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Various models of density dependence predicted different evolutionary outcomes 

for Helicoverpa zea, Diabrotica virgifera, and Ostrinia nubilalis using simple and 

complex resistance evolution models, different dose assumptions and refuge proportions. 

Increasing available refuge increased durabilities of pyramided Plant-Incorporated-

Protectants (PIPs), especially between 1-5%. For some models of density dependence 

and pests, additional refuge resulted in faster adaptation rates. Significant considerations 

should be given to a pest’s intra-specific competition in simple and complex theoretical 

models when designing insect resistance management plans. 

Life-history, refuge, and dose characteristics of a PIP had different effects on the 

adaptation rate of a generic pest of Bt, and unexpected outcomes occurred. Intrinsic 

growth rate ‘R0’ was the strongest evolutionary force, and large R0’s reduced time to 

resistance for a high dose PIP to similar levels as projected for a low dose PIP. This was 

caused by differential density dependent effects in refuge and Bt fields that elevated 

generational resistance increases beyond those from selection alone. Interactions between 

density dependence and R0 were always present and further affected the life-time of the 



 

 

PIPs. Varying ‘average dispersal distance’ did not affect evolutionary outcomes; 

however, increasing the proportion of the population engaging in dispersal often 

increased the durability of high dose PIPs. When resistance genes spread from a 

hypothetical hotspot, local resistance phenomena developed in the immediate 

surroundings. Higher growth rates lead resistance to spread faster through the landscape 

than lower rates. Increasing available refuges slowed adaptation rates to single PIPs and 

low dose pyramids, although non-linear trends were possible.  

Integrated Pest Management (IPM) practices at the onset of PIP 

commercialization slowed pest adaptation rates. For corn rootworm, interspersing non-

selective periods with IPM+IRM delayed resistance evolution, yet crop rotation was the 

best strategy to delay resistance. For bollworm inclusion of isoline corn as an IPM tool 

did not increase the life-time of the PIP. A local resistance phenomenon for rootworm 

was maintained immediately surrounding the hotspot; random selection of mitigatory 

strategies in the landscape slowed adaptation rates while mitigation in the hotspot alone 

did not. Mitigation extended the life-time of the pyramid minimally for both corn 

rootworm and bollworm.  
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LITERATURE REVIEW AND SCIENTIFIC ISSUES 

1.1 Introduction 

Over the last 50 years, scientists have explored the evolution of resistance in 

agricultural pests to insecticides in general (Georghiou and Taylor 1977, Comins 1977a, 

1977b, Tabashnik and Croft 1982, and others). Over the past 20 years in particular, 

simple population genetics models (Mallet & Porter 1992; Tabashnik 1994b; Alstad & 

Andow 1995; Onstad & Gould 1998; and others) gradually evolved into more complex 

simulation models (Caprio 1998; Caprio & Suckling 2000; Storer et al. 2003; and others) 

with the purpose of identifying Insect Resistance Management (IRM) strategies that 

aided in extending the life-time of Bacillus thuringiensis (Bt) corn and cotton Plant-

Incorporated Protectants (PIPs). The latest simulation models have gotten more 

sophisticated and include any or all of following components: population biology, 

ecology, and behavior of pest, multiple toxins, cross-resistance, agricultural practices, 

landscape crop diversity, grower behaviors, explicit space, stochasticity, and probability 

analyses (Storer 2003; Caprio et al. 2009; Caprio and Glaser 2010; Ives et al. 2011; Pan 

et al. 2011).  

In response to the Scientific Advisory Panel’s (SAP) recommendation (1998), the 

U.S. Environmental Protection Agency’s (US EPA) Office of Pesticide Programs (OPP) 

began to require that industry submit resistance risk analyses based on simulation 
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modeling with their PIP application requests. The purpose of this change in requirements 

was for biotechnology companies to demonstrate that EPA’s mandated IRM program 

would extend the durability of the PIPs beyond the time it would take for resistance to 

develop in absence of a refuge or, as of late, that a new proposed IRM strategy (i.e. 

Refuge-in-the-Bag, RIB, aka seed blend) was superior to the previously established block 

refuge paradigm.  

While a lot of effort went into developing IRM models to test new strategies 

aimed at delaying resistance, limited theoretical research has been conducted to explore 

what remedial action strategies could effectively mitigate field resistance to agricultural 

pesticides or Bt toxins (Gressel et al. 1996; Pittendrigh et al. 2004). The current remedial 

action plans “on the books” with EPA have not undergone rigorous theoretical testing 

and scientific analyses by biotechnology registrants or the Agency to assess their degree 

of success. In fact, it is questionable whether the proposed, generic strategies shared in 

remedial action plans of different major target pests would be productive mitigatory tools 

until the Agency and the registrants have agreed on more specific remedial action plans. 

Recently, scientists at the US EPA (EPA 2013) proposed to the FIFRA SAP (2014) that 

pest-specific instead of generic remedial action plans should be in place addressing 

different resistance scenarios (hotspot vs. widespread resistance) so that theoretically 

tested actions could be initiated to slow the adaptation rate in the landscape at the first 

signs of resistance. The SAP concurred with EPA on this point. 

1.2 Regulatory background and insect resistance management requirements 

All registration applications for chemical, biological, and antimicrobial pesticides 

submitted to the Office of Pesticide Programs are required to undergo a thorough risk 
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assessment analysis under the Federal Insecticide, Fungicide, and Rodenticide Act 

(FIFRA) to determine that such products would not pose an “unreasonable adverse 

effect” (or risk) to the environment and/or human health. In addition, the Agency may 

conduct a separate assessment to decide whether benefits to society outweigh the risks of 

registering a pesticide. The US EPA (2001) conducted such a benefits assessment for Bt 

PIPs targeting pests of corn (field and sweet corn), potato, and cotton. It was determined 

that for BT corn products, the major benefits were increased yields and a reduction in 

insect damage. For Bt cotton, Bt sweet corn, and Bt potatoes, the major benefits 

represented a reduction in the use of chemical insecticides yielding private benefits for 

the farmer and environmental and health benefits for society. The Agency’s thorough 

analysis provided strong support for the earlier established, yet still voluntary, IRM 

program for PIPs within OPP. Because of the tremendous benefits identified, EPA 

mandated under FIFRA that IRM became mandatory for Bt crops (despite a still lacking 

rulemaking process and official IRM guidelines). Registrants were now obligated to 

fulfill a set of requirements as part of a post-registration process called “condition of 

registration” to proactively preserve the benefits and Bt technology and provide 

supporting documentation on a yearly basis (points 5, 6, and 7 discussed below). A new 

PIP application to EPA requires that the following information and data are submitted: 1) 

a description of the target pest biology and ecology, 2) cross-resistance data for the 

proposed new toxin(s) and currently commercialized toxins, 3) dose-mortality data for 

each proposed toxin and target pest of the new PIPs, 4) a risk mitigation or IRM plan 

(e.g. the use of non-PIP refuges) supported by predictive simulation modeling and 5) a 

plan for resistance monitoring, which subsequently is conducted on an annual basis and 
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baseline susceptibility data for each toxin and target pest, 6) grower education for IRM 

requirements, 7) a compliance assurance plan to ensure grower adherence to the 

mitigation (refuge) strategy, and 8) a generic remedial action plan should field resistance 

be suspected or confirmed in a target pest. 

1.2.1 Definition of resistance 

Different definitions for resistance are used among various groups of scientists 

and EPA. When Tabashnik et al. (2008) published that resistance had evolved in 

Helicoverpa zea, the authors referred to a heritable decrease in susceptibility by the pest 

to Cry1Ac as measured by the LC50 (lethal concentration killing 50% of the population) 

or the resistance ratio (field-derived LC50 values/ LC50 of lab strains). Ratios that are 

greater than 10, implicate that a heritable decrease in susceptibility is due to resistance 

(Tabashnik 1994). This definition does not address or include the performance of 

resistant individuals in the field and is solely based on laboratory conditions and a 

statistically significant reduction in susceptibility of field populations compared to the 

laboratory reference strains (Moar et al. 2008). Tabashnik et al. (2014) also refer to 

resistance as ‘a genetically based decrease in susceptibility to a pesticide’, which goes 

back to a definition by the National Academy of Science (Brent 1986) but also to a 

definition by Food and Agriculture Organization of the United Nations (FAO 1979). The 

authors specifically express that the original definitions of resistance do not include 

whether there is an economic impact visible or not (Tabashnik et al. 2014). OPP of the 

US Environmental Protection Agency operates under a risk-benefit law (FIFRA) that 

requires the Agency to consider other non-risk factors when registering pesticides. Those 

can, for example, include economic impacts on the farming community and consumers 
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by denying the registration of a pesticide. In the case of PIPs, to declare pest resistance to 

a Bt toxin and initiate mitigation in absence of visible field effects could be interpreted as 

an undue burden on the community and contrary to the Agency’s directive. Therefore, 

EPA uses a definition of resistance for PIPs that includes ‘a heritable decrease in 

susceptibility (as measured by the EC50/LC50) leading to greater survival in offspring 

when exposed to Bt crops in the field’. Field efficacy, Bt crop failure, or economic 

impact due to resistance, are all assumed in this definition of resistance. One downfall of 

this definition is that it does not work well for non-high dose toxins, and some field 

damage should typically be expected even in absence of resistance (e.g. for H. zea and D. 

virgifera). One challenge for resistance monitoring and early detection of resistance to 

non-high dose Bt PIPs has been to differentiate between target pest populations that 

might have evolved resistance versus populations that have an inherent tolerance to a 

pesticidal trait (e.g. greater genetic diversity such as H. zea) or survive sublethal doses 

(e.g. H. zea and D. virgifera). For these types of pests, the US EPA’s definition and 

approach of detecting resistance is unlikely to be proactive, and growers, extension 

entomologists, and industry will know that resistance has developed before it will be 

confirmed in the lab. By the time resistance to a particular PIP is confirmed in, for 

example, H. zea and D. virgifera, it may be too late to successfully respond with remedial 

actions under the current regulatory process.  

H. zea and D. virgifera are agricultural pests with life-cycles and dispersal 

propensities on the opposite sides of the biological spectrum. H. zea has multiple 

generations per year (3-6) and migrates from the cotton growing regions of the United 

States into the northern Corn Belt in early summer; in early fall, reverse migrants (from 
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the Corn Belt) return to the southern regions. Some information about H. zea dispersal 

and geographic origin of populations in the United States is still unresolved to-date. D. 

virgifera has only one generation per growing season (with an obligate diapause) and 

typically engages in local dispersal, although some data suggest that pre-ovipositional 

long-distance dispersal in female corn rootworm occurs (Coats et al. 1986 or Naranjo 

1990) and could be as high as 25%. In addition, the fast spread of D. virgifera across the 

United States since the 1940s has been partially ascribed to frequent transport of 

populations by local weather systems that predominantly move from west to east (Grant 

and Seevers 1986). Additionally, an analysis of allozymes as well as nuclear and 

mitochondrial DNA revealed low levels of variation within and between populations of 

D. virgifera and suggested either high levels of gene flow or recent geographic expansion 

(Krysan et al. 1989, Szalanski et al. 1999). Conversely, H. zea and D. virgifera share that 

they both have great variability in susceptibility to the Bt toxins currently registered and 

as supported by diet bioassay data (Ali et al. 2006). This suggests that both pests may be 

naturally pre-adapted to evolve resistance to Bt toxins, especially to non-high dose PIPs. 

1.3 Documented cases of field resistance 

Documented Bt field resistance in agricultural pests has now been reported in 

South Africa, India, China, Australia, Puerto Rico, Brazil, and the continental US.  

Busseola fusca, the African stemborer was reported to have caused severe field damage 

in Monsanto’s Cry1Ab corn (MON810) during 2004 and 2005 (van Rensburg 2007). A 

closer look into grower management practices revealed that all fields had a history of 

irrigation and Bt use. Collections of 2000 diapausing larvae occurred in one of the failed 

fields, and a colony was established. An artificial infestation experiment with Cry1Ab 
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was conducted in the field during 2006 to measure survival on Bt. The experiment was 

also replicated in the greenhouse. Larvae of the control strain died after several days of 

exposure, while larvae of the field strain survived to fourth instar during the exposure 

period. The field population acquired a significantly greater body mass on Bt than the 

control population and was determined to be resistant. Two confirmed Bt resistance cases 

come from India, one for H. armigera and the other for P. gossypiella (Ranjith et al. 

2010). The authors found that individuals of H. armigera survived and reproduced 

successfully on single gene Cry1Ac cotton and pyramided Cry1Ac x Cry2Ab2 (Bollgard 

II) cotton. Unexpected survival on Bt cotton in India is not unusual and has been 

previously observed. Until 2009, however, surviving individuals were unable to 

reproduce. The resistance allele frequency in the population was not determined. In a 

second and more recent case, an analysis of five spatially distinct population samples of 

P. gossypiella (collected during 2007-2009) revealed based on LC50 comparisons that the 

pest had evolved resistance to Cry1Ac cotton by 2008 (Dhurua and Guar, 2011). By 

monitoring for resistance, Downes et al. (2010) detected (field sampling and F2-screens) 

an exponential increase in the frequency of the Cry2Ab resistance allele in H. punctigera 

from 2004 to 2009 (R2= 0.94) in Australia. The resistance allele was also detected in 

populations sampled from non-Bt cropping regions, but the observed allele frequency 

from the F2-screen was only 12% that of the populations from Bt growing areas. In 2006, 

unexpected damage from fall armyworm, Spodoptera frugiperda, in Cry1F maize was 

observed in Puerto Rico, and resistance was determined to be recessive (Storer et al. 

2010; Blanco et al. 2010). Main factors attributed to resistance evolution were island 

geography, unusually large populations in 2006, and drought conditions restricting the 
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pest’s ability to feed on alternate hosts. Dow AgroSciences and Pioneer/DuPont, who had 

commercialized Cry1F maize in Puerto Rico, indefinitely stopped Cry1F maize sales on 

the island. This action was taken even though migrants from the island (PR) to the United 

States do not overwinter (exception in Florida where not much Bt field corn is grown). 

The Cry1F resistance is fixed in the Puerto Rico population. In 2009, Gassmann et al. 

(2011) collected insect samples in response to unexpected corn rootworm damage in 

Cry3Bb1 corn in eastern Iowa. On-plant assays revealed that offspring of the collected 

individuals were resistant to the toxin and that the trait was heri. Gassman et al. further 

determined that resistance in D. virgifera virgifera was incomplete but did not report on 

progeny survival and potential costs to resistance. Zang et al. (2011) reported that 

Cry1Ac resistance has been documented in 13 populations of H. armigera in northern 

China. This is a report of decreased susceptibility to one Bt toxin that is not associated 

with control failure. According to the U.S. regulatory definition of resistance, this report 

would not be understood as a resistance case but simply as a decrease in susceptibility of 

the target pest. However, it is worth noting that China does not have a mandated IRM 

program as is standard practice in Australia and the U.S., and farmers rely solely on 

natural host plants as a source for refuge insects. This lack of an IRM program could be 

one cause for more rapid decrease in susceptibility in parts of China. In 2014, the first 

documented case of fall armyworm resistance has been documented to Cry1F maize in 

Brazil (Farias et al. 2014). Cry1F corn was commercially released in 2010. The rapid 

evolution of resistance has been attributed to lack of refuges, year-round cultivation of 

corn, and the numerous generations of fall armyworms per year. 
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1.4 Tools for delaying resistance evolution 

Resistance evolution to presently registered pesticides is an expected outcome of 

such human controlled selection experiments and particularly for PIPs because of their 

high expression levels as well as season-long expression of toxins (great selection 

factors). Hence, the question should not be whether resistance to Bt PIPs evolves but 

rather how long resistance can be delayed before the technology is rendered obsolete. In 

1998, the SAP recommended the high-dose refuge strategy to help delay the evolution of 

pest resistance to Bt PIPs; this concept was subsequently adopted by the Agency. Such a 

high-dose refuge strategy relies on the idea that all susceptible and heterozygous 

genotypes will die from exposure to the toxin in the Bt field (dominance of resistance 

gene <0.05). In theory, homozygous resistant genotypes would be the only individuals 

emerging from Bt fields. Subsequent mating with susceptible genotypes emerging from 

nearby refuge fields would produce susceptible heterozygous offspring. The SAP (1998) 

and others (Roush 1998, Tabashnik 2008) also stated that if a high-dose could not be 

achieved, then the amount of refuge needed would need to be increased in order to delay 

resistance. EPA has made a decision to registered non-high dose Bt PIPs because the 

benefits of commercializing these products and reducing chemical pesticide use both 

outweighed the risk of resistance evolution (i.e. single gene products expressing 

Cry3Bb1, mCry3A, Cry34/35 to control corn rootworm); no requirement was established, 

however, to increase the non-Bt refuge proportion to greater than the standard 20% 

largely to maintain consistency between corn refuge approaches (FIFRA requires that 

EPA consider economic and other impacts on affected communities and stakeholders). 

Another tactic for delaying resistance evolution is to pyramid two or more Bt toxins that 
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do not share cross-resistance and independently cause a high degree of mortality to 

heterozygote (70%) and susceptible genotypes (90-100%) (Roush 1998; Zhao et al. 

2003). This strategy results in ‘redundant killing’ of RS and SS individuals and kills 

homozygous individuals resistant to one of the toxins.  

The SAP (2014) recommended that using IPM upfront for less-than high dose Bt 

PIPs would extend the durability of the technology, which otherwise could be 

compromised in just a short time. No modeling research has been conducted yet to 

theoretically test this recommendation. The IPM tools listed by the SAP to delay, for 

example, corn rootworm resistance were to not use Bt corn for more than two 

consecutive years on any field, implement crop rotation with a non-host, use of pyramids, 

and introducing non-selective periods by planting non-Bt corn with soil applied 

insecticides (SAI). All these tools should be considered for implementation by individual 

growers. 

Pittendrigh et al. (2004) proposed that negative cross-resistance toxins (a mutant 

allele conferring resistance to one toxin and hyper-susceptibility to another toxin) of 

moderate toxicity and deployed in the refuge of the primary PIPs could delay resistance 

evolution. Even if the resistance gene was fairly common in the population (1%), the 

negative cross-resistance PIP contributed to a continued decrease in resistance allele 

frequency over time in their theoretical explorations. The degree of pest dispersal and 

toxicity of negative cross-resistance, however, affected how quickly the resistance allele 

frequency decreased. It is worth noting though that no such Bt toxin (or conventional 

pesticide) has been identified yet to have negative cross-resistance with each other. While 

these results are intriguing and important, at this point they remain a purely academic 
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exercise and are not helpful to the US EPA if the Agency has to consider remedial actions 

for a Bt resistance problem in the field. 

1.5 Density dependence and resistance evolution 

Scramble and contest competition are two intra-specific interactions that have 

diametrically opposing mechanisms of population regulation.  Nicholson (1954) coined 

these terms and described the scramble competition as a condition where all individuals 

in the population have access to a resource and survival is 100% until the resource is 

exhausted. In contest competition, the winner ‘takes all’, and the remaining individuals 

die. Over-compensation and under-compensation describe the “transitional space” 

between these two extreme forms of density dependence. 

Comins underlined the importance of including density dependent interactions in 

insect resistance management (IRM) models when pest dispersal was considered (1977a 

and 1977b). He demonstrated how the influx of susceptible migrants from non-pesticide 

treated areas could slow resistance evolution if the resistance gene was sufficiently 

recessive - this is analogous to the concept of the “high-dose+refuge” paradigm. Early 

insecticide applications favored the delay of resistance evolution, and a greater dose had 

variable effects depending on the type of density dependence modeled. An increased 

population suppression with perfect density dependence (contest competition) reduced 

the time to resistance but combined with under-compensation (slightly less stringent 

conditions than contest competition), the pattern was reversed and time to resistance 

increased (Comins 1977a). 

Not until the 1980s was Comins’ recommendation considered in theoretical 

modeling and density dependence included to assess resistance evolution to pesticides 
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(Tabashnik and Croft, 1982; Caprio and Tabashnik 1992; Alstad and Andow 1995; 

Onstad et al. 2001; and Ives and Andow 2002). Despite Comins’ abundant theoretical 

work supporting the importance of including intra-specific competition for a shared 

resource in IRM models, there are still verbal disagreements among scientists today over 

the importance of density dependence in regard to resistance evolution with pesticide 

applications. 

1.6 Unexplored factors potentially affecting durability of PIPs 

Pests of economic significance typically exhibit high intrinsic net growth rates. 

No specific threshold value has been proposed in the literature for when a species 

becomes a pest, but Conway (1979) discussed that economic pests could be characterized 

as r-selected species with great fecundity (e.g. black cutworm, fecundity = 1500 eggs per 

female) and short generation times (1-2 weeks to 1-2 months). He speculated that the 

majority of pests in temperate regions were likely r-selected species. Hence, the effect of 

increased growth rates on the life-time of pesticides should be evaluated. A preliminary 

analysis has previously been conducted (Caprio and Martinez 2012) and revealed that a 

high dose PIP lost 30% of its durability if the pest had a high growth rate. A thorough 

analysis is needed to evaluate effects of growth rates on single and dual gene PIPs with 

high and low dose expressions. Another missing link is the exploration of other life-

history characteristics (such as for example dispersal and density dependence) and their 

effects on the effectiveness of current IRM strategies for Bt crops.  

Different IRM strategies, such as RIBs and block refuges, have shown to predict 

variable durabilities for the same type of Bt PIP (Tabashnik 1994; Caprio and Glaser 

2010; Pan et al. 2011; and others). In some instances blocks have predicted to increase 
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durability of PIPs; in other cases, RIB strategies were hailed as the best resistance 

management tool to delay resistance evolution, especially in the face of grower non-

compliance with refuge requirements. No integrated theoretical analysis has been 

published yet to explore joint effects and interactions between growth rates, density 

dependence, dispersal distance and proportion, dose of toxin, and IRM strategies on the 

estimated life-time of a PIP product (single and dual gene). The results of such an 

analysis would need to be validated by empirical research in the field. 

1.7 Remediation of resistance 

General remedial action plans for PIPs have been submitted by Bt technology 

providers to the EPA and are all conceptually similar. These are in place for the purpose 

of responding quickly once pest resistance in Bt corn and cotton has been confirmed. The 

plans consist of the following mitigation activities: instruct customers to use alternate 

control measures such as crop residue incorporation after harvest and conventional 

pesticide use. Stop sales may be initiated EPA if resistance is confirmed. In the case of 

confirmed resistance, EPA and the technology providers develop a specific and long-term 

mitigation plan for the affected area(s).  

To this date, industry has not provided and the EPA has not requested a scientific 

rationale or a science based analysis for the current general remedial action plans on-file 

with the Agency to demonstrate that their proposed mitigatory steps had the potential to 

slow adaptation rates or geographically containing resistance. It is proposed here that 

remediation plans should undergo scientific scrutiny (much like IRM plans) and be 

subjected to simulation modeling to assess whether intended objectives and goals are 

feasible and achievable. In addition, the approaches to confirm resistance (diet bioassays 
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in general) and definitions of resistance outlined in EPA’s regulatory documents are not 

proactive enough for low dose toxins, so that field resistance would likely be widespread 

before resistance could ever (if at all) be confirmed (EPA 2013). It is doubtful that 

remediation would ever be initiated under the current regulatory program for these types 

of Bt PIPs. Meanwhile, on-plant assays have been developed for corn rootworm 

(Nowatzki et al. 2008, Gassmann et al. 2011), which provide greater sensitivity than diet 

bioassays and allow confirming resistance within a year. The EPA is currently in the 

process of making changes to the resistance monitoring program of corn rootworm to 

incorporate a more proactive approach (EPA 2013) including on-plant assays and 

changes to the annual resistance monitoring (and more). In the U.S., no remedial action 

plan has been triggered yet, though it has been known since 2011 that corn rootworm 

have evolved resistance to Cry3Bb1 and that cross-resistance is exhibited with mCry3A 

(Gassmann et al. 2014).  

For extension entomologists and biotechnology providers, the challenge will be to 

detect pest resistance early in cases of localized phenomena. If this can be accomplished, 

then the implementation of a remedial action plan in areas of documented resistance may 

have a greater probability of success. This brings up the need to clarify what is meant by 

success. I suspect it is unlikely that even quick remediation would contain resistance in a 

hotspot if the pest disperses by flight and/or wind currents. Some resistant individuals are 

likely to always escape, even with the most efficacious chemicals since insects typically 

emerge over a period of time and insecticide applications must follow application 

intervals prescribed on the EPA approved label. Rapid mitigation response in reaction to 

a visibly detected resistance phenomenon can result in population suppression in a 
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hotspot, however, but by itself will not reduce the resistance allele frequency. A faster 

rather than delayed mitigatory response should minimize the subsequent escape of 

resistant migrants and the effect of the resistance spread in the surrounding regions. 

Hence, population suppression with various IPM approaches can be expected to slow the 

adaptation process in the landscape, but this needs to be tested and the best available tools 

evaluated. The timing of detection and successful population suppression in hotspots will 

depend to a great degree on efficient communication between scouting experts, extension 

entomologists, industry, and EPA but also on the lifecycle and mobility of the pest. 

1.8 Research questions 

This research focused on three pests of concern of which two have very distinct 

dispersal propensities as larvae as well as adults (H. zea and D. virgifera) and for which 

there are currently no high dose single toxins commercially available. The third 

agricultural pest, Ostrinia nubilalis, has a dispersal behavior that is intermediate to the 

other two pests, and contrary to H. zea and D. virgifera, high-dose single toxins are 

available for control. The first aspect of my research explored whether the same density 

dependent assumptions for the above mentioned pests of Bt (H. zea, D. virgifera, and O. 

nubilalis) could elicit non-uniform effects on time to resistance in theoretical models 

(spatial and non-spatial) when the proportions of refuge was varied. I will discuss which 

form of density dependence is most appropriate for each of the three pests. Second, using 

a hypothetical, generic, diploid arthropod pest of Bt with sexual reproduction, I explored 

effects and interactions between life-history characteristics, IRM strategies, and dose of 

toxin on time to resistance to a single Bt PIP with a spatially explicit model. In addition, I 

investigated the spread of the resistance gene from a hotspot one and three generations 
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after resistance was first visually detected to simulate a delay in response time based on 

the current EPA process of confirming resistance before remedial action is trigger. For 

the generic pest of Bt, I examined for the various life-history parameters, refuge 

configurations, and dose of PIP whether increasing refuge to 50% could slow the spread 

of resistance across the landscape, as was previously suggested (Tabashnik & Gould 

2012, Andow et al. 2014). Since this work was conducted with a single PIP, I included 

separate analyses for a dual gene PIP when interesting patterns became apparent in the 

single PIP analyses. Lastly, this research provides a scientific approach to testing 

remedial action strategies for resistance in corn rootworm and bollworm and Integrated 

Pest Management (IPM) strategies that prolong the life-time of either compromised or 

newly commercialized Bt PIPs. First, I explored what specific IPM actions could prolong 

the life-time of a newly commercialized, low dose pyramid for a corn rootworm and 

bollworm scenario and what proportion of IPM participation was needed to significantly 

extend the durability of the Bt pyramid compared to “no action” (IRM only). Second, I 

investigated what individual remedial actions would be most effective to reduce the 

adaptation rate in both pests, how much more durability could be gained from the second 

gene in the pyramid with one gene compromised (50% resistance) under different 

mitigatory response times and mitigation participation percentages. I further explored 

how the resistance allele at one locus in the pyramided PIP spread through the landscape 

assuming conservative pest dispersal propensities. Ultimately, this research will make 

recommendations to the US EPA how the current resistance management and remedial 

action plans could be improved. The last part of this theoretical work will be in direct 
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contrast to current approach (no theoretical testing of proposed remedial actions) and 

represents a paradigm shift. 
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CHAPTER II 

EFFECTS OF VARIOUS MATHEMATICAL MODELS OF DENSITY-DEPENDENCE 

 ON EVOLUTION OF RESISTANCE TO PLANT-INCORPORATED PROTECTANTS 

 WITHIN THE CONTEXT OF STOCHASTIC AND SPATIALLY IMPLICIT AND 

 SPATIALLY EXPLICIT MODELS OF POPULATION GENETICS  

2.1 Abstract 

Comins (1977a, 1977b) demonstrated the importance of including density 

dependent interactions in theoretical models when predicting evolutionary outcomes for 

insect resistance to conventional pesticides. In the past couple of decades, population 

regulation has also been more frequently included in IRM models for Bt Plant-

Incorporated Protectants (PIPs). However, no analysis has been conducted yet to 

determine whether evolutionary outcomes are affected by different assumptions of 

density dependence and various refuge proportions in simple theoretical models. Here I 

showed that various mathematical models of density dependence could result in 

significantly different evolutionary outcomes with simple and complex IRM models for 

three pests of Bt corn, namely, Helicoverpa zea, Diabrotica virgifera, and Ostrinia 

nubilalis, when dose assumptions and the proportion of non-Bt refuge were varied. 

Typically, increasing refuge proportion increased the durability of both low dose and 

high dose PIPs especially between 1-5% refuge proportions. For some models of density 

dependence and for some pests, however, increasing refuge proportion resulted in lower 
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durability estimates. In these cases, the “high dose + refuge” paradigm failed to function 

as expected.  

I report that spatial models incorporating various refuge proportions, dispersal, 

and models of density dependence generally support results obtained with the simple 

models. But some deviations were observed. For example, spatial models tended to 

estimate greater durability than non-spatial models, while non-spatial models tended to 

predict greater durability gains between refuge increases tested here. I found that 

increasing dispersal distance increased the rate of adaption for H. zea and D. virgifera. In 

contrast, for O. nubilalis, varying dispersal distance did not lead to significant differences 

in durability for the pyramid. I recommend that significant consideration be given to a 

pest’s intra-specific competition in both simple and complex theoretical models when the 

aim is to design insect resistance management plans to extend the durability of Bt 

technologies. 

2.2 Introduction 

The idea of population regulation by density-dependent mechanisms was publicly 

formulated by Nicholson (1933) and spurred debates over its applicability in natural 

systems for many decades. In 1974, May introduced the importance of various 

mathematical assumptions of density dependence in theoretical models that resulted in 

drastically different population dynamics for organisms with discrete, non-overlapping 

generations (May 1974). As a result, a wave of ecological research followed to quantify 

density dependent relationships in natural populations. Arguments over the relevance of 

density dependence as a population regulating mechanism continued well into the 1990s 

at which point ecologists seemed to converge on a general agreement: intra-specific 
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density dependence was an intrinsic part of population regulation, and a population 

equilibrium could best be described as “a stationary probability distribution of population 

density” (Turchin 1994) or a “stochastic equilibrium probability distribution” (May 

1973). 

Although Comins underlined the importance of including density dependence in 

insect resistance management (IRM) models when pest dispersal was considered (1977a), 

when evaluating cost to pesticide resistance and effects on evolution (1977b and 1979), 

and when using multiple toxin tactics to delay resistance evolution to conventional 

pesticides (1986), many IRM scientists still did not include density dependent 

interactions in their resistance models (but see Tabashnik and Croft 1982, Caprio and 

Tabashnik 1992). When IRM models were first developed for Bacillus thuringiensis (Bt) 

Plant-Incorporated Protectant (PIP) corn to explore options for managing the evolution of 

resistance, density dependence was not included (Mallet & Porter 1992; Tabashnik 1994; 

Roush 1998, and Onstad & Gould 1998). The prevailing assumption appeared to be that 

density dependent factors would be unimportant to the overall evolutionary process 

during low population densities, especially shortly after pesticide exposure.  

Tabashnik and Croft (1982) and Caprio and Tabashnik (1992) were among the 

first to adopt Comins’ premise that density dependence played an important role in the 

evolutionary process of adaptation to pesticides. Alstad and Andow (1995), Onstad et al. 

(2001), and Ives and Andow (2002) extended this premise to PIP IRM models. Onstad et 

al. (2001) derived their model for density dependence by fitting an equation to data 

obtained from three field studies; and Ives and Andow (2002) used the Hassell equation 

(1985). Though Ives et al. (2011) stated that the exact nature of mathematical algorithms 



 

26 

underlying density dependent effects was unimportant in simple insect resistance 

management models and used the expression 1 (1 + 𝑥)⁄  to regulate population density (x 

being the total number of survivors in a field), Ives (pers. com.) expressed that, in more 

complex IRM models, the type of density dependence model used may affect 

evolutionary outcomes. 

Initially, I used three simple IRM models to test the null hypothesis that there was 

no difference in expected durability with various models of density dependence (Ives et 

al. 2011). These simple models were spatially implicit in nature with no stochasticity for 

parameters except for fecundity and dominance of the resistance gene. Though I 

acknowledge that natural variability should otherwise be included in advanced modeling, 

I wanted to exclude any potential noise introduced by stochasticity and/or parameter 

variability that could complicate testing the proposed hypothesis and possibly confound 

results.  

I expanded on the first hypothesis by using a stochastic and spatially explicit 

stepping stone IRM model (based on the 1-field model) to determine whether dispersal 

and various mathematical assumptions of density dependence including various refuge 

percentages predicted different evolutionary outcomes (as measured by the time to 

resistance) for the same pest exposed to high dose and low dose pyramided Bt PIPs 

(ceteris paribus). Comins (1977a) showed that when dispersal occurred between treated 

and untreated populations that the level of density dependence became relevant. The 

situation in my simulations differed from that of Comins as all fields experienced a level 

of selection. Furthermore, I assessed whether results predicted with the same model of 

density dependence but using the spatial and non-spatial model varied significantly.  
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In these simulations, I used four models of density dependence: Logistic, Ricker, 

scramble competition, and contest competition; the latter two were modeled using the 

Hassell equation (1975). For corn rootworm, I also used an empirical model of density 

dependence developed by Crowder and Onstad (2005). I was interested in the question 

whether refuges could delay resistance to both high-dose as well as low dose toxins with 

different models of intra-specific density dependence. Second, I discussed which form of 

density dependence was more realistic considering information known about each pest’s 

biology. The currently registered PIPs targeting European corn borer express a high dose, 

while single and pyramided PIPs targeting corn rootworm and bollworm all express less-

than-high dose. The dual gene pyramids in my model were not representative of any 

currently commercialized Bt PIPs. Reported results should be viewed in an overall 

context, and relative differences in durability and overall trends should be more 

informative than actual numerical results. 

2.3 Materials and methods 

2.3.1 General model structure 

A two-locus, deterministic, spatially implicit and frequency-based model was 

written in Java (using NetBeans IDE 7.0.1) to explore the effects of various 

mathematical assumptions of density dependence on the resistance evolution of H. zea 

(bollworm), D. virgifera (corn rootworm), and O. nubilalis (European corn borer). The 

landscape for this spatially implicit model consisted of two compartments which together 

accounted for a 50 ha field. For corn rootworm and European corn borer, the landscape 

was occupied by continuous corn (4 million plants) consisting of 95% Bt and 5% non-Bt 

plants. For the first two generations of bollworm in spring, the landscape consisted of an 
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early natural hosts. In early summer and for generation three and four, the landscape 

consisted of continuous corn with 80% planted to Bt and 20% to non-Bt plants, and in late 

summer/early fall and for generation five and six, the landscape is divided into 80% Bt 

cotton and 20% wild host plants (natural refuge). At the beginning of each year of 

bollworm simulations, 20% of the total landscape was assigned to early natural hosts 

where the other 80% represented non-sui habitat. The plant density of the natural host 

was 1/10 that of the cultivated crops. This estimate for wild host plant density was based 

on observed numbers of bollworms during this time period (Parker 2000). I adjusted the 

plant density of the late natural hosts to include the 13% of land area covered by soybean 

in Mississippi (Gustafson et al. 2006) and then increased the natural host area by another 

10% to account for other cultivated and uncultivated wild hosts (Stadelbacher 1972, 

Stadelbacher et al. 1986, Blanco et al. 2007). The refuge percentages for the cultivated 

corn in the southern U.S. as well as the Corn Belt was concordant with EPA’s current 

block refuge requirements for pyramided PIPs (EPA 2010) and current assumptions of 

available natural refuge for Bt cotton in some areas of south. I varied refuge percentages 

between 5% and 50% for European corn borer and corn rootworm and 20% to 50% for 

bollworm, but in some cases also explored lower and higher values and effects on the 

durability of the PIPs. Refuge non-compliance by growers was not considered in these 

simulations because the main interest was to assess effects of various density-dependent 

assumptions on the durability of a hypothetical, pyramided PIP (low and high dose). 

Likewise, non-Bt expressing host plants were always available to local H. zea in spring 

(natural host system) or late summer and fall (cotton system). Here, I note that a portion 

of the Bt market has been converted over the past several years from PIPs requiring a 
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structured refuge to PIPs integrating the non-Bt seed into the seed bag (Refuge-In-The-

Bag, RIB). Nonetheless, there are still single Bt PIP products sold that require the 

planting of a separate block refuges, and there is the standing requirement in the cotton 

growing region that separate block refuges need to be planted irrespective of the type of 

PIP product planted (RIB or block).  

The simple simulation models were discrete time step models with one generation 

per year for D. virgifera, six generations per year for H. zea, and two generations per year 

for O. nubilalis. The life-cycles were simulated in discrete sub-models, which progressed 

through egg stage, larval/selection stage, density dependence, pupa stage, adult stage, 

mating, and oviposition. The models started with the first generation of eggs in spring for 

each pest. The pupa life-stage for corn rootworm was excluded in the simulations because 

survival was assumed to be close to 100% (Onstad 2006 and Onstad et al. 2006).  

In this model, as well as others (Alstad and Andow 1995, Ives et al. 2011), density 

dependence occurred post Bt selection, so refuge and Bt individuals experienced 

dissimilar levels of density dependent mortality. Specifically, lower intensity population 

regulation was experienced in Bt fields where densities were reduced by toxin or 

pesticide mortality. If density dependence occurs before Bt selection, then individuals in 

both compartments would experience a similar degree of density dependence. This is 

essentially what Onstad simulated when density dependence was calculated based on egg 

densities present per hectare (Onstad et al. 2006). Under the first scenario, durability of 

the PIP should be reduced because the effective relative refuge size is reduced. This has 

been mathematically confirmed by Friedenberg & Shoemaker (2013). Based on what is 

currently known about the three pests under investigation, it is reasonable to apply 
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density dependent mortality after Bt selection. For example, Hibbard et al. (2004) 

demonstrated that effects of density dependence did not occur until corn rootworm larvae 

had matured to late-instars. The same assumption can be made for bollworm where 

cannibalism (a form of contest competition) becomes evident mostly after the neonate 

stage and grows more predominant as larvae mature into older instars (Dial and Adler 

1990, Chilcutt 2006). Approximately 50% of neonate European corn borer disperse 

immediately after hatching (SAP 2011) and irrespective of density (Hellmich, pers. com., 

Ross and Ostlie 1990), which should reduce early effects of density dependence and 

allow for Bt mortality to occur first. 

After density dependent mortality took place, the model proceeded through the 

pupa sub-model and adult life-stage before transitioning into the mating sub model. 

Hardy-Weinberg frequencies were calculated for the eggs produced. For corn rootworm, 

where a degree of assortative mating was assumed, I assigned a fraction (k = 0.4) from 

the Bt fields to mate at random with the refuge population. In absence of any empirical 

data, I concluded that this is a best first approximation based on the limited dispersal 

reported for corn rootworm (Nowatzki et al. 2003, Caprio & Glaser 2012). Additionally, 

since I was not interested in actual years of durability predicted but rather relative 

durabilities and trends caused by different assumptions of density dependence, I had no 

concerns with the actual value assigned to assortative mating for rootworm. I intend to 

discuss the impact of non-random mating on durability by varying this fraction in the 

sensitivity analysis. A future analysis could include k in the PERT-Beta analysis to address 

the uncertainty that exists with this parameter. Typically though, I would expect a 

decrease in durability with increasingly greater non-random mating between Bt and non-
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Bt insects and in absence of sufficient immigration by susceptible insects. The remaining 

proportion, (1-k), mated at random in the Bt field. Then egg genotypic frequencies 

(weighted based on refuge and Bt adult numbers) were calculated, and eggs were 

uniformly distributed across the 50 ha landscape at the beginning of the next generation. 

After the first generation was completed, either a new year began (i.e., corn rootworm) or 

the generation counter was increased within the same year (i.e., bollworm and European 

corn borer). 

The stochastic stepping stone model consisted of a matrix of 10 x 10 fields (1 

field = 50 ha) and was essentially a replica of each species specific model with the 

addition of dispersal. Each field was identical to the one-field-landscape described in the 

simple deterministic model. The model was designed as a torus so that dispersing insects 

leaving the edge of the square landscape wrapped around to the opposite side and 

reentered a field in the landscape. Dispersal of adults was simulated before mating 

occurred and was based on a predetermined field dispersal distance. Of the fraction 

dispersing (m) one-fourth moved an assigned number of fields away from the natal field 

in each of the four cardinal directions. The assigned dispersal distances in the model did 

not represent actual distances but rather represented relative dispersal capacities of the 

three pests in relation to the landscape. Since the landscape matrix was ten fields wide, 

yet existed on a torus, the largest linear dispersal distance away from a given natal field 

was five fields. This dispersal distance was assigned to bollworm with a dispersal 

proportion of m = 50% (due to lack of empirical data, this seemed a good first 

approximation). European corn borer as assumed to disperse a shorter distance than 

bollworm and moved three fields away from the field of origin. The proportion of 
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population engaging in dispersal was also lower than that assumed for the bollworm:  m = 

30%. For corn rootworm, dispersal occurred into the adjacent four fields to simulate local 

dispersal (Nowatzki et al. 2003); and m = 30%. Post-mating, long distance dispersal of 

female corn rootworm (Coats et al. 1986; Naranjo 1992) was achieved by moving a 

fraction of eggs (mode 15%) into new fields some five fields removed from the natal site. 

A sensitivity analysis for different dispersal distances and their effect on time to 

resistance was also included. Likewise, it was explored whether different dispersal 

proportions affected time to resistance differently.  

For the stepping stone models, I add stochasticity at the beginning of each 

simulation by initializing the population size in each field with an egg number randomly 

drawn from an interval between 0 and 60,000,000. A simulation was terminated when the 

average resistance allele frequency in all fields reached 0.5 or higher. At that point, the 

number of generations and average resistance allele frequency in the matrix were 

recorded. I assumed that resistance was governed by two major resistance genes with no 

cross resistance between them (though the model was set up to evaluate cases of epistasis) 

and two alleles (R and Y for resistance and S and X for susceptibility) and three 

genotypes (RR, RS, and SS; YY, YX, and XX) at each locus. This assumption was 

reasonable for high dose toxins but could be unrealistic for less-than-high dose toxins 

where multiple genes could regulate resistance (FIFRA SAP 2009 & 2014). 

A hypothetical high dose scenario with recessive inheritance was modeled for 

both loci and all three pests, although no such pyramided PIP is currently commercialized 

or registered for H. zea and D. virgifera. Benchmark mortality rates for homozygous 

susceptible, heterozygous and homozygous resistant genotypes were 99% (wSS=0.01, 
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s=0.99), 96.92% (wRS=0.03078, h=0.021), and 0% (wRR=1.0) for homozygous susceptible, 

heterozygous, and homozygous resistant genotypes, respectively. These values simply 

provided a starting point for the proposed analyses. I was less interested in actual 

numerical estimates made by the different models and more interested in relative 

differences between various models of density dependence. Dominance, ‘h’, was varied 

from 0.01 to 0.05 in the PERT Beta analysis in this model and described the level of 

fitness for the heterozygous resistant genotype based on the fitness of the homozygous 

susceptible and resistant genotypes when exposed to the insecticidal PIPs, and referred to 

the population genetic definition given by Bourget et al. (2000). If there are no empirical 

values for dominance, but fitness values for all genotypes are known, then h can be 

calculated as follows:  

  ℎ = (𝑊𝑟𝑠 −  𝑊𝑠𝑠)/(𝑊𝑟𝑟 −  𝑊𝑠𝑠) (2.1) 

When dominance h is known (or determined, as in this model) and the 

heterozygous fitness needs to be estimated, the following formulas can be utilized:  

 Wss = 1 − s     (2.2) 

 𝑊𝑟𝑠 = (1 − s) + ℎ (𝑊𝑟𝑟 − (1 − 𝑠))     (2.3) 

 𝑊𝑟𝑟 = 1      (2.4) 

A less-than high-dose scenario was also modeled for all three pests. In this case, 

the benchmark (mean) mortality rates were 80% (wss=0.20, s=0.8), 68% (wRS=0.32, 

h=0.06), and 0% (wRR=1) for homozygous susceptible, heterozygous and homozygous 

resistant genotypes, respectively. Dominance of the low dose toxin was varied from 0.05 
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to 0.15 in the PERT Beta analysis. This upper range could have been further increased to 

0.20, but I settled on the lower value for a starting point. 

No fitness cost of resistance was assumed for any of the pests, which is the typical 

and conservative assumption in IRM risk assessments. Cost of resistance would slow the 

adaptation process in the pest in the presence of a non-Bt crop and lead to greater 

pesticide durability. There is evidence from several Bt selection studies under laboratory 

conditions that the assumption of no- cost-of-resistance could be violated in some cases 

for H. zea (Anilkumar et al. 2008) and D. virgifera (Oswald et al. 2012; Meihls et al. 

2012). Whether the genes selected under laboratory conditions could also be selected in 

the field has yet to be determined. Some evidence, however, seems to support the 

contrary, namely that resistance evolution in the field may act on different genes than 

artificial selection in the laboratory (FIFRA SAP 2009). The assumption of ‘no fitness 

cost’ in my simulations remains, for the time being, a good null hypothesis. The initial 

resistance allele frequencies (IRAF) were set to 0.005 for all pests.  

