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A B S T R A C T

Ohta has given a detailed study of the ordinary part of p-adic Eichler-Shimura

cohomology groups (resp., generalized p-adic Eichler-Shimura cohomology

groups) from the perspective of p-adic Hodge theory [O1, O2, O3]. Assuming

various hypotheses, he is able to use the structure of these groups to give a

simple proof of the Iwasawa main conjecture over Q [O2, O3, O4, O5]. The goal

of this thesis is to extend Ohta’s arguments with a view towards removing

these hypotheses.
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1
I N T R O D U C T I O N

There are many “main conjectures” in Iwasawa theory, but all have the same

salient characteristic, namely, they give a relationship between invariants of

arithmetic and analytic objects. In the case of the main conjecture over Q we

get a relationship between an invariant associated to an inverse limit of ideal

class groups, an arithmetic object, and a p-adic L-function, an analytic object.

Let us begin by considering the arithmetic side of this relationship.

We fix a prime p > 5 throughout. Let θ and ψ be Dirichlet characters (possibly

imprimitive) defined modulo Mθ and Mψ, respectively,

θ : (Z/MθZ)× → Q
×

ψ : (Z/MψZ)× → Q
×

,

such that p does not divide the conductor of ψ, which we denote by fψ,

and the product of these characters θψ is even. Furthermore, we assume that

MθMψ = Np orN for some positive integerN prime to p. We fix an embedding

Q ↪→ Qp, and through this consider θ and ψ as p-adic Dirichlet characters. As

with the prime p, the characters θ and ψ will be fixed throughout.

Let µpn denote the group of pnth roots of unity and define

Q(µp∞) =

∞⋃
n=1

Q(µpn).

The cyclotomic Zp-extension of Q, which we denote by Q∞, is the unique

subextension of Q(µp∞)/Q satisfying Gal(Q∞/Q) ∼= Zp. For each n > 1, let

Qn ⊂ Q∞ denote the finite subextension of Q∞/Q satisfying Gal(Qn/Q) ∼=

9



introduction 10

Z/pnZ. Let F denote the finite extension of Q corresponding to the fixed field

of ker(θω) ∩ ker(ψ), where ω denotes the Teichmüller character. We define

the cyclotomic Zp-extension of F to be F∞ = FQ∞ and set Fn = FQn. Let

Cl(Fn)[p∞] denote the Sylow p-subgroup of the ideal class group of the field

Fn, and set

A∞ = lim←−
n

Cl(Fn)[p∞],
where the projective limit is taken with respect to norm maps. Since the ideal

class groups are finite abelian groups, we know that A∞ is a pro-p abelian

group. In fact, we can say more.

By class field theory we know that Cl(Fn)[p∞] ∼= Xn := Gal(Hn/Fn), where

Hn is the maximal unramified p-extension of Fn. Moreover, there is a natural

action of Gal(Fn/Q) on both Cl(Fn)[p∞] and Xn, and this action commutes

with the aforementioned isomorphism. Specifically, for any σ ∈ Xn and τ ∈

Gal(Fn/Q), we define στ = τ̃στ̃−1, where τ̃ is any lift of τ to Gal(Hn/Q).

Furthermore, the fact that p2 - MθMψ implies that F ∩Q∞ = Q [MW, §2].

This allows us to decompose Gal(Fn/Q) as ∆× Γn, where ∆ = Gal(F/Q) and

Γn := Gal(Fn/F). This ∆× Γn-module structure commutes with norm maps

Cl(Fn+1)[p∞] → Cl(Fn)[p∞] and restriction maps Xn+1 → Xn. Letting X∞
denote the Galois group of the maximal unramified pro-p abelian extension of

F∞, we obtain in the inverse limit an isomorphism of Zp[∆]JΓK-modules A∞ ∼=

X∞, where Γ := Gal(F∞/F) ∼= Zp. While we will now shift our consideration

to the Galois side of this isomorphism, it is important to keep in mind the

arithmetic underpinnings of this construction.

For reasons that will be made clear later, we would like to consider a particular

eigenspace of X∞. For any Dirichlet character χ, we let χ0 denote the unique

primitive character associated to it. Set ξ = (θ0ψ
−1
0 )0 and Oξ = Zp[ξ], and

define

X∞,(ξω)−1 = X∞ ⊗Zp[∆] Oξ,

where the homomorphism Zp[∆] → Oξ is induced by (ξω)−1. As an inverse

limit of finite Zp[Γn]-modules, X∞ is a finitely generated torsion ZpJΓK-module.
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Hence, X∞,(ξω)−1 is a finitely generated torsion OξJΓK-module. A ring of the

form OξJΓK is called an Iwasawa algebra, and consequently we call X∞,(ξω)−1

an Iwasawa module. Thanks in large part to Serre, the structure of both Iwasawa

algebras and their modules is well understood.

Let γ0 be a topological generator of Γ . For example, take γ0 corresponding

to 1 under the isomorphism Γ ∼= Zp. Serre showed that we can identify the

Iwasawa algebra OξJΓK with Λξ := OξJXK through the continuous Oξ-linear

map induced by γ0 7→ 1+ X. Just as one has a structure theorem for finite

abelian groups, one has a similar theorem for finitely generated torsion Iwasawa

modules. Specifically, there exists a homomorphism

X∞,(ξω)−1 → Λξ/(f1)⊕ · · · ⊕Λξ/(fr)

with finite kernel and cokernel, where the fi are non-zero divisors of Λξ. While

the fi are not uniquely determined by X∞,(ξω)−1 , their product is. With this in

mind, we define the characteristic ideal of X∞,(ξω)−1 to be

CharΛξ
(
X∞,(ξω)−1

)
= (f1 · · · fr).

Just as the order of a finite abelian group is the most important invariant of the

group, the most important invariant of a finitely generated torsion Iwasawa

module is its characteristic ideal.

On the analytic side, Iwasawa has shown that if ϕ is a Dirichlet character

with conductor not divisible by p2, then there exists a unique element

F(X,ϕ) ∈

 Zp[ϕ]JXK ϕ 6= 1

1
X−pZpJXK ϕ = 1,

where 1 denotes the trivial character, such that for all k > 2 and characters

ε : 1+ pZp → Q
×
p of p-power order, we have

F(ε(u)uk−2 − 1,ϕ) = Lp(k− 2,ϕε−1),

where u := 1 − p and Lp(s,ϕε−1) denotes the Kubota-Leopoldt p-adic L-

function associated to the character ϕε−1. The Iwasawa main conjecture over Q
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then gives us a relationship between the characteristic ideal of X∞,(ξω)−1 and

F(X, ξω2).

Theorem 1.0.1 (Iwasawa main conjecture over Q).

CharΛξ
(
X∞,(ξω)−1

)
=
(
F(X, ξω2)

)
.

Despite its name, the main conjecture is actually a theorem. It was first proven

by Mazur and Wiles [MW], and has since been proven in even greater generality.

In [W2], Wiles simplified the proof in his paper with Mazur while generalizing

it to extensions of totally real fields, including the case when p = 2. Around

the same time, Rubin gave a much simpler proof of the main conjecture over Q

(resp., over imaginary quadratic fields) using a tool from Galois cohomology

known as an Euler system [Ru]. More recently, Ohta has given a simple proof

in the spirit of Mazur and Wiles [O2, O3, O4, O5]. However, Ohta’s argument

requires various restrictive hypotheses. Specifically, consider the following list

of hypotheses:

(H1) ψ = 1,

(H2) θ = ωi with i even,

(H3) p - ϕ(N) (Euler’s totient function),

(H4) θ,ψ are non-exceptional: (θψ−1ω)(p) 6= 1,

(H5) The universal ordinary Hecke algebra is Gorenstein.

Then Ohta assumes (H1), (H2) and (H3) in [O2], he assumes only (H1) in [O3],

while in [O4] he assumes (H3) and (H4), and in [O5] he assumes (H1) and (H5).

The goal of this thesis is to extend Ohta’s argument so that these hypotheses

are no longer required.

Given that there are already several proofs of the Iwasawa main conjecture

over Q, it is natural to ask why one would be interested in generalizing Ohta’s

proof. Recently, Sharifi [S] conjectured a relationship between X∞ and the p-adic

Eichler-Shimura cohomology groups of modular curves, and the Iwasawa main



introduction 13

conjecture over Q would be but a shadow of this deeper relationship. However,

Sharifi’s constructions incorporate Ohta’s work on the main conjecture, and

as such the above hypotheses are assumed. By removing these hypotheses in

the context of Ohta’s proof of the main conjecture, one hopes to free Sharifi’s

conjectures of them as well.

overview

Let us give a brief overview of how we will go about proving the Iwasawa

main conjecture over Q. For reasons that will be made clear in Section 4.2, it

suffices to construct an unramified pro-p abelian extension L∞ of F∞ satisfying

the following conditions:

(1) ∆ acts on Gal(L∞/F∞) via (ξω)−1,

(2) CharΛξ (Gal(L∞/F∞)) = (F(X, ξω2)
)

.

In fact, as a consequence of the analytic class number formula, the second

requirement can be weakened a bit [MW, p. 207]. Specifically, we just need to

show

CharΛξ (Gal(L∞/F∞)) ⊆ (
F(X, ξω2)

)
.

To construct the extension appearing above, we will consider the Galois

representation obtained from our p-adic Eichler-Shimura cohomology group

of level N. Specifically, by applying the method of Kurihara [Ku] and Harder-

Pink [HP] to this representation, we are able to construct a pro-p abelian

extension L/F∞. Without assuming (H1) or (H3) it is possible that this extension

is ramified. However, the method of Kurihara and Harder-Pink also allows us

to construct an embedding of Gal(L/F∞) into the reduction modulo Eisenstein

ideal of a particular lattice of the quotient field of Hida’s universal ordinary

Hecke algebra. Through this embedding we are able understand the structure of

Gal(L/F∞) as an Iwasawa module. We can then use this structure to determine

not only which primes can ramify in the extension L/F∞, but also how this

ramification manifests itself in terms of the characteristic ideal of Gal(L/F∞).
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The bulk of our effort will be in relating the Iwasawa module structure of the

aforementioned lattice to F(X, ξω2). We do so by showing that Hida’s universal

ordinary Hecke algebra modulo a particular Eisenstein ideal is isomorphic

to Zp[θ,ψ]JXK modulo the ideal generated by a multiple of F(X, ξω2). This

isomorphism, in combination with the theory of Fitting ideals, allows us to show

that the characteristic ideal of Gal(L/F∞) is contained in the ideal generated by

F(X, ξω2). By then considering the ramification of L/F∞, we can show that the

characteristic ideal of the Galois group of the maximal unramified pro-p abelian

subextension of L/F∞ is also contained in the ideal generated by F(X, ξω2). Let

us now give a brief overview of the organization of this thesis.

In Chapter 2, we review the results of classical and Λ-adic modular forms

that will be used in subsequent chapters. We begin by giving a brief review of

classical modular forms and their Hecke algebras, the primary purpose of which

is to fix notation. Having reviewed the requisite results from classical modular

forms, we introduce Λ-adic modular forms, the universal Hecke algebras acting

on them, and the duality between the two. Finally, we conclude the chapter by

constructing Λ-adic Eisenstein series.

In Chapter 3, we determine the image of Eisenstein series under Ohta’s

Λ-adic residue map. While this image was computed in [O4] when (H3) and

(H4) are assumed, we determine this image for Eisenstein series associated to

arbitrary characters. This allows us to give a simple proof of the isomorphism

between Hida’s universal ordinary Hecke algebra modulo Eisenstein ideal and

Zp[θ,ψ]JXK modulo the ideal generated by a multiple of F(X, ξω2).

Finally, in Chapter 4 we prove the main conjecture. After introducing the

p-adic Eichler-Shimura cohomology groups, we use these groups to construct a

pro-p abelian extension L/F∞ by the method of Kurihara [Ku] and Harder-Pink

[HP]. We then describe the Iwasawa module structure of Gal(L/F∞), and use

this structure to understand the ramification occurring in L/F∞. With these

results in hand, as well as the isomorphism from Chapter 3, we employ the

theory of Fitting ideals to prove the Iwasawa main conjecture over Q.



2
M O D U L A R F O R M S

In this chapter, we review the results on classical and Λ-adic modular forms

that will be used in subsequent chapters. For brevity, most proofs in this chapter

will be omitted in favor of references where one can find them.

2.1 classical modular forms

Let H = {τ ∈ C : Im(τ) > 0} denote the complex upper half plane, and

let GL+
2 (R) denote the group of 2× 2 matrices with real entries and positive

determinant. Then GL+
2 (R) acts on H by Mobiüs transformations: if τ ∈H and

α ∈ GL+2 (R), then

α(τ) =
aτ+ b

cτ+ d
where α =

a b

c d

 .

Let k be an integer and f a complex-valued function on H. Then for α ∈ GL+
2 (R)

as above, we can define a new function on H by

(f|kα)(τ) = det(α)k−1(cτ+ d)−k f(α(τ)).

We will be particularly interested how the functions f and f|kα compare for α

in the modular group SL2(Z), or one of its congruence subgroups, which we

now define.

15



2.1 classical modular forms 16

For any positive integer M, consider the following subgroups of SL2(Z):

Γ0(M) :=


a b

c d

 ∈ SL2(Z) : c ≡ 0 (modM)


Γ1(M) :=


a b

c d

 ∈ Γ0(M) : d ≡ 1 (modM)


Γ(M) :=


a b

c d

 ∈ Γ1(M) : b ≡ 0 (modM)

 .

We say that a subgroup Γ ⊂ SL2(Z) is a congruence subgroup if Γ(M) ⊂ Γ for

some positive integer M. The minimal such M is said to be the level of the

congruence subgroup Γ .

Let Γ ⊂ SL2(Z) be a congruence subgroup of level M. Then we know1 M

0 1

 ∈ Γ .

Therefore, if f : H→ C is a holomorphic function satisfying f|kγ = f for some

integer k and all γ ∈ Γ , we have f(τ+M) = f(τ) for all τ ∈H. One can use this

fact to show that f has a Laurent expansion

f =
∑
n∈Z

an(f)q
n
M (1)

for an(f) ∈ C, where qM := e2πiτ/M (denoted q if M = 1) [DS, Section 1.2].

We will refer to the above series as the qM-expansion (or q-expansion if M = 1)

of f.
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Definition 2.1.1. Let Γ ⊂ SL2(Z) be a congruence subgroup of level M. A holomor-

phic function f : H → C is said to be a weight k modular form with respect to Γ

if:

(i) f|kγ = f for all γ ∈ Γ ,

(ii) an(f|kα) = 0 for all n < 0 and α ∈ SL2(Z).

We denote the space of weight k modular forms with respect to Γ by Mk(Γ). If (ii)

holds for n 6 0, we say that f is a weight k cusp form with respect to Γ and denote the

space of such forms by Sk(Γ).

To declutter the notation a bit, we will omit reference to the weight when

referencing the action of GL+
2 (R) on modular forms, as it should always be

clear from the context.

Our primary focus will be on modular forms with respect to the congruence

subgroup Γ = Γ1(M) for some positive integer M. By considering q-expansions,

for all k > 0 we define

Mk(Γ)Z = Mk(Γ)∩ZJqK

Sk(Γ)Z = Sk(Γ)∩ZJqK.

It is a well-known result of Shimura that Sk(Γ) is spanned as a C-vector space

by Sk(Γ)Z for k > 2 [S, Theorem 3.52]. For any ring R we define

Mk(Γ)R = Mk(Γ)Z ⊗Z R ↪→ RJqK

Sk(Γ)R = Sk(Γ)Z ⊗Z R ↪→ RJqK.

For any Dirichlet character χ and α ∈ SL2(Z) with

α =

a b

c d

 ,

we define χ(α) = χ(d). A modular form f with respect to Γ is said to have

Nebentypus χ if Γ0(M) acts on f through the character χ.
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Before moving on let us consider an important example of a modular form

called an Eisenstein series. Let ϕ and χ be primitive Dirichlet characters having

conductors fϕ and fχ, respectively. Furthermore, let us assume that either ϕ or

χ is nontrivial. For any k > 2, integer t > 1, and τ ∈H, we define

Gk(ϕ,χ; t)(τ) =

fϕ−1∑
a=0

fχ−1∑
b=0

fϕ−1∑
c=0

ϕ(a)χ−1(b)

 ∑
x≡afχ (fϕfχ)
y≡b+cfχ (fϕfχ)

1

(ctτ+ d)k

 ,

which is a weight k modular form of level fϕfχt and Nebentypus ϕχ [DS, §§4.5,

4.6]. A normalized version of this form will play a central role in this thesis,

namely,

Ek(ϕ,χ; t) :=
(fχ)

k(k− 1)!
2k+1(−πi)k

Gk(ϕ,χ; t).

