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Rechargeable multicell batteries have been used in various electrical and electronic 

systems, e.g., renewable energy systems, electric-drive vehicles, commercial electronics, 

etc. However, there are still concerns about the reliability and performance degradation of 

rechargeable batteries caused by low thermal stability and the aging process. A properly 

designed battery management system (BMS) is required for condition monitoring and 

control of multicell batteries to ensure their safety, reliability, and optimal performance. 

The goal of this dissertation research was to develop a novel BMS for rechargeable 

multicell batteries.  

First, this research developed high-fidelity battery models for online condition 

monitoring and power management of battery cells. The battery models were capable of 

capturing the dynamic circuit characteristics, nonlinear capacity and nonlinear open-circuit 

voltage effects, hysteresis effect, and temperature effect of the battery cells.  

Second, this research developed a novel self-X, multicell battery design. The 

proposed multicell battery can automatically configure itself according to the dynamic 

load/storage demand and the condition of each cell. The proposed battery can self-heal 

from failure or abnormal operation of single or multiple cells, self-balance from cell state 
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imbalances, and self-optimize to improve energy conversion efficiency. These features 

were achieved by a highly efficient cell switching circuit and a high-performance condition 

monitoring and control system. 

Moreover, this research developed several model-based condition monitoring 

algorithms based on the proposed battery models. First, a particle swarm optimization-

based parameter identification algorithm was developed to estimate the impedance and 

state of charge (SOC) of batteries using the proposed hybrid battery model. Second, an 

algorithm combining a regression method for parameter identification, a sliding-mode 

observer for SOC estimation, and a two-point capacity estimation method were proposed. 

In addition, an electrical circuit with hysteresis model-based condition monitoring 

algorithm was proposed. It systematically integrates: a fast upper-triangular and diagonal 

recursive least square for online parameter identification, a smooth variable structure filter 

for SOC estimation, and a recursive total least square for maximum capacity and state of 

health estimation. These algorithms provided accurate, robust condition monitoring for 

lithium-ion batteries. Due to the low complexity, the proposed second and third algorithms 

are suitable for the embedded BMS applications. 
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CHAPTER 1:  INTRODUCTION 

1.1  Motivation for the Work  

 Rechargeable electrochemical batteries have been more and more pervasively used 

as the energy storage and power source for various electrical systems and devices [1]-[5], 

such as communication systems, electronic devices, renewable power systems, electric 

vehicles, etc. However, due to the existence of cell state variation, limited thermal stability, 

and the aging process, safety, reliability, and performance degradation are still of concern 

in using rechargeable batteries. Exceeding the limitations of temperature, voltage, and/or 

current will lead to rapid attenuation of battery performance and even a safety problem [6]. 

Moreover, cell state variations are commonly present [7]. The imbalanced cell states may 

cause overcharge and overdischarge of some battery cells.  These unstable conditions will 

result in a degradation of the battery life and low reliability of the battery system. The 

problem of cell imbalance is especially severe when the battery has a long string of cells 

[8]. Furthermore, in a large battery system, the risk of catastrophic faults increases because 

a large number of cells are used [9].  

 An effective battery management system (BMS) consisting of hardware 

components and software algorithms is the key to guaranteeing the safety, reliability, and 

optimal performance of the batteries [10]. However, several design deficiencies in current 

battery systems have impeded them from being used for large-scale energy storage.  These 

deficiencies include: 1) adopting a fixed configuration for cell connections, resulting in 

low reliability and low fault-tolerance capability from abnormal operating conditions, such 

as high temperature, overcharge, overdischarge, overcurrent, and failure of one or more 



2 
 

cells [11]; 2) lacking an effective method to utilize cell state variations, resulting in 

nonoptimal energy conversion efficiency; and 3) lacking a capability for flexible dynamic 

power management, resulting in nonoptimal system performance.  

A commonly used method for solving the problem of faulty or abnormal cells in a 

fixed-configuration battery is the use of a safety circuit. The safety circuit protects the cells 

from high temperature, overcharge, overdischarge, and overcurrent by monitoring the 

temperature, voltage, and current of each cell [12]. However, lacking an effective 

reconfigurable topology, the safety circuit cuts off the whole battery system when any 

single cell is operated in these abnormal conditions. Moreover, cell state variations are 

commonly present in multicell batteries. In that case, the fixed-configuration design can 

only utilize a part of the total battery capacity. To overcome this deficiency, cell balancing 

circuits [13]-[17] have been used together with protection circuits. However, this solution 

highly increases the cost and volume of the battery system. Recently, several 

reconfigurable multicell battery topologies [18]-[22] have been introduced to control 

individual battery cells. However, these topologies are too complex and unrealistic for 

battery systems with large numbers of cells. Therefore, a new low-cost BMS hardware 

design enabling reconfigurable cell connections, cell balancing, protection, and 

independent control for individual battery cells is desired. 

In addition, the development of condition monitoring and control algorithms has 

become a main research topic in battery management and has attracted interest from 

industry, academia, and the various governments. A key function of the condition 

monitoring software in a BMS is to estimate the states, such as state of charge (SOC), state 

of health (SOH), instantaneous available power (i.e., state of power (SOP)), and critical 
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parameters, such as internal impedance, capacity, etc., of the battery cells during operation. 

The estimated parameters and states offer fault diagnosis and prognosis capability and 

enable intelligent control of the battery system [23]. Unfortunately, since the values of 

those parameters and states cannot be directly measured by using sensors, they are 

commonly estimated using the measurable states of the battery cells, such as voltage, 

current, and surface temperature. Poor estimation or control of a battery cell’s SOC may 

lead to improper charge and discharge of the battery cells and may degrade the efficiency 

and reliability of the batteries [24]. Moreover, the battery SOH is required to help 

determine whether a battery would fail and the remaining useful life of the battery [24]. 

Hence, the development of condition monitoring algorithms that accurately identify battery 

states and parameters using measured system quantities plays an important role in 

achieving an effective BMS. 

1.2  Goal and Objectives of the Research 

The goal of the research discussed herein was to design and validate a novel BMS 

for condition monitoring and power management of rechargeable multicell batteries.  

Compared to the state-of-the-art BMSs, the BMS presented here will extend the lifetime, 

enhance the reliability, and optimize the performance of battery systems. Specifically, the 

goal was achieved through the execution of the following three objectives. 

 Develop high-fidelity battery models for BMS execution and online 

condition monitoring of battery cells:  The battery models developed are 

capable of capturing the dynamic circuit characteristics, nonlinear capacity and 
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open-circuit voltage effects, hysteresis effect, and temperature effect of battery 

cells. 

 Develop a cell switching circuit topology and hardware design to achieve 

self-X (self-reconfiguration, self-healing, self-balance, and self-

optimization) of multicell batteries:  The proposed cell switching circuit is 

able to protect individual cells from abnormal conditions, balance cell state 

variations, and improve energy conversion efficiency of each individual cell in 

a multicell battery. The hardware of the cell switching circuit was implemented 

with relatively low cost and complexity. Moreover, a bidirectional DC/DC 

converter was designed to control the charge and discharge of the multicell 

battery and to coordinate with the cell switching circuit to balance the cell state 

variation for a battery system. Finally, a system-level design was developed to 

show the scalability of the proposed self-X battery design for real-world 

applications in electric vehicles (EVs) and plug-in hybrid electric vehicles 

(PHEVs). 

 Develop model-based online condition monitoring algorithms for battery 

cells: These included the online parameter identification algorithms, maximum 

capacity estimation algorithm, SOC estimation algorithms, and SOH estimation 

algorithms. The condition monitoring algorithms were balanced between 

accuracy and complexity in order to be suitable for the real-time, embedded 

BMS.   
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1.3  Outline of Dissertation   

The outline of the dissertation is as follows: 

 Chapter 2 provides a literature review of the hardware and software of a BMS as 

well as the online condition monitoring algorithms for batteries. 

Chapter 3 provides high-fidelity battery models for BMS execution and online 

condition monitoring of battery cells.    

Chapter 4 develops a self-X multicell battery module and system design, which is 

validated by simulation and experimental studies for multicell lithium-ion batteries.  

Chapter 5 proposes a particle swarm optimization (PSO)-based impedance and 

SOC estimation scheme using a discrete-time hybrid battery model developed in Chapter 

3. Simulation and experimental results are provided to validate the proposed estimation 

scheme for single-cell and multicell lithium-ion batteries. 

Chapter 6 proposes a simplified hybrid battery model-based condition monitoring 

algorithm. Simulation and experimental results are provided to validate the proposed 

algorithm for single-cell and multicell lithium-ion batteries. 

Chapter 7 provides an electrical circuit with hysteresis model-based condition 

monitoring algorithm. Simulation and experimental results are provided to validate the 

proposed algorithm for a Mitsubishi lithium-ion battery cells. 

 Chapter 8 describes the concluding remarks and contributions of this dissertation 

research as well as recommendations for future research. 

 

 



6 
 

CHAPTER 2:  LITERATURE REVIEW 

2.1  BMS 

 There is still no exact definition of BMS. This research adopted the definition that 

a BMS is a system consisting of hardware, such as sensors, a controller, electrical circuits, 

and communication wires, as well as software algorithms embedded in controller [25] to 

perform the functions of condition monitoring, fault diagnosis and prognosis, cell 

balancing, charge and discharge control, and protection for batteries and reporting the data, 

etc. The framework of a typical BMS is shown in Figure 2.1 [6]. 

 

 

Figure 2.1:  Framework of a typical BMS. (Courtesy of [6].) 
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2.2  Hardware of a BMS 

 The BMS hardware can be categorized into two parts [6]:  input hardware and 

output hardware. The input hardware provides data to the BMS software. The input 

hardware is mainly composed of current and voltage sensors to measure the main-circuit 

current and voltage and the voltages of individual cells, temperature sensors to measure the 

cell temperature and the ambient temperature outside the battery module, and dedicated 

analog wire and digital wire for communication, etc. [25]. 

 The output hardware of a BMS typically consists of the following:  1) safety circuits 

[12], such as the main battery pack relay, battery module relays, and/or a fuse embedded 

in each battery cell [26]; 2) thermal management circuits, such as a cooler and an electric 

heater for cooling and heating control of the battery; 3) general digital outputs, such as 

mode (charge, discharge, and failure alarm) indicators; 4) output communication/network 

circuits; and 5) balancing circuits for battery equalization. The output hardware is 

controlled by the BMS software. 

In recent years, cell balancing techniques have been widely studied [13]-[17]. The 

balancing circuits equalize the voltages or SOCs between cells as consistently as possible. 

However, most existing balancing circuits use dissipative resistors, resulting in energy loss 

and generating considerable heat [13]. To reduce energy loss, active balancing circuits 

were proposed by using transformers and switches [14], switched capacitors [15], and 

DC/DC converters [16]. The products of cell balancing integrated circuits (ICs) [17] use 

electronic converters to transfer charge from cell to cell during operation. However, this 

solution increases the cost and volume of the battery system, is unable to handle faulty 

cells, and only works for the batteries with multiple cells connected in series. 
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Recently, several reconfigurable multicell battery topologies were proposed for 

portable electronic devices [18]-[21] and for a large-scale battery system [22]. Figure 2.2 

shows the reconfigurable multicell battery topology in [21]. In a reconfigurable multicell 

battery, the optimal cell configuration is dynamically selected to minimize the system 

power consumption and maximize the usable battery capacity and operation time [20]. 

Moreover, the reconfigurable design can provide multiple voltage levels, which may 

improve the efficiency, scalability, and fault tolerance of the battery and reduce the 

complexity of the DC/DC converter circuit for charging and discharging the battery [18], 

[21]. However, these topologies are too complex and unrealistic for battery systems with 

large numbers of cells. The relay switches used in [19]-[22] are expensive and bulky and 

have low tolerance to high voltage spikes; and, therefore, they are difficult to implement 

in real-world applications.  

 

 

Figure 2.2:  A reconfigurable multicell battery topology. (Courtesy of [21].) 
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 In the reconfigurable battery, the switches are the key components that allow the 

cell array to be dynamically configured. More switches mean more versatility but lower 

reliability and higher cost. In addition to the aforementioned components, the BMS 

hardware may also have an internal power supply module, a global clock module, a 

charging system, and a man-machine interface module. It should also ensure that the BMS 

hardware meets electromagnetic compatibility requirements [6].  

2.3  Software of a BMS 

 The functions of the BMS software usually include the following:  1) online 

parameter detection from sensors and condition monitoring, such as monitoring the 

parameters and states related to the operating and health conditions of the battery; 2) fault 

diagnosis and prognosis; 3) safety and operation control; 4) cell balancing; 5) 

communication between the internal battery modules and the external devices; 6) external 

device control, such as charge control; and 7) networking and information storage. 

 Battery parameter detection includes voltage, current, and temperature detection to 

prevent overcharging; overdischarging; overtemperature; smoke detection; insulation 

detection; collision detection; impedance detection, etc. Online condition monitoring 

involves tracking the changes in the parameters and states related to the operating and 

health conditions of the battery, such as SOC, SOH, and SOP or state of function (SOF). 

The SOC is defined as the ratio of the available capacity with respect to the maximum 

capacity of a battery. The SOH is an indicator of battery aging and wear, which can be 

estimated by the measured or estimated impedance or conductance or estimated maximum 

capacity of the battery cell [27]. The SOF is used to describe, while the battery is in 
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operation, how its performance meets the real demand [6]. The SOF can be estimated 

according to the SOC, SOH, and operating environment of the battery [6], [28]. 

 The faults in a battery system include sensor fault, communication fault, cell fault, 

loose connection, insulation fault, etc. The battery cell faults include mild fault and 

incipient fault. Thermal runaway [29] is an incipient fault usually caused by overheating 

and is accelerated by increased temperature. The fault prognosis mainly predicts how much 

time remains in the useful life of the battery [30]. The fault diagnosis and prognosis is 

performed by using the data obtained from battery parameter detection and condition 

monitoring [31].   

 Battery safety control includes the thermal system control and the high voltage and 

current safety control. When a fault is diagnosed, the safety control unit is informed 

through the BMS communication and is required to protect the battery system from the 

fault. When a certain threshold value of the battery temperature, or voltage, or current is 

exceeded, the BMS cuts off the battery power supply to prevent damage to the battery. 

According to the temperature distribution within the battery pack and the requirements of 

charge or discharge, the safety control unit decides whether to start heating or cooling as 

well as the heating or cooling power. Moreover, the operation control unit controls the cell 

balancing circuit according to the voltage or SOC of each cell.  

 The BMS can communicate and give commands to external devices, such as the 

charger and converter [25]. For example, the BMS controls the charger that charges the 

battery based on the battery states and the power level of the charger [32]. 

 Since it is not convenient to disassemble a BMS, a network function is required [6] 

for online calibration and monitoring, automatic code generation, and online program 
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download/update. A controller area network (CAN) is commonly used [25]. Moreover, the 

BMS usually has an information storage unit to store the key data, such as SOC, SOH, 

accumulated charge and discharge Ah values, fault code, and uniformity.  

 The BMS of a battery system in an EV/PHEV may only have some of the 

aforementioned hardware and software units. Usually, there is at least one voltage sensor 

and one temperature sensor for each battery cell. For a battery system with only several 

cells, the BMS may only have one controller whose function may even be integrated into 

the main controller of the battery system. For a battery system with multiple modules and 

hundreds of cells, the BMS may consist of one master controller and several slave 

controllers; each slave controller only manages one battery module. 

  For each battery module, there can be some module circuit contactor and balancing 

circuit. A slave controller is typically employed to manage the battery module, such as 

measuring the voltage and current, controlling the contactor, equalizing the cells, and 

communicating with the master controller. The master controller performs the functions of 

battery state estimation, fault diagnosis, thermal management, etc., according to the data 

reported by the slave controllers. 

2.4  Battery Modeling 

 The performance of a BMS relies on a high-fidelity battery model to monitor 

conditions of the battery, such as the run-time SOC, SOH, and SOP, as well as to optimally 

control the charging/discharging operation of the battery to prolong the battery life and 

usage and reduce the risk of overcharge and overdischarge [33]. To achieve these 

objectives, the battery model should accurately capture various nonlinear capacity effects, 
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such as the rate capacity and recovery effects, and dynamic current-voltage (I-V) 

characteristics of the battery. The nonlinear capacity effects and dynamic I-V 

characteristics strongly depend on run-time factors, such as temperature and history of 

current, such as current rate (i.e., C-rate) and the direction of the current [27]. In addition, 

a balance between the accuracy and complexity of the battery model should be considered 

for real-time execution.  

 The widely used battery models to characterize the run-time behaviros of 

electrochemical batteries, in general, can be classified into two categories: electrochemical 

models and electrical circuit models. The electrochemical models use complex nonlinear 

partial differential equations (PDEs) to describe electrochemical physics of the batteries, 

such as the concentration of ions in the electrodes and electrolyte [34]. The electrochemical 

models are the most accurate. However, establishing these models requires detailed 

knowledge of the battery chemical processes and the need to identify a great number of 

parameters, which makes the models difficult to configure. Furthermore, it is difficult to 

use these models for real-time application due to the high complexity and intensive 

computation requirement. Therefore, the electrochemical models may be more feasible for 

offline battery cell design and analysis of the fundamental processes which occur during 

cell operation. The recently developed electrochemical models employ many 

approximations and linearization methods to reduce computational complexity. For 

example, the single-particle models neglect the concentration gradients in the electrolyte 

[35]. Therefore, the accuracy of the single-particle model is only acceptable at low current 

rates. A polynomial approximation [36] and fade approximation [37] were used to model 

the concentration profile in the solid phase of a bettery cell to eliminate the need for the 
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PDEs. Recently, reduced order models based on Laplace transfer function analysis were 

presented in [38]. In [39], temperature-dependent parameters, including the diffusion 

coefficient, ionic conductivity, transference number of lithium ions, etc., were considered 

to more completely characterize the thermal behavior of the polymer lithium-ion batteries. 

However, effort is still needed to further reduce the computational cost of these simplified 

electrochemical models for real-time BMS applications. 

 The electrical circuit models use equivalent electrical circuits to capture I-V 

characteristics of batteries and have lower computational costs than electrochemical 

models. The selection of the structures and circuit components of an electrical circuit model 

depends on the experimental methods as well as the desired accuracy [40]. An electrical 

circuit model can be constructed as a frequency domain model, e.g., Randle’s circuit model 

[41], using an electrochemical impedance spectroscopy or a time domain model [42], by 

measuring the pulsed discharge/charge behavior. Figure 2.3 shows an example of a time 

domain model [42]. If more resistor-capacitor (RC) components are used, the model has 

better accuracy in characterizing the I-V dynamics but higher complexity [43]. A 

comparison of various electrical ciruit models is presented in [44]. The fidelity of these 

electrical circuit models can be improved by making the model parameters depend on 

several factors, such as SOC [42], C-rate [45], and temperature [46], of the battery.  

 However, the traditional electrical circuit models do not integrate battery nonlinear 

capacity behaviors, leading to an inaccurate prediction of run-time I-V characteristics and 

SOC [27].  An enhanced circuit-based model [47] was introduced by replacing its left-hand 

side RC, shown in Figure 2.3, with Rakhmatov’s diffusion model [48] to characterize the 

nonlinear capacity effect. Recently, a hybrid battery model [27], shown in Figure 2.4, was 



14
 

developed by the author to replace Rakhmatov’s diffusion model with a kinetic battery 

model (KiBaM) [49], which has lower computational cost and is simple to implement; and, 

therefore, is more feasible for real-time BMS. However, the existing electrical circuit 

battery models with nonlinear capacity effects only considered the discharge mode at a 

certain ambient temperature, e.g., the room temperature.  

 

 
Figure 2.3:  An electrical circuit battery model. (Courtesy of [42].) 

 

 

Figure 2.4:  The kinetic battery model. (Courtesy of [49].) 
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2.5  Condition Monitoring Algorithms 

 The condition monitoring algorithms provide information, such as crucial 

parameters and states related to the operating and health conditions of the battery [23]. A 

key function of the BMS software is to monitor the SOC, SOH, SOP, and the parameters, 

such as internal impedance and capacity, etc., of each cell during operation [33]. However, 

since these parameters and states are not directly measurable, state estimation and 

parameter identification techniques are commonly used to extract their values [23]. The 

parameters and states enable the fault diagnostic and prognostic capability of the battery 

system [50]. This capability allows proper maintenance to be scheduled, which helps 

reduce unscheduled downtime of the battery system as well as the cost of repairing the 

damaged system [23]. The state and parameter estimation methods should be selected 

appropriately based on the accuracy, robustness or sensitivity to noise, and computational 

burden or complexity.  

 The conceptual relationship of the battery states, including SOC, SOH, and SOF, 

is illustrated in Figure 2.5 [6]. The SOH is determined by service life prediction and fault 

diagnosis output [6]. The SOF is determined by taking into consideration the influence of 

the aging factor (i.e., SOH), SOC, operating temperature, fault level, and the 

charge/discharge history, if needed. 
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Figure 2.5:  Conceptual relationship of the battery states. (Courtesy of [6].) 