Although the theoretical model was frequency based (keeping track of genotypic 

frequencies throughout the simulations), it was possible during the density dependent 

mortality sub-routine to calculate the relative reductions in population sizes in the model 

compartments and then change the genotypic frequencies accordingly. For the spatial 

model with dispersal, I recalculated the population densities after population regulation to 

have a correct fraction of individuals dispersing. Calculating the number of individuals 

during the population regulation sub-routine and applying intra-specific density 

dependence with different models was accomplished as follows: I used the number of 

eggs (at time ‘tn’) at the start of each generation (Nt), the pest-specific, uninhibited 
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growth rate ‘R0’, and various density dependent functions of population growth to 

estimate the number of eggs that would be present at the beginning of the next generation 

(time ‘tn+1’) if no additional mortality (e.g. selection) had occurred. The projected 

number of eggs at time tn+1 ‘NextGenEggs’ was multiplied by the proportion of Bt PropBt 

and refuge PropRef and divided into the actual number of eggs predicted at time tn+1 in 

the different compartments in the landscape (BtEggs and RefugeEggs). The actual 

number of eggs was calculated based on number of adults that had survived at time tn , 

divided by two (to account for females only) and multiplied by fecundity and any 

additional pupa and adult survival (if applicable). The ratio of projected number of eggs 

and actual number of eggs provided a coefficient of population regulation (density 

dependent survival) in the refuge, ‘DDSurviv’, and in the Bt field, ‘DDBtSurviv’. The 

coefficients were multiplied by the genotypic frequencies in the Bt and refuge 

compartment and modified the gene frequencies accordingly. If the projected number of 

eggs in the next generation was greater than the predicted number of eggs during the 

current generation run, then the coefficient was set equal to one and the population 

density further increased. If the coefficient was <1, density dependent mortality took 

effect. The closer DDSurviv was to zero, the greater the population regulation effect. 

The first analysis used the logistic model (aka Verhulst-Pearl equation) and 

assumed linear (decreasing) per-capita growth rates as the population density increased. 

The following is the solution of the differential equation used to calculate density 

dependent effects for all three pests.  

 𝑁𝑒𝑥𝐺𝑒𝑛𝐸𝑔𝑔𝑠 =
𝑁𝑟𝐸𝑔𝑔𝑠

[1+
𝑁𝑟𝐸𝑔𝑔𝑠∙(𝑅0−1)

𝐾𝐸𝑔𝑔𝑠
]∙𝑅0

−1
     (2.5) 
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‘NrEggs‘is the number of eggs at the beginning of each generation and before any 

kind of mortality has been incurred. The variable ‘Ro’ is the intrinsic (uninhibited) 

growth rate of each pest (obtained from the literature), and ‘Keggs’, is the egg carrying 

capacity for a plant. For corn rootworm, the egg carrying capacity per plant was 

estimated by dividing the maximum number of adults produced per corn plant (~ 30, 

Hibbard et al. 2010) by the lower range of adults reported to emerge per plant (3-8%). 

This converted into a carrying capacity of 1100 eggs per corn plant. For bollworm (e.g. 

2.6 eggs per corn ear) and European corn borer (285.7 eggs per corn plant), the egg 

carrying capacity was obtained by dividing the number of larvae sustained per plant by 

the egg viability and larval survival.  

The second analysis used the Ricker model, which was first developed for 

estimating stock recruitment in fisheries (Ricker 1954) but has also been used to model 

density dependent growth in bacteria (Lay et al. 1998) and nematodes (Chavarria & de la 

Torre 2001). The Ricker model allowed for non-linear effects on the per-capita growth 

rate as population size increased. This model was proposed for use in species that 

exhibited some scramble competition dynamics (Brannstrom & Sumpter 2005). The 

Ricker model also represents a special case of Hassell’s discrete time (logistic) 

population model (1975). The following form of the Ricker equation was used:  

  𝑁𝑒𝑥𝑡𝐺𝑒𝑛𝐸𝑔𝑔𝑠 = 𝑁𝑟𝐸𝑔𝑔𝑠 ∙ 𝑅0
(1−

𝑁𝑟𝐸𝑔𝑔𝑠

𝐾𝑒𝑔𝑔𝑠
)     (2.6) 

The Hassell model (1975) was used to explore a gradient of effects ranging from 

contest to scramble competition. Contest and scramble competition are concepts first 

introduced by Nicholson (1954). Scramble competition implies that larvae have equal 
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access to a resource resulting in complete survival with an abrupt threshold of 100% 

mortality when the resource is exhausted. Contest competition implies that the “winner 

takes all” and has sufficient resources to survive and reproduce, while the remaining 

competitors obtain insufficient resources and die. The Hassel equation with my variable 

names is:  

 𝑁𝑒𝑥𝑡𝐺𝑒𝑛𝐸𝑔𝑔𝑠 = 𝑁𝑟𝐸𝑔𝑔𝑠 ∙ 𝑅0 ∙ (1 + 𝑎 ∙  𝑁𝑟𝐸𝑔𝑔𝑠)−𝑏     (2.7) 

The variable ‘ b’ is responsible for making the transition from scramble to contest 

competition. When 0 < b >1, the system returns to equilibrium when perturbed and models 

exclusively over-compensation. When b = 1 (and R0 >> 1), there is perfect compensation 

(contest competition). The condition where 2 ≤ b < ∞, (and R0 >> 2), under-

compensation and scramble competition take place. Since not all the growth values of the 

pests modeled here may satisfy the requirement that R0 >> 1 (for contest competition) or 

>>2 (for scramble competition), I set b to satisfy the following constraint for contest and 

scramble competition, respectively:  

 𝑏(1 − 𝑅𝑜−1/𝑏 ) = 1, 2     (2.8) 

A value for the parameter ‘a’ in the Hassell equation can be obtained at 

equilibrium assumptions with Ra, the actual, realized growth rate: Sample text after 

figure. 

 𝑅𝑎 = 𝑅𝑜(1 + 𝑎 ∙  𝑁𝑡)−𝑏 (2.9) 

At equilibrium, 𝑅𝑎 = 1, 𝑁𝑡 = 𝐾, therefore the equation simplifies to:  

 1 = 𝑅𝑜(1 + 𝑎 ∙  𝐾)−𝑏   (2.10)  
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 𝑎 ∙ 𝐾 = 𝑅𝑜
1

𝑏 − 1   (2.11)  

 𝑎 = (𝑅𝑜1/𝑏 − 1)/𝐾   (2.12) 

A fourth mathematical model of density dependence was developed by Crowder 

and Onstad (2005) and incorporated into the corn rootworm models and expanded upon. 

Their model was derived with a regression analysis based on published empirical data 

obtained from several egg infestation studies. Their equation calculated the proportion of 

survivors based on egg densities before larval selection and, therefore, applied equal 

population regulation across the field. This equation was later modified by Pan et al. 

(2011) to estimate surviving adult corn rootworm based on young larval densities that 

survived Bt exposure. Like Pan et al., I modified the Crowder-Onstad equation by 

applying density dependence to larvae in the refuge compartment and larvae that survived 

Bt exposure. Onstad et al. 2006 noted that the original equation adjusted the egg density 

per ha by m2/ha and incorporated a divisor of 10,000. Since I simulated 50 ha fields, 

during the density dependent routine, I had to adjust the larval densities in each 

compartment (PropComp, e.g., 0.05 for refuge and 0.95 for Bt, etc.) by 50*10,000.  

 𝐷𝐷𝑆𝑢𝑟𝑣𝑖𝑣 =
1

(2.59+1.29(𝑁𝑟𝐿𝑎𝑟𝑣/ (𝑃𝑟𝑜𝑝𝐶𝑜𝑚𝑝∗50∗10,000))0.88)
 (2.13) 

Figure 2.1 shows the curves for the five proposed models of density dependence 

in a non-Bt environment using the corn rootworm example and the models’ behavior 

across a range of population densities (population size is expressed as a fraction of the 

carrying capacity, N/K). The line Ln(Nt+1/K) = Ln(Nt/K) denotes the carrying capacity 

with a slope of 1, where the population proportion in the following year is always equal 

to the population proportion the prior year. The nature of Crowder-Onstad’s equation 
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applies the least amount of density dependence at high population densities (≥ K) 

compared to other models of density dependence. This becomes evident when I examine 

the slope of the density dependent curve at, for example, the carrying capacity ([0, 0] - 

the equilibrium line crosses lines of all models of DD), where its slope is the most 

positive but still less than 1 (see Figure 2.1); this model results in damped oscillations as 

the population density continues to increase. When the population size is less than K, the 

Crowder-Onstad equation applies the least amount of population regulation strength. The 

Ricker model applies the greatest degree of density dependence of all the models used 

shortly before and after the carrying capacity (but the least amount when densities are 

much less than K), and the slope of the line at the equilibrium point is the most negative. 

This type of model results in s limit cycles. The slope of the line at the equilibrium point 

for the Hassel scramble competition model is negative as well but the strength of density 

dependence is not as great as for the Ricker model; this model also results in s limit 

cycles. Hassell’s contest competition has a slightly negative slope at K and the Logistic 

model a slightly positive slope; these models also result in damped oscillations over time 

and increasing population density. 



 

40 

 

Figure 2.1 Density dependent curves for five models of population regulation in a 
non-Bt environment.  

Notes: Ln(Nt/K) denotes the fraction of the population with respect to the carrying 
capacity at time t; Ln(Nt+1/K) is the fraction of the population during the following 
generation. Ln(Nt+1/K) = Ln(Kt/K) denotes the equilibrium line, the Carrying capacity. 

2.3.2 Corn rootworm parameter assumptions 

Assortative mating was incorporated for the population of D. virgifera in a 50 ha 

landscape because of reported limited daily and intra-field movement of adult corn 

rootworm (Spencer et al. 2003; Spencer et al. 2009; but also see Caprio and Glaser 

2010). Non-random mating in this context refers to a fraction of the population emerging 

from the Bt portion of the field that randomly mated with the population emerging from 

the refuge. This fraction was a function of field size (Caprio and Glaser 2010) and set 

equal to 40% for the 50 ha fields used in the simulations. 
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Egg overwintering survival was set to 0.50 (Godfrey & Turpin 1983; Onstad et al. 

2006), and pupa and adult survival were assumed to be 1.0 (Onstad et al. 2006). The 

estimated range for egg viability was 0.029 to 0.084 and based on a multi-year field study 

(Hibbard et al. 2010). Levine et al. (1992), however, reported viability values observed in 

the lab that ranged from 0.84 to 0.92 (Hibbard et al. 2010). I set egg viability in the model 

to 0.10 to achieve an overall 4.5% recruitment of egg to adulthood. Likewise, mean larval 

survival was set to 0.90 based on back-calculations that lead to 4.5% egg survival to 

adulthood. Overall corn rootworm survival was then 0.45 and slightly higher than Onstad 

et al.’s (2006) estimate (max. 0.35 using Crower-Onstad equation). Average fecundity 

was reported as 1087 eggs oviposited in 13 clutches (Hill 1975). Therefore, the net 

multiplication rate per generation (R0 = overwintering survival x egg viability x larval 

survival x fecundity/2) in this model was 24.5, although this value was higher than the 

growth rate used by Caprio and Glaser (2010) (R0 = 11.0). In this model, the larval 

carrying capacity on a corn plant equaled the total number of adults (~30) that can be 

sustained by a plant (Hibbard et al 2004) because pupa survival was assumed to be 1.0. 

This translated into 2.4 million adults per ha and was similar to what was assumed by 

Crowder and Onstad (2005). This was also equivalent to 1000 eggs per plant assuming the 

lower range of survival (3%) or 80 million eggs per ha in our model. Given R0 =24.5, K = 

4.44 E+10 (per 50 ha), and the values for b (1.05 contest comp; 2.999 scramble comp), the 

values for ‘a’ were derived using the equation in section 2.3.1. Figure 2.2 gives the 

schematic for the flow of the model. 
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Figure 2.2 Flow chart for non-spatial corn rootworm model 

 

2.3.3 Bollworm parameter assumptions 

Random mating was assumed in each field for the entire population of H. zea 

because of its high propensity to disperse (Han & Caprio 2002, Gould et al. 2002, Sparks 
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et al. 1986). It has been observed that ovipositing females did not lay eggs in natal or 

neighboring fields but dispersed much further (Isley 1935). Random mating on the scale 

of a 50 ha field appears a defensible assumption in North America. 

An average egg viability of 0.8 on corn, 0.6 on cotton, and 0.5 on natural hosts 

was selected (Caprio et al. 2009); overwintering survival for pupae was set to 0.05 but 

has been reported as low as 0.026 (Stadelbacher & Pfrimmer 1972) . Larval survival on 

natural hosts, corn, and cotton was 0.35, 0.48, and 0.14 and was the product of young and 

mature larval survival listed in Caprio et al. (2006). Pupal and adult survival were each 

set to 0.8 in all environments (Kring et al. 1993).  

Reported average fecundity for bollworm ranges from 300 to 600 eggs/female 

(Caprio et al. 2009). In this model, I adjusted fecundity to achieve a net multiplication 

rate R0 that was reflective of values reported in the literature. For example, females 

coming off corn had a fecundity of 200 eggs per individual to achieve a rate of 24.6, 

which was close to that reported on silking corn (Caprio et al. 2006). In the cotton 

simulations, I set fecundity to 500 eggs/female to achieve an intrinsic growth rate of 13.4 

(R0 =14.2, Caprio et al. 2006); R0 for the last generation in cotton was much lower 

because of the low overwintering survival reported (R0 = 0.672). Likewise, in the natural 

host simulations, the value for fecundity was set equal to 600 eggs/female so that the 

intrinsic growth rate reached a value of 33.6. For wild hosts, Caprio et al. (2009) reported 

R0 values ranging from 44 (general mid- to late-season hosts) to 58.8 (on wild geranium). 

The calculated values for R0 were, therefore, similar or equal to what has been reported 

for bollworm in southern cropping and natural host systems. If, however, the reported R0 

numbers reported by Caprio et al. (2009) in the different cropping systems already 
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included intra-specific density dependent effects, then the H. zea growth rates used in 

these simulation analyses reported here would underestimate the actual growth rates in the 

field.  

Bollworm larval carrying capacity on corn was set to 1 larva/ear (two per plant for 

whorl stage, one per plant for silking stage) and 2 larvae for cotton and natural hosts 

because of the pest’s cannibalistic behavior (Chilcutt 2006). Anecdotal evidence might 

support a carrying capacity of up to 2 larvae per corn ear (based on exit holes observed), 

up to three and four on sorghum and possibly on cotton during high pressure situations 

(Dr. Musser, MS State, pers. com.). The carrying capacities in the model might represent 

a conservative underestimate and would keep overall population densities lower than 

under high insect pressure in the natural systems. Uncertainties about effects of carrying 

capacity was discussed in the sensitivity analysis. The values for ‘a’ were calculated using 

the respective R0’s in the different environments, adjusted values for b in contest 

competition and scramble competition simulations, as well as host specific carrying 

capacities. However, given that the R0 of the last generation bollworm was very low, I 

considered the effects of competition on in-season generations only and used the fifth 

generation b- and a-values calculated for the Hassell equation for the sixth generation. 

Figure 2.3 represents the flow of the model for bollworm.
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Figure 2.3 Flow chart for non-spatial bollworm model  
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2.3.4 European corn borer parameter assumptions 

Consensus among scientists converges on a value of >100 km long distance 

dispersal per generation for European corn borer (Bourget et al. 2000; Krumm et al. 

2008; Kimm et al. 2009; and others), although it is unknown what exact proportion of a 

European corn borer population engages in this type of movement. Short range movement 

seems to predominantly occur on the scale of several hundred meters up to a few 

kilometers as is supported by mark-release-recapture studies (Showers et al. 

2001). Adults typically move out of cornfields on a daily basis to aggregate in sites with 

more suitable microclimatic conditions. This behavior is followed by subsequent 

dispersal back into cornfields the following morning (FIFRA SAP 2011; Showers et al. 

2001) and could further support the random mating assumption made in the ECB model 

here. The random mating on the scale simulated here may be further supported by Chiang 

& Hodson (1958) and Shelton et al. (1986). 

Late-instar overwintering survival was set to 0.18, natural survival for larvae from 

egg stage to last instar was estimated at 0.077, and fecundity was 290 eggs/female 

(Onstad 1988). Survival at the egg stage was reported as high as 0.95 but was ignored 

together with pupa and adult mortality much like in Guse et al. (2002) because they were 

negligible. The carrying capacity was 22 larvae per plant for both generations of corn 

borers (Onstad 1988). The intrinsic growth rates estimated were 11.2 for the first 

generation ECB and 2.0 for the second (overwintering) generation. These values 

(especially for the second generation) likely represent an underestimate and do not 

represent a pre-Bt commercialization growth rate. Pests of economic significance 

typically have an intrinsic net growth rate that is high - although no specific lower 
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threshold value has been proposed. Conway (1979) stated, however, that economic pests 

could be characterized as r-selected species when exhibiting a high fecundity (e.g. black 

cutworm, fecundity = 1500 eggs per female) and short generation time (1-2 weeks to 1-2 

months). Given that the R0 estimate of the second generation ECB is very low, I 

considered the effects of scramble and contest competition on the in-season generation 

only and used the first generation b- and a-values calculated for the Hassell equation also 

for the second generation. Given the larval carrying capacity K on a corn plant and R0 of 

11.2, b and a for contest and scramble competition simulations were obtained following 

the previous description. (See Figure 2.4 for model flow chart of European corn borer) 
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Figure 2.4 Flow chart for non-spatial European corn borer model  
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2.3.5 Quality control in model development 

Validation of the spatially implicit and explicit models included multiple steps. In 

general, the following steps were taken for all models: division by zero was protected 

against; Hardy-Weinberg frequencies were hand-calculated and compared against values 

computed by the model; the population dynamics (without selection) were compared to 

known (published or anecdotal) dynamics in the field (Alstad & Andow 1995; Caprio et 

al. 2009, Dr. Musser, MS state, pers. com.). All spatially implicit models were run with 

selection but without density dependence to compare only the population genetics part of 

the models (Table 2.1). Keeping the genetics assumptions equal, all models predicted the 

same durability for the hypothetical dual gene PIP. With a high dose and 5% refuge, the 

estimated durability was 352 years; with a low dose and 5% refuge, the estimated 

durability was 31 years for all pests and models. 

Table 2.1 Estimated years to PIP failure with no density dependent mortality  

H. zea D. virgifera O. nubilalis 

HD Less than 
HD HD Less than HD HD Less than 

HD 
Bt/non-Bt 

95/5 
Bt/non-Bt 

95/5 
Bt/non-Bt 

95/5 
Bt/non-Bt 

95/5 
Bt/non-Bt 

95/5 
Bt/non-Bt 

95/5 

352 31 352 31 352 31 

Notes: H. zea was modeled with two extra generations/year with no Bt selection; results 
(1259 and 47 generation) were, therefore, adjusted by a factor of 4/6. 95% Bt and 5% 
non-Bt refuge was assumed. D. virgifera and O. nubilalis were modeled with 1 and 2 
generations/year, respectively 

The deterministic, spatially implicit model for Helicoverpa zea was verified by 

using toxin-specific information and effective refuge contribution of C3-plants reported 

by Gustafson et al. (2006). My simulations predicted five years of durability for a 
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Bollgard cotton equivalent PIP (using Logistic model of density dependence), while 

Gustafson et al. obtained six years of durability with their model. A comparison of 

outputs for high dose assumptions and various refuge proportions was also conducted 

against outputs generated by a simple population genetics model by Caprio. The overall 

trend between outputs generated by different models was comparable: at high dose, a 5% 

refuge reduced the durability of the PIP compared to a 20% refuge. The numerical values 

were lower for the bollworm model (described here) with a 5% refuge than for the Caprio 

model (Caprio and Glaser 2010), which could be used as a generic pest model. This 

difference at low refuge proportions was likely attributed to different model structures 

and complexities. At the higher refuge proportion, the numerical estimates of time to 

resistance were comparable between the two models.  

The deterministic, spatially implicit corn rootworm model was tested by 

comparing the output against that reported by Pan et al. (2011) for a single locus model 

with 20% and 5% refuge, initial resistance allele frequency of 0.005, and assuming same 

genetic parameterizations as well as reduced fecundity for susceptible genotypes (ss) 

when emerging from Cry34/35 fields. My model predicted 17 and 7 generations 

durability for 20% and 5% block refuge (fixed location), respectively, while Pan et al. 

(2011) reported 11 and 7 generations. The trend in my simple model was similar to the 

Pan et al., whose model was much more complex and which likely contributed to the 

observed differences between the two simulations with a 20% block refuge. 

The deterministic, spatially implicit model for European corn borer was compared 

to the results of Guse et al. (2002) using the same genetic and life-history information 

listed there. A main difference between the two models was that I used a specific density 
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dependent function, while Guse et al. (2002) set an upper limit to larval density per plant. 

With an initial resistance allele frequency of 10-3, a low dose PIP deployed with a 10% 

refuge, and dominant expression of the resistance allele, both models estimated 2.5 years 

until the resistance allele frequency reached 0.03 (level of resistance set by Guse et al. 

(2003)). For a high dose PIP with a 10% refuge and full recessive expression of the 

resistance allele, the estimated time to resistance in my model was 26.0 years, while Guse 

et al. reported a durability of 56 years. This difference may be attributed to how 

population regulation is dealt with in two models: in my model, strength of density 

dependence gradually increases with increasing density, and Guse et al. (2002) applied a 

cap to the number of larvae sustained by a corn plant. In the latter case, density 

dependence did not occur until the carrying capacity was reached. A better way of 

comparing the two models would be to look at the relative differences predicted by each 

for various IRM scenarios (FIFRA SAP 1998).  

2.3.6 Data Analysis 

For each pest, a comparison of means (ANOVA) was conducted to determine 

significant differences in estimated durability results obtained with different models of 

density dependence at each level of refuge percentages (5% - 50% for O. nubilalis, D. 

virgifera and 20% - 50% for H. zea), and low dose /high dose assumption (significance 

level p <0.05 (R software, version 3.0.2). Linear regression analyses were used to look 

for significant effects caused by 1) fecundity and 2) different refuge proportions on the 

durability estimates obtained with the same model of density dependence. ANOVA was 

also used to determine whether significant differences in durability occurred between 

spatial and non-spatial models. I used a PERT-Beta probability distribution for the 
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dominance values of the resistance gene at locus 1 and locus 2, and a Poisson distribution 

for fecundity values on Bt and non-Bt plants. This kind of sampling strategy generated 

variability between replicate simulations but kept the fecundity and dominance values 

constant for different generations within a simulation. The PERT- Beta distribution is 

“often used to describe the uncertainty about the probability of the occurrence of another 

event” (Vose 2001) and uses the same three parameters as the triangle distribution (min, 

mode, and max). In case of the PERT distribution, the mode is assigned a weight of four, 

while the minimum and maximum receive a weight of one. The distribution can be a 

normal but need not be so. If the mode is not centered between the minimum and 

maximum values, the distribution is skewed. In other cases, the distribution can take on 

various shapes. The parameterization of the three values is set by expert knowledge or, if 

no information is available, by best guesses. The minimum, mode, and maximum values 

for my PERT-Beta analyses and mean values for the Poisson analyses were listed in 

Figure 2.2. I ran 30 simulations for each scenario (dose, % refuge, and DD model) and 

sampled for each parameter from the appropriate distribution. The average time to 

resistance was calculated for each set of simulations.  
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Table 2.2 Parameters and their values used in PERT-Beta and Poisson distribution 

Pert-Beta Distribution Values for all Pests 

 Parameters Min Mode Max Comments 

H
ig

h 
D

os
e 

Dominance – Locus1 
0.002 0.021 0.05 N/A 

Dominance – Locus2 

Lo
w

er
 

D
os

e 

Dominance – Locus1 
0.05 0.06 0.15 N/A 

Dominance – Locus2 

Poisson Distribution 

Natural host fecundity 600 

H. zea * Corn fecundity 350 

Cotton fecundity 500 

Nat. Fecundity 1087 D. virgifera, 
Hill 1975 Bt Fecundity 1087 

Nat. Fecundity 290 O. nubilalis, 
Onstad 1988 Bt Fecundity 290 

Notes: * = values adjusted to achieve intrinsic growth rates (R0) reported by Caprio et al. 
(2009). 

2.4 Results 

2.4.1 Spatially implicit models 

2.4.1.1 H. zea 

For bollworm simulations with high dose assumptions, the durability of the dual-

gene PIP increased with increasing refuge percentage for simulations with Logistic and 

contest competition model (Table 2.3); estimated times to resistance differed significantly 

with each subsequent refuge proportion tested (R2 >0.9). For simulations with the 

scramble competition and Ricker model, durability estimates first increased up to 30% and 
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subsequently decreased at 40% refuge until they were lowest at 50% refuge for scramble 

competition and 70% for the Ricker model (R2 Ricker = 0.8179; R2 SC = 0.1774) .  

A between-density dependent model comparison showed that durabilities at 20% 

refuge were highest with the Ricker model, followed by scramble competition, contest 

competition, and finally the Logistic model (p-value <<0.05). At 30% refuge, contest and 

scramble competition estimated the highest durabilities, while the Ricker and Logistic 

model estimated lower durabilities (p-value <<0.05). At 40% and 50% refuge, the contest 

competition model predicted the greatest durability for the high dose pyramid, while the 

Ricker and scramble competition estimated lower durabilities (p-value <<0.05).  

Figures 2.5 and 2.6 show that durability increased linearly for the Ricker model 

from 1% to 10% refuge, then leveled off until a 20% and dropped continuously towards a 

60% refuge before slowly increasing again at 80% refuge. The pattern obtained with 

scramble completion followed that of the Ricker model, but durability estimates remained 

mostly unchanged between a 20% and 40% refuge before dropping off toward a 50% 

refuge. Thereafter, the durability began to slowly increase with greater refuge percentages. 

The estimates obtained with the Logistic model at the various refuge percentages 

increased mostly linearly with increasing refuge. In absence of density dependence, 

estimated durabilities followed a sigmoidal pattern with increasing refuge proportions; 

the durability increase was greatest between a 1-5% refuge, after which the rate of 

increase slowed with more available refuge. These graphs show that various models of 

density dependence can predict different evolutionary outcomes for H. zea, especially at 

greater refuge proportions when density dependent effects become more prominent 

because of greater population densities. 
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A closer look at the density dependent mortality in different cropping systems of 

my model revealed that early on, population regulation occurred in refuge corn only and 

not on Bt corn. When resistance reached higher levels (>0.3) in the population, population 

regulation occurred also in Bt corn. The whorl stage generation of bollworm experienced 

greater density dependent mortality on refuge corn than the second generation on the 

silking stage because of an influx of individuals from the early natural host system. 

Density dependent mortality did not occur on Bt cotton until r-frequencies reached higher 

levels in the population and resistant individuals became more abundant. Density 

dependent mortality was greater in the second generation of bollworm on early spring 

hosts and in the second generation of late fall hosts. Population regulation became stronger 

as the percent refuge was increased.  

For less-than-high dose assumptions, the overall durability of the two-gene PIP 

was a fraction of what was predicted for the high dose PIP with all models of density 

dependence. Each increasing step in refuge proportion lead, however, to a significantly 

greater durability for all models of population regulation. Linear regression analyses for 

percent refuge and durability informed that the percentage of variation explained for the 

response variable was very high (R2 >0.9 for four models of DD; R2 = 0.8179 for Ricker) 

(Table 2.3). The scramble competition model predicted the greatest durabilities across the 

range explored (20%-50%) (p-values <<0.05), though Figure 2.7 shows that the 

durability decreased after 50% due to greater density dependent effects. The Ricker 

model, which is a type of scramble competition, predicted the second highest durabilites 

for low dose simulations. The lowest durabilities were predicted using the Logistic model 

(p-value <<0.05); with each 10% increase in refuge, only one additional year in durability 
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was gained.  Figures 2.7 and 2.8 reinforce the message that IRM models need to include 

intra-specific forms of density dependence in order to not overestimate the projected life-

time of a PIP. 

Table 2.3 Average years to resistance for H. zea using a spatially implicit model with 
different assumptions of density dependence  

Species Dose DD 
% Bt : % Refuge 

80:20 70:30 60:40 50:50 

H. zea 

HD 

R 97.9 d 77.8 a 52.0 a 21.4 a 

L 64.0 a 80.0 a 99.0 c 115.7 c 

CC 70.6 b 90.7 b 108.7 d 130.8 d 

SC 85.6 c 89.0 b 87.7 b 59.4 b 

< HD 

R 9.0 c 10.7 c 12.1 c 13.3 c 

L 7.1 a 8.0 a 9.0 a 10.0 a 

CC 8.2 b 9.7 b 11.3 b 12.9 b 

SC 9.6 d 11.7 d 15.7 d 21.1 d 
Notes: ANOVA results are reported for between DD model comparisons at each refuge 
proportion (red letters). Mean natural life-time fecundity= 500, 350, and 500 (natural 
host, corn, and cotton, respectively); CC = contest competition, bnh = 1.05, bc = 1.1, bct = 
1.15, blnh = 1.05; SC = scramble competition, bnh = 3.0, bc = 3.4, bct = 4.6, blnh = 3.0; R0nh 
= 33.6, R0c =21.5, R0ct =13.4; HD= high dose scenario; WSS=0.01, WRS=0.03079, 
WRR=1.0, h=0.021 (mode). Less-than-high dose scenario: WSS=0.2, WRS=0.248, WRR=1.0, 
h=0.06 (mode), IRAF L1, L2= 0.005 
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Figure 2.5 Graph of durability versus refuge percentage for H. zea using the Ricker, 
Logistic, and scramble competition model (HD) 

Notes: b=2.0, as a reference, the projected durability without density dependence is 
included from 1%-80% refuge. 

 

Figure 2.6 Graph of durability versus refuge proportion (1-30%) for H. zea using the 
Ricker, Logistic, and scramble competition model (HD)  
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Figure 2.7 Graph of durability versus %refuge for H. zea using the Ricker, Logistic, 
and scramble competition (LD)  

Notes: As a reference, the projected durability without density dependence is included 
and visible from 1%-60% refuge. 
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Figure 2.8 Graph of durability versus refuge proportion (1-20%) for H. zea using the 
Ricker, Logistic, and scramble competition model (LD)   

Notes: As a reference, the projected durability without density dependence is included 
and visible from 1%-20% refuge.  

2.4.1.2 D. virgifera 

For corn rootworm simulations with a hypothetical high dose for the pyramid, the 

estimated average durability increased for four out of five models of density dependence 

(except Ricker model) as the percent refuge increased from 5% to 50% (p-values <<0.05, 

R2 >0.9) (Table 2.4, Figure 2.11). For the Ricker model, durability estimates increased 

with increasing refuge proportions up to 30%, after a 40% and 50% refuge, a decrease in 

durability was observable. For the Crowder-Onstad modified equation, the durability 

roughly doubled between 5% and 10% (from 352 generations to 735 generations); this 

represented the biggest gain in durability from increasing the refuge percentage across the 

range explored. Furthermore, the Crowder-Onstad model predicted the greatest durability 

gain at each refuge proportion compared to the other models of density dependence (P-
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value <<0.05). For the remaining models, the increase in durability was more moderate 

across the tested refuge range (exception Ricker model after 30% refuge).  

ANOVA analyses at each refuge proportion and for all models of density 

dependence, showed that at low refuge percentage (5% and 10%), there was less 

differentiation between the various models, and the average time to resistance for the 

two-gene PIP was not significantly different for three out of four models (p<0.05). The 

durability lines for the Logistic equation, scramble and contest competition in Figure 2.11 

are super-imposed indicating that the differences observed between the three models 

were minimal for D. virgifera simulations. As a reference, simulations results were 

included in Figure 2.11 where density dependence was excluded. It becomes obvious that 

the durability of PIPs is greatly overestimated without the inclusion of some population 

regulation mechanism. 

Typically, trend for density dependent mortality in the refuge across time was 

affected by the available amount of refuge (Figure 2.9). Increasing the refuge proportion 

is equivalent to increasing the growth rate of the pest. Hence, at low refuge proportions 

when there are fewer individuals present, there should be less density dependent 

mortality. The observed relationship between density dependent mortality and 

generations can be best described by a sigmoidal curve (dotted lines in Fig. 2.9). As the 

refuge increased from 10% to 20%, the curve moved upward and shifted to the left 

(population regulation occurred earlier, effects became greater and leveled off faster at a 

higher equilibrium mortality). As the refuge further increased, density dependent 

mortality began to oscillate from a 2-point cycle at 30% and 40% refuge to a four point 

cycle at 60% refuge. More available refuge meant greater fluctuations in density 
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dependence in the refuge, where at some point the population during one generation was 

reduced so greatly that the next generation experienced much lower population densities 

and population regulation. When the refuge population decreased during a particular 

year, the resistance allele frequency increased greatly the following generation because 

less refuge insects were available to mate with the resistant individuals coming off the Bt 

(data not shown).  

Scatterplots for 30 samples of refuge insect fecundity (obtained from Poisson 

distribution) versus estimated time of resistance (see Figure 2.10, SC) show that for 

simulations with 20% and 50% refuge proportion (for example), durability of the 

pyramid sharply decreased with increasing fecundity; this was observed for all models of 

density dependence. I conducted a linear regression where durability was the response 

variable and refuge fecundity and percent refuge were the explanatory variables. 

Fecundity was highly but negatively associated with durability (p-value = 2e-16), while a 

strong and positive association was detected between percent refuge and the response 

variable (R2 = 0.9693) – as previously discussed. The negative association between 

fecundity and life-time of high dose PIP was a result of greater density dependent 

mortality in the refuge compartment (decreasing susceptible pool of insects) with higher 

fecundity values that increased the adaptation rate of CRW. 

For less-than high dose scenarios predicted durability estimates were much lower 

than for high dose scenarios, irrespective of the models of density dependence used. 

Nonetheless, a similar trend was visible here in that increasing the refuge proportion 

resulted in greater durability for the pyramided PIP (R2 >0.9 for four out of five models; 

R2 = 0.789 with Ricker model). The greatest gain in durability occurred by switching from 
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a 40% to 50% refuge with Ricker, Logistic, scramble and contest competition models. At 

lower refuge percentages the gain in durability was moderate or minimal. At lowest and 

highest refuge proportions, the greatest statistical variability was observed between 

estimates obtained with different models of density dependence. With the Crowder-Onstad 

modified equation, the greatest gain in durability occurred by switching from a 40% to a 

50% refuge (23.5% increase). Typically the Crowder-Onstad modified equation estimated 

durabilities for the low dose pyramid that were approximately ≥2 times greater than 

estimates obtained with other models of density dependence.  The Ricker equation 

predicted the second greatest durability estimates at high and low refuge proportions. 

Table 2.4 Average years to resistance for D. virgifera using a spatially implicit model 
and different assumptions of density dependence 

Species Dose DD  
% Bt : % Refuge 

95:5 90:10 80:20 70:30 60:40 50:50 

CRW 

HD 

R 287.5 b 308.1 b 342.7 a 377.9 a 241.2 a 181.0 a 

L 286.9 b 302.6 ab 343.0 a 391.2 b 458.6 b 547.9 b 

CC 279.9 a 300.8 a 340.0 a 389.7 ab 452.4 b 544.6 b 

SC 288.7 b 307.5 b 343.1 a 391.0 b 451.7 b 545.0 b 

CO 352.9 c 735.6 c  883.6 b 1014.0 c 1180.8 c 1408.7 c  

< HD 

R 19.1 c 19.8 b 21.2 b 23.6 b 33.3 c 46.8 c 

L 18.9 b  19.8 b 21.5 b 23.6 b 26.5 b 30.4 b 

CC 17.0 a 18.1 a 20.1 a 22.3 a 25.3 a 29.3 a 

SC 19.0 c 19.8 b 21.2 b 23.3 b 26.1 b 30.2 b 

CO 28.9 d  36.3 c 44.2 c  53.4 c 64.7 d 79.7 d 
Notes: ANOVA results are reported for between DD model comparisons at each refuge 
proportion (red letters). CC = contest competition, b=1.05; SC = scramble competition, 
b=2.999; CO = Crowder-Onstad modified equation; Mean natural life-time fecundity= 
1087 (viable and non-viable eggs); R0= 24.5; HD= high dose scenario; WSS=0.01, 
WRS=0.03079, WRR=1.0, h=0.021 (mode); less-than-high dose scenario: WSS=0.2, 
WRS=0.248, WRR=1.0, h=0.06 (mode), IRAF L1, L2 = 0.005 



 

63 

 

Figure 2.9 Density dependent mortality vs generations of selection for CRW with 
different refuge proportions (HD)  

Notes: Ricker model was used in simulations 

 

Figure 2.10 Corn rootworm fecundity values vs. resulting durability values using 
scramble competition with a 20% and 50% refuge (HD)  

Notes: values sampled from Poisson distribution. Box plot (Q1, Q2, and Q3) and 
whiskers are displayed for both variables. 
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Figure 2.11 Graph of average durability versus % refuge for all five models of density 
dependence using a spatially implicit model for CRW (HD)  

 

2.4.1.3 O. nubilalis 

The linear regression analysis for durabilities (response variable) and refuge 

proportion (factor) identified that the variability of the response variable explained by the 

factor was greatest for contest competition and Ricker models (R2 >0.9). The R2-values 

were lower for simulations with scramble competition and Logistic models (R2 for SC = 

0.8933; R2 for Logistic = 0.8944). All results support that increasing the available refuge 

for ECB results in greater durability for the high dose pyramid (Table 2.5). 

Changing the dispersal distance from 3 fields to 5 fields did not significantly 

affect the durability of the pyramid (high and low dose assumptions, P-value >0.05). 

When decreasing the dispersal distance to 1 field, again the durability of the PIP was not 

affected (P-value >0.05). 
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In Figure 2.12, the durability estimates for the high dose pyramid obtained with 

different models of density dependence are graphed across a range of refuge proportions 

for the European corn borer. The durability of the pyramid increased rapidly from 1% to 

20%, and the observed trend follows the projected line for durability estimates when no 

density dependence is included in the simulations. Population densities were close to 

extinction for the first three refuge proportions, and therefore, density dependent 

mortality was minimal and close to zero (data not shown). The first observable difference 

in durability estimates obtained with different models of density dependence became 

evident at 30% refuge. The Ricker model predicted a greater average durability (965 

generations) at 30% than the contest competition and Logistic models (935 generations, 

926 generations, respectively) (p-value<0.05), while there was no difference compared to 

estimates obtained with scramble competition (949 generations) (p-value >0.05) ( 2.5). At 

40% and 50% refuge, the Ricker model continued to predict the greatest durabilities for 

the pyramid. Estimates obtained with the contest competition model at 40% did not differ 

from those obtained with other models of density dependence. At 50% refuge, the contest 

competition model predicted an average durability that was not statistically different from 

the estimate obtained with the Ricker model (p-value>0.05). The Logistic and scramble 

competition model predicted the lowest durabilities at 40% and 50% refuge (p-

value<0.05). 

Density dependent mortality began to oscillate for all models of population 

regulation after the refuge proportion was increased passed 20%; increasing refuge 

percentages is equivalent to an increase in R0. Figure 2.13 shows the difference in trends 

between the Ricker and Logistic model at 50% refuge for the high dose pyramid. For the 
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Ricker model, density dependent mortality took several generations more to increase to 

levels comparable to the Logistic model. The amplitude of oscillations were smaller with 

the Ricker model, and there were fewer cycles than with the Logistic model. The delay in 

population regulation is the mechanism behind the greater durability estimates observed 

with the Ricker model.  

A linear regression analysis for durability and refuge proportions (holding density 

dependent model fixed) informs that as the available refuge increased, the durability of 

the low dose pyramid increased as well. Three out of four models of density dependence 

generated R2-values >0.9; The R2-value for the analysis with scramble competition was 

0.8896. The linear regression results support that increasing refuge for ECB results in 

greater durability of low dose pyramids. 

Though there is less Bt mortality in the landscape with the low dose pyramid, 

populations are still suppressed up to a 10% refuge proportion. This is a function of the 

low overall growth rate for ECB (great overwintering mortality) in combination with the 

Bt mortality incurred. As for the low dose simulations, there is no difference between 

results obtained with various models of density dependence until the refuge proportion is 

increased to 30%. At this point, the scramble competition model predicts the lowest 

durability for the low dose pyramid (42 generations) (p-value <0.05) (Table 2.5). The 

Ricker model predicts the greatest durability (44 generations) (p-value <0.05), while 

contest and Logistics model estimate durabilities that are not statistically different from 

scramble and Ricker model (p-value>0.05). At 40% and 50% refuge, the Ricker model 

continues to predict the greatest durability for the low dose pyramid (p-value<0.5). The 

scramble and Logistics model estimate the lowest durabilities at this point. The contest 



 

67 

competition model has an intermediate durability at 40% (p-value>0.5) and, like the 

Ricker model, predicts the greatest durability at 50% refuge (p-value<0.5). 

The observed trends for density dependent mortality for low dose simulations 

were very similar to those described for high dose simulations (Figure 2.14). The main 

difference with low dose exposure was that density dependent mortality for the Ricker 

equation started out sooner but was delayed for the Logistics model. The combined effect 

was that density dependent mortality for the two models occurred around the same time 

but with slightly greater magnitudes. 

Table 2.5 Average years to resistance for O. nubilalis using a spatially implicit model 
and different assumptions of density dependence 

Species Dose DD  % Bt : % Refuge 
95:5 90:10 80:20 70:30 60:40 50:50 

ECB 

HD 

R *176.0 a *367.5 a 810.2* a 965.3 b 1108.8 b 1287.8 b 

L *176.0 a *367.5 a 808.1* a 925.9 a 1042.1 a 1189.2 a 

CC *176.0 a *367.5 a 813.1* a 934.9 ab 1066.4 ab 1249.7 b 

SC *176.0 a *367.5 a 812.6* a 949.1 ab 1047.5 a 1178.4 a 

< HD 

R *15.5 a *23.5 a 39.4 a 43.6 b 48.9 b 56.1 b 

L *15.5 a *23.5 a 38.6 a 42.1 ab 46.7 a 52.9 a 

CC *15.5 a *23.5 a 38.2 a 42.4 ab 47.8 ab 55.3 b 

SC *15.5 a *23.5 a 38.8 a 42.0 a 47.0 a 51.7 a 
Note: ANOVA results reported for DD comparisons at each refuge proportion (red 
letters). CC = contest competition; SC = scramble competition; significance level p<0.05; 
* populations suppressed; Mean fecundity= 290; intrinsic growth rate = 11.2. HD= high 
dose; WSS=0.01, WRS=0.03079, WRR=1.0, h=0.021 (mode), IRAF = 0.005.Less-than-high 
dose: WSS=0.2, WRS=0.248, WRR=1.0, h=0.06 (mode). 
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Figure 2.12 Graph of average durability versus % refuge for Ricker, Logistic, Contest 
and Scramble competition model of density dependence (HD)  

Notes: spatially implicit model used; as a reference, the projected durability without 
density dependence is included and visible from 1%-30% refuge. 

 

Figure 2.13 Graph of density dependent mortality using Ricker and Logistic models 
versus generations of ECB with 50% refuge (HD)  
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Figure 2.14 Graph of density dependent mortality using Ricker and Logistic models 
versus generations of ECB with 50% refuge (LD)  

 

2.4.2 Spatially explicit stepping stone model 

2.4.2.1 H. zea 

When dispersal distance for H. zea is reduced from five to three fields into each 

cardinal direction of the landscape, resistance evolved slower and durability of the dual-

gene PIP was extended (data not shown) (p-value <0.05). When dispersal distance was 

held constant but the rate of dispersal was increased from 10% to 90%, resistance 

typically evolved faster at lower refuge proportions (p-value < 0.05, Figure 2.15, results 

for high dose pyramid shown only). When the comparison was made with 50% dispersal 

proportion, then the difference was not statistically significant at 20-30% refuge. For low 

dose simulations, the difference in durability due to different rates of dispersal was not 

statistically significant (data not shown, P-value >0.05).   



 

70 

Average time to resistance obtained with the spatial model for H. zea showed a 

similar trend as the results obtained with the non-spatial model for all models of density 

dependence and different dose assumptions, although numerical results were greater at a 

particular refuge proportion with the spatial model (holding type of density dependence 

fixed) (see Table 2.6). A two-way ANOVA (factors: space/no space, refuge proportion) 

informed that time to resistance differed significantly between the spatial and non-spatial 

models. Interactions between the factors were significant (data not shown) for high and 

low dose simulations (p-value <0.05) (exception: Logistic model, low dose).  

For two out of four models of density dependence (high dose, there was a 

significant positive increase in durability of the pyramid when the refuge proportion was 

increased (R2 for contest competition >0.9; R2 for Log = 0.776), which matches the trend 

observed for the non-spatial model. For simulations using Ricker and scramble 

competition interactions, there was a significant and decreasing trend in durability of the 

high dose PIP with increasing refuge proportions (R2 for Ricker = 0.8179; R2 for 

scramble competition = 0.703) (Figure 2.15). For low dose simulations, the durability 

increased with increasing refuge proportions (Figure 2.16). R2-values for all linear 

regression analyses with different models of density dependence (durability ~ percent 

refuge) exceeded 0.9; the actual time to resistance between each 10% refuge increase was 

minimal though and typically around one year. 
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Table 2.6 Average years to resistance for H.zea using stepping stone model of 
dispersal 

Species Dose DD  
% Bt : % Refuge 

80:20 70:30 60:40 50:50 

H. zea 

HD 

R 87.4 c 67.8 b 35.5 a 12.4 a 
L 109.5 d 110.6 d 123.2 c 137.0 d 

CC 74.5 b 85.7 c 97.6 b 110.4 c 

SC 55.6 a 48.6 a 41.9 a 37.1 b 

< HD 

R 8.3 b 9.3 b 10.4 b 11.3 b 

L 7.8 a 8.7 a 9.0 a 9.7 a 
CC 8.7 c 9.7 a 10.6 c 11.7 c 
SC 8.7 c 9.7 c 10.8 d 11.8 d 

Note: landscape is a 10 x 10 matrix of 50 ha fields; ANOVA results are reported for 
between DD model comparisons at each refuge proportion (red letters). Adult dispersal 
(50%) is 5 fields away from natal fields in cardinal directions. CC = contest competition; 
SC = scramble competition. HD= high dose scenario; WSS=0.01, WRS=0.03079, WRR=1.0, 
h=0.021 (mode). Less-than-high dose scenario: WSS=0.2, WRS=0.248, WRR=1.0, h=0.06 
(mode), IRAF = 0.005. 

 

Figure 2.15 Relationship between different dispersal rates for H. zea and percent refuge 
using Ricker and Scramble competition models (HD)  

 



 

72 

 

Figure 2.16 Graph of time to resistance vs percent refuge for H. zea with intermediate 
dispersal (LD)  

 

2.4.2.2 D. virgifera 

For D. virgifera (as for H. zea), greater dispersal (distance) away from the natal 

field reduced the overall average durability of the PIP in the landscape (data not shown). 

