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ABSTRACT 

Background: Sepsis is one of the most lethal and expensive in hospital conditions in the 

Unites States and around the world. International consensus guidelines for the diagnosis 

and management of sepsis have been established. Compliance with these guidelines 

has been demonstrated to substantially improve outcomes such as hospital length of 

stay (LOS), intensive care unit (ICU) LOS, and mortality. However, there are significant 

delays in timely and appropriate recognition of sepsis, as well as delays in timely and 

appropriate treatment after diagnosis. 

Objective: To develop and implement a sepsis detection and alert system for use in the 

ICU setting. Several knowledge gaps must be closed to achieve this goal. 

Methods: First, an optimal electronic medical record (EMR)-based algorithm for the 

detection of failure to recognize severe sepsis was developed. An algorithm for the 

detection of failure of timely and appropriate treatment of severe sepsis was also 

developed. Second, the best method of alert delivery for failure to recognize and treat 

severe sepsis was developed. This process was performed in the context of alert 

fatigue, interruption, human error, and information overload. Third, to demonstrate 

efficacy, this surveillance system for the detection of failure to recognize and treat 

severe sepsis was implemented in the ICU setting. 

Results: A failure to recognize and treat severe sepsis detection and alert system was 

successfully developed and implemented in the ICU setting. 

Conclusion: The work presented in this thesis proved the feasibility of iterative 

development, testing, and real-world implementation of electronic surveillance of sepsis 

resuscitation. This research paves the way for meaningful EMR use to enhance the 

safety of hospitalized patients. 
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CHAPTER 1 

Introduction 

This book chapter has been published as Harrison AM, Park JG, Herasevich V. Septic 

Shock Electronic Surveillance. In: Septic Shock: Risk Factors, Management, and 

Prognosis. New York: Nova Science Publishers, 2015. The book and book chapter can 

be found at these links. 

 

ABSTRACT 

In a 2013 Healthcare Cost and Utilization Project Statistical Brief by the US Agency for 

Healthcare Research and Quality, septicemia was ranked as the #1 most expensive 

national inpatient hospital cost. This ranking comes in spite of substantial advances in 

the clinical management of sepsis over the past 15 years. While adherence with 

internationally established sepsis management protocols have demonstrated reduction 

in mortality and hospital/ICU length of stay, compliance with these protocols remains 

poor. Contributing factors may be delay in sepsis recognition and protocol 

implementation. A solution to this barrier is an automated sepsis detection and alert 

system embedded in the electronic medical record (EMR). In 2013, “alarm hazards” 

(e.g., excessive alarms, missed alarms, delayed alarms, etc.) was ranked as the #1 

health technology hazard by the ECRI (Emergency Care Research Institute). Thus, 

sepsis surveillance systems must be developed and implemented in the context of alert 

fatigue, interruption, human error, and information overload. This chapter will describe 

essential elements in the electronic surveillance system development and 

implementation processes. Readers will learn about the critical elements of a septic 

shock detection algorithm and the data needed for each stage of sepsis management, 

such as early sepsis identification, notification of the clinicians, and tracking treatment 

processes. The chapter will describe the electronic components for this systems-level 
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control of compliance with internationally established sepsis management protocols. A 

well-designed severe sepsis surveillance system has the potential to improve protocol 

compliance and patient outcomes, while reducing healthcare costs. 

 

Detection of Sepsis: Historical Perspective and Current Status (Non-Computerized) 

One of the earliest and most crucial steps in sepsis management was the 

standardization of sepsis and systemic inflammatory response syndrome (SIRS) 

definitions in August 1991 at a Consensus Conference between the American College of 

Chest Physicians (ACCP) and the Society of Critical Care Medicine (SCCM) [1]. The 

standardization of these clinical and physiological biomarkers allowed for early studies of 

the epidemiology of both sepsis and SIRS [2]. Prior to this, potential molecular 

biomarkers of sepsis, such as C-reactive protein (CRP), had been identified [3, 4]. In 

1993, the first major report of an association between infection, sepsis, and high serum 

procalcitonin was published [5]. To date, hundreds of additional molecular biomarkers 

have been examined as potential diagnostic markers for sepsis detection [6]. Some of 

these molecular biomarkers—such as procalcitonin and CRP—seem to have limited 

utility in sepsis prognosis. However, none have been validated as diagnostic molecular 

biomarkers for sepsis detection. The cost-effectiveness of these molecular biomarkers is 

unclear [7, 8]. 

 

In one recent model of hypothetical patients with community-acquired pneumonia, 

procalcitonin protocol seemed to add $10 – 54 per patient to the cost of care compared 

to usual care [9]. 

 

For the past decade, a study by Martin et al. served as the reference for the 

epidemiology of sepsis in the United States [10]. A more recent large scale study of 
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severe sepsis and septic shock in Australia and New Zealand demonstrated a significant 

decrease in mortality between the year 2000 to 2012 [11]. The US Agency for 

Healthcare Research and Quality (AHRQ) released a Statistical Brief calculating the 

aggregate cost of septicemia in the US to be $20.3 billion or 5.2% of the total aggregate 

cost for all hospitalizations [12]. Thus, septicemia is the most expensive inpatient 

condition to treat, outranking osteoarthritis (#2), complication of device, implant or graft 

(#3), acute myocardial infarction (#5), and cancer (did not make top 20). 

 

As a result of collaborative work between SCCM and ACCP, consensus definitions for 

sepsis, severe sepsis, and septic shock have existed for over 20 years [1] with two major 

revisions [13, 14]. A landmark advancement in sepsis management occurred a decade 

later with the publication of early goal-directed therapy (EGDT) for the treatment of 

severe sepsis and septic shock [15]. In this single center research study, early 

identification and aggressive management of severe sepsis and septic shock in the 

emergency department (ED) was shown to significantly improve patient outcomes, 

including mortality. Soon thereafter, the US SCCM and the European Society of 

Intensive Care Medicine formed the Surviving Sepsis Campaign (SSC) to improve the 

care of these patients and to improve outcomes. At that time, the goal was to reduce 

worldwide mortality from severe sepsis and septic shock by 25% in 5 years [16]. This 

resulted in the publication of the first SSC guidelines for the management of severe 

sepsis and septic shock in 2004 [17]. 

 

With firmly established definitions and guidelines, a rationale exists for the use of 

computerized sepsis detection systems. At the turn of the century, early hospital alert 

systems were developed and validated for clinical trial enrollment purposes [18-20]. 

Likewise, the concept of a critical “golden hour” in the management of acute myocardial 



 

4 
 

infarction and other traumas concurrently gained traction [21-23]. If similar critical hours 

exist in the management of severe sepsis and septic shock, it should be possible to 

detect and alert providers to these conditions to reduce response time in the hospital. 

 

Computerized Attempts of Sepsis Detection 

The introduction of computers into the hospital and ICU settings is still relatively recent. 

With the invention of the transistor in the 1940s (Nobel Prize in 1956), discussions of 

crude hospital EMR systems can be found dating back to the 1960s [24]. Rigorous study 

of the effect of early EMR systems on hospital practice began in the 1980s [25-27] and 

in ICU-specific settings a decade later [28-30]. However, due to lack of standardization 

of sepsis treatment protocols, development of early electronic sepsis surveillance 

systems did not begin until the 2000s. 

 

In part due to the lack of computerized sepsis detection systems, many challenges 

hindered a sensitive sepsis detection system. Historically, the basic protocol for 

management of severe sepsis and septic shock was the administration of appropriate 

antibiotics, intravenous fluids, and advanced support (such as mechanical ventilation, 

vasopressors, and dialysis) when necessary [31]. However, the need for better sepsis 

clinical trials was recognized [32, 33]. Unfortunately, computerized sepsis detection 

systems could not be refined until standardized sepsis treatment protocols were 

developed. After the publication of the first SSC guidelines for the management of 

severe sepsis and septic shock, effectively standardizing sepsis treatment protocols, 

interest in computerized sepsis detection and alert systems increased dramatically. The 

current guideline for the diagnosis of sepsis divides the needed data into six clinical 

categories: general, inflammatory, hemodynamic, organ dysfunction, tissue perfusion, 

and severe sepsis-specific variables (Table 1). Early prospective electronic sepsis 
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surveillance system studies focused on detection of sepsis, severe sepsis, and/or septic 

shock in non-ED/ICU settings, ED, and ICU settings [34-36]. These studies provided 

significant insight into the challenges of automated sepsis detection and alert, but failed 

to show significant improvement in clinical outcomes upon implementation of these 

systems. A large single center trial of an automated sepsis detection and alert system 

(based on modified SIRS criteria) also failed to show significant improvement in clinical 

outcomes [37]. However, this detection system’s positive predictive value was only 41%, 

which may explain the lack of outcomes improvement. One of the earliest sepsis 

detection systems, termed the septic shock sniffer, was originally developed and 

validated at Mayo Clinic to enroll patients with septic shock into a time sensitive clinical 

trial in the critical care setting [20, 38]. 

 

The creation of this septic shock sniffer was possible due to the existence of a 

Multidisciplinary Epidemiology and Translational Research in Intensive Care (METRIC) 

Data Mart, which aggregates necessary components of patient’s data that are usually 

stored in independent databases [39]. Briefly, this near real-time database copies and 

stores all ICU data on all ICU patients at Mayo Clinic. This data includes demographics, 

monitored data (vital signs, ventilator settings, etc.), laboratory tests, transfusions, 

microbiology, radiology, medications, physician notes, nursing flow sheets, respiratory 

data, and fluid balance data. Further validated methodology has been developed at 

Mayo Clinic to improve the severe sepsis and septic shock sniffer for clinical use in the 

ICU setting [40]. 

 

Table 1: Data needs for a severe sepsis and septic shock electronic surveillance system 

based on current 2012 SSC international guidelines for management of severe sepsis 

and septic shock 
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Limitations and Challenges of Early Computerized Systems 

The early electronic sepsis surveillance systems described above suffered from a variety 

of limitations. In particular, many of these earlier studies placed more emphasis on 

algorithm development than attention to factors such as alert fatigue [41], interruption 

[42], human error [43], and information overload [44, 45]. Without careful consideration 

of these implementation factors, even a “perfect” sepsis detection and alert algorithm will 

fail to improve clinically significant outcomes, such as mortality and hospital/ICU length 

of stay. An inherent limitation of these earlier studies is also their single center design. 

Even the best single center, prospective study will potentially suffer from a variety of 

common epidemiologic biases and/or confounders [46]. These early electronic sepsis 

surveillance systems also needed to overcome numerous informatics challenges. 

Although less than one decade old, the timing of these studies overlaps with the rise of 

the concept and recognition of “big data” (i.e., large and complex sets of data that may 

be difficult to process and analyze using traditional systems). In less than a decade, the 

concept of big data has permeated fields ranging from biomedical research [47] to 

business/finance [48, 49] to healthcare and clinical research [50]. However, without 

sufficiently complex electronic infrastructure and personnel support, the same limitations 

and challenges outlined as implementation factors above are only amplified in clinical 

studies requiring use of big data. 

 

Since these early electronic sepsis surveillance studies, many more single center 

studies have been conducted [51-56]. The scope of each of these studies varies 

significantly—study design, hospital setting, and number of patients—while suffering 

from the single center limitations and challenges outlined above. However, with sufficient 

experience systemic reviews of this topic are being published [57]. Likewise, a large 

multicenter/international study was recently conducted using SSC data [58] to produce a 
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“sepsis severity score” [59]. This study was designed primarily for prognostication with 

population-level case mix adjustments, as opposed to patient-level, diagnostics 

purposes. Nonetheless, this study represents a landmark in the field of sepsis detection 

and alert systems. 

 

Elements of an Advanced Computerized System 

A “perfect” electronic sepsis surveillance system will not have close to the 99% 

sensitivity and specificity of FDA-approved rapid HIV tests [60]. This is due to differences 

in the complexity and nature of these tasks. When the ability of the SIRS criteria (an 

important element of any sepsis detection algorithm) to identify infection is compared 

against both clinical and microbiological gold standards; sensitivity, specificity, positive 

predictive value, and negative predictive value are all relatively poor [61]. For example, 

the sensitivity of the SIRS criteria against both gold standards (defined as dismissal 

diagnosis of sepsis or evidence of microbiological growth from any culture site) was 

69%, while the specificity against these gold standards was 35% and 32%, respectively. 

Likewise, it is important to recognize that the accuracy of any test is dependent not only 

on the test characteristics, but also the prevalence of disease, among other factors [62]. 

Nonetheless, a perfect electronic sepsis surveillance system should achieve 

several goals. 

 

First, an ideal electronic sepsis surveillance system should only generate actionable 

alerts in the context of alert fatigue, interruption, human error, and information overload. 

For example, electronic sepsis surveillance systems should not generate alerts for 

suspicion of infection or presence of SIRS criteria in isolation. This is because many 

patients in the critical care setting have suspicion of an infection due to SIRS criteria but 

may not have sepsis (e.g., drug fever or deep vein thrombosis). Furthermore, only a 
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fraction of septic patients progress to severe sepsis (sepsis with the presence of organ 

dysfunction) or septic shock. In the absence of significant comorbidities, it is only at the 

level of severe sepsis that mortality due to sepsis rises significantly [63]. Interestingly, it 

is also unclear if meaningful alerts could be generated in the context of septic shock. 

