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ABSTRACT

This thesis is concerned with certain properties of stochastic growth models. A

stochastic growth model is a model of infection spread, through a population of

individuals, that incorporates an element of randomness. The models we consider

are variations on the contact process, the simplest stochastic growth model with a

recurrent infection.

Three main examples are considered. The first example is a version of the contact

process on the complete graph that incorporates dynamic monogamous partnerships.

To our knowledge, this is the first rigorous study of a stochastic spatial model of infec-

tion spread that incorporates some form of social dynamics. The second example is a
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non-monotonic variation on the contact process, taking place on the one-dimensional

lattice, in which there is a random incubation time for the infection. Some techniques

exist for studying non-monotonic particle systems, specifically models of competing

populations [38] [12]. However, ours is the first rigorous study of a non-monotonic

stochastic spatial model of infection spread. The third example is an additive two-

stage contact process, together with a general duality theory for multi-type additive

growth models. The two-stage contact process is first introduced in [29], and several

open questions are posed, most of which we have answered. There are many examples

of additive growth models in the literature [26] [16] [29] [49], and most include a proof

of existence of a dual process, although up to this point no general duality theory

existed.

In each case there are three main goals. The first is to identify a phase transition

with a sharp threshold or “critical value” of the transmission rate, or a critical surface

if there are multiple parameters. The second is to characterize either the invariant

measures if the population is infinite, or to characterize the metastable behaviour and

the time to extinction of the disease, if the population is finite. The final goal is to

determine the asymptotic behaviour of the model, in terms of the invariant measures

or the metastable states.

In every model considered, we identify the phase transition. In the first and third

examples we show the threshold is sharp, and in the first example we calculate the

critical value as a rational function of the parameters. In the second example we

cannot establish sharpness due to the lack of monotonicity. However, we show there

is a phase transition within a range of transmission rates that is uniformly bounded

away from zero and infinity, with respect to the incubation time.

For the partnership model, we show that below the critical value, the disease dies

out within C logN time for some C > 0, where N is the population size. Moreover

we show that above the critical value, there is a unique metastable proportion of

infectious individuals that persists for at least eγN time for some γ > 0.

For the incubation time model, we use a block construction, with a carefully cho-

sen good event to circumvent the lack of monotonicity, in order to show the existence

of a phase transition. This technique also guarantees the existence of a non-trivial
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invariant measure. Due to the lack of additivity, the identification of all the invariant

measures is not feasible. However, we are able to show the following is true. By

rescaling time so that the average incubation period is constant, we obtain a limiting

process as the incubation time tends to infinity, with a sharp phase transition and a

well-defined critical value. We can then show that as the incubation time approaches

infinity (or zero), the location of the phase transition in the original model converges

to the critical value of the limiting process (respectively, the contact process).

For the two-stage contact process, we can show that there are at most two ex-

tremal invariant measures: the trivial one, and a non-trivial upper invariant measure

that appears above the critical value. This is achieved using known techniques for the

contact process. We can show complete convergence, from any initial configuration,

to a combination of these measures that is given by the survival probability. This,

and some additional results, are in response to the questions posed by Krone in his

original paper [29] on the model.

We then generalize these ideas to develop a theory of additive growth models. In

particular, we show that any additive growth model, having any number of types and

interactions, will always have a dual process that is also an additive growth model.

Under the additional technical condition that the model preserves positive correla-

tions, we can then harness existing techniques to conclude existence of at most two

extremal invariant measures, as well as complete convergence.



vi

Contents

Supervisory Committee ii

Abstract iii

Table of Contents vi

List of Tables ix

List of Figures x

Acknowledgements xi

1 Introduction 1

1.1 Main Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Existence of a phase transition . . . . . . . . . . . . . . . . . . 4

1.1.2 Characterization of invariant distributions . . . . . . . . . . . 5

1.1.3 Asymptotic behaviour . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 The Graphical Construction . . . . . . . . . . . . . . . . . . . 8

1.2.2 Comparison to Oriented Percolation . . . . . . . . . . . . . . . 14

1.2.3 Comparison to a Branching Process . . . . . . . . . . . . . . . 18

1.2.4 Comparison to Mean-Field Equations . . . . . . . . . . . . . . 21

1.3 Statement of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Social contact processes and the partner model . . . . . . . . 23

1.3.2 The SEIS process . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.3 New results for the two-stage contact process . . . . . . . . . . 31

1.3.4 Duality and complete convergence for multi-type additive growth

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Social Contact Processes and the Partner Model 36



vii

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Statement of Main Results . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Proportion of Singles . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Mean-Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Approximation by the Mean-Field Equations . . . . . . . . . . . . . . 56

2.7 Macroscopic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8 Microscopic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.8.1 Subcritical Case: R0 < 1 . . . . . . . . . . . . . . . . . . . . . 68

2.8.2 Supercritical Case: R0 > 1 . . . . . . . . . . . . . . . . . . . . 71

3 The SEIS Process 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Theorem 3.2.1: Convergence to the Limit Process . . . . . . . . . . . 82

3.4 Theorem 3.2.2: Quantitative Estimates . . . . . . . . . . . . . . . . . 84

3.4.1 Lowerbound Process . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Upperbound Proces . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.3 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.4 Estimate of λ+ . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.5 Estimates of λ− . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.6 Estimate of λ∞c . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Theorem 3.2.3: Qualitative Estimates . . . . . . . . . . . . . . . . . . 92

3.5.1 Existence of λ0 . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.2 Upper bound on λ+ as τ → 0 . . . . . . . . . . . . . . . . . . 94

3.5.3 Lower bound on λ− as τ → 0 . . . . . . . . . . . . . . . . . . 95

3.5.4 Upper bound on λ+ as τ →∞ . . . . . . . . . . . . . . . . . . 97

3.5.5 Lower bound on λ− as τ →∞ . . . . . . . . . . . . . . . . . . 102

4 New Results for the Two-Stage Contact Process 104

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Construction and duality . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.1 Critical values for survival . . . . . . . . . . . . . . . . . . . . 110

4.3.2 Correction to Proposition 3.6 . . . . . . . . . . . . . . . . . . 111



viii

4.3.3 Critical maturation rate (q.6) . . . . . . . . . . . . . . . . . . 112

4.3.4 Single-site survival and edge speed (q.2) . . . . . . . . . . . . 113

4.3.5 Equality of critical values (q.1) . . . . . . . . . . . . . . . . . 115

4.3.6 Complete convergence (q.3) . . . . . . . . . . . . . . . . . . . 118

4.3.7 Structure of the survival region (q.5 and q.4) . . . . . . . . . . 119

5 Duality and Complete Convergence for Multi-Type Additive Growth

Models 121

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Graphical method and main results . . . . . . . . . . . . . . . . . . . 125

5.3 Growth models and duality . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Primitivity and colour decomposition . . . . . . . . . . . . . . . . . . 136

5.5 Percolation viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Population viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.7 Positive Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.8 Complete Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.9.1 Two-Stage Contact Process . . . . . . . . . . . . . . . . . . . 151

5.9.2 Bipartite Infection Model . . . . . . . . . . . . . . . . . . . . 152

5.9.3 Household Model . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography 154



ix

List of Tables

Table 1.1 Lower bounds on λ−c (τ) . . . . . . . . . . . . . . . . . . . . . . . 30

Table 3.1 Lower bounds on λ−c (τ) . . . . . . . . . . . . . . . . . . . . . . . 81



x

List of Figures

Figure 1.1 An illustration of the graphical construction via active paths.

There are six sites, and time evolves in the upward direction;

here, only sites 2 and 3 are initially infectious. Crosses denote

events in Ux and horizontal segments denote events in Uxy, bold

if used and dotted if unused. Points (x, t) such that ξt(x) = 1

are in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 1.2 Markov Chain used to compute R0, with transition rates indi-

cated; infectious sites in black . . . . . . . . . . . . . . . . . . . 25

Figure 2.1 Markov Chain used to compute R0, with transition rates indi-

cated; infectious sites are shaded . . . . . . . . . . . . . . . . . 40

Figure 2.2 Level curves of λc depicted in the r+, r− plane. Starting from

the top curve and going down, λc = 3, 5, 8, 13, 21, 34,∞. . . . . 46

Figure 3.1 Depiction of rectangles Rm,n for −2 ≤ m ≤ 2 and 0 ≤ n ≤ 2, as

well as the event A0,0(η0) in R0,0, with i = 2. . . . . . . . . . . . 89



xi

ACKNOWLEDGEMENTS

I would like to thank:

My parents, for their constant help and support.

My advisors Rod and Pauline, for their mentoring, support, encouragement, and

patience.

My “informal advisor” Anthony, for interesting discussions, research guidance

and for always challenging me and stimulating my interest in mathematics.

Grad students at UVic, for a fun and friendly environment in which to work and

play.

NSERC, UVic and PIMS IGTC, for funding me with a Scholarship.



Chapter 1

Introduction

This thesis concerns stochastic growth models, which are Markov processes (ξt)t≥0 with

state space F V , where F is a finite set, usually {0, 1} or {0, 1, 2}, and G = (V,E) is

a connected undirected graph with a finite or countably infinite number of vertices.

The vertices V , which we usually refer to as sites, represent individuals in the pop-

ulation, and the edges E represent connections between individuals. We usually use

ξ, η, ζ to represent a point in the state space, and we call it a configuration.

For us, a growth model usually means spread of an infection, though it may

also be thought of as growth and dispersal of a population of organisms, via the

correspondence of healthy with vacant and infected with occupied. In our case, the

organism considered should probably be a plant, since individual organisms won’t be

moving around. In any case, the model should have the following properties:

• the 0 state will always mean healthy/vacant,

• every other state in F is an active state, i.e., such that a site in an active state

can cause other sites to become active,

• the all-zero configuration with ξ(x) = 0 for all x ∈ V is an absorbing state, and

• from any configuration with ξ(x) 6= 0 for at most finitely many x, with positive

probability the all-zero configuration is reached at some point in time

In every model we consider, the following irreducibility assumption also holds: if

V0 ⊂ V is a finite set and φ, ψ : V0 → F are functions such that φ(x) 6= 0 for some

x ∈ V0 then if ξ0 satisfies ξ0(x) = φ(x) for all x ∈ V0, with positive probability there
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is t > 0 so that ξt(x) = ψ(x) for all x ∈ V0.

The simplest model with these properties is called the contact process on a con-

nected undirected graph G = (V,E) with F = {0, 1}, and is defined by the two

transitions:

• if x is infected then x recovers, i.e., goes from 1 to 0 at rate 1, and

• if x is healthy then x becomes infected, i.e., goes from 0 to 1, at rate λ times

the number of infected neighbours of x

where a neighbour of x is a site y such that xy ∈ E. The meaning of the transition

rates is that if ξt(x) = 1, for example, the first time s such that ξt+s(x) = 0 is dis-

tributed like an exponential random variable with rate 1, and if ξt(x) = 0, x has k

infected neighbours, and the state of x and its neighbours does not otherwise change,

the first time s such that ξt+s(x) = 1 is distributed like an exponential random vari-

able with rate kλ.

The contact process is well-studied; see for example [32] for an introduction or

[34], [14] for more recent work. The models we consider are all variations on the

theme of the contact process, and we consider three main examples, as follows; since

the following description is intended as an advertisement of the main results, we use

a bit of terminology that is not introduced till later in this introduction.

• In Chapter 2, we consider a variation of the contact process that incorporates

dynamic monogamous partnerships.

• In Chapter 3, we consider a variation of the contact process that is not mono-

tonic.

• In Chapters 4 and 5, we consider a specific example, and then a general theory,

of additive multi-type growth models.

