perature but increase in num

ber across the series. If the vegetation parcel tem perature is cooler than  the soil
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background then one can expect the mixed tem perature of each image to  de

crease as the fractional cover increases. Because of the constant tem peratures, 

the contributing differential coefficients, and are zero and is analogous to 

a  simultaneous sampling over a Lambertian surface.

Figure (5)b shows images with varying soil and vegetation tem peratures 

across the series which are used to model non-Lambertian situations and time 

delays. In this case, the coefficients, ^  and are not zero and need to be 

accounted for. Here, the discrete differential implementation of the sensed d a ta  are 

calculated from two views and represent average slopes, so ^  ^  ~

and ^  This introduces computational subtleties when reconciling with

a continuous context and which need to be addressed for accurate results. A 

foundation is developed below to address these subtleties using a  simple linearized 

model and then extended to the full quartie radiative transfer version of System 

( 11).

3.3.2 Synthetic data and linearized radiative transfer.

Equation (5) is sometimes expressed in a simplified form as

EmTm —  fe£yTv T (1 — fe)£sTs (15)

because within the expected terrestrial tem perature range, the radiance output 

differences can be approximated linearly in the therm al band of the spectrum.
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Equation (15) can be used to construct a system using two sample points,

fe 0 ^ v ( 1  -  feo)Ss r t  ix V £ mO
fel^v ( 1  -  fe l)£ , . T1 s £m\Tml

Taking the to tal derivative of Equation (15) with respect to fractional cover gives

T , dEm dTm
rr, —rr~ + e n

d f e d f e

dTv dTs dTs
VT V + f e £ v ~ 7?— £ s ~t ? s aT a — f e ^ s ~ T f~  (17)

d f e  d f e  d f 0

and assuming ^  =  0  and ^  0  allows the construction of the systemdr,

fe£, ( 1  -  fe)i
£v £$

Tv
T, dTr

'■mTm 
+ Tr d c

dfe

(18)

Systems (16),(18) are used for navigating purposes by providing a  sim

plified platform for analysis. While this initial approach does not exactly model 

radiation transfer it serves to exercise key concepts in the discrete implementation 

of continuous modeling.

Implementing System (16) is straight forward in th a t sample values are 

used directly. The system was exercised with the images shown in Figure (5) a for 

a soil brightness tem perature of 30°C and a vegetation brightness tem perature of 

2 2 °C, adjusted with es =  0.95 and ev -- 0.99. The implementation uses the first 

view in conjunction with successive views for the unmixing calculations, with each 

new view increasing the fractional cover. The results for System (16) gave cover 

tem perature residuals on the order of 10~ 10 °C  to 1 0 ~H °C.
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Implementing System (18) uses a more direct interpretation of as

a slope between two discrete sample points. The to tal derivative is now expressed 

as,

d(emTm) dT„,
d fg

and the system becomes,

d fg

I rpt Tfl
+ m W e ~ ~

- rn 1 j ^ m O ^ r r i O

f o \  ~  fg o

f g e v (1 — f g ) c s

£v £s
Tv
Tx

£ Tc m x m
SmlTm i —£moTmQ

Sei -foo
(19)

The first equation in System (19) can take on either endpoint view values, al

though when using the second sample point the residuals were be tter with com

plete closure on half the values, with the other half having residuals on the order 

of 1 0 - 130C to  1 0 - 1 4 OC, an improvement of several orders of magnitude, from 

System (16).

The situation with varying cover tem peratures, given in Figure (5)b, has 

the same initial condition as Figure (5)a but the average soil tem perature increases 

by 0.5 °C  with each new view and each new “vegetation” parcel tem perature in

creases by Q.2°C. This introduces the differential coefficients, ^  /  0 and ^  /  0, 

as additional influences to the mixed tem perature Tm. Because these influences 

are not factored into either Systems (16),(19), we can expect the results given 

in Figure (6 ) when applied to the d a ta  depicted in Figure (5)b, showing these
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systems are not suited to  the dynamics by not factoring in the terms containing 

the differential coefficients. The residual errors reflect the tem perature increases

given above.

Soil T«np«rttur» R*sidu«IS V«g#t*on T«mp«ntur» R«*kHj«W

Sr»Ction« V«g««Don Covor

(a) “Soil” residuals, ATs, from synthetic 
data with varying temperatures and with
out factors and

Figure 6 : Tem perature residuals using System (19) with d a ta  depicted in Figure 
5(b).

(b) “Vegetation” residuals, AT„, from syn
thetic data with varying temperatures and 
without factors and

However, with a priori knowledge of ^  and ^  as and respec

tively, we can factor in these influences into System (19) using Equation (17),

f$ ( 1  fe l^ s ' Tvl '

1

E|jj

l

£v -£3 . T»i . fti-fm  JOO-vAfe ^  .
(20)

and test for accuracies. Like System (19), judicious selection of sample point 

(as shown in System (20)) is required. Here, the second sample point is used 

in the first equation, while the first sample fraction, fg0, is used in the second 

equation. The interpretation is th a t the terms fg0 ^ . 7 ^  and ( 1  — foo)?*^]* axe 

influences on the second sample since the first sample point was taken. While
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the cover tem peratures, Tsi and Tvi, axe explicitly solved for the second sample 

point, the first sample point tem peratures, Ts0 and Tv0, can also be solved by 

using and ^  to backtrack. Using Equation (15) to linearly mix the covers, 

the results for System (20) with varying da ta  are as accurate and precise as the 

non-varying application of System (19). It is im portant to state  th a t when using 

linear unmixing systems, the target pixel is assumed to have been linearly mixed. 

Likewise, when using a quartic unmixing system the target is assumed to have 

been mixed using the quartic radiative transfer equation Equation (5).

3.3.3 Synthetic data and quartic radiative transfer.

The transcription from theory to application continues in this section with 

the more realistic, and complicated, modeling of quartic radiative transfer, ex

pressed in the Systems (8 ), (10) and (11). Like the linearized version, System (8 ) 

uses the two sample points directly. Discrete versions of the Systems (1 0 ) and 

( 1 1 ) were developed similarly as above by considering tha t

d { £ m T j )  3 d l „  4 ( k n  _  f m l T *  ! -  Sm0T * 0
j p  ro m  »r ' m  j r  r  rdje dje aj$ f$ i — j$o

so th a t System (10) becomes,

’  f c v  (1 -  f e ) £ s
rpA c  T 4

— £ a
r p 4 —

t-  v  s 1 S J f e  i - f e  o

49



Exercising System (21) on the non-varying cover tem perature data, depicted in 

Figure 5(a) (with same values as above), gave residual values for soil and vegeta

tion tem peratures of lO-110^  and 10~120C in both cases, and are slightly better 

than in the linearized radiative transfer case.

Similar to the approach used in System (20), a  discrete version of the 

second equation in System (11) is developed by leveraging the Mean Value The

orem32, again, in order to address the situation of varying soil and vegetation 

tem peratures,

£m'Tfn I  -  e.7?, + + 0  -  ( » )

The third and fourth terms of the right hand side of Equation (22) represent 

the contributions of ^  and and, as in the linearized case, are interpreted 

to be the influences to the cover tem peratures since the first sample value was 

taken. Unlike the linearized case, these terms require the mean values of Tv and 

Ts, somewhere between /< ?0  and fe i, and are denoted with the subscript c. The 

system remains linear because the mean values of the cover tem peratures, Tvc and

Tac, between samples are used instead of the second endpoint values, Ti (, and

32The prevalence of this calculus theorem in this study, exercised at different scales, cannot be 
overstated. Historically, this notion was formalized by the French mathematician Augustin-Louis 
Cauchy, about a century and a half after the philosophers Leibniz and Newton independently 
discovered differential and integral calculus. Cauchy’s Mean Value Theorem gives a rigorous 
extension of calculus to N-dimensional variables and serves as the definitive basis in the Funda
mental Theorem of Calculus.
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Tsl. This construction has been verified with excellent closure, as above, by using 

known values of Tvc and Tsc.

Operationally, however, a priori knowledge of Tvc and Tsc is difficult, if 

not intractable, to obtain since these values depend on the very target of this 

study, the cover tem peratures Tvo, Tv\, Ts0, and Tsi. The approach taken is to 

investigate how sensitive these values are to the overall system. To do so, an initial 

guess at the values Tvc, Tsc is given and then several iterations are made, so tha t 

new average tem peratures are based on the previously calculated end values. For 

averaged cover tem peratures values given anywhere between 273 -  330° K , only 

two iterations are needed before a convergence occurs, with a closure of ±0.5° ( ',  

when applied to varying cover tem peratures as shown in Figure (5)b. Subsequent 

iterations did not improve the results and, although somewhat encouraging, it 

leaves the linear quartic version markedly less precise than  the linearized version 

given above, if the average values are not exactly known.

Another approach is to  use a Newton-Raphson iteration m ethod in order 

to be tter converge on the end point tem peratures, even if the average tem pera

tures are imprecise as given above. This approach is suggested by the non-linear 

aspect of the system in continuous space and th a t tangential corrections are made 

throughout the iterations, ever so slight in our case.

Rearranging Equation (5), in order to express Ts in terms of Tv, as
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and substituting as the second endpoint and average soil tem perature values of 

Equation (22) gives,

where the values for smc, fgc and Tmc can be determined from the mean values 

between samples. Moving the left hand side of the equation to the right hand side 

and using a  Newton-Raphson iteration method to  find the zero-crossing solves for 

Tvi . As above, a reasonable value for Tvc is given anywhere between 273 — 330° K  

and a first application of the Newton-Raphson method renders tem perature clo

sures of ±10 ~ 3  °C  for synthetic da ta  and, surprisingly, closures of ±10_fi °C  for 

natural sampling (non-synthetic) shown later. The poorer performance using the 

synthetic d a ta  has not been investigated, but is likely due to  the artificial incre

ments in the synthetic data. Using the calculated endpoint values to estim ate 

new averaged tem peratures, and applying a  second iteration, can give closures of 

± 1 0 ~ 9  °C, and better, for non-synthetic data.

This approach assumes tha t all the mean values for all considered variables

(23)



occur a t the same fgc, which is really not known under environmental conditions. 

However, if the variables take on a smooth sinusoidal or linear tendencies then 

using fgc — is reasonable and is remarkably effective as dem onstrated below

in Chapter 4.

3.3.4 Comparison of linearized and quartic radiative transfer models 
using synthetic data.

The two right hand columns of Table (1) show the residual results, for each 

cover, when applying the discrete quartic System (23) to datasets with both cover 

tem peratures varying, depicted in Figure 5(b) and mixed using the quartic radia

tive model, Equation (5). For comparison purposes, the results of the linearized 

radiative transfer model, System (20), as applied to a quartic transfer mixing, are 

presented alongside. This comparison shows how the linearized model deconstruc

tion performs with a quaxtic construction, which is assumed in this study to be a 

more accurate description of the pixel mixing.

Table (1) shows th a t applying the linear deconstruction on a quartic con

struction gives less closure with the vegetation cover than  does the quartic one, 

by orders of magnitude. W ith maximal residual values of about ±0.009°C across 

both covers, seen over a fractional spread of about 0.04 to 0.6, the quartic model 

appears quite usable for research and operational applications, especially where 

sensors are only sensitive to 0.1°C. The discrete, quartic, System (23) is now used 

with real plants in a laboratory setting, described below.



Table 1: Residual results, 6T , of using Systems (20) and (23) and quartic radiative 
mixing on the d a ta  depicted in Figure 5(b).

% COV (fg) Ts (K°) TV(K°) Tm(K°) 6Tb (linearised) STV (linearised) STs (quartic) STV (quartic)

0.037 307.06 295.89 306.65

0.075 307.57 295.99 306.71 0.001 -0.608 0.000 0 .000

0.113 308.08 296.09 306.75 0.002 -0.623 0.000 0.000

0.150 308.58 296.19 306.75 0.003 -0 .636 0.000 0 .000

0.188 309.09 296.29 306.73 0.003 -0.647 0 .000 0 .000

0.225 309.59 296.39 306.68 0.003 -0.655 0 .000 -0.001

0.263 310.10 296.49 306.60 0.004 -0.661 0.000 -0.001

0.300 310.61 296.59 306.48 0.004 -0.665 0.001 -0.001

0.338 311.11 296.69 306.34 0.004 -0.666 0 0 0 1 -0  002

0.375 311.62 296.79 306.17 0.004 -0 .663 0.001 -0 .002

0.412 312.13 296.90 305.97 0 0 0 3 -0 6 5 8 0.002 -0 .003

0.450 312.63 297.00 305.73 0.003 -0.649 0 .003 -0 .004

0.487 313.14 297.10 305.47 0.003 -0.637 0 0 0 4 -0 .005

0.525 313.65 297.20 305.17 0.002 -0.621 0.005 -0 .005

0.562 314.15 297.30 304.84 0.001 -0.601 0.007 -0 .006

0.600 314.66 297.40 304.48 0.000 -0.577 0 .009 -0 .007

3.4 M ethods and results for laboratory modeling.

The objective of the following laboratory trials is to continue testing for 

closure on System (23) using real plants. In this simulation, the actual fractional 

vegetation, f a , emulates f g  by increasing the plant canopy within the overhead 

field-of-view of an infra-red camera. Later, different view angles of a  single canopy 

are used to vary fg.

A plastic container with dry sand is used to hold a live, healthy, plant 

canopy. The container is housed in a climate-controlled room with constant tem 

perature. Fluorescence lamps are used to heat the box from below so th a t thermal 

shadow effects, which appear when heated from above, are minimized. Canopies
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are constructed by placing potted plants inside the sand, or by placing a vine with 

leaves on top of the sand.

The infrared camera used, model ThermaCAM B2, is produced by FLIR 

Systems, Incorporated (Wilsonville, Oregon) with a detector pixel resolution of 

160x120 pixels and an output resolution of 320x240 pixels. This camera measures 

thermal radiation energy with a wavelength response from 7.5/or? — l3//?n, and 

has a sensitivity of 0.1°C  at 25°C , an accuracy of ± 2 .0 °C  and a  repeatability of 

±1.0°C. D ata are sampled with the emissivity set to unity, so th a t later, after 

segmenting covers, emissivities can be assigned separately to the covers in order 

to retrieve true temperatures. Cover emissivity values are set to  5 ., -  0.95, and 

s v — 0.99 for these trials. The mixed tem perature value is calculated using the 

same quartic radiative model, System (23), as with the synthetic data. The ap

proach is the same: to sample separate average soil and plant tem peratures over 

various fractional covers, emulate a mixed pixel tem perature with a quartic radia

tive transfer model, derive and from the samples, reconstruct the

component tem peratures for each instance and compare calculated cover tem per

atures with known values.

3.4.1 Overhead implementation.

Two series of samples are taken from nadir (0°) with varying canopy. The 

first series, shown in Figure (7)a, uses a potted house plant, Philodendron Scan-
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dens, to  add canopy by simply placing more of the vine in the field of view. The 

second series, shown in Figure (7)b, uses Viola Wittrockiana (pansy) plants in 

small plastic containers buried in the sand.

(a) Increasing vegetative cover using Philo- (b) Increasing vegetative cover using Viola 
dendron Scandens. Wittrockiana.

Figure 7: Thermal infrared images emulating view cover changes by increasing 
canopy over dry sand for a series of samples.

Applying System (23) to the da ta  depicted in Figure (7)a gives results 

shown in Table (2) and, as with the synthetic data, expresses good closure.

Table 2: Residual results, ST, for the quartic radiative transfer System (23) using 
d a ta  depicted in Figure 7(a).

% cov (U) Tm (K°) TV(K°) Tm(K°) s j i AT>,
■STf ST. STV

0.067 303.33 396.02 301.83

0.161 303.49 296.28 301.32 1.82 2.73 2.7*10'"® —1 .5 * 1 0 ” 7

0.376 303.13 294.96 299.42 -0 .62 -0 .23 — 1 .2 x 1 0 “ 7 2 .1 * 1 0 ” 7

0.631 302.26 296.21 298.68 -0 .13 0 .43 1 .0 * 1 0 “ ® - 9 .6 * 1 0 ” ®

0.646 301.97 296.19 297.69 -0.61 0 .29 - 1 .1 * 1 0 ” ® 6 .1 * 1 0 “ 7

0.644 301.92 296.71 297.90 -0 .70 1.19 —S.O xlO ” 7 2 .8 * 1 0 “ 7

Columns 5 and 6  in Table (2) show values for the known differential co

efficients ^  and These values are showing the camera repeatability errors
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and the therm al variances as the canopy is being constructed on the sand. These 

effects, and others, are seen in all remaining trials and are relatively small when 

compared to  much larger rates in field trials. Applying System (23), using da ta  

depicted in Figure 7(b), gives results shown in Table (3).

Table 3: Residual results, 6T, for the quartic System (23) using da ta  depicted in 
Figure 7(b).

% COV (fe) Ts (K°) TV(K°) Tm(K°) AT,,
..S s L 6TS STV

0.025 303.18 296.61 303.01

0.052 302.78 295.59 302.41 -14.85 -38.44 - 7 .3 x 1 0  7 1 .4 x 1 0 ' 5

0 .092 302.86 295.64 302.19 -4 .78 -14.53 - 1 . 3 x l 0 “ 7 1 .4 x 1 0 “ ®

0.168 302.43 294.57 301.11 -5 .23 -14.38 — 1 .2 x 1 0 “  6 6 .4 x l0 “ 6

0.184 303.19 296.26 301.91 0.11 -2.23 -  1 .6x10*  8 7 .2x  10~ 8

0 .207 303.48 296.61 302.02 1.67 -0.56 2 .3 i  10~ 7 ~ 9 .1 x l0 “ 7

In this construction, rather than  laying down a  canopy, plants in plastic 

containers were buried one a t a time, disturbing both soil and canopy tem pera

tures, and which is reflected in the much higher rates of the differential coefficients. 

Nevertheless, Table (3) shows high closure rates as before, using known values of 

the differential coefficients.

3.4.2 View angle implementation.

Varying the view angle of the sensor induces a fractional vegetation change, 

A fo, on a static canopy, even with small angle differences, as dem onstrated in 

Figure (8 ) and Table (4). Also, centering the lens angle on the same point for 

each angle, presents sampling problems in th a t some plants disappear from view, 

and others appear, as the view angle changes (see Appendix (E)). For a large
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30 deg 15 deg 22.5 deg
(a) Three views from 0° to 30°. (b) Four views from 0° to 22.5°.

Figure 8 : Two sets of therm al infrared images a t different view angles, using Viola 
Wittrockiana.

homogeneous canopy distribution this should not be problematic, but for these 

simulated canopies the boundary of the container is quickly brought into the 

sample scene as the view angle increases. For this reason, the view angle range is 

limited to (0° — 30°) in this laboratory setting.

The set of images shown in Figure (8 ) (a) vary by 15° and the results using 

Systems (23) are shown in Table 4, with similar closure values as before. Likewise, 

the set of images shown in Figure (8 )(b) vary by 7.5° and the results are also shown 

in Table 4.

In summary, the discrete quartic System (23) works well within these lab

oratory simulations, given the known differential coefficients and In fact, 

implementing real da ta  gives better results than when using the synthetic data, 

shown in Table (1), by orders o f magnitude, for reasons th a t probably have to 

do with the mean value uncertainties, as discussed above. However, using the



Table 4: Residual results, ST, for the quartic Systems (23) using da ta  depicted in 
Figure 8 (a) and (b).

% cov (fe) T, (K°) TV(K°) Tm(K°) 45* V/a.
A T,.
■37? ST, STV

0.293 301.81 295.00 299.80

0.351 301.46 294.36 298.96 -6 .04 -11.30 — 1 .3 x 1 0 -  5 2 .5 x l0 ~ 5

0.380 301.29 293.95 298.50 -5 .97 -12.08 - 2 . 6 x l 0 ~ 5 4 .4 x l0 ~ 5

Results for da ta in ^igure 0
0

% cov  (f0) T, (K°) TV(K°) Tm(K°) &Ll AT,, ST. STV

0.341 301.80 294.88 299.27

0.362 301.38 294.74 298.97 -8 .08 -6.57 - 8 . 8 i l 0 ~ 7 1 . 6 i l 0 “ 6

0.392 301.22 294.63 298.63 -6 .39 -4.76 - 3 . 1 x l 0 " 6 4 .9 x l0 ~ 6

0.406 301.20 294.71 298.55 -5 .42 -2.59 - 4 . 9 x l 0 ~ 6 7 . 3 i l 0 ~ 6

Results for dal,a in rigure 8 (b).

synthetic d a ta  exercises param eters beyond those found in this study’s field ex

perimental trials, both  in fractional differences and rates of change. This gives a 

very acceptable lower bound for cover residual values of about 10- 3  °C.
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4 METHODS and RESULTS (Part II)

The above Chapter (3) describes this study’s com putational methods and 

results used in synthetic and laboratory settings. This chapter describes the aux

iliary methods, effects, and results when extending these methods into an outside 

environment. This field extension also addresses a time delay between da ta  points. 

Integral to this field-temporal extension is the estimation of the differential coef

ficients necessary to  factor in the environmental influences during the tim e delay 

between acquiring d a ta  points. Methods used to characterize the differential coef

ficients for predictive estimations are presented along with the results when using 

known vegetation cover fractions. Later, methods and results are presented to 

estim ate vegetation fractional cover to fully emulate a mixed pixel application.

4.1 Field setup.

Field sampling took place in Santa Fe, New Mexico, at an altitude of 

about 2168 meters, during the summer of 2012. Three beds of marigold plants, 

Tagetes erecta, were constructed to  hold different geometries of canopies. The 

spacing between the stem of the plants was similar in all beds, a t about eighteen 

centimeters apart, staggered between rows. The average size of plants, which 

roughly resemble a sphere on a stick, varied from bed to bed. The left-most bed 

in Figure (9)a had plants averaging about six centimeters tall, the middle bed 

had plants averaging about twelve centimeters tall and the right-most bed had an
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average height of about twenty-four centimeters.

(a) Beds with varying canopy geometries. (b) Acquisition station.

Figure 9: Marigold beds and acquisition station.

4.1.1 Variable parameter clamping.

Several tactics were used during the sampling process to  clamp down on 

environmental effects which would contribute to  experimental error and confusion. 

Restricting the ranges of certain variables can lead to  a  better understanding of 

a model by minimizing the effect th a t one variable has on other variables.

Each bed was surrounded by water resistant therm al insulation to  minimize 

variation in moisture and tem perature a t the bed boundary. To optimize plant 

health, potting soil suitable for marigolds was used in the beds, however, the soil 

was too dark for accurate NDVI ratio readings of near-infrared and red bands33. 

Moreover, the speckles of white perlite in the potting soil interfered as artifacts in

the image segmentation of plant canopy from soil by falsely registering as canopy.

33This is probably due to the absorption capacity of very dark soil where any reflection of 
shortwave radiation is in the noise level of the sensor, giving widely varying values of ratio 
nir/red.
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Covering the potting soil with surrounding local soil to a  depth of about three 

centimeters thick made the NDVI signal much more responsive and the cover 

segmentation better behaved, with less artifact contribution from the soil. On the 

evenings before sampling, the beds were watered to field capacity at dusk in order 

to provide a constant water supply to the plants throughout the following day. 

All flowers on the plants were clipped and debris on the soil surface was removed 

before sampling.