Although mortality in this extremely time-sensitive circumstance is even higher than 

severe sepsis, EMR-based detection of sepsis relies on existing EMR data. In other 

words, the presence of fluid resistant hypotension and/or the use of vasopressors 

(elements of the definition of septic shock) imply the presence of septic shock has 

already been identified by providers and action has been taken. Alerts in these contexts 

would potentially lead to alert fatigue, interruption, human error, and information 

overload. Thus, from the perspective of the clinical continuum from sepsis to septic 

shock, one of the clearest targets for actionable alerts is the critical golden hours during 

the progression from severe sepsis to septic shock. Adherence to existing, international 

SSC guidelines for severe sepsis and septic shock are known to significantly reduce 

mortality [58]. However, compliance with these guidelines is poor. There is frequently a 

delay between the generation of lab values, such as biomarkers of organ dysfunction, 

and clinician awareness of these values. Thus, preventing the progression of severe 

sepsis to septic shock is one mechanism to generate actionable sepsis alerts to reduce 

mortality in the critical care setting. The current SSC guidelines [14] are highly detailed, 

but contain a simplified set of two “bundles”. The first bundle is comprised of a set of 4 

elements to be completed within 3 hours upon suspicion and/or diagnosis of sepsis, 

while the second bundle is comprised of 3 elements to be completed within 6 hours. 

However, it should be noted that these bundle elements are not all mutually exclusive 

and can form a feedback loop. For example, it is expected that 30 mL/kg of crystalloid 

fluids will be administered within 3 hours for hypotension or elevated lactate. However, it 

is also expected that vasopressors will be administered within 6 hours if hypotension is 
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not adequately reversed with fluids. Should hypotension persist (evidence of septic 

shock), it is thus possible to cycle between fluid administration and vasopressor use for 

periods of time much greater than 6 hours. Similarly, the first element of the 3-hour 

bundle is lactate measurement. However, both persistent hypotension and the third 

element of the 6-hour bundle (re-measure lactate if initial lactate was elevated) can 

result in feedback loop of repeated lactate measurements for an indefinite period of time. 

Secondly, an ideal electronic sepsis surveillance system must do more than detect 

sepsis. Once severe sepsis and/or septic shock have been identified, timely and 

appropriate response according to SSC guidelines remains crucial for positive patient 

outcomes [64]. Thus, identification of failure to comply with these guidelines in a timely 

and appropriate manner is another potential mechanism for actionable sepsis alerts. 

Additionally, alerts need to be sent to the correct provider using the correction 

mechanism of alert delivery. This subject is particularly important in the context of alert 

hazards and has been studied in the context of the development of monitoring and alert 

systems for geriatric patients in the home setting [65, 66]. However, relatively limited 

investigation into methods of alert delivery to these patients’ providers in the hospital 

setting has been performed [67]. Furthermore, this subject has been explored even less 

in the critical care setting [68, 69]. As the age of the average ICU patient is around 65 

years and studies in the critical care setting are lacking [70], this example of geriatric 

patients is particularly relevant to highlight the specific need to perform systematic 

investigation of alert processes in the critical care/ICU setting. Specifically, most of the 

automated sepsis detection and alert systems previously referenced provided alerts to 

attending physicians using text paging as the mechanism of alert delivery. However, the 

questions of who should be the recipient of urgent and/or non-urgent alerts (attending 

physicians, residents/fellows, NPs/PAs, RNs, etc.) and how these alerts should be 
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delivered—text paging, EMR-based messaging, email, or smartphone [71]—

remain unresolved. 

 

What EMR Data Is Needed? 

To achieve the goals for an ideal electronic sepsis surveillance system, specific data 

requirements are necessary. The current 2012 SSC international guidelines for 

management of severe sepsis and septic shock provide a good starting point for these 

requirements [14]. These specific data requirements include a variety of 

variables/domains as diagnostic criteria for sepsis, as well as cutoff values for 

quantitative variables/domains, all of which can be extracted from the EMR. 

Conceptually, some of these variables/domains have varying degrees of usefulness 

along the sepsis “spectrum”: suspicion of infection or SIRS, sepsis (suspicion of infection 

and SIRS), severe sepsis, or septic shock. It should be noted that not all of the 

numerous data elements listed in the current SSC guidelines are necessary to create an 

ideal electronic sepsis surveillance system. One example is hyperglycemia in the 

absence of diabetes. Although there are other important reasons to prevent 

hyperglycemia in critically ill patients, this value can change rapidly and is not required 

for the diagnosis of sepsis, severe sepsis, or septic shock. As glycemic state can change 

rapidly, this limits the usefulness of this marker for quick detection of sepsis. 

Alternatively, decreased urine output for more than two hours despite adequate fluid 

resuscitation is a marker of organ/renal dysfunction (severe sepsis). However, the many 

hours potentially required to make this observation also limits the usefulness of this 

marker for timely detection of severe sepsis. It is therefore necessary to build an 

electronic sepsis surveillance system that includes other markers of organ 

dysfunction/severe sepsis, such as increased creatinine, increased bilirubin, and 

decreased platelet count. However, this implies that the detection algorithm must include 
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the ability to detect changes in these variables rather the absolute values. Combined, 

carefully and correctly selected data from the EMR must be used to create the ideal 

system. In addition to previously discussed human-centric limitations and challenges—

such as alert fatigue, interruption, human error, and information overload—there are also 

human-independent limitations to an ideal electronic sepsis surveillance system. In the 

context of “big data”, the need for real-time, accurate data at the bedside (“point of care”) 

is a crucial challenge. It is already known that the positive effect of point of care 

computer reminders on processes and outcomes of care in the hospital setting is limited 

(72). While some of this may be due to human-dependent factors, this does not entirely 

explain this observation. For example, there are uncertainties in the EMR systems, such 

as whether most of the variables/domains listed in Table 1 were ordered, if the 

timestamps represent time the test was ordered or the time the results were completed, 

and what the lag-time is in reporting new data. In a healthcare center of any size, 

complete data availability and interoperability of any electronic sepsis surveillance 

system may not exist across the ICU, ED, OR, and/or hospital floors (with or without 

telemetry). This can be due to lack of backend electronic infrastructure to support an 

electronic sepsis surveillance system in the context of an existing EMR system. The 

complexity of this problem is compounded when considering a multisite healthcare 

system, as data availability and interoperability across physical locations may be 

severely limited. 

 

Workflow Changes, Educational Challenges, and Implementation 

Knowledge is only the first step in the successful implementation of any complex 

technical system, medical or otherwise, which significantly modifies or alters an existing, 

complex system. In this case, the SSC has provided the knowledge necessary to 

manage severe sepsis and septic shock. Thus, clinical knowledge of sepsis is not the 
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primary barrier for implementation of an electronic sepsis surveillance system in the ICU 

and other hospital settings. Initial barriers include workflow and education changes. 

Even an ideal electronic sepsis surveillance system will not be accepted by clinicians 

(attending physicians, residents/fellows, NPs/PAs, RNs, etc.) unless the system is first 

introduced without substantially changing the existing workflow process for sepsis 

management. In the case of Mayo Clinic, this involved first creating METRIC Data Mart 

(a near real-time, EMR-independent information database), as well as the Ambient 

Warning and Response Evaluation (AWARE) system, an ICU-specific EMR viewer, for 

use as a platform in the critical care setting, on top of the existing EMR system [73]. 

Once a system has been introduced into the existing workflow, implementation changes 

must occur through educational interventions. The first steps involve active training 

sessions and prominently displayed poster-style reminders in the critical care setting. 

After these educational interventions and initial implementation, continued 

implementation efforts are required. This entails clear mechanisms and response to both 

unstructured (feedback button) and structured data (survey) for both the critical care and 

other monitored settings [74]. Each of these components of the implementation process, 

including post-marketing surveillance, is crucial for the success of an ideal sepsis 

electronic surveillance algorithm [75]. Essentially, implementation of an electronic sepsis 

surveillance system is similar to implementation of new therapeutics, medical devices, 

and even direct-to-consumer advertising. 

 

PERSPECTIVES 

After the publication of the first set of SSC guidelines for management of severe sepsis 

and septic shock in 2004 [17], one issue was identified with these guidelines: the lack of 

a clear, linear, bulleted management protocol to accompany the 16-page document [76]. 

As a result, the first SSC “bundles” for sepsis management were published the following 
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year [16]. More importantly, this was a realization that lengthy, elaborate guidelines were 

not successfully implemented in the absence of a straightforward and human-

interpretable summary of these processes in diagram format. From that point, although 

the second [13] and third (current) [13, 14] editions of the SSC guidelines approximately 

doubled and tripled in size with respect to the initial guidelines, the SSC “bundles” were 

also updated and prominently incorporated into both the SSC guideline document 

and website. 

 

Unfortunately, although the SSC bundles continue to mature, both the current SSC 

bundles and guidelines are not machine-readable/interpretable. For example, the fourth 

component of the 3-hour SSC bundle is to administer 30 mL/kg crystalloid for 

hypotension. However, for a computer to calculate the success or failure of completion 

of this intervention, several variables are required within this 3-hour window: blood 

pressure readings, fluid administration, and weight. Although blood pressure readings 

may be easily obtained, tracking fluid administration (specifically, bolus-only) is more 

complex. Additionally, in regard to EMR-interoperability, what if fluids are administered 

first in the ED setting, but then continued in the ICU setting? Does an electronic sepsis 

surveillance system have the capacity to track and understand fluid-bolus continuity 

across clinical departments? What if 30 mL/kg crystalloid for hypotension is achieved in 

3.1 hours? In other words, what might be considered as a success by a clinician (aka 

human) would be considered a failure by the computer (aka machine). Even worse, a 

patient’s weight might not be entered during the first 3 hours. In the absence of a weight 

to calculate the required fluid bolus, a computer would be forced to register all fluid 

boluses as failures. From a clinical perspective, this point may seem irrelevant, as many 

patient weights can be estimated. One solution is to collect all patient weights for the 

specific purpose of satisfying the algorithm. However, this concept is in opposition to 
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earlier concepts of the implementation process: the machine should serve the clinician 

and not vice versa. Another solution is to expand the algorithm’s ability to search for 

weights prior to 3 hours. But how far in advance of 3 hours and who decides this 

important cutoff value? Similar challenges related to this issue are also present in other 

elements of both the 3 and 6-hour SSC bundles. 

 

Ultimately, as the rise of evidence-based medicine and education continues [77, 78], 

increased emphasis will be placed on adherence to ―best practiceǁ protocols, such as 

the SSC guidelines. However, the future of evidence-based medicine and education 

hinges on the question of the need/desire for clinicians to interpret free-text protocols 

versus reliance on potentially “black box” machine algorithms. For this shift to electronic 

surveillance systems to occur, best practice protocols must shift from clinical 

interpretation to computer/coding-friendly language. Otherwise, as the number and 

complexity of best practice protocols continues to expand, the benefits of human 

interpretable algorithms in evidence-based medicine will slowly be lost to the inability to 

translate these algorithms into electronic systems that can handle volumes of data, 

which otherwise lead to alert fatigue, interruption, human error, and information 

overload. Thus, clinicians must eventually reassess the place for and implications of 

electronic surveillance systems in modern medicine. 

 

It is also necessary to implement an electronic sepsis surveillance system using the 

correct delivery platform. One option is to implement these systems through existing 

commercial [79], open access [80], and/or custom EMR platforms. Another option is to 

use a custom delivery platform in parallel with an existing EMR system. For example, 

Mayo Clinic is implementing its electronic sepsis surveillance system in the critical care 

setting through AWARE, the ICU-specific patient viewer developed at Mayo Clinic and in 
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use in routine clinical practice across its Minnesota, Arizona, and Florida locations, 

which have different core EMRs [81, 82]. Regardless of the delivery platform, an 

electronic sepsis surveillance system should interact synergistically with other electronic 

systems to reduce the alert hazards described above. 

 

Future Algorithm Improvements for Electronic Surveillance 

In the recent US multicenter ProCESS Trial, early-goal directed therapy (EGDT) was 

demonstrated to not significantly differ from “protocol-based standard therapy” or the 

current standard of care [83]. These results are supported by another recent multicenter 

trial in Australia and New Zealand (ARISE), comparing EGDT to “usual care” [84]. Taken 

together, these results indicate the success of sepsis diagnosis and management efforts 

over the past 20+ years. These results further indicate that some elements of the SSC 

bundle may not be essential in the management of septic patients. 

 

It is also important to recognize the widespread scope of interest in improving sepsis 

outcomes. One current example not highlighted in this chapter is nursing. For many 

decades, the academic nursing community has published sepsis outcomes in nursing 

journals, in parallel with general medical journals [85]. Another example is veterinary 

medicine. In addition to sepsis outcomes, the veterinary literature routinely publishes 

interesting sepsis case reports on par or more interesting than those published in the 

general (human) medical journals [86]. In the area of dental hygiene, a recent 

randomized clinical trial showed that routine dental care/treatment of critically ill patients 

in the ICU setting significantly reduces lower respiratory tract infections [87]. These 

studies represent examples of many diverse interests within the healthcare community 

devoted to improving sepsis outcomes now and in the future. 
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In order to develop a truly intelligent electronic sepsis surveillance system, it is 

necessary to consider more factors that have not yet been described in detail in this 

chapter, such as workflow analysis, ambience, and feedback [88]. In particular, existing 

electronic sepsis surveillance systems have focused specifically on sepsis detection and 

alert. However, such systems can be improved through implementation of automated 

detection and alert systems in the specific context of failure to rescue and treat sepsis in 

a timely and appropriate manner after diagnosis, which has already been shown to 

reduce mortality [58, 64]. As will be described below, failure to rescue and treat sepsis 

differs from failure to recognize sepsis in that this component of electronic sepsis 

surveillance focuses on response after the detection of sepsis. These concepts have not 

been explored in existing electronic sepsis surveillance systems.  