 

2.5.1  Model Parameter Identification 

 The model parameter identification algorithms estimate the parameters of the 

mathematical models of a physical system from the data observed [51]. The model 

parameter identification algorithms can be grouped into frequency-domain methods and 

time-domain methods. The time-domain methods are widely used for battery parameter 

identification. They utilize discrete time-domain models or state-space models to estimate 

the parameters. In general, this can be achieved by using offline batch methods, such as the 

least square (LS) or recursive least square (RLS) methods or online Kalman filter-based 

methods [28].  
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For example, a discrete-time transfer function can be obtained based on the discrete 

time-domain model of a battery, as follows.  
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Then, the corresponding difference equation of the input/output relationship will be 

formulated into the regression form (2-2) as follows to estimate the parameters of the 

discrete-time transfer function: 

   T
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where the regression vector is ФT(k) = [u(k),…, u(k ‒ n), ‒y(k ‒ 1),…, ‒y(k ‒ n)], and the 

vector of the parameters to be estimated is Θ = [b0,…,bn, a1,…, an]T. 

 The linear LS regression-based methods are by far the most widely used to estimate 

the parameters of a battery model due to their low computational cost and relatively high 

accuracy. In order to perform online estimations of the time-varying parameters, the RLS 

[52], [53] and moving window least square (MWLS) methods [41], [54], [55] have been 

introduced with an exponential forgetting (EF). Recently, a Bierman’s upper-triangular and 

diagonal factorization-based RLS (UDRLS) estimation method with an EF [56] was 

proposed to solve the digital computer implementation problem of the RLS. The Bierman 

method with an EF preserves a positive covariance, thus the numerical stability is improved. 

However, it has drawbacks, such as windup when a data vector is not persistently exciting 

[57] as well as nonoptimal tracking ability and noise influence due to the use of a fixed 

forgetting factor value [57]. 
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2.5.2  State of Charge Estimation 

 The SOC is defined as the ratio of the available capacity with respect to the 

maximum capacity of a battery [27]. For example, if a battery is fully charged, its SOC is 

1 (or 100%). On the other hand, a 0 (or 0%) SOC means that the battery is fully discharged. 

A variety of battery SOC estimation methods have been developed, which, in general, can 

be classified into four categories:  directive measurement, computational intelligence based, 

model based, and mixed methods. 

 The directive measurement methods include voltage translation and Coulomb 

counting [58]. They are simple and easy to implement. For example, the SOC can be 

calculated by simply measuring the open-circuit voltage (OCV) in the voltage translation 

method and by integrating the measured current (iB) over time with the information on the 

initial SOC (SOCinitial) and maximum capacity (Cmax) in the Coulomb counting method 

expressed by the following equation. 

                                        
maxmax

)()()(
C

ti
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C
tC

tSOC
B

initial
usable                                   (2-3) 

However, both methods have limitations. For example, the former requires the battery to 

rest for a long period and to be cut off from the external circuit to measure the OCV, which 

may be impossible during operation. The latter suffers from unrecoverable problems that 

might be caused by factors such as an inaccurate initial SOC value or maximum capacity 

value, cumulative integration errors, and noise corruption. Moreover, the Coulomb 

counting-based methods cannot keep track of nonlinear battery capacity variation effects, 

such as the rate capacity effect and recovery effect [27].   
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 The computational intelligence-based methods describe the nonlinear relationship 

between the SOC and the factors influencing the SOC, such as battery voltage, current, and 

temperature [59]-[61]. Artificial neural network (ANN) based methods [59], fuzzy logic 

method [60], and support vector machines [61] have been used to estimate the SOC of a 

battery. Although the ANN methods do not have to take into consideration the details of 

the batteries and are suitable for the SOC estimation of all types of batteries, the learning 

process required by these methods has a quite high computational burden and is difficult 

to implement in real-time SOC tracking. The fuzzy logic method simulates the fuzzy 

thinking of human beings by using fuzzy logic based on a great number of test curves, 

experience, and reliable fuzzy logic theories to eventually realize the SOC prediction [62]. 

This method requires a strong understanding of the batteries behaviros and entails a 

relatively high computational cost [6]. 

 Recent research on SOC estimation has been focused on model-based methods. The 

model-based SOC estimation methods basically utilize the state-space electrochemical 

battery models or electrical circuit battery models to design an observer for online SOC 

estimation. Electrical circuit models and extended Kalman filter (EKF) types of approaches 

have been extensively proposed for online SOC estimation. These methods provide 

accurate SOC estimation in general [63], [64]. However, they require an accurate battery 

model, whose parameters, e.g., resistances and capacitances, typically vary with the SOC, 

temperature, current, aging, etc., of the battery cell. Therefore, additional online parameter 

estimation is usually needed to reduce the estimation error. Joint methods have been 

proposed by combining the EKF-based SOC estimation and parameter estimation [65]. 

Some lithium-ion batteries have a relatively large nonlinearity of the OCV (i.e., the 
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hysteresis effect [66]). Therefore, the battery model should also include the hysteresis 

effect. To take into account the time-varying model parameters and hysteresis effect, a dual 

EKF [67], shown in Figure 2.6, and a dual sigma-point Kalman filter (SPKF) [68], which 

outperforms the EKF, were proposed to estimate the parameters and states on the same 

timescale. Nevertheless, errors can be large when the process and measurement noise are 

uncorrelated zero-mean white Gaussian and their covariance values are not properly 

defined. Moreover, the joint/dual EKF and dual SPKF SOC estimation methods have a 

high computational complexity.  

 Other observer design methods have been used to design the electrical circuit 

battery model-based SOC estimators with regression-based parameter estimation, 

including a linear observer [54] and an SMO [69]. A primary advantage of these observers 

is that they are computationally simple and allow robust convergence of the estimation. 

However, they have moderate performance in terms of accuracy. Moreover, the accuracy 

of the SMO-based method degrades due to the chattering problem when model 

uncertainties are significant [70].  

The mixed SOC estimation methods combine the advantages of the aforementioned 

three methods. For example, in [71], the SOC of lithium-ion batteries is estimated by using 

ANNs and EKF.   
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Figure 2.6:  Diagram of dual EKF. (Courtesy of [67].) 

 

2.5.3  State of Health Estimation 

 The SOH is an indicator of battery aging and wear, resulting in capacity and power 

degradation. In general, capacity [72] and impedance components (e.g., internal resistance 

[73], diffusion resistance [63], and diffusion capacitance [74]) or total impedance [75] are 

the commonly used battery parameters to quantify capacity fade and power fade, 

respectively. A commonly used standard for SOH is that a battery should be replaced once 

the maximum capacity is reduced to 80% of the original (or new). This criterion, while 

simple, is somewhat arbitrary. The 80% capacity is only valid for a given current profile, 

usually a constant current discharge; with other discharge profiles, the capacity may be 

different. Another SOH indication method is to compare the relative impedance between 

the original (or new) and present battery.  

 The SOH estimation methods can be classified into two categories:  directive 

measurement methods (i.e., nonmodel-based methods) and model-based methods.  In the 

directive measurement method, the value of battery capacity is extracted from a full 

discharge test with a small current [72]. This method, however, requires a long time to 
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implement and is not suitable for online application. The impedance methods do not 

determine the available capacity but measure the impedance of the battery. In these 

methods, signal injection and impedance measurement or estimation [76] devices are 

required, which results in additional costs and the devices may not be implemented in real 

time. In many applications, such as EVs and PHEVs, due to the unpredictability of the user 

and battery behaviors, accurate estimation of the SOH requires adaptive methods together 

with one of the aforementioned techniques. 

 The same or similar model-based adaptive techniques used for SOC estimation can 

be applied to SOH estimation, and an accurate SOC estimation will facilitate the estimation 

of the SOH [77]. For example, the dual EKF [63], [67] and SMO [78] were also applied to 

the estimation of the SOH of a battery. A multiscale framework with a dual EKF [79] was 

used on the same model [67] for SOH estimation. The method adapted the slow time-

varying capacity parameter, estimated by an EKF with a large timescale, while keeping the 

estimation of the fast time-varying states, such as SOC and terminal voltage, by another 

EKF with a small timescale [67]. This scheme achieved higher accuracy and efficiency 

than the traditional dual EKF. Recently, a recursive approximate weight total LS method 

[80] was used to estimate the battery capacity based on the Coulomb counting equation. 

This method required lower computation than the model-based adaptive methods and was 

more accurate than the LS-based method [80]. 

2.5.4  State of Power and State of Function Estimation 

 The constraints on the capability of a battery consist of not only its remaining 

charge reflected in the SOC but also its power delivery/storage capability [81]. For example, 
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the power capability of a battery constantly changes throughout its discharge cycle. The 

change in the power capability comes from both the drop in the internal OCV and the rise 

in the internal impedance [82]. Since battery manufacturers usually offer the upper and 

lower limits of the operating voltage for a battery, the BMS needs to ensure that these limits 

are satisfied during battery operation. Therefore, many researchers have focused on power 

capability estimation as well [81]-[85]. Two definitions have been proposed for battery 

power capability [83]:  SOP and SOF. The SOP is found in [83], [84], which use an 

electrical circuit battery model to predict the maximum power that a battery can deliver 

within the specified voltage limits, as follows: 

                             _ arg _ arg( ( ) )
( ) limit disch e oc limit disch e

in

V V t V
SOP t

R
 [W]                            (2-4) 

where Vlimit_discharge and Voc are the minimum discharge voltage of the battery allowed by the 

manufacturer and OCV, respectively; Rin is the internal resistance of the battery model. 

Equation (2-4) can be adopted for the charging operation by changing Vlimit_discharge to 

Vlimit_charge. Therefore, the SOP can be estimated by using estimated Voc and internal 

resistance or impedance. 

  The SOF describes how the battery meets the power demand. The SOF predicts 

whether the battery can provide the necessary power to complete a task. Therefore, the 

SOF could be defined as a yes/no logical function [28]. An SOF equaling 1 means the 

battery can meet the demand, while an SOF equaling 0 means it cannot. 
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The simple criterion of SOF usually consists of checking the minimum terminal voltage, 

Vmin, which should be larger than the threshold terminal voltage, Vlimit, for acceptable 

battery performance. However, defining the SOF as follows is preferred [6]: 

                                                      
d

dp

PP
PP

SOF
max

                                                       (2-6) 

where Pp denotes the possible power supplied by the battery; Pd is the demand of the power; 

and Pmax is the maximum power which can possibly be supplied by the battery. For example, 

if the SOF equals 0, the battery barely meets the power demand.  

 The SOF can be comprehensively determined by the SOC, SOH, temperature, and 

the fault state of the battery.  The relations between the SOF, SOC, and SOH are shown in 

Figure 2.7 [86]. The SOF can be defined as the ratio of the remaining available energy in 

the battery and the maximum possible energy that could be stored in the battery [86]. 

 

Figure 2.7:  The relationship between SOF, SOC, and SOH of a battery. (Courtesy of 
[86]. 
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CHAPTER 3:  BATTERY MODELING 

A high-fidelity battery model capable of accurately predicting real-time battery 

performance for various operating conditions is crucial to the design and operation of 

battery-powered systems. Such a battery model generally needs to meet the following 

requirements:  1) low computational complexity; 2) ability to estimate cell electrical 

parameters at various operating conditions, including various charge/discharge current 

rates and ambient temperature conditions; and 2) ability to acurately capture the conditions 

of battery cells, such as runtime state of charge (SOC) and state of health (SOH) of the 

battery. This chapter is organized as follows. First, a hybrid battery model is briefly 

introduced as well as its descrete-time version and a simplified version of the hybrid battery 

model is introduced. An enhanced hybrid battery model is then proposed to accurately 

predict runtime behaviors of batteries under various temperatures and charge/discharge 

currents. The enhanced hybrid battery model is validated by simulation and experimental 

studies for a newly developed high-voltage, cylindrical, lithium-ion battery cell in various 

current and temperature conditions. Finally, an electrical circuit battery model 

incorporating the hystereis effect is developed. 

3.1  Hybrid Battery Model 

The hybrid battery model [27] was developed by the author to integrate a battery’s 

nonlinear capacity effects into the electrical circuit model, as shown in Figure 3.1. The 

module on the left of the hybrid battery model performs the function of an enhanced 

Coulomb counting algorihtm-based SOC tracking for the battery cell. The enhanced 

Coulomb counting algorithm offers the actual real-time SOC (i.e., SOCT), shown in (3-1). 
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A voltage-controlled voltage source, Voc(SOCT), is used to bridge the SOC to the cell’s 

open-circuit voltage (OCV). The RC circuit on the right simulates the I-V characteristics 

and transient response of the battery cell, where the series resistance, Rs, is used to 

characterize the charge/discharge energy losses of the cell due to the electrode, electrolyte, 

separator, and contact resistances. Other resistances and capacitances are used to 

characterize the transient voltage responses of the battery, including the charge transfer 

voltage response Vct and the short-term diffusion voltage response Vsd.  The former is due 

to the double-layer capacitance Cd and charge transfer resistance Rct while the latter is due 

to the short-term diffusion capacitance Csd and resistance Rsd. Vcell represents the terminal 

voltage of the battery cell. The hybrid battery model is expressed by the following 

equations (3-1)-(3-7) [27]: 
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where SOCT (0) is the initial SOC at the beginning of the battery operation (i.e., t = 0); k' 

(= v/[c(1–c)]) is a constant diffusion rate; v and c are valve and capacity ratio of the KiBaM, 

respectively; iB is the cell current, which is positive if the battery cell is operated in the 

discharge mode and negative if operated in the charge mode; t0, td, and tr are the beginning 

time, discharge ending time, and (rest) ending time, respectively, of a period during which 

iB is constant; Cmax, Cavailable, and Cunavailable are the maximum, available, and unavailable 

capacities of the cell, respectively; q0, ∙∙∙, q5 are coefficients; τS = Rct·Cd; τL = Rsd·Csd.  The 

SOCT of the battery cell reduces when it delivers charge to load, expressed by the enhanced 

Coulomb counting term in (3-1). The nonlinear SOC variation due to the nonlinear capacity 

effects of the battery is represented by Cunavailable. 

 

Figure 3.1:  The hybrid battery model. 

 

As in (3-4), the terminal voltage, Vcell, is estimated by Voc, the voltage across Rs (i.e., 

iB·Rs), and the transient voltage term, Vt, which represents the transient response of the RC 

network.   

To facilitate real-system applications, a discrete-time version of the hybrid battery 

model [87] is expressed as follows: 
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where Ts is the sampling period; iB(k) is the instantaneous current of the battery cell at the 

time index k; and ΔCunavailable is the variation of the unavailable capacity of the battery cell 

during Ts. In this dissertation, the discrete version of the hybrid battery model is referred to 

as the hybrid battery model. 

In addition, a simplified hybrid battery model [55] was developed to provide a lower 

computational cost hybrid battery model. Assumming that Voc(SOCT) is b1·SOCT + b0 and 

Vsd is neglected, the simplified hybrid battery model can be expressed as follows:     
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where b0 and b1 are coefficients. The parameterization of Voc(SOCT) as b1·SOCT + b0 is more 

accurate than the methods that assume a costant Voc [40], [53], [56] to derive regression forms 
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of the difference equations of the electrical circuit battery model which will decrease the 

parameter estimation accuracy, especially when Voc is subject to a high nonlinearity.  

3.2.  Enhanced Hybrid Battery Model 

An enhanced hybrid battey model [88] was developed, which is capable of capturing 

accurate runtime SOC and I-V dynamics of batteries under various charge and discharge 

currents and ambient temperatures. The enhanced hybrid battery model includes a new 

runtime SOC estimation module, reflects the nonlinear OCV effect; and uses temperature- 

and current-dependent parameters. The enhanced hybrid battery model was validated by 

simulation and experimental studies for a cylindrical lithium-ion battery. 

3.2.1  Related Works 

3.2.1.1  Nonlinear Capacity and Nonlinear OCV effect 

 A rechargeable electrochemical battery cell consists of an anode and a cathode placed 

in an electrolyte medium. The electric current through a cell is generated by the 

electrochemical reactions occurring at the electrode-electrolyte interface. The battery 

capacity depends nonlinearly on its current profile due to two effects:  the rate capacity effect 

and the recovery effect. The rate capacity effect is defined as:  less charge can be drawn from 

a battery at a higher discharge current because of the high concentration gradient of active 

reaction sites, thus resulting in a lower SOC compared to the battery under a lower current 

rate [34]. However, the unavailable charge due to a large discharge current is still left behind 

in the battery if the thermal dissipation and self-discharge are neglected [27]. The unavailable 
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charge will be available after a period with no or a low current due to the reduced gradient 

of the concentration. This is the recovery effect. 

The nonlinear capacity effect is originally defined and observed in the discharge 

process. It is assumed that the rate capacity effect in the charge mode is that less charge can 

be stored into a battery at a higher charge current rate due to a higher concentration gradient, 

thus resulting in lower charge acceptance compared to the battery charged under a lower 

current rate. The charge acceptance is the ability of the battery to accept charge [89]. For 

example, there is a limitation on lithium-ions going into the layers of the anode due to the 

low ion conductivity and slow diffusion process in a lithium-ion battery cell. However, the 

charge acceptance is recovered if the battery relaxes. This can be explained as the recovery 

effect in the charge mode. If the charge current through the battery is too high in the high 

SOC region, e.g., SOC > 80%, it will cause surplus ions to be deposited on the anode in the 

form of lithium metal. This phenomenon is called lithium plating [90] and will result in a 

loss of charge and heat dissipation. A part of the charge lost in the lithium plating process is 

irreversible. The lithium plating will become more significant at a lower temperature [90], 

causing a lower charge acceptance.  

The nonlinear capacity effects cause a nonlinear OCV response of the battery as well, 

which is called the nonlinear OCV effect. The time-domain responses of the terminal voltage 

(Vcell), OCV (Voc), and equilibrium OCV (Voc,eq) of a lithium-ion battery cell using a pulsed 

current profile in the discharge and charge processes are shown in Figure 3.2, where the 

equilibrium OCV is the steady-state terminal voltage of the battery cell when no current 

flows for a long time. The trajectory of the OCV depends on the history of the battery usage. 

These voltage responses clearly show the nonlinear OCV effect as a consequence of the 
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nonlinear capacity effects of the battery cell, namely, the Voc is smaller/larger than the Voc,eq 

due to the rate capacity effect in the discharge/charge process. It then rises up/falls down to 

slowly converge with the Voc,eq due to the recovery effect. 

  

(a) 

 

(b) 

Figure 3.2:  The time-domain responses of the terminal voltage, OCV, and equilibrium 
OCV showing the nonlinear capacity effects and nonlinear OCV effect of a 

lithium-ion battery cell with a pulsed current in the (a) discharge process and 
(b) charge process 
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3.2.2  Simple Expression of KiBaM 

This dissertation utilizes two forms of the SOC:  a transient SOC (SOCT) and an 

equilibrium SOC (SOCE). The former is the state of available capacity which takes into 

account the nonlinear capacity effects; and the latter is the state of usable capacity calculated 

by using the Coulomb counting method while neglecting the nonlinear capacity effects. The 

usable capacity is the charge stored in the battery; while the available capacity is the charge 

in the battery that can be actually used [27]. Both the SOCs offer useful information. The 

SOCT is the actual real-time SOC and provides a runtime prediction for the battery (e.g., the 

remaining end of discharge time and end of charge time). The SOCE will be used to estimate 

the maximum capacity of the battery [91].  

The KiBaM is a model well suited for capturing the nonlinear capacity effects of 

batteries. A detailed description of the KiBaM can be found in [27] and [49]. In the KiBaM, 

it assumes that a battery has two charge wells, and the charge is distributed with a capacity 

ratio c (0 < c < 1) between the two charge wells, as shown in Figure 3.3(a) and (b). In the 

discharge mode, the available charge well delivers charge directly to the load; while the 

bound charge well supplies charge only to the available charge well through a valve v. The 

rate of the charge flowing from the bound charge well to the available charge well depends 

on v and the difference in heights of the two wells, h1 and h2, where h1 is related to the SOCT 

of the battery. The battery is fully discharged when h1 becomes zero. The change of the 

charges in the two wells is expressed as [49]: 
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where y1 and y2 are the total charges in the available charge well and the bound charge well, 

respectively. The height difference, δ = h2 − h1, between the two wells plays an important 

role in obtaining the nonlinear capacity variation in the discharge mode for SOCT prediction 

using the enhanced Coulomb counting method in (3-1) and (3-2). On the other hand, SOCE 

can be calculated using the Coulomb counting method by omitting the term of Cunavailable in 

(3-1).  

A simpler formula of the KiBaM regarding the SOCs was derived. First, dy1(t)/dt  in 

(3-14) can be expressed as: 
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where y1 = c·h1, y2= (1-c)·h2, and k' = v/[c(1–c)]. By using SOCE = (y1+y2)/Cmax, (3-15) can 

be reformulated as follows: 
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Since y1 = c·Cmax·SOCT, dSOCT(t)/dt can be obtained from (3-16) as:  
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By adding a differential equation of Coulomb counting equation for SOCE, the simple 

expression of the KiBaM regarding the two forms of the SOC can be determined by the 

following: 
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 (a)                                                         (b) 

Figure 3.3:  The KiBaM: (a) discharge mode and (b) charge mode. 