One can show that Ek(ϕ,χ; t) has the following q-expansion:

Ek(ϕ,χ; t) =
χ(0)

2
L(1− k,ϕ) +

∞∑
n=1

∑
d|n
d>0

ϕ(d)χ
(n
d

)
dk−1

qnt,
where L(s,ϕ) is the Dirichlet L-function associated to the character ϕ [DS,

§4.5]. We refer to the modular forms Ek(ϕ,χ; t) as weight k Eisenstein series

associated to the characters ϕ, χ, and t.

2.1.1 Hecke operators

Let us fix integers M > 0 and k > 0, and set Γ = Γ1(M). In this subsection we

recall the double coset description of Hecke operators acting on modular forms.

For all primes ` > 1 (or ` = 1), we define T` to be the double coset

T` = Γ

1 0

0 `

 Γ .
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Similarly, for all integers d coprime to M we define

Td,d = Γαd

d 0

0 d

 Γ 〈d〉 = ΓαdΓ ,

where αd ∈ Γ0(M) satisfies

αd ≡

∗ 0

0 d

 (modM).

We can define the product of two double cosets as the formal sum of double

cosets in a natural way, and one can show that this product is commutative [DI,

§3.1]. With this in mind, we define TM to be the commutative algebra over Z

generated by the T` and 〈d〉 for all primes ` > 1 (resp., ` = 1) and integers d

coprime to M.

We can make analogous definitions with respect to the adjoints (or adjugates)

of the matrices defining the double cosets above. Specifically, for all prime

numbers ` > 1 (as well as ` = 1) and integers d coprime to M we define

T∗` = Γ

` 0

0 1

 Γ T∗d,d = Γαιd

d 0

0 d

 Γ 〈d〉∗ = ΓαιdΓ ,

where αι = det(α)α−1 for all α ∈ GL+2 (Q). We denote the algebra generated by

all T∗` and 〈d〉∗ by T∗M.

We now describe how these algebras act on modular forms. Every double

coset ΓβΓ with β ∈ GL+
2 (Q) has a disjoint decomposition

ΓβΓ =
∐
j

Γβj

for some βj ∈ GL+
2 (Q). For any f ∈Mk(Γ) we define

f|[ΓβΓ ] =
∑
j

f|βj.

Clearly this action is independent of the decomposition.
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Let us give an explicit description of this action with respect to the operators

T`, Td,d and 〈d〉. We begin by extending the definition of the operators Td,d and

〈d〉 to all positive integers d by defining Td,d = 0 = 〈d〉 if gcd(d,M) 6= 1. Since

Γ is a normal subgroup of Γ0(M), every element in the double coset ΓαdΓ can

be written as γαd for some γ ∈ Γ . Therefore, for all f ∈Mk(Γ) we have

f|〈d〉 = f|αd.

This in turn implies that Td,d = dk−2〈d〉 as operators on Mk(Γ). The same

identity holds in the case of the adjoint operators T∗d,d and 〈d〉∗. We will refer

to 〈d〉 and 〈d〉∗ as diamond operators.

Next, we consider the operator T`.

Proposition 2.1.2 ([DS], Proposition 5.2.1).

Γ

1 0

0 `

 Γ =



`−1∐
j=0

Γβj ` |M

∐̀
j=0

Γβj ` -M

with

βj =

1 j

0 `

 and β` =

 x y

M `


` 0

0 1


for 0 6 j 6 `− 1, where x`−My = 1.

Using the above disjoint decomposition of the double coset defining T`, one can

give the following description of the action of T` on modular forms in terms of

q-expansions.

Proposition 2.1.3 ([DS], Proposition 5.2.2). Let f ∈ Mk(Γ). Then for all integers

n > 0 we have

an(f|T`) = an`(f) + `
k−1an/`(f|〈`〉),

where an/` = 0 if ` - n.
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While we will deal primarily with the operators T`, Td,d, 〈d〉, and their

adjoints, there are additional operators that we need to consider. For all e > 2

and primes ` > 1 we define the operator T`e on Mk(Γ) inductively by

T`e = T`T`e−1 + `
k−1〈`〉T`e−2 .

We see that T`e = Te` if ` | M. With these operators in hand, for all integers

n > 1 with n =
∏
i `
ei
i we define

Tn =
∏
i

T`eii
.

The operators T∗n are defined analogously.

As with the operator T` for ` a prime, we are able to give an explicit de-

scription of the action of Tn on modular forms in terms of q-expansions for all

integers n > 1.

Proposition 2.1.4 ([DS], Proposition 5.3.1). Let n > 1 and f ∈Mk(Γ). Then for all

integers m > 0 we have

am(f|Tn) =
∑

d|gcd(m,n)
d>0

dk−1amn/d2(f|〈d〉),

where (m,n) denotes the greatest common divisor of m and n.

Proposition 2.1.5. Let d, m, and n be positive integers, with d coprime to M. Then

(i) TnTm = TmTn if gcd(m,n) = 1

(ii) Tn〈d〉 = 〈d〉Tn.

The analogous statements for the adjoint operators hold as well.

It is well known that Mk(Γ)Z and Sk(Γ)Z are stable under the action of TM

and T∗M [H2, Section 1]. With this in mind, we define the weight k, level M

Hecke algebra Hk(Γ)Z (resp., hk(Γ)Z) to be the image of TM in EndZ(Mk(Γ)Z)

(resp., EndZ(Sk(Γ)Z)). Note that this is the Z-subalgebra of EndZ(Mk(Γ)Z)
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(resp., EndZ(Sk(Γ)Z)) generated by {Tn} for all n > 1. For any commutative

ring R with unity, we define

Hk(Γ)R = Hk(Γ)Z ⊗Z R

hk(Γ)R = hk(Γ)Z ⊗Z R,

with H∗k(Γ)R and h∗k(Γ)R defined analogously with respect to T∗M.

We remark that our definition of the above Hecke algebras differs slightly

from the standard definition when k = 1 [DI, Proposition 3.5.1]. However, for

our purposes this definition will suffice, as we will only consider modular

forms having non-negative weight k 6= 1.

2.1.2 The space of ordinary forms

Let k > 2 and let O be the ring of integers of a complete subextension of Cp.

Recall the integer N from Chapter 1, and set Nr = Npr and Γr = Γ1(Nr) for all

r > 1. Rather than consider the whole space Mk(Γr)O (resp., M∗k(Γr)O), we will

often restrict our considerations to the maximal subspace on which the action

of Hecke operator Tp (resp., T∗p) is invertible. We define the ordinary projector e

attached to Tp to be the limit

e = lim
n→∞ Tn!

p ∈ hk(Γr)O,

with e∗ defined analogously with respect to the operator T∗p. This operator will

play a major role in all subsequent theory.

Definition 2.1.6. Let k > 2 and let M = Mk(Γr)O (resp., Sk(Γr)O, Hk(Γr)O, or

hk(Γr)O). Then we define Mord = eM. The spaces with respect to the idempotent e∗

are defined and denoted analogously.
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2.2 Λ-adic modular forms

Let O be as in the previous subsection, and set Λ = OJXK. In this section we

will introduce Λ-adic modular forms.

Let Ur = 1+prZp for all r > 1, and recall the topological generator u = 1+p

of U1. Denote by Û1/Ur the group of continuous Q
×

-valued characters on

U1/Ur, and define

Û1 =
⋃
r>1

Û1/Ur.

For ε ∈ Û1, let O[ε] denote the ring generated by the values of ε over O. We

then define

Mk(Γr, ε)O[ε] = {f ∈Mk(Γr)O[ε] : f|σα = ε(α)f for all α ∈ U1},

where σα ∈ Γ1 is a matrix satisfying

σα ≡

α−1 ∗

0 α

 (modpr). (2)

We define Sk(Γr, ε)O[ε] analogously. Note that ε is not necessarily the Neben-

typus character of Mk(Γr, ε)O[ε]. Rather, ε is the factor of the Nebentypus

character whose order and conductor is a power of p. We denote the ordi-

nary subspace of Mk(Γr, ε)O[ε] (resp., Sk(Γr, ε)O[ε]) by Mk(Γr, ε)ord
O[ε] (resp.,

Sk(Γr, ε)ord
O[ε]).

Definition 2.2.1. A Λ-adic modular form (resp., cusp form) F of level N is a formal

q-expansion

F =

∞∑
n=0

an(F)(X)q
n ∈ ΛJqK

such that

vk,ε(F) :=

∞∑
n=0

an(F)(ε(u)u
k−2 − 1)qn ∈ Mk(Γr, ε)O[ε]

(resp., Sk(Γr, ε)O[ε]) for all k > 2 and all but finitely many ε ∈ Û1. We denote

the space of Λ-adic modular forms (resp., cusp forms) of level N by M(N)Λ (resp.,
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S(N)Λ). If vk,ε(F) ∈Mk(Γr, ε)ord
O[ε] (resp., Sk(Γr, ε)ord

O[ε]) for all k and ε as above, we

say that F is an ordinary Λ-adic modular form (resp., cusp form) of level N. We denote

the space of such forms by M(N)ord
Λ (resp., S(N)ord

Λ ).

The space of ordinary Λ-adic modular forms has a very nice structure which

we now recall.

Proposition 2.2.2. The Λ-modules M(N)ord
Λ and S(N)ord

Λ are free and finitely gener-

ated.

Proof. This was first proven by Hida [H2, H3] using cohomology, and later

by Wiles, who gave a simpler and more compact proof [W1]. Assuming that

M(N)ord
Λ and S(N)ord

Λ are finitely generated, we would like to record a new and

even simpler proof of their freeness. We will prove this for M(N)ord
Λ , with the

proof for S(N)ord
Λ being identical.

Let

0 −−−−→ R −−−−→ Λd −−−−→ M(N)ord
Λ −−−−→ 0

be a minimal presentation of M(N)ord
Λ by a free module. Noting that M(N)ord

Λ

is Λ-torsion free, as it is a Λ-submodule of ΛJqK, we have the following com-

mutative diagram:

0 0 0

0 R Λd M(N)ord
Λ 0

0 R Λd M(N)ord
Λ 0

R/XR Od M(N)ord
Λ /XM(N)ord

Λ

0 0 0

X X X
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By the snake lemma we get

0→ R/XR→ Od →M(N)ord
Λ /XM(N)ord

Λ → 0.

Now, recall the specialization map v2,1 :M(N)ord
Λ → OJqK defined by

∑
n>0

an(F)(X)q
n 7→

∑
n>0

an(F)(0)q
n.

Clearly, XM(N)ord
Λ ⊂ ker(v2,1). Suppose F ∈ ker(v2,1). Then X | an(F) for all

n > 0. Furthermore, since

vk,ε(F/X) =
vk,ε(F)

ε(u)uk−2 − 1
∈ Mk(Γr, ε)ord

O[ε]

for all k > 2 and all but finitely many ε ∈ Û1, we see that F ∈ XM(N)ord
Λ .

Hence, ker(vk,1) = XM(N)ord
Λ . This implies that vk,1 induces an injection of

M(N)ord
Λ /XM(N)ord

Λ into the torsion-free O-module OJqK. Since O is a princi-

pal ideal domain and M(N)ord
Λ /XM(N)ord

Λ is finitely generated, we know that

M(N)ord
Λ /XM(N)ord

Λ is a free O-module. Because we chose our presentation to

be minimal, Nakayama’s lemma tells us that M(N)ord
Λ /XM(N)ord

Λ
∼= Od which

implies R/XR = 0. Consequently R = 0, and we have Λd ∼=M(N)ord
Λ .

Proposition 2.2.3 ([O2] Proposition 2.5.1, [O1] Proposition 2.6.4). For each k > 2

and ε ∈ Û1, let Pk,ε := X− ε(u)uk−2 + 1. Then

M(N)ord
Λ /Pk,εM(N)ord

Λ
∼= Mk(Γr)

ord
O[ε]

S(N)ord
Λ /Pk,εS(N)ord

Λ
∼= Sk(Γr)

ord
O[ε]

where r is determined by ker(ε) = Ur.

Corollary 2.2.4. Let ΛZp := ZpJXK. Then

M(N)ord
Λ

∼= M(N)ord
ΛZp
⊗ΛZp

Λ (3)

S(N)ord
Λ

∼= S(N)ord
ΛZp
⊗ΛZp

Λ (4)
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Proof. We only prove this for M(N)ord
Λ , as the proof in the case of S(N)ord

Λ is

identical. By Proposition 2.2.3, we have

M(N)ord
Λ /Pk,1M(N)ord

Λ
∼= Mk(Γ1)

ord
O = Mk(Γ1)

ord
Zp
⊗Zp O

∼= (M(N)ord
ΛZp

/Pk,1M(N)ord
ΛZp

)⊗Zp O.

If {F1, . . . , Fm} is a ΛZp-basis for M(N)ord
ΛZp

, then {F1modPk,1, . . . , FmmodPk,1}

is an O-basis for Mk(Γ1)
ord
O . Hence, by Nakayama’s lemma, {F1, . . . , Fm} is a

Λ-basis for M(N)ord
Λ .

2.2.1 The universal Hecke algebra

In this subsection, we recall the construction of Hida’s universal Hecke algebra

and describe how this algebra acts on Λ-adic modular forms.

For all k > 0 and r > 1, the natural injections

Mk(Γr)O ↪→Mk(Γr+1)O

Sk(Γr)O ↪→ Sk(Γr+1)O.

commute with the Hecke action. Therefore, if we restrict the operators of

Hk(Γr+1) (resp., hk(Γr+1)) to the image of Mk(Γr)O (resp., Sk(Γr)O) we obtain

surjective O-algbera homomorphisms

Hk(Γr+1)O � Hk(Γr)O

hk(Γr+1)O � hk(Γr)O.
(5)

Definition 2.2.5 ([H3], (1.2)). The universal Hecke algebras of level N over O are

defined by

Hk(N)O = lim←−
r

Hk(Γr)O

hk(N)O = lim←−
r

hk(Γr)O,

where the projective limit is taken with respect to the above restriction maps.
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We denote the operators corresponding to the projective limits of Tn, Td,d, and

〈d〉 by the same symbols. In addition, we denote the projective limit of Hida’s

idempotent by e, and define the ordinary universal Hecke algebras by

Hk(N)ord
O = eHk(N)O

hk(N)ord
O = ehk(N)O.

In fact, Hida has shown that the algebras Hk(N)ord
O (resp., hk(N)ord

O ) are isomor-

phic for all k > 2 [H3, Theorem 1.1]. In light of this, we will omit reference to

the weight in notation for the universal ordinary Hecke algebras from here on

out.

Let

Zp,N = lim←−
r

Z/NprZ ∼= (Z/NZ)×Zp.

Then we give H(N)ord
O and h(N)ord

O an O[Z×p,N]-algebra structure by letting any

positive integer d coprime to Np act as Td,d. We remark that this is a twist of the

action defined by Hida [H3, remarks after (1.9)] in which any positive integer d

coprime to Np acts as d2Td,d. This difference is cosmetic, and ultimately stems

from our choice of specialization map X 7→ uk−2− 1 compared to Hida’s choice

of X 7→ uk − 1. Since

O[Z×p,N]
∼= O[(Z/NpZ)×]JU1K,

we can identify O[Z×p,N] with O[(Z/NpZ)×]JXK by the isomorphism

ι : O[(Z/NpZ)×]JU1K→ O[(Z/NpZ)×]JXK (6)

induced by u 7→ 1 + X. Hence, H(N)ord
O and h(N)ord

O are O[(Z/NpZ)×]JXK-

modules, and in particular, Λ-modules.

Proposition 2.2.6 ([O2], Thereom 1.5.7). H(N)ord
O and h(N)ord

O are free and finitely

generated Λ-modules.
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For all positive integers M we define

wM =

 0 −1

M 0

 .

SincewMΓ1(M)w−1
M = Γ1(M), the matrixwM acts onMk(Γ1(M)) and Sk(Γ1(M)).

Furthermore, this action of interchanges the action of Hecke operators with that

of their adjoints, i.e. for all f ∈Mk(Γ1(M)) (resp., Sk(Γ1(M))) we have

f|wNr |T
∗
n = f|Tn|wNr

f|wNr |T
∗
q,q = f|Tq,q|wNr

f|wNr |〈q〉
∗ = f|〈q〉|wNr .

(7)

Therefore, for all k > 2 and r > 1 we have a commutative diagram

Hk(Γr+1)O
∼−−−−→ H∗k(Γr+1)O

res
y yres

Hk(Γr)O
∼−−−−→ H∗k(Γr)O

where the vertical maps are the restriction maps (5). Using this we can construct

the adjoint universal Hecke algebras H∗k(N)O, h∗k(N)O, as well as their ordinary

projections H∗(N)ord
O , h∗(N)ord

O .