A key tactic used for this study was to remove direct sunlight as an envi

ronmental component so th a t sampling occurred under shaded conditions. This is 

because the proposed model is based on a  binary land cover and not on a quater

nary model of sunlight canopy/soil and shaded canopy/soil, discussed in Section 

(1.3). A cloth canopy was used to shade the beds and side barriers were con

structed from highly reflective m aterial to block strong side therm al insolation, 

and, as an added clamped param eter, to block the wind. Likewise, a sheet of ther

mal insulation was placed next to a nearby w all to  block its therm al emissions. 

However, a  slight to moderate directional thermal radiation was still noticeable, 

including shading, mostly in the morning and late afternoon samples. It was not 

possible to eliminate the full wind effects either, as the plants needed to interact 

w ith the atmosphere.

The goal of these restrictions is to have a diffuse radiation environment 

and to limit the aerodynamic effects to  just air tem perature, air pressure, relative
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humidity and a slight wind, in an attem pt to  simplify environmental contributions.

4.1.2 Signal acquisition equipment.

The acquisition setup is shown in Figure (9)b. A pivoting stand, with fixed 

intervals of seven and a half degrees, holds the infrared and NDVI cameras, side 

by side, at 1.4m height in nadir position. The infrared camera used is the same 

as described in Section (3.4).

To capture NDVI data, an Agricultural Digital Cam era (ADC) from Dy- 

cam Incorporated (Woodland Hills, California) was used. It has a 469x365 pixel 

resolution with a red band response between 0.60 — 0.75 um  and a  near-infrared 

band response between 0.75 — 1.05 um. A red filter (W ratten 29) is used to block 

wavelengths below 0.60 um . The 8.5 mm lens has an f-stop of 4.5, allowing it to 

focus from 1 m to infinity.

Tem perature and relative humidity d a ta  were collected by a  HOBO U12- 

013 D ata Logger from Onset Computer Corporation (Cape Cod, Massachusetts). 

The HOBO unit has an operating tem perature range of —20° to 7Q°C with a 

resolution of 0.03°C a t 25°C and an accuracy of ±0.35°C between 0° to  50°C. The 

relative humidity operating range is 5% to  95% with a resolution of 0.03% and an 

accuracy of ±3.5%. The unit was set a t 30cm above the ground. Barometric d a ta  

was taken from the Santa Fe A irport weather station and is expressed in terms of 

standard tem perature and pressure with a sensor resolution of 0.1 millibar. The
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horizontal distance from this sensor was 15.5km  and the sensor was 234m lower 

than the field plots.

4.1.3 Sampling issues.

Preliminary exercising of the infrared sensor showed tha t the bed with the 

smallest plants was unsuitable for this study due to  the lack of therm al contrast 

exhibited for most of the day. This is likely due to the near proximity to  the 

soil and boundary layer interactions. The other beds, the 12cm and 24cm tall 

beds, did not share this problem; however, the 24cm bed had consistent problems 

with the NDVI sensor giving large artifacts, or blooming spots, which are thought 

to  come from the denser canopy not allowing a proper n ir jre d  ratio, similar to 

the problem described above with dark soil. This study uses d a ta  from both 

the 12cm and 24cm beds, except when using NDVI indexing to  the vegetation 

fraction, where only the 1 2 cm bed is used.

On 12/08/08 sampling did not occur until noon, and two oblique data  

points at 1 2 0 0 /zr.s and 1300/// .s were not usable due to background artifacts con

fusing the cover segmentation, so valid samples for the near instantaneous da ta  

set did not begin until 1400/irs. However, the nadir views were good and were 

used in subsequent time delay sets.

For samples days of 12/08/15 and 12/08/16 two da ta  points, instead of 

one, were taken for the oblique angle of a sample. This was done for comparison
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purposes for near instantaneous sampling and only one set of oblique angles per 

day is used in the field study.

4.1.4 Sampling times.

Land cover tem perature data  were collected throughout the day of April 

21, 2012, for a  preliminary analysis, shown below in Figure (10)a. A nadir sam

ple was taken with the infrared camera every half-hour over a twenty-four hour 

period. For night sampling, the land cover tem peratures were separated using a 

thresholding m ethod and the average tem perature reported, as in Section 3.2. For 

sunlit sampling, the four land covers3 4  were sampled manually and averaged into 

soil and vegetation components.

Sunlit soil and vegetation tem peratures

3 1 0 -

£  3 0 0 -

2 9 0 -

280
10 00 15 00 20.00 25 .00  30 00  35.00

hours since midnight - April 21 2012

Shaded soil and vegetation tem peratures

o. 296
E

295

 veg canopy
— — soil skin

9:36 12:00 14:24 16:48

tim e - August 10 2012

(a) Sunlit land cover temperature response. (b) Shaded land cover temperature response. 

Figure 10: Sunlit and shaded and cover tem perature samples.

Figure (10)a shows the signal response in both land covers of sunlight, and

later lack of, with steep slopes and near convergence a t night, especially right

34 The covers being sunlit soil and vegetation, and shaded soil and vegetation.
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before dawn. After this time the sun rises, illuminating the land covers, and the 

vegetation cover tem perature leaps ahead of the soil, likely due to the difference 

in heat capacities and radiation absorptions of plant canopy to th a t of soil. This 

effect can also be seen a t the end of the day, with the vegetation cover responding 

quicker to the lack of sunlight than the soil cover. Interestingly, the land cover 

tem peratures cross again at mid-morning, indicating th a t, for sunlit sampling, the 

researcher/engineer would want to be aware of these crossovers when sampling.

In contrast, for shaded conditions, the signal response for the day compo

nent is reversed with the plant cover tem perature being higher than th a t of the 

soil cover tem perature, as shown in Figure (10)b. The land cover tem peratures for 

Figure (10)b were determined through thresholding segmentation, as above. Im

plementing swapped cover tem perature positions using synthetic images showed 

th a t the com putational approach used in this study is invariant to either case.

For the field study, samples were taken over four days in August of 2 0 1 2 , 

from 12/08/08 to 12/08/10 and on 12/08/16 for the 1 2 cm bed and over five days 

from 12/08/11 to  12/08/15 for the taller 24cm bed. Sampling began when land 

cover tem perature divergence occurred, usually by mid-morning, and continued 

on the hour and sometimes on the half hour. Hereafter, a d a ta  point is defined as 

an acquired image and a sample contains two da ta  points.

Acquiring da ta  points every hour allows for a staggered sample rendering 

throughout the day. For example, a nadir d a ta  point at 1 100/?rs can be used with
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an oblique d a ta  point at 1500hrs  to make a time-delayed sample. So, for the 1 2 cm 

bed, a to tal of 168 therm al samples with two d a ta  points each are used per run, 

where a run consists of exercising new param eters in the com puter processing. 

Aside from much preparatory work, about 35 runs per bed are represented in this 

study. Twice as many d a ta  points were used for the NDVI runs on the 1 2 a n  bed. 

The 24cm bed to tal number of samples is 192. On rare occasions, if a sample 

would not converge in the Newton-Raphson iteration, described in the previous 

chapter, the sample was ignored.

4.1.5 Sampling views.

An oblique view of approximately fifty-two degrees was chosen for several 

reasons. The first reason comes from the preliminary study described in Appendix 

(E), showing tha t the area increase is fairly linear up to  about fifty-two degrees 

before it hits an exponential growth. This upper bound also corresponds with the 

practical limitations of the small bed size, such th a t angles beyond this bound 

included areas outside of the bed. A preliminary study also showed th a t the 

differential coefficient values were more consistent when d a ta  points were taken 

between forty-five and fifty-two degrees rather than with more shallow values. 

Another reason is th a t the ATSR platforms also used fifty-two degrees as the 

oblique angle and so validates its use. All oblique da ta  points used fifty-two 

degrees, except for one due to operator error, which used forty-five degrees but
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did not show adverse effects.

Both nadir and oblique views centered on the top of the same plant. The 

effective field-of-view was about 38a-26cm  for the nadir view and about 38.r60em 

for the oblique view. It is im portant to note th a t while the nadir view gives data  

for the top of the plant canopy, an oblique view will give d a ta  for the top and side 

of the plant canopy, including potential therm al gradients from the ground up. 

Standard deviations of the cover tem perature d a ta  points averaged about 0.5°C  

for the soil and about 0.8oC for the vegetation. The emissivities values used were 

0.98 and 0.99 for the soil and vegetation covers respectively.

4.2 Image segmentation of land covers.

The d a ta  processing used in this study to discern the differential coefficients 

and the sensed and calculated tem peratures for each cover has already been de

scribed in Section (3.2). A key component in this processing is to  discriminate 

land covers, from which the differential coefficients can be calculated and later 

characterized.

Even seemingly well-behaved images can be problematic when trying to 

accurately discriminate sections of the image. In this study, for example, morning 

sample images behaved differently than mid-day samples due to different thermal 

contrasts and natural variability throughout the land covers. To address the vari

ability in image types, many autom ated segmentation methods were explored35,

36 Such as Otsu’s thresholding, Canny’s edge detection, and even self-organizing neural nets.
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but, off-the-shelf, they did not perform well over all the images.

Simple thresholding to segment the two covers was performed manually. It 

was not perfect, but performed better under these circumstances than  autom ated 

methods. Thresholds were specified with a resolution of tenths of a degree Celsius 

and correspond directly to the tem perature resolution of the therm al camera. This 

threshold tem perature does not accurately represent the tem perature of either 

cover since, at this point, emissivity values have not yet been assigned.

A sensitivity study on the effects of varying thresholds was conducted. 

A best estim ate threshold, made by the operator, was assigned to  each image, 

for all images from both beds, and the images were processed to  obtain sensed 

and calculated cover tem peratures. Two other runs were conducted with the 

best estim ate threshold value modified by ±0.5°C. This emulates the operator 

making up to five noticeable shifts up and down from what was considered a best 

estimate. Results showed an effective difference overall of only a few tenths of a 

degree Celsius, for the sensed and calculated tem peratures and their differences. 

Results presented in this study use the best estim ate threshold.

The sensitivity study showed th a t simple thresholding is robust for this 

study, but for larger sample runs an autom ated method should probably be em

ployed. The autom ated method might also assign a  ribbon of pixels centered on

the edge of the covers to mask out ambiguous pixels which fade from one cover to

A Bayesian Maximum Likelihood method was not tried but may be suitable for these sets of 
images.
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the other, and do not really represent either cover.

4.3 Differential coefficients characterization.

The previous chapter describes the reduction of the differential coefficients, 

^  and from a continuous mode to a discrete one, and necessary 

for practical application. For the remainder of this study, both modes will be 

generically referred to  in the continuous mode. Moreover, ^  will be used to refer 

to either land cover’s differential coefficient.

This sections describes the methods and results used to characterize the 

differential coefficient, for both land covers. It is a  heuristic and empirical 

approach, where the differences in weather variables are used to characterize ^  

over a day or more. This characterization is exercised later, using its own and 

other day’s d a ta  to  probe its behavior.

Some questions tha t arise are: 1) can the characterization of one day be 

applied to other days? 2 ) can a  composite of days smooth out the component 

values, leading to  a  generalization? and, 3) to  what extent are missing variables 

influencing results?

To begin, a zeroth-order approximation for ^  is given below, for near 

instantaneous sampling, together with the metrics with which the results were 

measured. Later, a  first-order approximation is developed which gives an envi

ronmentally influenced version. Finally, Principal Component Analysis (PCA)
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methods are used to describe anomalies in the results.

4.3.1 Special case of view effects.

The to tal derivative of Equation (12), as developed in Section (2.6), defines 

the land cover differential coefficient as,

d T 0 d T 0 d T 0 d T a <)T0 d l l , ,  d T a d R h d T a d V w 0 T o d P a .
d fe  ~  d f e + 0 T a d f 0 +  0 R n d f 0 + 0 R h d f 0 +  d V w d f 0 + 0 P a d f e " 1 }

where the subscript o  denotes either soil or vegetation cover. The partial differ

ential term , is proposed to be the view effect component, with the remaining 

terms encapsulating the environmental contributions to  the to tal derivative, 

and are addressed in a generalized form below in Section (4.3.2).

Since the field approach in this study made efforts to  minimize environ

mental components, described in Section (4.1.1), the above Equation (24) reduces 

to

dT1 = dT1 m d T ^  OT^dR^ dT^dP^
d f 0 d f 0 + d T a  d f 0 +  d R h d f 0 + d P a d f 0 { ’

and, for the “instantaneous” sampling, the equation is further reduced t°  ^  

because the environment changes, (eg. d T a «  A T a ) are negligible and so the en

vironmentally influenced terms axe set to zero. In this study, the time difference 

for “instantaneous” sampling is about a minute or two where environmental dif

ferences can still be registered but appear as acceptable noise with a small range,
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or experimental error, as dem onstrated below.

Table (43), in Appendix (N), shows the differential coefficients, ^  and 

of the \2cm  bed, over different time intervals. The bottom  of the “Near Instanta

neous” column gives the averages of the differential coefficients as ^  -  0 / 2 1 2  and 

^  =  1.577. Applying these averaged values in the “unmix” computer program 3 6  

to all of the near instantaneous samples gives an average tem perature difference 

between sensed and calculated tem peratures of A T Vavg = 0.007°C  and A T Savg 

0.005 °C  with standard deviations of stdv — 0.610 °C  and stds — 0.435 °C  re

spectively. The terms, A TVavg and A TSavg, are actually the bias of the system, 

expressed as the mean of differences and is a measure of accuracy, while the stan

dard deviations are a measure of precision.

The goal of this study is to separate out the binary land cover tem pera

tures from the sensed mixed pixel in a bid for more accurate tem perature estima

tion. The above bias and precision seem a reasonable outcome for exercising the 

instantaneous samples with the view effect component, but the question arises: 

How does this m ethod compare to the mixed tem perature, especially when the dy

namic range of land cover tem perature differences is low under shaded conditions? 

P u t forth another way: How much closer is the computed cover tem perature to

the sensed cover tem perature than the mixed tem perature is to the sensed cover

“ Described in Section (3.4). The unmix program has command line options to specify the 
values of 4S1 and
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tem perature?

A sample-by-sample comparison is given for both covers of the 12 cm bed 

in the tables of Appendix (F .l). The calculated tem perature differences are com

pared to  the mixed tem perature differences, as posed in the last question in the 

above paragraph, and the performance is reported on the two right most columns. 

The second most right column, “a /6”, gives a proportional measurement of how 

much closer the calculated tem perature is to the sensed tem perature than is the 

mixed tem perature. The furthest right column simply reports if it was closer and 

is assigned a “h it“ value of one. The bottom  of tha t column shows the percentage 

of sample points which outperformed the mixed tem perature difference.

Similar calculations for the view effect were made for the 24 cm  bed and 

result tables can be found in Appendix (G .l). Table (5), below, summarizes the 

results of applying the respective averaged differential coefficients of both beds to 

the near instantaneous samples. The response columns indicate the precision, or 

the Gaussian spread of the difference from the calculated to sensed tem peratures, 

with the label “std”. Likewise, the accuracy is indicate by the label “bias”. The “% 

better” column shows the percentage of points th a t the calculated tem peratures 

outperformed the mixed tem perature. The results are encouraging.

It is im portant to note th a t the 1 2  cm bed has less vegetation cover, with 

mean values of fenadir — 0.219 and feohlj — 0.418, than  does the 24 a n  bed, with 

mean values of fenadir =  0.485 and feoblique — 0.716. This gives an opportunity for
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v e g  r e s p o n s e s o il  r e s p o n s e

b e d #  smpl #  days dTa
dfe

dT„dfe s t d  C b ia s  C %  b e t t e r s t d  C b ia s  C %  b e t t e r

1 2 c m 3 4 4 1 .5 7 7 0 .2 1 2 0 .6 1 0 0 .0 0 7 9 1 . 2 0 .4 3 5 0 .0 0 5 9 1 . 2

2 4  c m 4 1 5 2 .2 3 0 0 .8 2 5 0 .3 1 6 - 0 . 0 0 7 1 0 0 .0 0 .8 0 3 - 0 . 0 0 3 1 0 0 .0

Table 5: Near-instantaneous results using averaged ^  and

comparing behavior between the two beds. For example, in Table (5) a transpose 

in precision is observed, in th a t the sparser cover has a slightly larger vegetation 

spread than the soil does and this is reversed for the more densely covered bed.

Table (6 ), below, shows the cover responses for the near instantaneous 

samples when ^  and are set to zero, rather than  using averaged values. The 

effect is to raise the bias by orders of magnitude for both beds while the precision 

stays about the same. It also reduced the overall performance metric for the 24 cm 

bed, as expected. Curiously, the overall metric improved for the 1 2  cm bed, but 

when the individual samples were compared with the previous run, using view 

effect values, the results showed tha t this run had more cover tem peratures closer 

to the mixed tem perature, and with just one more point qualifying. The previous 

run had many more points closer to the sensed tem perature, but missed th a t extra 

point by just 2 / 1 0 0 </l of a  degree.

v e g  r e s p o n s e s o il  r e s p o n s e

b e d #  smpl #  days dT,
to

dT,.
dfe s td  C b ia s  C %  b e t t e r s t d  C b ia s  C %  b e t t e r

1 2  c m 3 4 4 0 .0 0 0 0.000 0 .5 9 4 0 .7 1 5 9 4 .1 0 .4 3 9 - 0 . 5 3 4 9 4 .1

2 4  c m 4 1 5 0.000 0.000 0 .3 1 2 0 .4 1 5 9 5 .1 0 .8 1 8 - 1 . 1 3 1 9 5 .1

Table 6 : Near-instantaneous results using ^  =  0 and 0.
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Another way to express the proportional closeness of calculated and mixed 

tem peratures to  the sensed tem perature, is to use a decibel, dB  =  \ 0Logm(a/b), 

representation. This logarithmic rendering gives a compact sense of the dynamic 

range of the closeness measure. Figure (11) shows the frequency distribution of 

the proportional closeness of the above runs, with and w ithout view effects, and 

allows for a comparison. Both histograms used the same bin spacing.

C l o M n e s s  M e a s u r e  t o  S e n s e d  S o i l  T e m p  

with view effects
16%

10%

6 %

4%

2 %

0%

Calc Ifemp C losen ess Compared to  Mixed itemp in dB Calc Temp C losen ess Compared to  Mixed Tfemp in dB

(a) Soil cover response using view effects on (b) Soil cover response not using view effects 
12cm bed. 12cm bed.

Figure 11: Power decibel representation of closeness to  sensed soil tem perature.

dT,

Figure (1 l)b  shows the results of setting the coefficients to ^  -■ 0  and 

df — 0  (no view effects), with about forty percent registering a little over twice 

the closeness for the calculated tem perature than  the mixed tem perature was to 

the sensed tem perature. Maximum closeness was about eight times (a/b  — 10°9) 

closer. Figure ( l l ) a  shows the results of using the averaged values of ^  and ^  

(with view effects). The dynamic range has increased over ten times and twenty- 

eight percent of the calculated tem peratures are ten times closer to the sensed
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tem peratures than is the mixed tem perature.

W hen using the “better than” system, in the da ta  runs throughout this 

study, typical misses are just by tenths of a  degree, even with high hit rates, where 

the m ajority of points are orders of m agnitude closer to the sensed tem perature, 

proportionally, than  is the mixed tem perature. A decibel system expresses this 

dynamic range well, however the “better than” frequency system is used in this 

study because it is more intuitive.

Stepping back in scale, either set of the above results is quite acceptable 

for practical purposes and gives substance to previous studies which set these 

coefficients to zero for near instantaneous sampling. Nevertheless, implementing 

the view effect in this study shows a  higher level of accuracy than when not 

implementing it, as shown in Table (6 ). A decibel representation also showed 

that many more calculated tem peratures were significantly closer to the sensed 

tem perature when using the view effects.

4.3.2 Generalizing by correlating differential coefficients to weather.

The previous section shows th a t the view effect component, expressed as 

the partial differential | ^ ,  is ju st a zeroth-order approximation of Equation (24) 

tha t works well for near instantaneous sampling and th a t it is a  function of canopy 

geometry and view angle, since environmental influences can be ignored. This 

allows the characterization of the canopy so th a t view effects can be derived and
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used thereafter, as long as the canopy geometry and sensor angles remain constant. 

The task now is to  extend the characterization to the truncated environmental 

components of Equation (25) as a first-order approximation. This section outlines 

the methods used to  extend the characterization and gives an analysis.

Inclusive of near instantaneous sampling, this study now considers sam

ples with two da ta  points separated in time, throughout the day. The staggered 

sampling procedure is explained in Section (4.1.4). It is clear th a t a time delay 

between da ta  points introduces environmental influences which are complex and 

inter-related. However, these influences are reflected by the environmental com

ponents on the right hand side of Equation (24), and do not consider time as a 

factor. Recognizing th a t accounting for all environmental components in a general 

way is ambitious, this study has narrowed its focus experimentally to just three 

variables, A Ta, A R h and A Pa, and seeks a function to express as in Equation 

(25). Because of this lim itation and for practical reasons, this study also narrows 

its scope to a more local sense, rather than to strive for a complete generalization. 

This study’s definition of local scope is on the order of days extending into a week.

The characterization approach for the environmental components is es

sentially the same as in the special case above, where known values3 7  can lead

to patterns and, for this, a first-order approximation regression analysis is used.

37The reader is reminded that the high resolution data gives known values of cover fraction, 
known differential coefficients, and and known cover temperature distributions from 
which to form a basis of characterization.
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Correlation plots for the beds can be found in Appendix (H) and (I). These plots 

show the linear regression fits of the differential coefficient, to the differences 

in air tem perature, relative humidity and air pressure for each sample day. In gen

eral, and as expected, the coefficient of determ ination, R 2, is strongest with the air 

tem perature difference, followed by relative humidity and air pressure differences.

First approximations for ^  were made using a  linear regression fit to 

just air tem perature differences, A Ta. Using this approximation in the unmix 

computer program gave unsatisfactory results when comparing calculated cover 

tem peratures to sensed cover tem peratures, although these values were not entirely 

hopeless. A review of ^  correlations with A Ta, found in the tables of Appendix 

(H) and (I), will show mostly high coefficients of determ ination, R 2, but not 

always. The sample d a ta  from dates 12/08/08 and 12/08/13 are examples of this, 

with R 2 values of 0.47 and 0.64, respectively, for the vegetation cover. These 

same dates also gave R 2 -- 0.65 and R 2 =  0.64, respectively for the soil cover. For 

other dates, the R 2 values range between 0.72 and 0.94, for both covers. These 

observations become relevant later when later considering anomalies.

Also recognizing tha t other weather influences are a t play, a second approx

imation for ^  extends the single-vaxiate fit to a bi-variate one by introducing the 

difference in relative humidity, A R h, as a new variable. This improved the R 2 

values for regression fits used in approximating ^  and, subsequently, the results. 

However, higher correlations were limited to particular time delays, such as one,
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two, and three hour delays throughout the day. For example, surface fit coeffi

cients for a one hour delay could be used to  estim ate ^  for any one hour delay 

sample with reasonable cover tem perature results, a two hour delay surface co

efficient could be used to estim ate two hour sample delays, and so on. Example 

regression surface fits can be seen in the figures of Appendix (K). These figures 

show a bi-linear surface regression fit for the 12cm bed a t different time-delays 

across all sample days. It is interesting to note the warping effect on the sur

face induced by the interaction between the A Ta, A R h variables (the bottom-left 

corner of the surface is closest to the reader).