 

3.2.3  The Enhanced Hybrid Battery Model 

 The enhanced hybrid model consists of two parts:  a runtime SOC prediction module 

and an electrical circuit model, as illustrated in Figure 3.4. The runtime SOC prediction 

module implements (3-18) for SOCT and SOCE prediction while taking into account the 

nonlinear capacity variation of the battery; while the electrical circuit model is designed to 

capture the I-V characteristics of the battery. The parameters of the battery model are 

functions of the current directions, SOC, C-rate, and ambient temperatures of the battery and 

are updated online during the battery operation. Therefore, the enhanced hybrid battery 

model is capable of capturing the comprehensive runtime performance of a battery in any 

operating conditions. To facilitate real-system applications, a discrete-time version of the 

enhanced battery model was developed.  
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Figure 3.4:  The enhanced hybrid battery model. 

 

3.2.3.1  Runtime SOC Prediction Module 

 Using the first-order forward Euler method, the discrete-time form of (3-18) is 

derived as follows: 
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In [27], the SOCT was used to represent the actual real-time SOC in the discharge mode. 

However, it will be inappropriate to use SOCT in the charge mode because the SOCT (or 

Cavailable) will be larger than the SOCE (or Cusable), while by the definition, the SOCT should 

always be smaller than or equal to the SOCE. Therefore, using the SOCT in the charge mode 

will inaccurately indicate that the charge stored in the battery is more than that is actually 

stored. To solve this problem, a new term called runtime SOC, SOCrun, is used. The SOCrun 

is the same as the SOCT when the SOCT is smaller than the SOCE in the discharge mode; 

while the SOCrun will be the same as the SOCE when the SOCT is larger than SOCE, which 

usually happens in the charge mode. In addition, the loss of charge due to the limit of the 
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charge acceptance in the charge mode should be considered when the available charge well 

is overcharged (i.e., SOCT > 1), as shown in Figure 3.3(b). This issue was not considered in 

the original KiBaM in [49]. In other words, only part of the charge will be stored. Therefore, 

the SOCrun is expressed as follows: 

                             
1),1(
1],,min[

TTErun

TETrun

SOCSOCSOCSOC

SOCSOCSOCSOC
                                   (3-20) 

 In this research, the influence of ambient temperature on the KiBaM was investigated 

more explicitly than it was in [27] and [49]. According to experiments, the empirical 

equations of the KiBaM’s parameters are formulated as functions of the ambient temperature 

T in Kelvin (K):  
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where Tref_L is 273.15 K (i.e., 0 °C). 

3.2.3.2  Electrical Circuit Battery Model 

 The electrical circuit battery model describes the I-V characteristics and transient 

response of the battery cell, where a temperature-dependent voltage-controlled voltage 

source, Voc(SOCT,T), is used to bridge the SOCT to the cell’s nonlinear OCV and characterizes 

the long-term diffusion effect. All of the sources contributing to the voltage response of the 

electric circuit battery model are shown in Figure 3.2. The electrical circuit battery model is 

expressed as follows: 

                                   ),(),(),( TSOCKTSOCVTSOCV TVOCrefTocToc                        (3-22) 
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where KVOC is a correction coefficient of the temperature effect. The impedance parameters 

(i.e., Rs and other RC network parameters) are functions of the SOCE, C-rate, direction of the 

current, and ambient temperature. The expressions of the parameters will be discussed in 

Section 3.2.4 of this chapter. 

3.2.4  Model Parameter Extraction 

 Numerous experiments have been conducted using Samsung’s ICR18650-28A 

cylindrical lithium-ion battery cells to extract the model parameters. The ICR18650-28A is 

a newly developed 2.8-Ah high-voltage battery cell with a nominal voltage of 3.75 V. In the 

experiments, data on the voltages and currents of the test cells were collected by a CADEX 

C8000 battery tester with a SUN ELECTRONIC SYSTEMS’ EC12 temperature chamber 

(shown in Figure 3.5). The temperature chamber was connected to a nitrogen tank to inflow 

liquid nitrogen for the test at low ambient temperature condition in the temperature chamber. 

All of the parameters of the battery model are represented by empirical equations, such as 

(3-21). The coefficients of the empirical equations are influenced by many factors, such as 

the C-rate, direction of the cell current, and ambient temperature. In this dissertation, the 

coefficients of the empirical equations are identified using curve fitting through constant 

discharge current and pulsed discharge/charge current tests at three different ambient 

temperature conditions:  low temperature (i.e., 0 °C or 273.15 K, which is the lowest 
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operating temperature of the battery), room temperature (23 °C or 296.15 K), and high 

temperature (40 °C or 313.15 K). Before the tests, the battery cells were fully charged using 

the constant current constant voltage (CCCV) charge method, where the charge cutoff 

voltage in the constant current mode is 4.3 V; and the charge cutoff current in the constant 

voltage mode is 0.01C (i.e., iB = 0.028 A). During each test, the fully charged battery cell 

was placed in the temperature chamber for four hours in order for the cell to reach thermal 

equilibrium (i.e., the internal temperature was the same as the ambient temperature) before 

the cell was tested.  

  

Figure 3.5:  The experimental setup. 

 

3.2.4.1  Runtime SOC Prediction Module Parameters 

 The parameters of the runtime SOC prediction module were identified using constant 

discharge current tests. Specifically, the maximum capacity, Cmax, was extracted by 
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discharging the cell with a small constant current, e.g., 0.05C, until it was fully discharged, 

where the cell voltage reached the discharge cutoff voltage of 3 V. Then, the parameters c 

and k΄ were obtained by curve fitting using the following equation [92]:  

                              
)1)((1(

)()( )()(
max

DD ILk
D

ILk
D

Davailable eILkce
IcLkC

IC                    (3-25) 

where ID is a vector of the constant discharge current rate (i.e., C-rate) from 0.1C to 1.8C 

with an increment of 0.2C; Cavailable(ID) and L(ID) are the vectors of available capacity and 

the end of discharge times corresponding to the vector ID, respectively. Figure 3.6(a) 

illustrates the measured values of Cavailable and the corresponding fitted Cavailable curves (3-25) 

at three different ambient temperature conditions. The extracted values of Cmax, c, and k΄ for 

the three different ambient temperature conditions and the fitted curves of these parameters 

as functions of the ambient temperature are plotted in Figure 3.6(b)-(d), respectively.  The 

values of the coefficients a0−a8 in (3-21) obtained from the curve fitting are listed in Table 

3.1. The values of k' and Cmax increased with ambient temperature since most chemical 

processes in the cell speed up at higher temperatures. However, the temperature effect on 

parameter c was not consistent with the other two parameters. Parameter c had the highest 

value at room temperature. 
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(c) 

 

 (d) 

Figure 3.6:  The measured or estimated values and corresponding fitted curves of (a) 
Cavailable as the function of L(ID) at three different ambient temperature conditions, (b) 

Cmax, (c) k΄, and (d) c as functions of temperature. 
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Table 3.1:  The coefficients of the empirical equations of the runtime SOC prediction 
module parameters and OCV for the test cylindrical lithium-ion cells. 

a0 9801 a1 36.49 a2 479.9 a3 4.463e-6 
a4 0.1768 a5 6.226e-4 a6 0.8819 a7 292.6 
a8 28.27 a9 -0.1364 a10 61.94 a11 3.616 
a12 1.095 a13 -2.949 a14 4.295 a15 -1.765 
a16 150.8 a17 33.17 a18 8.67e-5 a19 1.025 

 

 

3.2.4.2  Electrical Circuit Model Parameters 

 All of the electrical circuit parameters (i.e., Voc and RC) of the battery model were 

extracted using a pulsed current discharge and charge test cycle under the three ambient 

temperature conditions; the pulsed current discharge test was conducted first followed by the 

pulsed current charge test once the cell voltage reached the discharge cutoff voltage. Each 

current pulse lasted for a period during which the SOCE of the battery cell decreased or 

increased by 5% in the discharge or charge mode, respectively. Before performing the test, 

the value of Cmax was extracted for accurate SOCE calculation to account for the change in 

Cmax caused by the ambient temperature variation.  

The discharge and charge equilibrium OCV values are the terminal voltage measured 

at the end of the rest period of each current pulse during the pulsed current discharge and 

charge test, respectively, where the rest period should be long enough (e.g., 3 hours at 40 °C, 

6 hours at 23 °C, and 9 hours at 0 °C). The pulsed current discharge and charge test cycle 

was conducted with with a current rate of 0.6C (i.e., 1.68 A) to extract the equilibrium OCVs. 

Figure 3.7(a) shows the Voc,eq, which is the same as the average equilibrium OCV of 

discharge and charge equilibrium OCVs, versus SOCE for the test lithium-ion battery cell 

under the ambient temperatures of 0 °C, 23 °C, and 40 °C. The values of Voc,eq strongly 
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depended on SOC and temperature when the SOC was less than 10%. In addition, the 

difference between the discharge equilibrium OCV and the charge equilibrium OCV was 

less than 5 mV. Therefore, the hysteresis effect [56] can be ignored.  

The empirical equation of the Voc,eq at room temperature (Tref), which is called the 

reference Voc,eq, can be obtained using the following equation: 

4
15

3
14

2
1312119,

10),( EEEE
SOCa

refEeqoc SOCaSOCaSOCaSOCaaeaTSOCV E   (3-26) 

where Tref  = 296.15 K and a9, ∙∙∙, a15 are coefficients.  Then, the correction coefficient for the 

temperatutre effect, KVOC, shown in Figure 3.7(b) can be obtained from the Voc,eq values 

measured at the low and high ambient temperatures and the measured reference Voc,eq values 

as follows:  
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TSOCK                                         (3-27) 

The empirical equation of KVOC is formulated as: 

                                 17
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VOC E

ref

K SOC T a e a T a
T T

                        (3-28)  

The coefficients a9−a18 in (3-26) and (3-28) are obtained from curve fitting and are listed in 

Table 3.1. The equation of Voc(SOCE, T) in (3-27) is similar to (3-22); the major differene is 

that (3-22) replaces SOCE in (3-27) with SOCT to characterize the nonlinear OCV effect while 

(3-27) does not. 

All of the RC parameters of the proposed battery model were extracted from the 

impedance voltage response (i.e., Vimpedance = |Vcell − Voc(SOCT, T)|) obtained from the pulsed 

discharge and charge current test cycle described in the first paragraph of this section. Figure 

3.8 depicts a typical curve of Vimpedance response and a fitting window buffer which stores the 
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data for the rest period during the test for extraction of the RC parameters of the model. A 

10-minute window buffer was used based on the assumption that the charge transfer and 

short-term diffusion corresponding to RC parameters could be observed for a 10-minute rest 

period. 

 
(a) 

 

 (b) 

Figure 3.7:  Measured and  and fitted curves obtained at the ambient temperatures of 
0 °C, 23 °C, and 40 °C:  (a) Voc,eq vs. SOCE and (b) KVOC vs. SOCE 
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Figure 3.8:  The curve of a typical impedance voltage response in the condition of 0.6C 
pulsed current discharge and 0 °C ambient temperature for the extraction of the RC 

parameters of the enhanced hybrid battery model. 

 

 The instantaneous voltage drop/rise when the discharge/charge was completed was 

related to Rs according to (3-23), which can be expressed by the following equation: 
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The following equation was used to estimate the other RC network parameters: 

                                         ( ) ( ) b k d k
ct sdV k V k a e c e e                                      (3-30) 

where k = 1, ∙∙∙, 600 and e is V2. The coefficients a b, c, and d were determined by using 

nonlinear least-square curve fitting. The RC network parameters were then calculated as: 

                     / , 1/( ), / , 1/( )ct B d ct sd B sd sdR a i C R b R c i C R d                      (3-31) 

 Since the RC parameters depend on the C-rate I, the SOCE, the temperature T, and 

the direction of the current (i.e., discharge mode and charge mode) of the battery cell, 

numerous experiments were conducted to extract all RC parameters using the pulsed current 
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discharge and charge test cycle by changing I and T. Then, the empirical expressions of the 

RC parameters were derived. First, the empirical equations of the RC parameters as functions 

of SOCE and I for the discharge mode were derived at three different I of 0.2C, 0.6C, and 1C 

at room temperature in the following form.  
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                                                                                                                                            (3-32) 

where the subscript d of each RC parameter indicates the discharge mode. Then, the 

temperature dependency was added to the expression of each RC parameter, which changed 

(3-32) to:  
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where ΔT = T − Tref; and 

                           )(),,( 109_8 )(
7

ddLrefd f
c

SOCfTTf
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Due to the increase in the fitting error at low temperatures, an additional correction factor 

KLV was added to the expression of Rs,d. The extracted values and the corresponding fitted 
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curves of the RC parameters are illustrated in Figure 3.9. All of the coefficients of the RC 

parameter expressions (3-32)-(3-34) are listed in Table 3.2. 
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(e) 

 

 (f) 

Figure 3.9:  The measurement and corresponding fitted curves: (a) Rs,d(SOCE, I), (b) 
Rs,d(SOCE, T), (c) Rct,d(SOCE, T), (d) Cd,d(SOCE, T), (e) Rsd,d(SOCE, T), and (f) Csd,d(SOCE, 

T). 
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Table 3.2: The coefficients of the RC parameter expressions for the test cylindrical 
lithium-ion cell in the discharge mode. 

ad0 0.2904 ad1 0.2521 ad2 9.485 ad3 0.1674 
ad4 -0.0100 ad5 -0.1726 ad6 0.1553 ad7 -0.02982 
bd0 0.0664 bd1 0.0558 bd2 13.44 bd3 0.01358 
bd4 5.48E4 bd5 0.0134 cd0 0.3255 cd1 0.3842 
cd2 45.07 cd3 0.0387 cd4 -0.0248 cd5 -2.85e-3 
dd0 5528 dd1 -10850 dd2 6044 dd3 550.5 
ed0 -3112 ed1

 17.1 ed2 8058 ed3
 -9560 

ed4 14300 fd0 0.0419 fd1 0.0163 fd2 0.25 
fd3 1554 fd4 1513 fd5 -771 fd6 -1421 
fd7 39.85 fd8 0.2993 fd9 1.91e-3 fd10 0.0022 

 

 The empirical equations of the RC parameters of the enhanced hybrid model of the 

cylindrical lithium-ion battery cells for charge mode are listed in (3-35) and the values of 

their coefficients are given in Table 3.3: 
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Table 3.3: The coefficients of the RC parameter expressions for the test cylindrical 

lithium-ion cell in charge mode. 

ac0 -0.1233 ac1 0.191 ac2 -0.1295 ac3 0.1556 
ac4 0.4472 ac5 0.1515 ac6 0.3407 ac7 0.03541 
ac8 -0.0577 ac9 -0.0412 bc0 2.68e-5 bc1 -5.007 
bc2 0.0230 bc3 -1.16e-3 bc4 -0.0312 bc5 0.6319 
cc0 1.14e-5 cc1 -8.112 cc2 0.0122 cc3 0.5869 
cc4 0.7105 cc5 0.4211 cc6 3098 dc0 -4788 
dc1 0.0202 dc2 5965 ec0 -246.9 ec1 3 
ec2 9856 ec3 1338     
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3.2.5  Model Validation 

 The enhanced hybrid battery model was constructed using MATLAB/Simulink. The 

parameters of the single-cell battery model were obtained by using the model extraction 

method in Section 3.2.4. Figure 3.10 shows the implementation of the enhanced hybrid 

battery model in MATLAB/Simulink.  The Runtime SOC prediction module calculates the 

values of SOCT, SOCE, and SOCrun of the battery cell by taking into account its nonlinear 

capacity variation during the operation. The I detector module tracks the change of the 

battery cell current iB and converts it to I. All modules are implemented using the standard 

modules from the Simulink toolbox.  

Simulation results obtained from the proposed enhanced hybrid battery model for a 

single ICR18650-28A cell in the low (0° C), room (23° C), and high (40° C) temperature 

conditions using pulsed and random discharge and charge current profiles were compared to 

the experimental data to validate the battery model. Figures 3.11(b), (d), and (f) compare the 

terminal voltage responses obtained from simulations with experimental results for the 

pulsed discharge and charge current profiles given in Fig. 3.11(a).  

The model captures the dynamic voltage responses of the battery cell accurately in 

all pulsed discharge/charge current and temperature conditions. The maximum root mean 

square error (RMSE) of the cell terminal voltage predicted by the model over each test 

process was only 31 mV or 2.4% of the nominal terminal voltage variation range of 1.3 V (= 

4.3 − 3 V), which occured in the 0 °C condition, as shown in Fig 3.11(b). The maximum 

error of the cell terminal voltage predicted by the battery model was about 92 mV or 7.1% 

of the nominal terminal voltage variation range, which occurred at 40 °C, as shown in Figure 

3.11(f). Furthermore, by capturing the variations of the nonlinear capacity effects, the battery 
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model is able to accurately capture the remaining end of discharge time until SOCrun = 0 and 

the end of charge time until SOCrun = 1 in the single cell in different pulsed current and 

temperature conditions, as shown in Figure 3.11(c), (e), and (g).  

The battery model is further validated by applying a randomly varied discharge and 

charge current profile, as shown in Figure 3.12(a). Figure 3.12(b)-(d) compares the 

corresponding terminal voltage responses of the cell obtained from the simulation and 

experiment. The voltage responses predicted by the model were excellent at the high and 

room temperatures and were quite good at the low temperature. The worst case occurred at 

0 °C, where the RMSE of the voltage predicted by the model was about 59 mV or 4.5% of 

the nominal terminal voltage variation range; while they were about 14 mV (or 1.2%) and 

15 mV (or 1.3%) at 23 °C and 40 °C, respectively. These results show that the model can 

accurately capture the nonlinear capacity variations and dynamic electric circuit 

characteristics of lithium-ion batteries under various current profiles and ambient 

temperatures. 

 

Figure 3.10:  The enhanced hybrid battery model implemented in MATLAB/Simulink. 
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(e) 

 

(f) 
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 (g) 

Figure 3.11:  Comparison of simulation results of the enhanced hybrid battery model and 
experimental results for the test battery cell with pulsed discharge and charge currents:  
(a) the pulsed current profiles, (b) voltage respond at 0 °C, (c) the estimated SOCs at 
0 °C, (d) the voltage respond at 23 °C, and (e) the estimated SOCs at 23 °C, (f) the 

voltage respond at 40 °C, and (g) the estimated SOCs at 40 °C. 
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(c) 

 

 (d) 

Figure 3.12:  Comparison of simulation results of the proposed enhanced hybrid battery 
model and experimental results for the test battery cell with (a) a randomly varied current 

profile and terminal voltage responses at (b) 0 °C, (c) 23 °C, and (d) 40 °C. 
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3.3  Electrical Circuit with Hysteresis Battery Model 

The hysteresis effect [66] is a fundamental phenomenon of batteries which shows an 

difference between the equilibriums of the battery in the charging and discharging modes. 

The equilibrium difference depends on the history of battery usage. The hysteresis effect 

widely exists in lithium-ion batteries, especially the popular LiFePo4-type cells. The 

accuracy of SOC estimation will deteriorate if the battery model does not incorporate the 

hysteresis effect. It was also demonstrated that the first-order RC circuit model with 

hysteresis provided a good balance between model accuracy and complexity [44]. Therefore, 

the electrical circuit with hysteresis battery model considered here was based on a first-order 

RC circuit model with a hysteresis model as proposed in [93], as shown in Figure 3.13. 

In Figure 3.13, Voc includes two parts. The first part, denoted by Voc,eq(SOCE), 

represents the equilibrium OCV, which was used to bridge the SOC to the cell OCV. The 

second part Vh was the hysteresis voltage to capture the nonlinearity of OCV. The RC circuit 

models the I-V characteristics and the transient response of the battery cell. A discrete-time 

state-space version of the electrical circuit with hysteresis battery model was developed and 

is expressed as follows: 
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where x(k+1) = [SOCE(k+1), Vct(k+1), Vh(k+1)]T is the state, y(k) is the measured output, k is 

the time index, η is the Coulomb efficiency (assuming η = 1); Vhmax is the maximum 

hysteresis voltage, and γ = exp(−Ts/(RctCd)); ρ is the hysteresis parameter representing the 

convergence rate, sign(∙) is the sign function and H(iB) = exp(−ρ|iB|Ts); ai (i = 0, ∙∙∙, 5) are the 

coefficients used to parameterize the OCV curve. Figure 3.14 shows the four OCV curves as 

functions of SOC extracted for a lithium-ion battery, where Voc,c and Voc,d represent major 

upper and lower hysteresis loops, respectively; Voc,eq(SOCE) is the average value of the 

charge and discharge OCV curves; Voc represents the trajectory of the instantaneous OCV 

whose boundary is the major upper and lower hysteresis loops. By subtracting Vh(k) from 

Voc, the Voc,eq(SOCE), which has a one-to-one mapping to SOC is extracted [94]. 

 

Figure 3.13:  The electrical circuit with hysteresis battery model. 