2.2.2 A projective system of modular forms

It is not immediately clear how the universal Hecke algebras act on the space of

Λ-adic modular forms. In order to define this action, we recall Ohta’s construc-

tion of a projective system of modular forms that is isomorphic to the space

of Λ-adic modular forms [O1, §2.3], [O2, §2.2]. Not only will this isomorphism

allow us to give the space of Λ-adic modular forms a Hecke module structure,

it will also be central to our construction of the Λ-adic residue map of Chapter

3. We begin by recalling the trace maps on modular forms, as these will be the

maps with which we construct our projective system.
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For all r > 1 we have the following inclusions of groups

Γr+1 ⊂ Γr ∩ Γ0(pr+1) ⊂ Γr,

with

Γr ∩ Γ0(pr+1) =
∐

α∈Ur/Ur+1

σαΓr+1 =
∐

α∈Ur/Ur+1

Γr+1σα

where σα is as defined in (2), and

Γr =
∐

06j6p−1

γj
(
Γr ∩ Γ0(pr+1)

)
=

∐
06j6p−1

(
Γr ∩ Γ0(pr+1)

)
γj

for

γj =

 1 0

Nrj 1

 .

We then define

Tr1r :Mk(Γr+1)Cp →Mk(Γr ∩ Γ0(pr+1))Cp : f 7→
∑

α∈Ur/Ur+1

f|σα

Tr2r :Mk(Γr ∩ Γ0(pr+1))Cp →Mk(Γr)Cp : f 7→
∑

06j6p−1

f|γj

Trr := Tr2r ◦ Tr1r :Mk(Γr+1)Cp →Mk(Γr)Cp

Using the identities given in (7), one can show by direct calculation that

Tr1r(f|wNr+1) = Tr1r(f)|wNr+1

Tr2r(f) = f|wNr+1 |Tp|w
−1
Nr

,

which implies

Trr(f) =
∑

α∈Ur/Ur+1

f|wNr+1 |σα|Tp|w
−1
Nr

. (8)

With this identity in mind, we define

M∗k(Γr)O = {f ∈Mk(Γr)Cp : f|wNr ∈Mk(Γr)O}

S∗k(Γr)O = {f ∈ Sk(Γr)Cp : f|wNr ∈ Sk(Γr)O},
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and we can see that Trr mapsM∗k(Γr+1)O (resp., S∗k(Γr+1)O) intoM∗k(Γr)O (resp.,

S∗k(Γr)O).

Definition 2.2.7. For each k > 2, we set

M∗k(N)Λ = lim←−
r>1

M∗k(Γr)O

S∗k(N)Λ = lim←−
r>1

S∗k(Γr)O

where the limit is taken with respect to the trace maps Trr.

Using the identities of (7) one can see thatM∗k(Γr)O and S∗k(Γr)O are stable under

the actions of H∗(Γr)O and h∗(Γr)O, respectively. Furthermore, by (8) we see

that this Hecke action commutes with the trace maps. Therefore, M∗k(N)Λ and

S∗k(N)Λ are modules over the adjoint universal Hecke algebras H∗k(N)O and

h∗k(N)O, respectively. Because of this we may consider their ordinary projections

M∗k(N)ord
Λ = e∗M∗k(N)Λ,

S∗k(N)ord
Λ = e∗S∗k(N)Λ,

where e∗ denotes the projective limit of Hida’s idempotent with respect to T∗p.

Theorem 2.2.8 ([O2], Theorem 2.2.3). For each k > 2, we have isomorphisms of

Λ-modules

M(N)ord
Λ

∼= M∗k(N)ord
Λ

S(N)ord
Λ

∼= S∗k(N)ord
Λ

given by sending F ∈M(N)ord
Λ to (fr)r>1 ∈M∗k(N)ord

Λ defined by

fr =
1

pr−1

 ∑
ε∈Û1/Ur

vk,ε(F)|T
−r
p

 |w−1
Nr

and sending (fr)r>1 ∈M∗k(N)ord
Λ to the unique element F ∈M(N)ord

Λ satisfying

vk,ε(F) =
∑

α∈U1/Ur

ε(α)(fr|wNr |T
r
p|σ

−1
α )

for all ε ∈ Û1, where σα is as defined in (2).
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Through these isomorphisms we can endowM(N)ord
Λ and S(N)ord

Λ with Hecke

module structures. Specifically, for every F ∈ M(N)ord
Λ and all H ∈ H(N)ord

O ,

we define F|H to be the element of M(N)ord
Λ corresponding to (fr|H

∗)r>1 ∈

M∗k(N)ord
Λ (note that this is independent of the weight k). In particular, this

means that for all F ∈M(N)ord
Λ we have

vk,ε(F|Tn) = vk,ε(F)|Tn

vk,ε(F|Tq,q) = vk,ε(F)|Tq,q

(9)

for all k > 2 and all but finitely many ε ∈ Û1.

2.2.3 Λ-adic Eisenstein series

Set Oθ,ψ = Zp[θ,ψ] and Λθ,ψ = Oθ,ψJXK. In this subsection, we will construct

Λθ,ψ-adic Eisenstein series associated to the characters θ and ψ introduced in

Chapter 1. However, before we do so we want to briefly introduce some of the

objects and notation that will be employed in this construction, as they will also

come into play in subsequent sections.

First, for any Dirichlet character χ defined modulo Mχ and any integer n, we

let χn denote the character defined modulo lcm(Mχ,n) that is induced by χ.

Next, let 〈〈·〉〉 : Z×p → U1 be the projection defined by 〈〈a〉〉 = aω(a)−1.

While it is more common to denote this projection by 〈a〉, we have chosen this

alternate notation to avoid confusion with diamond operators. Note that for

any character ε ∈ Û1 we have ε(a) = ε(〈〈a〉〉). We define s : Z×p → Zp to be

the group homomorphism given by 〈〈a〉〉 = us(a). Then for all a ∈ Z×p we have

(1+X)s(a) =

∞∑
i=0

(
s(a)

i

)
Xi ∈ ΛZp ,

and for all ε ∈ Û1 and k > 2, we have

(
1+ (ε(u)uk−2 − 1)

)s(a)
= (εω2−k)(a)ak−2. (10)
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Finally, recall from Chapter 1 that if ϕ 6= 1 is an even character with conductor

not divisible by p2, there exists a unique element F(X,ϕ) ∈ Zp[ϕ]JXK satisfying

F(ε(u)uk−2 − 1,ϕ) = Lp(k− 2,ϕε−1)

for all k > 2 and ε ∈ Û1, where Lp(s,ϕε−1) denotes the Kubota-Leopoldt p-

adic L-function associated to the character ϕε−1. We set S = u−1(1+X)−1 − 1

and define G(X,ϕ) = F(S,ϕ). The power series G(X,ϕ) and F(X,ϕ) will play

an important role in subsequent chapters.

We are now ready to define our Λθ,ψ-adic Eisenstein series. Suppose that

(θ0,ψ) 6= (ω−2, 1). Then for all integers t > 1 we define the following formal

series in Λθ,ψJqK:

Eθ,ψ;t =
ψ(0)

2
G(X, θω2) +

∞∑
n=1

 ∑
0<d|n
p-d

θ(d)ψ
(n
d

)
(1+X)s(d)d

qtn. (11)

We set Eθ,ψ = Eθ,ψ;1. It is well known that if θ = θ0 and ψ = ψ0 (i.e. θ and ψ

are primitive), the above q-expansion is an element of M(N)ord
Λθ,ψ

under certain

conditions.

Theorem 2.2.9 ([O2], Theorem-Definition 2.3.10). Let t > 1 be prime to p. Then

the power series Eθ0,ψ0;t is an element of M(N)ord
Λθ,ψ

if the following conditions are

satisfied:

(1) fθfψt | Np

(2) (fψ,p) = 1

(3) (θ0ψ0)(−1) = 1.

Furthermore, for all k > 2 and ε ∈ Û1 we have

vk,ε(Eθ0,ψ0;t) = Ek((θ0εω
2−k)p,ψ0; t) ∈ Mk(fθfψp

rt/ gcd(fθ,p), ε)ord
Oθ,ψ[ε]

having Nebentypus θ0ψ0εω2−k, where ker(ε) = Ur.

The Λθ,ψ-adic Eisenstein series Eθ0,ψ0;t, as θ0, ψ0, and t satisfying the above

conditions vary, are Λθ,ψ-linearly independent modulo S(N)ord
Λθ,ψ

.
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We would like to show that Eθ,ψ;t can be an element of M(N)ord
Λθ,ψ

when θ

and ψ are imprimitive as well. Let Dθ and Dψ be the largest square-free factors

of Mθ and Mψ, respectively, such that

gcd(Dθ, fθp) = 1 = gcd(Dψ, fψ).

Suppose we have the following factorizations of Dθ and Dψ,

Dθ = p1 · · ·pr

Dψ = p′1 · · ·p′s ,

keeping in mind that the sets {p1, . . . ,pr} and {p′1, . . . ,p′s} may not be disjoint.

For 1 6 i 6 r and 1 6 j 6 s define

θi = θp1···pi

ψj = ψp′1···p′j .

Note that θ = θr and ψ = ψs.

Proposition 2.2.10. For all integers t > 1 we have

Eθ,ψ;t =
∑
α|Dθ
β|Dψ

αµ(α)µ(β)θ0(α)ψ0(β)(1+X)
s(α)Eθ0,ψ0;αβt

where µ is the Möbius function.

Proof. We begin by considering the non-constant terms of Eθ,ψ;t. For all n > 1

and 1 6 i 6 r

ant(Eθi−1,ψ;t) − ant(Eθi,ψ;t) =
∑
0<d|n
p-d
pi|d

θi−1(d)ψ
(n
d

)
(1+X)s(d)d

=


θi−1(pi)(1+X)

s(pi)pi
∑

0<d|(n/pi)
p-d

θi−1(d)ψ

(
n

dpi

)
(1+X)s(d)d if pi | n

0 if pi - n

= θ0(pi)(1+X)
s(pi)pi · ant(Eθi−1,ψ;pit).
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This gives us the recursive identity

ant(Eθi,ψ;t) = ant(Eθi−1,ψ;t) + piµ(pi)θ0(pi)(1+X)
s(pi)ant(Eθi−1,ψ;pit),

from which we obtain

ant(Eθ,ψ;t) =
∑
α|Dθ

αµ(α)θ0(α)(1+X)
s(α)ant(Eθ0,ψ;αt).

All that remains to be shown is that

ant(Eθ0,ψ;αt) =
∑
β|Dψ

µ(β)ψ(β)ant(Eθ0,ψ0;αβt). (12)

Note that

ant(Eθ0,ψ;αt) = 0 = ant(Eθ0,ψ;αβt)

for all β | Dψ if α - n. Suppose α | n and let n = mα. Then for 1 6 j 6 s we

have

amαt(Eθ0,ψj−1;αt) − amαt(Eθ0,ψj;αt) =
∑
0<d|m
p-d

p′j|(m/d)

θ0(d)ψj−1

(m
d

)
(1+X)s(d)d.

=


ψ0(p

′
j)

∑
0<d|(m/p′j)

p-d

θ0(d)ψj−1

(
m/p′j
d

)
(1+X)s(d)d if p′j | m

0 if p′j - m

= ψ0(p
′
j) · amαt(Eθ0,ψj−1;αtp′j

).

Applying the same recursive argument as above we obtain (12).

Finally, we want to consider the constant term of Eθ,ψ;t. If ψ0 6= 1, then

a0(Eθ,ψ;t) = 0 = a0(Eθ0,ψ0;t). Suppose ψ0 = 1 and note that

∑
β|Dψ

µ(β) =

 1 Dψ = 1

0 Dψ > 1

.

Then for all k > 2 we have

a0
(
vk,1(Eθ,ψ;t)

)
=
ψ(0)

2
L(1− k, θp) =

∑
β|Dψ

µ(β)

 L(1− k, θp)
2

. (13)
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Recall that if χ is any Dirichlet character, L(1− s,χ) has the following Euler

product expansion

L(1− s,χ) =
∏
`prime

(
1− `s−1χ(`)

)−1
for all s ∈ C satisfying Re(s) > 1 [Wa, Chapter 4]. Therefore, we may write (13)

as

=

∑
β|Dψ

µ(β)

∏
`|Dθ

(
1− `k−1θ0(`)

) L(1− k, (θ0)p)
2

=

∑
β|Dψ

µ(β)

∏
`|Dθ

(
1− `k−1θ0(`)

)
a0
(
vk,1(Eθ0,ψ0;t)

)

=

∑
β|Dψ

µ(β)

∑
α|Dθ

αk−1µ(α)θ0(α)a0
(
vk,1(Eθ0,ψ0;t)

)

=
∑
α|Dθ
β|Dψ

αk−1µ(αβ)θ0(α)a0
(
vk,1(Eθ0,ψ0;αβt)

)
, (14)

with the last equality following from the fact that a0(Eθ0,ψ0;αβt) = a0(Eθ0,ψ0;t)

for all α, β, and t. For all k ≡ 2 (p− 1) we may write (14) as

=
∑
α|Dθ
β|Dψ

αµ(αβ)θ0(α)(1+ (uk−2 − 1))s(α)a0
(
vk,1(Eθ0,ψ0;αβt)

)
.

Since a0(Eθ,ψ;t) and∑
α|Dθ
β|Dψ

αµ(αβ)θ0(α)(1+X)
s(α)a0(Eθ0,ψ0;αβt)

are equal when evaluated at X = uk−2−1 for infinitely many positive integers k,

and |uk−2 − 1|p < 1, the two must be equal as a consequence of the Weierstrass

preparation theorem [Wa, Corollary 7.4].
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Since MθMψ = N or Np, p -Mψ, and the product θψ is even, we have the

following immediate consequence of the above proposition and Theorem 2.2.9.

Corollary 2.2.11. Let t be a positive integer coprime to p. The formal power series

Eθ,ψ;t is an element of M(Nt)ord
Λθ,ψ

.

We conclude this subsection by showing that the Eisenstein series Eθ,ψ is a

normalized common eigenform for H(N)O.

Proposition 2.2.12.

Eθ,ψ|Tq,q = (θψ)(q)(1+X)s(q) · Eθ,ψ (q a positive integer prime to Np)

Eθ,ψ|T` = (θ(`)`(1+X)s(`) +ψ(`)) · Eθ,ψ (primes ` 6= p)

Eθ,ψ|Tp = ψ0(p) · Eθ,ψ

Proof. It is well known that Eθ0,ψ0;t satisfies the above identities for all operators

except T` when ` | N [O4, Lemma 1.4.8]. Therefore, by Proposition 2.2.10 we

know that the same holds for Eθ,ψ.

Suppose ` | N = MθMψ/ gcd(p,Mθ). By Proposition 2.2.9 we know that

vk,ε(Eθ,ψ) has Nebetypus θψεω2−k for all k > 2 and ε ∈ Û1. This, along with

the fact that vk,ε(Eθ,ψ|T`) = vk,ε(Eθ,ψ)|T`, allows us to explicitly write down

the action of T` on the q-expansion of Eθ,ψ. Specifically, by Proposition 2.1.4,

for all n > 0 we have

an(Eθ,ψ|T`) = an`(Eθ,ψ) + (θψ)(`)`(1+X)s(`)an/`(Eθ,ψ) = an`(Eθ,ψ),

where an/` = 0 if ` - n. If n > 1 we have

an`(Eθ,ψ) =
∑
d|n`
p-d

θ(d)ψ

(
n`

d

)
(1+X)s(d)d

=


ψ(`) · an(Eθ,ψ) ` |Mθ, ` -Mψ

θ(`)(1+X)s(`)` · an(Eθ,ψ) ` -Mθ, ` |Mψ

0 otherwise.
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Recalling that a0(Eθ,ψ) = 0 if ψ is not the trivial character, we see that the

above holds when n = 0 as well.

We remark that Eθ,ψ;t is not necessarily a T`-eigenform for primes ` | N if

t > 1. To see why, suppose ` | t with t′ = t/`. Then we have

at′(Eθ,ψ;t|T`) = at(Eθ,ψ;t) = 1,

while at′(Eθ,ψ;t) = 0.

2.2.4 Duality

In this subsection we prove a duality result between Λ-adic modular forms and

the universal ordinary Hecke algebra. For any Λ-module M, we set MQ(Λ) =

M⊗ΛQ(Λ) and denote the Λ-dual of M by M∨.

