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ABSTRACT

Estimating the polarization of light has been shown to have merit in a wide variety of
applications between UV and LWIR wavelengths. These tasks include target identification,
estimation of atmospheric aerosol properties, biomedical and other applications. In all of
these applications, polarization sensing has been shown to assist in discrimination ability;
however, due to the nature of many phenomena, it is difficult to add polarization sensing
everywhere. The goal of this dissertation is to decrease the associated penalties of using
polarimetry, and thereby broaden its applicability to other areas.

First, the class of channeled polarimeter systems is generalized to relate the Fourier
domains of applied modulations to the resulting information channels. The quality of
reconstruction is maximized by virtue of using linear system manipulations rather than
arithmetic derived by hand, while revealing system properties that allow for immediate
performance estimation. Besides identifying optimal systems in terms of equally weighted
variance (EWV), a way to redistribute the error between all the information channels is
presented. The result of this development often leads to superficial changes that can im-
prove signal-to-noise-ration (SNR) by up to a factor of three compared to existing designs
in the literature.

Second, the class of partial Mueller maitrx polarimeters (pMMPs) is inspected in re-
gards to their capacity to match the level of discrimination performance achieved by full
systems. The concepts of structured decomposition and the reconstructables matrix are
developed to provide insight into Mueller subspace coverage of pMMPs, while yielding a
pMMP basis that allows the formation of ten classes of pPMMP systems. A method for eval-
uating such systems while considering a multi-objective optimization of noise resilience
and space coverage is provided. An example is presented for which the number of mea-
surements was reduced to half.

Third, the novel developments intended for channeled and partial systems are com-
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bined to form a previously undiscussed class of channeled partial Mueller matrix polarime-
ters (c-pMMPs). These systems leverage the gained understanding in manipulating the
structure of the measurement to design modulations such that the desired pieces of infor-

mation are mapped into channels with favorable reconstruction characteristics.
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CHAPTER 1

INTRODUCTION

This dissertation pertains to matrix structure of the information reconstruction tech-
niques, which are pivotal to the design of a polarimeter, a device intended for measuring the
polarization of light. Estimating the polarization of light has been shown to have meritina
wide variety of applications between UV and LWIR wavelengths (Tyo et al. (2006)). These
tasks can be categorized into target identification (Cheng et al. (1994); Tyo et al. (1996);
Goudail and Tyo (2011); Hoover and Tyo (2007)), estimation of atmospheric aerosol prop-
erties (Diner et al. (2007)), as well as biomedical applications (Jacques et al. (1999); Bald-
win (2004); Zhao et al. (2009)). In all of these applications, polarization sensing has been
shown to assist in discrimination ability; however, due to the nature of many phenomena,
it is difficult to add polarization sensing everywhere. The goal of this dissertation is to de-
crease the associated penalties of using polarimetry, and thereby broaden its applicability
to other areas.

Because current state of the art detectors are incapable of detecting polarization di-
rectly, a series of indirect measurements need to be made and then combined to reveal the
underlying polarization properties. In the most general sense, polarimeter design involves
making a number of choices with regards to selection of those indirect measurements that
fit the specifics of the phenomenological nature of the extant scattering events in a par-
ticular measurement task. Many designs use a sequentially generated set of testing condi-
tions, which are commonly referred to as modulation. These testing conditions are often
modulated in one of three domains: time, space or wavelength (LaCasse et al. (2011a)).
Additionally, multiple modulation domains can be used simultaneously to balance the res-
olution loss across domains. The optimal selection is unlikely to present itself without a
careful analysis of the domains that the intended target and its background occupy. As
the field of polarimetry expands to include more estimation and discrimination tasks, the

need for appropriate selection of both the type of the system, as well as the modulation
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domains, becomes critical to constructing a successful system.

With polarization being a rich physical process, it contains many parameters concern-
ing different aspects of the kind of transformations that light goes through. Depending on
the task, some of these parameters are essential, while others may prove to be extraneous.
This dissertation will discuss how to select measurements such that the relevance of infor-
mation derived from a measurement is maximized. The concept of creating partial systems
is interesting in that it allows one to derive a comparable amount of relevant information,

while taking fewer measurements, generally resulting in a simpler system.

1.1 Polarized Light

Light is an electromagnetic wave and there are several quantifiable physical properties that
describe it. The most immediately useful ones are direction of propagation, field intensity

and frequency. In fact, if one only ever had to describe plane-wave radiation, i.e.,
EFt) =R {Eoe“(k'?‘“’”}, (1.1)

then one would not need to consider anything else. E, would describe the orientation and
magnitude of the electrical field, while k and w would give the direction of propagation
and spectral information, and temporal frequency within the four dimensional universe
described by (7, t) coordinates, respectively. However, in the great majority of scenarios,
there is a plurality of plane-waves interfering together. This interference of electromagnetic
fields is what gives rise to the importance of the study of coherence and polarization.

An abundant selection of tasks are successfully analyzed with the limited case of in-
coherent polarization. A common way to describe said incoherent optical polarization is

with a set of Stokes parameters, represented in a form of a vector,

[ s, | [ (ELHIED ] [ Ip+l ]
s E |- |E.| I, -1
s=| _ &€ (IE,l |*y|> _ n-lv | (1.2)
52 2LR{<ExEy>} I+45 - I—45
| 53 _ 2]{<EXE;>} | IR_IL B

In Equation 1.2, the Stokes vector is represented in the form stemming from the underlying
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electric field, as well as a set of intensity difference measurements. For latter, we can under-
stand the four components as: s, is the total intensity, s, is the prevalence of horizontally
polarized light (I;) over vertically polarized light (I,), s, is the prevalence of linearly po-
larized light at +45° (I ,5) over linearly polarized light at —45” (I_,5) and s, is the prevalence
of right circularly polarized light (I,) over left circularly polarized light (I;). An additional

So = \[ST + S5+ 835, (1.3)

forces the polarization state to lie within the Poincaré sphere, which is depicted in Figure

condition,

1.1.  Other polarization products derived from the original four are often useful. A

normalized set of Stokes parameters,

5 $1/5
S=15 S/ |> (1.4)
55 83/

is useful when the variation of the degree of polarization in space or time differs from the
variation of absolute intensity, s,. This is typical for a laser, where the power fluctuations do
not necessarily reflect on degree of polarization fluctuations. These normalized parameters
can be combined to form Degree of Polarization (DoP),
ST+ S+ 83
DOoP=\§i+8§+5 =—"7—, (1.5)

So

Degree of Linear Polarization (DoLP),

(1.6)

[2, 2

S;+ 85

—)
So

while Degree of Circular Polarization (DoCP) is just §;. Another product of interest is

DoLP = 4[5} + §; =

angle of linear polarization,

1
AoLP = - arctan <s—2> , (1.7)
2 )

which is often used in tandem with DoLP to convert from the Cartesian set of coordinates

to the more natural polar corrdinates, as dictated by the geometry of the Poincaré sphere.
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Figure 1.1: Poincaré Sphere. H denotes horizontally polarized light; V denotes vertically
polarized light; P denotes +45" light; M denotes —45° light; R denotes right circularly po-
larized light; L denotes left circularly polarized light.
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Passing through a medium or interacting with a surface has the potential to change
the polarization state of light. This effect is characterized by a Mueller matrix, which maps
the input Stokes vector into an output Stokes vector by way of a 4 x 4 real transformation

(Chipman (2009b)):

§0ut = M§in’ (18)
where ) )
Moy My My, Mg
m,, M, m,, M
M = 10 11 12 13 (1.9)

My, My My, My

| M3g M3 M3y Mg
Given the context of Equation 1.8, the intended goal can either be to know the Stokes
vector, a property of the light, or the Mueller matrix, a property of the surface that the light
reflects from or a medium that the light propagates through. The necessary procedure to

measure both are discussed in the following sections.

1.2 Stokes Polarimetry

The polarization state has to be inferred from a series of indirect measurements. In the
case of a Stokes polarimeter, these indirect measurements are made by passing light of
an unknown polarization state through a series of predetermined analyzing polarization
states or vectors:

A, = [ a, a, a, a, B (1.10)

n
which are themselves Stokes vectors, and are subject to the same constraint posed by Equa-
tion 1.3. The detector then records intensities — projections of the unknown state onto
each of the analyzing vectors,

I, =A'S, (1.11)

which can be equivalently rewritten as

I=WS, (1.12)
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where W is a collected matrix of all analyzing vectors,

1=

T
z[él A, - Ay | - (1.13)

It is possible to reconstruct the necessary vector orientation of the polarization state and
thereby calculate the unknown state’s Stokes parameters by inverting the process (Chip-

man (2009¢)) and estimating the Stokes vector to be

78

- WL+ 1) (1.14)

where W is the pseudoinverse, or the Data Reduction Matrix (DRM) and i represents ad-
ditive noise. Because additive noise is prevalent, most of this dissertation will limit itself to
considering a Gaussian noise model as a representative example. However, Chapter 6 will
consider a multiplicative noise model for purposes of optimizing overdetermined Stokes

polarimeters, where diverse analyzing vector sets are shown to provide an advantage.

1.3 Mueller Polarimetry

For Mueller matrix polarimeters, a similar procedure is followed, but now the generating

vectors

G, = [ 90 91 92 Y5 ]:’ (1.15)
are prearranged and calibrated to provide a known set of testing conditions from which the
Muller matrix can be inferred. The n™ measurement of intensity in the Mueller polarimeter
is

I,= A,MG,. (1.16)

The constituent parts of the system that are responsible for setting G, and A, are called
Polarization State Generator(PSG) and Polarization State Analyzer(PSA), respectively. It
has been shown that Equation 1.16 can be equivalently expressed as (Chipman (2009a))

I.=D'M, (1.17)
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where D ,n is the dyad product reshaped into a vector,

4990
A9,
P
4093
4190
a19:
419,
D, =vec(A,G!)=A,8G,=| P |, (1.18)
4290
a2 9:
429,
4293
4390
as9:
a39;

[ 3393




25

and M, is the Mueller matrix reshaped into a Mueller vector,

- -

My
My,
My,

M3

= . (1.19)

L .

In the above equations, ® is the Kronecker (direct) product, and vec(M) creates a col-
umn vector by reordering the matrix M into a vector in a row-by-row fashion. Equation
1.17 shows that a single measurement of the is a projection of the unknown Mueller ma-
trix onto a known basis vector in R'®. This procedure removes the need for considering
high-dimensional tensor manipulations. By taking a collection of such projections, the
unknown matrix - or portions of it in the case of partial systems - can be determined in a

least-squares sense. The series of N measurements in a polarimeter is

| P
I
I
+
j=1
I
1=
I=
+
j=1

(1.20)
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where E, is a collected matrix of all the effective dyads,

!

1=

—

! ! ! T
21 22 QN ] : (1'21)
Similar to Stokes polarimeters, reconstruction is performed as M ;

M = W1+ i), (1.22)

where w“r is the pseudoinverse of ﬂ, and 1 represents additive noise. To keep the nota-
tion as clear as possible, i and j will be used as matrix indices, while k will be used as the

unfolded vector index. To go from one to the other,

k=4i+j (1.23)
or

i=|k/4], (1.24a)

j=k-4i. (1.24b)

1.4 Matrix Pseudoinverse

Since both Stokes and Mueller polarimetry propose indirect measurements as a means to
arrive at the underlying information of need, the process of information-mapping matrix
is important for each and save for occupying a different geometrical space, the two can be
approached in the same mathematical sense. Thus, the number of measurements will be
denoted as N and the total number of information parameters as K, where K is 4 and 16
for Stokes and Mueller polarimeters, respectively. The measurement matrix is then N x K.
Since a true matrix inverse only exists for a square matrix, the only time it is possible to be
completely unambiguous about how to combine measurements is when N = K. In order
to handle the cases where N # K, a robust way to consistently calculate a pseudo-inverse
is needed, such that the error introduced into the reconstructed information is minimized.

One way is to use the Moore-Penrose pseudoinverse, which in polarimetry literature

.

is often written as

1=

+:(wT

1=
1=

- (') (125)
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with the latter calculation usually being more numerically stable, since the inverse is not
being calculated. However, the columns of W must be linearly independent for that ex-
plicit definition to hold, which requires N > K. Since one of the foci of this dissertation
is design of partial systems, an alternative expression for the pseudoinverse is preferred —
one that provides more computational control when handling the case when N < K.

Instead, use Singular Value Decomposition (SVD) to decompose the measurement ma-
trix,

1=
lfs

v, (1.26)

where matrices U and V are N x N and K x K real, orthonormal matrices, respectively,
and X is the N x K reduced diagonal matrix containing the min(N, K) singular values
0, 20, 2 ... 2 Oynk)- 10 be completely general at this point, it is deliberate that
nothing is said about the relative magnitudes of those singular values and the rank of the

system. The pseudoinverse can then be written as

+_

1=
1<

U, (1.27)

where £ " is the KxN reduced diagonal matrix containing the inverse of the singular values.
The advantage of this method is that N < K cases are handled better by only keeping track
of min(N, K) singular values and taking the inverse of only the sufficiently large singular
values. As will become clearer later, it is also much easier to perform additional culling
of singular values and the corresponding left- and right-column matrices. This additional
control serves the purpose of enabling the understanding of the process that is required

for successful structure manipulation.
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This section introduces Mueller matrices of the most common polarization elements

(Chipman (2009b)).

A linear diattenuator applies a different amount of attenuation to the intensities in two

orthogonal directions. The Mueller matrix of a linear diattenuator is

gm(% B.0) =

1
2

1ok B cos(20)

0
Bcos(20) acos’(20) + ysin®(20) (a — y) cos(26) sin(20) 0
Bsin(20) (a —y)cos(20) sin(20) asin’(20) + y cos*(26) 0

Y

0

0

B sin(20)

0

(1.28)

where« = g+ 71, = q—r,and y = 2./qr, of which g and r represent the fractions of

intensity maintained for the two orthogonal polarizations of light. If g = 1 and r = 0 is

assumed, then the element simplifies to the ideal linear polarizer,

1
ng(Q) = 5

1

0

cos(26)
cos(20) cos(20)*
sin(20) cos(20) sin(20)

0

sin(20) 0 ]
cos(20) sin(20) 0
sin(26)* 0

0 0

(1.29)

Another commonly used polarization element is a linear retarder. Instead of differ-

ently attenuating the two orthogonal polarizations of light, a different amount of phase is

accumulated for two orthogonal directions in passing through the element. The Mueller

matrix of a linear retarder is

gLR(S’ 0) =

1

0
0
0

0
c*(20) + c(8)s*(20)
c(26) 5(20) v(8)
s(20) s(8)

c(8) 2(20) + s°(26)

0
c(20) s(20) v(6)

—c(20) s(8)

0
—5(260) s(6)
c(20) s()
c(9)

. (1.30)

where 0 is orientation of the retarder and § is its retardance, which is the difference between

the applied phases. It suffices to know the phase difference, since absolute phase is of very
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limited concern in Stokes polarimetry, and optics in general. To show the complete matrix,
some shorthands were used: c(x) = cos(x), s(x) = sin(x) and v(x) = versin(x) = 1 —

cos(x).

1.6 Polarimeter Types

There exist a number of different polarimeter designs, but there is no one best design for
every intended measurement task. This section will introduce the types of polarimeters this
dissertation will predominantly focus on and discuss each one’s strengths and weaknesses.

For the purposes of keeping the descriptions in this section concise, only the Stokes
versions of these polarimeters will be considered. The Mueller versions can be trivially
derived by mirroring the components used on the PSA side to the ones used on the PSG
side. Furthermore, the restriction of looking at a given PSA or PSG bodes well for natural

introduction of hybrid modulation in Mueller matrix polarimeters.

1.6.1 Division of Time

Perhaps the most common type of polarimeter is one of the type of Division of Time. This is
because the method by which the different measurements are achieved is relatively simple
and readily accessible. Provided that there exists an avenue by which to differently orient
various polarization elements, it is possible to take several measurements with different
configurations. A properly selected set of measurements is one is able to reconstruct the
underlying polarization signature with sufficient noise resilience.

If the main advantage of Division of Time polarimeters is their simplicity, the disad-
vantage is the need for some sort of mechanical or electro-optic adjustment to construct
additional measurements. This type of polarimeters intrinsically applies a stronger tempo-
ral bandwidth constraint than the constraint for the underlying detector. This is because
the adjustments take time and unless the object is completely controlled and stationary, the
non-simultaneous capture means that for a moving object the measurements from differ-
ent times will be combined, causing motion blur.

One example of a Division of Time polarimeter is the Rotating Analyzer (RA) po-
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Figure 1.2: RA Polarimeter. (Animation available in the digital version)

larimeter, the layout of which is shown in Figure 1.2. Although it can be analyzed for a
general diattenuator, it is simplified here to feature an idealized polarizer, which allows the

analyzing vector to be written as

T cos(2¢)
| sin(2¢)

ARA(¢)=([1 000 ]gw«b)) (1.31)
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Figure 1.3: RR Polarimeter. (Animation available in the digital version)

Another example of a Division of Time polarimeter is the Rotating Retarder (RR) po-
larimeter, the layout of which is shown in Figure 1.3. Again, using an ideal polarizer in
place of a linear diattenuator, allows the analyzing vector of the RR polarimeter to be writ-

ten as

Aw@60=([1 0 0 0] Mu@)M0,6)) =

1
cos(2¢)(cos(20)* + cos(d)sin(20)*) + 2 sin(48) sin(2¢)(1 — cos(d))

2

sin(2gb)(cos(6)cos(29)2 +sin(20)%) + 1 sin(46) cos(2¢)(1 — cos(8))

2

sin(2¢ — 20) sin(9)

(1.32)

Note that in Equations 1.31 and 1.32, [ 1 000 ] can be thought of as the idealized

analyzing vector of the detector, which is assumed to be perfectly sensitive to s,,.
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1(t)

1,(1)

Figure 1.4: Reproduced from Compain and Drevillon (1998). Principle of a visible-near-
infrared DOAP with an uncoated dielectric prism. The light beam is separated first into
two by a prism then into four by two Wollaston prisms (W1 and W2) oriented at 45 with
respect to the plane of incidence. Stokes vector S is determined from the four intensities

i =iy

1.6.2 Division of Focal Plane

A polarimeter of the type of Division of Focal Plane (DoFP) uses different segments of the
focal plane to impose a set of different test conditions to determine the incoming state of
polarization. In a way, this type of a polarimeter is a continuation of Division of Amplitude
(DoA) polarimeters that use beam splitters to split the beam into several and associate a
different analyzing vector in each hand of the system, like in the system depicted in Figure
1.4. Although the measurements can be made simultaneously, there is a particular amount
of bulkiness that is unavoidable and alignment might require some time to get right. Con-
ventionally DoFP can be treated as DoA system, where the different hands of the setup
intersect and use the same detector.

The class of DoFP polarimeters was enabled by advances in detector lithography pro-
cess. It is achieved by associating analyzing vectors directly with each pixel in a partic-

ular pattern. This polarimeter has been nicknamed “microgrid” because the most com-
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Figure 1.5: Microgrid Polarimeter. Each pixel has a polarizer at 0°/45°/90°/135".

mon pattern of the imposed pattern of polarization components is that of a repeated 2 x 2
pixel structure, referred to as the superpixel, a diagram of which can be seen in Figure 1.7.
Each superpixel contains four pixels with applied linear polarizers that individually let in
0°/45°/90°/135 polarized light. Mathematically, the analyzing vector of (1, n) pixel can be
described as:

1

%(cos(mn) + cos(nm))

A(m,n) = (1.33)

%(cos(mn) — cos(nm))

0

Other structured patterns exist. MSPI polarimeter uses a 3x1 superpixel, measuring s,
I;; and I, (Diner et al. (2007)). Peltzer suggested a pattern that substitutes the polarizer on
one of the pixels in the 2 x 2 structure with a circular-polarization sensitive structure that
enables a microgrid polarimeter to estimate s, as well (Peltzer et al. (2011)). A microgrid
polarimeter can be adjusted in a number of ways, but at this point the above description

suffices. In Chapter 6 it will be parametrized further.
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Figure 1.6: Microgrid and RR polarimeter. (Animation available in the digital version)

Finally, provided that the patterns of polarization selection properties are arranged pe-
riodically, DoFP can also be treated as a channeled system, which are discussed in the next

subsection.

1.6.3 Channeled

Channeled polarimeters measure polarization by modulating the measured intensity in or-
der to create polarization-dependent channels in tempporal, spatial, spectral or angular do-
mains that can be demodulated to reveal the desired polarization information. Channeled
modulations can be either temporal, spatial or spectral. However, transforming temporal
modulation into channels is less conducive because the number of temporal measurements
is often limited to the bare minimum needed for reconstruction. Thus, transforming infor-
mation is unlikely to pose an advantage that would stem from linking various data together.
Spatial and spectral channels, on the other hand, can be extremely useful, since polariza-
tion information can be modulated onto two independent dimensions of the detector and

be captured simultaneously. This class of system has been introduced by Oka (Oka and
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Kato (1999)). In that system, the spatial modulation frequencies are determined by the
thicknesses of the birefringent prisms. The diagram of that system can be seen in Figure
2.5. Using notation employed later on in the dissertation, we can describe the system with

a vector of modulations carried in each element of the analyzing vector,

- -

1

cos(2mé, x) (1.34)

Lo
[
Il

sin(2n€ x) cos(2mn, y)

| sin(2ng,x) sin(2my,y) |

where £ and 77, represent the two carrier frequencies at the center of the information bands.

1.7 Contents Summary

This dissertation is organized as follows. Chapter 2 introduces the most prevalent pieces
of prior work, on top of which this dissertation innovates. First, Chapter 3 generalizes the
concept of channeled polarimetry with the measurement matrix completely defining the
system evaluation. This introduction enables abstraction of channeled system design by
extracting the necessary components for analysis. Second, Chapter 4 proposes the con-
cept of structured decomposition in order to determine the space coverage as well as noise
resilience within the Mueller element combinations of interest. A basis is developed to al-
low for a family of efficient partial systems in terms of rank and number of measurements.
Third, Chapter 5 combines the concepts of Chapter 3 and Chapter 4 to construct chan-
neled partial Mueller matrix polarimeters, a class of previously unstudied polarimeters.
Fourth, Chapter 6 provides insight into the geometrical distributions of analyzing vectors
for overdetermined Stokes polarimeters, which is useful for systems where non-additive

noise is dominant. Finally, Chapter 7 concludes this dissertation.
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Figure 1.7: Microgrid Focal Plane Array (FPA) diagram. Each superpixel contains four
pixels with linear polarizers at 0°/45°/90°/135". The four pixels constitute a set of four ana-
lyzing vectors that is able to reconstruct the linear state of polarization of light.
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CHAPTER 2

PRIOR WORK

Because this dissertation’s focus is on the evaluation of different types of polarimeters, it
is appropriate to introduce some of the prior efforts in the field. This chapter will go over
literature pertaining to polarimetric system evaluation, as well as various previously used
system designs. The goal of this dissertation is then to build on top of the building blocks

shown here.