 

Work [94] proposed the following first-order differential equation to model the 

dynamics of the Vh: 
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where υ is a self-discharge multiplier for hysteresis expression, and SD is a self-discharge rate. 

This hysteresis model (3-39) describes the dependency of the hysteresis voltage Vh on the 
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a long-term charge current or short but very large charge current is applied, the hysteresis 

voltage converges to Vhmax [94]. In other words, Voc converges to the upper major loop. In the 

opposite case, Voc converges to the lower major loop. Vhmax can be calculated by the 

difference between the Voc,c and the Voc,eq. The state, Vh(k), in (3-36) is the discrete-time 

version of that in (3-39) using exact calculation [95]. The self-discharge effect was ignored 

in order to reduce the complexity of the battery model.   

The parameter ρ was chosen to minimize the errors between the simulation and 

experimental results of Voc versus SOC curves. The parameters ρ and Vhmax may depend on 

the SOC and the battery temperature [66], [94]. The coefficient ai (i = 0, ∙∙∙, 5) can be 

extracted by pulsed current tests [27] or constant charge and discharge current tests using a 

small current to minimally excite the transient response of the battery cell [96].  In this 

research, the temperature dependency was ignored by testing the battery under the ambient 

temperature of 23 °C.  

 

Figure 3.14:  OCV curves. 

0.2 0.4 0.6 0.8
3

3.2

3.4

3.6

3.8

4

4.2

SOC

V oc
 (V

)

 

 

Voc,c

Voc,eq
Voc,d

Voc

Upper major
 loop

Lower major 
loop

Trajectory of V
oc



62 
 

3.4  Chapter Summary 

This chapter presented two hybrid battery modelswhich were capable of capturing 

the dynamic circuit characteristics, nonlinear capacity and nonlinear OCV effects, and 

temperature effect of battery cells. The enhanced hybrid battery model is capable of 

predicting runtime behaviors of batteries under various temperatures and charge/discharge 

currents. These were validated by simulation and experimental studies for a newly 

developed high-voltage, cylindrical, lithium-ion battery cell. In addition to the hybrid 

battery models, an electrical circuit model incorporating the hystereis effect was developed 

for some batteries having hysteresis characteristics. The proposed work provides high-

fidelity real-time battery models for the battery and BMS designers to study various battery 

characteristics and optimally design BMSs for various applications.    
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CHAPTER 4:  SELF-X MULTICELL BATTERY DESIGN 

This chapter proposes a self-X multicell battery design for configuration and power 

management of rechargeable multicell batteries [97]. The proposed design includes a 

power electronic switching circuit to connect multiple battery cells or modules in series 

and/or parallel to form a reconfigurable battery pack, where a module consists of multiple 

cells connected in series and/or in parallel. The power electronics-enabled, self-X multicell 

battery automatically configures itself according to the dynamic load/storage demand and 

the condition of each cell. For a large-size battery system, such as those in EVs and PHEVs, 

the self-X design can be used for the multiple modules in the battery system as well for the 

multiple cells in each battery module to achieve the required terminal voltage and power 

[98]. For various applications, a bidirectional DC/DC converter can be used as the interface 

between the self-X battery system and the load/source to control charge and discharge of 

the battery [99].  This chapter is organized as follows. The self-X designs for a battery 

module consisitng of multiple cells and a battery system consisitng of multiple modules 

are described. Then, a bidirectional DC/DC converter for charge, discharge, and cell 

balancing control of the self-X multicell battery system is designed for EV/PHEV 

applications. The self-X multicell battery system design is validated by simulations and 

experimental studies. 

4.1  Self-X Multicell Battery Module Design 

The self-X design for a multicell battery module [97] is shown in Figure 4.1. It consists of 

three parts:  1) a cell pack, 2) a cell switching circuit, and 3) a module management system 

(MMS). The external system can be a master battery management system (MBMS) if the 
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battery system is comprised of multiple modules or a bidirectional DC/DC converter as an 

interface between the battery and the source and load to control the charge and discharge 

of the battery. 

 The nominal voltages and currents of most single battery cells are limited to several 

volts and tens of amperes, e.g., 3.7 V and 0.86 A for the polymer lithium-ion cells used in 

this research, which is much lower than the voltages and currents required in many 

applications. In the design, the cell pack consists of m × n cells, which are dynamically 

configured by the cell switching circuit during operation to meet the voltage and current 

requirements. 

 

 

Figure 4.1:  The self-X, multicell battery module design. 
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4.1.1  Cell Switching Circuit 

Figure 4.2 shows the cell switching circuit topology for an m × n cell battery pack, 

where n cells are connected in parallel to form a cell bank to provide higher currents; and 

m banks are connected in series to step up the voltage at the terminals of the battery. Only 

m × (n+1) controllable switches are needed to form the cell switching circuit. Each cell 

only uses one switch, e.g., the switch Sij for Cell Cij (i = 1, ···, m and j = 1, ···, n), which 

turns on/off alternatively to connect/cut off the cell from the battery, respectively. 

Moreover, if switch Sij is on, it is able to conduct the current of Cell Cij in two directions 

to charge/discharge the cell. Additional m switches S1, ···, Sm are used where Si (i = 1, ···, 

m) is off if any of the n switches (Si1, ···, Sin) in bank i are on. However, if all of the n 

switches in bank i (i = 1, ···, m) are off, then Si should be turned on. Turning on Si ensures 

that the cells in lower rows (S(i+1)1, ∙∙∙, S(i+1)n, ∙∙∙, Sm1, ∙∙∙, Smn) can be connected to supply 

(discharge) or store (charge) energy through the terminals of the battery. The proposed cell 

switching circuit ensures that each cell in the battery pack can be controlled independently 

in three modes, i.e., off, on/charge, and on/discharge. 

Low-cost, high-efficiency power metal-oxide-semiconducor field-effect transistors 

(MOSFETs) are used for implementation of the switches in the cell switching circuit. The 

power MOSFETs conduct bidirectional currents and have a negligible conduction loss 

because of their negligible “on” resistance. In this application, switching losses are not a 

concern because it typically takes a long time, e.g., 10 minutes or longer, for a switch to 

change its state. 
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Figure 4.2:  The cell switching circuit topology. 

 

Figure 4.3 illustrates switch implementations for Cell Cij (i = 1, ···, m and j = 1, ∙∙∙, 

n) using an n-channel power MOSFET (Sij) and for Bank i using a p-channel power 

MOSFET (Si) using two different gate drive circuits. It is crucial to connect the power 

MOSFETs in the correct direction due to the internal body diodes in the MOSFETs. As 

shown in Figure 4.3, the anode of the body diode of the MOSFET Sij should be connected 

to the negative terminal of Cell Cij. This connection blocks the unwanted discharges of Cell 

Cij. On the other hand, the cathode of the body diode of MOSFET Si should be connected 

to the positive terminal of the cell, which prohibits unwanted charges from flowing through 

the body diode to Banks i+1, ∙∙∙ , n when Cell Cij is connected, i.e., Sij is on. The gate drive 

circuit in Figure 4.3(a) is implemented by using four low-cost, small-signal bipolar junction 

transistors (BJTs) (Qij1, Qij2, Qij3, and Qi1) and a junction gate field-effect transistor (JFET) 

(Qi2). The small-signal BJTs can be replaced by small-signal MOSFETs. The gate drive 
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circuit only uses the voltage of Cell Cij to turn on the power MOSFET Sij; no additional 

voltage source is required. When Qij1 turns on, it drives Qij2 on, which turns on Sij by using 

the voltage of Cell Cij. Turning off Sij is accomplished by turning off Qij1 while turning on 

Qij3, which discharges the parasitic capacitor between the gate and source terminals of Sij. 

When Qi1 turns on, it provides a gate signal to turn on the power MOSFET Si. Turning off 

Si is accomplished by turning off Qi1 while turning on Qi2. The value of R7 should be large 

enough to ensure that the energy consumption of the gate drive circuit is negligible, which 

results in a slow turn-off of Si. To speed up the turnoff of Si, Qi2 is implemented by using 

a JFET. In this switching implementation, an n-channel MOSFET with a low threshold Vgs, 

e.g., 1.5~2 V, should be used for Sij because the voltage of Cell Cij is in the range of 4.2 V 

to 3V. Two Zener diodes, Dij and Di, are used to limit the voltage between the source and 

the gate terminals of Sij and Si, respectively. 

 

 

(a) 



68 
 

 

 (b) 

Figure 4.3:  Switch implementation for Cell Cij using an n-channel power MOSFET and 
for Bank i using a p-channel power MOSFET with a gate drive circuit using (a) small-

signal BJTs and (b) optocouplers. 

 

Figure 4.3(b) shows an alternative gate drive circuit, which uses two optocouplers 

to replace the four small-signal BJTs in Figure 4.3(a). The negative terminal of the battery 

cell is used as the virtual ground for the gate drive circuit. The gate signal generated by the 

signal generator is applied to the gate terminals of the power MOSFETs through the 

corresponding optocouplers to drive the power MOSFETs. Since the grounds of the gate 

drive circuit and signal generator are separated from that of the cell switching circuit, the 

switching implementation in Figure 4.3(b) can be used for multicell batteries at any voltage 

levels. In Figure 4.3(b) when Qij turns on, it drives Sij off. Turning on Sij is accomplished 

by turning off Qij. When Qi1 turns on, it provides a gate signal to turn on Si. Turning off Si 

is accomplished by turning off Qi1 while turning on Qi2. 

The small-signal components in the gate drive circuits are appropriately chosen to 

ensure that the energy consumption of the gate drive circuits is negligible compared to the 
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energy flow in the cell and that there is no short circuit between Sij and Si during transient 

switching periods. Figure 4.4 illustrates the transient waveforms of Cell Cij and its 

switching circuit (Figure 4.3(a)) when the cell is operated with a 1C (0.86 A) load current. 

During the transient switching periods, there is no short circuit between Sij and Si; and the 

transition from one operating mode to another is smooth, as demonstrated in the waveforms 

of the cell terminal voltage (Vcell) and current (iB) and the voltages between the source and 

drain terminals of Sij and Si. This ensures safe operation of Cell Cij. 

Although the design in Figure 4.3 illustrates cell-level switching, the design can 

also be used for module-level switching, where each module consists of multiple cells 

connected in parallel and/or series. The individual cells in the cell pack (Figures 4.1 and 

4.2) become modules. Consequently, the cell pack and cell switching circuit become a cell 

module pack and a module switching circuit, respectively. 

 

(a) 
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 (b) 

Figure 4.4:  Transient waveforms of the switching implementation for Cell Cij with a 1C 
(0.86 A) load current: (a) Sij turns on and Si turns off; (b) Sij turns off and Si turns on. 

4.1.2  Module Management System (MMS) 

The MMS, as shown in Figure 4.5, performs the functions of sensing, model-based 

condition monitoring, control and protection, gate signal generation, and interfacing with 

the MBMS or external systems. The sensing circuit monitors the voltage, current, and 

temperature for each cell. The model-based condition monitoring performs the functions 

of SOC and SOH tracking. The control and protection module uses the information sensed 

to protect the battery cells from overcharge/overdischarge, overcurrent, and 

overtemperature. If any of these abnormal conditions occurs in a cell or the cell fails, it will 

be cut off immediately. The remaining cells will still be used to supply/store power and, 

therefore, the whole battery system self-heals from abnormal conditions or cell failures. 

The SOC and SOH of each cell are tracked by the model-based condition monitoring 

algorithms presented in Chapters 6 and 7. 
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Figure 4.5:  Schematic diagram of the module management system.  

 
 

The control and protection module determines the best cell configuration based on 

the dynamic load/storage demand and the condition of each cell to achieve the optimal 

energy conversion efficiency of the battery system and self-balancing from cell state 

variations.  

The functional block flow chart of the control and protection module is illustrated 

in Figure 4.6. Many applications require the battery systems to supply power to load at a 

constant voltage level and absorb power from a constant voltage source. Therefore, a 

bidirectional DC-DC converter (i.e., the external system in Figure 4.1) is commonly used 

as the interface between the battery and the load/source to control charge and discharge of 

the battery. In this case, the battery system can be operated with variable voltages by using 

kB (kB = 1, ∙∙∙, m) out of m banks simultaneously. This means that some banks can be 

disconnected form the battery module for self-healing, self-optimization, and self-

balancing during operation. Given the power demand (Pd) from the load or the power 

supplied by the source as well as the required voltage by the load or source, the control 
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module determines the optimal values of the voltage (Vd) and current (Id) of the battery, 

where Pd = Vd·Id, using the tradeoff between two conditions:   

1) Since the efficiency of the DC/DC converter depends on its power and 

duty cycle (voltage gain), the terminal voltage of the battery should be 

set at a value such that the DC/DC converter is operated with a voltage 

gain leading to maximum efficiency of the converter. 

2) The current should be as small as possible to utilize the rate capacity 

effect to maximize the energy conversion efficiency of the battery. In 

practice, a lookup table can be created offline to store the optimal 

voltage and current of the battery at each load/source power and voltage 

condition for the entire system operating range. The lookup table can 

then be used online to determine the optimal battery voltage and current 

according to the real-time system operating condition. 

Based on the desired voltage, the number of series banks to be used, kB (0 < kB ≤ 

m), is determined by dividing the desired voltage by the average voltage of the banks. The 

control and protection module then checks the condition and SOC of each cell. If a cell 

fails, is in an abnormal condition, or its SOC is lower than a low limit (in discharge mode) 

or higher than a high limit (in charge mode), the cell will be disconnected form the battery 

module to prevent catastrophic failure of all of the cells. The remaining cells are still used 

to supply/store power; and, therefore, the whole battery module self-heals from abnormal 

conditions or cell failures. The SOCs of the usable banks are then sorted in a descending 

order, where the SOC of a bank (SOCb) is calculated by 
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n

i
ib SOC

n
SOC

1

1
                              (4-1) 

where SOCi is the SOC of the ith cell in the bank. If a cell is disconnected, then its SOC is 

zero. If the control module determines that kB out of m banks should be used, the kB banks 

with the lowest (highest) SOCs will be used in the charge (discharge) mode, provided that 

the selected banks can conduct the desired current, i.e., the following condition must be 

satisfied for each selected bank. 

                                                         crabrd InII                                           (4-2) 

where na is the number of usable cells in the bank; and Ibr and Icr are the current of the bank 

and each cell, respectively. By using these criteria, the control module determines which 

banks in the battery module are connected to supply power to the load or absorb power 

from the source. All of the usable parallel cells in each selected bank are used 

simultaneously to charge/discharge with continuous currents. This whole process is called 

a control cycle, as illustrated in Figure 4.6. The control cycle restarts with a certain 

predefined time interval Tc or when the load/source condition is changed. The proposed 

control scheme always tends to balance the SOCs of the battery cells in both charge and 

discharge modes. 
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Figure 4.6:  The functional block flow chart of one control cycle  
of the control and protection module. 
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In the proposed MMS, since all of the healthy cells in a selected bank will always 

be connected in parallel and used simultaneously to supply/store power, the cell voltages 

will be equal. However, in a worst case scenario where the cells in a bank have unequal 

voltages, cell balancing will be performed for the bank by discharging the cells sequentially 

starting with the one with the highest SOC (if in a discharge operation) or by charging the 

cells sequentially starting with the one with the lowest SOC (if in a charge operation) until 

the voltages of all cells become equal. Based on the output of the control and protection 

module, the gate signal generation module generates appropriate signals to control the 

power MOSFETs through their gate drive circuits. 

The duration Tc of the control cycle will affect the performance of the proposed 

battery module. Generally, the operating time of the battery increases as Tc decreases. 

However, using a very small Tc will result in frequent switching of the power MOSFETs 

and will, therefore, increase the switching loss of the cell switching circuit. In practice, the 

value of Tc should be selected such that the SOCs of all m banks will be balanced before 

any single bank is fully charged in a charge operation or fully discharged in a discharge 

operation. In this work, the value of Tc is determined by: 

I
Tc

600,3                                          (4-3) 

where Tc is in seconds; I is the normalized battery current in C-rate; and ζ is a percentage. 

If the SOCs of all banks are higher than a low threshold, e.g., 10%, in a discharge operation 

or lower than a high threshold, e.g., 90%, in a charge operation, a large ζ (e.g., ζ = 5 %) 

will be used. On the other hand, if the SOC of a bank becomes lower than the low threshold 

in a discharge operation or higher than the high threshold in a charge operation, a small ζ 

(e.g., ζ = 1 % or 0.5 %) will be used.  
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An important issue in the design of the self-X multicell battery module is the 

grounding of the power MOSFET gate drive circuits, cell sensing circuits, and control and 

protection circuits. If the cell switching circuit is implemented by using the circuit in Figure 

4.3(a), the power MOSFET gate drive circuits, cell sensing circuits, and control and 

protection circuits use the same ground. However, if the cell switching circuit is 

implemented by using the circuit in Figure 4.3(b), the power MOSFET gate drive circuits 

and cell sensing and monitoring circuits use the same virtual grounds, which are the 

negative terminals of the corresponding battery cells. The ground of the control and 

protection circuits will be separated from the ground of the gate drive circuits and cell 

sensing circuits. In this case, optically coupled signal isolators will be used between the 

sensing and monitoring circuits and control and protection circuits for transferring the 

sensed information. 

4.2  Self-X Multicell Battery System Design for EVs and PHEVs 

The performance of EVs and PHEVs strongly relies on their battery storage systems, 

which usually consist of multiple modules connected in series and parallel. However, cell 

state variations are commonly present, which reduces the energy conversion efficiency of 

the battery system. Furthermore, in a large battery system, the risk of catastrophic cell faults 

increases because a large numbers of cells are used. These problems can be solved by the 

self-X multicell battery system, consisting of self-X multicell modules connected in series 

[98]. Figure 4.7 illustrates the self-X multicell battery system connected to an electric motor 

load in an EV. An EV or PHEV usually requires the battery system to supply power to the 

load at a constant voltage level and to absorb power from a constant voltage source, e.g., a 
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charger or regenerative brake. Therefore, a bidirectional DC/DC converter is commonly used 

as the interface between the battery system and the load/source to control charge and 

discharge of the battery. In this case, the battery system can be operated with variable 

voltages. The motor bridge inverter generally requires a DC voltage at several hundred volts, 

e.g., 450 V. In order to achieve the best efficiency of the DC/DC converter, a terminal voltage 

of 150 to 300 V is needed for the battery [100]. Therefore, the battery system consists of 

several battery modules connected in series to achieve the required terminal voltage. For 

example, the Chevrolet Volt’s lithium-ion battery system consists of three modules [101]. 

An MBMS is used to coordinate the operations of the multiple battery modules and the 

DC/DC converter. 

 

 

Figure 4.7:  A self-X multicell battery system for EVs and PHEVs. 
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4.2.1  Control and Protection for Each Module of Self-X Multicell 

Battery System 

In the battery system, the control and protection module of each MMS in Section 

4.1.2 is coordinated by an MBMS. Figure 4.8 illustrates the modified functional block flow 

chart of one control cycle of the control and protection module. The control scheme always 

tends to protect the battery cells and balance the SOCs of the battery cells and modules. 

The MBMS determines the number of banks, qMBMS, of each battery module to be used 

simultaneously to balance the SOCs of the modules of the battery system. This is called 

global balancing. The SOC of a module (SOCm) is defined as 

                                                    
m

j
jbm SOC

m
SOC

1
,

1                               (4-4) 

where SOCb,j is the SOC of the jth bank in the module. If a cell is disconnected, then its 

SOC is zero. Moreover, the control and protection block in the MMS of each battery 

module also determines the number of series banks, qMMS, to be used simultaneously to 

balance the SOCs of the banks in the module. This is called local balancing.  

                                                   ( )MMS bq m f SOC                      (4-5) 

where ΔSOCb = SOCb_max ‒ SOCb_min; SOCb_max and SOCb_min are the maximum and 

minimum SOCs of the banks in the module, respectively. The value of f(∙) with respect to 

ΔSOCb used in this work is shown in Figure 4.9. Finally, the number of banks in the module 

to be used, q (0 < q ≤ m), can be determined to be the smaller of qMBMS and qMMS. Once q 

is determined, the SOCs of all usable banks are sorted in a descending order; and the q 

banks with the highest SOCs will be used in the discharge mode; or the q banks with the 
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lowest SOCs will be used in the charge mode until the SOCs of all of the banks in the 

module become balanced.  

 

Figure 4.8:  The modified functional block flow chart of one control cycle  
of the control and protection module of each MMS. 
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Figure 4.9:  The value of f(∙) with respect to ΔSOCb. 