But unlike for H. zea, two diametrically opposed dispersal rates (d=0.90 and d=0.10) did 

not result in different durability estimates at any of the refuge proportions tested (Figure 

2.19).  

The overall trends observed using the spatial model with different assumptions of 

density dependence were similar to those observed with the spatially implicit model 

(Table 2.4 vs. Table 2.7). All simulations including density dependent interactions 

predicted lower durability estimates than simulations excluding intra-specific mechanisms 

of competition (data not shown). Durability increased with increasing refuge proportions 
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for high dose PIPs for four of the five density dependent models (R2 >0.9). The modified 

Crowder-Onstad equation, however, resulted in a rapid increase in durability after 5% 

refuge; the durability more than doubled from 5% (352 generations) to 10% (736 

generations) and continued to increase more rapidly than predicted with other models 

tested here. The spatial model with Ricker assumptions predicted increasing durabilities 

for the high dose PIP up to a 30% refuge and decreasing durabilities thereafter (as the non-

spatial model); as refuge percentages increased further, the durability increased once 

more. A two-way ANOVA identified space as a significant factor that lead to significantly 

greater durability estimates for all spatial simulations (p-values<0.05); interactions 

between ‘space’ and refuge proportions also contributed to observed differences (holding 

density dependent fixed) (data not shown).  

A within-refuge proportion ANOVA identified that the Crowder-Onstad model 

estimated durability results that differed from those obtained with other models at five out 

of six refuge proportions reported here (p<<0.05). The greatest durability gain for the 

remaining models occurred by switching from 1% (176 generations) to 5% refuge (346-

350 generations), which represented approximately a 2-fold increase in durability. Above 

5% refuge, density dependent effects reduced further durability gains, and the durability 

estimates increased more slowly. There was no significant difference between durability 

estimates obtained with different models at 1% refuge (p>0.05) (Figure 2.17) because 

intra-specific interactions were minimal with low population densities. As eluded to 

earlier, the Ricker model predicted a non-linear trend in durability for the high dose PIP 

with increasing refuge percentages. As the refuge proportion increased to 40 and 50%, the 

durability decreases rapidly from 442 generations (at 30% refuge) to 261.8 generations (at 
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40% refuge) and 213.6 generations (at 50%); this was approximately a 40% and 52% loss 

in durability, respectively, compared to the estimated durability predicted at 30% refuge. 

The Ricker and scramble competition model describe similar intra-specific competition 

dynamics, but here they resulted in very different durability estimates after 30% refuge 

(Figure 2.18). This was likely caused by stronger density-dependent interactions with the 

Ricker model when the carrying capacity was exceeded as the refuge proportion increased. 

Density-dependent interactions around the carrying capacity are weaker with Hassell’s 

equation for scramble competition, which is visible in Figure 2.1, and therefore, reduction 

in durability from density dependent interactions should be comparatively lower. 

Low dose durability estimates obtained with the spatial and non-spatial model 

were very similar and did not differ significantly across most refuge proportions explored 

(two-way ANOVA). Typically at larger refuge proportions, the differences observed 

between spatial and non-spatial results were more likely to be significant than at lower 

refuge proportions where density dependence was not as predominant (data not shown). 

Increasing the refuge proportions for the low dose pyramid resulted in a significant 

increase in durability for all models of density dependence (R2 for Ricker = 0.688; all 

others R2 >0.9). The increase in durability was low for four out of five models between 

5% and 20% refuge and was greatest between 40% and 50% refuge (Figure 2.17). This 

increase in durability was most pronounced for the Crowder-Onstad modified equation, 

Logistic and Ricker model. Overall, the Crowder-Onstad equation predicted much greater 

durabilities for the low dose pyramid than the other models of density dependence. 

Durability estimates obtained with the Logistic model decreased after 50% refuge before 

increasing once again after 60% refuge (data not shown). Scramble and contest 
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competition simulations resulted in almost identical durability estimates across the entire 

range of refuge proportions for the low dose pyramid targeting corn rootworm; the 

durability lines were mostly superimposed.  

Table 2.7 Average years to resistance for D. virgifera using a stepping stone model of 
dispersal 

Species Dose DD  
% Bt : % Refuge 

95:5 90:10 80:20 70:30 60:40 50:50 

CRW 

HD 

R 329.2 a 347.0 a 393.9 a 442.2 a 261.8 a 213.6 a 

L 326.7 a 348.4 a 392.9 a 449.0 a 519.9 b 622.9 b 

CC 325.1 a 346.4 a 386.9 a 446.6 a 515.3 b 620.7 b 

SC 330.5 a 350.1 a 389.8 a 446.0 a 523.0 b 619.7 b 

CO 352.0 b 736.0 b 1004.2 b 1147.7 b 1347.8 c 1622.6 c 

< 
HD 

R 19.7 c 20.5 b 21.1 b 24.1 b 27.5 b 46.5 c 

L 19.3 b 20.4 b 22.2 a 24.7 c 27.8 b 40.0 b 

CC 17.6 a 18.9 a 20.8 a 23.5 a 26.7 a 31.3 a 

SC 19.9 c 20.6 b 22.1 d 24.4 bc 27.2 ab 31.6 ab 

CO 30.0 d 43.7 c 56.6 c 65.4 d 75.0 c 86.2 d 
Note: Landscape is a 10 x 10 matrix of 50 ha fields; ANOVA results are reported for 
between DD model comparisons at each refuge proportion (red letters). Adult dispersal 
(30%) is 1 field and female post-mating dispersal (15%) is 5 fields into four cardinal 
directions. CC = contest competition; SC = scramble competition; CO = Crowder-Onstad 
modified equation; R0= 24.5; HD= high dose scenario; WSS=0.01, WRS=0.03079, 
WRR=1.0, h=0.021 (mode); less-than-high dose scenario: WSS=0.2, WRS=0.248, WRR=1.0, 
h=0.06 (mode), IRAF = 0.005 
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Figure 2.17 Graph of durability for LD PIP vs percent refuge using a stepping stone 
model of dispersal for D. virgifera  

Notes: dispersal rate used in simulations was d = 0.3  
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Figure 2.18 Graph of durability for HD PIP vs percent refuge using a stepping stone 
model of dispersal for D. virgifera   

Notes: Scramble and Ricker model of density dependence used; dispersal rate d = 0.3. 

 

Figure 2.19 Relationship between different dispersal rates for D. virgifera and percent 
refuge using Ricker model of density dependence (HD)   
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2.4.2.3 O. nubilalis 

Increasing dispersal distance away from the natal field (from 3 to 5 fields) did not 

significantly affect durability (high and low dose) at any of the refuge proportions 

explored in Table 2.8 (P-value >0.05). Likewise, reducing the dispersal distance (from 3 

to 1 field) had no significant effect on time to resistance (p-value >0.05). Like for D. 

virgifera, varying the dispersal proportion never affected the durability of the dual gene 

PIP (p-value >0.05). This is visualized in Figure 2.20 using the Ricker model as an 

example; the three projected durability lines for low, intermediate, and high dispersal 

proportion were mostly projected onto each other across the refuge range tested. 

When comparing results (high dose, low dose) obtained with the spatial and non-

spatial model, it became apparent that significant interactions between the two factors (% 

refuge and presence/absence of space) were present for all models of density dependence 

after refuge proportions exceeded 20% and 30%, respectively (data not shown). At this 

point, percent refuge always had a significant effect on durability, while space had 

significant effects on durability most of the time (data not shown, p-values <<0.05). 

Results between the spatial and non-spatial model did not differ at low refuge proportions 

and when the populations were near extinction. Once density dependent interactions grew 

stronger at greater refuge proportions (equivalent to an increase in R0), then there were 

slight and often significant differences observed between average durability estimates 

obtained with the spatial and non-spatial model.  

A general trend was observed for high and low dose pyramids that durability 

increased with increasing refuge proportion (R2 >0.8). For all models of density 

dependence, each increase in refuge modeled lead to a significantly greater durability 
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from the previous one. The greatest gain in durability occurred between 10% and 20% 

refuge for all models of density dependence. 

One-way ANOVA informs that for low dose simulations, durability estimates do 

not differ for various models of density dependence between 5% and 20% refuge (Table 

2.8). Density dependent mortality was minimal between 1% and <20% refuge (DDmort 

<0.0005), and population densities were close to extinction below a 20% refuge. 

Durability estimates obtained with the various density dependent models tracked those 

obtained without density dependence (results not shown). Visible population regulation 

did not take place until the refuge proportion increased to 20% and beyond. When the 

population size began to increase in the block refuge, differences in density dependence 

became apparent between the various models of population regulation. For example, the 

Ricker and scramble competition models tended to estimate significantly greater 

durabilities for the pyramid at 40% (59 generations and 57 generations, respectively) and 

50% refuge (51 generations and 49 generations, respectively) than the Logistic and 

contest competition model (40%, 47 generations and 46 generations, respectively; 50% 

refuge, 54 generations and 52 generations, respectively) (p-value << 0.05). The growth 

rates for ECB in the simulations with low refuge percentages suppressed population 

densities (near extinction) because of the initial assumptions for R0 in the model and the 

high Bt proportions in the environment.  

 



 

80 

Table 2.8 Average years to resistance for O. nubilalis using stepping stone model of 
dispersal 

Species Dose DD  % Bt : % Refuge 
95:5 90:10 80:20 70:30 60:40 50:50 

ECB 

HD 

R 176.0* a 368.0* b 820.8 a 1009.8 c 1158.2 b 1350.8 d 

L 175.0* a 367.0* b 818.0 a 998.3 bc 1068.4 a 1215.4 b  

CC 175.0* a 367.0* b 817.3 a 943.9 a 1088.4 a 1149.3 a 

SC 175.5* a 367.8 a 820.9 a 955.9 ab 1115.1b 1284.3 c 

< HD 

R 15.5* a 23.0* a 38.8 a 44.9 b 50.8 b 59.2 b 

L 15.5* a 23.0* a 38.6 a 42.5 a 47.2 a 53.6 a 

CC 15.5* a 22.5* a 36.7 a 40.2 a  45.6 a 51.0 a 

SC 15.5 * a 23.0* a 38.8 a 43.8 ab 49.2 b 56.7 b 

ANOVA results are reported for between DD model comparisons at each refuge 
proportion (red letters). CC = contest competition, b = 1; SC = scramble competition, b = 
2.0; significance level p<0.05; IRAF = 0.005; * populations suppression. Intrinsic growth 
rate R0 = 11.2 first gen, and 2.0 for the overwintering generation. HD = high dose 
scenario; WSS = 0.01, WRS = 0.03079, WRR = 1.0, h = 0.021 (mode). Less-than-high dose 
scenario: WSS = 0.2, WRS = 0.248, WRR = 1.0, h = 0.06 (mode). Adult dispersal (30%) in 10 
x 10 field matrix is 3 fields into four cardinal directions. 
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Figure 2.20 Graph of years to resistance vs percent refuge for O. nubilialis using a 
stepping stone model of dispersal (HD)  

Notes: Ricker model used in simulations, different dispersal rates graphed (d = 0.1, 0.3, 
0.9).  

2.5 Sensitivity analysis 

A sensitivity analysis was conducted for various life-history and genetic 

parameters, and a short summary of outcomes is presented here. The initial resistance 

allele frequency and dominance of the resistance genes are sensitive parameters, and 

increasing their value, decreased the durability of the pyramids. Greater toxin mortality 

increased the durability of the PIPs. Fecundity of refuge insects is a sensitive parameter 

and negatively affected durability. Increasing the refuge proportion was equivalent to 

increasing the growth rate and lead to slower adaptation rates. When the carrying 

capacity was lowered, the equilibrium density of the population decreased, which had a 

slightly negative effect on the durability of the PIP. Increasing the fraction of non-random 

mating adults was not as sensitive parameter as, for example, dominance and initial 
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resistance allele frequency. But as non-random mating increased, the durability of the 

PIPs decreased accordingly.  

2.6 Discussion 

There are several main points to take away from these explorations. First, when 

density dependence was excluded from the IRM models, the durability estimates were 

greatly inflated compared to simulations including mechanisms of population regulation. 

This was especially true for high dose PIPs (already at low refuge percentages) but also 

for low dose PIPs (at higher refuge proportions). Second, I reject the null hypothesis that 

there is no difference in time to resistance with different density dependent models in a 

simple IRM model when refuge proportions are varied. The type of population regulation 

chosen by the modeler matters in simple as well as complex IRM models and can 

significantly impact the predicted durability of PIPs – unless populations are near 

extinction (or suppressed). In that particular case, the results of a model with and without 

density dependence should estimate similar durabilities. However, already at low refuge 

proportions there is the potential for significant differences between simulations with 

different population regulation models. I show here that different density dependent 

assumptions can lead to non-identical evolutionary outcomes for both low and high dose 

expressing PIPs aimed at controlling three agricultural pests with different life-histories. 

Additionally, I observed that when refuge populations were dramatically reduced in 

response to population regulation, the resistance allele frequencies in the population 

targeted by high dose PIPs increased significantly in the following generation. This 

suggests that after a high pest pressure year the mandated block refuge may not be 

functioning as envisioned by the high dose + refuge paradigm.  
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Typically, density dependent effects appeared less predominant at low refuge 

proportions, and estimated times to resistance were similar between different models of 

population regulation. Depending on the pest’s life-history and the model of density 

dependence selected, significant differences could still occur at 5% refuge (e.g., D. 

virgifera and Crowder-Onstad equation, see Table 2.7). The results of this research 

indicate that it is important to understand the type of intra-specific competition of a pest 

so that an educated decision can be made about which model of population regulation to 

include in IRM simulations. If this is neglected, then false (relative) durability estimates 

for a PIP may be obtained, which could result in incorrect management or refuge 

decisions. Furthermore, at refuge proportions greater than 5%, much greater variation 

was observed between estimated times to resistance from different models of density 

dependence. The durability of a low dose PIP increased with increasing refuge 

proportions (although significant differences may be present between different models of 

density dependence), but this was not always the case for high dose simulations. For 

example, the Ricker and/or scramble competition model resulted in lower durability 

estimates at greater refuge proportions for H. zea and D. virgifera (but not so for O. 

nubilalis). Since, H. zea does not exhibit this type of population regulation, these results 

are less of concern. For D. virgifera, however, where scramble competition interactions 

are assumed to occur, these results are more disturbing. Hence, if a high dose pyramided 

PIP should become available for commercialization targeting this particular pest, careful 

analysis will be needed to assure that the best possible refuge requirements are 

implemented to extend the life-time of the technology as long as possible. The general 

recommendation to EPA to increase the refuge for resistant corn rootworm (Tabashnik & 
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Gould 2010; Andow et al. 2014) may not be an effective strategy in all situations and 

needs to be more closely evaluated.  

Based on what is known about the larval behavior of the three pests investigated 

here, I recommend that the following models of density dependence be used: the contest 

competition model for O. nubilalis and H. zea; and the scramble competition model for 

D. virgifera. The Crowder-Onstad equation can be used as well since it is derived based on 

empirical data. In this case, however, I would recommend to use a modified form where 

density dependence is applied to larvae (instead of eggs) and separated between Bt and non-

Bt compartments. In the models used here, the modified Crowder-Onstad equation also lead 

to greater durability estimates for all doses and greater relative differences between refuge 

proportions, and it may be beneficial to use two different models of density dependence and 

compare relative durability differences.  

Graphs of density dependent mortality (1-DDSurviv) vs number of generations 

showed different trends over time depending on the model of population regulation 

selected or the kind of pest modeled (Figure 2.9 vs. Figure 2.13).  For example, the 

Ricker model for corn rootworm resulted in a sigmoidal curve for density dependent 

mortality vs time, while the same model for European corn borer resulted in oscillations 

(regular or irregular depending on refuge proportion modeled and effective R0). This 

strengthens the argument that the type of population regulation for pests with different 

life-history dynamics can result in different predictions for pest adaptation rates and needs 

to be considered when developing IRM plans.  

The trends observed in spatially explicit and implicit models as a function of 

density dependence and increasing refuge proportions were typically comparable. 
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Increasing the dispersal distance for H. zea and D. virgifera reduced the predicted 

durability but had no significant impact on the adaptation rate for O. nubilalis. Greater 

dispersal proportions also reduced the durability estimates for PIPs targeting H. zea 

compared to lower proportions, but not so for the other two species.  

In conclusion, these results show that the form of density dependence selected can 

significantly affect the time to resistance for both simple and complex IRM models. 

Inclusion of space combined with explicit pest dispersal can at times lead to lower or 

higher PIP durability. Therefore, significant consideration should be given to realistically 

address the density dependent population growth and regulation of any pest, preferably 

with empirically obtained dispersal information, to design the most functional insect 

resistance management plan. 
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CHAPTER III 

EFFECTS OF VARIOUS LIFE-HISTORY FACTORS, DOSE OF Bt TOXINS, AND 

 REFUGE STRATEGIES ON THE SPREAD OF RESISTANCE GENES: IMPACTS 

ON POTENTIAL REMEDIAL ACTION STRATEGIES 

3.1 Abstract 

Different life-history characteristics, refuge strategies, and dose of Bacillus 

thuringiensis (Bt) Plant-Incorporated-Protectants (PIPs) affected the adaptation rate of a 

generic, diploid pest with sexual reproduction in various ways and at times elicited 

unexpected results. The life-time of a high dose single PIP was reduced to similar levels 

as for a low dose single PIP if the pest had a high growth rate. The main cause for these 

results was the disproportionately occurring population regulation in refuge and Bt fields 

with high growth rates coupled with simultaneously occurring selection.  These results 

suggest that the high dose + refuge functionality may be compromised when the target 

pest has a high growth rate.  

Presence of density dependence was the second most important parameter 

affecting resistance evolution, and simulations including population regulation projected 

much higher resistance allele frequencies in the landscape than those excluding density 

dependent mechanisms. Significant interactions between density dependence and growth 

rate were always present and further reduced the durability of the PIPs. Contest 

competition predicted greater durability for a PIP with low pest growth rates than 
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scramble competition because population regulation effects were similar on refuge and Bt 

plants. When the pest growth rate increased, density dependent effects became more 

discordant with contest competition assumptions, and scramble competition projected 

significantly greater life-times for the PIPs. Varying the average distance dispersed from 

the natal field to other cells in the landscape did not affect evolutionary outcomes. The 

percent of population leaving the natal field often had significant interactions with other 

parameters such as growth rate and density dependence and, if increased, extended the 

durability of especially high dose PIPs.  

For the majority of the simulations, a 20% block refuge extended the durability of 

a PIP over that with a 10% RIB. This was a function of the lower effective growth rate in 

RIBs because of fewer available refuge plants but also greater susceptible genotype 

mortality caused by inter-plant movement (non-Bt to Bt). When the growth rate was 

increased, these often visible differences vanished, especially for high dose PIPs. 

The spread of the resistance gene was investigated from a hypothetical hotspot 

throughout the landscape over three generations for single PIPs. Local resistance 

phenomena were always apparent and spread into the landscape with each passing 

generation. The average resistance allele frequencies were highest in areas immediately 

surrounding the resistant site with a low pest growth rate yet lower in the remainder of 

the landscape. With a high pest growth rate, the average resistance allele frequency 

around the hotspot was lower compared to simulations with low growth rate assumptions 

but higher in the fields farther removed. These results imply that resistance genes can be 

expected to spread fastest through the landscape if the pest has a high growth rate and is 

exposed to a high dose PIP. Increasing the refuge percentages for RIBs and blocks from 
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the standard 10% and 20% to 50% slowed the adaptive process for the pest when exposed 

to single PIPs and low dose pyramids in the landscape over the three generations tested. 

For a high dose pyramid, this phenomenon was not observed in the matrix. This was a 

result of using two pyramided Bt toxins that kept the resistance population from building 

up large numbers and consequently reduced the likelihood of dispersing resistant genes. 

3.2 Introduction 

The US Environmental Protection Agency’s Office of Pesticide Programs 

requires Bt technology providers (registrants) to conduct monitoring for resistance to 

target pests as part of the terms and conditions of registration for Bt corn and cotton (US 

EPA 2010). One aspect of monitoring involves following up with unexpected damage 

reports from growers, extension agents, consultants, or company agronomists. 

Unexpected damage to Bt crops can reveal localized cases of resistance or be the result of 

favorable environmental conditions. The Agency leaves it to industry to decide what 

threshold constitutes unexpected damage from Lepidoptera feeding in Bt corn and cotton. 

Typically growers and companies use regional economic thresholds to identify 

unexpected damage. For Diabrotica species, the terms and conditions of the Bt corn 

registration try to address what constitutes ‘unexpected damage’, and threshold triggers 

have been put in place by the Agency. When plants expressing a single Bt PIP have one 

or more nodes removed from the root system, then the terms and condition state that 

‘unexpected damage’ has occurred. For pyramided PIPs (two or more toxins targeting the 

same pest system), this threshold is set at > 0.5 nodes removed. Unexpected damage 

(UXD) from D. virgifera virgifera is identified in the Bt field by growers as an area with 

an unusual amount of lodged plants. When registrants receive reports of unexpected 



 

96 

damage, they are required to investigate the cause of lodging. The Agency’s intent here is 

to discover, confirm, and contain resistance in localized areas before it can spread across 

the landscape. The general criticism, however, is that the current regulatory process is too 

protracted and that resistance can spread and establish before it can be confirmed (EPA 

2013). For example, when companies visit damaged fields, they first have to rule out the 

possibility that other factors could have caused the lodging (i.e., environmental factors). 

If the damage stems from D. virgifera, then registrants have to collect insect samples for 

rearing and subsequent bioassays to either refute or confirm resistance in that pest 

population (EPA 2011). Often though, adults have already dispersed when unexpected 

damage is investigated, or growers may have already taken alternate measures to treat 

high target pest abundance (e.g., chemigation). In these cases, technology providers must 

collect insect samples at the site of concern the following season and start the process of 

confirming or refuting resistance the next season. Obligate diapause of D. virgifera eggs 

is a further factor that delays the process of confirming resistance. Diet bioassay methods 

currently lack sensitivity to clearly discern between resistant and susceptible populations 

and have not shown to be a proactive resistance detection tool (US EPA 2013). On-plant 

assay methods have, however, been developed (Gassmann et al. 2011, Nowatzki et al. 

2006) and show promise at identifying resistant populations with greater certainty (US 

EPA 2013).  

‘Confirmed resistance’ is another regulatory action trigger defined by the Agency 

that must be met before remedial action is required (EPA 2010). Once this has happened, 

however, registrants must notify the Agency within 30 days of having made the 

discovery, and the generic remedial action plan in place is initiated. A specific remedial 
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action plan must then be worked out between the Agency and industry within 90 days of 

confirming resistance.  

When all these delaying factors are considered together, it can (at best) take up to 

two or (at worst) more years to confirm resistance for D. virgifera and before a general 

remedial action plan is initiated (US EPA 2013). Likewise for Lepidoptera, when 

unexpected damage has been confirmed by industry, the timing may not allow to collect 

insects that year, and collections would need to be made the following year. The question 

has been posed whether a delayed reaction time provides enough opportunity for 

successful remediation of resistance. 

I propose to theoretically explore what impact various life-history and behavioral 

factors have on the simulated spread of the resistance gene of a generic arthropod pest of 

Bt in the landscape 2-3 generations after unexpected damage (indicative of resistance) 

has first been detected in one site. I examine how these factors affect the evolution of 

resistance to a low and high dose single PIP deployed with two different IRM strategies 

and simulating a generic insect pest of Bt. The main variables investigated are proportion 

of population dispersing (AD), redistribution constant (D), intrinsic growth rate (R0), and 

type of density dependence (DD). The IRM strategies included in the analysis are block 

and seed blend refuges (Refuge-In-The-Bag, RIB). Second, given different pest and IRM 

conditions and their effect on the spread of resistance in the fields surrounding the UXD 

site, I discuss the timing of remediation as well as the geographic scope in response to 

resistance. The stochastic, spatially explicit simulation model used in the analyses has a 

probabilistic and deterministic mode, both of which were employed. 
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3.3 Materials and methods 

3.3.1 Model specifics 

A one-locus, stochastic, spatially explicit, and frequency-based population 

genetics model was written in Java (using NetBeans IDE 7.4) to explore the effects of 

two refuge strategies, various dispersal rates, dispersal kernels, intrinsic growth rates, and 

types of density dependence on the time to resistance evolution in the landscape and the 

spread of the resistance gene for a generic arthropod pest of Bt. The landscape consisted 

of a 51 x 51 field matrix (one cell represents 50 ha of a hypothetical Bt crop with 80,000 

plants/ha) and was designed as a torus, which makes every field the center field of the 

landscape and all cells are, therefore, identical in the matrix. It also makes this 

assumption that this torus lies in a system that is surrounded by identical toruses to all 

sides. For the purpose of simplification, no specific life-history was simulated. Based on 

the one-locus model, a two-locus model was also developed to explore whether some 

results of interest for the one-gene PIPs would also apply to a two-gene PIP (high and 

low dose). 

The specific model and structure have been previously described (see Chapter 2). 

A key difference between these spatially explicit models and the previous ones used is 

that dispersal was simulated with a two-dimensional redistribution kernel rather than with 

stepping stone dispersal. The type of Gaussian diffusion used here is the solution to 

Fick’s equation of diffusion in two dimensions (Okubo 1980) and a tool I used to create a 

probability distribution for those adults that dispersed beyond the natal field boundary 

(excluding trivial dispersal within a field from the process). To clarify, a fraction of the 

population ‘ỿ’ left the natal field and engaged in inter-cell dispersal using a single, 
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discrete convolution of the kernel (repeated application of the kernel to all fields in the 

landscape and means of neighborhood averaging). For simplicity, I assumed that 

mortality during dispersal was negligible. The remainder of the population, 1-ỿ, stayed 

in the natal field and engaged in trivial motion. The model’s combination of inter- and 

intra-field dispersal produced a leptokurtic distribution of movement consistent with 

general empirical observations among plants and animals where a fraction of individuals 

in the population engage in greater dispersal than others. All redistribution kernels were 

normalized by dividing each cell of the kernel by its sum so that the distribution summed 

to 1 (Slone 2011) and kept the population abundance constant; the model, therefore, 

represents a closed system, and no individuals were lost (or created) during the dispersal 

process. The motion of each individual was random and independent of the motion of all 

other individuals dispersing. This type of movement is also referred to as ‘random walk’ 

(or flight) dispersal where no other external factors affect the path an individual takes. Of 

course, this is an oversimplification of what can occur in the field where environmental 

conditions as well as chemical signals can facilitate or hamper the dispersal process. The 

equation for two-dimensional movement provided a probability distribution of 

individuals through space (distribution kernel function) and when multiplied by the 

number of dispersants from a particular location (Y0), assigned a number of individuals 

(y(x, y)) into the landscape based on the distance from the place of origin:  

 𝑦(𝑥, 𝑦) = 𝑦0
𝑒−(𝑥2+𝑦2)/2(2𝐷)

2𝜋(2𝐷)
 (3.1) 

The average distance an individual moved is the standard deviation √2𝐷 (or 

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) and measured in grid cell units; D represents the redistribution constant (or 
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diffusivity). Values for this parameter were explored at 3, 10, and 15 resulting in average 

displacements of 2.5, 4.5, and 5.5 fields/generation (low, medium, and high values for 

intermediate dispersal). Greater and smaller values for D (and√2𝐷 , respectively) were 

explored in the sensitivity analysis. The distribution of individuals during a time step was 

normal with a variance of 2D. If D is small (<1), the normal curve has a small variance, 

and most individuals dispersing will be close to the release point. As the value of D 

increases, the variance increases and the normal curve widens because more individuals 

will move farther away from the release point. In my model, redistribution of individuals 

took place after mortality and density dependence occurred (the latter occurred at the 

juvenile stage) but before adult mating was initiated. It is important to note that the 

process of movement was intentionally modeled separately from mortality and 

reproduction, so that other demographic processes could be investigated. 

Stochasticity was added at the beginning of a simulation by initializing the 

population size in each field with an egg density randomly drawn from an interval 

between 0 and 40,000,000. The upper range translated into an egg density of 10 eggs per 

plant. The initialization with unequal population densities in each field allowed for 

potential source sink dynamics in the landscape. The stochasticity added by sampling for 

initial population can be viewed as adding to ‘between field’ variation. The remaining 

variability in the system was introduced by sampling from a PERT-Beta distribution with 

predetermined, parameter-specific ranges (modes, minimum and maximum values) and 

held fixed for a particular simulations (Vose 2001). Contrary to stochasticity, this type of 

sampling added to between-simulation variability. The range and mode values for the 

parameters that were varied are listed in Table 3.2. The egg carrying capacity was fixed 
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at 18 million eggs per field and translated into 360,000 eggs per hectare (or 4.5 

eggs/plant). The egg carrying capacity was used when the projected population size at 

time t+1 was calculated in the density dependent submodel (see description of density 

dependence in Chapter 2). Effects of different types of density dependence (referred to as 

DD later on) were explored using the Hassell equation (1975, 𝑎 = (𝑅0

1

𝑏 − 1)/𝐾)) for 

contest and stable limit cycle (period = 2) competition (here, referred to as scramble 

competition), two levels of intra-specific competition:  

 𝑁𝑒𝑥𝑡𝐺𝑒𝑛𝑁𝑟𝐸𝑔𝑔𝑠 = 𝑁𝑟𝐸𝑔𝑔𝑠 ∙ 𝑅0 ∙ (1 + (𝑅0

1

𝑏 − 1)/𝐾) ∙ 𝑁𝑟𝐸𝑔𝑔𝑠)−𝑏 (3.2) 

The constraints between R0 and b for contest competition and stable limit cycle 

competition are given by the following, respectively:  

 1 = (1 − 𝑅0

−1

𝑏 ) ∙ 𝑏 (3.3) 

and 

 2 = (1 − 𝑅0

−1

𝑏 ) ∙ 𝑏 (3.4) 

Given R0, the value of b resulting in the desired level of competition was 

calculated.  

The simulations were conducted for a hypothetical low and high dose PIP 

deployed with a block refuge and RIB. The default refuge proportions were 20% and 

10% for the single PIP deployed with a separate block refuge and RIB, respectively, 

when exploring the effects of the various parameters on the average resistance allele 

frequency in the landscape; these proportions were concordant with EPA’s currently 

mandated requirements for single Bt PIPs (US EPA 2010). Grower non-compliance for 
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block refuges was not considered in these simulations but if included, they would have 

lowered the durability estimates reported for blocks. 

Base larval movement was simulated in the RIB according to Mallet & Porter 

(1992) and oviposition by adults onto Bt and refuge plants represented the first 

movements step. In a single PIP RIB, 90% of eggs were laid onto Bt plants (80% in 

Blocks) and 10% of the eggs onto non-Bt plants (20% for Blocks). Larval inter-plant 

movement occurred once and represented the second movement step. Base larval 

movement ‘M’, or the probability that an immature dispersed in the seed blend, was 

varied between 10-40% with a mean of 30%. The probability that a larva remained on the 

plant of origin was ‘1-M’. The parameter ‘V’ was the probability that an immature landed 

on a Bt plant, and ‘1-V’ described the probability that it reached a non-Bt plant. The value 

for this parameter was set by the Bt and refuge percentages, respectively (90% vs. 10%). 

No movement penalty was included in these simulations, though it seems plausible that a 

moving individual faces a probability of death because of, for example, environmental 

conditions or predation while dispersing. The effect of different movement mortalities on 

the durability of RIBs could be explored in future simulations. 

3.3.2 Pest specifics 

The generic arthropod pest modeled here was diploid, reproduced sexually, and 

had one generation per year. It was assumed that resistance was governed by a single 

locus with a major resistance gene having two alleles (R for resistance and S for 

susceptibility) and three genotypes (RR, RS, and SS). A hypothetical high dose scenario 

with recessive inheritance was modeled. Mean mortality for homozygous susceptible, 

heterozygous and homozygous resistant genotypes was 0.99 (WSS=0.01), 96.92% 
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(WRS=0.03078, h=0.0211), and 0% (WRR=1.0), respectively. A less-than high-dose 

scenario was also modeled, and in this case the mean mortality was 80% (WSS=0.20), 

72% (WRS=0.28, h=0.1), and 0% (WRR=1) for homozygous susceptible, heterozygous 

resistant and homozygous resistant genotypes, respectively. Total survival for an 

individual exposed to a pyramid was determined by multiplying the two fitness 

components for both loci. Dominance ‘h’ in these models described the level of fitness 

for the heterozygous resistant genotype based on the fitness of the homozygous 

susceptible and resistant genotypes when exposed to the insecticidal PIPs, and referred to 

the definition given by Bourget et al. (2000). The dominance and fitness calculations 

have also been described previously (Chapter 2). No cost to resistance was included in 

the generic models but can be assumed to slow the adaptation rate and increase time to 

PIP failure. No specific mortality or life-history stages were modeled (e.g., overwintering 

mortality, immature stage, etc.) but an overall survivability (0.5) was applied at the egg 

stage and before selection occurred. Density dependence was explored for contest 

competition and scramble competition (described in section 3.3.1) and applied after 

selection (described in Chapter 2). Mating occurred randomly within a cell (50 

ha).Fecundity F was calculated as the ratio of the intrinsic growth rate (multiplied by a 

factor of two to account for females only) and survivorship (2𝑅/𝑠) and was used to 

calculated the number of eggs generated by the female population in the next generation. 

R0 was varied between a mean of 10 and 30, which resulted in a mean offspring range of 

40-120 individuals per female (50% of which survived to adulthood). Adult dispersal was 

assumed to be equal for males and females, occurred before mating, and no pre-

ovipositional dispersal was considered.  
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3.3.3 Scenarios 

3.3.3.1 Generic exploration of different parameters on Resistance evolution  

Thirty simulations were run for each combination of dose of toxin (low and high), 

refuge strategy (RIB and block), and life-history characteristics (growth rates – three 

levels, redistribution – three levels, dispersal proportion – two levels, and type of density 

dependence (contest vs scramble competition, referred to as CC and SC later on)) to 

determine effects on time to resistance in the generic pest of Bt. All simulations were 

terminated when the resistance allele frequency reached 0.5 or greater. At that point, the 

generation time and average resistance allele frequency in the matrix were recorded. For 

each simulation, the following generational output was also stored: change in egg 

population size, egg load in the refuge and Bt compartment at the beginning of a 

generation, larval density after selection and population regulation, density dependent 

survival in the refuge and on Bt, resistance allele frequencies at the beginning of a 

generation, after selection, and density dependence, and adult densities. 

3.3.3.2 Spread of resistance gene in landscape and effects of mitigation  

Refuge proportions for mitigation simulations were modeled at 20% and 50% for 

Blocks and 10% and 50% for RIBs because it has been suggested in the context of corn 

rootworm resistance that increasing the amount of available refuge was one of several 

remediation strategies (Andow et al. 2014, Tabashnik & Gould 2011). The discussion 

about success of remediation 2-3 years (or generations) after resistance was observed (as 

UXD and verified with diagnostic assay) was based on results of an analysis of the spread 

of the resistance gene in the landscape over several generations. The average resistance 

allele frequency was calculated in seven square field sections, where the respective areas 
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shared the same average distance from the failed field (1st section = fields immediately 

surrounding UXD, 2nd section = two fields removed from UXD site, etc.) and compared 

to the resistance allele frequency expected when no resistance was established in the 

landscape; the fields were not equi-distant from the hypothetical hotspot. These 

simulations were run without probability sampling to reduce the amount of variability in 

the system and to identify the nature of the spread of resistance for each IRM-dose-life-

history combination. For these simulations, the egg load was randomly initialized 

between 0 and 18 million (the carrying capacity) in fields without resistance. A large 

population size was created by initializing the UXD site with 40 million eggs and as to 

link visible resistance with a high population density. This egg load resulted in 2.2 times 

more adults in the field with resistance. Two extreme cases of dispersal and growth rate 

were evaluated to assess whether the spread of the resistance allele was affected. For a 

pest with low mobility and intrinsic growth rate, the values were set to D1 = 3.0, AD1 = 

0.30, and R1 = 10.0; for a pest with greater mobility and intrinsic growth rate, these 

values were D3 = 15.0, AD2 = 0.50, and R4 = 40.0. The initial resistance allele 

frequencies were set to mean value of 0.005 for all fields, except in the site where 

resistance occurred and unexpected damage became visible. There, I assumed a 

resistance allele frequency of 10%, which is a level of resistance that could be visually 

detected with a relatively small sample size and diagnostic bioassay methods (Roush and 

Miller 1986). The shaded square sections in Figure 3.1 visually depict the locations from 

which the average frequencies for the resistance allele were calculated. The inner section 

denotes the location of the hypothetical hotspot ([x, y] = [25][25]) and from where 

resistance spread (indices for field array started at 0 and ran through 50). 
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Figure 3.1 Landscape of 51 x 51 fields and rings around the resistant site with 10% 
resistance and very high population density  

Notes: UXD = unexpected damage site with visible resistance 

3.4 Quality control in model development 

To assure that the generic model behaved according to expectations, I ran 

scenarios for blocks and RIBs at the highest growth rate R3, with contest competition 

assumptions and without density dependence and for a 20% refuge (although this does 

not reflect the mandated RIB refuge), while all variability in the system was turned off. 

As expected, simulations without density dependence resulted in greater durability than 

when population regulation was turned on; this was observed for high and low dose, 
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RIBs and blocks. RIB simulations predicted lower durabilities than block simulations 

with density dependence excluded. For high dose simulations at 20% refuge, blocks and 

RIBs simulations estimated 26 and 22 years of durability for the single PIP (similar 

relationship for low dose assumptions but lower estimates). This was a function of the 

added inter-plant movement mortality. When density dependence was turned back on, 

blocks and RIBs performed approximately equally well because of greater density 

dependent effects in the block refuge for the single PIP. The overall durability was lower 

than without density dependence (blocks and RIBs 7 and 8 years for high dose PIP). Why 

low dose single PIPs performed better than high dose single PIPs during these quality 

control simulations will be further explored in the following sections.  

When the refuge was increased to 50% for both IRM strategies (w/out DD), again 

block refuges outperformed RIBs. High dose blocks projected 88 years of durability, 

while RIB deployments resulted in 75 years durability. When density dependence was 

added into the system, the two strategies performed approximately equally well; block 

and RIB simulations projected 11 and 12 years, respectively. A similar trend was 

observed for low dose assumptions. 

Table 3.1 Deterministic simulations for IRM strategies including and excluding 
population regulation and varying growth rates and refuge proportions. 

Refuge and 
Growth Rate 

HD LD 
Block RIB Block RIB 

20% Ref, R3, no 
DD 26 22 22 19 

20% Ref, R3, 
with DD 7 8 14 13 

50% Ref, R3,  
no DD 88 75 53 44 

50% Ref, R3, 
with DD 11 12 21 19 
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3.5 Data analysis 

At the beginning of each simulation run, a PERT-Beta probability analysis was 

conducted by sampling values for the intrinsic growth rate, base larval movement in the 

RIB, adult dispersal proportion, dominance of the resistance allele, survival of the 

susceptible genotype, and initial resistance allele frequency from a predetermined range 

while weighting the mean by four (PERT-Beta process described in Chapter 2). The 

minimum, mean and maximum values set for each PERT-Beta distribution are listed in 

Table 3.2.  

I analyzed my data using R software (R Core Team, 2013, package version 3.0.2). 

Multi-way ANOVAs were conducted for each IRM strategy for R x DD x D x AD to 

determine interactions. Pair-wise comparisons of means were conducted for variables 

involved in interactions using Tukey contrasts. A bootstrap analysis was used to compare 

the estimated times to resistance obtained with block refuges and RIBs to determine 

whether the 95% confidence interval for the ratios of the distributions at the 5% quantile 

differed significantly when parameters of interest were sampled from identical PERT-

Beta distributions. Here, I used the ‘adjusted percentile method’, or BCa, (Davison and 

Hinckley, 1997) to estimate confidence limits.  

Effects of parameters on the spread and increase in resistance allele frequency in 

the landscape were assessed with the deterministic mode three years and one year after 

unexpected damage in Bt was first detected as to avoid noise but keeping the stochasticity 

for initializing the population density per field intact. This approach allowed detecting 

patterns of r-frequency distributions in the landscape that were caused by the parameters 

investigated. The average resistance allele frequency was subsequently calculated in 
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square sections around the damaged field (see Figure 3.1) and in the entire landscape in 

the F1 generation of adults responsible for the unexpected damage (year/generation = 1) 

and in the next two generations (year = 2 and 3) and compared to the frequencies that 

would be expected in the same locations if no resistance was present (r-freq = 0.005). 

Block refuge results were compared at 20% and 50% refuge; RIB results were compared 

at 10% and 50% refuge. The effects of increasing the refuge on the resistance allele 

frequencies in pests with different growth rates and dispersal propensities were explored 

with the single and dual gene model.  
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Table 3.2 Parameters sampled from PERT-Beta distribution 

Parameters Min Mode Max Comments 

R1 5.0 10.0 15.0 Lowest value tested 

R2 15.0 20.0 25.0 Intermediate value tested 

R3 25.0 30.0 35.0 Highest value tested 

BLM 0.10 0.30 0.40 
Base larval movement in 

RIB 

Dominance –HD 0.001 0.021 0.05 

Assumptions for generic 

single PIP 

Dominance –LD 0.05 0.10 0.20 

SS survival –HD 0.90 0.99 0.999 

SS survival –LD 0.75 0.80 0.85 

IRAF 0.001 0.005 0.01 

D1 1 3 5 
Generic species adult 

redistribution kernel 

D2 8 10 12 
generic species adult 

redistribution kernel 

D3 12 15 18 
Generic species adult 

redistribution kernel 

Adult dispersal 

frequency (1) 
0.10 0.30 0.50 

Small proportion of 

population engaging in 

dispersal 

Adult dispersal 

frequency (2) 
0.30 0.50 0.80 

Greater proportion of 

adults engaging in 

dispersal 

 

3.6 Results  

3.6.1 Effects of parameters on time to resistance 

3.6.1.1 High dose results 

I conducted a four-way ANOVA for a high dose PIP deployed with different IRM 

strategies and varied growth rate R0, diffusivity D and dispersal proportion AD, and 
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density dependence (CC and SC) (Tables 3.3). For blocks, I found that there was a 

significant three-way interaction between proportion dispersing, type of density 

dependence, and growth rate (AD x DD x R) (p-value = 0.045061) including two 

additional two-way interactions for AD x DD and DD x R (Appendix A, section 1.1.1). 

For the RIB analysis, I found that there were also significant interactions between the 

proportion dispersing and growth rate (AD x R) (p-value = 8.689e-05) and type of density 

dependence and growth rate (DD x R) (p-value = 0.0003162) (Appendix A, section 

1.2.1). All main factors, except D, were also significant for both RIB and block 

simulations. Interestingly, the dispersal distance did not affect the results in any of the 

high dose simulations.  

A multiple comparison of means was conducted for all the variables involved in 

the interactions and are presented in Tables 3.4 (blocks) and Tables 3.5 and 3.6 (RIBs). 

When the pest exhibited contest competition and was exposed to a Bt/block refuge 

environment, increasing the dispersal proportion did not affect the time to resistance for 

any of the growth rate values tested. With scramble competition dynamics, however, at 

the lower and intermediate growth rate value, an increase in durability could be observed 

by increasing the proportion of adult pests engaged in dispersal (Appendix 1.1.1). The 

means comparison for the RIB interaction, DD x R, show that there was no difference in 

projected time to resistance for the pest at a lower growth rate for either contest or 

scramble competition assumptions. At the intermediate and high value for growth rate, it 

was simulations modeling scramble competition that projected greater life-times of the 

PIP compared to contest competition (Table 3.5). These results support that at a higher 

pest growth rate, the durability of the PIP deployed with a RIB was greater when the pest 
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exhibited scramble rather than contest competition. The means comparison for AD x R 

show that increasing the dispersal proportion from the lower to the higher value did not 

increase the durability of the PIP (or time to resistance) at the lower growth rate. At the 

intermediate and higher pest growth rate value, however, the time to resistance (or 

durability of the PIP) increased significantly (Table 3.6) (Appendix 1.2.1). These results 

support that greater dispersal proportions with higher pest growth rates delayed resistance 

evolution in a RIB environment. 

I conducted one-way ANOVAs by varying the growth rate and holding diffusivity 

fixed to determine the effects on the durability of the high dose PIP deployed with 

different IRM strategies and assumptions of density dependence (a total of 12 

comparisons each for blocks and RIBs) (Table 3.3). Results for RIBs and blocks show 

that in all 24 comparisons the lifetime of the high dose PIP was greatest when the pest 

had a low growth rate. When the growth rate increased from the lowest to the highest 

value tested, the durability decreased in some cases up to 245%. In some cases, the 

durability also decreased when the growth rate was switched from an intermediate to high 

value (typically at intermediate diffusivity D2); in other cases, there were no statistically 

significant differences when R2 was increased to R3. For block deployments, the decrease 

in the life-time of the high dose PIP ranged from approximately 85% to 245% - with 

contest competition assumptions leading to greater losses in durability than scramble 

competition (ANOVA results see Appendix A, section 1.1.2). The loss in durability of 

the PIP was less (yet still high) for RIBs because of the lower available percent refuge. 

For example, a growth rate of R1 in a RIB was reduced by a factor of two compared to 

the growth rate R1 in a block refuge. The additional mortality from inter-plant movement 
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further reduced the growth rate in the RIB. The observed loss in durability for a high dose 

PIP with RIB deployment ranged approximately 20-83%. Once again, the loss in 

durability was greater if the pest exhibited contest rather than scramble competition 

dynamics (for ANOVA results see Appendix A, section 1.2.2).  