Realizing th a t this bi-variate approach was too limited and th a t it was ad

dressing the situation in terms of time, which is not a component in our equations, 

this study’s third approximation for now includes a multi-variate fit by intro

ducing the difference in atmospheric pressure, A Pa, as a new variable, in a bid to 

generalize over the entire day. The intent was to  see if a hyper-surface set of cor

relation coefficients can give an estimate to ^  for use in any time delay sampling 

throughout the day, including near instantaneous sampling. For simplicity, the 

term  “surface” will be used hence forth to refer to the hyper-surface generated by 

the variables A Ta, AT?,/,. A P n. Unlike the previous bi-variate, bi-linear surface fit, 

this multi-variate fit is strictly linear, as experimental comparisons showed little 

difference in results between the linear and bi-linear correlation surface fits.

Table (7), below, shows the effects of progressively including variables to
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the daily regression fit, as expressed in R 2, for both covers and both beds. In 

general, adding either variables, A Rh or A Pa , to  make a bi-variate surface with 

ATa apparently strengthens the R 2 value. In some examples, these influences seem 

minimal but when one variable doesn’t  seem to  influence a better R 2, the other one 

will. Using all three variables, ATa, Aft/,, and A Pa, ultim ately gives the best R? 

overall and is thus used to present this study’s results. Also, both individual day 

and composite correlation surfaces (described below) have extremely low variable 

p-values, the probability th a t the variable null-hypothesis is true.

R 2 of vegetation  regression fit of ~^1L R 2 of soil regression fit of

day A Ta A Ta , A R h A Ta , APfl A T a ,A R h ,A P a A Ta A Ta ,A R h A Ta , A P a A Ta ,A R h ,A P (1

120808 0.467 0.467 0.625 0.803 0.653 0.788 0.654 0.896

120809 0-904 0.955 0.919 0.974 0.771 0.775 0.960 0.969

120810 0.894 0.907 0.946 0.962 0.763 0.772 0.945 0.960

120816 0.725 0.775 0.804 0.867 0.915 0.916 0.925 0.925

all 0-834 0.834 0.886 0.890 0.737 0.794 0.788 0.902

(a) 12 cm correlation responses.

R 2 of vegetation regression fit of R 2 of soil regression fit of

day A T a ATa ,A R h A Ta , A P a A Ta ,A R h ,A P a ATa ATa ,A R h ATa , A P a ATa , A R h , A P a

120811 0.883 0.899 0.913 0.916 0.873 0.902 0.924 0.926

120812 0.944 0.949 0.946 0.949 0.898 0.906 0.898 0.914

120813 0.859 0.869 0.880 0.881 0.641 0.751 0.849 0.866

120814 0.858 0.859 0.916 0.934 0.813 0.821 0.912 0.927

120815 0.920 0.969 0.988 0.988 0.643 0.949 0.927 0.967

all 0.874 0.874 0.895 0.901 0.803 0.804 0.882 0.888

(b) 24 cm correlation responses.

Table 7: Differential coefficient correlation R 2 values as environmental variables 
are progressively included.

Tables (8 ) and (9), below, show day-by-day surface correlation coefficients
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and corresponding R 2 values for all staggered and near instantaneous samples for 

both covers and beds. To the right of the surface coefficients, results can be found 

from using each day’s surface coefficients to estim ate the differential coefficient, 

on its own d a ta  with known cover fractions. As in the near instantaneous case, 

the results are measured by the standard deviation (precision), bias (accuracy) 

and if the calculated tem perature was closer to the sensed tem perature than was 

the mixed tem perature. This initial feasibility test shows reasonable results when 

using a  day’s surface coefficients to estim ate th a t day’s differential coefficient. If, 

by some manner, daily surface coefficients were known then this implementation 

and its results would be considered operationally successful. T hat is, it could 

deliver calculated tem peratures th a t performed better than mixed tem perature 

with a hit rate of about nine times out of ten, for any time delay between samples, 

from mid-morning to  late afternoon.

The next task is to see how sensitive the results are to  combined and 

averaged surface fit coefficients. A combined surface fit means th a t all sample 

points across all sample days, per bed, are used to  generate the surface fit needed 

to estim ate However, not all days have the same number of samples and 

so the combined surface can be skewed by those days with more sample points. 

Averaging surface fit coefficients across the days attem pts to neutralize this effect.
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d a y i n t r c p t A T a A R h A P a R 2 s t d e v  C b ia s  C #  S m p l %  b e t t e r

1 2 0 8 0 8 - 0 . 9 9 3 2 .3 1 9 1 .0 6 7 - 4 . 8 9 7 0 .8 0 3 0 .8 2 4 - 0 . 0 0 3 3 3 8 7 . 9

1 2 0 8 0 9 2 .5 2 2 6 .5 7 1 1 .2 2 6 - 1 . 1 9 6 0 .9 7 4 0 .5 2 3 - 0 . 0 0 3 4 5 1 0 0 .0

1 2 0 8 1 0 0 .1 1 6 4 .2 4 6 0 .6 3 9 - 1 . 4 7 9 0 .9 6 2 0 .5 1 2 0 .0 0 0 4 5 9 7 . 8

1 2 0 8 1 6 - 1 . 4 0 4 3 .8 7 3 0 .7 8 8 - 3 . 2 7 5 0 .8 6 7 0 .6 1 7 0 .0 0 1 4 5 1 0 0 .0

(a) Vegetation cover response using day-by-day surface fit.

d a y i n t r c p t A T a A R h A P a R 2 s t d e v  C b ia s  C #  s m p l %  b e t t e r

1 2 0 8 0 8 0 .6 2 1 2 .5 0 4 1 .3 4 8 - 3 . 0 1 0 0 .8 9 6 0 .5 6 8 0 .0 0 8 3 3 8 7 .9

1 2 0 8 0 9 1 .7 0 5 1 .9 5 1 0 .2 4 2 - 1 . 9 1 7 0 .9 6 9 0 .3 9 0 - 0 . 0 0 3 4 5 1 0 0 .0

1 2 0 8 1 0 1 .8 8 9 2 .2 8 8 0 .3 7 2 - 1 . 6 3 9 0 .9 6 0 0 .4 5 2 0 .0 0 4 4 5 9 7 . 8

1 2 0 8 1 6 0 .8 6 6 3 .3 8 3 - 0 . 0 1 4 - 0 . 8 3 0 0 .9 2 5 0 .4 4 9 0 .0 0 7 4 5 1 0 0 .0

(b) Soil cover response using day-by-day surface fit.

Table 8 : Unmixing results using estim ated differential coefficients, ^  and 
from daily weather fit for 1 2 cm bed.

d a y i n t r c p t A T a A R h A P a R 2 s t d e v  C b i a s  C #  s m p l %  b e t t e r

1 2 0 8 1 1 1 .2 2 5 4 .2 5 8 0 .9 0 0 - 2 . 4 3 5 0 .9 1 5 0 .4 2 1 0 .0 1 0 2 8 1 0 0 .0

1 2 0 8 1 2 1 .5 8 6 3 .7 3 0 - 0 . 5 6 3 0 .2 1 3 0 .9 4 9 0 .5 9 1 - 0 . 0 1 5 4 5 9 1 .1

1 2 0 8 1 3 0 .6 4 3 6 .1 4 6 0 .1 7 8 - 0 . 7 8 7 0 .8 8 1 0 .3 2 2 - 0 . 0 0 6 3 6 1 0 0 .0

1 2 0 8 1 4 1 .3 1 5 3 .5 7 3 0 .9 0 5 - 3 . 3 9 3 0 .9 3 4 0 .4 4 4 0 .0 0 9 5 5 9 2 . 7

1 2 0 8 1 5 0 .3 0 5 2 .5 9 1 - 0 . 0 6 9 - 1 . 5 2 4 0 .9 8 8 0 .1 2 6 - 0 . 0 0 1 2 8 1 0 0 .0

(a) Vegetation cover response using day-by-day surface fit.

d a y i n t r c p t A T a A R h A P a R 2 s t d e v  C b i a s  C #  s m p l %  b e t t e r

1 2 0 8 1 1 2 .9 0 1 1 .8 3 6 0 .3 8 8 - 1 . 3 2 0 0 .9 2 5 1 .2 1 7 0 .0 1 4 2 8 1 0 0 .0

1 2 0 8 1 2 2 .8 2 4 2 .9 9 3 0 .6 2 5 - 1 . 0 7 8 0 .9 1 4 1 .3 5 5 - 0 . 0 1 1 4 5 9 1 .1

1 2 0 8 1 3 2 .3 4 7 2 .8 4 7 0 .4 1 2 - 1 . 3 7 8 0 .8 6 6 0 .8 0 1 - 0 . 0 0 2 3 6 1 0 0 .0

1 2 0 8 1 4 2 .0 1 6 2 .2 5 8 0 .6 1 0 - 3 . 0 3 4 0 .9 2 7 1 .3 3 7 - 0 . 0 2 0 5 5 9 2 . 7

1 2 0 8 1 5 2 .0 0 8 - 0 . 1 5 3 - 0 . 5 9 7 - 0 . 8 3 0 0 .9 6 7 0 .3 4 3 0 .0 0 0 2 8 1 0 0 .0

(b) Soil cover response using day-by-day surface fit.

Table 9: Unmixing results using estim ated differential coefficients, ^  and 
from daily weather fit for 24cm bed.
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Both combined and averaged correlation surfaces will be presented for comparison.

Tables (10) and (11), below, show the results of applying combined and 

averaged correlation surfaces of all days to all days for both beds. While bias 

values have increased somewhat, the results give hit-rates between eighty and 

one-hundred percent, excluding sample day 12/08/08, which will be addressed in 

the next sub-section. O ut of thirty-two cover points, four cover points are in the 

100% category, twenty in the 90%, and eight in the 80% range. Tables (18) (19) 

and (31)(32) in Appendix (F .l) and (G .l), respectively, give a be tter sense of how 

the method performs overall.

Different surface combinations and averages were applied to the sample 

days to exercise the behavior of the cover tem perature responses to different esti

mations of Compilation of the results are given in Appendix (F.2) and (G.2) 

for both beds.

For the 12cm bed, Tables (20)-(22) in Appendix (F.2) show results of 

applying a  correlation surface of 12/08/08 mixed separately with dates 12/08/09, 

12/08/10, and 12/08/16 to other dates. Surprisingly (because 12/08/08 results 

behave differently) the outcome shows a good performance when applied to other 

days for the combined surface, but less so for the averaged surface. To note, 

the combined surface scheme is likely to behave better than the averaged scheme
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t y p e i n t r c p t A T a A R h . A P a f t 2

v e g  f i t c o m b in e d 0 .2 1 9 3 .7 1 4 0 .1 8 4 - 1 . 8 6 4 0 .8 9 0

a v e r a g e d 0 .0 6 0 4 .2 5 2 0 .9 3 0 - 2 . 7 1 2

s o il  f i t c o m b in e d 1 .2 5 4 3 .0 2 3 0 .6 6 0 - 1 . 8 2 9 0 .9 0 2

a v e r a g e d 1 .2 7 0 2 .5 3 1 0 .4 8 7 - 1 . 8 4 9

(a) Combined and averaged surface fit coeffi
cients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .2 8 3 - 0 . 2 8 2 5 4 . 6 0 . 8 9 0 0 . 1 9 6 5 4 . 6

1 2 0 8 0 9 0 . 5 3 2 0 . 4 6 8 9 5 . 6 0 . 4 0 5 - 0 . 3 5 3 9 5 . 6

1 2 0 8 1 0 0 . 6 5 1 - 0 . 0 4 5 9 5 . 6 0 . 6 0 5 0 . 0 4 4 9 5 . 6

1 2 0 8 1 6 0 . 8 8 2 - 0 . 2 2 3 9 3 . 3 0 . 6 3 6 0 . 1 9 0 9 1 . 1

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .2 7 1 - 0 . 4 9 1 5 4 . 5 0 . 8 8 0 0 .3 4 2 5 4 . 5

1 2 0 8 0 9 0 . 6 5 3 0 . 5 9 4 9 5 . 6 0 . 4 9 7 - 0 . 4 5 3 9 5 . 6

1 2 0 8 1 0 0 . 6 1 5 - 0 . 1 0 3 9 7 . 8 0 . 5 5 6 0 .0 8 8 9 7 . 8

1 2 0 8 1 6 0 . 9 9 4 - 0 . 1 0 4 9 1 . 1 0 .7 1 1 0 .1 0 7 9 1 .1

(b) Cover responses using combined sur- (c) Cover responses using averaged sur
face fit. face fit.

Table 10: Unmixing results using estim ated differential coefficients, ^  and 
from combined and averaged surface fits of all days for 12cm bed.

t y p e i n t r c p t A T a A R h A P a R 2
v e g  f i t c o m b in e d 1 .1 9 5 3 .9 6 5 0 .4 0 8 - 1 . 7 2 2 0 .9 0 1

a v e r a g e d 1 .1 0 7 3 .3 2 3 - 0 . 0 8 2 - 1 . 3 5 6

s o il  f i t c o m b in e d 2 .2 0 2 2 .0 0 3 0 .2 4 1 - 1 .7 6 1 0 .8 8 8

a v e r a g e d 2 .4 1 9 1 .9 5 6 0 .2 8 7 - 1 . 5 2 8

(a) Combined surface fit coefficients.

v e g  r e s p o n s e s o i l  r e s p o n s e v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C % d a y s t d  C b ia s  C % S td  C b ia s  C %

1 2 0 8 1 1 0 . 4 5 8 - 0 . 1 0 9 9 6 . 4 1 .3 5 4 0 . 3 5 6 9 6 . 4 1 2 0 8 1 1 0 . 4 5 9 - 0 . 1 0 2 9 6 . 4 1 .3 6 0 0 . 3 3 8 9 6 . 4

1 2 0 8 1 2 0 . 8 2 6 0 . 0 7 3 8 4 . 4 1 .7 7 9 - 0 . 1 4 5 8 2 . 2 1 2 0 8 1 2 0 . 7 9 0 0 . 0 7 3 8 8 . 9 1 .7 0 8 - 0 . 1 4 7 8 8 . 9

1 2 0 8 1 3 0 . 3 9 1 0 . 0 1 7 1 0 0 . 0 0 . 9 9 4 - 0 . 0 1 7 1 0 0 . 0 1 2 0 8 1 3 0 . 3 8 6 0 .0 5 1 1 0 0 . 0 0 . 9 6 4 - 0 . 1 1 3 1 0 0 . 0

1 2 0 8 1 4 0 . 5 4 0 - 0 . 0 1 1 8 7 . 0 1 .6 3 1 0 . 0 0 0 8 3 . 3 1 2 0 8 1 4 0 . 5 5 6 - 0 . 0 0 9 8 5 . 2 1 .6 8 4 - 0 . 0 1 4 8 5 . 2

1 2 0 8 1 5 0 . 3 0 0 0 . 0 2 6 9 6 . 4 0 . 8 0 7 - 0 . 0 5 4 9 6 . 4 1 2 0 8 1 5 0 . 3 4 4 0 . 0 7 0 9 6 . 4 0 . 9 1 9 - 0 . 1 6 4 9 6 . 4

(b) Cover responses using combined surface(c) Cover responses using averaged surface 
fit. fit.

Table 11: Unmixing results using estim ated differential coefficients from combined 
and averaged surface fits of all days for 24cm bed.
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for the mixtures of 12/08/09, 12/08/10, and 12/08/16 because these sample dates 

have the same number of samples. However, for the 24cm bed, an averaged surface 

gives better results.

Tables (23)-(25) in Appendix (F.2) show results of different surface mix

tures for the 1 2 cm bed, not including 12/08/08, as applied to  the sample dates. 

These surface fit composites performed very well on other days. For example, us

ing surface fit dates 12/08/09 and 12/08/16 as predictor for 12/08/10 results in a 

h it rate of 95.6% for both  covers. Likewise, using dates 12/08/10 and 12/08/16 as 

predictor for 12/08/09 gives a hit rate of 97.8% for the vegetation cover and 95.6% 

for the soil cover. Finally, using 12/08/09 and 12/08/10 as predictor to  12/08/16, 

a week apart, gives a  hit rate of 93.3% for both covers. Averaging results for these 

combinations gives a  h it rate of 95.6% for the vegetation cover and 94.8% for the 

soil cover.

Continuing to  exercise correlation surface fit behavior, for the 1 2 cm bed, 

Table (26) in Appendix (F.3) shows the results of applying individual date surface 

fits to the other dates. As expected, using the correlation surface fit from 12/08/08 

gave poor performance when applied to the other dates. Excluding 12/08/08 and 

using the individual surface fits of 12/08/09 and 12/08/10 on other dates gave high 

hit rates as before. Interestingly, the surface fit from 12/08/16 did not perform 

well when applied to dates 12/08/09 and 12/08/10, with respective hit rates of 

66.7% and 71.1%, for both covers, indicating th a t this surface fit exceeded some
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bound for reciprocal application. This gives substance for the use of a  broader 

scale mixed surface scheme which has better application performance, even when 

incorporating a sample date such as 12/08/08.

For the 24cm bed, Tables (33)-(36) in Appendix (G.2) show results of 

applying a  correlation surface fit, composed of two days, applied to  other days. 

Both combined and averaged surface fits responses showed some volatility and 

degradation in h it rates. Although Tables (35) and (36) show high hit rates, it 

is clear th a t th a t two days mixing of surface fits is not sufficient for confident 

prediction in this case.

Table (37) shows the results of applying three day surface fit compositions 

on the remaining days. Overall, using a three day composition surface fit gives 

better results than  a two day composition one. Sub-tables (c) and (d) show a date 

of 12/08/14a which signifies an adjustm ent to the data. The d a ta  set of 12/08/14 

has a troublesome da ta  point a t lOOOhrs, the first of the day. Removing this da ta  

point improves the results by about ten percentage points for th a t day and means 

tha t sampling starts  at 1030/irs instead of lOOOhrs, for a total of 44 samples over 

the day. The d a ta  point was not removed for surface fits using the 12/08/14 data  

set.

Table (38) shows the results of applying four day composite surface fit on 

the remaining day. Average hits rates are 91.5% for the vegetation cover and to 

90.6% for the soil cover, when using the 12/08/14a da ta  set. As with the 12c??? bed,
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hit rate results get better as more days are entered into the surface composition. 

For completion, Table (39) in Appendix (G.3) shows the result of individual day 

surface fits applied to  the other days. As with the two day composites, this table 

shows some success but it is not sufficient to  get consistently high hit rates.

The above results, excluding d a ta  set 12/08/08, show th a t differential coef

ficient, can be related to simple differences in common weather data, specifi

cally ATa, A R h, and A Pa, for each land cover. This is accomplished by generating 

a hyper-plane function, derived from local historical d a ta  through regression, to 

estim ate the values of ^

In summary, the hyper-plane function is generated by a linear regression 

fit from known da ta  and takes on the form,

A T
— 2 =  Co + Ci A T a + CoARh + C3A P a 
A Je

where C0  is the planar intercept and C l i 2 ,3  are surface coefficients derived from 

the correlation surface fits. This equation has the same form as the truncated 

to tal derivative,

dT0 dTa ()T0 dTa &T0 dR h 0To dPa
We = We + W Jfe + dR~b W  + W W

A  term-by-term association between the two equations gives, C0  =  C\ 

wf"Erei e^C-’ 3 5  developed in Section (2.7.2) and shows th a t the regressive fit is a
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first-order approximation of the total derivative, Verification of this for the 

view effect, f ^ ,  has been shown above as a  special case, with near instantaneous 

examples. In this first-order rendering, the surface intercept, Co, and are 

known for these da ta  and an example is presented in Table (12) below, for the 

composite surface fit of both beds. A maximum discrepancy of only 0.4°C can 

be seen in both beds, derived from hundreds of sample points for all days. The 

view effect values, § ^ , in the table are the same as those used in the special case 

above and the intercepts, Co, are from the composite correlation surface fit of all 

sample days, per bed. Therefore, from this limited exercise, view effects can be 

seen as the weather intercepts of the regressive surface fits.

veg soil
bed Pin

dJS Co OTn
dfB Co #  samples

1 2 cm 0 . 2 1 0 . 2 2 1.58 1.25 168
24cm 0.83 1.19 2.23 2 . 2 0 192

Table 12: Surface intercept, Co, and view effect, comparison.

Not as straight forward, the environmental partial terms can be character

ized, but not as discrete versions of the partials. It is tem pting to approximate 

the partial differentials with known differences, such as etc, so th a t

the above equation looks like,

AT0 dT0 AT0ATa AT0 ARh ATa APa
A f0 d fe ATa A fe + ARh A fg APa A fe

but canceling gives,

88



A T0 4 0To A T0 A T0 A T0
A U  d f0 + A f e A f 0 + A/*

and is ill-posed. Instead, approximate values for the partial differential terms can 

be gleaned from the expressions =  C\ A fg , etc. These are instantaneous values 

of the partials at the mean value point in fe, and not a t the mean value point 

with respect to  the environment variable. Table (13), below, shows the partial

values of the vegetation cover differential, for the 12cm bed.

.......... ................
dTn

.......... WT2..........
dRh.

m„
8Pn

day avg stdev avg stdev avg stdev #  samples
120809 1.320 0.067 0.246 0.013 -0.240 0 . 0 1 2 33
120810 0.917 0.132 0.170 0.024 -0.707 0 . 1 0 2 36
120816 0.744 0.068 0.152 0.014 -0.630 0.058 36

Table 13: Averaged environmental partial differentials for 12cm vegetation cover.

This gives a feel for what the partial term  values are doing, but, in effect, 

they remain coupled to the regression fit coefficients, C i, C2 ,C 3 ..., etc. The vari

ance from day to day shows tha t the partial and total derivatives are subject to 

other influences, not accounted for, and are reflected in the fit coefficients.

Sample days 12/08/08 and 12/08/13 were mentioned above, implying they 

may be special cases. The results in Table (10) show th a t sample day 12/08/08 

performed poorly with respect to the other days, while in Table (11) sample day 

12/08/13 performed a t the 100% hit rate. The next subsection will address this 

variance by using a  Principal Component Analysis.
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4.3.3 Principal component analysis.

Co-related input variables to a  model, as found in weather data, complicate 

the description of their contributions to the recipient model. This is especially 

true when related, and unaccounted for, variables do not remain constant and so 

influence, in a hidden way, the other input variable values, thus compounding the 

effects on the result.

It is problematic to  a model if a  sometimes influential variable is not ac

counted for. In this study it was assumed th a t other variables were at play, but 

hoped tha t they were suppressed sufficiently to give good results, which did hap

pen eight out of nine days. This variable, or variables, expressed itself in the 

da ta  set of 12/08/08 and not so much in the other days. The most likely factor 

is wind, but this is speculative since reliable wind d a ta  is not available for this 

study, unfortunately.

Scatterplots of ^  against each of the variables, ATa, A /4 .  A P a, for all 

sample days, are given in Appendix (H) and (I) for the 12cm and 24cm beds, 

respectively. Figure (14) shows the graphs for sample day 12/08/08 and abnormal 

behavior can be seen when compared to the rest of the sample days. Aside from 

low R2 values with respect to ATa and A /4 ,  the main difference is seen in the 

scatter plots of (^ A ,A /4 ), Sub-Figure (b), where the regression line is going in 

a different direction, with a positive slope, to  th a t of the rest of the sample days
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which have a  negative slope. Sample days of 12/08/16 and 12/08/13, Figures (17) 

and (2 1 ), also show low R 2 values for scatter plots (7^ , A Rh) but m aintain the 

same direction in the regression lines as the other sample dates. As the previous 

section showed, the results of both 12/08/16 and 12/08/13 behaved well.