Proposition 2.2.13. Let A be a free and finitely generated Λ-submodule of M(N)ord
Λ

that is stable under the action H(N)ord
O . Define H(A) to be the Λ-subalgebra of

EndΛ(A) generated by the Hecke operators {Tn : n > 1}. Suppose

{F ∈ AQ(Λ) : an(F) ∈ Λ for all n > 1} = A.

Then we have the following isomorphisms of Λ-modules,

A ∼= H(A)∨ : F 7→ a1(F| · ) (15)

H(A) ∼= A∨ : H 7→ a1( · |H). (16)

Proof. Set A2 = v2,1(A) ⊂M2(Γ1, 1)ord
O and define H(A2) to be the O-subalgebra

of EndO(A2) generated by the Hecke operators {Tn ∈ H2(Γ1)
ord
O : n > 1}.

Suppose F ∈ A satisfies v2,1(F) = 0. Then by Proposition 2.2.3 we know F = XF′

for some F′ ∈M(N)ord
Λ . However, our assumption that

{F ∈ AQ(Λ) : an(F) ∈ Λ for all n > 1} = A
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implies F′ ∈ A. Hence, the specialization map v2,1 : M(N)ord
Λ → M2(Γ1, 1)ord

O

induces an isomorphism A/XA ∼= A2.

Let X = A or A2, with H(X) denoting the corresponding Hecke algebra. We

set

R =

 Λ X = A

O X = A2

and begin by showing

XQ(R)
∼= HomQ(R)(H(X)Q(R),Q(R)). (17)

Since R is a Noetherian ring and H(X) is an R-submodule of the finitely

generated R-module EndR(X), we know that H(X) is finitely generated. Because

X is finitely generated by assumption, in order to prove (17) it suffices to show

the pairing

H(X)Q(R) ×XQ(R) → Q(R)

defined by (F,H) 7→ a1(F|H) is non-degenerate.

Let H ∈ H(X)Q(R) and suppose a1(F|H) = 0 for all F ∈ XQ(R). Then we

have an(F|H) = a1(F|H|Tn) = a1(F|Tn|H) = 0, for all n > 1, which implies

F|H ∈ Q(R). However, by definition there are no non-trivial constant classical

modular forms of positive weight (Definition 2.1.1). Therefore, there are no

non-trivial constant forms in X, which implies F|H = 0. Since F was arbitrary it

follows that H is the zero operator.

Next, let F ∈ XQ(R) and suppose a1(F|H) = 0 for all H ∈ H(X)Q(R). Then

in particular, for all n > 1 we have an(F) = a1(F|Tn) = 0, which by the same

argument as above implies F = 0. Hence, we have proven (17).

We will now use (17) to show X ∼= HomR(H(X),R). By the above result

and the fact that X is R-torsion free, the R-module homomorphism from

X → HomR(H(X),R) is injective. To show surjectivity, note that any ϕ ∈

HomR(H(X),R) can be “lifted“ to an element ϕ′ ∈ HomQ(R)(H(X)Q(R),Q(R))

by defining ϕ′(H) = ϕ(H) for all H ∈ H(X) and extending Q(R)-linearly. By
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what was previously shown, we know that there exists an F ∈ XQ(R) such that

ϕ′(H) = a1(F|H) for all H ∈ H(X)Q(R). However, this implies that

an(F) = a1(F|Tn) = ϕ′(Tn) = ϕ(Tn) ∈ Λ,

for all n > 1. Since the constant term of every form in X is 0 by assumption, we

know F ∈ X and we have X ∼= HomR(H(X),R). In fact, we can say more when

X = A2. Because A2 is a torsion-free O-module, we know that H(A2) is as well.

Therefore, H(A2) is a finitely generated, torsion-free O-module, and the fact

that O is a principal ideal domain implies H(A2) is free. Hence,

H(A2) ∼= HomO(HomO(H(A2),O),O) ∼= HomO(A2). (18)

Finally, we will prove (16). Once again, by the above result and the fact that A

isΛ-torsion free, we know theΛ-module homomorphism H(A)→ A∨ ∼= H(A)∨∨

defined by H 7→ a1( · |H) is injective. Let Q denote the cokernel of this map. We

begin by showing Q is a finite Λ-module.

Let p ⊂ Λ be a height 1 prime ideal. Since H(A) is a finitely generated, torsion-

free Λ-module, we know that the localization H(A)p of H(A) with respect to the

prime p is a finitely generated, torsion-free module over the discrete valuation

ring Λp. Consequently, H(A)p is free and the map

H(A)p → HomΛp(HomΛp(H(A)p,Λp),Λp)

is an isomorphism. Since localization is exact and our height 1 prime ideal

p ⊂ Λ was arbitrary, we must have Qp = 0 for all height 1 prime ideals p ⊂ Λ.

This means that Q is a pseudo-null Λ-module, which implies it is finite [NSW,

Chapter V, §1].

Now, consider the following commutative diagram:
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0 0 TorX(Q)

0 H(A) A∨ Q 0

0 H(A) A∨ Q 0

H(A)/XH(A) A∨/XA∨ Q/XQ

0 0 0 ,

X X X

where TorX(Q) := {α ∈ Q : X · α = 0}. By the snake lemma we obtain the

following exact sequence,

0 −−→ TorX(Q) −−→ H(A)/XH(A) −−→ A∨/XA∨ −−→ Q/XQ −−→ 0. (19)

We would like to show that the map H(A)/XH(A) → A∨/XA∨ is surjective.

Note that this map is defined by H+XH(A) 7→ ϕH +XA∨, where ϕH ∈ A∨ is

defined by F 7→ a1(F|H). Since TorX(Q) ⊂ Q is finite, we know that the image

of H(A)/XH(A) in the free O-module A∨/XA∨ is the submodule generated by

{ϕn + PkA
∨ : n > 1}, where ϕn ∈ A∨ is defined by F 7→ a1(F|Tn). Therefore, in

order to prove our desired surjectivity, it suffices to show that the set {ϕn+XA∨ :

n > 1} generates all of A∨/XA∨ as an O-module. To do so, consider the following

composition of O-module isomorphisms,

A∨/XA∨ ∼= A∨ ⊗Λ Λ/(X) ∼= HomΛ/(X)(A⊗Λ Λ/(X),Λ/(X))

∼= HomΛ/(X)(A/XA,Λ/(X)) ∼= HomO(A2,O) ∼= H(A2),

with the second isomorphism following from the fact that A is a free and

finitely generated Λ-module. In particular, this composition sends ϕn +XA∨

to Tn ∈ H(A2). Since H(A2) is the free O-module generated by {Tn : n > 1}, we

know that A∨/XA∨ is the free O-module generated by {ϕn +XA∨ : n > 1}.
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Finally, because the map H(A)/XH(A) → A∨/XA∨ is surjective we have

Q/XQ = 0. Nakayama’s lemma then implies Q = 0.



3
T H E Λ - A D I C R E S I D U E M A P

Our primary goal in this chapter is to determine the image of Eisenstein

series under Ohta’s Λ-adic residue map. While this image was determined by

Ohta [O4] for Eisenstein series associated to pairs of primitive, non-exceptional

characters, we would like to generalize this result to pairs of arbitrary characters.

3.1 cuspidal groups

For a positive integer M, we let X1(M) denote the modular curve Γ1(M) \

H∗, where H∗ := H ∪Q ∪ {∞}. In this section we will consider the cusps of

X1(M), that is, the Γ1(M)-equivalence classes of Q∪ {∞}. We begin by giving

an algebraic description of these cusps following Ohta [O4, Section 2.1] and

Shimura [Sh, Section 1.6].

We denote the cusps of X1(M) by CM, which we identify with Γ1(M) \P1(Q).

The map SL2(Z)→ P1(Q) (resp., GL+
2 (Q)→ P1(Q)) defined bya b

c d

 7→ a

c

induces a bijection

Γ1(M) \ SL2(Z) / Γ∞ → Γ1(M) \ P1(Q)(
resp., Γ1(M) \ GL+

2 (Q) / Γ̃∞ → Γ1(M) \ P1(Q)
)

42
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where Γ∞ ⊂ SL2(Z) (resp., Γ̃∞ ⊂ GL+2 (Q)) is the isotropy subgroup of the cusp

at∞,

Γ∞ :=

±
1 ∗
0 1

 ∈ SL2(Z)


Γ̃∞ :=


a ∗

0 d

 ∈ GL+
2 (Q)

 .

Let

AM :=


x
y

 ∈ (Z/MZ)2 : gcd(x,y) = 1

 / ∼, (20)

where x
y

 ∼

x′
y′

 ⇐⇒
x ≡ x′ (mod gcd(M,y))

y ≡ y′ (modM)

and denote by a
c


M

= class of

a
c

 in AM.

Then we have a natural bijection between Γ1(M) \ SL2(Z) / Γ∞ (resp., Γ1(M) \

GL+
2 (Q) / Γ̃∞) and AM/{±1} induced by the mapa b

c d

 7→
a
c


M

mod {±1}.

Hence, we can identify CM with AM/{±1}. To make the notation less cumber-

some, let a
c


′

M

=

a
c


M

mod {±1}.

For any two coprime integers M1 and M2 satisfying M =M1M2, there are

bijections

Γ1(M) \ SL2(Z) / Γ∞ ∼−→ AM/{±1}
∼−→ (AM1

×AM2
)/{±1}
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induced by the mapsa b

c d

 7→
a
c


′

M

7→


a
c


M1

,

a
c


M2


′

.

Unfortunately, this decomposition does not hold with respect to CM, that is, in

general

(AM1
×AM2

)/{±1} 6= (AM1
/{±1})× (AM2

/{±1}).

For this reason we will often work directly with AM and then reduce modulo

{±1} to obtain an element of CM.

Finally, for a ring R, let R[AM] denote the free R-module generated by AM.

By the decomposition above, we have

R[AM] ∼= R[AM1
]⊗R R[AM2

].

We can then define R[CM] as the quotient of R[AM] by the R-submodule gener-

ated by the set {a − (−1)a : a ∈ AM}.

3.1.1 Hecke operators acting on cuspidal groups

Let r > 1, and once again let O denote the ring of integers of some complete

subfield of Cp. To simplify the notation a bit, let Ar = ANr and Cr = CNr . In

this section and the next, we will consider the action of Hecke operators on

O[Ar] and O[Cr].

For any α ∈ GL+
2 (Q), we define the action of the double coset

ΓrαΓr =
∐
i

Γrβi

on O[Ar] by

[ΓrαΓr]

a
c


Nr

7→
∑
i

βi

a
c


Nr

.
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Taking

α =

a b

c d

 ∈ Γ0(Nr)

we get the diamond operator 〈d〉, while taking

α =

1 0

0 `

 (21)

for a prime number ` gives us the operator T`. As in the case of modular forms,

the action of the operators T` and 〈d〉 commute with one another.

We remark that our notation for the operator defined by (21) differs from that

of Ohta in [O2] and [O4], where this operator is denoted by T∗` . The reason for

this difference in notation stems from the fact that Ohta identifies the cuspidal

group O[Cr] with its dual group Hom(O[Cr],O) via the perfect pairing

O[Cr]×O[Cr]→ O :

∑
c∈Cr

acc,
∑
c∈Cr

bcc

 7→ ∑
c∈Cr

acbc.

One can show that under this identification the action of adjoint operator T∗` is

given by the double coset defining T` above [O2, Proposition 3.4.12].

For future reference we want to determine the action of the operator 〈d〉

explicitly. For d ∈ (Z/NrZ)×, the action of the diamond operator 〈d〉 on Ar is

given by

〈d〉

a
c


Nr

=

d′a
dc


Nr

where d′ is an integer such that dd′ ≡ 1 (modNr). From the definition we

see that the action of (Z/NrZ)× ∼= (Z/NZ)× × (Z/prZ)× via the diamond

operator is compatible with the decomposition Ar = AN ×Apr .

Of particular interest to us will be the operators 〈α〉 for α ∈ U1/Ur ↪→

{1}× (Z/prZ)× ⊂ (Z/NrZ)×. Let σα ∈ Γ1 be a chosen element satisfying

σα ≡

α−1 ∗

0 α

 (modpr)
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Then 〈α〉a = σαa for all a ∈ Ar.

The above operators induce operators on O[Cr] via the projection mapping

O[Ar]� O[Cr], which we will denote by the same symbols.

3.1.2 Ordinary cuspidal group

We set Aord
r = eAr and Cord

r = eCr. In this section our goal is to give a

description of O[Aord
r ] and O[Cord

r ] as O[U1/Ur]-modules.

Proposition 3.1.1 ([O2] Prop. 4.3.4, [O4] (2.2.3)). Let

Dr =


a
c


Nr

∈ Ar : p | c

 .

Then O[Aord
r ] ∼= O[Ar]/O[Dr].

Consider the set

A0r =



a
c


N

,

 0

ω(c)


pr

 ∈ Ar : 0 < c < Np, gcd(c,p) = 1

0 6 a < gcd(N, c)

 .

In the next proposition we show that A0r is an O[U1/Ur]-basis for O[Aord
r ].

Proposition 3.1.2. O[U1/Ur][A
0
r ] = O[Aord

r ].

Proof. It will suffice to show

{a ∈ Ar : ea 6= 0} = {σγa : γ ∈ U1/Ur, a ∈ A0r }.

By Proposition 3.1.1 and the fact that Hida’s idempotent e commutes with

diamond operators, we know that

{σγa : γ ∈ U1/Ur, a ∈ A0r } ⊂ {a ∈ Ar : ea 6= 0}.

So we only need to prove the opposite inclusion.
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Let a ∈ Ar with ea 6= 0. Then once again by Proposition 3.1.1 we know

a =

a
c


Nr

=


a
c


N

,

a
c


pr


with p - c. Since gcd(c,p) = 1, we havea

c


pr

=

0
c


pr

.

Finally, we note that
a
c


N

,

0
c


pr

 =


a
c


N

,

 0

〈〈c〉〉ω(c)


pr

 = σ〈〈c〉〉 ·


a
c


N

,

 0

ω(c)


pr

 .

We define C0r = A0r/{±1}. The utility of the above proposition will be realized

in the next section.

3.1.3 Λ-adic cuspidal group

For all s > r > 1, the map a
c


′

Ns

7→

a
c


′

Nr

. (22)

induces a surjection O[Cord
s ] = O[U1/Us][C

0
s] � O[U1/Ur][C

0
r ] = O[Cord

r ]. Fur-

thermore, from Subsection 3.1.1 we see that the Hecke action commutes with

these surjections. We define the Λ-adic cuspidal group by

C(N)ord
Λ = lim←−

r>1

O[Cord
r ] = lim←−

r>1

O[U1/Ur][C
0
r ].
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From the right hand side of the above definition, we see that C(N)ord
Λ is a

module over

Λ = OJXK ∼= lim←−
r>1

O[U1/Ur].

3.2 residues of Λ-adic eisenstein series

Let θ, ψ, and ξ = (θ0ψ
−1
0 )0 be as in Chapter 1. For the remainder of the chapter

we set E = Eθ,ψ and let O∞ denote the ring of integers of a complete subfield

of Cp containing all roots of unity. We set Λ∞ = O∞JXK.

In [O4], Ohta constructs the following exact sequence of Hecke modules

0 −−−−→ S(N)ord
Λ∞ −−−−→ M(N)ord

Λ∞
ResΛ−−−−→ C(N)ord

Λ∞ −−−−→ 0, (23)

where the map ResΛ is the Λ-adic residue map, defined explicitly by

ResΛ(F) = lim←−
r>1

 1

pr−1

∑
c∈Cr

 ∑
ε∈Û1/Ur

Resc
(
v2,ε(F)|T

−r
p |w−1

Nr

) · ec
 , (24)

where Resc(f) denotes the residue of the differential ωf = fdqq at the cusp c.

Our goal for the remainder of this section is to prove the following Proposition.

Proposition 3.2.1. Suppose (θ0,ψ) 6= (ω−2, 1). Then ResΛ(E) = A · e∞ where

A = Aθ,ψ :=
∏
`|f̃θfψ
`-fξ

(
(1+X)s(`) − (ξω2)−1(`)〈〈`〉〉−2

)
G(X, ξω2),

and e∞ := eθ,ψ∞ ∈ C(N)ord
Λθ,ψ

.

Before moving on, let us determine exactly what proving Proposition 3.2.1

will entail. First we recall that by Proposition 2.2.10 the Eisenstein series E can

be written as

E =
∑
α|Dθ
β|Dψ

αµ(α)µ(β)θ0(α)ψ0(β)(1+X)
s(α)Eθ0,ψ0;αβ.
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Therefore, in order to prove Proposition 3.2.1 it will suffice to show that when

t > 1 is prime to p and satisfies fθfψt | Np, we have

ResΛ(Eθ0,ψ0;t) = A · e∞,t (25)

for some e∞,t ∈ C(N)ord
Λθ,ψ

.