I was interested in determining what caused the durability of the high dose PIP to 

decrease with higher compared to lower growth rates. I chose five simulations from the 

data set of the 30 block simulations with contest competition and R1 D3 AD1 as well as R3 

D3 AD1 and examined scatterplots of density dependent survival in the refuge at time ‘t’ 

versus change in population size from time ‘t-1’ to ‘t’ for both scenarios (data for R3 D3 

AD1 shown only). By looking at the Figure 3.2, it becomes evident that with a high 

growth rate, the change in population size underwent greater fluctuations (between 

500,000 – 3,500,000 eggs) and density dependent survival ranged from close to zero to 

0.25 with a mean of approximately 0.09. Most of the data points were at the lower range 

of the graph, as is indicated by the box plot and whiskers (between approximately 0.02 

and 0.12). Also, the change in population size exponentially decreased as density 

dependent survival increased. When I took a closer look at resistance allele frequency 

changes at different times during a simulation (data not shown), I observed that with a 

high growth rate, the resistance allele frequency increased by approximately 15% during 

the first three generations of a simulations when measured from the beginning of a 

generation run until after selection took place. When the increase in resistance allele 

frequency was measured from ‘after selection’ to ‘after population regulation’, however, 

then the values ranged from 60-90%. This means that the increase in resistance allele 

frequency was greater due to population regulation (in a selection environment) than due 
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to selection alone when the pest had a high growth rate, and hence explained the lower 

durability predictions for the high dose PIP at R3. Figures 3.3 and 3.4 show the impact of 

selection and selection + population regulation together, respectively, on the resistance 

allele frequency in the five randomly selected simulations. It can be seen that population 

regulation in the refuge (occurring after selection) additionally contributed to the increase 

in resistance allele frequency, and in most cases, doubled the r-frequencies after selection 

(earlier generations). During the data mining investigation, I observed that approximately 

three generations before resistance was declared, the populations in the refuge and Bt 

compartment reached an equilibrium density in some simulations where no more changes 

in population density in the cells (fields) of the matrix occurred, and density dependent 

mortality (or survival) remained unchanged, yet less than 1. The resistance allele 

frequency at this point was high (>0.15). In these simulations, it was selection that 

became the main evolutionary force, while no more increases in resistance allele 

frequency occurred due to population regulation. In other simulations, the populations did 

not reach an equilibrium density. There, density dependence remained a strong 

evolutionary force contributing to high yet reduced increases in resistance allele 

frequency (<50%) that matched those of the selective forces. Interestingly in these high 

dose scenarios, density dependence in the Bt compartments did not occur until resistance 

allele frequencies were higher and mostly during the last few generations before 

simulations were terminated (r-frequency ≥ 0.5).   

When the pest growth rate was changed to low (R1), the change in refuge egg 

population density fluctuated minimally and remained s between approximately 500,000 

and 1,100,000 eggs per field per generation, irrespective of density dependent survival 
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(graph not shown). Values for density dependent survival ranged from 0.1 to 1.0 with a 

mean of approximately 0.4. This shows that with a low pest growth rate, less density 

dependent mortality (greater density dependent survival) occurred in the refuge. I was 

also interested in the relative contribution between selection and density dependence to 

resistance allele frequency increases when the pest growth rate was low. The data reveal 

that early during a simulation, population regulation in a selection environment and 

selection (before density dependence occurred) contributed approximately equally to 

resistance increases during a particular generation run. Towards the end of a simulation, 

it was selection that contributed more to increases and became the major driver for 

resistance (approximately 50% due to selection vs. 20% due to population regulation). In 

some cases, an equilibrium population density was reached where there was no longer a 

contribution from population regulation to resistance evolution, and once again selection 

became the major evolutionary force. Overall, the results support that the loss in 

durability of the single high dose PIP was caused by disproportionately occurring density 

dependent effects in the refuge and Bt field that reduced the susceptible pool in the refuge 

and lead to greater increases in resistance allele frequency. It was, therefore, the 

differential in density dependence between refuge and Bt populations that was 

detrimental to the life-time of the PIP when the pest had a high growth rate – this 

conclusion holds irrespective of the IRM strategy considered. 

A bootstrap analysis between block and RIB simulations with the same model of 

density dependence is presented in Table 3.7 (AD1) and Table 3.8 (AD2). Holding all life-

history parameters fixed but varying the IRM strategy, the BCa confidence limits (95%) 

for the 5% quantiles inform that at the lower dispersal proportion (AD1) 13 out of 18 
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comparisons differed significantly. In the majority of simulations, it was the 20% block 

strategy that predicted greater durability for the high dose PIP rather than the 10% RIB. 

In the remaining five comparisons, there were no significant differences between the two 

IRM strategies. Those were cases where the growth rate was intermediate or high 

(equivalent to an increase in refuge proportion, which benefited the durability of the PIP 

deployed with a RIB). At the higher dispersal proportion, there were 16 out of 18 

comparisons where the block refuge predicted greater durability than the RIB. As was 

demonstrated in Table 3.2, when the refuge of the RIB was increased to 20% for 

deterministic low dose simulations, then the durability estimates between the two IRM 

strategies were dissimilar when density dependence was excluded (blocks more durable). 

With density dependence included, the estimates for block simulations were reduced to 

similar levels as the estimates for RIBs. Hence, some of the differences observed between 

simulations obtained with a 10% RIB and 20% block refuge should be attributed to the 

reduction in refuge (equivalent to a reduction of growth rate).  
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Table 3.3 Effects of growth rates on durability of HD PIPs using different refuge 
strategies and low dispersal proportion 

Parameters  
10% RIB – HD 20% Block – HD 

CC SC CC SC 

R1 D1 AD1 13.1 b 12.6 c 22.9 b 18.4 b 
R2 D1 AD1 8.4 a 11.8 b 9.8 a 10.6 a 
R3 D1 AD1 7.1 a 7.8 a 8.3 a 8.7 a 
R1 D2 AD1 12.5 c 11.6 c 25.1 b 18.6 c 
R2 D2 AD1 9.2 b 9.2 b 10.4 a 10.5 b 
R3 D2 AD1 7.3 a 8.3 a 8.0 a 8.2 a 
R1 D3 AD1 12.8 b 12.9 c 25.5 c 18.9 c 
R2 D3 AD1 8.3 a 9.3 b 11.2 b 11.2 b 
R3 D3 AD1 7.0 a 7.8 a 7.4 a 8.8 a 

R1 D1 AD2 12.2 b 12.6 b 24.8 b 21.7 c 
R2 D1 AD2 10.1 a 10.8 a 12.4 a 14.6 b 
R3 D1 AD2 8.6 a 9.4 a 10.5 a 11.2 a 
R1 D2 AD2 12.5 c 13.0 b 23.8 c 21.8 c 
R2 D2 AD2 9.6 b 10.5 a 13.4 b 14.5 b 
R3 D2 AD2 7.8 a 9.9 a 9.9 a 10.6 a 
R1 D3 AD2 12.6 c 12.0 b 24.3 c 22.8 b 
R2 D3 AD2 9.7 b 11.0 ab 13.4 b 12.8 a 
R3 D3 AD2 8.0 a 9.8 a 8.9 a 10.9 a 

Note: letters are for ANOVAs varying growth rate only; intrinsic mean growth rate R1 = 
10, R2 = 20, and R3 = 30; mean adult dispersal frequency AD1 = 0.3 and AD2 = 0.5. 
Redistribution constants D1 = 3, D2 = 10, and D3 = 15; CC = contest competition; SC = 
scramble competition. Shaded fields denote statistically significant interactions between 
CC and SC holding R and D fixed. 
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Table 3.4 Multiple comparisons of means for interactions in HD block simulations, 
AD x DD x R 

Density 
Dependence, 

DD 

Mean Dispersal 
Proportion - AD 

Mean Intrinsic Growth Rate - R0 

Low (10) Medium (20) High (30) 

CC 
Low 24.5 a 10.8 ef 7.9 g 
High 24.3 ab 13.1 de 9.8 fg 

SC 
Low 18.6 c 10.7 f 8.6 fg 
High 22.1 b 14.0 d 10.9 ef 

Note: standard deviations contained in Appendix 1.1.1 

Table 3.5 Multiple comparisons of means for interactions in HD RIB simulations, R x 
DD  

Density 
Dependence, DD 

Mean Intrinsic Growth Rate - R0 

Low (10) Medium (20) High (30) 
CC 12.6 a 9.2 c 7.6 d 
SC 12.5 a 10.2 b 8.8 c 

Note: standard deviations contained in Appendix 1.2.1 

Table 3.6 Multiple comparison of means for interactions in HD RIB simulations, AD 
x R 

Mean Dispersal 
Proportion - 

AD 

Mean Intrinsic Growth Rate - R0 

Low (10) Medium (20) High (30) 
Low  12.6 a 9.2 c 7.5 d 
High  12.5 a 10.3 b 8.9 c 

Note: standard deviations contained in Appendix 1.2.1 

  



 

119 

Table 3.7 Bootstrap comparison between RIB and block simulations with different 
assumptions of density dependence and low dispersal (HD) 

Parameters 

Comparison of Distributions (BCa2) 
RIB : Block (HD) RIB : Block (HD) 

Level of 
Concern CC Level of 

Concern SC 

R1 D1 AD1 

5% 

(0.5000,  0.6667)^ 

5% 

(0.6667,  0.9167)^ 
R2 D1 AD1 (0.6000,  0.6000)^ (0.6667,  0.7500)^ 
R3 D1 AD1 (0.6667,  1.0000)n.s. (0.7143,  1.0000)n.s. 
R1 D2 AD1 (0.4444,  0.6667)^ (0.6667,  0.8571)^ 
R2 D2 AD1 (0.7500,  0.8571)^ (0.7778,  0.7778)^ 
R3 D2 AD1 (0.7143,  1.0000)n.s. (0.6250,  0.6250)^ 
R1 D3 AD1 (0.4706,  0.6923)^ (0.5625,  0.8182)^ 
R2 D3 AD1 (0.6667,  0.8571)^ (0.7500,  1.1429)n.s. 
R3 D3 AD1 (0.8333,  1.0000)n.s. (0.7500,  0.7500)^ 

 

Table 3.8 Bootstrap comparison between RIB and block simulations with different 
assumptions of density dependence and high dispersal (HD) 

Parameters 
Comparison of Distributions (BCa2) 

RIB : Block (HD) RIB : Block (HD) 
LoR1 CC LoR SC 

R1 D1 AD2 

5% 

(0.3810,  0.4444)^ 

5% 

(0.5333,  0.6154)^ 
R2 D1 AD2 (0.6364,  0.7778)^ (0.6364,  0.7778) 
R3 D1 AD2 (0.6667,  0.6667^ (0.6667,  0.8571)^ 
R1 D2 AD2 (0.5000,  0.6667)^ (0.6429,  0.7500)^ 
R2 D2 AD2 (0.7000,  0.8750)^ (0.5833,  0.7273)^ 
R3 D2 AD2 (0.7143,  1.0000)n.s. (0.8571,  1.1429)n.s. 
R1 D3 AD2 (0.4286,  0.5625)^ (0.5333,  0.6667)^ 
R2 D3 AD2 (0.6000,  1.0000)n.s. (0.6364,  0.6364)^ 
R3 D3 AD2 (0.7143,  0.8333)^ (0.6667,  0.6667)^ 
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Figure 3.2 Density dependent survival vs. change in egg numbers with high pest 
growth rate and high redistribution constant (R3 D3)   

Notes: 20% block refuge strategy; growth rate = R3 and redistribution constant = D3; 
change in population size measured change in egg population after mating between time 
(t-1) and time (t); straight solid line was the regression line, curved straight line was best 
fit; dotted lines are standard error lines; black dots are data points from five of 30 
simulations; box plots are shown (Q1, Q2, and Q3) with whiskers. 
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Figure 3.3 Impact of selection on r-allele frequency before DD occurred, high pest 
growth rate, high diffusivity, and contest competition (HD)  

Notes: random selection of 5 simulations; 20% block refuge; growth rate = R3, 
redistribution constant = D3, adult proportion dispersing = AD1. Box plot and whiskers 
provide information about the data distribution. Straight, solid lines represent the 
regression lines; dotted lines are standard error lines. Comparison between Figures 3.3 
and 3.4 can only be made between the same simulation run at a particular generation. 
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Figure 3.4 Impact of density dependence on r-allele frequency after selection, high 
pest growth rate, high diffusivity, and contest competition (HD)  

Notes: random selection of 5 simulations; 20% block refuge; growth rate = R3, 
redistribution constant = D3, adult proportion dispersing = AD1. Box plot and whiskers 
provide information about the data distribution. Straight, solid lines represent the 
regression lines; dotted lines are standard error lines. Comparison between Figures 3.3 
and 3.4 can only be made between the same simulation run at a particular generation. 

3.6.1.2 Low dose results 

I conducted a four-way ANOVA (DD x R x D x AD) for blocks and RIBs varying 

density type of density dependence (CC and SC), growth rate R, diffusivity, and dispersal 

proportion to look for interactions between the four parameters that could affect the 

durability of the low dose PIP with different life-history assumptions (mean times to 
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resistance listed in Table 3.9). For blocks, there was one three-way interaction between 

type of density dependence, diffusivity, and growth rate (DD x D x R) among all the 

parameters investigated (p-values = 0.04469) and a two-way interaction DD x R. The 

main factors R and DD, were highly significant (R: p <1.13e-09, DD: p = 2e-16), while the 

other two factors, AD and D, were not (p > 0.05) (Appendix 2.1.1). For RIBs, there were 

two significant interactions apparent between growth rate and density dependence (R x 

DD) (p = 0.000184) and density dependence and diffusivity (DD x D) (p = 0.03989) that 

affected the estimated life-time of the PIP. All main factors with the exception of 

diffusivity were statistically significant in this analysis (Appendix 2.2.1). 

A multiple comparison of means was conducted for all the variables involved in 

the interactions and are presented in Table 3.10 (blocks) and Tables 3.11 and 3.12 (RIBs). 

The three-way interaction for block simulations with DD x D x R resulted in greater 

times to resistance for a pest with contest competition dynamics and a lower growth rate 

compared to all other combinations of density dependence, diffusivity and R0. No 

statistically significant difference was observed between the remaining mean estimates 

(Appendix 2.1.1). The comparison of means for the RIB interaction, DD x R, shows the 

greatest durability was projected from simulations with a lower pest growth rate. Contest 

competition estimates were significantly greater than scramble competition durability 

projections. All other DD and R combinations resulted in lower durability estimates for 

the low dose single PIP, and no statistically significant difference was observed between 

the mean estimates. (Table 3.10). These results support that when the pest had a lower 

growth rate in a low dose Bt environment, the durability projections were highest. At 

higher pest growth rates the durability of the low dose PIP decreased, and there was no 
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difference between the means comparison from the two-way ANOVA. The comparison 

of means for the RIB interaction, DD x D, shows that the lowest durability estimate was 

observed when the pest engaged in scramble competition and had an intermediate 

diffusivity. While diffusivity by itself was never a significant main effect in the 

ANOVAs, for this particular combination of diffusivity with scramble competition, an 

effect was observed. All other combinations of DD and D did not result in statistically 

significantly different mean estimates (Table 3.11) (Appendix 2.2.1).   

I was interested in determining what the exact mechanisms were between 

significant differences of contest and scramble competition simulations at lower growth 

rates. For this purpose, I chose to further look into the data of block simulations with R1 

D2 AD1 because differences appeared to be most pronounced there. I looked at the 

distributions of density dependent survival in the refuge and Bt compartments and found 

that survival with contest competition was on average more similar in Bt and refuge 

compartments and higher than for scramble competition (Figure 3.5). With scramble 

competition, survival was more dissimilar in the refuge and Bt compartment than for 

contest competition (Figure 3.6). The overall greater effect of density dependence and 

differentials in density dependence were responsible for the lower durability observed 

with scramble compared to contest competition (Table 3.9). Here too, it is unequal effects 

of population regulation (scramble competition) on Bt and refuge plants together with 

selection that drive the greater increases in resistance allele frequency and the loss in 

durability with a low growth rate.  

One-way ANOVAs were conducted for intrinsic growth rate holding all other 

parameters fixed to determine whether varying R0 would significantly impact the 
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estimated average durability for RIBs and blocks (letters displayed for means in Table 

3.9). Block results show that for a pest with contest competition dynamics (low and high 

dispersal proportion), the durability of the low dose PIP was significantly greater with a 

low growth rate (range 17.9-20 generations) than with intermediate and high growth rates 

(range 13.1 -14.7 generations). The reduction in durability with contest competition 

ranged approximately from 21-35% as the growth rate increased. For scramble 

competition, no significant differences were observed in estimated durability of the low 

dose PIP at the lower dispersal proportion when the growth rate was varied. As the 

growth rate increased, density dependence in refuge compartments of contest competition 

simulations increased, and a differential between Bt and refuge compartments increased 

(discussed above). At the greater dispersal proportion, the durability decreased only with 

low diffusivity assumptions. In that particular case, the loss in durability at R3 was 21% 

compared to the durability estimated at R1. The same analyses for a low dose RIB and 

pest with contest competition dynamics shows that the durability of the low dose PIP was 

significantly greater with a low growth rate than with intermediate and high growth rates 

– as for block simulations (both dispersal proportions). The loss in durability at the lower 

dispersal proportion was approximately 17% and ranged from 7-19% at the higher 

dispersal proportion. For scramble competition with lower dispersal proportions, one 

significant difference was observed at the highest diffusivity tested; the lowest pest 

growth rate lead to the greatest durability of the PIP as well (Table 3.9). At the higher 

dispersal proportion, however, the lower pest growth rate value resulted in significantly 

greater durabilities at all three levels of diffusivity and extended the lifetime of the low 

dose PIP significantly.  
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A bootstrap analysis between results obtained with different IRM deployments 

and the same model of density dependence is presented in Tables 3.13 (AD1) and 3.14 

(AD2). Holding all life-history parameters fixed but varying the IRM strategy, the BCa 

confidence limits (95%) for the ratio of the distributions at the 5% quantiles inform that 

at the lower dispersal proportion, blocks predicted greater life-times for the low dose PIP 

in six out of nine comparisons with contest competition and eight out of nine 

comparisons with scramble competition assumptions (Table 3.13). At the higher dispersal 

proportion, there were eight out of nine comparisons for both types of density dependent 

models where the durability for blocks was predicted to be higher than for RIBs. As was 

demonstrated in Table 3.2, when the refuge of the RIB was increased to 20% for 

deterministic low dose simulations, then the durability estimates between the two IRM 

strategies were similar with and without density dependence (but not so with a 50% 

refuge when blocks out-performed RIBs once more). Hence the differences observed 

between simulations obtained with a 10% RIB and 20% block refuge can be mostly 

attributed to the reduction in refuge (equivalent to a reduction of growth rate).  
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Table 3.9 Effects of growth rates on durability of LD PIPs using different refuge 
strategies, intra-specific competition, redistribution, and low dispersal 

Parameters  
10% RIB – LD 20% Block – LD 

CC SC CC SC 
R1 D1 AD1 13.6 b 11.9  17.9 b 15.0  

R2 D1 AD1 11.4 a 11.8  14.1a 14.0  
R3 D1 AD1 11.4 a 11.5  14.7 a 14.0  
R1 D2 AD1 13.3 b 11.8  20.0 b 14.2 
R2 D2 AD1 11.6 a 11.0  13.1 a 14.8 
R3 D2 AD1 11.1 a 11.2  13.9 a 13.7 

R1 D3 AD1 13.1 b 12.7 b 19.6 b 15.0  

R2 D3 AD1 11.1 a 11.8 ab 13.4 a 14.8  

R3 D3 AD1 11.2 a 11.3 a 13.8 a 14.0  

R1 D1 AD2 14.1 b 12.7 b 18.6 b 15.6 b 
R2 D1 AD2 11.5 a 11.4 a 14.5 a 14.5 ab 
R3 D1 AD2 11.5 a 11.5 a 14.3 a 13.7 a 

R1 D2 AD2 13.0 b 12.3 b 19.0 b 16.0  
R2 D2 AD2 12.0 ab  11.0 a 13.8 a 14.7  
R3 D2 AD2 11.4 a 11.1 a 13.9 a 14.7  

R1 D3 AD2 13.4 b 12.9 b 19.8 b 15.3  

R2 D3 AD2 11.5 a 12.0 ab 13.6 a 14.0 
R3 D3 AD2 11.9 a 11.6 a  14.0 a 14.1  

Note: intrinsic mean growth rate R1 = 10, R2 = 20, and R3 = 30; mean adult dispersal 
frequency AD1 = 0.3 and AD2 = 0.5. Redistribution constants D1 = 3, D2 = 10, and D3 = 
15; CC = contest competition; SC = scramble competition. Shaded fields denote 
statistically significant interactions between CC and SC holding R and D fixed. 
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Table 3.10 Multiple comparisons of means for interactions in LD block simulations, 
DD x D x R 

Density 
Dependence, 

DD 

Mean 
Diffusivity - D 

Mean Intrinsic Growth Rate - R0 

Low (10) Medium (20) High (30) 

CC 
Low 18.3 a 14.3 b 14.5 b 

Medium 19.5 a 13.4 b 13.9 b 
High 19.7 a 13.5 b 13.9 b 

SC 
Low 15.3 b 14.3 b 13.8 b 

Medium 15.1 b 14.7 b 14.2 b 
High 15.1 b 14.4 b 14.0 b 

Note: standard deviations contained in Appendix 2.1.1 

Table 3.11 Multiple comparisons of means for interactions in LD RIB simulations, R x 
DD  

Density 
Dependence, DD 

Mean Intrinsic Growth Rate - R0 

Low (10) Medium (20) High (30) 
CC 13.4 a 11.5 c 11.4 c 
SC 12.4 b 11.5 c 11.3 c 

Note: standard deviations contained in Appendix 2.2.1 

Table 3.12 Multiple comparisons of means for interactions in LD RIB simulations, DD 
x D 

Density 
Dependence, DD 

Mean Diffusivity - D 

Low (3) Medium (10) High (15) 
CC 12.2 a 12.0 a 12.0 a 
SC 11.8 ab 11.4 b 12.0 a 

Note: standard deviations contained in Appendix 2.2.1 
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Table 3.13 Bootstrap comparison between low dose simulations for RIBs and blocks 
and low dispersal  

Parameters 

Comparison of Distributions (BCa2) 
RIB  : Block (LD) RIB : Block (LD) 

Level of 
Concern CC Level of 

Concern SC 

R1 D1 AD1 

5% 

(0.8182,  1.0000)n.s. 

5% 

(0.6154,  0.7273)^ 
R2 D1 AD1 (0.6923,  0.9000)^ (0.75,  0.90)^ 
R3 D1 AD1 (0.7273,  0.9091)^ (0.6154,  0.7500)^ 
R1 D2 AD1 (0.6250,  0.8333)^ (0.6154,  0.8182)^ 
R2 D2 AD1 (0.818,  1.125)n.s. (0.6667,  0.8182)^ 
R3 D2 AD1 (0.6923,  1.0000)n.s. (0.75,  1.00)n.s. 
R1 D3 AD1 (0.6667,  0.9091)^ (0.6429,  0.8182)^ 
R2 D3 AD1 (0.7273,  0.9091)^ (0.6154,  0.7273)^ 
R3 D3 AD1 (0.6667,  0.7273)^ (0.6154,  0.7273)^ 

 

Table 3.14 Bootstrap comparison between low dose simulations for RIBs and blocks 
and high dispersal  

Parameters 

Comparison of Distributions (BCa2) 
RIB : Block (LD) RIB : Block (LD) 

Level of 
Concern CC Level of 

Concern SC 

R1 D1 AD2 

5% 

(0.6667,  0.8333)^ 

5% 

(0.7143,  0.8333)^ 
R2 D1 AD2 (0.6154,  0.7273)^ (0.7273,  0.9091)^ 
R3 D1 AD2 (0.75,  0.90)^ (0.6667,  0.8182)^ 
R1 D2 AD2 (0.6250,  0.6667)^ (0.7143,  0.8333)^ 
R2 D2 AD2 (0.7500,  0.9000)^ (0.8000,  1.0000)n.s. 
R3 D2 AD2 (0.7500,  1.1111)n.s. (0.6667,  0.7273)^ 
R1 D3 AD2 (0.6250,  0.7692)^ (0.7692,  0.7692)^ 
R2 D3 AD2 (0.6923,  0.6923)^ (0.90,  1.10)n.s. 
R3 D3 AD2 (0.6923,  0.9000)^ (0.6661,  0.8182)^ 
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Figure 3.5 Range of density dependent survival in a) refuge and b) Bt for block 
simulations with contest competition and low growth rates  

Notes: random subsample of original 30 simulations; growth rate = R1, redistribution 
constant = D2 

  

Figure 3.6 Density dependent survival ranges in a) refuge and b) Bt for block 
simulations with scramble competition and low growth rates  

Notes: random subsample of original 30 simulations; growth rate = R1, redistribution 
constant = D2 

3.6.2 Comparison of high dose and low dose results 

In the prior section, I reported that the durability of a single high dose PIP 

deployed with a 20% block refuge was greatly reduced at the higher growth rates because 
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of greater density dependent effects that took place in the refuge. These effects of density 

dependence lead to greater generational increases in resistance allele frequencies than 

selection alone. Figures 3.7 and 3.8 place the durability of high and low dose PIPs 

deployed with a block and the same pest growth rate assumptions next to each other. In 

Figure 3.7, scramble competition dynamic was modeled, while in Figure 3.8 contest 

competition was assumed to take place. The graphs show that a single HD PIP deployed 

with a 20% block was more durable (statistically significant) than a single LD PIP at a 

lower pest growth rate but that at an intermediate and higher growth rate (R2 and R3) the 

time to pest resistance was not statistically different for either PIP. Figures 3.9 and 3.10 

display the average durability results for single HD and LD PIPs deployed with a 10% 

RIB and both scramble and contest competition dynamics (respectively) with various 

growth rates. Here it can be observed that with a RIB deployment, the durability of the 

HD and LD single PIP did not differ at the low and intermediate pest growth rates (R1 

and R2) but that at the highest pest growth rate (R3), the LD PIP performed better 

(statistically significant) than the HD PIP. As discussed in the previous sections, the 

lower growth rates represent declining population in RIBs where density dependent 

interactions were much weaker. I also previously discussed that a reduction in growth 

rate was analogous to reducing the refuge further; hence, at the lower pest growth rates 

and with a 10% RIB, the high dose PIP was actually deployed with very little ‘effective’ 

refuge. This reduced the average durability for the HD PIP and made it similar to the 

estimate obtained for a LD PIP under the same conditions. Like for the block simulations, 

when the growth rate increased, density dependent effects became more unequal between 

Bt and non-Bt plants, and the durability of both HD and LD PIP decreased. But this 
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differential was more pronounced for the HD situation. Density dependent effects at R3 

were dampened for the LD PIP because of inter-plant movement mortality and population 

regulation was more similar between Bt and refuge plants. This lead to significant 

difference between durability estimates at the highest growth rate for LD and HD PIPs 

deployed with a 10% RIB.  

 

Figure 3.7 Durability of single PIPs deployed with block refuges, different pest 
growth rates, scramble competition, and low dispersal  

Notes: Growth rates graphed were R1=10, R2=20, and R3=30; the graph shows that the 
durability of the HD and LD PIP differed at R1 but not at R2 and R3. 
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Figure 3.8 Durability of single PIPs deployed with a block, different pest growth rates, 
contest competition, and low dispersal 

Notes: Growth rates graphed were R1=10, R2=20, and R3=30; the graph shows that the 
durability of the HD and LD PIP differed at R1 but not at R2 and R3. 

 

Figure 3.9 Durability of single PIPs deployed with RIB, different pest growth rates, 
scramble competition, and low dispersal  

Notes: Growth rates graphed were R1=10, R2=20, and R3=30; the graph shows that the 
durability of the HD and LD PIP did not differ at R1 and R2, but the durability of the LD 
PIP exceeded that of the HD PIP at R3. 
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Figure 3.10 Durability of single PIPs deployed with RIB, different pest growth rates, 
contest competition, and low dispersal 

Notes: Growth rates graphed were R1=10, R2=20, and R3=30; the graph shows that the 
durability of the HD and LD PIP did not differ at R1 and R2, but the durability of the LD 
PIP exceeded that of the HD PIP at R3.  

3.6.3 Effects of life-history and IRM parameters on dispersal of resistance genes  

3.6.3.1 High dose results 

In absence of resistance in the landscape, the r-frequencies in the square sections 

slowly and uniformly increased with each passing generation for block and RIB strategies 

when pest growth rates were low or high (Tables 3.15 through 3.18). A difference in 

average landscape resistance allele frequency was observed due to different assumptions 

of intra-specific competition. For low pest growth rates and block simulations with 

contest competition the frequency in the landscape was 0.0066 and for scramble 

competition 0.0104 (Table 3.15). For RIBs with low pest growth rate, the r-frequencies 

were 0.0096 and 0.0139 (CC and SC, respectively) after three generations from the start 
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of simulations (Table 3.17) and support the earlier results that a 10% RIB was less 

durable than a 20% block refuge. Contest competition in combination with a low growth 

rate has previously shown to increase the durability for high dose PIPs compared to 

scramble competition; the lower average r-frequency in the matrix support the earlier 

discussed results.  

At the higher growth rates, average landscape r-frequencies were 0.0345 and 

0.0249 for blocks and 0.0553 and 0.0317 for RIBs with contest and scramble competition 

in absence of resistance three generations after the start of simulations (Tables 3.16 and 

3.18). The average landscape frequencies were higher when the pest exhibited contest 

rather than scramble competition, and all frequencies were greater with high compared to 

low growth rates, as previously discussed.  

3.6.3.1.1 Block simulations 

When the generic pest exhibited 10% resistance at locus 1 in a hypothetical 

hotspot [25][25], had a low growth rate and diffusivity, and was exposed to a 20% block 

refuge and 80% Bt crop, then the final average landscape resistance allele frequencies 

with contest and scramble competition after three dispersal events were approximately 

110% and 53% higher compared to the ‘no resistance’ case at generation three (Table 

3.15). I observed that with contest competition the r-frequencies in the square sections 1-

2 increased between approximately 70-90% and in sections 3-4 by approximately 53- 

80% between each generation run. In sections 5-13, the increase in resistance from one 

generation to the next was approximately 25-30%. A resistance phenomenon was visible 

in sections 1-4 (generation 1), sections 1-5 (generation 2), and sections 1-7 (generation 3) 

and expanded away from the hotspot with each passing generation (and dispersal event). 
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Thereafter, the resistance allele frequencies were mostly uniform across the remainder of 

the landscape. I loosely refer to ‘resistance phenomenon’ when the r-frequency difference 

between adjacent sections was greater than 10%. 

With a higher growth rate and diffusivity, the increase in average resistance in the 

landscape after three generations compared to the ‘no resistance case’ at R3 was 

approximately 31% (CC) and 19% (SC) higher, but approximately 230% (CC) and 86% 

(SC) higher compared to the resistance levels obtained with a low growth rate (Tables 

3.16 vs. 3.15). It becomes evident that resistance spread faster through the landscape with 

the higher growth rate value, and the sections farther removed from the hotspot reported 

greater average increases. The differences in farther removed sections with a high growth 

rate were approximately 213% (CC) and 137% (SC) higher after three generations. For 

block simulations with contest competition assumptions, a local resistance phenomenon 

was visible in sections 1-6 (generation 1) and sections 1-7 (generations 2 and 3). The 

increase in frequency between the respective sections after the successive generations 

ranged approximately from 89-180% (section 1-6) and 88-123% (section 7-13). With 

scramble competition assumptions, the resistance phenomenon was visible in sections 1-2 

(generation 1) and sections 1-7 (generations 2 and 3). The increase in frequency between 

the respective sections after the successive generations ranged approximately from 80-

200% (section 1-6) and 70-90% (section 7-13). Resistance was approximately uniform 

throughout the landscape starting at section 9 (CC) and section 8 (SC) after generation 3. 

To test whether there was an edge effect on the resistance allele frequency spread in the 

51 x 51 matrix, I also ran a simulation for blocks with R3 D3 AD1 with a 61 x 61 matrix. 

I observed that the difference in resistance allele frequencies in the respective sections 
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during the time observed were minimal and did not affect the overall results (data not 

shown).  

In conclusion, the resistance allele frequencies in the landscape were always 

highest around the hotspot (square section 1), then greatly dropped off in section 2 

(between 415-2500%), and gradually decreased as the distance increased from the 

resistant site until there was a uniform distribution of frequencies in the last 4-5 sections. 

Higher pest growth rates spread resistance faster (distance and magnitude) through the 

landscape than simulations with low growth rates (effects of density dependent 

differentials with higher growth rates) because density dependent differentials were 

greatest between refuge and Bt compartments at the higher R-value (previously 

discussed). 

Table 3.15 Resistance allele frequencies in matrix with different density dependence, 
low growth rate and dispersal, and block refuge (HD) 

Location Generation 

20% Block, HD 
CC – R1 D1 AD1 SC – R1 D1 AD1 
Average resistance allele frequency,  

3 generations after UXD 
Matrix – no 
resistance 3 0.0066 0.0104 

10% Resistance in hypothetical hotspot field [25][25] 
Section 1 

1 

0.1860 0.3583 
Section 2 0.0106 0.0168 
Section 3 0.0095 0.0130 
Section 4 0.0085 0.0103 
Section 5 0.0079 0.0086 
Section 6 0.0076 0.0077 
Section 7 0.0072 0.0073 
Section 8 0.0074 0.0072 
Section 9 0.0072 0.0069 
Section 10 0.0074 0.0070 
Section 11 0.0073 0.0069 
Section 12 0.0072 0.0070 
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Table 3.15 (Continued) 

Section 13  0.0073 0.0070 
Section 1 

2 

0.3173 0.6204 
Section 2 0.0181 0.0372 
Section 3 0.0156 0.0284 
Section 4 0.0130 0.0202 
Section 5 0.0112 0.0146 
Section 6 0.0102 0.0112 
Section 7 0.0095 0.0096 
Section 8 0.0095 0.0090 
Section 9 0.0092 0.0085 
Section 10 0.0094 0.0086 
Section 11 0.0093 0.0086 
Section 12 0.0092 0.0085 
Section 13 0.0093 0.0086 
Section 1 

3 

0.5480 0.8175 
Section 2 0.0344 0.0798 
Section 3 0.0282 0.0605 
Section 4 0.0217 0.0409 
Section 5 0.0169 0.0266 
Section 6 0.0141 0.0179 
Section 7 0.0125 0.0137 
Section 8 0.0122 0.0119 
Section 9 0.0117 0.0109 
Section 10 0.0118 0.0107 
Section 11 0.0116 0.0105 
Section 12 0.0116 0.0105 
Section 13 0.0117 0.0104 

Matrix, with 
resistance 3 0.0138 0.0159 

Note: growth rate = 10, redistribution constant = 3; adult dispersal = 30%; CC = contest 
competition; SC = scramble competition 

Table 3.16 Resistance allele frequencies in matrix with different density dependence, 
high growth rate and dispersal, and block refuge (HD) 

Location Generation 

20% Block, HD 
CC – R3 D3 AD1 SC – R3 D3 AD1 
Average resistance allele frequency,  

3 generations after UXD 
Matrix – no 
resistance 3 0.0345 0.0249 
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Table 3.16 (Continued) 

10% Resistance in hypothetical hotspot field [25][25] 
Section 1 

1 

0.4015 0.3102 
Section 2 0.0218 0.0118 
Section 3 0.0177 0.0107 
Section 4 0.0143 0.0100 
Section 5 0.0123 0.0094 
Section 6 0.0108 0.0089 
Section 7 0.0102 0.0085 
Section 8 0.0100 0.0083 
Section 9 0.0098 0.0086 
Section 10 0.0098 0.0084 
Section 11 0.0095 0.0086 
Section 12 0.0100 0.0086 
Section 13 0.0100 0.0083 
Section 1 

2 

0.7586 0.6616 
Section 2 0.0614 0.0357 
Section 3 0.0490 0.0291 
Section 4 0.0366 0.0233 
Section 5 0.0281 0.0189 
Section 6 0.0225 0.0161 
Section 7 0.0202 0.0145 
Section 8 0.0191 0.0138 
Section 9 0.0184 0.0141 
Section 10 0.0182 0.0139 
Section 11 0.0176 0.0140 
Section 12 0.0187 0.0139 
Section 13 0.0188 0.0137 
Section 1 

3 

0.8526 0.7488 
Section 2 0.1654 0.0822 
Section 3 0.1289 0.0655 
Section 4 0.0920 0.0502 
Section 5 0.0667 0.0388 
Section 6 0.0505 0.0317 
Section 7 0.0427 0.0276 
Section 8 0.0389 0.0257 
Section 9  0.0389 0.0257 
Section 10 0.0368 0.0252 
Section 11 0.0359 0.0253 
Section 12 0.0346 0.0252 
Section 13 0.0367 0.0247 

Matrix, with 
resistance 3 0.0453 0.0296 
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3.6.3.1.2 RIB simulations 

When the generic pest had a 10% resistance at locus 1 in the hypothetical hotspot 

[25][25], a low growth rate and diffusivity and was exposed to a 10% RIB, then the final 

average landscape resistance allele frequencies with contest and scramble competition 

after three generations were approximately 73% and 115% higher compared to the ‘no 

resistance’ case at generation three (Table 3.17). I observed that with contest competition 

the r-frequencies in the square section 1 increased by 109% (generation 1-2) and 90% 

(generation 2-3). Then in section 2 and 3, the increase in resistance ranged from 110-

200% with each passing generation and was lower and uniform after section 6 

(generation 1), section 7 (generation 2), and section 10 (generation 3). A similar pattern 

of spread through the landscape could be observed when the pest engaged in scramble 

competition in a RIB environment though most frequencies in the sections as well as final 

matrix frequencies were higher. For example, the resistance allele frequency in the 

section immediately surrounding the hypothetical hotspot was 154%, 119%, and 29% 

higher in successive generations. The landscape resistance allele frequency at the end of 

three generations was 80% higher with scramble than with contest competition. 

With a high growth rate and diffusivity, the increase in resistance after three 

generations compared to the ‘no resistance case’ at R3 was 50% and 45% greater with 

contest and scramble competition and 400% and 54% greater compared to matrix r-

frequencies obtained at R1 (Tables 3.18 vs. 3.17). As for block simulations, it can be 

observed that resistance spread faster through the landscape with the higher growth rate 

value as measured by the average landscape resistance allele frequencies after each 

generation. Sections farther removed from the UXD site typically had resistance allele 
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frequencies with R3 that were about two to six times the values reported for those 

obtained with R1 in the same sections. Figures 3.11 and 3.12 show how the resistance 

allele frequencies in sections 1-3 of the landscape were higher with scramble competition 

and R1 compared to R3. Farther removed from the hotspot, however, the r-frequencies 

with R3 had greater values with a higher growth rate. The opposite was observed for 

contest competition; resistance frequencies in sections 1-3 were higher with R3 than with 

R1 and remained that way throughout the matrix (effects of unequal density dependence 

in refuge and Bt compartment with resistance). It has previously been shown that 

increasing the diffusivity did not affect the resistance outcomes, hence the observations 

support that it was the higher growth rate and effects of population regulation (discussed 

earlier) that were responsible for the faster spread resistance through the matrix.  

Table 3.17 Resistance allele frequencies in matrix with different density dependence, 
low growth rate and dispersal, and RIB (HD) 

Location Generation 

10% RIB, HD 
CC – R1 D1 AD1 SC – R1 D1 AD1 
Average resistance allele frequency,  

3 generations after UXD 
Matrix – no 
resistance 3 0.0096 0.0139 

10% Resistance in hypothetical hotspot field [25][25] 
Section 1 

1 

0.1856 0.4731 
Section 2 0.0146 0.0234 
Section 3 0.0143 0.0191 
Section 4 0.0101 0.0143 
Section 5 

 

0.0082 0.0113 
Section 6 0.0069 0.0096 
Section 7 0.0064 0.0088 
Section 8 0.0062 0.0081 
Section 9 0.0062 0.0082 
Section 10 0.0061 0.0083 
Section 11 0.0061 0.0082 
Section 12 0.0061 0.0081 
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Table 3.17 (Continued) 

Section 13  0.0061 0.0081 
Section 1 

2 

0.3885 0.8539 
Section 2 0.0332 0.0903 
Section 3 0.0301 0.0694 
Section 4 0.0196 0.0455 
Section 5 0.0141 0.0288 
Section 6 0.0102 0.0184 
Section 7 0.0086 0.0137 
Section 8 0.0080 0.0115 
Section 9 0.0078 0.0110 
Section 10 0.0077 0.0109 
Section 11 0.0076 0.0107 
Section 12 0.0076 0.0107 
Section 13 0.0076 0.0106 
Section 1 

3 

0.7390 0.9553 
Section 2 0.0990 0.2396 
Section 3 0.0841 0.1833 
Section 4 0.0520 0.1180 
Section 5 0.0325 0.0698 
Section 6 0.0192 0.0395 
Section 7 0.0134 0.0246 
Section 8 0.0111 0.0180 
Section 9  0.0101 0.0155 
Section 10 0.0098 0.0147 
Section 11 0.0097 0.0141 
Section 12 0.0096 0.0140 
Section 13 0.0096 0.0138 

Matrix, with 
resistance 3 0.0166 0.0299 

 

Table 3.18 Resistance allele frequencies in matrix with different density dependence, 
high growth rate and dispersal, and RIB (HD) 

Location Generation 

10% RIB, HD 
CC – R3 D3 AD1 SC – R3 D3 AD1 
Average resistance allele frequency,  

3 generations after UXD 
Matrix – no 
resistance 3 0.0553 0.0317 

10% Resistance in hypothetical hotspot field [25][25] 
Section 1 1 0.5056 0.4122 
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Table 3.18 (Continued) 

Section 2 

 

0.0333 0.0174 
Section 3 0.0267 0.0151 
Section 4 0.0209 0.0134 
Section 5 0.0163 0.0119 
Section 6 0.0136 0.0110 
Section 7 0.0125 0.0104 
Section 8 0.0119 0.0108 
Section 9 0.0119 0.0106 
Section 10 0.0120 0.0101 
Section 11 0.0120 0.0106 
Section 12 0.0117 0.0101 
Section 13 0.0117 0.0101 
Section 1 

2 

0.8779 0.8435 
Section 2 0.1256 0.0810 
Section 3 0.0977 0.0637 
Section 4 0.0695 0.0458 
Section 5 0.0484 0.0319 
Section 6 0.0352 0.0237 
Section 7 0.0293 0.0196 
Section 8 

 

0.0265 0.0189 
Section 9 0.0258 0.0181 
Section 10 0.0258 0.0173 
Section 11 0.0257 0.0178 
Section 12 0.0249 0.0178 
Section 13 0.0247 0.0171 
Section 1 

3 

0.9422 0.8389 
Section 2 0.4203 0.2230 
Section 3 0.3310 0.1708 
Section 4 0.2301 0.1173 
Section 5 0.1530 0.0780 
Section 6 0.1031 0.0548 
Section 7 0.0783 0.0424 
Section 8 0.0657 0.0379 
Section 9  0.0607 0.0349 
Section 10 0.0589 0.0329 
Section 11 0.0580 0.0332 
Section 12 0.0558 0.0319 
Section 13 0.0553 0.0318 

Matrix, with 
resistance 3 0.0830 0.0459 
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Figure 3.11 Resistance allele frequency across the landscape and over three generations 
when growth rate was low (HD RIB)  

Note: G-1, G-2, and G-3 refer to generations. Contest competition is represented with 
dotted lines; scramble competition is represented with broken lines. 
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Figure 3.12 Resistance allele frequencies across the landscape over three generations 
when growth rate was high (HD RIB)  

Note: G-1, G-2. G-3 refer to generations. Contest competition is represented with dotted 
lines; scramble competition is represented with broken lines 

3.6.3.1.3 Mitigation of resistance by increasing refuge for high dose single PIPs 

When RIB and block simulations with different assumptions of density 

dependence incorporated various values for available refuge for a single, high dose PIP 

with low and high growth rates and redistribution constants, then the average r-frequency 

in the landscape was always reduced (non-linear decrease) after three generations from 

the start of a simulation as the refuge proportion increased from 10-50% (Figures 3.13 

and 3.14). When the pest had a low growth rate, the resistance allele frequencies were 

similar across the refuge range for contest and scramble competition. When the growth 

rate was increased, the resistance allele frequencies were much higher (>2 times for CC 

and 1.6 times for SC) compared to the results obtained with a low growth rate – 
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irrespective of the IRM strategy. The benefits of increasing the refuge were greatest 

between 10-20% for a pest with scramble competition and low growth rate and between 

10-30% for the other growth rate and types of competition. After 30%, benefits of 

increasing the refuge diminished due to the non-linear decrease in the durability line. 

“Benefits”, as referred to here, consider extending the life-time of the PIP, while the 

burden incurred on the growers increase when having to plant greater amounts of non-Bt 

crop, which could result in potentially yield loss. The lower r-frequencies with low 

growth rate were a function of there being less density dependent mortality in the refuge 

(less differential between refuge and Bt compartment), which reduced the increase in 

resistance allele frequency due to density dependence in a selection environment. With 

R3, contest competition resulted in greater r-frequencies, while the reverse was true at R1. 

As a reference, the projected average landscape frequencies were included when density 

dependence was turned off. It is evident that excluding population regulation from IRM 

models would lead to grossly overestimating the life-time of the PIPs. 
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Figure 3.13 Average resistance allele frequency in matrix three generations after 
resistance was first detected (HD PIP block refuge) 

Notes: different density dependent interactions (SC vs. CC), fecundity (R1 vs. R3), and 
dispersal (D1 vs. D3); the dark solid line is the projected resistance allele frequency at 
different refuge proportions in absence of density dependence. 
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Figure 3.14 Average resistance allele frequency in matrix three generations after 
resistance was first detected (HD PIP RIB) 

Notes: different density dependent interactions (SC vs. CC), fecundity (R1 vs. R3), and 
dispersal (D1 vs. D3); the dark solid line is the projected resistance allele frequency at 
different refuge proportions in absence of density dependence. 

3.6.3.2 Low dose results 

In absence of resistance in the UXD site, the r-frequencies in the square sections 

slowly and uniformly increased with each passing generation for block and RIB strategies 

when pest growth rates were low or high (Tables 3.19 through 3.22). A difference in 

average landscape resistance allele frequencies was observed due to different 

assumptions of intra-specific competition. For low pest growth rates and block 

simulations with contest competition the final frequency in the landscape after three 

generations from the start of a simulation was 0.0083 and for scramble competition 

0.0116 (Table 3.19). For RIBs with low pest growth rate, the r-frequencies were 0.0112 

and 0.0139 (CC and SC, respectively) (Table 3.21) and support the earlier results that a 
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10% RIB was less durable than a 20% block refuge most of the time when the pest had a 

low growth rate. Contest competition in combination with a low growth rate has shown to 

increase the durability for a low dose PIPs compared to scramble competition; the lower 

average r-frequency in the matrix support the earlier discussed results.  