There are some examples in the literature of contact processes evolving in a ran-

dom environment [6] [44] [46]. However, ours is the first rigorous study of a random

environment consisting of dynamic social interactions, an area of great interest in epi-

demiology. Moreover, since our model is constructed on a complete graph, it exhibits

mean-field behaviour in the large population limit, and this means that we can obtain
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exact results. In other words, we can calculate the critical value, and describe in detail

the behaviour of the model in the subcritical, critical and supercritical regimes. This

improves on analogous results such as [43] in which a version of the contact process

on the complete graph is considered, and the subcritical and supercritical, but not

the critical behaviour, are described. For our model, the critical case is non-trivial

and requires a detailed analysis.

Monotonicity is a property that greatly simplifies the analysis of growth models.

To our knowledge, there is no literature to date on non-monotonic variations of the

contact process. However, some tools are available for studying non-monotonic par-

ticle systems, as for example the block construction technique that is often used to

prove coexistence in models of interacting populations [11, Chapter 4] [12]. In our

model the lack of monotonicity is due to a random incubation time between expo-

sure and onset of infectiousness. We make use of block construction techniques and

some fairly delicate limiting arguments in order to analyze the phase transition in the

model, for arbitrary values of the incubation time and also in the limit as it tends to

zero or infinity.

There are many examples of additive growth models, including the contact pro-

cess itself as well as [16] [29] [49]. In many specific cases the existence of a dual

process has been established, although up to this point no general theory existed.

Our results show that under a broad definition that includes models with arbitrarily

many types with possibly complex interrelations between the types, additivity implies

the existence of a dual process. The dual types, and the transitions, are constructed

directly from the model using an algebraic construction, which is then shown to be

compatible with the graphical representation. This allows classical problems, such

as the equivalence of two definitions of the critical value, and characterization of the

stationary distributions, to be solved for such models, using known techniques for the

contact process.

1.1 Main Goals

When studying growth models, there are three main goals:



4

• show existence of a phase transition,

• determine and characterize any invariant distributions or metastable states, and

• determine the asymptotic or long-time behaviour.

We discuss these goals in the order just stated, beginning with the first.

1.1.1 Existence of a phase transition

In every model we consider there is at least one transmission parameter λ. Starting

the process with exactly one infected site, an important first question is whether for

large values of λ the infection tends to survive and spread while for small values of λ

it tends to die out. Borrowing a term from statistical physics, if this is the case we

say the model exhibits a phase transition as the value of λ is varied. For a growth

model, identifying a phase transition is the first goal.

For a connected graph with an infinite number of sites, a reasonable condition for

survival is that there is a site x ∈ V so that P(|ξt| > 0, ∀t > 0 | ξ0 = 1(x)), where

the indicator function 1(x) is defined by 1(x)(y) = 1 if y = x and = 0 if y 6= x. In

other words, starting from a single infected site there is a positive probability that the

disease persists indefinitely. This is called single-site survival. Letting σ(x) denote

the above probability, it is easy to show using our irreducibility assumption and the

strong Markov property that for a given set of parameter values either σ(x) = 0 for

all x ∈ V or else σ(x) > 0 for all x ∈ V , so the single-site survival condition does not

depend on the site considered.

For a finite graph, i.e., with |V | = N <∞, since the state space F V is finite and

the all-zero configuration can be reached from any configuration, eventual recovery

is certain. In this case we say the infection tends to spread if, for example, from an

initial configuration with a single infected site, there is a positive probability that the

infection persists for a long time before dying out. To make this precise we assume

the model is defined for any size N of the population, then we can say the infection

persists for a long time if with probability ≥ p > 0 not depending on N , starting from

|ξ0| = 1 the infection survives for an amount of time at least eγN for some γ > 0. In

other words, once the infection has become endemic, it can only die out by means of



5

a sudden extinction event.

The reason why we say “in other words” in this case can be thought of from the

perspective of a random walk in the number of infected sites I(t). If I(t) tends to

drift towards a value I∗ = i∗N , then if it falls below (i∗ − ε)N it will tend to return

above (i∗ − ε/2)N before falling again. Therefore, to overcome this drift requires to

fall by an amount of order N more or less all at once. In the presence of a fixed

amount of upward drift, a sudden decrease of order N has probability of order e−γN ,

so it takes order of eγN attempts before this decrease occurs. This phenomenon is

known as metastability, so called because the proportion i∗, while not asymptotically

stable, is relatively stable for a long period of time.

Ideally, if we fix all other parameters, there is a critical value λc of the transmis-

sion parameter such that the infection tends to die out when λ < λc and tends to

spread when λ > λc. In this case, we say the phase transition is sharp, and occurs at

λc. As discussed in Section 1.2.1, we can show this is the case when the model has

a nice monotonicity property, as in Chapter 4. In other cases, as in Chapter 3, the

best we can do is to define upper and lower values λ+ ≥ λ− such that the infection

survives when λ > λ+ and dies out when λ < λ−.

1.1.2 Characterization of invariant distributions

A second important goal is the characterization of invariant distributions for the

process, which are the stochastic analogues of the equilibrium points of a system of

differential equations. Let Pµ(ξt ∈ ·) denote the distribution of the process at time t,

started from the measure µ. An invariant distribution is a probability measure µ with

Pµ(ξt ∈ A) = µ(A) for all sets of configurations A belonging to the usual σ algebra

on F V .

Except in the case of spontaneous infection, the measure δ0 that concentrates on

the disease-free state is an invariant distribution. A non-trivial invariant distribution

µ should satisfy µ({ξ : |ξ| > 0}) > 0, i.e., there is a positive probability with respect

to µ that some site is infected. As shown in Theorem 1.2.1, if the model satisfies

a certain monotonicity property we can deduce the existence of a unique “largest”
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invariant distribution ν, in the sense that for any finite subset V0 ⊂ V and any other

invariant distribution µ,

ν({ξ : ξ(x) = 1, ∀x ∈ V0}) ≥ µ({ξ : ξ(x) = 1, ∀x ∈ V0})

The distribution ν, when it exists, is called the upper invariant measure. Showing

that ν 6= δ0 is a second way of characterizing survival of the infection.

As noted above, on a finite graph with no spontaneous infection, with probability

1, |ξt| = 0 for t large enough, which implies that δ0 is the only invariant distribution.

However, there may be a metastable state, which in our case is represented by a fixed

proportion of infected individuals around which the process hovers for a long time,

before eventually dying out.

In both cases, we can think of a non-trivial invariant distribution or a metastable

state as an endemic state of the population, where usually the infection persists in

the population with some positive proportion of individuals infected at any moment

in time. In the simplest case, for a given model there is at most one endemic state,

which if it is attracting tells us more or less what happens when the infection survives,

and this leads us to our next goal.

1.1.3 Asymptotic behaviour

The third and final goal, after identifying a phase transition and any invariant dis-

tributions or metastable states, is to characterize the asymptotic behaviour of the

model. In particular, when there is an endemic state, is it attracting? For the con-

tact process (see for example [21] for early work in this direction, or [3] for more

recent work) we can show that when single-site survival occurs, complete convergence

holds in the following sense: from any initial distribution µ0, letting µt denote the

distribution at time t, we have

µt ⇒ αδ0 + (1− α)ν

as t → ∞, where ν is the upper invariant measure, δ0 concentrates on the config-

uration with all 0s, α = P(ξt dies out), and ⇒ denotes weak convergence of mea-

sures, which for us means that for any V0 ⊂ V and φ : V0 → F the probabilities
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P(ξt(x) = φ(x) ∀x ∈ V0) converge as t → ∞. Part of our work in Chapters 4 and 5

is to show complete convergence for some well-behaved generalizations of the contact

process.

For models on a finite graph, we would like to know how quickly the infection dies

out when it does, or how quickly it spreads, and how long it persists. If |V | = N

and the model is subcritical, i.e., the infection tends to die out, it is reasonable to

expect the infection to die out within an amount of time that is of order logN . To

see this, imagine the case of no transmission, so there are N particles in state 1,

each waiting an independent unit exponential amount of time before going to state

0 and remaining there. The probability that all particles are in state 0 is, by inde-

pendence, (1 − e−t)N . Setting t = logN + c gives (1 − e−c/N)N which approaches

e−e
−c

as N → ∞; as c → −∞ this approaches e−e
∞

= e−∞ = 0 and as c → ∞ it

approaches e−e
−∞

= e0 = 1, so the time to extinction (all particles in state 0) is equal

to logN +O(1), i.e., is equal to logN plus fluctuations of constant order.

As discussed earlier, if the model is supercritical and initially, there are enough

infected individuals, the infection survives for an amount of time that is exponential

in N . We show these asymptotics hold for a certain model in Chapter 2.

1.2 Techniques

A number of techniques show up again and again when studying growth models. The

techniques we use fall into a few main categories:

• techniques utilizing the graphical representation, including stochastic domina-

tion and duality

• comparison of the growth model to an oriented percolation process

• comparison of the growth model to a branching process

• comparison of the growth model to mean-field equations

The first technique is of general usefulness in constructing the process and in compar-

ing the evolution for different choices of initial data, and in particular for proving the

existence of a critical value λc when the process is well enough behaved. We use the
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second technique primarily when studying models on the lattices Zd, and in particular

on Z. The third technique allows us to get rough bounds on λc, and is of genuine use-

fulness in mean-field type models, i.e., models lacking a genuine spatial structure, for

determining the short-time behaviour of the infection, when the number of infectious

individuals is small relative to the population size. The fourth technique is useful

when the so-called mean-field equations, which are a set of ODEs approximating the

evolution of certain observables of the process, constitute a good approximation of

the stochastic evolution of those observables. We discuss each technique, using the

contact process as an example.

1.2.1 The Graphical Construction

The first technique, called the graphical representation or graphical construction, is

perhaps the most fundamental. This is a way of constructing a growth model (or

a more general particle system) from a collection of Poisson processes in spacetime,

i.e., on the set S = G × [0,∞) in such a way that we can easily view individual

realizations of the process. Thus, rather than viewing the process as a collection of

random variables t 7→ ξt we can view it as a random function ω 7→ (ξ
(w)
t )t≥0 where ω

is an element of the probability space, which for us corresponds to a specific choice

of points in the relevant Poisson processes.

The graphical construction is originally due to Harris [26] and is indispensable in

the study of growth models and interacting particle systems in general. The results

discussed in this section can be found in the reference book [32].

For concreteness, we show how to construct the contact process using the graphical

representation, and then derive some of the basic properties of the contact process

from relatively simple graphical arguments. For the sake of contrast, however, we

first note how the contact process can be constructed for certain initial data as a

continuous-time Markov chain. Given a graph G = (V,E), recall the state space for

the contact process on G is {0, 1}V , which is equivalent to the set of subsets of V via

the correspondence A = {x : ξ(x) = 1}, so we can think of the process as (At)t≥0

where At is the set of infectious sites at time t. In this setting transitions are

• for each x ∈ A, A→ A \ {x} at rate 1, and

• for each y /∈ A such that xy ∈ E for some x ∈ A, A→ A ∪ {y} at rate λn(y),
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where n(y) is the cardinality of the set {x ∈ A : xy ∈ E}. If |A0| < ∞ then (At)t≥0

can be constructed as in [41] on the countable state space of finite subsets of V ,

since the transition rate out of any state is finite. Under mild conditions on G, for

example if the degree of each vertex is at most M for some fixed M , explosion (i.e.

having |At| → ∞ in finite time) does not occur, and the process is defined for all t > 0.