Having reduced our task to showing (25), let us return to the definition of

the Λ-adic residue map. Plugging in Eθ0,ψ0;t for an integer t as above we get

ResΛ(Eθ0,ψ0;t) = lim←−
r>1

ψ0(p)−rpr−1

∑
c∈Cr

ε∈Û1/Ur

Resc
(
E2((θ0ε)p,ψ0; t)|w−1

Nr

)
· ec

. (26)

Here we’re using the fact that E2((θ0ε)p,ψ0; t) is a Tp-eigenform with eigen-

value ψ0(p). Next, we note that since

w−1
Nr

=

1/t 0

0 1

w−1
Nr/t

,

for all τ ∈H we haveE2((θ0ε)p,ψ0; t)

∣∣∣∣∣∣∣
1/t 0

0 1


 (τ) = det

1/t 0

0 1

 · E2((θ0ε)p,ψ0; t)(τ/t)

=
1

t
· E2((θ0ε)p,ψ0).

Therefore, (26) becomes

lim←−
r>1

ψ0(p)−rtpr−1

∑
c∈Cr

ε∈Û1/Ur

Resc
(
E2((θ0ε)p,ψ0)|w−1

Nr/t

)
· ec

. (27)

Now, the above sum is over those cusps c ∈ Cr such that ec 6= 0. In Section

3.1.2, we determined an O∞[U1/Ur]-basis C0r for the O∞-module generated by
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such cusps. This basis, along with the fact that the diamond operator commutes

with e, allows us to write (27) as

lim←−
r>1


ψ0(p)

−r

tpr−1

∑
c∈C0r

ε∈Û1/Ur
γ∈U1/Ur

Resc
(
E2((θ0ε)p,ψ0)|w−1

Nr/t
|σγ

)
· (σγ · ec)

 . (28)

By the identity f|w−1
Nr/t

|σγ = f|σ−1γ |w−1
Nr/t

for all f ∈M2(Γ1(Nr/t))Cp , the above

becomes

lim←−
r>1


ψ0(p)

−r

tpr−1

∑
c∈C0r

ε∈Û1/Ur
γ∈U1/Ur

ε−1(γ) ·ReswNr/t(c) (E2((θ0ε)p,ψ0)) · (σγ · ec)

 , (29)

with the last equality following from the facts that σγ ∈ Γ1 and wNr/t(c) =

w−1
Nr/t

(c) for all c ∈ Cr.

So we have further reduced our task to determining the residue of E2((θ0ε)p,ψ0)

at the cusps wNr/t(c) for c ∈ C0r . The following definition and proposition give

us a simple means of computing this.

Definition 3.2.2. Let γ ∈ SL2(Z) correspond to the cusp c ∈ Cr. The minimal choice

of h > 0 such that 1 h

0 1

 ∈ γ−1Γrγ

is called the width of the cusp c.

Proposition 3.2.3 ([O2], Section 4.5). Let Γ be a congruence subgroup of SL2(Z)

and let f ∈M2(Γ). Then Resc(f) = hc · a0(f|c), where hc is the width of the cusp c

and a0(f|c) is the constant term of f at c.

Therefore, in order to determine the projective limit (29) defining the image

of the Eisenstein series Eθ0,ψ0;t under the Λ-adic residue map, we simply need

to compute the constant term of E2((θ0ε)p,ψ0) at the cusp wNr/t(c) and the

width of the cusp wNr/t(c) for all c ∈ C0r . In Subsection 3.2.1 we will determine
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the former, and in Subsection 3.2.2 the latter. Finally, in Subsection 3.2.3 we will

put all of this together to prove Proposition 3.2.1.

3.2.1 The constant term of Eisenstein series at the cusps

Let r > 1 and ε ∈ Û1,f. We begin by recalling the following results due to Ohta.

Proposition 3.2.4 ([O4], Prop. 2.5.5). Let c ∈ Cr with

c =

a
c


′

Nr

.

If fθ0ε | c, then the constant term of E2(θ0ε,ψ0) at the cusp c is given by

1

2

g((ξε)−1)

g((θ0ε)−1)

(
fθ0ε

f(ξε)−1

)2
ψ0

(
−

c

fθ0ε

)
(θ0ε)

−1(a)

·

 ∏
`|fθ0εfψ
`-fξε

(
1− (ξε)−1(`)`−2

)
L(−1, ξε)

where g(χ) is the Gauss sum of the character χ. If fθ0ε - c, then the constant term is 0.

Corollary 3.2.5 ([O4], Cor. 2.5.7). Let c ∈ Cr with

c =

a
c


′

Nr

and assume that p | c. Then the constant term of E2((θ0ε)p,ψ0) at c is equal to the

constant term of E2(θ0ε,ψ0) at c multiplied by 1− (ξε)(p)p.

With respect to the above corollary, note that if p | fθ0ε, then (θ0ε)p = θ0ε and

(ξε)(p) = 0.

Let N = f̃θPQt, where f̃θ = fθ if p - fθ and fθ/p otherwise, and

P =
∏
`|fψ
`prime

`ord`(N/f̃θt).
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Note that P is dependent on N, θ0, ψ0, and t, and Q is the largest factor of

N/f̃θt prime to fψ. Let c ∈ C0r with

c =

a
c


′

Nr

=


a
c


N

,

 0

ω(c)


pr


′

. (30)

By the definition of C0r , we know that 0 6 a < gcd(N, c) and 0 < c < N1 with

gcd(c,ap) = 1. The cusp we’re interested in is wNr/t(c), which is given by

wNr/t(c) =

 −c/∆

aNr/∆t


′

Nr

=

 −c/∆

af̃θPQp
r/∆


′

Nr

where ∆ := gcd(aNr/t, c) = gcd(f̃θPQ, c). Now, by Proposition 3.2.4, in order

for the constant term of the Eisenstein series E2(θ0ε,ψ0) to be non-zero at the

cusp wNr/t(c), the following conditions must be satisfied:

(1) fθ0ε |
af̃θPQp

r

∆

(2) ψ0

(
af̃θPQp

r

fθ0ε ·∆

)
6= 0.

(3) θ−10
( c
∆

)
6= 0.

We want to unravel these conditions in order to get characterizations of a, c

and ∆.

First we note that ∆ | gcd(N, c), and any divisor of the quotient gcd(N, c)/∆

must be a divisor of t. With this in mind, we define

dt = gcd(N, c)/∆.

Then c = ∆dty for some y satisfying 0 < y < N1/∆dt with gcd(y,N1/∆dt) = 1,

while 0 6 a < ∆dt with gcd(a,∆dty) = 1.

Next, since fθ0ε = f̃θp
s for some s 6 r and gcd(c,ap) = 1, condition (1) is

equivalent to ∆ | PQ. Furthermore, by expanding condition (2),

ψ0(a)ψ0

(
PQ

∆

)
ψ0(p

r−s) 6= 0
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we see that we must also have P | ∆ so that ψ0(PQ/∆) 6= 0. Hence, ∆ = PdQ for

some dQ | Q. Furthermore, we have a 6= 0.

Putting this altogether, we see that if the constant term of E2(θ0ε,ψ0) is to

be non-zero at wNr/t(c), the cusp c ∈ C0r can be written as

c =


 x

dtdQPy


N

,

 0

ω(dtdQPy)


pr


′

(31)

with

(1) dt | t and dQ | Q

(2) x ∈ (Z/dtdQPZ)×.

(3) y ∈ (Z/(N1/dtdQP)Z)×

Having characterized the cusps in C0r at which the constant term of the

Eisenstein series E2(θ0ε,ψ0) is non-trivial, we will now use Proposition 3.2.4

and Corollary 3.2.5 to determine the constant term at these cusps.

Proposition 3.2.6. Suppose θ0 = χωi, where fχ = f̃θ. If c ∈ C0r is of the form given

by (31), then the constant term of E2((θ0ε)p,ψ) at wNr/t(c) is

C · ε
(

f̃θ
fξdty

)
ψ0

(
xQpr

dQ

)
θ−10 (dty)

·

 ∏
` | f̃θfψ
` - fξ

(1− (ξεω2)−1(`)〈〈`〉〉−2)

L(−1, (ξε)p) (32)

where C is a p-adic unit in some finite cyclotomic extension of Qp depending only on

θ0 and ψ0.

Proof. We have

wNr/t(c) =

 −dty

xf̃θQp
r/dQ


′

Nr

(33)
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for some dt | t and dQ | Q. By Proposition 3.2.4 the constant coefficient of

E2(θ0ε,ψ0) at the cusp wNr/t(c) is given by

1

2

g((ξε)−1)

g((θ0ε)−1)

(
fθ0ε

fξε

)2
ψ0

(
−xQpr−s

dQ

)
(θ0ε)

−1(−dty)

·


∏

`|f
(θ0ε)

−1fψ

`-f
(ξε)−1

(1− (ξε)−1(`)`−2)

L(−1, ξε). (34)

With respect to the first term of (34) involving Gauss sums, we note that if χ1

and χ2 are two distinct characters such that gcd(fχ1 , fχ2) = 1, then

g(χ1χ2) = χ1(fχ2)χ2(fχ1)g(χ1)g(χ2) (35)

(see [O4], 2.6.8). Since (ξε)−1 = (ψ0χ
−1) · (ωiε)−1 and gcd(fψ0χ−1 , fωiε) = 1,

we have

g((ξε)−1)

g((θ0ε)−1)
=
g(ψ0χ

−1)

g(χ−1)
· g((ω

iε)−1)

g((ωiε)−1)
· (ψ0χ

−1)(ps)

χ−1(ps)
·
(ωiε)−1

(
fψ0χ−1

)
(ωiε)−1

(
f̃θ
)

=
g(ψ0χ

−1)

g(χ−1)
·ψ0(ps) ·ωi

(
f̃θ

fψ0χ−1

)
· ε
(

f̃θ
fψ0χ−1

)
. (36)

With respect to the second term of (34) we have(
fθ0ε

fξε

)2
=

(
f̃θ · fωiε

fψ0χ−1 · fωiε

)2
=

(
f̃θ

fψ0χ−1

)2
. (37)

Recalling that gcd(p, fψ) = 1, we have

ψ0

(
−xQpr−s

dQ

)
(θ0ε)

−1(−dty) = ψ0

(
xQ

dQ

)
ψ0(p

r−s)θ−10 (dty)ε
−1(dty),

we have used the fact that (θ0ψ0)(−1) = 1 = ε(−1). Putting this altogether, we

see that the first half of (34) can be written as

= C ·ψ0(pr) · ε
(

f̃θ
fψ0χ−1dty

)
· θ−10 (dty) ·ψ0

(
xQ

dQ

)
(38)

where

C :=
1

2
· g(ψ0χ

−1)

g(χ−1)
·ωi

(
f̃θ

fψ0χ−1

)
·
(

f̃θ
fψ0χ−1

)2
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is a p-adic unit in some finite cyclotomic extension of Qp that depends only on

θ0 and ψ0.

Next, we consider the product occurring in the latter half of (34). Since

fθ0εfψ = f̃θfψp
n and fξε = fξp

n for some integer n > 0, we have ∏
`|fθ0εfψ
`-fξε

(1− (ξε)−1(`)`−2)

 =

 ∏
` | f̃θfψ
` - fξ

(1− (ξεω2)−1(`)〈〈`〉〉−2)

 .

Finally, by Corollary 3.2.5 we know that the constant term of E2((θ0ε)p,ψ0)

at wNr/t(c) is 1− (ξε)(p)p times the constant term of E2(θ0ε,ψ0) at wNr/t(c).

Since

(1− (ξε)(p)p)L(−1, ξε) = L(−1, (ξε)p),

we have the proposition.

3.2.2 Width of the cusps

In this section we would like to determine the width of the cusp wNr/t(c) for

c ∈ C0r . Let c ∈ C0r be of the form (31), i.e.

c =

 x

dtdQPy


′

Nr

for some dt | t and dQ | Q. Let γ ∈ SL2(Z) correspond to wNr/t(c), that is,

γ =

 −dty ∗

xf̃θQp
r/dQ ∗

.

Let h be the width of the cusp wNr/t(c). Then by definition1− dty
(
xf̃θQp

r

dQ

)
h ∗

−
(
xf̃θQp

r

dQ

)2
h 1+ dty

(
xf̃θQp

r

dQ

)
h

 = γ

1 h

0 1

γ−1 ∈ Γr. (39)
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Therefore, we must have

dty

(
xf̃θQp

r

dQ

)
h ≡ 0 (modNr) and

(
xf̃θQp

r

dQ

)2
h ≡ 0 (modNr).

However, since γ ∈ SL2(Z) it must be the case that

gcd
(
dty,

xf̃θQp
r

dQ

)
= 1,

which implies (
xf̃θQp

r

dQ

)
h ≡ 0 (modNr).

The smallest value of h satisfying the above congruence is h = tdQP/gcd(x, t),

which is a p-adic unit dependent on the cusp c.

3.2.3 Proof of Proposition 3.2.1

In this section we will put everything we have proven thus far together in order

to prove Proposition 3.2.1. Recall that it suffices to show

ResΛ(Eθ0,ψ0;t) = A · e∞,t

for some e∞,t ∈ C(N)ord
Λ∞ .

As was shown earlier, the level r component of the projective limit defining

ResΛ(Eθ0,ψ0;t) is given by

ψ0(p)
−r

tpr−1

∑
c∈C0r

ε∈Û1/Ur
γ∈U1/Ur

ε−1(γ)ReswNr/t(c)(E2((θ0ε)p,ψ0)) (σγ · ec) . (40)

By Proposition 3.2.3 we know that ReswNr/t(c)(E2((θ0ε)p,ψ0)) is simply the

width of the cusp wNr/t(c) times the constant term of the Eisenstein series

E2((θ0ε)p,ψ0) at that cusp. Furthermore, in Subsection 3.2.1 it was shown that
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the constant term of E2((θ0ε)p,ψ0) at the cusp wNr/t(c) for c ∈ C0r , is zero

unless c is of the form

cx,y
r,dt,dQ

:=


 x

dtdQPy


N

,

 0

ω(dtdQPy)


pr


′

with dt | t, dQ | Q, x ∈ (Z/dtdQPZ)×, and y ∈ (Z/(N1/dtdQP)Z)×. In order

to shorten notation, for each dt | t and dQ | Q, let

Sdt,dQ = (Z/dtdQPZ)× × (Z/(N1/dtdQP)Z)×,

then (40) can be written as

ψ0(p)
−r

tpr−1

∑
dt|t
dQ|Q

∑
ε∈Û1/Ur
γ∈U1/Ur

(x,y)∈Sdt ,dQ

ε−1(γ)Res
wNr/t

(
cx,y
r,dt ,dQ

)(E2((θ0ε)p,ψ0)
) (
σγ · ecx,y

r,dt,dQ

)
.

(41)

By Proposition 3.2.6 we know that the constant term of E2((θ0ε)p,ψ0) at the

cusp wNr/t
(
cx,y
r,dt,dQ

)
is

C · ε
(
−
f̃θdty

fξ

)
ψ0

(
xQpr

dQ

)
θ−10 (dty)

·

 ∏
` | f̃θfψ
` - fξ

(1− (ξεω2)−1(`)〈〈`〉〉−2)

L(−1, (ξε)p),
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where C is a p-adic unit depending only on θ0 and ψ0, while in Section 3.2.2 we

showed that the width of the cusp wNr/t
(
cx,y
r,dt,dQ

)
is tdQP/gcd(x, t). Therefore,

(41) can be written as

CP

pr−1

∑
dt|t
dQ|Q

∑
ε∈Û1/Ur
γ∈U1/Ur

(x,y)∈Sdt ,dQ

dQ

gcd(x, t)
ε−1(γ) ε

(
−
f̃θdty

fξ

)
ψ0

(
xQ

dQ

)
θ−10 (dty)

·

 ∏
` | f̃θfψ
` - fξ

(1− (ξεω2)−1(`)〈〈`〉〉−2)

L(−1, (ξε)p)(σγ · ecx,y
r,dt,dQ

)
. (42)

Next, we will rearrange the above sum by grouping those terms that are

dependent on r. To once again simplify the notation a bit, let

Lε =

 ∏
` | f̃θfψ
` - fξ

(1− (ξεω2)−1(`)〈〈`〉〉−2)

L(−1, (ξε)p).
Then (42) can be written as

CP
∑
dt|t
dQ|Q

(x,y)∈Sdt ,dQ

dQ

gcd(x, t)
ψ0

(
xQ

dQ

)
θ−10 (dty)

·

 1

pr−1

∑
ε∈Û1/Ur
γ∈U1/Ur

ε−1(γ) ε

(
−
f̃θdty

fξ

)
Lε

(
σγ · ecx,y

r,dt,dQ

) . (43)

For each dt | t, dQ | Q, and (x,y) ∈ Sθ0,ψ0 , define

ex,y∞,dt,dQ
= lim←−

r

ecx,y
r,dt,dQ

∈ C(N)ord
Λ∞ .