 

4.2.2  Master Battery Management System 

 The MBMS coordinates the battery modules to globally balance their SOCs and 

control the bidirectional DC/DC converter to safely charge/discharge the battery system 

with optimal efficiency. Given battery states and the power demand (Pd) from the load, or 

the power supplied by the source, the MBMS determines the optimal values of the voltage 

(Vd) and current (Id) of the battery, where Pd = Vd·Id, using the tradeoff of the two conditions 

introduced in Section 4.1.2. According to these two criteria, the total number of series 

banks (qt) to be used in the battery system can be determined by: 

                                          max( , , ) ( , , )t avg d avg dq V w P q R V w P                                       (4-6) 
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where Vavg is the average voltage of all of the banks in the battery system; Vlimit_discharge is 

the discharge cutoff voltages of a cell; qmax is the total number of banks in the battery 

system; Pmax is the maximum power of the battery; R is the redundancy of the battery; 

min(a, b) denotes the minimum value of a and b; floor(∙) stands for rounding a number 

down to the nearest integer; and w is determined by  
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                                                            )( mSOCgw                                           (4-8) 

where ΔSOCm = SOCm_max ‒ SOCm_min; SOCm_max and SOCm_min are the maximum and 

minimum SOCs of the modules in the battery system, respectively. The value of w with 

respect to ΔSOCm as used in this work is shown in Figure 4.10. Once qt is calculated, the 

MBMS determines the number of banks, qMBMS, for each module to be used simultaneously 

based on the SOC of each module and the operating mode of the battery. The sum of all 

qMBMSs is qt.  

 In the discharge mode, the BMS continuously protects and balances the battery 

cells as well as control the battery system to supply the required voltage and power to the 

motor bridge inverter via the DC/DC converter. On the other hand, due to protection and 

balancing control, the terminal voltage of the battery system is variable, which is controlled 

by regulating the duty cycle of the DC/DC converter in the charge mode. The charge 

reference voltage (VB_REF) is determined by the number of banks connected in the battery, 

the charge cutoff voltage of a cell (Vlimit_charge), and the voltage drop caused by conduction 

losses of the switches.  

In the charge mode, the multicell battery is first charged with a constant current 

until the terminal voltage reaches VB_REF. Thereafter, the voltage of each cell is kept 

constant; the charge current is reduced as the SOC of each cell approaches the maximum 

value, e.g., 95% for EVs and 90% for PHEVs. This is called CCCV control, under which 

the battery can be charged fully and safely. The design of the DC/DC converter used with 

the self-X multicell battery will be discussed in the next section.  
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Figure 4.10:  The value of w with respect to ΔSOCm. 

 

4.3  A Bidirectional DC/DC Converter for Multicell Batteries 

This section discusses a bidirectional DC/DC converter with a unified constant 

current adaptive voltage (CCAV) control scheme and a balancing control scheme for a series-

connected, self-reconfigurable, multicell battery module, as shown in Figure 4.11 [99]. 

Moreover, the proposed DC/DC conveter can be used for the self-X multicell battery system, 

as shown in Figure 4.7. The CCAV control scheme allows the battery to be charged or 

discharged with a constant current or with an adaptive reference voltage, which is determined 

by the required voltage levels for charge and discharge, cell states, and voltage drop resulting 

from conduction losses of the multicell batteries. The CCAV scheme enables fast and full 

charge of individual cells without any damage. Moreover, balancing and self-healing can be 

achieved during charge and discharge operations, which enhance the reliability and 

performance of the multicell batteries. Compared to existing active balancing circuits [13]-

[17], the number of balancing components, such as inductors, capacitors, and switches, in 
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the self-X battery design is significantly reduced. This reduces the overall cost, complexity, 

and control effort of the battery system.  

 

Figure 4.11:  The proposed series-connected, self-reconfigurable, multicell battery 
module with a bidirectional DC/DC converter. 

 

4.3.1  Series-Connected, Self-Reconfigurable Multicell Battery Pack 

A series-connected, self-reconfigurable, multicell battery topology was proposed in 

[102] and is shown in Figure 4.12. This topology is a simple version of the proposed self-X 

multicell battery module, shown in Figure 4.2, created by removing parallel connected cells. 

It consists of a cell pack and a switching circuit, where each individual cell is controlled 

independently by using only two power electronic switches.   
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Figure 4.12:  The proposed series-connected, self-reconfigurable, multicell battery 
topology. 

 

4.3.2  The Bidirectional DC/DC Converter with the Unified CCAV 

Control Scheme 

 Figure 4.13 illustrates the proposed bidirectional DC/DC converter with the unified 

CCAV control scheme for charging and discharging control of the multicell battery. The 

CCAV controller outputs gate control signals G1 and G2 to turn on/off two switches, S1 and 

S2, alternatively. In the charge mode, the DC/DC converter acts as a buck converter (charger) 

to charge the multicell battery at the low-voltage (LV) side from a source at the high-voltage 

(HV) side. In the discharge mode, the DC/DC converter acts as a boost converter. The unified 

CCAV control scheme is used for bidirectional current flow control in the continuous 

conduction mode (CCM). The two switches of the DC/DC converter are complementarily 

controlled by a common duty ratio generated by the unified CCAV controller [32]. In the 
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the relationship between the control duty cycle D and the zero current duty cycle Do, which 

is equal to VB/VDC, as shown in Figure 4.14. The average inductor current IL is the same as 

the battery current IB. When charging the battery, the average inductor current IL is greater 

than zero. This means that duty cycle D should be adjusted to be greater than Do. When 

discharging the battery, on the other hand, the average inductor current IL is less than zero. 

Consequently, the duty cycle D should be adjusted to be less than Do.  

 

Figure 4.13:  The proposed bidirectional DC/DC converter with the unified CCAV 
controller for charging and discharging control of the multicell battery. 
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Figure 4.14:  Control duty cycle D versus average inductor current IL. 

 

An output capacitor is connected at the LV side to further smooth the output current 

and allow the output voltage to be adjusted prior to charging the battery. In the charge mode, 

the multicell battery is first charged with a constant current (C.C.) until the terminal voltage 

reaches an adaptive reference value (VB_REF), which is determined by the number of cells 

connected in the battery, charge cutoff voltage, and voltage drop caused by conduction losses 

of the switches used in the DC/DC converter.  Thereafter, the voltage of each cell is kept 

constant (constant voltage C.V.); the charge current is reduced to a very small value, e.g., 

1/40C, as the SOC of each cell approaches 100%. Hence, the series-connected multicell 

battery can be charged fully and safely.  

Figure 4.15 illustrates the flow chart of the scheduling algorithm for the 

implementation of the CCAV controller when the battery is operated in normal charge mode. 

The scheduling algorithm when the battery is operated in discharge mode can be illustrated 
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by a flow chart in a similar way. In Figure 4.15, IABS is the minimum charge/discharge current 

of the battery; SOCavg is the average SOC of the battery cells; and α is a small positive number. 

If a battery cell is in an abnormal condition or its SOC is lower than a low limit in the 

discharge mode or higher than a high limit in the charge mode, the cell will be disconnected 

from the battery system. The scheduling algorithm balances the SOCs of the remaining 

healthy cells. The scheduling algorithm always tends to balance the SOCs of the battery cells. 

Therefore, it can fully charge and utilize the available capacity of individual cells of the 

multicell battery during operation. 

 

Figure 4.15:  The scheduling algorithm for the implementation of CCAV control in the 
charge mode of the battery. 
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4.4  Validation 

The proposed self-X multicell battery design was validated by simulations and 

experiemental results.  

4.4.1  Module-Level Self-Healing 

 A 6 × 3-cell battery module was built using the self-X design developed and was 

simulated in MATLAB/Simulink. Each cell was a 3.7 V, 860 mAh polymer lithium-ion 

cell, which is represented by the hybrid battery model in Section 3.1 Assuming all of the 

cells in the same bank have the same SOC and the initial SOCs of Banks 2-5 are all at 

100%, Figure 4.16(a) and (b) compare the total energy in Wh that can be supplied by the 

fixed configuration and the proposed self-X multicell battery module for different SOCs of 

Banks 1 and 6. These results clearly show that the self-X design significantly improves the 

energy usage of the multicell battery. For example, when the SOC of Bank 1 or 6 or both 

becomes zero, the whole battery with the fixed configuration has to be cut off and cannot 

supply any energy to the load although the usable capacity of the battery is still significant. 

On the other hand, the proposed self-X battery module can supply energy from other banks 

even if the SOC of one or both of Banks 1 and 6 becomes zero. For example, in the worst 

case scenario, when the SOCs of Banks 1 and 6 are both zero, the self-X battery module 

can still supply a total energy of 36.88 Wh from Banks 2-5, which is 66.7% of the 

maximum energy capacity of the battery. This shows the self-healing feature of the 

proposed design. 
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(a) 

 

 
 (b) 

Figure 4.16:  Total energy in Wh that can be supplied by (a) the fixed-configuration and  
(b) the proposed self-X, 6 × 3-cell battery module for different SOCs of Banks 1 and 6. 
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Next, the self-X multicell battery module used in simulation studies was 

constructed in hardware to further validate the proposed design. Figure 4.17 shows the 

experimental system setup. High-efficiency power MOSFETs were used to form the cell 

switching circuit on a printed circuit board (PCB). The gate drive circuit in Figure 4.3(a) 

was used to drive the power MOSFETs in the cell switching circuit. The sensing, control, 

and protection functions were also implemented on the PCB. The cells were charged by a 

variable DC source and discharged through a programmable DC electronic load. Table 4.1 

compares the simulation and experimental results of the self-X battery module design and 

simulation results of the fixed-configuration design for three scenarios. Scenarios 1 and 2 

were used to validate the self-healing feature of the proposed design. Self-optimizing for 

improving the energy conversion efficiency was validated by Scenario 3. In all scenarios, 

the discharge current of the battery was 2.58 A, i.e., 1C. For all scenarios, the experimental 

results agreed with the simulation results. 

In Scenarios 1 and 2, the 18 cells were discharged simultaneously using the C.C. 

mode. Since the initial SOCs of the cell banks were different, the cell banks were fully 

discharged sequentially. In the fixed-configuration design, once a cell bank was fully 

discharged, the whole battery had to be cut off and could not supply any energy to the load, 

although the usable capacity of the battery was still significant. In the self-X design, once 

a cell bank is fully discharged, it is disconnected from the battery pack by the cell switching 

circuit but the remaining cell banks still provide energy to the load. Compared to the fixed-

configuration design, the proposed self-X battery module design can supply 16 Wh and 

24.73 Wh more energy, which represented 28.9% and 44.7% of the maximum capacity of 

the battery in Scenarios 1 and 2, respectively. Figure 4.18 compares the terminal voltage 
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response of the self-X battery module obtained from the simulation and the experiment for 

Scenario 2. It shows that not only the steady state but also the dynamic responses of the 

battery obtained from simulations agree with those from experiments. Therefore, the 

comparison in Figure 4.16 is effective to validate the superiority of the proposed self-X 

battery module design over the traditional fixed-configuration design. 

In Scenario 3, the six banks of the self-X battery module were divided into two 

groups, three banks per group. The two groups of cell banks were discharged alternately, 

i.e., pulsed current (P.C.), with a time interval of 300 s until all of the cells were fully 

discharged. Compared to the fixed-configuration battery that used C.C. discharge, more 

energy (~1 Wh) was supplied by the self-X battery module when the P.C. discharge was 

used. The P.C. discharge method utilized the recovery effect to improve the energy 

conversion efficiency of the battery, which, however, cannot be achieved by the traditional 

fixed-configuration battery design. 

 

Table 4.1:  Comparison of simulation and experimentation results for the 6 × 3-cell 
battery module. 

Scenario 
Discharge 
Method 

Initial Conditions of Cell Banks 
Expressed by SOC [%] Energy [Wh] 

Bank Self-X Design Fixed-
Configuration 

Design (Simulation) 1 2 3 4 5 6 Simulation Experiment 

1 C.C. = 
2.58 A 80 100 100 100 100 60 49.5 49.0 33.5 

2 C.C. = 
2.58A 75 100 100 100 100 40 47.1 46.87 22.37 

3 

C.C. = 
2.58 A; 

P.C.=2.58 
A (300s 
on, 300s 

off) 

100 100 100 100 100 100 56.32 
(P.C.) 56.0 (P.C.) 55.3 (C.C.) 
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Figure 4.17:  The experimental system setup of the self-X battery module. 

 

 

Figure 4.18:  Comparison of the terminal voltage responses of the self-X battery module 
obtained from the simulation and the experiment for Scenario 2. 
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4.4.2  Module-Level Self-Balancing  

The self-X battery model built in MATLAB/Simulink was operated in the discharge 

mode. The MMS determined that three banks should be used with a discharge current of 

2.58 A. It was assumed that all of the 18 cells were healthy; and the initial SOCs of the six 

banks were 100% (Bank 1), 95% (Bank 2), 90% (Bank 3), 85% (Bank 4), 80% (Bank 5), 

and 75% (Bank 6). Three out of the six banks were discharged simultaneously. An interval 

of one control cycle was chosen to be Tc = 75 seconds. The battery module was 

continuously discharged until no bank had usable capacity. Figure 4.19 shows the SOCs of 

the six banks during the whole discharge operation. It clearly shows that the MMS balanced 

SOCs of the cell banks during the battery discharge process. The SOCs of the six banks 

were balanced at about 1000 seconds. This cannot be achieved by using the fixed-

configuration design. Figure 4.20 compares the terminal voltage responses of the self-X 

battery when using different durations for the control cycle. The operating time of the 

battery increased as the duration of the control cycle decreased. The reason is that the banks 

became more balanced when a shorter control cycle was used. 
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Figure 4.19:  The SOCs of the cell banks in discharge mode:  three banks wre used 
simultaneously. 

 

Figure 4.20:  Comparison of the terminal voltage responses of the self-X battery module 
when different durations for the control cycle were used. 
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35% (Bank 4), 40% (Bank 5), and 45% (Bank 6). Three out of the six banks were charged 

simultaneously. The battery was continuously charged with a current of 2.58 A until all of 

the six banks were fully charged. Figure 4.21 shows the SOCs of the six banks during the 

whole process. The results clearly show that the MMS balanced the SOCs of the cell banks 

during the battery charge process. Again, the SOCs of the six banks were balanced at about 

1000 seconds. 

 

 

Figure 4.21:  The SOCs of the cell banks in charge mode:  three banks were used 
simultaneously. 

 

4.4.3  System-Level Simulation with a DC/DC Converter 

Five battery modules were connected in series to form a self-X battery system with a 

bidirectional DC/DC converter where each module had 6 × 3 cells. The system was built and 

simulated in MATLAB/Simulink. The whole battery system was charged at 4.68 A, the 

initial SOCs of the five modules were assumed to be 20% (Module 1), 25% (Module 2), 32.5% 

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

SO
C

 (S
ta

te
 O

f C
ha

rg
e)

 

 

Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6



96 
 

(Module 3), 35% (Module 4), and 40% (Module 5); the initial SOCs of the six banks in 

Module 3 were 20% (Bank 1), 25% (Bank 2), 30% (Bank 3), 35% (Bank 4), 40% (Bank 5), 

and 45% (Bank 6). All of the five modules were used simultaneously; while the MBMS and 

the MMS of each module determined the number of banks used in each module in this charge 

operation. Figures 4.21(a) and (b) show the SOCs of the six banks in Module 3 and the SOCs 

of the five modules, respectively, by using the CCCV control. The SOCs of the six banks in 

Module 3 became balanced at around 2,800 seconds. The SOCs of the five modules became 

balanced at around 3,100 seconds, as shown in Figure 4.21(b). The cells were fully charged, 

e.g., 95% for EVs, by using the CCCV control. Figure 4.21(c) shows the terminal voltage 

and current of the battery system. Under the CCCV charge control, the battery was first 

charged with a constant current; and the terminal voltage of the battery was increased until 

it reached the cutoff value of 126 V, However, by that time, the cells had not been fully 

charged. Therefore, from that moment onward, the battery was charged with an adaptively 

reduced current at a constant voltage until the SOC of each cell reached 95%. These results 

clearly demonstrate that the multicell battery design is capable of safe and effective charging, 

discharging, and balancing operations. 
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 (c) 

Figure 4.22:  The operation of a five-module battery system in the charge mode:  (a) the 
SOCs of the six banks in Module 3; (b) the SOCs of the five modules; and (c) the 

terminal voltage and charge current of the battery. 
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from 1 A to –1 A quickly. During the transition, the controller accurately regulated both 

charge and discharge currents smoothly. The battery terminal voltage also changed smoothly 

when the operating mode changed, as shown in Figure 4.23(b).  

Next, the cell balancing control was tested in charge and discharge modes. In the 

charge mode, it was assumed that the initial SOCs of Cells 3-5 were all at 35% while the 

initial SOCs of Cells 1, 2, and 6 were 25%, 30%, and 40%, respectively. The value of kB was 

predetermined to be 5 out of 6 healthy cells. In each control cycle, five cells with the lowest 

SOCs were selected by using the cell switching circuit and charged at 1.56 A. Figure 4.24(a) 

shows the SOC of each cell by using the CCAV control. The SOCs of the six cells became 

balanced at around 3,200 seconds. The cells were fully charged by using the CCAV control. 

Figure 4.24(b) showed the terminal voltages of Cells 1, 2, and 6, which all reached the charge 

cutoff voltage of 4.2 V at the end of the charge mode operation.  
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 (b) 
Figure 4.23:  The current flow control between 1 A charge and -1 A discharge:  (a) the 
inductor and battery currents; (b) the HV-side and LV-side (battery terminal) voltages. 
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not been fully charged. Therefore, from that moment onward, the battery was charged with 

an adaptively reduced current and a constant voltage until the SOC of each cell reached 100%. 

These results clearly demonstrate that the proposed series-connected, self-reconfigurable 

multicell battery with a bidirectional DC/DC converter is capable of safe and effective 

charging, discharging, and balancing operations. 
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 (c) 
Figure 4.24:  Cell balancing control in the charge mode:  (a) the SOC of each cell; (b) the 

terminal voltage of Cell 1, 2, and 6; (c) the terminal voltage and charge current of the 
battery. 
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circuit (see Figure 4.3(a)) depend on the small-signal components in the circuit and the 

current of the battery cell. The small-signal components were appropriately chosen to 

ensure that the energy consumption of the gate drive circuit was negligible compared to 

the energy flow in the cell. The parameters of the small-signal components are listed in the 

Appendix.  

Figure 4.25 shows the experimental results of the normalized power losses of the 

MOSFET switching circuit and the gate drive circuit as well as the normalized total power 

loss of the cell switching circuit as functions of the discharge current for a single 3.7 V, 

0.86 Ah polymer lithium-ion cell of the 6 × 3-cell self-X battery module. The current was 

normalized to the capacity of the cell, i.e., the C-rate. The power losses were normalized 

to the power output of the cell. The results show that the normalized power loss of the 

MOSFET switching circuit increased linearly with the cell current. On the other hand, the 

normalized power loss in the gate drive circuit decreased with the discharge current. At 

low currents, the power loss of the gate drive circuit was dominant and the normalized total 

power loss reduced as the cell current was increased. When the current was higher than 

0.5C, the power loss in the MOSFET switching circuit became dominant; and the 

normalized total power loss was increased gradually.  

Large-scale battery systems, such as those used for vehicle and power grid energy 

storage, usually employ large capacity cells. Figure 4.26 compares the round-tip efficiency 

as a function of the normalized discharge current for 0.86, 5, 10, and 20 Ah polymer 

lithium-ion cells. The efficiency of the cell switching circuit decreased with an increase in 

cell capacity. However, even for 20 Ah cells, the round-trip efficiency of the cell switching 

circuit was still higher than 99% over the entire operating current range of the cell. The 
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efficiency can be further improved by several approaches:  1) using power MOSFETs with 

a lower on resistance; 2) using multiple power MOSFETs connected in parallel to form a 

switch of the cell switching circuit in Figure 4.2 to share the corresponding cell current; 

and 3) applying the switching circuit to battery modules instead of cells, where each 

module consists of multiple cells connected in series. 

Therefore, it is not a problem for the cell switching circuit to achieve a round trip 

efficiency of over 99% for the battery systems with large-capacity cells, which is common 

in power and energy system applications. These results indicate that the self-X battery 

design does not reduce the efficiency of the battery systems for power and energy system 

applications. 

 

Figure 4.25:  Normalized power losses of the cell switching circuit as functions of 
normalized discharge current for a single 3.7 V, 0.86 Ah polymer lithium-ion cell. 
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In addition to the losses in the cell switching circuit, other losses of the battery 

system included the losses in the sensing and monitoring circuit as well as the control and 

protection circuit.  These losses were almost constant and did not depend on the capacity 

of the battery cells or the operating conditions of the battery system. For battery systems 

using large-capacity cells, these losses were negligible compared to the power of the 

battery systems. Moreover, these losses were also present in traditional fixed-configuration 

battery systems. Therefore, they are not discussed in this dissertation. 

 

Figure 4.26:  Comparison of the round-trip efficiency of the cell switching circuit as a 
function of normalized discharge current for 0.86 Ah, 5 Ah, 10 Ah, and 20 Ah polymer 

lithium-ion cells. 
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4.5  Chapter Summary 

This chapter presented a novel power-electronics-enabled, self-X, multicell battery 

design for managing multicell battery modules and battery systems consisting of multiple 

multicell battery modules. The self-X multicell battery can automatically configure itself 

according to the dynamic load/storage demand and the condition of each cell, self-heal 

from failures and abnormal operating conditions of single or multiple cells, self-balance 

from cell state variations, and self-optimize to achieve the improved energy conversion 

efficiency. These features are achieved by: 1) a highly efficient cell switching circuit; 2) 

high-performance condition monitoring and control system; and 3) a bidirectional DC/DC 

converter with a unified CCAV control scheme.  