With higher growth rate values, average landscape r-frequencies were 

approximately equal for scramble and contest competition deployed with blocks (0.0118 

and 0.0117) and RIBs (0.0143 and 0.0142) and in absence of resistance (Tables 3.20 and 

3.22). The unchanged average landscape frequencies for scramble competition 

simulations reflect the previous results that the adaptation rate was not affected by 

increasing the pest growth rate for a low dose PIP. For contest competition simulations, 

pest adaptation rates as reflected by the resistance allele frequency increased with higher 

growth rate.   

3.6.3.2.1 Block simulations 

When the generic pest exhibited 10% resistance at locus 1 in the hotspot, had a 

low growth rate and diffusivity, and was exposed to a 20% block refuge and 80% Bt low 

dose crop, then the final average landscape resistance allele frequencies were 

approximately 13% (CC) and 3% higher (SC) compared to the ‘no resistance’ case at 

generation three (Table 3.19). Contest competition assumptions resulted in lower average 

resistance in the matrix compared to scramble competition with a low dose single PIP. It 

is important to remember that the final average frequency was affected by the size of the 

matrix (number of fields = 2601) and that with a larger landscape, the reported averages 

will decrease since the sections farther out (with lower frequencies) contribute more to 

the overall average. Increasing the matrix to a 51 x 51 was needed, however, to avoid 
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edge effects for the resistance allele frequency in the landscape. The increases reported in 

final landscape resistance allele frequency should be viewed in context of matrix size and 

the focus should remain on patterns of spread especially in sections closer to the UXD 

site. For both intra-specific competition assumptions, resistance was highest in the first 

square section during each of the three generations. In generation 1, a resistance 

phenomenon was visible in the first two and first section around the hotspot for contest 

and scramble competition, respectively. In generation 2, the phenomenon spread to 

section 4 for contest competition but did not spread greatly past section 1 for scramble 

competition. In generation 3, the resistance wave reached section 5 for contest and 

scramble competition and was less pronounced for the latter. Although overall landscape 

frequencies were lower with contest than with scramble competition after 3 generations, 

the r-frequencies in section 1 around the hotspot were always between 32 – 53% greater 

with contest competition. The drop in r-frequency from section 1-2 for both types of 

population regulation models dropped between 570-1100% over the time explored.  

With a high growth rate and diffusivity, the increase in resistance after three 

generations compared to the ‘no resistance case’ at R3 was approximately 5% for contest 

and 2% for scramble competition. Contest competition at R3 predicted average resistance 

allele frequencies that were approximately 32% higher than those obtained at R1. No 

difference was observed between average matrix frequencies with scramble competition 

(Tables 3.19 vs. 3.20). Resistance allele frequencies for both models of population 

regulation were lower in the section immediately surrounding the hypothetical hotspot 

when the pest had a high growth rate. For a low dose PIP, there was an indication that 

resistance also spread faster through the landscape when the pest had a high growth rate 
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and engaged in contest competition. The resistance allele frequencies remained mainly 

uniform throughout the landscape (sections 2-13) but were typically higher around the 

hotspot with contest competition assumptions. 

In conclusion, resistance allele frequencies in the landscape were always highest 

around the hotspot (square section 1) and much lower thereafter. The resistance 

phenomenon was much more contained around the hotspot with low dose than with high 

dose exposure because there was less density dependent differential observed with low 

dose than high dose single PIPs. Hence resistance spread more slowly. Resistance allele 

frequencies slightly decreased in sections 2-13 and remained mostly uniform in the 

remainder of the landscape.  

Table 3.19 Resistance allele frequencies in matrix with different density dependence, 
low growth rate and dispersal, and block refuge (LD) 

Location Generation 

20% Block, LD 
CC – R1 D1 AD1 SC – R1 D1 AD1 
Average resistance allele frequency,  

3 generations after UXD 
Matrix – no 
resistance 3 0.0083 0.0116 

10% Resistance in hypothetical hotspot field [25][25] 
Section 1 

1 

0.1171 0.0887 
Section 2 0.0143 0.0072 
Section 3 0.0096 0.0070 
Section 4 0.0081 0.0068 
Section 5 0.0069 0.0067 
Section 6 0.0063 0.0066 
Section 7 0.0061 0.0066 
Section 8 0.0060 0.0065 
Section 9 0.0059 0.0065 
Section 10 0.0059 0.0065 
Section 11 0.0059 0.0065 
Section 12 0.0059 0.0065 
Section 13 0.0059 0.0065 
Section 1 2 0.1353 0.0973 
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Table 3.19 (Continued) 

Section 2 

 

0.0188 0.0105 
Section 3 0.0132 0.0100 
Section 4 0.0110 0.0095 
Section 5 0.0089 0.0091 
Section 6 0.0079 0.0088 
Section 7 0.0074 0.0087 
Section 8 0.0071 0.0087 
Section 9 0.0071 0.0087 
Section 10 0.0070 0.0087 
Section 11 0.0070 0.0087 
Section 12 0.0070 0.0087 
Section 13 0.0070 0.0087 
Section 1 

3 

0.1544 0.1011 
Section 2 0.0232 0.0146 
Section 3 0.0172 0.0138 
Section 4 0.0142 0.0130 
Section 5 0.0114 0.0123 
Section 6 0.0098 0.0119 
Section 7 0.0090 0.0117 
Section 8 0.0086 0.0116 
Section 9 0.0085 0.0116 
Section 10 0.0084 0.0116 
Section 11 0.0083 0.0116 
Section 12 0.0083 0.0116 
Section 13 0.0083 0.0116 

Matrix, with 
resistance 3 0.0094 0.0119 

 

Table 3.20 Resistance allele frequencies in matrix with different density dependence, 
high growth rate and dispersal, and block refuge (LD) 

Location Generation 

20% Block, LD 
CC – R3 D3 AD1 SC – R3 D3 AD1 
Average resistance allele frequency,  

3 generations after UXD 
Matrix – no 
resistance 3 0.0118 0.0117 

10% Resistance in hypothetical hotspot field [25][25] 
Section 1 1 0.1061 0.0650 
Section 2 0.0082 0.0069 
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Table 3.20 (Continued) 

Section 3 

 

0.0077 0.0067 
Section 4 0.0072 0.0066 
Section 5 0.0069 0.0066 
Section 6 0.0067 0.0066 
Section 7 0.0067 0.0066 
Section 8 0.0066 0.0066 
Section 9 0.0066 0.0066 
Section 10 0.0066 0.0066 
Section 11 0.0066 0.0066 
Section 12 0.0066 0.0066 
Section 13 0.0066 0.0066 
Section 1 

2 

0.1087 0.0757 
Section 2 0.0117 0.0102 
Section 3 0.0109 0.0098 
Section 4 0.0100 0.0094 
Section 5 0.0095 0.0091 
Section 6 0.0092 0.0089 
Section 7 0.0091 0.0088 
Section 8 0.0090 0.0088 
Section 9 0.0089 0.0088 
Section 10 0.0088 0.0087 
Section 11 0.0088 0.0088 
Section 12 0.0088 0.0088 
Section 13 0.0088 0.0088 
Section 1 

3 

0.1126 0.0707 
Section 2 0.0162 0.0139 
Section 3 0.0150 0.0133 
Section 4 0.0138 0.0127 
Section 5 0.0129 0.0123 
Section 6 0.0124 0.0120 
Section 7 0.0121 0.0118 
Section 8 0.0119 0.0118 
Section 9  0.0119 0.0117 
Section 10 0.0118 0.0117 
Section 11 0.0118 0.0117 
Section 12 0.0118 0.0117 
Section 13 0.0118 0.0117 

Matrix, with 
resistance 3 0.0124 0.0119 
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3.6.3.2.2 RIB simulations 

When the generic pest exhibited contest or scramble competition and had a low 

growth rate and redistribution in a 10% RIB environment (R1 D1 AD1), then the 

resistance allele frequencies were approximately 18% and 4% higher three generations 

after resistance was first observed (Table 3.21) compared to the ‘no resistance’ case. As 

always, the highest observed frequencies occurred in section 1 and then greatly dropped 

off in section 2 (up to 10- and 11-fold for CC and SC, respectively). Thereafter, a gradual 

decrease was visible throughout the landscape with each successive generation while 

overall resistance increased. The increase in resistance allele frequency in sections 2 

through 7 ranged from 34-63% (CC) and 41-53% (SC). Scramble competition appeared 

to facilitate the spread of resistance through the landscape as the frequencies in section 1 

were lower (46 – 126%) than for contest competition but higher in the sections farther 

removed from the hotspot (4-16%). A resistance phenomenon was visible up to section 2 

in generation 1 (CC and SC), section 5 and section 3 for contest and scramble 

competition, respectively, in generation 2, and section 7 and 5 (CC and SC, respectively) 

in generation 3. The resistance phenomenon spread faster with contest competition 

dynamics than with scramble competition, although overall landscape frequencies were 

lower. 

When the pest growth rate and diffusivity were increased (R3 D3), there was 

approximately a 5% increase in average resistance in the landscape for contest 

competition and three generations after resistance was first detected. The resistance 

phenomenon was localized, and resistance spread minimally for low dose PIPs deployed 

with a RIB. Tables 3.21 and 3.22 show that the greatest increase in resistance occurred in 
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section 1, the area immediately surrounding the UXD site. For contest and scramble 

competition simulations, resistance allele frequency distributions in section 1 were 13-

26% and 29-40% lower compared to when the pest had a low growth rate. Resistance 

tended to be slightly higher in respective sections farther removed from the hotspot 

(raising overall averages in the matrix in generation 3) suggesting that there might be a 

slightly faster spread of resistance as well with greater growth rates and contest 

competition dynamics with RIBs.   

Table 3.21 Resistance allele frequencies in matrix with different density dependence, 
low growth rate and dispersal, and RIB (LD) 

Location Generation 

10% RIB, LD 
CC – R1 D1 AD1 SC – R1 D1 AD1 
Average resistance allele frequency,  

3 generations after UXD 
Matrix – no 
resistance 3 0.0112 0.0139 

10% Resistance in hypothetical hotspot field [25][25] 
Section 1 

1 

0.1380 0.1006 
Section 2 0.0124 0.0081 
Section 3 0.0119 0.0075 
Section 4 0.0096 0.0073 
Section 5 0.0075 0.0072 
Section 6 0.0079 0.0071 
Section 7 

 

0.0070 0.0070 
Section 8 0.0066 0.0070 
Section 9 0.0066 0.0070 
Section 10 0.0065 0.0069 
Section 11 0.0065 0.0070 
Section 12 0.0065 0.0069 
Section 13 0.0065 0.0069 
Section 1 

2 

0.1933 0.1194 
Section 2 0.0216 0.0124 
Section 3 0.0192 0.0114 
Section 4 0.0150 0.0108 
Section 5 0.0116 0.0103 
Section 6 0.0099 0.0100 
Section 7 0.0091 0.0099 
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Table 3.21 (Continued) 

Section 8 

 

0.0087 0.0098 
Section 9 0.0086 0.0098 
Section 10 0.0086 0.0098 
Section 11 0.0085 0.0098 
Section 12 0.0085 0.0098 
Section 13 0.0085 0.0098 
Section 1 

3 

0.2751 0.1407 
Section 2 0.0345 0.0185 
Section 3 0.0296 0.0171 
Section 4 0.0228 0.0160 
Section 5 0.0171 0.0151 
Section 6 0.0140 0.0145 
Section 7 0.0125 0.0142 
Section 8 0.0117 0.0141 
Section 9 0.0114 0.0140 
Section 10 0.0113 0.0140 
Section 11 0.0113 0.0140 
Section 12 0.0112 0.0140 
Section 13 0.0112 0.0140 

Matrix, with 
resistance 3 0.0132 0.0144 

 

Table 3.22 Resistance allele frequencies in matrix with different density dependence, 
high growth rate and dispersal, and RIB (LD) 

Location Generation 

10% RIB, LD 
CC – R3 D3 AD1 SC – R3 D3 AD1 
Average resistance allele frequency,  

3 generations after UXD 
Matrix – no 
resistance 3 0.0143 0.0142 

10% Resistance in hypothetical hotspot field [25][25] 
Section 1 

1 

0.1205 0.0663 
Section 2 0.0083 0.0074 
Section 3 0.0080 0.0073 
Section 4 0.0076 0.0072 
Section 5 0.0073 0.0071 
Section 6 0.0072 0.0070 
Section 7 0.0071 0.0070 
Section 8 0.0071 0.0070 
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Table 3.22 (Continued) 

Section 9 

 

0.0071 0.0070 
Section 10 0.0070 0.0070 
Section 11 0.0071 0.0070 
Section 12 0.0070 0.0070 
Section 13 0.0070 0.0070 
Section 1 

2 

0.1439 0.0848 
Section 2 0.0129 0.0118 
Section 3 0.0122 0.0112 
Section 4 0.0114 0.0107 
Section 5 0.0107 0.0103 
Section 6 0.0103 0.0101 
Section 7 0.0101 0.0100 
Section 8 0.0101 0.0099 
Section 9 0.0100 0.0099 
Section 10 0.0100 0.0099 
Section 11 0.0100 0.0099 
Section 12 0.0100 0.0099 
Section 13 0.0100 0.0099 
Section 1 

3 

0.1753 0.0858 
Section 2 0.0196 0.0171 
Section 3 0.0183 0.0148 
Section 4 0.0168 0.0163 
Section 5 0.0157 0.0155 
Section 6 0.0150 0.0145 
Section 7 0.0146 0.0143 
Section 8 0.0144 0.0142 
Section 9  0.0143 0.0142 
Section 10 0.0143 0.0142 
Section 11 0.0143 0.0142 
Section 12 0.0143 0.0142 
Section 13 0.0143 0.0142 

Matrix, with 
resistance 3 0.0150 0.00146 

 

3.6.3.2.3 Mitigation of resistance by increasing refuge for single PIPs 

When RIB and block simulations with different assumptions of density 

dependence incorporated variable refuge values (10-50%) for a single, low dose PIP with 

low and high growth rates and various redistribution constants, then the average r-
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frequency in the landscape was reduced (approximately linearly – exception was with CC 

R1 where durability results followed those of density independent projections) three 

generations after a resistance occurrence in the hotspot (Figures 3.15 and 3.16). When the 

pest had a lower growth rate, the resistance allele frequencies were lower for contest than 

for scramble competition across the refuge range tested. When the growth rate was 

increased, the opposite phenomenon could be observed, and resistance allele frequencies 

were somewhat lower with scramble than for contest competition. When the pest 

exhibited scramble competition, there was no difference in projected durability for the 

low dose single PIP with different growth rates, however. For contest competition, 

greater growth rates resulted in somewhat higher resistance allele frequencies across the 

refuge range explored. This pattern held for both IRM strategies, though resistance allele 

frequencies typically were lower for block simulations than for RIBs.  Unlike for HD 

simulations, low growth rates did not generate resistance allele frequencies in the 

landscape that were drastically different from those obtained with high growth rate 

assumptions – although visible differences were present (Figures 3.15 and 3.16).  
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Figure 3.15 Average resistance allele frequency in matrix three generations after 
resistance was first detected (LD PIP block refuge).  

Notes: different density dependent interactions (SC vs. CC), fecundity (R1 vs. R3), and 
dispersal (D1 vs. D3); the dark solid line is the projected resistance allele frequency at 
different refuge proportions in absence of density dependence. 
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Figure 3.16 Average resistance allele frequency in matrix three generations after 
resistance was first detected (LD PIP RIB).  

Notes: different density dependent interactions (SC vs. CC), fecundity (R1 vs. R3), and 
dispersal (D1 vs. D3); the dark solid line is the projected resistance allele frequency at 
different refuge proportions in absence of density dependence. 

3.6.3.2.4 Mitigation of resistance by increasing refuge for pyramided PIPs 

Likewise, resistance simulations were conducted for a low and high dose pyramid 

with different refuge percentages to observe whether the average resistance allele 

frequencies in the landscape were similarly affected with dual gene PIPs by such a 

mitigation strategy. The analysis identified that for a low dose pyramid deployed with a 

block refuge, the average landscape resistance allele frequencies also decreased 

approximately linearly as the percent refuge increased from 5 – 50% (Figure 3.17). The 

resistance allele frequency with a 50% compared to a 5% refuge was reduced by 104% 

(R1) and 56% (R3) for contest competition and 61% and 56% for scramble competition 

simulations. Effects of different assumptions for density dependence were visible as well, 
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and contest competition dynamics resulted in slightly greater resistance allele frequencies 

in the landscape than when the pest exhibited scramble competition (low and high pest 

growth rates). Furthermore, with a high growth rate, the resistance allele frequencies 

were once again greater than for a pest with a low growth rate (56% for CC and SC). 

Though the observed differences between different growth rate assumptions (holding 

everything else fixed) were not as great as for the single PIP analyses. All simulations 

including density dependence resulted in greater resistance allele frequencies compared 

to simulations without population regulations. This further strengthens the argument that 

including density dependent mechanisms in IRM models is a necessity.  

 

Figure 3.17 Average matrix resistance allele frequency three generations after 
resistance was first detected (LD pyramid block refuge).  
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For a high dose pyramid, the average landscape resistance allele frequencies 

remained unchanged with increasing refuge proportions and over the first three 

generations after resistance was detected (data not shown). There was no difference 

between IRM strategies, growth rates, and types of density dependence during this time 

interval. Density dependent mortality in the refuge still occurred as in previous 

simulations for single PIPs. Since rarely any individuals emerged from the simulated Bt 

fields with high dose assumptions, the effect of density dependence in the refuge had 

close to no effect on the resistance allele frequency over this initial time period. 

3.7 Sensitivity analysis 

Since the simulations in section 3.5.2 excluded variability sampling (except for 

initializing of pop size) and the results were reported for two extreme cases only, a brief 

sensitivity analysis was conducted over a broader range of intrinsic growth rate (R = 5-

50) and redistribution constant (D = 0.5-112) for each type of density dependent model 

and refuge strategy.  

The sensitivity analysis for diffusivity D informed that this parameter did not 

result in r-frequency changes for RIB and block simulations with low and high dose 

assumptions. The extreme values translated into average dispersal distances of one and 

15 fields, respectively. This analysis supports the statistical findings discussed in section 

3.5.1 that varying the redistribution kernel did not affect simulated adaptation to the PIP.  

Varying the proportion of individuals dispersing increases from 0 to <1.0 greatly 

reduced the resistance allele frequency for a high dose. For a low dose PIP, there was no 

effect on r-frequency until the dispersal proportions reached values greater than 0.50. In 
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those cases, the resistance allele frequencies were lowered and extended the life-time of 

the PIP. 

The sensitivity analysis for the intrinsic growth rate R revealed that increasing its 

value, while holding all other conditions fixed, resulted in increased resistance allele 

frequencies in the simulated landscape for a low dose PIP with contest competition and 

high dose PIP for both types of density dependent models.  

3.8 Discussion 

These research results indicate support that various life-history characteristics, 

refuge strategies, and dose of Bt PIP can affect the time to resistance in a generic 

(diploid) arthropod pest of Bt with sexual reproduction, often with significant interactions 

and surprising evolutionary outcomes. The intrinsic growth rate had the greatest effect on 

the simulated adaptation rate to a low and especially a high dose Bt PIP. Density 

dependence was the second most important parameter, and statistically significant 

differences were observed between contest and scramble competition simulations. 

Interactions between growth rate, type of density dependence, and the proportion 

dispersing were present for block simulations. For RIBs, interactions between growth rate 

and density dependence affected the time to resistance. The results suggest that a RIB for 

a single PIP might be more durable when the pest has a low growth rate. The magnitude 

of diffusivity had no significant effect on the rate of pest adaptation, and durabilities of 

the PIPs were not affected by varying the average dispersal distance in the distribution 

kernel function. Interesting it was only for high dose single PIP simulations that a greater 

dispersal proportion from the natal field resulted in increased durability. A pest with 

scramble competition dynamics and high growth rate may also help extend the lifetime of 
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a high dose single PIP. Furthermore, scramble competition dynamics resulted in higher 

durability estimates with higher growth rates than simulations with contest competition. 

This strengthens the importance to accurately model the type of intra-specific density 

dependence in simulation models because of different effects on the life-time of the PIPs 

and possible interactions with other parameters affecting the pest’s adaptation rate. 

Dispersal as tested here seemed to be less important for extending the lifetime of low 

dose single PIPs. Only if the proportion was greatly increased (> 0.5) was the projected 

durability increased. Block simulations with a 20% refuge typically predicted higher 

durabilities for single PIPs than 10% RIBs using the same model of density dependence 

and various growth rates. This was mainly a function of the reduced available refuge with 

RIBs but also the added mortality of susceptible genotypes from inter-plant movement. 

These two factors together reduced the pest’s ‘effective’ intrinsic growth rate compared 

to what the same pest would have experience in a block refuge/Bt environment. Overall, 

these results suggest that the interactions between life-history parameters can complicate 

resistance management. A generic approach should be avoided, and simulation modeling 

including a major target pest’s specific life-history characteristic could be employed to 

determine resistance management strategies that most effective at prolonging resistance 

evolution.  

That the life-time of the high dose single PIP was reduced to similar levels of a 

low dose single PIP if the pest had a higher intrinsic growth rates was very unexpected. 

The loss in durability from increasing the growth rate R0 reached levels as high as 245% 

for blocks and 83% for RIBs. These results support preliminary findings reported by 

Caprio and Martinez (2012) where the durability of a high dose PIP was also greatly 
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reduced with a high pest growth rate. The main reason behind these results was the 

disproportionately occurring population regulation in refuge and Bt environments with 

high growth rates coupled with simultaneously occurring selection. Greater population 

regulation in the refuge decreased the susceptible pool of insects and sped up the rate of 

adaptation in a cell. The increase in resistance allele frequency caused by population 

regulation could reach levels that were six times greater than from selection alone. When 

the growth rate was lower, then population regulation and selection had similar effects on 

resistance allele frequency increases until a few generations before resistance was 

declared. At that point, selection became the main evolutionary force. For low dose single 

PIPs, this effect was also visible but somewhat muted by the fact that density dependent 

mortality typically occurred more equally in Bt and refuge fields. For resistance 

management purposes this suggests that low dose single PIPs may be more robust to 

withstand differences in life-history characteristics of different target pests than high dose 

PIPs.  

Differences between simulations with scramble and contest competition were 

evident at all levels of growth rates in the high dose simulations. The lifetime of the PIP 

was estimated to last longer with contest competition and lower growth rates. When the 

pest growth rate and dispersal proportion were increased, it was scramble competition 

simulations that typically predicted greater durabilities. These results support that there 

may be considerable variability in the projected lifetimes of a high dose single PIP with 

different life-history characteristics of various arthropod pests, which suggests that 

considerable amount of analysis needs to go into the development of a resistance 

management plan for these types of toxins.  
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The results of this theoretical research suggest that the current understanding of 

the high dose + refuge paradigm may be incorrect for single PIPs when a pest has a high 

growth rate. Especially under these circumstances, it may be important to carefully 

evaluate the resistance management options and to consider alternate strategies, 

preferably pyramids, to extend the lifetime of each individual PIP. Resistance 

management plans should, therefore, always be based on analyses including pest-specific 

density dependent interactions and empirically estimated intrinsic growth rates to 

evaluate the life-time of single and pyramided PIPs. EPA and Bt technology providers 

may need to consider different refuge strategies that are based on major target pest 

characteristics and the type of PIPs deployed in various growing regions. Such a 

paradigm shift would add layers of complexity to resistance management that may not be 

viewed as practical or desirable by stakeholders. From a resistance evolution perspective 

and based on the results of these simulated studies, this would be needed to extend the 

life-time of the Bt technology. 

The analysis for the spread of the resistance gene showed that with higher growth 

rates, the r-alleles spread faster through the landscape than with low pest growth rates. 

This was more pronounced for high dose PIPs than for low dose PIPs. I observed that 

with a low growth rate, resistance was high near the hotspot and after a rapid drop-off, 

gradually decreased throughout the remainder of the landscape. With a high growth rate, 

resistance was lower in the section immediately surrounding the UXD site, but resistance 

allele frequencies were higher in fields farther removed from the hotspot leading to 

greater overall matrix resistance allele frequencies and, hence, faster spread of resistance. 

The difference in resistance was 86% (scramble competition) and 228% (contest 
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competition) higher in the landscape three generations after resistance was first detected 

if the pest had a high rather than a low growth rate and was exposed to a high dose Bt PIP 

(block refuge). This difference was 54% and 400% if the pest was exposed to a 10% RIB 

and exhibited scramble and contest competition dynamics, respectively. This increase 

was not as drastic when the PIP expressed a low dose for a pest with contest or scramble 

competition dynamics. These results seem to suggest that mitigation in response to 

hotspot resistance needs to utilize effective tools that are deployed without delay to 

maintain the durability of a high dose single PIP in the remainder of the landscape. 

As a mitigation strategy, the percent refuge was increased up to 50%, and a non-

linear decrease in resistance allele frequency was observed for the high dose single PIP 

scenario where the greatest gain occurred between 10-30% for RIBs and blocks. After a 

30% refuge, the allele frequencies decreased more slowly, and there may not be a great 

economic incentive for growers to consider planting greater refuges for such PIPs 

because of increased damage or potential yield loss that could occur with greater amounts 

of non-Bt protected plants per area. For low dose single PIPs and low dose pyramided 

PIPs, mitigating resistance in the landscape by increasing the percent refuge from 10- 

50% lead to an almost linear decrease in average landscape resistance allele frequency. 

Based on my simulated studies, increasing the refuge to 50% for such Bt PIPs would 

greatly improve their life-time. This implies that increasing the refuge may be an 

effective mitigatory strategy for such PIPs irrespective of the target pest’s life-history 

characteristics. For a high dose pyramid, no decrease was observed in the average matrix 

resistance allele frequency with increased refuge over the short time period explored. 

Though density dependent mortality occurred in the refuge, a generational increase in 
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resistance during the first three generations was not observed. This suggests that 

mitigation of hotspot resistance at one locus may be effectively mitigated in the 

surrounding areas with a pyramid. The mechanisms behind these results need to be 

further investigated.  
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CHAPTER IV 

THEORETICALLY TESTED REMEDIATION IN RESPONSE TO INSECT 

RESISTANCE TO Bt CORN AND Bt COTTON  

4.1 Abstract 

Integrated Pest Management (IPM) participation increased the durability of a less 

than high dose pyramid (consisting of two Bt toxins) targeting corn rootworm and 

bollworm if implemented at the time of commercialization of a new PIP assuming no 

prior selection or cross-resistance. IPM + IRM participation at 40, 50 and 70% (as 

measured on a per field basis) delayed resistance between 9-50% and 22-45% for 

rootworm and bollworm, respectively, compared to using IRM alone. As IPM 

participation increased, the durability for the pyramid was extended. Results of this 

research show the importance of including non-selective periods for corn rootworm to 

reduce the selection pressure from continuous Bt use. For bollworm, the inclusion of non-

selective periods did not significantly change the life-time of the PIP. This suggests that 

IPM + IRM programs should not be generic but pest specific and consider life-history 

characteristics. 

Based on the IPM and/or IRM strategies chosen, the life-time of a pyramid was 

affected differently. For corn rootworm, simulating crop rotation to a non-host plant was 

preferable and the most effective strategy. Soil applied insecticide use with Bt 

deployment did not increase the durability of the pyramid based on reasonable 
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survivorship assumptions used in the model. Based on efficacy assumptions reported in 

the southern U.S., the use of larvacides in Bt corn and cotton to control bollworm 

extended the durability of the pyramid equivalent to 70% IPM + IRM participation as 

measured on a per field basis. Increasing the refuge for a low dose pyramid to 20 – 30 % 

for corn rootworm and to 30% for bollworm extended the life-time of the pyramid and 

should be another management option made available to growers. Based on these 

simulated results, development of an incentive program may need to be considered that 

rewards growers who voluntarily increase the percent refuge for less-than-high dose 

pyramids.  

A local resistance phenomenon for corn rootworm was apparent in the landscape 

surrounding the resistance hotspot and spread slowly through the landscape. This was a 

function of the pyramided Bt PIP, which kept the resistance phenomenon from spreading 

quickly across the landscape. Local remediation one generation after detection of field 

failure had no effect on the rate of adaptation if remedial action strategies were applied 

randomly. Under these circumstances, regional mitigation was always superior to local 

remediation and reduced the overall resistance to levels equivalent to Bt selection with 

IPM upfront. If more effective tools were applied immediately during the remediation 

process (e.g. non-random application of crop rotation), then local remediation was also 

effective at reducing landscape resistance allele frequencies. It should be expected that 

resistance genes will always escape a resistance hotspot, and the results imply that 

mitigation of resistance for a pest that engages in dispersal will be more effective on a 

larger geographic scale. In the case of widespread (10 and 50%) resistance at one locus, 
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regional mitigation on 70 or 100% of the fields only minimally increased the life-time of 

the pyramid.  

For bollworm, when resistance was widespread at one locus (10 and 50%), the 

lifetime of the pyramid was compromised in 7.6 and 3.9 years (respectively) with an IRM 

approach only. When 70% of the fields were mitigated the year after resistance was first 

visually detected, the pyramid lasted at best two to three years longer. These results show 

that mitigation can only minimally extend the durability of the pyramid, but proactive 

IPM+IRM implemented across most of the landscape at the beginning of a new PIP 

deployment is superior to IRM alone.  

4.2 Introduction 

Western corn rootworm (Diabrotica virgifera virgifera LeConte) resistance to 

Cry3Bb1 was first documented in Iowa (Gassmann et al. 2011, 2012; Gassmann et al. 

2012) and later identified in multiple locations in Illinois (Gray 2012). In light of these 

reports, scientists at the US EPA echoed academia’s’ concern over the current ineffective 

resistance detection tools for corn rootworm (EPA 2011, 2013). In response, the US EPA 

held a Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Scientific Advisory 

Panel (SAP) meeting to obtain expert recommendations for improvements. 

The FIFRA SAP (1998) had concluded that IRM alone was not sufficient for low 

dose Bt toxins and should be used together with IPM to manage pests. The SAP (2014) 

more explicitly expressed that IRM for low dose toxins aimed at controlling corn 

rootworm were insufficient and needed to be combined with an IPM approach to prolong 

the lifetime of the current Bt technology. The Panel concurred with EPA that generic 

remedial action plans for corn rootworm needed to be replaced with specific and 
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theoretically tested remediation proposals. In addition, any remedial action plan should 

undergo scientific scrutiny, much like required insect resistance management (IRM) 

plans at the time of the registration submission to the Agency, and that theoretical models 

should be employed to explore the potential success of different mitigation strategies. 

These plans needed to be in place before field resistance developed so that pest-specific 

remediation would be triggered with little delay and when resistance was confirmed (US 

EPA 2013). Many of the weaknesses identified in the corn rootworm resistance 

management program apply also for H. zea. For example, there are no single or 

pyramided Bt PIPs commercialized that express a high dose in Bt corn and Bt cotton, and 

variability in susceptibility measured with diet bioassays is great (Ali et al. 2006, Ali and 

Luttrell 2007, Tabashnik et al. 2008) as for corn rootworm. Diet bioassays may also not 

provide a diagnostic tool for detecting H. zea resistance to Bt in the field.  

Under the current regulatory process for resistance management, remediation for 

corn rootworm and bollworm resistance would likely never be triggered. This is partly 

because of challenges with LC50/EC50 diet bioassays, the diapausing egg stage of corn 

rootworm, and the stepwise regulatory process leading to confirming resistance (US EPA 

2013). Previous analyses (Chapter 3) predicted that delaying remediation for a generic 

pest of Bt allows the resistance allele frequency to increase across the landscape within 

just one generation after resistance has been detected and that a gradient becomes 

apparent during the first few generations with the frequencies being highest near the 

resistant site. This rapid spread occurred irrespective of the magnitude of diffusivity 

explored (D = 0.5 - 112) and was driven by higher pest growth rates and nature of single 

PIP.  



 

175 

My research investigated whether remediation strategies for corn rootworm had 

the potential to slow the adaptation rate in the landscape one and three generations after 

resistance was first visually detected through field failure (assumption that resistance was 

at 10% in the population – see Roush & Miller (1986)). Furthermore, I evaluated whether 

IPM practices upfront with the use of IRM for corn rootworm and bollworm increased 

the durability of the Bt PIP compared to IRM alone. The term IPM here means to 1) use 

diverse methods of pest controls (cultural, physical, biological, chemical, etc.) but also 

implies that 2) these techniques be implemented together with monitoring for pest 

abundances to reduce unnecessary pesticide use and minimize risk to people, other non-

target species, and the environment (latter part not tested or addressed here). The analyses 

also estimated by how much the lifetime for the second gene in the pyramid could be 

extended with mitigatory strategies once the first gene was compromised. The research 

provided a theoretical approach for testing remedial action plans in case of resistance 

development in corn rootworm and bollworm. Ultimately, this research will provide 

simulated model results to assist the regulatory agency and others as to how current 

remedial action plans and resistance monitoring programs for corn rootworm and 

bollworm could be improved. This type of theoretical work differs from the current 

approach that relies on no theoretical testing of proposed remedial actions and represents 

a possible paradigm shift in approaches to development of resistance management 

strategies. 
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4.3 Materials and methods 

4.3.1 Models structure 

Two species-specific, stochastic, spatially explicit, and frequency-based 

probabilistic models were developed (developed in Java using NetBeans IDE 7.4) to 

explore the effects of various mitigatory strategies (e.g. local (field) vs. regional 

mitigation (matrix)) to delay corn rootworm and bollworm resistance from spreading in 

the landscape after resistance was first visually detected as field failure (unexpected 

damage site = UXD) with 10% resistance. The probability sampling was excluded to 

investigate the spread of the resistance allele in the deterministic mode. The models 

allowed me to investigate effects of IPM with IRM use on time to resistance in the two 

pests at the onset of commercialization of a hypothetical two-gene Bt PIP. Finally, I 

explored options to manage a compromised pyramid when resistance was localized or 

geographically widespread and resistance was at 10 or 50% at locus 1.  

The landscape consisted of a 51 x 51 field matrix (one field represents 50 ha of 

corn with 4 million plants; matrix size = 36.1 km x 36.1 km) and was designed as a torus 

so that all fields were identical, and each could be viewed as the center of the torus. Since 

a torus assumes that the simulated region is surrounded by similar systems, I essentially 

placed a recurring resistance hotspot into the landscape every 36.1 km. This assumption 

may represent a worst-case scenario for corn rootworm in the Corn Belt and bollworm in 

the cotton growing states. Because the distance between hotspots was relatively short, a 

preliminary investigation had to be conducted to investigate the presence of edge effects 

on the resistance allele frequency from successive dispersal over the time period 

investigated (6 generations). The results showed that the observed differences in r-
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frequency in the outer sections of the matrix between a 51 x 51 field matrix compared to 

a 61 x 61 field matrix were marginal; hence, the smaller size matrix sufficed for the 

purpose of the resistance allele spread analysis (described later), and a hypothetical 

hotspot was placed into field [25][25].  

The models used a redistribution process of dispersal to simulate adult movement 

(described in Chapter 3). Average displacement distance (√2𝐷) is one characteristic of 

dispersal; the proportion of a population engaging in redistribution is another parameter 

and will be discussed in the pest specific sections. The theory states that the motion of 

each individual is random in addition to being independent of the motion of all other 

individuals. This type of movement is also referred to as ‘random walk’ dispersal where 

no other external factors affect the path an individual takes. The Gaussian diffusion 

equation (solution for Fick’s equation for two-dimensional movement) was used and 

provided a probability distribution for a fraction (gamma) of individuals leaving the natal 

site (Okubo 1980) (previously discussed in Chapter 3):  

 𝑦(𝑥, 𝑦) = 𝑦0
𝑒−(𝑥2+𝑦2)/2(2𝐷)

2𝜋2𝐷
 (4.1) 

The fraction remaining in the natal habitat (1-gamma) engaged in trivial motion; 

these two types of distinct dispersal behaviors of a population result in a leptokurtic 

distribution in the landscape (Okubo 1980).  

The models were discrete time step models with one generation per year for D. 

virgifera and six generations/year of H. zea. Typically, it has been assumed for the 

purpose of simulations that resistance is complete and governed by one major gene. 

These same assumptions were made in these models here, although the assumption may 
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be incorrect for corn rootworm (SAP 2009, Gassmann et al. 2011) as well as for 

bollworm (Burd et al. 2003, Li et al. 2004, Jackson et al. 2006). None of the currently 

commercialized PIPs express a high dose for these two pests, and two hypothetical low 

dose, pyramids were, therefore, modeled. At each of the two loci, there were two alleles 

resulting in three possible genotypes: susceptible (SS), heterozygous resistant (RS), and 

homozygous resistant (RR). The mean fitness components were WSS = 0.20, mean WRS = 

0.28 (h = 0.10), and WRR = 1.0, mean. Total genotypic survival from exposure to the two 

gene Bt PIP was determined by multiplying the two fitness components at both loci. No 

fitness costs were assumed since this was the most conservative assumption. In absence 

of fitness costs, resistance can be expected to evolve faster, and simulations should 

predict lower durability estimates. I was mostly interested in relative durability 

comparisons between different IPM or remedial action approaches rather than absolute 

time estimates and, therefore, excluding potential cost to resistance seemed reasonable.  

Stochasticity was added into the system at the beginning of a simulation by 

initializing the corn rootworm population size in each 50 ha field with an egg density 

randomly drawn from an interval between 0 and 60,000,000, which translated into ≤0.75 

adult beetles per corn plant; in the resistant site this population size was increased to 

≥440,000,000 eggs, which translated into ≥22 million beetles in a 50 hectare field (5% 

survivorship) or ≥5 beetles per plant. For bollworm, the simulation started out in the third 

generation with an initial egg load in whorl stage corn randomly selected between 0 and 

6,000,000 (max = 1.2 larvae/plant). When there was a resistance hotspot, the initial egg 

density in a field was higher and started out at 18,000,000 as to increase the larval 

abundance and to increase visible damage (between 14.4 E+6 before and 6.9 E+6 after 
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natural larval mortality occurs). This translated into 3.6 larvae per corn plant (before 

natural mortality) in the affected field. The random initialization of population densities 

allowed for potential source sink dynamics in the landscape. Further variability in the 

system was introduced by sampling life-history and other parameter values from a PERT-

Beta (mode, minimum, and maximum), Poisson (variance = mean), and uniform 

distribution with predetermined ranges (minimum and maximum) (see Tables 4.1 and 

4.2). 

4.3.2 Western corn rootworm specifics 

Dispersal for adult Western corn rootworm was simulated in two steps in this 

model: general pre-mating dispersal followed by another event for female post-mating 

dispersal. For pre-mating dispersal, the diffusivity D was set to a mean of 3.0 (min 1.0, 

max 5.0) resulting in an average dispersal distance of 2.45 fields/generation (1732 x 1732 

m2/generation). Nowatzki et al. (2003) reported that adult daily dispersal distance was on 

average 14.5 m. Caprio and Glaser (2010) reevaluated their movement data using a 

Brownian motion model and reported that adult movement was underestimated and 

should have been around 41.8 m/day. The fields in this current corn rootworm model 

consisted of 50 ha (707 x 707 m2). Considering that females and males have an average 

longevity of 78.2 days and 102.4 days, respectively, (Hill 1975) the possible range of 

adult average dispersal distance captured by the two researchers’ proposed mean daily 

dispersal distance would be 1170 -3268.8 m for female and 1484.8 – 4280.3 m for male 

beetles. An average distance as calculated by a diffusivity of 3 appears reasonable using 

Caprio and Glasser’s (2010) average daily dispersal distance but would be a slight over-

estimate using Nowatzki’s estimate (2003).  
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Movement proportion was set to a mean value of 10% with a minimum and 

maximum value of 5% and 30%, respectively though estimates of mean proportion 

dispersing seem to be closer to 20% (Dr. Spencer, U IL, pers. com.). The mean was set 

below Spencer’s estimate to try and create a local resistance phenomenon, which is 

typically assumed for corn rootworm – though empirical data to support this assumption 

are currently lacking. The above dispersal assumptions were used here to describe the 

proportion that left the natal field but did not address trivial motion of adults in the field, 

Naranjo (1991) calculated based on a comparison between trap successes and theoretical 

simulations that (61.9%) Western corn rootworm were primarily emigrants when 

originating from early planted corn plots, although it is not clear what the physical 

separation was between the plots under investigation. In a mark-release-recapture study 

conducted in Europe (1% recapture rate), it was calculated that 50% of corn rootworm 

dispersed between 117 to 425 m per day, and one percent of the adults travelled between 

775 m and > 8 km (Carrasco et al. 2010). It was further calculated that between nine to 

45% of adults and 0.6 to 21% adults would escape a 1,000 m and 5,000 m buffer zone, 

respectively, within one generation. This zone represents 1.4 and 7.0 linear field distance 

in this model. In absence of more precise empirical data for the U.S., this European study 

can further inform the present understanding of the possible dispersal proportions and 

distances of Western corn rootworm in North America. The proposed average 

displacement and dispersal proportions for Western corn rootworm in this model were a 

reasonable first assumption based on limited available information.  

The proportion of females dispersing post-mating has been reported as low as 

15% (Coats et al. 1986) and as high as 25% (Naranjo 1990); the mean value in this model 
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was set to 15% (min 5%, max 25%). The diffusivity for post mating dispersal was set to a 

mean value of 8.0 (min 6.0, max 10.0) resulting in a mean displacement of four 

fields/generation (2828 x 2828 m2). From flight mill studies, it is known that sustained 

flights can last up to four hours, and a maximum distance of 24 km (equal to 33.9 linear 

fields as described in this model) was covered during one flight event (Coats et al. 1986). 

Considering that insects do typically not travel in a straight line (unless carried by a storm 

system or an equivalent mechanism) but have shown to engage in random walk (Kareiva 

1983), these estimates by Coates should not be interpreted as linear average (post mating) 

dispersal distances. My assumption of four fields (2.8 km2) could, however, be an 

underestimate.  

Density dependence was modeled as scramble competition for corn rootworm 

using the Hassell equation (1975) to regulate population densities in each field (method 

previously described in Chapter 2). The IRM strategies employed for the dual gene 

pyramid reflected the EPA requirement for a 5% structured block refuge or seed blend 

(RIB, Refuge-in-the-Bag). The value for b in the modified Hassel equation was 2.999, 

and the value for a was calculated using the modified equation described in Chapter 2. 

The same process of movement was used as described by Mallet and Porter 

(1992) with the exception that adult movement occurred twice per generation as opposed 

to once. Larval movement occurred once only as in Mallet and Porter. There was a 

probability (M = 0.30) that a larva left or remained (1-M) on a plant. If a larva dispersed, 

there was a probability that it could land on a Bt plant (1-V) or refuge plant (V). V took 

on the same value as the parameter for percent refuge plants per field (PropRef = 0.05), 

while 1-V was equal to the proportion of Bt plants in the seed blend (PropBt = 0.95). Bt 
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mortality was incurred before movement took place, and only survivors moved. If the 

movement was from Bt-to-Bt plant, additional selection occurred after inter-plant 

movement was completed. Unlike Mallet and Porter, however, an additional 20% 

movement penalty was incorporated into the RIB simulations. This mortality could be 

greater in the field when movement occurs between rows rather than within rows where 

roots of one corn plant are more likely to touch those of neighboring plants. In absence of 

any empirical data and as a first approximation, the value for this parameter remained 

fixed at 20%. This particular section of code was validated without the additional 

movement mortality and density dependence excluded, and results of the RIB 

demonstrated (as in Mallet and Porter, 1992) that the durability of the PIP was reduced 

compared to the estimated durability of the block refuge with the same refuge proportion 

(ceteris paribus). Life-history parameters that are included in the variability sampling and 

their values and/or ranges are listed in Table 4.1.  
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Table 4.1 D. virgifera parameters and values for PERT-Beta, Poisson, and uniform 
distributions 

Parameter Min Mode Max Comments 

Natural larval survival 0.85 0.90 0.95 
Mode derived with 
information provided by 
Hibbard et al. (2010) 

Natural Fecundity 1087 Hill (1975); Poisson 
distribution 

Egg viability 0.029 0.084 0.10 Hibbard et al. (2010) 

Overwintering survival 0.4 0.5 0.6 
Mode is value reported by 
Godfrey & Turpin (1983); 
Onstad et al. (2006) 

1IRAF 0.001 0.005 0.01 Same for both loci 

IRAF-2 0.01 0.015 0.02 Includes prior years of 
commercialization 

Adult redistribution kernel 1.0 3.0 5.0 Estimate based on Spencer (U 
IL, pers. com.) 

Adult dispersal proportion 0.05 0.10 0.30 Spencer (U IL, pers. com) 
Female post-mating 
redistribution kernel 6.0 8.0 10.0 Estimate based on Coats et al. 

(1986) 
Female post-mating 
dispersal proportion 0.05 0.15 0.25 Coats et al. (1986); Naranjo 

(1990) 
Wss 0.1 0.2 0.3 Same for both loci 
Dominance 0.05 0.10 0.15 Same for both loci 
Base larval movement in 
RIB 0.10 0.30 0.40 Similar to Caprio & Glaser 

(2010) 

2SAI survivorship 0.5-1.0 
Uniform distribution; assumes 
mode of actions (MOA) are 
rotated every year. 

Adulticide survivorship 0.10-0.30 

Uniform distribution; range 
allows for early and late 
emerging beetles to escape 
control; assumes MOA are 
rotated every year. 

Note: 1IRAF = initial resistance allele frequency; 2SAI = soil applied insecticides; PERT-
Beta distribution reported minimum, maximum, and mean values; Poisson distribution 
reported mean and standard deviation; uniform distribution reported minimum and 
maximum values of range. 

4.3.3 Bollworm specifics 

Movement for adult bollworm in these simulations included one dispersal event 

per generation, which occurred before mating took place. Bollworm have a high 

propensity to disperse and engage in long-distance migration (Gould et al. 2002, Sparks 
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et al. 1986). On a smaller geographic scale, it has been documented that ovipositing 

females left their natal and neighboring fields to lay eggs in more distant plots (Isley 

1935). In a rubidium study to track movement of bollworm, it was determined that males 

flew between 0.5 and 2.5 km from their point of origin (Graham et al. 1978); in my 

system, this would be approximately an average displacement of 3.53 fields/generation. 

As a first assumption, the diffusivity was set to a mean of 10.0 (min 8.0, max 12.0), 

which translated into 4.89 fields and slightly exceed the reported distance by Graham et 

al. (1978). The dispersal proportion was set to 0.5 based on anecdotal evidence and in 

absence of empirical data. Larval movement was not simulated here because only block 

refuges were modeled. The H. zea model analyzes resistance evolution in a regional 

population (as reflected by the torus), and the pest propensity to migrate was excluded for 

this purpose. 