The above definition shows how we can picture the process as a randomly evolving

subset of V , which is nice, but the graphical construction gives us a better sort of

“phase portrait”. At each site x, the state at x

• goes from 1→ 0 at rate 1, and

• goes from 0→ 1 at rate λn(x)

To construct the process we start with an independent collection of Poisson pro-

cesses {Ux : x ∈ V } each with intensity 1, and another independent collection

{Uxy : xy ∈ E} each with intensity λ. We refer to the points in these Poisson

processes as the substructure, since they underlie the infection process (ξt)t≥0 and will

determine its transitions.

If the number of sites is finite, the total rate |V | + λ|E| of Poisson processes is

finite, so the set of times t such that a point (x, t) (or (xy, t)) is a point in some Ux (or

Uxy) is well ordered. For later reference we call these the event times. Denoting these

times 0 = t0 < t1 < t2 < ..., in this case the process can be constructed one event at

a time: given ξ0, then inductively, if ξti(x) = 1 and (x, ti+1) ∈ Ux then ξti+1
(x) = 0,

and if ξti(x) = 0 and (xy, ti+1) ∈ Uxy for some y such that xy ∈ E and ξti(y) = 1

then ξti+1
(x) = 1, and the configuration is otherwise unchanged. Fill in the state at

other times by setting, for ti < t < ti+1, ξt = ξti .

If the number of sites is infinite, it becomes necessary to determine, for each point

(x, t) in spacetime, the set Sx,t of points (y, s) that can affect the state at (x, t), by

tracing backwards in time from (x, t). Provided Sx,t is bounded with probability 1,

which is true for example if G is of bounded degree, then after restricting to Sx,t

the event times are well-ordered, and so given ξ0 we can compute the state at (x, t)

recursively, as above.
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Figure 1.1: An illustration of the graphical construction via active paths. There are
six sites, and time evolves in the upward direction; here, only sites 2 and 3 are initially
infectious. Crosses denote events in Ux and horizontal segments denote events in Uxy,
bold if used and dotted if unused. Points (x, t) such that ξt(x) = 1 are in bold.

For the contact process and some other processes there is a more direct way to

determine ξt(x), as follows. Say that a list (v1, h1, ..., vn) of segments in S with

vi = {xi} × [ti−1, ti] and hi = {xi, xi+1} × {ti} is an active path if ξt0(x1) = 1,

ti ∈ Uxixi+1
for i = 1, ..., n− 1 and (xi, t) /∈ Uxi for t ∈ [ti−1, ti] and i = 1, .., n. Then

let ξt(x) = 1 if and only if there exists an active path from (y, 0) up to (x, t), for some

y such that ξ0(y) = 1. A picture is given in Figure 1.1.

Fixing a realization ω of {Ux}x∈V and {Uxy}xy∈E, which in the picture corresponds

to a set of crosses × and a set of horizontal lines which we’ll denote by ↔, from this

construction we see that if ξ0 ≤ ξ′0 in the sense that ξ0(x) = 1⇒ ξ′0(x) = 1 for all x,

then determining ξt from ξ0 and ξ′t from ξ′0, for t > 0 we find that ξt ≤ ξ′t, since adding

more infectious sites at time 0 can only increase the number of active paths that are

used by the infection. The property that ξ0 ≤ ξ′0 ⇒ ξt ≤ ξ′t for t > 0 pointwise

on realizations of the substructure is called monotonicity, and a process is monotone
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if monotonicity holds. Furthermore, it is an example of stochastic domination: the

processes (ξt)t≥0 and (ξ′t)t≥0 are coupled, i.e., constructed on a common probability

space, in such a way that pointwise, one process dominates the other.

Since the relation ξ0 ≤ ξ′0 ⇒ ξt ≤ ξ′t holds for any ω in the probability space, it

follows immediately, for example, that letting |ξt| = #{x : ξt(x) = 1} where # is the

cardinality, P(|ξt| > 0 ∀t > 0 | ξ0 = ξ) is non-decreasing in the initial configuration ξ.

Thus we see that a probabilistic fact about the process can be easily deduced from the

geometrical properties of individual realizations of the process in spacetime. Another

useful consequence of monotonicity is the following result; for the sake of brevity we

refer to Theorem 2.3 in Chapter III of [32] for a few details.

Theorem 1.2.1. Define ξ by ξ(x) = 1 for all x. If (ξt)t≥0 satisfies ξ0 = ξ then the

distribution of ξt converges weakly to an invariant distribution ν, called the upper

invariant measure.

The upper invariant measure ν has the property that for each finite V0 ⊂ V and

any invariant distribution µ,

ν({ξ : ξ(x) = 1, ∀x ∈ V0}) ≥ µ({ξ : ξ(x) = 1, ∀x ∈ V0}) (1.2.1)

and is the unique invariant distribution with this property.

Proof. For all ξ ∈ {0, 1}V we have ξ ≤ ξ, so on any realization, for t > 0, ξt ≤ ξ0.

Placing ξ at time t in the graphical representation and evolving up to time t+s while

using monotonicity shows that ξs dominates ξt+s, so ξt is stochastically decreasing

with t, in the sense that for each finite set of sites V0 ⊂ V ,

P(ξt(x) = 1 for all x ∈ V0)

is non-increasing with t, and thus converges to a limit. Using convergence of these

events and an inclusion-exclusion argument, we can deduce convergence of all finite-

dimensional distributions (FDDs), i.e., events of the form P(ξt(x) = φ(x) for all x ∈
V0), where φ : V0 → {0, 1} is any function. We show the inclusion-exclusion argument

by an example: if V0 consists of the four sites {x1, .., x4}, and (φ(xi))
4
i=1 = (1, 0, 1, 0),
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then

P(ξt(xi) = φ(xi), i = 1, 2, 3, 4) = P(ξt(x1) = ξt(x3) = 1)

− P(ξt(x1) = ξt(x2) = ξt(x3) = 1)

− P(ξt(x1) = ξt(x3) = ξt(x4) = 1)

+ P(ξt(xi) = 1, i = 1, 2, 3, 4)

Since a measure on {0, 1}V is determined by its FDDs, we conclude existence of a

limiting measure ν to which the distribution of ξt converges. From a certain continu-

ity property of the infinitesimal generator of the process that is discussed in [32], we

can deduce that ν is invariant.

If (1.2.1) holds and µ is such that it holds with equality for all V0, from the above

inclusion-exclusion argument we conclude that µ and ν have the same FDDs and thus

coincide, which proves uniqueness. To see that (1.2.1) holds, start from distribution

µ in the graphical construction and note that ξ dominates µ. By monotonicity, the

distribution of ξt with ξ0 = ξ dominates the distribution of the process at time t

started from distribution µ, for all t > 0. Then, note that µ is invariant, and take

the limit as t→∞ to obtain (1.2.1).

For the contact process, we can prove a somewhat stronger property than mono-

tonicity. Defining ξ ∨ ξ′ by (ξ ∨ ξ′)(x) = 1 iff at least one of ξ(x) and ξ′(x) is equal to

1, then letting ξ′′0 = ξ0 ∨ ξ′0 we find that ξ′′t = ξt ∨ ξ′t for t > 0, the reason being that

the set {y ∈ V : ξ′′0 (y) = 1} is the union of the corresponding sets for ξ0 and ξ′0, and

ξ′′t (x) = 1 if and only if there is an active path from (y, 0) to (x, t) for some y in this

set. This property that ξ′′0 = ξ0 ∨ ξ′0 ⇒ ξ′′t = ξt ∨ ξ′t for t > 0 is called additivity, and

was first studied in detail by Harris in [26].

We note one more property that follows from the use of active paths. Starting at a

point (x, t) and tracing active paths backwards in time from (x, t) in the same way as

forwards, i.e., vertically until we encounter a × label and horizontally along↔ labels,

there is an active path backwards in time from (x, t) down to (y, s) for s < t if and

only if there is an active path forwards in time from (y, s) up to (x, t). Moreover, both

the Ux and the Uxy are time inversion invariant, that is, their distribution does not

change if the direction of time is reversed. Thus to decide whether (x, t) is infected or
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more generally, whether a set A = {(x1, t), ..., (xk, t)} has at least one infected point,

it suffices to run a contact process starting from the infected sites A from time t

down to time 0, and check if any active paths end up at points (y, 0) that are initially

infected. This gives the following useful duality relation, where 1(A) is the indicator

function of a set A ⊂ V with 1(A)(x) = 1 if and only if x ∈ A, and = 0 otherwise:

P(ξt(x) = 1 for some x ∈ A | ξ0 = 1(B)) = P(ξt(x) = 1 for some x ∈ B | ξ0 = 1(A))

The following is a useful corollary of this fact.

Theorem 1.2.2. For any x ∈ V , define the survival probability

σ(x) = P(|ξt| > 0 ∀t > 0 | ξ0 = 1(x))

Then σ(x) = ν({ξ : ξ(x) = 1}), where ν is the upper invariant measure introduced in

Theorem 1.2.1.

Proof. Let A = V and B = {x}, then let t→∞ in the duality relation while noting

that {|ξt| > 0 ∀t > 0} =
⋂
t>0{|ξt| > 0}.

For x, y ∈ V define

σ(x, y) = P(ξt(y) = 1 for some t > 0 | ξ0 = 1(x))

Since G is by assumption connected, if λ > 0 then σ(x, y) > 0, and using the strong

Markov property and monotonicity, σ(x) ≥ σ(x, y)σ(y) so it follows that either σ(x) =

0 for all x ∈ V or else σ(x) > 0 for all x ∈ V . This shows the following two notions

of survival are equivalent for the contact process:

• survival of the infection starting from a single infectious site, and

• existence of a non-trivial endemic state.

Lastly we show that if the contact process has a phase transition, i.e., if σ(x) > 0 for

some value of λ, then the phase transition is sharp. A priori we do not know whether

there is a phase transition at all; we show this in the case of an infinite graph, i.e.,

when |V | =∞, after we have proved the corresponding result for oriented percolation

in the next subsection.
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Theorem 1.2.3. For the contact process there is a well-defined critical value λc such

that σ(x) = 0 for λ < λc and all x ∈ V , and σ(x) > 0 for λ > λc and all x ∈ V . A

priori λc may be equal to 0 or ∞.

Proof. It suffices to show that σ(x) is non-decreasing in λ. This is achieved by

making a simultaneous construction of the process for distinct values λ < λ′ of the

transmission parameter. First construct the process for the given value λ. Then, add

independent Poisson processes {U ′xy : xy ∈ E} with rate λ′ − λ, to be used only by

the second process. Since it has access to the same and possibly more transmission

opportunities, the second process dominates the first. By a familiar property, for each

xy ∈ E the union Uxy ∪ U ′xy is a Poisson process with intensity λ + (λ′ − λ) = λ′, so

the second process has transmission rate λ′.

As shown so far for the contact process, the ability to turn geometry into state-

ments about probabilities makes the graphical representation a powerful tool in the

study of growth models, and we will continue to see this in later sections and chapters.

1.2.2 Comparison to Oriented Percolation

There is a useful discrete time process that in some sense qualifies as a growth model,

and has the advantage that we can estimate directly the probability of survival. It is

called oriented percolation, and is defined in two dimensions as follows. We consider

the case of site percolation; there is a related definition for so called bond percolation.

For a comprehensive article on site percolation see [8].