2.1 System Evaluation

One way to objectively analyze the system is by considering its signal-to-noise ratio (SNR).
Because, for independent variables, standard deviations add in root-sum-square (RSS)
tashion, it also follows that for multiple reconstruction channels of information, it is com-
mon to add noise variances, rather than noise standard deviations. Sabatke applied this
evaluation to polarimeters by introducing equally weighted variance (EWV) as an evalua-
tion figure of merit for Stokes polarimeters (Sabatke et al. (2000)). The metric is a sum of
variances within each of the Stokes parameters and can be calculated directly from ¥+ by

computing
3 R-1
EWv=Y YW = ((WHw)=Y & 2.1)
j - - =0 Y

where j denotes the Stokes component, k denotes the measurement and y; refers to the
singular value. Sabatke applied that metric to optimize a RR polarimeter, as depicted in
Figure 1.3. His results yielded a retarder with § = 132" and orientations at +15.1° and
+51.7° with respect to the polarizer’s orientation. The resulting analyzing vectors produced
an approximation to the regular tetrahedron inscribed inside the Poincaré sphere as can
be seen in Figure 2.1. While their results in Figure 2.2 show that use of optimal retardance

provides a vast improvement over using a quarterwave plate.
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Figure 2.1: Reproduced from Sabatke et al. (2000). Curves for retardances of 90° and 1327,
showing an inscribed regular tetrahedron in the curve of 132°. The tetrahedron vertices
correspond to retarder angles of +51.7° and +15.1".
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Figure 2.2: Reproduced from Sabatke et al. (2000). Comparison of multiple measurement
techniques, showing values of the EWV figure of merit as a function of the number N of
measurements for cases (1)-(3) described in text. Missing points at N = 4, 6, 8 in the data
for cases (1) and (2) are due to singularities in the measurement matrices. A single data
point (e) is also shown for a four-measurement procedure using a quarterwave plate.
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Another way to approach the problem is to focus on its mathematical properties and
use the tools of numerical analysis to estimate the stability of the inverse problem. This is
commonly done through calculating condition number of the matrix,
Ko (W) |

o = [|w|-[w - 5=

(2.2)

which Tyo applied to Stokes polarimeters (Tyo (2002)). His results for a RR polarimeter
yielded the same retardance and orientations, agreeing with the result shown by Sabatke’s
application of EWV. The subtle point to make to differentiate the two is to stress that the
two methods intrinsically choose different norms, which affects the metric’s space and thus
the approach of the optimization to the minimum. If the particular arrangement of a given
system cannot obtain the theoretical minimum, then it is possible and quite likely that the
best solutions dictated by EWV and by CN are going to be different. However, because the
RR polarimeter is able to achieve the theoretical minimum, the different norms agree on
the minimum as can be seen in Figure 2.3.

Although the metrics were first applied to Stokes polarimeters, the principles of eval-
uating noise resilience in the different channels or the numerical stability of a given prob-
lem are directly transferable to problems with a greater number of information channels.
In order to analyze Mueller matrix polarimeters, Twietmeyer adapted the concepts that
Sabatke and Tyo applied to Stokes polarimeters (Twietmeyer and Chipman (2008)). Her
optimization considered a dual rotating retarder (DRR) polarimeter, which can be equiv-
alently thought of as two mirrored RR polarimeters comprising the PSA and the PSG. The
results of said optimization yield retarders with retardance § = 127 as can be seen in

Figure 2.4.

2.2 Channeled Systems

The first examples of added polarization sensitivity were achieved through combining mul-
tiple temporal measurements. In effect, this technique shares of temporal bandwidth be-
tween time and polarization and only for perfectly static scenes is the motion blur negli-

gible. However, when the scene’s temporal content is restricting for a DoT polarimeter, a
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Figure 2.3: Reproduced from Tyo (2002). Optimal condition number for four-
measurement rotating compensator systems. There is a clear optimum at § = 0.3661A.
[Tyo] obtained the optimization by minimizing the L, condition number of the system
matrices, but achieved the same result as Sabatke et al. (2000) where the equal-weighted
variance—equivalent to the Frobenius condition number of the system matrices—was min-
imized.
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Figure 2.4: Reproduced from Twietmeyer and Chipman (2008). Base 10 log of the con-
dition number as a function of waveplate retardance [§] for the DRR polarimeter. The
optimum solution is a retardance of 127°; condition number increases significantly with
distance from the optimum solution.
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different approach is needed. Much like temporal bandwidth being used to share temporal
and polarization information, other domains can be shared as well, namely, spectral and
spatial. The advantage of using those domains for purposes of adding polarization sen-
sitivity is that they can both be mapped to the spatial extent of a detector, thus enabling

one-snapshot systems.

2.2.1 Stokes Polarimeters

Channeled polarimeters were introduced by Oka and Kato (1999), with the proposed sys-
tem’s layout shown in Figure 2.5. In their treatment, they were able to define and construct

a system that measures a polarization-dependent spectrum as seen in Figure 2.6,

_5(0) | 5(0)

cos(2nL,o + @,(0))+

Is23(0)| cos(2n(L, — L,)o + ®,(0) + D,(0) + arg(s,;(0)))+

- —|523i0)| cos(2n(L; + Ly)o + @, (o) + D,(0) + arg(s,;(0))) (2.3)

where s,5(0) = s,(0) — is;(0), @,(0) and D, (o) are total phase terms of retarders denoted
R, and R,, and L, are the OPD distances stemming from modulation frequencies of the
respective retarders. By taking the Fourier transform of the modulated spectrum repre-

sented in terms of wavenumber, channels emerge in the optical path difference (OPD):

Ch) = %Ao(h) N }LAl(h L)+ }LA’{(—h L)+

+ %Az(h -(Ly-Ly)+ %A;(—h - (L, - L))+

- %AS(h (L, + 1)) - %A’g(—h (L, + 1)), (2.4)

where h represents OPD. The Stokes parameters are contained within:

Ay(h) = F ' s}, (2.52)
A, (h) = F ' {s,(0) exp(i®,(0))}, (2.5b)
A,(h) = F

T

As(h) =

$,3(0) exp(i(D, (0) — D,(0)))} (2.5¢)
$,3(0) exp(i(®@, (0) + D,(0)))}, (2.5d)
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Figure 2.5: Reproduced from Oka and Kato (1999). Schematic of the spectroscopic po-
larimeter with a channeled spectrum.
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Figure 2.6: Reproduced from Oka and Kato (1999). Measured channeled spectrum P(0).

and can be found by taking the Fourier transforms of each of the channels resulting in the
estimates shown in Figure 2.8. Note that even though there are seven channels, only three

(first, second and fourth in Equation 2.4) of them are being used to produce the estimates.

Oka has also built a channeled polarimeter that uses birefringent prism pairs to encode
polarization into x- and y-axes of the detector’s spatial domain (Oka and Kaneko (2003)).
The layout of this system can be seen in Figures 2.9 and 2.10. The typical intensity can be

seen in Figure 2.11, which clearly shows the imposed modulation pattern, which results
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Figure 2.7: Reproduced from Oka and Kato (1999). Magnitude of autocorrelation function
C(h). The seven components included in C(h) are separated over the h axis.

1

Stokes Parameter

Normalized

-1

05+

Wavelength 4 [nm]
620 600 580 560 540 520

T T T T T T T T T

1 S5/80

1 S1/S0

S53/50

1.6 165 17 175 18 185 19 195

Wave number o[ x 10% cm™1]

Figure 2.8: Reproduced from Oka and Kato (1999). Normalized Stokes parameters. Solid
and dashed curves show the experimentally obtained and theoretically calculated values,

respectively.
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in the 3 x 3 arrangement of channels seen in Figure 2.12. Although the channels occupy a

dffierent domain, they are exceptionally similar to the system of Oka and Kato (1999):

. 1 1 1 .
I(fx’fy) = EAO(fx’fy) + ZAl(fx -U, fy) * ZAI(_fx -U, _fy)+
+ éAB(fx -U, f, +U) + %A;(—fx -U,-f, +U)+

1 1

AN~ U f = U) = AR £~ Ui f, = 1) (26)

The principle by which the Stokes estimates are produced remain the same. Once again,
only three terms in Equation 2.6 are used to estimate the Stokes parameters, a feature that

is common to prior channeled system treatments.
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Figure 2.9: Reproduced from Oka and Kaneko (2003). Schematic of the imaging polarime-
ter using birefringent wedge prisms.
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Figure 2.10: Reproduced from Oka and Kaneko (2003). Configuration of the block of the
polarimetric devices.
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Figure 2.11: Reproduced from Oka and Kaneko (2003). Intensity pattern with mesh-like
fringes.
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Figure 2.12: Reproduced from Oka and Kaneko (2003). Power spectrum of the intensity
pattern.
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Figure 2.13: Reproduced from Hagen et al. (2007). Basic layout of the snapshot Mueller
matrix spectropolarimeter. Retarders 1 and 4 have their fast axes oriented at 45°, retarders
2 and 3 at 0°. Polarizers 1 and 2 both have their transmission axes oriented at 0°.
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Figure 2.14: Reproduced from Hagen et al. (2007). Fourier domain, 37 channels C,,.
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2.2.2  Mueller Matrix Polarimeters

Oka’s designs for Stokes polarimeters were followed by naturally extended Mueller matrix
polarimeter designs, including those of Hagen et al. (2007), Dubreuil et al. (2007) and
Kudenov et al. (2012). The polarimeter presented by Hagen et al. (2007) is an extension of
the polarimeter developed by Oka and Kato (1999). The PSA and the PSG follow exactly
the same principle of using high order retarders to separate information into channels.
The PSA in Hagen’s polarimeter features retarders that are five times thicker than their PSG
counterparts, as can be seen in Figure 2.13. The measured intensity of Hagen’s polarimeter
is
I(0) = my,

+ my, cos(c,0)

+ my, sin(c,0) sin(c,0)

+ My, sin(c, 0) cos(c,0)

+ m,, cos(c,0)

+ my, cos(c,0) cos(c,0)

+ my, sin(c,0) sin(c,0) cos(c,0)

+ my, sin(c, 0) cos(c,0) cos(c,0)

+ m,, sin(c;0) sin(c,0)

+ m,, cos(c,0) sin(c;0) sin(c,0)

+ m,, sin(c,0) sin(c,0) sin(c;0) sin(c,0)

+ m,; sin(c, 0) cos(c,0) sin(c;0) sin(c,0)

— My, cos(c;0) sin(c,0)

— my, cos(c,0) cos(c;0) sin(c,0)

— my, sin(c,0) sin(c,0) cos(c;0) sin(c,0)

— my; sin(c, o) cos(c,0) cos(c;0) sin(c,0), (2.7)
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where the argument can be expanded into

c;0 =2n1,0 =2nd, d;A,Bc — 1,=d,d,A B, (2.8)

o "t° 7o

where 7 is OPD, d,, is the global retarder factor, d; is the individual retarder factor, A, is
the center wavelength of the retarder and B is birefringence (index difference). Figure 2.14
shows the relative magnitudes of each information channel in the Fourier-domain, while
Table 2.1 defines the contents of each channel and Table 2.2 proposes a reconstruction
routine for the Mueller elements. From the reconstruction, it is readily seen that only 21
of the 37 channels are being used to reconstruct the underlying polarization information.
Figure 2.15 shows the simulation result for the snapshot channeled spectropolarimeter in
question.

Another similar system was proposed by Dubreuil et al. (2007), which uses the effective
d=(11 5 5)instead of Hagen’sd = (1 2 5 10 ). Its setup can be seen in Figure
2.16, while its intensity output is shown in Figure 2.17. This system will not be inspected
in greater detail here because of its similarities to Hagen’s polarimeter, but its performance
will be commented on in Chapter 3.

The last channeled system of interest for this dissertation is the one developed by Ku-
denov et al. (2012). It does to the system of Oka and Kaneko (2003) what Hagen did to the
system of Oka and Kato (1999). The spatial modulation is now done in the PSG, as well

as the PSA with analyzer’s frequencies being double that of the generator’s, as depicted in
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Figure 2.18. The resulting polarization-modulated intensity can be expressed as

I(x, y) =|A,| cos[ka(lx + 3y) + AT]
+|A,| cos[ka(3x — 3y) + AT]
+|A;| cos[ka(lx + 1y) + A5]
+|A,| cos[ka(3x — 1y) + Aj]
+|Ag| cos[ka(lx — 1y) + A%]
+|Ag| cos[ka(3x + 1y) + Ag]
+|A,| cos[ka(lx — 3y) + A7)
+|Ag| cos[ka(3x + 3y) + A%]
+|Ag| cos[ka(lx + 2y) + AF]
+| Aol cos[ka(3x — 2y) + Al,]
+|A;] cos[ka(lx — 2y) + Af}]
+|Ap,| cos[ka(3x + 2y) + Al,]
+| A5l cos[ka(2x — 2y) + Af;]
+|A, 4| cos[ka(2x + 2y) + Al,]
+]A 5| cos[ka(lx) + Afs]

+| A6l cos[ka(2y) + Al + Ay, (2.9)

where ko are the global modulation coefficients and | A;|s and A?s correspond to the magni-
tudes and phases of the channels shown in Figure 2.19, respectively. The channel contents
are shown Table 2.3 and Kudenov’s proposed reconstruction is shown in Table 2.4. As
with other systems, not all channels containing a given Mueller matrix element are used
for reconstruction of that element. The simulation of Kudenov’s polarimeter can be seen in
Figure 2.20, which clearly shows the reduced spatial resolution within the reconstruction

due to sharing of that domain with the polarization information.
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Table 2.1: Reproduced from Hagen et al. (2007). Fourier-Domain channels C, encoding
the Mueller matrix elements for the 1-2-5-10 configuration. The OPD numbers listed for
the channels are given in terms of multiples of OPD, (0,), the mean OPD of the thinnest

retarder.

O

N

Channel Content x(64/S,,,,)

AN Ul W~ O

o

=+ 4+ ++ 4+ H+H+H+ H+ + H+ + H+ + + H+ H+
— bt e e e e = \O
AN U1 i WD~ O

—
co

16my,

8myy, + 4my,  4im,;

My, £ 1My3 + 1M, — M3

—4my, F 4img;

2m,, + My, F imy, T 205 £ 15, + M5,
4m,, £ 4im,,

2my, + my, £ 1mys £ 2img; £ ims, — my;
—2m,, £ 2imy;

—My, F iMys F i3, + My

dmy, +2my, F 2im,

8m,

dmy, +2my, £ 2im,

Myy + 1Mz + 135 — M3

—2m,, F 2imy;

—2M, — My, + imy; £ 2imy + imsy, + Ma,
—4m,, = 4ims,

—2m,, — My, F im,3 £ 2im,, + ims, — Ms;,
My, T iMy; F iMy, + My

Table 2.2: Reproduced from Hagen et al. (2007). Spectrally resolved Mueller matrix el-
ements m,;(0) obtained by operating on spectral- domain Channels c,. These are given

in terms of the Fourier-domain channels by ¢, = [1 /sin’o(a)]’F—1 {w(OPD)C,(OPD)}, for

windowing function w.

mij(a) m,-j(a)

Mmyy(0) = 4, my(0) = 16R[cs]

my,(0) = 8(c; +¢3) my(0) = 32R[c, +¢4]

my,(0) = —-16R[c;] my(0) = -32R[c, + ¢l
my;(0) = 16R[¢] mys(0) = 32T[c, — ¢

myy(0) = 8¢y, my(0) = 16R[cs]

my (0) = 16(c; +¢cy) my(0) = 16T [c, + ¢4 + ¢4 + C5)
mp,(0) = -32R[c,] my(0) = -32T[c, + ¢l

my;(0) =

327[c,] my;(0) = 32R[cg — ¢, ]




51

“I T T T T T T T T T T T T T T T T r‘
1000.0 =
~ B ]
.2 100.0 E
o E =
8 - =
£ B N
g 10.0g =
5 = =
N C ]
g 1.0

0.1
—-1000 =500 0
OPD (um)

1000

(a) The Fourier-domain representation of the measured spectrum.
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Figure 2.15: Reproduced from Hagen et al. (2007). Simulated measurement of an achro-
matic polymer retarder using a snapshot Mueller matrix polarimeter.
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Figure 2.16: Reproduced from Dubreuil et al. (2007). Snapshot Mueller polarimeter for
the configuration (e e 5e 5e).
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Figure 2.17: Reproduced from Dubreuil et al. (2007). Theoretical (a) and experimental (b)
signals given by the snapshot Mueller polarimeter. The experimental signal is split into 5
zones for which the instantaneous frequency will be studied.
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Figure 2.18: Reproduced from Kudenov et al. (2012). SIMMP optical configuration. PGs
L,, L,, L; and L, shear the beam along x while L,, L,, L, and Ly shear along y. P, and
P, are linear polarizers at 45" while two quarter wave-plates, QWP, and QWP,, have fast
axes oriented at 45° and 0°, respectively. All PGs have identical grating periods A and the
generator’s and analyzer’s PGs are separated by a distance t and 2t, respectively.
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Table 2.3: Reproduced from Kudenov et al. (2012). Coefficient definitions for the intensity
pattern. Ck,cal = Ark(Csk/Crk)(CrU/CsU)'

=~

Coefhicient x(S,;,(x, y)/16)

N s W N =

e = = = T VY
A R WD = O

il e

17

—My, — My, — My, + My, + 2my; + 2ims,

—My, + My, +im;, +im,,

—My, + My, — imy, +im,, — 2my — 2ims, — 4my, + 4im,,
My, — My — iMy +imy,

—My, — My, — My + iMy, — 2my, + 2ims, — 4my, + 4im,,
-my, + My, +imy; +im,,

—My, + My, +imy, +im,, + 2m,; + 2ims,

My, — My — iy + iy,

—2m,; — 2imy; — 4y,

—2m,; + 2im,;

—2m,; — 2im 5 + 4my,

2my; + 2imy;

4m,, — 4im,,

4m,, — 4im,,

8imy;,

8imy,

= 8my,

Table 2.4: Reproduced from Kudenov et al. (2012). Mueller Matrix Solutions from the
Fourier domain.

m;; = Channel Combinations x|C,,|/|Cyj|

My = |Ca7l/ICo5l

My, = _zj[ArZCSZ/CrZ - Ar3C53/Cr3 - ArSCSS/CTS + ArSCSS/CTS]
My = —2R[A,C/Cy + ACy/Crs + AsCis/Crs + AC [ Cp] — s/ 2
Moz = —23[A,15C45/Chy5]

My = 4R[A,3C5/Crps + A1sCaa/Cris)

my = 4I[A,C0/Cry = ACy/Cry + AgCi6/Crs — ArsCis/Crl
my, = —4R [Ar2cs2/cr2 + Ar4Cs4/Cr4 + Ar6Cs6/Cr6 - ArSCSS/CTS]
my3 = —4J[A,0Cy/Cro + A1 Ci11 /Cy]

Myy = _2][Ar13csl3/cr13 + Arl4csl4/crl4]

my = —4R[A,C,/C,) - ACi/Chs + AsCs/Crs — A,C/Cr]
My = 4I[A,C0/Cry + A Cy/Cry + AgCi6/Crs + ArsCis/Crl
My = AR[A,10C0/Crio + ArnCopa/Cal

My = 23[A;16C6/Cri]

Mms = 4R [Arlcsl /Crl - Ar4cs4/cr4 - Ar6C56/Cr6 + Ar7Cs7/Cr7]
ms, -4J [Arlcsl /Crl - Ar4Cs4/Cr4 - Ar6Cs6/Cr6 + Ar7Cs7/Cr7]

—2R[A,0C/Cro — A,1,Cy11/C11]
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Figure 2.19: Reproduced from Kudenov et al. (2012). Fourier domain of a channeled image
obtained from the SIMMP. Channel numbers correspond to the k subscripts of the A,
coefficients per Table 2.3. Only the non-conjugated channels are numbered for clarity.
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Figure 2.20: Reproduced from Kudenov et al. (2012). Simulated input (left) and measured
(right) Mueller matrix of the quarter-wave vortex retarder.
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2.3 Partial Systems

Although literature regarding partial polarimeters might seem limited, there are a number
of developed applications that construct a partial system without necessarily treating it as
such. Directly from Equation 1.2, it follows that if one is to measure I}; and I, a partial
system that is able to reconstruct s, and s, is created. Jacques’s Pol measurement, for ex-
ample, can be thought of as a primitive partial Stokes Vector Polarimeter (pSVP) (Jacques
et al. (1999)),

Iy =1, s cos(a) + s, sin(a)

Pol = , (2.10)
Ii+1, Sy

where « defines which direction is parallel and which is perpendicular with respect to
the measurement. The DoFP discussed in Chapter 1 is another extension of the princi-
ple of taking a selection of canonical measurements to produce the estimate. Treating a
mircogrid polarimeter as a conventional polarimeter rather than a channeled one is equiv-
alent to reconstructing three information channels from four measurements, thereby con-
stituting a partial measurement as well.

Developing a partial Stokes polarimeter does not require an overly elaborate con-
sideration because there are relatively few degrees of freedom to be measured and thus,
considered. Goudail and his co-workers have focused their attention on making single-
measurement systems in order to enhance contrast for a given scene (Goudail and Tyo
(2011); Anna et al. (2011a,b)). This dissertation, however, deals with the broader topic
of making partial Mueller Matrix polarimeters (pMMPs) that were recently introduced
(Hoover and Tyo (2007); Tyo et al. (2010); Alenin and Tyo (2012); Vaughn et al. (2012b)).

Hoover and Tyo (2007) created various textures on ABS polymer coupons by deliv-
ering different levels of laser fluences. Performing principal component analysis (PCA),
authors deduced the following three polarization channels as being the most important

for discrimination:

C, = —my; + My, + My, (2.11a)
¢, = —0.3(mgy, +my,) — 0.6(m,;; —m,,) — m;, (2.11b)

c; = —my, —my, — 0.5(m,, — ms;), (2.11¢)
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which grouped the different objects into clusters shown in Figure 2.21. Figure 2.23 shows
the corresponding non-linear curve fitting. The reduced space was shown to be sufficient
in separating the objects, which bodes well for pMMPs.

Finally, Tyo’s subsequent publication has introduced the concept of pMMPs (Tyo et al.
(2010)). By relying on Chipman’s formalism (Chipman (2009b)), a set of canonical pMMP
was identified. By properly selecting measurement conditions, a four-block pMMP was

developed that is able to measure the following channels:

¢, = My, (2.12a)
€ = My, (2.12b)
C3 = My, (2.12¢)
¢, = my, (2.12d)

where 0 < i, j < 3. The premise of that paper is summarized well in Figure 2.22. Chapter
4 will show that the achieved space coverage by Tyo et al. (2010) is fairly sparse and will

develop a much broader set of systems in the process.
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Figure 2.21: Reproduced from Hoover and Tyo (2007). Cluster diagram of data due to a
family of textures on a white-gloss paint projected onto three principalcomponent chan-
nels. The dashed line indicates where data around the specular peak of the control sample
is expected to fall.
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Figure 2.22: Reproduced from Tyo et al. (2010). These two one-dimensional scene spaces
have the same angle with respect to the sensor space. However, the space in (a) projects
into a direction in sensor space with poor SNR and the scene space in (b) projects into a
direction in sensor space with good SNR.
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Figure 2.23: Reproduced from Hoover and Tyo (2007). Nonlinear fitting results. (a) Three-
dimensional polynomial estimates overlaid on the data projections of Figure 2.21. (b)
Control-sample data and estimate projections onto each of the principal-component chan-

nels as functions of the probe angle.
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CHAPTER 3

GENERALIZED CHANNELED POLARIMETRY

The concepts of SNR optimality have been explored for conventional active and passive
polarimeters using the Data Reduction Matrix (DRM) formalism (Chipman (2009a); Tyo
(2002); Twietmeyer and Chipman (2008)), but they have not been applied to the class of
channeled polarimeters that have emerged recently. Channeled or modulated polarime-
ters, the polarization states that define the measurement either spatially, temporally, spec-
trally, (LaCasse et al. (2011a)) or more than one simultaneously (LaCasse et al. (2011b)).
Every one of those harmonic modulations will split the information in the correspond-
ing Fourier domains, creating weighted copies of the Fourier transform of the data at the
modulation’s carrier frequencies. These multiplexed copies are called channels. Oka and
his coworkers (Oka and Kato (1999); Oka and Kaneko (2003); Okabe et al. (2007)) have
popularized the design concepts that go into making a channeled system, which were then
further developed by Hagen et al. (2007), Kudenov et al. (2007, 2012) and others. This
chapter introduces a toolkit to describe, analyze and optimize such systems, and investi-

gates channeled polarimeters from the literature to show how they can be improved.