 

In addition to the data needed and the implementation process, it is necessary to 

consider additional factors to develop a truly intelligent electronic sepsis surveillance 

system. One of these factors is the concept of “failure to rescue” (Figure 1). The US 

AHRQ (Agency for Healthcare Research and Quality) Patient Safety Network defines 

failure to rescue as “shorthand for failure to rescue (i.e., prevent a clinically important 

deterioration, such as death or permanent disability) from a complication of an 

underlying illness (e.g., cardiac arrest in a patient with acute myocardial infarction) or a 

complication of medical care (e.g., major hemorrhage after thrombolysis for acute 

myocardial infarction). Failure to rescue thus provides a measure of the degree to which 

providers responded to adverse occurrences (e.g., hospital-acquired infections, cardiac 

arrest, or shock) that developed on their watch. It may reflect the quality of monitoring, 

the effectiveness of actions taken once early complications are recognized, or both.” 

[89]. This concept and term is derived from studies performed by Silber and colleagues 

over two decades ago in the surgical setting [90, 91]. Over the next decade, they 
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extended these studies into perioperative areas such as anesthesiology [92] and nursing 

[93]. This concept of failure to rescue was recently applied to perform comparative 

analysis, at the hospital-wide level, across multiple institutions to assess availability of 

hospital resources and differences in performance [94]. However, like previous studies, 

the underlying population of interest was surgical patients. With this recent study in 

mind, Silber and colleagues are now exploring failure to rescue as a component for 

standardizing patients for hospital audit/evaluation purposes and cost analysis [95]. 

However, the concept of failure to rescue outside the perioperative realm, including the 

ICU setting, remains largely unexplored. 

 

 

Figure 1: Flow diagram of sepsis management in the context of detection, failure to treat, 

and failure to rescue alerts, as well as physiologically relevant variables. 

 

An electronic sepsis surveillance system with the capacity to identify failure to rescue 

and treat sepsis in a timely and appropriate manner after diagnosis—in addition to 

sepsis detection/recognition—has the potential to intelligently prevent alert fatigue, 

interruption, human error, and information overload. Along these lines, the methodology 
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for this system has already been retrospectively validated for implementation at Mayo 

Clinic using an improved severe sepsis and septic shock “sniffer” for clinical use in the 

ICU setting [40]. Likewise, researchers at Mayo Clinic have already shown that 

activation of a sepsis response team, in combination with weekly feedback, increases 

the compliance with processes of care and reduces hospital mortality rate in the setting 

of septic shock [96]. Thus, future implementation of complex electronic surveillance 

systems, such as a sepsis sniffer with a failure to rescue component, can only occur in 

combination with these other mechanisms of diagnosis and management of 

septic patients. 

 

The final element of future algorithm improvements in the context of electronic 

surveillance is the human interpretability of these algorithms. Guideline adherence can 

be improved by combining a refined sepsis alert and detection system with existing 

electronic infrastructures to further improve sepsis outcomes. The development of the 

surveillance algorithm for the detection of failure to recognize and treat severe sepsis in 

the Mayo Clinic study described above made use of recursive data partitioning analysis. 

This technique is considered to be an advanced modeling and multivariate method, 

which has been described in detail elsewhere [97]. Briefly, statistical partitioning allows 

for the division of a data set into a complete, but non-overlapping, collection of 

components or parts using decision tress. It should be noted that other mathematical 

modeling approaches for sepsis detection and alert have been developed. For example, 

one unrelated study made use of a Dynamic Bayesian Networks-based model for early 

detection of sepsis in the ED setting [98]. Another group used machine learning-based 

models to develop a decision support system to make clinical predictions for patients 

with sepsis [99]. Thus, alternative modeling techniques may be applicable to the 

development of detection and alert systems specific to failure to rescue and treat sepsis. 
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Human interpretability of algorithms generated by a machine, such as supervised 

learning techniques (Bayesian networks, neural networks, and ensemble learning), or 

heuristic optimization techniques is often limited [100]. Thus, with increasing prevalence 

of complex technologies throughout the hospital setting, clinicians must eventually 

determine what is and is not an acceptable loss of human interpretability to “black box” 

algorithms. This will be particularly important if implementation of these algorithms 

results in improved patient outcomes. Ideally, this equilibrium will evolve in parallel with 

other improvements in the understanding of both the pathophysiology and clinical 

management of sepsis. 

 

BULLET POINTS 

(1) Detection of sepsis: historical perspective and current status (non-computerized) 

• Consensus conference criteria, early-goal directed therapy, and the Surviving 

Sepsis Campaign provided the basis for the clinical diagnosis and management 

of sepsis. 

(2) Computerized attempts 

• The earliest sepsis detection systems were developed primarily for clinical trial 

enrollment purposes, while recent, largely retrospective studies have focused on 

improvement of clinical outcomes in both critically and non-critically ill patients in 

ICU, ED, and hospital floor settings. 

(3) Limitations and challenges of early systems 

• In addition to retrospective and algorithmic limitations, a challenge of the above 

systems has been to address alert fatigue, interruption, human error, and 

information overload. 

(4) Elements of an advanced system. 
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• An ideal electronic sepsis surveillance system should address all of the above 

challenges and delivery alerts to the correct providers to improve clinical 

outcomes, but still will not achieve 100% accuracy. 

(5) Data needs 

• The hospital EMR-infrastructure must be capable of integrating SSC international 

guidelines in the context of real-time data availability and interoperability across 

all relevant hospital settings (ICU, ED, and hospital floors). 

(6) Workflow changes, educational changes, and implementation 

• Implementation of a “perfect” electronic sepsis surveillance system will fail 

without the proper workflow and educational interventions to achieve acceptance 

from clinicians. 

(7) Perspectives 

• SSC guidelines are readable by humans, but not necessarily computer 

algorithms, which hampers the development of evidence-based electronic sepsis 

surveillance systems. 

(8) Future algorithm improvements in the context of electronic surveillance 

• In addition to detection/recognition, future algorithms must integrate the concepts 

of failure to rescue and treat sepsis with advanced modeling techniques, which 

may also result in a decrease in the human interpretability (“black box”) of these 

algorithms. 
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CHAPTER 2 

Developing the surveillance algorithm for detection of failure to recognize and 

treat severe sepsis 

This manuscript was published as Harrison AM, Thongprayoon C, Kashyap R, Gajic O, 

Pickering BW, Herasevich, V. (2015). Development, testing, and refining the failure to 

rescue severe sepsis sniffer. Mayo Clin Proc. PMID: 25576199. A related video can be 

found at this hyperlink. 

 

ABSTRACT 

Objective: To develop and test an automated surveillance algorithm (sepsis “sniffer”) for 

the detection of severe sepsis and monitoring failure to recognize and treat severe 

sepsis in a timely manner. 

Patients and Methods: We conducted an observational diagnostic performance study 

using independent derivation and validation cohorts from an electronic medical record 

database of the medical intensive care unit (ICU) of a tertiary referral center. All patients 

aged 18 years and older who were admitted to the medical ICU from January 1 through 

March 31, 2013 (N=587), were included. The criterion standard for severe sepsis/septic 

shock was manual review by 2 trained reviewers with a third super-reviewer for cases of 

inter-observer disagreement. Critical appraisal of false-positive and false-negative alerts, 

along with recursive data partitioning, was performed for algorithm optimization. 

Results: An algorithm based on criteria for suspicion of infection, systemic inflammatory 

response syndrome, organ hypoperfusion and dysfunction, and shock had a sensitivity 

of 80% and a specificity of 96% when applied to the validation cohort. In order, low 

systolic blood pressure, systemic inflammatory response syndrome positivity, and 

suspicion of infection were determined through recursive data partitioning to be of 

greatest predictive value. Lastly, 117 alert-positive patients (68% of the 171 patients with 
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severe sepsis) had a delay in recognition and treatment, defined as no lactate and 

central venous pressure measurement within 2 hours of the alert. 

Conclusion: The optimized sniffer accurately identified patients with severe sepsis that 

bedside clinicians failed to recognize and treat in a timely manner. 

 

INTRODUCTION 

Sepsis is common and lethal in the United States and around the world.1-3 Septicemia 

was also ranked as the most expensive in-hospital condition in the United States by the 

US Agency for Healthcare Quality and Research, based on 2011 data.4 Current 

processes for sepsis management (including early goal-directed therapy [EGDT] and the 

data from the recent ProCESS [Protocolized Care for Early Septic Shock] and ARISE 

[Australasian Resuscitation in Sepsis Evaluation] trials) have been established.5-7 The 

Surviving Sepsis Campaign (SSC) guidelines have refined the exact criteria for 

advanced disease, including organ dysfunction.8 However, the fundamental process of 

sepsis management in these guidelines has not changed substantially, suggesting a 

barrier in implementation as the source of the continued sepsis problem. There is much 

room for improvement and optimization of existing computerized sepsis detection and 

alert systems. Although recent sepsis detection and alert systems have focused on 

clinical outcomes, these systems have failed to document improvement in clinically 

meaningful end points.9-12 Thus, an improved approach is necessary to develop and 

validate a clinically useful sepsis alert system, especially for implementation in the 

critical care setting. 

 

The aim of this study was to improve on previous studies in several ways. The first was 

by specifically targeting severe sepsis/septic shock (referred to as severe sepsis 

throughout the remainder of this article for brevity) to reduce the number of false-positive 
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alerts from isolated or non-septic systemic inflammatory response syndrome (SIRS).13 

The second was to target severe sepsis in the specific context of delay in recognition 

and treatment. This approach is derived from the concept of “failure to rescue” from the 

surgical literature, which suggests that hospital characteristics, as opposed to patient 

characteristics, are the primary determinant of adverse occurrences.14,15 In this context, 

one example of delay in recognition and treatment would be progression to severe 

sepsis due to failure to adhere to established sepsis response and management 

protocols.16 The third and final improvement was to target information overload, human 

error, interruption, and alert fatigue.17,18 Combined, the objective of this study was to 

advance, test, and refine a delay in recognition and treatment of severe sepsis detection 

and alert system (“sniffer”) for use in the critical care setting. 

 

PATIENTS AND METHODS 

Study Design and Setting 

We conducted an observational diagnostic performance study that used independent 

derivation and validation cohorts for development and testing of the delay in recognition 

and treatment of severe sepsis sniffer. This study was performed at Mayo Clinic in 

Rochester, Minnesota, with Mayo Clinic Institutional Review Board approval. 

 

Study Population and Data Collection 

All patients aged 18 years and older who were admitted to the medical intensive care 

unit (ICU) at Mayo Clinic in Rochester, Minnesota, from January 1 through March 31, 

2013, and provided research authorization were included in this study. This ICU setting 

has been described previously.19 The purpose of this retrospective study was 

development of the sepsis sniffer algorithm. Thus, no patients admitted to the ICU with 

research consent were excluded from this study, including those patients with goal-
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limiting care preferences, such as do-not-resuscitate/do-not-intubate (DNR/DNI) orders. 

Patients with ICU-acquired sepsis, which typically occurs several days after ICU 

admission, were effectively excluded from this study.20, 21 It is unlikely that patient/proxy 

preferences, such as DNR/DNI status, would dramatically alter provisions of care, such 

as those related to transfer from the emergency department (ED) and/or hospital wards, 

in a way that would substantially confound the results of this study. At our institution, 

unless otherwise stated, patients with DNR/DNI orders receive central line placement 

when clinically indicated. 

 

Patient data were collected using manual chart review and the METRIC 

(Multidisciplinary Epidemiology and Translational Research in Intensive Care) Data Mart, 

which has been described previously.22 The data for the output response of severe 

sepsis was collected through manual review and scoring of all patient records by 2 

trained reviewers (A.M.H., C.T.). Interobserver variability was solved by a third 

superreviewer (R.K.). This data set served as the criterion standard for the cohort. The 

data set for the full cohort (587 patients) was then randomly divided in half into derivation 

(293 patients) and validation (294 patients) cohorts. The derivation cohort was used for 

algorithm development and testing, while the validation cohort was reserved for final 

algorithm validation. 

 

Algorithm Development 

Sepsis Detection Component: For both manual review and scoring of patient records, as 

well as the first iteration of the severe sepsis sniffer (Algorithm 1), a standardized 

protocol for severe sepsis was used (Table 1). For the severe sepsis portion of this 

algorithm, this definition was divided into 3 components: suspicion of infection, SIRS, 

and organ hypoperfusion and dysfunction. A positive entry for all 3 of these components 
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within a 6-hour window between ICU admission and ICU discharge (up to 72 hours) was 

required for classification as severe sepsis positive. Because of the high frequency of 

microbial culture orders before ICU admission, particularly in patients admitted from the 

ED, the suspicion of infection domain was permitted to include 72 hours before 

ICU admission. 

 

Delay in Recognition and Treatment Detection Component: The 2012 international 

guidelines for management of severe sepsis and septic shock from the SSC were used 

as the basis for development of the delay in recognition and treatment portion of the 

severe sepsis sniffer.8 Specifically, the protocol portion of these guidelines emphasize 

the timely need for lactate measurement, appropriate antibiotic administration, adequate 

fluid resuscitation, and placement of a central line for measurement of central venous 

pressure (CVP) and central venous oxygenation. The presence or absence of central 

line placement (peripherally inserted central catheter or central venous catheter) was not 

recorded. In cases in which CVP measurement was present at the time of ICU 

admission, this implies central line placement and/or CVP measurement before ICU 

admission but was not recorded for this ICU-specific study. 