Let L denote the set of sites {(m,n) ∈ Z2 : n ≥ 0,m + n is even }. Construct

a probability space by assigning to each (m,n) ∈ L a uniform [0, 1]-valued random

variable um,n. Then, given a parameter p ∈ [0, 1], say that site (m,n) is open if

um,n ≤ p and closed otherwise. An open path from (m0, n) to (mj, n + j) is a set of

sites (m0, n), (m1, n+ 1), ..., (mj, n+ j) with (mi, n+ i) open, and mi+1 = mi± 1, for

i = 1, ..., j, and say (m,n)→ (k, `) if there is an open path from (m,n) to (k, `). The

open cluster C(m,n) of a site (m,n) is the set of sites (k, `) such that (m,n)→ (k, `),

and |C(m,n)| is the cardinality of C(m,n).
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Say that percolation occurs from (m,n) if |C(m,n)| =∞, and define

θ(p) = Pp(percolation occurs from (0, 0))

where Pp denotes the law of oriented percolation with parameter p. Clearly θ(0) = 0.

Given the values of {um,n : (m,n) ∈ L}, the set of open sites is non-decreasing

with respect to p. It follows that θ(p) is non-decreasing with respect to p. Letting

pc = sup{p ∈ [0, 1] : θ(p) = 0}, θ(p) = 0 if p < pc and is > 0 if p > pc. Without too

much effort we can show the value of pc is non-trivial. The lower bound is easy, and

the proof of the upper bound follows Section 10 of [8].

Theorem 1.2.4. For pc as defined above, 1/2 ≤ pc ≤ 80/81.

Proof. The number of different (upward directed) paths from (0, 0) to (·, n), whether

open or not, is 2n, while the probability that any given path is open is equal to pn.

By a simple union bound, the probability that there exists an open path from (0, 0)

to (m,n) for some m is at most 2npn = (2p)n, which goes to 0 as n→∞, if p < 1/2.

To see that pc < 1, suppose that |C(0, 0)| < ∞, and denote by C the thickened

set obtained from C(0, 0) by filling in a diamond shape with side length
√

2, centered

on each (m,n) ∈ C(0, 0), and denote by `(C(0, 0)) the outer boundary of C, which if

we give it a clockwise orientation is a path from (−1, 0) over and around C to (1, 0),

that keeps C to its immediate right. Since ` consists of directed edges between points

in the set L̃ = {(m,n) ∈ Z2 : n ≥ 0,m + n is odd }, we can count the number of

edges in `, denoted n(`), as well as the number of edges of each of the four orien-

tations ↗,↘,↙,↖ that we denote ↗ (`), etc. Based on its start and endpoints,

↗ (`) =↙ (`) + 1 and ↘ (`) =↖ (`) + 1.

Now let ` be any directed path of the type above, i.e., not intersecting itself, and

going from (−1, 0) to (1, 0) with edges between vertices in L̃. Say that ` is↗-open if,

for each↗ edge intersecting the point (m−1/2, n+1/2), the site (m−1, n+1) ∈ L is

closed, and similarly for ↘-open. Note that distinct ↗ edges correspond to distinct

sites, and that distinct↘ edges correspond to distinct sites. If ` = `(C(0, 0)) then in

particular, ` is ↗-open and ↘-open, so

P(`(C(0, 0)) = `) ≤ P(` is ↗ -open and ↘ − open )
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Since any ` has at most 3 options for the direction of each edge, for any n the set

{` : n(`) = n} has cardinality at most 3n. Moreover, since n(`) =↗ (`)+↘ (`)+↙
(`)+ ↖ (`) = 2 ↗ (`) + 2 ↘ (`) − 2, it follows that max(↗ (`),↘ (`)) ≥ (n + 2)/4

so the probability that a given ` is both ↗- and ↘-open is at most (1 − p)(n+2)/4.

Summing on n and noting that |C(0, 0)| <∞ is equivalent to `(C(0, 0)) = ` for some

`,

P(|C(0, 0)| <∞) ≤
∑
n≥1

3n(1− p)(n+2)/4 ≤
∑
n≥1

(3(1− p)1/4)n

which converges for (1 − p)1/4 < 1/3 or p > 80/81. To make it < 1, make the same

calculation for the cluster C(A) of all sites (j, k) ∈ L such that (m,n) → (j, k) for

some (m,n) ∈ A, where A = {(m, 0) ∈ L : m ∈ [−N,N ]} and N is even, and ` now

needs to travel from (−N − 1, 0) to (N + 1, 0). This forces n(`(C(A))) ≥ 2N + 2, so

the above series starts at n = 2N+2, and adds up to < 1 provided N is large enough.

It then suffices to note that for each N , with positive probability, (0, 0) → (m,N)

for all m ∈ [−N,N ] such that (m,N) ∈ L, so P(|C(0, 0)| = ∞) ≥ P((0, 0) →
(m,N) for all m ∈ [−N,N ])P(|C(A)| =∞) which is > 0 provided P(|C(A)| =∞) >

0.

Now, consider the contact process on the graph with V = Z and E = {xy : |x −
y| = 1}, which we call the contact process on Z with nearest-neighbour interactions.

Since the spacetime set for this process is two-dimensional and infection paths are

directed upwards in time, the model resembles a continuous-time version of oriented

percolation. By making an explicit comparison we can establish the existence of a

phase transition, in other words, show that σ(x) > 0 if λ is large enough. This

procedure is known as a block construction and can be found, for example, in [10].

Since the nearest-neighbour model on Z is translation-invariant, we denote by σ(λ)

the common value of σ(x), for a given value of λ.

Theorem 1.2.5. λc <∞ for the contact process on Z with nearest-neighbour inter-

actions.

Proof. The proof given here uses a simplified version of the construction from [10].

Given ε > 0, we want to discretize the spacetime set S = Z×R+ into the checkerboard

pattern of congruent rectangles {Rm,n : (m,n) ∈ L} given by

Rm,n = [0, J ]× [0, T ] + (mJ, nT )
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for some J, T so that Rm,n just touches Rm±1,n+1 and does not intersect Rm±2,n, and

to define an event Am,n on each rectangle, with the property that:

• {Am,n : (m,n) ∈ L} are independent,

• for each (m,n) ∈ L, P(Am,n) = p ≥ 1− ε provided λ is large enough, and

• if ξ0(0) = 1 and (0, 0)→ (m,n) then either ξnT (mJ) = 1 or ξnT ((m+ 1)J) = 1,

or both,

where the meaning of (0, 0) → (m,n) is the same as before, if we think of each site

(m,n) ∈ L as open if Am,n occurs. Defining C(0, 0) as before, if |C(0, 0)| = ∞ and

ξ0(0) = 1 then |ξt| > 0 ∀t > 0, so σ(λ) ≥ θ(p) for such values of λ. Since the set of

open sites has the same distribution as in oriented site percolation with parameter p,

taking λ large enough that ε < 1/81 and using Theorem 1.2.4, σ(λ) > 0 as desired.

The way we have written it, the desired event Am,n is clearly that there are ac-

tive paths for the contact process lying inside the rectangle Rm,n from (mJ, nT ) to

both (mJ, (n + 1)T ) and ((m + 1)J, (n + 1)T ), and from ((m + 1)J, nT ) to both

(mJ, (n+ 1)T ) and ((m+ 1)J, (n+ 1)T ). The condition of lying inside the rectangle

ensures the independence of the Am,n, using the corresponding spatial independence

property of Poisson processes.

We may as well assume J = 1, in which case, fixing T > 0, Am,n is equivalent to

the following event: for the contact process on the two-site graph with V = {0, 1}
and E = {01}, if either 0 or 1 is infectious at time 0 then both 0 and 1 are infectious

at time T . To have this it is sufficient that there is a ↔ label on 01 and no × labels

on either 0 or 1, on the time interval [0, T ]. Given ε > 0, by taking T > 0 small

enough we can make the probability of a × label at most ε/2, and then by taking λ

large enough we can make the probability of a↔ arrow at least 1− ε/2, which makes

P(Am,n) ≥ 1− ε. Since ε is arbitrary, the proof is complete.

Although we don’t discuss it here, a similar argument shows that θ(p) > 0 for

p < 1 close enough to 1, for a similar model called a k-dependent percolation model;

see [15]. For a k-dependent model, individual sites are open with probability p,

and the events {(mi, ni) open}i∈I , where I is a finite index set, are independent if

‖(mi, ni) − (mj, nj)‖∞ > k for all i, j ∈ I where ‖(m,n)‖∞ = max(|m|, |n|). The
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idea of the proof is that when measuring the probability that ` is open, to choose

the edges in ` more sparsely to ensure they are independent. The motivation for

studying k-dependent models is that they arise naturally in certain constructions. In

[15] a 1-dependent percolation model arises in a similar construction to the one we

made above. Contrary to the situation above, we only have approximate control over

the behaviour of active paths, and Rm,n now has a non-trivial overlap with Rm±1,n+1

which is needed to ensure that active paths in adjacent rectangles will cross so that

they may be concatenated.

1.2.3 Comparison to a Branching Process

As a counterpart to oriented site percolation, which has a definite spatial structure,

we now discuss a branching process, which in a sense has minimal spatial structure.

In a branching process, particles die and reproduce independently of one another with

certain prescribed rates. The reference books [27] and [1] give a good introduction to

the theory of branching processes. Here we pick and choose some basic facts about

branching processes that will help us to study the contact process, including proofs

wherever possible.

In our case, it is useful to study the simplest continuous-time branching process in

which each particle dies at rate 1 and produces offspring at rate λ. Letting Zt denote

the number of particles at time t, by the independence assumption we find

• Zt decreases by 1 at rate Zt, and

• Zt increases by 1 at rate λZt

The first simple lemma justifies our study of Zt. Here we use the “random set”

notation for the contact process. The intuition is that the contact process can be

viewed as a sort of spatial branching process in which births onto already occupied

sites are suppressed.

Lemma 1.2.6. Let (At)t≥0 denote the contact process with parameter λ on a graph

G = (V,E) in which deg x ≤ M for each x ∈ V , and let It = |At|. Then, It is

dominated by the branching process Zt with Z0 = I0 in which particles die at rate 1

and produce offspring at rate λM .
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Proof. For A ⊂ V let E(A) = {xy ∈ E : x ∈ A, y ∈ Ac}, then

• It decreases by 1 at rate It, and

• It increases by 1 at rate λ|E(A)|

and by assumption, |E(A)| ≤ M |A| = MIt. If Zt = It = x then Zt and It both

decrease by 1 at rate x, while Zt increases by 1 at rate λMx ≥ λ|E(A)|. Given

the graphical construction of At, we can construct Zt using the Poisson points that

determine It, plus some additional independent Poisson processes with rate 1 and

rate λ, in such a way that Zt ≥ It for t ≥ 0. Since the idea of the coupling is clear,

its details are left to the interested reader.

Let m(t) = EZt. By first conditioning on the value of Zt and then integrating, we

see that m′(t) = (λ − 1)m(t), and since m(0) = 1 we have m(t) = e(λ−1)t for t > 0.

Since Zt is integer-valued, P(Zt > 0) ≤ EZt = m(t), which tends to 0 exponentially

fast if λ < 1. This has the following immediate consequence for the contact process

that first appeared in [24], and is also mentioned in [32].

Corollary 1.2.7. For the contact process on a graph G = (V,E) with deg x ≤M for

each x ∈ V , λc ≥ 1/M .

To get a comparison in the other direction we need to consider the contact process

on a graph in which infectious sites behave more or less independently. Of course this

is not possible at full occupancy, but if the interaction neighbourhood is large and

infectious sites are sparsely scattered through the population this may be a reason-

able approximation. For the sake of example, we will do this for the contact process

on the complete graph KN with |V | = N and E = {xy : x, y ∈ V, x 6= y}. For this

model it is useful to replace λ with the rescaled value λ/N , so that a single infectious

site in an otherwise healthy population spreads the infection to its neighbours at the

total rate λ(N − 1)/N ≈ λ.

