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ABSTRACT

Estimating the polarization of light has been shown to have merit in a wide variety of

applications betweenUV and LWIRwavelengths. These tasks include target identification,

estimation of atmospheric aerosol properties, biomedical and other applications. In all of

these applications, polarization sensing has been shown to assist in discrimination ability;

however, due to the nature of many phenomena, it is difficult to add polarization sensing

everywhere. The goal of this dissertation is to decrease the associated penalties of using

polarimetry, and thereby broaden its applicability to other areas.

First, the class of channeled polarimeter systems is generalized to relate the Fourier

domains of applied modulations to the resulting information channels. The quality of

reconstruction is maximized by virtue of using linear system manipulations rather than

arithmetic derived by hand, while revealing system properties that allow for immediate

performance estimation. Besides identifying optimal systems in terms of equally weighted

variance (EWV), a way to redistribute the error between all the information channels is

presented. The result of this development often leads to superficial changes that can im-

prove signal-to-noise-ration (SNR) by up to a factor of three compared to existing designs

in the literature.

Second, the class of partial Mueller maitrx polarimeters (pMMPs) is inspected in re-

gards to their capacity to match the level of discrimination performance achieved by full

systems. The concepts of structured decomposition and the reconstructables matrix are

developed to provide insight into Mueller subspace coverage of pMMPs, while yielding a

pMMPbasis that allows the formation of ten classes of pMMP systems. Amethod for eval-

uating such systems while considering a multi-objective optimization of noise resilience

and space coverage is provided. An example is presented for which the number of mea-

surements was reduced to half.

Third, the novel developments intended for channeled and partial systems are com-
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bined to form a previously undiscussed class of channeled partialMuellermatrix polarime-

ters (c-pMMPs). These systems leverage the gained understanding in manipulating the

structure of the measurement to design modulations such that the desired pieces of infor-

mation are mapped into channels with favorable reconstruction characteristics.
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CHAPTER 1

INTRODUCTION

This dissertation pertains to matrix structure of the information reconstruction tech-

niques, which are pivotal to the design of a polarimeter, a device intended formeasuring the

polarization of light. Estimating the polarization of light has been shown to havemerit in a

wide variety of applications between UV and LWIR wavelengths (Tyo et al. (2006)). These

tasks can be categorized into target identification (Cheng et al. (1994); Tyo et al. (1996);

Goudail and Tyo (2011); Hoover and Tyo (2007)), estimation of atmospheric aerosol prop-

erties (Diner et al. (2007)), as well as biomedical applications (Jacques et al. (1999); Bald-

win (2004); Zhao et al. (2009)). In all of these applications, polarization sensing has been

shown to assist in discrimination ability; however, due to the nature of many phenomena,

it is difficult to add polarization sensing everywhere. The goal of this dissertation is to de-

crease the associated penalties of using polarimetry, and thereby broaden its applicability

to other areas.

Because current state of the art detectors are incapable of detecting polarization di-

rectly, a series of indirect measurements need to be made and then combined to reveal the

underlying polarization properties. In the most general sense, polarimeter design involves

making a number of choices with regards to selection of those indirect measurements that

fit the specifics of the phenomenological nature of the extant scattering events in a par-

ticular measurement task. Many designs use a sequentially generated set of testing condi-

tions, which are commonly referred to as modulation. These testing conditions are often

modulated in one of three domains: time, space or wavelength (LaCasse et al. (2011a)).

Additionally, multiple modulation domains can be used simultaneously to balance the res-

olution loss across domains. The optimal selection is unlikely to present itself without a

careful analysis of the domains that the intended target and its background occupy. As

the field of polarimetry expands to include more estimation and discrimination tasks, the

need for appropriate selection of both the type of the system, as well as the modulation
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domains, becomes critical to constructing a successful system.

With polarization being a rich physical process, it contains many parameters concern-

ing different aspects of the kind of transformations that light goes through. Depending on

the task, some of these parameters are essential, while others may prove to be extraneous.

This dissertation will discuss how to select measurements such that the relevance of infor-

mation derived from ameasurement ismaximized. The concept of creating partial systems

is interesting in that it allows one to derive a comparable amount of relevant information,

while taking fewer measurements, generally resulting in a simpler system.

1.1 Polarized Light

Light is an electromagnetic wave and there are several quantifiable physical properties that

describe it. The most immediately useful ones are direction of propagation, field intensity

and frequency. In fact, if one only ever had to describe plane-wave radiation, i.e.,

𝐸⃗( ⃗𝑟, 𝑡) = ℜ {𝐸⃗𝑜e
+i(𝑘⃗⋅ ⃗𝑟−𝜔𝑡)} , (1.1)

then one would not need to consider anything else. 𝐸⃗𝑜 would describe the orientation and

magnitude of the electrical field, while 𝑘⃗ and 𝜔 would give the direction of propagation

and spectral information, and temporal frequency within the four dimensional universe

described by ( ⃗𝑟, 𝑡) coordinates, respectively. However, in the great majority of scenarios,

there is a plurality of plane-waves interfering together. This interference of electromagnetic

fields is what gives rise to the importance of the study of coherence and polarization.

An abundant selection of tasks are successfully analyzed with the limited case of in-

coherent polarization. A common way to describe said incoherent optical polarization is

with a set of Stokes parameters, represented in a form of a vector,

S =

[[[[[[[

[

𝑠0
𝑠1
𝑠2
𝑠3

]]]]]]]

]

=
𝜖𝑜𝑐
2

[[[[[[[

[

⟨|𝐸𝑥|
2 + |𝐸𝑦|

2⟩

⟨|𝐸𝑥|
2 − |𝐸𝑦|

2⟩

2ℜ{⟨𝐸𝑥𝐸
∗
𝑦⟩}

2ℑ{⟨𝐸𝑥𝐸
∗
𝑦⟩}

]]]]]]]

]

=

[[[[[[[

[

𝐼𝐻 + 𝐼𝑉
𝐼𝐻 − 𝐼𝑉

𝐼+45 − 𝐼−45

𝐼𝑅 − 𝐼𝐿

]]]]]]]

]

. (1.2)

In Equation 1.2, the Stokes vector is represented in the form stemming from the underlying
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electric field, as well as a set of intensity differencemeasurements. For latter, we can under-

stand the four components as: 𝑠0 is the total intensity, 𝑠1 is the prevalence of horizontally

polarized light (𝐼𝐻) over vertically polarized light (𝐼𝑉), 𝑠2 is the prevalence of linearly po-

larized light at+45∘ (𝐼+45) over linearly polarized light at−45∘ (𝐼−45) and 𝑠3 is the prevalence

of right circularly polarized light (𝐼𝑅) over left circularly polarized light (𝐼𝐿). An additional

condition,

𝑠0 ⩾ √𝑠21 + 𝑠22 + 𝑠23 , (1.3)

forces the polarization state to lie within the Poincaré sphere, which is depicted in Figure

1.1. Other polarization products derived from the original four are often useful. A

normalized set of Stokes parameters,

S̄ =
[[[[

[

̄𝑠1
̄𝑠2
̄𝑠3

]]]]

]

=
[[[[

[

𝑠1/𝑠0
𝑠2/𝑠0
𝑠3/𝑠0

]]]]

]

, (1.4)

is useful when the variation of the degree of polarization in space or time differs from the

variation of absolute intensity, 𝑠0. This is typical for a laser, where the power fluctuations do

not necessarily reflect on degree of polarization fluctuations. These normalized parameters

can be combined to form Degree of Polarization (DoP),

DoP = √ ̄𝑠21 + ̄𝑠22 + ̄𝑠23 =
√𝑠21 + 𝑠22 + 𝑠23

𝑠0
, (1.5)

Degree of Linear Polarization (DoLP),

DoLP = √ ̄𝑠21 + ̄𝑠22 =
√𝑠21 + 𝑠22

𝑠0
, (1.6)

while Degree of Circular Polarization (DoCP) is just ̄𝑠3. Another product of interest is

angle of linear polarization,

AoLP =
1
2
arctan (

𝑠2
𝑠1

) , (1.7)

which is often used in tandem with DoLP to convert from the Cartesian set of coordinates

to the more natural polar corrdinates, as dictated by the geometry of the Poincaré sphere.
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Figure 1.1: Poincaré Sphere. H denotes horizontally polarized light; V denotes vertically
polarized light; P denotes +45∘ light; M denotes −45∘ light; R denotes right circularly po-
larized light; L denotes left circularly polarized light.
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Passing through a medium or interacting with a surface has the potential to change

the polarization state of light. This effect is characterized by a Mueller matrix, which maps

the input Stokes vector into an output Stokes vector by way of a 4 × 4 real transformation

(Chipman (2009b)):

Sout = MS in, (1.8)

where

M =

[[[[[[[

[

𝑚00 𝑚01 𝑚02 𝑚03

𝑚10 𝑚11 𝑚12 𝑚13

𝑚20 𝑚21 𝑚22 𝑚23

𝑚30 𝑚31 𝑚32 𝑚33

]]]]]]]

]

. (1.9)

Given the context of Equation 1.8, the intended goal can either be to know the Stokes

vector, a property of the light, or theMueller matrix, a property of the surface that the light

reflects from or a medium that the light propagates through. The necessary procedure to

measure both are discussed in the following sections.

1.2 Stokes Polarimetry

The polarization state has to be inferred from a series of indirect measurements. In the

case of a Stokes polarimeter, these indirect measurements are made by passing light of

an unknown polarization state through a series of predetermined analyzing polarization

states or vectors:

A𝑛 = [ 𝑎0 𝑎1 𝑎2 𝑎3 ]
T

𝑛
, (1.10)

which are themselves Stokes vectors, and are subject to the same constraint posed by Equa-

tion 1.3. The detector then records intensities — projections of the unknown state onto

each of the analyzing vectors,

𝐼𝑛 = AT
𝑛 S , (1.11)

which can be equivalently rewritten as

I = WS , (1.12)
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where W is a collected matrix of all analyzing vectors,

W = [ A1 A2 ⋯ A𝑁 ]
T
. (1.13)

It is possible to reconstruct the necessary vector orientation of the polarization state and

thereby calculate the unknown state’s Stokes parameters by inverting the process (Chip-

man (2009c)) and estimating the Stokes vector to be

Ŝ = W+(I + n⃗) (1.14)

whereW+ is the pseudoinverse, or theDataReductionMatrix (DRM) and n⃗ represents ad-

ditive noise. Because additive noise is prevalent, most of this dissertation will limit itself to

considering a Gaussian noise model as a representative example. However, Chapter 6 will

consider a multiplicative noise model for purposes of optimizing overdetermined Stokes

polarimeters, where diverse analyzing vector sets are shown to provide an advantage.

1.3 Mueller Polarimetry

For Mueller matrix polarimeters, a similar procedure is followed, but now the generating

vectors

G𝑛 = [ 𝑔0 𝑔1 𝑔2 𝑔3 ]
T

𝑛
, (1.15)

are prearranged and calibrated to provide a known set of testing conditions fromwhich the

Mullermatrix can be inferred. The 𝑛th measurement of intensity in theMueller polarimeter

is

𝐼𝑛 = AT
𝑛MG𝑛. (1.16)

The constituent parts of the system that are responsible for setting G𝑛 and A𝑛 are called

Polarization State Generator(PSG) and Polarization State Analyzer(PSA), respectively. It

has been shown that Equation 1.16 can be equivalently expressed as (Chipman (2009a))

𝐼𝑛 = D ′T
𝑛M

′, (1.17)
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where D ′
𝑛 is the dyad product reshaped into a vector,

D ′
𝑛 = vec (A𝑛G

T
𝑛) = A𝑛 ⊗ G𝑛 =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

𝑎0𝑔0

𝑎0𝑔1

𝑎0𝑔2

𝑎0𝑔3

𝑎1𝑔0

𝑎1𝑔1

𝑎1𝑔2

𝑎1𝑔3

𝑎2𝑔0

𝑎2𝑔1

𝑎2𝑔2

𝑎2𝑔3

𝑎3𝑔0

𝑎3𝑔1

𝑎3𝑔2

𝑎3𝑔3

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]𝑛

, (1.18)



25

and M ′ is the Mueller matrix reshaped into a Mueller vector,

M ′ = vec (M) =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

𝑚00

𝑚01

𝑚02

𝑚03

𝑚10

𝑚11

𝑚12

𝑚13

𝑚20

𝑚21

𝑚22

𝑚23

𝑚30

𝑚31

𝑚32

𝑚33

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

. (1.19)

In the above equations, ⊗ is the Kronecker (direct) product, and vec(M) creates a col-

umn vector by reordering the matrix M into a vector in a row-by-row fashion. Equation

1.17 shows that a single measurement of the is a projection of the unknown Mueller ma-

trix onto a known basis vector in ℝ16. This procedure removes the need for considering

high-dimensional tensor manipulations. By taking a collection of such projections, the

unknown matrix – or portions of it in the case of partial systems – can be determined in a

least-squares sense. The series of 𝑁 measurements in a polarimeter is

I =

[[[[[[[

[

𝐼1
𝐼2
⋮

𝐼𝑁

]]]]]]]

]

=

[[[[[[[

[

D ′T
1M

′

D ′T
2M

′

⋮

D ′T
𝑁M

′

]]]]]]]

]

+ n⃗ = WM ′ + n⃗ . (1.20)
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where W ′ is a collected matrix of all the effective dyads,

W ′ = [ D ′
1 D

′
2 ⋯ D ′

𝑁 ]
T
. (1.21)

Similar to Stokes polarimeters, reconstruction is performed as M ′,

M̂ ′ = W ′+(I + n⃗), (1.22)

where W ′+ is the pseudoinverse of W ′ and n⃗ represents additive noise. To keep the nota-

tion as clear as possible, 𝑖 and 𝑗 will be used as matrix indices, while 𝑘 will be used as the

unfolded vector index. To go from one to the other,

𝑘 = 4𝑖 + 𝑗 (1.23)

or

𝑖 = ⌊𝑘/4⌋ , (1.24a)

𝑗 = 𝑘 − 4𝑖. (1.24b)

1.4 Matrix Pseudoinverse

Since both Stokes and Mueller polarimetry propose indirect measurements as a means to

arrive at the underlying information of need, the process of information-mapping matrix

is important for each and save for occupying a different geometrical space, the two can be

approached in the same mathematical sense. Thus, the number of measurements will be

denoted as 𝑁 and the total number of information parameters as 𝐾, where 𝐾 is 4 and 16

for Stokes and Mueller polarimeters, respectively. The measurement matrix is then 𝑁×𝐾.

Since a true matrix inverse only exists for a square matrix, the only time it is possible to be

completely unambiguous about how to combine measurements is when 𝑁 = 𝐾. In order

to handle the cases where 𝑁 ≠ 𝐾, a robust way to consistently calculate a pseudo-inverse

is needed, such that the error introduced into the reconstructed information is minimized.

One way is to use the Moore-Penrose pseudoinverse, which in polarimetry literature

is often written as

W+ = (WTW)
−1
WT = (WTW) \WT, (1.25)
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with the latter calculation usually being more numerically stable, since the inverse is not

being calculated. However, the columns of W must be linearly independent for that ex-

plicit definition to hold, which requires 𝑁 ⩾ 𝐾. Since one of the foci of this dissertation

is design of partial systems, an alternative expression for the pseudoinverse is preferred —

one that provides more computational control when handling the case when 𝑁 < 𝐾.

Instead, use SingularValueDecomposition (SVD) to decompose themeasurementma-

trix,

W = UΣVT, (1.26)

where matrices U and V are 𝑁 × 𝑁 and 𝐾 × 𝐾 real, orthonormal matrices, respectively,

and Σ is the 𝑁 × 𝐾 reduced diagonal matrix containing the min(𝑁,𝐾) singular values

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎min(𝑁,𝐾). To be completely general at this point, it is deliberate that

nothing is said about the relative magnitudes of those singular values and the rank of the

system. The pseudoinverse can then be written as

W+ = VΣ+UT, (1.27)

where Σ+ is the𝐾×𝑁 reduceddiagonalmatrix containing the inverse of the singular values.

The advantage of this method is that 𝑁 < 𝐾 cases are handled better by only keeping track

of min(𝑁,𝐾) singular values and taking the inverse of only the sufficiently large singular

values. As will become clearer later, it is also much easier to perform additional culling

of singular values and the corresponding left- and right-column matrices. This additional

control serves the purpose of enabling the understanding of the process that is required

for successful structure manipulation.
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1.5 Polarization Components

This section introduces Mueller matrices of the most common polarization elements

(Chipman (2009b)).

A linear diattenuator applies a different amount of attenuation to the intensities in two

orthogonal directions. The Mueller matrix of a linear diattenuator is

MLD(𝛼, 𝛽, 𝜃) =
1
2

[[[[[[[

[

𝛼 𝛽 cos(2𝜃) 𝛽 sin(2𝜃) 0

𝛽 cos(2𝜃) 𝛼 cos2(2𝜃) + 𝛾 sin2(2𝜃) (𝛼 − 𝛾) cos(2𝜃) sin(2𝜃) 0

𝛽 sin(2𝜃) (𝛼 − 𝛾) cos(2𝜃) sin(2𝜃) 𝛼 sin2(2𝜃) + 𝛾 cos2(2𝜃) 0

0 0 0 𝛾

]]]]]]]

]

,

(1.28)

where 𝛼 = 𝑞 + 𝑟, 𝛽 = 𝑞 − 𝑟, and 𝛾 = 2√𝑞𝑟, of which 𝑞 and 𝑟 represent the fractions of

intensity maintained for the two orthogonal polarizations of light. If 𝑞 = 1 and 𝑟 = 0 is

assumed, then the element simplifies to the ideal linear polarizer,

MLP(𝜃) =
1
2

[[[[[[[

[

1 cos(2𝜃) sin(2𝜃) 0

cos(2𝜃) cos(2𝜃)2 cos(2𝜃) sin(2𝜃) 0

sin(2𝜃) cos(2𝜃) sin(2𝜃) sin(2𝜃)2 0

0 0 0 0

]]]]]]]

]

. (1.29)

Another commonly used polarization element is a linear retarder. Instead of differ-

ently attenuating the two orthogonal polarizations of light, a different amount of phase is

accumulated for two orthogonal directions in passing through the element. The Mueller

matrix of a linear retarder is

MLR(𝛿, 𝜃) =

[[[[[[[

[

1 0 0 0

0 c2(2𝜃) + c(𝛿) s2(2𝜃) c(2𝜃) s(2𝜃) v(𝛿) − s(2𝜃) s(𝛿)

0 c(2𝜃) s(2𝜃) v(𝛿) c(𝛿) c2(2𝜃) + s2(2𝜃) c(2𝜃) s(𝛿)

0 s(2𝜃) s(𝛿) − c(2𝜃) s(𝛿) c(𝛿)

]]]]]]]

]

, (1.30)

where 𝜃 is orientation of the retarder and 𝛿 is its retardance, which is the difference between

the applied phases. It suffices to know the phase difference, since absolute phase is of very
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limited concern in Stokes polarimetry, and optics in general. To show the completematrix,

some shorthands were used: c(𝑥) = cos(𝑥), s(𝑥) = sin(𝑥) and v(𝑥) = versin(𝑥) = 1 −

cos(𝑥).

1.6 Polarimeter Types

There exist a number of different polarimeter designs, but there is no one best design for

every intendedmeasurement task. This sectionwill introduce the types of polarimeters this

dissertation will predominantly focus on and discuss each one’s strengths and weaknesses.

For the purposes of keeping the descriptions in this section concise, only the Stokes

versions of these polarimeters will be considered. The Mueller versions can be trivially

derived by mirroring the components used on the PSA side to the ones used on the PSG

side. Furthermore, the restriction of looking at a given PSA or PSG bodes well for natural

introduction of hybrid modulation in Mueller matrix polarimeters.

1.6.1 Division of Time

Perhaps themost common type of polarimeter is one of the type ofDivision of Time. This is

because the method by which the different measurements are achieved is relatively simple

and readily accessible. Provided that there exists an avenue by which to differently orient

various polarization elements, it is possible to take several measurements with different

configurations. A properly selected set of measurements is one is able to reconstruct the

underlying polarization signature with sufficient noise resilience.

If the main advantage of Division of Time polarimeters is their simplicity, the disad-

vantage is the need for some sort of mechanical or electro-optic adjustment to construct

additional measurements. This type of polarimeters intrinsically applies a stronger tempo-

ral bandwidth constraint than the constraint for the underlying detector. This is because

the adjustments take time and unless the object is completely controlled and stationary, the

non-simultaneous capture means that for a moving object the measurements from differ-

ent times will be combined, causing motion blur.

One example of a Division of Time polarimeter is the Rotating Analyzer (RA) po-
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Figure 1.2: RA Polarimeter. (Animation available in the digital version)

larimeter, the layout of which is shown in Figure 1.2. Although it can be analyzed for a

general diattenuator, it is simplified here to feature an idealized polarizer, which allows the

analyzing vector to be written as

ARA(𝜙) = ([ 1 0 0 0 ]MLP(𝜙))
T
=

[[[[[[[

[

1

cos(2𝜙)

sin(2𝜙)

0

]]]]]]]

]

. (1.31)
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Figure 1.3: RR Polarimeter. (Animation available in the digital version)

Another example of a Division of Time polarimeter is the Rotating Retarder (RR) po-

larimeter, the layout of which is shown in Figure 1.3. Again, using an ideal polarizer in

place of a linear diattenuator, allows the analyzing vector of the RR polarimeter to be writ-

ten as

ARR(𝜙, 𝜃, 𝛿) = ([ 1 0 0 0 ]MLP(𝜙)MLR(𝛿, 𝜃))
T
=

=

[[[[[[[

[

1

cos(2𝜙)(cos(2𝜃)2 + cos(𝛿)sin(2𝜃)2) + 1
2 sin(4𝜃) sin(2𝜙)(1 − cos(𝛿))

sin(2𝜙)(cos(𝛿)cos(2𝜃)2 + sin(2𝜃)2) + 1
2 sin(4𝜃) cos(2𝜙)(1 − cos(𝛿))

sin(2𝜙 − 2𝜃) sin(𝛿)

]]]]]]]

]

.

(1.32)

Note that in Equations 1.31 and 1.32, [ 1 0 0 0 ] can be thought of as the idealized

analyzing vector of the detector, which is assumed to be perfectly sensitive to 𝑠0.



32

Figure 1.4: Reproduced from Compain and Drevillon (1998). Principle of a visible–near-
infrared DOAP with an uncoated dielectric prism. The light beam is separated first into
two by a prism then into four by two Wollaston prisms (W1 and W2) oriented at 45∘ with
respect to the plane of incidence. Stokes vector S is determined from the four intensities
𝑖1–𝑖4.

1.6.2 Division of Focal Plane

A polarimeter of the type of Division of Focal Plane (DoFP) uses different segments of the

focal plane to impose a set of different test conditions to determine the incoming state of

polarization. In a way, this type of a polarimeter is a continuation of Division of Amplitude

(DoA) polarimeters that use beam splitters to split the beam into several and associate a

different analyzing vector in each hand of the system, like in the system depicted in Figure

1.4. Although themeasurements can bemade simultaneously, there is a particular amount

of bulkiness that is unavoidable and alignment might require some time to get right. Con-

ventionally DoFP can be treated as DoA system, where the different hands of the setup

intersect and use the same detector.

The class of DoFP polarimeters was enabled by advances in detector lithography pro-

cess. It is achieved by associating analyzing vectors directly with each pixel in a partic-

ular pattern. This polarimeter has been nicknamed “microgrid” because the most com-
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𝑧A (𝑚, 𝑛) =
1
2

[[[[[[[

[

1
1
2 (cos(𝑚𝜋) + cos(𝑛𝜋))
1
2 (cos(𝑚𝜋) − cos(𝑛𝜋))

0

]]]]]]]

]

+𝑠1

−𝑠1

+𝑠2

−𝑠2

+𝑠3

−𝑠3

𝜉 𝜂

𝐼(𝜉, 𝜂)

Figure 1.5: Microgrid Polarimeter. Each pixel has a polarizer at 0∘/45∘/90∘/135∘.

mon pattern of the imposed pattern of polarization components is that of a repeated 2 × 2

pixel structure, referred to as the superpixel, a diagram of which can be seen in Figure 1.7.

Each superpixel contains four pixels with applied linear polarizers that individually let in

0∘/45∘/90∘/135∘ polarized light. Mathematically, the analyzing vector of (𝑚, 𝑛) pixel can be

described as:

A(𝑚, 𝑛) =

[[[[[[[

[

1
1
2(cos(𝑚π) + cos(𝑛π))
1
2(cos(𝑚π) − cos(𝑛π))

0

]]]]]]]

]

. (1.33)

Other structured patterns exist. MSPI polarimeter uses a 3×1 superpixel, measuring 𝑠0,

𝐼𝐻 and 𝐼𝑉 (Diner et al. (2007)). Peltzer suggested a pattern that substitutes the polarizer on

one of the pixels in the 2 × 2 structure with a circular-polarization sensitive structure that

enables a microgrid polarimeter to estimate 𝑠3 as well (Peltzer et al. (2011)). A microgrid

polarimeter can be adjusted in a number of ways, but at this point the above description

suffices. In Chapter 6 it will be parametrized further.
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Figure 1.6: Microgrid and RR polarimeter. (Animation available in the digital version)

Finally, provided that the patterns of polarization selection properties are arranged pe-

riodically, DoFP can also be treated as a channeled system, which are discussed in the next

subsection.

1.6.3 Channeled

Channeled polarimetersmeasure polarization bymodulating themeasured intensity in or-

der to create polarization-dependent channels in tempporal, spatial, spectral or angular do-

mains that can be demodulated to reveal the desired polarization information. Channeled

modulations can be either temporal, spatial or spectral. However, transforming temporal

modulation into channels is less conducive because the number of temporalmeasurements

is often limited to the bareminimumneeded for reconstruction. Thus, transforming infor-

mation is unlikely to pose an advantage that would stem from linking various data together.

Spatial and spectral channels, on the other hand, can be extremely useful, since polariza-

tion information can be modulated onto two independent dimensions of the detector and

be captured simultaneously. This class of system has been introduced by Oka (Oka and
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Kato (1999)). In that system, the spatial modulation frequencies are determined by the

thicknesses of the birefringent prisms. The diagram of that system can be seen in Figure

2.5. Using notation employed later on in the dissertation, we can describe the system with

a vector of modulations carried in each element of the analyzing vector,

f A =

[[[[[[[

[

1

cos(2π𝜉𝑜𝑥)

sin(2π𝜉𝑜𝑥) cos(2π𝜂𝑜𝑦)

sin(2π𝜉𝑜𝑥) sin(2π𝜂𝑜𝑦)

]]]]]]]

]

, (1.34)

where 𝜉𝑜 and 𝜂𝑜 represent the two carrier frequencies at the center of the information bands.

1.7 Contents Summary

This dissertation is organized as follows. Chapter 2 introduces the most prevalent pieces

of prior work, on top of which this dissertation innovates. First, Chapter 3 generalizes the

concept of channeled polarimetry with the measurement matrix completely defining the

system evaluation. This introduction enables abstraction of channeled system design by

extracting the necessary components for analysis. Second, Chapter 4 proposes the con-

cept of structured decomposition in order to determine the space coverage as well as noise

resilience within the Mueller element combinations of interest. A basis is developed to al-

low for a family of efficient partial systems in terms of rank and number of measurements.