It is well known th a t air tem perature and relative humidity have a strong 

inverse relationship, but this is not always the case. Figures (25) and (26) in 

Appendix (J) show scatter plots of (ATa, A R h) for all sample days, dem onstrating 

a strong correlation between the two for all but sample date 12/08/08. Here too, a 

change in direction is noted in the regression line of Figure (25)a, indicating tha t 

something is breaking the usual relationship between A Ta and A Rh- Turbulent 

wind cells are known to  do this and is the likely cause.

Another way to  show th a t sample date 12/08/08 is being influenced dif

ferently than  the other dates is to  use a technique called Principal Component 

Analysis (PCA). Correlated variables, especially in multi-dimensional space, are 

better understood if their contributions to the regression surface fit can be pro

jected to a set of orthogonal basis vectors. PCA does this by using a singular 

value decomposition on the da ta  set to create a set of eigenvectors which serve as 

the new basis. The first eigenvector is in the direction of the strongest variation, 

the second eigenvector will be orthogonal to the first and has the second strongest 

variation, and so on.

Appendix (L) and (M) show PCA graphs for the ^  correlation surface fits
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of the sample days for 12cm and 24cm beds, respectively. The scree plots on the 

left side show the proportion of variances each orthogonal component contributes 

to  the signal. The biplots on the right side show the da ta  points projected onto 

the space created by the first two principal components. This gives the best view 

on how the points are distributed and is called the “score” plot. This projection 

can also reveal clustering of the points and is used in signal processing to  detect 

patterns. In these plots, there is little clustering on the daily graphs indicating 

an even distribution of points throughout the d a ta  space. The graphs in Figures 

(33) and (39), show small clusters of da ta  points but also a wide distribution of 

points.

The vectors shown in the biplot represent the input and dependent variable 

contributions to the principal components and is called the “load” plot. The 

loadings on the principal component by each variable vector can be visualized 

by projecting the vector to the principal component axis. So, a variable vector 

running horizontally contributes to the first principal component and not to the 

second principal component. In this PCA transform, variables are scaled since 

different units are used for each variable.

Figure (29) shows the scree plot and the biplot for sample day 12/08/08. 

There are two unusual features th a t are not seen the other graphs. The scree 

plot, for both covers, gives the second principal component a  large percentage of 

the total variance, unlike most other days. Also, the loading on the biplot gives
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the variable vectors all pointing in the same direction with respect to the first 

principal component, unlike the other days, where the A Ta and ARh  vectors run 

in opposite directions. This distinction is similar to the directional difference in 

the scatter plot of (ATa, ARh),  shown in Figure (25).

It is interesting to  follow the vector behavior of the other biplots. As 

mentioned earlier, ATa and A R h vectors run generally in opposite directions. 

Vectors ^  and A Ta usually have small separation in angle, while the A Pa vector 

has a strong angle separation to the rest of the vectors, greatly contributing to 

the second principal component and to the overall results. Also, clustering th a t 

appears in the score plots do so near and perpendicular to  the A Pa vector. This is 

probably due to  the low time sampling resolution (once an hour) of the barometric 

sensor. All vectors can change direction with respect to the second component 

and still not adversely affect results. Indeed, even changing directions in the first 

principle component, as in Figure (38), does not seem to  highly impact results 

either, as long as the relative angle separation is maintained. Considering these 

variations in vector alignment, the vector alignment th a t does not work for this 

method is th a t given in sample day 12/08/08 and it is clearly distinct from the 

others. Days th a t exhibit this weather anomaly should not be used with this 

study’s limited variable implementation. It is not clear if adding new variable 

inputs, such as wind, would improve the situation of 12/08/08; this can be the 

topic of future study.
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4 .4  E s tim a tin g  p e rc e iv e d  v e g e ta tio n  cover fra c tio n .

The previous section used known land cover fractions to  characterize and 

estim ate the differential coefficient, In a mixed therm al d a ta  point there is 

no information regarding cover fractions and so some other m ethod is required 

to  estim ate them. One approach is to use o priori information gathered in the 

characterization of the correlation surface used to estim ate For example, the 

averaged cover fraction values for each angle could be used in place of the known 

fraction. A similar approach is to  use a priori NDVI regression fits and sensed 

values to index the cover fraction. Both methods and results are presented below.

4 .4 .1  U sin g  a v e rag e d  p e rc e iv e d  f ra c tio n a l cover.

In the study’s approach, the camera resolution allows for the segmentation 

of the land covers and therefore known cover fractions are given for each sample. 

Variation is introduced into every sample by the operator and equipment, but this 

has been accounted for previously by calculating each sample’s own cover fractions 

and using it throughout the processing. Practically, a mixed pixel approach does 

not give the land cover fractions, so this study now exercises the effect of applying 

an averaged cover value to  each view. Averaged vegetation cover fractions are 

taken from the nadir and oblique samples for each bed and applied to  all samples 

in place of the known individual cover fractions. The results can be found in 

Appendix (F.4) and (G.4) for each bed, respectively.
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For the 12cm bed, individual day surface fits applied to other days give an 

average hit ra te  of 83.3% for the vegetation cover and 87.4% for the soil cover, 

excluding as above the 12/08/08 d a ta  set. Implementing the composite of two 

days on the remaining day raises the results to  93.3% for vegetation cover and 

98.5% for the soil cover.

For the 24cm bed, individual day surface fits applied to other days give an 

average hit rate of 73.3% for the vegetation cover and 76.8% for the soil cover, 

including the full 12/08/14 da ta  set. Implementing the composite of four days on 

the remaining day raises the results to 80.9% for vegetation cover and 83.6%, for 

the soil cover.

4.4.2 Using NDVI to estimate perceived fractional cover.

This study now follows many other researcher’s use of the NDVI value as 

an index to  the vegetation fractional cover. The methods used and results are 

presented below in this final subsection.

As with the averaged fraction m ethod above, prior characterization of the 

canopy geometry for NDVI indexing is required with this method. This method 

acquired NDVI samples, on the 12cm bed, at many angles and a t different soil 

moistures, ranging from saturation to  field capacity, to partially wet, and finally, 

to dry conditions. The images were segmented for land cover fractions by sim

ple thresholding on the near-infrared band, as in the therm al images. Graphs
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and tables for NDVI estimation of vegetation cover fraction are presented in 

Appendix(F.5). The scatter plot of known fraction and NDVI values shows the 

responses to  different soil moistures. It is interesting th a t the dry soil samples are 

distinct and a t the top of the scatter plot.

The regression fit associated with field capacity soil moisture was used to 

index the vegetation cover (perceived) fraction because the plants in this study had 

a constant water supply at the field capacity level. Overall sampling procedures 

are described in Section(4.1.2) and its subsequent sections, but additionally, in 

order to use the NDVI data, post-acquisition processing was necessary. Thermal 

image to  NDVI image registration is necessary because both  images, representing 

different spectral bands, need to represent the same objects, even in mixed form.

Additionally, spectral band adjustm ents need to be performed for the NDVI 

image. For each sample run, a photographic ’’gray” card was placed on the canopy 

and imaged. This image was used to calibrate the near-infrared and red bands 

of the image for equal data  range responses, similar to  a photographer “white 

balancing” a  color image in the (now digital) darkroom. Because the NDVI camera 

has a different field-of-view and pixel resolution than does the therm al camera, a 

scaling operation was performed to match the images in pixel size. Registration 

of the two images was then performed by convolving the therm al image over the 

NDVI image with the maximum, normalized, cross-correlation value indicating 

the position in the image of the best match. The NDVI image was then cropped
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to match therm al image in size and, finally, all pixels were averaged to  represent 

a mixed pixel NDVI value. The mixed value is used to calculate the vegetation 

perceived fraction from the previous regression fit. Figures in Appendix(F.5) show 

a d a ta  sample composed of four images, dem onstrating the registration. Due to 

small differences in positioning the two cameras, some parallax errors can be seen 

as shifts in both the background and foreground in the images.

Tables in Appendix (F.5) show the results of using NDVI indexes to cover 

fractions for individual and combined surface fits, as applied to other days. The 

individual day surface fits applied to other days give an average hit rate of 78.2% 

for the vegetation cover and 78.9% for the soil cover. As in the known and averaged 

fraction implementations, the sample day 12/08/16 responds well as a recipient 

to  the other day’s surface fits but does not reciprocate well to the other days. 

Applying combined surface fits to  the remaining day with NDVI indexes gave an 

averaged hit rate of of 88.2% for the vegetation cover and 90.4% for the soil cover. 

As before, using combined day surface fits gives a  boost to  the results.

In summary, this method of estim ating perceived vegetation cover fraction 

appears better than  the averaged m ethod above. Overall, for this bed and scope, 

about nine times out ten the NDVI method gets closer to the sensed cover tem 

perature than does the mixed tem perature for any arbitrary  time delay sampling 

throughout the day. The averaged method is slightly behind a t eight and a half 

times out of ten closer than  the mixed tem perature.
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5 CONCLUSIONS and RECOMMENDATIONS for FUTURE STUD
IES.

5.1 Summary of approach.

The intention of this study is to incrementally add to the understanding 

and computational practice of separating mixed land cover tem peratures found in 

low-resolution therm al sensor data, as from current weather satellites. D ata from 

these sensors render the tem perature of large land expanses as radiometrically 

mixed values of the different component cover tem peratures and not on a  cover- 

by-cover basis. The ability to discriminate cover tem peratures a t the sub-pixel 

level is im portant because the segmented tem peratures can be applied separately 

in two-source water and energy balance models, and to a greater effect than using 

mixed models on sparsely vegetated land.

This research expands the scope of previous studies by including time- 

delayed sampling of mixed therm al data, which inherently introduces environ

mental influences to the component cover tem peratures from one da ta  point to 

the other. To address these influences, the differential coefficients, ^  and 

are proposed in this research to express the environmental and radiometric view 

effects and so are retained in the algebraic system,

- nr»4 feeX  1 (1 -  f e ) ^ (26)

3 dTrn T 4

£ m  m  d fe  m  d fe
tX  -  eX  +  f t * X ^  +  (1 -  M ^ X ^
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while previous bi-angular studies, using near instantaneous sampling, set these 

coefficients to zero.

Nonetheless, the encapsulation of environmental and view influences in the 

differential coefficients is shown by rearranging the sensible heat equation as,

T  = T  + >a ̂  
ao a PCp

and using the energy balance equation and radiometric view conditions on the 

above equation allows the radiometric cover tem perature to be expressed environ

mentally and geometrically in general as,

Tto = F{fe,Ta,Rn,Rh,Vw,Pa...).

Taking the total derivative with respect to  perceived fraction, and dropping the 

radiometric subscript,

d T o ^ d lo  OTodTa (fT^dRn d ^ d th  dT^dK dT^dP*
d f e  d f e  d T a  d f e  d R , t d f e  d R h d f e  d V w d f e  d P a d f e

gives a definition of the differential coefficient in view and environmental terms.

Synthetic data, with known differential coefficient values, were used to ver

ify the more descriptive approach of separating, or unmixing, cover tem peratures. 

Next, a  therm al camera was used which allowed the values of the differential 

coefficients to  be computed and used, as in the synthetic case. Laboratory ver
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ification exercises were performed under controlled environmental conditions on 

potted plants providing canopy and sand.

Field studies were conducted on two beds of plants with different geometries 

and with limited environmental influences. Environmental variables were clamped 

by shade and partial thermal and wind blocks to reduce complexity, leaving the 

truncated definition of the differential coefficient as,

d T 0  _  d T o  d T o d T \  & T ^ d R h  0 T „  d P a

d f e  d f e  0 T n  d f 0  d R h  d f 0  d P a  d f 0 '

Concurrent weather d a ta  and staggered radiometric samples in time were used to 

generate estimation functions for ^  through multi-variate regression fits. These 

weather surface fits were exercised on the d a ta  sets in various ways from using

a composite fit of all days applied to all days, to composite fits of some days

applied to other days, and from individual day fits applied to other days. Result 

anomalies were identified and described using the Principal Component Analysis 

m ethod which decomposes correlated input variables onto an orthogonal basis, 

giving a  better understanding of surface fit contributions made by the variables.

Finally, to emulate a complete mixed pixel situation, perceived vegetation 

fractional covers were estim ated by using an averaged value for each view from 

previous sampling and, separately, by using a mixed NDVI value as an index to 

fractional cover for each view. The estim ated fractions were then exercised with 

the weather surface fits used to estim ate the differential coefficient,
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5.2 Observations.

The functions used in this study to  estim ate the differential coefficient, 

were generated by a  regression fit of weather variables and the dependent 

variable, As more weather variables were introduced into the d a ta  space, R? 

values improved and so did results in general. As a  first order estimation for the 

differential coefficient,

^  =  C o  1  C \ATa 4  C2A R h + C3A P a 
d fe

this estimation function has a direct term-by-term correspondence with the above 

truncated definition of the differential coefficient. Here, the view effect term  can be 

seen as approximately equal to the intercept of the weather surface fit, «  Co- 

The results in this study validates this interpretation.

Results also improved when more da ta  points across days are used to gen

erate the surface fit. Individual day surface fits applied to th a t day’s da ta  worked 

well, but could be not be applied to other days reliably. Surface fits using all sam

ple points for a  bed also worked well on all the days, bu t as with the individual 

day self application, this application only verifies th a t the surface fit works on its 

own data.

D ays were divided into training and target data  sets for both  beds. The  

12cm bed, excluding day 1 2 /0 8 /0 8 , gave excellent results when a two day surface
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fit was applied to  the remainder day. In one case, a week separated the training and 

target sets and the results were th a t 93% of calculated cover tem peratures for both 

covers were closer to  the sensed tem perature than  was the mixed tem perature, for 

all time delayed sampling, throughout the target day.

For the 24cm bed, applying a two day composite surface fit on the remain

der days was not as successful, however, the three and four day composite surface 

fits did boost results. The three day composite fit gave results th a t averaged 87% 

hit rate for both covers on the target days. One three day composite surface fit 

gave 100% hit ra te  for both covers, for both remaining days. Using a four day 

composite surface fit raised the average hit slightly to 90% for the vegetation cover 

and to  89% for the target day. These averages include the complete da ta  of day 

12/08/14.

The above results came from exercises conducted with known perceived 

vegetation fractions. Using estim ated fractions from a priori averaged fraction 

value for nadir and oblique views affected the 24cm bed results more the 12a n  

bed. The average hit rate was lowered to  81% for the vegetation cover and 84% 

for soil cover when a four day composite surface with the average fractional values 

for the 24cm bed. The 1 2 cm bed actually improved results by using the averaged 

fractional cover. Exercising NDVI estimates for fractional cover was not done for 

the 24cm bed, due to  bad signal acquisition. However, the 12cm bed responded 

well to NDVI estimations with an average hit rate of 8 8 % and 90% for vegetation
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and soil covers, respectively, when using a two day composite surface fit on the 

remaining day.

Another observation is tha t when the inverse relationship between the dif

ference in air tem perature and the difference in relative humidity is broken, then 

this method with ju s t three weather param eters does not work well. Another de

scription of the same situation using Principal Component Analysis indicates th a t 

if the vector loadings, of all variables, in the da ta  set point in the same direction 

with respect to  the principal component, then this m ethod will not work well.

5 .3  C o n clu sio n s .

This study has heuristically derived a first-order estimation of the differen

tial coefficients required to  decompose land cover tem peratures from time-delayed 

mixed d a ta  points. Applying the estim ated values on target days gave a high 

success rate for a local time span. The success criteria was based on whether the 

results were be tter than  just using the mixed pixel to determining cover tem pera

ture. Moreover, a decibel representation of closeness showed th a t most calculated 

points were many times closer to the sensed tem perature than  was the mixed 

tem perature.

This study’s results indicate th a t the sparse canopy, 1 2 cm bed, had tighter 

precision spreads and smaller biases than did the denser canopy, 24av  bed. This 

is probably due to  the diminished soil cover presentation a t the oblique angle
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for the dense canopy. Future studies can determine if a  less oblique angle would 

suffice for more dense canopies or to determine the upper limit of canopy density 

for reliable results.

This has been a preliminary study and can be considered incomplete in 

th a t a generalized estimation function was not put forth. However, the intent of 

the study was more narrowly defined in the hypothesis. The intent was to see if 

the differential coefficients, ^  and could be sufficiently characterized, for ac

curate separation of cover tem peratures, by trending their response to  a minimum 

of environmental influences. This study has dem onstrated, within this scope, th a t 

the estim ated differential coefficients can be used successfully. By doing so, this 

study has established a foothold in the pursuit of a  more generalized estimation 

function for the application of delayed sampling of mixed pixels. Additionally, 

this study has also showed th a t using NDVI values to index perceived fractional 

cover is also successful and so completes the process of strictly using mixed pixel 

values.

5.4 Potential improvements and recommendations.

Large turbulent air disturbances can affect the relationship between air 

tem perature and relative humidity and on these occasions, adding a wind variable 

to the regressive fit may improve the results in this method. Another suggestion 

for improvement is to  increase the sample day size to see what the optimal com
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bination of days might be and to what extent the training surfaces can be applied 

to other days. For both cases, it is clear th a t additional autom ation in acquisition 

and processing is required. The intent is to  see if adding more variables, or more 

samples, or both, can lead to  a generalized estimation function of One aspect 

of this would include synthesizing surface fits for ^  in order to probe the limits 

of functional surface fit boundaries.

Results might improve by reducing the sampling time brackets, th a t is, 

to wait for full separation of cover tem peratures in the morning and stopping in 

mid-afternoon rather than early evening. These times correspond to large ^  

values and with this study’s limited param etric definition the large values became 

problematic with the results on occasion, such as with sample day 12/08/14. 

These early and late times were included in this study to  exercise the method 

to a fuller extent and are included the results. Additional aspects th a t should be 

included in future studies is to consider non-Lambertian effects regarding different 

angle views and to consider how varying soil moisture content would vary results.

Implementing this study in a large greenhouse, where environmental con

ditions can be controlled, would advance the level of understanding practically 

in several ways. Shading can be applied when sampling occurs, and removed 

when not sampling to  m aintain plant health. The greenhouse would allow for 

a  higher elevation placement of the cameras thereby expanding the field-of-view 

scale. This would give a better representation of the land covers. Expanding
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the range in cover tem peratures would better exercise this m ethod with larger 

cover tem perature differences. A well-equipped greenhouse can provide this con

dition by heating the air tem perature while providing constant water supply to 

the plants. To provide the opposite effect, soil could heated from the floor and 

cool air tem peratures generated artificially.

The greenhouse implementation can also lead to  a  sunlit version study, 

where four land covers are considered: shaded and sunlit portions of vegetation 

and soil. In this case, sophisticated imaging would be required to discriminate the 

covers. Radiometers would be needed as net radiation values would be an added 

weather variable. The main question to be answered in the sunlit version study 

is: can shaded and sunlit covers be treated independently?

W ith the greenhouse experience in sunlit and shaded covers, the study can 

be scaled up to sparse biomes and used to ground tru th  satellite implementations.
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A Variable Lists.

The variables used in this dissertation are described below:

Table 14: Greek Variable List
Variable Description
a Albedo (shortwave reflection)
1 Psychrometric constant
£ Surface Emissivity
£a Atmospheric emissivity

Mixed surface emissivity
c*<-o General land cover surface emissivity

Soil surface emissivity
6V Vegetation surface emissivity
p Atmospheric density
a Stefan-Boltzmann constant

Correction factor for sensible heat transfer
4*m Correction factor for momentum transfer

Correction factor for vapor flow
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Table 15: Modern Variable List
Variable Description

au Intensity (reflected or em itted ) of the ith end-member in b
b Spectral band
cp Specific heat capacity of air
dp Zero plane offset of the wind profile
e(T) water vapor pressure a t water tem perature T
es(T0) Saturated water vapor pressure a t Ta
fa Actual vegetation cover fraction (0 - 1 )

ft Areal fraction of the pixel of the i th end-member (0 - 1 )
fe Perceived vegetation cover fraction (0-1)
G Ground heat transfer flux (conduction)
H Sensible heat transfer flux (turbulent)
I Electrical current flux
h Pixel intensity value
k von Karmen constant
L Long wave solar radiation (thermal)
L E Latent heat transfer (evapotranspiration)
m Denotes a mixed value
N Number of end-members
Tah Aerodynamic surface resistance to heat flow
Pa Atmospheric pressure
ôv Surface resistance to  vapor flow

I'av Aerodynamic resistance to vapor flow
r Electrical resistance
Rn Net solar radiation
Rh Relative humidity
S Short wave solar radiation (visible)
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Table 16: Modern Variable List (con’t)
Variable Description
Tx  a Air tem perature
T1 o Generic surface tem perature
T-*■ a o Generic aerodynamic surface tem perature
T1  T O Generic radiometric surface tem perature
T* m Radiometric mixed tem perature
T Radiometric soil tem perature
T Wet bulb tem perature
TJ  V Radiometric vegetation tem perature
Uz W ind measurement at height z u
V Electrical voltage
vw Wind velocity
ôh Roughness length for sensible heat transfer

Zom Roughness length for momentum transfer
ZT Height at which air tem perature is measured
Zu Height at which wind velocity is measured
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B Acronym List.

Table 17: Acronym List
Acronym Description
ATSR Along Track Scanning Radiometer (ESA)
AATSR Advanced Along Track Scanning Radiometer (ESA)
AVHRR Advanced Very High Resolution Radiometer
ESA European Space Agency
GNU GNU’s Not Unix (Free Software Foundation)
GUI Graphical User Interface
LST Land Surface Temperature
M ETOP-A Operational Meteorological Polar Orbiting Satellite (ESA)
MODIS M oderate Resolution Imaging Spectroradiometer (NASA)
NASA National Aeronautics and Space Agency
NDVI Normalized Difference Vegetation Index
NOAA National Oceanic and Atmospheric Agency
NOAA-18,19 NOAA W eather Polar Orbiting Satellites
PCA Principal Component Analysis
POLI Python On Line Imaging
STP Standard Tem perature and Pressure
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C Differential Calculations.

Linear and quartic radiative transfer differentiations are given below.

C .l Linear radiative transfer differentiation.