Density dependence was modeled as contest competition for bollworm using the 

modified Hassell equation. The values of b were calculated based on R0 assumptions (see 

Chapter 2) and set to 1.05 in the early natural host, 1.1 in corn, and 1.05 in cotton and 

1.15 in late natural host. The values for parameter a were based on carrying capacity, R0, 

and values for b and were calculated using the respective equation and parameter values 

previously discussed (Chapter 2). The IRM strategies employed was a 20% block refuge 

for Bt corn controlling bollworm in the southern US, and a 20% cultivated/natural host 

refuge was assumed for Bt cotton. For the first two generations of bollworm, 20% of the 

landscape was dedicated to an early season, non-cultivated host onto which all 

overwintering survivors later oviposited their eggs. This was a modification from the 

approach described in chapter 2, where only 20% of the overwintering survivors were 
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allowed to colonize the 20% natural host space in the matrix. Life-history parameters that 

were included in the variability sampling and their values and ranges are listed in Table 

4.2. 

Table 4.2 H. zea parameters and values for PERT-Beta, Poisson, and uniform 
distribution  

Parameter Min Mode Max Comments 
Larv surv on natural host 0.25 0.35 0.45 

Caprio et al. (2009) Larv surv on corn 0.38 0.48 0.58 
Larv surv on cotton 0.10 0.15 0.20 
Pupa surv 0.70 0.80 0.90 Kring et al. (1993) Adult surv 0.70 0.80 0.90 
Fecundity on natural host 1600 Poisson distribution 
Fecundity on corn 1350 Poisson distribution 
Fecundity on cotton 1500 Poisson distribution 
Egg viability on natural host 0.40 0.50 0.60 

Caprio et al. (2009) Egg viability on corn 0.70 0.80 0.90 
Egg viability on cotton 0.50 0.60 0.70 

Overwintering survival 0.05 0.0625 0.075 
Caprio et al. (2009), 
Stadelbacher & Pfrimmer 
(1972) 

IRAF 0.001 0.005 0.01 

Assumes no pre-
commercialization release, no 
cross-resistance with existing 
commercialized toxins. 

IRAF-2 0.01 0.015 0.02 Includes prior years of 
commercialization 

Adult redistribution kernel 8 10 12  
Adult dispersal proportion 0.40 0.5 0.75  
Susceptible fitness - WSS 0.25 0.20 0.15 Hypothetical low dose 
Resistant fitness - WRR 1.0 Complete resistance 
Dominance h 0.05 0.1 0.2 Hypothetical values 

Larvacide survivorship 0.35-0.45 
Uniform distribution; range 
based on Mississippi State 
Control Guide (2014) 

Note: 1 fecundity values were adjusted to achieve R0 values reported by Caprio et al. 
(2009); PERT-Beta distribution reported minimum, maximum, and mean values; Poisson 
distribution reported mean and standard deviation; uniform distribution reported 
minimum and maximum values of range. 
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4.3.4 IPM and remediation modeling  

4.3.4.1 D. virgifera modeling scenarios 

The corn rootworm modeling scenarios explored are listed in Table 4.3, and 

included IPM+IRM approach at the outset of the PIP commercialization, as 

recommended by the SAP (2014) to prolong the life-time of less durable, low dose PIPs. 

An IRM baseline scenario (no insecticides) was established to later determine the relative 

durability gain from the combined use of the four proposed corn rootworm IPM 

strategies. For corn rootworm IPM, non-Bt corn was made available as a strategy (but 

withheld in later remediation scenarios) to observe impacts of non-selective periods on 

the rate of adaptation of corn rootworm. Other IPM and IRM tools modeled were crop 

rotation, soil applied insecticides (SAI) with Bt deployment, and increased refuge (20%). 

When the economic threshold for corn rootworm adults was exceeded, an additional 

control tool was used (adulticide spraying). According to the Illinois Field Crop Scouting 

Manual (2012), the economic threshold for corn rootworm adults is exceeded when more 

than five individuals are present on a plant; control measures (e.g. adulticide spraying) 

are then recommended to protect pollination of ears and prevent silk clipping. This 

economic threshold was used for non-resistance simulations. When resistance developed 

at locus 1, however, adulticides were applied in those fields when the beetle population 

size exceeded a threshold of 0.75 adults per plant as to prevent egg laying and protect 

against future root injury during the following season (Illinois Field Crop Scouting 

Manual, 2010).  

Each IPM and IRM tool was evaluated alone to understand the relative benefit of 

choosing one over the other. In scenario (1), combined strategies were used in the IPM 
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participation simulations (explained below) at the on-set of a new product 

commercialization. The use of the term “IPM participation” throughout the remainder of 

the chapter refers to combining IPM and IRM tools. There was an equally likely chance 

that the four IPM and IRM tools explored (crop rotation, SAI with Bt, non-Bt corn, and 

increased refuge) were applied to a field during a particular year; the baseline IRM 

strategy as mandated by EPA (planting of 5% refuge with Bt) had the greatest probability 

of being applied to a field (explained more below). First, a random number was sampled 

from a predetermined range at the beginning of each year and for each field. When the 

landscape IPM participation rate (measured on a per-field basis) was set to 0.40, 0.50, or 

0.70 and the sampled number fell within 40%, 50%, or 70% of the predetermined range, 

then IPM was applied to a field during a particular generation run. If the sampled number 

fell outside the cut-off, then ‘IRM only’ was applied to the field (refuge at 5%). If the 

first random number fell within the chosen IPM participation rate value, then a second 

random number was generated to determine which of the four IPM tools to apply to a 

particular field during a generation run. If the number fell in the first quarter of the range, 

crop rotation was implemented on that field. If the number fell within the second quarter 

of the range, then soil applied insecticides were applied together with Bt deployment. If 

the number fell into the next or last quarter of the range, then the refuge for the pyramid 

was increased from 5% to 20% or non-Bt corn was planted on that field (respectively). 

For instance, when IPM participation was set to 70%, then a field had a 30% chance to 

have the pyramid deployed with a 5% refuge (IRM only), and a 17.5% chance that crop 

rotation occurred, SAIs were applied with a 5% IRM plan, a 20% refuge was planted, or 

non-Bt corn was grown during that planting season. The same process was applied for 
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scenario (2), but now the non-Bt corn option was removed from the IPM tool kit. Hence, 

for a 70% IPM participation analysis, there was now a 23.3% chance that crop rotation 

occurred, SAIs were applied with Bt deployment, or the refuge for the pyramid was 

increased. A comparison between results of the two approaches determined whether there 

was an observed effect on the time to corn rootworm resistance when non-Bt corn was 

withheld as an IPM tool. Various IPM participation rates were chosen to reflect US 

EPA’s inability to mandate that corn growers use IPM practice together with IRM and Bt 

technology providers cannot require that a certain IPM strategy be applied on corn 

growers’ land.  

In another analysis (scenarios 3 and 4), effects of local remediation were explored 

for different response times (one and three generations after field failure) when resistance 

was localized at the UXD site. In scenarios 5 and 6, resistance was localized at the UXD 

site, but effects of remediation were explored regionally, applied at to 70% of the fields 

in the matrix (2601 fields) one and three generations after the field failure was observed. 

Scenario (7) describes a situation where resistance was widespread in the landscape 

(10%) at locus 1, and remediation (using IPM and IRM) was applied to 70% of fields in 

the landscape. The model projected how many more years could be gained from the 

compromised gene with mandatory IPM and before the pyramid became a single PIP. 

Another analysis determined how many more years were gained for the second PIP when 

resistance at locus 1 was ≥ 0.50. For this purpose, the initial resistance allele frequency at 

locus 2 was increased to account for prior use of the PIP (see IRAF-2 in Table 4.1). The 

likelihood of remediation was also set to 100% to establish a relative maximum as a 

reference, and the non-Bt corn option was excluded from the remediation strategies. The 
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reason for removing the non-Bt corn option was that cost-to-resistance was absent in the 

model due to unresolved uncertainties (Meihls et al. 2012, Hoffman et al 2012, and 

Petzold-Maxwell et al. 2013). 

In this corn rootworm model, SAIs were prophylactically used as insurance 

strategy to protect crop yield from potentially resistant corn rootworm populations and 

reflect current grower behavior in the Corn Belt. Gray et al. (1992) have expressed, 

however, that the use of soil applied insecticides should not be viewed as an IRM tool 

because they were not reliably effective, but rather they served a role in root and yield 

protection of corn. It was assumed in these simulations that there was a likelihood that 

growers would choose to prophylactically treat their Bt fields with SAIs. The upper range 

of survivorship to SAIs was increased to 100% to include results by Gray et al. (1992). 

Storer (2003) used a survivorship range of 0.2 to 0.80 for SAIs based on published 

information by Sutter et al. (1991). Considering all information, I decided to use a 

uniform distribution in corn rootworm simulations as in Storer (2003) with a minimum 

and maximum survivorship value of 0.5 to 1.0, respectively.  At the beginning of each 

year, a random value was drawn from this range and applied to rootworm larvae on all 

fields where SAIs were used. Adulticide sprays were applied to insects in both block 

refuge and Bt compartments as well as RIBs – but only if economic thresholds were 

exceeded. The minimum and maximum survivorship from adulticide sprays was 10% and 

30%, and values were sampled uniformly from this range. Adulticides are extremely 

efficacious contact poisons against susceptible corn rootworm and can kill them within a 

short time (Caprio et al. 2006). Because adults, however, emerge before and continue to 

emerge after an adulticide application has occurred (Ostlie, UMN, pers. com.), the model 
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used the above mentioned survivorship range to account for any beetles that temporally 

escaped control efforts and went on to disperse and reproduce. SAIs and adulticides were 

not modeled with resistance genes in the insects, and it was assumed here that there 

would be different modes of actions (MOA) available with equivalent efficacy range and 

between which a grower could rotate to avoid rapid selection. 

Table 4.3 D. virgifera IPM/IRM and remediation scenarios in Bt corn explored with a 
stochastic, spatially explicit model 

Scenario r-freq. in 
field[25][25] 

r-freq. 
out-side 

UXD 
Timing 

IPM+IRM 
& remedial 
action 
likelihood  

Strategies 

1) IPM+IRM 
in landscape 
using 5% RIB 
and 5% block 
refuge 

0.005 0.005 Up-front 40%, 50%, & 
70% 

Refuge corn, 
Bt with refuge, 
rotation, 
increased 
refuge, SAI, 
and adulticides 
when economic 
threshold is 
exceeded 

2) IPM+IRM 
in landscape 
using 5% RIB 
and 5% block 
refuge 

0.005 0.005 Up-front 40%, 50%, & 
70% 

No refuge corn; 
otherwise equal 
to strategies in 
1). 

3) 
Remediation 
in UXD site 
using 5% RIB 
and 5% block 
refuge 

0.10 0.005 After 1st 
generation 100% 

Bt corn with 
refuge, crop 
rotation, 
increased 
refuge, SAI, 
adulticides 
when economic 
threshold is 
exceeded 

4) 
Remediation 
in UXD site 
using 5% RIB 
and 5% block 
refuge 

0.10 0.005 After 3rd 
generation 100% 
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Table 4.3 (Continued) 

5) Regional 
mitigation 
using 5% RIB 
and block  

0.10 0.005 After 1st 
generation 70% 

 

6) Regional 
mitigation 
using 5% RIB 
and block 

0.10 0.015 After 3rd 
generation 

100% and 
70% 

7) Regional 
mitigation 
using 5% RIB 
and block 

>0.50 0.015 At 1st 
generation 

100% and 
70% 

 

4.3.4.2 H. zea modeling scenarios 

The IPM and IRM tools employed in this bollworm model were 1) planting of 

100% isoline corn on a 50 ha field coupled with one larvacide spray sometime between 

emergence and mid-whorl stage of corn if the economic threshold was exceeded (>1 

larvae per plant; Mississippi Insect Control Guide 2014), 2) increasing the non-Bt corn 

refuge from 20% to 30 or 50% for the pyramid, and 3) using IRM for Bt corn with a 

standard 20% refuge only. If, and only if, the economic threshold was exceeded in refuge 

whorl stage corn, the Bt corn portion of that field was also sprayed as not to increase the 

resistance allele frequency in the population. Likewise, larvacide spraying in Bt cotton 

was initiated only when larval densities reached or exceeded the economic threshold for 

‘before bloom’ and ‘after cut out’ (8 larvae/100 plant; Mississippi Insect Control Guide 

2014). Previous analyses (Chapter 2) have shown that density dependence on cotton was 

minimal (lower population densities than in corn) and, therefore, this option should be 
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rarely triggered. Crop rotation for the purpose of suppressing bollworm was excluded as 

an IPM option because H. zea feeds on many different agricultural crops, ornamentals, 

and wild hosts (Stadelbacher et al. 1983).  

The modeling scenarios explored for bollworm are listed in Table 4.4, and, like 

for corn rootworm, included a combined IPM+IRM approach at the outset of the new low 

dose pyramid commercialization to estimate by how many more years the lifetime of 

less-than high dose pyramided could be extended. The IRM strategies for increased 

refuge in corn were individually explored to evaluate the relative gain in durability 

compared to Bt deployment with the standard, mandated 20% refuge (IRM alone). 

Scenario 1 simulated a case where different IPM participation percentages (40%, 50%, 

and 70%) were evaluated to determine what participation level would provide the greatest 

lifetime for such a hypothetical dual gene product. 

Scenario 2 was an attempt to describe a case where resistance was widespread at 

locus 1 and at 10% (q = 0.10, q2 = 0.010). Local remediation of resistance in bollworm 

was considered a futile exercise because of the species high propensity to disperse and 

was not modelled. Fields in the entire landscape were mitigated with a 70% likelihood 

when corn was in the whorl stage one year after resistance was visually detected in Bt 

cotton during the previous growing season. 

Scenario 3 described a case, where resistance at locus 1 was widespread (50%), 

and the mean resistance at locus 2 was elevated to a mean of 0.015 to simulate prior 

commercialization. Here, the objective was to determine how much more utility could be 

gained from the second gene by implementing remediation immediately. The 

participation rate was set at 70% again rather than 100% because refuge compliance for 
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corn PIPs has been variable over the years (depending on pest approximately 70-90% in 

the Corn Belt vs. 30-70% in the cotton growing regions, US EPA 2011 and 2014); based 

on this information, the assumption was made that 100% remediation in such an area 

would likely not be a realistic goal even if regulatory triggers for confirmed resistance 

were met. Isoline corn was excluded during area-wide remediation modeling. 

The same process described for corn rootworm was used to determine whether 

IPM and/or IRM would be applied to a field in the bollworm simulations. When IPM was 

selected, then another random process in the model decided which IPM strategy was 

applied to a particular field during a particular generation run. Since both Bt corn and 

cotton expressed the same dual-gene Bt toxins in the model used, once resistance had 

developed in corn, further selection occurred in Bt cotton. No specific, alternate 

mitigation, aside from spraying with conventional insecticides was introduced in Bt 

cotton at such a time because the majority of the southern U.S. has adopted the natural 

refuge paradigm where wild hosts, weeds, and other cultivated crops provide the refuge 

for Bt cotton (US EPA 2007). In other states (California, Arizona and New Mexico) and 

several counties in Texas, growers are, however, required to plant a structured refuge. 
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Table 4.4 H. zea IPM/IRM and remediation scenarios in Bt corn explored with a 
stochastic, spatially explicit model 

Scenario r-freq. in 
UXD site 

r-freq. in 
remaining 

fields 
Timing IPM 

participation  Strategies 

1) IPM+IRM in 
landscape using 
block refuge 

0.005 0.005 Up-front 40%, 50%, & 
70% 

Bt corn with 
20%, 30%, 
and 50% 
refuge, isoline 
corn, and 
larvacides 

2) Remediation 
in landscape 
when resistance 
is widespread 

0.10 0.10 After 1st 
generation 70% 

Bt corn with 
20%, 30%, 
and 50% 
refuge, and 
larvacides 
when 
economic 
thresholds are 
exceeded 

3) IPM in matrix 
for Locus 2 in 
pyramid when 
Locus 1 is 
compromised 

0.50 0.015 After 1st 
generation 70% 

Note: Crop rotation was not a viable option for the polyphagous H. zea because the pest 
feeds on several hundreds of different vegetables, forage crops, ornamentals and wild 
hosts (Stadelbacher et al. 1986). 70% IPM participation was explored in the southern 
U.S. based on the current compliance with refuge requirements for Bt corn PIPs (US EPA 
2011 and 2014). 

4.4 Analysis 

I analyzed my data using R software (R Core Team, 2013, package version 3.0.2). 

The effects of each single IPM strategy on the durability of the dual gene PIP, described 

in sections 4.3.1 and 4.3.2, were evaluated using a one-way ANOVA (20 simulations 

each); bootstrap analyses were conducted to estimate differences in the distributions of 

time to resistance between RIBs and blocks. The joint effects of all IPM tools at different 

participation percentages were evaluated in scenarios (1) and (2) for corn rootworm (with 

and without isoline corn option) and scenario (1) for bollworm (100 simulations each) 

using a separate one-way ANOVA for RIBs and blocks. Again a bootstrap analysis was 
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performed to identify whether the RIB and Block distributions for time to resistance 

differed significantly for corn rootworm simulations. The 95% confidence interval for the 

ratio of the distributions at the 5% quantile (R software, version 3.0.2) was calculated to 

report the significance level using the ‘adjusted percentile method’ (BCa) (Davison and 

Hinckley, 1997). 

Effects of timing of mitigation on the spread and increase in resistance allele 

frequency in the landscape were assessed at different times after resistance in corn 

rootworm populations (1 and 3 generations) was first detected in the UXD site. Average 

resistance allele frequencies were reported in square sections 1 -13 (see Figure 4.1, 

shaded sections). The variability sampling for life-history characteristics was switched 

off, and all parameters were set to the mean values as to reduce the noise and to detect 

patterns in the landscape. The remaining source of variability in the simulations stemmed 

from stochastically initializing the egg load in the fields at the beginning of the 

simulation and the random selection of IPM and/or IRM tools for each field at the 

beginning of a generation run (between field variation). 
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Figure 4.1 Matrix  and square sections around resistant site where resistance allele 
frequencies were recorded  

Notes: 51 x 51 fields 50 ha each; resistance was visibly detected in the field and assumed 
to have been the product of 10% resistance (Roush and Miller 1986); population density 
was modeled as very high in a resistant site. Resistance allele frequencies were reported 
for the first 13 rectangular sections. 

4.5 Results 

4.5.1 IPM and IRM strategies and resistance evolution in D. virgifera to a two-
gene pyramided Bt PIP 

Block refuges and RIBs alone without any further IPM and IRM approaches were 

estimated to provide a mean durability of 23.4 and 22.7 generations, respectively, for the 

low dose pyramid (Table 4.5). These simulated results do not differ significantly; both 
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IRM strategies estimate similar durabilities with IRM alone (BCa [0.8182, 1.0526]) 

(Table 4.6). Crop rotation to a non-host on all fields resulted in extirpation of corn 

rootworm within five to six generations for both RIBs and block strategies assuming that 

there was a possibility of 2% volunteer corn each year but ignoring other potentially 

cultivated crops in the agricultural landscape (e.g., cucurbits, Howe et al. 1976). Rotation 

was the best of all IPM strategies, followed by increased refuge, and both IRM and SAI 

with IRM (Blocks: p-value <2e-16, Df = 3, 76, F = 509.9) (RIBs: p-value <2e-16, Df = 3, 

76, F = 763.3) (Table 4.5). SAI applications with IRM on all fields did not extend the 

durability of blocks or RIBs in these simulations compared to when only IRM was 

implemented. A bootstrap analysis informs that there was no statistically significant 

difference between block and RIB results with this strategy (BCa [1.000, 1.050]). 

Increasing the refuge proportion from 5% to 20% on all fields lead to the greatest gain in 

durability for blocks and RIBs. Likewise, the results for blocks and RIBs with the 

increased refuge strategy did not differ significantly (BCa [0.933, 1.049]). The percent 

increase in durability compared to ‘no action’ (IRM only) or IRM + SAI was 98% and 

103% for blocks and approximately 115% compared to both strategies with RIBs. 

Figures 4.2 and 4.3 visualize this comparison for IRM strategies and shows that the 

distribution for time to resistance with increased refuge was significantly greater than 

results obtained with other strategies (SAI+Bt or IRM only). Crop rotation was not 

included in the figures because those results represented extinction cases not cases of 

resistance. From a practical perspective, crop rotation appears to be the answer to 

managing resistance in this insect. 
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Table 4.5 Time resistance or extermination for a LD pyramid targeting D. virgifera 
with a 5% refuge using IPM or RM strategies 

Strategy SAI Crop Rotation Increased Refuge No Action 

5% Block 22.9b(20-27) 5.1*a  46.5c (40-63) 23.4b (18-29)  

5% RIB 22.6b (18-26) 5.2*a 48.8c (42-58) 22.7b (18-27) 
Note: Letters show level of significance for different IPM/IRM strategies within the same 
group (refuge strategy). Numbers in parenthesis report the range of durability. Results 
were based on 20 simulations; * indicates ‘time to extirpation; 2% volunteer corn allowed 
with crop rotation; SAI use assumes rotation between different modes of action and no 
resistance to insecticides; refuge was increased from 5% to 20%.  
 
Multiple Comparisons of Means (block simulations) -Tukey contrasts 

Estimate  Std. Error  t value   Pr(>|t|)     
IRM-only - Rotate == 0       18.300       1.063    17.218    <1e-05 *** 
IRM+SAI - Rotate == 0        17.850       1.063    16.794    <1e-05 *** 
Incr. Ref - Rotate == 0      41.400       1.063    38.952    <1e-05 *** 
IRM+SAI - IRM-only == 0    -0.450       1.063    -0.423     0.974     
Incr. Ref - IRM-only == 0    23.100       1.063    21.734    <1e-05 *** 
Incr. Ref - IRM+SAI == 0     23.550       1.063    22.157    <1e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple comparisons of Means (RIB simulations)-Tukey contrasts:  

          Estimate  Std. Error  t value   Pr(>|t|)     
IRM only - Rotate == 0     17.5500      0.9212   19.052    <1e-06 *** 
IRM+SAI - Rotate == 0      17.4000      0.9212   18.889    <1e-06 *** 
Incr.Ref - Rotate == 0     43.6500     0.9212   47.385    <1e-06 *** 
IRM+SAI - IRM only == 0    -0.1500      0.9212   -0.163     0.998     
Incr.Ref - IRM only == 0   26.1000      0.9212   28.334    <1e-06 *** 
Incr.Ref - IRM+SAI == 0    26.2500      0.9212   28.496    <1e-06 *** 
 

Table 4.6 Results for 95% BCa confidence limits for RIB and block distributions and 
individual IPM strategies 

Bootstrap 95% CI SAI Increased Refuge No Action 

RIB:Block (1.000,  1.050)n.s. (0.933,  1.049)n.s. (0.8182,  1.0526)n.s. 
Note: Bootstrap confidence interval computations were based on 10,000 bootstrap 
replicates; 95% BCa confidence limits of the ratios of 5% quantiles of distributions; ^ = 
ratio of distributions differed significantly for the 95% C.I. for the ratios of the two 
distributions at the 5% quantile; n.s. = no statistically significant difference observed. 
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Figure 4.2 Distributions of durability for a LD Bt pyramid targeting D. virgifera using 
IPM +IRM for block refuges  

Notes: ANOVA determined a significant difference between increased refuge (b), and the 
Bt pyramid deployed with SAI+Bt (a) or IRM only (a) strategies. 
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Figure 4.3 Distributions of durability for a LD Bt pyramid targeting D. virgifera using 
IPM +IRM for RIBs  

Notes: ANOVA determined a significant difference between increased refuge (b), and the 
Bt pyramid deployed with SAI+Bt (a) or IRM only (a) strategies. 

Table 4.7 lists the results for the IPM implementations with different participation 

rates and including/excluding the planting of non-Bt corn as an IPM option. The ANOVA 

results comparing all strategy combinations for blocks and RIBs are listed in Tables 4.8 

and 4.9, respectively. ANOVA results for block and RIB block simulations including and 

excluding non-selective periods show that there was always a significant difference in 

durability between simulations at each IPM participation percentage tested (see Figure 
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4.4, data in Tables 4.8 and 4.9). The percent increase in durability at 40, 50, and 70% 

IPM participation were approximately 13%, 18%, and 23% for blocks and 10%, 20%, 

and 24% for RIBs, respectively (Table 4.7). As IPM participation increased, the impact 

of having non-Bt expressing corn amplified, this was more pronounced for RIB than 

block strategies.  Figure 4.5 visualizes the significant increase in durability for blocks 

with IRM only and increasing IPM participation with isoline corn (Blocks: p = 2e-16, Df = 

3, 316, F = 56.6) (RIBs: p = 2e-16, Df = 3, 316, F = 66.4). Out of 15 ANOVAs comparing 

durability estimates, 13 were statistically significant indicating that when IPM 

participation with or without non-Bt corn increased, the durability increased as well. 

When IPM participation was, however, at 70% without non-selective periods 

interspersed, then durability was not statistically different from results obtained at 40% 

participation with and 50% participation excluding isoline corn. This suggests that if 

Biotechnology providers and US EPA efforts fail to have a large grower IPM 

participation that having non-selective periods interwoven with Bt selection can make up 

for the lack of participation.  

A between-refuge strategy comparison (RIB vs. blocks) showed that the 

durability distributions were not different at low IPM participation without isoline corn 

(40 and 50%). If IPM participation was 70%, however, block simulations predicted 

greater durabilities for the pyramid than the RIB. Blocks were always more durable than 

RIBs when non-selective periods were included in the mix of IPM options irrespective of 

percent participation (see Table 4.10).  
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Table 4.7 Average years to resistance for a LD pyramid with 5% refuge targeting D. 
virgifera using IPM strategies with different participation rates  

IPM 
participation  

Non-Bt corn 
option Block RIB Comments 

40% 
No isoline corn 26.2 (20-36)a 24.8 (18-32)a 

IPM/IRM 
strategies: SAI, 
crop rotation, Bt 
corn w/refuge, 
increased refuge 
(20%), and 
adulticide 
spraying at 
economic 
threshold 
exceeded. 

With isoline 
corn 29.5 (22-39)b 27.6 (21-38)a 

50% 
No isoline corn 27.7 (22-40) a 26.5 (20-34) a 

With isoline 
corn 32.6 (24-52) b 31.9 (22-46) a 

70% 
No isoline corn 28.7 (22-38)b 27.0  (21-35) a 

With isoline 
corn 35.2 (26-50) b 33.6 (23-43)a 

Note: IPM was implemented at the on-set of PIP commercialization; letters denote 
significant differences between block and RIB simulations using the same IPM 
participation rate (results in Table 4.10); results were based on 100 simulations; shaded 
fields denote significant differences between block and RIB results.  
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Table 4.8 ANOVA results for different IPM participation rates and block simulations 

Model comp 40% IPM 
w/isoline 

50% IPM 
no isoline 

50% IPM 
w/ isoline 

70% IPM no 
isoline 

70% IPM 
w/ isoline 

40% IPM no 
isoline corn 

p =2.0e-10, 
Df=1, 198 
F = 45.0 

p =0.00174, 
Df=1,198  
F = 10.1 

p=2e-16, 
Df=1,198 
F = 126.9 

p =3.3e-07 
Df=1, 198 
F = 30.0 

p =2e-16, 
Df=1, 198 
F = 265.7 

40% IPM 
with isoline 
corn 

 p =7.3e-4, 
Df=1, 198 
F = 11.8 

p=6.3-07, 
Df=1, 198 
F = 6.3 

p=0.122,  
Df=1,198  
F = 2.4 

p =2e-16, 
Df=1, 198 
F = 93.2 

50% IPM no 
isoline corn 

  p=2.2e-14, 
Df=1,198  
F = 68.14 

p=0.0514, 
Df=1,198 
F = 3.8 

p =2e-16, 
Df=1,195  
F = 167.9 

50% IPM 
with isoline 
corn 

   p=3.0e-10, 
Df=1,198 
F = 44.1 

p=1.3-04, 
Df =1,198 
F = 15.3 

70% IPM no 
isoline corn 

    p=2.0e-16, 
Df=1,198 
F = 128.0 

Note: Isoline corn = non-Bt corn; Shaded fields denote significant differences between 
IPM strategy comparisons. 

Table 4.9  ANOVA results for different IPM participation rates and RIB simulations 

Model comp 40% IPM 
w/isoline 

50% IPM 
no isoline 

50% IPM 
w/ isoline 

70% IPM 
no isoline 

70% IPM 
w/ isoline 

40% IPM no 
isoline corn 

p=4.7e-09, 
Df =1,198 
F = 37.6 

p=4.53e-05, 
Df =1,198 
F = 17.4 

p=2e-16, 
Df =1,198 
F = 188.3 

p=3.3e-07, 
Df = 1, 198 
F 28.0 

p=2e-16, 
Df =1,198 
F = 298.5 

40% IPM 
with isoline 
corn 

 p=7.3e-04, 
Df =1,198 
F = 11.8 

p=6.3e-07, 
,Df =1,198 
F = 26.5 

p=0.122 
Df =1,198 
F = 2.4 

p=2e-16, 
Df =1,198 
F = 93.2 

50% IPM no 
isoline corn 

  p=2e-16, 
Df =1,192 
F = 24.4 

p=0.287, 
Df =1,198 
F = 1.1 

p=2e-16, 
Df =1,198 
F = 174.2 

50% IPM 
with isoline 
corn 

   p=2e-16, 
Df =1,198 
F = 86.5 

p=0.00663, 
Df =1,198 
F = 7.5 

70% IPM no 
isoline corn 

    p=2e-16, 
Df =1,198 
F = 156.9 

Note: Isoline corn = non-Bt corn; Shaded fields denote significant differences between 
IPM strategy comparisons. 
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Table 4.10 Results for 95% BCa confidence limits for RIB and block distributions with 
various IPM participation  

IPM Strategy  Isoline option 95% BCa C.I.: RIB:Block 

40% No isoline (0.8571, 1.0500)  n.s. 
With isoline (0.8400,  0.9545)  ^ 

50% 
No isoline (0.9091, 1.0000) n.s. 

With isoline (0.8462, 0.9200) ^ 

70% 
No isoline (0.8750, 0.9565) ^ 

With isoline (0.7930,  0.9259) ^ 
 

  

Figure 4.4 Percent distributions of durability for a LD pyramid deployed with RIBs, 
70% IPM participation, and no isoline corn option 

Notes: a = lower mean durability; b = greater mean durability, p =2e-16, Df =1, 198, F = 
156.9 
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Figure 4.5 Percent distributions of durability for LD pyramid with a block refuge and 
different or no IPM strategies  

Notes: a = lowest mean durability; b = intermediate mean durability; c = second highest 
mean durability; and c =greatest mean durability. 

4.5.2 Mitigation of D. virgifera resistance one generation after field failure 

Block and RIB simulations gave similar numerical results over the first six 

generations reported and when mitigation was initiated one generation after resistance 

first became visible; hence, no distinction was made when results were reported with 

different IRM deployment. Second, although simulations were run in the deterministic 

mode, numerical fluctuations were observed at each section in the landscape between 
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simulations because different mitigation strategies had different effects on the resistance 

allele frequency (stochastic noise). For example, crop rotation applied to a resistant field 

or surrounding areas was a much better remediation strategy than increasing the refuge 

(as implied by results in Table 4.5) and had a decreasing effect on the resistance allele 

frequency the following year (data not shown). Although the model was designed to 

select each strategy with equal likelihood, since I only run 10 simulations with 6 

generations each for this particular analysis (60 data points for each field), it was unlikely 

that all fields were mitigated with the same frequency for each strategy (explaining some 

of the observed variation). A preliminary analysis also showed that the order in which a 

tool was applied to a field over the six generations had an effect on the final resistance 

allele frequency after six generations. If crop rotation occurred in the first year of 

mitigation, then the overall resistance in the landscape and around the hotspot was much 

lower the following generation than if other strategies were employed first (another 

source of variation) (data not shown). The r-frequency results at generations 4-6 in Table 

4.11 (and Table 4.12) were, therefore, reported as ranges. 

In the first (no-resistance) case (1a) without mitigation and no isoline corn option, 

the average section and landscape r-frequencies increased uniformly with each generation 

(gen 1-6 from 0.0066 to 0.0334), and all were equal during successive generation runs 

(Table 4.11). This was to be expected since all fields started out with the same initial 

resistance allele frequency and values for each life-history parameter. In simulated case 

(1b), the resistance allele frequencies after six generations with mitigation in absence of 

resistance were approximately 19-38% lower than in absence of mitigation. This was 
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essentially an “IPM up-front” approach, and its benefits were already discussed in a 

previous section (see 4.5.1). 

Case (2) simulated resistance in the UXD site and the spread of resistance allele 

through the landscape in absence of mitigation. In all six generations, resistance allele 

frequencies were highest in the section immediately surrounding the UXD site (section 

1). In section 2, the resistance allele frequency was approximately seven or eight fold 

lower in all six generations and a resistance phenomenon was visible. With each 

increasing generation, this phenomenon spread more across the landscape. The final 

landscape resistance allele frequency in generation 6 was approximately 5% higher than 

compared to case (1a) (no resistance, no mitigation). 

In case (3) (scenario (3) in Table 4.3), mitigation occurred in the resistant site 

only and began one generation after resistance was detected (in generation or year 2, F2-

larvae faced mitigation). Given the assumptions for mitigation, there was no benefit to 

local mitigation in the UXD site one generation after field failure or not mitigating at all 

as measured by the final matrix resistance allele frequency or judging from the r-

frequencies in section 1. Again, a resistance phenomenon was clearly visible in the 

landscape section immediately surrounding the hotspot for all six generations. If, 

however, crop rotation was implemented in the UXD site for two consecutive years, then 

the final resistance allele frequency after six generations was similar to the ‘no resistance 

– no mitigation’ case (data not shown). This implies that even with some time delay, 

hotspot resistance could be effectively mitigated locally with successive years of crop 

rotation. 
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In case 4, mitigation occurred on 70% of the fields in an area of 36.1 km2 in 

response to visibly detected damage at the UXD site (scenario (5) in Table 4.3). The 

resistance allele frequencies in the matrix at generation 6 were similar to the IPM up-

front scenario and lower than in the ‘no resistance – no mitigation’ case. However, a 

resistance phenomenon was always visible around the hotspot and over the time 

investigated because mitigation tools were randomly selected in the UXD site as well as 

the remaining landscape. Regional mitigation preserved the life-time of the technology in 

non-resistant areas, while resistance could persist at a local scale. The resistance allele 

frequencies in section 7-13 were also lower with regional mitigation than when 

remediation occurred locally. The final resistance allele frequency range after generation 

6 bolster the previous comment that not all mitigation strategies are equally effective at 

slowing the pest’s adaptation rate (also see Figure 4.3).  

The results support that global mitigation in response to 10% resistance in a 

hotspot effectively maintained the life-time of a low dose pyramid in other regions of the 

landscape with lower resistance levels. Regional mitigation was always superior to local 

mitigation, even if crop rotation was the preferred strategy in the UXD site in two 

successive generations. Local mitigation was non-effective if remediation tools were 

applied at random. If crop rotation was used the first year during remediation, a 

preliminary analysis suggests that resistance could be managed effectively even with one 

year delay time based on conservative dispersal assumptions made here. A future analysis 

should explore whether this result holds when adult pre-mating dispersal proportion is 

increased. 
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Table 4.11 Resistance allele frequencies at locus 1 with local and regional mitigation 
one generation after field failure  

Mitigation 
Scenarios 

Location 
Freq. Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 

1a) no 
resistance, no 
mitigation 

Matrix 
freq. 0.0066 0.0088 0.0119 0.0165 0.0233 0.0334 

1b) no 
resistance 
with 70% 
regional 
mitigation 

Matrix 
freq. 0.0066 0.0086-

0.0088 
0.0109-
0.0115 

0.0150-
0.0154 

0.0203-
0.0211 

0.0210-
0.0271 

2) UXD, 10% 
resistance, no 
mitigation  

Sect. 1 0.1470 0.2362 0.3649 0.5328 0.6445 0.7521 
Sect. 2 0.0176 0.0326 0.0441 0.0621 0.0922 0.1388 
Sect. 3 0.0178 0.0300 0.0392 0.0539 0.0793 0.1187 
Sect. 4 0.0120 0.0202 0.0269 0.0373 0.0546 0.0812 
Sect. 5 0.0089 0.0138 0.0187 0.0262 0.0385 0.0570 
Sect. 6 0.0073 0.0106 0.0144 0.0203 0.0298 0.0439 
Sect. 7 0.0070 0.0096 0.0130 0.0182 0.0263 0.0385 
Sect. 8 0.0067 0.0091 0.0123 0.0171 0.0245 0.0355 
Sect. 9 0.0067 0.0089 0.0120 0.0166 0.0236 0.0340 

Sect. 10 0.0066 0.0088 0.0119 0.0164 0.0233 0.0335 
Sect. 11 0.0066 0.0088 0.0118 0.0163 0.0231 0.0332 
Sect. 12 0.0066 0.0088 0.0118 0.0163 0.0231 0.0331 
Sect. 13 0.0066 0.0088 0.0118 0.0163 0.0230 0.0330 

Ave Freq Matrix 0.0069 0.0093 0.0125 0.0173 0.0245 0.0352 
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Table 4.11 (Continued) 

3) UXD Site 
with 10% 
resistance & 
local 
mitigation  

Sect. 1 0.1460 0.2267 0.3526 0.5017-
5130 

0.6428-
0.6511 

0.7605-
0.7670 

Sect. 2 0.0109 0.0200 0.0282 0.0408-
0.0489 

0.0600-
0.0719 

0.0900-
0.1071 

Sect. 3 0.0122 0.0213 0.0287 0.0401 0.0586-
0.0589 

0.0867-
0.871 

 

Sect. 4 0.0101 0.0164 0.0220 0.0321-
0.0307 

0.0451-
0.0465 

0.0660-
0.0685 

Sect. 5 0.0082 0.0125 0.0169 0.0234-
0.0238 

0.0339-
0.0348 

0.0499-
0.0509 

Sect. 6 0.0073 0.0103 0.0141 0.0196-
0.0198 

0.0282-
0.0288 

0.0413-
0.0420 

Sect. 7 0.0069 0.0094 0.0127 0.0175-
0.0178 

0.0251-
0.0258 

0.0364-
0.0375 

Sect. 8 0.0067 0.0090 0.0122 0.0166-
0.0171 

0.0237-
0.0245 

0.0343-
0.0354 

Sect. 9 0.0066 0.0089 0.0120 0.0164-
0.0168 

0.0232-
0.0239 

0.0334-
0.0345 

Sect. 10 0.0066 0.0088 0.0119 0.0163-
0.0166 

0.0230-
0.0236 

0.0330-
0.0340 

Sect. 11 0.0066 0.0088 0.0119 0.0162-
0.0166 

0.0229-
0.0236 

0.0227-
0.0338 

Sect. 12 0.0066 0.0088 0.0119 0.0162-
0.0166 

0.0229-
0.0236 

0.0227-
0.0337 

Sect. 13 0.0066 0.0088 0.0119 0.0161-
0.0166 

0.0228-
0.0236 

0.0226-
0.0337 

Ave Freq Matrix 0.0068 0.0092 0.0124 0.0169-
0.0173 

0.0240-
0.0246 

0.0343-
0.0352 

4) UXD Site 
with 10% 
resistance & 
70% regional 
mitigation 

Sect. 1 0.1460 0.2179 0.2846 0.3734-
0.5046 

0.5708-
0.7052 

0.2187-
0.8256  

Sect. 2 0.0110 0.0200 0.0310 0.0471-
0.0791 

0.0752-
0.1526  

0.1018-
0.2602 

Sect. 3 0.0104 0.0182 0.0275 0.0408-
0.0611 

0.0640-
0.1161 

0.0850-
0.1995 

Sect. 4 0.0090 0.0147 0.0211 0.0302-
0.0382 

0.0463-
0.0712 

0.0625-
0.1239 

Sect. 5 0.0078 0.0116 0.0156 0.0213-
0.0297 

0.0317-
0.0520 

0.0442-
0.0864 

Sect. 6 0.0071 0.0100 0.0128 0.0165-
0.0157 

0.0237-
0.0344 

0.0321-
0.0523 

Sect. 7 0.0068 0.0093 0.0114 0.0142-
0.0217 

0.0197-
0.0276 

0.0268-
0.0385 

Sect. 8 0.0067 0.0090 0.0108 0.0131-
0.0186 

0.0178-
0.0234 

0.0240-
0.0301 

Sect. 9 0.0066 0.0089 0.0106 0.0127-
0.0167 

0.0172-
0.0220 

0.0227-
0.0272 
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Table 4.11 (Continued) 

 Sect. 10 0.0066 0.0088 0.0105 0.0126-
0.0161 

0.0170-
0.0215 

0.0219-
0.0261 

Sect. 11 0.0066 0.0088 0.0105 0.0126-
0.0159 

0.0168-
0.0213 

0.0220-
0.0258 

Sect. 12 0.0066 0.0088 0.0105 0.0126-
0.0158 

0.0168-
0.0213 

0.0220-
0.0256 

Sect. 13 0.0066 0.0088 0.0105 0.0125-
0.0158 

0.0168-
0.0212 

0.0218-
0.0256 

Ave Freq Matrix 0.0068 0.0091 0.0124 0.0130-
0.0170 

0.0181-
0.0237 

0.0235-
0.0301 

Note: deterministic runs although population size was randomly initiated in each field; 
shaded sections indicate the generation when mitigation was initiated. UXD IRAF = 
0.10; landscape IRAF = 0.005; each field was sampled individual for mitigation 
approaches. F1 frequencies were reported in generation1 in rings around damaged site, F-
2 frequencies during generation 2, etc.; no differences in results for block refuge and RIB 
simulations were observed during the few generations simulated, hence no distinction 
was being made when results for simulations were reported. 

4.5.3 Mitigation three generations after field failure 

Simulated cases (1a), (1b), and (2) in Table 4.12 are identical to those listed in 

Table 4.11 and results have been discussed in the previous section. Case (3) describes a 

scenario where mitigation occurred in the resistant site only, and remedial action was 

initiated with a delayed response time of three generations. The resistance allele 

frequency results in the landscape after six generation show that, given the assumptions 

for mitigation, there was no benefit of mitigating locally and resistance allele frequencies 

with local mitigation did not differ compared to ‘resistance without mitigation’. This 

makes sense, since mitigation in the UXD site one generation after resistance did not 

slow the adaptation rate either. A preliminary investigation with crop rotation applied in 

the fourth generation (first year of remedial response) showed that a local resistance 

phenomenon was still visible around the hotspot because of the three years where 

resistance genes were allowed to escape from the UXD site (data not shown). This 
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suggests that remediation with a delay time of more than one generation has to focus on a 

larger region than the UXD site alone. Crop rotation in a well-established hotspot has, 

however, still value and can aid in reducing overall resistance frequencies in the 

landscape.  

Results for regional mitigation three generations after resistance detection (case 4, 

RIBs and Blocks) suggest that with better mitigation strategies chosen early on, average 

resistance allele frequencies in the landscape could at best be as low as reported for 

worst-case levels with regional mitigation 1 generation after resistance detection (Tables 

4.11 vs. 4.12) . If less effective strategies were chosen in the first few generations of 

remedial action, then 70% regional mitigation starting in generation 4 predicted levels of 

resistance that were similar to the case of ‘resistance – no mitigation’.  