Third, Chapter 5 combines the concepts of Chapter 3 and Chapter 4 to construct chan-

neled partial Mueller matrix polarimeters, a class of previously unstudied polarimeters.

Fourth, Chapter 6 provides insight into the geometrical distributions of analyzing vectors

for overdetermined Stokes polarimeters, which is useful for systems where non-additive

noise is dominant. Finally, Chapter 7 concludes this dissertation.
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Figure 1.7: Microgrid Focal Plane Array (FPA) diagram. Each superpixel contains four
pixels with linear polarizers at 0∘/45∘/90∘/135∘. The four pixels constitute a set of four ana-
lyzing vectors that is able to reconstruct the linear state of polarization of light.
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CHAPTER 2

PRIOR WORK

Because this dissertation’s focus is on the evaluation of different types of polarimeters, it

is appropriate to introduce some of the prior efforts in the field. This chapter will go over

literature pertaining to polarimetric system evaluation, as well as various previously used

system designs. The goal of this dissertation is then to build on top of the building blocks

shown here.

2.1 System Evaluation

One way to objectively analyze the system is by considering its signal-to-noise ratio (SNR).

Because, for independent variables, standard deviations add in root-sum-square (RSS)

fashion, it also follows that for multiple reconstruction channels of information, it is com-

mon to add noise variances, rather than noise standard deviations. Sabatke applied this

evaluation to polarimeters by introducing equally weighted variance (EWV) as an evalua-

tion figure of merit for Stokes polarimeters (Sabatke et al. (2000)). The metric is a sum of

variances within each of the Stokes parameters and can be calculated directly fromW+ by

computing

EWV =
3

∑
𝑗=0

𝑁−1

∑
𝑘=0

(W+)2𝑗,𝑘 = tr ((W+)TW+) =
𝑅−1

∑
𝑗=0

1
𝜇2
𝑗
, (2.1)

where 𝑗 denotes the Stokes component, 𝑘 denotes the measurement and 𝜇𝑗 refers to the

singular value. Sabatke applied that metric to optimize a RR polarimeter, as depicted in

Figure 1.3. His results yielded a retarder with 𝛿 = 132∘ and orientations at ±15.1∘ and

±51.7∘ with respect to the polarizer’s orientation. The resulting analyzing vectors produced

an approximation to the regular tetrahedron inscribed inside the Poincaré sphere as can

be seen in Figure 2.1. While their results in Figure 2.2 show that use of optimal retardance

provides a vast improvement over using a quarterwave plate.
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Figure 2.1: Reproduced from Sabatke et al. (2000). Curves for retardances of 90∘ and 132∘,
showing an inscribed regular tetrahedron in the curve of 132∘. The tetrahedron vertices
correspond to retarder angles of ±51.7∘ and ±15.1∘.

Figure 2.2: Reproduced from Sabatke et al. (2000). Comparison of multiple measurement
techniques, showing values of the EWV figure of merit as a function of the number N of
measurements for cases (1)–(3) described in text. Missing points at 𝑁 = 4, 6, 8 in the data
for cases (1) and (2) are due to singularities in the measurement matrices. A single data
point (•) is also shown for a four-measurement procedure using a quarterwave plate.
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Another way to approach the problem is to focus on its mathematical properties and

use the tools of numerical analysis to estimate the stability of the inverse problem. This is

commonly done through calculating condition number of the matrix,

CN = ||W || ⋅ ||W+|| = |
𝜆max(W)

𝜆min(W)
| , (2.2)

which Tyo applied to Stokes polarimeters (Tyo (2002)). His results for a RR polarimeter

yielded the same retardance and orientations, agreeing with the result shown by Sabatke’s

application of EWV. The subtle point to make to differentiate the two is to stress that the

twomethods intrinsically choose different norms, which affects themetric’s space and thus

the approach of the optimization to theminimum. If the particular arrangement of a given

system cannot obtain the theoretical minimum, then it is possible and quite likely that the

best solutions dictated by EWV and by CN are going to be different. However, because the

RR polarimeter is able to achieve the theoretical minimum, the different norms agree on

the minimum as can be seen in Figure 2.3.

Although the metrics were first applied to Stokes polarimeters, the principles of eval-

uating noise resilience in the different channels or the numerical stability of a given prob-

lem are directly transferable to problems with a greater number of information channels.

In order to analyze Mueller matrix polarimeters, Twietmeyer adapted the concepts that

Sabatke and Tyo applied to Stokes polarimeters (Twietmeyer and Chipman (2008)). Her

optimization considered a dual rotating retarder (DRR) polarimeter, which can be equiv-

alently thought of as two mirrored RR polarimeters comprising the PSA and the PSG. The

results of said optimization yield retarders with retardance 𝛿 = 127∘ as can be seen in

Figure 2.4.

2.2 Channeled Systems

Thefirst examples of added polarization sensitivity were achieved through combiningmul-

tiple temporal measurements. In effect, this technique shares of temporal bandwidth be-

tween time and polarization and only for perfectly static scenes is the motion blur negli-

gible. However, when the scene’s temporal content is restricting for a DoT polarimeter, a
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Figure 2.3: Reproduced from Tyo (2002). Optimal condition number for four-
measurement rotating compensator systems. There is a clear optimum at 𝛿 = 0.3661𝜆.
[Tyo] obtained the optimization by minimizing the 𝐿2 condition number of the system
matrices, but achieved the same result as Sabatke et al. (2000) where the equal-weighted
variance–equivalent to the Frobenius condition number of the system matrices–was min-
imized.

Figure 2.4: Reproduced from Twietmeyer and Chipman (2008). Base 10 log of the con-
dition number as a function of waveplate retardance [𝛿] for the DRR polarimeter. The
optimum solution is a retardance of 127∘; condition number increases significantly with
distance from the optimum solution.
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different approach is needed. Much like temporal bandwidth being used to share temporal

and polarization information, other domains can be shared as well, namely, spectral and

spatial. The advantage of using those domains for purposes of adding polarization sen-

sitivity is that they can both be mapped to the spatial extent of a detector, thus enabling

one-snapshot systems.

2.2.1 Stokes Polarimeters

Channeled polarimeters were introduced by Oka and Kato (1999), with the proposed sys-

tem’s layout shown in Figure 2.5. In their treatment, they were able to define and construct

a system that measures a polarization-dependent spectrum as seen in Figure 2.6,

𝑃(𝜎) =
𝑠0(𝜎)
2

+
𝑠1(𝜎)
2

cos(2π𝐿2𝜎 + Φ2(𝜎))+

+
|𝑠23(𝜎)|

4
cos(2π(𝐿1 − 𝐿2)𝜎 + Φ1(𝜎) + Φ2(𝜎) + arg(𝑠23(𝜎)))+

−
|𝑠23(𝜎)|

4
cos(2π(𝐿1 + 𝐿2)𝜎 + Φ1(𝜎) + Φ2(𝜎) + arg(𝑠23(𝜎))) (2.3)

where 𝑠23(𝜎) = 𝑠2(𝜎) − 𝑖𝑠3(𝜎), Φ1(𝜎) and Φ2(𝜎) are total phase terms of retarders denoted

R1 and R2, and 𝐿𝑖 are the OPD distances stemming from modulation frequencies of the

respective retarders. By taking the Fourier transform of the modulated spectrum repre-

sented in terms of wavenumber, channels emerge in the optical path difference (OPD):

𝐶(ℎ) =
1
2
𝐴0(ℎ) +

1
4
𝐴1(ℎ − 𝐿2) +

1
4
𝐴∗

1(−ℎ − 𝐿2)+

+
1
8
𝐴2(ℎ − (𝐿1 − 𝐿2)) +

1
8
𝐴∗

2(−ℎ − (𝐿1 − 𝐿2))+

−
1
8
𝐴3(ℎ − (𝐿1 + 𝐿2)) −

1
8
𝐴∗

3(−ℎ − (𝐿1 + 𝐿2)), (2.4)

where ℎ represents OPD. The Stokes parameters are contained within:

𝐴0(ℎ) = F−1 {𝑠0} , (2.5a)

𝐴1(ℎ) = F−1 {𝑠1(𝜎) exp(iΦ2(𝜎))} , (2.5b)

𝐴2(ℎ) = F−1 {𝑠23(𝜎) exp(i(Φ1(𝜎) − Φ2(𝜎)))} , (2.5c)

𝐴3(ℎ) = F−1 {𝑠23(𝜎) exp(i(Φ1(𝜎) + Φ2(𝜎)))} , (2.5d)



42

Figure 2.5: Reproduced from Oka and Kato (1999). Schematic of the spectroscopic po-
larimeter with a channeled spectrum.

Figure 2.6: Reproduced from Oka and Kato (1999). Measured channeled spectrum 𝑃(𝜎).

and can be found by taking the Fourier transforms of each of the channels resulting in the

estimates shown in Figure 2.8. Note that even though there are seven channels, only three

(first, second and fourth in Equation 2.4) of them are being used to produce the estimates.

Oka has also built a channeled polarimeter that uses birefringent prism pairs to encode

polarization into 𝑥- and 𝑦-axes of the detector’s spatial domain (Oka and Kaneko (2003)).

The layout of this system can be seen in Figures 2.9 and 2.10. The typical intensity can be

seen in Figure 2.11, which clearly shows the imposed modulation pattern, which results
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Figure 2.7: Reproduced fromOka andKato (1999). Magnitude of autocorrelation function
𝐶(ℎ). The seven components included in 𝐶(ℎ) are separated over the ℎ axis.

Figure 2.8: Reproduced from Oka and Kato (1999). Normalized Stokes parameters. Solid
and dashed curves show the experimentally obtained and theoretically calculated values,
respectively.
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in the 3 × 3 arrangement of channels seen in Figure 2.12. Although the channels occupy a

dffierent domain, they are exceptionally similar to the system of Oka and Kato (1999):

̃𝐼(𝑓𝑥, 𝑓𝑦) =
1
2
𝐴0(𝑓𝑥, 𝑓𝑦) +

1
4
𝐴1(𝑓𝑥 − 𝑈, 𝑓𝑦) +

1
4
𝐴∗

1(−𝑓𝑥 − 𝑈, −𝑓𝑦)+

+
1
8
𝐴23(𝑓𝑥 − 𝑈, 𝑓𝑦 + 𝑈) +

1
8
𝐴∗

23(−𝑓𝑥 − 𝑈, −𝑓𝑦 + 𝑈)+

−
1
8
𝐴∗

23(𝑓𝑥 − 𝑈, 𝑓𝑦 − 𝑈) −
1
8
𝐴23(−𝑓𝑥 − 𝑈, −𝑓𝑦 − 𝑈). (2.6)

The principle by which the Stokes estimates are produced remain the same. Once again,

only three terms in Equation 2.6 are used to estimate the Stokes parameters, a feature that

is common to prior channeled system treatments.
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Figure 2.9: Reproduced fromOka andKaneko (2003). Schematic of the imaging polarime-
ter using birefringent wedge prisms.
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Figure 2.10: Reproduced from Oka and Kaneko (2003). Configuration of the block of the
polarimetric devices.

Figure 2.11: Reproduced from Oka and Kaneko (2003). Intensity pattern with mesh-like
fringes.
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Figure 2.12: Reproduced from Oka and Kaneko (2003). Power spectrum of the intensity
pattern.

Figure 2.13: Reproduced from Hagen et al. (2007). Basic layout of the snapshot Mueller
matrix spectropolarimeter. Retarders 1 and 4 have their fast axes oriented at 45∘, retarders
2 and 3 at 0∘. Polarizers 1 and 2 both have their transmission axes oriented at 0∘.

Figure 2.14: Reproduced from Hagen et al. (2007). Fourier domain, 37 channels 𝐶𝑛.
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2.2.2 Mueller Matrix Polarimeters

Oka’s designs for Stokes polarimeters were followed by naturally extended Mueller matrix

polarimeter designs, including those of Hagen et al. (2007), Dubreuil et al. (2007) and

Kudenov et al. (2012). The polarimeter presented by Hagen et al. (2007) is an extension of

the polarimeter developed by Oka and Kato (1999). The PSA and the PSG follow exactly

the same principle of using high order retarders to separate information into channels.

ThePSA inHagen’s polarimeter features retarders that are five times thicker than their PSG

counterparts, as can be seen in Figure 2.13. Themeasured intensity of Hagen’s polarimeter

is

𝐼(𝜎) = 𝑚00

+ 𝑚01 cos(𝑐1𝜎)

+ 𝑚02 sin(𝑐1𝜎) sin(𝑐2𝜎)

+ 𝑚03 sin(𝑐1𝜎) cos(𝑐2𝜎)

+ 𝑚10 cos(𝑐4𝜎)

+ 𝑚11 cos(𝑐1𝜎) cos(𝑐4𝜎)

+ 𝑚12 sin(𝑐1𝜎) sin(𝑐2𝜎) cos(𝑐4𝜎)

+ 𝑚13 sin(𝑐1𝜎) cos(𝑐2𝜎) cos(𝑐4𝜎)

+ 𝑚20 sin(𝑐3𝜎) sin(𝑐4𝜎)

+ 𝑚21 cos(𝑐1𝜎) sin(𝑐3𝜎) sin(𝑐4𝜎)

+ 𝑚22 sin(𝑐1𝜎) sin(𝑐2𝜎) sin(𝑐3𝜎) sin(𝑐4𝜎)

+ 𝑚23 sin(𝑐1𝜎) cos(𝑐2𝜎) sin(𝑐3𝜎) sin(𝑐4𝜎)

− 𝑚30 cos(𝑐3𝜎) sin(𝑐4𝜎)

− 𝑚31 cos(𝑐1𝜎) cos(𝑐3𝜎) sin(𝑐4𝜎)

− 𝑚32 sin(𝑐1𝜎) sin(𝑐2𝜎) cos(𝑐3𝜎) sin(𝑐4𝜎)

− 𝑚33 sin(𝑐1𝜎) cos(𝑐2𝜎) cos(𝑐3𝜎) sin(𝑐4𝜎), (2.7)
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where the argument can be expanded into

𝑐𝑖𝜎 = 2π𝜏𝑖𝜎 = 2π𝑑𝑜𝑑𝑖𝜆𝑜𝐵𝜎 ⟶ 𝜏𝑖 = 𝑑𝑜𝑑𝑖𝜆𝑜𝐵, (2.8)

where 𝜏 is OPD, 𝑑𝑜 is the global retarder factor, 𝑑𝑖 is the individual retarder factor, 𝜆𝑜 is

the center wavelength of the retarder and 𝐵 is birefringence (index difference). Figure 2.14

shows the relative magnitudes of each information channel in the Fourier-domain, while

Table 2.1 defines the contents of each channel and Table 2.2 proposes a reconstruction

routine for the Mueller elements. From the reconstruction, it is readily seen that only 21

of the 37 channels are being used to reconstruct the underlying polarization information.

Figure 2.15 shows the simulation result for the snapshot channeled spectropolarimeter in

question.

Another similar systemwas proposed byDubreuil et al. (2007), which uses the effective

d = ( 1 1 5 5 ) instead of Hagen’s d = ( 1 2 5 10 ). Its setup can be seen in Figure

2.16, while its intensity output is shown in Figure 2.17. This system will not be inspected

in greater detail here because of its similarities to Hagen’s polarimeter, but its performance

will be commented on in Chapter 3.

The last channeled system of interest for this dissertation is the one developed by Ku-

denov et al. (2012). It does to the system of Oka and Kaneko (2003) what Hagen did to the

system of Oka and Kato (1999). The spatial modulation is now done in the PSG, as well

as the PSA with analyzer’s frequencies being double that of the generator’s, as depicted in
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Figure 2.18. The resulting polarization-modulated intensity can be expressed as

𝐼(𝑥, 𝑦) =|𝐴1| cos[𝜅𝛼(1𝑥 + 3𝑦) + 𝐴𝑎
1]

+|𝐴2| cos[𝜅𝛼(3𝑥 − 3𝑦) + 𝐴𝑎
2]

+|𝐴3| cos[𝜅𝛼(1𝑥 + 1𝑦) + 𝐴𝑎
3]

+|𝐴4| cos[𝜅𝛼(3𝑥 − 1𝑦) + 𝐴𝑎
4]

+|𝐴5| cos[𝜅𝛼(1𝑥 − 1𝑦) + 𝐴𝑎
5]

+|𝐴6| cos[𝜅𝛼(3𝑥 + 1𝑦) + 𝐴𝑎
6]

+|𝐴7| cos[𝜅𝛼(1𝑥 − 3𝑦) + 𝐴𝑎
7]

+|𝐴8| cos[𝜅𝛼(3𝑥 + 3𝑦) + 𝐴𝑎
8]

+|𝐴9| cos[𝜅𝛼(1𝑥 + 2𝑦) + 𝐴𝑎
9]

+|𝐴10| cos[𝜅𝛼(3𝑥 − 2𝑦) + 𝐴𝑎
10]

+|𝐴11| cos[𝜅𝛼(1𝑥 − 2𝑦) + 𝐴𝑎
11]

+|𝐴12| cos[𝜅𝛼(3𝑥 + 2𝑦) + 𝐴𝑎
12]

+|𝐴13| cos[𝜅𝛼(2𝑥 − 2𝑦) + 𝐴𝑎
13]

+|𝐴14| cos[𝜅𝛼(2𝑥 + 2𝑦) + 𝐴𝑎
14]

+|𝐴15| cos[𝜅𝛼(1𝑥) + 𝐴𝑎
15]

+|𝐴16| cos[𝜅𝛼(2𝑦) + 𝐴𝑎
16] + 𝐴17, (2.9)

where 𝜅𝛼 are the globalmodulation coefficients and |𝐴𝑖|s and𝐴𝑎
𝑖 s correspond to themagni-

tudes and phases of the channels shown in Figure 2.19, respectively. The channel contents

are shown Table 2.3 and Kudenov’s proposed reconstruction is shown in Table 2.4. As

with other systems, not all channels containing a given Mueller matrix element are used

for reconstruction of that element. The simulation of Kudenov’s polarimeter can be seen in

Figure 2.20, which clearly shows the reduced spatial resolution within the reconstruction

due to sharing of that domain with the polarization information.
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Table 2.1: Reproduced from Hagen et al. (2007). Fourier-Domain channels 𝐶𝑛 encoding
the Mueller matrix elements for the 1-2-5-10 configuration. The OPD numbers listed for
the channels are given in terms of multiples of OPD1(𝜎0), the mean OPD of the thinnest
retarder.

𝐶𝑛 Channel Content ×(64/𝑆𝑖𝑛,0)
0 16𝑚00

±1 8𝑚01 + 4𝑚02 ± 4𝑖𝑚03
±2 −𝑚22 ± 𝑖𝑚23 ∓ 𝑖𝑚32 − 𝑚33
±3 −4𝑚02 ∓ 4𝑖𝑚03
±4 2𝑚21 + 𝑚22 ∓ 𝑖𝑚23 ± 2𝑖𝑚31 ± 𝑖𝑚32 + 𝑚33
±5 4𝑚20 ± 4𝑖𝑚30
±6 2𝑚21 + 𝑚22 ± 1𝑚23 ± 2𝑖𝑚31 ± 𝑖𝑚32 − 𝑚33
±7 −2𝑚12 ± 2𝑖𝑚13
±8 −𝑚22 ∓ 𝑖𝑚23 ∓ 𝑖𝑚32 + 𝑚33
±9 4𝑚11 + 2𝑚12 ∓ 2𝑖𝑚13
±10 8𝑚10
±11 4𝑚11 + 2𝑚12 ± 2𝑖𝑚13
±12 𝑚22 ∓ 𝑖𝑚23 ∓ 𝑖𝑚32 − 𝑚33
±13 −2𝑚12 ∓ 2𝑖𝑚13
±14 −2𝑚21 − 𝑚22 ± 𝑖𝑚23 ± 2𝑖𝑚31 + 𝑖𝑚32 + 𝑚33
±15 −4𝑚20 ± 4𝑖𝑚30
±16 −2𝑚21 − 𝑚22 ∓ 𝑖𝑚23 ± 2𝑖𝑚31 ± 𝑖𝑚32 − 𝑚33
±18 𝑚22 ± 𝑖𝑚23 ∓ 𝑖𝑚32 + 𝑚33

Table 2.2: Reproduced from Hagen et al. (2007). Spectrally resolved Mueller matrix el-
ements 𝑚𝑖𝑗(𝜎) obtained by operating on spectral- domain Channels 𝑐𝑛. These are given
in terms of the Fourier-domain channels by 𝑐𝑛 = [1/𝑠in,0(𝜎)]F

−1 {𝑤(OPD)𝐶𝑛(OPD)}, for
windowing function 𝑤.

𝑚𝑖𝑗(𝜎) 𝑚𝑖𝑗(𝜎)
𝑚00(𝜎) = 4𝑐0 𝑚20(𝜎) = 16ℜ[𝑐5]
𝑚01(𝜎) = 8(𝑐1 + 𝑐3) 𝑚21(𝜎) = 32ℜ[𝑐2 + 𝑐4]
𝑚02(𝜎) = −16ℜ[𝑐3] 𝑚22(𝜎) = −32ℜ[𝑐2 + 𝑐8]
𝑚03(𝜎) = 16ℜ[𝑐1] 𝑚23(𝜎) = 32ℑ[𝑐2 − 𝑐8]
𝑚10(𝜎) = 8𝑐10 𝑚30(𝜎) = 16ℜ[𝑐5]
𝑚11(𝜎) = 16(𝑐7 + 𝑐9) 𝑚31(𝜎) = 16ℑ[𝑐2 + 𝑐4 + 𝑐6 + 𝑐8]
𝑚12(𝜎) = −32ℜ[𝑐7] 𝑚32(𝜎) = −32ℑ[𝑐2 + 𝑐8]
𝑚13(𝜎) = 32ℑ[𝑐7] 𝑚33(𝜎) = 32ℜ[𝑐8 − 𝑐2]



51

(a) The Fourier-domain representation of the measured spectrum.

(b) The retardance 𝛿(𝜎) and orientation angle 𝜃(𝜎) of the sample reconstructed from the measured
Mueller matrix elements. The error bars are obtained from the standard deviation of data taken
over 100 instances of Poisson noise.

Figure 2.15: Reproduced from Hagen et al. (2007). Simulated measurement of an achro-
matic polymer retarder using a snapshot Mueller matrix polarimeter.
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Figure 2.16: Reproduced from Dubreuil et al. (2007). Snapshot Mueller polarimeter for
the configuration ( 𝑒 𝑒 5𝑒 5𝑒 ).

Figure 2.17: Reproduced from Dubreuil et al. (2007). Theoretical (a) and experimental (b)
signals given by the snapshot Mueller polarimeter. The experimental signal is split into 5
zones for which the instantaneous frequency will be studied.
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Figure 2.18: Reproduced from Kudenov et al. (2012). SIMMP optical configuration. PGs
𝐿1, 𝐿2, 𝐿5 and 𝐿6 shear the beam along 𝑥 while 𝐿3, 𝐿4, 𝐿7 and 𝐿8 shear along 𝑦. P1 and
P2 are linear polarizers at 45∘ while two quarter wave-plates, QWP1 and QWP2, have fast
axes oriented at 45∘ and 0∘, respectively. All PGs have identical grating periods Λ and the
generator’s and analyzer’s PGs are separated by a distance 𝑡 and 2𝑡, respectively.
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Table 2.3: Reproduced from Kudenov et al. (2012). Coefficient definitions for the intensity
pattern. 𝐶𝑘,𝑐𝑎𝑙 = 𝐴𝑟𝑘(𝐶𝑠𝑘/𝐶𝑟𝑘)(𝐶𝑟17/𝐶𝑠17).

𝐴𝑘 = Coefficient ×(𝑆0,𝑖𝑛(𝑥, 𝑦)/16)
𝐴1 = −𝑚12 − 𝑚21 − 𝑖𝑚11 + 𝑖𝑚22 + 2𝑚31 + 2𝑖𝑚32
𝐴2 = −𝑚12 + 𝑚21 + 𝑖𝑚11 + 𝑖𝑚22
𝐴3 = −𝑚12 + 𝑚21 − 𝑖𝑚11 + 𝑖𝑚22 − 2𝑚31 − 2𝑖𝑚32 − 4𝑚02 + 4𝑖𝑚01
𝐴4 = −𝑚12 − 𝑚21 − 𝑖𝑚11 + 𝑖𝑚22
𝐴5 = −𝑚12 − 𝑚21 − 𝑖𝑚11 + 𝑖𝑚22 − 2𝑚31 + 2𝑖𝑚32 − 4𝑚02 + 4𝑖𝑚01
𝐴6 = −𝑚12 + 𝑚21 + 𝑖𝑚11 + 𝑖𝑚22
𝐴7 = −𝑚12 + 𝑚21 + 𝑖𝑚11 + 𝑖𝑚22 + 2𝑚31 + 2𝑖𝑚32
𝐴8 = −𝑚12 − 𝑚21 − 𝑖𝑚11 + 𝑖𝑚22
𝐴9 = −2𝑚23 − 2𝑖𝑚13 − 4𝑚33
𝐴10 = −2𝑚23 + 2𝑖𝑚13
𝐴11 = −2𝑚23 − 2𝑖𝑚13 + 4𝑚33
𝐴12 = 2𝑚23 + 2𝑖𝑚13
𝐴13 = 4𝑚10 − 4𝑖𝑚20
𝐴14 = 4𝑚10 − 4𝑖𝑚20
𝐴15 = 8𝑖𝑚03
𝐴16 = 8𝑖𝑚30
𝐴17 = 8𝑚00

Table 2.4: Reproduced from Kudenov et al. (2012). Mueller Matrix Solutions from the
Fourier domain.