3.1 Introduction

There has been a number of proposed channeled systems in the past (Oka and Kato (1999);
Oka and Kaneko (2003); Okabe et al. (2007); Kudenov et al. (2007); Hagen et al. (2007);
Kudenov et al. (2012)) whose designs and corresponding reconstruction techniques were
derived by hand. Lemaillet et al. (2008) proposed a way to optimize a spectrally channeled
system by introducing linear algebraic inversions to map the information. Their effort,
however, focused on one kind of system and stopped short of providing a complete solution
to deal with any channeled polarimeter. This chapter describes the generalized methods

that can be used to model channeled information mapping and guide the reconstruction.
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A great advantage of a spatially or a spectrally channeled systems is the possibility of
constructing a snapshot polarimeter. This reduces the temporal bandwidth penalties and
removes the need for complex image registration that would be required in a temporally
modulated system. In terms of object bandwidth, a snapshot channeled system favors tem-
poral resolution at the cost of introducing stricter band limit constraints in other domains.

A common 2D FPA detector will be considered, which enables access to up to two mod-
ulation types to be mapped onto the two orthogonal axes. In addition to having no mod-
ulation, either spatial and spectral modulations cane be mapped into either x- or y-axes
of the detector. Although the methods introduced here are general enough to be used
with any channel structure on any orthogonal coordinate system, this chapter will focus
on Cartesian coordinates, implying that the channels lie on a rectangular grid.

For the sake of completeness, temporal modulation is also considered. Such a system
will obviously lose its snapshot nature, but it is conceivable that some middle ground solu-
tion could be found, whereby a very limited number of temporal measurements are made
with intent of balancing the resolution loss among all possible modulation dimensions
(LaCasse et al. (2011b,a)). Thus, a conventional detector will allow to split polarization
information into a three dimensional structure of channels that can be manipulated to re-
construct the polarization information. When presented with a small number of temporal
measurements, the resultant temporal frequency channels may contain as few as one data
point. In those cases it may be prohibitive and unnecessary to work with the data in the
Fourier domain; instead measurements can be used as information “channels” themselves

with a clear benefit that they will contain modulation information more compactly.

3.1.1 Sinusoidal Channel Splitting

For typical channeled systems, g, and g; in Equations 1.10 and 1.15 are composed of a num-
ber of periodic functions. Every sinusoidal modulation splits the element information in
m;; into two channels at certain frequencies within the Fourier domain of the modulation.
For the available modulation dimensions of x, y, o (wavenumber) and ¢, the corresponding
frequency dimensions will be called £, 77, T (optical path difference (OPD)) and v. Only the

relevant equations for the x—& pair will be shown, since all others can be obtained trivially.
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The following Fourier transform pairs are well known (Alenin and Tyo (2014)):

1(x) «— (), (3.1a)
cos(2nx) «— [0 +&) +8(E-&)], (3.1b)
sin(2ngx) «— [0 +§) - (& -&)]. (3.1¢)

In the general case, the modulation functions have multiple modulating frequencies as

Fu(x) = [T, (21, %), (3.2)

where §5 denotes that the function could either be a cosine or a sine. When M sinusoids

are multiplied together, a 2" x 2" matrix can be created that will describe all the possible
combinations of either +&,, of the §-function, as well as distinguish between a cosine and
a sine. Each sub-function will have a phasor that, when multiplied together, will yield the
net phase of the particular channel-weight. This “look-up-table” can be created by means

of an outer product of two matrices:

EME[ £, - fM]’ (3.32)

gME[Ql 0, = Oy ]’ (3.3b)

| =ry
—

where f, . is 0 for cosine and 1 for sine, while o,,, is —1 for —¢; and +1 for +¢;. F,; and

0,, are both 2 x M in size. The Frequency Phase Matrix (FPM) is then,

_ 1 —im T

Casesof M = 1,...,5 are shown in Figure 3.1.  Given any modulation, the rows can be
extracted from an appropriately-sized FPM and the coefficients placed at the contributing
frequencies, thereby creating q". Note that this vector matches the uniform sampling of

the underlying grid and has 2¢,, . + 1 elements.

For some polarimeters the induced modulation may be more complicated than the
one prescribed by Equation 3.2. For example, Diner et al. (2007) describe a system that
employs components applying Bessel function modulation. In order to treat those mod-

ulation schemes, an addition of modulating functions can be allowed, effectively treating
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Figure 3.1: First five FPMs. The circles represent the polar form of the coeflicients: ® = +1,
® = +i,© = -1, ® = —i. Each FPM has an omitted weight of 2MoIf & = &, then
8¢+ +& -8+ )andd(E+--- - &+ Ej + ---) will combine and change the magnitude
of the impulse at that frequency. The side brackets denoted with 2/4/8/16/32 can be used
as crop guidelines for obtaining FPMs for M = 1/2/3/4/5.
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individual FPMs as a basis set. The total FPM can be decomposed into L sub-FPMs,

P

total — PM1 +£M2+'“+£ML> (35)

which can be calculated separately and simply added together. The involved frequency
coefficients will be potentially more complicated, but they should present no additional
computational challenge within the prescribed methods.

There are several ways by which to combine modulations in multiple domains into a
total structure of channels. If each dimension’s structure is already determined, they can

combined using a Kronecker product,

93 ® Qi) ® 945 ® Q- (3.6)

On the other hand, if the order of modulation dimensions alternates between elements,
convolution can be used to create the N-dimensional cloud of channels that would then
need to be unfolded into a vector.

As an example, consider four polarization modulation elements that operate over

x/ylx/y, or equivalently modulate into &/5/&/5. The total vector is then

vee (g, 0 Qi) *n Die) *0 i) (3.7)
where *, redundantly implies that the vectors are differently oriented or, more generally,
can be described as degenerate N-dimensional structures. In this example, q €, and q €.,
are row vectors, while q ) and q ..} AT€ column vectors. The result of the convolution
operation is a matrix and needs to be unfolded using the vec operation defined above. The
choice of row/column over column/row addressing is arbitrary at first, but once chosen
must be maintained consistently.

The total vector can also be generated by recognizing that the modulation patterns can
be viewed as either a test dyad or a projection target. By treating it as a dyad, D = AG",
its Fourier transform can be inspected, F {2} = F{A} = F{G }T, with * now being a
matrix convolution (same as multiplication, but every product is replaced with convolution
between the same elements and added as before). That allows PSG and PSA modulations

to be combined as

gmij - Vec(ﬂﬂi * ﬂaj)‘ (3.8)
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Finally, after using any of these methods to construct the Mueller element modulation

vectors, all 16 of them need to be combined into the corresponding Q matrix
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that maps an input Mueller vector into a channel vector,
F(C}= QFIM}, (3.10)

where C describes the channels contents. However, since channels are measured directly,
the opposite operation is desired. To do that, the pseudo inverse of Q can be obtained
much like in DRM. By correctly arranging Fourier transform operatior?s around the mul-
tiplication, the reverse mapping can be used to get back to the Mueller elements’ informa-

tion,

M =F" {9+’F{Q}}- (3.11)

An important piece of insight can be obtained if Q is recognized to not be that much

different from D ; however, whereas before multiple dyads were constructed against which
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Figure 3.2: Modulations for each Mueller element as a convolution of modulations in the
respective PSG and PSA elements and the corresponding rearrangement of channel mod-
ulations into the total Q matrix. In this example, a verbose 7 x 7 grid of frequencies is

defined, and empty channels are constructed where the information exists for any Mueller
element. (Animation available in the digital version)

to test the Mueller object, it is now possible to have a very limited number of dyads. This is
because the particular modulation choices create a multi-dimensional “pointer” that can
be unfolded to the full Q representation. As an example of Q construction, consider the

modulations and their reordering in Figure 3.2.

3.1.2  Snapshot Channels

A snapshot measurement implies that there is no temporal modulation, which conse-
quently means that no additional (other than the exposure time) temporal band-limit con-
straints are placed on the captured scene. If each dimension on the 2D detector can carry
spatial, spectral or no modulation, a verbose set of nine snapshot channeled systems can

be created, as depicted in Figure 3.3. These nine systems can be further separated into two



66

y AT Arl
) <
) <
x x x
) <
(a) None-None (b) None-Spec (c) None-Spat
Ay AT A;/I
OEEOP®O®G OEO® OO
OOOP OO OOOPOO®
- eeedees ¢ eeedees ¢
OOOP OO OOO® OO
OEOP®OG OEO® OO
OOOP OO OOOPOO®
(d) Spec-None (e) Spec-Spec (f) Spec-Spat
Ay AT 1\17
OOOP OO OOOPOO®
OOOP OO OOOPOO®
3 oo & oeedeoe &
OEOP®O® OEO® OO
OOOP OO OOOPOO®
OOOP OO OOOPOO®
(g) Spat-None (h) Spat-Spec (i) Spat-Spat

Figure 3.3: Snapshot systems. Case (a) provides no modulation. Case (e) is not straightfor-
ward to implement physically. Case pairs (b)/(d), (c)/(g) and (f)/(h) are essentially equiv-
alent.

classes: one-dimension-modulating (b/c/d/g) and two-dimension-modulating (e/f/h/i).
An example of each will be studied.

Further developing the consideration of physical realizability, several snapshot mea-
surements can be taken. This gives an easy access to a third modulation dimension —
time. Provided that the temporal modulation is captured in even time steps, the Fourier
transform can be used to create the corresponding channels. However, since in most cases
this will create more channels than the original data, with all channels being a single pixel,

using the Fourier coefficients does not present any advantage. Instead, the captured snap-
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(a) Six snapshots with 25 E-# channels each (b) Ten snapshots with 9 7y channels each

Figure 3.4: Hypothetical multi-snapshot systems that can be analyzed with the proposed
formalism.

shots themselves can be used as “direct channels”, or simply, projection targets like in the

wl formalism, namely,

T
Quu=| Q, Q. - Q. |- (3.12)

This removes the need to have evenly spaced samples, yet maintains the compressed nature
of Q. Figure ?? demonstrates the kinds of systems this alteration can handle. Note that
even though only temporal modulation is represented with direct channels, it is possible
to treat other domain modulations similarly. For example, if one subdivides the FPA into a
small number of sections performing different polarization analyses, it might be preferred

to treat those sections as direct channels.

3.1.3 Channeled Reconstruction

Much like the reconstruction described in Section 1.4, an SVD method is used to calculate
the pseudoinverse for reasons of its numerical stability and higher capacity for manipula-

tion. First, Q is decomposed as

(o)

= UgZoVh, G.13)

where the matrices U and V are N x N and 16 x 16 complex, orthonormal matrices,

respectively, with N, denoting the number of constructed channels. Provided that the
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system is full as opposed to partial, X is a N, x 16 reduced diagonal matrix containing the

16 singular values o, > 0, > ... > 0,4 > 0. The pseudoinverse can be written as

,
Q" =VqoZoUo (3.14)

where 27 is the 16 x N reduced diagonal matrix with the inverses of the singular values.

3.2 Examples

This section discusses systems, for which the intensity can be written generally as
L 3.3 R ) R
1=y Z fao®my®)f, 9, (3.15)
i=0 j=0

where J is used to denote a set of domains where the information is modulated. The two
functions, fai(?)) and f gj(§), define the polarimeter design and can be used to derive Q
using methods outlined in Section 3.1.1.

By simplifying the generation of polarimeter design, the idealized SNR can be calcu-
lated from Q directly, without performing full simulations of the system. Simply changing
the way the | problem is written allows for introduction of more optimization parameters
that can help find an optimal polarimeter. Several systems from the literature are examined
to see how the introduced concepts could help increase their performance.

Sabatke introduced Equally Weighted Variance (EWV) as an appropriate metric to
evaluate Stokes polarimetersSabatke et al. (2000), and Twietmeyer later adopted a similar
metric for use with Mueller polarimeters. Twietmeyer and Chipman (2008) In the context

of Equation 1.21,
EWV =tr

—_—

Eg*] = Yo oy (3.16)

where K+ is the covariance matrix ﬂ’JrW’JrT. To use EWYV for channeled systems, the
calculation merely needs to be performed with Q" instead of ﬂ“r.

Without needing to establish any particulars_of a system first, a general statement can
be made that if the channel structures form an orthogonal basis set, the system will be
optimal. This optimality arises from the fact that channel cross-talk is eliminated when K

is diagonal. To investigate the lower limit of the EWYV, orthogonality is simply assumed. In
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order to describe the surface of the Poincaré sphere, two parameters are needed — azimuth
and elevation angles. To modulate sufficiently, two carrier frequencies associated with the
two spherical parameters in both the PSG and the PSA need to be introduced.

As a result, modulation based on spherical coordinate mapping provides the smallest

number of carrier frequencies, while remaining physically realizable, i.e.,

- -

1
COS(ZTISIQI )
sin(219,9,) cos(2m9,9,)
sin(2n9,9,) sin(2n9,9,) |

(3.17a)

I
[}
[

1
cos(2n9393)
sin(219,9;) cos(2m9,9,)
sin(219,9;,) sin(2n9,9,) |

(3.17b)

L)
>
Il

where 9, are modulation domains, and 9, are the corresponding carrier frequencies. The
insight of Figure 3.1 allows a simple writing down of the number of frequencies present
in each PSG/PSA elementas n, = n; = [ 1 2 4 4 ]T. Assuming independence, the
minimal EWV follows,

EWV,;, =Y ngen, (3.18)

which for the assumed modulation is equal to 121. A better EWV is mathematically pos-
sible, but would require that n, and n, contain fewer modulating frequencies. Quite
expectedly, a more efficient modulation than the one stemming from spherical coordi-
nates was not found, as all of them required a Degree of Polarization (DoP) greater than 1,

thereby violating the condition specified in Equation 1.3.

3.2.1 One Dimensional Channeled Systems

In order to treat single dimension systems generally, the rigorous channel creation descrip-
tion needs to be forgone for now and the initial discussion limited to frequency ratios.

Given spherical mapping’s implied proper selection of sines and cosines for modulation
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Table 3.1: Channeled system designs with the lowest EWV for a given number of channels.
The corresponding bandwidth of a system will be proportional to NLC

N¢ EWV,_., Configuration
19 3505664 (3 1 3 2)
21 259.1667 (2 1 2 5)
23 176.8039 (2 1 2 6)
25 1695152 (2 1 2 7)
27 158.1018 (2 1 3 7)
29 137.6667 (3 2 1 8)
31 1373810 (2 1 3 9)
33 121.0000 (1 4 2 9)
35 126.7143 (2 1 4 10)
37 121.0000 (2 1 4 11)
39 121.0000 (2 1 4 12)
41 +2n 121.0000 (2 1 5 12+mn ), ne N,

functions, the polarimeter configuration can be described with

d=(9, 9, 9, 9,), (3.19)

which is a vector containing the proportional modulation frequencies in order of the po-

larization elements. The total number of channels produced is
Ne=1+2%} d. (3.20)

To find optimal configurations, a number of optimizations were run that were constrained
to have a particular number of channels. The results of those optimizations are summa-
rized in Table 3.1.

Now consider the spectral-none channeled polarimeter proposed by Hagen et al.
(2007), which can be seen in Figure 2.13. The polarimeter uses two thick retarders in

both the PSG and the PSA to modulate in wavenumber. Using Equation 3.15, the system
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can be described with the following modulation sets,

- -

1
fg = cosler0) : (3.21a)
- sin(c,0) sin(c,0)
sin(c,0) cos(c,0) |
1
cos(c,0)

fa= . (3.21b)
- sin(c;0) sin(c,0)

cos(c;0) sin(c,0) |

The argument

c,0 = 2nt,0 = 2nd d;A,Bo, 1, =d,d,A,B (3.22)

contains the global thickness factor, d,, individual retarder thickness factor, d;, center
wavelength, A, and birefringence, B. The vector d contains all the modulation informa-
tion in the form of proportional frequencies from Equation 3.19. Now, the modulations
are no longer in an arbitrary relation to one another — the positions and orientations of
the retarders and polarizers in the system determine that selection. This chapter only con-
cerns itself with the mathematics of the design and as such, only the details that make the
discussion complete are presented.

Hagen choosesd = (1 2 5 10 ), meaning N = 37. The resulting channels are
shown in Table 2.1, and the proposed reconstruction scheme is shown in Table 2.2. From
the proposed reconstruction, it is seen that some measurements are ignored for the sake
of algebraic simplicity — only channels ¢, - ¢, are referenced, with real and imaginary
operators constituting the use of conjugates. Thus, instead of using all 37 channels, only
21 are used. An alternative method would be to recognize the modulation induced by re-
tarders, construct an appropriate FPM, look up the coefficients and construct Q by placing
them at the contributing frequencies. The resultant Q and its inverse can be seen in Figure
3.5. Those matrices represent Tables 2.1 and 2.2 more compactly.  The system in Fig-
ure 3.6 was found using trial-and-error to see if other arrangements of the same elements

can produce better results. The system in Figure 3.7 was found through optimization with
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taining 21 cropped channels can be seen between the two horizontal lines and has an EWV

of 355; including the other 16 channels lowers the EWV to 187. These extra channels must
be measured to prevent aliasing. The distinction is whether the data contained within these
channels is used in reconstruction, after the Fourier transform of the measured intensity

representation shows channels as rows and Mueller elements as columns. The matrix con-
was found.

Figure 3.5: Polarimeter proposed by Hagen et al. (2007), withd = (1 2 5 10 ). This
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Figure 3.6: Resultant Q matrix with the first two elements swapped. The configuration is

nowd=(2 15 IOIwith all 37 channels occupied. EWYV is lowered to 130‘—71.

N¢ = 37 constraint. Changingtod = (2 1 4 11 ) has the effect of “orthogonalizing”
the channels so that the PSA-channels are available independently from PSG-channels in
the Fourier domain, i.e. at different carrier frequencies, a characteristic that has been em-
pirically observed to be indicative of optimality. Considering all the channels in Figure
3.5 lowers EWV by 47.3%, while the systematic approach to measurement selection brings
another 35.3% reduction to EWV. In total, EWV was reduced to 34.1% of its original value,
suggesting that the polarimeter’s SNR is almost three times higher.

Finally, Figure 3.8 shows the covariance matrix, K -+, for the three systems with N =
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Figure 3.7: Further thickness adjustments can produce an optimal
(2 1 4 11)and EWV = 121, while keeping the same number of channel
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Figure 3.8: K+ for different spectrally channeled configurations.

37. Since the number of channels is the same, spectral resolution remained unchanged as
well.

Table 3.1 mentions an optimal system withd = (1 4 2 9 )and N, = 33. Choosing
this system does not impact the SNR of the reconstructed polarization channels, but has
the added benefit of enabling one to increase d,, so as to widen the channel bandwidth. The
resultant Q and its inverse can be seen in Figure 3.9. Once again, the fact that the channels
that contain PSG modulation information are free of any contribution from the rest of the
Mueller elements is crucial to ensuring the system’s optimality.

There are other one-dimensional channeled systems in prior literature. Dubreuil et al.
(2007) proposed a system with an effective d = (1 1 5 5 ), meaning a total of
21 channels. The Q matrix and its inverse for that system can be seen in Figure 3.10.
Evaluating the syste_rn with the methods outline in this treatment, reveals an EWV of 441,
while the results in Table 3.1 show that a system withd = (2 1 2 7 ) has the same
number of channels but 70.2% higher SNR. Inspecting the corresponding Q matrix, it
is readily seen that Dubreuil’s system has many channels canceling one anotEer, thereby

reducing the amount of information carried through.

3.2.2 Two Dimensional Channeled Systems

Like in the previous example of one dimensional channel systems, two modulating fre-
quencies are needed to separate the elements within both the PSG and the PSA sufficiently.

Instead of considering a single design vector (d), it is more appropriate to consider two
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Figure 3.9: Resultant Q matrix of a system withd = (1 4 2 9 ). All 33 channels are

occupied, while EWV is maintained at 121.
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Figure 3.10: Resultant Q matrix of a system with d = (1 1 5 5 ). The system features
25 channels and an EWV of 441.

(9, 9,)andg = (9, 9,),which translates to

proportional frequency vectors, a

having

I[-~

X), (3.23a)

X

N =1+2Y%7, 99,
N, =1+2Y} 8,9 < »). (3.23b)

First, it is possible to study the lowest attainable EWV without assuming anything about
the type of modulation applied or the order of dimensions. Keeping those parameters vari-
able, genetic algorithm optimizations were run to find systems with the best EWV given
a specified number of x- and y- channels. The result can be seen in Table 3.2.  Note
that full Mueller Matrix polarimeters do not exist for 3 x (3,5,7,9) or (3,5,7,9) x 3 two-
dimensional arrangements. The most balanced solution appears to be N, = N, = 7, as it
posits the same bandwidth constraint on the two dimensions, while being a sub-class of
systems with the lowest number of channels that achieves optimality.

As a representative example, consider the spatial-spatial channeled polarimeter de-
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Table 3.2: Minimum achievable EWV for N, x N, channel arrangement.
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Figure 3.11: Resultant Q matrix of a system with d = (2 1 2 7). The system features
25 channels and an EWV of 169%.
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scribed by Kudenov et al. (2012), an example of a system in Figure 3.3i. The modulation is
achieved via polarization gratings that separate the different Mueller matrix elements onto
patterns of frequencies that are determined by the spacing of the elements. The intensity

can be similarly represented as in Equation 3.15 with § = ( x y y x ). Kudenov used:

1

cos(2my) (3.24a)

I
[}
I

sin(2my) cos(2mx)
| sin(2my) sin(2mx)
1
cos(4mx)

fy= . (3.24b)
sin(4mnx) cos(4my)

>

| sin(47nx) sin(4ny) |

Figure 3.12 shows a comparison between three systems with the only difference be-
ing the order of modulation. The merit of introducing Q is clear; better performance is
achieved virtually for free, using the same polarization elements arranged in a different
order. Systems in Figure 3.12 were found by optimizing using genetic algorithms, while
continuously relaxing the design restrictions.

Although a symmetrical (x/y/y/x & 1/1/2/2) modulation design shown in Figure 3.14
may seem intuitive, it is possible to improve the design as evidenced by the polarimeter
in Figure 3.12¢, which is shown in greater detail in Figures 3.13 and 3.15. First, in Figure
3.12b, an asymmetrical order of modulations (x/y/x/y & 1/1/2/2) improves EWV by 27.8%.
Then, in Figure 3.12c, it is improved by another 19.9% by splitting the modulation into one
dimensional structures for the PSG and the PSA (x/x/y/y & 2/1/2/1). In total, EWV was
reduced to 57.9% of its original value. Although not as large of an improvement as in the
previous example, it is, nonetheless, significant. The reason for the EWV improvements
lies in how the channels interfere. From the comparison of Figure 3.12, it can be noted that
the better systems “focus” the reconstruction onto the diagonal of K o, which matches
the fundamental expectation that the most orthogonal set of structure:s will produce an

optimal system.
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Figure 3.12: Top: &/n plane of channels (the number inside each channel corresponds to
the number of Mueller elements contained within). Bottom: K .