We will use (43) to show that ResΛ(Eθ0,ψ0;t) is a Λ∞-linear combination of

the ex,y∞,dt,dQ
. To do so, we need to make explicit the Λ∞-action on the cusps
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ex,y∞,dt,dQ
. First we note that by the surjectivity of the Λ-adic residue map, there

exists some F0 ∈M(N)ord
Λ∞ such that

ResΛ(F0) = ex,y∞,dt,dQ
.

In fact, if we recall the definition of the Λ-adic residue map (24) and note that

1

pr−1

∑
ε∈Û1/Ur
γ∈U1/Ur

ε−1(γ)
(
σγ · ecx,y

r,dt,dQ

)

=
1

pr−1

∑
γ∈U1/Ur

 ∑
ε∈Û1/Ur

ε−1(γ)

(σγ · ecx,y
r,dt,dQ

)

=
1

pr−1

 ∑
ε∈Û1/Ur

1

 ecx,y
r,dt,dQ

= ecx,y
r,dt,dQ

we see that

ex,y∞,dt,dQ
= lim←−

r

 1

pr−1

∑
ε∈Û1/Ur
γ∈U1/Ur

Resσγ·cx,y
r,dt ,dQ

(v2,ε(F0)|T
−r
p |w−1

Nr
)
(
σγ · ecx,y

r,dt,dQ

) .

with

Resσγ·cx,y
r,dt ,dQ

(v2,ε(F0)|T
−r
p |w−1

Nr
) = ε−1(γ).

Characterizing ex,y∞,dt,dQ
in this way makes it easier to determine the Λ∞-action.

Specifically, if λ ∈ Λ∞ we have

λ · ex,y∞,dt,dQ
= lim←−

r

 1

pr−1

∑
ε∈Û1/Ur
γ∈U1/Ur

Resσγ·cx,y
r,dt ,dQ

(v2,ε(λF0)|T
−r
p |w−1

Nr
)
(
σγ · ecx,y

r,dt,dQ

)

= lim←−
r

 1

pr−1

∑
ε∈Û1/Ur
γ∈U1/Ur

ε−1(γ) · λ(ε(u) − 1) ·
(
σγ · ecx,y

r,dt,dQ

) .
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Therefore, noting that

A(ε(u) − 1) = Lε

ε(u)s(−f̃θdty/fξ) = ε

(
−
f̃θdty

fξ

)
for all ε ∈ Û1,f, we have

(1+X)s(−f̃θdty/fξ) ·A · ex,y∞,dt,dQ

= lim←−
r

 1

pr−1

∑
ε∈Û1/Ur
γ∈U1/Ur

ε−1(γ) ε

(
−
f̃θdty

fξ

)
Lε

(
σγ · ecx,y

r,dt,dQ

) .

Putting this together with (43) we see that

ResΛ(Eθ0,ψ0;t) = A · e∞,t

where

e∞,t := CP
∑
dt|t
dQ|Q

(x,y)∈Sdt ,dQ

dQ · (1+X)s(−f̃θdty/fξ)

gcd(x, t)
ψ0

(
xQ

dQ

)
θ−10 (dty) · ex,y∞,dt,dQ

.

This completes the proof of Proposition 3.2.1.

3.3 hecke algebra modulo eisenstein ideal

We continue to assume that (θ0,ψ) 6= (ω−2, 1). Furthermore, to simplify the

notation a bit we set

M = M(N)ord
Λθ,ψ

S = S(N)ord
Λθ,ψ

H = H(N)ord
Oθ,ψ

h = h(N)ord
Oθ,ψ

.

Our primary goal in this section will be to prove the following proposition.
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Proposition 3.3.1. Let I denote the image of AnnH(E) in h. Then we have the following

isomorphism of Λθ,ψ-algebras

h/I ∼= Λθ,ψ/(A),

where A is as in Proposition 3.2.1.

The form of this result is well known. It was first proven by Wiles [W2] in

the case when ψ = 1 and θ is primitive and non-exceptional. In [O4], Ohta

removed the triviality condition on ψ, proving the result for non-exceptional,

primitive pairs of characters. Unfortunately, this proof requires the full force

of the Iwasawa main conjecture over Q. Using Katz’s p-adic Modular forms,

Emerton [E] has given a proof of the above isomorphism in the case when

ψ = 1 and θ is a nontrivial power of the Teichmüller character. The novelty

of our approach lies in its simplicity and generality. Specifically, our proof

does not require the Iwasawa main conjecture and makes no restrictions on the

characters θ and ψ apart from (θ0,ψ) 6= (ω−2, 1).

In his proof, Emerton constructs what he calls the “universal constant term”

of the Hecke algebra acting on the space of p-adic modular forms [E, §2]. This

is a Hecke operator H0 satisfying a1(f|H0) = a0(f) for all p-adic modular

forms f. We consider a Λθ,ψ-adic analog of this situation. While constructing

a Hecke operator satisfying this identity for all of M may not possible, such a

construction is possible for a specific free Λθ,ψ-submodule of M when ψ = 1.

We begin by constructing this submodule.

Proposition 3.3.2. Λ∞(e∞) is a free Λ∞-module.

Proof. This is equivalent to showing that e∞ is not Λ∞-torsion. For the sake

of contradiction, suppose it is. Then there exists some λ ∈ Λ∞ such that

ResΛ(λE) = λA · e∞ = 0. However, this implies λE ∈ S(N)ord
Λ∞ , which is a

contradiction.
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Proposition 3.3.3 ([O3], Lemma 2.1.1). The ΛZp-algebra Λ∞ is faithfully flat.

Now, let P = {F ∈ M : ResΛ(F) ∈ Λθ,ψ(e∞)}. Then by Corollary 2.2.4 and

Proposition 3.3.2 we have the following exact sequence

0 −−−−→ S⊗Λθ,ψ Λ∞ −−−−→ P⊗Λθ,ψ Λ∞ −−−−→ Λθ,ψ(e∞)⊗Λθ,ψ Λ∞ −−−−→ 0.

Employing Proposition 3.3.3 we have the exactness of

0 −−−−→ S −−−−→ P −−−−→ Λθ,ψ(e∞) −−−−→ 0.

We would now like to construct a basis for P.

By Proposition 2.2.2, we know that S is a free and finitely generated Λθ,ψ-

module. Let {F1, . . . , Fm} be a Λθ,ψ-basis for S. By the duality of Proposition

2.2.13, we know that h has a Λθ,ψ-basis {B1, . . . ,Bm} such that

a1(Fi|Bj) =

 1 i = j

0 i 6= j.

For each i, let Bi be any element of H that projects to Bi via the natural

surjection H� h.

Next, take any F ∈ P satisfying ResΛ(F) = e∞ and define

F0 = F−

m∑
i=1

a1(F|Bi)Fi ∈ P.

Note that any two elements of P mapping to e∞ under the Λ-adic residue map

differ by a cusp form, so our definition of F0 does not depend on the choice of

F. It is clear that {F0, F1, . . . , Fm} is a Λθ,ψ-basis for P.

Before moving on, let us make several observations about the form F0. First

we note that since ResΛ(AF0 − E) = 0, we have

F0 =
E+ FS
A

(44)

for some FS ∈ S.
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Next we note that by construction

a1(F0|Bi) = a1(F|Bi) −

m∑
j=1

a1(F|Bi)a1(Fj|Bi) = 0

for 1 6 i 6 m. However, we can say even more about the Hecke action on F0.

Recall that ResΛ is a Hecke module homomorphism. Combining this with the

fact that ResΛ(E) = A · e∞, we see that

e∞|H = a1(E|H) · e∞
for all H ∈ H. This implies that

F0|H = a1(E|H)F0 +GH, (45)

for some GH ∈ S, where the subscript notes the fact that this cusp form may

depend on H. So, we see that F0 is an eigenform modulo S, with eigenvalues

agreeing with those of E.

3.3.1 Case 1: ψ 6= 1

If ψ 6= 1, then a0(E) = 0 and by (44) we see that

P0 :=
{
F ∈ PQ(Λθ,ψ) : an(F) ∈ Λθ,ψ for n > 1

}
= P.

Therefore, by Proposition 2.2.13 we have H(P) := H/AnnH(P) ∼= HomΛθ,ψ(P,Λθ,ψ).

Let B0 ∈ H(P) correspond to F0 under the above isomorphism. That is, B0

satisfies

a1(Fi|B0) =

 1 i = 0

0 i 6= 0

for all i. Note that by (44) we have a1(E|B0) = A.

Now, consider the map Φ : h 7→ Λθ,ψ/(A) defined by

Φ(H) = a1(FS|H) (modA).
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Let H ∈ h. Since FS = AF0 − E, if H̃ ∈ HX is any element the projects to H under

the natural projection H(P)→ h, we have

a1(FS|H) = a1(FS|H̃) = Aa1(F0|H̃) − a1(E|H̃).

From this we can see that Φ is surjective and I ⊂ ker(Φ).

Suppose H ∈ ker(Φ). Then it must be the case that a1(E|H̃) ∈ (A) for every

H̃ ∈ H(P) projecting to H. Define

H̃0 = H̃−
a1(E|H̃)

a1(E|B0)
B0 ∈ HP. (46)

Then by construction E|H̃0 = a1(E|H̃0)E = 0. Furthermore, H̃0 projects to H.

Therefore, H ∈ I and we have ker(Φ) = I.

3.3.2 Case 2: ψ = 1

We begin by noting that when ψ = 1, we have

A =
∏
`|f̃θ
`-fθ

(
(1+X)s(`) − (ξω2)(`)〈〈`〉〉−2

)
G(X, θ0ω2) = G(X, θ0ω2) = 2a0(E).

So our goal in this case is to show h/I ∼= Λθ,ψ/(G(X, θ0ω2)). In this case, we

have the following equivalent statements.

Proposition 3.3.4. The following are equivalent:

(a) There exists an H ∈ H(P) such that a1(F0|H) ∈ Λ×θ,ψ.

(b) There exists an H ∈ H(P) such that a1(F|H) = a0(F) for all F ∈ P.

(c) HomΛθ,ψ(P,Λθ,ψ) ∼= H(P).

(d) h/I ∼= Λθ,ψ/(G(X, θ0ω2)).

Proof. We will begin by showing that (a) − (d) are equivalent.
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(a)⇒ (b). Let H ∈ H(P) satisfy a1(F0|H) ∈ Λ×θ,ψ. Define

H0 =
1

2a1(F0|H)

(
H−

m∑
i=1

a1(Fi|H)Bi

)
.

By construction we have a1(Fi|H0) = 0 = a0(Fi) for 1 6 i 6 m. Furthermore,

we have a1(F0|H0) = 1/2 = a0(F0), with the second equality following from

(44).

(b) ⇒ (c). Suppose H ∈ H(P) satisfies a1(F|H) = a0(F) for all F ∈ P. Define

B0 = 2H. Then B0 ∈ AnnH(P)(S), while a1(F0|B0) = 2a0(F0) = 1.

Now, for 0 6 i 6 m define ϕi ∈ HomΛθ,ψ(P,Λθ,ψ) by

ϕi(Fj) =

 1 i = j

0 i 6= j.

Then {ϕ0, . . . ,ϕm} is a Λθ,ψ-basis for HomΛθ,ψ(P,Λθ,ψ), and we have a Λθ,ψ-

module isomorphism

〈B0,B1, . . . ,Bm〉Λθ,ψ
∼= HomΛθ,ψ(P,Λθ,ψ)

given by Bi 7→ a1( · |Bi) = ϕi. Hence, we just need to show that H(P) is isomor-

phic to 〈B0,B1, . . . ,Bm〉Λθ,ψ as aΛθ,ψ-module. Clearly the set {B0,B1, . . . ,Bm}

is Λθ,ψ-linearly independent, so we just need to show that its Λθ,ψ-span is all of

H(P).

Let H ∈ H(P), and from this H define H0 as in (46). Our goal is to show

H′ = a1(F0|H)H0 ∈ 〈B0,B1, . . . ,Bm〉Λθ,ψ . To do so, we begin by noting that

H′ ∈ AnnH(P)(S), so its action on P is completely determined by how it acts on

F0. By (45) we have

an(F0|H
′) = a1(F0|Tn|H

′) = an(Eθ,ψ)a1(F0|H
′) + a1(GTn |H

′)

= an(Eθ,ψ)a1(F0|H)

for all n > 0. By the same argument we also have an(F0|B0) = an(Eθ,ψ) for all

n > 0. Therefore, H′ = a1(F0|H0)B0.
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(c)⇒ (d). This follows by the same argument given in Subsection 3.3.1.

(d)⇒ (a). Recall the map Φ : h→ Λθ,ψ/(G(X, θ0ω2)) defined by

H 7→ a1(FS|H) (modG(X, θ0ω2)).

where once again FS = G(X, θ0ω2)F0−E ∈ S. As was shown in Section 3.3.1, the

map Φ is surjective and I ⊂ ker(Φ). Since we know h/I ∼= Λθ,ψ/(G(X, θ0ω2)), it

must be the case that ker(Φ) = I.

Let H ∈ h be such that a1(FS|H) ∈ Λ×θ,ψ. We know such an H exists by the

surjectivity of Φ. Then G(X, θ0ω2)H ∈ ker(Φ), which implies that there exists

an H̃ ∈ AnnHP
(E) projecting to it. Hence, we have

a1(F0|H̃) =
1

G(X, θ0ω2)
a1(E|H̃+ FS|H̃) =

1

G(X, θ0ω2)
a1(FS|H̃)

=
1

G(X, θ0ω2)
a1(FS|G(X, θ2ω)H) ∈ Λ×θ,ψ.

Finally, we will show that there exists an H ∈ H(P) such that a1(F0|H) ∈

Λ×θ,ψ. Suppose for the sake of contradiction that a1(F0|H) ∈ m := (π,X) for

all H ∈ H(P), where π is a uniformizer of Oθ,ψ. In particular, this implies

that an(F0) = a1(F0|Tn) ∈ m for all n > 1. Since a1(E|Tp) = 1, we have

F0|Tp = F0 +GTp with GTp ∈ S. Furthermore, for all n > 1 we have

a1(F0|Tp|Tn) = an(F0|Tp) = an(F0) + an(GTp),

which implies an(GTp) ∈ m by our assumption that a1(F0|H) ∈ m for all

H ∈ H(P). Let

f2 = v2,1(F0) ∈M2(Np)
ord
Oθ,ψ

f0 = a0(v2,1(F0)) ∈M0(Np)Oθ,ψ .

To conclude our proof we will consider the difference between the forms

f0 and f2. However, since these forms are of differing weights we must first

make sense of what we mean by their difference. We remark that the following
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construction is just a shadow of a much larger theory of p-adic modular forms

[H2], but it will suffice for our purposes.

By the q-expansion map, we have an embedding,

∞⊕
k=0

Mk(Γ1)Oθ,ψ ↪→ Oθ,ψJqK,

[H2, §1]. Let us denote the image of this map byM∞. We consider the difference

f0 − f2 ∈M∞. Furthermore, it is well known that there is a natural action of Tp

that preserves the space M∞ [H2, §1]. Specifically, if f ∈M∞ with

f =

∞∑
k=0

fk ⊂ Oθ,ψJqK

where fk ∈Mk(Γ1)Oθ,ψ , then

f|Tp =

∞∑
k=0

fk|Tp ⊂ Oθ,ψJqK.

Now, by our assumption on the coefficients of F0, we know that f0 ≡ f2 (modπ).

Furthermore, since the Hecke action commutes with the specialization map

v2,1, we know that f2|Tp ≡ f2 (modπ). Hence,

(p− 1)f0 ≡π pf0 − f2 ≡π f0|Tp − f2|Tp ≡π (f0 − f2)|Tp ≡ 0 (modπ).

However, (p− 1)f0 = (p− 1)/2 ∈ O×θ,ψ, which gives us our contradiction.
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We begin this chapter by introducing the p-adic Eichler-Shimura cohomology

groups and their basic properties. With these cohomology groups in hand,

we follow Ohta in employing the method of Kurihara [Ku] and Harder-Pink

[HP] to construct an abelian pro-p extension L/F∞. Finally, we determine the

ramification in L/F∞, which allows us to prove the Iwasawa main conjecture

over Q.