Table 4.12 Resistance allele frequencies at locus 1 with local and regional mitigation 
three generations after field failure  

Mitigation 
Scenarios 

Location 
Freq. Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 

1a) no 
resistance, no 
mitigation 

Matrix 
freq. 0.0066 0.0088 0.0119 0.0165 0.0233 0.0334 

1b) no 
resistance with 
70% regional 
mitigation 

Matrix 
freq. 0.0066 0.0088 0.0118 0.0163-

0.0164 
0.0223-
0.0224 

0.0225-
0.0311 

2) UXD, 10% 
resistance, no 
mitigation  
 

Sect. 1 0.1470 0.2362 0.3649 0.5328 0.6445 0.7521 

Sect. 2 0.0176 0.0326 0.0441 0.0621 0.0922 0.1388 
Sect. 3 0.0178 0.0300 0.0392 0.0539 0.0793 0.1187 
Sect. 4 0.0120 0.0202 0.0269 0.0373 0.0546 0.0812 
Sect. 5 0.0089 0.0138 0.0187 0.0262 0.0385 0.0570 
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Table 4.12 (Continued) 

 

Sect. 6 0.0073 0.0106 0.0144 0.0203 0.0298 0.0439 
Sect. 7 0.0070 0.0096 0.0130 0.0182 0.0263 0.0385 
Sect. 8 0.0067 0.0091 0.0123 0.0171 0.0245 0.0355 
Sect. 9 0.0067 0.0089 0.0120 0.0166 0.0236 0.0340 

Sect. 10 0.0066 0.0088 0.0119 0.0164 0.0233 0.0335 
Sect. 11 0.0066 0.0088 0.0118 0.0163 0.0231 0.0332 
Sect. 12 0.0066 0.0088 0.0118 0.0163 0.0231 0.0331 
Sect. 13 0.0066 0.0088 0.0118 0.0163 0.0230 0.0330 

Ave Freq Matrix 0.0069 0.0093 0.0125 0.0173 0.0245 0.0352 

3) UXD Site 
with 10% 
resistance & 
local 
mitigation  

Sect. 1 0.1459 0.2281 0.3524 0.5012-
5043 

0.6424-
6430 

0.7596-
7619 

Sect. 2 0.0142 0.0263 0.0359 0.0491-
0.0497 

0.0728-
0.0730 

0.1075-
0.1077 

Sect. 3 0.0104 0.0183 0.0255 0.0361-
0.0380 

0.0531-
0.0562 

0.0784-
0.0829 

Sect. 4 0.0090 0.0144 0.0198 0.0279-
0.0314 

0.0411-
0.0459 

0.0604-
0.0673 

Sect. 5 0.0077 0.0117 0.0161 0.0227-
0.0236 

0.0331-
0.0346 

0.0484-
0.0506 

Sect. 6 0.0073 0.0104 0.0141 0.0197-
0.0199 

0.0254-
0.0289 

0.0415-
0.0421 

Sect. 7 0.0068 0.0093 0.0127 0.0177-
0.0178 

0.0242-
0.0257 

0.0369-
0.0373 

Sect. 8 0.0067 0.0090 0.0121 0.0169-
0.0170 

0.0243-
0.0244 

0.0349-
0.0351 

Sect. 9 0.0066 0.0089 0.0119 0.0166-
0.0170 

0.0236-
0.0237 

0.0340-
0.0341 

Sect. 10 0.0066 0.0088 0.0119 0.0165-
0.0167 

0.0233-
0.0234 

0.0335-
0.0337 

Sect. 11 0.0066 0.0088 0.0118 0.0165-
0.0166 

0.0233-
0.0234 

0.0335-
0.0336 

Sect. 12 0.0066 0.0088 0.0118 0.0164-
0.0165 

0.0232-
0.0233 

0.0333-
0.0334 

Sect. 13 0.0066 0.0088 0.0118 0.0164-
0.0165 

0.0232-
0.0233 

0.0332-
0.0334 

Ave Freq Matrix 0.0068 0.0091 0.0123 0.0171-
0.0172 

0.0242-
0.0244 

0.0340-
0.0348 

4) UXD Site 
with 10% 
resistance & 
70% regional 
mitigation 

Sect. 1 0.1460 0.2283 0.3563 0.5119-
0.5165 

0.6465-
0.7077 

0.7668-
0.7902  

Sect. 2 0.0154 0.0280 0.0382 0.0387-
0.0526 

0.0615-
0.0782  

0.0870-
0.1158 

Sect. 3 0.0116 0.0209 0.0292 0.0382-
0.0408 

0.0593-
0.0602  

0.0827-
0.0890 
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Table 4.12 (Continued) 

 Sect. 4 0.0112 0.0183 0.0245 0.0295-
0.0334 

0.0447-
0.0489 

0.0621-
0.0718 

Sect. 5 0.0087 0.0131 0.0177 0.0219-
0.0245 

0.0321-
0.0359 

0.0448-
0.0526 

Sect. 6 0.0072 0.0102 0.0139 0.0192-
0.0195 

0.0273-
0.0284 

0.0379-
0.0416 

Sect. 7 0.0068 0.0092 0.0125 0.0174-
0.0176 

0.01241-
0.0254 

0.0332-
0.0370 

Sect. 8 0.0067 0.0090 0.0121 0.0163-
0.0169 

0.0223-
0.0242 

0.0306-
0.0349 

Sect. 9 0.0066 0.0089 0.0119 0.0160-
0.0166 

0.0217-
0.0236 

0.0297-
0.0339 

Sect. 10 0.0066 0.0088 0.0119 0.0159-
0.0164 

0.0215-
0.0233 

0.0293-
0.0335 

Sect. 11 0.0066 0.0088 0.0118 0.0159-
0.0164 

0.01214-
0.0232 

0.0291-
0.0332 

Sect. 12 0.0066 0.0088 0.0118 0.0159-
0.0164 

0.0214-
0.0232 

0.0290-
0.0332 

Sect. 13 0.0066 0.0088 0.0118 0.0158-
0.0164 

0.0213-
0.0232 

0.0290-
0.0332 

Ave Freq Matrix 0.0068 0.0092 0.0123 0.0165-
0.0172 

0.0225-
0.0244 

0.0306-
0.0350 

 

4.5.4 Mitigation when resistance is wide-spread at one locus 

4.5.4.1 Extending the life-time of compromised gene 

Table 4.13 shows the results of the spread of resistance through the landscape 

with variability sampling turned off and when no mitigation occurred (case (1)). When 

the initial frequency was 10% in all fields, resistance always evolved in just four 

generations at locus 1 (r-frequency ≥0.05) rendering the dual gene pyramid a single gene 

PIP. Simulated case (2) describes a situation where resistance again was 10% at locus 1 

but now mitigation occurred on 70% of the fields. The first resistance occurrence again 

took place after four generations. At best, resistance was delayed by one generation 

compared to ‘no mitigation’ and occurred during generation five. Mitigation in response 
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to resistance at Locus 1 was not very successful at extending the lifetime of the 

compromised gene when resistance was wide-spread.  

Table 4.13 Resistance allele frequencies in matrix with wide-spread resistance at locus 
1 and regional remediation. 

Mitigation 
Scenarios 

Location 
Freq. Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 

1) 10% wide-
spread 
resistance at 
locus 1 & no 
mitigation  

Sect. 1 

0.1471 0.2221-
0.2225 

0.3448-
0.3479 

0.5371-
0.5427* 

0.7495-
0.7548* 

0.8965-
0.8992* 

Sect. 2 
Sect. 3 

Sect. 4 

Sect. 5 

Sect. 6 

Sect. 7 

Sect. 8 

Sect. 9 

Sect. 10 

Sect. 11 

Sect. 12 

Sect. 13 

2) 10% wide-
spread 
resistance at 
locus 1 & 
70% regional 
mitigation 

Sect. 1 

0.1283-
0.1471 

0.1664-
0.2224 

0.2611-
0.3419 

0.4018-
0.5178* 

0.5943-
0.7203* 

0.7875-
0.8759* 

Sect. 2 
Sect. 3 

Sect. 4 
Sect. 5 

Sect. 6 

Sect. 7 

Sect. 8 

Sect. 9 

Sect. 10 

Sect. 11 

Sect. 12 

Sect. 13 
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4.5.4.2 Extending life-time of the low dose pyramid 

I was interested in determining by how much the life-time of a low dose pyramid 

could be extend if there was 10% regional resistance for corn rootworm at one locus and 

70% of the fields in the landscape received a randomly chosen remedial strategy as 

discussed previously. Variability sampling was turned back on, and 100 simulations were 

run for blocks and RIBs. The initial resistance allele frequency at locus 2 was increased 

to simulate commercialization of Bt prior to the simulation (min 0.01, mode 0.015, max 

0.02). I found that Blocks outperformed RIBs by several generations when remedial 

action was implemented on a regional scale. Compared to no remediation for the same 

resistance scenario, 100% and 70% remedial action extended the lifetime of the pyramid 

by 24.2 and 15.6% with a block refuge and 23.9 and 17.1% with a RIB compared to no 

remediation (Table 4.14). When no remedial action was implemented (IRM only), then 

the pyramid failed in approximately twelve and ten generations (blocks and RIBs). Once 

the gene at locus 1 was compromised (four generations with no mitigation; four to five 

generations with mitigation), the pyramid became an effective single Bt PIP deployed 

with a 5% refuge. With no remediation and low protection still available at the first gene 

(until r-freq = 1.0), the second gene lasted another seven and five generations (blocks and 

RIBs, respectively). When regional mitigation occurred at 70 and 100%, significant 

differences were observed and the lifetime was extended by another two and three 

generations for blocks (70 & 100% mitigation) and two generations for RIBs (70% and 

100%). Likewise, when the resistance allele frequency was 50% at locus 1, mitigation 

efforts applied to 70% and 100% of the fields in the matrix had minimal effects on 

extending the remaining life-time of the compromised pyramid. The simulations 
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incorporating 100% remediation on all fields serve as a reference for maximum 

obtainable benefits that remediation could provide given the assumptions made. Although 

these results demonstrate that remediation could extend the durability of a compromised 

pyramid, mitigation in response to resistance was minimally successful and less effective 

at extending the overall life-time of the dual gene (low dose) PIP than IPM upfront. 

Table 4.14 Average years to complete failure of LD pyramid targeting D. virgifera with 
wide-spread resistance at locus 1 

IRM strategy 100% 
mitigation 

70% 
mitigation 

No 
mitigation 

Average 
increase in 

durability with 
mitigation 

Mitigatory 
tools 

Block, 10% 
resistance at 
L1 

15.9c 
(13-22) 

14.8b 
(12-18) 

12.8a  
(10-17) 24.2% & 15.6% 

SAI, increased 
Refuge, 
adulticides if 
ET > 0.75 
beetles/plant, 
crop rotation 

RIB, 10% 
resistance at 
L1 

14.5 c 
(11-17) 

13.7 b 
(11-16) 

11.7 a 
(10-14) 23.9% & 17.1% 

Block, 50% 
resistance at 
L1 

12.5 c 
(10-16) 

12.0 b 
(9-15) 

10.8 a 
(8-13) 15.7% & 11.1% 

RIB, 50% 
resistance at 
L1 

11.3 b 
(9-17) 

11.2 b 
(8-13) 

9.6 a 
(8-12) 17.7% & 16.6% 

Note: Results based on 100 simulations; ET = economic threshold to reduce egg laying 
the following year. Increased r-frequency at second locus to (0.01, 0.015, 0.02) to 
simulate previous years of commercialization. ANOVA results for within IRM strategy 
comparison. 
ANOVA: blocks 10% resistance: 
              Df  Sum Sq  Mean Sq  F value  Pr(>F)     
Remediation    2   509.6    254.82    118.5   <2e-16 *** 
Residuals    297   638.7     2.15 
 
Multiple Comparisons of Means (block 10% resistance): Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Remediation, data = Dataset); Linear Hypotheses: 
                  Estimate  Std. Error  t value   Pr(>|t|)     
70% - NONE == 0     2.0700      0.2074    9.981    < 1e-06 *** 
100% - NONE == 0   3.1400      0.2074   15.141   < 1e-06 *** 
100% - 70% == 0     1.0700      0.2074    5.159    1.2e-06 *** 
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Table 4.14 (continued) 
 
no M  70%M 100%M 
 "a"  "b"  "c" 
 
ANOVA: RIB 10% resistance 
              Df  Sum Sq  Mean Sq  F value  Pr(>F)     
Remediation    2   428.9    214.46      157   <2e-16 *** 
Residuals    296   404.3     1.37 
 
Multiple Comparisons of Means (RIB 10% resistance): Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Remediation, data = Dataset); Linear Hypotheses: 
                  Estimate  Std. Error     t value   Pr(>|t|)     
70% - none == 0     2.0975      0.1657    12.66    < 1e-05 *** 
100% - none == 0    2.8200      0.1653    17.06    < 1e-05 *** 
100% - 70% == 0     0.7225      0.1657     4.36   5.28e-05 *** 
no M  70%M 100%M 
 "a"  "b"  "c" 

ANOVA: Block 50% resistance 
              Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Remediation    2   147.8    73.92    50.32   <2e-16 *** 
Residuals    297   436.3     1.47 
 
Multiple Comparisons of Means (block 50% resistance): Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Remediation, data = Dataset); Linear Hypotheses: 
                  Estimate  Std. Error  t value   Pr(>|t|)     
70% - none == 0     1.1900      0.1714    6.942    <1e-04 *** 
100% - none == 0    1.6700      0.1714    9.742    <1e-04 *** 
100% - 70% == 0     0.4800      0.1714    2.800     0.015 * 
no M  70%M 100%M 
 "a"  "b"  "b" 

ANOVA: RIB 50% resistance 
              Df  Sum Sq  Mean Sq  F value  Pr(>F)     
Remediation    2   176.0    88.02     68.7   <2e-16 *** 
Residuals    297   380.6     1.28 
 
Multiple Comparisons of Means(RIB 50% resistance): Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Remediation, data = Dataset); Linear Hypotheses: 
                  Estimate  Std. Error  t value   Pr(>|t|)     
70% - none == 0     1.6200      0.1601   10.120    <1e-06 *** 
100% - none == 0    1.6300      0.1601   10.182    <1e-06 *** 
100% - 70% == 0     0.0100      0.1601    0.062     0.998 
 no M  70%M 100%M  
 "a"  "b"  "c" 
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4.5.5 IPM/IRM strategies and H. zea resistance evolution to a two-gene 
pyramided PIP 

Three refuge baseline scenarios were evaluated individually (without larvacide) to 

simulate H. zea resistance to Bt where the refuge proportion was varied from 20% 

(standard requirement in the southern U.S. for a pyramided PIP), 30% to 50% for Bt 

corn, and the natural refuge for Bt cotton was held constant at 20% (Table 4.16). The 

results are included in Figure 4.6 and were based on 20 simulations for each refuge 

scenario. The one-way ANOVA indicates that durability increased with higher refuge 

percentages (using contest competition model of density dependence) (p =0.000142, 

Df=2, 57, F = 10.4) (Table 4.11); a 20%, 30%, and 50% refuge was estimated to provide 

durabilities of 84, 95, and 102 generations, respectively. The multiple comparison of 

means (Tukey contrasts) showed that the 20% refuge differed from 30% or 50% refuge 

(p= 0.0229, p < 0.0001) but not between a 30% and 50% refuge strategy (p = 0.18). This 

was a function of increased density dependent effects that occurred with greater refuge 

proportions - equivalent to an increase in the intrinsic growth rate – which reduced the 

benefits of further increasing refuge proportions after some threshold value (see chapter 3 

for discussion). 

When IPM participation was varied between 40%, 50%, and 70% (with larvacide 

spraying in corn and Bt cotton when the economic threshold was exceeded), sampling for 

three refuge proportions in corn occurs with equal likelihood, and isoline corn as an IPM 

tool was either included or excluded, there were no observed significant differences 

between mean durability estimates for a within-IPM participation comparison (ANOVA 

results in Table 4.18). This lack of difference between mean simulation estimates with or 

excluding the isoline corn option can be attributed to greater overall density dependent 
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effects that occurred with contest competition in a 100% non-Bt field before the 

population reached the carrying capacity as opposed to scramble competition dynamics 

(see Figure 2.1) for corn rootworm. The benefits were minimal at best for including non-

Bt corn in the IPM tool box for bollworm resistance management under the current 

simulated conditions and assumptions.  

Table 4.15 Average generations to resistance for a LD pyramid targeting H. zea using 
different IRM strategies 

Strategy 20% refuge 30% refuge 50% refuge Comments 

20% Block 84.1a (70-97) 95.4b (77-138) 102.9b (76-126) Baseline scenarios, no 
larvacide sprays > E.T. 

Note: E.T. = economic threshold; Red letters denote significance levels obtained with 
one-way ANOVA. It was assumed that H. zea had generations per year. 
 
Multiple comparison of means: Tukey contrasts: 

Estimate  Std. Error    t value       Pr(>|t|)   
30% Ref - 20% Ref == 0     11.350       4.164    2.726        0.0229*   
50% Ref - 20% Ref == 0     18.850       4.164    4.527        <0.001 *** 
50% Ref - 30% Ref == 0      7.500       4.164    1.801        0.1783     
---Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Figure 4.6 Distribution of predicted durability for a LD pyramided Bt PIP deployed 
with different refuge percentages targeting H. zea 

Notes: Increasing the refuge proportions leads to significant durability increases for the 
pyramid with 50% and 30% refuges being the most durable and 20% refuge being the 
least durable IRM option. 
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Table 4.16 Predicted durability for a LD pyramid targeting H. zea with different IPM/ 
IRM participation 

Various IPM 
participation  

Non-Bt corn 
option 

Block scenario Comments  

40% IPM 
No isoline corn 103.3 (75-136)1 IPM for zea includes 

IRM only (20% 
refuge), and 30% and 
50% increased 
refuge; all options 
use larvacide sprays 
in corn and cotton 
when E. T. is met or 
exceeded to protect 
crop yield. 

With isoline corn 100.3 (79-146)1 

50% IPM 
No isoline corn 107.1 (78-157)2 

With isoline corn 107.8 (78-153)2 

70% IPM 

No isoline corn 119.3 (90-122)3 

With isoline corn 121.5 (84-173)3 

Note: IPM participation refers to the combined use of applying IPM and IRM options to 
fields; each IPM participation was tested with and without the use of an isoline corn 
option. Red numbers refer to one-way ANOVA results for within a participation 
percentage comparison excluding/including an iosline corn option. 

Table 4.17 ANOVA results for IPM/IRM participation comparisons simulating a LD 
pyramid targeting H. zea 

Model Comp. 40% IPM 
w/isoline 

50% IPM 
no isoline 

50% IPM 
w/ isoline 

70% IPM 
no isoline 

70% IPM 
w/ isoline 

40% IPM no 
isoline corn 

p =0.0991, 
Df=1,198 
F = 2.7 

p =0.0456, 
Df=1,198  
F = 4.0 

p =0.0232, 
Df=1,198  
F = 5.2 

p =2.65e-13 
Df=1, 198 
F = 61.5 

p =6.2e-16 
Df=1, 198 
F = 77.7 

40% IPM with 
isoline corn 

 p=0.00064D
f=1, 198 
F = 12.0 

p=0.00029D
f=1,198  
F = 13.6 

p <2e-16 
Df=1, 198 
F = 81.3 

p <2e-16 
Df=1,197  
F = 98.9 

50% IPM no 
isoline corn 

  p =0.748, 
Df=1,198  
F = 0.1 

p = 6.46e-8 
Df=1,198  
F = 31.6 

p =4.4e-10 
Df=1,198  
F = 143.1 

50% IPM with 
isoline corn 

   p =5.61e-7 

Df=1, 198 
F = 26.8 

p =5.3e-9 

Df=1, 198 
F = 37.3 

70% IPM no 
isoline corn 

    p =0.335, 
Df=1, 198 
F = 0.9 

Note: IPM participation refers to the combined use of IPM and IRM options to fields; 
each IPM participation was tested with and without the use of an isoline corn option. 
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4.5.6 Mitigation when resistance is wide-spread  

Without any kinds of grower intervention against a 10% widespread resistance for 

bollworm, ‘IRM alone’ simulations predicted an estimated time of 45.6 generations 

(approx. 7.5 years) before resistance evolved at the second locus (case 1a in Table 4.18) 

and the pyramid was compromised (r-frequency at locus 2 >0.5). This result is 

significantly different from using an IRM strategy with larvacides (case 2a, 67.6 

generations or 11.3 years) when population densities reach or exceed the economic 

thresholds (p <2e-16, Df=1, 198, F=601.9). When 70% of the fields in the landscape 

receive mitigation in response to 10% regional resistance at locus 1, the durability was 

statistically lower than the durability obtained with IRM and larvacide only, although the 

gain in durability was only one year (p = 3.63e-08, Df=1, 198, F = 32.9). This suggests 

that spraying (refuge and Bt) corn and (Bt) cotton for the purpose of protecting crop yield 

can also aid in resistance management and mitigation of resistance for Bt PIPs.  

When the simulations were initialized with a resistance allele frequency of 0.5 at 

locus 1 and the IRAF was increased at locus 2 to simulated previous use of Bt (case 3a), 

then no mitigation in response to resistance rendered the pyramid ineffective in 23.6 

generations (3.9 years). IRM with larvacides use if the economic threshold was exceeded 

extended the durability to 33 generations (10 generations or 1.6 years). With 70% of the 

fields being mitigated (not 100% as in IRM with larvacide use) (case 3b), the results 

predict a durability of 31 generations (5.2 years to resistance) (two generations less than 

IRM with larvacide use). Despite the biologically insignificant difference between these 

two approaches, a statistical difference was identified (p = 0.000159, Df =1, 198, F = 

14.8). While the results predict that different mitigatory strategies or IRM with larvacide 
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use approach could extend the durability of a low dose pyramid, once resistance in 

bollworm has established at one locus (10% or 50%), the second trait may also 

compromised within a short period of time (5-7 years) in absence of cost to resistance. 

Table 4.18 Average generations to complete failure of LD pyramid targeting H. zea 
with different mitigation strategies and resistance levels 

Mitigation 
Strategy 

Resistance at 
Locus 1 

Mean Time to 
Resistance for 

Pyramid 

% Increase 
w/IPM Comments 

1) IRM no 
larvacide 

10% 45.6b (36-63) 
N/A Baseline 

scenarios 50% 23.6a (19-30) 

2a) IRM w/ 
larvacide 10% 

67.6b (52-88) 
-9.7% 

Increased 
refuge (30% 
and 50%), 
IRM; all 
strategies use 
larvacides 
when, ET is 
exceeded. 

2b) 70% of fields 
mitigated 61.6a (46-82) 

3a) IRM w/ 
larvacide 50% 

33.7b (25-49) 
-5.0% 3b) 70% fields 

mitigated 31.4a (23-42) 

Note: E.T. = economic threshold for bollworm as reported for corn and cotton in the 
Mississippi State University Cropping Guide (2014); IRM with larvacide treatments were 
applied when the E.T. was exceeded on whorl stage corn or Bt cotton; letters denote 
statistical significance obtained with one-way ANOVA for within-mitigation 
comparisons. Estimated times to resistance were based on 100 simulations each.  

4.6 Discussion 

The simulation results show that as IPM + IRM participation percentages 

increased in the landscape at the time of a new Bt commercialization, the lifetime of a 

low dose pyramid targeting corn rootworm and bollworm was extended sequentially. The 

durability gain was greater for corn rootworm, however. Part of that can be attributed to a 

more diverse IPM tool kit but also more effective control methods such as crop rotation. 

Crop rotation is not an available IPM option for bollworm population suppression, and 

less effective IPM tools were modeled for this pest. Another scenario to model would be 
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the use of a non-related pyramid allowing rotation of Bt modes of action. This could not 

be accomplished here because of model limitations (2-locus rather than a 4-locus model). 

The analysis also showed that the inclusion of conventional corn into the IPM approach 

did not elicit comparable results between the two pests. For example, interspersing Bt 

deployment with non-selective periods by using non-corn rootworm protected maize 

increased the durability of the pyramid compared to simulations excluding this tool. Yet 

for bollworm, including or excluding conventional corn with IPM participation 

simulations had no effect on the lifetime of the pyramid. One plausible hypothesis is that 

increased effects of intra-specific density dependence reduced simulated population 

densities and in turn reduced benefits of planting conventional corn on some of the fields 

in the landscape. Further investigations are needed, however, to explore and confirm the 

mechanisms behind the different results for bollworm and corn rootworm. It can be 

concluded though that IPM + IRM approaches should not be generic in nature but 

tailored towards each pest’s life-history and ecology.  

A separate analysis investigated the effectiveness of each individual IPM + IRM 

tool. The simulation results show that an increase from the mandated 5% refuge to 20% 

for a corn rootworm protected pyramid extended its lifetime, while an analogous 

approach for bollworm only increased the durability from the standard 20% refuge up to 

30%. Further increases, thereafter, did not incur additional durability gains. This implies 

that increasing the refuge cannot be assumed to always extend the durability. Simulation 

models incorporating a target pest’s specific life-history characteristics should be used to 

evaluate the refuge proportion to achieve the greatest durability for the Bt pyramid. 
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Remediation results for hotspot resistance in corn rootworm show that if 

mitigatory strategies are applied at random, that local (UXD site) actions are ineffective – 

given the assumptions made here. In such cases, regional remediation was superior in the 

simulations. When, however, crop rotation was implemented in the UXD site with a 

delay time, resistance was effectively mitigated and the spread of resistance slowed. This 

implies that remedial action plans in response to confirmed resistance or mitigatory 

response to suspected resistance should not be generic but specific in nature and rely on 

the most effective tools immediately (i.e. crop rotation for corn rootworm) to maintain 

the durability of the pyramid in the remaining landscape. A future analysis of hotspot 

remediation should address a diverse cropping system with different modes of actions 

(single and pyramided including cross-resistance between some toxins) to further explore 

the effectiveness of various remediation as well a geographic scope approaches. In 

reality, local population extirpation (e.g. via adulticide spraying) is not likely achieved 

because emergence of corn rootworm occurs over a period of time, and conventional 

pesticides cannot be reapplied until a certain number of days have passed in order to 

avoid harmful exposure to humans and the environment. Resistant corn rootworm should, 

therefore, always have an opportunity to escape a resistant field, and mitigation efforts 

may need to focus on a larger geographic scale rather than the failed field even if crop 

rotation is used.  

Remediation in response to widespread resistance at one locus (10%) in bollworm 

and corn rootworm was not very effective at extending the lifetime of the low dose 

pyramid. The difference between implementing and excluding remedial action was only a 

few years. This result supports the SAP’s (2014) recommendation to US EPA that IPM + 
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IRM should be used to extend the lifetime of less than high dose Bt toxins. A future 

analysis should explore whether effectiveness of remediation to widespread resistance 

increases when more effective tools are used more frequently (rather than random 

selection of available tools) in a diverse landscape consisting of multiple Bt products with 

different modes of action.  

The resistance allele spread analysis for corn rootworm showed that a local 

resistance phenomenon became apparent in the landscape immediately around the UXD 

site and persisted and spread through the landscape slowly and over the six generations 

explored. Resistance alleles spread more slowly across the landscape with a pyramided 

product compared to a single PIP (see chapter 3). A significant resistance phenomenon 

persisted for single PIPs with low and high growth rates and variable dispersal, and 

resistance swept across the landscape much faster than witnessed for the pyramid. This 

implies that it was the nature of the Bt PIP (dual gene pyramid) that kept resistance 

phenomena more localized, plausibly because with a pyramid some control was still 

maintained and large populations could not build up that lead to large amounts of 

dispersal from the site with the resistant population. More work is needed to explore the 

exact mechanisms. Nonetheless, the results suggest that the use of a pyramid aids 

remediation efforts even if with a delayed response time.  
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APPENDIX A 

CHAPTER III ANOVAS FOR EFFECTS OF PARAMETERS OF LIFE-HISTORY, 

DOSE OF TOXIN, REFUGE CONFIGURATION, AND INTRA-SPECIFIC  

DENSITY DEPENDENCE ON THE LIFE-TIME OF SINGLE PIPs 
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A.1 High dose results 

A.1.1 Block analyses 

A.1.1.1 Multi-way ANOVAs 

 

Table A.1 Four-way ANOVA for HD block simulations, DD x R x D x AD  

Response: TotalGen 
                          Sum Sq    Df   F value     Pr(>F)     
ADType                     1241     1   55.9117  1.602e-13 *** 
DD                          224      1   10.0902   0.001534 **  
kernel                        3      2    0.0563   0.945246     
RType                     34158     2  769.2230  < 2.2e-16 *** 
ADType:DD                  192      1    8.6648   0.003316 **  
ADType:kernel               36      2    0.8189   0.441186     
DD:kernel                     4      2    0.0856   0.917971     
ADType:RType                58      2    1.3155   0.268796     
DD:RType                   1330     2   29.9499  2.249e-13 *** 
kernel:RType                75      4    0.8401   0.499767     
ADType:DD:kernel             5      2    0.1057   0.899681     
ADType:DD:RType            138      2    3.1090   0.045061 *   
ADType:kernel:RType         50      4    0.5683   0.685705     
DD:kernel:RType             51      4    0.5774   0.679084     
ADType:DD:kernel:RType     87      4    0.9779   0.418611     
Residuals                 23202   1045                        
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.2 Multiple comparisons of means using Tukey contrasts, HD block 
simulations, DDx R x AD  

DD:ADType:RType,  means 
 
             TotalGen        std    r  Min  Max 
CC:AD1:R1  24.505495  10.018176  91   12   83 
CC:AD1:R2  10.811111   2.316984  90    7   18 
CC:AD1:R3   7.911111   1.533480  90    5   12 
CC:AD2:R1  24.277778   6.240548  90   12   45 
CC:AD2:R2  13.066667   4.104807  90    7   30 
CC:AD2:R3   9.788889   2.696208  90    6   17 
SC:AD1:R1  18.633333   5.172203  90   10   32 
SC:AD1:R2  10.744444   2.221251  90    7   19 
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Table A.2 (Continued) 

SC:AD1:R3   8.600000   1.512495  90    6   13 
SC:AD2:R1  22.088889   5.999334  90   12   42 
SC:AD2:R2  13.977778   3.650389  90    9   28 
SC:AD2:R3  10.877778   2.936893  90    6   20 
 
alpha: 0.05 ; Df Error: 1045  
Critical Value of Studentized Range: 4.632238  
 
Harmonic Mean of Cell Sizes  90.08249 
Comparison between treatments means 
 
                          Difference    pvalue sig.          LCL           UCL 
CC:AD1:R1 - CC:AD1:R2   13.69438339  0.000000  ***  11.39992282  15.98884397 
CC:AD1:R1 - CC:AD1:R3   16.59438339  0.000000  ***  14.29992282  18.88884397 
CC:AD1:R1 - CC:AD2:R1    0.22771673  1.000000        -2.06674385    2.52217730 
CC:AD1:R1 - CC:AD2:R2   11.43882784  0.000000  ***   9.14436726  13.73328841 
CC:AD1:R1 - CC:AD2:R3   14.71660562  0.000000  ***  12.42214504  17.01106619 
CC:AD1:R1 - SC:AD1:R1    5.87216117  0.000000  ***   3.57770060   8.16662175 
CC:AD1:R1 - SC:AD1:R2   13.76105006  0.000000  ***  11.46658949  16.05551064 
CC:AD1:R1 - SC:AD1:R3   15.90549451  0.000000  ***  13.61103393  18.19995508 
CC:AD1:R1 - SC:AD2:R1    2.41660562  0.028751    *   0.12214504    4.71106619 
CC:AD1:R1 - SC:AD2:R2   10.52771673  0.000000  ***   8.23325615  12.82217730 
CC:AD1:R1 - SC:AD2:R3   13.62771673  0.000000  ***  11.33325615  15.92217730 
CC:AD1:R2 - CC:AD1:R3    2.90000000  0.002315   **   0.59920987    5.20079013 
CC:AD1:R2 - CC:AD2:R1  -13.46666667  0.000000  *** -15.76745680 -11.16587653 
CC:AD1:R2 - CC:AD2:R2   -2.25555556  0.060695    .   -4.55634569   0.04523458 
CC:AD1:R2 - CC:AD2:R3    1.02222222  0.951901        -1.27856791    3.32301236 
CC:AD1:R2 - SC:AD1:R1   -7.82222222  0.000000  *** -10.12301236  -5.52143209 
CC:AD1:R2 - SC:AD1:R2    0.06666667  1.000000        -2.23412347   2.36745680 
CC:AD1:R2 - SC:AD1:R3    2.21111111  0.073011    .   -0.08967902    4.51190125 
CC:AD1:R2 - SC:AD2:R1  -11.27777778  0.000000  *** -13.57856791  -8.97698764 
CC:AD1:R2 - SC:AD2:R2   -3.16666667  0.000449  ***  -5.46745680   -0.86587653 
CC:AD1:R2 - SC:AD2:R3   -0.06666667  1.000000        -2.36745680   2.23412347 
CC:AD1:R3 - CC:AD2:R1  -16.36666667  0.000000  *** -18.66745680 -14.06587653 
CC:AD1:R3 - CC:AD2:R2   -5.15555556 0.000000  ***   -7.45634569   -2.85476542 
CC:AD1:R3 - CC:AD2:R3   -1.87777778 0.241120        -4.17856791    0.42301236 
CC:AD1:R3 - SC:AD1:R1  -10.72222222 0.000000  ***  -13.02301236  -8.42143209 
CC:AD1:R3 - SC:AD1:R2   -2.83333333 0.003403   **   -5.13412347   -0.53254320 
CC:AD1:R3 - SC:AD1:R3   -0.68888889 0.998071        -2.98967902    1.61190125 
CC:AD1:R3 - SC:AD2:R1  -14.17777778 0.000000  ***  -16.47856791  -11.87698764 
CC:AD1:R3 - SC:AD2:R2   -6.06666667 0.000000  ***   -8.36745680   -3.76587653 
CC:AD1:R3 - SC:AD2:R3   -2.96666667 0.001560   **   -5.26745680   -0.66587653 
CC:AD2:R1 - CC:AD2:R2   11.21111111 0.000000  ***   8.91032098   13.51190125 
CC:AD2:R1 - CC:AD2:R3   14.48888889 0.000000  ***  12.18809875   16.78967902 
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Table A.2 (Continued) 

CC:AD2:R1 - SC:AD1:R1    5.64444444 0.000000  ***    3.34365431    7.94523458 
CC:AD2:R1 - SC:AD1:R2   13.53333333 0.000000  ***   11.23254320   15.83412347 
CC:AD2:R1 - SC:AD1:R3   15.67777778 0.000000  ***   13.37698764   17.97856791 
CC:AD2:R1 - SC:AD2:R1    2.18888889 0.079906    .   -0.11190125   4.48967902 
CC:AD2:R1 - SC:AD2:R2   10.30000000 0.000000  ***   7.99920987   12.60079013 
CC:AD2:R1 - SC:AD2:R3   13.40000000 0.000000  ***  11.09920987   15.70079013 
CC:AD2:R2 - CC:AD2:R3    3.27777778 0.000217  ***    0.97698764    5.57856791 
CC:AD2:R2 - SC:AD1:R1   -5.56666667 0.000000  ***   -7.86745680   -3.26587653 
CC:AD2:R2 - SC:AD1:R2    2.32222222 0.045521    *    0.02143209    4.62301236 
CC:AD2:R2 - SC:AD1:R3    4.46666667 0.000000  ***    2.16587653    6.76745680 
CC:AD2:R2 - SC:AD2:R1   -9.02222222 0.000000  ***  -11.32301236  -6.72143209 
CC:AD2:R2 - SC:AD2:R2   -0.91111111 0.979495        -3.21190125    1.38967902 
CC:AD2:R2 - SC:AD2:R3    2.18888889 0.079906    .   -0.11190125    4.48967902 
CC:AD2:R3 - SC:AD1:R1   -8.84444444 0.000000  ***  -11.14523458  -6.54365431 
CC:AD2:R3 - SC:AD1:R2   -0.95555556 0.970526        -3.25634569    1.34523458 
CC:AD2:R3 - SC:AD1:R3    1.18888889 0.871636        -1.11190125    3.48967902 
CC:AD2:R3 - SC:AD2:R1  -12.30000000 0.000000  ***  -14.60079013  -9.99920987 
CC:AD2:R3 - SC:AD2:R2   -4.18888889 0.000000  ***  - 6.48967902   -1.88809875 
CC:AD2:R3 - SC:AD2:R3   -1.08888889 0.925981        -3.38967902   1.21190125 
SC:AD1:R1 - SC:AD1:R2    7.88888889 0.000000  ***    5.58809875   10.18967902 
SC:AD1:R1 - SC:AD1:R3   10.03333333 0.000000  ***   7.73254320   12.33412347 
SC:AD1:R1 - SC:AD2:R1   -3.45555556 0.000064  ***   -5.75634569  -1.15476542 
SC:AD1:R1 - SC:AD2:R2    4.65555556 0.000000  ***    2.35476542    6.95634569 
SC:AD1:R1 - SC:AD2:R3    7.75555556 0.000000  ***    5.45476542   10.05634569 
SC:AD1:R2 - SC:AD1:R3    2.14444444 0.095291    .   -0.15634569   4.44523458 
SC:AD1:R2 - SC:AD2:R1  -11.34444444 0.000000  ***  -13.64523458  -9.04365431 
SC:AD1:R2 - SC:AD2:R2   -3.23333333 0.000291  ***  -5.53412347   -0.93254320 
SC:AD1:R2 - SC:AD2:R3   -0.13333333 1.000000        -2.43412347    2.16745680 
SC:AD1:R3 - SC:AD2:R1  -13.48888889 0.000000  *** -15.78967902  -11.18809875 
SC:AD1:R3 - SC:AD2:R2   -5.37777778 0.000000  ***   -7.67856791   -3.07698764 
SC:AD1:R3 - SC:AD2:R3   -2.27777778 0.055222    .   -4.57856791   0.02301236 
SC:AD2:R1 - SC:AD2:R2    8.11111111 0.000000  ***    5.81032098   10.41190125 
SC:AD2:R1 - SC:AD2:R3   11.21111111 0.000000  ***   8.91032098   13.51190125 
SC:AD2:R2 - SC:AD2:R3    3.10000000 0.000687  ***    0.79920987    5.40079013 
Harmonic Mean of Cell Sizes  90.08249 
Honestly Significant Difference: 2.299736  
Means with the same letter are not significantly different. 
 
Groups, Treatments and means 
a   CC:AD1:R1   24.51  
ab   CC:AD2:R1   24.28  
b   SC:AD2:R1   22.09  
c   SC:AD1:R1   18.63  
d   SC:AD2:R2   13.98  
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Table A.2 (Continued) 

de   CC:AD2:R2   13.07  
ef   SC:AD2:R3   10.88  
ef   CC:AD1:R2   10.81  
f   SC:AD1:R2   10.74  
fg   CC:AD2:R3   9.789  
fg   SC:AD1:R3   8.6  
g   CC:AD1:R3   7.911 
 

A.1.1.2 One-way ANOVAs 

 

Table A.3 Contest competition: varying growth rate, D1 AD1 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2    3681    1840.5    77.58   <2e-16 *** 
Residuals    87    2064     23.7                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error  t value   Pr(>|t|)     
R2 - R1 == 0  -12.100      1.258   -9.622    <1e-04 *** 
R3 - R1 == 0  -14.667      1.258  -11.663    <1e-04 *** 
R3 - R2 == 0   -2.567      1.258   -2.041     0.109     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1> cld(.Pairs) # compact letter 
display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.4 Contest competition: varying growth rate, D2 AD1 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
RType         2    5218    2608.8    45.44   2.78e-14 *** 
Residuals    88    5052      57.4                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -14.665      1.941  -7.557    <1e-04 *** 
R3 - R1 == 0  -17.031      1.941  -8.777    <1e-04 *** 
R3 - R2 == 0   -2.367      1.956  -1.210     0.451     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1> cld(.Pairs) # compact letter 
display 
 R1  R2  R3  
"b" "a" "a" 

Table A.5 Contest competition: varying growth rate, D3 AD1  

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2    5451   2725.4    96.01   <2e-16 *** 
Residuals    87    2470     28.4                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -14.300      1.376 -10.395    <1e-04 *** 
R3 - R1 == 0  -18.067      1.376 -13.133    <1e-04 *** 
R3 - R2 == 0   -3.767      1.376  -2.738    0.0203 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 
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Table A.6 Scramble competition: varying growth rate, D1 AD1 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2  1581.7    790.8    86.17   <2e-16 *** 
Residuals    87   798.4      9.2                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -7.8333     0.7822 -10.015    <1e-04 *** 
R3 - R1 == 0  -9.6667     0.7822 -12.358    <1e-04 *** 
R3 - R2 == 0  -1.8333     0.7822  -2.344    0.0551 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 

Table A.7 Scramble competition: varying growth rate, D2 AD1 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2    1782     891.1    69.34   <2e-16 *** 
Residuals    87    1118     12.9                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
             Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -8.1000     0.9256  -8.751    <0.001 *** 
R3 - R1 == 0 -10.3667     0.9256 -11.200    <0.001 *** 
R3 - R2 == 0  -2.2667     0.9256  -2.449    0.0428 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 



 

239 

Table A.8 Scramble competition: varying growth rate, D3 AD1 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2    1666     832.9    66.54   <2e-16 *** 
Residuals   87    1089     12.5                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)     
R2 - R1 == 0  -7.7333     0.9135  -8.465   <1e-04 *** 
R3 - R1 == 0 -10.0667     0.9135 -11.020   <1e-04 *** 
R3 - R2 == 0  -2.3333     0.9135  -2.554   0.0328 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 

Table A.9 Contest competition: varying growth rate, D1 AD2 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2    3619    1809.3    72.02   <2e-16 *** 
Residuals    87    2186     25.1                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -12.400      1.294  -9.582    <1e-04 *** 
R3 - R1 == 0  -14.300      1.294 -11.050    <1e-04 *** 
R3 - R2 == 0   -1.900      1.294  -1.468     0.311     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.10 Contest competition: varying growth rate, D2 AD2 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2    3108    1554.2    70.34   <2e-16 *** 
Residuals    87   1 922      22.1                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -10.367      1.214  -8.541    <1e-04 *** 
R3 - R1 == 0  -13.833      1.214 -11.397    <1e-04 *** 
R3 - R2 == 0   -3.467      1.214  -2.856    0.0146 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 

Table A.11 Contest competition: varying growth rate, D3 AD2 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2    3731    1865.7    113.4   <2e-16 *** 
Residuals    87    1431     16.4                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -10.867      1.047 -10.377   < 1e-04 *** 
R3 - R1 == 0  -15.333      1.047 -14.643   < 1e-04 *** 
R3 - R2 == 0   -4.467      1.047  -4.266  0.000152 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 
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Table A.12 Scramble competition: varying growth rate, D1 AD2 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
RType         2    1734     867.0    45.12   3.61e-14 *** 
Residuals    87    1672     19.2                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0   -7.133      1.132  -6.302   < 1e-04 *** 
R3 - R1 == 0  -10.533      1.132  -9.306   < 1e-04 *** 
R3 - R2 == 0   -3.400      1.132  -3.004   0.00955 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1> cld(.Pairs) # compact letter 
display 
 R1  R2  R3  
"c" "b" "a" 

Table A.13 Scramble competition: varying growth rate, D2 AD1 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
RType         2    1937     968.6    44.27   5.48e-14 *** 
Residuals    87    1904     21.9                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0   -7.267      1.208  -6.017   < 1e-04 *** 
R3 - R1 == 0  -11.200      1.208  -9.274   < 1e-04 *** 
R3 - R2 == 0   -3.933      1.208  -3.257   0.00456 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1> cld(.Pairs) # compact letter 
display 
 R1  R2  R3  
"c" "b" "a" 
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Table A.14 Scramble competition: varying growth rate, D3 AD2 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
RType         2    2442    1220.7    70.94  <2e-16 *** 
Residuals    87    1497     17.2                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ RType, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0   -9.933      1.071  -9.274    <1e-04 *** 
R3 - R1 == 0  -11.900      1.071 -11.111    <1e-04 *** 
R3 - R2 == 0   -1.967      1.071  -1.836     0.164     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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A.1.2 RIB analyses 

A.1.2.1 Multi-way ANOVAs 

 

Table A.15 Four-way ANOVA for HD RIB simulations, DD x R x D x AD 

Response: TotalGen 
                         Sum Sq    Df   F value     Pr(>F)     
ADtype                   176.0     1   30.8902  3.466e-08 *** 
DD                       121.3     1   21.2944  4.428e-06 *** 
Dtype                      2.0      2    0.1786  0.8364785     
Rtype                   3482.8     2  305.6097  < 2.2e-16 *** 
ADtype:DD                 10.0      1    1.7576  0.1852172     
ADtype:Dtype              0.7      2    0.0587  0.9430289     
DD:Dtype                   1.3      2    0.1142  0.8920586     
ADtype:Rtype             107.5     2    9.4351  8.689e-05 *** 
DD:Rtype                  92.6      2    8.1218  0.0003162 *** 
Dtype:Rtype                7.6      4    0.3321  0.8564350     
ADtype:DD:Dtype           9.0      2    0.7880  0.4550457     
ADtype:DD:Rtype           6.0      2    0.5296  0.5890102     
ADtype:Dtype:Rtype       50.6      4    2.2197  0.0649656 .   
DD:Dtype:Rtype           10.7      4    0.4682  0.7591512     
ADtype:DD:Dtype:Rtype    17.6      4    0.7724  0.5432416     
Residuals               5948.8  1044                        
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Table A.16 Multiple comparisons of means using Tukey contrasts, HD RIB simulations, 
R x AD 

Mean Square Error:  5.698084  
Rtype:ADtype,  means 
          TotalGen      std     r  Min  Max 
R1:AD1  12.577778  2.888922  180    7   23 
R1:AD2  12.505556  2.880288  180    8   25 
R2:AD1   9.150000  2.159751  180   6   17 
R2:AD2  10.266667  2.469026  180  6   22 
R3:AD1   7.522222  1.611604  180    4   14 
R3:AD2   8.900000  2.252497  180    5   17 
alpha: 0.05 ; Df Error: 1044  
Critical Value of Studentized Range: 4.037602  
Comparison between treatments means 
                   Difference    pvalue sig.        LCL         UCL 
R1:AD1 - R1:AD2   0.07222222  0.999738       -0.6461535   0.7905980 
R1:AD1 - R2:AD1   3.42777778  0.000000  ***  2.7094020   4.1461535 
R1:AD1 - R2:AD2   2.31111111  0.000000  ***  1.5927354   3.0294869 
R1:AD1 - R3:AD1   5.05555556  0.000000  ***  4.3371798   5.7739313 
R1:AD1 - R3:AD2   3.67777778  0.000000  ***  2.9594020   4.3961535 
R1:AD2 - R2:AD1   3.35555556  0.000000  ***  2.6371798   4.0739313 
R1:AD2 - R2:AD2   2.23888889  0.000000  ***  1.5205131   2.9572646 
R1:AD2 - R3:AD1   4.98333333  0.000000  ***  4.2649576   5.7017091 
R1:AD2 - R3:AD2   3.60555556  0.000000  ***  2.8871798   4.3239313 
R2:AD1 - R2:AD2  -1.11666667  0.000146  *** -1.8350424  -0.3982909 
R2:AD1 - R3:AD1   1.62777778  0.000000  ***  0.9094020   2.3461535 
R2:AD1 - R3:AD2   0.25000000  0.920058       -0.4683758   0.9683758 
R2:AD2 - R3:AD1   2.74444444  0.000000  ***  2.0260687   3.4628202 
R2:AD2 - R3:AD2   1.36666667  0.000001  ***  0.6482909   2.0850424 
R3:AD1 - R3:AD2  -1.37777778  0.000001  *** -2.0961535  -0.6594020 
 
Means with the same letter are not significantly different. 
Groups, Treatments and means 
a   R1:AD1   12.58  
a   R1:AD2   12.51  
b   R2:AD2   10.27  
c   R2:AD1   9.15  
c   R3:AD2   8.9  
d   R3:AD1   7.522 
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Table A.17 Multiple comparisons of means using Tukey contrasts, HD RIB simulations, 
R x DD 

Study: AnovaModel.1 ~ c("DD", "Rtype") 
HSD Test for TotalGen  
Mean Square Error:  5.698084  
DD:Rtype,  means 
 