𝑚𝑖𝑗 = Channel Combinations ×|𝐶𝑟17|/|𝐶𝑠17|
𝑚00 = |𝐶𝑠17|/|𝐶𝑟17|
𝑚01 = −2ℑ[𝐴𝑟2𝐶𝑠2/𝐶𝑟2 − 𝐴𝑟3𝐶𝑠3/𝐶𝑟3 − 𝐴𝑟5𝐶𝑠5/𝐶𝑟5 + 𝐴𝑟8𝐶𝑠8/𝐶𝑟8]
𝑚02 = −2ℜ[𝐴𝑟1𝐶𝑠1/𝐶𝑟1 + 𝐴𝑟3𝐶𝑠3/𝐶𝑟3 + 𝐴𝑟5𝐶𝑠5/𝐶𝑟5 + 𝐴𝑟7𝐶𝑠7/𝐶𝑟7] − 𝑚23/2
𝑚03 = −2ℑ[𝐴𝑟15𝐶𝑠15/𝐶𝑟15]
𝑚10 = 4ℜ[𝐴𝑟13𝐶𝑠13/𝐶𝑟13 + 𝐴𝑟14𝐶𝑠14/𝐶𝑟13]
𝑚11 = 4ℑ[𝐴𝑟2𝐶𝑠2/𝐶𝑟2 − 𝐴𝑟4𝐶𝑠4/𝐶𝑟4 + 𝐴𝑟6𝐶𝑠6/𝐶𝑟6 − 𝐴𝑟8𝐶𝑠8/𝐶𝑟8]
𝑚12 = −4ℜ[𝐴𝑟2𝐶𝑠2/𝐶𝑟2 + 𝐴𝑟4𝐶𝑠4/𝐶𝑟4 + 𝐴𝑟6𝐶𝑠6/𝐶𝑟6 − 𝐴𝑟8𝐶𝑠8/𝐶𝑟8]
𝑚13 = −4ℑ[𝐴𝑟9𝐶𝑠9/𝐶𝑟9 + 𝐴𝑟11𝐶𝑠11/𝐶𝑟11]
𝑚20 = −2ℑ[𝐴𝑟13𝐶𝑠13/𝐶𝑟13 + 𝐴𝑟14𝐶𝑠14/𝐶𝑟14]
𝑚21 = −4ℜ[𝐴𝑟1𝐶𝑠1/𝐶𝑟1 − 𝐴𝑟3𝐶𝑠3/𝐶𝑟3 + 𝐴𝑟5𝐶𝑠5/𝐶𝑟5 − 𝐴𝑟7𝐶𝑠7/𝐶𝑟7]
𝑚22 = 4ℑ[𝐴𝑟2𝐶𝑠2/𝐶𝑟2 + 𝐴𝑟4𝐶𝑠4/𝐶𝑟4 + 𝐴𝑟6𝐶𝑠6/𝐶𝑟6 + 𝐴𝑟8𝐶𝑠8/𝐶𝑟8]
𝑚23 = 4ℜ[𝐴𝑟10𝐶𝑠10/𝐶𝑟10 + 𝐴𝑟12𝐶𝑠12/𝐶𝑟12]
𝑚30 = 2ℑ[𝐴𝑟16𝐶𝑠16/𝐶𝑟16]
𝑚31 = 4ℜ[𝐴𝑟1𝐶𝑠1/𝐶𝑟1 − 𝐴𝑟4𝐶𝑠4/𝐶𝑟4 − 𝐴𝑟6𝐶𝑠6/𝐶𝑟6 + 𝐴𝑟7𝐶𝑠7/𝐶𝑟7]
𝑚32 = −4ℑ[𝐴𝑟1𝐶𝑠1/𝐶𝑟1 − 𝐴𝑟4𝐶𝑠4/𝐶𝑟4 − 𝐴𝑟6𝐶𝑠6/𝐶𝑟6 + 𝐴𝑟7𝐶𝑠7/𝐶𝑟7]
𝑚33 = −2ℜ[𝐴𝑟9𝐶𝑠9/𝐶𝑟9 − 𝐴𝑟11𝐶𝑠11/𝐶𝑟11]
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Figure 2.19: Reproduced fromKudenov et al. (2012). Fourier domain of a channeled image
obtained from the SIMMP. Channel numbers correspond to the 𝑘 subscripts of the 𝐴𝑘
coefficients per Table 2.3. Only the non-conjugated channels are numbered for clarity.
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Figure 2.20: Reproduced from Kudenov et al. (2012). Simulated input (left) and measured
(right) Mueller matrix of the quarter-wave vortex retarder.
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2.3 Partial Systems

Although literature regarding partial polarimeters might seem limited, there are a number

of developed applications that construct a partial system without necessarily treating it as

such. Directly from Equation 1.2, it follows that if one is to measure 𝐼𝐻 and 𝐼𝑉, a partial

system that is able to reconstruct 𝑠0 and 𝑠1 is created. Jacques’s Pol measurement, for ex-

ample, can be thought of as a primitive partial Stokes Vector Polarimeter (pSVP) (Jacques

et al. (1999)),

Pol =
𝐼∥ − 𝐼⟂
𝐼∥ + 𝐼⟂

=
𝑠1 cos(𝛼) + 𝑠2 sin(𝛼)

𝑠0
, (2.10)

where 𝛼 defines which direction is parallel and which is perpendicular with respect to

the measurement. The DoFP discussed in Chapter 1 is another extension of the princi-

ple of taking a selection of canonical measurements to produce the estimate. Treating a

mircogrid polarimeter as a conventional polarimeter rather than a channeled one is equiv-

alent to reconstructing three information channels from four measurements, thereby con-

stituting a partial measurement as well.

Developing a partial Stokes polarimeter does not require an overly elaborate con-

sideration because there are relatively few degrees of freedom to be measured and thus,

considered. Goudail and his co-workers have focused their attention on making single-

measurement systems in order to enhance contrast for a given scene (Goudail and Tyo

(2011); Anna et al. (2011a,b)). This dissertation, however, deals with the broader topic

of making partial Mueller Matrix polarimeters (pMMPs) that were recently introduced

(Hoover and Tyo (2007); Tyo et al. (2010); Alenin and Tyo (2012); Vaughn et al. (2012b)).

Hoover and Tyo (2007) created various textures on ABS polymer coupons by deliv-

ering different levels of laser fluences. Performing principal component analysis (PCA),

authors deduced the following three polarization channels as being the most important

for discrimination:

𝑐1 = −𝑚11 + 𝑚22 + 𝑚33, (2.11a)

𝑐2 = −0.3(𝑚01 + 𝑚10) − 0.6(𝑚11 − 𝑚22) − 𝑚33, (2.11b)

𝑐3 = −𝑚01 − 𝑚10 − 0.5(𝑚22 − 𝑚33), (2.11c)
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which grouped the different objects into clusters shown in Figure 2.21. Figure 2.23 shows

the corresponding non-linear curve fitting. The reduced space was shown to be sufficient

in separating the objects, which bodes well for pMMPs.

Finally, Tyo’s subsequent publication has introduced the concept of pMMPs (Tyo et al.

(2010)). By relying onChipman’s formalism (Chipman (2009b)), a set of canonical pMMP

was identified. By properly selecting measurement conditions, a four-block pMMP was

developed that is able to measure the following channels:

𝑐1 = 𝑚00, (2.12a)

𝑐2 = 𝑚𝑖0, (2.12b)

𝑐3 = 𝑚0𝑗, (2.12c)

𝑐4 = 𝑚𝑖𝑗, (2.12d)

where 0 < 𝑖, 𝑗 ≤ 3. The premise of that paper is summarized well in Figure 2.22. Chapter

4 will show that the achieved space coverage by Tyo et al. (2010) is fairly sparse and will

develop a much broader set of systems in the process.
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Figure 2.21: Reproduced from Hoover and Tyo (2007). Cluster diagram of data due to a
family of textures on a white-gloss paint projected onto three principalcomponent chan-
nels. The dashed line indicates where data around the specular peak of the control sample
is expected to fall.

Figure 2.22: Reproduced from Tyo et al. (2010). These two one-dimensional scene spaces
have the same angle with respect to the sensor space. However, the space in (a) projects
into a direction in sensor space with poor SNR and the scene space in (b) projects into a
direction in sensor space with good SNR.
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Figure 2.23: Reproduced fromHoover andTyo (2007). Nonlinear fitting results. (a)Three-
dimensional polynomial estimates overlaid on the data projections of Figure 2.21. (b)
Control-sample data and estimate projections onto each of the principal-component chan-
nels as functions of the probe angle.
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CHAPTER 3

GENERALIZED CHANNELED POLARIMETRY

The concepts of SNR optimality have been explored for conventional active and passive

polarimeters using the Data Reduction Matrix (DRM) formalism (Chipman (2009a); Tyo

(2002); Twietmeyer and Chipman (2008)), but they have not been applied to the class of

channeled polarimeters that have emerged recently. Channeled or modulated polarime-

ters, the polarization states that define the measurement either spatially, temporally, spec-

trally, (LaCasse et al. (2011a)) or more than one simultaneously (LaCasse et al. (2011b)).

Every one of those harmonic modulations will split the information in the correspond-

ing Fourier domains, creating weighted copies of the Fourier transform of the data at the

modulation’s carrier frequencies. These multiplexed copies are called channels. Oka and

his coworkers (Oka and Kato (1999); Oka and Kaneko (2003); Okabe et al. (2007)) have

popularized the design concepts that go into making a channeled system, which were then

further developed by Hagen et al. (2007), Kudenov et al. (2007, 2012) and others. This

chapter introduces a toolkit to describe, analyze and optimize such systems, and investi-

gates channeled polarimeters from the literature to show how they can be improved.

3.1 Introduction

There has been a number of proposed channeled systems in the past (Oka andKato (1999);

Oka and Kaneko (2003); Okabe et al. (2007); Kudenov et al. (2007); Hagen et al. (2007);

Kudenov et al. (2012)) whose designs and corresponding reconstruction techniques were

derived by hand. Lemaillet et al. (2008) proposed a way to optimize a spectrally channeled

system by introducing linear algebraic inversions to map the information. Their effort,

however, focused on one kind of system and stopped short of providing a complete solution

to deal with any channeled polarimeter. This chapter describes the generalized methods

that can be used to model channeled information mapping and guide the reconstruction.
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A great advantage of a spatially or a spectrally channeled systems is the possibility of

constructing a snapshot polarimeter. This reduces the temporal bandwidth penalties and

removes the need for complex image registration that would be required in a temporally

modulated system. In terms of object bandwidth, a snapshot channeled system favors tem-

poral resolution at the cost of introducing stricter band limit constraints in other domains.

A common2DFPAdetectorwill be considered, which enables access to up to twomod-

ulation types to be mapped onto the two orthogonal axes. In addition to having no mod-

ulation, either spatial and spectral modulations cane be mapped into either 𝑥- or 𝑦-axes

of the detector. Although the methods introduced here are general enough to be used

with any channel structure on any orthogonal coordinate system, this chapter will focus

on Cartesian coordinates, implying that the channels lie on a rectangular grid.

For the sake of completeness, temporal modulation is also considered. Such a system

will obviously lose its snapshot nature, but it is conceivable that some middle ground solu-

tion could be found, whereby a very limited number of temporal measurements are made

with intent of balancing the resolution loss among all possible modulation dimensions

(LaCasse et al. (2011b,a)). Thus, a conventional detector will allow to split polarization

information into a three dimensional structure of channels that can be manipulated to re-

construct the polarization information. When presented with a small number of temporal

measurements, the resultant temporal frequency channels may contain as few as one data

point. In those cases it may be prohibitive and unnecessary to work with the data in the

Fourier domain; instead measurements can be used as information “channels” themselves

with a clear benefit that they will contain modulation information more compactly.

3.1.1 Sinusoidal Channel Splitting

For typical channeled systems, 𝑎𝑖 and𝑔𝑗 in Equations 1.10 and 1.15 are composed of a num-

ber of periodic functions. Every sinusoidal modulation splits the element information in

𝑚𝑖𝑗 into two channels at certain frequencies within the Fourier domain of the modulation.

For the availablemodulation dimensions of𝑥, 𝑦, 𝜎 (wavenumber) and 𝑡, the corresponding

frequency dimensions will be called 𝜉, 𝜂 , 𝜏 (optical path difference (OPD)) and 𝜈. Only the

relevant equations for the 𝑥–𝜉 pair will be shown, since all others can be obtained trivially.
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The following Fourier transform pairs are well known (Alenin and Tyo (2014)):

1(𝑥) ⟷ 𝛿(𝜉), (3.1a)

cos(2π𝜉𝑖𝑥) ⟷ 1
2[𝛿(𝜉 + 𝜉𝑖) + 𝛿(𝜉 − 𝜉𝑖)], (3.1b)

sin(2π𝜉𝑖𝑥) ⟷ i
2[𝛿(𝜉 + 𝜉𝑖) − 𝛿(𝜉 − 𝜉𝑖)]. (3.1c)

In the general case, the modulation functions have multiple modulating frequencies as

𝑓𝑀(𝑥) = ∏𝑀
𝑚=1

cos
sin(2π𝜉𝑚𝑥), (3.2)

where cos
sin denotes that the function could either be a cosine or a sine. When 𝑀 sinusoids

are multiplied together, a 2𝑀 × 2𝑀 matrix can be created that will describe all the possible

combinations of either ±𝜉𝑚 of the 𝛿-function, as well as distinguish between a cosine and

a sine. Each sub-function will have a phasor that, when multiplied together, will yield the

net phase of the particular channel-weight. This “look-up-table” can be created by means

of an outer product of two matrices:

F𝑀 ≡ [ f1 f2 ⋯ f𝑀 ] , (3.3a)

O𝑀 ≡ [ o1 o2 ⋯ o𝑀 ] , (3.3b)

where 𝑓𝑚,𝑘 is 0 for cosine and 1 for sine, while 𝑜𝑚,ℓ is −1 for −𝜉𝑖 and +1 for +𝜉𝑖. F𝑀 and

O𝑀 are both 2𝑀 × 𝑀 in size. The Frequency Phase Matrix (FPM) is then,

P𝑀 ≡
1
2𝑀 exp [

−iπ
2

(F𝑀O
T
𝑀)] . (3.4)

Cases of 𝑀 = 1,… , 5 are shown in Figure 3.1. Given any modulation, the rows can be

extracted from an appropriately-sized FPM and the coefficients placed at the contributing

frequencies, thereby creating qT. Note that this vector matches the uniform sampling of

the underlying grid and has 2𝜉𝑚𝑎𝑥 + 1 elements.

For some polarimeters the induced modulation may be more complicated than the

one prescribed by Equation 3.2. For example, Diner et al. (2007) describe a system that

employs components applying Bessel function modulation. In order to treat those mod-

ulation schemes, an addition of modulating functions can be allowed, effectively treating
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Figure 3.1: First five FPMs. The circles represent the polar form of the coefficients: = +1,
= +i, = −1, = −i. Each FPM has an omitted weight of 2−𝑀. If 𝜉𝑖 = 𝜉𝑗, then

𝛿(𝜉 ±⋯+ 𝜉𝑖 − 𝜉𝑗 ±⋯) and 𝛿(𝜉 ±⋯− 𝜉𝑖 + 𝜉𝑗 ±⋯) will combine and change the magnitude
of the impulse at that frequency. The side brackets denoted with 2/4/8/16/32 can be used
as crop guidelines for obtaining FPMs for 𝑀 = 1/2/3/4/5.
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individual FPMs as a basis set. The total FPM can be decomposed into 𝐿 sub-FPMs,

P total = P𝑀1
+ P𝑀2

+ ⋯ + P𝑀𝐿
, (3.5)

which can be calculated separately and simply added together. The involved frequency

coefficients will be potentially more complicated, but they should present no additional

computational challenge within the prescribed methods.

There are several ways by which to combine modulations in multiple domains into a

total structure of channels. If each dimension’s structure is already determined, they can

combined using a Kronecker product,

q {𝜏} ⊗ q {𝜔} ⊗ q {𝜉} ⊗ q {𝜂}. (3.6)

On the other hand, if the order of modulation dimensions alternates between elements,

convolution can be used to create the 𝑁-dimensional cloud of channels that would then

need to be unfolded into a vector.

As an example, consider four polarization modulation elements that operate over

𝑥/𝑦/𝑥/𝑦, or equivalently modulate into 𝜉/𝜂/𝜉/𝜂. The total vector is then

vec (q {𝜉𝑒1} ∗𝑛 q {𝜂𝑒2} ∗𝑛 q {𝜉𝑒3} ∗𝑛 q {𝜂𝑒4}) , (3.7)

where ∗𝑛 redundantly implies that the vectors are differently oriented or, more generally,

can be described as degenerate 𝑁-dimensional structures. In this example, q {𝜉𝑒1} and q {𝜉𝑒3}
are row vectors, while q {𝜂𝑒2} and q {𝜂𝑒4} are column vectors. The result of the convolution

operation is a matrix and needs to be unfolded using the vec operation defined above. The

choice of row/column over column/row addressing is arbitrary at first, but once chosen

must be maintained consistently.

The total vector can also be generated by recognizing that the modulation patterns can

be viewed as either a test dyad or a projection target. By treating it as a dyad, D = AGT,

its Fourier transform can be inspected, F {D} = F {A} ∗ F {G}T, with ∗ now being a

matrix convolution (same asmultiplication, but every product is replacedwith convolution

between the same elements and added as before). That allows PSG and PSA modulations

to be combined as

q𝑚𝑖𝑗 = vec (q𝑔𝑖 ∗ q𝑎𝑗) . (3.8)
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Finally, after using any of these methods to construct the Mueller element modulation

vectors, all 16 of them need to be combined into the corresponding Q matrix

Q =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

qT{𝜏,𝜔,𝜉,𝜂};𝑚00

qT{𝜏,𝜔,𝜉,𝜂};𝑚01

qT{𝜏,𝜔,𝜉,𝜂};𝑚02

qT{𝜏,𝜔,𝜉,𝜂};𝑚03

qT{𝜏,𝜔,𝜉,𝜂};𝑚10

qT{𝜏,𝜔,𝜉,𝜂};𝑚11

qT{𝜏,𝜔,𝜉,𝜂};𝑚12

qT{𝜏,𝜔,𝜉,𝜂};𝑚13

qT{𝜏,𝜔,𝜉,𝜂};𝑚20

qT{𝜏,𝜔,𝜉,𝜂};𝑚21

qT{𝜏,𝜔,𝜉,𝜂};𝑚22

qT{𝜏,𝜔,𝜉,𝜂};𝑚23

qT{𝜏,𝜔,𝜉,𝜂};𝑚30

qT{𝜏,𝜔,𝜉,𝜂};𝑚31

qT{𝜏,𝜔,𝜉,𝜂};𝑚32

qT{𝜏,𝜔,𝜉,𝜂};𝑚33

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

T

(3.9)

that maps an input Mueller vector into a channel vector,

F{C} = QF{M ′}, (3.10)

where C describes the channels contents. However, since channels are measured directly,

the opposite operation is desired. To do that, the pseudo inverse of Q can be obtained

much like in DRM. By correctly arranging Fourier transform operations around the mul-

tiplication, the reverse mapping can be used to get back to the Mueller elements’ informa-

tion,

M ′ = F−1 {Q+F{C}} . (3.11)

An important piece of insight can be obtained if Q is recognized to not be that much

different from D ′; however, whereas beforemultiple dyads were constructed against which
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Figure 3.2: Modulations for each Mueller element as a convolution of modulations in the
respective PSG and PSA elements and the corresponding rearrangement of channel mod-
ulations into the total Q matrix. In this example, a verbose 7 × 7 grid of frequencies is
defined, and empty channels are constructed where the information exists for any Mueller
element. (Animation available in the digital version)

to test the Mueller object, it is now possible to have a very limited number of dyads. This is

because the particular modulation choices create a multi-dimensional “pointer” that can

be unfolded to the full Q representation. As an example of Q construction, consider the

modulations and their reordering in Figure 3.2.

3.1.2 Snapshot Channels

A snapshot measurement implies that there is no temporal modulation, which conse-

quently means that no additional (other than the exposure time) temporal band-limit con-

straints are placed on the captured scene. If each dimension on the 2D detector can carry

spatial, spectral or no modulation, a verbose set of nine snapshot channeled systems can

be created, as depicted in Figure 3.3. These nine systems can be further separated into two
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𝑥

𝑦

(a) None–None

𝑥

𝜏

(b) None–Spec

𝑥

𝜂

(c) None–Spat

𝜏

𝑦

(d) Spec–None

𝜏

𝜏

(e) Spec–Spec

𝜏

𝜂

(f) Spec-Spat

𝜉

𝑦

(g) Spat–None

𝜉

𝜏

(h) Spat–Spec

𝜉

𝜂

(i) Spat–Spat

Figure 3.3: Snapshot systems. Case (a) provides nomodulation. Case (e) is not straightfor-
ward to implement physically. Case pairs (b)/(d), (c)/(g) and (f)/(h) are essentially equiv-
alent.

classes: one-dimension-modulating (b/c/d/g) and two-dimension-modulating (e/f/h/i).

An example of each will be studied.

Further developing the consideration of physical realizability, several snapshot mea-

surements can be taken. This gives an easy access to a third modulation dimension —

time. Provided that the temporal modulation is captured in even time steps, the Fourier

transform can be used to create the corresponding channels. However, since in most cases

this will create more channels than the original data, with all channels being a single pixel,

using the Fourier coefficients does not present any advantage. Instead, the captured snap-
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𝜉

𝜂𝑡 = 𝑡0

𝜉

𝜂𝑡 = 𝑡1

𝜉

𝜂𝑡 = 𝑡2

𝜉

𝜂𝑡 = 𝑡3

𝜉

𝜂𝑡 = 𝑡4

𝜉

𝜂𝑡 = 𝑡5

(a) Six snapshots with 25 𝜉–𝜂 channels each

𝜏

𝑦𝑡 = 𝑡0

𝜏

𝑦𝑡 = 𝑡1

𝜏

𝑦𝑡 = 𝑡2

𝜏

𝑦𝑡 = 𝑡3

𝜏

𝑦𝑡 = 𝑡4

𝜏

𝑦𝑡 = 𝑡5

𝜏

𝑦𝑡 = 𝑡6

𝜏

𝑦𝑡 = 𝑡7

𝜏

𝑦𝑡 = 𝑡8

𝜏

𝑦𝑡 = 𝑡9

(b) Ten snapshots with 9 𝜏–𝑦 channels each

Figure 3.4: Hypothetical multi-snapshot systems that can be analyzed with the proposed
formalism.

shots themselves can be used as “direct channels”, or simply, projection targets like in the

W ′ formalism, namely,

Q total = [ QT
𝑡1 Q

T
𝑡2 ⋯ QT

𝑡𝑁 ]
T
. (3.12)

This removes the need to have evenly spaced samples, yetmaintains the compressed nature

of Q . Figure ?? demonstrates the kinds of systems this alteration can handle. Note that

even though only temporal modulation is represented with direct channels, it is possible

to treat other domain modulations similarly. For example, if one subdivides the FPA into a

small number of sections performing different polarization analyses, it might be preferred

to treat those sections as direct channels.

3.1.3 Channeled Reconstruction

Much like the reconstruction described in Section 1.4, an SVD method is used to calculate

the pseudoinverse for reasons of its numerical stability and higher capacity for manipula-

tion. First, Q is decomposed as

Q = U Q Σ QV
†
Q , (3.13)

where the matrices U and V are 𝑁𝐶 × 𝑁𝐶 and 16 × 16 complex, orthonormal matrices,

respectively, with 𝑁𝐶 denoting the number of constructed channels. Provided that the
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system is full as opposed to partial, Σ is a 𝑁𝐶 × 16 reduced diagonal matrix containing the

16 singular values 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎16 > 0. The pseudoinverse can be written as

Q+ = V Q Σ
+
QU

†
Q , (3.14)

where Σ+ is the 16 × 𝑁𝐶 reduced diagonal matrix with the inverses of the singular values.

3.2 Examples

This section discusses systems, for which the intensity can be written generally as

𝐼( ⃗𝜗) =
3

∑
𝑖=0

3

∑
𝑗=0

𝑓𝑎𝑖(
⃗𝜗)𝑚𝑖𝑗( ⃗𝜗)𝑓𝑔𝑗(

⃗𝜗), (3.15)

where ⃗𝜗 is used to denote a set of domains where the information is modulated. The two

functions, 𝑓𝑎𝑖(
⃗𝜗) and 𝑓𝑔𝑗(

⃗𝜗), define the polarimeter design and can be used to derive Q

using methods outlined in Section 3.1.1.

By simplifying the generation of polarimeter design, the idealized SNR can be calcu-

lated from Q directly, without performing full simulations of the system. Simply changing

the way the problem is written allows for introduction of more optimization parameters

that can help find an optimal polarimeter. Several systems from the literature are examined

to see how the introduced concepts could help increase their performance.

Sabatke introduced Equally Weighted Variance (EWV) as an appropriate metric to

evaluate Stokes polarimetersSabatke et al. (2000), and Twietmeyer later adopted a similar

metric for use with Mueller polarimeters.Twietmeyer and Chipman (2008) In the context

of Equation 1.21,

EWV = tr [KW ′+] = ∑15
𝑘=0 1/𝜎

2
W ′+,𝑘, (3.16)

where KW ′+ is the covariance matrix W ′+W ′+T. To use EWV for channeled systems, the

calculation merely needs to be performed with Q+ instead of W ′+.

Without needing to establish any particulars of a system first, a general statement can

be made that if the channel structures form an orthogonal basis set, the system will be

optimal. This optimality arises from the fact that channel cross-talk is eliminated when K

is diagonal. To investigate the lower limit of the EWV, orthogonality is simply assumed. In
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order to describe the surface of the Poincaré sphere, two parameters are needed— azimuth

and elevation angles. To modulate sufficiently, two carrier frequencies associated with the

two spherical parameters in both the PSG and the PSA need to be introduced.

As a result, modulation based on spherical coordinate mapping provides the smallest

number of carrier frequencies, while remaining physically realizable, i.e.,

f G =

[[[[[[[

[

1

cos(2π𝜗1
̃𝜗1)

sin(2π𝜗1
̃𝜗1) cos(2π𝜗2

̃𝜗2)

sin(2π𝜗1
̃𝜗1) sin(2π𝜗2

̃𝜗2)

]]]]]]]

]

, (3.17a)

f A =

[[[[[[[

[

1

cos(2π𝜗3
̃𝜗3)

sin(2π𝜗3
̃𝜗3) cos(2π𝜗4

̃𝜗4)

sin(2π𝜗3
̃𝜗3) sin(2π𝜗4

̃𝜗4)

]]]]]]]

]

, (3.17b)

where 𝜗𝑖 are modulation domains, and ̃𝜗𝑖 are the corresponding carrier frequencies. The

insight of Figure 3.1 allows a simple writing down of the number of frequencies present

in each PSG/PSA element as n𝐴 = n𝐺 = [ 1 2 4 4 ]
T
. Assuming independence, the

minimal EWV follows,

EWVmin = ∑ n𝐺 ⊗ n𝐴, (3.18)

which for the assumed modulation is equal to 121. A better EWV is mathematically pos-

sible, but would require that n𝐴 and n𝐺 contain fewer modulating frequencies. Quite

expectedly, a more efficient modulation than the one stemming from spherical coordi-

nates was not found, as all of them required a Degree of Polarization (DoP) greater than 1,

thereby violating the condition specified in Equation 1.3.

3.2.1 One Dimensional Channeled Systems

In order to treat single dimension systems generally, the rigorous channel creation descrip-

tion needs to be forgone for now and the initial discussion limited to frequency ratios.

Given spherical mapping’s implied proper selection of sines and cosines for modulation
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Table 3.1: Channeled system designs with the lowest EWV for a given number of channels.
The corresponding bandwidth of a system will be proportional to 1

𝑁𝐶
.