We retain the notation of the previous chapters. Let X1(Nr) denote the

canonical model of Γr \ H∗ (H∗ := H ∪Q ∪ {∞}) over Q in which the cusp at

infinity is Q-rational.

Definition 4.0.5. The p-adic Eichler-Shimura cohomology group of level N is defined

to be

T =

(
lim←−
r

H1ét(X1(Np
r)⊗Q Q, Zp)

ord

)
⊗̂ZpOθ,ψ

where ⊗̂ denotes the completed tensor product and the projective limit is taken with

respect to the trace mappings of étale cohomology groups.

There are natural actions of GQ := Gal(Q/Q) and h∗ on T and these actions

commute with one another. Furthermore, it is well known that T is a free and

finitely generated Λθ,ψ-module [O4, §1.2]. For any Λθ,ψ-module M, we once

again let MQ(Λθ,ψ) =M⊗Λθ,ψ Q(Λθ,ψ).

68
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Proposition 4.0.6 ([O2], Lemma 5.1.2). TQ(Λθ,ψ) is a free h∗Q(Λθ,ψ)
-module of rank

2.

By the above proposition we have a Galois representation

ρ : GQ → GL2
(
h∗Q(Λθ,ψ)

)
.

Moreover, one can show that this representation satisfies the Eichler-Shimura

relations.

Theorem 4.0.7 ([O2], Theorem 5.1.5). If ` is a prime that does not divide Np and

Φ` ∈ GQ is a geometric Frobenius at `, we have

det(1− ρ(Φ`)X) = 1− T∗` X+ `T∗`,`X
2.

Using the above theorem we can determine det(ρ(σ)) for all σ ∈ GQ. Let

χp : GQ → Z×p denote the p-adic cyclotomic character, and recall the map ι :

Oθ,ψ[(Z/NpZ)×]JU1K→ Oθ,ψ[(Z/NpZ)×]JXK induced by u 7→ 1+X. Then for

all primes ` - Np, we have χp(Φ`) = `−1 while ι(`) acts on h∗ as multiplication

by T∗`,`. This implies that

det (ρ(Φ`)) = `T∗`,` = χp(Φ`)
−1ι(χp(Φ`))

−1

which in turn implies

det(ρ(σ)) = χp(σ)
−1ι(χp(σ)

−1)

for all σ ∈ GQ by the Čebotarev density theorem.

4.1 constructing abelian pro-p extensions

In this section we employ the method of Kurihara [Ku] and Harder-Pink [HP]

to construct an abelian pro-p extension L/F∞. In Subsection 4.1.2 we will give a

characterization of Gal(L/F∞) as an Iwasawa module, and in Subsection 4.1.3

we will use this characterization to determine the ramification in L/F∞.
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4.1.1 The method of Kurihara and Harder-Pink

With respect to our embedding Q ↪→ Qp from Chapter 1, we have an inclusion

of absolute Galois groups GQp := Gal(Qp/Qp) ↪→ GQ given by σ 7→ σ|Q. Let

Ip := Ip(Q/Q) denote the inertia subgroup of GQp which we regard as a

subgroup of GQ via the above injection.

Proposition 4.1.1 ([O3], Corollary 1.3.8). We have the following exact sequence of

h∗-modules:

0 −−−−→ T+ −−−−→ T −−−−→ T/T+ −−−−→ 0. (47)

where we set T+ := TIp . Furthermore, the action of σ ∈ Ip on T/T+ is given by

χp(σ)
−1ι(χp(σ))

−1.

While we would like to construct a splitting of (47) as Hecke modules, it

is not known in general, whether such a splitting exists. However, it is well-

known that such a splitting exists after localization, and this will suffice for our

purposes.

Let σ0 ∈ Ip be an element satisfying σ0(ζ) = ζu = ζ1+p for all primitive

p-power roots of unity ζ. We know that such an element exists since there is

an element satisfying this property in Gal(Q∞/Q), and the natural restriction

map Ip → Gal(Q∞/Q) is surjective. We’ve chosen this element of Ip with

its action on T/T+ in mind. Specifically, since χp(σ0) = u and ι(u) = 1+ X,

the action of σ0 on the quotient T/T+ is given by u−1(1+ X)−1. Recall that

S = u−1(1+X)−1 − 1, and let

T− = {x ∈ T : σ0 · x = (S+ 1)x} .

Note that since the action of GQp commutes with the action of h∗, both T+

and T− are modules over h∗. For any Λθ,ψ-module M, we let MS :=M⊗Λθ,ψ

Λθ,ψ[S
−1].



4.1 constructing abelian pro-p extensions 71

Proposition 4.1.2. TS = T−,S ⊕ T+,S as h∗S-modules.

Proof. First we will show that TS = T−,S + T+,S. Let x ∈ TS. Since σ0 acts on

the quotient T/T+ by S+ 1, we know that

σ0 · x = (S+ 1)x+ y

for some y ∈ T+,S. Noting that x+ S−1y ∈ TS (this is one of the reasons we

have localized at S), we have

σ0 · (x+ S−1y) = (S+ 1)x+ y+ S−1y = (S+ 1)(x+ S−1y),

which implies x+ S−1y ∈ T−,S. Hence, x ∈ T−,S + T+,S.

Next, we want to show T−,S ∩ T+,S = {0}. Let x ∈ T−,S ∩ T+,S. Then,

(S+ 1)x = σ0 · x = x,

which implies Sx = 0. Since T is a free Λθ,ψ-module, we have x = 0.

Proposition 4.1.3 ([O2], Lemma 5.1.3.). (T/T+)Q(Λθ,ψ) and T+,Q(Λθ,ψ) are free

h∗Q(Λθ,ψ)
-modules of rank 1.

Fixing h∗Q(Λθ,ψ)
-bases for T−,Q(Λθ,ψ) and T+,Q(Λθ,ψ) (in that order), we write

ρ(σ) =

a(σ) b(σ)

c(σ) d(σ)

.

Then for all σ ∈ Ip we have,

ρ(σ) =

det(ρ(σ)) 0

c(σ) 1

 (48)

with

ρ(σ0) =

S+ 1 0

0 1

.

Before moving on, we record a result that will be used later in the chapter.

Let B and C denote the h∗S-submodules of h∗Q(Λθ,ψ)
generated by the sets

{b(σ) : σ ∈ GQ} and {c(σ) : σ ∈ GQ}, respectively.
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Proposition 4.1.4 ([O4], Lemma 3.3.6.). B and C are faithful h∗S-modules.

Let I∗ denote the image of I := Iθ,ψ := AnnH(E) under the natural isomor-

phism induced by H 7→ H∗. Then I∗ is the ideal of H∗ generated by

T∗q,q − (θ0ψ0)(q)(1+X)
s(q) for integers q coprime to Np

T∗` −
(
θ0(`)`(1+X)

s(`) +ψ0(`)
)

for primes ` 6= p

T∗p −ψ0(p).

Let I∗ denote the image of I∗ in h∗. Define the map ρ̃ by

σ ∈ GQ 7→

ψ0(σ)det(ρ(σ)) b(σ)

0 ψ0(σ)−1

,

where the bar indicates reduction modulo I∗S, that is, det(ρ(σ)) ∈ h∗S/I
∗
S while

b(σ) ∈ B/I∗SB. As the next proposition shows, this map is a Galois representa-

tion.

Proposition 4.1.5. For any σ, τ ∈ GQ we have a(σ), d(σ), b(σ)c(τ) ∈ h∗S with

a(σ) ≡ ψ0(σ)det(ρ(σ)) (mod I∗S)

d(σ) ≡ ψ0(σ)
−1 (mod I∗S)

b(σ)c(τ) ≡ 0 (mod I∗S).

Proof. Let ` be a prime that does not divide Np and recall that

det(ρ(Φ`)) = `T∗`,`

tr(ρ(Φ`)) = T∗` ,

where once again Φ` ∈ GQ is a geometic Frobenius at `. Then,

a(Φ`) + d(Φ`) −ψ0(Φ`)det(ρ(Φ`)) −ψ0(Φ`)−1

= T∗` −ψ0(`)
−1`T∗`,` −ψ0(`)

= T∗` −
(
`θ0(`)(1+X)

s(`) +ψ0(`)
)

−ψ0(`)
−1`

(
T∗`,` − (θ0ψ0)(`)(1+X)

s(`)
)
∈ I∗S.
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Here we’re using the fact that θ(`) = θ0(`) and ψ(`) = ψ0(`) for ` - Np.

Therefore, by the Čebotarev density theorem we know that for all σ ∈ GQ

a(σ) + d(σ) −ψ0(σ)det(ρ(σ)) −ψ(σ)−1 ∈ I∗S. (49)

Let σ ∈ GQ and σ0 ∈ Ip, where σ0 is as defined in Subsection 4.1.1. Applying

(49) to σσ0, and noting that ψ0(σ0) = 1 since (fψ,p) = 1, we get

(S+ 1)a(σ) + d(σ) − (S+ 1)ψ0(σ)det(ρ(σ)) −ψ0(σ)−1 ∈ I∗S. (50)

Subtracting (49) from (50) we get

Sa(σ) − Sψ(σ)det(ρ(σ)) ∈ I∗S.

Since S is a unit in h∗S (the other reason we needed to invert S), we have the

results for a(σ) and d(σ).

The remaining results follow from the second inclusion and the fact that,

d(στ) = c(τ)b(σ) + d(τ)d(σ)

for all σ, τ ∈ GQ.

For future reference, we give a more explicit characterization of ρ̃. Once again

let ` be a prime that does not divide Np and Φ` a geometric Frobenius at `.

Then we have,

det(ρ(Φ`)) = `T∗`,` ≡ 〈〈`〉〉(θ0ψ0ω)(`)(1+X)s(`) (mod I∗S).

Noting that

〈〈`〉〉(θ0ψ0ω)(`)(1+X)s(`) = (θ0ψ0ω)(Φ`)
−1〈〈χp(Φ`)〉〉−1ι(〈〈χp(Φ`)〉〉)−1,

we once again employ the Čebotarev density theorem to get

det(ρ(σ)) ≡ (θ0ψ0ω)(σ)−1〈〈χp(σ)〉〉−1ι(〈〈χp(σ)〉〉)−1 (mod I∗S) (51)
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for all σ ∈ GQ. Therefore,

ρ̃(σ) =

(θ0ω)(σ)−1〈〈χp(σ)〉〉−1ι(〈〈χp(σ)〉〉)−1 b(σ)

0 ψ0(σ)−1

 (52)

for all σ ∈ GQ.

We will now use the representation ρ̃ to construct our desired extension of

F∞. Set

F0 := the field corresponding to
{
σ ∈ GQ : det(ρ(σ)) = 1 = ψ0(σ)

}
L0 := the field corresponding to ker(ρ̃),

L := L0F∞
Then we have an injection of abelian groups

Gal(L0/F0) ↪→ B/I∗SB : σ 7→ b(σ).

Clearly L0/F0 is abelian, and the fact that B/I∗SB is a finitely generated Λ-

module implies that Gal(L0/F0) is pro-p. By (51) we see that

Gal(Q/F∞) ⊂ {σ ∈ GQ : det(ρ(σ)) = 1 = ψ0(σ)
}
⊂ ker(θω)∩ ker(ψ),

which implies F ⊆ F0 ⊆ F∞. Considering the definition of ρ̃, we see that L0/F0 is

unramified at p. However, we know F∞/F is totally ramified at p, which implies

L0 ∩ F∞ = F0. Therefore, Gal(L0/F0) = Gal(L0/L0 ∩ F∞) ∼= Gal(L/F∞), and we

see that L/F∞ is an abelian pro-p extension.

4.1.2 An isomorphism of the Iwasawa modules

In addition to showing that Gal(L/F∞) is an abelian pro-p extension, the iso-

morphism Gal(L/F∞) ∼= Gal(L0/F0) also implies that we have an injection

Gal(L/F∞) ↪→ B/I∗SB. (53)
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In this subsection, we will show this injection induces an isomorphism of

Iwasawa modules.

Recall from Chapter 1 that Gal(F∞/Q) ∼= ∆× Γ acts on Gal(L/F∞) by con-

jugation, and the fact that the extension L/F∞ is abelian and pro-p implies

Gal(L/F∞) is a module over the Iwasawa algebra Zp[∆]JΓK. We want to identify

Zp[∆]JΓK with Zp[∆]JXK in a particular way. Recall that there is a natural iso-

morphism U1 ∼= Zp ∼= Γ = Gal(F∞/F). Let γ0 ∈ Γ correspond to u ∈ U1. Then

γ0 is a topological generator of Γ and 〈〈χp(γ0)〉〉 = u. We then identify Zp[∆]JΓK

with Zp[∆]JXK by

γ0 7−−→ 〈〈χp(γ0)〉〉 = u
ι7−−→ 1+X. (54)

In the following proposition we describe how the Zp[∆]JXK action on Gal(L/F∞)
commutes with the injection (53):

Proposition 4.1.6. Let δ ∈ ∆. Then for all σ ∈ Gal(L/F∞) we have

δ · σ 7→ (ξω)−1(δ) · b(σ)

X · σ 7→ S · b(σ).

Proof. Let τ ∈ Gal(F∞/Q) with arbitrary lift τ̃ ∈ Gal(L/Q). Then

τ · σ 7→ b(τ̃στ̃−1)

for all σ ∈ Gal(L/F∞). Since

ρ̃(τ̃στ̃−1) =

1 (ξω)(τ)−1〈〈χp(τ)〉〉−1ι(〈〈χp(τ)〉〉)−1 · b(σ)

0 1

,

we see that,

b(τ̃στ̃−1) = (ξω)(τ)−1〈〈χp(τ)〉〉−1ι(〈〈χp(τ)〉〉)−1 · b(σ).

Now, if δ ∈ ∆× {1} ⊂ Gal(F∞/Q) we know χp(δ) ∈ µp−1(Z×p ) since τ has finite

order. This implies 〈〈χp(δ)〉〉 = 1, which in turn implies

δ · σ 7→ (ξω)−1(δ) · b(σ).
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On the other hand, if γ ∈ {1}× Γ ⊂ Gal(F∞/Q) we know (ξω)(γ) = 1 which

implies

γ · σ 7→ 〈〈χp(τ)〉〉−1ι(〈〈χp(τ)〉〉)−1 · b(σ).

By our identification (54), we have

X · σ = (γ0 − 1) · σ 7→
(
〈〈χp(γ0)〉〉−1ι(〈〈χp(γ0)〉〉)−1 − 1

)
· b(σ) = S · b(σ)

From the above proposition, we see that Gal(L/F∞) is a ΛξJXK-module on which

∆ acts via (ξω)−1.

Up to this point in the chapter, we’ve made no restrictions on the characters

θ and ψ. However, consider the case in which (θ0,ψ) = (ω−2, 1). In this case

F = Q(µp) and L/F∞ is an abelian pro-p extension on which ∆ acts by ω. It is

well known that such an extension must be trivial. Therefore, we will assume

that (θ0,ψ) 6= (ω−2, 1) for the remainder of the chapter.

With the above proposition in mind, we let (B/I∗SB)† denote the Λθ,ψ[X
−1]-

module obtained from B/I∗SB by twisting the Λθ,ψ[S
−1]-module structure by

the involutive O-module automorphism of Λθ,ψ given by X 7→ S (i.e. X acts on

(B/I∗SB)† as multiplication by S). In doing so, our injection of abelian groups

(53) becomes an injection of Λξ-modules. This in turn implies that we have the

following injection of Λθ,ψ[X
−1]-modules,

Gal(L/F∞)⊗Λξ Λθ,ψ[X
−1] ↪→ (B/I∗SB)†.

In fact, in the next proposition we show the above map is an isomorphism.

Proposition 4.1.7 ([O3], Lemma 3.3.11.). The injection (53) induces an isomorphism

of Λθ,ψ[X
−1]-modules Gal(L/F∞)⊗Λξ Λθ,ψ[X

−1] ∼= (B/I∗SB)†.

Proof. By the comments preceding the proposition, it suffices to show that our

Λθ,ψ[X
−1]-module homomorphism is surjective. Recall that

ρ(σ0) =

S+ 1 0

0 1

.
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Then for any σ ∈ GQ we have

ρ̃(σ0σσ
−1
0 σ−1) =

1 S · b(σ)

0 1

,

which implies σ0σσ−10 σ−1 7→ X · b(σ). Since X is a unit in Λθ,ψ[X
−1], to

prove surjectivity we just need to show that (B/I∗SB)† is generated by the

set {b(σ) : σ ∈ GQ} as a Λθ,ψ[X
−1]-module. However, we know that B/I∗SB is

generated by the set {b(σ) : σ ∈ GQ} as a h∗S/I
∗
S-module, and by Proposition

3.3.1 we have h∗S/I
∗
S
∼= Λθ,ψ[S

−1]/(A). Consequently, B/I∗SB is generated by the

set {b(σ) : σ ∈ GQ} as a Λθ,ψ[S
−1]-module, which implies (B/I∗SB)† is generated

by {b(σ) : σ ∈ GQ} as a Λθ,ψ[X
−1]-module.