 

To develop a sniffer to minimize inappropriate alerts, a new data set (N=171) was 

created by pooling all severe sepsis alerts from the optimized algorithm using both the 

derivation and validation data sets (N=587). Of the 171 patients who had development of 

severe sepsis, 123 (72%) had no computerized physician order entry (CPOE) for severe 

sepsis management within the time window from ICU admission to severe sepsis alert 

plus 2 hours (Table 2). For reference, a CPOE for severe sepsis management in the ED 

and ICU was implemented at Mayo Clinic in 2005 and has remained the standard of 

care since.23 
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Table 1: Initial Severe Sepsis Sniffer Rules Definition 

 

 

Table 2: Delay in Recognition and Treatment of Sniffer Development 

 

 

Algorithm Testing 
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Manual Chart Review: Critical appraisal of false-positive and false-negative alerts for 

both the sepsis detection and delay in recognition and treatment components of the 

sniffer began with comparison of the criterion standard against the first iteration of the 

improved severe sepsis sniffer (Figure 1). Critical appraisal of the first iteration of the 

sniffer (Algorithm 1 in the “Results” section) was performed by one reviewer (A.M.H.) 

manually examining all cases of disagreement between the sniffer and criterion standard 

for cases in which there was no interobserver disagreement. In all cases, the sources of 

disagreement were documented and used for generation of the second iteration of the 

sniffer (Algorithm 2 in the “Results” section). Critical appraisal of the second iteration of 

the sniffer was performed in an identical manner (Supplemental Figure, available online 

at http://www.mayoclinicproceedings.org), except for the inclusion of cases of 

disagreement between the sniffer and criterion standard in which there was 

interobserver disagreement (need for superreviewer and thus more complex). In all 

cases, the sources of disagreement were documented and used for generation of later 

iterations of the sniffer. 
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Figure 1: Schematic of the derivation and validation process 

 

Recursive Data Partitioning: Optimization of both the sepsis detection and delay in 

recognition and treatment components of the sepsis sniffer algorithm was performed by 

recursive data partitioning using JMP statistical software (SAS Institute Inc). The 

recursive data partitioning feature is an advanced modeling and multivariate method that 

has been described in detail elsewhere.24 Recursive data partitioning was performed 
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using all continuous and categorical variables in the existing sepsis sniffer algorithm as 

input factors.25 For the purpose of node splitting criterion, all additional clinically relevant 

ICU data, available through METRIC Data Mart, were included as input factors.22 Output 

response was the development of severe sepsis during the ICU stay. 

 

Algorithm Refinement—Iterative Process 

This recursive data partitioning process resulted in the generation of an optimized 

decision tree for the detection of severe sepsis and delay in recognition and treatment. 

On the basis of this result, a new sepsis sniffer was generated. Using this optimized 

algorithm, diagnostic performance measurements were recalculated and compared with 

those of the existing sepsis sniffer. In parallel, critical appraisal of false-negative and 

false-positive alerts was performed by manual review to determine the source of error. 

Both of these processes were repeated in iteration until an improved algorithm was 

generated. To optimize the original algorithm, these calculations were repeated following 

perturbation of the existing rules, as described previously. Next, this process was 

repeated in iteration until sufficient optimization was achieved. To validate the optimized 

sepsis sniffer algorithm, this process was repeated using the validation cohort. The 

results of these measurements were used to determine if the improved sepsis sniffer 

algorithm was superior to the original algorithm. 

 

Outcome Measurement 

The ability of the existing or improved severe sepsis algorithm to detect severe sepsis 

was evaluated using derivation and validation cohorts, which served as unique data 

sets. Diagnostic performance measurements—including the sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) of each algorithm to 

detect sepsis—were then compared with the criterion standard of manual chart review. 
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To derive an optimized sepsis sniffer algorithm, the sensitivity, specificity, PPV, and NPV 

of the original sepsis sniffer algorithm to detect sepsis were calculated using the 

validation cohort. 

 

Statistical Analyses 

In addition to recursive data partitioning, JMP statistical software (JMP Pro version 

11.1.1, SAS Institute Inc) was used for all statistical analyses. For all analyses, 2-sided 

significance testing was performed with P<.05 considered statistically significant. 

Analyses performed included the Student t test, the χ2 test, and Cohen k coefficient, as 

appropriate. 

 

RESULTS 

For all study results, there was no statistically significant difference between the 

deviation and validation cohorts with respect to age (P=.79), sex (P=.54), hospital length 

of stay (LOS) (P=.44), ICU LOS (P=.70), Sequential Organ Failure Assessment score 

(P¼.72), and Acute Physiology and Chronic Health Evaluation III score (P=.23) 

(Supplemental Table 1, available online at http://www.mayoclinicproceedings.org). The k 

value for interrater agreement for severe sepsis was 0.74 (substantial agreement, 0.61-

0.80).26, 27 However, agreement between the criterion standard and the first iteration of 

the sepsis sniffer (Algorithm 1) was not as good. In particular, the sensitivity and NPV of 

Algorithm 1 were relatively low (Table 3). As a result, critical appraisal of false-positive 

and false-negative alerts was performed on the derivation cohort (N=293) for cases in 

which there was no interobserver disagreement (N=26). These results were used to 

perform optimization of the initial severe sepsis sniffer algorithm. At this point, critical 

appraisal for cases in which there was interobserver disagreement (need for 
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superreviewer and thus more complex) was not performed (N=18). For all other cases 

(N=249), there was agreement between the criterion standard and Algorithm 1. 

 

Supplemental Table 1: Cohort characteristics 

 

 

After optimization and debugging, the sensitivity and NPV of the second iteration of the 

sepsis sniffer (Algorithm 2) was considerably improved compared with Algorithm 1 

(Table 3). The number of cases of disagreement between the criterion standard and 

Algorithm 2, for which there was no interobserver disagreement, was reduced from 26 to 

9 (Supplemental Figure 1). The number of cases of disagreement between the criterion 

standard and Algorithm 2, for which there was interobserver disagreement, was also 

reduced from 18 to 14. Although fundamentally more complex (because of the need for 

the superreviewer), critical appraisal of all of these cases was performed. Most of these 

cases were likely either severe sepsis of short duration or failure of Algorithm 2 to detect 

suspicion of infection and/or identify positive SIRS criteria. However, the number of 

cases of agreement between the criterion standard and Algorithm 2, as compared with 

Algorithm 1, was increased from 249 to 270. Thus, this optimized and debugged sniffer 

was used to begin introducing and testing new variables as markers of organ 

dysfunction in subsequent sniffer iterations. 



 

43 
 

 

Table 3: All Iterations Performed for Sepsis Sniffer Optimization 
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Supplemental Figure 1: Results of manual review of cases of disagreement between the 

gold standard (manual chart review) and Algorithm 2 (optimized algorithm). Note: “(XX)” 

represents the same analysis, but for Algorithm 1 (cases of inter-observer disagreement 

not examined). The absence of this notation indicates no change between Algorithm 1 

and 2. Likewise, “+1” indicates the addition of a case that was not present in that 

category for Algorithm 1. “Pos” and “Neg” indicate a positive or negative Algorithm 2 

(sepsis sniffer) result. “Sniffer technically correct” indicates cases where criteria were 

met, but the presence of only single data points to meet criteria and/or short ICU length 

of stay make a true diagnosis of sepsis unclear. 

 

To test whether additional markers of organ dysfunction beyond high lactate level and 

low systolic blood pressure have the potential to be useful in detecting severe sepsis 

with the sepsis sniffer, 9 additional variables (Supplemental Table 2, available online at 

http://www.mayoclinicproceedings.org) were identified on the basis of physiologic 

rationale and existing guidelines.8 To test this hypothesis, each variable was introduced 

individually into the organ hypoperfusion and dysfunction domain of the second iteration 

of the sepsis sniffer (Algorithm 2) with the derivation data set. As with high lactate level 

and low systolic blood pressure, only 1 of 3 possible positive alerts in this category was 

necessary to trigger a positive alert in this domain. However, introduction of these 

variables into Algorithm 2 (debugged sepsis sniffer) did not increase the sensitivity, 

specificity, PPV, or NPV of the sniffer (Algorithms 3 through 11, Table 3). Thus, the 

approach of recursive data partitioning was also used for sepsis sniffer optimization. 

 

For recursive data partitioning, all initial binary (positive or negative) variable results from 

Algorithm 2 and all 9 additional binary variables (Supplemental Table 2) were included in 

the analysis with the derivation data set. The binary criterion standard of severe sepsis 
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or no severe sepsis was used as the output for this analysis. Node splitting was 

performed in an unbiased fashion, with all splits determined by the statistical software. 

Maximization of the receiver operating characteristic curve value was used as the 

stopping criterion for node splitting. In this case, 6 node splits were required to maximize 

the receiver operating characteristic curve value (0.95). In order, these 6 splits were 

systolic blood pressure, SIRS criteria, suspicion of infection, high lactate level, and 

vasopressor use (twice) (Figure 2). On the basis of these results, Algorithm 2 was 

determined to be the best severe sepsis detection algorithm. To confirm this result, 

Algorithm 2 was applied to the validation cohort (N=294) and found to be in good 

agreement with the derivation cohort results (Table 3). This knowledge was then used to 

develop the delay in recognition and treatment portion of the sniffer. 

 

Supplemental Table 2: Pathophysiologic Variable Rationale. Note: White background for 

original variables and gray background for nine additional variables. 
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When the delay in recognition and treatment component of the algorithm was applied, 42 

of the 171 patients with severe sepsis (25%) had no lactate measurement from ICU 

admission to alert time plus 2 hours. Impressively, 112 of the 171 patients (65%) had no 

CVP measurement within this same time window. Combined, 117 patients (68%) had 

neither lactate level nor CVP measurement. Of the 171 patients with severe sepsis, 60% 

had both delay and no CPOE. Combined, 117 patients (68%) had neither lactate level or 

CVP measurement (delay in recognition and treatment). Thus, it was determined that the 

absence of both a lactate and CVP measurement within 2 hours of severe sepsis alert is 

sufficient criteria to serve as an alert trigger for delay in recognition and treatment 

(Table 1). 
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Figure 2: Recursive data partitioning 

 

DISCUSSION 

Iterative optimization of an improved severe sepsis algorithm has led from a sensitivity 

and specificity of 59% and 97% (derivation cohort, Algorithm 1) to 80% and 96% 

(validation cohort, Algorithm 2), respectively, based on criteria of suspicion of infection, 

SIRS, organ hypoperfusion and dysfunction, and shock when applied to a validation 

cohort of medical ICU patients. In those patients with severe sepsis, the optimized delay 
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in recognition and treatment component of the sniffer identified that 68% of patients did 

not have a lactate level and CVP measurement in a timely manner. In order, low systolic 

blood pressure, SIRS positivity, and suspicion of infection were determined through 

recursive data partitioning to be of greatest predictive value. 

 

There have been several prospective studies of various forms of sepsis detection and 

alert systems in recent years. In 2011, Sawyer et al9 reported that the implementation of 

a real-time computerized sepsis alert in non-ICU patients was able to increase early 

therapeutic and diagnostic interventions among non-ICU patients at risk for sepsis. This 

study was a prospective, observational pilot study at a single academic center. Also in 

2011, Nelson et al10 reported that an automated algorithm for detecting potential sepsis 

increased the frequency and timeliness of some ED interventions for severe sepsis. This 

prospective, before-and-after study was also performed at a single academic center. In 

2012, LaRosa et al11 reported that a combined screening tool and alert system could 

improve compliance with sepsis bundle elements and improve survival from severe 

sepsis. This prospective study was also performed at a single academic center but in the 

ICU environment. Also in 2012, Hooper et al12 performed a randomized trial of an 

automated modified SIRS monitoring system to facilitate early detection of sepsis in the 

ICU setting. Once again, this was a single academic center study, which failed to 

document improvement in outcomes such as time to first new antibiotic, time to 

adequate fluid resuscitation, ICU LOS, hospital LOS, and mortality. However, it is known 

that SSC guideline compliance is poor, even after implementation with educational 

interventions.28 These pioneering studies have greatly advanced the state of automated 

sepsis detection and alert. However, there is still an important need for an 

optimized system. 
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As knowledge of sepsis management—as well as information overload, human error, 

interruption, and alert fatigue—improves, so will the accuracy of the sepsis sniffer. The 

delay in recognition and treatment component of the sniffer is one example. In one study 

of the SIRS criteria (only one component of this sepsis sniffer), the sensitivity of the 

SIRS criteria to detect infection compared with that of both the clinical and 

microbiological criterion standards of infection detection was 69%, while the specificity 

compared with that of both criterion standards was 35% and 32%, respectively.29 

Likewise, in perhaps the best prospective study of sepsis detection and alert in the ICU 

setting, the PPV of the automated system in the randomized trial by Hooper et al12 was 

41%. If the accuracy of the sepsis sniffer were improved in a prospective study, more 

widespread implementation could be performed through existing electronic medical 

record (EMR) systems to test for improvement in hard outcomes, such as improved ICU 

LOS and decreased mortality. Despite these challenges, there has been a decrease in 

mortality in patients with severe sepsis enrolled in “usual care” arms of multicenter 

randomized trials for the past 15 years.30,31 However, there is considerable variability 

among reports of the degree of decrease, which depends largely on the methodology 

used in individual studies.32 Importantly, to further reduce mortality it will be necessary to 

combine novel pathobiological findings with increasingly sophisticated technology for a 

true clinical revolution in sepsis management.33 

 

Recently, results of the ProCESS6 and ARISE7 trials were published. Both of these US 

and Australia/New Zealand multicenter trials, respectively, call into question the need for 

elements of EGDT and the SSC guidelines/bundles, such as CVP measurement. 

Because the current EGDT-based SSC guidelines and bundles have existed as the 

standard of care for septic shock for over a decade, it is too soon to know precisely how 

the results of these trials will alter future standards of care. For example, a recent 
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multicenter cross-sectional study found that 21.2% of clinicians were unaware of the 

presence or absence of central venous access (peripherally inserted central catheter or 

central venous catheter) in their patients.34 Smaller studies also continue to document a 

correlation between CVP measurement and potential reduction in mortality.35 Thus, the 

true value of central venous access and/or CVP measurement as a risk stratification tool 

in patients with sepsis remains to be determined. This is particularly the case in the 

setting of clinical decision making in the context of vasopressors and abnormal lactate 

values, which are other components of the sepsis surveillance algorithm used in 

this study. 