𝑁𝐶 EWVmin Configuration
19 350.5664 ( 3 1 3 2 )
21 259.1667 ( 2 1 2 5 )
23 176.8039 ( 2 1 2 6 )
25 169.5152 ( 2 1 2 7 )
27 158.1018 ( 2 1 3 7 )
29 137.6667 ( 3 2 1 8 )
31 137.3810 ( 2 1 3 9 )
33 121.0000 ( 1 4 2 9 )
35 126.7143 ( 2 1 4 10 )
37 121.0000 ( 2 1 4 11 )
39 121.0000 ( 2 1 4 12 )
41 + 2𝑛 121.0000 ( 2 1 5 12 + 𝑛 ), 𝑛 ∈ ℕ0

functions, the polarimeter configuration can be described with

d = ( ̃𝜗1
̃𝜗2

̃𝜗3
̃𝜗4 ), (3.19)

which is a vector containing the proportional modulation frequencies in order of the po-

larization elements. The total number of channels produced is

𝑁𝐶 = 1 + 2∑4
𝑖=1 𝑑𝑖. (3.20)

To find optimal configurations, a number of optimizations were run that were constrained

to have a particular number of channels. The results of those optimizations are summa-

rized in Table 3.1.

Now consider the spectral-none channeled polarimeter proposed by Hagen et al.

(2007), which can be seen in Figure 2.13. The polarimeter uses two thick retarders in

both the PSG and the PSA to modulate in wavenumber. Using Equation 3.15, the system
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can be described with the following modulation sets,

f G =

[[[[[[[

[

1

cos(𝑐1𝜎)

sin(𝑐1𝜎) sin(𝑐2𝜎)

sin(𝑐1𝜎) cos(𝑐2𝜎)

]]]]]]]

]

, (3.21a)

f A =

[[[[[[[

[

1

cos(𝑐4𝜎)

sin(𝑐3𝜎) sin(𝑐4𝜎)

cos(𝑐3𝜎) sin(𝑐4𝜎)

]]]]]]]

]

. (3.21b)

The argument

𝑐𝑖𝜎 = 2π𝜏𝑖𝜎 = 2π𝑑𝑜𝑑𝑖𝜆𝑜𝐵𝜎, 𝜏𝑖 = 𝑑𝑜𝑑𝑖𝜆𝑜𝐵 (3.22)

contains the global thickness factor, 𝑑𝑜, individual retarder thickness factor, 𝑑𝑖, center

wavelength, 𝜆𝑜, and birefringence, 𝐵. The vector d contains all the modulation informa-

tion in the form of proportional frequencies from Equation 3.19. Now, the modulations

are no longer in an arbitrary relation to one another — the positions and orientations of

the retarders and polarizers in the system determine that selection. This chapter only con-

cerns itself with the mathematics of the design and as such, only the details that make the

discussion complete are presented.

Hagen chooses d = ( 1 2 5 10 ), meaning 𝑁𝐶 = 37. The resulting channels are

shown in Table 2.1, and the proposed reconstruction scheme is shown in Table 2.2. From

the proposed reconstruction, it is seen that some measurements are ignored for the sake

of algebraic simplicity — only channels 𝑐0 – 𝑐10 are referenced, with real and imaginary

operators constituting the use of conjugates. Thus, instead of using all 37 channels, only

21 are used. An alternative method would be to recognize the modulation induced by re-

tarders, construct an appropriate FPM, look up the coefficients and construct Q by placing

them at the contributing frequencies. The resultant Q and its inverse can be seen in Figure

3.5. Those matrices represent Tables 2.1 and 2.2 more compactly. The system in Fig-

ure 3.6 was found using trial-and-error to see if other arrangements of the same elements

can produce better results. The system in Figure 3.7 was found through optimization with
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[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]
(a) Q

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

T

(b) Q+

Figure 3.5: Polarimeter proposed by Hagen et al. (2007), with d = ( 1 2 5 10 ). This
representation shows channels as rows and Mueller elements as columns. The matrix con-
taining 21 cropped channels can be seen between the two horizontal lines and has an EWV
of 355; including the other 16 channels lowers the EWV to 187. These extra channels must
bemeasured to prevent aliasing. The distinction is whether the data containedwithin these
channels is used in reconstruction, after the Fourier transform of the measured intensity
was found.
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[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]
(a) Q

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

T

(b) Q+

Figure 3.6: Resultant Q matrix with the first two elements swapped. The configuration is

now d = ( 2 1 5 10 ), with all 37 channels occupied. EWV is lowered to 130 4
7 .

𝑁𝐶 = 37 constraint. Changing to d = ( 2 1 4 11 ) has the effect of “orthogonalizing”

the channels so that the PSA-channels are available independently from PSG-channels in

the Fourier domain, i.e. at different carrier frequencies, a characteristic that has been em-

pirically observed to be indicative of optimality. Considering all the channels in Figure

3.5 lowers EWV by 47.3%, while the systematic approach to measurement selection brings

another 35.3% reduction to EWV. In total, EWVwas reduced to 34.1% of its original value,

suggesting that the polarimeter’s SNR is almost three times higher.

Finally, Figure 3.8 shows the covariance matrix, K Q+ , for the three systems with 𝑁𝐶 =
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[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]
(a) Q

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

T

(b) Q+

Figure 3.7: Further thickness adjustments can produce an optimal Q with d =
( 2 1 4 11 ) and EWV = 121, while keeping the same number of channels.
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(a) d = ( 1 2 5 10 ) (b) d = ( 2 1 5 10 ) (c) d = ( 2 1 4 11 )

Figure 3.8: K Q+ for different spectrally channeled configurations.

37. Since the number of channels is the same, spectral resolution remained unchanged as

well.

Table 3.1 mentions an optimal system with d = ( 1 4 2 9 ) and 𝑁𝐶 = 33. Choosing

this system does not impact the SNR of the reconstructed polarization channels, but has

the added benefit of enabling one to increase 𝑑𝑜 so as to widen the channel bandwidth. The

resultant Q and its inverse can be seen in Figure 3.9. Once again, the fact that the channels

that contain PSG modulation information are free of any contribution from the rest of the

Mueller elements is crucial to ensuring the system’s optimality.

There are other one-dimensional channeled systems in prior literature. Dubreuil et al.

(2007) proposed a system with an effective d = ( 1 1 5 5 ), meaning a total of

21 channels. The Q matrix and its inverse for that system can be seen in Figure 3.10.

Evaluating the system with the methods outline in this treatment, reveals an EWV of 441,

while the results in Table 3.1 show that a system with d = ( 2 1 2 7 ) has the same

number of channels but 70.2% higher SNR. Inspecting the corresponding Q matrix, it

is readily seen that Dubreuil’s system has many channels canceling one another, thereby

reducing the amount of information carried through.

3.2.2 Two Dimensional Channeled Systems

Like in the previous example of one dimensional channel systems, two modulating fre-

quencies are needed to separate the elements within both the PSG and the PSA sufficiently.

Instead of considering a single design vector (d), it is more appropriate to consider two
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]
(a) Q
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]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

T

(b) Q+

Figure 3.9: Resultant Q matrix of a system with d = ( 1 4 2 9 ). All 33 channels are
occupied, while EWV is maintained at 121.
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]
(a) Q
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]

T

(b) Q+

Figure 3.10: Resultant Q matrix of a system with d = ( 1 1 5 5 ). The system features
25 channels and an EWV of 441.

proportional frequency vectors, a = ( ̃𝜗1
̃𝜗2 ) and g = ( ̃𝜗3

̃𝜗4 ), which translates to

having

𝑁𝑥 = 1 + 2∑4
𝑖=1

̃𝜗𝑖(𝜗𝑖
?= 𝑥), (3.23a)

𝑁𝑦 = 1 + 2∑4
𝑖=1

̃𝜗𝑖(𝜗𝑖
?= 𝑦). (3.23b)

First, it is possible to study the lowest attainable EWV without assuming anything about

the type ofmodulation applied or the order of dimensions. Keeping those parameters vari-

able, genetic algorithm optimizations were run to find systems with the best EWV given

a specified number of 𝑥- and 𝑦- channels. The result can be seen in Table 3.2. Note

that full Mueller Matrix polarimeters do not exist for 3 × (3, 5, 7, 9) or (3, 5, 7, 9) × 3 two-

dimensional arrangements. The most balanced solution appears to be 𝑁𝑥 = 𝑁𝑦 = 7, as it

posits the same bandwidth constraint on the two dimensions, while being a sub-class of

systems with the lowest number of channels that achieves optimality.

As a representative example, consider the spatial-spatial channeled polarimeter de-
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(a) Q
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]

T

(b) Q+

Figure 3.11: Resultant Q matrix of a system with d = ( 2 1 2 7 ). The system features

25 channels and an EWV of 169 17
33 .

Table 3.2: Minimum achievable EWV for 𝑁𝑦 × 𝑁𝑥 channel arrangement.

𝑁𝑦\
𝑁𝑥 3 5 7 9 11 13

3 — — — — 147.67 131.67
5 — 441.00 171.67 147.67 147.67 131.67
7 — 171.67 121.00 121.00 121.00 121.00
9 — 147.67 121.00 121.00 121.00 121.00
11 147.67 147.67 121.00 121.00 121.00 121.00
13 131.67 131.67 121.00 121.00 121.00 121.00
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scribed by Kudenov et al. (2012), an example of a system in Figure 3.3i. The modulation is

achieved via polarization gratings that separate the different Mueller matrix elements onto

patterns of frequencies that are determined by the spacing of the elements. The intensity

can be similarly represented as in Equation 3.15 with ⃗𝜗 = ( 𝑥 𝑦 𝑦 𝑥 ). Kudenov used:

f G =

[[[[[[[

[

1

cos(2π𝑦)

sin(2π𝑦) cos(2π𝑥)

sin(2π𝑦) sin(2π𝑥)

]]]]]]]

]

, (3.24a)

f A =

[[[[[[[

[

1

cos(4π𝑥)

sin(4π𝑥) cos(4π𝑦)

sin(4π𝑥) sin(4π𝑦)

]]]]]]]

]

. (3.24b)

Figure 3.12 shows a comparison between three systems with the only difference be-

ing the order of modulation. The merit of introducing Q is clear; better performance is

achieved virtually for free, using the same polarization elements arranged in a different

order. Systems in Figure 3.12 were found by optimizing using genetic algorithms, while

continuously relaxing the design restrictions.

Although a symmetrical (x/y/y/x & 1/1/2/2) modulation design shown in Figure 3.14

may seem intuitive, it is possible to improve the design as evidenced by the polarimeter

in Figure 3.12c, which is shown in greater detail in Figures 3.13 and 3.15. First, in Figure

3.12b, an asymmetrical order ofmodulations (x/y/x/y& 1/1/2/2) improves EWVby 27.8%.

Then, in Figure 3.12c, it is improved by another 19.9% by splitting themodulation into one

dimensional structures for the PSG and the PSA (x/x/y/y & 2/1/2/1). In total, EWV was

reduced to 57.9% of its original value. Although not as large of an improvement as in the

previous example, it is, nonetheless, significant. The reason for the EWV improvements

lies in how the channels interfere. From the comparison of Figure 3.12, it can be noted that

the better systems “focus” the reconstruction onto the diagonal of K Q , which matches

the fundamental expectation that the most orthogonal set of structures will produce an

optimal system.
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𝜉

𝜂
4 6 6 4
2 2 3 1 3 2 2
4 8 8 4

1 1 1
4 8 8 4
2 2 3 1 3 2 2
4 6 6 4

(a) 𝑎1 = 𝑎2 = 2𝑔1 = 2𝑔2 =
2, 𝑥/𝑦/𝑦/𝑥, 33/49 channels
used, EWV = 209

𝜉

𝜂
4 2 6 1 6 2 4

2 1 2
4 2 8 2 8 2 4

1
4 2 8 2 8 2 4

2 1 2
4 2 6 1 6 2 4

(b) 𝑎1 = 𝑎2 = 2𝑔1 = 2𝑔2 =
2, 𝑥/𝑦/𝑥/𝑦, 35/49 channels
used, EWV = 151

𝜉

𝜂
4 2 4 2 4 2 4
2 1 2 1 2 1 2
4 2 4 2 4 2 4
2 1 2 1 2 1 2
4 2 4 2 4 2 4
2 1 2 1 2 1 2
4 2 4 2 4 2 4

(c) 𝑎1 = 2𝑎2 = 𝑔1 = 2𝑔2 =
2, 𝑥/𝑥/𝑦/𝑦, 49/49 channels
used, EWV = 121

Figure 3.12: Top: 𝜉/𝜂 plane of channels (the number inside each channel corresponds to
the number of Mueller elements contained within). Bottom: K Q+ .



81

Figure 3.13: Frequency grid of the Mueller modulation. 𝜉 and 𝜂 are the 𝑥- and 𝑦-axes,
respectively.
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]
(a) Q

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

T

(b) Q+

Figure 3.14: Equivalent representation using the introduced formalism of the spatially
channeled polarimeter from Kudenov’s work. Though the modulation configuration pro-
duces a total of 49 channels, only 33 channels are occupied with information; the rest are
empty. This configuration has EWV = 209.
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(a) Q
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]

T

(b) Q+

Figure 3.15: Spatially channeled polarimeter with an optimal modulation configuration.
This system only changes the order and the dimensions of modulations while keeping the
frequencies intact, which maintains the same number of channels. This design allows for
all 49 channels to carry information and leads to this configuration having EWV = 121.
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3.2.3 Multiple Snapshot Polarimeter

The columns of Q matrix represent nothing more than unfolded dyad elements that con-

tain modulations within each Mueller channel projection target. Thus, once the system’s

spectral and/or spatial modulations are determined, the associated channel structures can

be rotated via a unitary transformation that remixes the channel structures in the PSG and

PSA as

Q𝜃 = [U𝐴F {A} ] ∗ [F {G}T U𝐺]. (3.25)

Applying U𝐺 and U𝐴 maintains the channels’ relative orientation, thereby maintaining

the EWV. Looking at the Mueller matrix of a linear retarder in Equation 1.30, it can be

shown that | det(LR(𝛿, 𝜃))| = 1, which means it is a unitary transformation. Using the

notation of Equation 3.18, the variances within the reconstructions of all 16 elements can

be expressed with the number of modulations present. The sandwich retarders rotate each

channel structure, which can be represented by defining n𝐺(𝛿𝐺, 𝜃𝐺) and n𝐴(𝛿𝐴, 𝜃𝐴):

n𝐺(𝛿𝐺, 𝜃𝐺) = (MLR(𝛿𝐺, 𝜃𝐺) ∘ MLR(𝛿𝐺, 𝜃𝐺)) [ 1 2 4 4 ]
T
=

=

[[[[[[[

[

1

2 [ c2(2𝜃𝐺)+ c(𝛿𝐺) s
2(2𝜃𝐺)]

2+4 s2(2𝜃𝐺) s
2(𝛿𝐺)+ s2(4𝜃𝐺) v

2(𝛿𝐺)

4 [ s2(2𝜃𝐺)+ c(𝛿𝐺) c
2(2𝜃𝐺)]

2+4 c2(2𝜃𝐺) s
2(𝛿𝐺)+

1
2 s2(4𝜃𝐺) v

2(𝛿𝐺)

4 − 2 s2(2𝜃𝐺) s
2(𝛿𝐺)

]]]]]]]

]

,

(3.26a)

n𝐴(𝛿𝐴, 𝜃𝐴) = (MLR(𝛿𝐴, 𝜃𝐴) ∘ MLR(𝛿𝐴, 𝜃𝐴)) [ 1 2 4 4 ]
T
=

=

[[[[[[[

[

1

2 [ c2(2𝜃𝐴)+ c(𝛿𝐴) s
2(2𝜃𝐴)]

2+4 s2(2𝜃𝐴) s
2(𝛿𝐴)+ s2(4𝜃𝐴) v

2(𝛿𝐴)

4 [ s2(2𝜃𝐴)+ c(𝛿𝐴) c
2(2𝜃𝐴)]

2+4 c2(2𝜃𝐴) s
2(𝛿𝐴)+

1
2 s2(4𝜃𝐴) v

2(𝛿𝐴)

4 − 2 s2(2𝜃𝐴) s
2(𝛿𝐴)

]]]]]]]

]

,

(3.26b)

where ∘ represents the Hadamard product, which is necessary for correct weighing of vari-

ances and the same shorthands are used as before: c(𝑥) = cos(𝑥), s(𝑥) = sin(𝑥) and v(𝑥) =
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Figure 3.16: Effect of 𝛿𝐺 = 𝛿𝐴 = π
2 , 𝜃𝐺 ∝ 𝑡 and 𝜃𝐴 ∝ 𝑡/5 on the mixture of channel

structures. Each channel structure features an EWV of 121 with the variance being traded
off between Mueller element reconstructions. (Animation available in the digital version)

versin(𝑥) = 1 − cos(𝑥). The variances can still be evaluated as n𝐺(𝛿𝐺, 𝜃𝐺) ⊗ n𝐴(𝛿𝐴, 𝜃𝐴)

and their sum will remain unchanged at 121. This enables one to adjust the distribution

of noise power between Mueller elements and follows the concepts of preferential treat-

ment of information without creating a partial system. This development also leads to a

fairly straightforward construction of a multiple snapshot system by positioning the two

retarders to different orientations for each successive measurement. Using Equation 3.12

gives the total Q .

Figure 3.16 shows the effect on channel constructs after placing two 𝜆
4 -plates before

PSG and after PSA and rotating them at rates of one and five. Each structure within the

animation corresponds to an optimal system with EWV of 121. Figure 3.17 shows (𝜃𝐴, 𝜃𝐺)

while scanning through different values of 𝛿𝐴 = 𝛿𝐺. The impact of this development is the

ability to redistribute the variance in case a preferential weighing of Mueller elements is

needed.

Optimizations of 64 differently configured spatial–spatial channeled polarimeters were
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Figure 3.17: Shuffled variance (blue/yellow for +12/−12) as a function of 𝜃𝐴, 𝜃𝐺 and 𝛿𝐺 =
𝛿𝐴. (Animation available in the digital version)

Table 3.3: Results for different number of temporal snapshots. Row/Column labels refer
to each element’s modulating frequencies in PSG/PSA, respectively. Order of modulation
domains is an optimization variable. For example, 1 snapshot with ⃗ ̃𝜗 = ( 1 2 1 2 ) pro-
duces EWV = 133. For those constraints, optimization routine found ⃗𝜗 = ( 𝑦 𝑥 𝑥 𝑦 ).
The outside retarder orientations, 𝜃𝐴 and 𝜃𝐺, are plateau dimensions when number ofmea-
surements is unity, hence they do not play a significant role.

1/1 2/1 1/2 2/2
1/1 441.0 171.7 214.9 151.0
2/1 171.7 121.0 147.7 147.7
1/2 214.9 147.7 133.0 214.9
2/2 151.0 147.7 214.9 441.0

(a) 1 snapshot — 49 channels

1/1 2/1 1/2 2/2
1/1 60.00 53.50 53.60 53.60
2/1 53.50 53.57 54.28 53.50
1/2 53.60 54.28 56.22 59.08
2/2 53.60 53.50 59.08 60.00

(b) 2 snapshots — 98 channels

1/1 2/1 1/2 2/2
1/1 36.26 35.50 35.32 35.00
2/1 35.50 34.00 34.50 34.77
1/2 35.32 34.50 35.20 35.95
2/2 35.00 34.77 35.95 36.49

(c) 3 snapshot — 147 channels

1/1 2/1 1/2 2/2
1/1 25.33 25.48 25.52 25.65
2/1 25.48 25.22 25.61 25.61
1/2 25.52 25.61 25.78 26.16
2/2 25.65 25.61 26.16 25.94

(d) 4 snapshots — 196 channels
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run. The number of snapshots was constrained to be 1, 2, 3 or 4, with ⃗𝜃𝐺 and ⃗𝜃𝐴 defining

each snapshots’ sandwich retarders as optimization variables. Additionally, the verbose

grid of ⃗ ̃𝜗 frequencies, ( ̃𝜗1
̃𝜗2 ) = ( ̃𝜗3

̃𝜗4 ) = {( 1 1 ), ( 1 2 ), ( 2 1 ), ( 2 2 )}

was searched, which would correspond to 𝑁𝑥 and 𝑁𝑦 as 5, 7, 7, and 9, respectively. With

frequencies set, the distinction was the corresponding dimension into which the data were

mapped, ⃗𝜗, which was an optimization variable in the optimization. A genetic algorithm

was used to find the lowest EWV. The results are shown in Table 3.3.

From these results, it can be gathered that as the number of temporal measurements

grows, the importance of the spatial frequencies and order of modulations diminishes.

This bodes well if this phenomenon is understood as a continuously growing temporal

bandwidth constraint allowing simplification of the spatial multiplexing.

3.3 Conclusion

Introducing Q and methods for generating it automatically allows description of a wide

range of similar systems with a handful of parameters and removes the need to handle

reconstruction by hand. Furthermore, analysis of Q reveals certain design metrics im-

mediately instead of having to run an elaborate simulation. The end result is that a more

optimal system can be found often without requiring the use of any extra elements, while

injecting the optimization procedure before element selection allows for a better selection

overall.

The premise of applying the same concepts presented in this chapter to partial Mueller

Matrix Polarimeters (pMMPs) is of great interest andwill be a topic of Chapter 5. To evalu-

ate such systems the concept of EWVwould have to be generalized to aWeightedVariance,

where instead of treating all information equally, certain information can be deemed to be

most important for the particular task.
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CHAPTER 4

PARTIAL POLARIMETER DESIGN

Partial Mueller matrix polarimeters (pMMPs) are active sensing instruments that probe a

scattering process with a set of polarization states and analyze the scattered light with a sec-

ond set of polarization states. Unlike conventional Mueller matrix polarimeters, pMMPs

do not attempt to reconstruct the entire Mueller matrix. With proper choice of generator

and analyzer states, a subset of the Mueller matrix space can be reconstructed with fewer

measurements than that of the full Mueller matrix polarimeter. This chapter considers

the structure of the Mueller matrix and the ability to probe it using a reduced numbers

of measurements. Analysis tools are developed to relate the particular choice of generator

and analyzer polarization states to the portion of Mueller matrix space that the instrument

measures. Additionally, an optimization method is introduced to balance the signal-to-

noise-ratio of the resulting instrument with the ability of that instrument to accurately

measure a particular set of desired polarization components. In the process, 10 classes of

pMMP systems are identified, the space coverage of which is immediately known. A nu-

merical example is used to demonstrate the theory where a partial polarimeter is designed

for the task ofmonitoring the damage state of amaterial as presented earlier byHoover and

Tyo (2007). It is shown that the polarimeter can be reduced tomaking eightmeasurements

while still covering the Mueller matrix subspace spanned by the objects.

4.1 Introduction

The Mueller matrix is a common method to characterize polarimetric optical scattering

properties. The Mueller matrix gives the scattered Stokes parameters in terms of the inci-

dent Stokes parameters, thereby fully describing the optical interaction, at least for spatially

incoherent fields (Chipman (2009b)).

Numerous authors have studied the structure of the Mueller matrix, and much is
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known about how the various Mueller matrix elements relate to the physical properties of

diattenuation, retardance, and depolarization (Gil (2007); Chipman (2009b)). It should be

clear that not all 4 × 4 real matrices are physically realizable from Equation 1.3. A physical

Mueller matrix must map real sets of Stokes parameters into real sets of Stokes parameters,

but there are other conditions that must also be met as recently discussed by Gil (2007).

Much of the literature on Mueller matrices is concerned with methods to decompose

theMuellermatrix in order to understand its structure and relate it to scattering properties.

In the class of series decompositions, theMueller matrix is broken up into discrete diatten-

uating, retarding, and depolarizing layers, and the result is a product of Mueller matrices

that describe the effects of the whole. Lu and Chipman (1996) developed a series decom-

position that writes the Mueller matrix as a non-unique cascade of pure diattenuation,

retardance, and depolarization Mueller matrices. Ossikovski and colleagues developed

a different decomposition that eliminated the order-dependence of the Lu-Chipman de-

composition by creating a decomposition that is symmetric through theMinkowskimetric

tensor G = diag(1, −1, −1, −1) (Ossikovski (2009)). It’s clear that while one can use either

of these decompositions (or any other), they may not actually represent the physics of any

particular process.

The limit of series decompositions is the class of differential decompositions (Os-

sikovski (2012)). These split the Mueller matrix into differential slices in an attempt to

identify its fundamental characteristics. Noble and Chipman (Noble and Chipman (2012);

Chipman (2009b)) use the method of matrix roots to uncover a fundamental differential

Mueller matrix that can be written in terms of 15 Mueller matrix generators - three for

retardance, three for diattenuation, and nine for depolarization. Ossikovski developed a

logarithmic decomposition of the Mueller matrix (Ossikovski (2011)) that operates using

a different formalism, but produces an equivalent outcome to that of the matrix roots de-

composition (Ossikovski (2012)).

A third class of decomposition is the class of additive decompositions that consider the

Mueller matrix as an ensemble average of parallel scattering processes that are added inco-

herently. Gil provides a recent review that covers the general cases of the trivial, spectral,

and arbitrary decompositions (Gil (2007)). Themost famous parallel decomposition is that
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of Cloude, who demonstrated that an arbitraryMueller matrix could be written as a super-

position of not more than four pure Mueller-Jones matrices (Cloude (1986)). Ossikovski

has demonstrated rigorously that in the limit of weakly depolarizing Mueller matrices, all

decompositions return identical polarization properties to first order (Ossikovski (2012)).

However, for more general depolarizing matrices, the various methods return different re-

sults for the “fundamental” properties or retardance and diattenuation of a Mueller matrix

under test.

All of these classes of decompositions are important for understanding the fundamen-

tal properties of theMuellermatrix. However, measurement of theMuellermatrix requires

consideration of a different basis set altogether. A Mueller matrix polarimeter operates by

using a polarization state generator (PSG) to illuminate the sample with a controlled state

of polarization. The polarimeter thenmeasures the intensity passed through a polarization

state analyzer (PSA) set to a second polarization state. Through a suitably diverse set of illu-

mination and analysis states, the elements of the Mueller matrix can be determined (Chip-

man (2009c)). Much as is the case in Stokes polarimetry (Tyo (2002)), the measurement

corresponding to each pair of PSG/PSA states can be thought of as a projection onto a ba-

sis vector, and then the unknown Mueller matrix can be estimated through a least-squares

inversion process that produces an additive decomposition. Once the problem is cast in

this manner, the design of a measurement system then becomes an optimization problem

where a particular measurement basis is chosen in order to highlight specific aspects of

the Mueller matrix. At least 16 measurements are needed in order to reconstruct the full

Mueller matrix in general (Chipman (2009c)), while the choice of specific illumination

states can help balance the signal-to-noise ratio (SNR) and/or error in particular Mueller

matrix elements (Twietmeyer and Chipman (2008); Vaughn and Hoover (2008)). Going

one step further, a partial Mueller matrix polarimeter (pMMP) can be designed that allows

certain elements or combinations of elements of the Mueller matrix to be recovered with

fewer than 16measurements while ignoring other elements thatmight not be necessary for

a particular sensing problem (Tyo et al. (2010)). Hoover and his coworkers (Hoover and

Tyo (2007); Vaughn et al. (2012a)) have demonstrated that reduced dimensionality sub-

spaces of Mueller matrix space can be used to perform invariant target detection through
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nonlinear model fitting. Goudail and his coworkers (Goudail and Beniere (2009); Goudail

(2009); Goudail and Tyo (2011)) have demonstrated that a single-measurement pMMP is

optimal formaximizing polarization contrast in a two-class detection problemwith known

class Mueller matrices.