Simulation and experimental results showed a remarkably improved energy usage, 

reliability, and energy conversion efficiency of multicell batteries using the proposed self-

X design. The self-X design is universal and can be applied to any type and size of battery 

cells. By using the self-X design, additional monitoring, control, protection, and optimization 

functions can be readily added to each cell and the overall battery system, leading to a smart 

battery. 
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CHAPTER 5:  PARTICLE SWARM OPTIMIZATION-BASED 

ELECTRICAL PARAMETER AND SOC ESTIMATION 

This chapter describes a cell-level SOC and electrical parameter estimation method 

for multicell lithium-ion batteries [87], [103]. An enhanced Coulomb-counting algorithm 

was applied to estimate the SOC for each cell. An SOC compensator was designed to 

sequentially correct the error of the estimated SOC for each cell by using the estimated cell 

open-circuit voltage Voc. The values of Voc and electrical parameters of the cells were 

estimated sequentially in real-time by using a particle swarm optimization (PSO)-based 

online parameter identification algorithm. Therefore, the method is capable of capturing 

nonlinear capacity effects of a battery and ensuring the robustness of the SOC estimation 

to unknown initial SOC, error accumulation, and the error due to neglect of the self-

discharge effect. The method was validated by using simulation and experimental results 

for a four-cell polymer lithium-ion battery pack. 

 

Figure 5.1:  The proposed PSO-based SOC and  
electrical parameter estimation method for a series-connected m-cell battery pack. 
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The SOC and electrical parameter estimation method for multicell batteries consisted 

of three parts as shown in Figure 5.1:  a hybrid battery model, a PSO-based parameter 

identification algorithm, and an SOC compensator correcting the error of the enhanced 

Coulomb-counting-based SOC estimation. The method estimated the SOC and electrical 

parameters sequentially for each cell of a series-connected m-cell pack. 

5.1  Hybrid Battery Model for Model-Based Condition Monitoring 

The enhanced Coulomb-counting algorithm was designed to estimate the SOC of a 

battery cell in (3-8) and (3.9). The enhanced Coulomb-counting algorithm for Cell i, (where 

i = 1, ∙∙∙, m) is shown below:   
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The electrical circuit battery model (i.e., the electrical circuit in the hybrid battery 

model in Figure 5.1) of Cell i can be expressed in a regression form as follows:   
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where τi,S = Ri,ct·Ci,d and τi,L = Ri,sd·Ci,sd. Assuming that Vi,oc is a constant, the z-transfer 

function of (5-5) is given in (5-6) and the corresponding difference equation is given in (5-
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7). The battery electrical parameters can be derived from (5-4), (5-7) and (5-8) if Vi,cell and iB 

are known.  
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5.2  Electrical Parameter Identification by PSO 

The PSO method was employed to identify the electrical parameters of the hybrid 

battery model. The PSO method can find the global optimal solution with a high 

computational efficiency and a low implementation cost. The battery’s electrical parameters 

include the OCV, Voc, and RC parameters, Rs, Rct, Cd, Rsd, and Csd, which are unknown 

variables of (5-7). At least six independent equations are needed to solve for the six unknown 

parameters. The six equations can be obtained from (5-7) by using measured battery cell 

terminal voltage and current at eight sequential operating points, as follows: 
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where j = 0, ∙∙∙, n, n ≥ 5; and X = [x1, x2, x3, x4, Rs, Voc] is a vector of the unknown parameters. 

The PSO algorithm is designed to search for the optimal X to minimize the value of the 

following fitness function. 
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Theoretically, the optimal X should make the fitness function value zero. In practice, 

once the value of Ppso(X) is below a predefined small threshold, e.g., 10-6, the corresponding 

X can be treated as the optimal solution. From the optimal solution of X, the electrical 

parameters can be calculated from (5-8).  

The PSO algorithm searches for the optimal solution using a population of moving 

particles. Each particle has a position represented by a position vector (Xi) and a moving 

velocity represented by a velocity vector (Vi) in the problem space. The position of each 

particle represents a potential solution. Each particle keeps track of its coordinates in the 

problem space, which are associated with the individual best position (Xi,pbest) achieved by 

the particle so far. Furthermore, the best position among all the particles obtained so far in 

the population is tracked by all particles as the global best position (Xgbest). The PSO 

algorithm is implemented in the following iterative steps for electrical parameter estimation 

of a battery: 

(i) Define the problem space with its boundaries extracted from off-line 

battery tests under various operating conditions. 

(ii) Initialize a population of particles with random positions and velocities 

in the problem space. 

(iii) Evaluate the fitness function. 

(iv) Compare each particle’s current position Xi with its Xi,pbest based on the 

fitness evaluation. If Xi is better than Xi,pbest, then replace Xi,pbest with Xi. 
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(v) If Xi,pbest is updated, then compare the particle’s Xi,pbest with Xgbest based 

on the evaluation of the fitness function. If Xi,pbest is better than Xgbest, 

then replace Xgbest with Xi,pbest. 

(vi) Compute each particle’s new velocity (Vi) and position at iteration k as 

follows: 
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(vii) Repeat Steps (iii)-(vi) until the stopping criterion is satisfied, e.g., an 

error threshold is reached or the maximum number of iterations is 

accomplished. The final value of Xgbest is the optimal solution to the 

problem. 

In (5-11), c1 and c2 are the cognition learning rate and social learning rate of particles, 

respectively; win is the inertial weight which decreases as the number of iterations increases; 

r1 and r2 are uniformly distributed random numbers between 0 and 1; and N is the number of 

particles in the swarm. The set of parameters for the PSO implementation used in this 

dissertation are listed in Table 5.1. 

Due to slow changes in the electrical parameters, the final solution X in each 

execution of the PSO algorithm, instead of random numbers, will be used as the initial 

positions for the population of particles in the next execution of the PSO algorithm. This will 

reduce the number of iterations needed to identify the optimal solution. Moreover, it is 

important to choose appropriate boundary conditions for position X and velocity V in the 

PSO algorithm. The electrical parameters of the battery cells extracted from off-line battery 
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tests under various operating conditions will be used to set the boundary conditions for X and 

V. The adaptive boundary condition, shown in Table 5.2, is proposed for Voc to improve the 

accuracy of the parameter estimation, where Voc_max and Voc_min are the maximum and 

minimum possible Voc, respectively; ϕ, α, and β are the rest, discharge, and charge constants, 

respectively; Vcell is the variation of Vcell during the rest time; and irated is the rated current 

(i.e., 1C). The inverse hyperbolic sine function is used to express the transient voltage in 

terms of the current rate during charge and discharge [104] .   

 
Table 5.1:  Set of Parameter for PSO implementation. 

Swarm 
Size (N) 20 c1 2 win 

(start) 
0.7 

Iteration 1000 c2 2 win 
(end) 0.1 

α1 0.198 α2 0.118 β1 0.188 

β2 0.104 ϕ 0.001   

 

Table 5.2:  Boundary condition of Voc. 

iB(k) >0 
(Discharge) 

Voc_max(k) Vcell(k)+α1·sinh-1(icell(k)/irated) 

Voc_min(k) Vcell(k)+α2·sinh-1(icell(k)/irated) 

iB (k)<0 
(Charge) 

Voc_max(k) Vcell(k)+β1·sinh-1(icell(k)/irated) 

Voc_min(k) Vcell(k)+β2·sinh-1(icell(k)/irated) 

iB(k) =0 
(Rest) 

Voc_max(k) Voc_max(k-1) 

Voc_min(k) Voc_max(k-1)  
Voc_max(k) Vcell(k),        if ΔVcell(k) < ϕ Voc_min(k) 

5.3  SOC Estimation and Compensation 

The enhanced Coulomb-counting method, based on (5-1) and (5-2), is an open-loop 

SOC estimation method. It may be subject to problems which include an inaccurate initial 
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SOC and accumulating estimation errors, leading to a wrong SOC estimation. To solve these 

problems, this dissertation proposes a closed-loop weighting SOC estimation method, which 

uses an SOC compensator to correct the error of the SOC, i.e., SOCi,T, obtained from the 

enhanced Coulomb-counting algorithm for each cell in the pack sequentially, as shown in 

Figure 5.2. The corresponding equations are given by the following: 

                             )()1()()( ,,, kSOCWkSOCWkSOC ViTinewi                               (5-13)   

                                                )1()1( , kSOCkSOC newii                                           (5-14) 

where W is a variable weighting factor (0 < W <1); and SOCi,V is the SOC estimated from 

the OCV, Vi,oc, of Cell i, which in turn is estimated from the PSO-based parameter 

identification algorithm for the electrical circuit model of the battery cell  and the measured 

cell current and terminal voltage. The SOC compensator uses the estimated Vi,oc and the 

SOCi,T as the inputs. The Vi,oc is converted to the SOCi,V by using a SOC–Voc lookup table 

because the OCV is highly related to the SOC. In practice, the SOC–Voc relationship can be 

obtained from laboratory experiments. The SOCi,V and SOCi,T are multiplied by their 

weighting factors and then added together to generate a compensated SOC, i.e., SOCi,new. 

The SOCi,new is then used as the initial SOC, i.e., SOCi, of the enhanced Coulomb-counting 

algorithm to estimate the SOC in the next time step. 

The SOC compensator is executed periodically at a certain interval during operation 

or during a long relaxation period of the battery cell. The performance of the SOC 

compensator highly depends on the accuracy of the internal electrical parameters of the 

battery and the weighting factor W. The default value of W is one only when the enhanced 

Coulomb counting algorithm is used for SOC estimation. The value of W is changed when 

the SOC compensator is used. In this dissertation, W is set to be 0.5 once the SOC 
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compensator is activated. Moreover, when the battery is operated for a long time in relaxation 

mode, the SOCi,V will be close to the real SOC. In this case, the weighting factor W will be 

set to zero. When W is zero and the battery is operated in the charge/discharge mode again, 

the execution of the SOC compensator will be over; and W will be reset to one. 

 

Figure 5.2:  The proposed closed-loop weighting SOC estimation algorithm. 

 

5.4  Validation 

The proposed electrical parameter and SOC estimation method was validated by 

simulation and experimental data for a four-cell polymer lithium-ion pack. The nominal 

capacity, nominal voltage, and cutoff voltage of a single cell were 860 mAh, 3.7 V, and 3 V, 

respectively (see Appendix). The experimental data for the cell voltage and current were 

collected from a CADEX battery tester C8000 (shown in Figure 5.3) under ambient 

temperature. The method shown in Figure 5.1 was implemented in MATLAB/Simulink on 

a laptop computer (see Figure 5.3). The measured cell voltage and current from the battery 

tester were used for real-time SOC and electrical parameter estimation for each individual 

battery cell. The parameters of the electrical circuit battery model were first extracted offline 
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for each battery cell by using the method described in [27]. These parameters were then used 

as the true values for comparison with those obtained from the method in real time. 

 

 

Figure 5.3:  The experimental setup for electrical parameter and SOC estimation. 
 

Figure 5.4(a)-(e) compares the RC parameters of the hybrid battery model for each 

cell estimated by using the proposed online parameter identification algorithm with their true 

values. The impedances for the four battery cells were estimated online for a dynamic current 

cycle shown in Figure 5.4(f). The parameter identification algorithm was executed 100 

seconds sequentially for each cell. The results show that the parameter identification 

algorithm estimates the cell parameters quickly and accurately.  

Next, the SOC estimation algorithm was investigated with a wrong initial SOC of 

50% for all of the four cells in the battery pack. The real initial SOCs of Cells 1, 2, 3, and 4 

are 90, 80, 70, and 60%, respectively. The multicell battery pack was operated with a 

dynamic current cycle, as shown in Figure 5.4(f). The SOC compensator was executed 100 

seconds sequentially for each cell to correct its SOC. Figure 5.5 compares the SOCs 

estimated by the proposed method with those measured by the battery tester. The estimated 
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SOC of each cell matched the measured value well even though the initial SOC was set 

wrong using the method. This result clearly shows that the algorithm is robust to the error of 

initial SOC, which however is important to the accuracy of the traditional Coulomb counting 

method. 
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(e) 

 

 (f) 

Figure 5.4:  Comparison of true and estimated RC parameters of the hybrid battery model 
for the four cells:  (a) Rs, (b) Rct, (c) Cd, (d) Rsd, (e) Csd, and (f) the dynamic current cycle 

applied to the battery pack. 
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Figure 5.5:  Comparison of the estimated and measured SOCs for the four cells when 
using a wrong initial SOC for each cell in the proposed method. 

 

5.5  Chapter Summary 

This chapter has proposed a novel hybrid model-based online SOC and electrical 

parameter estimation method for multicell lithium-ion batteries. The proposed method was 

implemented in MATLAB/Simulink and validated by simulation and experimental results 

for a four-cell polymer lithium-ion battery pack. The proposed method can be used for real-

time power management, condition monitoring, and diagnostics of batteries used in EVs and 

PHEVs.  
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CHAPTER 6:  SIMPLIFIED HYBRID BATTERY MODEL-BASED, 

REAL-TIME IMPEDANCE, SOC, AND SOH ESTIMATION 

This chapter introduces a real-time impedance, SOC, and SOH estimation for 

multicell batteries based on a simplified hybrid battery model [55]. The simplified hybrid 

battery model consists of an enhanced Coulomb-counting algorithm and an electrical 

circuit battery model [27]. The former is used to estimate the SOC of each battery cell, 

while the latter is used as a system model for designing an adaptive discrete-time sliding 

mode observer (ADSMO), which is executed in real time to sequentially estimate the 

terminal and open-circuit voltages of the cells in a battery pack. The OCV obtained from 

the ADSMO is used to estimate the SOC of the battery cell. The estimated SOC is then 

used by the SOC compensator to correct the errors of the Coulomb-counting-based SOC 

estimation sequentially for the cells in the battery pack based on a closed-loop weighting 

SOC estimation algorithm. The parameters of the electrical circuit battery model of each 

cell required to implement the ADSMO are identified by a moving window least square 

(MWLS)-based online parameter identification algorithm [105]. Therefore, the hybrid 

battery method is capable of capturing nonlinear capacity effects of each battery cell and 

ensuring the robustness of the SOC estimation to unknown initial SOC, wrong maximum 

capacity, and error accumulation. In addition, the SOH is determined by comparing the 

rated capacity and the estimated maximum capacity of a cell. Furthermore, the estimated 

electrical parameters, such as series resistance [68], diffusion resistance [63], and diffusion 

capacitance [74], can be used as additional indicators for SOH estimation. The hybrid 
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battery method was validated by using simulation and experimental results for a four-cell 

cylindrical lithium-ion battery pack. 

The SOC and SOH estimation method consists of four parts, as shown in Figure 6.1, 

for a series-connected m-cell battery pack:  1) a simplified hybrid battery model presented in 

Section 3.1, including an enhanced Coulomb-counting algorithm and an electrical circuit 

battery model; 2) an MWLS-based parameter identification algorithm; 3) an SOC 

compensator consisting of an ADSMO-based SOC estimator and a closed-loop weighting 

SOC compensation algorithm for correcting the error of the enhanced Coulomb-counting-

based SOC estimation; and 4) an SOH estimator. The simplified hybrid battery model, 

parameter identification algorithm, SOC compensator, and SOH estimator are executed 

sequentially for each cell of the series-connected m-cell battery pack. 

 

Figure 6.1:  The SOC and SOH estimation method for a  
series-connected m-cell battery pack. 
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6.1  Parameter Identification by MWLS Method 

The MWLS method is employed to identify the RC parameters Ri,s, Ri,ct, and Ci,d, of 

the electrical circuit model of each battery cell i (i = 1, ∙∙∙, m). Assuming that Ts is short, e.g., 

Ts ≤ 1 second, such that ΔCi,unavailable is negligible, the z-transfer function between the 

estimated terminal voltage ,î cellV  and current iB of the electrical circuit battery model in 

Figure 6.1 is given in (6-1) and the corresponding difference equation is given in (6-2). 
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where τi,S = Ri,ct·Ci,d; Because (1+xi,1+xi,2) is zero, (6-1) can be reformulated into the 

regression form of the input/output relationship. 
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where the regressor is Фi
T(k) = [‒Vi,cell(k‒1), ‒Vi,cell(k‒2), iB(k), iB(k‒1), iB(k‒2)] and the 

vector of the parameters to be estimated is Θi = [xi,1, xi,2, xi,3, xi,4, xi,5]T. Then, the MWLS 

algorithm is designed to estimate the vector Θi. The MWLS is an advanced least squares 

estimation algorithm with a forgetting factor [105]. It uses the block data captured by a 

sliding window to keep track of the nonlinear time-variant parameters. The RC parameters 

of the electrical circuit battery model can then be calculated from (6-4) after Θi is identified. 

This leads to an adaptive battery model.  

The length of the sliding window can be variable depending on the estimation error 

of the terminal voltage by using (6-5) [105]. Due to the nonlinear time-variant parameters of 

battery cells, a long sliding window includes more information on the nonlinearity but may 

degrade the accuracy of the parameter estimation, resulting in a large estimation error of the 

terminal voltage. Furthermore, the excitation level of the input signal is also an important 

factor in choosing the length of the sliding window [54]. For example, if long discharge 

current pulses are applied to the battery, the sliding window should have at least one of the 

pulse edges. On the other hand, the length of the window can be set to be short, e.g., the 

allowed minimum value, if the input signal is fully excited within a short window. The 

abnormal values of the estimated RC parameters due to low perturbation or quality of the 

input signal are discarded.  
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6.2  Real-Time SOC Estimation by ADSMO 

The ADSMO is proposed to estimate Vi,oc of Cell i (i = 1, ∙∙∙, m). Figure 6.2 shows a 

block diagram of the ADSMO. Using the first-order forward Euler method, the actual 

terminal voltage Vi,cell can be written as follows [78]: 
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 The ADSMO is designed as: 
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where l is the SMO gain of the switching control vector Z, and Tsmo is the sampling period of 

the ADSMO. In (6-7), the internal parameters Ri,s, Ri,ct, and Ci,t are used, which are obtained 

from the parameter identification process. By defining the voltage estimation error

, ,
ˆ( ) ( ) ( )v i cell i cellk V k V k , (6-8) can be obtained by subtracting (6-7) from (6-6):   
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The sliding surface is designed as S(k) = εv(k) = 0. The dynamic of the ADSMO can be 

written as: 
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A variable switching function for the ADSMO is defined as follows. 
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where Z0 is the width of the boundary layer. Due to the switching function, S is bounded. 

 According to (6-9), the Lyapunov stability condition, i.e., 0SS , is satisfied if l > 

Vi,oc_max/Z0, where Vi,oc_max is the maximum OCV of Cell i. Finally, the state trajectory 

approaches the sliding surface defined by 0SS . When the tracking error is zero, the 

output of the designed switching function, lZ, is equal to Vi,oc. If there is an abrupt change in 

the cell current (such as pulsed charge or discharge current), the ADSMO is not able to 

quickly catch up with the change in the terminal voltage when Tsmo is large, e.g., Ts = 1 second. 

As a result, the output of the switching function oscillates until ε becomes small. The moving 

average (or low-pass filter) and selector module in Figure 6.2 smooth lZ and discard the 

highly oscillated values, respectively. 

 The estimated OCV ociV ,
ˆ is then used to calculate the SOC (SOCi,V) of Cell i 

according to the a SOC–Voc lookup table obtained under the ambient temperature. Assuming 

that the hysteresis effect is negligible in the lithium-ion battery cells, the relationship between 

SOC and Voc depends on temperature and aging; but their influence may be negligible if the 

SOC is expressed using the relative capacity [106].  

 

Figure 6.2:  A block diagram of the ADSMO-based SOC estimator. 
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6.3  Real-Time SOC Estimation and Compensation 

 The closed-loop weighting SOC compensator in (5-13) and (5-14) ([87], [103]) is 

used with the ADSMO-based SOC estimator to correct the error of the SOC, i.e., SOCi,T, 

obtained sequentially for the cells from the enhanced Coulomb counting algorithm in (5-1) 

and (5-2), as shown in Figure 6.3. SOCi,V is the SOC estimated from the ADSMO-based SOC 

estimator shown in Figure 6.2. The SOC compensator uses SOCi,V  to correct the SOCi,T. In 

this dissertation, Ci,max of Cell i in the enhanced Coulomb counting algorithm is updated by 

the capacity estimation in the SOH estimator, which is discussed in (6-11) in the next section. 

The SOCi,V and SOCi,T are multiplied by their weighting factors and then added together to 

generate a compensated SOC (i.e., SOCnew), as discussed in Chapter 5.3. The SOCnew is then 

used as the initial SOC (SOCi) of the enhanced Coulomb counting algorithm to estimate the 

SOC in the next time step.   