Figure 3.13: Frequency grid of the Mueller modulation. & and # are the x- and y-axes,

respectively.
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Figure 3.14: Equivalent representation using the introduced formalism of the spatially
channeled polarimeter from Kudenov’s work. Though the modulation configuration pro-
duces a total of 49 channels, only 33 channels are occupied with information; the rest are
empty. This configuration has EWV = 209.
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Figure 3.15: Spatially channeled polarimeter with an optimal modulation configuration.
This system only changes the order and the dimensions of modulations while keeping the
frequencies intact, which maintains the same number of channels. This design allows for
all 49 channels to carry information and leads to this configuration having EWV = 121.
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3.2.3 Multiple Snapshot Polarimeter

The columns of Q matrix represent nothing more than unfolded dyad elements that con-
tain modulations within each Mueller channel projection target. Thus, once the system’s
spectral and/or spatial modulations are determined, the associated channel structures can
be rotated via a unitary transformation that remixes the channel structures in the PSG and

PSA as

Q= [ULF{A}] « [F{G} Ug|. (3.25)

Applying U and U, maintains the channels’ relative orientation, thereby maintaining
the EWV. Looking at the Mueller matrix of a linear retarder in Equation 1.30, it can be
shown that | det(LR(6,0))| = 1, which means it is a unitary transformation. Using the
notation of Equation 3.18, the variances within the reconstructions of all 16 elements can
be expressed with the number of modulations present. The sandwich retarders rotate each

channel structure, which can be represented by defining n (65, 0.;) and n 4(5,4,0,):

160 00) = (Mix(0600) e Mix(00:00)) [ 1 2 4 4] =
i 1 ]
2[(206)+ c(36) $°(205) | +45(205) *(85) +  5°(40) v*(8)
4[s7(206)+ c(86) (205)|* +4 *(205) 5°(86) + 1 5°(465) v (85)

4-25°(20,) ()

(3.26a)

T
n,(8,,0,) = <¥LR(6A,6A)° MLR(5A)9A))[ 1 2 4 4 ] =

1
2[(20,)+c(8,)5°(20,)] +45°(20,) " (B)+ $7(40,) v*(84)
4[°(20,)+ c(8,) *(20,)]" +47(20,) 5°(8,) +1 §°(46,) v*(8,)

4-25(20,)5°(8,)

(3.26b)

where o represents the Hadamard product, which is necessary for correct weighing of vari-

ances and the same shorthands are used as before: c(x) = cos(x), s(x) = sin(x) and v(x) =
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Figure 3.16: Effect of 65 = 8, = 7, 6 oc tand 6, oc t/5 on the mixture of channel
structures. Each channel structure features an EWV of 121 with the variance being traded
off between Mueller element reconstructions. (Animation available in the digital version)

versin(x) = 1 — cos(x). The variances can still be evaluated as n(8;,0;) ® n ,(5,,0,)
and their sum will remain unchanged at 121. This enables one to adjust the distribution
of noise power between Mueller elements and follows the concepts of preferential treat-
ment of information without creating a partial system. This development also leads to a
fairly straightforward construction of a multiple snapshot system by positioning the two
retarders to different orientations for each successive measurement. Using Equation 3.12
gives the total Q.

Figure 3.16 shows the effect on channel constructs after placing two %-plates before
PSG and after PSA and rotating them at rates of one and five. Each structure within the
animation corresponds to an optimal system with EWV of 121. Figure 3.17 shows (6,4, 0,;)
while scanning through different values of §, = §;. The impact of this development is the
ability to redistribute the variance in case a preferential weighing of Mueller elements is
needed.

Optimizations of 64 differently configured spatial-spatial channeled polarimeters were



04. (Animation available in the digital version)
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Figure 3.17: Shuffled variance (blue/yellow for +12/-12) as a function of 6, 6; and §; =
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Table 3.3: Results for different number of temporal snapshots. Row/Column labels refer
to each element’s modulating frequencies in PSG/PSA, respectively. Order of modulation

domains is an optimization variable. For example, 1 snapshot with 9= (1 2 1 2) pro-
duces EWV = 133. For those constraints, optimization routine found 9 = ( Yy X X y).
The outside retarder orientations, 6, and 0, are plateau dimensions when number of mea-
surements is unity, hence they do not play a significant role.

1/1 2/1 1/2 2/2

1/1 2/1 1/2 2/2

1/1
2/1
1/2
2/2

441.0 171.7 2149 151.0
171.7 121.0 147.7 147.7
2149 147.7 133.0 214.9
151.0 147.7 2149 441.0

1/1
2/1
1/2
2/2

60.00 53.50 53.60 53.60
53.50 53.57 54.28 53.50
53.60 54.28 56.22 59.08
53.60 53.50 59.08 60.00

(a) 1 snapshot — 49 channels

(b) 2 snapshots — 98 channels

1/1 2/1 1/2 2/2

1/1 2/1 1/2 2/2

1/1
2/1
1/2
2/2

36.26 35.50 35.32 35.00
3550 34.00 34.50 34.77
3532 3450 35.20 35.95
35.00 34.77 35.95 36.49

1/1
2/1
1/2
2/2

25.33 2548 2552 25.65
2548 2522 25.61 25.61
25.52 25.61 25.78 26.16
25.65 25.61 26.16 2594

(c) 3 snapshot — 147 channels

(d) 4 snapshots — 196 channels
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run. The number of snapshots was constrained to be 1, 2, 3 or 4, with 6 and 6, defining
each snapshots’ sandwich retarders as optimization variables. Additionally, the verbose
grid of 9 frequencies, ( 9, 9, ) = ( 9, 9,)=1{(1 1)(1 2)(2 1),(2 2)}
was searched, which would correspond to N, and N, as 5, 7, 7, and 9, respectively. With
frequencies set, the distinction was the corresponding dimension into which the data were
mapped, §, which was an optimization variable in the optimization. A genetic algorithm
was used to find the lowest EWV. The results are shown in Table 3.3.

From these results, it can be gathered that as the number of temporal measurements
grows, the importance of the spatial frequencies and order of modulations diminishes.
This bodes well if this phenomenon is understood as a continuously growing temporal

bandwidth constraint allowing simplification of the spatial multiplexing.

3.3 Conclusion

Introducing Q and methods for generating it automatically allows description of a wide
range of similar systems with a handful of parameters and removes the need to handle
reconstruction by hand. Furthermore, analysis of Q reveals certain design metrics im-
mediately instead of having to run an elaborate simulation. The end result is that a more
optimal system can be found often without requiring the use of any extra elements, while
injecting the optimization procedure before element selection allows for a better selection
overall.

The premise of applying the same concepts presented in this chapter to partial Mueller
Matrix Polarimeters (pMMPs) is of great interest and will be a topic of Chapter 5. To evalu-
ate such systems the concept of EWV would have to be generalized to a Weighted Variance,
where instead of treating all information equally, certain information can be deemed to be

most important for the particular task.
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CHAPTER 4

PARTIAL POLARIMETER DESIGN

Partial Mueller matrix polarimeters (pMMPs) are active sensing instruments that probe a
scattering process with a set of polarization states and analyze the scattered light with a sec-
ond set of polarization states. Unlike conventional Mueller matrix polarimeters, pMMPs
do not attempt to reconstruct the entire Mueller matrix. With proper choice of generator
and analyzer states, a subset of the Mueller matrix space can be reconstructed with fewer
measurements than that of the full Mueller matrix polarimeter. This chapter considers
the structure of the Mueller matrix and the ability to probe it using a reduced numbers
of measurements. Analysis tools are developed to relate the particular choice of generator
and analyzer polarization states to the portion of Mueller matrix space that the instrument
measures. Additionally, an optimization method is introduced to balance the signal-to-
noise-ratio of the resulting instrument with the ability of that instrument to accurately
measure a particular set of desired polarization components. In the process, 10 classes of
pMMP systems are identified, the space coverage of which is immediately known. A nu-
merical example is used to demonstrate the theory where a partial polarimeter is designed
for the task of monitoring the damage state of a material as presented earlier by Hoover and
Tyo (2007). It is shown that the polarimeter can be reduced to making eight measurements

while still covering the Mueller matrix subspace spanned by the objects.

4.1 Introduction

The Mueller matrix is a common method to characterize polarimetric optical scattering
properties. The Mueller matrix gives the scattered Stokes parameters in terms of the inci-
dent Stokes parameters, thereby fully describing the optical interaction, at least for spatially
incoherent fields (Chipman (2009b)).

Numerous authors have studied the structure of the Mueller matrix, and much is
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known about how the various Mueller matrix elements relate to the physical properties of
diattenuation, retardance, and depolarization (Gil (2007); Chipman (2009b)). It should be
clear that not all 4 x 4 real matrices are physically realizable from Equation 1.3. A physical
Mueller matrix must map real sets of Stokes parameters into real sets of Stokes parameters,
but there are other conditions that must also be met as recently discussed by Gil (2007).

Much of the literature on Mueller matrices is concerned with methods to decompose
the Mueller matrix in order to understand its structure and relate it to scattering properties.
In the class of series decompositions, the Mueller matrix is broken up into discrete diatten-
uating, retarding, and depolarizing layers, and the result is a product of Mueller matrices
that describe the effects of the whole. Lu and Chipman (1996) developed a series decom-
position that writes the Mueller matrix as a non-unique cascade of pure diattenuation,
retardance, and depolarization Mueller matrices. Ossikovski and colleagues developed
a different decomposition that eliminated the order-dependence of the Lu-Chipman de-
composition by creating a decomposition that is symmetric through the Minkowski metric
tensor g = diag(1, -1, -1, -1) (Ossikovski (2009)). It’s clear that while one can use either
of these decompositions (or any other), they may not actually represent the physics of any
particular process.

The limit of series decompositions is the class of differential decompositions (Os-
sikovski (2012)). These split the Mueller matrix into differential slices in an attempt to
identify its fundamental characteristics. Noble and Chipman (Noble and Chipman (2012);
Chipman (2009b)) use the method of matrix roots to uncover a fundamental differential
Mueller matrix that can be written in terms of 15 Mueller matrix generators - three for
retardance, three for diattenuation, and nine for depolarization. Ossikovski developed a
logarithmic decomposition of the Mueller matrix (Ossikovski (2011)) that operates using
a different formalism, but produces an equivalent outcome to that of the matrix roots de-
composition (Ossikovski (2012)).

A third class of decomposition is the class of additive decompositions that consider the
Mueller matrix as an ensemble average of parallel scattering processes that are added inco-
herently. Gil provides a recent review that covers the general cases of the trivial, spectral,

and arbitrary decompositions (Gil (2007)). The most famous parallel decomposition is that
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of Cloude, who demonstrated that an arbitrary Mueller matrix could be written as a super-
position of not more than four pure Mueller-Jones matrices (Cloude (1986)). Ossikovski
has demonstrated rigorously that in the limit of weakly depolarizing Mueller matrices, all
decompositions return identical polarization properties to first order (Ossikovski (2012)).
However, for more general depolarizing matrices, the various methods return different re-
sults for the “fundamental” properties or retardance and diattenuation of a Mueller matrix
under test.

All of these classes of decompositions are important for understanding the fundamen-
tal properties of the Mueller matrix. However, measurement of the Mueller matrix requires
consideration of a different basis set altogether. A Mueller matrix polarimeter operates by
using a polarization state generator (PSG) to illuminate the sample with a controlled state
of polarization. The polarimeter then measures the intensity passed through a polarization
state analyzer (PSA) set to a second polarization state. Through a suitably diverse set of illu-
mination and analysis states, the elements of the Mueller matrix can be determined (Chip-
man (2009¢)). Much as is the case in Stokes polarimetry (Tyo (2002)), the measurement
corresponding to each pair of PSG/PSA states can be thought of as a projection onto a ba-
sis vector, and then the unknown Mueller matrix can be estimated through a least-squares
inversion process that produces an additive decomposition. Once the problem is cast in
this manner, the design of a measurement system then becomes an optimization problem
where a particular measurement basis is chosen in order to highlight specific aspects of
the Mueller matrix. At least 16 measurements are needed in order to reconstruct the full
Mueller matrix in general (Chipman (2009c)), while the choice of specific illumination
states can help balance the signal-to-noise ratio (SNR) and/or error in particular Mueller
matrix elements (Twietmeyer and Chipman (2008); Vaughn and Hoover (2008)). Going
one step further, a partial Mueller matrix polarimeter (pMMP) can be designed that allows
certain elements or combinations of elements of the Mueller matrix to be recovered with
fewer than 16 measurements while ignoring other elements that might not be necessary for
a particular sensing problem (Tyo et al. (2010)). Hoover and his coworkers (Hoover and
Tyo (2007); Vaughn et al. (2012a)) have demonstrated that reduced dimensionality sub-

spaces of Mueller matrix space can be used to perform invariant target detection through
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nonlinear model fitting. Goudail and his coworkers (Goudail and Beniere (2009); Goudail
(2009); Goudail and Tyo (2011)) have demonstrated that a single-measurement pMMP is
optimal for maximizing polarization contrast in a two-class detection problem with known
class Mueller matrices.

In this chapter, the design of pMMPs that seek to measure certain aspects of the Mueller
matrix that might be dictated by a particular sensing task is considered. The pMMP could
be an imaging or non-imaging device, but the design of the instrument proceeds from
knowledge of linear combinations of Mueller matrix elements that allow a particular task
to be performed (Hoover and Tyo (2007); Tyo et al. (2010)). It is well known that it is not
possible to measure a single Mueller matrix element or a single arbitrary combination of
Mueller matrix elements in a single measurement due to the restrictions on the structure
of the Stokes parameters of the PSG and PSA states. Previous authors (Tyo et al. (2010);
Anna and Goudail (2012)) have considered specific optimization strategies designed to
maximize performance on a particular task. This chapter approaches the more general
two-part problem of a) identifying the proper subspace in which to make a detection deci-
sion and b) designing a pMMP to get as close as possible to a specified subspace of Mueller
matrix space through careful selection of measurement states. In order to accomplish this,
some of the details of the structure of the Mueller matrix and how they interact with the
PSG and PSA, are discussed. Finally, a numerical optimization method is developed that
produces the desired pMMP design.

The remainder of this chapter is organized as follows. Section 4.2 discusses the modi-
fications to the mathematics of Mueller matrix polarimetry that are necessary to consider
pMMPs. Section 4.3 considers the structure of a few pMMPs in a way that elucidates how
the PSG and PSA interact with the Mueller matrix to build up a pMMP basis. Section 4.4
generalizes the patterns seen in Section 4.3 to a general class of 4ij pMMP systems, as well
as develops various metrics by which to evaluate the noise resilience and the proximity
of a K-dimensional subspace of Mueller matrix space to an N-measurement pMMP. Sec-
tion 4.5 applies the developed concepts to an object discrimination task from the literature

(Hoover and Tyo (2007)) and discusses the results. Section 4.7 concludes the chapter.
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4.2 Structure of Partial Mueller Matrices

In the case of partial polarimeters, N < 16, and the maximum rank that the polarimeter

can achieve is N. It is easy to demonstrate

tr(ngg) = rank(w) =R. (4.1)

In this chapter, the singular value decomposition (SVD)Golub and van Loan (1983) is used
to compute the pseudoinverse. The SVD of W yields

wW=UxVv". (4.2)

The matrices U and V are R x R and 16 x 16 real, orthogonal matrices, respectively, and X
is a Rx 16 reduced diagonal matrix containing the R singular values o, > 0, > ... > 0z > 0.
The columns of U span the range of the pseudoinverse, and the columns of V span Mueller
matrix space. The first R columns correspond to the non-zero singular values and span the
portion of Mueller matrix space that the pMMP can reconstruct. The pseudoinverse can

be written as

+_

1=
1<

U, (4.3)

where X is the 16 x R reduced diagonal matrix containing the inverse of the singular
values. The SVD pseudoinverse creates a “maximally orthogonal” inverse.

Examining the diagonal elements of W* W matrix tells how the information from the
N measurements contributes to the rank and how that information is distributed in the

estimated Mueller matrix. Define the reconstructables matrix,
B = vec(B) = diag (ﬂer) : (4.4)

Examples of such matrices will be considered in subsequent sections, but at this point it
can said that B relates the percentage of each Mueller matrix element that is reconstructed
in the pMMP. In the limit of N = 16, the pMMP becomes a full polarimeter, ngg =1,
and B is a 4 x4 matrix of all ones; all elements of the Mueller matrix can be reconstructed.

To understand the function of the pMMP, consider the multiplication of the matrix

and its pseudoinverse

W+

1=
Il
I
e
=]
IS
14
<
Il
I
e
I
<

(4.5)
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The matrix £"X is diagonal with the first R elements equaling unity and the last 16 — R

equaling zero. This permits the claim made in Equation 4.1. Thus,

WWwW=vVV’ (4.6)

where X, is the 16 x R matrix composed of the first R columns of V. Another way of
interpreting the SVD of W is that \_7, forms an orthogonal basis that spans the subspace
of Mueller matrix space Eat forms_the domain of the particular pMMP represented by
W. Likewise, the columns of V discarded by the SVD (corresponding to singular values
of zero) span the remaining null space. However, as shown later, knowledge of the do-
main alone is not sufficient to predict performance, as the conditioning of the matrix W

is important in the presence of noise and error.

4.3 Examples of Partial Mueller Matrix Polarimeters

This analysis is restricted to pMMPs that use fully polarized PSG and PSA states. Goudail
and Tyo (2011) demonstrated that partially polarized PSG and PSA states never improve
contrast. Below a case where one or more PSG or PSA state is unpolarized is considered,
allowing reconstruction of particular elements of the Mueller matrix with fewer measure-

ments than would be necessary if all PSG and PSA states were fully polarized.

43.1 Canonical 4-Measurement pMMP

Consider the simple N = 4 measurement pMMP that measures the co-polarized and cross-
polarized return for both vertically and horizontally polarized illumination. For compact-

ness, the following notation for the analyzer and generator matrices is introduced

(13>

S -0 n ], (4.7a)

I[o)

= [~ - 1], (4.7b)

where > = [ 1100 ]T is the set of Stokes parameters for ideally horizontally polar-

ized light and 4 = [ 1 -1 00 ]T is the set of Stokes parameters for ideally vertically

polarized light. The presence of % in the definitions of the analyzing vector is needed for
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rigor; the polarization sensing systems in consideration dismiss half of the light if the in-
put is unpolarized. The set of four PSG/PSA pairs in Equations 4.7a and 4.7b results in the

instrument matrix

(1 100 1 10000000O0O0 O]
111 100 -1 -100U0UO0OO0UO0OO0O0O0O0
W=-= (4.8)
— 211 -100 1-10000U0O0O0U0TUO00
| 1 -1 00 -1 1 00O0O0O0O0O0OO0OO0 |
and the reconstructables matrix
[ 110 0]
1 1 00
B = (4.9)
- 00 0O
|l 000 0

This is the well known result that four measurements are needed to reconstruct four
Mueller matrix elements, and that these four elements must come in a “block” pattern
within the Mueller matrix (Tyo et al. (2010)). A similar polarimeter could be obtained
with a 4-measurment combination of any two of the six canonical states >, +, 7, X, Q,
O, where 7 and x represent 45" and —45°, and Q and O represent right- and left circular
polarization, respectively.

While this well-known result tells how to design a pMMP to reconstruct one of these
groupings of four elements, it is not obvious how to add additional measurements to recon-
struct additional elements, nor is it obvious how to design a pMMP to reconstruct linear

combinations of elements rather than isolated elements.

4.3.2 Diagonal Depolarization Elements

Depolarization is a rich physical process that contains significant information about the
random scattering properties (Chipman (2005)). Noble and Chipman (Noble and Chip-
man (2012); Chipman (2009b)) recently described the nine degrees of freedom for depo-
larization. Three of these correspond to randomness in the diattenuation properties of the

Mueller matrix, three to randomness in the retardance properties of the Mueller matrix,
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and three to “diagonal depolarization,” which is related to randomness in geometric trans-
formations as would happen in multiple scattering or rough surface scattering processes.
Often, the diagonal depolarization elements are important for discrimination in both op-
tical and radar tasks (Cloude and Pottier (1996)).

Section 4.3.1 shows that each canonical four-measurement polarimeter provides one
diagonal element (in addition to m,,, which is involved in all MMPs). One obvious way to
reconstruct the diagonal elements then would be to use a 12-measurement pMMP defined

by the analyzer and generator matrices,

(1>

[»»¢¢z/\'\<:<:99], (4.10a)

SR

=
=

e

[»%»#/\/\QQQD]’ (4.10b)

which produces the following reconstructables matrix

1111
1100
B-= (4.11)
= 1010
100 1 |

In addition to the desired diagonal elements, the diattenuation and polarizance vectors
(Lu and Chipman (1996)) are also measured. This 12-measurement pMMP only recon-
structs 10 Mueller matrix elements, since each of the three canonical pMMPs redundantly
reconstructs m,,. Because three reconstructions of m,, are available, the SNR in that re-
constructed element is a factor of V/3 higher.

This redundancy can be addressed by eliminating one of the cross-polarized measure-

ments in two of the canonical pMMPs so that

1

:E[»»¢ ¢/\\QQQ], (4.12a)

(1>

[}

=[»¢»¢//\QQQ], (4.12b)

which produces the same reconstructables matrix as Equation 4.11. In this case the elimi-
nation of redundancy allows 10 Mueller matrix elements to be reconstructed from 10 mea-

surements.
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The matrix of Equation 4.11 still unnecessarily reconstructs the first column and the
first row of the Mueller matrix. The number of measurements can be lowered by further
reducing two of the three canonical 4-measurement pMMPs to two-measurement pMMPs

that make co-polarized measurements only, e. g.

=

(1>

[»»¢ ¢/\QQ], (4.13a)

| =

[}

= [»ﬁ»ﬁ/\@@], (4.13b)

which produces the reconstructables matrix

[
[

(4.14)

—
—

e O N~

— o S NI

0 0

N = =

Examination of V can help to determine how the elements of B correspond to recon-
structed Mueller matrix channels as discussed in section 4.4. This pMMP can reconstruct
the diagonal elements 1, m,,, m,,, m,; as well as the elements m,, and m,,. In addition
to these individual elements, the polarimeter can also reconstruct the linear combination
channels (m,, + my,)/ V2 and (my, + my,)/ V2. Although, not the case in this instance,
the existence of reconstruction channels does not guarantee that these channels will have
acceptable SNR. These items are discussed in greater detail below.

The polarimeter described by Equations 4.13a and 4.13b is the lowest dimensionality
that was found that reconstructs all three of the diagonal elements with fully polarized
analyzer and generator states. However, use of unpolarized measurements adds another
degree of freedom and provides capacity for fewer measurements. Consider a system that

makes six canonical, co-polarized measurements and one unpolarized measurement

=

(1>

[zo S 4 A% O 9], (4.15a)

[ SR

[

:>[o»¢/\<;9], (4.15b)
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T
where O = [ 1 000 ] . The reconstructables matrix for this polarimeter is

1 1 1
L3 33
%100
B = (4.16)
= %010
1
| 100 1]

The addition of the one unpolarized measurement allows the m,,, term to be reconstructed
directly, obviating the need for the cross-polarized measurements indicated in Equations
4.13a and 4.13b.