In this chapter, the design of pMMPs that seek tomeasure certain aspects of theMueller

matrix that might be dictated by a particular sensing task is considered. The pMMP could

be an imaging or non-imaging device, but the design of the instrument proceeds from

knowledge of linear combinations of Mueller matrix elements that allow a particular task

to be performed (Hoover and Tyo (2007); Tyo et al. (2010)). It is well known that it is not

possible to measure a single Mueller matrix element or a single arbitrary combination of

Mueller matrix elements in a single measurement due to the restrictions on the structure

of the Stokes parameters of the PSG and PSA states. Previous authors (Tyo et al. (2010);

Anna and Goudail (2012)) have considered specific optimization strategies designed to

maximize performance on a particular task. This chapter approaches the more general

two-part problem of a) identifying the proper subspace in which to make a detection deci-

sion and b) designing a pMMP to get as close as possible to a specified subspace of Mueller

matrix space through careful selection of measurement states. In order to accomplish this,

some of the details of the structure of the Mueller matrix and how they interact with the

PSG and PSA, are discussed. Finally, a numerical optimization method is developed that

produces the desired pMMP design.

The remainder of this chapter is organized as follows. Section 4.2 discusses the modi-

fications to the mathematics of Mueller matrix polarimetry that are necessary to consider

pMMPs. Section 4.3 considers the structure of a few pMMPs in a way that elucidates how

the PSG and PSA interact with the Mueller matrix to build up a pMMP basis. Section 4.4

generalizes the patterns seen in Section 4.3 to a general class of 4𝑖𝑗 pMMP systems, as well

as develops various metrics by which to evaluate the noise resilience and the proximity

of a 𝐾-dimensional subspace of Mueller matrix space to an 𝑁-measurement pMMP. Sec-

tion 4.5 applies the developed concepts to an object discrimination task from the literature

(Hoover and Tyo (2007)) and discusses the results. Section 4.7 concludes the chapter.
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4.2 Structure of Partial Mueller Matrices

In the case of partial polarimeters, 𝑁 < 16, and the maximum rank that the polarimeter

can achieve is 𝑁. It is easy to demonstrate

tr (W+W) = rank (W) = 𝑅. (4.1)

In this chapter, the singular value decomposition (SVD)Golub and van Loan (1983) is used

to compute the pseudoinverse. The SVD of W yields

W = UΣVT. (4.2)

The matrices U and V are 𝑅×𝑅 and 16×16 real, orthogonal matrices, respectively, and Σ

is a𝑅×16 reduced diagonal matrix containing the𝑅 singular values 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑅 > 0.

The columns of U span the range of the pseudoinverse, and the columns of V spanMueller

matrix space. The first𝑅 columns correspond to the non-zero singular values and span the

portion of Mueller matrix space that the pMMP can reconstruct. The pseudoinverse can

be written as

W+ = VΣ+UT, (4.3)

where Σ+ is the 16 × 𝑅 reduced diagonal matrix containing the inverse of the singular

values. The SVD pseudoinverse creates a “maximally orthogonal” inverse.

Examining the diagonal elements of W+W matrix tells how the information from the

𝑁 measurements contributes to the rank and how that information is distributed in the

estimated Mueller matrix. Define the reconstructables matrix,

B ′ = vec(B) = diag (W+W) . (4.4)

Examples of such matrices will be considered in subsequent sections, but at this point it

can said that B relates the percentage of each Mueller matrix element that is reconstructed

in the pMMP. In the limit of 𝑁 = 16, the pMMP becomes a full polarimeter, W+W = 𝕀16,

and B is a 4×4 matrix of all ones; all elements of the Mueller matrix can be reconstructed.

To understand the function of the pMMP, consider the multiplication of the matrix

and its pseudoinverse

W+W = VΣ+U+UΣV+ = VΣ+ΣV+. (4.5)
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The matrix Σ+Σ is diagonal with the first 𝑅 elements equaling unity and the last 16 − 𝑅

equaling zero. This permits the claim made in Equation 4.1. Thus,

W+W = V ′V
′T, (4.6)

where V ′ is the 16 × 𝑅 matrix composed of the first 𝑅 columns of V . Another way of

interpreting the SVD of W is that V ′ forms an orthogonal basis that spans the subspace

of Mueller matrix space that forms the domain of the particular pMMP represented by

W . Likewise, the columns of V discarded by the SVD (corresponding to singular values

of zero) span the remaining null space. However, as shown later, knowledge of the do-

main alone is not sufficient to predict performance, as the conditioning of the matrix W

is important in the presence of noise and error.

4.3 Examples of Partial Mueller Matrix Polarimeters

This analysis is restricted to pMMPs that use fully polarized PSG and PSA states. Goudail

and Tyo (2011) demonstrated that partially polarized PSG and PSA states never improve

contrast. Below a case where one or more PSG or PSA state is unpolarized is considered,

allowing reconstruction of particular elements of the Mueller matrix with fewer measure-

ments than would be necessary if all PSG and PSA states were fully polarized.

4.3.1 Canonical 4-Measurement pMMP

Consider the simple𝑁 = 4measurement pMMP thatmeasures the co-polarized and cross-

polarized return for both vertically and horizontally polarized illumination. For compact-

ness, the following notation for the analyzer and generator matrices is introduced

A ⇒ 1
2 [ ] , (4.7a)

G ⇒ [ ] , (4.7b)

where = [ 1 1 0 0 ]
T
is the set of Stokes parameters for ideally horizontally polar-

ized light and = [ 1 −1 0 0 ]
T
is the set of Stokes parameters for ideally vertically

polarized light. The presence of 1
2 in the definitions of the analyzing vector is needed for



94

rigor; the polarization sensing systems in consideration dismiss half of the light if the in-

put is unpolarized. The set of four PSG/PSA pairs in Equations 4.7a and 4.7b results in the

instrument matrix

W =
1
2

[[[[[[[

[

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

]]]]]]]

]

(4.8)

and the reconstructables matrix

B =

[[[[[[[

[

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

]]]]]]]

]

. (4.9)

This is the well known result that four measurements are needed to reconstruct four

Mueller matrix elements, and that these four elements must come in a “block” pattern

within the Mueller matrix (Tyo et al. (2010)). A similar polarimeter could be obtained

with a 4-measurment combination of any two of the six canonical states , , , , ,

, where and represent 45∘ and −45∘, and and represent right- and left circular

polarization, respectively.

While this well-known result tells how to design a pMMP to reconstruct one of these

groupings of four elements, it is not obvious how to add additionalmeasurements to recon-

struct additional elements, nor is it obvious how to design a pMMP to reconstruct linear

combinations of elements rather than isolated elements.

4.3.2 Diagonal Depolarization Elements

Depolarization is a rich physical process that contains significant information about the

random scattering properties (Chipman (2005)). Noble and Chipman (Noble and Chip-

man (2012); Chipman (2009b)) recently described the nine degrees of freedom for depo-

larization. Three of these correspond to randomness in the diattenuation properties of the

Mueller matrix, three to randomness in the retardance properties of the Mueller matrix,
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and three to “diagonal depolarization,” which is related to randomness in geometric trans-

formations as would happen in multiple scattering or rough surface scattering processes.

Often, the diagonal depolarization elements are important for discrimination in both op-

tical and radar tasks (Cloude and Pottier (1996)).

Section 4.3.1 shows that each canonical four-measurement polarimeter provides one

diagonal element (in addition to 𝑚00, which is involved in all MMPs). One obvious way to

reconstruct the diagonal elements then would be to use a 12-measurement pMMP defined

by the analyzer and generator matrices,

A ⇒ 1
2 [ ] , (4.10a)

G ⇒ [ ] , (4.10b)

which produces the following reconstructables matrix

B =

[[[[[[[

[

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

]]]]]]]

]

. (4.11)

In addition to the desired diagonal elements, the diattenuation and polarizance vectors

(Lu and Chipman (1996)) are also measured. This 12-measurement pMMP only recon-

structs 10 Mueller matrix elements, since each of the three canonical pMMPs redundantly

reconstructs 𝑚00. Because three reconstructions of 𝑚00 are available, the SNR in that re-

constructed element is a factor of √3 higher.

This redundancy can be addressed by eliminating one of the cross-polarized measure-

ments in two of the canonical pMMPs so that

A = 1
2 [ ] , (4.12a)

G = [ ] , (4.12b)

which produces the same reconstructables matrix as Equation 4.11. In this case the elimi-

nation of redundancy allows 10Mueller matrix elements to be reconstructed from 10mea-

surements.
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The matrix of Equation 4.11 still unnecessarily reconstructs the first column and the

first row of the Mueller matrix. The number of measurements can be lowered by further

reducing two of the three canonical 4-measurement pMMPs to two-measurement pMMPs

that make co-polarized measurements only, e. g.

A ⇒ 1
2 [ ] , (4.13a)

G ⇒ [ ] , (4.13b)

which produces the reconstructables matrix

B =

[[[[[[[

[

1 1 1
2

1
2

1 1 0 0
1
2 0 1 0
1
2 0 0 1

]]]]]]]

]

. (4.14)

Examination of V can help to determine how the elements of B correspond to recon-

structed Mueller matrix channels as discussed in section 4.4. This pMMP can reconstruct

the diagonal elements 𝑚00, 𝑚11, 𝑚22, 𝑚33 as well as the elements 𝑚10 and 𝑚01. In addition

to these individual elements, the polarimeter can also reconstruct the linear combination

channels (𝑚20 + 𝑚02)/√2 and (𝑚30 + 𝑚03)/√2. Although, not the case in this instance,

the existence of reconstruction channels does not guarantee that these channels will have

acceptable SNR. These items are discussed in greater detail below.

The polarimeter described by Equations 4.13a and 4.13b is the lowest dimensionality

that was found that reconstructs all three of the diagonal elements with fully polarized

analyzer and generator states. However, use of unpolarized measurements adds another

degree of freedom and provides capacity for fewer measurements. Consider a system that

makes six canonical, co-polarized measurements and one unpolarized measurement

A ⇒ 1
2 [ 2 ] , (4.15a)

G ⇒ [ ] , (4.15b)
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where = [ 1 0 0 0 ]
T
. The reconstructables matrix for this polarimeter is

B =

[[[[[[[

[

1 1
2

1
2

1
2

1
2 1 0 0
1
2 0 1 0
1
2 0 0 1

]]]]]]]

]

. (4.16)

The addition of the one unpolarized measurement allows the 𝑚00 term to be reconstructed

directly, obviating the need for the cross-polarized measurements indicated in Equations

4.13a and 4.13b.

Figures 4.1, 4.2 and 4.3 illustrate the reconstructions of the systems defined by Equa-

tions 4.10a and 4.10b, Equations 4.12a and 4.12b as well as Equations 4.13a and 4.13b.

The simulation was performed with an artificial Mueller-matrix-like object. No extensive

attention was paid to the physical realizability of the scene. That consideration does not

pertain to the information mapping and thus does not affect measurement properties.
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Figure 4.1: Partial reconstruction of a synthetic Mueller signal from the 12 measurements
defined by Equations 4.10a and 4.10b. The associated reconstructables matrix can be seen
in Equation 4.11. Note that the noise in 𝑚00 appears to be lower than in any other channel.
This is because each of the canonical four-blocks are capable of reconstructing that chan-
nel on their own and their contributions end up getting averaged with noise magnitude
becoming 1

√3 of the others.
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Figure 4.2: Partial reconstruction of a synthetic Mueller signal from the ten measurements
defined by Equations 4.12a and 4.12b. The associated reconstructables matrix can be seen
in Equation 4.11. As was the case with the 12measurement case,𝑚00,𝑚11,𝑚22,𝑚33, as well
as 𝑚01, 𝑚02, 𝑚03, 𝑚10, 𝑚20 and 𝑚30 are reconstructable. The difference being the increased
noise in 𝑚00, 𝑚22, 𝑚20, 𝑚02, 𝑚33, 𝑚30, and 𝑚03.
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Figure 4.3: Partial reconstruction of a synthetic Mueller signal from the eight measure-
ments defined by Equations 4.13a and 4.13b. The associated reconstructables matrix can
be seen in Equation 4.14. The following elements are reconstructable: 𝑚00, 𝑚11, 𝑚22, 𝑚33,
as well as 𝑚01, 𝑚10. Shown in Figure 4.4, are the two remaining linear combinations of
elements that are also reconstructable.
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(a) 1
√2

[𝑚02 + 𝑚20] (b) 1
√2

[𝑚03 + 𝑚30]

Figure 4.4: Reconstructions of linear combinations of Mueller elements that the polarime-
ter described by Equations 4.13a and 4.13b is able to reproduce.

4.4 Partial Mueller Matrix Polarimeter Design

Based on the understanding gained in Section 4.3, some prior constraints can be removed,

and pMMP systems can be generalized to have arbitrary fully polarized PSG andPSA states

within the requirement that 𝑁 = 𝑅.

It is unclear from B alone which Mueller elements are grouped together into combina-

torial channels. When a particular element of B is unity, then the corresponding Mueller

matrix element can be reconstructed. But when it is other than unity, the element must

appear in combination with other Mueller matrix elements. However, the fact that B is

derived from the columns of V ′ provides insight into the overall subspace spanned by the

pMMP. If two or more columns of V ′, say v𝑛 and v𝑚 correspond to equal singular values

𝜎𝑛 = 𝜎𝑚, then they span a hyperplane with identical geometrical characteristics in the con-

text of W . In this case, any set of orthogonal basis vectors in that hyperplane can be used,

allowing for a more intuitive grouping of Mueller matrix elements if desired.

All of the previous examples featured four-block measurements. Prior work was al-
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ready familiar with 𝑚00/𝑚𝑖0/𝑚0𝑗/𝑚𝑖𝑗 measurement, but a similar reconstruction exists for

off-Mueller grid measurement. Consider the arbitrary analyzing and generating vectors:

A± = [ 1 ±𝑎1 ±𝑎2 ±𝑎3 ] , (4.17a)

G± = [ 1 ±𝑔1 ±𝑔2 ±𝑔3 ] . (4.17b)

A four-block polarimeter would go through the following four combinations of measure-

ments:

A4 ⇒ 1
2 [ A+ A+ A− A− ]

T
, (4.18a)

G4 ⇒ [ G+ G− G+ G− ]
T
. (4.18b)

The resulting measurement matrix is

W4 =

[[[[[[[

[

(A+ ⊗ G+)
T

(A+ ⊗ G−)
T

(A− ⊗ G+)
T

(A− ⊗ G−)
T

]]]]]]]

]

, (4.19)

The SVD of W4 in Equation 4.19 will have four column-space vectors with four identical

singular values. If a particular representation of V is chosen, then there is only one U

to go along with it. A linear combination of these vectors corresponds to rotation of the

underlying vectors. This operation does not alter the space, but merely rotates the axes

by which that space is described. It will be shown that a particular decomposition can be

written down that is relatively easy to treat analytically. When faced with more complex

V matrices that have non-equal singular values, adding and subtracting the underlying

vectors is also possible, but special care needs to be taken.

For the four-block polarimeter, the column space can be described with the following
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set of vectors

V ′
4 =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

1 0 0 0

0 𝑔1 0 0

0 𝑔2 0 0

0 𝑔3 0 0

0 0 𝑎1 0

0 0 0 𝑎1𝑔1

0 0 0 𝑎1𝑔2

0 0 0 𝑎1𝑔3

0 0 𝑎2 0

0 0 0 𝑎2𝑔1

0 0 0 𝑎2𝑔2

0 0 0 𝑎2𝑔3

0 0 𝑎3 0

0 0 0 𝑎3𝑔1

0 0 0 𝑎3𝑔2

0 0 0 𝑎3𝑔3

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

, (4.20)

that correspond to four unity singular values and

U =
1
2

[[[[[[[

[

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

]]]]]]]

]

. (4.21)

The corresponding reconstructables matrix is

B4 =

[[[[[[[

[

1 𝑔1
2 𝑔2

2 𝑔3
2

𝑎1
2 𝑎1

2𝑔1
2 𝑎1

2𝑔2
2 𝑎1

2𝑔3
2

𝑎2
2 𝑎2

2𝑔1
2 𝑎2

2𝑔2
2 𝑎2

2𝑔3
2

𝑎3
2 𝑎3

2𝑔1
2 𝑎3

2𝑔2
2 𝑎3

2𝑔3
2

]]]]]]]

]

. (4.22)
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4.4.1 Additional Measurements

In order to expand the space coverage, more measurements need to be added. To do so

while keeping system rank equal to the number of measurements means that each addi-

tional column in V ′ needs to be orthogonal to every pre-existing one. Assuming the limit

of using fully-polarized measurements, then the new analyzing vector pair A2,± needs to

be orthogonal to the pre-existing analyzing vector pair A1,± in the Poincaré sphere space.

Thus, once the first pair is selected, the new pair is bound to the space of the orthogonal

circle. Once A2,± is chosen, there is only one more orthogonal set of vectors A3,± that can

be added. This is shown in Figure 4.5.

It is important tomake the connection between this general case and the one discussed

in Section 4.B. If four measurements are made from each combination in A1,±, A2,± and

A3,±, then the systemwill have𝑁 = 12 and𝑅 = 10, as is the case for the systemdescribed by

Equations 4.10a and 4.10b. This is because each block is capable of reconstructing 𝑚00 on

its own andmeasuring it three times will have the effect of averaging, and thereby lowering

the noise in its reconstruction. In order to keep 𝑁 = 𝑅 only one four-measurement set

specified by A1,± and up to two additional fewer-than-fourmeasurements specified by A2,±

and A3,± must be taken. This produces 16 possible measurement schemes. By denoting

the set as 4𝑖𝑗 and requiring that 4 > 𝑖 ≥ 𝑗, the six redundant schemes can be ignored as can

be seen in Fig. 4.6.

Purely for purposes of simplifying the notation, define the analyzing and generating

vectors of the one-, two- and three-measurement cases as:

A3 ⇒ 1
2 [ A+ A− A− ]

T
, (4.23a)

G3 ⇒ [ G+ G+ G− ]
T
, (4.23b)

A2 ⇒ 1
2 [ A+ A− ]

T
, (4.23c)

G2 ⇒ [ G+ G− ]
T
, (4.23d)

A1 ⇒ 1
2 [ A+ ]

T
, (4.23e)

G1 ⇒ [ G+ ]
T
. (4.23f)

It can be shown that this selection considers all possible combinations. The ± only de-
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Figure 4.5: Solid and dashed red vectors represent A1,+ and A1,−, respectively. Same prin-
ciple is used to represent A2,± and A3,± with blue and green vectors, respectively. All three
sets need to be orthogonal within the 3-space of the Poincaré sphere in order to main-
tain 𝑁 = 𝑅. The animation shows how additional measurements constrain further vector
selection. (Animation available in the digital version)
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Figure 4.6: Possible sets of measurements that maintain the optimal 𝑁 = 𝑅.
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notes the operation on the 𝑎1/𝑔1, 𝑎2/𝑔2, and 𝑎3/𝑔3, but a selection of a different vector can

effectively construct all other combinations within the syntax implied by ±.

The denoted characteristics of these measurements are only correct if 𝑚00 is known.

Thus, they can only be used as additional measurements and their measurement sub-

matrices are:

W3 =
[[[[

[

(A+ ⊗ G+)
T

(A− ⊗ G+)
T

(A− ⊗ G−)
T

]]]]

]

, (4.24a)

W2 = [

[

(A+ ⊗ G+)
T

(A− ⊗ G−)
T

]

]
, (4.24b)

W1 = [ (A+ ⊗ G+)
T ] , (4.24c)

and the sub-reconstructables matrices are:

B3 =

[[[[[[[

[

0 𝑔1
2 𝑔2

2 𝑔3
2

𝑎1
2 𝑎1

2𝑔1
2 𝑎1

2𝑔2
2 𝑎1

2𝑔3
2

𝑎2
2 𝑎2

2𝑔1
2 𝑎2

2𝑔2
2 𝑎2

2𝑔3
2

𝑎3
2 𝑎3

2𝑔1
2 𝑎3

2𝑔2
2 𝑎3

2𝑔3
2

]]]]]]]

]

, (4.25a)

B2 =
1
2

[[[[[[[

[

0 𝑔1
2 𝑔2

2 𝑔3
2

𝑎1
2 2𝑎1

2𝑔1
2 2𝑎1

2𝑔2
2 2𝑎1

2𝑔3
2

𝑎2
2 2𝑎2

2𝑔1
2 2𝑎2

2𝑔2
2 2𝑎2

2𝑔3
2

𝑎3
2 2𝑎3

2𝑔1
2 2𝑎3

2𝑔2
2 2𝑎3

2𝑔3
2

]]]]]]]

]

, (4.25b)

B1 =
1
3

[[[[[[[

[

0 𝑔1
2 𝑔2

2 𝑔3
2

𝑎1
2 𝑎1

2𝑔1
2 𝑎1

2𝑔2
2 𝑎1

2𝑔3
2

𝑎2
2 𝑎2

2𝑔1
2 𝑎2

2𝑔2
2 𝑎2

2𝑔3
2

𝑎3
2 𝑎3

2𝑔1
2 𝑎3

2𝑔2
2 𝑎3

2𝑔3
2

]]]]]]]

]

. (4.25c)

The total measurement matrix of a 4𝑖𝑗 system is

W4𝑖𝑗 = [ WT
4 W

T
𝑖 W

T
𝑗 ]

T
. (4.26)

The constraints placed on A2,± and A3,± mean that the reconstructables matrix is the sum
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of the sub-matrices

B4𝑖𝑗 = B4 + B 𝑖 + B𝑗. (4.27)

4.4.2 Structured Decomposition

As before, SVD can be performed on the matrix to find the space coverage and noise re-

silience of any given polarimeter. However, in the case of being limited to the defined class

of 4𝑖𝑗 pMMP systems, a structured decomposition can be introduced

W4𝑖𝑗 = U 𝑠,4𝑖𝑗Σ 𝑠,4𝑖𝑗V
T
𝑠,4𝑖𝑗, (4.28)

where 𝑠 differentiates this decomposition from the typical SVD. The goal of this decompo-

sition is to be easily parsable by a human andprovide an intuitive viewof pMMPproperties.

The following are the structured matrices for any 4𝑖𝑗 system:

U 𝑠,4𝑖𝑗 =
[[[[

[

[√ 1N]
𝑁×1

U ′
4 04×𝑖 04×𝑗

0 𝑖×3 U
′
𝑖 0 𝑖×𝑗

0𝑗×3 0𝑗×𝑖 U
′
𝑗

]]]]

]

, (4.29)

Σ 𝑠,4𝑖𝑗 = √1
4
diag( 𝑁 ⃗𝜍4 ⃗𝜍𝑖 ⃗𝜍𝑗 ), (4.30)

V 𝑠,4𝑖𝑗 = [ V ′
4 V

′
𝑖 V

′
𝑗 ] , (4.31)

where the left structured sub-matrices are:

U ′
4 =

1
√4

[[[[[[[

[

1 1 1

−1 1 −1

1 −1 −1

−1 −1 1

]]]]]]]

]

, (4.32a)

U ′
3 =

1
√3

[[[[

[

1 1 1

1 −1 −1

−1 −1 1

]]]]

]

, (4.32b)

U ′
2 =

1
√2

[

[

1 1

−1 1
]

]
, (4.32c)

U ′
1 =

1
√1

[ 1 ] , (4.32d)
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the effectively rotated singular values are:

⃗𝜍4 = {4, 4, 4} , (4.33a)

⃗𝜍3 = {3, 3, 3} , (4.33b)

⃗𝜍2 = {4, 2} , (4.33c)

⃗𝜍1 = {3} , (4.33d)

while the right structured sub-matrices can be defined in terms of Equation 4.20. Express-

ing V ′
4 = [ v1 v2 v3 v4 ], leads to the corresponding structured sub-matrices:

V ′
4 = [ v1 v2 v3 v4 ] , (4.34a)

V ′
3 = [ v2 v3 v4 ] , (4.34b)

V ′
2 = [ 1

√2 (v2 + v3) v4 ] , (4.34c)

V ′
1 = [ 1

√3 (v2 + v3 + v4) ] . (4.34d)

Procedures defined above creatematrices that are orthogonal in both dimensions, but nor-

malizable only in one. To quantify noise resilience, knowledge of the product Σ+𝑠,4𝑖𝑗U
+
𝑠,4𝑖𝑗 is

necessary. Calculating Σ+𝑠,4𝑖𝑗 is trivial because Σ 𝑠,4𝑖𝑗 is diagonal, while calculating U+
𝑠,4𝑖𝑗 is

more challenging. However, for 4𝑖𝑗 systems, it can be shown that

U+
𝑠,4𝑖𝑗 =

[[[[[[[[

[

[√ N16]
1×4

01×𝑖 01×𝑗

U ′
4
+ 03×𝑖 03×𝑗

R 𝑖 U ′
𝑖
+ 0 𝑖×𝑗

R𝑗 0𝑗×𝑖 U
′
𝑗
+

]]]]]]]]

]

(4.35)

is a correct inverse, where

U ′
4
+ = U ′

4
T, (4.36a)

U ′
3
+ =

√3
2

[[[[

[

1 1 0

0 −1 −1

1 0 1

]]]]

]

, (4.36b)

U ′
2
+ = U ′

2
T, (4.36c)

U ′
1
+ = U ′

1
T, (4.36d)
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and

R3 = √ 3
16

[[[[

[

−1 −1 −1 −1

1 1 1 1

−1 −1 −1 −1

]]]]

]

, (4.37a)

R2 = √ 2
16

[

[

0 0 0 0

−1 −1 −1 −1
]

]
, (4.37b)

R1 = √ 1
16

[ −1 −1 −1 −1 ] . (4.37c)

4.4.3 Noise Resilience

Following the same additive noise model as prescribed by Equation 1.22, the noise can be

projected into the respective directions of the sensor space (Wang et al. (2007)), V :

n⃗ ′ = W+
4𝑖𝑗 n⃗ , (4.38)

where the pseudoinverse can be written within the context of 4𝑖𝑗 systems as

W+
4𝑖𝑗 = V 𝑠,4𝑖𝑗Σ

+
𝑠,4𝑖𝑗U

+
𝑠,4𝑖𝑗 = V 𝑠,4𝑖𝑗L V 𝑠,4𝑖𝑗 . (4.39)

L V 𝑠,4𝑖𝑗 contains the mapping weights of information for each of the vectors of V 𝑠,4𝑖𝑗:

L V 𝑠,4𝑖𝑗 = [ ℓT
v 1 ℓT

v 2 ⋯ ℓT
v𝑁

]
T
. (4.40)

Since the pMMP’s sensor space contains 𝑁 vectors, L V 𝑠,4𝑖𝑗 also contains 𝑁 channels. The

Euclidean length of each of those vectors represents the noise magnitude in each of the

vectors of V 𝑠,4𝑖𝑗,

𝑝v = ||ℓ v ||2. (4.41)

For each measurement set, the matrix multiplications reveal that each of the vectors mak-

ing up V 𝑠,4𝑖𝑗 will have easily identifiable noise magnitudes:

P V 4 = [ 1 1 1 1 ]
T
, (4.42a)

P V 3 = [ √3 √3 √3 ]
T
, (4.42b)

P V 2 = [ 1 √3 ]
T
, (4.42c)

P V 1 = [ √ 5
3

]
T
. (4.42d)
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Finally, the total noise magnitude vector is the concatenation of the ones defined above,

P V 𝑠,4𝑖𝑗 = [ PTV 4 P
T
V 𝑖 P

T
V 𝑗 ]

T
. (4.43)

However, since the intent of this exercise is to build systems that perform the best for a

given task, it also follows that it would be desired to evaluate system performance not for

the entire sensor space, but for the scene space instead (Wang et al. (2007)). This space is a

collection ofMueller vector targets that are of interest for a given task and is to be compared

with V . Denote the scene space as Y to match its computational representation, Y , and

define a transformation to the sensor space,

T = Y\V 𝑠,4𝑖𝑗, (4.44)

which can be used to combine 𝑅 supported vectors into the vectors approaching Y or

estimating Y ,

ŶT = TVT
𝑠,4𝑖𝑗. (4.45)

Note that while P V 𝑠,4𝑖𝑗 represents the noise magnitude for the reconstructable vectors rep-

resented by V 𝑠,4𝑖𝑗, it would be incorrect to use these absolute magnitudes to map noise

from reconstructables to the desired channels. Instead, the noise characteristics contained

within L V 𝑠,4𝑖𝑗 need to be similarly mapped:

L Y = TL V 𝑠,4𝑖𝑗 = [ ℓT
y 1 ℓT

y 2 ⋯ ℓT
y𝐾

]
T
, (4.46)

where 𝐾 is the total number of vectors in Y . The resulting noise magnitudes within those

vectors can be evaluated in a philosophically equivalent way,

𝑝y = ||ℓ y ||2, (4.47)

and then can be combined into a total magnitude vector

P Y = [ 𝑝y 1 𝑝y 2 ⋯ 𝑝y𝐾 ]
T
. (4.48)

4.4.4 Space Coverage

To properly evaluate a given partial system, it is important to know not only the system’s

noise resilience, but also the closeness of the sensor space to the scene space, which can



111

be described by 𝐾 ordered canonical angles 𝜁1 ≤ 𝜁2 ≤ … ≤ 𝜁𝐾 Hotelling (1936). The first

canonical angle 𝜁1 is

𝜁1 = cos−1 ( min
v̂ 1∈V , ŷ

1
∈Y

( v̂1 ⋅ ŷ
1
)) . (4.49)

Subsequent canonical angles are computed by evaluating Equation 4.49 with the portions

of subspaceV remaining after the elimination of ̂v1. The best case scenario is when 𝜁𝐾 = 0,

which means Y ⊂ V , and the pMMP spans the desired channels.