First we determine exactly for what values of λ it is possible for Zt to survive. Intu-

ition suggests that if λ > 1 then survival is possible, since then the birth rate exceeds

the death rate, and this can be confirmed as follows. Let ρ(t) = P(Zt = 0 | Z0 = 1) de-

note the probability of extinction at or before time t, then since ρ(t) is non-decreasing

and ρ(t) ≤ 1 for t ≥ 0, the value ρ∗ = limt→∞ ρ(t), the probability of eventual extinc-

tion, is well-defined.
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In a short time h, Zh = 0, 1 or 2 with probability h + o(h), 1 − (1 + λ)h +

o(h) and λh + o(h) respectively, and each particle from time h up to time t evolves

independently, so we calculate

ρ(t) = h+ (1− (1 + λ)h)ρ(t− h) + λhρ(t− h)2 + o(h)

= ρ(t− h) + [1− (1 + λ)ρ(t− h) + λρ(t− h)2]h+ o(h)

and so ρ′(t) = Q(ρ(t)) where Q(x) = 1 − (1 + λ)x + λx2 is convex and quadratic.

Since ρ(0) = 0, Q(0) = 1 and Q(1) = Q(1/λ) = 0, ρ(t) increases towards the lesser

root of Q(x), so ρ∗ = min(1, 1/λ). We have shown the following result.

Theorem 1.2.8. For the branching process Zt as defined above let θ(λ) = P(Zt >

0 ∀t > 0) denote the survival probability, as a function of λ. Then

θ(λ) =

0 for λ ≤ 1

1− 1
λ

for λ > 1

In other words, survival is possible exactly when the birth rate exceeds the death

rate. The next question is, if Zt survives, how quickly does it grow? Intuition suggests

it grows approximately like m(t). The following result is proved in Chapter II of [27]

in discrete time, i.e., for the sequence (Zn)n=1,2,..., under the assumption VarZ1 <∞.

Theorem 1.2.9. For Zt and m(t) as defined above, if λ > 1 then as t → ∞, Z̃t =

Zt/m(t) converges almost surely to a random variable W satisfying P(W > 0) =

P(Zt > 0 ∀t > 0) > 0.

The proof uses the fact that Z̃t is a martingale, which means that E(Z̃t+s | Z̃t) = Z̃t

for t, s > 0. Under fairly mild assumptions, martingales converge; see for example

Chapter 4 in [13] for some martingale convergence theorems. A useful corollary is the

following.

Corollary 1.2.10. For λ > 1, let Zt and W be as in Theorem 1.2.9. For fixed

C > 1/(1− λ) and ε > 0, lim infN→∞ P(ZC logN ≥ εN | Z0 = 1) ≥ P(W > 0) > 0.

Proof. In the notation of Theorem 1.2.9, Zt ≥ εN if and only if Z̃t ≥ εNe−(λ−1)t.

Setting t = C logN , εNe−(λ−1)t = εN1−(λ−1)C , which→ 0 as N →∞ if C > 1/(λ−1).

Thus, for each δ > 0, if N is large enough then P(ZC logN ≥ εN) ≥ P(Z̃C logN ≥ δ),

which implies that lim infN→∞ P(ZC logN ≥ εN) ≥ P(W ≥ δ). By continuity of

measure, lim infN→∞ P(ZC logN ≥ εN) ≥ P(W > 0), as desired.
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Using Theorem 1.2.9 and the fact that P(Zt > 0) ≤ m(t) we can show the following

result. This is analogous to a result from Chapter 2, proved here for the contact

process.

Theorem 1.2.11. Let (At)t≥0 denote the contact process on KN with transmission

rate λ/N per edge, and let It = |At|. Then,

• if λ < 1, there is C > 0 not depending on N so that from any initial configura-

tion, IC logN = 0 with probability tending to 1 as N →∞, and

• if λ > 1, starting from a single infectious site, there are ε, p, C,N0 > 0 not

depending on N so that P(It ≥ εN for some t ≤ C logN) ≥ p > 0 for all

N ≥ N0.

Proof. In the case λ < 1, by monotonicity it is enough to consider the initial config-

uration with I0 = N . By Lemma 1.2.6, It is dominated by the branching process Zt

with Z0 = N that decreases by 1 at rate Zt and increases by 1 at rate λ. In this case

m(t) = Ne(λ−1)t since m(0) = N , so P(ZC logN > 0) ≤ m(C logN) = Ne(λ−1)C logN =

N1+(λ−1)C which tends to 0 as N →∞ provided C > 1/(1− λ).

For λ > 1, we need to lowerbound It by a branching process. We note that

• It decreases by 1 at rate It and

• It increases by 1 at rate It(N − It)λ/N

and if λ > 1 then for ε > 0, for x ≤ εN , x(N −x)λ/N ≥ λ(1− ε)x. Letting Zt denote

the branching process with Z0 = 1 that decreases by 1 at rate Zt and increases by 1

at rate λ(1 − ε)Zt, since both are Markov chains on {0, 1, ...} and their rates satisfy

the desired inequality, a simple coupling argument shows that It dominates Zt so long

as Zt ≤ εN . If ε is such that λ(1− ε) > 1, then Corollary 1.2.10 applies to show that

for C > 1/(λ − 1), some p > 0 and N large enough, P(ZC logN ≥ εN) ≥ p > 0, and

the result follows by comparison.

1.2.4 Comparison to Mean-Field Equations

Recall the contact process on the complete graph KN with V = {1, ..., N} and E =

{xy : x, y ∈ V, x 6= y} introduced in the previous section. Starting from a single

infectious site and picturing the process as a random subset At ⊂ V of infectious

sites, we find for the cardinality It = |At| that
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• It decreases by 1 at rate It and

• It increases by 1 at rate It(N − It)λ/N

In particular, It is a Markov chain on {0, 1, ...}. Considering the rescaled value it =

It/N we find that

• it decreases by 1/N at rate Nit and

• it increases by 1/N at rate it(1− it)λN

In a small time increment h > 0, E(it+h − it | it) = [−it + it(1− it)λ]h + o(h), while

E((it+h − it)2) = O(h2), which implies Var(it+h − it) = O(h2), so we should expect

sample paths of it to approach solutions to the differential equation

i′ = −i+ λi(1− i)

which we justifiably call the mean-field equation or MFE for the contact process on

KN . Although we do not prove it here, using the techniques of Chapter 2 we can

show the following approximation theorem.

Theorem 1.2.12. Let i0 be fixed, with it the above process, and let i(t) be a solution

of the mean-field equation with i(0) = i0. For each ε, T > 0, there is γ > 0 so that

P(|it − i(t)| ≤ ε for 0 ≤ t ≤ T ) ≥ 1− e−γN .

Even without this result, we can get some useful information for it from the MFE:

• if λ < 1 the MFE has the unique equilibrium i = 0 which is stable on [0, 1], and

in Theorem 1.2.11 we showed that it → 0 within time C logN with probability

tending to 1 as N →∞, so it and i(t) are at least qualitatively similar in that

case.

• If λ > 1 the MFE has the unique non-trivial equilibrium i∗ = 1 − 1/λ. In this

case we can show that starting from i0 ≥ i∗ the infection persists for a long

time, in the sense that for fixed small enough ε > 0, there is γ > 0 so that

P(it ≥ i∗ − ε for 0 ≤ t ≤ eγN | i∗ ≥ i0) ≥ 1− e−γN

We give just a sketch of the proof of this last fact; for a rigorous treatment of similar

results see Chapters 2. Fix ε > 0 such that i∗ − ε > 0 and 0 < α < 1, then while
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it ∈ [i∗ − ε, i∗ − αε], it dominates a random walk xt that decreases by 1/N at rate

N(i∗−αε) and increases by 1/N at rate Nλ(i∗− ε)(1− (i∗− ε)). If ε is small enough

and α close enough to 1 then xt has positive drift, since λ > 1 and

λ(i∗ − ε)(1− (i∗ − ε))− (i∗ − αε) = [λi∗(1− i∗)− i∗] + (2λi∗ − λ+ α)ε− λε2

= (2λ(1− 1/λ)− λ+ α)ε− λε2

= (λ+ α− 2)ε− λε2

using the definition of i∗. If it enters the interval [i∗ − ε, i∗ − αε], one can show the

probability it exits at the lower end is at most e−γN for some γ > 0; intuitively this is

because it has to make order of N steps down, each of which has probability at most

p < 1/2 for some p not depending on N . A rigorous proof uses domination of it and

the formula for the hitting probability.

To push this to the desired result we need to control the amount of time taken at

each excursion. One way to do this is to break [i∗ − ε, i∗ − αε] into two subintervals

U1, U2 of equal width. Letting c1 < c2 < c3 be the endpoints of U1 and U2, if it reaches

c2 then it reaches c1 before c3 with probability at most e−γN , and the time required

to reach one of c1 or c3 from c2 is of at least constant order. Iterating this observation

and taking a union bound, after eγN/2 visits to c2, which takes order of eγN/2 amount

of time, it reaches c1 with probability at most eγN/2e−γN = e−γN/2. It then suffices

to show the lower bound on the time required at each attempt holds with probability

≥ 1− e−γN for some γ > 0.

1.3 Statement of Results

Here we introduce the models considered in each of the main chapters, and give a

brief overview of the main results. Three of the chapters appear or will appear as

published papers: Chapter 2 as [20], Chapter 4 as [19] and Chapter 5 as [17]. We also

note the paper [18] that concerns a stochastic growth model but is not included here.

1.3.1 Social contact processes and the partner model

In Chapter 2 we consider a stochastic model of infection spread on a graph (V,E) in-

corporating some form of social dynamics. In other words, we have a process Et ⊆ E
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that describes the set of active edges as a function of time, and the model behaves

like the contact process except that transmission can only occur along active edges.

In our case, the edge process Et is such that edges become active at some rate r+,

and inactive at some other rate r−, independently of other edges and not depending

on the state (healthy or infectious) of each site. To make things interesting we add

the restriction of monogamy, which means that xy ∈ E \ Et can only become active

if xz, yz /∈ Et for every z ∈ V . Altogether, this gives the following transitions that

determine (Vt, Et), the set of infectious sites and active edges as a function of time:

• if x /∈ Vt, y ∈ Vt and xy ∈ Et then x ∈ Vt at rate λ,

• if x ∈ Vt then x /∈ Vt at rate 1,

• if xy /∈ Et and xz, yz /∈ Et for all z ∈ V then xy ∈ Et at rate r+/N ,

• if xy ∈ Et then xy /∈ Et at rate r−

In this model we think of connected pairs as partners, so we call it the partner model.

For simplicity, we study the model on the sequence of complete graphs KN on N

vertices, where N will tend to ∞; this is a reasonable model for, say, the spread of

a sexually transmitted infection through a homogeneous population of monogamous

homosexual individuals in a big city. We rescale the partner formation rate per edge

to r+/N to ensure that a given individual in a pool of entirely singles finds a partner

at total rate approximately r+. For future reference, we use interchangeably both

the words healthy and susceptible, and the words unpartnered and single, to describe

respectively an individual that is not infectious, and an individual that does not have

a partner. Even in this simple model, as described below, there is a phase transition

between extinction and spread of the infection.

For the partner model we are mostly concerned not with the exact values of Vt

and Et but with the total number of susceptible and infectious singles St and It and

the total number of partnered pairs SSt, SIt, IIt of the three possible types; as shown

in Section 2.5, for each N , (St, It, SSt, SIt, IIt) is a continuous time Markov chain.