Figures 4.1, 4.2 and 4.3 illustrate the reconstructions of the systems defined by Equa-
tions 4.10a and 4.10b, Equations 4.12a and 4.12b as well as Equations 4.13a and 4.13b.
The simulation was performed with an artificial Mueller-matrix-like object. No extensive
attention was paid to the physical realizability of the scene. That consideration does not

pertain to the information mapping and thus does not affect measurement properties.
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Figure 4.1: Partial reconstruction of a synthetic Mueller signal from the 12 measurements
defined by Equations 4.10a and 4.10b. The associated reconstructables matrix can be seen
in Equation 4.11. Note that the noise in m,, appears to be lower than in any other channel.
This is because each of the canonical four-blocks are capable of reconstructing that chan-
nel on their own and their contributions end up getting averaged with noise magnitude
becoming % of the others.
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Figure 4.2: Partial reconstruction of a synthetic Mueller signal from the ten measurements
defined by Equations 4.12a and 4.12b. The associated reconstructables matrix can be seen
in Equation 4.11. As was the case with the 12 measurement case, 11, m,,, 1,,, mM,3, as well
as My, My,, My, My, M, and m;, are reconstructable. The difference being the increased
noise in My, M,,, My, My, My, My, and M.
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Figure 4.3: Partial reconstruction of a synthetic Mueller signal from the eight measure-
ments defined by Equations 4.13a and 4.13b. The associated reconstructables matrix can
be seen in Equation 4.14. The following elements are reconstructable: m, m,,, m,,, M3,

as well as my,;, m,,. Shown in Figure 4.4, are the two remaining linear combinations of
elements that are also reconstructable.
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(a) \% [moz + mzo] (b) \/LE [m03 + m30]

Figure 4.4: Reconstructions of linear combinations of Mueller elements that the polarime-
ter described by Equations 4.13a and 4.13b is able to reproduce.

4.4 Partial Mueller Matrix Polarimeter Design

Based on the understanding gained in Section 4.3, some prior constraints can be removed,
and pMMP systems can be generalized to have arbitrary fully polarized PSG and PSA states
within the requirement that N = R.

It is unclear from B alone which Mueller elements are grouped together into combina-
torial channels. When a particular element of B is unity, then the corresponding Mueller
matrix element can be reconstructed. But when it is other than unity, the element must
appear in combination with other Mueller matrix elements. However, the fact that B is
derived from the columns of X’ provides insight into the overall subspace spanned by the
pMMP. If two or more columns of X,, say v, and v,, correspond to equal singular values
o, = 0,,, then they span a hyperplane with identical geometrical characteristics in the con-
text of W. In this case, any set of orthogonal basis vectors in that hyperplane can be used,
allowing for a more intuitive grouping of Mueller matrix elements if desired.

All of the previous examples featured four-block measurements. Prior work was al-
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ready familiar with my,/m,q/my;/m;; measurement, but a similar reconstruction exists for

oft-Mueller grid measurement. Consider the arbitrary analyzing and generating vectors:

>
+
Il

[1 ta, *a, +a, ], (4.17a)

[}
+
Il

[ 1 +g, g, 2g, |- (4.17b)

A four-block polarimeter would go through the following four combinations of measure-

ments:

1 T
A, =>5[ A, AL A A_] ; (4.18a)

G. G, G ]T- (4.18b)

The resulting measurement matrix is

J

[ (A, @G
(A,®G)'
(A ®G,)"

| (A 8G)'

=
1l

(4.19)

.

The SVD of W, in Equation 4.19 will have four column-space vectors with four identical
singular values. If a particular representation of V is chosen, then there is only one U
to go along with it. A linear combination of these vectors corresponds to rotation of the
underlying vectors. This operation does not alter the space, but merely rotates the axes
by which that space is described. It will be shown that a particular decomposition can be
written down that is relatively easy to treat analytically. When faced with more complex
V matrices that have non-equal singular values, adding and subtracting the underlying
vectors is also possible, but special care needs to be taken.

For the four-block polarimeter, the column space can be described with the following



set of vectors

<

_,;\
Il

P

S O O O O O O O o o o o o o o

S O O o O o o o o o o o

that correspond to four unity singular values and

The corresponding reconstructables matrix is

[

o

N | =

1

91
2 2 2 2 2 2 2
a 419 949, 91 9Y;

2 2 2 2 2 2 2
a, a4, 49, G4, Y9, 4, Y;

1

-1

2

0 0

0 0

0 0

0 0

a 0

0 a4,

0 a9,

0 a9,

a, 0

0 a,g,

0 a9,

0 a,g;

a;, 0

0 ayg,

0 ag,

0 asg; |
11
1 -1
-1 -1
-1 1|
922 9s

2

2 2 2 2 2 2 2
a; 4s g, 434, 439Y; |
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(4.20)

(4.21)

(4.22)
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44.1 Additional Measurements

In order to expand the space coverage, more measurements need to be added. To do so
while keeping system rank equal to the number of measurements means that each addi-
tional column in XI needs to be orthogonal to every pre-existing one. Assuming the limit
of using fully-polarized measurements, then the new analyzing vector pair A, , needs to
be orthogonal to the pre-existing analyzing vector pair A, in the Poincaré sphere space.
Thus, once the first pair is selected, the new pair is bound to the space of the orthogonal
circle. Once A, , is chosen, there is only one more orthogonal set of vectors A ; , that can
be added. This is shown in Figure 4.5.

It is important to make the connection between this general case and the one discussed
in Section 4.B. If four measurements are made from each combinationin A, ,, A, , and
A, thenthe system willhave N = 12 and R = 10, as is the case for the system described by
Equations 4.10a and 4.10b. This is because each block is capable of reconstructing 1, on
its own and measuring it three times will have the effect of averaging, and thereby lowering
the noise in its reconstruction. In order to keep N = R only one four-measurement set
specified by A | , and up to two additional fewer-than-four measurements specified by A, ,
and A, must be taken. This produces 16 possible measurement schemes. By denoting
the set as 4ij and requiring that 4 > i > j, the six redundant schemes can be ignored as can
be seen in Fig. 4.6.

Purely for purposes of simplifying the notation, define the analyzing and generating

vectors of the one-, two- and three-measurement cases as:

[ T
A, =i A A A, (4.232)
[ T
G, = [G. G G | (4:23b)
1 . T
A, =1 A, A, (4.23¢)
T
G, = [G 6|, (4.23d)
1 . T
A =il ] (4.23¢)
[ T
G, = g+] . (4.23f)

It can be shown that this selection considers all possible combinations. The + only de-
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KT > [H] [ =[]+

Figure 4.5: Solid and dashed red vectors represent A, , and A, _, respectively. Same prin-
ciple is used to represent A, , and A;, with blue and green vectors, respectively. All three
sets need to be orthogonal within the 3-space of the Poincaré sphere in order to main-
tain N = R. The animation shows how additional measurements constrain further vector
selection. (Animation available in the digital version)

9
®

e

Figure 4.6: Possible sets of measurements that maintain the optimal N = R.
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notes the operation on the a,/g,, a,/g,, and a,/g,, but a selection of a different vector can

effectively construct all other combinations within the syntax implied by +.

The denoted characteristics of these measurements are only correct if m,, is known.

Thus, they can only be used as additional measurements and their measurement sub-

matrices are:

1=

1=

1=

[ (A,®G,)"

(A_®G,)"

| (A_®G)'

(A,®G))"
(A.®G)"

and the sub-reconstructables matrices are:

I

1=
[ 8]

I

N | =

W | =

0

2
a;
2

a,

2

as

0

2

a

2

a,

2

as

0

2

a;
2

a,

2
as

2

91
2 2
a, 9
2 2
a, 9,
2 2
as g,

2

91

2

9>
2 2
a, 9,
2 2
a, 9,
2 2
as 9,

2

92

.

[ (A.0G)" |,

2

93
2 2
a, 9;
2 2
a; Y3
2 2
as gs

2

93

2 2 2 2 2 2
2a,°g," 2a,7g," 2a,°g,

2 2 2 2 2 2
2a,7g," 2a,"g," 2a,°g;

) 2 2 2 2
2a,°g," 2a5"g,” 2ay7g; |

2

91
2 2
a, 9
2 2
a, 91

)
as g,

2

92
2 2
a, 9,
2 2
a, 9,

2 2
as 9,

The total measurement matrix of a 4ij system is

w

4ij =

| wi

wh wrT

! =J

2

93
2 2
a, Y;
2 2
a, 9;

2 2
as gs

(4.24a)

(4.24b)

(4.24¢)

(4.25a)

(4.25b)

(4.25¢)

(4.26)

The constraints placed on A, , and A, , mean that the reconstructables matrix is the sum
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of the sub-matrices

B

24ij

=B,+B,+B, (4.27)

4.4.2 Structured Decomposition

As before, SVD can be performed on the matrix to find the space coverage and noise re-
silience of any given polarimeter. However, in the case of being limited to the defined class

of 4ij pMMP systems, a structured decomposition can be introduced

w

=U,,;Z VT (4.28)

4ij T = Zsdij s dij>
where s differentiates this decomposition from the typical SVD. The goal of this decompo-
sition is to be easily parsable by a human and provide an intuitive view of pMMP properties.

The following are the structured matrices for any 4ij system:

24 gm 24><j
ES"W - [\/g] 2i><3 g: gixj ’ (4.29)
Nx1 !
Ojs Qi Y
1 1 - - -
Es,4ij = \jl_l dlag( N G G G )> (4.30)
Vo= [ X; g; X; ]) (4.31)
where the left structured sub-matrices are:
[ 1 1 1]
) 1 -1 1 -1
U,=— , (4.32a)
= V4| 1 -1 -1
-1 -1 1|
[ 1 1 1]
' 1
U,=— 1 -1 -1 |, (4.32b)
=3 \/5
-1 -1 1|
, 1 1 1
U,=— , (4.32¢)
= V2| -1 1
1 1
U=—1] (4.32d)
= Vil
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g, = {4,4,4}, (4.33a)
¢ =1{3,3,3}, (4.33b)
G =1{4,2}, (4.33c)
G =1{3}, (4.33d)

while the right structured sub-matrices can be defined in terms of Equation 4.20. Express-

ingV, = [ v, Vv, v, v, |leadsto the corresponding structured sub-matrices:

Vi=|v v, Y5 vy ] (4.34a)
Vislv v v s (4.34b)
Vs Sy v s (4.34¢)
v, = 5 (v +vs+yy) ] : (4.34d)

Procedures defined above create matrices that are orthogonal in both dimensions, but nor-

malizable only in one. To quantify noise resilience, knowledge of the product 2:’4,.‘224,‘1‘ is

is diagonal, while calculating 2:,41-]- is

necessary. Calculating E:Aij is trivial because X ,;;

more challenging. However, for 4ij systems, it can be shown that

_ N -
[ E] glxi glxj
—,+ 1x4
9:,41']' = U, 05 03y (4.35)
R; I_Ji+ 0ix;
I+
L Ry 0 U
is a correct inverse, where
u,=u,, (4.36a)
\/_ 1 1 0
] 3
U= 0 -1, (4.36b)
1 0 1
U, =u,, (4.36¢)
u'=U,, (4.36d)
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and
[ 1 1 -1 -1 ]
NS 1 1 1 1 (4.37a)
= V16 ’ '
[ -1 -1 -1 -1 |
2 0 0 0 0
R, == X (4.37b)
= 16| -1 -1 -1 -1
R, =] -1 -1 -1 1] (4.37¢)
= Nl - 5 0 '

4.4.3 Noise Resilience

Following the same additive noise model as prescribed by Equation 1.22, the noise can be

projected into the respective directions of the sensor space (Wang et al. (2007)), V:
i = Wi, (4.38)

where the pseudoinverse can be written within the context of 4ij systems as

2411 Vs41]2541]Us41] Vs4z]I_4 541] (439)
L Vous contains the mapping weights of information for each of the vectors of VS sif°
T
_ T T T
%Xsm’j - [ gyl gyz EYN ] N (440)

Since the pMMP’s sensor space contains N vectors, Ly, also contains N channels. The
Euclidean length of each of those vectors represents the noise magnitude in each of the
vectors of V_;;,

Py =1Ll (4.41)

For each measurement set, the matrix multiplications reveal that each of the vectors mak-

ing up V, ,;; will have easily identifiable noise magnitudes:

- T

Py =1 111 ] , (4.42a)
— T

Py =| V3 3 \/3] , (4.42D)
: T

Py =[1 V3], (4.42¢)

o T
Py = ] . (4.42d)
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Finally, the total noise magnitude vector is the concatenation of the ones defined above,

P, =[PTV Pl pT ]T. (4.43)

¥ saij =y, =Y, =Y,

However, since the intent of this exercise is to build systems that perform the best for a
given task, it also follows that it would be desired to evaluate system performance not for
the entire sensor space, but for the scene space instead (Wang et al. (2007)). This space is a
collection of Mueller vector targets that are of interest for a given task and is to be compared
with V. Denote the scene space as 1 to match its computational representation, Y, and

define a transformation to the sensor space,

T=Y\V

(4.44)

s,4ij>

which can be used to combine R supported vectors into the vectors approaching 1" or
estimating Y,

T T
g = IXS,‘U]" (4.45)

Note that while P v,,; fepresents the noise magnitude for the reconstructable vectors rep-

resented by V

s4ip it would be incorrect to use these absolute magnitudes to map noise

from reconstructables to the desired channels. Instead, the noise characteristics contained

within L Vo need to be similarly mapped:

T
_ _ T T T
Ly=TLy -—[ Ly, &y, - EXK] , (4.46)

where K is the total number of vectors in Y. The resulting noise magnitudes within those

vectors can be evaluated in a philosophically equivalent way,
py =11, I, (4.47)
and then can be combined into a total magnitude vector

Bl:[pzl Py, = Py ]T- (4.48)

4.4.4 Space Coverage

To properly evaluate a given partial system, it is important to know not only the system’s

noise resilience, but also the closeness of the sensor space to the scene space, which can
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be described by K ordered canonical angles {; < {, < ... < { Hotelling (1936). The first

canonical angle | is

_ -1 . PO
{, = cos <91g/1)1;1ley(gl X1)>' (4.49)

Subsequent canonical angles are computed by evaluating Equation 4.49 with the portions
of subspace V remaining after the elimination of ¥,. The best case scenario is when { = 0,
which means 1 ¢ V, and the pMMP spans the desired channels.

While Equation 4.49 provides an intuitive interpretation of the canonical angles, there

are more efficient ways of computing the angles, like forming the auxiliary matrix

(14
(1<

YYD =[x ox ox . (4.50)

and computing the canonical angles its the singular values as (Knyazev and Argentati
(2002))

= arcsin(agk). (4.51)

4.5 Example of pMMP Optimization

To find the best pMMP design for a given task, both noise resilience and space coverage
need to be optimized. Because those properties are not inherently guaranteed to have
overlapping minimums, the solution is invariably bound to be a point on the Pareto surface

of a multi-objective optimization problem. The following metric

K K
arg min Z(ockpyk)2 +w Z(/)’kcrxk)2 (4.52)
H k=1 - k=1 N

€ &
successfully finds appropriate pMMP designs. The choice of w, {«;} and {f;} provides han-
dles to adjust the importance of all the various parameters, while the optimization variable
vector € contains six values to construct three generating and three analyzing vector pairs.
The first four variables define ¢ , 05, ¢, and 6, to produce vectors G,, and A, ,,
while the second two variables define y; and y, to prescribe where G, ,, A, ,, G;, and

A, reside on the orthogonal circles with respect to G, , and A | .
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To illustrate the design of pMMPs, consider the example presented in Hoover and Tyo
(2007). Four different coupons of an ABS plastic material were exposed to different flu-
ences of high energy laser energy, and the resulting damaged samples had their monostatic
Mueller matrices measured at a range of angles from —20" to 20°. Performing SVD of the

data reveals that the most fundamental three measurement channels are

[ 09204 03097 0.2378
-0.0347  0.0410 -0.2480
-0.0010 0.0034 -0.0136
-0.0003  0.0007  0.0088
-0.0318 0.0524 -0.2356
-0.2757 -0.4730 -0.4418
-0.0010 -0.0043 -0.0050
Y - -0.0004 0.0033 -0.0085 (4.53)
- 0.0035 -0.0039  0.0207

0.0013 -0.0043 0.0138

0.2703  0.4860  0.3996

-0.0019 -0.0033 -0.0220

-0.0004 0.0008 -0.0008

0.0001  0.0023 -0.0037

0.0028 0.0017  0.0292

0.0398 0.6630 -0.6850 |

Note that the original paper used covariance matrix principal component analysis that re-
sulted in a different set of channels, which did not include m,, in any of the measurements.
If my, is added back, then the maximum canonical angle between the two spaces is 3.1011".
The difference is small enough to be accounted for by the extra idealization step taken in
Hoover and Tyo (2007).

MATLAB’s built-in genetic algorithm routine is used together with Equation 5.24 to
optimize each of the 4ij pMMP designs with «; = 8, = 1 and w = 25. Note that there is
nothing fundamental about the choice of w — a number of different weights between 1 and

100 were tried, and it was found that for this data set the value of 25 provided a good so-
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lution where the space coverage penalty was just significant enough for the reconstruction
of relevant information to be prioritized over the noise resilience.

Table 4.1 shows the system performances that were found for each of the defined classes
of polarimeters. The space coverage seems to be marginally better for the 422 system than
it is for the 432 or the 433, despite the latter two making more measurements and having
a capacity only to expand the space coverage if the 422 design is used as the base. That,
however, is purely an artifact of our choice of w, which leads to the optimizer finding a
solution with slightly better noise resilience by sacrificing some space coverage. Practically,
the designs should be evaluated on whether or not they can separate the different objects
classes. To determine which of these pMMPs accomplish that, it is necessary to look at the
object projections onto Y. This can be captured by looking at how the proximity of each of
the 25 objects from each of the four types of objects to the nearby classes changes. Instead
of comparing data points directly, the comparison class is instead piece-wise interpolated

and the separation for each object/class both in ¥ and ¥ is determined as:

|(?(X,}/ - ?ﬁ,(S) X (?og,y - ?ﬁ,5+1)|

Aupys = , (4.542)

g1 — Ppol

) |(Foy — Pag) X (P, = Fa500)l
Ao pys = — po vy PO (4.54b)

|aw+1_?ﬁﬁ

where o and f3 represent the object classes, y represents one of the 25 points within class
«, and 6 represents one of the 24 line segments created for class 3. Evaluate the geometric

mean of the ratios of least separation,

!]—[ d“ﬁ .min ] . (4.55)

=1 “o,f,p,min

When h, g = 0, classes a and f3 have collapsed to lie on top of each other, while when
h,g = 1, the separation between classes & and f3 has remained unchanged. In the case
that h, s > 1, the separation within the reconstruction is greater than the original sepa-
ration. Although this presents a seemingly interesting scenario, this result is attributable
to non-linearities introduced by the averaging of different space projections and would be

compensated by another h, 4 elsewhere.
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Examining the performance of each of the ten pMMPs optimized designs in Table 4.1
and Figures 4.7-4.16, it becomes clear that the 422 system is the first design of the defined
range of systems that accomplishes the task of matching the space coverage and thereby
separating the object projections adequately for object detection.

There is room to make the optimization routine more elaborate. For example, instead
of matching the scene and sensor spaces of any given pMMP class, object identification
can be done in the measurement space itself. This would require constructing a manifold
as a model for the object distribution in the N-dimensional space, applying the proper
noise model and looking at the separability of the classes within the measurement space.
Performing all of this in each of the optimization instantiations is computationally inten-
sive, as well as outside the scope of this development. A separate discussion is warranted

to address that level of optimization properly.

4.6 pMMP Calibration

The amount of literature describing Mueller matrix calibration is limited. Compain’s treat-
ment is one that described the process for a general case in enough mathematical detail to
suggest near optimal performance (Compain et al. (1999)). The drawback of the presented
method in that work is the assumption that a complete measurement task is performed,
which leads to a restrictive analysis that assumes that there are four analyzing and four
generating vectors. Since this chapter is interested in constructing systems that perform
partial measurements, a different approach suitable for calibration of pMMPs is required.
Rewrite Equation 1.20 as

!

IM' =W, (4.56)

1=

where, initially, I is N x1and M is1x16. Obviously, W' cannot be deduced using only
one M, i.e. one reference measurement object. Instead, considering K Mueller vectors,

which are formed into a matrix, B’. The measurement can then be written as
IR'=W, (4.57)

where R ' is Kx16 and thereby I is NxK. With sufficientlylarge K, W can be determined

with sufficient accuracy. With this in mind, creating a proper R ! requires a sufficiently
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Figure 4.7: Space coverage of 400 pMMP, N = 4.
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Figure 4.8: Space coverage of 410 pMMP, N = 5.
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Figure 4.9: Space coverage of 411 pMMP, N = 6.
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Figure 4.10: Space coverage of 420 pMMP, N = 6.
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Figure 4.11: Space coverage of 421 pMMP, N = 7.
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Figure 4.12: Space coverage of 422 pMMP, N = 8.
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Figure 4.13: Space coverage of 430 pMMP, N = 7.
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Figure 4.14: Space coverage of 431 pMMP, N
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Figure 4.15: Space coverage of 432 pMMP, N = 9.
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Figure 4.16: Space coverage of 433 pMMP, N = 10.
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diverse family of M 's, which mirrors the requirements of the measurement matrix. Thus,
the goal is to create an invertible set of Mueller vectors, B,.