While Equation 4.49 provides an intuitive interpretation of the canonical angles, there

are more efficient ways of computing the angles, like forming the auxiliary matrix

X = Y − V(VTY) = [ x1 x2 ⋯ x𝐾 ] . (4.50)

and computing the canonical angles its the singular values as (Knyazev and Argentati

(2002))

𝜁𝑘 = arcsin(𝜎x 𝑘). (4.51)

4.5 Example of pMMP Optimization

To find the best pMMP design for a given task, both noise resilience and space coverage

need to be optimized. Because those properties are not inherently guaranteed to have

overlappingminimums, the solution is invariably bound to be a point on the Pareto surface

of a multi-objective optimization problem. The following metric

argmin
⃗𝜉

[[[[[

[

𝐾

∑
𝑘=1

(𝛼𝑘𝑝y 𝑘)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜀1

+𝑤
𝐾

∑
𝑘=1

(𝛽𝑘𝜎x 𝑘)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜀2

]]]]]

]

(4.52)

successfully finds appropriate pMMPdesigns. The choice of𝑤, {𝛼𝑘} and {𝛽𝑘} provides han-

dles to adjust the importance of all the various parameters, while the optimization variable

vector ⃗𝜉 contains six values to construct three generating and three analyzing vector pairs.

The first four variables define 𝜙G 1 , 𝜃G 1 , 𝜙A 1 and 𝜃A 1 to produce vectors G1,± and A1,±,

while the second two variables define 𝜓𝐺 and 𝜓𝐴 to prescribe where G2,±, A2,±, G3,± and

A3,± reside on the orthogonal circles with respect to G1,± and A1,±.
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To illustrate the design of pMMPs, consider the example presented in Hoover and Tyo

(2007). Four different coupons of an ABS plastic material were exposed to different flu-

ences of high energy laser energy, and the resulting damaged samples had their monostatic

Mueller matrices measured at a range of angles from −20∘ to 20∘. Performing SVD of the

data reveals that the most fundamental three measurement channels are

Y =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

−0.9204 0.3097 0.2378

−0.0347 0.0410 −0.2480

−0.0010 0.0034 −0.0136

−0.0003 0.0007 0.0088

−0.0318 0.0524 −0.2356

−0.2757 −0.4730 −0.4418

−0.0010 −0.0043 −0.0050

−0.0004 0.0033 −0.0085

0.0035 −0.0039 0.0207

0.0013 −0.0043 0.0138

0.2703 0.4860 0.3996

−0.0019 −0.0033 −0.0220

−0.0004 0.0008 −0.0008

0.0001 0.0023 −0.0037

0.0028 0.0017 0.0292

0.0398 0.6630 −0.6850

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

. (4.53)

Note that the original paper used covariance matrix principal component analysis that re-

sulted in a different set of channels, which did not include𝑚00 in any of themeasurements.

If𝑚00 is added back, then themaximum canonical angle between the two spaces is 3.1011∘.

The difference is small enough to be accounted for by the extra idealization step taken in

Hoover and Tyo (2007).

MATLAB’s built-in genetic algorithm routine is used together with Equation 5.24 to

optimize each of the 4𝑖𝑗 pMMP designs with 𝛼𝑘 = 𝛽𝑘 = 1 and 𝑤 = 25. Note that there is

nothing fundamental about the choice of𝑤—anumber of different weights between 1 and

100 were tried, and it was found that for this data set the value of 25 provided a good so-
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lution where the space coverage penalty was just significant enough for the reconstruction

of relevant information to be prioritized over the noise resilience.

Table 4.1 shows the systemperformances that were found for each of the defined classes

of polarimeters. The space coverage seems to be marginally better for the 422 system than

it is for the 432 or the 433, despite the latter two making more measurements and having

a capacity only to expand the space coverage if the 422 design is used as the base. That,

however, is purely an artifact of our choice of 𝑤, which leads to the optimizer finding a

solutionwith slightly better noise resilience by sacrificing some space coverage. Practically,

the designs should be evaluated on whether or not they can separate the different objects

classes. To determine which of these pMMPs accomplish that, it is necessary to look at the

object projections onto Ŷ . This can be captured by looking at how the proximity of each of

the 25 objects from each of the four types of objects to the nearby classes changes. Instead

of comparing data points directly, the comparison class is instead piece-wise interpolated

and the separation for each object/class both in Y and Ŷ is determined as:

𝑑𝛼,𝛽,𝛾,𝛿 =
|( ⃗𝑟𝛼,𝛾 − ⃗𝑟𝛽,𝛿) × ( ⃗𝑟𝛼,𝛾 − ⃗𝑟𝛽,𝛿+1)|

| ⃗𝑟𝛽,𝛿+1 − ⃗𝑟𝛽,𝛿|
, (4.54a)

̂𝑑𝛼,𝛽,𝛾,𝛿 =
|( ̂⃗𝑟𝛼,𝛾 − ̂⃗𝑟𝛽,𝛿) × ( ̂⃗𝑟𝛼,𝛾 − ̂⃗𝑟𝛽,𝛿+1)|

| ̂⃗𝑟𝛽,𝛿+1 − ̂⃗𝑟𝛽,𝛿|
, (4.54b)

where 𝛼 and 𝛽 represent the object classes, 𝛾 represents one of the 25 points within class

𝛼, and 𝛿 represents one of the 24 line segments created for class 𝛽. Evaluate the geometric

mean of the ratios of least separation,

ℎ𝛼,𝛽 = [
25

∏
𝛾=1

̂𝑑𝛼,𝛽,𝛾,min

𝑑𝛼,𝛽,𝛾,min
]

1
25

. (4.55)

When ℎ𝛼,𝛽 = 0, classes 𝛼 and 𝛽 have collapsed to lie on top of each other, while when

ℎ𝛼,𝛽 = 1, the separation between classes 𝛼 and 𝛽 has remained unchanged. In the case

that ℎ𝛼,𝛽 > 1, the separation within the reconstruction is greater than the original sepa-

ration. Although this presents a seemingly interesting scenario, this result is attributable

to non-linearities introduced by the averaging of different space projections and would be

compensated by another ℎ𝛼,𝛽 elsewhere.
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Examining the performance of each of the ten pMMPs optimized designs in Table 4.1

and Figures 4.7–4.16, it becomes clear that the 422 system is the first design of the defined

range of systems that accomplishes the task of matching the space coverage and thereby

separating the object projections adequately for object detection.

There is room to make the optimization routine more elaborate. For example, instead

of matching the scene and sensor spaces of any given pMMP class, object identification

can be done in the measurement space itself. This would require constructing a manifold

as a model for the object distribution in the 𝑁-dimensional space, applying the proper

noise model and looking at the separability of the classes within the measurement space.

Performing all of this in each of the optimization instantiations is computationally inten-

sive, as well as outside the scope of this development. A separate discussion is warranted

to address that level of optimization properly.

4.6 pMMP Calibration

The amount of literature describingMuellermatrix calibration is limited. Compain’s treat-

ment is one that described the process for a general case in enough mathematical detail to

suggest near optimal performance (Compain et al. (1999)). The drawback of the presented

method in that work is the assumption that a complete measurement task is performed,

which leads to a restrictive analysis that assumes that there are four analyzing and four

generating vectors. Since this chapter is interested in constructing systems that perform

partial measurements, a different approach suitable for calibration of pMMPs is required.

Rewrite Equation 1.20 as

IM ′−1 = W ′, (4.56)

where, initially, I is 𝑁×1 and M ′−1 is 1×16. Obviously,W ′ cannot be deduced using only

one M ′, i.e. one reference measurement object. Instead, considering 𝐾 Mueller vectors,

which are formed into a matrix, R ′. The measurement can then be written as

I R ′−1 = W ′, (4.57)

where R ′−1 is𝐾×16 and thereby I is𝑁×𝐾. With sufficiently large𝐾,W ′ can be determined

with sufficient accuracy. With this in mind, creating a proper R ′−1 requires a sufficiently
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Figure 4.7: Space coverage of 400 pMMP, 𝑁 = 4.
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Figure 4.8: Space coverage of 410 pMMP, 𝑁 = 5.
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Figure 4.9: Space coverage of 411 pMMP, 𝑁 = 6.
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Figure 4.10: Space coverage of 420 pMMP, 𝑁 = 6.
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Figure 4.11: Space coverage of 421 pMMP, 𝑁 = 7.
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Figure 4.12: Space coverage of 422 pMMP, 𝑁 = 8.
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Figure 4.13: Space coverage of 430 pMMP, 𝑁 = 7.
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Figure 4.14: Space coverage of 431 pMMP, 𝑁 = 8.
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Figure 4.15: Space coverage of 432 pMMP, 𝑁 = 9.
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Figure 4.16: Space coverage of 433 pMMP, 𝑁 = 10.
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diverse family of M ′s, which mirrors the requirements of the measurement matrix. Thus,

the goal is to create an invertible set of Mueller vectors, R ′.

The elements that are chosen for calibration are to be assumed to be ideal, thus it is

best to use elements that approximate their ideal counterparts well. A linear diattenuator

is perhaps one of the better elements by virtue of the existence of Glan-Thompson and

Wollaston polarizers that can provide around 10−6 extinction. The Mueller matrix for a

linear diattenuator can be seen in Equation 1.28, while its idealized polarizer form can be

seen in Equation 1.29. From theMuellermatrix, it can be clearly seen that the polarizer can

only span the linear–linear 3×3 block of theMuellermatrix. To addmoreMueller elements

to the calibration, retarders can be introduced, the Mueller matrix of which can be seen in

Equation 1.30. In the most general case, calibration can be performed via insertion of a

black box that is the ideal polarizer sandwiched between two retarders

X = MLR(𝛿2, 𝜙2)MLP(𝜃)MLR(𝛿1, 𝜙1), (4.58)

where 𝛿𝑖s and 𝜙𝑖s are the retardances and the orientations of the two retarders, and 𝜃 is the

orientation of the polarizer in the middle. Following Equation 1.19, the Mueller matrix
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can be rewritten as a Mueller vector

X ′ =
1
2

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

1

c(2𝜃)(c(2𝜙1)
2 + c(𝛿1)s(2𝜙1)

2) − c(2𝜙1)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1)

s(2𝜃)(c(𝛿1)c(2𝜙1)
2 + s(2𝜙1)

2) − c(2𝜙1)c(2𝜃)s(2𝜙1)(c(𝛿1) − 1)

c(2𝜙1)s(2𝜃)s(𝛿1) − c(2𝜃)s(2𝜙1)s(𝛿1)

c(2𝜃)(c(2𝜙2)
2 + c(𝛿2)s(2𝜙2)

2) − c(2𝜙2)s(2𝜙2)s(2𝜃)(c(𝛿2) − 1)

(c(2𝜃)2(c(2𝜙1)
2 + c(𝛿1)s(2𝜙1)

2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))(c(2𝜙2)
2 + c(𝛿2)s(2𝜙2)

2)

−c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜃)s(2𝜃)(c(2𝜙1)
2 + c(𝛿1)s(2𝜙1)

2) − c(2𝜙1)s(2𝜙1)s(2𝜃)
2(c(𝛿1) − 1))

(c(2𝜃)s(2𝜃)(c(𝛿1)c(2𝜙1)
2 + s(2𝜙1)

2) − c(2𝜙1)c(2𝜃)
2s(2𝜙1)(c(𝛿1) − 1))(c(2𝜙2)

2 + c(𝛿2)s(2𝜙2)
2)

−c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(s(2𝜃)2(c(𝛿1)c(2𝜙1)
2 + s(2𝜙1)

2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))

−(c(2𝜃)2s(2𝜙1)s(𝛿1) − c(2𝜙1)c(2𝜃)s(2𝜃)s(𝛿1))(c(2𝜙2)
2 + c(𝛿2)s(2𝜙2)

2)

−c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜙1)s(2𝜃)
2s(𝛿1) − c(2𝜃)s(2𝜙1)s(2𝜃)s(𝛿1))

s(2𝜃)(c(𝛿2)c(2𝜙2)
2 + s(2𝜙2)

2) − c(2𝜙2)c(2𝜃)s(2𝜙2)(c(𝛿2) − 1)

(c(2𝜃)s(2𝜃)(c(2𝜙1)
2 + c(𝛿1)s(2𝜙1)

2) − c(2𝜙1)s(2𝜙1)s(2𝜃)
2(c(𝛿1) − 1))(c(𝛿2)c(2𝜙2)

2 + s(2𝜙2)
2)

−c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜃)2(c(2𝜙1)
2 + c(𝛿1)s(2𝜙1)

2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))

(s(2𝜃)2(c(𝛿1)c(2𝜙1)
2 + s(2𝜙1)

2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))(c(𝛿2)c(2𝜙2)
2 + s(2𝜙2)

2)

−c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜃)s(2𝜃)(c(𝛿1)c(2𝜙1)
2 + s(2𝜙1)

2) − c(2𝜙1)c(2𝜃)
2s(2𝜙1)(c(𝛿1) − 1))

(c(2𝜙1)s(2𝜃)
2s(𝛿1) − c(2𝜃)s(2𝜙1)s(2𝜃)s(𝛿1))(c(𝛿2)c(2𝜙2)

2 + s(2𝜙2)
2)

+c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜃)2s(2𝜙1)s(𝛿1) − c(2𝜙1)c(2𝜃)s(2𝜃)s(𝛿1))

c(2𝜃)s(2𝜙2)s(𝛿2) − c(2𝜙2)s(2𝜃)s(𝛿2)

−c(2𝜙2)s(𝛿2)(c(2𝜃)s(2𝜃)(c(2𝜙1)
2 + c(𝛿1)s(2𝜙1)

2) − c(2𝜙1)s(2𝜙1)s(2𝜃)
2(c(𝛿1) − 1))

+s(2𝜙2)s(𝛿2)(c(2𝜃)
2(c(2𝜙1)

2 + c(𝛿1)s(2𝜙1)
2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))

−c(2𝜙2)s(𝛿2)(s(2𝜃)
2(c(𝛿1)c(2𝜙1)

2 + s(2𝜙1)
2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))

+s(2𝜙2)s(𝛿2)(c(2𝜃)s(2𝜃)(c(𝛿1)c(2𝜙1)
2 + s(2𝜙1)

2) − c(2𝜙1)c(2𝜃)
2s(2𝜙1)(c(𝛿1) − 1))

−c(2𝜙2)s(𝛿2)(c(2𝜙1)s(2𝜃)
2s(𝛿1) − c(2𝜃)s(2𝜙1)s(2𝜃)s(𝛿1))

−s(2𝜙2)s(𝛿2)(c(2𝜃)
2s(2𝜙1)s(𝛿1) − c(2𝜙1)c(2𝜃)s(2𝜃)s(𝛿1))

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

, (4.59)

where c(𝑥) = cos(𝑥) and s(𝑥) = sin(𝑥). By adjusting 𝜃, 𝜙1 and 𝜙2, all Mueller non-𝑚00

elements can be modulated, therefore obtaining a reference object that spans the entire

space. Those variables can be optimized such that the Mueller objects create R ′ that is as

well conditioned as possible.

Before jumping into the optimization, it can be recognized that this process will effec-

tively feature the same math as the measurement optimization, which has been performed

many times. The optimally sampled sixteen-reference measurement will then correspond

to a tetrahedron in both the A and G equivalents. Jumping directly to the optimal answer:
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𝛿1 = 𝛿2 = arccos (−2/3) ≈ 131.810∘, (4.60a)

𝜙1 = 𝜙2 = {−𝜓2, −𝜓1, +𝜓1, +𝜓2} , (4.60b)

where

𝜓1 =
π
2

−
1
5
arccos (

1 − 2√3
5

) ≈ 51.6925∘, (4.61a)

𝜓2 = arccos(√1 + √√3+2
5

2
) ≈ 15.1185∘. (4.61b)

In order to obtain retarders with very accurate retardance, custom Fresnel rhombs can be

manufactured and by stacking two of them together, the optical axis can be maintained.

The advantage of using such a construction is that the Mueller matrix can be calculated

directly based on the index of refraction, 𝑛(𝜆), and the face angle of the rhomb, 𝛼 (different

from 𝛼 = 𝑞 + 𝑟 that was used before).

Consider the pMMP polarimeter at Dayton AFRL. For the purposes of this exercise, it

is sufficient to describe the system in terms of its PSG and PSA designs. The PSG can be

equivalently described with a RR hand that is described in Section 1.6.1, while the PSA is a

rotating analyzer (RA) hand, which only has access to linear polarization. This corresponds

to the reconstructables matrix

B =

[[[[[[[

[

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

]]]]]]]

]

, (4.62)

which suggests that the reference-object modulation in the bottom row is unnecessary.

Thus, the second retarder provides no utility, leaving only

X = MLP(𝜃)MLR(𝛿1, 𝜙1), (4.63)
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or

X ′ =
1
2

[[[[[[[[[[[[[[[[[[[[[[[[[

[

1

cos(2𝜃)(cos(2𝜙1)
2 + cos(𝛿1)sin(2𝜙1)

2) − cos(2𝜙1) sin(2𝜙1) sin(2𝜃)(cos(𝛿1) − 1)

sin(2𝜃)(cos(𝛿1)cos(2𝜙1)
2 + sin(2𝜙1)

2) − cos(2𝜙1) cos(2𝜃) sin(2𝜙1)(cos(𝛿1) − 1)

cos(2𝜙1) sin(2𝜃) sin(𝛿1) − cos(2𝜃) sin(2𝜙1) sin(𝛿1)

cos(2𝜃)

cos(2𝜃)2(cos(2𝜙1)
2 + cos(𝛿1)sin(2𝜙1)

2) − cos(2𝜙1) cos(2𝜃) sin(2𝜙1) sin(2𝜃)(cos(𝛿1) − 1)

cos(2𝜃) sin(2𝜃)(cos(𝛿1)cos(2𝜙1)
2 + sin(2𝜙1)

2) − cos(2𝜙1)cos(2𝜃)
2 sin(2𝜙1)(cos(𝛿1) − 1)

cos(2𝜙1) cos(2𝜃) sin(2𝜃) sin(𝛿1) − cos(2𝜃)2 sin(2𝜙1) sin(𝛿1)

sin(2𝜃)

cos(2𝜃) sin(2𝜃)(cos(2𝜙1)
2 + cos(𝛿1)sin(2𝜙1)

2) − cos(2𝜙1) sin(2𝜙1)sin(2𝜃)
2(cos(𝛿1) − 1)

sin(2𝜃)2(cos(𝛿1)cos(2𝜙1)
2 + sin(2𝜙1)

2) − cos(2𝜙1) cos(2𝜃) sin(2𝜙1) sin(2𝜃)(cos(𝛿1) − 1)

cos(2𝜙1)sin(2𝜃)
2 sin(𝛿1) − cos(2𝜃) sin(2𝜙1) sin(2𝜃) sin(𝛿1)

0

0

0

0

]]]]]]]]]]]]]]]]]]]]]]]]]

]

(4.64)

The optimal 𝛿 is still arccos (−2/3), however, calibration does not need to be performed

as measurements themselves, thus there is less pressure to take as few reference measure-

ments as possible. Many can be taken with the calibration system overdeterminining the

reconstruction of the system’s W ′, while using widely available 𝜆
4 Fresnel rhombs. This

would leave

X ′ =
1
2

[[[[[[[[[[[[[[[[[[[[[[[[[

[

1

cos(2𝜃)cos(2𝜙1)
2 + sin(2𝜙1) sin(2𝜃) cos(2𝜙1)

sin(2𝜃)sin(2𝜙1)
2 + cos(2𝜙1) cos(2𝜃) sin(2𝜙1)

cos(2𝜙1) sin(2𝜃) − cos(2𝜃) sin(2𝜙1)

cos(2𝜃)

cos(2𝜙1)
2cos(2𝜃)2 + sin(2𝜙1) sin(2𝜃) cos(2𝜙1) cos(2𝜃)

cos(2𝜙1)cos(2𝜃)
2 sin(2𝜙1) + sin(2𝜃) cos(2𝜃)sin(2𝜙1)

2

cos(2𝜙1) cos(2𝜃) sin(2𝜃) − cos(2𝜃)2 sin(2𝜙1)

sin(2𝜃)

cos(2𝜃)cos(2𝜙1)
2 sin(2𝜃) + sin(2𝜙1) cos(2𝜙1)sin(2𝜃)

2

sin(2𝜙1)
2sin(2𝜃)2 + cos(2𝜙1) cos(2𝜃) sin(2𝜙1) sin(2𝜃)

cos(2𝜙1)sin(2𝜃)
2 − cos(2𝜃) sin(2𝜙1) sin(2𝜃)

0

0

0

0

]]]]]]]]]]]]]]]]]]]]]]]]]

]

, (4.65)

which would result in a Mueller vector that can be stacked and optimized to provide a set

of objects to provide a base for the reconstruction of the necessary channels. The drawback



130

of 𝜆
4 -plate is that the SNR will not be equally distributed among channels, but as alluded

to before, the accuracy of our calibration can be increased by increasing the number of

measurements.

Define the following set of reference-objects:

R ′ = [ X ′
1,1 X

′
1,2 ⋯ X ′

1,𝑀 X
′
2,1 ⋯ X ′

𝐿,1 ⋯ X ′
𝐿,𝑀 ]

T
, (4.66)

where 𝑀 is the number of polarizer orientations and 𝐿 is the number of retarder orien-

tations. For each object, the polarimeter would be cycled through the 𝑁 measurements,

whichwouldwould correspond to amatrix of intensities, I , that is𝑁×(𝑀×𝐿). Multiplying

it by R ′−1 will reveal the experimental W ′
exp.

If 36 reference objects are desired, that can be done by taking measurements at every

combination of six 𝜃s and six 𝜙1s. Since 𝜃 is varied only to change the linear states, the

optimal distribution is that of equally distributed vectors along the equator of the Poincarè

sphere. The Stokes-CN for that will be equal to√2. The𝜙1 would need to be varied through

{±10.8572, ±38.0991, ±57.8539}1 to produce a Stokes-CNof∼ 3.2645. The net result would

be a set of reference objects, with a Total-CN (a product of analyzer Stokes-CN and gener-

ator Stokes-CN) of 4.6167. However, if 12 reference objects are desired, that can be done

by taking measurements at every combination of three 𝜃s and four 𝜙1s. Assuming that an

ideal retarder with 𝛿 = arccos (−2/3) is used, it would be possible to get a Total-CN of
√6 ∼ 2.4495. The results can be further improved by determining the potential errors that

can deviate the W ′. An example of this consideration follows.

Any calibration attempt needs to be applicable to any generic system that requires cal-

ibration of all 16 elements. Without calibration, and provided diligent effort in system’s

construction, the best assumption that can be made is that Wcal = W ideal. The goal of

calibration is then to identify the deviations within W true from W ideal, so that the correct

measurement matrix can be used, i.e., Wcal → W true. A metod of enumerated errors is

introduced here to limit the subspace, which the systemmight occupy. In order to evaluate
1minimized for ℓ2 norm
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the proximity of the calibrated matrix to the true matrix, define the following metric,

𝜀(W ′
cal,W

′
true, R

′, R ′
true) =

|||||

|

|||||

|

W ′+
calW ′

trueR ′
true

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
I ′

−W ′+
trueW ′

trueR ′

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
I ′

|||||

|

|||||

|Fro

(4.67)

= ||W ′+
cal I

′ − R ′||
Fro

, (4.68)

where R ′
true represents the true set of objects in order to differentiate it from the assumed

R ′. This will allow to incorporate the ability to evaluate the required precision of the ref-

erence objects. The first form of the metric includes the term W ′+
trueW

′
true to provide auto-

matic masking of R ′ in case of a partial Mueller matrix polarimeter. This is not critical for

a full system, but must be performed for a pMMP like in the case of the AFRL polarime-

ter defined above. The discussion provided tools to treat calibration of a partial system,

however a calibration of a full system is probably most useful to denote here. Define the

parameters that will determine the polarimeter by its generator and analyzer parameters,

⃗𝜉𝐺 = {𝑞𝐺, 𝑟𝐺, ⃗𝜃𝐺
LR, 𝛿

𝐺
LR 1 ,

⃗𝜃𝐺
LR1 , 𝛿

𝐺
LR2 ,

⃗𝜃𝐺
LR2} , (4.69a)

⃗𝜉𝐴 = {𝑞𝐴, 𝑟𝐴, ⃗𝜃𝐴
LR, 𝛿

𝐴
LR 1 ,

⃗𝜃𝐴
LR1 , 𝛿

𝐴
LR2 ,

⃗𝜃𝐴
LR2} . (4.69b)

The full set of parameters is then: ⃗𝜉 = { ⃗𝜉𝐺, ⃗𝜉𝐴} and in the case of the AFRL polarimeter cal-

ibration, the variables can be appropriately constrained to collapse a non-existing element

into an identity matrix.