The linearized Stephan-Boltzmann equation for a mixed pixel with two compo

nents, Tv and Ts is,

£rnTm =  f Z y T v + (1 — f ) S s T s (27)

Taking the total derivative of the left side of Equation (27) with respect to frac

tional cover, / ,

d(£mTm) =  d{emTm )dTm d(£mTm) dem =  dT ^ de^  
d f ~  dTm d f +  (k„, d f " fr" d f m df

Taking the total derivative of the right side of Equation (27) with respect to  / ,  

term  by term,

d ( fe vTv)  =  d ( fe vTr) dTv d ( fe vTv) d£v d ( f s vTv)
d f dTv df + dev d f +  d f

d(esTs) _  d(esTs) dTs d{esTs) des
d f dTs d f d£s df

~ d ( f £ sTs) = _  d ( f £ sTs) dTs d ( f £ sTs) d£s d ( f £ s' 
df  [ 8TS df  + d£s df  + d f

Setting emissivity differentials ^  =  0  and ^  =  0  gives
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d( f e vTv) _  dTv
df  J£v d f  + v

d(esTs) _  ^ dJ\
df  ~  S s df

- d ( f e sTs) dTs _ .
-  - ( fea- £ + e . T a)

df  XJ^s df

Assembling both sides of the total derivative of Equation (27) gives

+  Tm -jjT  — SVTV ~  £STS +  + 0 — ^ £a~df~

Weighing out fractional vegetation cover for the mixed emissivity, £m =  f s v f  (1 -  

f ) e s, and taking the to tal derivative with respect to /  gives

d£m = 9 { f £v) d£v 0 ( f £ v) d£j_ _  9{ f£ s) d£s _  d ( f £ s)
df  ckv df  d f  df  <)£s d f d f

As above, ^  =  0 , ^ f  =  0 , yields

d£m d ( f £ v) _  d ( f £ s)
df  ~ d f  d f  ( 9)

=  £v -

C.2 Quartic radiative transfer differentiation.

Stephan-Boltzmann equation for a mixed pixel with two components, Tv and Ts, 

is
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em'C  =  /e„7 ?  +  ( l - / ) e . 7 ?  (30)

Taking the to tal derivative of the left side of Equation (30)with respect to frac

tional cover, / ,

d(£mTm) _ d{emT .*) dTm d{emT^)  dsm r 3 dTm 4 dem
df  dTm df  + dem df  ^  m df  m df

Taking the to tal derivative of the right side of Equation (30) with respect to / ,  

term  by term,

= d ( f s „ T ; ) dT,. 9 U e .T !)< k . d U e t f )  
d f ()TV d f <)cv d f O f

d(esT f )  d(eaTf )  dTs +  d(esT s4) dea
df  8 TS df  d£s df

d ( f s sT *) , d ( f e sT*)dTs | d ( f e aT * ) dea | f l( /g .7 ?)
df  v c)Ts d f des d f Of

Setting emissivity differentials ^  -  0  and ^  0  gives

Afp T 6   + rT 4
d f J V V d f + *’

d f "  “  * d f

- d ( f e sTs ) - ( A f e  t 3— -̂ +  =■ T 4) 
d f ~  { J ‘ s d f s a)

Assembling both sides of the total derivative of Equation (30) gives
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and, as in the above linear version,

dsm
i f  ^ e'■ ~

D Energy balance equations.

The surface energy balance in its simplified form is given as [30]:

Rn T  H  +  L E  -(- G — 0  (31)

Surface Energy Balance

Rn 7

A
T H

Surface j

'LE

_ TUrbulent Fluxes
'1/

Available Energy

with positive values going toward the surface and negative values going away 

from the surface. Metabolic, chemical and other heat contributions (ie. uranium 

decay) are generally ignored due to  their relatively small contributions. Some

times, the ground conductive flux, G , is also ignored but it is usually estim ated



as a  function of the radiative energy, R n, the overall driver of this system. R n 

is constructed from short and long wave components from the sun, earth and 

atmosphere:

Rn = 5(1 -  a)  +  L +  eao T l -  e 0< tT a0

In general, short waves are considered as mostly reflective and long waves are 

considered as almost wholly absorptive, so there is no albedo factor for L. Also, 

knowing the aerodynamic surface tem perature, T along with Ta, allows for 

better estimates of Rn for places w ithout ground radiometer sensors. In our 

binary case, T0 can be represented by vegetation surface tem perature, T v, or soil 

surface tem perature, Ts.

The turbulent fluxes, H  and L E , are potential, diffusive equations and are 

analogous to Ohm’s Law, /  =  Vjr .  For the sensible heat flux to and from the 

atmosphere we have the aerodynamic expression:

H ^  pCP(Tao -  T„) ^
f' ah

where rah is the aerodynamic resistance to heat flow between some mean height 

within the canopy to  some reference height, zu, above the canopy surface and is 

defined as:
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On (
Zu
Zom

) -  v o t i n g )  _  M
z oh

k2u.
(33)

Therefore, to determine the sensible heat component, H, three highly variable 

values must be obtained, aerodynamic surface tem perature, T00, surrounding air 

tem perature, Ta, and wind velocity, uz, in addition to the more static components 

d p )  Z o m j  i ’m ,  zT, zoh, ij’h and k.

Residual estimates of L E  can be calculated by rearranging Equation (31):

L E  =  - R n -  H -  CL

However, to obtain arithm etic closure, the aerodynamic expression for latent heat 

flux to  and from the atmosphere should be included and is similar to Equation 

(32):

L E  =  p C * f - ) - M )  (34)
'y (Tav ~t~ f’oi )

where e(T) is the water vapor pressure at some tem perature T. For both  leaf 

and soil, if the surface, or slightly within, has available water, then Tao can be 

considered as the wet bulb tem perature, Tw, which gives the saturated vapor 

pressure es(Tao). The vapor pressure of the surrounding air, e(T0), a t some surface 

height, 2 , can be easily obtained by knowing the relative humidity, Rh =  7

120



is the psychrometric constant. Just as the tem perature difference, (Tao- T n). drives 

the sensible heat flux, it is the water vapor pressure difference, (es(T0) — e{Ta)), 

th a t drives the latent heat flux, or evaporation.

The aerodynamic resistance to vapor flow, rav , is similar to Equation (33),

but zT is replaced by zv, zQh is replaced by zmi, and z/’/i is replaced by </>„, a 

correction factor for vapor flow on the boundary layer. Practically, both  humidity 

and tem perature sensors are usually placed at the same height so th a t zT zv, 

zm, -  z0h with the assumption th a t v>v =  ij’h. For a well-watered surface •</’,,

<•>, = '^m = 0[3].

E Geometric effects. 

E .l Camera angle and view area.

Observing th a t changing the camera view angle, 6 , results in a  change 

of sensed area, A, we wish to quantify and evaluate this effect. In this study’s 

experimental setup, the camera angle variation is restricted to one plane, and 

ignoring side perspective effects, the area is defined as A  =  L' x L, where the 

side L represents the fixed width and L' represents the length which varies with 

camera view angle, 6 .

The function, fe(9) =  A,  depends on the optical vector geometries used,
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so, if the optical rays are parallel, we can use the Cosine Rule for area projection 

for a plane restricted rotation: A  =  Ap/  cos 0, where Ap is the initial area a t a 

perpendicular view, or nadir, shown below:

In this study, the center points in all camera views are kept coincident, within ex

perimental means. For the hypothetical parallel case, the center point, c, can be 

kept centered by a simple halving of V .  In practice, sensor lenses have radial 

vector geometries centered a t the focal point requiring a  different approach to 

determine f (0 )  = A. A derivation is given below.

c c

view Una. L view line, I'

camera ^1 camera

angle, 6

L L
view arm, A«L*L view aim . A-l*L'
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The above figures illustrate the approach taken. The figure on the left 

shows the camera sensor perpendicular to  the view area, w ith d as the distance 

to  the area center, c. We restrict camera angle variation to  one plane, as in our 

experiment setup, so the side L  represents the fixed length of the view area, ig

noring perspective effects. The figure on the right shows how the length L' varies 

with changing camera angle, 9, and correspondingly, the area. The focal distance, 

d, remains fixed for all views.

Md-of-vtew anglt, a

L'

These figures show the geometry involved within the restricted plane. The 

sensor has a field-of-view angle, a , which remains constant. Point c is kept in the 

center of angle a  and a t a  constant distance d from the sensor. Varying 9 then 

varies the view line L, so th a t L 1 = L0 + L I. The figures below are used to  derive 

expressions for LO and L I as a  function of 6 .
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LO L I

The angles 7  and 6 are calculated by summing angles,

7 - 900 - 6

5 -  180° -  7  -  a /2  =  90° + 9 -  a / 2

with a  <  180°. Rearranging, S — 90° -  a / 2  I 0 and using a ~  90

5 =  a  +  6.

The Sine Rule and angles 8 , a / 2  are used to solve for LO,

d  sin(a/2) ds in (a /2 )  
sin(£) sin(a. -f 6 ) '

Likewise, f3 — a — 9  is used to solve for LI,

^  d s in (a /2 )  ds in (a /2 )  
sin((3) sin(a — 9 ) '

So,

0  -  a /2 ,
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L , =  t 0 + i i =  +  d s i n ( a / ^
sin (a +  9) sin(o — 9)

and is restricted to  a > 9, since negative lengths are undefined. Setting 9 -- 0, we 

can define the fixed length, L, as

2dsin(a/2)
sin(a)

The varying area, A, is defined as A -  L ■ L', so

a = -  m  = l dsin(of/2) dsin(o'/2) 
sin(o + 9) ^  sin(o — 9)

Setting r =  L • c/sin(a:/2) we have

v r
^   ̂ sin(o + 9) ^  sin(a — 9)

Taking the derivative with respect to camera angle, 9, gives

dA rcos(9 — a) rcos(9 + a)
d6 sin2(0 -  a) sin2(0 +  a)

E.2 Generated data.

A com puter program generates values for the view area A. a t 1 ° increments 

with camera distance of 1.0m and a field-of-view angle of a  — 45°. The area values 

axe plotted below as a ratio to the area at nadir:

125



•0

BO

40

20

10

0
0 10 20 10 80 ■040 70

The generated values show th a t the view area increases monotonically by 

10% a t 6 =  21°, 25% at 0 =  31°, and 100% at 6 =  50°.
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F Tabulated results for 12cm bed.

The first sub-section below shows results on the near instantaneous sam

pling and how the calculated tem peratures compare to  the mixed tem perature 

value. Subsequent sub-sections show results of applying different hyper-surface 

fits to the mixed tem perature d a ta  of the 12cm bed. Hyper-surfaces are hence

forth called “surfaces” for simplicity. Sample day surface coefficients can be found 

in Table (8 ) while combined and average surface coefficients are given below when 

used.

F .l Near instantaneous sampling results and metrics used.

The following tables show the results of applying averaged differential co

efficients, ^  and to  all near instantaneous samples for both land covers. The 

calculated tem peratures are then compared to the mixed tem perature values. Ta

ble headings are: ts is the sensed cover tem perature, tm is the mixed tem perature; 

tc is the calculated tem perature from unmixing; a is the absolute difference of the 

sensed tem perature, ts, and the mixed tem perature, tm\ and b is the absolute dif

ference of the sensed tem perature, t s, and the calculated tem perature tc. Dividing 

b into a gives a  measure of performance. If the calculated tem perature is closer 

to the sensed tem perature than is the mixed tem perature, then a “1 ” is assigned 

to  the right most column. Bottom row indicates the percentage of samples tha t 

performed better than the mixed tem perature.



t sensed tm ixed d  Q,bs(tsensed ^mixed) tcalc b abs(tsenseci tcaic) a/b
296.254 295.718 0.536 295.260 0.994 0.539
297.727 296.385 1.342 297.511 0.216 6.213 1
297.867 296.637 1.230 298.055 0.188 6.543 1
298.365 297.191 1.174 298.735 0.370 3.173 1
296.886 295.966 0.920 295.967 0.919 1.001 1
296.150 294.376 1.774 294.585 1.565 1.134 1
294.900 294.024 0.876 294.355 0.545 1.607 1
296.733 295.338 1.395 296.665 0.068 20.515 1
297.951 296.301 1.650 298.661 0.710 2.324 1
298.298 296.407 1.891 298.351 0.053 35.679 1
299.396 297.433 1.963 299.385 0.011 178.455 1
300.644 298.376 2.268 300.395 0.290 9.108 1
301.864 299.146 2.718 302.506 0.642 4.234 1
301.190 298.894 2.296 301.925 0.735 3.124 1
298.211 297.090 1.121 299.078 0.867 1.293 1
294.548 293.724 0.824 293.701 0.847 0.973
296.739 295.161 1.578 296.716 0.023 68.609 1
297.467 296.003 1.464 297.160 0.307 4.769 1
298.140 296.481 1.659 298.237 0.097 17.103 1
299.884 297.581 2.303 300.393 0.509 4.525 1
300.557 298.283 2.274 300.683 0.126 18.048 1
300.734 298.982 1.752 301.086 0.352 4.977 1
298.370 296.919 1.451 297.923 0.447 3.246 1
297.961 296.626 1.335 298.074 0.113 11.814 1
294.430 292.812 1.618 294.686 0.256 6.320 1
295.980 294.404 1.576 295.966 0.014 112.571 1
296.056 294.805 1.251 294.662 1.394 0.897
296.174 295.156 1.018 296.874 0.700 1.454 1
297.218 295.775 1.443 297.495 0.277 5.209 1
298.524 296.68 1.844 298.139 0.385 4.790 1
298.142 296.28 1.862 298.739 0.597 3.119 1
298.956 296.908 2.048 299.188 0.232 8.828 1
298.627 296.711 1.916 298.771 0.144 13.306 1
299.864 298.138 1.726 300.660 0.796 2.168 1

91.2%

Table 18: Vegetation cover results for “instantaneous” samples with averaged ^  
and 4P- for 1 2 cm bed.
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t  sensed t  m ixed CL d b s ^ t  sensed t m ixed ) tcalc b d b s ( t  sensed t calc) d / b

295.311 295.718 0.407 296.064 0.753 0.541
295.425 296.385 0.960 295.582 0.157 6.115 1
295.984 296.637 0.653 295.883 0.101 6.465 1
296.389 297.191 0.802 296.133 0.256 3.133 1
295.346 295.966 0.620 295.965 0.619 1.002 1
293.133 294.376 1.243 294.231 1.098 1.132 1
293.445 294.024 0.579 293.806 0.361 1.604 1
294.378 295.338 0.960 294.425 0.047 20.426 1
295.092 296.301 1.209 294.561 0.531 2.277 1
295.072 296.407 1.335 295.034 0.038 35.132 1
295.929 297.433 1.504 295.939 0.010 150.400 1
296.636 298.376 1.740 296.831 0.195 8.923 1
297.128 299.146 2.018 296.638 0.490 4.118 1
297.229 298.894 1.665 296.682 0.547 3.044 1
296.302 297.090 0.788 295.682 0.620 1.271 1
293.075 293.724 0.649 293.743 0.668 0.972
293.999 295.161 1.162 294.016 0.017 68.353 1
294.877 296.003 1.126 295.116 0.239 4.711 1
295.262 296.481 1.219 295.19 0.072 16.930 1
295.846 297.581 1.735 295.453 0.393 4.415 1
296.582 298.283 1.701 296.486 0.096 17.719 1
297.144 298.982 1.838 296.766 0.378 4.862 1
295.840 296.919 1.079 296.175 0.335 3.221 1
295.573 296.626 1.053 295.483 0.090 11.700 1
291.747 292.812 1.065 291.576 0.171 6.228 1
293.310 294.404 1.094 293.32 0.010 109.400 1
294.063 294.805 0.742 294.889 0.826 0.898
294.441 295.156 0.715 293.942 0.499 1.433 1
294.764 295.775 1.011 294.568 0.196 5.158 1
295.417 296.680 1.263 295.685 0.268 4.713 1
294.991 296.280 1.289 294.568 0.423 3.047 1
295.429 296.908 1.479 295.258 0.171 8.649 1
295.413 296.711 1.298 295.314 0.099 13.111 1
296.835 298.138 1.303 296.221 0.614 2.122 1

91.2%

Table 19: Soil cover results for near instantaneous samples with averaged ^  and 
for 1 2 cm bed.
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F.2 Combined and averaged surface fits with known cover fractions.

The following tables show the results of applying combined and averaged 

surface fits to  estim ate the differential coefficients, ^  and to the mixed
’  df e  d fe  ’

data  with known cover fractions. Asterisks denote when surface coefficients were 

applied to days from which they were partially derived.

t y p e i n t r c p t A  Ta A  R h A P a R 2

v e g  f i t c o m b in e d  0 8  0 9 1 .1 4 0 3 .9 7 9 0 .2 6 1 - 1 . 9 7 4 0 .8 9 7

a v e r a g e d  0 8  0 9 0 .7 6 5 4 .4 4 5 1 .1 4 6 - 3 . 0 4 7

s o il  f i t c o m b in e d  0 8  0 9 1 .6 8 9 3 .2 9 5 0 .8 3 3 - 1 . 9 6 6 0 .9 2 2

a v e r a g e d  0 8  0 9 1 .1 6 3 2 .2 2 7 0 .7 9 5 - 2 . 4 6 3

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 * 1 .2 0 0 - 0 . 2 8 2 6 0 . 6 0 . 8 3 3 0 . 1 8 8 6 0 . 6

1 2 0 8 0 9 * 0 . 6 0 7 0 . 1 8 9 1 0 0 . 0 0 . 4 6 1 - 0 . 1 4 5 9 7 . 8

1 2 0 8 1 0 0 . 7 5 7 - 0 . 4 6 0 9 3 . 3 0 . 6 9 4 0 . 3 7 7 9 3 . 3

1 2 0 8 1 6 0 . 9 3 3 0 . 7 3 9 8 6 . 7 0 . 6 9 4 0 . 5 6 5 8 6 . 7

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 * 1 .0 0 1 - 0 . 5 0 1 6 6 . 6 0 . 6 9 4 0 .3 4 8 6 6 . 6

1 2 0 8 0 9 * 1 .4 4 1 0 . 9 0 5 6 8 . 9 1 .0 9 6 - 0 . 7 0 8 6 8 . 9

1 2 0 8 1 0 1 .2 7 2 - 0 . 3 8 4 7 5 . 6 1 . 0 1 8 0 .2 9 8 7 5 .6

1 2 0 8 1 6 1 .3 3 5 - 0 . 1 6 4 8 0 . 0 0 . 9 6 2 0 .1 6 1 7 8 .0

(b) Cover responses using combined surface (c) Cover responses using averaged surface 
fit. fit.

Table 20: Unmixing results using estim ated differential coefficients, ^  and 
derived from combined and averaged surface fits for dates 12/08/08 and 12/08/09 
as predictor for 1 2 cm bed. Known cover fractions were used.
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t y p e i n t r c p t A  X Q A A  Pa R 2

v e g  f i t c o m b in e d  0 8  1 0 0 . 1 8 4 3 . 2 9 5 0 . 1 6 7 - 1 . 7 6 6 0 . 8 8 3

a v e r a g e d  0 8  1 0 - 0 . 4 3 8 3 . 2 8 2 0 . 8 5 3 - 3 . 1 8 8

s o il  f i t c o m b in e d  0 8  1 0 1 .5 1 4 3 . 0 7 7 0 . 9 0 2 - 1 . 8 0 6 0 . 9 2 9

a v e r a g e d  0 8  1 0 1 .2 5 5 2 . 3 9 6 0 . 8 6 0 - 2 . 3 2 4

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 * 1 .1 3 0 - 0 . 0 6 2 7 2 . 7 0 . 7 9 0 0 . 0 4 6 7 2 . 7

1 2 0 8 0 9 0 . 8 0 5 0 . 9 0 6 8 8 . 9 0 . 6 1 9 - 0 . 6 9 0 8 8 . 9

1 2 0 8 1 0 * 0 . 6 0 3 0 . 0 3 4 9 7 . 7 0 . 5 2 8 - 0 . 0 2 9 9 7 . 7

1 2 0 8 1 6 1 .1 1 9 - 0 . 2 1 0 9 1 . 1 0 .8 0 1 0 . 1 9 0 9 1 . 1

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b ia s  C %

1 2 0 8 0 8 * 1 .0 2 6 - 0 . 4 2 4 7 8 . 8 0 . 7 1 2 0 . 3 0 0 7 8 . 8

1 2 0 8 0 9 1 .5 4 0 1 .1 6 3 6 6 . 7 1 .1 7 9 - 0 . 9 0 7 6 6 . 7

1 2 0 8 1 0 * 1 .3 3 7 - 0 . 1 6 5 7 7 . 8 1 .0 6 4 0 . 1 1 8 7 7 . 8

1 2 0 8 1 6 1 .3 9 3 0 . 0 7 3 7 7 . 8 0 . 9 9 5 - 0 . 0 1 1 7 7 . 8

(b) Cover responses using combined surface (c) Cover responses using averaged surface 
fit. fit.

Table 21: Unmixing results using estim ated differential coefficients, ^  and 
derived from combined and averaged surface fits for dates 12/08/08 and 12/08/10 
as predictor for 1 2 cm bed. Known cover fractions were used.

t y p e i n t r c p t A  T a A  R h A  P a R 2

v e g  f i t c o m b in e d  0 8  1 6 - 0 . 8 9 5 2 . 9 0 0 0 . 7 4 1 - 4 . 2 6 8 0 . 8 6 0

a v e r a g e d  0 8  1 6 - 1 . 1 9 8 3 . 0 9 6 0 . 9 2 7 - 4 . 0 8 6

s o il  f i t c o m b in e d  0 8  1 6 0 . 6 8 5 3 . 4 8 2 0 . 5 5 6 - 1 . 4 8 8 0 . 8 8 8

a v e r a g e d  0 8  1 6 0 . 7 4 3 2 . 9 4 3 0 . 6 6 7 - 1 . 9 2 0

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b ia s  C %

1 2 0 8 0 8 * 1 .2 6 0 0 .1 0 1 5 7 . 6 0 . 8 7 3 - 0 . 0 6 8 5 7 . 6

1 2 0 8 0 9 0 . 6 5 1 0 .5 5 1 9 1 . 1 0 . 4 9 6 - 0 . 4 1 4 9 1 . 1

1 2 0 8 1 0 0 . 8 3 5 0 . 0 3 4 9 5 . 6 0 . 7 6 8 - 0 . 0 1 7 9 3 . 3

1 2 0 8 1 6 * 0 . 8 4 9 - 0 . 0 6 5 9 5 . 6 0 . 6 1 6 0 . 0 7 5 9 5 . 6

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b ia s  C %

1 2 0 8 0 8 * 1 .1 2 6 - 0 . 0 5 3 7 5 . 8 0 . 7 7 9 0 . 0 4 3 7 5 . 8

1 2 0 8 0 9 0 . 8 7 7 0 . 9 3 2 8 0 . 0 0 . 6 7 3 - 0 . 7 1 2 8 0 . 0

1 2 0 8 1 0 0 . 8 4 8 0 . 0 1 5 9 1 . 1 0 . 7 3 2 - 0 . 0 1 0 9 1 . 1

1 2 0 8 1 6 * 1 .0 8 4 0 . 1 2 7 8 8 . 9 0 . 7 7 6 - 0 . 0 5 7 8 8 . 9

(b) Cover responses using combined surface (c) Cover responses using averaged surface 
fit. fit.

Table 22: Unmixing results using estim ated differential coefficients, ^  and
derived from combined and averaged surface fits for dates 12/08/08 and 12/08/16
as predictor for 12cm bed. Known cover fractions were used.