 

There are several limitations to this study. Like all the other studies referenced in this 

article, our study was conducted at a single academic medical center, which limits the 

potential transferability of these results to other medical centers. The single-center study 

design can also introduce bias into the study outcomes. In addition, this was an 

observational diagnostic performance study. Although this design was also used by 

several cited studies (and independent derivation and validation cohorts were used in 

this study), the observational study design has the potential to introduce more error in 

clinical data availability compared with the prospective study design. Our study was 

conducted using only adult patients in the medical ICU of an academic medical center, 

and thus the delay in recognition and treatment of sepsis sniffer may not be 

generalizable to all septic patients, especially those outside the ICU setting such as 

hospital wards and EDs. Although current sepsis guidelines and clinical knowledge were 

used to design the sniffer, it is still possible there is room for additional improvement. For 

example, some of the clinical variables found to not improve the sniffer may in fact be 

valuable for severe sepsis diagnosis in the clinical setting. Alternatively, the inclusion of 

other variables not analyzed in this study because of electronic infrastructure limitations, 
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such as timely and appropriate antibiotic administration, must be examined. Thus, a 

prospective (and eventual multicenter) study is necessary to further validate the sniffer 

by examining hard clinical end points such as ICU LOS, hospital LOS, mortality, and 

long-term outcomes. The process described in defining delay in recognition and 

treatment has not been widely reported outside the surgical and nursing literature, where 

it is termed failure to rescue. Thus, the novel application of this concept to sepsis and 

the critical care setting requires further exploration by other research groups. More 

complex methods of recursive data portioning, such as continuous variable analysis and 

random forests, have the potential to improve algorithm accuracy but were not employed 

in our study because the relatively small size of our data set limits the interpretability of 

such approaches. 

 

CONCLUSION 

A severe sepsis sniffer was able to correctly identify delay in recognition and treatment, 

which is necessary for implementation into existing EMR systems. Likewise, an 

algorithm for delay in recognition and treatment of severe sepsis was successfully 

developed. This component of the sepsis sniffer is important to decrease information 

overload, human error, interruption, and alert fatigue in intelligent EMR alerting systems. 

Combined, such a sniffer has the potential for implementation in the ICU setting. 
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CHAPTER 3 

Methods of alert delivery to critical care providers in the ICU setting 

This manuscript have been submitted as a student paper to the American Medical 

Informatics Association 39th Annual Symposium and is currently under review for both 

an oral presentation and publication in AMIA Annu Symp Proc as Harrison AM, 

Thongprayoon C, Aakre CA, Jeng J, Gajic O, Pickering BW, Herasevich V. Barriers to 

implementation of simulation and alert studies in the ICU setting. 

 

ABSTRACT 

The objective of this study was to determine the best method of alert delivery in the ICU 

setting for urgent and non-urgent alerts by delivering simulated sepsis notifications to 

critical care providers in the ICU setting, via text paging and an ICU-specific patient 

viewer/monitoring system, and by measuring participant satisfaction. Simulated alerts 

were delivered to 12 providers for 2 weeks. Outcomes were time to alert 

acknowledgement and a structured, mixed quantitative/qualitative survey. 

 

INTRODUCTION 

The ECRI Institute (Emergency Care Research Institute) ranked “alarm hazards” as the 

#1 health technology hazard in their 2014 Top 10 List of Health Technology Hazards (1). 

With the implementation of increasingly sophisticated electronic medical record (EMR) 

systems, interest in the development of novel automated detection and alert systems 

has also increased (2). However, investigation into the best method of alert notification 

(text paging, EMR systems, email, phone calls, and/or text messaging) for urgent and 

non-urgent alerts in the hospital setting is limited (3). Likewise, investigation into the 

most appropriate provider (attending physicians, fellows, residents, and/or nurse 

practitioners/physician assistants) for alert delivery is also limited (4, 5). 



 

58 
 

 

Monitoring and alert systems have been developed for patient use in the home setting 

(6, 7). However, there has been comparatively limited investigation into methods of alert 

and notification delivery to these patients’ providers in the hospital setting (8). 

Interestingly, many of these studies have been performed in the geriatric patient 

population, but not in the intensive care unit (ICU) setting, where the average patient age 

is often 65 or older (9). Studies of methods of alert delivery for clinical information 

delivery and clinical trial enrollment have been performed outside of the critical care 

setting (10, 11). Thus, there is a specific need to perform systematic investigation of alert 

processes in the critical care/ICU setting. 

 

Implementation of automated detection and alert systems without consideration of 

factors such as best method of alert notification and most appropriate provider has the 

potential to result in alert fatigue (12), interruption (13), human error (14), and 

information overload (15, 16). Thus, there is also a need for further systematic 

investigation into of the role of these factors in both the hospital and ICU-specific 

settings (17, 18). 

 

The objective of this study was to determine the best method of alert delivery in the ICU 

setting for urgent and non-urgent alerts by delivering simulated sepsis notifications to 

critical care providers in the ICU setting, via text paging and an ICU-specific patient 

viewer/monitoring system, and by measuring participant satisfaction. 

 

METHODS 

Study design and setting 
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This simulated alert study was performed in the medical ICU at Mayo Clinic in 

Rochester, Minnesota. This medical ICU consists of 2 physically adjacent 12-bed units, 

in close proximity to a nearby 9-bed Respiratory Care Unit (RCU). On any given month, 

there are approximately 15 attending physicians, 6 fellows, 4 Postgraduate Year 3 

(PGY-3) residents, 6 PGY-1 residents, and 9 dedicated medical ICU nurse 

practitioner/physician assistant (NP/PA) staff. There are 2 shifts: 6am to 6pm (“AM”) and 

6pm to 6am (“PM”). On any given day, the AM shift is further divided into 2 teams. Team 

1 is assigned to the majority of patients across the 2 adjacent medical ICU units. Team 2 

is assigned the remaining medical ICU patients, as well as the RCU, which is further 

staffed on any given day by a dedicated fellow and NP/PA from the same pool of 

approximately 40 clinicians on staff in the medical ICU that month. This ICU setting has 

been described previously (9, 19). This study had IRB approval. 

 

Study participants 

Multiple attempts to recruit participants by email and in-person resulted in enrollment of 

32% of the medical ICU staff (13 out of 40). However, as this study was prematurely 

terminated after 2 weeks, it was necessary to exclude 1 NP/PA, recruited by subsequent 

email, due to unavailability in the medical ICU during the time period studied. Ultimately, 

3 attending physicians (out of 15), 2 fellows (out of 6), 2 PGY-3s (out of 4), 0 PGY-1s 

(out of 6), and 5 NPs/PAs (out of 9) participated in this study. Of the 28 shifts that 

occurred during this 2-week study period (02/02/2015 “AM” through 02/15/2015 “PM”), 

23 shifts (82.1%) were covered by at least 1 participant (Table 1). 

 

Table 1: Number of shifts per participant and number of participants per shift 
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Simulation study procedures 

Participants agreed to participate in this study for the month of February 2015 (02/02 

through 02/28). The evening before each subsequent “AM”/“PM” shift, participants for 

these upcoming shifts received a detailed email reminder with instructions (Figure 1). 

Briefly, participants randomly received up to 3 simulated sepsis alert text pages per shift. 

The timing of these sepsis alert text pages was also random. Participants were 

instructed to respond via email. The difference between the time to text page delivery 

time and the time to email response was defined as the time to alert acknowledgement. 

 

 

Figure 1: Detailed daily email reminder to participants with complete instructions 

Total AM 

Shifts

Total PM 

Shifts
Total Shifts Shift, part 1

Number of 

Providers
Shift, part 2

Number of 

Providers

Attending 01 7 0 7 02/02 Mon AM 4 02/09 Mon AM 2

Attending 02 1 0 1 02/02 Mon PM 0 02/09 Mon PM 1

Attending 03 0 1 1 02/03 Tue AM 4 02/10 Tue AM 5

Fellow 01 7 2 9 02/03 Tue PM 1 02/10 Tue PM 0

Fellow 02 6 0 6 02/04 Wed AM 3 02/11 Wed AM 5

Resident 01 5 5 10 02/04 Wed PM 1 02/11 Wed PM 0

Resident 02 7 2 9 02/05 Thu AM 2 02/12 Thu AM 4

NP/PA 01 5 0 5 02/05 Thu PM 1 02/12 Thu PM 1

NP/PA 02 4 0 4 02/06 Fri AM 2 02/13 Fri AM 4

NP/PA 03 3 1 4 02/06 Fri PM 2 02/13 Fri PM 0

NP/PA 04 3 0 3 02/07 Sat AM 1 02/14 Sat AM 6

NP/PA 05 1 0 1 02/07 Sat PM 2 02/14 Sat PM 0

49 11 60 02/08 Sun AM 3 02/15 Sun AM 4

02/08 Sun PM 1 02/25 Sun PM 1

27 33
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Participants were also instructed to respond via email whenever they noticed any new 

“yellow” or “green” sepsis alert icon (on either Team 1 or Team 2) in Ambient Warning 

and Response Evaluation (AWARE), an ICU-specific patient viewer/monitoring system, 

which was developed at Mayo Clinic (20). Briefly, AWARE has been demonstrated to 

improve provider task load, errors of cognition, and performance (21). It has been in 

routine use in clinical practice in the medical ICU at Mayo Clinic since July 2012 (2.5 

years ago, as of the time of this study) (22). A sepsis detection and alert system has also 

been developed at Mayo Clinic and more recently (December 2014) implemented into 

AWARE (23). In this context, yellow alerts represent automatic (or manual) sepsis 

detection and green alerts represent automatic detection of completion of the 4 elements 

of the 3-hour Surviving Sepsis Campaign “bundle” (24). Once triggered, a yellow alert 

persists for at least 6 hours (Figure 2). Although these alerts can be silenced by provider 

acknowledgement during routine practice of care, frequent failure to do so often results 

in the persistence of these alerts (in the context of persistent sepsis) for many more 

hours or even days. Green alerts automatically revert to “no sepsis detected” after 3 

hours, unless additional automatic (or manual) triggers occur. Over the course of this 2-

week, 28-shift study, 28 patients triggered at least 1 yellow and/or green alert. Based on 

the 82.1% shift coverage achieved in this study (Study participants section above), it 

was possible for participants to acknowledge AWARE alerts for 23 of these 28 patients 

(82.1%). For reference, the median number of potential AWARE alert 

acknowledgements per shift was 2 (IQR 1 to 4). The minimum and maximum numbers 

were 0 and 5, respectively. 
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Figure 2: Yellow sepsis alert icon in upper left 

hand corner in sample patient display in AWARE 

 

Based on the above randomization, the number 

of actual text page alerts and number of potential 

AWARE alert acknowledgements was roughly 

equal. Thus, the two comparison arms were 

sufficiently balanced to answer the objective of 

this simulation study (Figure 3). For both text pages and AWARE, participants were 

instructed to respond by email via any mechanism except smartphone. This was due to 

the potential for this specific method of alert response to unequally affect some 

measured outcomes in the quantitative portion of the structured, mixed 

quantitative/qualitative survey, such as difficulty of alert acknowledgement. 

 

 



 

63 
 

Figure 3: Schematic of the sepsis alert simulation study procedure 

 

Survey design 

At the conclusion of the sepsis alert simulation portion of this study, all 12 participants 

completed a structured, mixed quantitative/qualitative survey. This survey consisted of 5 

demographic questions, 6 five-point Likert scale questions, 2 “select one or more” 

questions, and 2 free-text qualitative response questions (Figure 4 in the Results 

section). In part, these questions were designed based on published provider 

satisfaction surveys of alert methods for use in the hospital (10) and critical care (11) 

settings. 

 

Outcomes 

The difference between the time to text page delivery time and the time to email 

response was defined as the time to alert acknowledgement. The structured survey 

(described in the Survey design section above) consisted of mixed quantitative and 

qualitative questions. At the conclusion of both the sepsis alert simulation and survey 

portions of this study, an informal group interview in the format of a noon pizza party was 

conducted to both thank the participants and gather addition feedback on the barriers 

faced in both implementation of this simulation study and alert studies in general in the 

ICU setting. The group interview was attended by 4 of the 12 participants. 

 

Statistical analysis 

Data for the occurrence of sepsis alerts in AWARE was extracted directly from the 

AWARE middleware database and Multidisciplinary Epidemiology and Translational 

Research in Intensive Care (METRIC) Data Mart, a near-real time relational database of 

EMR data, which was developed at Mayo Clinic and has been described previously (25). 
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Data was queried using SQL scripts in JMP (Version 11 Pro, SAS Institute, Cary, NC), a 

statistical software package with Open Database Connectivity (ODBC) to function as an 

API for Database Management Systems (DBMSs). Specifically, JMP was used as a 

Relational Database Management System (RDBMS) to query METRIC Data Mart. JMP 

was also used for data collection. The statistical software features of JMP were used for 

all statistical analysis, including the two-sided Student’s t-test and the Chi-squared test. 

For all analyses, a p-value of less than 0.05 was considered to be statistically significant. 

For all median values, interquartile range (IQR) is reported. 

 

RESULTS 

Prior to initiation of this study, a 1-day feasibility pilot was performed in January 2015 

using 7 medical ICU providers recruited in person that day. Based on the result of this 

feasibility study (data not shown), it was determined that sufficient text page alert and 

AWARE sepsis alert acknowledgements could be obtained in the ICU setting to make 

this simulation study feasible. Based on the results of this feasibility pilot, participant 

instructions were also optimized. 