Suppose that a function 𝑓 can be written to map ⃗𝜉 into the corresponding W ′, the

metric can be rewritten in terms of that function,

argmin
Δ𝜉𝑖𝑐

[𝜀 (𝑓( ⃗𝜉𝑖𝑐), 𝑓( ⃗𝜉true), R
′, R ′

true)] , (4.70)

where Δ ⃗𝜉𝑖𝑐 represents the enumerated errors within each parameter from the idealized

set to the calibrated set as a collection of optimization variables. The simulation tested a

number (𝐾 = 1 to 𝐾 = 16) of different random non-depolarizing object sets. These diat-

tenuators were perturbed with Gaussian noise of specified width to produce R ′
true. After
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W ′
𝑐 was found, it was put through an optimally conditioned full collection of sixteen ob-

jects. Simulation was run with ten instantiation of R ′. The results can be seen in Figure

4.17.

Unsurprisingly, Figure 4.17 shows that in order to calibrate the system well, the ref-

erence objects need to be known pretty well — errors beyond 0.1∘ lead to questionable

performance. Enumerating the errors had the effect of constraining the system in a way

that even a small number of measurements is sufficient to calibrate the system. The results

show that 𝐾 = 3 may be enough.

4.7 Conclusion

Muellermatrix polarimeters have demonstrated utility recently to assist in target identifica-

tion, and the use of partial Mueller matrix polarimeters provides a way to develop a sensor

that measures the polarization features needed for a particular detection or classification

task without having to measure the full Mueller matrix. Previous designs of pMMPs have

been ad hoc, in that the polarimeters were developed by hand. In some instances, there

was no real attention paid to whether or not the pMMP was even physically realizable.

This chapter developed the theory of pMMPs that enables the structure of a pMMP to

be determined from the actual generator/analyzer pairs used to form its instrumentmatrix

W . By proper analysis ofW , it is possible to determine the portion ofMuellermatrix space

that a particular pMMP measures. The introduced metrics of optimality for pMMPs are

based on balancing their SNR performance with their closeness to the particular scene

space at hand. The performance of this optimization method was demonstrated for a case

previously presented in the literature (Hoover and Tyo (2007)).

Note that this chapter constructed pMMPs using the typical PSG and PSA with an im-

plied temporal modulation manifested through different alignments of linear polarizers

and linear retarders. This results in an effective dyadic basis for the pMMP measurement,

which is not guaranteed to be ideal. A future study can include a different set of target pro-

jections that would result in a different basis and would thereby require another analysis.
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Figure 4.17: Calibration convergence with different number of Mueller objects 𝐾 under
different reference precision. Note that the errorswere not administered to the polarization
components, but to the spherical coordinates of each analyzing and generating vector.
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CHAPTER 5

CHANNELED PARTIAL POLARIMETRY

Chapters 3 and 4 introduced the concepts of channeled polarimetry and partial polarime-

try, respectively. Each of those chapters developed its own set of tools that were useful for

describing the systems and leveraging the gained understanding of the matrix structure

to develop optimal systems. In this chapter, the concepts involved in each of these topics

are combined to describe chaneled partialMuellermatrix polarimeters (c-pMMPs). Given

what has been learned from Chapter 3 with respect to modulation frequencies determin-

ing the set of potential solutions, there remains a fairly small subspace of systems that was

left uncovered. In order to analyze these systems, this chapter will introduce structured

decomposition matrices akin to those used in Chapter 4.

5.1 Initial Evaluation

From Chapter 3, a full polarimeter was evaluated by calculating the covariance matrix of

the reduction matrix,

K Q+ = Q
+Q+†. (5.1)

The covariance matrix of Q+ is 16 × 16 matrix that contains the covariance of each com-

bination of the reconstruction vectors. Its diagonal contains the squares of the singular

values of Q , which are often used to determine the noise resilience of the system. For a

full system, EWV provides a way to consider performance uniformly across all the polar-

ization degrees of freedom by adding all of the variances together. However, if the intent

is to build a partial system, then it is necessary to adjust the evaluation metric to allow

preferential treatment of information. A primitive way to do it would be with a weighing

vector, u , that can be introduced to calculate a Weighted Variance (WV) as

WV = uT diag [K Q+] = ∑15
𝑘=0 𝑢𝑘/𝜎

2
Q+,𝑘. (5.2)
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Of course, that metric can only be useful for weighing isolated Mueller matrix element

preferences. However, as Chapter 4 made obvious, Mueller matrix space imposes a set of

measurement constraints and it might not be physically possible to measure exactly the set

of elements that you need. Instead, certain elements might be available as a linear combi-

nations of elements. In order to achieve the complete utility of understanding the resulting

conglomeration, singular value decomposition of Q is necessary. A similar derivation to

the one in Chapter 4 will be followed here to introduce the necessary notation in the con-

text of channeled systems. As before, Q can be written as

Q = U Q Σ QV
†
Q , (5.3)

where the matrices U and V are 𝑁 × 𝑁 and 16 × 16 complex, orthogonal matrices, re-

spectively, and Σ is a 𝑁 × 16 reduced diagonal matrix containing the 𝑁 singular values

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑁 > 0. In this context, 𝑁 is the number of channels created and the

pseudoinverse can be written as

Q+ = V Q Σ
+
QU

†
Q , (5.4)

where Σ+ is the 16 × 𝑁 reduced diagonal matrix containing the inverse of the singular

values. The rank of the measurement can be calculated as,

𝑅Q = tr(Q+Q). (5.5)

However, instead of providing a summary statistic, it is interesting to look at the diagonal

elements of this covariance matrix to see how the information from the 𝑁 channels is

distributed in the estimated Mueller matrix. Define the “reconstructables” matrix

B ′ = vec(B) = diag(Q+Q). (5.6)

For each Mueller 𝑘-th element (𝑚′
𝑘), √𝑏′

𝑘 tells the fraction of energy that is maintained

after reconstruction. When 𝑏′
𝑘 = 0, then 𝑚′

𝑘 ⟂ R and the information lies in the null

space of the measurement (LaCasse et al. (2011a, 2012)). When 𝑏′
𝑘 = 1, then 𝑚′

𝑘 ⊆ R

and the information can be reconstructed to within noise limitations. It can be shown that

∑𝑘=15
0 𝑏′

𝑘 = 𝑅, where 𝑅 is the rank of Q and is always an integer. Therefore, if a particular
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𝑏′
𝑘 is not an integer, it implies that the corresponding 𝑘-th element must be available for

reconstruction as a member of a linear combination of Mueller elements. To investigate

those details, the concept of structured decomposition needs to be ported over frompartial

systems of Chapter 4 and applied to the channeled systems of Chapter 3.

5.2 Structured Decomposition

As in Chapter 4, a structured decomposition of Q can be postulated. Its desired feature is

to bemore parsable by humans, and after seeing the structuredmatrices for non-channeled

pMMPs, it is expected that thesematrices would also have an analytically predictable form.

The benefit of that form is the ability to represent the system with variables, allowing for

direct calculation of the system needed to cover a given scene space. In this dissertation,

however, the analytical form is not demonstrated and will remain a topic of a future dis-

cussion. The structured decomposition for Q is

Q = U 𝑠,Q Σ 𝑠,QV
†
𝑠,Q = L+𝑠,QV

†
𝑠,Q , (5.7)

where U 𝑠,Q is𝑁×𝑅matrix containing left-column vectors, Σ 𝑠,Q is𝑅×𝑅matrix containing

structured singular values and V 𝑠,Q is 16 × 𝑅 matrix containing the right-column vectors

and representing the sensor space,V . As before, Σ 𝑠,Q cannot be used on its own to deter-

mine the noise resilience, but instead must be mapped with U 𝑠,Q . The decomposition can

be derived from SVD through a prescribed procedure. First, the null space partition of V

is cropped away to produce V ′, which spans the sensor space. Then, using Gaussian elimi-

nation, V ′T can be rewritten in its reduced row echelon form. That operation is performed

using the MATLAB code shown in Algorithm 5.1.

Algorithm 5.1 Reduced Row Echelon Form MATLAB Code
function A = rreff(A)

[m,n] = size(A);

i = 1;

j = 1;

while (i <= m) && (j <= n)

[~,k] = max(abs(A(i:m,j))); k = k+i-1;
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A([i k],j:n) = A([k i],j:n);

A(i,j:n) = A(i,j:n)/A(i,j);

for k = [1:i-1 i+1:m]

A(k,j:n) = A(k,j:n) - A(k,j)*A(i,j:n);

end

i = i + 1;

j = j + 1;

end

Lastly, each column is normalized and the resultant matrix is denoted as V 𝑠,Q , which is

significantly simplified with the similar caveat from Chapter 4, that it is no longer nor-

malizable in both dimensions and is therefore non-unitary. Though this may seem unfa-

vorable, the complexity of dealing with non-unitary matrices is easily overcome as will be

shown.

Since Q is known from the steps denoted in Chapter 3 and V 𝑠,Q is derived from the

SVD decomposition, it is trivial to calculate the auxiliary matrix, L+𝑠,Q :

L+𝑠,Q = Q/V†
𝑠,Q , (5.8)

which can be further decomposed into the product U 𝑠,Q Σ 𝑠,Q , where 𝐿2 norm of each col-

umn of L+𝑠,Q can be extracted into the corresponding effective singular value of Σ 𝑠,Q . The

reason that L is introduced as its pseudoinverse, rather than the forward matrix, is to mir-

ror the matrix of the same kind being introduced in Chapter 4, for which the decomposi-

tion in terms of Q still holds:

L 𝑠,Q = Σ+𝑠,QU
+
𝑠,Q = [ ℓT

v 1 ℓT
v 2 ⋯ ℓT

v𝑅
] . (5.9)

5.2.1 Noise Resilience

With the structured decomposition at hand, it is now possible to evaluate the system in

more detail. First, the noise performance is given by the Euclidean length of each of the

vectors of L 𝑠,Q ,

𝑝v = ||ℓ v ||2. (5.10)
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Concatenating them together into a noise magnitude vector describes the system’s noise

resilience for each of the reconstructable element combinations specified by the vectors of

V 𝑠,Q :

P 𝑠,Q = [ 𝑝v 1 𝑝v 2 ⋯ 𝑝v𝑅 ]
T
. (5.11)

Because the reconstructed elements are generally generally derived through different com-

binations of the same channels, the previously uncorrelated noise of each measurement is

now correlated between reconstructed elements. Thus, when looking for evaluating system

performance for any given subspace of interest, or scene space, Y , the noise characteristics

needs to be mapped through a transformation,

T = Y\V 𝑠,Q , (5.12)

which combines 𝑅 reconstructables into the vectors approaching Y or estimating Y ,

ŶT = TVT
𝑠,4𝑖𝑗. (5.13)

As before, L 𝑠,Q needs to be mapped into the appropriate space

L Y = TL V 𝑠,4𝑖𝑗 = [ ℓT
y 1 ℓT

y 2 ⋯ ℓT
y𝐾

]
T
, (5.14)

where 𝐾 is the total number of vectors in Y . The resulting noise magnitudes within those

vectors can be evaluated in a philosophically equivalent way,

𝑝y = ||ℓ y ||2, (5.15)

and then can be combined into a total magnitude vector

P Y = [ 𝑝y 1 𝑝y 2 ⋯ 𝑝y𝐾 ]
T
. (5.16)

5.2.2 Space Coverage

Because V 𝑠,Q is structured into a purely real space, evaluating the space proximity for a

partial system is no different than it is for a partial channeled system. The matrix,

X = Y − V 𝑠,Q (VT
𝑠,Q Y) , (5.17)

contains canonical angles within the singular values of its SVD,

𝜁𝑘 = arcsin(𝜎x 𝑘). (5.18)
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5.2.3 Example Decomposition

As an example, consider the 1D modulation channeled system with the same element

alignment as Hagen et al. (2007) and d = {1, 1, 1, 1}. After performing the SVD, and

simplifying the column-space, the structured right-column matrix is

V 𝑠,Q {1,1,1,1} =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

1
√2 0 0 0 0 0 0 0

0 1
√2 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0

0 0 0 1
√2 0 0 0 0

0 1
√2 0 0 0 0 0 0

1
√2 0 1

2 0 0 0 0 0

0 0 0 0 1
√2 0 0 0

0 0 0 0 0 1
√2 0 0

0 0 1
2 0 0 0 0 0

0 0 0 0 1
√2 0 0 0

0 0 0 0 0 0 1
√2 0

0 0 0 0 0 0 0 1
√2

0 0 0 1
√2 0 0 0 0

0 0 0 0 0 1
√2 0 0

0 0 0 0 0 0 0 1
√2

0 0 1
2 0 0 0 1

√2 0

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

, (5.19)

where certain measurement symmetries emerge. Because the PSG and the PSA contain

the same modulation frequencies, the measurements have a symmetric presence across

the Mueller matrix diagonal. The sensor space described by V 𝑠,Q {1,1,1,1} can be interpreted
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to contain the following vectors:

v1 =
1

√2
(𝑚00 + 𝑚11) (5.20a)

v2 =
1

√2
(𝑚01 + 𝑚10) (5.20b)

v3 =
1
2
(𝑚02 + 𝑚11 + 𝑚20 + 𝑚33) (5.20c)

v4 =
1

√2
(𝑚03 + 𝑚30) (5.20d)

v5 =
1

√2
(𝑚12 + 𝑚21) (5.20e)

v6 =
1

√2
(𝑚13 + 𝑚31) (5.20f)

v7 =
1

√2
(𝑚22 + 𝑚33) (5.20g)

v8 =
1

√2
(𝑚23 + 𝑚32) (5.20h)

within the system’s sensor space. The corresponding auxiliary matrix is

L+𝑠,Q {1,1,1,1} =

[[[[[[[[[[[[[[[[[[[[[

[

0 0 0 0 0 0 1
8√2

−𝑖
8√2

0 0 0 0 −1
4√2

𝑖
4√2 0 0

0 0 −1
2

𝑖
√8 0 0 − 1

√8
𝑖

4√2

0 1
√2 0 0 1

4√2
𝑖

4√2 0 0
√2 0 1 0 0 0 3

2√8 0

0 1
√2 0 0 1

4√2
−𝑖

4√2 0 0

0 0 −1
2

−𝑖
√8 0 0 − 1

√8
−𝑖

4√2

0 0 0 0 −1
4√2

−𝑖
4√2 0 0

0 0 0 0 0 0 1
8√2

𝑖
8√2

]]]]]]]]]]]]]]]]]]]]]

]

, (5.21)

which is clearly non-unitary and unnormalized in both dimensions. Normalizing its

columns and pulling those normalization factors into the diagonal of Σ 𝑠,Q {1,1,1,1} allows the
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auxiliary matrix to be further decomposed into the structured singular values,

Σ 𝑠,Q {1,1,1,1} =

[[[[[[[[[[[[[[[[[[

[

√2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 √ 3
2 0 0 0 0 0

0 0 0 1
2 0 0 0 0

0 0 0 0 1
√8 0 0 0

0 0 0 0 0 1
√8 0 0

0 0 0 0 0 0 √35
8 0

0 0 0 0 0 0 0 √5
8

]]]]]]]]]]]]]]]]]]

]

, (5.22)

and the left-column matrix,

U 𝑠,Q {1,1,1,1} =

[[[[[[[[[[[[[[[[[[[[[

[

0 0 0 0 0 0 1
√70

−𝑖
2√5

0 0 0 0 −1
2

𝑖
2 0 0

0 0 −1
√6

𝑖
√2 0 0 −√ 8

35
𝑖

√5

0 1
√2 0 0 1

2
𝑖
2 0 0

1 0 √ 2
3 0 0 0 √ 18

35 0

0 1
√2 0 0 1

2
−𝑖
2 0 0

0 0 −1
√6

−𝑖
√2 0 0 −√ 8

35
−𝑖
√5

0 0 0 0 −1
2

−𝑖
2 0 0

0 0 0 0 0 0 1
√70

𝑖
2√5

]]]]]]]]]]]]]]]]]]]]]

]

, (5.23)

which is still non-unitary, but unnormalized only in one dimension.

5.3 c-pMMP Performance

In this section, the performance of a number of channeled-partial systems is investigated.

In order to accomplish this task, the construction of Q follows the framework of Chapter

3, while evaluation principles are adapted from Chapter 4 into their channeled equivalents
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described in Sections 5.2.1 and 5.2.2. This chapter employs the same metric,

argmin
⃗𝜉

[[[[[

[

𝐾

∑
𝑘=1

(𝛼𝑘𝑝y 𝑘)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜀1

+𝑤
𝐾

∑
𝑘=1

(𝛽𝑘𝜎x 𝑘)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜀2

]]]]]

]

, (5.24)

where 𝜀1 is the noise resilience term, 𝜀2 is the space coverage term, and 𝑤 is the weighing

factor introduced to select the trade-off along the Pareto surface of the multi-objective

optimization. The same value of 25 is used here because the scene space is the same as in

Chapter 4:

Y =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

−0.9204 0.3097 0.2378

−0.0347 0.0410 −0.2480

−0.0010 0.0034 −0.0136

−0.0003 0.0007 0.0088

−0.0318 0.0524 −0.2356

−0.2757 −0.4730 −0.4418

−0.0010 −0.0043 −0.0050

−0.0004 0.0033 −0.0085

0.0035 −0.0039 0.0207

0.0013 −0.0043 0.0138

0.2703 0.4860 0.3996

−0.0019 −0.0033 −0.0220

−0.0004 0.0008 −0.0008

0.0001 0.0023 −0.0037

0.0028 0.0017 0.0292

0.0398 0.6630 −0.6850

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

. (5.25)

The system performances within the 4 × 4 × 4 × 4 sub-volume corresponding to the four

frequencies making up d ranging from 1 to 4 can be seen in Tables 5.1–5.3. From the

results presented in Tables 5.1–5.3, the systems with d = ( 1 1 1 1 ), d = ( 1 1 2 2 ),

d = ( 2 1 3 1 ), and d = ( 3 1 3 1 ) are examined further.
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Figure 5.1: Reconstruction of d = ( 1 1 1 1 ) c-pMMP.This systemhas𝑁 = 9 and𝑅 = 8.
Circles represent the different objects classes, corresponding to different damage states.
Lines represent their approximation. Reconstructions of object classes corresponding to
the red and green lines intersect.
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Figure 5.2: Reconstruction of d = ( 1 1 2 2 ) c-pMMP. This system has 𝑁 = 13 and
𝑅 = 11. Circles represent the different objects classes, corresponding to different damage
states. Lines represent their approximation. Reconstruction of the stray green object is
now separable from the red class.
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Figure 5.3: Reconstruction of d = ( 2 1 3 1 ) c-pMMP. This system has 𝑁 = 15 and
𝑅 = 14. Circles represent the different objects classes, corresponding to different damage
states. Lines represent their approximation. By virtue of being an almost full rank system,
the space is even closer to intended.



152

−1.4
−1.2

−1
−0.8

−0.6 −1
−0.5

0

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

y1 y2

y 3

Figure 5.4: Reconstruction of d = ( 3 1 3 1 ) c-pMMP. This system has 𝑁 = 17
and 𝑅 = 15. Circles represent the different objects classes, corresponding to different
damage states. Lines represent their approximation. This system manages to align the
reconstruction with the object classes.
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5.4 Discussion

It has been shown that studying structured matrices within the context of partial systems

is beneficial. However these matrices can further elucidate previously studied concepts

from Chapter 3. When applied to full systems, V 𝑠,Q is a 16 × 16 identity matrix and

Σ 𝑠,Q = diag(1, 1
√2 ,

1
2 ,

1
2 ,

1
√2 ,

1
2 ,

1
√8 ,

1
√8 ,

1
2 ,

1
√8 ,

1
4 ,

1
4 ,

1
2 ,

1
√8 ,

1
4 ,

1
4). Note that ∑16

𝑖=1
1

𝜎2𝑠,𝑖
= 121, which

corresponds to the ideal EWV of channeled systems in terms of the number of modu-

lations within each Mueller element. Thus, the non-optimality is completely contained

within U 𝑠,Q and the optimal full system must have a unitary U 𝑠,Q .

The results shown in Tables 5.1–5.3 and Figures 5.1–5.4 indicate that channeled-partial

Mueller matrix polarimeters can be successful in the task of object discrimination while

reducing the number of channels and thereby increasing the resolution of the domain (in

this case spectral) with which the polarization shares the bandwidth. The data set at hand

contains the default state as well as three damage states, which are more arbitrary than

intrinsically principal to detection. The difference between the red and green classes is

particularly minimal, which leads to the realization that this optimization scenario is not

ideal because the initial selection of classes of objects did not concern itself with the pMMP

or c-pMMP design-ability. For optimal results, the class selection and pMMP or c-pMMP

design needs to be performed at the same time for the system to be balanced. Having said

that, it is clear that even the c-pMMP with d = ( 1 1 1 1 ) is capable of providing

separability to the classes and with proper calibration could be useful. Though only the

d = ( 3 1 3 1 ) system with 𝑅 = 15 was able to approximate the space with low

maximum canonical angles, note that the d = ( 1 1 1 1 ) system with 𝑅 = 8 was also

able to separate the different damage state classes. The net separation as denoted by the

respective ℎ𝛼,𝛽 values seen in Tables 5.4–5.6 shows that the classes got closer: ℎ12 = 0.780,

ℎ23 = 1.021 and ℎ34 = 0.548. It is conceivable to adjust the space within which the target

identification is performed, thereby allowing to use fairly sparse number of channels for

the task. The c-pMMPs with d = ( 1 1 2 2 ), d = ( 2 1 3 1 ) and d = ( 3 1 3 1 )

represent steps from the systemwith themostminimalmodulation scheme to systems that

have rank gradually approaching that of a full system. Table 5.7 shows B , Q , as well as the
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structured form of measurable vectors v 𝑠,𝑖 and the corresponding noise variances 𝜎2
𝑠,𝑖 of

the four c-pMMP systems.

5.5 Conclusion

The concepts of channeled and partial polarimetry were combined to enable the design

of channeled-partial Mueller matrix polarimeters (c-pMMPs). By introducing structured

decomposition, themeasurementmatrix Q is further investigated to provide the user with

handles for evaluating the system’s noise resilience and space coverage directly from the

measurement matrix. As a result, the utility of c-pMMPs has been increased. Finally,

this chapter demonstrated the applicability of the developed tools on the data set used in

Chapter 4.
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Table 5.7: Reconstruction properties of the four c-pMMP systems of interest.

dT B Q 64𝜎2𝑠,𝑖 v 𝑠,𝑖

[[[[[[[

[

1

1

1

1

]]]]]]]

]

[[[[[[[

[

7
12
1
2
1
3
1
2

1
2
7
12
1
2
1
2

1
3
1
2
7
12
1
2

1
2
1
2
1
2
7
12

]]]]]]]

]

[[[[[[[[

[

]]]]]]]]

]

128 1
√2

[𝑚00 + 𝑚11]
64 1
√2

[𝑚01 + 𝑚10]
96 1
√4

[𝑚02 + 𝑚11 + 𝑚20 + 𝑚33]
16 1
√2

[𝑚03 + 𝑚30]
8 1
√2

[𝑚12 + 𝑚21]
8 1
√2

[𝑚13 + 𝑚31]
35 1
√2

[𝑚22 + 𝑚33]
5 1
√2

[𝑚23 + 𝑚32]

[[[[[[[

[

1

1

2

2

]]]]]]]

]

[[[[[[[

[

16
21
16
21
16
21
3
4

1 1 1 1
11
42
5
14
23
43
11
16

11
16
3
16
11
16
23
43

]]]]]]]

]

[[[[[[[[[[[[[

[

]]]]]]]]]]]]]

]

128 1
√2

[𝑚00 + 𝑚11]
32 [𝑚01]

240 1
√10

[𝑚02 − 2𝑚11 + 2𝑚20 + 𝑚33]
16 1
√2

[𝑚03 + 𝑚32]
16 [𝑚11]
84 1
√6

[𝑚12 + 2𝑚20 + 𝑚33]
12 1
√6

[𝑚13 + 2𝑚30 + 𝑚32]
12 [𝑚21]
14 1
√2

[𝑚22 + 𝑚33]
10 1
√2

[𝑚23 + 𝑚32]
4 [𝑚31]

[[[[[[[

[

2

1

3

1

]]]]]]]

]

[[[[[[[

[

21
22
21
22
2
3 1

2
3
2
3
3
11 1

9
11 1 1 1

1 1 1 1

]]]]]]]

]

[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]

]

80 1
√5 [2𝑚00 − 𝑚20]

40 1
√5 [2𝑚01 + 𝑚20]

32 1
√2

[𝑚02 − 𝑚11]
16 [𝑚03]
64 1
√2

[𝑚10 + 𝑚11]
30 1
√5 [𝑚12 + 2𝑚20]

10 [𝑚13]
10 [𝑚21]
3 [𝑚22]
3 [𝑚23]

16 [𝑚30]
6 [𝑚31]
7 [𝑚32]
3 [𝑚33]

[[[[[[[

[

3

1

3

1

]]]]]]]

]

[[[[[[[

[

1 1 12 1

1 1 1 1
1
2 1 1 1

1 1 1 1

]]]]]]]

]

[[[[[[[[[[[[[[[[[[[

[

]]]]]]]]]]]]]]]]]]]

]

64 [𝑚00]
32 [𝑚01]
32 1
√2

[𝑚02 + 𝑚20]
16 [𝑚03]
32 [𝑚10]
16 [𝑚11]
4 [𝑚12]

12 [𝑚13]
4 [𝑚21]
9 [𝑚22]
3 [𝑚23]

16 [𝑚30]
12 [𝑚31]
3 [𝑚32]
1 [𝑚33]
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CHAPTER 6

MEASUREMENT DIVERSITY

In order to reconstruct the state of light’s polarization, a polarimeter must take several

measurements. As described in Chapter 1, each measurement performs a projection of

the state of the light onto each of the analyzing vectors. Every additional measurement

provides a particular constraint on how the two vectors relate, thereby shrinking the space

of polarization states that the measured light can potentially occupy. Each constraint takes

the form of a 4-dimensional hyperplane, which can be easily seen from

𝐼𝑛 = 𝑎0𝑠0 + 𝑎1𝑠2 + 𝑎2𝑠2 + 𝑎3𝑠3, (6.1)

where the Stokes parameters can be thought of as a set of 4-dimensional axes. Equivalently

to the methods of reconstruction described in Section 1.4, the purpose of having multiple

analyzing vectors is to construct at least four 4-dimensional hyperplanes. Provided that

these hyperplanes are different, they will have one intersection point — the solution to

the system of equations that the measurements present. Given that the Stokes parameters

being measured are constant, the additional hyperplane constraints arising from taking

more than four measurements will still contain the previous solution.