The elements that are chosen for calibration are to be assumed to be ideal, thus it is
best to use elements that approximate their ideal counterparts well. A linear diattenuator
is perhaps one of the better elements by virtue of the existence of Glan-Thompson and
Wollaston polarizers that can provide around 10~® extinction. The Mueller matrix for a
linear diattenuator can be seen in Equation 1.28, while its idealized polarizer form can be
seen in Equation 1.29. From the Mueller matrix, it can be clearly seen that the polarizer can
only span the linear-linear 3x3 block of the Mueller matrix. To add more Mueller elements
to the calibration, retarders can be introduced, the Mueller matrix of which can be seen in

Equation 1.30. In the most general case, calibration can be performed via insertion of a

black box that is the ideal polarizer sandwiched between two retarders

):( - gLR(é\Z’¢2)¥LP(9)¥LR(81>¢1)> (4.58)

where §;s and ¢;s are the retardances and the orientations of the two retarders, and 0 is the

orientation of the polarizer in the middle. Following Equation 1.19, the Mueller matrix



can be rewritten as a Mueller vector

>4

where c(x)

N | =

1
c(20)(c(2¢1)* + c(81)s(2¢1)°) — c(26h1)s(2¢h1)s(20)(<(8,) - 1)
$(20)(c(8,)c(2¢,)” + 5(2¢,)%) - c(2,)c(20)s(2,)(<(d) - 1)
c(24,)5(20)s(3,) - c(20)s(2¢,)s(,)
c(20)(c(2¢,)* + c(8,)5(26,)") — c(269,)5(260,)5(20)(c(3,) — 1)

(c20)*(c(2¢) + c(8))s(2¢1)%) — c(2¢1)c(20)s(2¢1)5(20)(c(d) — ))(c(2,)” + c(8)s(2¢0,)*)
—c(26,)s(265,)(c(8,) — 1)(c(20)s(20)(c(26,)* + c(8,)5(2,)%) — c(261)s(2,)s(20)*(c(8}) — 1))

(c(20)s(26)(c(61)c(2</>1)2 + s(2¢>1) - c(2</>1)c(26 s(2¢1)(c(8;) — 1))(c( 2(/)2 + c(62)s(2¢2)2)
—c(2¢,)s(2¢,)(c(5,) — 1)(5(29)2(c (67) c(2¢1) +5(2¢7) ) — c(2¢1)c(20)s(2¢;)s(20)(c(8;) — 1))

—(c(20)*s(2¢,)s(8;) — c(2,)c(20)5(20)s(8)))(c(2,)* + <(8,)s(2¢,)?)
—c(2¢,)s(2¢,)(c(8,) — 1)(c(2¢;) s(26)zs(61) — c(20)s(2¢,)s(20)s(6}))

$(20)(c(8,)c 2¢2 +s 2g[>2) ) — c(2¢,)c(20)s(2¢p,)(c(5,) — 1)

(c(20)s(20)(c(2¢1) + c(81)s(2¢1) —c(2¢))s(2¢;)s s(26) (c(8y) — 1)) (c( 62)c(2¢2) + s(2¢2) )
—c(2¢,)s(2¢,)(c(8,) — 1)(c(29)2(c(2¢1 +c(6y) s(2¢1) ) — c(2¢;)c(20)s(2¢;)s(20)(c(8;) — 1))

(5(20)*(c(8))c(2¢,)” +52¢1)%) - c2)c(20)s2¢1)s(20)(c(8}) — 1))(c(8y)c(2¢,)” + 5(26,))
~c(26)5(2¢0,)(c(85) — 1)(c(20)s(20)(c(8))c(2¢,)” + 5(2¢1)°) — c(261)c(26)”s(2¢,)(c(8) — 1))

(c(2¢,)s(20)*s(8,) — c(20)s(2¢h,)s(20)s(8,))(c(8,)c(2,)* + s(2¢5,)%)
+C(2,)5(29,)(c(8,) — 1)(c(20)*s(26)s(8;) — c(26,)c(20)s(26)s(8,))

c(20)s(2¢,)s(5,) — c(2¢,)s(20)s(6,)

~c(2¢,)5(8,)(c(20)s(260)(c(261)* + c(8,)s(2¢1)) — c(2¢1)5(26h1)s(260)*(c(&;) — 1))
+5(2¢,)8(8,)(c(20)*(c(2¢;)% + c(8,)s(2¢1)?) — c(2¢p,)c(20)s(26h,)s(26) (c(8;) — 1))
—c(2¢,)s(8,)(s( 29) (c(8y)c 2(/)1 + s(2¢1) ) — c(2¢;)c(20)s(2¢;)s(20)(c(8;) - 1))
+5(2¢0,)5(8,)(c(20)s(20)(c(8,)c(2,) + s(21)%) — c(26,)c(20)*s(2¢,) (c(8;) — 1))
—c(2¢2)s(82)(c(2¢1)5(29)25(61) —c(20)s(2¢1)s(20)s(6,))
—5(2¢,)5(8,)(c(20)*s(26,)s(8,) — c(2¢p,)c(20)s(20)s(8,))
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,  (4.59)

cos(x) and s(x) = sin(x). By adjusting 0, ¢, and ¢,, all Mueller non-m,,

elements can be modulated, therefore obtaining a reference object that spans the entire

space. Those variables can be optimized such that the Mueller objects create R’ that is as

well conditioned as possible.

Before jumping into the optimization, it can be recognized that this process will effec-

tively feature the same math as the measurement optimization, which has been performed

many times. The optimally sampled sixteen-reference measurement will then correspond

to a tetrahedron in both the A and G equivalents. Jumping directly to the optimal answer:
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8, = 6, = arccos (-2/3) = 131.810, (4.60a)
$1 = ¢, = {-vo—v1, vt} (4.60D)

where
L= I larccos < 1- 2\5) ~ 51.6925°, (4.61a)

Y, = arccos ~ 15.1185". (4.61b)

In order to obtain retarders with very accurate retardance, custom Fresnel rhombs can be
manufactured and by stacking two of them together, the optical axis can be maintained.
The advantage of using such a construction is that the Mueller matrix can be calculated
directly based on the index of refraction, n(1), and the face angle of the rhomb, « (different
from a = g + r that was used before).

Consider the pMMP polarimeter at Dayton AFRL. For the purposes of this exercise, it
is sufficient to describe the system in terms of its PSG and PSA designs. The PSG can be
equivalently described with a RR hand that is described in Section 1.6.1, while the PSA is a
rotating analyzer (RA) hand, which only has access to linear polarization. This corresponds

to the reconstructables matrix

1111
1111
B = ; (4.62)
= 1111
| 00 0 0 |

which suggests that the reference-object modulation in the bottom row is unnecessary.

Thus, the second retarder provides no utility, leaving only

é = gLP(e)gLR((SI’ ¢1)’ (4.63)



or

1
cos(29)(cos(2¢1)2 + cos(61)sin(2¢1)2) — cos(2¢;) sin(2¢; ) sin(26)(cos(d;) — 1)
sin(20)(cos(8;)cos(2¢; ) + sin(2,)%) — cos(2¢, ) cos(26) sin(2¢, )(cos(8;) — 1)

cos(2¢,) sin(20) sin(8;) — cos(20) sin(2¢; ) sin(S;)
cos(20)

cos(20)*(cos(2¢;)? + cos(8;)sin(2¢;)?) — cos(26;) cos(26) sin(2¢; ) sin(26)(cos(8;) — 1)

cos(20) sin(26)(cos(6l)cos(2¢1)2 + sin(2¢1)2) - cos(2c/>1)cos(26)2 sin(2¢; )(cos(d;) — 1)

cos(2¢;) cos(26) sin(26) sin(5;) — (:05(29)2 sin(2¢;) sin(6;)
sin(20)

cos(26) sin(20)(cos(2,)* + cos(d) )sin(2¢;)%) — cos(2¢,) sin(2¢, )sin(26)*(cos(8;) — 1)

sin(20)(cos(8;)cos(2¢;)* + sin(2¢;)?) — cos(26;) cos(26) sin(2¢; ) sin(260)(cos(8,) — 1)

cos(2(,[>1)sin(29)2 sin(6;) — cos(260) sin(2¢,) sin(26) sin(J;)
0

N | =

0
0
0
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(4.64)

The optimal § is still arccos (—2/3), however, calibration does not need to be performed

as measurements themselves, thus there is less pressure to take as few reference measure-

ments as possible. Many can be taken with the calibration system overdeterminining the

reconstruction of the system’s wl, while using widely available % Fresnel rhombs. This

would leave

1
cos(29)cos(2</>1)2 + sin(2¢; ) sin(20) cos(2¢;)
sin(20)sir1(2¢>1)2 + cos(2¢;) cos(20) sin(2¢;)
cos(2¢;) sin(20) — cos(26) sin(2¢,)
cos(20)
cos(2g151)2cos(29)2 + sin(2¢, ) sin(20) cos(2¢,) cos(26)
cos(2¢;)cos(20)* sin(2¢,) + sin(26) cos(20)sin(2¢; )
cos(2¢;) cos(20) sin(20) — cos(26)2 sin(2¢;)
sin(20)
cos(29)cos(2</51)2 sin(20) + sin(2¢,;) cos(2¢1)sin(29)2
sin(2¢>1)2sin(29)2 + cos(2¢;) cos(20) sin(2¢,) sin(26)
cos(2(/>1)sin(219)2 — cos(20) sin(2¢, ) sin(20)
0

N | =

0
0
0

(4.65)

which would result in a Mueller vector that can be stacked and optimized to provide a set

of objects to provide a base for the reconstruction of the necessary channels. The drawback
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of %—plate is that the SNR will not be equally distributed among channels, but as alluded
to before, the accuracy of our calibration can be increased by increasing the number of
measurements.

Define the following set of reference-objects:

1=

4 ! ’ ! ’ i i T
=[ X X o Xy Xpp o0 Xy Xy | s (4.66)

where M is the number of polarizer orientations and L is the number of retarder orien-
tations. For each object, the polarimeter would be cycled through the N measurements,
which would would correspond to a matrix of intensities, I, thatis Nx(MxL). Multiplying
it by B/_l will reveal the experimental ﬂ;xp.

If_36 reference objects are desired, Eat can be done by taking measurements at every
combination of six 0s and six ¢,s. Since 0 is varied only to change the linear states, the
optimal distribution is that of equally distributed vectors along the equator of the Poincare
sphere. The Stokes-CN for that will be equal to V2. The ¢, would need to be varied through
{+10.8572, +38.0991, +57.8539}" to produce a Stokes-CN of ~ 3.2645. The net result would
be a set of reference objects, with a Total-CN (a product of analyzer Stokes-CN and gener-
ator Stokes-CN) of 4.6167. However, if 12 reference objects are desired, that can be done
by taking measurements at every combination of three 6s and four ¢,s. Assuming that an
ideal retarder with § = arccos (-2/3) is used, it would be possible to get a Total-CN of
V6 ~ 2.4495. The results can be further improved by determining the potential errors that
can deviate the W . An example of this consideration follows.

Any calibratgn attempt needs to be applicable to any generic system that requires cal-
ibration of all 16 elements. Without calibration, and provided diligent effort in system’s
construction, the best assumption that can be made is that W, = W,4y. The goal of

calibration is then to identify the deviations within W, . from W,,..;, so that the correct

measurement matrix can be used, i.e., W_;, — W, .. A metod of enumerated errors is

introduced here to limit the subspace, which the system might occupy. In order to evaluate

1. . .
minimized for £, norm
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the proximity of the calibrated matrix to the true matrix, define the following metric,

!

S(Wcal’ —* true> = R Rtrue) = g;l giruegirue _gi:ue girueg (467)

I '
= l Fro

(1R

(4.68)

b
Fro

where R, represents the true set of objects in order to differentiate it from the assumed

—true
R This will allow to incorporate the ability to evaluate the required precision of the ref-

erence objects. The first form of the metric includes the term W, W, to provide auto-

—true —true

matic masking of 5 in case of a partial Mueller matrix polarimeter. This is not critical for
a full system, but must be performed for a pMMP like in the case of the AFRL polarime-
ter defined above. The discussion provided tools to treat calibration of a partial system,
however a calibration of a full system is probably most useful to denote here. Define the

parameters that will determine the polarimeter by its generator and analyzer parameters,

gG - { OLR"SLR ’GLRI 5LR2 6 RZ}’ (4.69a)
gA = {qA r QLR’ 6LR )GLR1 6LR2 6 Rz} . (4'69b)

The full set of parameters is then: 5 = {5 < f A} and in the case of the AFRL polarimeter cal-
ibration, the variables can be appropriately constrained to collapse a non-existing element
into an identity matrix.

Suppose that a function f can be written to map £ into the corresponding E,, the

metric can be rewritten in terms of that function,

argmin [¢ ( €0, fEruch R Riwe) | (4.70)

AEic

where AE,.C represents the enumerated errors within each parameter from the idealized
set to the calibrated set as a collection of optimization variables. The simulation tested a
number (K = 1to K = 16) of different random non-depolarizing object sets. These diat-

tenuators were perturbed with Gaussian noise of specified width to produce R, After

—true*
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ﬂ; was found, it was put through an optimally conditioned full collection of sixteen ob-
jects. Simulation was run with ten instantiation of B,. The results can be seen in Figure
4.17.

Unsurprisingly, Figure 4.17 shows that in order to calibrate the system well, the ref-
erence objects need to be known pretty well — errors beyond 0.1° lead to questionable
performance. Enumerating the errors had the effect of constraining the system in a way
that even a small number of measurements is sufficient to calibrate the system. The results

show that K = 3 may be enough.

4.7 Conclusion

Mueller matrix polarimeters have demonstrated utility recently to assist in target identifica-
tion, and the use of partial Mueller matrix polarimeters provides a way to develop a sensor
that measures the polarization features needed for a particular detection or classification
task without having to measure the full Mueller matrix. Previous designs of pMMPs have
been ad hoc, in that the polarimeters were developed by hand. In some instances, there
was no real attention paid to whether or not the pMMP was even physically realizable.

This chapter developed the theory of pMMPs that enables the structure of a pMMP to
be determined from the actual generator/analyzer pairs used to form its instrument matrix
W. By proper analysis of W, it is possible to determine the portion of Mueller matrix space
that a particular pMMP measures. The introduced metrics of optimality for pMMPs are
based on balancing their SNR performance with their closeness to the particular scene
space at hand. The performance of this optimization method was demonstrated for a case
previously presented in the literature (Hoover and Tyo (2007)).

Note that this chapter constructed pMMPs using the typical PSG and PSA with an im-
plied temporal modulation manifested through different alignments of linear polarizers
and linear retarders. This results in an effective dyadic basis for the pMMP measurement,
which is not guaranteed to be ideal. A future study can include a different set of target pro-

jections that would result in a different basis and would thereby require another analysis.
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Figure 4.17: Calibration convergence with different number of Mueller objects K under
different reference precision. Note that the errors were not administered to the polarization
components, but to the spherical coordinates of each analyzing and generating vector.
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CHAPTER 5

CHANNELED PARTIAL POLARIMETRY

Chapters 3 and 4 introduced the concepts of channeled polarimetry and partial polarime-
try, respectively. Each of those chapters developed its own set of tools that were useful for
describing the systems and leveraging the gained understanding of the matrix structure
to develop optimal systems. In this chapter, the concepts involved in each of these topics
are combined to describe chaneled partial Mueller matrix polarimeters (c-pMMPs). Given
what has been learned from Chapter 3 with respect to modulation frequencies determin-
ing the set of potential solutions, there remains a fairly small subspace of systems that was
left uncovered. In order to analyze these systems, this chapter will introduce structured

decomposition matrices akin to those used in Chapter 4.

5.1 Initial Evaluation

From Chapter 3, a full polarimeter was evaluated by calculating the covariance matrix of

the reduction matrix,

[

e =Q Q" (5.1)
The covariance matrix of Q" is 16 x 16 matrix that contains the covariance of each com-
bination of the reconstruction vectors. Its diagonal contains the squares of the singular
values of Q, which are often used to determine the noise resilience of the system. For a
tull system_, EWYV provides a way to consider performance uniformly across all the polar-
ization degrees of freedom by adding all of the variances together. However, if the intent
is to build a partial system, then it is necessary to adjust the evaluation metric to allow
preferential treatment of information. A primitive way to do it would be with a weighing
vector, u, that can be introduced to calculate a Weighted Variance (WV) as

WV = ET diag |:KQ+:| = lecio uk/02g+’k. (5.2)
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Of course, that metric can only be useful for weighing isolated Mueller matrix element
preferences. However, as Chapter 4 made obvious, Mueller matrix space imposes a set of
measurement constraints and it might not be physically possible to measure exactly the set
of elements that you need. Instead, certain elements might be available as a linear combi-
nations of elements. In order to achieve the complete utility of understanding the resulting
conglomeration, singular value decomposition of Q is necessary. A similar derivation to
the one in Chapter 4 will be followed here to introduce the necessary notation in the con-

text of channeled systems. As before, Q can be written as

Q=UqZoVo (5.3)

where the matrices U and V are N x N and 16 x 16 complex, orthogonal matrices, re-
spectively, and X is a N x 16 reduced diagonal matrix containing the N singular values
0, 2 0, > ... 2 oy > 0. In this context, N is the number of channels created and the

pseudoinverse can be written as

ife

"=¥qZoUo (54)

where X is the 16 X N reduced diagonal matrix containing the inverse of the singular

values. The rank of the measurement can be calculated as,

R, = tr(g+2). (5.5)

Ile)

However, instead of providing a summary statistic, it is interesting to look at the diagonal
elements of this covariance matrix to see how the information from the N channels is

distributed in the estimated Mueller matrix. Define the “reconstructables” matrix
B’ = vec(B) = diag(Q* Q). (5.6)

For each Mueller k-th element (m,;), \/bi;c tells the fraction of energy that is maintained
after reconstruction. When b,; = 0, then m; 1 R and the information lies in the null
space of the measurement (LaCasse et al. (2011a, 2012)). When b,; = 1, then m;{ R
and the information can be reconstructed to within noise limitations. It can be shown that

215:15 b,/c = R, where R is the rank of Q and is always an integer. Therefore, if a particular
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b, is not an integer, it implies that the corresponding k-th element must be available for
reconstruction as a member of a linear combination of Mueller elements. To investigate
those details, the concept of structured decomposition needs to be ported over from partial

systems of Chapter 4 and applied to the channeled systems of Chapter 3.

5.2 Structured Decomposition

As in Chapter 4, a structured decomposition of Q can be postulated. Its desired feature is
to be more parsable by humans, and after seeing the structured matrices for non-channeled
pMMPs, it is expected that these matrices would also have an analytically predictable form.
The benefit of that form is the ability to represent the system with variables, allowing for
direct calculation of the system needed to cover a given scene space. In this dissertation,
however, the analytical form is not demonstrated and will remain a topic of a future dis-

cussion. The structured decomposition for Q is

[l
lla

T T
s0Z:0 V0 = LioVio (5.7)

where U, , is N x R matrix containing left-column vectors, X , is Rx R matrix containing

structured singular values and V _ , is 16 x R matrix containing the right-column vectors
and representing the sensor space;V. As before, X , cannot be used on its own to deter-
mine the noise resilience, but instead must be mapp&i with U, 4. The decomposition can
be derived from SVD through a prescribed procedure. First, the null space partition of V
is cropped away to produce X,, which spans the sensor space. Then, using Gaussian elimi-
nation, X,T can be rewritten in its reduced row echelon form. That operation is performed

using the MATLAB code shown in Algorithm 5.1.

Algorithm 5.1 Reduced Row Echelon Form MATLAB Code

function A = rreff(A)

[m,n] = size(A);

i=1;

i=

while (i <= m) && (j <= n)

[~,k] max (abs(A(i:im,j))); k = k+i-1;
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AC[i k],j:n) = A(C[k il,j:n);
A(i,j:n) = A(i,j:n)/A(i,]);
for k = [1:i-1 i+1:m]
A(k,j:n) = A(k,j:n) - A(k,j)*A(i,j:n);

end
i=1+ 1;
=ity

end

Lastly, each column is normalized and the resultant matrix is denoted as V o, which is
significantly simplified with the similar caveat from Chapter 4, that it is no IZ)nger nor-
malizable in both dimensions and is therefore non-unitary. Though this may seem unfa-
vorable, the complexity of dealing with non-unitary matrices is easily overcome as will be
shown.

Since Q is known from the steps denoted in Chapter 3 and V , is derived from the

SVD decomposition, it is trivial to calculate the auxiliary matrix, L{ 4:

[ =
1o

cQ=Q/V! (5.8)

o

which can be further decomposed into the product U, o X, o, where L, norm of each col-
umn of L{ , can be extracted into the corresponding effective singular value of X . The
reason thatiL is introduced as its pseudoinverse, rather than the forward matrix, is to mir-
ror the matrix of the same kind being introduced in Chapter 4, for which the decomposi-

tion in terms of g still holds:

llen
\d
V=)
Il
[
o+
Ife)
J[e
o o+
V=)
Il
o
H
o~
;%
o~
ﬁ
e

(5.9)

5.2.1 Noise Resilience

With the structured decomposition at hand, it is now possible to evaluate the system in
more detail. First, the noise performance is given by the Euclidean length of each of the
vectors of |

Py =1Ll (5.10)
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Concatenating them together into a noise magnitude vector describes the system’s noise
resilience for each of the reconstructable element combinations specified by the vectors of

v

S.

0y

T

Es,g = [ Py, Pv, " Py, | - (5.11)
Because the reconstructed elements are generally generally derived through different com-
binations of the same channels, the previously uncorrelated noise of each measurement is
now correlated between reconstructed elements. Thus, when looking for evaluating system
performance for any given subspace of interest, or scene space, Y, the noise characteristics

needs to be mapped through a transformation,

T=Y\V,q (5.12)

=TV.,. (5.13)
As before, L Q needs to be mapped into the appropriate space

T
Ly=TLy, =[&, &, ~ & | (5.14)

where K is the total number of vectors in Y. The resulting noise magnitudes within those

vectors can be evaluated in a philosophically equivalent way,

py = 11&, 1l (5.15)

and then can be combined into a total magnitude vector

Py = [ Py, Py, " Py ]T- (5.16)

5.2.2 Space Coverage

Because V _ , is structured into a purely real space, evaluating the space proximity for a

partial system is no different than it is for a partial channeled system. The matrix,
X=Y-V,q(VieX). 517
contains canonical angles within the singular values of its SVD,

(= arcsin(o ). (5.18)
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5.2.3 Example Decomposition

As an example, consider the 1D modulation channeled system with the same element
alignment as Hagen et al. (2007) and d = {1,1,1,1}. After performing the SVD, and

simplifying the column-space, the structured right-column matrix is

XS’Q{I,I,I,I} - > (519)

©C ©O O O © © O O © Og o o o o~
© © O O © © O O © © oOg o og~ o

SO O O O O O wm- O OvN- O O N- O O
© o of-r o o o o o o o ol o o o
© © O © © o o oF o o o o o o
© o o ©o o o oo o o o o o o
oSGl © o © o © o o o o o o o o

SI- © © o oF- o © o o o o o o o o

N | =

where certain measurement symmetries emerge. Because the PSG and the PSA contain
the same modulation frequencies, the measurements have a symmetric presence across

the Mueller matrix diagonal. The sensor space described by V, o = can be interpreted



to contain the following vectors:

1
v, = @ (mgy +my))
1
v, = 6 (mm + ””10)
1
V3 = E( 02 T 1My +m20+m33)
1
vy = @ (m03 + m30)
1
V5 = 6 (mlz + mZI)

1
Ve = @ (m13 + m31)

1
v, = 6 (my, + m33)

1
Vg = @ (m23 + m32)

within the system’s sensor space. The corresponding auxiliary matrix is

-

0 0 0 0 0 0
0 0 0 0 5 = 0
0 0 F %= 0 0 —%
0 % 0 0 = L 0
:Z,g{m,f V20 1.0 0o o %
0 5 0 0 = 5 0
0 0 F % 0 %
0 0 0 0 5 5 O
L 00 0 0 0 0 o5

o]
=3

'S
oS O O&

>
° &

i
8V2
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(5.20a)
(5.20b)

(5.20¢)

(5.20d)
(5.20¢)
(5.20f)
(5.20g)

(5.20h)

(5.21)

which is clearly non-unitary and unnormalized in both dimensions. Normalizing its

columns and pulling those normalization factors into the diagonal of X, o allows the
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auxiliary matrix to be further decomposed into the structured singular values,

(V20 0 00 0 0 0]
01 0 00 0 0 O
0 0 \E 00 0 0 0
000 ;0 0 0 0
Z90u | 0 0 0 0L o o o | (5.22)
V8
00 0 00 % 0 0
00 0 00 0 Y& ¢
L 000 00 0 0 ¥
and the left-column matrix,
(000 0 0 0 0 £ L]
00 0 0 3 & 0 0
00 L L 0 0 _\/g &
055 0 0 3 5 0 0
Uiguw=|1 0 12 0 0 0 2 o [, (5.23)
05 0 0 1 F 0 o
00 % Z 00 —\/g o
00 0 0 3 3 0 0
[0 0 0 0 0 O v% Wg |

which is still non-unitary, but unnormalized only in one dimension.