 

Participants (N=12) were recruited for 1 month based on power calculations designed to 

discriminate between clinically significant differences in median time to alert 

acknowledgement between simulated sepsis text page alerts and real sepsis alerts in 

AWARE. However, after 2 weeks, with a text page response rate of 51.3% (N=156) and 

AWARE response rate of 3.4% (N=148), this study was prematurely terminated (Table 

2). The primary outcome of this study, time to alert acknowledgement, was median 2 

minutes for text page responses (N=80) and median 274 minutes for AWARE response 

rates (N=5). Although this result approached statistical significance (p-value 0.053), the 
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large difference between median acknowledgement times and low AWARE response 

rate confounds interpretation of statistical significance. 

 

Table 2: Comparison of alert response rate and median time to alert acknowledgement 

between simulated sepsis text page alerts and real sepsis alerts in AWARE 

 

 

At the conclusion of the sepsis alert simulation portion of this study, all 12 participants 

completed a structured, mixed quantitative/qualitative survey (Figure 3). For the 

quantitative portion of the survey, clinicians found notification by text paging to be slightly 

more disruptive than notification by AWARE (3 versus 2 on a 5-point Likert scale). 

Clinicians found acknowledgement of text paging and AWARE to be equally disruptive 

(scale 3). However, it is noteworthy that only 3 of the 12 participants (NP/PA 01, NP/PA 

04, and NP/PA 05) acknowledged only 5 of 148 potential sepsis alerts in AWARE, while 

all 12 participants acknowledged at least 1 simulated sepsis text page. When text paging 

was compared directly to AWARE, there was a clear preference for text paging for both 

non-urgent (scale 2) and urgent (scale 1) alerts. When asked to “select one or more” 

(text paging, AWARE, email, phone call, text message, or other), the results for non-

urgent alerts were mixed. However, when asked the same question for urgent alerts, the 

preference was once again clearly text paging. 

 

For the qualitative portion of the survey, 11 out of 12 participants provided “at least one 

suggestion for improving alert/notification delivery” (Figure 5). Attending physicians, 

fellows, residents, and NPs/PAs acknowledged limited overall use of AWARE in the 

medical ICU setting, despite implementation 2.5 years earlier (July 2012). Beyond this, 

Text paging (N=156) AWARE (N=148) p -value

Alert response rate (N) 51.3% (80) 3.4% (5) 0.001

Median time to alert acknowledgement (IQR) 2 mins  (1 to 31.5) 274 mins (130 to 517) 0.053
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suggestions varied greatly both by individual clinician and provider group. However, 

there was a general theme concerning new technology in the ICU setting and its 

potential impact on alert fatigue, interruption, human error, and information overload for 

both urgent and non-urgent alerts. 

 

 

Figure 4: Facsimile of the structured, mixed quantitative/qualitative survey provided to 

the participants with all quantitative results overlaid: median (IQR) 

 

For the qualitative portion of the survey, only 4 out of 12 participants provided “any 

additional comments”. It is noteworthy that 3 of these 4 respondents were the same 3 

NP/PA participants to acknowledge any sepsis alert in AWARE (NP/PA 01, NP/PA 04, 
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and NP/PA 05). Interestingly, 1 of these NP/PA participants commented that “I became 

more ‘aware’ of the critically ill patients by participating – not only on my team but my 

colleagues’ team as well. Became more mindful to offer assistance.” This is in reference 

to the fact that the medical ICU is divided into 2 teams (Team 1 and Team 2) during the 

“AM” shift. 

 

The informal group interview (noon “pizza party”) to thank the participants and gather 

additional feedback on the barriers faced in both implementation of this simulation study 

and alert studies in general in the ICU setting was attended by the same 4 participants 

(1 attending physician and 3 NPs/PAs) who provided “any additional comments” on the 

structured, mixed quantitative/qualitative survey. Concerns were once again raised in 

acknowledgement of the limited overall use of AWARE in the medical ICU setting, 

despite longstanding implementation. Concerns were once again raised regarding alert 

fatigue, interruption, human error, and information overload. In addition to the comments 

reflected in the qualitative portion of the survey, one NP/PA admitted to not using 

AWARE. Another admitted to using it, but not acknowledging any sepsis alerts in 

AWARE due to difficulty of response in the ICU setting. The failure to recruit any of the 6 

PGY-1 residents and only 2 of the 4 PGY-3 residents was also raised. Reasons cited for 

this failure included lack of resident interest in learning new tools not immediately 

applicable to their next (non-ICU) rotation and general lack of interest in participation in 

research studies in the various departments/divisions through which they rotate. 
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Figure 5: All qualitative responses to the structured, mixed quantitative/qualitative survey 

reproduced in their entirety, including typographical errors 
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DISCUSSION 

The objective of this simulated alert study, performed in the medical ICU setting, was to 

determine the best method of alert delivery in the ICU setting for urgent and non-urgent 

alerts by delivering simulated sepsis notifications to critical care providers in the ICU 

setting via text paging and AWARE (an ICU-specific patient viewer/monitoring system). 

After 2 weeks, with a text page response rate of 51.3% (N=156) and AWARE response 

rate of 3.4% (N=148), this study was prematurely terminated. The primary outcome of 

this study, time to alert acknowledgement, was median 2 minutes for text page 

responses (N=80) and median 274 minutes for AWARE response rates (N=5). The 

structured, mixed quantitative/qualitative survey portion of this study and group interview 

raised concerns regarding alert fatigue, interruption, human error, and information 

overload. Compared to other provider groups, especially PGY-1 residents, there was 

noteworthy participation, study compliance, and survey/interview feedback 

from NPs/PAs. 

 

Successful automated detection and alert systems should reduce alert fatigue, 

interruption, human error, and information overload. It has been known since the 1990s 

that successful EMR-based notification delivery has the potential to reduce errors in the 

hospital setting (26-28). Recognition of the importance of alert fatigue in the hospital 

setting has increased significantly in recent years (29). However, implementation of an 

automated alert system generally must be performed in the context of information 

overload and complex task interruption (30, 31). Thus, a clinical alert system must be 

capable of more than generating clinically meaningful alerts to be useful. In the setting of 

complex tasks, even meaningful alerts pose the risk of interruption. It is also known that 

information overload can alter alert perception in the medical setting (32). This can 

cause clinicians to perceive alert systems negatively and deter future use (33). Thus, the 
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task of generating clinically meaningful alerts while concurrently minimizing information 

overload and task interruption is challenging. 

 

An understanding of human cognition and user interfaces is required to address the 

challenge of improved alert perception and delivery (34, 35). However, perception of 

different methods of notification delivery is influenced by complex human cognition 

factors (4, 5). New methods of alert delivery have led to the development of technology 

to reduce errors in the hospital setting (36). However, the need for improved cognition-

based development of clinician interfaces and system ergonomics has been recognized 

(37). This has led to systematic investigation into the relationship between computer 

technology, cognition, clinician behavior, and systems failure (38-40). Additionally, a 

framework has been proposed to address the subject of clinical information system 

design, implementation, and evaluation (41). In this context, a sepsis alert system for 

use in the critical care setting represents only one example of an EMR-based monitoring 

and alert system. However, the need for ICU-specific, intelligent patient monitoring 

systems remains longstanding (42) and faces many barriers, even at the level of 

implementation of simulation and alert studies. 

 

Limitations 

Beyond the barriers already outlined, this study has several limitations. (1) This is a 

single-center study. (2) This study was performed in a large, academic medical center. 

(3) The results of this study may not be applicable to areas of the hospital outside of the 

ICU setting. (4) Although sepsis alerts in AWARE were real, this was a simulation study. 

Thus, a multi-center, non-simulation study is ultimately required to address 

these limitations. 

 



 

71 
 

CONCLUSION 

In this simulated alert study, performed in the medical ICU setting, response to simulated 

sepsis text pages was 51.3%, while response to sepsis alerts in ICU-specific patient 

viewer/monitoring system was 3.4% (p-value 0.001). However, determination of the 

primary outcome of interest, time to alert acknowledgement, was confounded by factors 

that a structured, mixed quantitative/qualitative survey subsequently revealed to include 

alert fatigue, interruption, human error, and information overload. These barriers require 

further study for successful implementation of simulation and alert studies in both the 

hospital and ICU settings. 
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CHAPTER 4 

Prospective implementation and testing of an improved sepsis alert system using 

the hospital EMR 

This research study has been submitted as an abstract to the American Medical 

Informatics Association 39th Annual Symposium and is currently under review for a 

poster presentation as Harrison AM, Thongprayoon C, Park JG, Daniels CE, Clements 

CM, Goyal DG, Elmer JL, Gajic O, Pickering BW, Herasevich V. Before-after 

implementation of the sniffer for the detection of failure to recognize and treat 

severe sepsis. 

 

ABSTRACT 

The objective of this pilot study was to measure the impact of the automated, electronic 

sepsis sniffer on compliance with the 3-hour Surviving Sepsis Campaign (SSC) bundle 

elements. Preliminary results show that implementation of the sepsis sniffer improved 

overall 3-hour SSC bundle compliance with respect to percent completion, as well as 

average time to completion for some elements. 

 

BACKGROUND 

From 1979 to 2000, the incidence of sepsis in the U.S increased from 164,000 to 

660,000 cases (1). This is an increase of 8.7% annually. Despite a decrease of total in-

hospital mortality from 27.8% to 17.9% (1979-1984 versus 1995-2000), the total number 

of sepsis-related deaths has increased overall due to the significant increase in the 

incidence of sepsis. Thus, in 2002, the international Surviving Sepsis Campaign was 

formed and declared the goal to reduce the relative mortality of sepsis by 25% in five 

years (2). To date, this goal has not been achieved. However, early goal-directed 

therapy is known to improve outcomes in patients with severe sepsis and septic shock 
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(3). Furthermore, it is known that automated notification systems can prevent adverse 

occurrences in the hospital setting (4). Importantly, the diagnosis of sepsis and 

implementation of sepsis care bundles—the detailed sepsis response protocols—are 

complex tasks (5). Thus, successful implementation of an automated notification system 

to prevent severe sepsis onset will require the ability to detect failure to rescue following 

the diagnosis sepsis (6). 

 

Existing sepsis detection and notification systems are not yet perfect. Early hospital 

detection and notification systems were developed primarily for clinical trial enrollment 

purposes (7-9). Although recent sepsis detection and notification systems have focused 

on clinical outcomes, these systems have failed to demonstrate improvement in clinically 

meaningful endpoints (10-13). Thus, an improved approach is necessary to develop and 

validate a clinically useful sepsis notification system, especially for implementation in the 

critical care setting. 

 

A sniffer for the automatic screening and timely identification of patients with severe 

sepsis/septic shock has already been developed by Herasevich and colleagues at Mayo 

Clinic (9). This sniffer has been shown to improve the efficiency of patient enrollment into 

a time sensitive clinical study in the critical care setting (14). The development of this 

tool was made possible through the concurrent development of the METRIC Data Mart, 

a Microsoft SQL-based, research warehouse, which integrates clinical and 

administrative data from heterogeneous sources within the EMR to support research and 

practice improvement in the ICU setting (15). The objective of this study was to measure 

the impact of the automated, electronic sepsis sniffer on compliance with the 3-hour 

Surviving Sepsis Campaign bundle elements. 
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METHODS 

Study design 

Before-after study 

 

Study setting and subjects 

This study will be conducted in two adult medical ICUs and the Emergency Department 

(ED) at Mayo Clinic Rochester. Subjects will include all consecutive medical ICU 

patients who are age 18 or older with consent to participate in research studies. 

 

Study procedures 

Two medical ICUs and the ED will be studied during implementation of a severe sepsis 

notification system (Figure 1). The algorithm for this notification system is based on five 

clinical domains: (1) suspicion of infection; (2) systemic inflammatory response system; 

(3) organ hypoperfusion and/or dysfunction; (4) shock; and (5) failure to rescue following 

the diagnosis of severe sepsis and/or septic shock (16). This improved sepsis detection 

algorithm has been developed based on the algorithm validated in previous 

studies (9, 14). 

 

Severe sepsis monitoring and notification will both occur through AWARE (Ambient 

Warning and Response Evaluation) (17). This rule-based patient viewer and electronic-

environment enhancement program extracts and presents patient information that is 

relevant to the ICU setting from the standard EMR. In previous studies, AWARE has 

been validated and demonstrated to reduce task load and errors in a simulated clinical 

experiment (18). For this study, a severe sepsis alert icon was inserted into this patented 

clinical information delivery system (Figure 2) (19). 
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Figure 1: Sepsis Provider Workflow in the ICU and ED settings 

 

 

Figure 2: Severe sepsis alert icon in AWARE  
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Time to sepsis resuscitation in the before portion (standard of care) and after portion of 

this study will be measured. For both portions of this study, time to sepsis resuscitation 

will be measured in the presence of the severe sepsis notification system. AWARE is 

already in use as the standard of care at multiple ICUs throughout Mayo Clinic 

Rochester, including the two adult medical ICUs and the ED. Thus, alteration of workflow 

in the presence of this notification system will be minimal. 

 

Data collection and measurements 

For patients who develop severe sepsis while in the medical ICU or the ED, time to 

sepsis resuscitation will be calculated upon completion of this study. Time to sepsis 

resuscitation will be based on adherence to the sepsis resuscitation bundles, which have 

been described previously.(20) In addition to this primary outcome measurement, 

secondary outcomes measures that will be analyzed include average ICU length of stay, 

overall ICU mortality, and outcome of septic patients. 

 

This study will use a before-after study design.(21) The study design has numerous 

advantages over other study designs, especially when a randomized controlled trial is 

not feasible. In this study, the before portion and after portion will occur in both medical 

ICUs and the ED. 