Naturally, even if the analyzing vectors are known with infinite precision, there are

additional sources of noise. These sources of error can be applied by adding uncertainty to

the hyperplane. The case of additive noise is easy to imagine as it turns the hyperplanes into

thin clouds or “thickened” planes. When these clouds intersect the volume enclosed in that

intersection may be significant if the effective hyperplanes are not sufficiently different. As

a result, in order for the intersection to be well defined, it is necessary for the separation

angles to be large, ideally orthogonal, or π
2 .

To evaluate a polarimeter’s performance, it is necessary to accurately understand the

mathematical steps involved to predict the effective noise resilience. The most straight-

forward and brute force method is to construct an artificial Stokes scene, pass it through
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the system’s known analyzing vectors to obtain detector intensities, and after adding a rep-

resentative kind of noise, use the pseudoinverse to get to the underlying Stokes data. With

original and reconstructed data at hand, one can then evaluate some sort of error metric

between the images, like

𝜀 =
3

∑
𝑖=0

𝑎𝑖

𝑏

√ 1
𝑋𝑌

𝑋

∑
𝑥=1

𝑌

∑
𝑦=1

|𝑠𝑖,original(𝑥, 𝑦) − 𝑠𝑖,reconstructed(𝑥, 𝑦)|𝑏, (6.2)

where 𝑎𝑖 allows to weigh different Stokes parameters differently and 𝑏 allows to average

the errors in a more arbitrary space. This method, however, is computationally intensive

and, depending on the noise model, may cause some experimental bias if the scene that is

generated is not representative of the one that will be measured.

As an alternative to the brute force evaluation, one can instead attempt to identify the

mathematical quantities in the reconstruction process which are responsible for determin-

ing the noise resilience of the system. Much like there is no correct 𝑏 for Equation 6.2, there

is no “correct” mathematical space in which to weigh the noise characteristics. Although

the approaches to the global optimum between the different metrics can be different, all

the useful ones must have the intent of orthogonalizing the reconstruction hyperplanes.

Given a set of measurements,

I =

[[[[[[[

[

𝑎0,0𝑠0 + 𝑎1,0𝑠2 + 𝑎2,0𝑠2 + 𝑎3,0𝑠3
𝑎0,1𝑠0 + 𝑎1,1𝑠2 + 𝑎2,1𝑠2 + 𝑎3,1𝑠3

⋮

𝑎0,𝑁𝑠0 + 𝑎1,𝑁𝑠2 + 𝑎2,𝑁𝑠2 + 𝑎3,𝑁𝑠3

]]]]]]]

]

, (6.3)

with𝑁 ≥ 4, the pseudoinvese will remix 𝑎𝑖,𝑛𝑠𝑖 products to form a 4×𝑁 reconstructionma-

trix,W+, which to the best of author’s knowledge cannot be effectively represented for the

completely general case of 𝑁 ≥ 4. In order to solve a reverse-problem by way of a matrix

multiplication, it is necessary to consider the intersection of exactly four 𝑁-dimensional

hyperplanes — the rows of W+. For 𝑁 = 4 the inversion does not alter the geometry

significantly, but for 𝑁 > 4, there exist 𝑁−4 extra degrees of freedom in which the hyper-

planes can rotate.
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6.1 Established Evaluation Metrics

One of the first metrics to be used in determining polarimeter’s performance was the Con-

dition Number (CN) and was introduced by Tyo (2002). It can be calculated as

CN = ||W || ⋅ ||W+|| = |
𝜆max(W)

𝜆min(W)
| , (6.4)

which has the needed effect of orthogonalizing the rows of the pseudoinverse W+ when

used as a minimization target. Tyo (2002) showed that the minimum CN for a Stokes

polarimeter is √𝑅 − 1, where 𝑅 is the number of Stokes parameters being reconstructed.

Through PSG/PSA independence, it can be easily shown that for a Mueller matrix po-

larimeter, the minumum CN is √(𝑅𝐺 − 1)(√𝑅𝐴 − 1), with 𝑅𝐺 and 𝑅𝐴 are the numbers of

Mueller columns and rows being reconstructed, respectively. In this chapter, the focus is

on overdetermined Stokes systems, and 𝑅 = 4 is assumed.

Another often used evaluation metric is the Equally Weighted Variance (EWV), which

can be calculated as

EWV = tr (W+TW+) =
3

∑
𝑖=0

1
𝜎2

𝑖,W
(6.5)

was introduced by Sabatke et al. (2000) and Twietmeyer and Chipman (2008) for pur-

poses of evaluating Stokes and Mueller polarimeters, respectively. By minimizing EWV,

the mean square error between input and reconstruction is minimized. As it was pref-

aced before, CN and EWV are often corollary — if the theoretical minimum exists in one,

then that optimal system will also be at the theoretical minimum of the other. The only

difference lies in the slope at which the minimum is approached and the effective weigh-

ing implied, whichmay lead to a discrepancywhen the theoreticalminimum is unavailable

given the variable space specified.

6.2 Diversity Metrics

CN and EWV are perfectly sufficient for evaluating the system if additive noise is the only

one present. In this section, overdetermined systems will be specifically studied to see if

there is any benefit inmore carefully shaping the analyzing vectors. Essentially, the attempt
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is to see if the extra (𝑁 − 4)-dimensions of freedom contain solutions that are not only

optimal with respect to CN and EWV, but also provide improved performance for different

kinds of noise.

As mentioned before, once the noise becomes data dependent, there is a possibility for

experimental bias to affect the design of the polarimeter. Although it’s possible to con-

struct a set of measurements, given the distribution of objects to be measured and the

noise encountered, this method will provide overly specific designs. Instead, the goal of

this chapter is to assume that the systems are equally likely tomeasure all kinds of polariza-

tions and base the experiment on a spherical distribution of states, covering the Poincaré

sphere.

This section will investigate if a system that performs a more diverse set of measure-

ments is any better at reconstructing the scene than a system of the same CN/EWV that

does not consider the measurement diversity. As was shown by Goudail and Tyo (2011),

partially polarized measurements never improve contrast, thus justifying limiting all ana-

lyzing vectors to lie on a sphere of 𝑎0 radius. Linking the radius allows a simplification to

a 3-dimensional quantity,

v = [ 𝑎1 𝑎2 𝑎3 ]
T
, (6.6)

from where, the diversity can be based on the relationship of each of the available vector

pairs. One way to evaluate that relationship is the Eucledean distance,

𝑑𝑘ℓ = ||v𝑘 − v ℓ|| = √(𝑣𝑘𝑥 − 𝑣ℓ𝑦)2 + (𝑣𝑘𝑦 − 𝑣ℓ𝑦)2 + (𝑣𝑘𝑧 − 𝑣ℓ𝑧)2, (6.7)

while another way is the arclength separation,

𝛼𝑘ℓ = arccos( ̂𝑣𝑘 ⋅ ̂𝑣ℓ). (6.8)

The metrics that will be proposed in this chapter will all depend on either of the two mea-

sures of separation.

6.2.1 Valence Shell Electron Pair Repulsion Theory

In chemistry, molecule shapes are determined by multiple co-existing repulsion forces be-

tween all of the electric charges in the vicinity. Thenumber of atom’s valence shell electrons
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predetermines certain geometries. Mirroring this theory, analyzing vectors can be treated

as electrons in the valence shell and their proximities to one another leading to repulsion

forces. Adding all of the forces present, allows the optimization to search for the “easiest”,

or lowest-energy configuration. Mathematically, it can be written as

VTR =
1
𝑁2

𝑁−1

∑
𝑘=1

𝑁

∑
ℓ=𝑘+1

𝐶
𝑑2

𝑘ℓ
, (6.9)

where the summation limits prevent double-counting and 𝐶 is a constant that carries the

proper units for VTR to have units of force. Note that because 𝑑𝑘ℓ is in the denomina-

tor, this metric heavily punishes systems that take the same measurements. And although

taking the same measurement might not be ideal, giving such systems a score approach-

ing infinity is unlikely to be justifiable. Instead, this metric is likely to be useful only for

determining arrangements where the extreme constraints are appropriate.

To remedy this limitation, the metric can be adjusted,

VTA =
1
𝑁2

𝑁−1

∑
𝑘=1

𝑁

∑
ℓ=𝑘+1

𝐶
(𝑑𝑘ℓ + 𝑎)2

, (6.10)

where 𝑎 is added to 𝑑𝑘ℓ to stabilize division. This adjustment will invariably change the op-

timization result andwill depend heavily on 𝑎. However, it is not easy to justify a particular

value for 𝑎.

6.2.2 Arclength Anti-proximity

Another way to spread themeasurements’ analyzing vectors around is to consider their ar-

clength separation on the surface of the Poincaré sphere. The maximum separation occurs

when the measurements are orthogonal, meaning 𝛼𝑘ℓ = π. Since the maximum arclength

separation is known, using thatmaximum to bias all the separations is not arbitrary. Hence,

in this metric, normalized arclength anti-proximity (shortness) is calculated between each

measurement pair and added, or

AAP = √ 1
𝑁2 [

𝑁−1

∑
𝑘=1

𝑁

∑
ℓ=𝑘+1

(1 −
𝛼𝑘ℓ

π
)

2
], (6.11)
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where the summation limits prevent double-counting as before. Unlike VTR, this metric

does not punish repeated measurements infinitely. As a result, this metric has a weaker

forcing towards the minimum and is thus definitely flatter overall.

6.2.3 Solid Angle Intersection

VTRandAAPare relatively straight-forward in that they provide a continuous punishment

for two measurements being close to one another. Depending on the way the metric is

constructed, it is easy to punish similar measurement too much or too little. To provide a

potentially more balanced approach, one can start punishing against a measurement only

when it gets within a certain range of another. Oneway to do that is to construct cones with

spherical caps around each analyzing vector’s point on the Poincaré sphere. By giving each

measurement’s cone a solid angle of Ωv 𝑘 =
4π
𝑁 ensures that the intersections are extant, yet

not overly abundant. Using Oleg Mazonka’s derivation (Mazonka (2012)), unqiue solid

angle intersections are added,

SAI =
𝑁−1

∑
𝑘=1

𝑁

∑
ℓ=𝑘+1

4ℜ[arccos (
sin(𝛼𝑘ℓ/2)

sin(𝛽)
) − cos(𝛽) arccos (

tan(𝛼𝑘ℓ/2)
tan(𝛽)

)] , (6.12)

where the summation limits prevent double-counting as before and 𝛽 is the arclength ra-

dius of each cone and can be easily shown to be arccos(1 − 2
𝑁) given the Ωv 𝑘 from before.

6.2.4 Empty Sphere Volume

Finally, instead of looking at measurement relationships one by one and adding them to-

gether, the whole collection can be looked at as an ensemble and the property that can be

used to group them together is the volume that the polyhedron encloses between all those

analyzing vectors. Although deriving a calculation for a volume given all the points within

the set should be possible, breaking up the volume into constituent pieces and calculat-

ing the volume of each one is easier. To do that, the 3D distribution of vs is Delaunay

triangulated first, which forms 𝑀 simplices. For the 3-dimensional vs, those simplices

are referred to as tetrahedra. For each tetrahedron, a sub-volume is calculated and added
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together. The result is then subtracted from a normalized sphere,

ESV = 1 −
1
π

𝑀

∑
𝑚=1

| det ( v𝑚,1 − v𝑚,4 v𝑚,2 − v𝑚,4 v𝑚,3 − v𝑚,4 )| . (6.13)

One difference of this metric is in how it treats a repeated measurement. If all other

metrics punish repetition directly, ESV simplymaintains the volume of that configuration.

Whether this is a drawback is likely to depend on the constraints placed on measurement

selection.

6.3 Example

Thesemetrics can yield a better system only for systemswith𝑁 > 4. To justify a larger than

required number of measurements, the information modulation technique that is utilized

needs to bode well to speedy capture times and should represent a reasonable, rather than

an extravagant design. As a result, to test these metrics, a hybrid scheme was selected,

where both spatial and temporal modulations are used.

The selected setup features a microgrid detector, and two rotating retarders in front of

it. The system can be seen in Figure 6.1a, while the system’s analyzing vector can be shown

to be

A( ⃗𝜉) = ([ 1 0 0 0 ]MLP(𝜙)MLR,2(𝛿2, 𝜃2)MLR,1(𝛿1, 𝜃1))
T
=

=
1
2

[[[[[[[[[[[[[[

[

1

+ cos(2𝜙)[𝜓1𝜓2 − sin(2𝜃1) sin(2𝜃2) sin(𝛿1) sin(𝛿2) + sin(4𝜃1) sin(4𝜃2) sin
2(𝛿1/2) sin

2(𝛿2/2)]

+ sin(2𝜙)[sin(4𝜃1) sin
2(𝛿1/2)𝜓2 + sin(4𝜃2) sin

2(𝛿2/2)𝜓1 + sin(2𝜃1) cos(2𝜃2) sin(𝛿1) sin(𝛿2)]

+ sin(2𝜙)[𝜓1𝜓2 − cos(2𝜃1) cos(2𝜃2) sin(𝛿1) sin(𝛿2) + sin(4𝜃1) sin(4𝜃2) sin
2(𝛿1/2) sin

2(𝛿2/2)]

+ cos(2𝜙)[sin(4𝜃1) sin
2(𝛿1/2)𝜓2 + sin(4𝜃2) sin

2(𝛿2/2)𝜓1 + cos(2𝜃1) sin(2𝜃2) sin(𝛿1) sin(𝛿2)]

+ sin(2𝜙)[cos(2𝜃1) sin(𝛿1)𝜁2 + cos(2𝜃2) cos(𝛿1) sin(𝛿1) − sin(2𝜃1) sin(4𝜃2) sin(𝛿1) sin
2(𝛿2/2)]

− cos(2𝜙)[sin(2𝜃1) sin(𝛿1)𝜓2 + sin(2𝜃2) cos(𝛿1) sin(𝛿2) + cos(2𝜃1) sin(4𝜃2) sin(𝛿1) sin
2(𝛿2/2)]

]]]]]]]]]]]]]]

]

, (6.14)

where 𝜓𝑖 = cos2(2𝜃𝑖) + cos(𝛿𝑖) sin
2(2𝜃𝑖), 𝜁𝑖 = sin2(2𝜃𝑖) + cos(𝛿𝑖) cos

2(2𝜃𝑖) and ( ⃗𝜉) =

(𝜙, 𝛿1, 𝛿2, 𝜃1, 𝜃2) and 𝜙 represents the angle of the polarizer on a particular pixel. For this

example, microgrid’s pattern of polarimeter orientations is customized to form a trapezoid

over the superpixel’s set of four pixels, an illustration of which can be seen in Figure 6.1c.
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The customization introduces two parameters, 𝛼 and 𝛽 to determine the applied pattern.

Forgoing the Instantaneous Field of View (IFOV) problems, each snapshot of the system

can be described by the following sub-W :

W(𝑡) =

[[[[[[[

[

A (−π
2 + 𝛼 + 𝛽, 𝛿1, 𝛿2, 𝜃1(𝑡), 𝜃2(𝑡))

T

A ( 0 − 𝛼 + 𝛽, 𝛿1, 𝛿2, 𝜃1(𝑡), 𝜃2(𝑡))
T

A ( 0 + 𝛼 − 𝛽, 𝛿1, 𝛿2, 𝜃1(𝑡), 𝜃2(𝑡))
T

A (+π
2 − 𝛼 − 𝛽, 𝛿1, 𝛿2, 𝜃1(𝑡), 𝜃2(𝑡))

T

]]]]]]]

]

, (6.15)

which creates the polarizer array seen in Figure 6.1c and traces out the edge of a trapezoid

within the Poincaré 𝑎1/𝑎2 plane as shown in Figure 6.1b. While assuming a fairly limited

temporal bandwidth of the measured scene, multiple snapshots can be combined to form

the total W :

W = [ WT(𝑡 = 𝑡1) ⋯ WT(𝑡 = 𝑡𝐿), ]
T

(6.16)

where 𝐿 is the number of snapshots taken. In this example, 𝐿 = 3, constituting a total of 12

measurements. Figure 6.2 shows how 𝛼 and 𝛽 affect each of the discussed metrics, while

Table 6.1 shows 49 different resulting polyhedra that the analyzing vectors enclose.

In order to test how these metrics perform when presented with non-Gaussian noise,

a simulation was run, where a Stokes scene was measured with multiplicative noise, where

noise variance grows with signal strength. In order to ignore the high frequency error and

focus on the underlying structure, the scene was low-pass-filtered to include the lowest 1
8

of frequencies to judge the overall shape of the reconstruction. The Structural Similarity

(Wang et al. (2004)) was then adapted to calculate how similar the structures between the

reconstruction and the object are. The metric is defined as

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝑐1)(𝜎2
𝑥 + 𝜎2

𝑦 + 𝑐2)
, (6.17)

where 𝜇𝑥 and 𝜇𝑦 are the averages of 𝑥 and 𝑦, respectively, 𝜎2
𝑥 and 𝜎2

𝑦 are the standard devi-

ations of 𝑥 and 𝑦, respectively, 𝜎𝑥𝑦 is the covariance of 𝑥 and 𝑦 and 𝑐1 and 𝑐2 are additional

variables to stabilize division. In order to collapse SSIM into a single number, all the values

of SSIM are averaged,

MSSIM =
1

𝑁𝑥𝑁𝑦

𝑁𝑥
∑
𝑥=1

𝑁𝑦

∑
𝑦=1

SSIM(𝑥, 𝑦), (6.18)
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which effectively assumes a rectangular window. This selection might not be ideal, but

given the artificially periodic nature of the scene, it should suffice for the purposes of this

exercise. Additionally, since a Stokes image contains four images corresponding to each of

the parameters, the scores need to be combined. This is done by multiplying MSSIMs of

each of the channels, i.e.,

MSSIMtotal = MSSIM𝑠0 ⋅ MSSIM𝑠1 ⋅ MSSIM𝑠2 ⋅ MSSIM𝑠3 . (6.19)

The results presented in Table 6.2 show how it is less than ideal to repeat optimal four

measurements three times. The reconstruction resulting from a polyhedron that con-

structs an icosahedron provides an advantage. The system that produces that distribution

consisted of two rotating retarders with 𝛿1 = π, 𝛿2 = π − arccos ( 1
√3), with rotation rate

of the second retarder being double that of the first and the initial offset from LR1 to LR2

being π
32 . The microgrid that produces described by 𝛼 = 1

2 tan ( 2
1+√5) and 𝛽 = 0.

6.4 Conclusion

In this chapter, the class of overdetermined Stokes polarimeters was investigated. It was

found that ensuring measurement diversity in their relation to the spherecity of the en-

closed polyhedron, parallels a reconstruction that is favorable under non-additive noises,

while provides no disadvantage when dealingwith additive noise. This discussion provides

the most minimal of gains and should only be considered if the conditions absolutely re-

quire an overdetermined kind of system. Nonetheless, it is interesting to discover how

various polarimetric quantities relate to the geometrical fundamentals.
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𝛿2

LR

𝛿1

LR FPA

(a) System Layout

𝑎1

𝑎2

𝛽

𝛽𝛽

𝛽

𝛼
𝛼𝛼

𝛼

𝐴

𝐵𝐶

𝐷

(b) Measurements plotted on top of Poincaré 𝑎1/𝑎2 plane (equator)

(c) Resultant FPA detector polarizer orientation pattern

Figure 6.1: System configuration. The measurements and the custom microgrid pattern
are shown with 𝛼 = 22.5∘ and 𝛽 = 5∘.
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Figure 6.2: Simulation results for 𝛼/𝛽 sweep for two established metrics, as well as four
newly introduced diversity-based metrics.
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Table 6.1: Representative samples of measurement Poincaré structures. Colored with SAI.
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Table 6.2: Reconstruction of different polyhedra under multiplicative noise. To gauge the
underlying shape, simulated images are filtered to include only the bottom 1

8 frequencies.

𝑠0 𝑠1 𝑠2 𝑠3 MSSIM

O
rig

in
al

Sc
en

e 1.000
1.000
1.000
1.000
1.000

3
×

Te
tr
ah

ed
ro

n 0.703
0.641
0.741
0.801
0.267

Cu
bo

ct
ah

ed
ro

n 0.734
0.851
0.861
0.875
0.471

Ic
os

ah
ed

ro
n 0.760

0.868
0.869
0.888
0.509
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CHAPTER 7

CLOSING REMARKS

This dissertation investigated the classes of channeled Mueller matrix polarimeters in

Chapter 3, partial Mueller matrix polarimeters in Chapter 4, and the combined class of

channeled-partial Mueller matrix polarimeters in Chapter 5. The manuscript opened with

relevant pieces of prior work by Tyo, Sabatke and Twietmeyer that introduced concepts

by which to evaluate Stokes and Mueller polarimeters and later broached the subject of

channeled systems that were popularized by Oka, as well as the subject of partial systems

that were introduced by Hoover and Tyo. The work in this dissertation recognized the

patterns in the generalized versions of the systems pertaining to each class to construct the

necessary framework by which to evaluate each given system. Overall, this dissertation

introduces several novel concepts listed below.

First, Chapter 3 introduced measurement matrix Q , which related Fourier domains

of the modulations instead of intensities. Besides maximizing quality of reconstruction

by virtue of using linear system manipulations rather than arithmetic derived by hand, a

completely parallel concept of EWV was developed for channeled systems, which lead to

the discovery of optimal channeled systems as well as the discovery that even very super-

ficial changes to existing designs can improve their performance drastically. Introduction

of FPM as a way to calculate the coefficients of delta functions within the Fourier trans-

form of an arbitrary multiplication of sinusoidal functions trivialized the construction of

the measurement matrix. Additionally, leveraging an already optimal system, a redistri-

bution of error between reconstruction channels is possible. The completely generalized

nature of this development serves incredible utility to any further work intending to design

a channeled polarimeter

Second, Chapter 4 developed the concepts of structured decomposition and the recon-

structablesmatrix, which provide immediate insight into system’s space coverage and yield

a pMMP basis that allow the formation of ten classes of pMMP systems. The evaluation of
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such systems was aided by timely introduction of space mapping through auxiliary matri-

ces developed as a part of structured decomposition. Instead of looking at noise variances

within Mueller elements, pMMPs need to consider the noise variance within the linear

combination of elements of interest. Additionally, the analysis needs to include the prox-

imity of the reconstructed linear combination to the intended one. The prescription given

within this scheme achieves these needs and enables the user to design a pMMP given the

provided basis, as well as leaves enough pieces in place for the user to construct a basis of

their own based on different assumptions.

Third, Chapter 5 combined the concepts of Chapters 3 and 4 and paved way for a new

topic of channeled-partial Mueller matrix polarimeters. Combining the Q formalismwith

structured decomposition allowed for proper evaluation of noise resilience and space cov-

erage of channeled partial system. Though the analytic form of the decomposition is not

provided here, it is computed instead. The downside is that the space coverage is not trivial

to calculate, thereby increasing the optimization time and potentially reducing the appli-

cability of inserting the c-pMMP design constraints into the hypothetical measurement

selection step. The derivation of the analytical form of structured decomposition for c-

pMMPs will have to be a part of a future discussion.

Fourth, Chapter 6 introduced polarimeter performance evaluation metrics, the opti-

mization of which showed that diverse geometrical distributions of analyzing vectors pro-

vide an improved reconstruction for overdetermined Stokes polarimeters under a non-

additive noise model.
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APPENDIX A

DIVERSITY OPTIMIZATION

This appendix shows results of a number of optimization runs that minimized the met-

rics introduced in Chapter 6, which attempt to make the design of Stokes polarimeters

with 𝑁 > 4 to produce more accurate results under non-additive noise. As before, the

optimization minimized each of the metrics using MATLAB’s built-in genetic algorithm.

However, this time the optimization variables were not constrained to any particular sys-

tem design and instead represented free-floating fully-polarized analyzing vectors on the

surface of the Poincaré sphere.

Figures A.1, A.2, A.3 and A.4 show results for VTR, AAP, SAI and ESV, respectively.

Despite the final optimizations results settling in rotated distributions with respect to one

another, several connections can be made. For 𝑁 = 4, 𝑁 = 6, 𝑁 = 12 and 𝑁 = 24, VTR,

AAP and SAI produce the same solutions corresponding to the identifiable polyhedrons

of tetrahedron, octahedron, icosahedron and snub cube, respectively. ESV agrees with the

other metrics for 𝑁 = 4, 𝑁 = 6, 𝑁 = 12, but provides a different solution for 𝑁 = 24.

It is valuable to know the underlying geometric properties of each of those polyhedrons

because a design parameter will often be related. For example, to achieve a tetrahedral

distribution, one needs to use a rotating retarder with retardance, 𝛿 = arccos (− 2
3), which

is not disconnected from the dihedral angle of the tetrahedron, 𝜑 = arccos ( 1
3). To achieve

a cuboctahedral distribution, one needs a typical microgrid with a rotating retarder with

retardance, 𝛿 = arccos(− 1
√3), which is equal to the dihedral angle of the cuboctahedron.

The same retarder can be used to achieve a regular icosahedral distribution by changing the

polarizers’ orientations in the microgrid such that the default four measurements create a

rectangle within the Poincaré sphere’s equator that has the aspect ratio of the golden ratio.

Within the notation of custom microgrid designs that is introduced in Chapter 6, that

means 𝛼 = 1
2 arctan ( 2

1+√5) and 𝛽 = 0.
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(a) 𝑁 = 4 (b) 𝑁 = 5 (c) 𝑁 = 6

(d) 𝑁 = 7 (e) 𝑁 = 8 (f) 𝑁 = 9

(g) 𝑁 = 10 (h) 𝑁 = 11 (i) 𝑁 = 12

(j) 𝑁 = 16 (k) 𝑁 = 20 (l) 𝑁 = 24

Figure A.1: Optimizations with different number of measurements for VTR.
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(a) 𝑁 = 4 (b) 𝑁 = 5 (c) 𝑁 = 6

(d) 𝑁 = 7 (e) 𝑁 = 8 (f) 𝑁 = 9

(g) 𝑁 = 10 (h) 𝑁 = 11 (i) 𝑁 = 12

(j) 𝑁 = 16 (k) 𝑁 = 20 (l) 𝑁 = 24

Figure A.2: Optimizations with different number of measurements for AAP.



174

(a) 𝑁 = 4 (b) 𝑁 = 5 (c) 𝑁 = 6

(d) 𝑁 = 7 (e) 𝑁 = 8 (f) 𝑁 = 9

(g) 𝑁 = 10 (h) 𝑁 = 11 (i) 𝑁 = 12

(j) 𝑁 = 16 (k) 𝑁 = 20 (l) 𝑁 = 24

Figure A.3: Optimizations with different number of measurements for SAI.
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(a) 𝑁 = 4 (b) 𝑁 = 5 (c) 𝑁 = 6

(d) 𝑁 = 7 (e) 𝑁 = 8 (f) 𝑁 = 9

(g) 𝑁 = 10 (h) 𝑁 = 11 (i) 𝑁 = 12

(j) 𝑁 = 16 (k) 𝑁 = 20 (l) 𝑁 = 24

Figure A.4: Optimizations with different number of measurements for ESV.
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