4.1.3 Ramification in L/F∞

In this subsection, we will use the structure of Gal(L/F∞) as a Λξ-module to

characterize the ramification occurring in L/F∞.

Let ` 6= p be an arbitrary prime. It is well known that the prime ` will not

split completely in the cyclotomic Zp-extension F∞/F. Hence, there are only

finitely many primes l1, . . . , lm of F∞ lying above `. Consider the subgroup

G` ⊂ Gal(L/F∞) generated by the inertia subgroups Ili for 1 6 i 6 m. Let us

call the corresponding fixed field K`. Then K`/F∞ is the maximal subextension

of L/F∞ in which all of the li are unramified.

Of primary interest to us will be the group G` = Gal(L/K`). We will now use

class field theory to obtain a useful characterization of this group. Recall that

Fn/F is the finite extension of F satisfying Gal(Fn/F) ∼= Z/pnZ. Then for each

n > 1, we have the following commutative diagram

IFn+1

ΦFn+1−−−−→ Gab
Fn+1y y

IFn
ΦFn−−−−→ Gab

Fn
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where ΦFn is the global reciprocity map between the idelé group of Fn and the

Galois group of the maximal abelian extension of Fn, with the left vertical arrow

being the norm map, and the right vertical arrow being restriction. Taking the

projective limit of these maps, we obtain a surjective homomorphism

ΦF∞ : lim←−
n

IFn � Gal(L/K`) ⊂ Gab
F∞ .

Since Gal(L/K`) is the subgroup of Gal(L/F∞) generated by the inertia sub-

groups Il for primes l | `, we know that the above map is surjective when

restricted to

lim←−
n

∏
l|`

O×Fn,l
� Gal(L/K`),

where Fn,l denotes the completion of Fn with respect to l and OFn,l is its ring

of integers. Furthermore, since Gal(L/K`) is a subgroup of the pro-p group

Gal(L/F∞), we know that the principal units must lie in the kernel of the above

surjection. Therefore, letting kFn,l denote the residue field of OFn,l we have a

surjection

lim←−
n

∏
l|`

k×Fn,l � Gal(L/K`). (55)

Lemma 4.1.8 ([O4], Lemma A.2.1). The Galois group Gal(L/K`) is a cyclic Λξ-

module annihilated by b`(X) := (1+X)s(`) − (ξω)(`)`.

Proof. Since inertia at ` in Gal(F∞/Q) acts trivially on lim←−n
∏

l|` k
×
Fn,l, it must

also act trivially on Gal(L/K`) by (55). Hence, the action of Gal(F∞/Q) on

Gal(L/K`) is unramified.

LetΦ` denote the geometric Frobenius of Gal(F∞/Q). We will prove the result

by considering the action of Φ` on Gal(L/F∞) from two different perspectives.

First we consider the action of Φ` on Gal(L/F∞) via Proposition 4.1.6. We know

that the action of Φ` on the image of Gal(L/K`) in B/I∗SB is given by

(ξω)−1(Φ`) · 〈〈χp(Φ`)〉〉 · ι(〈〈χp(Φ`)〉〉) = (ξω)(`)us(`)(1+X)s(`).
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After making the change of variable X 7→ S, we see that action of Φ` on

Gal(L/K`) is given by

(ξω)(`)us(`)(1+ u−1(1+X)−1 − 1)s(`) = (ξω)(`)(1+X)−s(`).

On the other hand, the action of Φ` on lim←−n
∏

l|` k
×
n,l is given by

Φ` · lim←−
n

(. . . ,al, . . . )l|` = lim←−
n

(
. . . ,Φ`

(
aΦ−1

` (l)

)
, . . .

)
l|`

= lim←−
n

(
. . . ,a1/`l , . . .

)
l|`

.

This implies that Φ` acts as multiplication by `−1 on Gal(L/K`) via (55). Putting

these two actions together, we see that

`−1 − (ξω)(`)(1+X)−s(`) = `−1(1+X)−s(`)
(
(1+X)s(`) − (ξω)(`)`

)
annihilates Gal(L/K`).

Finally, we’ll show that Gal(L/K`) is a cyclic Λξ-module. Let l1, . . . , lm be the

primes of F∞ lying above `. For sufficiently large n, we know that that there are

m distinct primes li,n in Fn lying above `. That is, for large enough n the primes

above ` in Fn are unramified and inert. Hence, lim←−n k×Fn,li,n
is a pro-cyclic group.

Since Gal(F∞/Q) simply permutes the prime above ` transitively, we know that

Gal(L/K`) is a cyclic OξJ∆× ΓK-module, and consequently a cyclic Λξ-module.

Lemma 4.1.9. If ` - N or (ξω2)(`) is not a p-power root of unity, then ` is unramified

in L/F∞.

Proof. Recall that ρ̃ is unramified outside of Np, and b(σ) = 0 for σ ∈ Ip.

Therefore, the injectivity of the map Gal(L/F∞) ↪→ B/I∗SB given by σ 7→ b(σ)

implies that L/F∞ is unramified outside of N.

On the other hand,

b`(X) := (1+X)s(`) − (ξω)(`)` = (1+X)s(`) − (ξω2)(`)〈〈`〉〉,
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if ` 6= p. If (ξω2)(`) is not a p-power root of unity

|(ξω2)(`) − 1|p = 1,

which implies the power series b`(X) is a unit. Lemma 4.1.8 then implies that `

is unramified in L/F∞.

4.2 characteristic ideal and the iwasawa main conjecture

In order to prove the Iwasawa main conjecture and determine CharΛξ(Gal(L/F∞)),
we will employ the theory of Fitting ideals. Let us quickly recall the definition

and basic properties of these ideals [MW, Appendix].

Definition 4.2.1. Let R be a commutative ring and M an R-module of finite presenta-

tion. Take any presentation of M,

Rm
ϕ−−→ Rn −→M −→ 0.

The Fitting ideal FittR(M) is defined to be the ideal of R generated by all n×n minors

of ϕ. This ideal is independent of the choice of presentation.

In fact, what we’ve described above is the 0th Fitting ideal. One can define

higher Fitting ideals (i.e. the ith Fitting ideal for all integers i > 0), but for

our purposes the 0th Fitting ideal will suffice. The reason we are considering

Fitting ideals is due to their close relationship with characteristic ideals of

Iwasawa modules. Specifically, if M is a Λ-module, then CharΛ(M) is the

unique principal ideal of Λ such that CharΛ(M)/FittΛ(M) is finite.

Next we recall the results on Fitting ideals that we will need.

Proposition 4.2.2 ([MW], Appendix). For any finitely generated R-module M, the

following hold:

(1) If M�M′ is a surjection of R-modules, then FittR(M) ⊆ FittR(M′).

(2) If M is a faithful R-module, then FittR(M) = 0.
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(3) For any R-algebra R′,

FittR′(M⊗R R′) = FittR(M) · R′.

(4) If M is a direct sum of cyclic R-modules, i.e. M = R/a1 × · · · × R/at, then

FittR(M) = a1 · · · · · at.

We are now ready to prove the main result of this section, which is the Iwa-

sawa main conjecture over Q. As mentioned in Chapter 1, the main conjecture

was originally proven by Mazur and Wiles [MW]. The following proof is based

on the method of Ohta [O3].

Theorem 4.2.3 (The Iwasawa main conjecture over Q). We have the following

equality of ideals

CharΛξ
(
X∞,(ξω)−1

)
=
(
F(X, ξω2)

)
.

Proof. As was explained in Chapter 1, it is a consequence of the analytic class

number formula that in order to prove the above equality one need only show

CharΛξ
(
X∞,(ξω)−1

)
⊆ (F(X, ξω2)).

In order to make the proof of this inclusion easier to follow, we will make two

claims from which the inclusion will be a straightforward consequence. Once

this is done, we will go about proving these claims.

Let Lun/F∞ be the maximal unramified subextension of L/F∞, and denote the

image of A under the isomorphism X 7→ S by Ã,

Ã :=

 ∏
`|f̃θfψ
`-fξ

((1+X)s(`) − (ξω)(`) `)

 · F(X, ξω2).
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Then

Claim 1:

∏
`|N
`-fξ

b`(X)

 ·CharΛξ(Gal(Lun/F∞)) ⊆ CharΛξ(Gal(L/F∞)).

Claim 2: Xm ·CharΛξ(Gal(L/F∞)) ⊆ (Ã) for some integer m > 0.

Putting these two claims together, we get the following inclusion

Xm ·

 ∏
`|N

`-f̃θfψ

b`(X)

CharΛξ(Gal(Lun/F∞)) ⊆ (F(X, ξω2)). (56)

We know that Lun/F∞ is an unramified pro-p abelian extension on which ∆ acts

via (ξω)−1, which implies Gal(Lun/F∞) is a quotient of X∞,(ξω)−1 . Hence, we

have the following inclusion of characteristic ideals

CharΛξ
(
X∞,(ξω)−1

)
⊆ CharΛξ(Gal(Lun/F∞)). (57)

[Wa, Proposition 15.22]. Putting this together with (56) we get

Xm ·

 ∏
`|N

`-f̃θfψ

b`(X)

CharΛξ
(
X∞,(ξω)−1

)
⊆ (F(X, ξω2)). (58)

A well-known result of Ferrero-Greenberg tells us that the power of X dividing

the generator of CharΛξ(X∞,(ξω)−1) is equal to that dividing F(X, ξω2) [FG,

Section 4]. In particular, the power of X dividing F(X, ξω2) is 1 if the pair

(θ0,ψ0) is exceptional, and 0 otherwise. This, in combination with the fact that

X - b`(X) for all primes ` | N, implies that m = 0.

It will now suffice to show gcd(b`(X), F(X, ξω2)) = 1. Recall from the

proof of Lemma 4.1.9 that b`(X) is a unit if (ξω2)(`) is not a p-power root

of unity. Suppose (ξω2)(`) is a p-power root of unity. Then any root of

b`(X) = (1 + X)s(`) − (ξω2)(`)〈〈`〉〉 must be of the form uζ − 1 where ζ sat-

isfies ζs(`) = (ξω2)(`) (here we’re using the fact that us(`) = 〈〈`〉〉). Clearly ζ is

a root of unity. By the same argument referenced above, we know that if ζ is
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not a p-power root of unity, then uζ− 1 is a unit, albeit possibly in some finite

extension of Oξ. However, this would imply that the minimal polynomial of

uζ− 1 in Oξ[X] is a unit in Λξ. Thus, we may assume that ζ is a p-power root

of unity. Evaluating F(X, ξω2) = G(S, ξω2) at uζ− 1, we have

G(u−1(1+ uζ− 1)−1 − 1, ξω2) = G(u−2ζ−1 − 1) = Lp(1, ξεω2),

where ε is the character on 1 + pZp having p-power order and satisfying

ε(u) = ζ−1. However, it is well known that Lp(1, ξεω2) 6= 0 [Wa, §5.5]. Hence,

gcd(b`(X), F(X, ξω2)) = 1.

Proof of Claim 1: Let ` be a prime dividing N that does not divide fξ. By

Lemma 4.1.9, this is a necessary condition for the prime ` to ramify in L/F∞.

Consider the following exact sequence of Λξ-modules,

0→ Gal(L/K`)→ Gal(L/F∞)→ Gal(K`/F∞)→ 0.

By Lemma 4.1.8, we know that

b`(X) ·CharΛξ(Gal(K`/F∞)) ⊆ CharΛξ(Gal(L/F∞)).
Now, suppose `′ 6= ` is another prime dividing N that does not divide fξ. Then

we have the exact sequence

0→ Gal(K`/(K` ∩K`′))→ Gal(K`/F∞)→ Gal((K` ∩K`′)/F∞)→ 0.

Since Gal(K`/(K` ∩ K`′)) ∼= Gal(K`K`′/K`′) with the latter being a quotient of

Gal(L/K`′), Lemma 4.1.8 tells us

b`′(X) ·CharΛξ(Gal((K` ∩K`′)/F∞)) ⊆ CharΛξ(Gal(K`/F∞)).
Letting Lur/F∞ denote the maximal unramified subextension of L/F∞ and

repeating the above argument, we get∏
`|N
`-fξ

b`(X)

 ·CharΛξ(Gal(Lur/F∞)) ⊆ CharΛξ(Gal(L/F∞)).
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Proof of Claim 2: By Proposition 4.1.4, we know that B is a faithful h∗S-module.

Therefore, by Proposition 4.2.2 (2) and (3), we have

Fitth∗S/I∗S(B/I
∗
SB) = 0.

Now, we know that h∗S/I
∗
S
∼= Λθ,ψ[S

−1]/(A) as Λθ,ψ[S
−1]-modules by Proposition

3.3.1, so applying Proposition 4.2.2 (3) once more, we get

FittΛθ,ψ[S−1]
(B/I∗SB) modA = Fitth∗S/I∗S(B/I

∗
SB) = 0.

This in turn implies

FittΛθ,ψ[X−1]((B/I
∗
SB)†) ⊆ (Ã).

By the isomorphism of Proposition 4.1.7 we have

FittΛθ,ψ[X−1](Gal(L/F∞)⊗Λξ Λθ,ψ[X
−1]) ⊆ (Ã).

Now, we know that Gal(L/F∞) is a torsion Λξ-module since we have an

injection of Λξ-modules Gal(L/F∞) ↪→ B/I∗SB, and the latter is annihilated by

A ∈ Λξ. Suppose Gal(L/F∞) is pseudo-isomorphic to

t⊕
i=1

Λξ/(Pi(X)
ei),

where the Pi(X) are height one prime ideals of Λξ. Tensoring with Λθ,ψ[X
−1]

will kill any finite Λξ-modules, so we have

Gal(L/F∞)⊗Λξ Λθ,ψ[X
−1] ∼=

t⊕
i=1

Λθ,ψ[X
−1]/(Pi(X)

ei). (59)

Therefore,

CharΛξ(Gal(L/F∞)) ·Λθ,ψ[X
−1] = CharΛθ,ψ[X−1]

(
Gal(L/F∞)⊗Λξ Λθ,ψ[X

−1]
)

=

(
t∏
i=1

Pi(X)
ei

)
·Λθ,ψ[X

−1] = FittΛθ,ψ[X−1](Gal(L/F∞)⊗ΛξΛθ,ψ[X
−1]) ⊆ (Ã),

with the last equality following from (59) and Proposition 4.2.2 (3). Hence

Xm ·CharΛξ(Gal(L/F∞)) ⊆ (Ã)
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for some integer m > 0.
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Corollary 4.2.4. Let Ã0 = Ã/X if the pair (θ0,ψ0) is exceptional, with Ã0 = Ã

otherwise. Then CharΛξ(Gal(L/F∞)) = (Ã0).

Proof. By Theorem 4.2.3 and its proof, we have the following inclusion ∏
`|N
`-fθfψ

b`(X)

 · (Ã) ⊆ CharΛξ(Gal(L/F∞)). (60)

Recall that B is the h∗S-submodule of h∗Q(Λθ,ψ)
generated by {b(σ) : σ ∈ GQ}.

Therefore, the fact that h∗Q(Λθ,ψ)
is a free and finitely generated Q(Λθ,ψ)-module

implies that B is a finitely generated h∗S-module. Hence, we have a surjection

(
Λθ,ψ[S

−1]/(A)
)n ∼= (h∗S/I

∗
S)
n � B/I∗SB,

which implies

(Ã)n ⊆ CharΛθ,ψ[X−1]((B/I
∗
SB)†) ⊆ CharΛξ(Gal(L/F∞))⊗Λξ Λθ,ψ[X

−1].

From the injection

Gal(L/F∞) ↪→ (B/I∗SB)†,

we see that there are no elements of Gal(L/F∞) annihilated by X. Therefore,

X - CharΛξ(Gal(L/F∞)) and the above inclusion implies

(Ã)n ⊆ CharΛξ(Gal(L/F∞)). (61)

In the remarks preceding the proof of Claim 1, it was shown that

gcd(b`(X), F(X, ξω2)) = 1.

Therefore, by (60) and (61) we have

(Ã) ⊆ CharΛξ(Gal(L/F∞)).
Combining this with the result of Ferrero-Greenberg and Claim 2 from the

proof of Theorem 4.2.3 we obtain the desired result.
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