In general it will be more convenient to work with the rescaled quantities st = St/N ,

it = It/N , sst = SSt/N , sit = SIt/N , and iit = IIt/N .
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A
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r+y
∗ λ

r− r−

Figure 1.2: Markov Chain used to compute R0, with transition rates indicated; infec-
tious sites in black

Starting from any configuration, after a short time the proportion of singles yt :=

st + it approaches and remains close to a certain fixed value y∗ ∈ (0, 1) that we can

compute and that does not depend on N ; a proof of this is given in Section 2.6, and

a heuristic argument in Section 2.3. Setting α = r+/r−, we find

y∗ = 1/(2α)[−1 +
√

1 + 4α] (1.3.1)

To decide whether the infection can spread we start with V0 = {x} for some x ∈ V
with x single and yt ≈ y∗, and keep track of x until the first moment when x either

• recovers without finding a partner, or

• if it finds a partner before recovering, breaks up from that partnership.

This leads to the Markov chain shown in Figure 1.2. Define the basic reproduction

number

R0 = P(A→ F ) + 2P(A→ G) (1.3.2)

which is the expected number of infectious singles upon absorption of the above

Markov chain, starting from state A. As intuition suggests, and Theorem 2.2.2 con-

firms, the infection can spread if R0 > 1, but cannot spread if R0 ≤ 1.

If the dynamics is in equilibrium i.e., (st, it, sst, sit, iit) hovers around a fixed value
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(s∗, i∗, ss∗, si∗, ii∗), then in particular the proportion of infectious singles is roughly

constant. Three events affect infectious singles:

• I → S, which occurs at rate It = itN ,

• I + I → II which occurs at rate (r+/N)
(
It
2

)
≈ r+(i2t/2)N , and

• S + I → SI which occurs at rate (r+/N)ItSt = r+itstN .

If a partnership is formed, then as above, we can compute the expected number of

infectious singles upon breakup. Fixing it = i for some i ∈ [0, y∗] and st+it = y∗ in the

above rates, define the normalizing constant z = 1+r+i/2+r+(y∗−i) = 1+r+(y∗−i/2)

and the probabilities pS = 1/z, pII = r+i/2z and pSI = r+(y∗ − i)/z and referring

again to Figure 1.2 let

∆(i) = pS∆S + pII∆II + pSI∆SI (1.3.3)

where ∆S = −1, ∆II = −2 + P(C → F ) + 2P(C → G) and ∆SI = −1 + P(B →
F ) + 2P(B → G). The function ∆(i) tracks the expected change in the number of

infectious singles, per event affecting one or more infectious singles. Thus, for an

equilibrium solution we should have ∆(i∗) = 0. As shown in Lemma 2.4.3, to have a

solution i∗ > 0, we need R0 > 1.

As we will see in Lemma 2.4.1, for fixed r+, r−, R0 is continuous and increasing

in λ. Defining

λc = sup{λ ≥ 0 : R0 ≤ 1} (1.3.4)

with supR+ :=∞, it follows that if λc =∞ then R0 < 1 for all λ, and if λc <∞ then

R0 < 1 if λ < λc, R0 = 1 if λ = λc and R0 > 1 if λ > λc. The following result gives a

formula for λc and describes the behaviour of i∗ near λc. In models exhibiting a phase

transition one often seeks a critical exponent γ such that for an observable F (λ) it

holds that F (λ) ∼ C(λ− λc)γ; as we see here, in this model the critical exponent for

i∗ is equal to 1. The following two theorems are the main results of Chapter 2.

Theorem 1.3.1. Let y∗, R0,∆(i) and λc be as in (1.3.1), (1.3.2), (1.3.3) and (1.3.4)

and let r+, r− be fixed. Then, λc <∞⇔ r+y
∗ > 1⇔ r+ > 1 + 1/r− and in this case

λc =
2

r−

2

r+y∗ − 1
+

2

r−
+

4

r+y∗ − 1
+ 1 +

r−
r+y∗ − 1
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If R0 > 1 there is a unique solution i∗ ∈ (0, y∗) to the equation ∆(i∗) = 0 and

i∗ ∼ C(λ− λc) as λ ↓ λc, for some constant C > 0.

As the following result implies, R0 > 1 is both a necessary and a sufficient con-

dition for spread and long-time survival of the infection, and for the existence of a

unique and globally attracting endemic equilibrium.

Theorem 1.3.2. Fix λ, r+, r− and let y∗, R0 and ∆(i) be as defined in (1.3.1), (1.3.2)

and (1.3.3).

• If R0 ≤ 1, for each ε > 0 there are constants C, T, γ > 0 so that, from any

initial configuration, |VT | ≤ εN with probability ≥ 1− Ce−γN .

• If R0 < 1, there are constants C, T, γ > 0 so that, from any initial configuration,

all sites are healthy by time T+C logN with probability tending to 1 as N →∞.

• If R0 > 1, there is a unique vector (s∗, i∗, ss∗, si∗, ii∗), satisfying i∗ > 0, s∗+i∗ =

y∗ and ∆(i∗) = 0, such that

– for each ε > 0, there are constants C, T, γ > 0 so that, from any initial con-

figuration with |V0| ≥ εN , with probability ≥ 1−Ce−γN , |(st, it, sst, sit, iit)−
(s∗, i∗, ss∗, si∗, ii∗)| ≤ ε for T ≤ t ≤ eγN , and

– there are constants δ, p, C, T > 0 so that, from any initial configuration

with |V0| > 0, with probability ≥ p, |VT+C logN | ≥ δN .

To obtain the value of the endemic equilibrium and the behaviour when |V0| ≥ εN ,

which we call the macroscopic regime, we use the mean-field equations which are

a set of differential equations that give a good approximation to the evolution of

(st, it, sst, sit, iit) when N is large. To describe the behaviour when 1 ≤ |V0| ≤ εN for

small ε > 0, which we call the microscopic regime, we use comparison to a branching

process; if R0 < 1 we bound above and if R0 > 1 we bound below.

1.3.2 The SEIS process

The SEIS model, or susceptible-exposed-infectious-susceptible model, is a model of

the spread of an infection that in addition to the usual susceptible (healthy) and in-

fectious classes includes an exposed class that is infected but not yet infectious. The

classical model, called the compartment model, is deterministic and consists of a set
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of three differential equations describing the evolution of the number of susceptible,

exposed and infectious individuals, which for simplicity are taken to be real-valued

(see [5], Chapter 2). The model has either a globally stable disease-free state or an

unstable disease-free state together with a globally stable endemic state, according

as the basic reproduction number for the infection is ≤ 1 or > 1; see [28] for a proof

using Lyapunov functions.

Now, the classical SEIS model is deterministic and assumes that the population

is well-mixed. Here we consider the SEIS model as a stochastic growth model with

state space {0, 1, 2}V , where 0 is susceptible, 1 is exposed and 2 is infectious. To

distinguish it from the compartment model, we use “SEIS process” to refer to the

SEIS model as a stochastic growth model. Given the infection parameter λ > 0 and

incubation time τ ≥ 0 the model has the following transitions: at each site x,

• 2→ 0 at rate 1 (recovery)

• 1→ 2 at rate 1/τ or instantaneously if τ = 0 (onset)

• 0→ 1 at rate λn2(x) (transmission)

where n2(x) is cardinality of the set {xy ∈ E : y is in state 2 }. The case τ = 0 is the

contact process with transmission parameter λ. The SEIS process can be constructed

graphically as described in Section 1.2.1, using ×, ? and ↔ labels for recovery, onset

and transmission; this is done in detail in Chapter 3. For the SEIS process we cannot

directly use the notion of active paths to define the state at a spacetime point (x, t).

Given that τ = 0 gives the contact process, it is natural to ask whether we obtain

a limiting process as τ → ∞. The answer is yes, if we rescale time so that onset

occurs at rate 1. We first describe the limit process, then state the sense in which

the SEIS process converges to it.

The limit process has the state space {0, 1}V where 1 can be thought of as occu-

pied and 0 as vacant. The process is defined using the dispersal distributions p(x, ·),
given as follows. Starting the contact process, on the given graph, with x being the

only initially infectious site, p(x,A) is the probability that x transmits the infection

directly to each site in A, and not to any other sites, before recovering. Each occupied

site x becomes vacant at rate 1 (i.e., at the ringing times of an independent Poisson
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process with intensity 1), and upon vacating, with probability p(x,A) occupies any

vacant sites in A.

We note there is an obvious graphical representation of the limit process: at each

site place a Poisson point process with intensity 1 and label ?, and at each occurrence

of ? at site x sample the dispersal distribution p(x, ·), placing a → label from x to

y for each y to which x disperses, and let the samples be independent. A similar

notion of active paths can be defined as for the contact process, and using this it is

easy to see the limit process is monotone, and is also monotone in λ. For the latter

property, for λ < λ′ make a joint construction by coupling dispersal distributions

in the obvious way. Thus the limit process has a critical value that we denote λ∞c

such that single-site survival occurs for λ > λ∞c , and does not occur if λ < λ∞c . The

following result describes convergence of the SEIS process to the limit process.

Theorem 1.3.3. For fixed λ, let ξt denote the SEIS process on a countable graph

with bounded degree, under the rescaling t 7→ t/τ , and let ζt denote the limit process.

Let S = {t : ξt(x) = 2 for some x} denote the set of times when the rescaled SEIS

process has an infectious site. Fix T > 0 and an initial state with no infectious sites

and finitely many exposed sites, then for each τ there is a coupling of ξt and ζt so that

with probability tending to 1 as τ →∞,

• ζt = ξt for t ∈ [0, T ] \ S and

• `(S ∩ [0, T ])→ 0 where ` is Lebesgue measure on the line.

The main idea of the proof is that with probability tending to 1 as τ →∞ in the

SEIS process, between any two onset events a recovery event occurs, and when this

happens the SEIS process behaves like the limit process. The assumption of finitely

many initially active sites is necessary.

Unlike the contact process or the limit process, with respect to the obvious graph-

ical representation, for τ > 0 the SEIS process is not monotone in the partial order

induced by the order 0 < 1 < 2 on types (or, it can be checked, for any other order,

though 0 < 2 < 1 is the only other real possibility), since if we take configurations

η ≤ η′ with η(x) = 1 and η′(x) = 2 the 2 can flip to a 0 before the 1 becomes a 2, since

type 1 ignores recovery labels. Intuitively, this makes sense because although type
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Table 1.1: Lower bounds on λ−c (τ)
τ 104 103 100 10 1 0.58 1/10 1/100 10−3 10−4

λ−c (τ) > 1.57 1.57 1.56 1.45 1.15 1.13 1.24 1.32 1.34 1.34

2 can spread the infection while type 1 cannot, type 1 is not vulnerable to recovery

events while type 2 is.

So, lacking monotonicity, we define the following two critical values for the SEIS

process; note Pλ,τ denotes the law of the process with parameters λ, τ .

λ−c (τ) = sup{λ′ : Pλ,τ (ξt dies out ||ξ0| <∞) = 1 if λ < λ′}

λ+c (τ) = inf{λ′ : Pλ,τ (ξt survives ||ξ0| > 0) > 0 if λ > λ′}

Clearly, λ−c (τ) ≤ λ+c (τ) for each τ . The next result gives quantitative estimates on

critical values, both for the SEIS process and for the limit process, on Z, i.e., on the

graph G = (V,E) with V = Z and E = {xy : |x− y| = 1}.

Theorem 1.3.4. For the SEIS process on Z, λ+c (τ) < 6.875 when τ ≤ 1/10, and

λ−c (τ) has the lower bounds given in Table 1. For the limit process on Z, 1.944 <

λ∞c < 8.563.