 

 

Figure 6.3:  The proposed closed-loop weighting SOC estimation algorithm with 
ADSMO. 
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6.5  SOH Estimation by Two-Point Method 

Due to cell state variations, the maximum capacities of the battery cells in a pack are 

unequal to the nominal capacity that the manufacturer offers. Such variations depend on 

manufacturing environment and temperature conditions. Moreover, the maximum capacity 

of a cell reduces due to aging.  Therefore, the value of Ci,max is a good indicator of the SOH 

of a battery cell Cell i and can be updated from (6-11) using the compensated SOCi as follows: 
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where k1 and k2 are the beginning and end times of the SOH estimation period, respectively.  

 The SOH represents a battery cell’s capacity and power capability for delivering the 

specified performance compared to a new battery. The SOH can be indicated by a single 

measurement of the conductance or impedance of a cell, which is easy to determine but 

imprecise. Other battery parameters, such as maximum capacity, internal resistance, self-

discharge rate, charge acceptance, and discharge capability are used to estimate the SOH. In 

this dissertation, the SOH is estimated as the ratio of the maximum capacity of a battery cell, 

i.e., Ci,max, to that of the cell when it is new (i.e., Ci,max_new). Such an SOH represents the 

capacity degradation of the cell.  
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In addition, the impedance estimated by using the MWLS method can be utilized for SOH 

estimation from the perspective of power degradation. 
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6.6  Validation 

The SOC and SOH estimation method was validated by simulation and experimental 

data for a four-cell cylindrical lithium-ion battery pack (see Appendix). The experimental 

data of the cell voltage and current were collected from a CADEX battery tester C8000 

(shown in Figure 6.4) under ambient temperature. The method shown in Figure 6.1 was 

implemented in MATLAB/Simulink. 

 

 

Figure 6.4:  The experimental setup for simplified hybrid battery model-based  
SOC and SOH estimation. 

 

The cell voltage and current measured by the battery tester were used by the 

estimation method for real-time SOC and SOH estimation of each battery cell. The values of 

Voc(SOC) and Cmax were extracted offline for each battery cell [27] first. They were then used 

as the true values and compared with the values obtained from the estimation method in real 
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time. In order to set initial SOCs for the test battery cells, they were fully charged and rested 

for one hour first. Then the cells were discharged, using a small current, to the desired initial 

SOC values. Finally, the cells rested (or they may have needed further charge or discharge 

using very small currents) until their OCVs were equal to the true values corresponding to 

the initial SOCs. 

First, the identification of Voc and Cmax was investigated. Figure 6.5(a)-(c) compares 

the true and estimated Vcell, Voc, and Cmax for a dynamic current cycle, shown in Figure 6.5(d). 

The parameter identification algorithm was executed by using the data sampled with a 1 Hz 

rate and a 20-second moving window. Then, the ADSMO was executed with a sampling rate 

of 100 Hz to estimate the Voc. The results show that the values of Vcell, Voc, and Cmax were 

estimated accurately in real time. The SOH of the cell could be estimated using the estimated 

Cmax. However, it takes a relatively long time to get Cmax close to its true value.  

 
(a) 
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(b) 

 

(c) 
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 (d) 

Figure 6.5:  Comparison of true and estimated parameters of a battery cell:  
(a) Vcell, (b) Voc, (c) Cmax, and (f) the dynamic current cycle used for the test. 
 

Next, the SOC estimation algorithm for multicell batteries was investigated using the 

measured data of the four-cell battery pack. All cells were initially set with a wrong initial 

SOC of 50%; while the real initial SOCs of Cells 1, 2, 3, and 4 were 100%, 90%, 80%, and 

70%, respectively. The battery pack was operated with a dynamic current cycle, as shown in 

Figure 6.5(d). The SOC compensator was executed sequentially with an interval of 100 

seconds for each cell to compensate its SOC. Figure 6.6 compares the SOCs estimated by 

the proposed method with those measured by the battery tester. The estimated SOC of each 

cell matched the value measured, although the initial SOC was set wrong in the proposed 

method. This result clearly shows that the proposed algorithm is robust to the error of the 

initial SOC, which, however, will reduce the accuracy of the traditional Coulomb-counting 

methods.   
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Figure 6.6:  Comparison of the estimated and measured SOCs for the four cells. 

 
 

 

6.7  Chapter Summary 

A novel simplified hybrid model-based, real-time impedance, SOC and SOH 

estimation method was developed for multicell lithium-ion batteries. The method was 

implemented in MATLAB/Simulink and validated by simulation and experimental results 

for a four-cell cylindrical lithium-ion battery pack. The method can be used for real-time 

power management, condition monitoring, and diagnostics of batteries in various 

applications, such as EVs and PHEVs.  
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CHAPTER 7:  AN ELECTRICAL CIRCUIT WITH HYSTERESIS 

BATTERY MODEL-BASED REAL-TIME IMPEDANCE, SOC, AND 

SOH ESTIMATION  

This chapter describes an electrical circuit with hysteresis model-based condition 

monitoring strategy for lithium-ion batteries [107]. The strategy systematically integrates:  

1) a fast upper-triangular and diagonal recursive least square (FUDRLS) online parameter 

identification algorithm [93], which estimates the parameters of the electrical circuit 

battery model, 2) a smooth variable structure filter (SVSF) for the SOC estimation of the 

battery, and 3) a recursive total least square (RTLS) algorithm for maximum capacity 

estimation of the battery [91], which indicates the SOH of the battery and improves the 

SOC estimation algorithm. Advantages of the proposed strategy include high accuracy, 

low computational cost, and simple implementation, and, therefore, it is suitable for 

deployment and use in real-time embedded battery management systems. Simulations and 

experiments validated the effectiveness of the proposed condition monitoring strategy. 

7.1  The Electrical Circuit with Hysteresis Battery Model-Based- 

Condition Monitoring Strategy 

 The condition monitoroging strategy, shown in Figure 7.1, consists of three parts:  

1. A FUDRLS-based impedance estimator  

2. An SVSF-based SOC estimator  

3. An RTLS-based SOH, i.e., maximum capacity, estimator  
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The strategy operates at different time scales, where the FUDRLS and SVSF run with a 

smaller time scale to estimate the fast time-varying electrical parameters and the SOC; and 

the RTLS runs slower to track the slow time-varying maximum capacity parameter. In this 

way, the low computational resources are used economically with guaranteed estimation 

performance.  

 

Figure 7.1:  The model-based condition monitoring strategy for embedded BMS. 

 

7.2.  Impedance Estimation by FUDLRS 

 Since the internal impedance of a battery cell changes with SOC, temperature, and 

charge/discharge current rate, etc., an online impedance estimation algorithm is required to 

provide an accurate electrical circuit battery model. The FUDRLS algorithm was used to 

identify three impedance parameters:  Rs, Rct, and Cd, of the electrical circuit battery model 

shown in Figure 3.13. Developing a regression form for the electrical circuit battery model 

is similar to that described in Section 6.1. To estimate the impedance parameters, the 

hystereis voltage dynamics are ignored; and Voc = b1·SOC + b0 is assumed. Then, the 
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simplified electrical circuit with hysteresis battery model (3-36) is reduced to the following 

second-order state space form:  
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Taking the z-transformation of (7-1) gives [95]:  
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The difference equation corresponding to (7-2) is given by: 

                  
)1()2(

)1()()2()1()(

2105

4321

xxbkix

kixkixkVxkVxkV

B

BBcellcellcell                 (7-3) 

Since 1+x1+x2 = 0, (7-3) can be reformulated into the following regression form.                            
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                             [ ( ) ( 1)] ( ) ,T
cell cellV k V k k                                               (7-4) 

where Θ = [x2, x3, x4, x5]T and ФT(k)=[Vcell(k–1) – Vcell(k–2), iB(k), iB(k–1), iB(k–2)].   

 Remark 1:  The z-transformation technique is applied to derive (7-4) because 

matrices A, B, C, and D are time invariant. Alternatively, one can perform a derivation in the 

time domain, i.e., directly work on the difference equation (7-3) and establish (7-4). 

 The derivation of (7-4) is performed on the basis of the second-order battery model 

(7-1) and the parameterization of Voc as b1·SOC+b0 for impedance estimation. Specifically, 

a linear parameterization of Voc is critical to the derivation; and the second-order battery 

model (7-1) is merely to simplify the presentation. Linear parameterization of Voc is valid in 

the neighborhood of SOC while the hysteresis voltage Vhmax reaches steady state but is invalid 

during the transient of Vh. This limitation can be addressed by imposing a less restrictive 

assumption:  linear parameterizations of the Voc-SOC curve, which is always valid locally. 

This allows to perform parameter identification for impedance and Vhmax based on (3-36) and 

the following dynamics.  

                           0 1( ) ( ) ( ) ( ) ( )cell st s B hy k V k b b SOC V k R i k V k                          (7-5) 

Note that notations b0 and b1 are used here.  

Since the state matrix A of the model (3-36) are current dependent or time varying, 

the model (3-36) does not allow z transformation. It is not straightforward to rewrite (3-36) 

into a linear regression form. However, an approximate linear regression form of the model 

(3-36) can be derived; and thus parameter identification can be readily carried out. Notice 

that the main difficulty in establishing the linear regression form arises from the time-varying 

Vh-dynamics, which fortunately are independent of the Vct and SOC-dynamics. This 

decoupling feature allows to obtain an approximate linear regression form. 
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In order to obtain an approximate linear parameterization of y, consider the following 

system based on (3-36): 

0( 1) ( ) ( 1) ( ), (0) .Bk H k H sign i                            

Considering Vh(k) = ξ(k)Vhmax for ξ0 = Vh(0)/Vhmax, the following linear parameterizations of 

y(k) is obtained: 

                                                 0 1 max( ) ( ) ( ) ( )ct s B hy k b b SOC V k R i k k V                              (7-6) 

where Vhmax is unknown. A time-varying open-loop filter is introduced to estimate ξ 

0
ˆ ˆ ˆ( 1) ( ) ( 1) ( ), (0) .Bk H k H sign i       

Since H < 1, the aforementioned time-varying open-loop filter produces an exponentially 

convergent estimate of ξ(k), i.e., ˆ( )k  converges to ξ(k) as k →∞ for any bounded ξ0. 

Combining (7-6) and the fact that )(ˆ k →ξ(k) as k →∞, the approximate linear 

parameterizations of y(k) are as follows: 

                                               0 1 max
ˆ( ) ( ) ( ) ( )ct s B hy k b b SOC V k R i k k V  ,                             (7-7)   

from which, together with the dynamics of SOC, Vct, the approximate linear regression of (3-

36) can be established. Compared to (7-1), the approximate linear regression has an extra 

parameter Vhmax in Θ and an extra signal ˆ( )k  in Φ(k). 

Given (7-4), the parameter vector Θ can be estimated by a multitude of algorithms, 

for instance the conventional Bierman’s upper-triangular and diagonal recursive least 

square (UDRLS) method [56], Gentleman’s UDRLS [108], etc. The UDRLS is a 

factorization algorithm to solve digital computer implementation problem of RLS, which 

preserves the positive covariance P by updating the U-upper triangular and D-diagonal 



138 
 

matrices, thus the numerical stability has been improved. The Gentlman’s UDRLS is 

attractive to embedded applications due to its parallel implementation and resultant fast 

computational speed. The RLS-based methods can be improved by using the forgetting factor 

[53]. The estimation algorithm with a small forgetting factor may track time-varying 

parameters fairly well at the expense of increased susceptibility to noise; while the forgetting 

factor is large, the tracking ability will be poor but robust to noises. In general, the RLS 

technique utilizes exponential forgetting (EF) whose forgetting rate is constant [53], [56]. 

The main drawback of the EF method is called windup, and it comes when a data vector is 

not persistently exciting [109] and is not optimal for tracking and noise influence due to the 

constant forgetting rate [109]. 

The FUDRLS algorithm combines the Gentleman’s UDRLS with a variable 

forgetting factor to estimate Θ. Methods with variable forgetting (VF) adaptively change the 

forgetting rate. The main VF mechanism is:  the algorithm takes a smaller forgetting factor 

at the presence of large prediction errors and a larger forgetting factor otherwise. In this 

dissertation, the forgetting factor λ is adjusted as follows: 
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                                   (7-8) 

where δ1 is a weighting factor (0.9 < δ1 <1); E a is time-average expression of e(k)2 and E(0) 

is set to be 0
2; the parameter 0

2 is the mean value of the variance of the prediction error 

obtained from the method implemented in the FUDRLS with a constant forgetting factor, 

e.g., λ = 0.98, assuming that the expected noise variance is much smaller than 0
2; N0 

represents the memory length (e.g., N0 = 50 corresponding to a mean forgetting factor of 
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0.98); and λmax (e.g., 0.999) and λmin (e.g., 0.95) denote the maximum forgetting and 

minimum forgetting factors, respectively.  An intuitive interpretation of (7-8) is that the 

forgetting factor λ is adjusted according to the square of the time-averaged estimation of the 

autocorrelation of posterior error e(k).  

In the FUDRLS, the regression matrix ΦT(k) is combined with v1(k) = 

Vcell(k) Vcell(k 1) to produce an augmented matrix: ΦT(k) = [ΦT(k) v1(k)]. The detailed 

FUDRLS algorithm is given in Table 7.1, where δ0 denotes an initial covariance value, e.g., 

105. For real-time implementation, the computation of fF and the triangularization can be 

pipelined. 

In a practical BMS application, the parameter identification algorithm is 

implemented in a system-on-a-chip [110]. Due to the advent of very-large-scale integration 

(VLSI) technology, the features of parallel processing and pipelining implementation will be 

attractive to improve the computation speed and reduce the size of ICs [111]. Therefore, 

FUDRLS will be beneficial to the development of real BMS ICs in this sense.  
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  1: algorithm initialization. Set k = 0, KFUDRLS = [0, 0, 0, 0, 0]T, and P0 = δ0I5×5= 
UoldDoldUold

T where 
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  2: repeat 
  3:      k  k+1 
  4:      read new data Vcell(k) and iB(k) 
  5:      compute fF = U0

TΦa(k) and ε = –fF(5)  
  6:      initialize r(0) = λ  
  7:      for h =1 to 5 do  
  8:           compute the parameters Gentleman’s transformation 
                                                    r(h) = r(h–1) + Dold(h) fF(h)2                      
                                                    Dnew(h) = Dold(h)r(h–1) /(λr(h))           
                                                    alpha(h) = –fF(h) 
                                                    beta(h) = Dold(h) fF(h)/r(h) 
                                                    KFUDRLS(h)= beta(h) 
  9:     end for 
10:     for j = 2 to 5 do 
11:          compute the Gentleman’s transformation 
12:          for i = 1 to j–1 do 
13:               compute the Gentleman’s transformation 
                                                           Unew(i,j) = Uold(i,j) + alpha(j) KFUDRLS(i)         
                                                           KFUDRLS(i) = KFUDRLS(i) + beta(j)Unew(i,j)           
14:          end for        
15:     end for     
16:     update parameter estimate Θ and Uold, Dold  

                                           Θ = [ Unew(1,5), Unew(2,5), Unew(3,5), Unew(4,5)]T   
                                          Uold = Unew, Dold = Dnew  
17:     map Θ to Rs, Rct, and Cd  
18:     check whether estimated parameters are within the predefined range of   
          values  

Table 7.1:  FUDRLS algorithm. 



141 
 

7.3  SOC Estimation by SVSF 

 The SVSF estimates the battery SOC by using a state space model (3-36). The 

internal parameters Rs, Rct, and Cd in (3-36) are updated by the FUDRLS online parameter 

identification algorithm. 

The SVSF, originally proposed in [112], is a predictor-corrector method for state and 

parameter estimation and is based on variable structure theory and a sliding mode concept. 

A switching gain is implemented to keep the state estimate within a bounded domain, which 

is an invariant set containing the true states. The SVSF is relatively stable and robust for 

modeling uncertainties and noises, given that uncertainties are upper-bound. The basic 

concept of the SVSF-based state estimation is shown in Figure 7.2, where the solid line is a 

trajectory of a system state. The estimated state trajectory is forced towards the system state 

trajectory until it enters the neighborhood of the actual state trajectory, referred to as the 

existence of subspace. The existence of subspace is an invariant set because once the 

estimated state enters, it remains within the region. The SVSF was applied to estimate battery 

parameters and SOC in [113], albeit the result was validated by simulation only. 

In this dissertation, SVSF is designed on the basis of the state space model (3-36) to 

perform the state estimation for a battery cell. The dynamics of the proposed SVSF are given 

by  

                                                              1| |

1| 1|
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where 1|ˆk kx  is the predicted state estimate, |ˆk kx  is the state estimate at time k, f is a vector 

field, kky |1ˆ is the predicted measurement, and CSVSF is the linearized measurement matrix 

given by    

( )( , ) , 1, 1OCB
SVSF

V SOCh x i
C diag

x SOC
. 

where h is smooth function of x and iB. Defining the innovation as , 1| 1 1|z k k k SVSF k ke y C x , 

the SVSF gain is calculated as follows: 
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, 1 , 1| , | , 1|(| | | |) ( , )SVSF k SVSF z k k s z k k z k kK C e e sat e 1||, 1,(( 1|(( 1                       (7-10) 

where ez,k|k is a posteriori measurement error of previous step; sat(∙) is a satuation function; 

Ψ is the smoothing boundary layer widths; γs (0 < γs < 1) is the SVSF convergence rate; and 

 is the Schur product. To ensure numerical stability, the components of CSVSF should be 

positive values. This can be accomplished by using a simple if statement with a very small 

threshold, i.e., 10-10, or calculating the pseudoinverse C-1
SVSF with a small damping parameter 

ω, i.e., 10-8, such as the following: 
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The corrected (or posteriori) state estimates are computed as follows: 
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Figure 7.2:  The SVSF estimation concept. (Courtesy of [112].) 

 

 In order to speed up the convergence rate of the SVSF, the iterated SVSF (ISVSF) 

can be applied [114]. It consists of two procedures:  prediction and update.  The formulae for 

the ISVSF in the prediction procedure are the same as the original SVSF. If ey,k+1|k+1 is larger 

than a prespecified error tolerance level, it will go to the update procedure, which is 

implemented iteratively as follows: 
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 The iteration process stops when the estimation error becomes less than the 

prespecified tolerance level or the value of i reaches the predefined maximum iteration 

number Nmax. In the latter case, the estimated state )(
|1ˆ i
kkx corresponding to the minimum 



144 
 

error is set to be 1|1ˆ kkx . Once the estimated state 1|1ˆ kkx converges, the iteration process will 

stop. It should be pointed out that the values of the system parameter γs and Ψ will affect the 

performance of the SVSF, as well as those of a prespecified tolerance level and Nmax for 

ISVSF. 

7.4  SOH Estimation by RTLS 

The SOH represents a battery cell’s capacity and power capability for delivering the 

specified performance compared with a new battery. Different quantities have been used to 

indicate the SOH, e.g., impedance. As mentioned in Section 6.5, this dissertation considers 

the following quantity as a measure of the SOH. 

                                                 
newC
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nSOH
max_

max )()(                                                         (7-14) 

where n is the update index of the maximum capacity estimation algorithm, and Cmax_new is 

the maximum capacity of a new battery cell. Such an SOH represents the capacity 

degradation of the cell. Also, it is clear that an accurate Cmax is a prerequisite for Coulomb 

counting-based SOC estimation algorithms to provide a good estimation of the SOC.   

 In [55] and [115], the maximum capacity is simply calculated as follows:   

                                               
)()(

3600
)(

12
max

2

1

kSOCkSOC

ki
T

C

k

kk

B
s

                                           (7-15) 

where k1 and k2 are the beginning and end time instants. Rearrangement of (7-15) gives the 

following linear regression form:  

                                                                       uCz max                                                    (7-16)                         

where u = SOC(k2) – SOC(k1) and 
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 Under certain conditions on z and u, an unbiased estimation of Cmax can be achieved 

by solving an LS problem. The solution has been widely used and is written as follows: 
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where UM = [u(1), ∙∙∙, u(n)]T and ZM = [z(1), ∙∙∙, z(n)]T. Figure 7.3(a) illustrates the concept of 

the LS method, where the dots represent the data points, the solid line represents the fitting 

line, and the dashed lines represent the vertical distances from the data points to the fitting 

line. The output of the standard LS method is accurate only if the estimated values of the 

SOC, i.e., u, are correct. This is because the LS method minimizes the sum of the squared 

vertical distances between the data points and the fitting line. If the estimated SOC values 

are incorrect, the LS method leads to a biased maximum capacity estimation [80].  

 The total least square (TLS) algorithm was proposed to alleviate the limitation of the 

LS method when the elements of both the observation matrix UM and the measurement 

matrix ZM are inaccurate. Unlike the LS, the TLS performs the orthogonal regression which 

minimizes the sum of the squared orthogonal distances from the data points to the fitting line 

[117]. The idea of the TLS algorithm is illustrated in Figure 7.3(b), where the dashed lines 

represent the orthogonal distances from the data points to the fitting line. Therefore, TLS 

alleviates the limitation of the LS by performing orthogonal regression [117].  

The TLS algorithm is generally solved by using singular value decomposition (SVD) 

methods [117] which incur high computational complexity and thus are not suitable for the 

embedded system [118]. A fast RTLS algorithm is applied for maximum capacity estimation 

[91]. The algorithm is based on the constrained Rayleigh quotient, which can run in real-time 
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and enjoys fast convergence [119]. Compared to the TLS, the proposed RTLS algorithm 

entails much lower computational load; and the estimation accuracy is comparable to the 

TLS algorithm.  