5.3 c¢-pMMP Performance

In this section, the performance of a number of channeled-partial systems is investigated.
In order to accomplish this task, the construction of Q follows the framework of Chapter

3, while evaluation principles are adapted from Chapter 4 into their channeled equivalents



142

described in Sections 5.2.1 and 5.2.2. This chapter employs the same metric,

K K
arg min Z:(ockpyk)2 +w Z:([)’kagk)2 , (5.24)
H k=1 - k=1

&€ &

where ¢, is the noise resilience term, ¢, is the space coverage term, and w is the weighing
factor introduced to select the trade-off along the Pareto surface of the multi-objective
optimization. The same value of 25 is used here because the scene space is the same as in

Chapter 4:

[ 09204 03097 0.2378
-0.0347  0.0410 -0.2480
-0.0010  0.0034 -0.0136
-0.0003  0.0007  0.0088
-0.0318 0.0524 -0.2356
-0.2757 -0.4730 -0.4418
-0.0010 -0.0043 -0.0050
-0.0004 0.0033 -0.0085
0.0035 -0.0039  0.0207
0.0013 -0.0043 0.0138
0.2703  0.4860  0.3996
-0.0019 -0.0033 -0.0220
-0.0004 0.0008 -0.0008
0.0001  0.0023 -0.0037
0.0028 0.0017  0.0292
0.0398  0.6630 -0.6850

[
I

(5.25)

The system performances within the 4 x 4 x 4 x 4 sub-volume corresponding to the four
frequencies making up d ranging from 1 to 4 can be seen in Tables 5.1-5.3. From the
results presented in Tables 5.1-5.3, the systemswithd = (1 1 1 1),d=(11 2 2),
d=(2131),andd=(3 1 3 1) are examined further.



143

169 L19 L1119 |9T¥S O¥1  8TST TEIL|6¥'SL 819 TILO §L9 | 9THS ¥i6l €6el 9¢Le| v %
98'SS S906 SOT L6709 | TS'8T 9STO TTHY 8’8 | HTLL 6TST ST LTT9|9LTE 6901 1686 SOST| ¥ €
599 /8 S'STI 8EF9 | 6691 ST SOCT LO98 | 1LSO S80I THTL SITL|660S ¥E6T SH06 €€0T| ¥ T
98'GS STOT §99T L'6TL | $ETE LELS 9¥98 §T9L | 9605 6161 ¥y6L L'SOT|€68C LLLy TEIL OUS6| ¥ 1
9OST9 €97 9L'8Y €S0 | €106 98'SS $0'89 8LEL| 9978 1689 S9L8 L61/8 | T'TOT I€LT L8Y STL8| € ¥
GSYL 9TPS 1LS6 9EF8 | LT9 1669 LT9  LT9 | TSOT 9TFS 6'€ST €01 | 675 9THS §LST 6%ST| € €
9069 S0'69 €0'SS 9678 | SST  98'SS L9VT 6686 | 6601 SITE ¥HLO S¥86 | €161 SLLY TWHL 8IS8| € T
9961 LSLT T LT9L | LTOT 98'SS 699 FILL | 9L0S IULh ¥€'69 L681 | 688% TI'6T 695y ¥8¥6| € 1
96T 796y TTCI 1LTh | LT0T %096 TEEE §1LE | SOST 6785 619 665 | ¥Te 189 8601 269 | T ¥
Y8ST L9 €€EE LUV | €39 9519 TULE GIST | LEET ¥OVL LTT6 $0L6 | ¥8'98 LEL9 TEOL 2068 | T €
oL 9598 ¥SIT €98 | STT8 T'SST ¥8LS €8CT|SYIL €449 16€9 LI | ST61 %6  6VSL TILO| T T
6671 §LVT TTIT TOST | 9¥'S6 6FST V79T 9'6TI | 8968 POV S99 S8TL|¥S69 TLE 1S9 Tvel| T 1
9519 0TSSPV €L9T| 9609 €568 IC6Y VILE | €79 €648 ¥S68 €LET|90ST €691 SPEL 9vg6 | I ¥
TTIL 9ETL 6€9€ 0967 | €778 9ST9 60ST 1188 | €06 LLL6 S'SET THOT | 6191 €TILT ¥€T  S€s6| T ¢
0069 ¥6L8 TS'SS OLEL | K19 SFOL €5'S6 €90T | €5 S¥'86 96IT TTCl | L€l %61 8OST 69| T ¢
1§ 6868 6TCI 656 | 67,1 SST  6TTL  L61 |T8L8 1S9L OE¥L VSIL|TS€6 8TP8 8¥IL 1669 | T 1
vy v v v | ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢| 1 1 1 1 |[,\77
vy ¢ Tt 1 | v ¢ T 1 | % ¢ T 1| ¥ € T 1 |g

"SUIISAS JO QWIN[OA F X I X F X F PAQLIISIP 33 UTYIIM SWISAS 967 JO F¢°S uonenby ur '3 Aq pajuasardar 9ouatfisar asIoN :1°6 9[qe],




144

€OTT 1050 $88°0 10S0 | L0S0 00000 ¥8€0 0000 | I€90 0000 €760 0000 | L0SO TSE0 ¥8€0 1S€0| ¥ ¥
9670 000 00000 0000 | L6¥'0 T6%0 0000 0000 | 8ST0 00000 T990 0000 | 1000 ¥S¥'0 0000 960 | ¥ €
0790 TCI0 6§90 TTI'0 | 1920 SO0 S0S0 0F0'0 | L6570 00000 ZZIT 0000 | 1910 SEL0 6290 S090| ¥ T
9670 0000 €8€0 1000 | 1000 0£90 000 0000 | T9T'0 $80°0 T¢80 SIT0 | L6¥0 6950 1080 S¥60| ¥ 1
I6v0 L6¥0 0000 SIT0 | 1000 9650 0000 0000 | ¥ZI'0 T9T'0 $I0 0000 | 0000 1000 SO0 0000 | € %
0000 £0S0 0000 0000 | T0S0 €9T'T T0S0 10S0 | €110 L0SO SLSO 0000 | TEY0 L0S0O 8ITO S€90| € €
0000 T9T0 SIT0 0000 | 0000 9670 T000 0000 | 0000 L6¥0 T6¥'0 1000 | £600 I9T0 €ET0 1860 | € €
OV€0 1000 090 0000 | 1950 96%0 0,90 1000 |¥€£0 90 6I80 S9T0 | 1970 L6V0 680 ¥6I'T| € 1
S98°0 0000 L6¥'0 0000 | 0000 00000 TSO0 LEEO | €690 LTI'0 080 LTI'0|TLEO 7990 SE€0 ¥LL0| T ¥
FLEO 0000 $S0°0 0000 | 0000 T6%0 L6¥'0 SLEO 2050 10000 SOSO ¥SO00 | 1000 990 LEEO ¥L90| T €
OV60 €810 I8L0 89S0 | 0L9°0 LLSO TTS0 LESO | L8T'T 10SO €9T'T S88°0 | 6680 9280 1€90 €960 | T ¢
PLEO V00 THEO 9S50 | 0000 LOTO EEE0 SO0SO | €290 LTIO 0T90 6¥9°0 | Y080 880 L6¥O TLIT| T 1
1670 00000 0000 £6¥'0 | 0000 0000 0000 0800 | ¥ZI'0 0000 S50 1910 | 1000 0000 $S5°0 #50| T %
0000 0000 IS0 S6%0 | 0000 T6%0 T8E0 L6¥0 | 7700 00000 €250 $61°0 | 0000 000 20SO 6890 | T €
0000 0000 IO TOT'0 | 0000 0000 €500 €810 [ 0000 10000 S980 L6V0 |LTI'O 6,10 €590 08L0| T €
OVE0 00000 T8L0 ¥8S0 | L6€0 €£9°0 T8I0 80L0 | SO0 860 9¥60 T8L0 | T960 FITT L8TT €OTT| T 1
vy v v v | ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢| 1 1 1 1 |[,\77
vy ¢ Tt 1 | v ¢ T 1 | % ¢ T 1| ¥ € T 1 |g

"SUIISAS JO QWIN[OA F X F X F X PIQLIOSIP o) UIYIIM SWISAS 967 JO F¢°S uonenby ur ¢3 Aq pajussardar 9derano)) aoedg :7°6 9[qe],




145

8676 TTVL T6CT TTVL| Y699 9FT  TOL TEIL | 9TI6 819 6906 8L9 | ¥699 T0T 68T €78 | ¥ ¥
ST89 9906 SOI  L609 | €607 ¥8'EL TTHY 8ES8 | 68L1 6TST 8TOT LTI9 | 6LT7€ TSIT 1686 V061 | ¥ €
9078 7906 LI ¥L9 | ¥OLL ¥LOT T€HT 9978 [TI'8L S80I LT01 9UTL | 1068 1Ly T90L SSIT| ¥ ¢
ST89 §TO1 €97 L6T1 | ThTe IUSL 8¥98 §T9T | 6675 T¥6L 001 9891 | SETH 6V'6S S6T6 88I1| ¥ I
PS'EL ST'6E 9L’V 9S50 | ST06 STS9 $0'89 8LEL|LLL8 €6TL TUT6 L6148 | T'TOL LT 0ST STL8| € ¥
6SYL 699 1L'S6 9EV8 | TTVL 86W6 TTHL TTVL|6LOT ¥6'99 €891 €€0T | TLOL ¥699 TEIL S0LZ| € €
90’69 80°CL 664S 96L8 | SST  STSY SOVL 666 | 6601 65Ty IL6L L¥86 | L'€61 LLTS 9OLVL L60T| € T
TS0T 19°LT S66L LT9T | THIT ST89 6T€8 VLI | IT6F €IS €868 S'€61 | [¥09 €5TF 929 LT | € 1
CIPL To6F STEL TLTH | LTOT $0'96 STEE TOSE | UYL L¥19 69F8 L6T9 | LT1ST 99%8 TSI €988 | T ¥
LLOT L9 LYEE LLSY | TEP9 PSEL €56V CTHI | €9FT VOPT 6FO1 TH86 | S8°98 €6'€8 OTLI 60T | T €
1086 ¥IT6 ST SO00I | 66 S69T 6001 §Tve | TTOT STO8 8676 T6EI |STIT LFIT 9TI6 6906 | T €
TEST  6¥1  L0TT TFYL | 9¥S6 091  LOLL €THL | €01 S6VT 908 LFVL | ¥968 bTes <L LT01| T I
PE'EL 90TS SPTP SI'6C | 9609 S5'S8 TC6Y CU6E | ¥'S9 €648 €01 €THI | 90€T €€9T ¥8¥I STIL| T ¥
CTIL 9E¥L LTS TL6T | €578 FSEL VOVL SO01 | Tvi6 LLL6 98V T60T | 6191 €11 SO¥T 9TIT| T ¢
9069 ¥6/8 L¥8S OTPL | I¥I9 SHOL SL96 8O0IT| €54 9%'86 TIHPL SHEL|89L1 S861 TLL 6978 | T T
6.6 6868 VTHL SOUL | 8F81 §0LC 6661 L¥IT|TEOI TTOT 1086 €I | 9LIT 9FIT TTOT 8676 | T I
vy v v v | ¢ ¢ ¢ ¢ | ¢ T T T /|1 1 1 1 |[,2\77
vy ¢ Tt 1 | v ¢ T 1 | ¥ ¢ T 1| ¥ € T 1 |g

¥ X ¥ X ¥ X § PAQLIOSIP oY) UTYIIM SWISAS 967 JO G = M YIIM 98eIdA00 d0eds pue 90USI[ISaI ISIOU Jo WINS PAYZIOM :€°S J[qe],

.mE@um%m JO awImjoA




146

080 THO'T 9550 THOT | 0150 000 TI¥'0 000T | T€S0 0007 SLE0 000T | OTFO ISTT I1H0 ISTT| ¥ ¥
$8S0 €80T 000'T 000'T | 000 €667 TO0T T00T [ %090 0007 0€90 000T | TS60 SE€0 LIOT T6¥0| ¥ €
6,0 €990 ¥T60 €990 | SSSO SLLT 6VE0 SL6'T|000T T00T FO¥0 T00T | S6TT 6190 8E50 00€T| ¥ T
7850 0001 ¥5S0 €80T | TS60 1€8°0 ¥I60 OLOT | 850 OFTT TEC0 €KTT | 000T 06£0 €860 ¥€H0| ¥ 1
€667 000 T00T S090 | €80T ¥850 000T 000°T | 62T S6TT 98T 000 | 000T ZS60 6060 000T | € ¥
000T OIF0 0007 000 | TWOT 080 THOT THOT |9¥0T OIF0 €691 000 | 60I'T 0150 SPIT S6T0| € €
000T 8S5°0 €¥TT 000 | 0007 ¥80 €80T 000 [ T00T 000 €667 LTTT|¥€60 S6TT 1950 0€ST| € ¢
6971 TS60 6090 000'T | LE9°0 ¥8S0 6090 €80T [Z9TT 8560 SHO'T OELT | T160 000 €S0 9LI0| € 1
6050 TO0'T 0007 TOO'T | 0007 000T $85°0 9L¥0 | 8960 ¥8TO SLF'T ¥8TO | 9¥OT 0€9°0 €590 LZO| T ¥
960 0007 1620 000T | T00T €66T 000 6£9°0 | 9550 €80T 10 ¥EO'T | ¥I60 0€90 L6€0 LS¥0| T €
USY SIET 88T 0T9€ | 6090 1960 TEE0 TS0 | €040 THOT 08L0 9SS0 | L9VO 6SK0 IS0 SLEO| T T
0960 6IT'T SOT'0 1870 | ¥460 $¥9°T T€T0 $9TT | 809T 9€9°0 64F0 ¥T60 | 9T€0 SLFO 0001 $0¥0 | T 1
€667 T00T 00T 000T | 000 0007 000T $%L7T|62TT 0000 ¥8L0 S6TT| €80T 0001 590 100 | T ¥
000T 000 ISST ¥¥T0 | 100T €661 SIL0 0007 [920T 000 9TS0 ¥HE0 | €5£0 €80T 1290 9S50 | T €
000T 000 €FTT 8SS0 | 000 000T OETT 960 [ T00T 6660 6050 0007 | ¥8T0 SPL0 8960 SL¥T| T €
6971 000 SITT €¥S0 | 1940 LIEO 9LF0 69%0 | Tvih OTIE LS S88°T| 1880 090 €00 08L0| T T
vy v v v | ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢| 1 1 1 1 |[,\77
vy ¢ Tt 1 | v ¢ T 1 | % ¢ T 1| ¥ € T 1 |g

"SUIISAS JO QWIN[OA § X § X § X  PIQLIdSIP ) UTYIIM SWISAS 967 10] “ly 'S 9[qe],




147

20T €0VT 1690 €0¥'T | 1850 000 1SE€0 000 | S6€0 000T 0820 000 | 850 00T TSE0 00T | ¥ %
€80 1660 000 000T | 810 0060 T660 16670 | L8T0O 000 LSLO 000 | 1660 SPO0 €660 0S¥0| ¥ €
0870 6750 0TE0 6VS0 | PECO 69TT €8¥°0 OET'L | 8ILO 1660 ¥HL0 1660 | STSO TIFO 920 6ITT| ¥ T
€80 000 LE¥0 1660 | 1660 1850 7660 9001 | €490 TIS0 ITH0 TIS0 | SIL0 SSE0 LSTO 8190 | ¥ I
0060 8IL0 1660 T¥S0 | 1660 €80 000 000 | 8850 SZSO LLI'T 00077 | 000T 1660 7260 000 | € ¥
000T T80 0007 000 | €0¥'T T120T €O¥'T €OV |Z60T I8¥°0 9€TT 000 | I¥€0 T85°0 OZIT TIS¥0| € ¢
000T €90 TIS0 000'T | 000T €820 1660 000'T | 1660 SIL0 0060 9860 | €940 SISO SI90 LOSO| € T
SPI'T 1660 IS0 000 | 6250 €820 TISO 1660 | SOE0 €590 S¥SO 6£9°0 | T€Y0 8ILO TH90 T1H0 | € I
SYS0 1660 S1L0 1660 | 000T 000 O0L£0 98€0 | 8670 7690 0SS0 690 | 1850 £SL0 950 €980 | T ¥
£69°0 0000 ¥H¥0 000 | 1660 0060 SIL0 $99°0 | 8250 1660 ¥S90 998°0 | T660 LSLO LSTO TL90| T €
SIPT #SST 61T BLVT | 1150 €0TT /850 SITT | T€80 €0¥'T 120T 1690 | TECO 0LL0 S6€0 08L0| T €
690 9050 LTTO T8TO | LS80 €80 06T0 TIS0|9ET0 9THO 08TO 0TE0 | 0810 €Z90 SIL0 ¥7L0| T T
0060 1660 1660 810|000 000T 0007 ¥EL'T|885°0 0001 0680 STSO | 1660 0007 120 080| T ¥
000T 000T ¥69°0 TITO | 1660 0060 9S¥'0 SILO | L60'T 000 ¥S80 $99°0 | T660 1660 L8¥0 66v0 | T €
000T 000 IS0 €790 | 000T 000T 850 8640 | 1660 6,60 SPS0 S1L0 | T690 06,0 8620 0€50| I €
SPI'T 000 €160 LLLO | SEE0 9TS0 9EE0 OSHO | S6€T 09T SIFT 6LI'T | 0680 950 T€80 T120T| T T
vy v v v | ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢| 1 1 1 1 |[,\77
vy ¢ Tt 1 | v ¢ T 1 | % ¢ T 1| ¥ € T 1 |g

"SUIISAS JO QWIN[OA § X § X § X  PIQLIdSIP ) UTYIIM SWISAS 967 10] 4y :6°G 9[qe],




148

89S0 890'T 6580 890 | 010 000 T6L0 0007 | 6620 000 SSSO 000'T | 0TZO 9240 1620 90| ¥ ¥
1S90 9660 000'T 000°T | 0SS0 €080 200'T ZOO'T | #Z¥'0 000 SOS0 000T | S960 L0 €560 950 | ¥ €
9950 SSOT €£L°0 SSO'T | ¥EFO TTOT 0EL0 600D | 0SSO 00T 6620 TOO'T | 8ES0 650 9TH0 6940 | ¥ T
1S90 0007 S¥80 9660 | S960 TOS0 €£60 ZOOT | IL¥O LILO TOS0 €2L0 | 0€50 T8O S¥0 LL¥O| b1
€080 0€50 TO0T £LS0 | 9660 1S90 000 000°T | 6590 $E5°0 €20T 000 | 000T $960 6060 000T | € ¥
000T 0IZ0 0007 000'T | $90°T 8¥S0 $90'T 8901 [ 6960 OIL0 €40 000 | €280 0IL0 1060 €090 | € €
000T VO €240 000'T | 000T TS0 9660 000'T | T00T 0SSO €080 €00 | TZLO $ES0 0990 6670 | € T
€880 960 L09°0 000T | ¥8L0 1S90 L090 9660 | 8650 IL¥0 LESO TTLO| 900 0SS0 SESO 8EE0 | €
857°0 00T 0SS0 TOOT | 000 0001 ¥¥S0 0060 | LLSO ¥SOT L6S0 ¥SO'T| €920 S060 SIFO %00 | T ¥
00 000 0SS0 0007 | T00T €080 0ES0 OFLO [ 9590 9660 THSO L88°0 | €£60 SOS0 6770 $050| ¢ €
810 TTU'T 19¥°0 €060 | L090 €990 8850 9EL0 | L2900 $90°T 8¥SO 6S8°0 | TLOO €570 6670 SSSO| T €
LOL0 €040 TEWO THYO | ¥960 8€80 TLYO €LLO | €940 9860 9950 €£L0 | 050 TIE0 0S50 6670 | T 1
€080 TOO'T 00T 0SS0 | 000 000'T 000T OIOT | 6590 000 82O 8ES0 | 9660 000T €50 €990 | T ¥
000T 000T 0920 6970 | 00T €080 9%L0 0SS0 | 060 0007 9690 6050|8960 9660 6990 9¥¥0| T ¢
000T 0000 €220 TZF0|000T 000 9S9°0 0SS0 [Z00T 000 8§70 0ES0 | ¥SOT LITT £L§0 £650| T €
€880 000 FES0 LOLO | ST80 S8S0 €0V'0 OTHO | 980 LFO SILO 19%0 | €680 €2L0 Lto0 8¥SO| T T
vy v v v | ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢| 1 1 1 1 |[,\77
vy ¢ Tt 1 | v ¢ T 1 | % ¢ T 1| ¥ € T 1 |g

"SUIISAS JO QWIN[OA § X § X § X  PIQLIdSIP ) UTYIIM SWISAS 967 10] "¢y :9°G 9[qe],




149

0.2 © @
&
8§
0
&
0.1, . 0 o 00 ooy, ¢
o )
o ¢ ¢ Cp@ o®
e} 0o @%
o O
o o o 50
0 oo A
o o o &
o >
°J05 S
01 o o ©
— o
) : o
-l
-0.2
-0.3
-04

-1 Y2

Figure 5.1: Reconstructionofd = (1 1 1 1)c-pMMP. Thissystemhas N = 9andR = 8.
Circles represent the different objects classes, corresponding to different damage states.
Lines represent their approximation. Reconstructions of object classes corresponding to

the red and green lines intersect.
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Figure 5.2: Reconstructionofd = (1 1 2 2 ) c-pMMP. This system has N = 13 and
R = 11. Circles represent the different objects classes, corresponding to different damage
states. Lines represent their approximation. Reconstruction of the stray green object is

now separable from the red class.
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pA ‘ —0.6 -1 Y2

Figure 5.3: Reconstructionofd = (2 1 3 1) c-pMMP. This system has N = 15 and
R = 14. Circles represent the different objects classes, corresponding to different damage
states. Lines represent their approximation. By virtue of being an almost full rank system,
the space is even closer to intended.
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Figure 5.4: Reconstructionof d = (3 1 3 1 ) c-pMMP. This system has N = 17
and R = 15. Circles represent the different objects classes, corresponding to different
damage states. Lines represent their approximation. This system manages to align the
reconstruction with the object classes.
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5.4 Discussion

It has been shown that studying structured matrices within the context of partial systems
is beneficial. However these matrices can further elucidate previously studied concepts
from Chapter 3. When applied to full systems, V Q isa 16 x 16 identity matrix and

5,q = diag(L, 5,1 2, 2, 2 L 2 L 1L T ) Note that 1, 4 = 121, which
corresponds to the ideal EWV of channeled systems in terms of the number of modu-
lations within each Mueller element. Thus, the non-optimality is completely contained
within U Q and the optimal full system must have a unitary U, Q:

The results shown in Tables 5.1-5.3 and Figures 5.1-5.4 indicate that channeled-partial
Mueller matrix polarimeters can be successful in the task of object discrimination while
reducing the number of channels and thereby increasing the resolution of the domain (in
this case spectral) with which the polarization shares the bandwidth. The data set at hand
contains the default state as well as three damage states, which are more arbitrary than
intrinsically principal to detection. The difference between the red and green classes is
particularly minimal, which leads to the realization that this optimization scenario is not
ideal because the initial selection of classes of objects did not concern itself with the pMMP
or c-pMMP design-ability. For optimal results, the class selection and pMMP or c-pMMP
design needs to be performed at the same time for the system to be balanced. Having said
that, it is clear that even the c-pMMP withd = (1 1 1 1) is capable of providing
separability to the classes and with proper calibration could be useful. Though only the

= (3 1 3 1 )system with R = 15 was able to approximate the space with low
maximum canonical angles, note thatthed = (1 1 1 1) system with R = 8 was also
able to separate the different damage state classes. The net separation as denoted by the
respective h, g values seen in Tables 5.4-5.6 shows that the classes got closer: h;, = 0.780,
h,; = 1.021 and h,, = 0.548. It is conceivable to adjust the space within which the target
identification is performed, thereby allowing to use fairly sparse number of channels for
the task. The c-pMMPswithd =(1 1 2 2),d=(2 1 3 1)andd=(3 13 1)
represent steps from the system with the most minimal modulation scheme to systems that

have rank gradually approaching that of a full system. Table 5.7 shows B, Q, as well as the
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. . . 2
structured form of measurable vectors v ; and the corresponding noise variances o;; of

the four c-pMMP systems.