131



t y p e i n t r c p t A  Ta A  R h A  Pa R 2

v e g  f i t c o m b in e d  0 9  1 0 0 . 8 7 5 4 . 6 5 8 0 . 5 3 2 - 1 . 4 2 4 0 . 9 3 4

a v e r a g e d  0 9  1 0 1 .3 1 9 5 . 4 0 9 0 . 9 3 2 - 1 . 3 3 8

s o il  f i t c o m b in e d  0 9  1 0 1 .8 0 8 2 . 1 2 2 0 . 2 8 2 - 1 . 7 4 8 0 . 9 6 3

a v e r a g e d  0 9  1 0 1 .7 9 7 2 . 1 1 9 0 . 3 0 7 - 1 . 7 7 8

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .4 7 2 - 0 . 9 5 9 3 9 . 4 1 .0 2 0 0 . 6 5 8 3 9 . 4

1 2 0 8 0 9 * 0 . 5 4 2 0 . 2 2 2 1 0 0 . 0 0 . 4 0 5 - 0 . 1 7 2 1 0 0 . 0

1 2 0 8 1 0 * 0 . 5 3 2 - 0 . 2 1 5 9 5 . 6 0 . 4 9 2 0 . 1 8 0 9 5 . 6

1 2 0 8 1 6 0 . 9 1 7 - 0 . 3 3 7 9 3 . 3 0 . 6 5 5 0 . 2 7 0 9 3 . 3

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .4 4 6 - 0 . 9 3 5 3 9 . 4 1 .0 0 3 0 . 6 4 2 3 9 . 4

1 2 0 8 0 9 * 0 . 5 5 0 0 . 2 5 5 1 0 0 . 0 0 . 4 1 2 - 0 . 1 9 7 1 0 0 . 0

1 2 0 8 1 0 * 0 . 5 2 3 - 0 . 2 1 8 9 5 . 6 0 . 4 8 3 0 . 1 8 2 9 5 . 6

1 2 0 8 1 6 0 . 9 3 3 - 0 . 3 3 5 9 1 . 1 0 . 6 6 7 0 . 2 6 9 9 1 . 1

(b) Cover responses using combined surface fit. (c) Cover responses using averaged surface
fit.

Table 23: Unmixing results using estim ated differential coefficients, ^  and 
derived from combined and averaged surface fits for dates 12/08/09 and 12/08/10 
as predictor for 12cm bed. Known cover fractions were used.

t y p e i n t r c p t A T a A  R h A P a R 2

v e g  f i t c o m b in e d  0 9  1 6 - 0 . 3 2 6 4 . 7 2 9 0 . 4 7 0 - 1 . 8 5 0 0 . 9 0 5

a v e r a g e d  0 9  1 6 0 . 5 5 9 5 . 2 2 2 1 . 0 0 7 - 2 . 2 3 5

s o il  f i t c o m b in e d  0 9  1 6 1 .4 9 9 2 .3 0 3 0 . 2 7 8 - 1 . 8 5 1 0 . 9 0 4

a v e r a g e d  0 9  1 6 1 .2 8 6 2 . 6 6 7 0 . 1 1 4 - 1 . 3 7 4

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .6 6 9 - 0 . 9 4 2 3 3 . 3 1 .1 4 7 0 . 6 4 6 3 3 . 3

1 2 0 8 0 9 * 0 . 6 0 5 0 . 1 1 6 9 7 . 8 0 . 4 5 3 - 0 . 0 9 1 9 7 . 8

1 2 0 8 1 0 0 . 6 6 7 - 0 . 1 2 8 9 5 . 6 0 . 6 2 3 0 . 1 1 6 9 5 . 6

1 2 0 8 1 6 * 0 . 7 9 7 - 0 . 1 1 3 9 7 . 8 0 . 5 6 9 0 . 1 0 3 9 7 . 8

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .5 7 4 - 0 . 5 6 0 3 9 . 4 1 .0 8 8 0 . 3 8 4 3 9 . 4

1 2 0 8 0 9 * 0 . 8 8 5 0 . 0 0 2 9 5 . 6 0 . 6 5 9 - 0 . 0 0 2 9 5 . 6

1 2 0 8 1 0 1 .0 2 5 - 0 . 0 5 5 8 6 . 7 0 . 9 0 0 0 . 0 5 5 8 6 . 7

1 2 0 8 1 6 * 0 . 6 9 0 - 0 . 2 8 5 1 0 0 . 0 0 . 5 0 0 0 .2 2 4 1 0 0 . 0

(b) Cover responses using combined surface (c) Cover responses using averaged surface 
fit. fit.

Table 24: Unmixing results using estim ated differential coefficients, ^  and
derived from combined and averaged surface fits for dates 12/08/09 and 12/08/16
as predictor for 12cm bed. Known cover fractions were used.
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t y p e i n t r c p t A  Ta A  R h A  Pa ft2
v e g  f i t c o m b in e d  1 0  1 6 - 0 . 5 7 2 4 . 2 5 7 0 . 6 6 4 - 1 . 7 9 9 0 . 9 2 5

a v e r a g e d  1 0  1 6 - 0 . 6 4 4 4 . 0 6 0 0 . 7 1 4 - 2 . 3 7 7

s o il  f i t c o m b in e d  1 0  1 6 1 .5 9 8 2 . 2 8 0 0 . 2 0 6 - 1 . 7 2 1 0 . 8 9 9

a v e r a g e d  1 0  1 6 1 .3 7 8 2 . 8 3 5 0 . 1 7 9 - 1 . 2 3 4

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .7 0 4 - 0 . 9 6 3 3 9 . 4 1 .1 7 1 0 . 6 6 2 3 9 . 4

1 2 0 8 0 9 0 . 5 6 0 0 . 2 8 5 9 7 . 8 0 . 4 2 0 - 0 . 2 1 8 9 5 . 6

1 2 0 8 1 0 * 0 . 5 7 9 - 0 . 0 0 2 9 5 . 6 0 . 5 3 8 0 .0 1 1 9 5 . 6

1 2 0 8 1 6 * 0 . 8 6 0 0 . 0 1 3 9 3 . 3 0 . 6 0 3 0 . 0 1 2 9 3 . 3

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .5 9 7 - 0 . 4 8 4 3 9 . 4 1 .1 0 4 0 . 3 3 5 3 9 . 4

1 2 0 8 0 9 0 . 7 8 2 0 . 2 6 3 9 5 . 5 0 . 5 8 3 - 0 . 1 9 7 9 5 . 5

1 2 0 8 1 0 * 0 . 9 0 4 0 . 1 6 3 8 8 . 9 0 . 7 9 6 - 0 . 1 2 2 8 8 . 9

1 2 0 8 1 6 * 0 . 7 3 5 - 0 . 0 4 7 9 7 . 8 0 . 5 2 3 0 . 7 3 5 9 7 . 8

(b) Cover responses using combined surface (c) Cover responses using averaged surface 
fit. fit.

Table 25: Unmixing results using estim ated differential coefficients using com
bined and averaged dates 12/08/10 and 12/08/16 with known cover fractions as 
predictor for 1 2 cm.
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F.3 Individual day surface fits with known land cover fractions.

These tables show the results of applying individual day surface fits to 

other days.

s u r f  0 8 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 * 0 . 8 2 4 - 0 . 0 0 3 8 7 . 9 0 . 5 6 8 0 . 0 0 8 8 7 . 9

1 2 0 8 0 9 2 . 6 9 6 1 .7 8 6 4 4 . 4 2 . 0 9 2 - 1 . 4 2 7 4 4 . 4

1 2 0 8 1 0 2 . 5 1 6 - 0 . 3 4 2 5 3 . 3 1 .9 7 4 0 . 2 2 0 5 3 . 3

1 2 0 8 1 6 1 .3 5 2 0 . 2 4 0 6 4 . 4 1 .3 5 2 - 0 . 1 2 1 6 4 . 4

(a) Cover responses using surface fit from 
12/08/08.

s u r f  1 0 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .4 8 5 - 0 . 8 5 8 4 5 . 5 1 .0 2 9 0 . 5 9 3 4 5 . 5

1 2 0 8 0 9 0 . 6 2 3 0 . 5 1 5 9 7 . 8 0 . 4 6 9 - 0 . 3 9 3 9 7 . 8

1 2 0 8 1 0 * 0 . 5 1 2 0 . 0 0 0 9 8 . 0 0 . 4 5 2 0 . 0 0 4 9 8 . 0

1 2 0 8 1 6 1 .0 0 0 - 0 . 0 9 8 9 1 . 1 0 . 7 0 6 0 . 0 9 8 9 1 . 1

s u r f  0 9 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .4 1 4 - 1 . 0 1 1 3 6 . 4 0 . 9 7 9 0 . 6 9 0 3 6 . 4

1 2 0 8 0 9 * 0 . 5 2 3 - 0 . 0 0 3 1 0 0 . 0 0 . 3 9 0 - 0 . 0 0 3 1 0 0 . 0

1 2 0 8 1 0 0 .5 8 1 0 . 4 3 3 9 5 . 6 0 . 5 4 6 0 . 3 5 7 9 5 . 6

1 2 0 8 1 6 0 . 8 7 2 - 0 . 5 6 9 9 1 . 1 0 . 6 3 3 0 . 4 3 7 9 1 . 1

(b) Cover responses using surface fit from 
12/08/09.

s u r f  1 6 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 8 1 .7 4 9 - 0 . 1 1 5 3 9 . 4 1 .2 0 9 0 . 0 7 8 3 9 . 4

1 2 0 8 0 9 1 .5 3 2 - 0 . 0 0 6 7 1 . 1 1 .1 3 2 0 . 0 0 2 7 1 .1

1 2 0 8 1 0 1 .5 9 8 0 . 3 1 2 6 6 . 7 1 .3 5 7 - 0 . 2 4 5 6 6 . 7

1 2 0 8 1 6 * 0 . 6 1 7 0 . 0 0 1 1 0 0 . 0 0 . 4 4 9 0 . 0 0 7 1 0 0 . 0

(c) Cover responses using surface fit from (d) Cover responses using surface fit from 
12/08/10. 12/08/16.

Table 26: Unmixing results using estim ated differential coefficients, and 
derived from individual day surface fits as predictors on other dates for 1 2 cm bed. 
Used with known cover fractions.
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F.4 Results using averaged land cover fractions.

These tables show the results of applying averaged land cover fractions to 

different types surface fits to  estim ate the differential coefficients, ^  and 

Asterisks denote when surface coefficients were applied to days from which they

were derived.

0 9 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 * 0 . 6 9 2 0 . 0 5 0 1 0 0 . 0 0 . 4 9 8 - 0 . 0 5 7 1 0 0 . 0

1 2 0 8 1 0 1 .1 3 4 0 . 1 0 7 8 2 . 2 0 . 6 5 0 0 . 0 4 7 9 7 . 8

1 2 0 8 1 6 0 . 5 4 4 - 0 . 8 6 5 8 8 . 9 0 . 4 1 4 0 . 5 9 7 8 8 . 9

1 0 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 0 . 8 0 5 0 .5 7 1 9 5 . 6 0 . 5 8 8 - 0 . 4 5 3 9 5 . 6

1 2 0 8 1 0 * 1 .2 2 2 0 . 5 5 3 8 2 . 2 0 . 7 3 2 - 0 . 2 9 0 9 1 . 1

1 2 0 8 1 6 0 . 6 1 8 - 0 . 3 9 9 1 0 0 . 0 0 . 4 7 8 0 .2 5 1 1 0 0 . 0

(a) Cover responses using surface fit from (b) Cover responses using surface fit from 
12/08/09 and averaged fractions. 12/08/10 and averaged fractions.

1 6 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 1 .4 8 0 0 . 0 5 4 7 1 . 1 1 .1 0 9 - 0 . 0 6 7 7 1 . 1

1 2 0 8 1 0 1 .6 1 0 0 . 8 8 2 6 2 . 2 1 .1 1 5 - 0 . 5 4 4 7 1 . 1

1 2 0 8 1 6 * 0 . 7 4 9 - 0 . 2 9 5 9 5 . 5 0 . 5 0 7 0 . 1 7 2 9 5 . 5

(c) Cover responses using surface fit from 
12/08/10 and averaged fractions.

Table 27: Unmixing results using estim ated differential coefficients, ^  and 
from individual day surface fits on the remainder days with averaged fractions.

135



0 9  1 0 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 * 0 . 7 2 2 0 . 2 3 3 1 0 0 . 0 0 . 5 2 1 - 0 . 1 9 6 1 0 0 . 0

1 2 0 8 1 0 * 1 .1 3 8 0 . 3 6 9 8 6 . 7 0 . 6 5 8 - 0 . 1 5 0 9 7 . 8

1 2 0 8 1 6 0 . 6 1 2 - 0 . 5 0 0 9 7 . 8 0 . 4 5 6 0 . 3 2 6 9 7 . 8

0 9  1 6 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 * 0 . 7 2 6 0 . 1 7 0 1 0 0 . 0 0 . 5 2 9 - 0 . 1 4 7 1 0 0 . 0

1 2 0 8 1 0 1 .0 7 7 0 . 4 1 7 8 4 . 4 0 . 6 1 3 - 0 . 1 8 5 9 7 . 8

1 2 0 8 1 6 * 0 . 5 8 8 - 0 . 4 1 1 9 7 . 8 0 . 4 2 5 0 . 2 6 0 9 7 . 8

(a) Cover responses using surface fit from (b) Cover responses using surface fit from 
combined 12/08/09 and 12/08/10. combined 12/08/09 and 12/08/16.

1 0  16 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 0 . 7 0 9 0 . 3 4 5 9 7 . 8 0 . 5 1 5 - 0 . 2 7 9 1 0 0 . 0

1 2 0 8 1 0 * 1 .1 0 0 0 .5 5 1 8 8 . 9 0 . 6 3 0 - 0 . 2 8 6 9 5 . 6

1 2 0 8 1 6 * 0 . 6 0 5 - 0 . 2 8 7 9 7 . 8 0 . 4 4 4 0 . 1 6 8 1 0 0 . 0

(c) Cover responses using surface fit from 
combined 12/08/10 and 12/08/16.

Table 28: Unmixing results using estim ated differential coefficients, ^  and 
from two combined day surface fits as predictors, on the remainder day with 
averaged fractions.
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F.5 Results using NDVI land cover fractions.

Graphs and tables for NDVI estim ation of vegetation cover fraction are 

presented below. The scatterplot shows the NDVI responses to different soil mois

tures. Regression equations follow same order as legend, top to bottom.

vegetation coverage vs NDVI
0.60

y = 0.95628X + 0.186796 
R3 = 0.948407

y = 0.966482X + 0.143725 
R3 = 0.9344

0.50 -

♦  ♦
0.40 -

0 .3 0 - X  ■*
♦  dry

■ sat 
- - - - - -  sat

0.20  -

y = 1.14577x + 0.112725 
R3 = 0.968922

0 .1 0 - pw
pwy = 1.06914x + 0.118515 

R3 = 0.921165

0.00
0.00 0.10 0.20

NDVI
0.30 0.40

Figure 12: Scatter plot of various soil moistures and NDVI.
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0 9 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 * 1 .1 8 4 - 0 . 3 2 5 8 4 . 4 0 . 8 5 4 0 . 1 8 4 8 4 . 4

1 2 0 8 1 0 1 .1 5 9 - 0 . 6 4 1 8 0 . 0 0 .9 7 1 0 . 5 1 5 8 0 . 0

1 2 0 8 1 6 0 . 9 6 6 - 0 . 4 3 3 9 1 . 1 0 . 5 7 7 0 . 4 9 6 8 8 . 9

1 0 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 1 .1 8 1 0 . 1 7 7 9 1 . 1 0 . 8 4 2 - 0 . 2 0 9 9 3 . 3

1 2 0 8 1 0 * 1 .1 4 5 - 0 . 2 1 7 8 8 . 9 0 .9 1 1 0 . 1 4 5 8 6 . 7

1 2 0 8 1 6 1 .0 8 8 - 0 . 0 5 4 8 8 . 9 0 . 6 3 8 0 .2 6 1 9 1 . 1

(a) Cover responses using surface fit from (b) Cover responses using surface fit from 
120809. 120810.

1 6 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 1 .9 9 8 - 0 . 3 5 7 5 7 . 8 1 .5 1 4 0 .2 0 1 5 7 . 8

1 2 0 8 1 0 1 .8 4 9 0 .1 4 4 6 0 . 0 1 .5 1 3 - 0 . 0 8 9 6 2 . 2

1 2 0 8 1 6 * 0 . 8 3 2 0 . 0 3 8 9 5 . 6 0 . 4 8 3 0 . 1 8 8 9 7 . 8

(c) Cover responses using surface fit from 
120816.

Table 29: Unmixing results using estim ated differential coefficients, ^  and 
from individual day surface fits on the remainder days with NDVI fractions.

0 9  1 0 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 * 1 .1 8 4 - 0 . 1 5 1 8 4 . 4 0 .8 5 1 0 . 0 4 6 8 6 . 7

1 2 0 8 1 0 * 1 .0 9 1 - 0 . 3 9 3 8 4 . 4 0 . 8 9 4 0 . 3 0 1 8 4 . 4

1 2 0 8 1 6 1 .0 0 3 - 0 . 1 2 9 9 1 . 1 0 . 5 8 8 0 . 3 0 5 9 5 . 6

0 9  1 6 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 * 1 .2 8 3 - 0 . 2 1 3 8 6 . 7 0 . 9 4 0 0 . 0 9 4 8 6 . 7

1 2 0 8 1 0 1 . 1 5 0 - 0 . 3 3 9 8 6 . 7 0 . 9 7 8 0 .2 7 1 8 8 . 9

1 2 0 8 1 6 * 0 . 8 8 8 - 0 . 0 5 3 9 5 . 6 0 . 5 2 0 0 . 2 5 4 9 7 . 8

(a) Cover responses using combined sur- (b) Cover responses using surface fit from 
face fit from 12/08/09 and 12/08/10. combined 12/08/09 and 12/08/16.

1 0  1 6 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 0 9 1 .2 4 2 - 0 . 0 5 3 8 6 . 7 0 . 9 0 2 - 0 . 0 3 0 8 6 . 7

1 2 0 8 1 0 * 1 .1 1 6 - 0 . 2 0 9 9 1 . 1 0 . 9 2 2 0 . 1 5 4 9 1 . 1

1 2 0 8 1 6 * 0 . 9 4 3 0 . 0 5 7 9 1 . 1 0 . 5 4 8 0 . 1 8 6 9 5 . 6

(c) Cover responses using surface fit from 
combined 12/08/10 and 12/08/16.

Table 30: Unmixing results using estim ated differential coefficients, ^  and
from two combined day surface fits as predictors, on the remainder day with NDVI
fractions.
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F.6 NDVI and thermal registered images.

Two registered nadir images and two registered oblique images are shown

below.

(a) Nadir thermal image. (b) Nadir NDVI image.

(c) Oblique thermal image. (d) Oblique NDVI image.

Figure 13: Four images make one sample. Green buffer represents near-infrared 
band.
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G Tabulated results for 24 cm bed.

Tables showing results of applying different hyper-surface fits to  the mixed 

d a ta  of 24 cm bed are presented below. Hyper-surfaces are henceforth called 

“surfaces” for simplicity. Sample day surface coefficients can be found in Table (9) 

while combined and average surface coefficients are given below when used.

G .l Near instantaneous sampling results and metrics used.

The following tables show the results of applying averaged differential co

efficients, ^  and to  all near instantaneous samples for both land covers. The 

calculated tem peratures are then compared to  the mixed tem perature values. Ta

ble headings are: ts is the sensed cover tem perature, tm is the mixed tem perature; 

lc is the calculated tem perature from unmixing; a is the absolute difference of the 

sensed tem perature, t s, and the mixed tem perature, tm\ and b is the absolute dif

ference of the sensed tem perature, t s, and the calculated tem perature tc. Dividing 

b into a gives a measure of performance. If the calculated tem perature is closer 

to the sensed tem perature than is the mixed tem perature, then a  “1 ” is assigned 

to the right most column. Bottom row indicates the percentage of samples th a t 

performed better than the mixed tem perature.

140



tsensed tm ixed ® obs^t sensed tm ixed) tcalc b — abs(tsenae(i tcalc) a/b
296.515 295.814 0.701 296.454 0.061 11.492 1
297.687 296.895 0.792 297.696 0.009 88.000 1
299.674 298.526 1.148 299.869 0.195 5.887 1
300.176 299.178 0.998 300.044 0.132 7.561 1
302.262 300.591 1.671 302.029 0.233 7.172 1
302.779 301.186 1.593 303.279 0.500 3.186 1
301.280 299.964 1.316 301.701 0.421 3.126 1
296.230 295.742 0.488 296.272 0.042 11.619 1
297.786 296.928 0.858 297.456 0.330 2.600 1
297.015 296.296 0.719 296.898 0.117 6.145 1
297.066 296.365 0.701 296.573 0.493 1.422 1
301.244 299.737 1.507 302.278 1.034 1.457 1
300.953 299.573 1.380 300.843 0.110 12.545 1
299.164 298.017 1.147 299.341 0.177 6.480 1
298.432 297.366 1.066 298.012 0.420 2.538 1
297.594 296.852 0.742 297.597 0.003 247.333 1
296.987 296.178 0.809 297.511 0.524 1.544 1
298.304 297.384 0.920 298.593 0.289 3.183 1
298.721 297.771 0.950 298.694 0.027 35.185 1
299.309 298.056 1.253 299.086 0.223 5.619 1
299.748 298.520 1.228 299.749 0.001 1228.000 1
299.799 298.616 1.183 299.522 0.277 4.271 1
300.051 298.986 1.065 299.700 0.351 3.034 1
299.927 299.182 0.745 300.560 0.633 1.177 1
294.370 293.863 0.507 293.936 0.434 1.168 1

294.877 294.399 0.478 294.965 0.088 5.432 1
295.812 295.250 0.562 295.306 0.506 1 . 1 1 1 1
297.402 296.643 0.759 297.285 0.117 6.487 1
299.933 298.967 0.966 299.851 0.082 11.780 1
299.879 299.067 0.812 299.847 0.032 25.375 1
299.024 298.182 0.842 298.998 0.026 32.385 1
299.570 298.915 0.655 299.585 0.015 43.667 1
300.538 299.629 0.909 300.582 0.044 20.659 1

300.318 299.521 0.797 300.518 0.200 3.985 1
296.290 295.604 0.686 295.982 0.308 2.227 1
298.300 297.356 0.944 298.401 0.101 9.347 1
299.507 298.514 0.993 299.260 0.247 4.020 1
299.786 298.905 0.881 299.922 0.136 6.478 1
297.521 296.810 0.711 297.297 0.224 3.174 1
297.725 296.983 0.742 297.608 0.117 6.342 1
298.319 297.626 0.693 298.492 0.173 4.006 1

100.0%

Table 31: Vegetation cover results for near instantaneous samples with averaged 
^  and T7* for the 24cm bed.
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tsensed tm ixed & (lbs(tsensed t-m ixed ) tcalc b Q,bs(t sensed tcede) ajb
293.502 295.814 2.312 293.706 0.204 11.333 1
294.191 296.895 2.704 294.159 0.032 84.500 1
295.336 298.526 3.190 294.779 0.557 5.727 1
295.999 299.178 3.179 296.426 0.427 7.445 1

296.332 300.591 4.259 296.940 0.608 7.005 1
296.647 301.186 4.539 295.165 1.482 3.063 1
296.213 299.964 3.751 294.972 1.241 3.023 1
294.423 295.742 1.319 294.306 0.117 11.274 1
295.016 296.928 1.912 295.757 0.741 2.580 1
294.625 296.296 1.671 294.898 0.273 6.121 1
294.937 296.365 1.428 295.946 1.009 1.415 1
296.751 299.737 2.986 294.623 2.128 1.403 1
296.710 299.573 2.863 296.943 0.233 12.288 1
295.683 298.017 2.334 295.314 0.369 6.325 1
295.147 297.366 2.219 296.030 0.883 2.513 1
294.795 296.852 2.057 294.786 0.009 228.556 1
294.471 296.178 1.707 293.340 1.131 1.509 1
294.807 297.384 2.577 293.977 0.830 3.105 1
295.264 297.771 2.507 295.336 0.072 34.819 1
295.348 298.056 2.708 295.838 0.490 5.527 1
295.675 298.52 2.845 295.671 0.004 711.250 1
295.906 298.616 2.710 296.551 0.645 4.202 1
296.267 298.986 2.719 297.175 0.908 2.994 1
296.772 299.182 2.410 294.659 2.113 1.141 1
292.805 293.863 1.058 293.713 0.908 1.165 1
292.879 294.399 1.520 292.597 0.282 5.390 1
293.509 295.250 1.741 295.077 1.568 1.110 1
294.449 296.643 2.194 294.792 0.343 6.397 1
296.344 298.967 2.623 296.570 0.226 11.606 1
296.805 299.067 2.262 296.897 0.092 24.587 1
296.124 298.182 2.058 296.189 0.065 31.662 1
296.615 298.915 2.300 296.561 0.054 42.593 1
296.973 299.629 2.656 296.842 0.131 20.275 1
297.012 299.521 2.509 296.370 0.642 3.908 1
293.773 295.604 1.831 294.602 0.829 2.209 1
294.867 297.356 2.489 294.594 0.273 9.117 1
295.697 298.514 2.817 296.408 0.711 3.962 1
296.311 298.905 2.594 295.899 0.412 6.296 1
294.867 296.810 1.943 295.485 0.618 3.144 1
295.200 296.983 1.783 295.484 0.284 6.278 1
295.877 297.626 1.749 295.433 0.444 3.939 1

100.0%

Table 32: Soil cover results for near instantaneous samples with averaged ^  and 
4P1 for the 24cra bed.
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G.2 Combined and averaged surface fits with known cover fractions.