 

RESULTS 

Beginning 01/14/2015, the sepsis sniffer (suspicion of infection, Systemic Inflammatory 

Response Syndrome, and organ dysfunction components) was implemented in the 

medical ICU (MICU) at Mayo Clinic Rochester in AWARE—a patient-viewer and clinical 

decision support tool designed at Mayo Clinic to reduce risk of error and already in 
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routine use in the MICU—as well as in the ED. Implementation occurred after focused 

provider training and presentations. Using METRIC Data Mart, a relational database and 

near-real time duplicate of the complete hospital EMR at Mayo Clinic, data on 3-hour 

SSC bundle element compliance for patients before implementation of the sepsis sniffer 

in the MICU (January through March 2013, N=98) was compared to MICU and ED data 

after implementation of the sepsis sniffer (January 14th through March 2015, N=60). As 

some ED visits result in no hospital admission or no admission to the MICU, these 

outcomes are not present for all patients in the “after” cohort. Average time to completion 

was calculated as: “Time of bundle element completion” minus “Time of sepsis 

detection”. Thus, negative results indicate compliance before detection. Overall percent 

completion of the 3-hour SSC bundle was increased after tool implementation (Table 1). 

Overall average time to bundle completion was reduced for all 4 elements. 

 

Table 1: 3-hour SSC bundle compliance 

 

 

DISCUSSION 

Although automated notification systems have been developed for use in the clinical 

setting, recent attempts to develop a sepsis detection and notification system have failed 

to demonstrate improvement in clinically meaningful endpoints. To address this 
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knowledge gap, we seek to develop a new system in the specific context of failure to 

rescue following the diagnosis of sepsis. The expected overall impact of this research 

study is the integration of a sepsis notification system to reduce time to appropriate 

response after diagnosis of severe sepsis in the ICU and the ED settings. This 

knowledge will lay the foundation for the development of increasingly sophisticated 

automated detection systems to reduce patient mortality and enhance the ability of 

providers to improve patient outcomes. 

 

CONCLUSION 

Implementation of the sepsis sniffer improved overall 3-hour SSC bundle compliance 

with respect to percent completion, as well as average time to completion for some 

elements, in the ICU and the ED settings. 
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CHAPTER 5 

Discussion 

An optimized detection algorithm to accurately identified patients with severe sepsis, 

which bedside clinicians failed to recognize and treat in a timely manner, was 

successfully developed (Chapter 2). This algorithm had a sensitivity of 80% and a 

specificity of 96% when applied to a validation cohort. Also, 68% of patients with severe 

sepsis were found to have delay in recognition and treatment, defined as no lactate and 

central venous pressure measurement within 2 hours of algorithm detection. This means 

our algorithm was able to achieve sufficient sensitivity and specificity to proceed to using 

this retrospectively developed algorithm for use in a prospective study in the medical 

ICU setting. Compared to other studies, we achieved similar sensitivities and 

specificities to other research groups. However, our algorithm was the first publication to 

successfully detect delay in failure treat severe sepsis. 

 

The best method of alert delivery in the ICU setting for urgent and non-urgent alerts was 

studied by delivering simulated sepsis notifications to critical care providers in the ICU 

setting, via text paging and an ICU-specific patient viewer/monitoring system (AWARE), 

and by measuring participant satisfaction (Chapter 3). Response to simulated sepsis text 

pages was 51.3%, while response to sepsis alerts in AWARE was 3.4%. However, 

determination of the primary outcome of interest, time to alert acknowledgement, was 

confounded by factors that a structured, mixed quantitative/qualitative survey 

subsequently revealed to include alert fatigue, interruption, human error, and information 

overload. These barriers require further study for successful implementation of 

simulation and alert studies in both the hospital and ICU settings. This means significant 

implementation challenges provided us great insight into implementation barriers, but 

obscured a clear answer to the original research question of the best method of 
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notification delivery. However, we learned that significant clinician interest is required for 

any simulation study in the ICU setting. Comparison to other studies is difficult, as 

almost none have been performed, presumably for the reasons outlined here. However, 

I was able to contribute to a research project by one of my METRIC colleagues and 

collaborators on the effect of an electronic checklist within AWARE on critical care 

provider workload, errors, and performance (Appendix A). The results of this study 

provided me not only with insight into this subject, but the revelation that critical care 

providers are more likely to participate in simulation studies outside of the ICU setting. 

 

A sepsis detection and alert system was successfully implemented in the ICU setting in 

AWARE (Chapter 4). A pilot study was also performed to measure the impact of this 

automated, electronic sepsis system on compliance with the 3-hour Surviving Sepsis 

Campaign (SSC) bundle elements. Preliminary results show that implementation of the 

sepsis sniffer improved overall 3-hour SSC bundle compliance with respect to percent 

completion, as well as average time to completion for some elements. This means that 

the sepsis detection and alert system appears to be improving sepsis management. 

However, it is not yet clear if these preliminary, short term outcomes will ultimately 

translate into long term outcomes such as hospital length of stay (LOS), ICU LOS, and 

mortality. Other studies suggest that even modest improvements in SSC bundle 

compliance leads to significant improvements in long term outcomes. However, as no 

academic medical institution has yet to “saturate” SSC bundle compliance, the maximum 

extent to which these observations can hold true is still unknown. The primary barrier to 

completion of this project was simply time. Originally designed as a before-after study (6 

months each) in a single medical ICU in Mayo Clinic Rochester, a sudden and enormous 

investment of leadership scrutiny and involvement in the detailed workings of the sepsis 

detection algorithm—as a result of a Sepsis Management to Reimbursement Campaign 
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by Critical Care Medicine—resulted in logistical delays. These delays resulted from the 

need to include a new component for compliance with the 4 elements of the 3-hour 

Surviving Sepsis Campaign bundle into AWARE and launch AWARE within more ICUs 

at all three Mayo Clinic campuses. However, the implementation and launch of the 

sepsis detection and alert system in AWARE (the sepsis “sniffer”) has already occurred. 

 

Limitations: The unique barriers faced in developing the surveillance algorithm for 

detection of failure to recognize and treat severe sepsis (Chapter 2) were perhaps the 

least complex, interesting, and insightful (1). However, the unique barriers faced in 

testing methods of alert delivery to critical care providers (Chapter 3) and 

implementation of the sepsis alert system in the ICU setting (Chapter 4) were more 

complex and intertwined. The decision of Critical Care Medicine to launch the Sepsis 

Campaign was a logical choice (2), as the lethality and expense of sepsis in the in 

hospital setting is only further amplified in the ICU setting (3-6). Likewise, 

implementation of the sepsis detection and alert system in the ICU setting in AWARE 

was identified as a key component of this Campaign (7). However, a prospective, multi-

center trial of both AWARE and the sepsis detection and alert system is ultimately 

required to eliminate site-specific bias and confounders, as well as to determine the 

generalizability to other patient populations and applicability to other academic (and non-

academic) medical centers. However, even the best studies, designed in this context, 

will be subject to the Hawthorne effect: the recognition that the act of observation 

fundamentally influences the actions of the subjects under observation. 

 

Future directions: The barriers to implementation of new technology in the 

technologically-sophisticated and data-rich ICU setting will eventually dissipate, in part 

through continued research, and in part through improvements in both informatics 
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infrastructure and EMR granularity, as a result of the basic passage of time. However, 

there will still be a need to develop other detection and alert systems for use in other 

syndromes of critical illness in the ICU setting. For example, starting in my first year of 

medical school, I validated an algorithm for computerized, automatic calculation of the 

Sequential Organ Failure Assessment (SOFA) score (Appendix B). The SOFA score is a 

longstanding and validated morbidity and mortality scoring system for use in the critical 

care setting. As my interest in morbidity and mortality scoring systems for use in the 

critical care setting never diminished (8, 9), I recently contributed to a research project to 

improve the accuracy of the cardiovascular component of the SOFA score with the same 

METRIC colleagues and collaborators (Appendix B). As another example, I was able to 

contribute to a research project by another METRIC colleague and collaborator on 

agreement between whole blood and plasma sodium measurements in profound 

hyponatremia (Appendix D). With this same colleague, I contributed to another project 

on sodium correction practice and clinical outcomes in profound hyponatremia 

(Appendix E). Beyond the results and conclusions described in both of these studies, 

profound hyponatremia was identified as a potentially important “next target” for 

automated, EMR-based detection and alert in a lengthy list of syndromes of critical 

illness (after sepsis). Another example, which is also an important component of severe 

sepsis management, is appropriate vasopressor use in the ICU setting. With the same 

METRIC colleague and collaborator referenced in Appendix A, I was able to contribute 

to a research project to study changing trends in the use of vasopressors in the ICU 

setting over a period of seven years (Appendix F). 

 

In the future, the adoption of additional detection and alert systems in the ICU setting will 

allow for the adoption of this technology in other relevant settings, such as the ED, 

operating room, anesthesiology, and the hospital floors. As a final example with another 
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METRIC colleague and collaborator, I was able to contribute to a research project 

studying the effect of admission hyperuricemia on the risk of acute kidney injury (AKI) in 

hospitalized patients (Appendix G). Although frequently regarded as a syndrome of 

critical illness, such as sepsis or profound hyponatremia, this study was not restricted to 

the ICU setting. However, it is noteworthy that the profound hyponatremia studies 

(Appendix D and Appendix E) also included hospital floor patients and thus were not 

restricted to only the critical care/ICU setting either. Thus, a clear need for hospital-wide 

detection and alert systems is already present. As barriers dissipate with the basic 

passage of time (10), as well as continued research and improvements in both 

informatics infrastructure and EMR granularity, new technology will be implemented in 

the technologically-sophisticated and data-rich ICU setting. Increasingly complex 

mathematical modelling and/or machine learning techniques may also be adopted (11-

14). However, all of the above must be carefully designed and implemented in the 

context of alert fatigue, interruption, human error, and information overload (15, 16). 

Lastly, I wish note the importance of substantial, multidisciplinary collaboration in 

successfully completing these studies and arriving at these conclusions.  
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CHAPTER 6 

Conclusions 

An optimized detection algorithm to accurately identified patients with severe sepsis, 

which bedside clinicians failed to recognize and treat in a timely manner, was 

successfully developed (Chapter 2). This algorithm had a sensitivity of 80% and a 

specificity of 96% when applied to a validation cohort. Also, 68% of patients with severe 

sepsis were found to have delay in recognition and treatment, defined as no lactate and 

central venous pressure measurement within 2 hours of algorithm detection. The best 

method of alert delivery in the ICU setting for urgent and non-urgent alerts was studied 

by delivering simulated sepsis notifications to critical care providers in the ICU setting, 

via text paging and an ICU-specific patient viewer/monitoring system (AWARE), and by 

measuring participant satisfaction (Chapter 3). Response to simulated sepsis text pages 

was 51.3%, while response to sepsis alerts in AWARE was 3.4%. However, 

determination of the primary outcome of interest, time to alert acknowledgement, was 

confounded by factors that a structured, mixed quantitative/qualitative survey 

subsequently revealed to include alert fatigue, interruption, human error, and information 

overload. These barriers require further study for successful implementation of 

simulation and alert studies in both the hospital and ICU settings. A sepsis detection and 

alert system was successfully implemented in the ICU setting in AWARE (Chapter 4). A 

pilot study was also performed to measure the impact of this automated, electronic 

sepsis system on compliance with the 3-hour Surviving Sepsis Campaign (SSC) bundle 

elements. Preliminary results show that implementation of the sepsis sniffer improved 

overall 3-hour SSC bundle compliance with respect to percent completion, as well as 

average time to completion for some elements. 
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CHAPTER 7 

Summary 

Chapter 1: Septic Shock Electronic Surveillance 

• Increasingly complex mathematical modelling and/or machine learning 

techniques are being utilized to develop sepsis detection and alert systems 

• Without consideration of alert fatigue, interruption, human error, and information 

overload, these system do not improve clinical outcomes in the ICU setting 

Chapter 2: Developing the surveillance algorithm for detection of failure to recognize and 

treat severe sepsis (Aim 1) 

• As sepsis is common in the ICU setting, detection and alert must target failure to 

recognize severe sepsis before progression to septic shock 

• In addition to sepsis detection, failure to provide appropriate therapy in a timely 

manner is crucial to improve clinical outcomes in the ICU setting 

Chapter 3: Methods of alert delivery to critical care providers in the ICU setting (Aim 2) 

• In a simulation study, ICU providers were more likely to acknowledge sepsis alert 

via text paging versus an EMR-viewer system (AWARE) 

• Whether provider preference for text paging for urgent alerts would produce the 

best clinical outcomes remains unknown 

Chapter 4: Prospective implementation and testing of an improved sepsis alert system 

using the hospital EMR (Aim 3) 

• With the support of the leadership of Critical Care Medicine, it was possible to 

successfully implement the sepsis alert system in the ICU setting 

• Preliminary data from an ongoing pilot study suggests that this system has 

improved compliance with the Surviving Sepsis Campaign bundle 
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CHAPTER 9 

Appendices 

 

APPENDIX A 

The Effect of an Electronic Checklist on Critical Care Provider Workload, Errors, 

and Performance 

This manuscript has been published as Thongprayoon C, Harrison AM, Sevilla Berrios 

RA, O’Horo JC, Pickering BW, Herasevich, V. (2014). The effect of electronic checklist 

on intensive care provider workload, errors, and performance. J Intensive Care Med. 

PMID: 25392010. 

 

ABSTRACT 

Purpose: The strategy used to improve effective checklist use in intensive care unit 

(ICU) setting is essential for checklist success. This study aimed to test the hypothesis 

that an electronic checklist could reduce ICU provider workload, errors, and time to 

checklist completion, as compared to a paper checklist. 