Lower bounds on λ− are obtained using the method of [51] applied to a monotone

process that upperbounds the SEIS process, and the upper bound on λ+ for small τ

is obtained with the method of [10] applied to a monotone process that lowerbounds

the SEIS process. In both cases the estimates are achieved with the assistance of

a computer and are rigorous up to the rounding error on computations. Unfortu-

nately, in this case each lower bound on λ− is computed for a single value of τ ; it is

possible to make guesses by interpolating, but these are not a priori rigorous. Note

also that the lower bounds suggest, but again do not prove, that the critical value

of the upperbound process has a unique minimum near τ = 0.58 and is otherwise

increasing/decreasing. Numerical simulations of the SEIS process on Z suggest that

λ−c (τ) = λ+c (τ) and that this value increases monotonically from about 1.6 at τ = 0

to about 2.4 as τ →∞.
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For the limit process, the lower bound is obtained using the method of [51] and

the upper bound, using the method of [10]. To distinguish it from other critical values

we let λ0c denote the critical value of the contact process. For the contact process on

V = Z with E = {xy : |x− y| = 1}, 1.539 ≤ λ0c ≤ 1.942 (lower bound from [51] and

upper bound from [33]), and from the upper bound together with our estimate we

note that the strict inequality λ∞c > λ0c holds.

Using different methods, we obtain some “qualitative” estimates on critical values.

Theorem 1.3.5. For the SEIS process on Z,

• there exists λ0 <∞ such that λ+c (τ) < λ0 for all τ ,

• λ+(τ), λ−(τ)→ λ0c as τ → 0 and

• λ+(τ), λ−(τ)→ λ∞c as τ →∞.

We show only that λ0 <∞ exists, as it seems difficult to get any sort of realistic

estimate. The proof uses a comparison to oriented percolation with a bit of work

to get around the lack of monotonicity. Convergence of λ+, λ− as τ → 0 is proved

in both cases by passing to a sequence of finite systems and using continuity with

respect to parameters. Convergence of λ+, λ− as τ → ∞ is proved in the same way,

with a couple of technical points that first need to be proved for the limit process.

1.3.3 New results for the two-stage contact process

Next we consider a natural generalization of the contact process. This model was

first introduced in [29], and we can think of it as a model of population growth in

which each individual goes through a juvenile stage before maturing and being able to

produce offspring. Given an undirected graph G = (V,E) the state space is {0, 1, 2}V

and the transitions are

0 → 1 at rate λn2

1 → 2 at rate γ

1 → 0 at rate 1 + δ

2 → 0 at rate 1
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where n2(x) is the cardinality of the set {y ∈ V : xy ∈ E, ξ(y) = 2}. State 0 is

unoccupied, state 1 represents a juvenile individual and state 2 is a mature individual.

In [29], some basic properties of the model are established. The model is shown to

be additive and monotone with respect to the natural partial order on configurations,

and is also shown to be monotone increasing in λ and γ and monotone decreasing

in δ. Note that for monotonicity with the natural order 0 < 1 < 2 on types it is

important that the rate 1→ 0 is at least as large as the rate 2→ 0, i.e., that δ ≥ 0,

otherwise the 1s have some advantage over the 2s, as was the case for the SEIS model.

A duality relation is proved, and some bounds are given on the set of parameter val-

ues such that the population survives with positive probability, starting from a single

occupied site. In Chapter 4 we simplify the proof of the duality relation given in [29]

and answer most of the open questions posed in Section 4 of that paper.

The first result is a lower bound on the set of values γ so that the process dies

out, i.e., reaches the all 0 configuration, with probability 1. The bound depends only

on the maximum degree M = maxx deg x of the graph.

Theorem 1.3.6. If γ < 1/(2M −1) then starting from any finite number of occupied

sites, the process dies out for any value of λ and δ.

This answers question 6 in [29], where the author supplies a bound for Z1 in the

case of nearest neighbour interactions, and asks whether a bound exists for other

interactions, or for Zd with d > 1.

The next result shows that the two notions of survival for the two-stage con-

tact process coincide, answering question 1 in [29] affirmatively. For terminology see

Sections 4.3.1 and 4.3.5.

Theorem 1.3.7. For the two-stage contact process on Zd, single-site survival occurs

if and only if the upper invariant measure is non-trivial.

The proof uses the construction of [3] to show that for both the process and its

dual, single-site survival implies the upper invariant measure is non-trivial.

An important question for growth models is that of complete convergence, which

we show is true for the two-stage contact process, answering question 3 in [29]. Here
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λc is the critical value for single-site survival as defined in Section 4.3.1 and µt denotes

the distribution of the process at time t.

Theorem 1.3.8. If λ > λc then complete convergence holds, i.e.,

ξt ⇒ αδ0 + (1− α)ν

where ν is the upper invariant measure, δ0 concentrates on the configuration with all 0s

and α = Pµ0(ξt dies out ) where Pµ0 is the law of the process with initial distribution

µ0.

1.3.4 Duality and complete convergence for multi-type addi-

tive growth models

Here we consider a fairly general class of growth models on a state space F V , where F

is a finite set. We are interested in additive models, which are defined as follows. Say

that an operation ∨ on F is a join operation if for all a, b ∈ F , a∨ b ∈ F , a∨ b ≥ a, b,

and c ≥ a, b⇒ c ≥ a∨ b. A model is additive with respect to ∨ if there is a graphical

construction of the model in which the same property holds as described in Section

1.2.1 for the contact process, i.e., letting ξ0, ξ
′
0, ξ
′′
0 be initial configurations and let-

ting ξt, ξ
′
t and ξ′′t denote the respective processes with those initial configurations, if

ξ′′0 = ξ0 ∨ ξ′0 then ξ′′t = ξt ∨ ξ′t for t > 0.

Subject to a mild technical condition that ensures the graphical construction leads

to a well-defined and unique process, we can show the following for additive growth

models.

Theorem 1.3.9. An additive growth model has a dual process that is an additive

growth model.

As it turns out, an additive growth model has a natural extension to what we

call a multi-colour additive growth model, in which there is a primitive set of types

Fp ⊂ F generating F in a unique way, i.e., any b ∈ F is equal to a1 ∨ ...∨ ak for some

a1, ..., ak ∈ Fp in exactly one way. The upshot of a multi-colour growth model is that

the converse of the above result holds.

Theorem 1.3.10. If a multi-colour growth model has a dual, then the model is ad-

ditive.
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This is shown by first showing the dual is additive, then showing that its dual is

additive, and identifies with the original model.

Lastly we show that subject to some additional hypotheses, an additive growth

model on the lattice Zd exhibits complete convergence in the same sense as for the

two-stage contact process described above. To check that the upper invariant measure

ν is well-defined it suffices that the model be monotone, that its generator be “nice

enough” (the precise condition used in [32] is the Feller condition, which is true of

all the models we consider) and that there be a largest configuration to start from.

Monotonicity is implied by additivity if we use the partial order defined by ξ ≤ ξ′ if

and only if ξ′ = ξ ∨ ξ′. A largest configuration can be obtained by setting the state

at each site to be equal to
∨
a∈F a. We first state the result, and then explain the

terminology and the notions required to understand it.

Theorem 1.3.11. An additive growth model on Zd that is translation-invariant, sym-

metric, has finite range, is irreducible, and has only productive and destructive in-

teractions exhibits complete convergence, that is, letting µt denote the distribution at

time t, for any µ0 it holds that

µt ⇒ αν + (1− α)δ0

where the upper invariant measure ν is the weak limit starting from the largest con-

figuration and α = P(|ξt| > 0 ∀t > 0). Moreover, single-site survival is equivalent to

the condition ν 6= δ0.

Translation-invariant, symmetric and finite range means that transitions look the

same from each site, look the same after permuting coordinates, and can only involve

sites separated by distance at most M for some M > 0. Irreducibility means that for

any finite V0 ⊂ V and any φ, ψ : V0 → F , it is possible to go from ξ(x) = φ(x) for all

x ∈ V0 to ξ(x) = ψ(x) for all x ∈ V0, via some sequence of transitions.

The condition of productive and destructive interactions means that at a given

transition, either every configuration will increase or stay the same, or else every

configuration will decrease or stay the same. This condition is related to positive cor-

relations, defined as follows. Define an increasing function f : F V → R to be one with

ξ ≤ ξ′ ⇒ f(ξ) ≤ f(ξ′), and say that a distribution µ on F V has positive correlations

if Eµfg ≥ EµfEµg for all increasing functions f, g. Then letting µt, t ≥ 0 denote the
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distribution of ξt, say that ξt preserves positive correlations if µt has positive correla-

tions for t > 0 provided µ0 has positive correlations.

To show complete convergence, we need both the model and its dual to preserve

positive correlations, and it is the condition of productive and destructive interactions

that ensures this is the case. Note that the two-stage contact process described

above can easily be shown to preserve positive correlations, using the following useful

condition due to Harris.

Theorem 1.3.12 ([25]). Let ξt be a growth model for which monotonicity holds as

described in Section 1.2.1. Then, ξt preserves positive correlations if and only if tran-

sitions are only between comparable states, i.e., letting ξt−(x) denote lims→t− ξs(x),

for each finite V0 ⊂ V , either ξt(x) ≤ ξt−(x) for all x ∈ V0 or ξt(x) ≥ ξt−(x), for all

x ∈ V0.
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Chapter 2

Social Contact Processes and the

Partner Model

This chapter consists of the journal article [20] of the same title, accepted for publi-

cation to Annals of Applied Probability.

Abstract

We consider a stochastic model of infection spread on the complete graph on N

vertices incorporating dynamic partnerships, which we assume to be monogamous.

This can be seen as a variation on the contact process in which some form of edge

dynamics determines the set of contacts at each moment in time. We identify a basic

reproduction number R0 with the property that if R0 < 1 the infection dies out by

time O(logN), while if R0 > 1 the infection survives for an amount of time eγN

for some γ > 0 and hovers around a uniquely determined metastable proportion of

infectious individuals. The proof in both cases relies on comparison to a set of mean-

field equations when the infection is widespread, and to a branching process when

the infection is sparse.

2.1 Introduction

The contact process is a well studied model of the spread of an infection, in which an

undirected graph G = (V,E) determines a collection of sites V and edges E which we

can think of as individuals and as links between individuals along which the infection
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can be transmitted. Each site is either healthy or infectious; infectious sites recover

at a certain fixed rate which is usually normalized to 1, and transmit the infection to

each of their neighbours at rate λ.

The contact process has been studied in a variety of different settings, including

lattices [7],[3],[32],[34] (to cite just a few), infinite trees [42], power law graphs [45]

[37], and complete graphs [43]. In each case there is a critical value λc below which

the infection quickly vanishes from the graph, and above which the infection has a

positive probability of surviving either for all time (if the graph is infinite), or for

an amount of time that grows quickly (either exponentially or at least faster than

polynomially) with the size of the graph; in the power law case λc = 0 so long-time

survival is possible whenever λ > 0.

In a social context, G might describe a contact network in which an edge connects

sites x and y if and only if the corresponding individuals have sufficiently frequent in-

teractions that infection can be spread from one to the other. In the contact process,

the contact network is fixed, that is, a given pair of individuals is either connected

or not connected for all time. However, we can easily imagine a scenario in which

connections form and break up dynamically, which we can model by having edges

open and close according to certain rules; here we use the convention of percolation

theory, in which “open” means there is a connection across the edge; note this is the

opposite of the convention for electric circuits. In this case the edges E represent

possible connections and we have a process Et ⊆ E that describes the set of open

edges as a function of time. This type of process we will call a social contact process,

since it involves some form of social dynamics.