The following tables show the results of applying combined and averaged 

surface fits to  estim ate the differential coefficients, ^  and to  the mixed 

da ta  with known cover fractions. Asterisks denote when surface coefficients were 

applied to days from which they were partially derived.

t y p e i n t r c p t A  T a A  R h A  Pa &

v e g  f i t c o m b in e d  U  1 2 0 .9 7 7 3 .2 3 0 - 0 . 6 7 3 - 0 . 2 0 4 0 .9 3 2

a v e r a g e d  11 1 2 1 .4 0 6 3 .9 9 4 0 .1 6 8 - 1 . 1 1 1

s o il  f i t c o m b in e d  11 1 2 2 .6 6 0 2 .4 0 0 0 .3 4 9 - 0 . 7 9 3 0 .8 9 5

a v e r a g e d  11  1 2 2 .8 6 3 2 .4 1 4 0 .5 0 6 - 1 . 1 9 9

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 * 0 . 4 5 0 0 . 1 9 1 9 6 . 4 1 .1 9 8 - 0 . 1 6 0 1 0 0 . 0

1 2 0 8 1 2 * 0 . 7 5 8 - 0 . 7 9 2 5 5 . 6 1 .7 1 8 1 .5 2 4 5 7 . 8

1 2 0 8 1 3 0 . 7 3 5 0 . 2 8 4 7 5 . 0 1 .6 5 5 - 0 . 8 5 0 5 8 . 3

1 2 0 8 1 4 0 . 8 3 4 0 . 4 2 0 6 3 . 5 2 .0 7 1 - 0 . 8 0 3 6 7 . 3

1 2 0 8 1 5 0 .7 1 1 0 . 3 2 4 6 4 . 3 1 .9 6 8 - 0 . 8 0 8 6 4 . 3

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b ia s  C %

1 2 0 8 1 1 * 0 . 4 6 6 - 0 . 1 1 0 9 6 . 4 1 .3 9 2 0 . 3 6 5 9 6 . 4

1 2 0 8 1 2 * 0 . 7 7 0 0 . 0 6 0 9 1 . 1 1 .6 6 4 - 0 . 1 2 7 8 6 . 7

1 2 0 8 1 3 0 . 4 1 6 0 . 0 4 1 1 0 0 . 0 1 .0 2 5 - 0 . 0 9 7 1 0 0 . 0

1 2 0 8 1 4 0 . 5 6 6 0 . 0 1 0 7 6 . 9 1 . 7 1 3 - 0 . 0 7 8 7 6 . 9

1 2 0 8 1 5 0 . 4 6 7 0 . 1 1 4 8 9 . 2 1 .2 3 1 - 0 . 2 7 3 8 5 . 7

(b) Cover responses using combined surface (c) Cover responses using averaged surface fit. 
fit.

Table 33: Unmixing results using estim ated differential coefficients, ^  and 
derived from combined and averaged surface fits for dates 12/08/11 and 12/08/12 
as predictor. Known cover fractions were used.
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t y p e i n t r c p t A  T a A  R h A  Pa R 2

v e g  f i t c o m b in e d  1 2  1 3 1 .2 0 6 4 .0 8 2 - 0 . 2 0 6 - 1 . 0 0 0 0 .9 3 7

a v e r a g e d  1 2  1 3 1 .1 1 4 4 .9 3 8 - 0 . 1 9 3 - 0 . 2 8 7

s o il  f i t c o m b in e d  1 2  1 3 2 .5 9 4 2 .9 1 6 0 .5 8 7 - 1 . 2 8 4 0 .9 0 6

a v e r a g e d  1 2  1 3 2 .5 8 5 2 .9 2 0 0 .5 1 8 - 1 . 2 2 8

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b i a s  C %

1 2 0 8 1 1 0 . 8 0 1 - 0 . 3 9 7 7 8 . 6 2 . 3 4 8 1 .1 6 5 7 8 . 6

1 2 0 8 1 2 * 0 . 6 7 5 - 0 . 1 0 1 9 0 . 9 1 .6 5 0 0 . 1 7 3 9 0 . 9

1 2 0 8 1 3 * 0 . 3 5 4 0 . 0 5 6 1 0 0 . 0 0 . 8 7 7 - 0 . 1 7 4 1 0 0 . 0

1 2 0 8 1 4 0 . 8 7 9 - 0 . 3 0 7 5 5 . 8 2 . 6 2 8 0 . 8 0 4 5 5 . 8

1 2 0 8 1 5 1 .0 3 9 0 . 3 5 4 5 3 . 6 2 . 7 7 2 - 0 . 8 9 9 5 3 . 6

v e g  r e s p o n s e s o il  r e s p o n s e

d a y B td  C b ia s  C % S td  C b ia s  C %

1 2 0 8 1 1 0 . 5 8 2 - 0 . 0 3 3 1 0 0 . 0 1 .5 0 4 0 . 4 2 3 1 0 0 . 0

1 2 0 8 1 2 * 0 . 9 1 7 - 0 . 8 4 6 4 8 . 9 2 . 1 0 5 1 .6 5 6 4 8 . 9

1 2 0 8 1 3 * 0 . 5 9 4 0 .0 4 1 8 8 . 9 1 .2 6 0 - 0 . 1 9 7 9 7 . 2

1 2 0 8 1 4 0 . 8 0 8 0 . 2 4 5 6 6 . 0 1 .9 8 4 - 0 . 3 3 6 7 5 . 5

1 2 0 8 1 5 0 . 6 0 7 0 . 2 6 4 7 1 . 4 1 .6 8 2 - 0 . 6 4 3 7 1 . 4

(b) Cover responses using combined surface (c) Cover responses using averaged surface 
fit. fit.

Table 34: Unmixing results using estim ated differential coefficients, ^  and 
derived from combined and averaged surface fits for dates 12/08/12 and 12/08/13 
as predictor. Known cover fractions were used.

t y p e i n t r c p t A  T a A  R h A  Pa R 2

v e g  f i t c o m b in e d  1 3  1 4 1 .2 4 6 2 .7 9 8 0 .2 5 2 - 2 . 2 7 6 0 .8 9 2

a v e r a g e d  1 3  14 0 .9 7 9 4 .8 5 9 0 .5 4 2 - 2 . 0 9 0

s o il  f i t c o m b in e d  1 3  1 4 2 .1 3 1 1 .8 7 7 0 .2 3 5 - 2 . 1 3 1 0 .9 1 0

a v e r a g e d  1 3  14 2 .1 8 2 2 .5 5 2 0 .5 1 1 - 2 . 2 0 6

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 4 2 9 0 . 2 3 2 9 6 . 4 1 .1 5 1 - 0 . 2 6 9 1 0 0 . 0

1 2 0 8 1 2 0 . 4 5 5 - 0 . 8 0 4 6 4 . 4 1 .0 6 9 1 .5 6 4 7 1 .1

1 2 0 8 1 3 * 0 . 5 2 8 - 0 . 0 1 5 9 1 . 7 1 .1 9 1 - 0 . 0 4 6 9 4 . 4

1 2 0 8 1 4 * 0 . 6 5 9 0 . 5 2 4 6 1 . 5 1 .6 3 1 - 1 . 0 6 9 7 5 . 0

1 2 0 8 1 5 0 . 4 2 8 - 0 . 0 9 7 8 5 . 7 1 .0 1 4 0 . 3 1 1 8 5 . 7

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 6 1 9 - 0 . 3 2 4 9 2 . 6 1 .7 8 1 0 . 9 4 5 9 2 . 6

1 2 0 8 1 2 0 . 6 6 9 - 0 . 0 0 6 8 6 . 7 1 .5 1 0 - 0 . 0 1 3 8 6 . 7

1 2 0 8 1 3 * 0 . 3 9 9 - 0 . 1 4 4 9 7 . 2 1 .0 8 5 0 . 4 1 8 9 7 . 2

1 2 0 8 1 4 * 0 . 6 5 6 - 0 . 2 2 7 6 7 . 3 1 .9 7 1 0 . 6 2 0 6 7 . 3

1 2 0 8 1 5 0 . 3 8 8 0 .0 6 1 9 6 . 4 1 . 0 4 7 - 0 . 1 4 0 9 6 . 4

(b) Cover responses using combined surface (c) Cover responses using averaged surface 
fit. fit.

Table 35: Unmixing results using estim ated differential coefficients, ^  and
derived from combined and averaged surface fits for dates 12/08/13 and 12/08/14
as predictor. Known cover fractions were used.
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t y p e i n t r c p t A  Ta A  R h A  Pa R 2

v e g  f i t c o m b in e d  1 4  1 5 0 .9 9 7 3 .1 8 0 0 .2 9 8 - 1 . 9 4 4 0 . 9 3 7

a v e r a g e d  1 4  1 5 0 .8 1 0 3 .0 8 2 0 .4 1 8 - 2 . 4 5 8

s o il  f i t c o m b in e d  1 4  1 5 1 .9 9 1 1 .7 6 1 0 .1 8 8 - 2 . 2 6 9 0 .9 2 4

a v e r a g e d  1 4  1 5 2 .0 1 2 1 .0 5 3 0 .0 0 6 - 1 . 9 3 2

(a) Combined and averaged surface fit coefficients.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 .4 1 1 0 . 2 5 4 9 6 . 4 1 .0 9 8 - 0 . 3 2 7 1 0 0 . 0

1 2 0 8 1 2 0 . 4 6 8 - 0 . 7 5 2 6 8 . 9 1 .0 6 0 1 .4 3 0 7 3 . 3

1 2 0 8 1 3 0 . 5 2 9 0 . 0 4 6 9 1 . 7 1 .1 8 3 - 0 . 2 0 7 9 4 . 4

1 2 0 8 1 4 * 0 . 6 5 3 0 . 5 4 9 5 7 . 7 1 .6 0 7 - 1 . 1 3 5 7 6 . 9

1 2 0 8 1 5 * 0 . 3 6 0 - 0 . 0 0 2 1 0 0 . 0 0 . 8 4 6 0 . 0 6 5 1 0 0 . 0

(b) Cover responses using combined surface 
fit.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b i a s  C %

1 2 0 8 1 1 0 . 4 9 8 0 . 1 3 5 1 0 0 . 0 1 .4 0 5 - 0 . 3 5 7 1 0 0 . 0

1 2 0 8 1 2 1 .2 4 8 0 . 1 5 2 6 6 . 7 2 . 7 0 9 - 0 . 2 8 0 6 4 . 4

1 2 0 8 1 3 0 . 4 3 8 0 . 0 8 9 1 0 0 . 0 1 .1 4 1 - 0 . 1 8 8 1 0 0 . 0

1 2 0 8 1 4 * 0 . 5 0 4 0 . 1 8 9 9 0 . 4 1 .4 8 0 - 0 . 5 7 4 8 8 . 5

1 2 0 8 1 5 * 0 . 4 0 2 - 0 . 1 5 9 8 5 . 7 1 .0 5 0 0 . 3 9 0 8 5 . 7

(c) Cover responses using averaged surface 
fit.

Table 36: Unmixing results using estim ated differential coefficients, ^  and 
from combined and averaged surface fits for dates 12/08/14 and 12/08/15 as 
predictor. Known cover fractions were used.
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1 3  1 4  1 5 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b i a s  C %

1 2 0 8 1 1 0 . 4 6 8 - 0 . 0 9 8 9 6 . 4 1 .3 8 2 0 . 3 2 0 9 6 . 4

1 2 0 8 1 2 0 . 8 1 0 0 .0 8 1 8 6 . 7 1 .7 5 5 - 0 . 1 6 1 8 6 . 7

1 2  1 3  1 4 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b i a s  C %

1 2 0 8 1 1 0 .5 7 1 - 0 . 2 7 5 9 2 . 6 1 . 6 5 2 0 . 8 0 9 9 2 . 6

1 2 0 8 1 5 0 . 5 3 0 0 . 1 2 9 8 2 . 1 1 .4 1 1 - 0 . 3 0 6 7 8 . 6

(a) Cover responses using surface fit from av-(b) Cover responses using surface fit from av
eraged 12/08/13, 12/08/14, 12/08/15. eraged 12/08/12, 12/08/13, 12/08/14.

1 2  1 3  1 5 v e g  r e s p o n s e s o il  r e s p o n s e  '

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 4 6 4 - 0 . 0 6 4 1 0 0 . 0 1 .3 6 0 - 0 . 0 6 4 1 0 0 . 0

1 2 0 8 1 4 0 . 6 7 8 - 0 . 0 7 7 7 0 . 4 2 . 0 6 3 0 . 1 6 1 7 0 . 4

1 2 0 8 1 4 a 0 .5 7 1 0 . 1 1 1 8 3 . 7 1 .7 7 1 - 0 . 3 9 4 5 8 3 . 7

1 1  1 2  1 3 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 4 0 . 6 7 2 - 0 . 1 4 0 6 7 . 3 2 . 0 3 2 0 . 3 4 8 6 7 . 3

1 2 0 8 1 4 a 0 . 5 7 8 0 . 0 3 9 7 9 . 1 1 .7 7 9 - 0 . 1 7 8 7 9 . 1

1 2 0 8 1 5 0 . 6 5 8 0 .2 2 4 7 5 . 0 1 .7 4 2 - 0 . 5 5 5 7 5 . 0

(c) Cover responses using surface fit from av-(d) Cover responses using surface fit from aver- 
eraged 12/08/11, 12/08/12, 12/08/13. aged 12/08/12, 12/08/13, 12/08/15.

1 2  1 4  1 5 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 4 2 7 0 . 0 1 3 1 0 0 . 0 1 .2 4 2 0 . 0 0 3 1 0 0 . 0

1 2 0 8 1 3 0 .4 0 1 0 . 1 0 0 1 0 0 . 0 1 .0 0 0 - 0 . 4 0 1 1 0 0 . 0

(e) Cover responses using surface fit from aver
aged 12/08/12, 12/08/14, 12/08/15.

Table 37: Unmixing results using estim ated differential coefficients, ^  and 
from an averaged fit of three other days as predictor on the remainder days. Used 
with known cover fractions.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 4 8 3 - 0 . 1 3 1 9 6 . 4 1 .4 3 6 0 . 4 1 8 9 6 . 4

1 2 0 8 1 2 0 . 8 6 0 0 . 1 0 5 8 2 . 2 1 .8 4 7 - 0 . 2 1 2 8 0 . 0

1 2 0 8 1 3 0 . 4 1 6 0 . 0 6 5 1 0 0 . 0 1 .0 4 7 - 0 . 1 4 2 1 0 0 . 0

1 2 0 8 1 4 0 . 5 9 6 0 . 0 0 5 7 8 . 8 1 .8 1 5 - 0 . 0 3 8 7 6 . 9

1 2 0 8 1 4 a 0 . 5 2 8 0 . 1 4 8 8 6 . 0 1 .6 2 2 - 0 . 4 9 2 8 3 . 7

1 2 0 8 1 5 0 . 4 1 8 0 . 0 8 8 9 2 . 9 1 .1 1 4 - 0 . 2 0 7 9 2 . 9

Table 38: Unmixing results using estim ated differential coefficients, ^  and
from an averaged fit of four other days as predictor. Used with known cover
fractions.
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G.3 Individual day surface fits with known land cover fractions.

These tables show the results of applying individual day surface fits to 

other days.

s u r f  1 1 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 * 0 .4 2 1 0 . 0 1 0 1 0 0 . 0 1 .2 1 7 0 . 0 1 4 1 0 0 . 0

1 2 0 8 1 2 1 .0 6 3 0 . 1 7 7 7 7 . 8 2 . 2 7 7 - 0 . 3 7 0 7 7 . 8

1 2 0 8 1 3 0 . 4 7 7 - 0 . 0 3 5 1 0 0 . 0 1 .2 5 5 0 . 1 4 6 1 0 0 . 0

1 2 0 8 1 4 0 . 5 3 6 0 . 1 9 3 8 2 . 3 1 .5 9 1 - 0 . 5 9 8 8 2 . 3

1 2 0 8 1 5 0 . 5 4 9 - 0 . 0 3 2 7 8 . 6 1 .4 6 4 0 . 0 6 3 7 8 . 6

(a) Cover responses using surface fit from 
12/08/11.

s u r f  1 3 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 1 .0 3 8 - 0 . 5 6 1 7 1 . 4 2 .9 9 1 1 .6 0 6 7 1 . 4

1 2 0 8 1 2 0 . 8 6 4 - 0 . 1 1 6 8 4 . 1 2 . 1 1 7 0 . 1 5 6 8 4 . 1

1 2 0 8 1 3 * 0 . 3 2 2 - 0 . 0 0 6 1 0 0 . 0 0 .8 0 1 - 0 . 0 0 2 1 0 0 . 0

1 2 0 8 1 4 1 . 0 5 3 - 0 . 4 1 0 5 3 . 9 3 . 0 9 9 1 .0 7 3 5 4 . 9

1 2 0 8 1 5 1 .1 6 8 0 . 4 4 5 5 3 . 6 3 .1 3 1 - 1 . 1 4 7 5 3 . 6

(c) Cover responses using surface fit from 
12/08/13.

s u r f  1 2 v e g  r e s p o n s e s o i l  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 5 4 0 - 0 . 1 7 5 9 6 . 4 1 .5 8 7 0 . 5 3 3 9 6 . 4

1 2 0 8 1 2 * 0 .5 9 1 - 0 . 0 1 5 9 1 . 1 1 .3 5 5 - 0 . 0 1 1 9 1 . 1

1 2 0 8 1 3 0 .4 3 1 0 . 1 1 8 1 0 0 . 0 1 .0 8 7 - 0 . 3 4 9 1 0 0 . 0

1 2 0 8 1 4 0 . 7 3 5 - 0 . 1 7 1 6 5 . 4 2 . 2 2 3 0 . 4 2 4 6 5 . 4

1 2 0 8 1 5 0 . 9 1 5 0 . 2 6 4 5 3 . 6 2 . 4 3 0 - 0 . 6 5 5 5 3 . 6

(b) Cover responses using surface fit from 
12/08/12.

s u r f  1 4 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 5 3 3 - 0 . 1 8 4 1 0 0 . 0 1 .5 3 1 0 . 5 6 6 1 0 0 . 0

1 2 0 8 1 2 1 .1 5 5 0 . 0 5 3 7 1 .1 2 . 5 0 8 - 0 . 0 8 4 7 1 .1

1 2 0 8 1 3 0 . 5 7 0 - 0 . 2 8 3 8 3 . 3 1 .6 6 9 0 .8 3 1 8 3 . 3

1 2 0 8 1 4 * 0 .4 4 4 0 . 0 0 9 9 6 . 4 1 .3 3 7 - 0 . 0 2 0 9 6 . 4

1 2 0 8 1 5 0 . 7 6 8 - 0 . 3 1 8 7 1 . 4 1 . 9 9 2 0 . 7 6 6 7 1 . 4

(d) Cover responses using surface fit from 
12/08/14.

s u r f  15 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 6 1 2 0 . 4 4 8 9 6 . 4 1 .7 3 1 - 1 . 2 8 2 9 6 . 4

1 2 0 8 1 2 1 .4 1 1 0 . 2 4 1 6 0 . 0 3 . 0 9 3 - 0 . 4 7 8 6 0 . 0

1 2 0 8 1 3 0 . 4 8 4 0 . 4 5 7 8 3 . 3 1 . 2 2 7 - 1 . 2 1 8 8 0 . 6

1 2 0 8 1 4 0 .6 1 1 0 . 3 8 2 7 8 . 8 1 .8 2 2 - 1 . 1 7 2 7 6 . 9

1 2 0 8 1 5 * 0 . 1 2 6 - 0 . 0 0 1 1 0 0 . 0 0 . 3 4 3 0 . 0 0 0 1 0 0 . 0

(e) Cover responses using surface fit from 
12/08/15.

Table 39: Unmixing results using estim ated differential coefficients, ^  and
from individual day surface fits as predictors on other dates. Used with known
cover fractions.
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G.4 Results using averaged land cover fractions.