5.5 Conclusion

The concepts of channeled and partial polarimetry were combined to enable the design
of channeled-partial Mueller matrix polarimeters (c-pMMPs). By introducing structured
decomposition, the measurement matrix Q is further investigated to provide the user with
handles for evaluating the system’s noise resilience and space coverage directly from the
measurement matrix. As a result, the utility of c-pMMPs has been increased. Finally,
this chapter demonstrated the applicability of the developed tools on the data set used in
Chapter 4.
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Table 5.7: Reconstruction properties of the four c-pMMP systems of interest.
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CHAPTER 6

MEASUREMENT DIVERSITY

In order to reconstruct the state of light’s polarization, a polarimeter must take several
measurements. As described in Chapter 1, each measurement performs a projection of
the state of the light onto each of the analyzing vectors. Every additional measurement
provides a particular constraint on how the two vectors relate, thereby shrinking the space
of polarization states that the measured light can potentially occupy. Each constraint takes

the form of a 4-dimensional hyperplane, which can be easily seen from
I, =a,s, +a,s, +a,s, + ass;, (6.1)

where the Stokes parameters can be thought of as a set of 4-dimensional axes. Equivalently
to the methods of reconstruction described in Section 1.4, the purpose of having multiple
analyzing vectors is to construct at least four 4-dimensional hyperplanes. Provided that
these hyperplanes are different, they will have one intersection point — the solution to
the system of equations that the measurements present. Given that the Stokes parameters
being measured are constant, the additional hyperplane constraints arising from taking
more than four measurements will still contain the previous solution.

Naturally, even if the analyzing vectors are known with infinite precision, there are
additional sources of noise. These sources of error can be applied by adding uncertainty to
the hyperplane. The case of additive noise is easy to imagine as it turns the hyperplanes into
thin clouds or “thickened” planes. When these clouds intersect the volume enclosed in that
intersection may be significant if the effective hyperplanes are not sufficiently different. As
a result, in order for the intersection to be well defined, it is necessary for the separation
angles to be large, ideally orthogonal, or 7.

To evaluate a polarimeter’s performance, it is necessary to accurately understand the
mathematical steps involved to predict the effective noise resilience. The most straight-

forward and brute force method is to construct an artificial Stokes scene, pass it through



157

the system’s known analyzing vectors to obtain detector intensities, and after adding a rep-
resentative kind of noise, use the pseudoinverse to get to the underlying Stokes data. With
original and reconstructed data at hand, one can then evaluate some sort of error metric

between the images, like

3

. X Y
1
€= Z a; Z Z |Si,0riginal(x’ y) - Si,reconstructed(x’ y)
XY x=1y=1

i=0

b (6.2)

where a; allows to weigh different Stokes parameters differently and b allows to average
the errors in a more arbitrary space. This method, however, is computationally intensive
and, depending on the noise model, may cause some experimental bias if the scene that is
generated is not representative of the one that will be measured.

As an alternative to the brute force evaluation, one can instead attempt to identify the
mathematical quantities in the reconstruction process which are responsible for determin-
ing the noise resilience of the system. Much like there is no correct b for Equation 6.2, there
is no “correct” mathematical space in which to weigh the noise characteristics. Although
the approaches to the global optimum between the different metrics can be different, all
the useful ones must have the intent of orthogonalizing the reconstruction hyperplanes.

Given a set of measurements,

Qg0 T 81,15, 14,5, + 43,83

| b
Il
"

(6.3)

| doNSo T A1 NSy T Ay NS, T A3 NS

with N > 4, the pseudoinvese will remix a; ,5; products to form a 4 x N reconstruction ma-
trix, gﬂ which to the best of author’s knowledge cannot be effectively represented for the
completely general case of N > 4. In order to solve a reverse-problem by way of a matrix
multiplication, it is necessary to consider the intersection of exactly four N-dimensional
hyperplanes — the rows of ng. For N = 4 the inversion does not alter the geometry
significantly, but for N' > 4, there exist N — 4 extra degrees of freedom in which the hyper-

planes can rotate.



158

6.1 Established Evaluation Metrics

One of the first metrics to be used in determining polarimeter’s performance was the Con-

dition Number (CN) and was introduced by Tyo (2002). It can be calculated as

Am@‘

ho (W) (6.4)

N = [|w - f|w| -

which has the needed effect of orthogonalizing the rows of the pseudoinverse W* when
used as a minimization target. Tyo (2002) showed that the minimum CN for_a Stokes
polarimeter is VR — 1, where R is the number of Stokes parameters being reconstructed.
Through PSG/PSA independence, it can be easily shown that for a Mueller matrix po-
larimeter, the minumum CN is \/ (R; = 1)(\/R, — 1), with R, and R, are the numbers of

Mueller columns and rows being reconstructed, respectively. In this chapter, the focus is
on overdetermined Stokes systems, and R = 4 is assumed.

Another often used evaluation metric is the Equally Weighted Variance (EWV), which
can be calculated as

EWV =tr(WW?) = i 0:

=0 i

(6.5)

=

was introduced by Sabatke et al. (2000) and Twietmeyer and Chipman (2008) for pur-
poses of evaluating Stokes and Mueller polarimeters, respectively. By minimizing EWYV,
the mean square error between input and reconstruction is minimized. As it was pref-
aced before, CN and EWV are often corollary — if the theoretical minimum exists in one,
then that optimal system will also be at the theoretical minimum of the other. The only
difference lies in the slope at which the minimum is approached and the effective weigh-
ing implied, which may lead to a discrepancy when the theoretical minimum is unavailable

given the variable space specified.

6.2 Diversity Metrics

CN and EWYV are perfectly sufficient for evaluating the system if additive noise is the only
one present. In this section, overdetermined systems will be specifically studied to see if

there is any benefit in more carefully shaping the analyzing vectors. Essentially, the attempt
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is to see if the extra (N — 4)-dimensions of freedom contain solutions that are not only
optimal with respect to CN and EWYV, but also provide improved performance for different
kinds of noise.

As mentioned before, once the noise becomes data dependent, there is a possibility for
experimental bias to affect the design of the polarimeter. Although it’s possible to con-
struct a set of measurements, given the distribution of objects to be measured and the
noise encountered, this method will provide overly specific designs. Instead, the goal of
this chapter is to assume that the systems are equally likely to measure all kinds of polariza-
tions and base the experiment on a spherical distribution of states, covering the Poincaré
sphere.

This section will investigate if a system that performs a more diverse set of measure-
ments is any better at reconstructing the scene than a system of the same CN/EWV that
does not consider the measurement diversity. As was shown by Goudail and Tyo (2011),
partially polarized measurements never improve contrast, thus justifying limiting all ana-
lyzing vectors to lie on a sphere of a,, radius. Linking the radius allows a simplification to
a 3-dimensional quantity,

T
v=[a a, a;], (6.6)

from where, the diversity can be based on the relationship of each of the available vector

pairs. One way to evaluate that relationship is the Eucledean distance,

i = |10k = Yell = U = 0,7 + (0 = Ve,V + (U, = v, )% (6.7)
while another way is the arclength separation,
oy, = arccos(0y, - Uy). (6.8)
The metrics that will be proposed in this chapter will all depend on either of the two mea-
sures of separation.
6.2.1 Valence Shell Electron Pair Repulsion Theory

In chemistry, molecule shapes are determined by multiple co-existing repulsion forces be-

tween all of the electric charges in the vicinity. The number of atom’s valence shell electrons
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predetermines certain geometries. Mirroring this theory, analyzing vectors can be treated
as electrons in the valence shell and their proximities to one another leading to repulsion
forces. Adding all of the forces present, allows the optimization to search for the “easiest”,
or lowest-energy configuration. Mathematically, it can be written as

] N

N
VIR=— Y %

(6.9)
N2 =1 e=k+1

<
die

x

where the summation limits prevent double-counting and C is a constant that carries the
proper units for VTR to have units of force. Note that because d, is in the denomina-
tor, this metric heavily punishes systems that take the same measurements. And although
taking the same measurement might not be ideal, giving such systems a score approach-
ing infinity is unlikely to be justifiable. Instead, this metric is likely to be useful only for
determining arrangements where the extreme constraints are appropriate.

To remedy this limitation, the metric can be adjusted,

-1

1 N N
VTA = — (6.10)
N? k=1 e:zk;rl (dk€ + a)

where a is added to dj, to stabilize division. This adjustment will invariably change the op-
timization result and will depend heavily on a. However, it is not easy to justify a particular

value for a.

6.2.2 Arclength Anti-proximity

Another way to spread the measurements’ analyzing vectors around is to consider their ar-
clength separation on the surface of the Poincaré sphere. The maximum separation occurs
when the measurements are orthogonal, meaning «;, = n. Since the maximum arclength
separation is known, using that maximum to bias all the separations is not arbitrary. Hence,
in this metric, normalized arclength anti-proximity (shortness) is calculated between each

measurement pair and added, or

AAP = \/ﬁ lN_l i (1—%)21, 6.11)
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where the summation limits prevent double-counting as before. Unlike VTR, this metric
does not punish repeated measurements infinitely. As a result, this metric has a weaker

forcing towards the minimum and is thus definitely flatter overall.

6.2.3 Solid Angle Intersection

VTR and AAP are relatively straight-forward in that they provide a continuous punishment
for two measurements being close to one another. Depending on the way the metric is
constructed, it is easy to punish similar measurement too much or too little. To provide a
potentially more balanced approach, one can start punishing against a measurement only
when it gets within a certain range of another. One way to do that is to construct cones with
spherical caps around each analyzing vector’s point on the Poincaré sphere. By giving each
measurement’s cone a solid angle of O, = % ensures that the intersections are extant, yet
not overly abundant. Using Oleg Mazonka’s derivation (Mazonka (2012)), unqiue solid

angle intersections are added,

N-1 N .
SAI = Z 4R [arccos <%(kg)2)> — cos(3) arccos <%>] , (6.12)
k= k+1

where the summation limits prevent double-counting as before and f is the arclength ra-

dius of each cone and can be easily shown to be arccos(1 — %) given the ), from before.

6.2.4 Empty Sphere Volume

Finally, instead of looking at measurement relationships one by one and adding them to-
gether, the whole collection can be looked at as an ensemble and the property that can be
used to group them together is the volume that the polyhedron encloses between all those
analyzing vectors. Although deriving a calculation for a volume given all the points within
the set should be possible, breaking up the volume into constituent pieces and calculat-
ing the volume of each one is easier. To do that, the 3D distribution of vs is Delaunay
triangulated first, which forms M simplices. For the 3-dimensional vs, those simplices

are referred to as tetrahedra. For each tetrahedron, a sub-volume is calculated and added
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together. The result is then subtracted from a normalized sphere,

1 M

ESV =1- E Z | det( Vool " ¥Yma Y2 " VYma Y3 = Yma >| : (613)
m=1

One difference of this metric is in how it treats a repeated measurement. If all other

metrics punish repetition directly, ESV simply maintains the volume of that configuration.

Whether this is a drawback is likely to depend on the constraints placed on measurement

selection.

6.3 Example

These metrics can yield a better system only for systems with N > 4. To justify a larger than
required number of measurements, the information modulation technique that is utilized
needs to bode well to speedy capture times and should represent a reasonable, rather than
an extravagant design. As a result, to test these metrics, a hybrid scheme was selected,
where both spatial and temporal modulations are used.

The selected setup features a microgrid detector, and two rotating retarders in front of
it. The system can be seen in Figure 6.1a, while the system’s analyzing vector can be shown
to be

T

A(g) = ([ 1 000 ]ELP(¢)¥LR,2(6 ’62)¥LR,1(61’81))

1

+ cos(2¢) [y, y, — sin(260,) sin(26,) sin(d;) sin(J,) + sin(40,) sin(40,) sin2(81/2) sin2(82/2)]
+sin(2¢)[sin(49,) sin2(61/2)1//2 + sin(49,) sin2(82/2)1//1 + sin(26;) cos(20,) sin(8;) sin(6,)]
. o . . L, i , (6.14)
+sin(2¢) [y, — cos(20,) cos(26,) sin(J;) sin(J,) + sin(40,) sin(40,) sin“(8;/2) sin”(5,/2)]
+ cos(2¢)[sin(40,) sin2(51/2)1//2 + sin(49,) sin2(62/2)1//1 + cos(20,) sin(20,) sin(8;) sin(6,)]

N | =

+sin(2¢)[cos(26,) sin(8;){, + cos(26,) cos(8;) sin(d;) — sin(26, ) sin(46,) sin(J;) sin2(62/2)]
| — cos(2¢)[sin(26,) sin(8, )y, + sin(26,) cos(8,) sin(8,) + cos(26,) sin(46,) sin(8,) sin*(8,/2)]

cos’(20,) + cos(8,)sin*(260,), {; = sin’(260,) + cos(8,) cos*(26,) and (§) =
(¢,6,,6,,0,,0,) and ¢ represents the angle of the polarizer on a particular pixel. For this

where v

example, microgrid’s pattern of polarimeter orientations is customized to form a trapezoid

over the superpixel’s set of four pixels, an illustration of which can be seen in Figure 6.1c.
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The customization introduces two parameters, « and f3 to determine the applied pattern.
Forgoing the Instantaneous Field of View (IFOV) problems, each snapshot of the system
can be described by the following sub- W':

[ A (-2 +a+p.6,8,0,(0.0,(0) |
W) - A( 0—a+pB,08,8,0,(t),0,t)"
- A ( 0+a- ﬁa 61a 62) 61(t)»62(t))
A(+1-a-B.8,8,0,(1),0,1)" |

which creates the polarizer array seen in Figure 6.1c and traces out the edge of a trapezoid

| (6.15)

within the Poincaré a,/a, plane as shown in Figure 6.1b. While assuming a fairly limited
temporal bandwidth of the measured scene, multiple snapshots can be combined to form

the total W:
T
W = [ w(t = t) wit= t), ] (6.16)

where L is the number of snapshots taken. In this example, L = 3, constituting a total of 12
measurements. Figure 6.2 shows how « and f affect each of the discussed metrics, while
Table 6.1 shows 49 different resulting polyhedra that the analyzing vectors enclose.

In order to test how these metrics perform when presented with non-Gaussian noise,
a simulation was run, where a Stokes scene was measured with multiplicative noise, where
noise variance grows with signal strength. In order to ignore the high frequency error and
focus on the underlying structure, the scene was low-pass-filtered to include the lowest %
of frequencies to judge the overall shape of the reconstruction. The Structural Similarity
(Wang et al. (2004)) was then adapted to calculate how similar the structures between the
reconstruction and the object are. The metric is defined as

Quepy, + )20y, +c,)
(U2 +u2 +c)(02 + 02 +¢,)

SSIM(x, y) = (6.17)

where 1, and i, are the averages of x and y, respectively, o’ and ayz are the standard devi-
ations of x and y, respectively, o, is the covariance of x and y and ¢; and c, are additional
variables to stabilize division. In order to collapse SSIM into a single number, all the values

of SSIM are averaged,

1 xN}’

NN, &5 &

MSSIM = SSIM(x, ), (6.18)

—
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which effectively assumes a rectangular window. This selection might not be ideal, but
given the artificially periodic nature of the scene, it should suffice for the purposes of this
exercise. Additionally, since a Stokes image contains four images corresponding to each of
the parameters, the scores need to be combined. This is done by multiplying MSSIMs of

each of the channels, i.e.,
MSSIM,; = MSSIM, - MSSIM, - MSSIM, - MSSIM, . (6.19)

The results presented in Table 6.2 show how it is less than ideal to repeat optimal four
measurements three times. The reconstruction resulting from a polyhedron that con-
structs an icosahedron provides an advantage. The system that produces that distribution
consisted of two rotating retarders with §, = n, §, = 7 — arccos (\/%), with rotation rate
of the second retarder being double that of the first and the initial offset from LR, to LR,

being . The microgrid that produces described by « = % tan ( 1+2 ﬁ) and 3 =0.

6.4 Conclusion

In this chapter, the class of overdetermined Stokes polarimeters was investigated. It was
found that ensuring measurement diversity in their relation to the spherecity of the en-
closed polyhedron, parallels a reconstruction that is favorable under non-additive noises,
while provides no disadvantage when dealing with additive noise. This discussion provides
the most minimal of gains and should only be considered if the conditions absolutely re-
quire an overdetermined kind of system. Nonetheless, it is interesting to discover how

various polarimetric quantities relate to the geometrical fundamentals.
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(b) Measurements plotted on top of Poincaré a,/a, plane (equator)

M7 AN

.
.
il

—
—
—

=
=
=

—
/

NNZANZ7ZA

(c) Resultant FPA detector polarizer orientation pattern
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Figure 6.1: System configuration. The measurements and the custom microgrid pattern
are shown with & = 22.5"and f = 5".
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Figure 6.2: Simulation results for «/f3 sweep for two established metrics, as well as four
newly introduced diversity-based metrics.
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Table 6.1: Representative samples of measurement Poincaré structures. Colored with SAL.
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Table 6.2: Reconstruction of different polyhedra under multiplicative noise. To gauge the
underlying shape, simulated images are filtered to include only the bottom % frequencies.
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CHAPTER 7

CLOSING REMARKS

This dissertation investigated the classes of channeled Mueller matrix polarimeters in
Chapter 3, partial Mueller matrix polarimeters in Chapter 4, and the combined class of
channeled-partial Mueller matrix polarimeters in Chapter 5. The manuscript opened with
relevant pieces of prior work by Tyo, Sabatke and Twietmeyer that introduced concepts
by which to evaluate Stokes and Mueller polarimeters and later broached the subject of
channeled systems that were popularized by Oka, as well as the subject of partial systems
that were introduced by Hoover and Tyo. The work in this dissertation recognized the
patterns in the generalized versions of the systems pertaining to each class to construct the
necessary framework by which to evaluate each given system. Overall, this dissertation
introduces several novel concepts listed below.

First, Chapter 3 introduced measurement matrix Q, which related Fourier domains
of the modulations instead of intensities. Besides ma;mizing quality of reconstruction
by virtue of using linear system manipulations rather than arithmetic derived by hand, a
completely parallel concept of EWV was developed for channeled systems, which lead to
the discovery of optimal channeled systems as well as the discovery that even very super-
ficial changes to existing designs can improve their performance drastically. Introduction
of FPM as a way to calculate the coefficients of delta functions within the Fourier trans-
form of an arbitrary multiplication of sinusoidal functions trivialized the construction of
the measurement matrix. Additionally, leveraging an already optimal system, a redistri-
bution of error between reconstruction channels is possible. The completely generalized
nature of this development serves incredible utility to any further work intending to design
a channeled polarimeter

Second, Chapter 4 developed the concepts of structured decomposition and the recon-
structables matrix, which provide immediate insight into system’s space coverage and yield

a pMMP basis that allow the formation of ten classes of pMMP systems. The evaluation of
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such systems was aided by timely introduction of space mapping through auxiliary matri-
ces developed as a part of structured decomposition. Instead of looking at noise variances
within Mueller elements, pMMPs need to consider the noise variance within the linear
combination of elements of interest. Additionally, the analysis needs to include the prox-
imity of the reconstructed linear combination to the intended one. The prescription given
within this scheme achieves these needs and enables the user to design a pMMP given the
provided basis, as well as leaves enough pieces in place for the user to construct a basis of
their own based on different assumptions.

Third, Chapter 5 combined the concepts of Chapters 3 and 4 and paved way for a new
topic of channeled-partial Mueller matrix polarimeters. Combining the Q formalism with
structured decomposition allowed for proper evaluation of noise resilience and space cov-
erage of channeled partial system. Though the analytic form of the decomposition is not
provided here, it is computed instead. The downside is that the space coverage is not trivial
to calculate, thereby increasing the optimization time and potentially reducing the appli-
cability of inserting the c-pMMP design constraints into the hypothetical measurement
selection step. The derivation of the analytical form of structured decomposition for c-
pMMPs will have to be a part of a future discussion.

Fourth, Chapter 6 introduced polarimeter performance evaluation metrics, the opti-
mization of which showed that diverse geometrical distributions of analyzing vectors pro-
vide an improved reconstruction for overdetermined Stokes polarimeters under a non-

additive noise model.



171

APPENDIX A

DIVERSITY OPTIMIZATION

This appendix shows results of a number of optimization runs that minimized the met-
rics introduced in Chapter 6, which attempt to make the design of Stokes polarimeters
with N > 4 to produce more accurate results under non-additive noise. As before, the
optimization minimized each of the metrics using MATLAB’s built-in genetic algorithm.
However, this time the optimization variables were not constrained to any particular sys-
tem design and instead represented free-floating fully-polarized analyzing vectors on the
surface of the Poincaré sphere.

Figures A.1, A.2, A.3 and A.4 show results for VTR, AAP, SAI and ESV, respectively.
Despite the final optimizations results settling in rotated distributions with respect to one
another, several connections can be made. For N =4, N = 6, N = 12 and N = 24, VTR,
AAP and SAI produce the same solutions corresponding to the identifiable polyhedrons
of tetrahedron, octahedron, icosahedron and snub cube, respectively. ESV agrees with the
other metrics for N = 4, N = 6, N = 12, but provides a different solution for N = 24.
It is valuable to know the underlying geometric properties of each of those polyhedrons
because a design parameter will often be related. For example, to achieve a tetrahedral
distribution, one needs to use a rotating retarder with retardance, § = arccos (—%), which
is not disconnected from the dihedral angle of the tetrahedron, ¢ = arccos (%) To achieve
a cuboctahedral distribution, one needs a typical microgrid with a rotating retarder with
retardance, § = arccos(—\/%), which is equal to the dihedral angle of the cuboctahedron.
The same retarder can be used to achieve a regular icosahedral distribution by changing the
polarizers’ orientations in the microgrid such that the default four measurements create a
rectangle within the Poincaré sphere’s equator that has the aspect ratio of the golden ratio.
Within the notation of custom microgrid designs that is introduced in Chapter 6, that

— 1 2 —
means « = 7 arctan (H_\@) and 3 = 0.
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(G)N =16 (k) N =20 ()N =24

Figure A.1: Optimizations with different number of measurements for VTR.



173

(G)N =16 (k) N =20 ()N =24

Figure A.2: Optimizations with different number of measurements for AAP.
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(G)N =16 (k) N =20 ()N =24

Figure A.3: Optimizations with different number of measurements for SAI.
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(G)N =16 (k) N =20 ()N =24

Figure A.4: Optimizations with different number of measurements for ESV.
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