         TotalGen       std     r  Min  Max 
CC:R1  12.616667  2.862345  180    8   23 
CC:R2   9.216667  2.431807  180    6   22 
CC:R3   7.622222  1.812913  180    4   15 
SC:R1   12.466667  2.905206  180   7   25 
SC:R2   10.200000  2.233318  180    6   18 
SC:R3   8.800000  2.154377  180    5   17 
 
alpha: 0.05 ; Df Error: 1044  
Critical Value of Studentized Range: 4.037602  
 
Comparison between treatments means 
                Difference    pvalue sig.        LCL         UCL 
CC:R1 - CC:R2   3.4000000  0.000000  ***  2.6816242   4.1183758 
CC:R1 - CC:R3   4.9944444  0.000000  ***  4.2760687   5.7128202 
CC:R1 - SC:R1   0.1500000  0.991302       -0.5683758   0.8683758 
CC:R1 - SC:R2   2.4166667  0.000000  ***  1.6982909   3.1350424 
CC:R1 - SC:R3   3.8166667  0.000000  ***  3.0982909   4.5350424 
CC:R2 - CC:R3   1.5944444  0.000000  ***  0.8760687   2.3128202 
CC:R2 - SC:R1  -3.2500000  0.000000  *** -3.9683758  -2.5316242 
CC:R2 - SC:R2  -0.9833333  0.001385   **  -1.7017091  -0.2649576 
CC:R2 - SC:R3   0.4166667  0.561435       -0.3017091   1.1350424 
CC:R3 - SC:R1  -4.8444444  0.000000  *** -5.5628202  -4.1260687 
CC:R3 - SC:R2  -2.5777778  0.000000  *** -3.2961535  -1.8594020 
CC:R3 - SC:R3  -1.1777778  0.000047  *** -1.8961535  -0.4594020 
SC:R1 - SC:R2   2.2666667  0.000000  ***  1.5482909   2.9850424 
SC:R1 - SC:R3   3.6666667  0.000000  ***  2.9482909   4.3850424 
SC:R2 - SC:R3   1.4000000  0.000001  ***  0.6816242   2.1183758 
 
Groups, Treatments and means 
a   CC:R1   12.62  
a   SC:R1   12.47  
b   SC:R2   10.2  
c   CC:R2   9.217  
c   SC:R3   8.8  
d   CC:R3   7.622 
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A.1.2.2 One-way ANOVAs  

 

Table A.18 Contest competition: varying growth rate, D1 AD1 

Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
 
             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   593.4    296.68    54.79   3.98e-16 *** 
Residuals    87   471.1     5.41                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -4.6333     0.6008  -7.712    <1e-04 *** 
R3 - R1 == 0  -6.0000     0.6008  -9.986    <1e-04 *** 
R3 - R2 == 0  -1.3667     0.6008  -2.275    0.0647 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.19 Contest competition: varying growth rate, D2 AD1 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   408.9    204.43    36.36   3.33e-12 *** 
Residuals    87   489.1     5.62                      
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)     
R2 - R1 == 0  -3.2333     0.6122  -5.281  < 1e-04 *** 
R3 - R1 == 0  -5.1667     0.6122  -8.439  < 1e-04 *** 
R3 - R2 == 0  -1.9333     0.6122  -3.158  0.00609 **  
 
R1  R2  R3  
"c" "b" "a" 

Table A.20 Contest competition: varying growth rate, D3 AD1 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
Rtype         2   553.7    276.84    57.53   <2e-16 *** 
Residuals    87   418.6     4.81                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -4.4667     0.5664  -7.886    <1e-04 *** 
R3 - R1 == 0  -5.8000     0.5664 -10.240    <1e-04 *** 
R3 - R2 == 0  -1.3333     0.5664  -2.354    0.0538 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.21 Scramble competition: varying growth rate, D1 AD1 

Multiple Comparisons of Means: Tukey Contrasts 
 
              Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   353.9    176.94    32.62   2.69e-11 *** 
Residuals    87   471.9     5.42                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)     
R2 - R1 == 0  -2.8333     0.6014  -4.712  < 1e-04 *** 
R3 - R1 == 0  -4.8333     0.6014  -8.037  < 1e-04 *** 
R3 - R2 == 0  -2.0000     0.6014  -3.326  0.00368 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 

Table A.22 Scramble competition: varying growth rate, D2 AD1 

             Df  Sum Sq  Mean  Sq F value    Pr(>F)     
Rtype         2   170.1    85.03   20.35   5.62e-08 *** 
Residuals    87   363.5     4.18                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -1.7333     0.5278  -3.284   0.00417 **  
R3 - R1 == 0  -3.3667     0.5278  -6.379   < 1e-04 *** 
R3 - R2 == 0  -1.6333     0.5278  -3.095   0.00736 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 
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Table A.23 Scramble competition: varying growth rate, D3 AD1 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   423.9    211.94    42.19   1.56e-13 *** 
Residuals    87   437.1     5.02                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -3.6667     0.5787  -6.336    <1e-04 *** 
R3 - R1 == 0  -5.1667     0.5787  -8.927    <1e-04 *** 
R3 - R2 == 0  -1.5000     0.5787  -2.592    0.0298 *   
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 

Table A.24 Contest competition: varying growth rate, D1 AD2 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)     
Rtype         2   200.5    100.23    16.26    1e-06 *** 
Residuals    87   536.4     6.17                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -2.1667     0.6411  -3.379   0.00309 **  
R3 - R1 == 0  -3.6333     0.6411  -5.667   < 1e-04 *** 
R3 - R2 == 0  -1.4667     0.6411  -2.288   0.06288 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.25 Contest competition: varying growth rate, D2 AD2 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   347.6    173.8    33.44   1.69e-11 *** 
Residuals    87   452.2      5.2                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -2.9667     0.5887  -5.040   < 1e-04 *** 
R3 - R1 == 0  -4.7667     0.5887  -8.098   < 1e-04 *** 
R3 - R2 == 0  -1.8000     0.5887  -3.058   0.00822 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 

Table A.26 Contest competition: varying growth rate, D3 AD2 

              Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   325.4    162.71    23.66   6.23e-09 *** 
Residuals    87   598.2     6.88                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -2.9333     0.6771  -4.332   0.00011 *** 
R3 - R1 == 0  -4.6000     0.6771  -6.794   < 1e-04 *** 
R3 - R2 == 0  -1.6667     0.6771  -2.462   0.04140 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"c" "b" "a" 
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Table A.27 Scramble competition: varying growth rate, D1 AD2 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   161.2    80.58    9.996   0.000124 *** 
Residuals    87   701.3     8.06                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)     
R2 - R1 == 0  -1.8667     0.7331  -2.546   0.0334 *   
R3 - R1 == 0  -3.2667     0.7331  -4.456   <1e-04 *** 
R3 - R2 == 0  -1.4000     0.7331  -1.910   0.1420     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 

Table A.28 Scramble competition: varying growth rate, D2 AD2 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   159.8    79.88    14.13   4.86e-06 *** 
Residuals    87   491.9     5.65                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -2.4333     0.6140  -3.963  0.000417 *** 
R3 - R1 == 0  -3.1000     0.6140  -5.049   < 1e-04 *** 
R3 - R2 == 0  -0.6667     0.6140  -1.086  0.525361     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.29 Scramble competition: varying growth rate, D3 AD2 

            Df Sum Sq Mean Sq F value  Pr(>F)    
Rtype        2   77.2   38.58   6.488 0.00236 ** 
Residuals   87  517.3    5.95                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)    
R2 - R1 == 0  -1.0667     0.6296  -1.694  0.21316    
R3 - R1 == 0  -2.2667     0.6296  -3.600  0.00152 ** 
R3 - R2 == 0  -1.2000     0.6296  -1.906  0.14311    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
  R1   R2   R3  
 "b" "ab"  "a" 
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A.2 Low dose results 

A.2.1 Block analyses 

A.2.1.1  Multi-way ANOVAs  

 

Table A.30 Four-way ANOVA for LD block simulations, D x R x DD x AD 

Response: TotalGen 
                         Sum Sq    Df   F value     Pr(>F)     
ADtype                    16.9      1    1.9055    0.16776     
DD                       334.4     1   37.7658  1.133e-09 *** 
kernel                     1.0      2    0.0540    0.94748     
Rtype                   2288.2     2  129.1947  < 2.2e-16 *** 
ADtype:DD                 3.7      1    0.4150    0.51959     
ADtype:kernel             7.0      2    0.3927    0.67532     
DD:kernel                  4.1      2    0.2313    0.79356     
ADtype:Rtype              5.7      2    0.3240    0.72331     
DD:Rtype                1128.6     2   63.7206  < 2.2e-16 *** 
kernel:Rtype              31.8      4    0.8979    0.46451     
ADtype:DD:kernel         22.0     2    1.2434    0.28883     
ADtype:DD:Rtype          24.2     2    1.3648    0.25589     
ADtype:kernel:Rtype       17.2    4    0.4867    0.74557     
DD:kernel:Rtype           86.7    4    2.4488    0.04469 *   
ADtype:DD:kernel:Rtype    28.0    4    0.7906    0.53131     
Residuals                9245.4 1044                        
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.31 Multiple comparisons of means using Tukey contrasts, LD block 
simulations, DDx D x R  

Study: AnovaModel.3 ~ c("DD", "kernel", "Rtype") 
HSD Test for TotalGen  
Mean Square Error:  8.855779  
DD:kernel:Rtype,  means 
 
           TotalGen       std    r  Min  Max 
CC:D1:R1  18.26667  4.660933  60   10   30 
CC:D1:R2  14.28333  2.255627  60   10   19 
CC:D1:R3  14.48333  2.325188  60   10   20 
CC:D2:R1  19.50000  5.000000  60   12   31 
CC:D2:R2  13.43333  2.257692  60    8   21 
CC:D2:R3  13.91667  2.165145  60    9   19 
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Table A.31 (Continued) 

CC:D3:R1  19.70000  5.567155  60   10   36 
CC:D3:R2  13.53333  1.741485  60   11   19 
CC:D3:R3  13.91667  2.172959  60   10   21 
SC:D1:R1  15.33333  2.703837  60   11   22 
SC:D1:R2  14.25000  2.055377  60   10   20 
SC:D1:R3  13.83333  2.132609  60   10   20 
SC:D2:R1  15.11667  2.840934  60   10   27 
SC:D2:R2  14.71667  2.693946  60   10   22 
SC:D2:R3  14.20000  2.523113  60    9   21 
SC:D3:R1  15.11667  2.477640  60   11   22 
SC:D3:R2  14.43333  2.235057  60   10   20 
SC:D3:R3  14.01667  2.037709  60   10   20 
 
alpha: 0.05 ; Df Error: 1044  
Critical Value of Studentized Range: 4.946299  
Comparison between treatments means 
 
                        Difference    pvalue sig.        LCL           UCL 
CC:D1:R1 - CC:D1:R2   3.98333333  0.000000  ***  2.0830510  5.8836156687 
CC:D1:R1 - CC:D1:R3   3.78333333  0.000000  ***  1.8830510  5.6836156687 
CC:D1:R1 - CC:D2:R1  -1.23333333  0.705004      -3.1336157  0.6669490020 
CC:D1:R1 - CC:D2:R2   4.83333333  0.000000  ***  2.9330510  6.7336156687 
CC:D1:R1 - CC:D2:R3   4.35000000  0.000000  ***  2.4497177  6.2502823353 
CC:D1:R1 - CC:D3:R1  -1.43333333  0.426140      -3.3336157  0.4669490020 
CC:D1:R1 - CC:D3:R2   4.73333333  0.000000  ***  2.8330510  6.6336156687 
CC:D1:R1 - CC:D3:R3   4.35000000  0.000000  ***  2.4497177  6.2502823353 
CC:D1:R1 - SC:D1:R1   2.93333333  0.000012  ***  1.0330510  4.8336156687 
CC:D1:R1 - SC:D1:R2   4.01666667  0.000000  ***  2.1163843  5.9169490020 
CC:D1:R1 - SC:D1:R3   4.43333333  0.000000  ***  2.5330510  6.3336156687 
CC:D1:R1 - SC:D2:R1   3.15000000  0.000001  ***  1.2497177  5.0502823353 
CC:D1:R1 - SC:D2:R2   3.55000000  0.000000  ***  1.6497177  5.4502823353 
CC:D1:R1 - SC:D2:R3   4.06666667  0.000000  ***  2.1663843  5.9669490020 
CC:D1:R1 - SC:D3:R1   3.15000000  0.000001  ***  1.2497177  5.0502823353 
CC:D1:R1 - SC:D3:R2   3.83333333  0.000000  ***  1.9330510  5.7336156687 
CC:D1:R1 - SC:D3:R3   4.25000000  0.000000  ***  2.3497177  6.1502823353 
CC:D1:R2 - CC:D1:R3  -0.20000000  1.000000      -2.1002823  1.7002823353 
CC:D1:R2 - CC:D2:R1  -5.21666667  0.000000  *** -7.1169490 -3.3163843313 
CC:D1:R2 - CC:D2:R2   0.85000000  0.985309      -1.0502823  2.7502823353 
CC:D1:R2 - CC:D2:R3   0.36666667  1.000000      -1.5336157  2.2669490020 
CC:D1:R2 - CC:D3:R1  -5.41666667  0.000000  *** -7.3169490 -3.5163843313 
CC:D1:R2 - CC:D3:R2   0.75000000  0.996309      -1.1502823  2.6502823353 
CC:D1:R2 - CC:D3:R3   0.36666667  1.000000      -1.5336157  2.2669490020 
CC:D1:R2 - SC:D1:R1  -1.05000000  0.898901      -2.9502823  0.8502823353 
CC:D1:R2 - SC:D1:R2   0.03333333  1.000000      -1.8669490  1.9336156687 
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Table A.31 (Continued) 

CC:D1:R2 - SC:D1:R3   0.45000000  0.999996      -1.4502823  2.3502823353 
CC:D1:R2 - SC:D2:R1  -0.83333333  0.988065      -2.7336157  1.0669490020 
CC:D1:R2 - SC:D2:R2  -0.43333333  0.999998      -2.3336157  1.4669490020 
CC:D1:R2 - SC:D2:R3   0.08333333  1.000000      -1.8169490  1.9836156687 
CC:D1:R2 - SC:D3:R1  -0.83333333  0.988065      -2.7336157  1.0669490020 
CC:D1:R2 - SC:D3:R2  -0.15000000  1.000000      -2.0502823  1.7502823353 
CC:D1:R2 - SC:D3:R3   0.26666667  1.000000      -1.6336157  2.1669490020 
CC:D1:R3 - CC:D2:R1  -5.01666667  0.000000  *** -6.9169490 -3.1163843313 
CC:D1:R3 - CC:D2:R2   1.05000000  0.898901      -0.8502823  2.9502823353 
CC:D1:R3 - CC:D2:R3   0.56666667  0.999898      -1.3336157  2.4669490020 
CC:D1:R3 - CC:D3:R1  -5.21666667  0.000000  *** -7.1169490 -3.3163843313 
CC:D1:R3 - CC:D3:R2   0.95000000  0.956561      -0.9502823  2.8502823353 
CC:D1:R3 - CC:D3:R3   0.56666667  0.999898      -1.3336157  2.4669490020 
CC:D1:R3 - SC:D1:R1  -0.85000000  0.985309      -2.7502823  1.0502823353 
CC:D1:R3 - SC:D1:R2   0.23333333  1.000000      -1.6669490  2.1336156687 
CC:D1:R3 - SC:D1:R3   0.65000000  0.999362      -1.2502823  2.5502823353 
CC:D1:R3 - SC:D2:R1  -0.63333333  0.999544      -2.5336157  1.2669490020 
CC:D1:R3 - SC:D2:R2  -0.23333333  1.000000      -2.1336157  1.6669490020 
CC:D1:R3 - SC:D2:R3   0.28333333  1.000000      -1.6169490  2.1836156687 
CC:D1:R3 - SC:D3:R1  -0.63333333  0.999544      -2.5336157  1.2669490020 
CC:D1:R3 - SC:D3:R2   0.05000000  1.000000      -1.8502823  1.9502823353 
CC:D1:R3 - SC:D3:R3   0.46666667  0.999994      -1.4336157  2.3669490020 
CC:D2:R1 - CC:D2:R2   6.06666667  0.000000  ***  4.1663843  7.9669490020 
CC:D2:R1 - CC:D2:R3   5.58333333  0.000000  ***  3.6830510  7.4836156687 
CC:D2:R1 - CC:D3:R1  -0.20000000  1.000000      -2.1002823  1.7002823353 
CC:D2:R1 - CC:D3:R2   5.96666667  0.000000  ***  4.0663843  7.8669490020 
CC:D2:R1 - CC:D3:R3   5.58333333  0.000000  ***  3.6830510  7.4836156687 
CC:D2:R1 - SC:D1:R1   4.16666667  0.000000  ***  2.2663843  6.0669490020 
CC:D2:R1 - SC:D1:R2   5.25000000  0.000000  ***  3.3497177  7.1502823353 
CC:D2:R1 - SC:D1:R3   5.66666667  0.000000  ***  3.7663843  7.5669490020 
CC:D2:R1 - SC:D2:R1   4.38333333  0.000000  ***  2.4830510  6.2836156687 
CC:D2:R1 - SC:D2:R2   4.78333333  0.000000  ***  2.8830510  6.6836156687 
CC:D2:R1 - SC:D2:R3   5.30000000  0.000000  ***  3.3997177  7.2002823353 
CC:D2:R1 - SC:D3:R1   4.38333333  0.000000  ***  2.4830510  6.2836156687 
CC:D2:R1 - SC:D3:R2   5.06666667  0.000000  ***  3.1663843  6.9669490020 
CC:D2:R1 - SC:D3:R3   5.48333333  0.000000  ***  3.5830510  7.3836156687 
CC:D2:R2 - CC:D2:R3  -0.48333333  0.999989      -2.3836157  1.4169490020 
CC:D2:R2 - CC:D3:R1  -6.26666667  0.000000  *** -8.1669490 -4.3663843313 
CC:D2:R2 - CC:D3:R2  -0.10000000  1.000000      -2.0002823  1.8002823353 
CC:D2:R2 - CC:D3:R3  -0.48333333  0.999989      -2.3836157  1.4169490020 
CC:D2:R2 - SC:D1:R1  -1.90000000  0.050083    . -3.8002823  0.0002823353 
CC:D2:R2 - SC:D1:R2  -0.81666667  0.990386      -2.7169490  1.0836156687 
CC:D2:R2 - SC:D1:R3  -0.40000000  0.999999      -2.3002823  1.5002823353 
CC:D2:R2 - SC:D2:R1  -1.68333333  0.158286      -3.5836157  0.2169490020 
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CC:D2:R2 - SC:D2:R2  -1.28333333  0.637051      -3.1836157  0.6169490020 
CC:D2:R2 - SC:D2:R3  -0.76666667  0.995242      -2.6669490  1.1336156687 
CC:D2:R2 - SC:D3:R1  -1.68333333  0.158286      -3.5836157  0.2169490020 
CC:D2:R2 - SC:D3:R2  -1.00000000  0.931926      -2.9002823  0.9002823353 
CC:D2:R2 - SC:D3:R3  -0.58333333  0.999848      -2.4836157  1.3169490020 
CC:D2:R3 - CC:D3:R1  -5.78333333  0.000000  *** -7.6836157 -3.8830509980 
CC:D2:R3 - CC:D3:R2   0.38333333  1.000000      -1.5169490  2.2836156687 
CC:D2:R3 - CC:D3:R3   0.00000000  1.000000      -1.9002823  1.9002823353 
CC:D2:R3 - SC:D1:R1  -1.41666667  0.448876      -3.3169490  0.4836156687 
CC:D2:R3 - SC:D1:R2  -0.33333333  1.000000      -2.2336157  1.5669490020 
CC:D2:R3 - SC:D1:R3   0.08333333  1.000000      -1.8169490  1.9836156687 
CC:D2:R3 - SC:D2:R1  -1.20000000  0.747671      -3.1002823  0.7002823353 
CC:D2:R3 - SC:D2:R2  -0.80000000  0.992324      -2.7002823  1.1002823353 
CC:D2:R3 - SC:D2:R3  -0.28333333  1.000000      -2.1836157  1.6169490020 
CC:D2:R3 - SC:D3:R1  -1.20000000  0.747671      -3.1002823  0.7002823353 
CC:D2:R3 - SC:D3:R2  -0.51666667  0.999972      -2.4169490  1.3836156687 
CC:D2:R3 - SC:D3:R3  -0.10000000  1.000000      -2.0002823  1.8002823353 
CC:D3:R1 - CC:D3:R2   6.16666667  0.000000  ***  4.2663843  8.0669490020 
CC:D3:R1 - CC:D3:R3   5.78333333  0.000000  ***  3.8830510  7.6836156687 
CC:D3:R1 - SC:D1:R1   4.36666667  0.000000  ***  2.4663843  6.2669490020 
CC:D3:R1 - SC:D1:R2   5.45000000  0.000000  ***  3.5497177  7.3502823353 
CC:D3:R1 - SC:D1:R3   5.86666667  0.000000  ***  3.9663843  7.7669490020 
CC:D3:R1 - SC:D2:R1   4.58333333  0.000000  ***  2.6830510  6.4836156687 
CC:D3:R1 - SC:D2:R2   4.98333333  0.000000  ***  3.0830510  6.8836156687 
CC:D3:R1 - SC:D2:R3   5.50000000  0.000000  ***  3.5997177  7.4002823353 
CC:D3:R1 - SC:D3:R1   4.58333333  0.000000  ***  2.6830510  6.4836156687 
CC:D3:R1 - SC:D3:R2   5.26666667  0.000000  ***  3.3663843  7.1669490020 
CC:D3:R1 - SC:D3:R3   5.68333333  0.000000  ***  3.7830510  7.5836156687 
CC:D3:R2 - CC:D3:R3  -0.38333333  1.000000      -2.2836157  1.5169490020 
CC:D3:R2 - SC:D1:R1  -1.80000000  0.087879    . -3.7002823  0.1002823353 
CC:D3:R2 - SC:D1:R2  -0.71666667  0.997847      -2.6169490  1.1836156687 
CC:D3:R2 - SC:D1:R3  -0.30000000  1.000000      -2.2002823  1.6002823353 
CC:D3:R2 - SC:D2:R1  -1.58333333  0.246343      -3.4836157  0.3169490020 
CC:D3:R2 - SC:D2:R2  -1.18333333  0.767984      -3.0836157  0.7169490020 
CC:D3:R2 - SC:D2:R3  -0.66666667  0.999119      -2.5669490  1.2336156687 
CC:D3:R2 - SC:D3:R1  -1.58333333  0.246343      -3.4836157  0.3169490020 
CC:D3:R2 - SC:D3:R2  -0.90000000  0.973886      -2.8002823  1.0002823353 
CC:D3:R2 - SC:D3:R3  -0.48333333  0.999989      -2.3836157  1.4169490020 
CC:D3:R3 - SC:D1:R1  -1.41666667  0.448876      -3.3169490  0.4836156687 
CC:D3:R3 - SC:D1:R2  -0.33333333  1.000000      -2.2336157  1.5669490020 
CC:D3:R3 - SC:D1:R3   0.08333333  1.000000      -1.8169490  1.9836156687 
CC:D3:R3 - SC:D2:R1  -1.20000000  0.747671      -3.1002823  0.7002823353 
CC:D3:R3 - SC:D2:R2  -0.80000000  0.992324      -2.7002823  1.1002823353 
CC:D3:R3 - SC:D2:R3  -0.28333333  1.000000      -2.1836157  1.6169490020 
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CC:D3:R3 - SC:D3:R1  -1.20000000  0.747671      -3.1002823  0.7002823353 
CC:D3:R3 - SC:D3:R2  -0.51666667  0.999972      -2.4169490  1.3836156687 
CC:D3:R3 - SC:D3:R3  -0.10000000  1.000000      -2.0002823  1.8002823353 
SC:D1:R1 - SC:D1:R2   1.08333333  0.871932      -0.8169490  2.9836156687 
SC:D1:R1 - SC:D1:R3   1.50000000  0.339962      -0.4002823  3.4002823353 
SC:D1:R1 - SC:D2:R1   0.21666667  1.000000      -1.6836157  2.1169490020 
SC:D1:R1 - SC:D2:R2   0.61666667  0.999679      -1.2836157  2.5169490020 
SC:D1:R1 - SC:D2:R3   1.13333333  0.824079      -0.7669490  3.0336156687 
SC:D1:R1 - SC:D3:R1   0.21666667  1.000000      -1.6836157  2.1169490020 
SC:D1:R1 - SC:D3:R2   0.90000000  0.973886      -1.0002823  2.8002823353 
SC:D1:R1 - SC:D3:R3   1.31666667  0.590093      -0.5836157  3.2169490020 
SC:D1:R2 - SC:D1:R3   0.41666667  0.999999      -1.4836157  2.3169490020 
SC:D1:R2 - SC:D2:R1  -0.86666667  0.982064      -2.7669490  1.0336156687 
SC:D1:R2 - SC:D2:R2  -0.46666667  0.999994      -2.3669490  1.4336156687 
SC:D1:R2 - SC:D2:R3   0.05000000  1.000000      -1.8502823  1.9502823353 
SC:D1:R2 - SC:D3:R1  -0.86666667  0.982064      -2.7669490  1.0336156687 
SC:D1:R2 - SC:D3:R2  -0.18333333  1.000000      -2.0836157  1.7169490020 
SC:D1:R2 - SC:D3:R3   0.23333333  1.000000      -1.6669490  2.1336156687 
SC:D1:R3 - SC:D2:R1  -1.28333333  0.637051      -3.1836157  0.6169490020 
SC:D1:R3 - SC:D2:R2  -0.88333333  0.978275      -2.7836157  1.0169490020 
SC:D1:R3 - SC:D2:R3  -0.36666667  1.000000      -2.2669490  1.5336156687 
SC:D1:R3 - SC:D3:R1  -1.28333333 0.637051      -3.1836157  0.6169490020 
SC:D1:R3 - SC:D3:R2  -0.60000000  0.999777      -2.5002823  1.3002823353 
SC:D1:R3 - SC:D3:R3  -0.18333333  1.000000      -2.0836157  1.7169490020 
SC:D2:R1 - SC:D2:R2   0.40000000  0.999999      -1.5002823  2.3002823353 
SC:D2:R1 - SC:D2:R3   0.91666667  0.968840      -0.9836157  2.8169490020 
SC:D2:R1 - SC:D3:R1   0.00000000  1.000000      -1.9002823  1.9002823353 
SC:D2:R1 - SC:D3:R2   0.68333333  0.998799      -1.2169490  2.5836156687 
SC:D2:R1 - SC:D3:R3   1.10000000  0.856952      -0.8002823  3.0002823353 
SC:D2:R2 - SC:D2:R3   0.51666667  0.999972      -1.3836157  2.4169490020 
SC:D2:R2 - SC:D3:R1 -0.40000000  0.999999      -2.3002823  1.5002823353 
SC:D2:R2 - SC:D3:R2   0.28333333  1.000000      -1.6169490  2.1836156687 
SC:D2:R2 - SC:D3:R3   0.70000000  0.998383      -1.2002823  2.6002823353 
SC:D2:R3 - SC:D3:R1  -0.91666667  0.968840      -2.8169490  0.9836156687 
SC:D2:R3 - SC:D3:R2  -0.23333333  1.000000      -2.1336157  1.6669490020 
SC:D2:R3 - SC:D3:R3   0.18333333  1.000000      -1.7169490  2.0836156687 
SC:D3:R1 - SC:D3:R2   0.68333333  0.998799      -1.2169490  2.5836156687 
SC:D3:R1 - SC:D3:R3   1.10000000  0.856952      -0.8002823  3.0002823353 
SC:D3:R2 - SC:D3:R3   0.41666667  0.999999      -1.4836157  2.3169490020 
 
Groups, Treatments and means 
a   CC:D3:R1   19.7  
a   CC:D2:R1   19.5  
a   CC:D1:R1   18.27  
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b   SC:D1:R1   15.33  
b   SC:D2:R1   15.12  
b   SC:D3:R1   15.12  
b   SC:D2:R2   14.72  
b   CC:D1:R3   14.48  
b   SC:D3:R2   14.43  
b   CC:D1:R2   14.28  
b   SC:D1:R2   14.25  
b   SC:D2:R3   14.2  
b   SC:D3:R3   14.02  
b   CC:D2:R3   13.92  
b   CC:D3:R3   13.92  
b   SC:D1:R3   13.83  
b   CC:D3:R2   13.53  
b   CC:D2:R2   13.43 
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Table A.32 Multiple comparisons of means using Tukey contrasts, LD RIB simulations, 
DD x R  

DD:Rtype,  means 
        TotalGen       std     r  Min  Max 
CC:R1  13.40556  2.160326  180    9   19 
CC:R2  11.48333  1.635756  180    8   17 
CC:R3  11.38889  1.763658  180    8   18 
SC:R1   12.38333  2.125333  180    8   19 
SC:R2   11.51111  1.754448  180    8   18 
SC:R3   11.33333  .796956  180   8   17 
 
alpha: 0.05 ; Df Error: 1044  
Critical Value of Studentized Range: 4.037602   
Comparison between treatments means 
 
                 Difference    pvalue sig.        LCL         UCL 
CC:R1 - CC:R2   1.92222222  0.000000  ***  1.3563443   2.4881001 
CC:R1 - CC:R3   2.01666667  0.000000  ***  1.4507888   2.5825446 
CC:R1 - SC:R1   1.02222222  0.000004  ***  0.4563443   1.5881001 
CC:R1 - SC:R2   1.89444444  0.000000  ***  1.3285665   2.4603223 
CC:R1 - SC:R3   2.07222222  0.000000  ***  1.5063443   2.6381001 
CC:R2 - CC:R3   0.09444444  0.996956       -0.4714335   0.6603223 
CC:R2 - SC:R1  -0.90000000  0.000091  *** -1.4658779  -0.3341221 
CC:R2 - SC:R2  -0.02777778  0.999992       -0.5936557   0.5381001 
CC:R2 - SC:R3   0.15000000  0.974496       -0.4158779   0.7158779 
CC:R3 - SC:R1  -0.99444444  0.000009  *** -1.5603223  -0.4285665 
CC:R3 - SC:R2  -0.12222222  0.989838       -0.6881001   0.4436557 
CC:R3 - SC:R3   0.05555556  0.999767       -0.5103223   0.6214335 
SC:R1 - SC:R2   0.87222222  0.000173  ***  0.3063443   1.4381001 
SC:R1 - SC:R3   1.05000000  0.000002  ***  0.4841221   1.6158779 
SC:R2 - SC:R3   0.17777778  0.947266       -0.3881001   0.7436557 
HSD Test for TotalGen  
 
Groups, Treatments and means 
a   CC:R1   13.41  
b   SC:R1   12.38  
c   SC:R2   11.51  
c   CC:R2   11.48  
c   CC:R3   11.39  
c   SC:R3   11.33 
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Table A.33 Multiple comparisons of means using Tukey contrasts, LD RIB simulations, 
DD x D  

DD:kernel,  means 
 
        TotalGen       std     r  Min  Max 
CC:D1  12.23333  2.197256  180    8   19 
CC:D2  12.03889  1.981377  180    9   19 
CC:D3  12.00556  2.067296  180    8   18 
SC:D1   11.76667  2.030769  180    8   18 
SC:D2   11.40556  1.832961  180    8   17 
SC:D3   12.05556  1.939654  180    8   19 
 
alpha: 0.05 ; Df Error: 1044  
Critical Value of Studentized Range: 4.037602  
Comparison between treatments means 
 
                 Difference    pvalue sig.         LCL         UCL 
CC:D1 - CC:D2   0.19444444  0.924005      -0.37143345   0.7603223 
CC:D1 - CC:D3   0.22777778  0.860523      -0.33810012   0.7936557 
CC:D1 - SC:D1   0.46666667  0.173568      -0.09921123   1.0325446 
CC:D1 - SC:D2   0.82777778  0.000459  ***  0.26189988   1.3936557 
CC:D1 - SC:D3   0.17777778  0.947266      -0.38810012   0.7436557 
CC:D2 - CC:D3   0.03333333  0.999981      -0.53254456   0.5992112 
CC:D2 - SC:D1   0.27222222  0.743039      -0.29365567   0.8381001 
CC:D2 - SC:D2   0.63333333  0.017985    *  0.06745544   1.1992112 
CC:D2 - SC:D3  -0.01666667  0.999999      -0.58254456   0.5492112 
CC:D3 - SC:D1   0.23888889  0.834404      -0.32698901   0.8047668 
CC:D3 - SC:D2   0.60000000  0.030323    *  0.03412210   1.1658779 
CC:D3 - SC:D3  -0.05000000  0.999861      -0.61587790   0.5158779 
SC:D1 - SC:D2   0.36111111  0.451972      -0.20476679   0.9269890 
SC:D1 - SC:D3  -0.28888889  0.691477      -0.85476679   0.2769890 
SC:D2 - SC:D3  -0.65000000  0.013682    * -1.21587790  -0.0841221 
 
Groups, Treatments and means 
a   CC:D1   12.23  
a   SC:D3   12.06  
a   CC:D2   12.04  
a   CC:D3   12.01  
ab   SC:D1   11.77  
b   SC:D2   11.41 
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A.2.1.2 One-way ANOVAs  

 

Table A.34 Density dependence comparison at R1 D1 AD1 

> summary(AnovaModel.3) 
             Df Sum Sq Mean Sq F value  Pr(>F)    
DD            1   123.3  123.27       8  0.00641 ** 
Residuals    58   893.7   15.41                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.35 Density dependence comparison at R1 D2 AD1 

> summary(AnovaModel.4) 
             Df Sum Sq Mean Sq F value  Pr(>F)     
DD            1  498.8   498.8    28.94  1.4e-06 *** 
Residuals    58  999.8    17.2                     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.36 Density dependence comparison at R1 D3 AD1 

> summary(AnovaModel.5) 
             Df Sum Sq Mean Sq F value Pr(>F)     
DD            1    322   322.0   12. 83   7e-04 *** 
Residuals    58   1456    25.1                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.37 Density dependence comparison at R2 D2 AD1 

> summary(AnovaModel.1) 
             Df Sum Sq Mean Sq F value  Pr(>F)    
DD            1    41.7    41.67   7.322  0.00893 ** 
Residuals    58   330.1    5.69                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Table A.38 Density dependence comparison at R2 D3 AD1 

> summary(AnovaModel.2) 
             Df Sum Sq Mean Sq F value  Pr(>F)    
DD            1    29.4   29.40    7.697  0.00743 ** 
Residuals    58   221.5    3.82                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.39 Density dependence comparison at R1 D1 AD2 

> summary(AnovaModel.7) 
             Df Sum Sq Mean Sq F value  Pr(>F)    
DD            1  135.0   135.0    9.715  0.00284 ** 
Residuals    58  805.9    13.9                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.40 Density dependence comparison at R1 D2 AD2 

> summary(AnovaModel.8) 
             Df Sum Sq Mean Sq F value  Pr(>F)    
DD            1  135.0  135.00    8.818  0.00433 ** 
Residuals    58  887.9   15.31                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.41 Density dependence comparison at R1 D3 AD2 

> summary(AnovaModel.9) 
             Df Sum Sq Mean Sq F value   Pr(>F)     
DD            1  308.3  308.27     24.4  6.98e-06 *** 
Residuals    58  732.7   12.63                      
 

  



 

263 

Table A.42 Contest competition: varying growth rate, D1 AD1 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   255.1    127.54    11.33   4.23e-05 *** 
Residuals    87   979.2    11.26                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
 R1  R2  R3 
"b" "a" "a" 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 

              Estimate Std. Error  t value   Pr(>|t|)     
R2 - R1 == 0  -3.8333     0.8662   -4.425    < 1e-04 *** 
R3 - R1 == 0  -3.2333     0.8662   -3.733   0.000974 *** 
R3 - R2 == 0   0.6000     0.8662    0.693   0.768416     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
(Adjusted p values reported -- single-step method) 

Table A.43 Contest competition: varying growth rate, D2 AD1 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2     846     423.0    31.07   6.57e-11 *** 
Residuals    87    1184     13.6                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
 R1  R2  R3 
"b" "a" "a" 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error  t value   Pr(>|t|)     
R2 - R1 == 0  -6.8667     0.9527   -7.208    <1e-05 *** 
R3 - R1 == 0  -6.0667     0.9527   -6.368    <1e-05 *** 
R3 - R2 == 0   0.8000     0.9527    0.840     0.679     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
(Adjusted p values reported -- single-step method) 
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Table A.44 Contest competition: varying growth rate, D3 AD1 

> summary(AnovaModel.3) 
            Df Sum Sq Mean Sq F value   Pr(>F)     
Rtype        2    718   359.0   21.34 2.87e-08 *** 
Residuals   87   1463    16.8                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
 R1  R2  R3 
"b" "a" "a" 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error  t value   Pr(>|t|)     
R2 - R1 == 0  -6.1667     1.0589   -5.823    <1e-05 *** 
R3 - R1 == 0  -5.8000     1.0589   -5.477    <1e-05 *** 
R3 - R2 == 0   0.3667     1.0589    0.346     0.936     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.45 Contest competition: varying growth rate, D1 AD2 

              Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   359.0    179.51    17.18   5.13e-07 *** 
Residuals    87   908.8    10.45                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error  t value   Pr(>|t|)     
R2 - R1 == 0  -4.1333     0.8345   -4.953    <1e-05 *** 
R3 - R1 == 0  -4.3333     0.8345   -5.193    <1e-05 *** 
R3 - R2 == 0  -0.2000     0.8345   -0.240     0.969     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a"  
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Table A.46 Contest competition: varying growth rate, D2 AD2 

             Df  Sum Sq  Mean Sq  F value   Pr(>F)     
Rtype         2   537.8    268.88    27.58     5.29e-10 *** 
Residuals    87   848.2     9.75                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -5.2667     0.8062  -6.533    <1e-05 *** 
R3 - R1 == 0  -5.1000     0.8062  -6.326    <1e-05 *** 
R3 - R2 == 0   0.1667     0.8062   0.207     0.977     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
 > cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 

Table A.47 Contest competition: varying growth rate, D3 AD2 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   714.4    357.2    37.87   1.48e-12 *** 
Residuals    87   820.7      9.4                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error  t value   Pr(>|t|)     
R2 - R1 == 0   -6.167      0.793   -7.776    <1e-04 *** 
R3 - R1 == 0   -5.767      0.793   -7.272    <1e-04 *** 
R3 - R2 == 0    0.400      0.793    0.504     0.869     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.48 Scramble competition: varying growth rate, D1 AD2 

Df  Sum Sq  Mean Sq  F value   Pr(>F)    
Rtype         2    56.4    28.211    4.882   0.00978 ** 
Residuals    87   502.7    5.779                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error  t value   Pr(>|t|)    
R2 - R1 == 0  -1.1000     0.6207   -1.772   0.18498    
R3 - R1 == 0  -1.9333     0.6207   -3.115   0.00696 ** 
R3 - R2 == 0  -0.8333     0.6207   -1.343   0.37566    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
  R1   R2   R3  
 "b" "ab"  "a" 
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A.2.2 RIB analyses 

A.2.2.1 Multi-way ANOVAs  

 

Table A.49 Four-way ANOVA for DD x R x D x AD 

Response: TotalGen 
                          Sum Sq    Df  F value     Pr(>F)     
ADtype                     14.0      1   3.9620  0.0467985 *   
DD                         33.1      1   9.3547  0.0022809 **  
kernel                     20.8      2   2.9386  0.0533792 .   
Rtype                     518.6     2  73.3418  < 2.2e-16 *** 
ADtype:DD                  1.6      1   0.4402  0.5071612     
ADtype:kernel              3.3      2   0.4627  0.6296822     
DD:kernel                  22.8      2   3.2314  0.0398992 *   
ADtype:Rtype               2.0      2   0.2836  0.7531123     
DD:Rtype                   61.3      2   8.6712  0.0001841 *** 
kernel:Rtype                5.4      4   0.3797  0.8232238     
ADtype:DD:kernel           1.3      2   0.1888  0.8279665     
ADtype:DD:Rtype            7.3      2   1.0279  0.3581243     
ADtype:kernel:Rtype       12.0      4   0.8454  0.4964847     
DD:kernel:Rtype           24.1      4   1.7017  0.1473408     
ADtype:DD:kernel:Rtype     2.9      4   0.2085  0.9337919     
Residuals                3691.2  1044                       

A.2.2.2 One-way ANOVAs  

 

Table A.50 Density dependence comparison at R1 D1 AD1 

> summary(AnovaModel.13) 
              Df Sum Sq Mean Sq F value Pr(>F)   
DD            1   40.0   40.02    6.882  0.0111 * 
Residuals    58  337.2    5.81                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Table A.51 Density dependence comparison at R1 D2 AD1 

> summary(AnovaModel.14) 
             Df Sum Sq Mean Sq F value  Pr(>F)    
DD            1  35.27   35.27    7.367  0.00874 ** 
Residuals    58 277.67    4.79                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.52 Density dependence comparison at R2 D3 AD1 

> summary(AnovaModel.16) 
             Df Sum Sq Mean Sq F value Pr(>F)   
DD            1    9.6   9.600    4.609  0.036 * 
Residuals    58  120.8   2.083                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Table A.53 Density dependence comparison at R1 D1 AD2 

> summary(AnovaModel.17) 
             Df Sum Sq Mean Sq F value Pr(>F)   
DD            1   29.4  29.400    6.839  0.0113 * 
Residuals    58  249.3   4.299                  
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Table A.54 Contest competition: varying growth rate, D1 AD1 

             Df  Sum Sq  Mean Sq  F value   Pr(>F)     
Rtype         2    96.8     48.40    12.56     1.62e-05 *** 
Residuals    87   335.3     3.85                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
                Estimate Std. Error  t value   Pr(>|t|)     
R2 - R1 == 0 -2.200e+00  5.069e-01   -4.34   0.000104 *** 
R3 - R1 == 0 -2.200e+00  5.069e-01   -4.34   0.000114 *** 
R3 - R2 == 0  4.441e-16  5.069e-01    0.00   1.000000     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 

Table A.55 Contest competition: varying growth rate, D2 AD1 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2    82.4     41.21    11.22   4.62e-05 *** 
Residuals    87   319.5     3.67                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)     
R2 - R1 == 0  -1.7333     0.4948  -3.503  0.00207 **  
R3 - R1 == 0  -2.2333     0.4948  -4.513  < 1e-04 *** 
R3 - R2 == 0  -0.5000     0.4948  -1.010  0.57230     
--- 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.56 Contest competition: varying growth rate, D3 AD1 

             Df  Sum Sq  Mean Sq  F value    Pr(>F)     
Rtype         2   79.09    39.54    12.03   2.44e-05 *** 
Residuals    87  286.03     3.29                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)     
R2 - R1 == 0  -2.0667     0.4682  -4.414  < 1e-04 *** 
R3 - R1 == 0  -1.9000     0.4682  -4.058 0.000288 *** 
R3 - R2 == 0   0.1667     0.4682   0.356 0.932575     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 

Table A.57 Scramble competition: varying growth rate, D3 AD1 

             Df  Sum Sq  Mean Sq  F value  Pr(>F)   
Rtype         2    30.2     15.10    4.603   0.0126 * 
Residuals    87   285.4     3.28                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)   
R2 - R1 == 0  -0.9000     0.4677  -1.925   0.1378   
R3 - R1 == 0  -1.4000     0.4677  -2.994   0.0101 * 
R3 - R2 == 0  -0.5000     0.4677  -1.069   0.5357   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
  R1   R2   R3  
 "b" "ab"  "a" 
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Table A.58 Contest competition: varying growth rate, D1 AD2 

             Df  Sum Sq  Mean Sq  F value   Pr(>F)     
Rtype         2   140.5    70.23    21.18   3.2e-08 *** 
Residuals    87   288.4     3.32                     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0 -2.66667    0.47013  -5.672   < 1e-06 *** 
R3 - R1 == 0 -2.63333    0.47013  -5.601  1.06e-06 *** 
R3 - R2 == 0  0.03333    0.47013   0.071     0.997     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 

Table A.59 Contest competition: varying growth rate, D2 AD2 

             Df  Sum Sq  Mean Sq  F value   Pr(>F)    
Rtype         2    39.2    19.600    6.536   0.00227 ** 
Residuals    87   260.9    2.999                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)    
R2 - R1 == 0  -1.0000     0.4471  -2.236    0.0707 .  
R3 - R1 == 0  -1.6000     0.4471  -3.578    0.0016 ** 
R3 - R2 == 0  -0.6000     0.4471  -1.342    0.3761    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 > cld(.Pairs) # compact letter display 
  R1   R2   R3  
 "b" "ab"  "a" 
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Table A.60 Contest competition: varying growth rate, D3 AD2 

             Df  Sum Sq  Mean Sq  F value   Pr(>F)     
Rtype         2    59.5    29.733    7.883    0.000714 *** 
Residuals    87   328.1    3.772                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)     
R2 - R1 == 0  -1.8667     0.5014  -3.723  0.000998 *** 
R3 - R1 == 0  -1.5333     0.5014  -3.058  0.008306 **  
R3 - R2 == 0   0.3333     0.5014   0.665  0.784497     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 

Table A.61 Scramble competition: varying growth rate, D1 AD2 

             Df  Sum Sq  Mean Sq  F value   Pr(>F)    
Rtype         2   40.29    20.144    .113   0.00328 ** 
Residuals    87  286.70    3.295                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)    
R2 - R1 == 0  -1.3667     0.4687  -2.916   0.01234 *  
R3 - R1 == 0  -1.4667     0.4687  -3.129   0.00676 ** 
R3 - R2 == 0  -0.1000     0.4687  -0.213   0.97523    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
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Table A.62 Scramble competition: varying growth rate, D2 AD2 

              Df  Sum Sq  Mean Sq  F value   Pr(>F)    
Rtype         2   29.76    14.878    5.081   0.00818 ** 
Residuals    87  254.73    2.928                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)   
R2 - R1 == 0  -1.2667     0.4418  -2.867    0.0142 * 
R3 - R1 == 0  -1.1667     0.4418  -2.641    0.0263 * 
R3 - R2 == 0   0.1000     0.4418   0.226   0.9722   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
> cld(.Pairs) # compact letter display 
 R1  R2  R3  
"b" "a" "a" 
 

Table A.63 Scramble competition: varying growth rate, D3 AD2 

              Df  Sum Sq  Mean Sq  F value  Pr(>F)   
Rtype         2  23.8    11.878    3.118   0.0492 * 
Residuals    7   331.4    3.809                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = TotalGen ~ Rtype, data = Dataset) 
Linear Hypotheses: 
              Estimate Std. Error t value  Pr(>|t|)   
R2 - R1 == 0  -0.8333     0.5039  -1.654    0.2290   
R3 - R1 == 0  -1.2333     0.5039  -2.447    0.0429 * 
R3 - R2 == 0  -0.4000     0.5039  -0.794    0.7078   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cld(.Pairs) # compact letter display 
  R1   R2   R3  
 "b" "ab"  "a" 
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