These tables show the results of applying averaged land cover fractions to 

different types surface fits to estim ate the differential coefficients, ^  and 

Asterisks denote when surface coefficients were applied to  days from which they 

were derived.
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s u r f  11 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 * 0 . 3 6 8 0 .2 8 1 1 0 0 . 0 0 . 9 9 0 - 0 . 3 9 9 1 0 0 . 0

1 2 0 8 1 2 0 . 4 6 3 - 0 . 6 6 0 8 2 . 2 1 .0 0 5 1 .1 9 5 8 2 . 2

1 2 0 8 1 3 0 . 5 3 9 - 0 . 0 2 5 9 1 . 7 1 .2 7 1 - 0 . 0 2 3 9 7 . 2

1 2 0 8 1 4 0 . 7 9 4 0 . 7 0 0 5 1 . 9 2 . 0 2 7 - 1 . 5 5 2 6 5 . 3

1 2 0 8 1 5 0 . 6 4 0 0 .0 7 1 7 1 . 4 1 .6 2 4 - 0 . 1 4 1 7 1 . 4

(a) Cover responses using surface fit from 
12/08/11.

s u r f  1 3 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 1 .0 4 8 - 0 . 3 2 1 7 1 . 4 2 . 7 2 8 1 .1 6 0 7 1 . 4

1 2 0 8 1 2 1 .4 9 0 - 0 . 8 2 4 8 4 . 1 3 . 6 0 5 1 .5 4 7 8 4 . 1

1 2 0 8 1 3 * 0 . 5 9 0 0 . 0 2 7 1 0 0 . 0 1 .2 1 8 - 0 . 1 5 9 1 0 0 . 0

1 2 0 8 1 4 1 .0 9 6 0 . 0 1 3 5 3 . 9 2 . 7 4 9 0 . 2 3 9 5 7 . 7

1 2 0 8 1 5 1 .0 5 4 0 . 5 2 0 5 3 . 6 2 . 9 0 8 - 1 . 3 5 7 5 3 . 6

(c) Cover responses using surface fit from 
12/08/13.

s u r f  1 2 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 5 6 2 0 . 0 2 3 1 0 0 . 0 1 .4 8 4 0 . 2 8 5 1 0 0 . 0

1 2 0 8 1 2 * 0 . 9 0 0 - 0 . 8 4 3 4 6 . 7 2 . 0 6 1 1 .6 4 9 5 1 . 1

1 2 0 8 1 3 0 . 7 1 4 0 . 1 5 9 8 0 . 6 1 .5 9 3 - 0 . 5 1 4 9 4 . 4

1 2 0 8 1 4 0 .8 7 1 0 . 3 1 1 6 1 . 5 2 . 1 5 6 - 0 . 5 1 6 6 5 . 4

1 2 0 8 1 5 0 . 8 0 6 0 . 3 4 1 6 4 . 3 2 . 2 2 9 - 0 . 8 6 0 6 0 . 7

(b) Cover responses using surface fit from 
12/08/12.

s u r f  1 4 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b i a s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 5 2 3 0 . 0 7 7 1 0 0 . 0 1 .3 7 8 0 . 1 4 6 1 0 0 . 0

1 2 0 8 1 2 0 . 5 8 5 - 0 . 7 8 2 6 6 . 7 1 .3 8 7 1 .5 0 3 6 8 . 9

1 2 0 8 1 3 0 . 5 4 9 - 0 . 2 8 1 8 8 . 8 1 .3 9 9 0 . 6 4 9 8 8 . 8

1 2 0 8 1 4 * 0 . 6 1 5 0 . 4 8 8 6 7 . 3 1 .5 2 4 - 0 . 9 7 0 8 2 . 7

1 2 0 8 1 5 0 . 8 8 6 - 0 . 2 0 7 6 7 . 9 2 . 2 0 3 0 .5 6 8 6 7 . 9

(d) Cover responses using surface fit from 
12/08/14.

s u r f  1 5 v e g  r e s p o n s e s o i l  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 5 9 5 0 . 7 4 3 8 2 . 1 1 .6 6 8 - 1 . 6 7 3 9 2 . 9

1 2 0 8 1 2 0 . 5 1 9 - 0 . 6 1 5 7 3 . 3 1 .4 5 4 1 .0 6 7 7 7 . 8

1 2 0 8 1 3 0 . 7 0 2 0 . 4 8 1 7 2 . 2 1 .6 2 8 - 1 . 3 7 9 8 0 . 6

1 2 0 8 1 4 0 . 8 4 5 0 . 9 0 6 4 8 . 1 2 . 1 9 5 - 2 . 1 1 1 5 5 . 8

1 2 0 8 1 5 * 0 . 2 4 2 0 . 1 0 1 1 0 0 . 0 0 . 5 0 9 - 0 . 2 0 3 1 0 0 . 0

(e) Cover responses using surface fit from 
120813 with averaged fraction.

Table 40: Unmixing results using estim ated differential coefficients, ^  and 
from individual day surface fits as predictors on other dates. Used with averaged 
cover fractions.
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1 3  1 4  1 5 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 4 2 5 0 . 1 6 8 1 0 0 . 0 1 .1 2 1 - 0 . 0 9 5 1 0 0 . 0

1 2 0 8 1 2 0 . 5 9 1 - 0 . 7 4 0 6 6 . 7 1 .2 9 2 1 .4 0 0 6 8 . 9

1 2  1 3  1 4 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 5 9 5 - 0 . 0 7 5 1 0 0 . 0 1 .5 5 7 0 . 5 4 8 1 0 0 . 0

1 2 0 8 1 5 0 . 4 4 4 0 . 2 1 7 8 5 . 7 1 .2 3 4 - 0 . 5 1 1 8 2 . 1

(a) Cover responses using surface fit from aver
aged 12/08/13, 12/08/14, 12/08/15.

11  1 2  1 3 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 4 0 . 7 8 9 0 . 3 4 3 6 1 . 5 1 .9 3 6 - 0 . 5 9 4 7 3 . 1

1 2 0 8 1 5 0 . 5 6 2 0 . 3 0 9 7 5 . 0 1 .5 6 3 - 0 . 7 6 1 7 5 . 0

(b) Cover responses using surface fit from aver
aged 12/08/12, 12/08/13, 12/08/14.

1 2  1 3  1 5 v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 4 7 5 0 . 1 5 0 9 6 . 4 1 .2 5 5 - 0 . 0 5 1 1 0 0 . 0

1 2 0 8 1 4 0 . 7 9 5 0 .4 1 1 6 1 . 5 1 . 9 6 2 - 0 . 7 7 7 6 1 . 5

(c) Cover responses using surface fit from av-(d) Cover responses using surface fit from av
eraged 12/08/11, 12/08/12, 12/08/13. eraged 12/08/12, 12/08/13, 12/08/15.

1 2  1 4  1 5 v e g  r e s p o n s e s o i l  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 .3 7 1 0 . 2 8 4 9 6 . 4 0 . 9 9 9 - 0 . 4 0 7 1 0 0 . 0

1 2 0 8 1 3 0 .5 7 1 0 . 1 2 1 1 0 0 . 0 1 .2 6 3 - 0 . 4 0 8 9 1 . 7

(e) Cover responses using surface fit from aver
aged 12/08/12, 12/08/14, 12/08/15.

Table 41: Unmixing results using estim ated differential coefficients, and 
from an averaged fit of three other days as predictor on the remainder (fays. Used 
with averaged cover fractions.

v e g  r e s p o n s e s o il  r e s p o n s e

d a y s t d  C b ia s  C % s t d  C b ia s  C %

1 2 0 8 1 1 0 . 4 3 4 0 . 1 3 2 9 6 . 4 1 .1 4 4 - 0 . 0 0 0 1 0 0 . 0

1 2 0 8 1 2 0 . 5 3 4 - 0 . 7 2 0 8 4 . 4 1 .1 4 2 1 .3 4 9 7 5 . 6

1 2 0 8 1 3 0 . 5 5 8 0 . 0 8 5 8 8 . 9 1 .2 4 6 - 0 . 3 1 1 4 9 4 . 4

1 2 0 8 1 4 0 . 7 4 7 0 . 4 8 9 5 9 . 6 1 .8 3 7 - 0 . 9 8 0 7 3 . 1

1 2 0 8 1 5 0 . 5 6 2 0 . 3 0 9 7 5 . 0 1 . 5 6 3 - 0 . 7 6 1 7 5 . 0

Table 42: Unmixing results using estim ated differential coefficients, and ^p , 
from an averaged fit of four other days as predictor. Used with averaged cover 
fractions.

150



H Environmental correlation graphs of for 12cm bed.
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(a) correlation with air temperature differences.
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Figure 14: Environmental correlation graphs for 12/08/08 and 12cm bed.
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dtv/df vs air tem perature difference
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Figure 15: Environmental correlation graphs for 12/08/09 and 12cm bed.
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dtv/df vs air tam paratura dlffaranca dts/df vs air tam paratura dlffaranca
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(a) correlation with air temperature differences.
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Figure 16: Environmental correlation graphs for 12/08/10 and 1 2 cm bed.
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dtv /d f vs a ir  ta m p a ra tu ra  d iffaranca
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Figure 17: Environmental correlation graphs for 12/08/16 and 12cm bed.
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dtv/df vs air tam paratura dlffaranca
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Figure 18: Environmental correlation graphs for all sample days and 1 2 cm bed.
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I Environmental correlation graphs of ~}f for 24cm bed.
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Figure 19: Environmental correlation graphs for 12/08/11 and 24cm bed.

156



dtv/df vs air tamparatura dlffaranca
40-!

y « 4 .5 5 9 4 9 x  +  2 .2 2 9 7 7  
R* m 0 .9 4 3 9 8 5

3 0 -

20-
P> 10-

0-

-10-

-20

air te m p  d ifference C

dts/df vs air tam paratura dlffaranca
2 0 - j

y -  2 .2 4 S 9 1 x  +  2 .7 6 6 9 7  
R* «  0 .8 9 8 3 7 9

1 5 -

10-

-5 -

-10

air te m p e ra tu re  d ifference  C

(a) correlation with air temperature differences.

d tv /d f vs ra la tiva  hum idity d lffaranca
4 0 - i

3 0 -

20-
♦ r'O

g  1 0 -TJ

-1 0 - y - - 2 . 5 9 2 7 4 x -  1 .1 4 4 8 7
Rs -  0 .856144

-20
-10-15 10

re la tive  hum idity d ifference

d ts/d f vs ra la tiva hum idity d iffaranca 
♦

y -  - 1 .1 9 4 7 2 x  +  1 .3 0 7 1 5  
R’ - 0 .7 1 3 0 1 7

re la tive  hum idity  d ifference

(b) correlation with relative humidity differences.

dtv /d f vs a ir  p rassu ra  d lffaranca
4 0 - j

3 0 -

20-

10 -

0-

-1 0 - y -  -8 .94527X  -  2.96545 
R* -  0.400031

-20
-2 .5 I -1.5

air p ressu re  d ifference  STP
-0.5

d ts/d f vs a ir  p ra ssu ra  d lffaranca
20-|

1 5 -

10-

-5 - -4.23388X  +  0.365738 
■ 0.351499

-10
-2.5 » -15

air p ressu re  d ifference STP
-0.5

( c )  c o r r e l a t i o n  w i t h  a i r  p r e s s u r e  d i f f e r e n c e s .

Figure 20: Environmental correlation graphs for 12/08/12 and 24cm bed.
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Figure 21: Environmental correlation graphs for 12/08/13 and 24cm bed.
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Figure 22: Environmental correlation graphs for 12/08/14 and 24cm bed.
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Figure 23: Environmental correlation graphs for 12/08/15 and 24cm bed.
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Figure 24: Environmental correlation graphs for all sample days and 24cm bed.
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J Correlation graphs for relative humidity and air temperature dif
ferences.

Correlation graphs of relative humidity and air tem peratures for all sample 

days are given below.
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Figure 25: Relative humidity difference and air tem perature difference correlation 
graphs for dates used 12cm bed.
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Figure 26: Relative humidity difference and air tem perature difference correlation 
graphs for dates used for 24cm bed.
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K Bi-variate correlation graphs of 'jjf- for 12cm  bed.
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L Principal component analysis graphs for 12cm bed.

Principal component scree and biplot graphs axe given below which show 

the contributions of the correlated variables to an orthogonal basis. Variable 

vectors are scaled because units are not the same.
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Figure 29: 7^ > 7^  principal component graphs for 12/08/08 and 1 2 cm bed.
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Figure 30: principal component graphs for 12/08/09 and 12cm bed.
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Figure 31: principal component graphs for 12/08/10 and 12cm bed.
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Figure 32: principal component graphs for 12/08/16 and 12cm bed.
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Figure 33: principal component graphs for all and 12 cm bed.
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M Principal component analysis graphs for 24cm bed.

Principal component scree and biplot graphs are given below which show 

the contributions of the correlated variables to an orthogonal basis. Variable 

vectors are scaled because units are not the same.

vegetation variance vs principal component 120811

tf)CNJ

O ||P |g

87.20% 10.80% 1.72% 0.27%

component proportion o1 variance

o
Q-

vegetation scores and loading 120811
-6 -4 -2 0 2 4

o

dpaC\J
o

o
© drh

-0.4 - 0.2 0.0

PC1

0.2

soil variance vs principal component 120811

o
c\i

o
o

i s
- ' "S3

87.66% 10.50% 1.57% 0.27%

component proportion of variance

<MO
Q .

soll scores and loading 120811
-6 -4 -2 0 2 4

c \j
o

dpa

dta
dt?co

o drh

C\J
oI

-0.4 -0.2 0.0 0.2

PC1

Figure 34: principal component graphs for 12/08/11 and 24cm bed.
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Figure 35: principal component graphs for 12/08/12 and 24cm bed.
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Figure 36: ^ ,7^  principal component graphs for 12/08/13 and 24cm bed.
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Figure 37: principal component graphs for 12/08/14 and 24cm bed.
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Figure 38: principal component graphs for 12/08/15 and 24cm bed.
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Figure 39: principal component graphs for all and 2\crn bed.
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N Differential coefficients observed over time periods.

This table shows the differential coefficients a t different time delay sam

pling.

N e a r  I n s t a n t a n e o u s  1 H o u r  D e l a y  2  H o u r  D e l a y  3  H o u r  D e l a y  4  H o u r  D e l a y

t i m e d s / d f g d v / d f g t i m e d s / d fg d v / d f g t i m e d s / d f g d v / d f g t i m e d s / d f g d v / d f g t i m e d s / d f g d v / d f g
1 4 : 0 3 - 0 . 2 8 4 - 1 . 1 2 6 1 4 : 0 3 - 2 . 5 4 4 - 1 . 5 4 4 1 4 :0 3 - 2 . 7 8 8 - 6 . 0 8 4 1 5 : 0 5 - 2 . 4 2 6 1 .2 2 4 1 6 : 0 3 0 .8 7 3 3 .1 1 6

1 5 : 0 5 1 .4 0 5 - 0 . 8 9 8 1 5 : 0 5 0 .2 5 9 6 .0 7 1 1 5 : 0 5 - 2 . 1 6 2 6 .1 3 3 1 6 : 0 3 1 .2 6 5 1 0 .8 5 9 1 7 : 0 4 3 .1 2 4 1 0 .0 7 6

1 6 : 0 3 2 .1 1 1 - 0 . 3 6 8 1 6 : 0 3 6 .4 3 6 - 0 . 3 0 6 1 6 : 0 3 4 .5 9 9 1 0 .2 8 2 1 7 : 0 4 5 .3 0 5 9 .7 3 1 1 8 : 0 2 - 0 . 1 4 1 2 .0 4 3
1 7 : 0 4 2 .4 0 1 0 .1 5 5 1 7 :0 4 3 .5 9 9 2 .3 8 0 1 7 :0 4 6 .5 8 1 2 .4 2 3 1 8 : 0 2 1 .0 8 1 - 5 . 4 8 2 1 9 :0 1 - 1 0 .3 8 4 - 9 . 0 6 9
1 8 : 0 2 0 .1 4 6 - 1 . 7 4 1 1 8 : 0 2 - 3 . 1 4 5 - 7 . 7 5 8 1 8 : 0 2 - 1 . 9 4 6 - 5 . 5 2 3 1 9 :0 1 - 1 3 .2 8 9 - 9 . 1 0 7

1 9 :0 1 - 0 . 7 0 1 - 3 . 9 5 2 1 9 :0 1 - 1 1 .3 7 7 - 5 . 5 0 5 1 9 :0 1 - 1 4 .4 0 6 - 1 1 .2 4 4

1 0 : 0 2 0 .6 2 5 - 0 . 5 5 4 1 1 : 0 2 5 .5 7 2 9 .2 5 8 1 2 :0 4 8 .7 1 9 1 4 .6 4 1 1 3 :0 1 9 .0 4 8 1 7 .1 7 2 1 4 : 0 2 1 2 .2 6 6 2 0 .7 8 4
1 1 : 0 2 1 .1 5 4 1 .1 6 7 1 2 : 0 4 4 .6 4 2 7 .1 7 3 1 3 :0 1 4 .7 7 0 9 .3 5 2 1 4 : 0 2 8 .4 1 0 1 3 . 7 1 6 1 5 : 0 2 1 1 .7 8 4 1 9 .6 7 7
1 2 : 0 4 2 .1 8 9 3 .8 2 2 1 3 :0 1 2 .1 9 4 5 .7 5 6 1 4 :0 2 5 .9 3 5 1 0 .2 8 6 1 5 : 0 2 9 .1 8 7 1 6 .0 3 1 1 6 : 0 3 1 1 .9 3 8 2 2 . 5 5 8

1 3 :0 1 1 .7 4 2 0 .0 4 4 1 4 : 0 2 5 .5 1 7 5 .0 7 8 1 5 :0 2 8 .7 6 4 1 0 .8 1 1 1 6 : 0 3 1 1 .4 9 4 1 7 .1 0 6 1 7 :0 4 1 2 .2 5 7 1 4 .2 0 7
1 4 : 0 2 0 .5 1 1 3 .5 9 4 1 5 : 0 2 4 .0 5 1 9 .8 5 2 1 6 :0 3 6 .8 2 3 1 6 .7 0 7 1 7 : 0 3 7 .5 4 1 1 3 . 5 1 2 1 8 : 0 0 2 .6 2 7 - 2 . 5 8 7
1 5 : 0 2 1 .3 9 2 - 1 . 1 3 2 1 6 : 0 3 3 .9 4 6 4 .9 8 8 1 7 :0 3 4 .5 6 7 1 .6 1 7 1 8 : 0 0 - 0 . 2 4 5 - 1 4 .2 0 7

1 6 : 0 3 1 .7 9 3 4 .5 3 6 1 7 : 0 3 2 .3 5 6 1 .1 7 8 1 8 :0 0 - 2 . 4 8 0 - 1 4 .5 3 8

1 7 : 0 3 2 .8 8 9 1 .4 8 8 1 8 : 0 0 - 2 . 0 4 9 - 1 4 .6 0 0
1 8 : 0 0 3 0 6 0 1 .7 8 1

1 0 : 0 3 0 .4 8 9 - 2 . 8 5 2 1 1 : 0 3 5 .0 4 7 7 .5 9 7 1 2 : 0 3 9 .2 6 6 1 1 .2 7 9 1 3 : 0 2 1 1 .7 7 4 1 5 .3 7 6 1 4 : 0 2 1 4 .4 1 2 2 3 . 7 0 4

1 1 : 0 3 1 .6 8 7 - 0 . 3 1 9 1 2 : 0 3 5 .9 8 5 3 .3 3 9 1 3 : 0 2 8 .3 9 4 7 .1 1 6 1 4 : 0 2 1 1 .2 1 9 1 5 .9 7 5 1 5 : 0 2 1 5 .1 6 5 1 9 .6 3 7
1 2 : 0 3 1 .3 9 8 - 1 . 6 0 2 1 3 : 0 2 3 .4 3 6 1 .7 2 7 1 4 : 0 2 6 .2 6 1 0 .3 4 6 1 5 : 0 2 1 0 .0 0 0 1 3 .8 0 8 1 6 :0 4 8 .9 9 9 1 0 .3 1 8
1 3 : 0 2 2 .3 7 3 - 1 . 6 6 8 1 4 : 0 2 5 .3 0 0 7 .2 6 9 1 5 : 0 2 9 .1 3 5 1 0 .8 1 6 : 0 4 8 .3 7 8 8 .1 5 5 1 7 : 0 3 5 .3 0 3 - 0 .4 6 1
1 4 : 0 2 2 .5 6 3 0 .9 0 5 1 5 :0 2 6 .3 5 1 4 .3 5 9 1 6 :0 4 6 .4 3 8 3 .6 7 1 1 7 : 0 3 2 .5 4 8 - 6 . 8 2 3 1 8 : 0 4 1 .1 0 4 - 8 . 2 9 8
1 5 : 0 2 1 .6 5 5 0 .9 1 5 1 6 :0 4 3 .1 5 4 1 .2 6 6 1 7 : 0 3 - 2 . 1 1 5 - 1 0 . 1 8 7 1 8 :0 4 - 3 . 2 3 0 - 1 1 .4 2 3
1 6 :0 4 2 .0 9 4 1 .7 0 4 1 7 :0 3 - 3 . 4 7 3 - 9 . 2 5 6 1 8 :0 4 - 4 . 4 6 9 - 1 0 .5 2 2

1 7 : 0 3 0 .3 7 6 0 .7 9 4 1 8 :0 4 - 0 . 9 1 5 - 1 . 2 0 0
1 8 :0 4 1 .4 2 4 1 .5 6 0

0 9 : 3 0 2 .0 5 5 0 .4 9 0 1 0 : 2 9 1 0 .5 7 5 9 .0 5 2 1 1 : 3 0 1 8 .4 7 6 1 1 .8 5 8 1 2 : 2 9 1 8 .4 3 7 1 5 .7 4 1 1 3 : 0 3 2 2 .7 5 1 2 3 . 6 6 4

1 0 : 2 9 1 .6 1 8 - 0 . 0 3 8 1 1 : 3 0 7 .0 6 5 0 .4 5 7 1 2 : 2 9 9 .3 6 2 6 .5 6 7 1 5 :0 1 8 .4 0 7 1 4 .3 7 5 1 4 : 3 0 1 2 .4 8 9 1 5 .3 2 6
1 1 : 3 0 - 0 . 4 3 8 - 2 . 7 8 2 1 2 : 2 9 3 .3 3 9 3 .8 9 3 1 4 : 0 0 5 .9 1 9 1 1 . 3 7 7 1 5 : 4 7 7 .2 8 7 7 .7 5 1 1 5 :0 1 7 .0 7 6 1 1 .8 4 5
1 2 :0 1 2 .9 3 0 0 .9 1 8 1 3 : 0 3 8 .3 0 0 1 3 .5 9 7 1 4 : 3 0 5 .6 2 7 9 .3 4 9 1 5 : 4 7 1 3 .0 0 7 1 6 .2 7 9
1 2 : 2 9 2 .2 0 0 0 .2 0 2 1 4 : 0 0 - 1 . 9 4 6 - 0 . 7 6 4 1 5 :0 1 0 .3 7 1 1 .9 4 3

1 3 : 0 3 0 .3 9 0 1 .3 4 3 1 5 :0 1 5 .1 8 6 3 .2 8 4 1 5 : 4 7 1 1 .3 1 2 8 .7 7 1
1 4 : 0 0 2 .7 9 4 0 .6 1 5 1 5 : 4 7 8 .7 5 7 5 .7 5 3

1 4 : 3 0 2 .2 0 9 - 0 . 1 2 2

1 5 :0 1 2 .0 6 2 - 0 . 3 5 2

1 5 : 4 7 3 .2 9 0 0 .6 8 8

a v g 1.577 0.212 a v g 2 .9 5 2 6 .1 1 3 a v g 4 .2 6 7 4 .5 0 9 a v g 5 .6 1 0 7 .1 7 5 a v g 8 .0 3 6 1 0 .7 1 2
m a x 3 .2 9 0 4 .5 3 6 m a x 1 0 .5 7 5 1 3 .5 9 7 m a x 1 8 .4 7 6 1 6 . 7 0 7 m a x 1 8 .4 3 7 1 7 .1 7 2 m a x 2 2 .7 5 1 2 3 . 7 0 4

m i n - 0 . 7 0 1 - 3 . 9 5 2 m i n - 1 1 .3 7 7 - 1 4 .6 m in - 1 4 .4 0 6 - 1 4 .5 3 8 m i n - 1 3 .2 8 9 - 1 4 .2 0 7 m i n - 1 0 .3 8 4 - 9 . 0 6 9

Table 43: Calculated differential coefficients from sensed covers over time.
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