 

(a) 

 

 (b) 

Figure 7.3:  Comparison of linear regression methods:  (a) LS and (b) TLS. 

To facilitate the presentation of the proposed algorithm, it is first assumed that (7-16) 

is represented with the noisy output and input given by 
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where u(n) and z(n) in (7-16) are the true input and output, respectively; Δz is output 

measurement error which is assumed to be a zero-mean Gaussian process with a known 

variance of σz
2; and Δu is the SOC estimation error which is assumed to be a zero-mean 

Gaussian process with a known variance of σu
2. The autocorrelation matrix of the noisy input 

is defined as: 

                                           2)()(~)(~)(~
uu

T
u nRnunuEnR                 (7-18) 

where Ru(n) = E[u(n)uT(n)]. The augment data is defined as Tnznunx )(~),(~)( . The 

autocorrelation matrix of )(nx can be expressed as: 
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sb E u n z n( ) T( )( ) ( )]( )]T (( and [ ( ) ( )]T

sc E z n z n( ) ( )]T( ) (( ) ( . When n is sufficiently large, the stochastic 

quantities Ru(n), bs(n), and cs(n) can be expressed as follows [119]:  
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where  is the forgetting factor. 

The maximum capacity estimation on the basis of (7-18) is performed by minimizing 

the following constrained Rayleigh quotient:  
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where the eigenvector qe = [Cmax, −1]T , and ),1( wdiagD  is a diagonal weighting matrix 

with βw= y
2/ u

2. If the eigenvector qe* which minimizes J(Cmax) and corresponds to the 

smallest eigenvalue of xR , then qe* is the unbiased TLS solution [120].  

To avoid solving the constrained Rayleigh quotient minimization problem at each 

step, the Cmax is assumed to be updated as follows: 

                                 max max( ) ( 1) ( ) ( ),uC n C n n u n( ),((        (7-20) 

where αu(n) is chosen to minimize (7-19) in the direction of ( )u n( )u( , i.e.,  
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Then, αu(n) can be obtained by solving the following quadratic equation formed by the 

numerator term of (7-21):  

                                                             2
1 2 3( ) ( ) 0u ud n d n d                                       (7-22) 

The quadratic equaton (7-22) has two roots, from which the solution of αu(n) can be obtained 

as follows:  
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The proposed RTLS method requires three running time-averaged estimations, d1, d2, 

and d3, to update αu(n). On the other hand, the TLS method in [80] has six running time-

averaged estimations and finds the optimal solution from four roots using the Ferrari method. 

Therefore, the proposed RTLS method has lower computational complexity and cost than 

the TLS method in [80]. 

7.5  Validation 

Simulation and experimental studies were carried out to validate the condition 

monitoring algorithms for a lithium-ion battery cell subject to various pulsed current 

operations. Comparisons with the existing dual extended Kalman filter (DEKF) method [67] 

demonstrated the advantages of the proposed electrical circuit with hyteresis model-based 

condition monitoring strategy in Figure 7.1 in terms of accuracy measured by RMSE and 

computational cost measured by simulation time. The electrical circuit with hysteresis 

model-based condition monitoring strategy and the DEKF were implemented in MATLAB 

on a computer using Intel® Core™2 Duo CPU T6600@2.2GHz, 64-bit OS. The system 

parameters of the proposed algorithm and the DEKF were carefully selected to minimize the 

estimation error. The data of the cell voltage and current were collected from a battery tester 

under ambient temperature at 23 °C and then were used as the inputs for the algorithms. 

7.5.1  Simulation Studies 

The electrical circuit with hystereisis battery model is given by (3-36), and the 

parameters of the model are listed in Table 7.2. The initial states x(0)=[SOC(0) Vct(0) Vh(0)]T 

and maximum capacity Cmax were set to be x(0)=[0.8 0 0]T and 6 Ah, respectively; while the 
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true initial SOC and Cmax used in the Coulomb-counting method were 0.95 and 5 Ah, 

respectively. The value of N0 and δ1 were defined as 50 and 0.995, respectively, for FUDRLS 

with the VF (λmin = 0.95 and λmax = 0.995). In the SVSF, the values of γs and Ψ were set to be 

0.1 and 0.2. The input current was corrupted by a zero-mean Gaussian random number 

having the variance σz
2 = (0.01)2. Assuming that the SOC estimation of SVSF that is the 

second input to RTLS achieved an accuracy of 1%, i.e., σu = 0.01, an overall σu
2 is 2×(0.01)2, 

since two estimates of SOC were required [80]. Therefore, βw becomes (0.01)2/(2×0.012). 

The forgetting factor  = 0.98 was used for the RTLS. In addition, another model-based 

algorithm DEKF [67], which included an EKF for SOC estimation and another EKF for 

parameter estimation of impedance (Rs, Rct, Cd) and Cmax, was implemented to compare with 

the method developed. In the DEKF design, the initial state covariance, process noise 

covariance matrix, and measurement noise covariance matrix, used in the SOC estimation 

were defined as diag[1 1 1], diag[0.16 0.16 0.16], and 0.25, respectively; and those for the 

EKF parameter estimation were specified as diag[10-13 10-2 10-3 10-4], diag[4×10-13 10-5 10-6 

10-7], and 0.25, respectively.  

Table 7.2:  Electrical circuit with hystereisis battery model parameters. 

Cmax 5 Ah Rs 0.08 ohm 
Cd 3000 F Rct 0.03 ohm 

Vhmax 0.01 V ρ 2.47·10-4 
a0 -0.852 a1 63.867 
a2 3.692 a3 0.559 
a4 0.51 a5 0.508 

 

First, the FUDRLS wass executed to estimate RC parameters of the electrical circuit 

battery model; and then SVSF was executed to estimate SOC with a small sampling period, 

e.g., Ts = 1 second, to keep track of the fast time-varying electrical parameters and SOC of 
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the cell. A large time scale, e.g., Tl = 200 seconds, was used in the execution of the RTLS for 

tracking the maximum capacity. The DEKF was executed with a small time scale, e.g., Ts = 

1 second. 

The results are shown in Figure 7.4. The battery cell was operated by a dynamic noisy 

current cycle, shown in Figure 7.4(a). Figure 7.4(b)-(d) shows the impedances of the battery 

estimated by using the online parameter identification algorithm. It has been shown that the 

FUDRLS with the VF converges to the true values faster than the DEKF method. Table 7.3 

illustrates a comparison of the performance evaluation metrics. The results clearly indicate 

that the FUDRLS parameter identification algorithm works better than the DEKF in terms 

of accuracy and convergence speed. Figure 7.4(e) compares the estimated SOCs from DEKF 

and the proposed SVSF algorithm with the true SOC from the Coulomb-counting method. 

The SVSF algorithm converges to the true value faster than DEKF. The estimated SOC from 

the SVSF algorithm matched that obtained from Coulomb Counting better than those 

obtained from the DEKF after a certain period. Figure 7.4(f) compares the Cmax obtained 

from the RTLS algorithm and the DEKF with true maximum capacity. The result confirmed 

that the RTLS algorithm converged to the true maximum quickly; the DEKF method was 

worse than the method. Table 7.4 compares the performance evaluation matrices. The results 

clearly show that the electrical circuit with hysteresis model-based algorithms outperform 

the DEKF in terms of higher accuracy and lower computational cost.  
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(e) 

 

Figure 7.4:  Comparison of true and estimated impedance, SOC, and maximum capacity 
of the battery cell from the proposed condition monitoring algorithms and DEKF:  

(a) input current profile; (b) Rs; (c) Rct; (d) Cd; (e) SOC; and (f) Cmax. 
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Table 7.3:  Comparison of RMSEs for the parameter identification algorithms. 

Parameter DEKF FUDRLS 
Rs (ohm) 0.0039 4.1559E-4 
Rct (ohm) 0.0024 0.0162 

Cd  (F) 391.85 64.63 
 

 

Table 7.4:  Comparison of RMSEs and computational times for the SOC and the capacity 
estimation algorithms. 

Method 
Proposed Algorithms 

DEKF FUDRLS SVSF RTLS 
Parameter Impedance SOC Capacity Impedance SOC Capacity 

Accuracy (RMSE) 
In Table 

7.3 
0.0191 0.4858 In Table 7.3 0.038 0.5287 

Computational time 
(seconds) 

3.0822 11.093 0.0212 23.52 
 

 

7.5.2  Experimental Studies 

The model-based condition monitoring algorithms were further validated using the 

measured data of a lithium-ion battery cell from the Advanced Technology R&D Center, 

Mitsubishi Electric Corporation. The parameters of the model-based condition monitoring 

algorithms are shown in Table 7.5. In the DEKF design, the initial state covariance, process 

noise covariance matrix, and measurement noise covariance matrix, used in the EKF for SOC 

estimation were defined as diag[1 1 1], diag[0.16 0.16 0.16], and 0.25, respectively; and 

those of the EKF for parameter estimation were specified as diag[10-14 10-4 10-5 10-6], 

diag[4×10-10 10-7 10-10 10-11], and 0.25, respectively. The true SOC trajectory was obtained 

using the Coulomb-counting method. The parameters of the OCV-SOC function of the 

battery cell were extracted under ambient temperature at 23 °C [95]. The initial states x(0) 
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and maximum capacity were set to be x(0) = [0.4 0 0]T and 5 Ah, respectively, while the true 

initial SOC and Cmax used in the Coulomb-counting method were 0.31 and 4.732 Ah, 

respectively. In order to set the test battery cell with the desired initial SOC, the battery cell 

was first fully charged and rested for one hour. Then the cell was discharged, using a small 

current, e.g., 0.2 A, to the desired initial SOC values. The true maximum capacity was 

extracted offline from a full discharge test with a small current, e.g., 0.2 A, at ambient 

temperature before testing the battery.  

Table 7.5:  Parameters of the proposed condition monitoring algorithms. 

λmin 0.95 λmax 0.995 N0 50 

δ1 0.995 γ 0.1 Ψ 1 

σu
2
 2(0.02)2 σz

2
 (0.01)2  0.98 

Ts 1 second Tl 20 seconds   

 

First, the FUDRLS was executed to estimate impedances (RC parameters) of the 

electrical circuit battery model; and then SVSF was executed after 30 seconds to estimate 

SOC with a small sampling period,e.g., Ts = 1 second, to keep track of the fast time-varying 

electrical parameters and SOC of the cell. A large time scale, e.g., Tl = 20 seconds, was used 

in the execution of the proposed RTLS for tracking the Cmax. The DEKF was executed with 

a small time scale, e.g., Ts = 1 second. The estimation results are shown in Figure 7.5. The 

battery cell was operated by a dynamic high pulse current cycle (iB = 10C), shown in Figure 

7.5(a). Figure 7.5(b)-(d) shows the impedances of the battery estimated by using the proposed 

FUDRLS online parameter identification algorithm. Figure 7.5(e) compares the estimated 

SOCs from DEKF and the proposed SVSF algorithm with the true SOC from the Coulomb-

counting method. The estimated SOC from the proposed SVSF algorithm matched that 



157 
 

obtained from Coulomb counting better than those obtained from DEKF after a certain period. 

The maximum error was less than 2% after 1000 seconds. Figure 7.5(e) compares the Cmax 

obtained from the proposed RTLS algorithm and the DEKF with true maximum capacity. 

The RTLS algorithm converged to the true maximum quickly; while the DEKF method was 

worse than the RTLS algorihtm, as shown in Figure 7.5(f). Table 7.6 compares the 

performance evaluation matrices for different methods. The results clearly show that the 

proposed method exceeded the DEKF in terms of higher accuracy and lower computational 

cost. Furthermore, the implementation of the proposed method was simpler than DEKF; and 

the system parameters of the proposed method were easier to tune compared with the DEKF.  

Therefore, these results again clearly show that the proposed algorithms quickly, 

easily, and accurately estimated impedance, SOC, and maximum capacity and, therefore, are 

suitable for real-time embedded BMSs for various applications. 
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(f) 

Figure 7.5:  Comparison of estimated impedance, SOC, and maximum capacity from the 
proposed condition monitoring algorithms and DEKF on the experimental data: (a) the 

pulse current cycle (iB = 10C) applied to the battery; (b) Rs; (c) Rct;  
(d) Cd; (e) SOC; and (f) Cmax 

 

Table 7.6:  Comparison of RMSEs and computational times for the SOC and the capacity 
estimation algorithms on the experimental data. 

Method 
Proposed Algorithms 

DEKF FUDRLS SVSF RTLS 
Parameter Impedance SOC Capacity Impedance SOC Capacity 

Accuracy (RMSE) N/A 0.0171 0.1617 N/A 0.0220 0.2065 
Computational time 

(seconds) 
0.1474 0.9070 0.0061 2.0795 
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7.6  Chapter Summary 

This chapter introduced novel model-based condition monitoring algorithms for real-

time impedance, SOC, and SOH estimation of a lithium-ion battery. The proposed algorihtms 

have been implemented in MATLAB and validated by simulation and experimental results 

for a lithium-ion battery. The proposed algorithms can be applied to any type of lithium-ion 

battery, especially batteries having the hysteresis effect. Owing to low complexity and high 

accuracy, the proposed condition monitoring algorihtms can be suitable for real-time 

embedded BMSs for various applications, such as EVs and PHEVs. In addition, the proposed 

condition monitoring algorithms will be extended to SOP and SOF estimation and battery 

prognosis and fault diagnosis research.  
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CHAPTER 8:  CONCLUSIONS, CONTRIBUTIONS, AND 

RECOMMENDATIONS FOR FUTURE RESEARCH  

8.1.  Conclusions of This Dissertation 

This dissertation has presented a novel BMS for condition monitoring and power 

management of rechargeable multicell batteries to ensure the safety, reliability, and optimal 

performance of the batteries. It has addressed the following three main objectives: 

 Objective I:  Develop high-fidelity battery models for a BMS. 

 Objective II:  Develop the typology, hardware and control design for a novel 

power-electronics-enabled, self-X, multicell battery. 

 Objective III:  Develop condition monitoring algorithms for a BMS. 

The following conclusions can be drawn based on the fulfillment of the 

dissertation’s research. First, research was conducted on developing high-fidelity battery 

models for simulation and online condition monitoring of battery cells.  The battery models 

are capable of capturing the dynamic circuit characteristics, nonlinear capacity effects, 

nonlinear hysteresis effect, and temperature effect of the battery cells.  

Second, the research was conducted on a novel power-electronics-enabled, self-X, 

multicell battery design. The resulting self-X battery systems can automatically configure 

themselves according to the dynamic energy supply/storage demand and the condition of 

each battery cell, such as self-healing from failures of cells and self-balancing towards the 

maximum storage capacity, optimal or improved energy conversion efficiency, and 

prolonged battery operating time and lifespan. These features can be achieved by the 
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proposed self-X design and novel management systems, which are based on state-of-the-

art technologies in power electronics, sensing, signal processing, modeling, control, 

optimization, and high-performance computation. A system-level, self-X multicell battery 

design for EV/PHEV applications was proposed to show the scalability of the proposed 

design as well as interconnection with a proposed DC/DC converter for charge, discharge, 

and cell balancing control of the self-X multicell battery. 

Moreover, a condition monitoring algorithm is essential for a BMS. The condition 

monitoring of a battery involves tracking the changes in the parameters, such as maximum 

capacity and internal impedance, and states, such as SOC, SOH, SOP, and SOF, related to 

the operating and health conditions of the battery. Novel condition monitoring algorithms 

for lithium-ion batteries have been developed, including impedance estimation, SOC 

estimation, and maximum capacity estimation for SOH calculation. The main advantages 

of the proposed condition monitoring algorithms include high accuracy, low computational 

cost, and simple implementation. Therefore, the methods are suitable for use in a real-time 

embedded BMS. 

8.2.  Contributions of This Dissertation 

The major contributions of this research based on the three objectives are summarized. The 

main contribution of Objective I is that novel battery models have been proposed for 

battery simulation and BMS, such as model-based condition monitoring. The detailed 

contributions of Objective I are listed as follows: 

 Developed the enhanced hybrid battery model, which is capable of accurately 

predicting major runtime characteristics of the batteries in the discharge and 
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charge modes as well as various C-rates and ambient temperatures in the 

operating ranges of the batteries. 

 Developed simplified hybrid battery model which can be used in a real-time 

embedded system.  

 Developed an electrical circuit battery model incorporating hysteresis which is 

capable of accurately predicting the dynamic circuit characteristics and the 

hysteresis effect of a battery. This model can be applied to any type of lithium-

ion batteries, especially batteries having a strong hysteresis effect as it can be 

used in a real-time embedded system.  

The main contribution of objective II is that self-X multicell battery architecture, 

where self-X stands for self-reconfiguration, self-balance, self-healing, and self-

optimization, has been developed. The resulting battery system can dynamically configure 

itself during operation according to the load/storage demand and the condition of each cell 

in order to achieve self-healing from failures of single or multiple cells, self-balancing from 

cell state variations, and self-optimizing for optimal energy conversion efficiency. The 

detailed contributions are as follows: 

 Developed cell switching circuits to fully control charge, discharge, and cutoff 

for individual cells in multicell batteries.  

  Developed new gate drive circuits for controlling ON/OFF of each switch in 

the cell switching circuit. 

 Designed a self-X multicell battery module which is connected with a DC/DC 

converter. Validated the self-X multicell battery module to be used as a variable 

voltage source and that it is possible to charge/discharge and balance the battery 
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module connected via the DC/DC converter using simulation and experimental 

studies.  

 Designed a self-X multimodule battery system with a DC/DC converter for 

EV/PHEV applications. Validated the charge/discharge and balance of the self-

X multimodule battery system with the DC/DC converter connected to an EV 

load via simulation studies.  

 The main contribution of Objective III is that new model-based condition 

monitoring algorithms have been developed and validated using global optimization 

algorithms, regressions, and nonlinear observers, filter theories, etc. The detailed 

contributions are listed as follows: 

 Developed online parameter identification algorithms using:  PSO, MWLS, and 

FUDRLS methods. The FUDRLS with a variable forgetting factor demonstrate 

better performance than existing regression methods, such as RLS and UDRLS. 

 Developed SOC estimation algorithms using:  PSO, ADSMO, SVSF, and 

ISVSF.  

 Developed maximum capacity/SOH estimation algorithms using:  two-point 

method and RTLS.  

8.3  Recommendations for Future Research 

The recommendations for future work include: 

 Develop self-X smart battery hardware to fill the need for renewable energy, 

electric transportation, and electric grid applications. Investigate 
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communication issue, efficient sensing technology, and grounding issue large-

scale battery systems.   

 Analyze how the reconfiguration flexibility can assist the charge scenario of the 

widely used lithium-ion battery systems in detail. Also, develop a DC/DC or an 

AC/DC charger for a self-X multicell battery. 

 Develop a battery model characterizing the aging effect of battery cells. As a 

battery ages, its physical characteristics, such as solid electrolyte interface (SEI) 

resistance and other parameters, changes. To accurately capture the dynamic 

behaviros of a battery when it ages, some parameters of the battery model need 

to be adapted to the aging process of the battery. 

 Improve and validate the condition monitoring algorithms using the hardware-

in-the-loop test and implement them in a real imbedded system. 

 Develop adaptive condition monitoring algorithms which are robust to the color 

noise, input error, temperature, and aging of the batteries in practical EVs and 

PHEVs.  

 Develop fault prognosis and fault diagnosis algorithms baed on the condition 

monitoring algorithms.  
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APPENDIX    

The parameters of the power MOSFETs used in the simulation and experimental studies in 

Chapter 3 and Chapter 6 are listed as follows. 

1) n-channel MOSFET (Sij): AON6400L, VDSS = 30V, IDMAX = 85 A, RDS(on) = 1.8 

mΩ, Vth = 1.7V. 

2) p-channel MOSFET (Si): IPD90P03P4L-04, VDSS = −30V, IDMAX = −90 A, 

RDS(on) = 4.1 mΩ, Vth = −1.5V. 

The parameters of the lithium-ion battery cells are listed as follows. 

1) Polymer lithium-ion cell pl-383562 2C; nominal voltage: 3.7V; nominal capacity: 

860 mAh; discharge cutoff voltage (Vlimit_discharge): 3V; charge cutoff voltage (Vlimit_charge): 

4.2V; and maximum discharge current: 2C (1.72 A). 

1) Tenergy 18650; nominal voltage: 3.7 V; nominal capacity: 2.6 Ah; discharge 

cutoff voltage (Vlimit_discharge): 3 V; charge cutoff voltage (Vlimit_charge): 4.2 V; maximum 

discharge current: 1C (2.6 A) used in Chapter 4 and Chapter 5.  

2) Samsung ICR18650-28A; nominal voltage: 3.75 V; nominal capacity: 2800 mAh; 

discharge cutoff voltage (Vlimit_discharge): 3 V; charge cutoff voltage (Vlimit_charge): 4.3 V; 

maximum discharge current: 2C (5.6 A) used in Chapter 3 and Chapter 6. 