Methods: This was a simulation-based study conducted at an academic tertiary hospital. 

All participants completed checklists for 6 ICU patients: 3 using an electronic checklist 

and 3 using an identical paper checklist. In both scenarios, participants had full access 

to the existing electronic medical record system. The outcomes measured were 

workload (defined using the National Aeronautics and Space Association task load index 

[NASA-TLX]), the number of checklist errors, and time to checklist completion. Two 

independent clinician reviewers, blinded to participant results, served as the reference 

standard for checklist error calculation. 

Results: Twenty-one ICU providers participated in this study. This resulted in the 

generation of 63 simulated electronic checklists and 63 simulated paper checklists. The 
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median NASA-TLX score was 39 for the electronic checklist and 50 for the paper 

checklist (P = .005). The median number of checklist errors for the electronic checklist 

was 5, while the median number of checklist errors for the paper checklist was 8 (P = 

.003). The time to checklist completion was not significantly different between the 2 

checklist formats (P = .76). 

Conclusion: The electronic checklist significantly reduced provider workload and errors 

without any measurable difference in the amount of time required for checklist 

completion. This demonstrates that electronic checklists are feasible and desirable in the 

ICU setting.  
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APPENDIX B 

Improving the Accuracy of Cardiovascular Component of the Sequential Organ 

Failure Assessment Score 

This manuscript has been published as Yadav H, Harrison AM, Hanson AC, Gajic O, Kor 

DJ, Cartin-Ceba R. (2015). Improving the Accuracy of Cardiovascular Component of the 

Sequential Organ Failure Assessment Score. Crit Care Med. PMID: 25785522. 

 

ABSTRACT 

Objectives: The Sequential Organ Failure Assessment score is an attractive risk 

prediction model because of its simplicity and graded assessment of morbidity and 

mortality. Due to changes in clinical practice over time, the cardiovascular component of 

the Sequential Organ Failure Assessment score no longer accurately reflects current 

clinical practice. To address this limitation, we developed and validated a modified 

cardiovascular component of the Sequential Organ Failure Assessment score that takes 

into account all vasoactive agents used in current clinical practice, uses shock index as 

a substitute for mean arterial pressure, and incorporates serum lactate as a biomarker 

for shock states. 

Design: Retrospective cohort. 

Setting: Mayo Clinic, Rochester, MN. 

Patients: Adult patients admitted to one of six ICUs. 

Interventions: None. 

Measurements and Main Results: Score performance was assessed via area under the 

receiver operator characteristic curve. A total of 16,386 ICU admissions were included: 

9,204 in the derivation cohort and 7,182 in the validation cohort. area under the receiver 

operator characteristic curve was significantly higher for modified cardiovascular 

component of the Sequential Organ Failure Assessment score than for cardiovascular 
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component of the Sequential Organ Failure Assessment for in-ICU mortality (0.801 vs 

0.718; difference = 0.083; p < 0.001), in-hospital mortality (0.783 vs 0.651; difference = 

0.132; p < 0.001), and 28-day mortality (0.737 vs 0.655; difference = 0.082; p < 0.001). 

When modified cardiovascular component of the Sequential Organ Failure Assessment 

score was added to the remaining Sequential Organ Failure Assessment components, 

the modified Sequential Organ Failure Assessment score again outperformed the 

existing Sequential Organ Failure Assessment score: in-ICU mortality (0.836 vs 0.822; 

difference = 0.014; p < 0.001), in-hospital mortality (0.799 vs 0.784; difference = 0.015; p 

< 0.001), and 28-day mortality (0.798 vs 0.783; difference = 0.015; p < 0.001). Similar 

results were seen in the validation cohort. Conclusions: The modified cardiovascular 

component of the Sequential Organ Failure Assessment score outperforms the existing 

cardiovascular component of the Sequential Organ Failure Assessment score in 

predicting patient outcomes and improves the overall performance of the Sequential 

Organ Failure Assessment model. This score is easily calculated, includes serum lactate 

as a biomarker for shock states, and incorporates all vasopressors used in current 

clinical practice.  
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APPENDIX C 

Validation of computerized automatic calculation of the sequential organ failure 

assessment score 

This manuscript has been published as Harrison AM, Yadav H, Pickering BW, Cartin-

Ceba R, Herasevich V. (2013). Validation of computerized automatic calculation of the 

Sequential Organ Failure Assessment (SOFA) score. Crit Care Res Pract. PMCID: 

PMC3722890. 

 

ABSTRACT 

Purpose: To validate the use of a computer program for the automatic calculation of the 

sequential organ failure assessment (SOFA) score, as compared to the gold standard of 

manual chart review. 

Materials and Methods: Adult admissions (age > 18 years) to the medical ICU with a 

length of stay greater than 24 hours were studied in the setting of an academic tertiary 

referral center. A retrospective cross-sectional analysis was performed using a 

derivation cohort to compare automatic calculation of the SOFA score to the gold 

standard of manual chart review. After critical appraisal of sources of disagreement, 

another analysis was performed using an independent validation cohort. Then, a 

prospective observational analysis was performed using an implementation of this 

computer program in AWARE Dashboard, which is an existing real-time patient EMR 

system for use in the ICU. 

Results: Good agreement between the manual and automatic SOFA calculations was 

observed for both the derivation (N=94) and validation (N=268) cohorts: 0.02 ± 2.33 and 

0.29 ± 1.75 points, respectively. These results were validated in AWARE (N=60). 

Conclusion: This EMR-based automatic tool accurately calculates SOFA scores and can 
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facilitate ICU decisions without the need for manual data collection. This tool can also be 

employed in a real-time electronic environment.  
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APPENDIX D 

Agreement between whole blood and plasma sodium measurements in profound 

hyponatremia 

This manuscript has been published as Geoghegan P, Koch CD, Wockenfus AM, 

Harrison AM, Dong Y, Kashani KB, Karon BS. (2015). Agreement between whole blood 

and plasma sodium measurements in profound hyponatremia. Clin Biochem. PMID: 

25773258. 

 

ABSTRACT 

Introduction: We compared two different methods of whole blood sodium measurement 

to plasma sodium measurement using samples in the profoundly hyponatremic range 

(Na <120 mmol/L). 

Materials and Methods: Whole blood pools with a range of low sodium values were 

generated using combinations and dilutions of pooled electrolyte-balanced lithium 

heparin samples submitted for arterial blood gas analysis. Each pool was analyzed five 

times on a Radiometer 827 blood gas analyzer and iSTAT analyzer. Pools were 

centrifuged to produce plasma, which was analyzed five times on a Roche Cobas c501 

chemistry analyzer. An additional 40 fresh (analyzed on day of collection) excess lithium 

heparin arterial blood gas samples from 36 patients were analyzed on the Radiometer 

827, iSTAT, and Cobas c501 as described above. The setting was a tertiary referral 

center. Blood samples were collected from a combination of patients in the intensive 

care unit, operating theaters and emergency room. Results: All methods demonstrated 

excellent precision, even in the profoundly hyponatremic measurement range (Na 

<120mmol/L using a plasma reference method). However, agreement between the 

methods varied with the degree of hyponatremia. In the profoundly hyponatremic range, 

Radiometer whole blood sodium values were nearly identical to plasma reference 



 

101 
 

sodium, while iSTAT whole blood sodium showed a consistent positive bias relative to 

plasma sodium in this range.  

Conclusions: If whole blood, direct sodium measurements are compared to plasma 

sodium in profoundly hyponatremic patients, consideration should be given to using 

Radiometer blood gas analyzers over iSTAT, since the latter shows a positive bias 

relative to a plasma comparative method.  
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APPENDIX E 

Sodium correction practice and clinical outcomes in profound hyponatremia 

This manuscript is currently in revision for publication in Mayo Clin Proc as Geoghegan 

P, Harrison AM, Kashyap R, Ahmed A, Dong Y, Rabinstein AA, Kashani KB, Gajic O. 

Sodium correction practice and clinical outcomes in profound hyponatremia. 

 

ABSTRACT 

Objective: To assess the epidemiology of non-optimal hyponatremia correction and to 

identify associated morbidity or mortality. 

Patients and Methods: Electronic medical record search identified all patients admitted 

with profound hyponatremia ([Na] <120mmol/L) between 1/1/2008 and 12/31/2012. 

Patients were classified as optimally or non-optimally corrected at 24 hours post 

admission. Optimal correction was defined as 5< sodium correction in 24 hours ≤ 

10mmol/L. We investigated the relationship between sodium correction and 

demographic and outcome variables, including occurrence of osmotic demyelination 

syndrome (ODS). Baseline characteristics by correction outcome categories were 

compared using the Kruskal-Wallis test for continuous variables, and χ2 for categorical 

variables. Odds ratios for mortality between groups were assessed using logistic 

regression. Adjusted differences in hospital length of stay (LOS) and intensive care unit 

(ICU) LOS were assessed using Dunnett’s two tailed t test. 

Results: 412 patients satisfied inclusion criteria of whom 174 (42%) were admitted to the 

ICU. 211 (51%) were optimally corrected at 24 hours, 87 (21%) were under-corrected, 

and 114 (28%) were overcorrected. Both patient factors and treatment factors were 

associated with non-optimal correction. There was a single case of ODS. Overcorrection 

was not associated with in-hospital mortality or ICU LOS. When adjusted for patient 
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factors under-correction of profound hyponatremia was associated with an increase in 

hospital LOS (9.3 days, 95% CI [1.9 - 16.7]).  

Conclusion: Non-optimal correction of profound hyponatremia is common. Non-optimal 

correction may be associated with poorer patient outcomes.  
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APPENDIX F 

Changing Trends in the Use of Vasopressors in Intensive Care Unit: A 7 Year 

Study 

This manuscript is currently under review for publication in Chest as Thongprayoon C, 

Cheungpasitporn W, Harrison AM, Srivali N, Erdogan A, Carrera P, Herasevich V, 

Kashani KB. Changing Trends in the Use of Vasopressors in Intensive Care Unit: A 7 

Year Study. 

 

ABSTRACT 

Background: The choice of vasopressor use in the intensive care unit (ICU) depends 

primarily on provider preference. This study aims to describe the prevalence of 

vasopressor use and the trends in agent use in the ICU over the past 7 years. 

Methods: All ICU admissions, including medical, cardiac, and surgical ICUs from 

January 2007 through December 2013 were included in this study. Vasopressor use was 

defined as the continuous intravenous administration of epinephrine, norepinephrine, 

phenylephrine, dopamine, or vasopressin within a given ICU day. The vasopressor 

utilization index (VUI) was defined as the proportion of ICU days on each vasoactive 

agent divided by the total ICU days with vasopressor usage. 

Results: Over the course of this study (72,005 ICU admissions), 272,271 ICU days were 

generated. Vasopressors were used in 19,575 ICU admissions (27%) and on 59,811 

ICU days (22%). Vasopressor use was 24,496 (41%) for vasopressin, 23,229 (39%) for 

epinephrine, 20,648 (34%) for norepinephrine, 9,449 (16%) for dopamine, and 7,508 

(13%) for phenylephrine. There was an increasing trend in the use of norepinephrine 

and a decreasing trend in phenylephrine utilization. The VUI for norepinephrine 

increased from 0.24 in 2007 to 0.46 in 2013 and decreased for phenylephrine from 0.20 

in 2007 to 0.08 in 2013. Epinephrine, dopamine, and vasopressin trends did not change. 
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Conclusions: Vasopressors were used in about one fourth of ICU admissions and about 

one fifth of ICU days. Although vasopressin is the most commonly used vasopressor, the 

use of norepinephrine found to have an increasing trajectory.  
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APPENDIX G 

Admission Hyperuricemia Increases the Risk of Acute Kidney Injury in 

Hospitalized Patients 

Portions of this manuscript are currently under review for publication in Nephrology as 

Cheungpasitporn W, Thongprayoon C, Harrison AM, Erickson SB. Admission 

Hyperuricemia Increases the Risk of Acute Kidney Injury in Hospitalized Patients. 

 

ABSTRACT 

Background and objectives: The association between elevated admission serum uric 

acid and risk of in-hospital acute kidney injury (AKI) is limited. The aim of this study was 

to assess the risk of developing AKI in all hospitalized patients with various admission 

serum uric acid (SUA) levels. 

Design, setting, participants, & measurements: This is a single-center retrospective 

study conducted at a tertiary referral hospital. All hospitalized adult patients who had 

admission SUA available from January 2011 through December 2013 were analyzed in 

this study. Admission SUA was categorized based on its distribution into six groups (less 

than 3.4, 3.4 to 4.5, 4.5 to 5.8, 5.8 to 7.6, 7.6 to 9.4, and greater than 9.4 mg/dL). The 

primary outcome was in-hospital AKI occurring after hospital admission. Logistic 

regression analysis was performed to obtain the odds ratio of AKI of various admission 

SUA levels using SUA of 5.8 to 7.6 mg/dL as the reference group.   

Results: Of 1,435 patients enrolled, AKI occurred in 263 patients (18%). The incidence 

of AKI and need for dialysis was increased in patients with higher admission SUA levels. 

After adjusting for potential confounders, SUA greater than 9.4 mg/dL was associated 

with an increased risk of developing AKI with odds ratios of 1.79 (95% CI 1.13-2.82). 

Conversely, admission SUA of less than 3.4 mg/dL and 3.4 to 4.5 mg/dL were 
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associated with decreased risk of developing AKI with odds ratios of 0.38 (95% CI 0.17-

0.75) and of 0.50 (95% CI 0.28-0.87) respectively. 

Conclusion: Elevated admission SUA was associated with an increased risk for in-

hospital AKI. 