In the simplest case, edges open and close independently at some fixed rates r+

and r−. In this case the distribution of open edges at a given time converges to the

product measure on {0, 1}E with density r+/(r− + r+). Estimates on the survival

region can then be obtained using the results of [6] and following the pattern of [44].

On the other hand, edge dynamics could depend on the state of the infection; for

example, site x might be less likely to connect with site y, if y is infected. If we then

relax the tendency to avoid infected sites, then for a given value of λ, we might ask

at what point does the infection start to spread, if it does.
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Here we consider edges opening and closing independently as described above but

with the added restriction of monogamy, that is, if two sites are connected (i.e., linked

by an edge) then so long as they remain connected, they cannot connect to other sites.

In this model we think of connected pairs as partners, so we call it the partner model.

For simplicity, we study the model on the sequence of complete graphs KN on N

vertices, where N will tend to ∞; this is a reasonable model for, say, the spread of

a sexually transmitted infection through a homogeneous population of monogamous

homosexual individuals in a big city. We rescale the partner formation rate per edge

to r+/N to ensure that a given individual in a pool of entirely singles finds a partner

at total rate approximately r+. For future reference, we use interchangeably both

the words healthy and susceptible, and the words unpartnered and single, to describe

respectively an individual that is not infectious, or an individual that does not have

a partner. Even in this simple model, as described below, there is a phase transition

between extinction and spread of the infection.

2.2 Statement of Main Results

In order to analyze the partner model we should first ensure that it is well-defined,

so following [26] we give a graphical construction which makes it easy to visualize

its evolution in time and space. We write the model as (Vt, Et) where Vt ⊆ V is the

set of infectious sites at time t and Et ⊆ E is the set of open edges at time t. In

general we assume min(r+, r−, λ) > 0 since if any of the parameters is equal to zero

the dynamics are trivial.

The complete graph KN = (V,E) has sites V = {1, ..., N} and edges E = {{x, y} :

x, y ∈ {{1, ..., N}, x 6= y}. On the spacetime set KN × [0,∞), place independent

Poisson point processes (p.p.p.s) along the fibers {·} × [0,∞) as follows:

• for recovery, at each site with intensity 1 and label ×,

• for transmission, along each edge xy ∈ E with intensity λ and label ↔,

• for partnership formation, along each edge with intensity r+/N and label ↑,

• for partnership breakup, along each edge with intensity r− and label ↓.

These define the probability space Ω, whose realizations ω ∈ Ω consist of collections

of labelled points on KN × [0,∞). Since the graph is finite, the total intensity of
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p.p.p.s is finite, thus with probability 1 events are well-ordered in time. Fixing an

admissible initial configuration (V0, E0) i.e., such that no two edges xy and yz are

both open, we determine (Vt, Et) as follows. For a well-ordered realization with event

times t1 < t2 < t3 < ..., suppose (Vti , Eti) is known. If the event at time ti+1 is

• an × at site x and x ∈ Vti then Vti+1
= Vti \ {x},

• a ↔ along edge xy, xy ∈ Eti , x ∈ Vti and y /∈ Vti then Vti+1
= Vti ∪ {y},

• a ↑ along edge xy and xz, zy /∈ Eti for all z then Eti+1
= Eti ∪ {xy},

• a ↓ along edge xy and xy ∈ Eti then Eti+1
= Eti \ {xy}.

Otherwise the configuration is unchanged. This gives (Vt, Et) at times t0 := 0, t1, t2, ...;

for t ∈ (ti, ti+1) set Vt = Vti and Et = Eti .

For the partner model we are mostly concerned not with the exact values of Vt

and Et but with the total number of susceptible and infectious singles St and It and

the total number of partnered pairs SSt, SIt, IIt of the three possible types; as shown

in Section 2.5, for each N , (St, It, SSt, SIt, IIt) is a continuous time Markov chain.

In general it will be more convenient to work with the rescaled quantities st = St/N ,

it = It/N , sst = SSt/N , sit = SIt/N , and iit = IIt/N .

Starting from any configuration, as shown in Section 2.6, after a short time the

proportion of singles yt := st + it approaches and remains close to a certain fixed

value y∗ ∈ (0, 1). The computation of y∗ is given in Section 2.3: setting α = r+/r−,

we find that

y∗ = 1/(2α)[−1 +
√

1 + 4α] (2.2.1)

To determine the conditions under which the infection can spread we use a heuris-

tic argument. Once we know the correct values, we can then worry about proving

they are correct. Suppose we start with V0 = {x} for some x ∈ V with x single and

y0 ≈ y∗, and keep track of x until the first moment when x either

• recovers without finding a partner, or

• if it finds a partner before recovering, breaks up from that partnership.

This leads to the continuous time Markov chain shown in Figure 2.1. Each of

A,B, ..., G represents a state for the chain, and arrows show possible transitions,
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A
B C

D E F G

1 1

2

r+y
∗ λ

r− r−

Figure 2.1: Markov Chain used to compute R0, with transition rates indicated; infec-
tious sites are shaded

with the arrow labelled by the transition rate. Shaded circles represent infectious

individuals and unshaded circles, healthy individuals. A pair of circles connected by

a line represents a partnered pair. Starting from A, a single infectious site either

recovers (goes to D) at rate 1, or finds a healthy partner at rate r+y
∗. Infection takes

place at rate λ. If only one individual in a partnership is infectious (state B), then it

recovers at rate 1 (state E), and we don’t need to worry about them any more, since

neither is infectious. If both are infectious (state C), recovery of one or the other

occurs at rate 2. While in a partnership, breakup occurs at rate r−.

Define the basic reproduction number

R0 = P(A→ F ) + 2P(A→ G) (2.2.2)

which is the expected number of infectious singles upon absorption of the above

Markov chain, starting from state A. As intuition suggests, and Theorem 2.2.2 con-

firms, the infection can spread if R0 > 1, and cannot spread if R0 ≤ 1.

If the dynamics is in equilibrium i.e., (st, it, sst, sit, iit) hovers around a fixed value

(s∗, i∗, ss∗, si∗, ii∗), then in particular the proportion of infectious singles is roughly

constant. To compute this proportion we again use a heuristic argument. Three

events affect infectious singles:
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• I → S, which occurs at rate It = itN ,

• I + I → II which occurs at rate (r+/N)
(
It
2

)
≈ r+(i2t/2)N , and

• S + I → SI which occurs at rate (r+/N)ItSt = r+itstN .

If a partnership is formed, then using these rates and Figure 2.1, we can compute the

expected number of infectious singles upon breakup. Fixing it = i for some i ∈ [0, y∗]

and st + it = y∗, define the normalizing constant z = 1 + r+i/2 + r+(y∗ − i) =

1+r+(y∗− i/2) and the probabilities pS = 1/z, pII = r+i/(2z) and pSI = r+(y∗− i)/z
and let

∆(i) = pS∆S + pII∆II + pSI∆SI (2.2.3)

where ∆S = −1, ∆II = −2 + P(C → F ) + 2P(C → G) and ∆SI = −1 + P(B →
F ) + 2P(B → G). The function ∆(i) tracks the expected change in the number of

infectious singles, per event affecting one or more infectious singles. Thus, for an

equilibrium solution we should have ∆(i∗) = 0. As shown in Lemma 2.4.3, to have a

solution with i∗ > 0, we need R0 > 1.

As shown in Lemma 2.4.1, for fixed r+, r−, R0 is continuous and increasing in λ.

Defining

λc = sup{λ ≥ 0 : R0 ≤ 1} (2.2.4)

with supR+ := ∞, it follows that if λc = ∞ then R0 < 1 for all λ, and if λc < ∞
then R0 < 1 if λ < λc, R0 = 1 if λ = λc and R0 > 1 if λ > λc. In models exhibiting

a phase transition one often seeks a critical exponent γ such that for an observable

F (λ) it holds that F (λ) ∼ C(λ − λc)γ. As we see in the statement of the upcoming

Theorem 2.2.1, here the critical exponent for i∗ is equal to 1.

The following two theorems are the main results of this paper. The first result

tells us where and when we should expect a phase transition to occur. In particular,

it gives a formula for λc and describes the behaviour of i∗ near λc.

Theorem 2.2.1. Let y∗, R0,∆(i) and λc be as in (2.2.1), (2.2.2), (2.2.3) and (2.2.4)

and let r+, r− be fixed. Then, λc <∞⇔ r+y
∗ > 1⇔ r+ > 1 + 1/r− and in this case

λc =
2

r−

2

(r+y∗ − 1)
+

2

r−
+

4

r+y∗ − 1
+ 1 +

r−
r+y∗ − 1
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If R0 = R0(λ) > 1 there is a unique solution i∗(λ) ∈ (0, y∗) to the equation ∆(i∗) = 0

and i∗(λ) ∼ C(λ− λc) as λ ↓ λc, for some constant C > 0.

The second result shows that our heuristics are correct. More precisely, R0 > 1 is

a necessary and sufficient condition for spread and long-time survival of the infection.

Moreover, when R0 > 1 there is a unique and globally stable endemic equilibrium

with i∗ > 0 given by ∆(i∗) = 0.

Theorem 2.2.2. Fix λ, r+, r− and let y∗, R0 and ∆(i) be as defined in (2.2.1), (2.2.2)

and (2.2.3).

• If R0 ≤ 1, for each ε > 0 there are constants C, T, γ > 0 so that, from any

initial configuration, with probability ≥ 1− Ce−γN , |VT | ≤ εN .

• If R0 < 1 there are constants C, T, γ > 0 so that, from any initial configuration,

with probability tending to 1 as N →∞ all sites are healthy by time T+C logN .

• If R0 > 1, there is a unique vector (s∗, i∗, ss∗, si∗, ii∗), satisfying i∗ > 0, s∗+i∗ =

y∗ and ∆(i∗) = 0, such that

– for each ε > 0, there are constants C, T, γ > 0 so that, from any initial con-

figuration with |V0| ≥ εN , with probability ≥ 1−Ce−γN , |(st, it, sst, sit, iit)−
(s∗, i∗, ss∗, si∗, ii∗)| ≤ ε for T ≤ t ≤ eγN , and

– there are constants δ, p, C, T > 0 so that, from any initial configuration

with |V0| > 0, with probability ≥ p, |VT+C logN | ≥ δN .

To obtain the value of the endemic equilibrium and the behaviour when |V0| ≥ εN ,

which we call the macroscopic regime, we use the mean-field equations (MFE) in-

troduced in Section 2.5, which are a set of differential equations that give a good

approximation to the evolution of (st, it, sst, sit, iit) when N is large. To describe the

behaviour when 1 ≤ |V0| ≤ εN for small ε > 0, which we call the microscopic regime,

we use comparison to a branching process; if R0 < 1 we bound above and if R0 > 1

we bound below.

The paper is laid out as follows. Sections 2.3 and 2.4 contain the heuristic calcula-

tions that allow us to determine y∗, R0, λc,∆(i) and prove Theorem 2.2.1. In Section

2.3 we give an informal description of the edge dynamics and compute y∗. In Sec-

tion 2.4 we analyze R0, λc,∆(i) and prove Theorem 2.2.1, in two parts: Proposition
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2.4.2 and Proposition 2.4.4. In Section 2.5 we introduce the mean-field equations and

characterize their dynamics. In Sections 2.6, 2.7 and 2.8 we consider the stochastic

process and prove Theorem 2.2.2. In Section 2.6 we develop the tools needed to re-

late the stochastic model to the mean-field equations. In Section 2.7 we prove the

macroscopic part of Theorem 2.2.2, and in Section 2.8 we prove the microscopic part.

2.3 Proportion of Singles

Starting from the total number of singles Yt = St + It the transitions are

• Y → Y − 2 at rate (r+/N)Y (Y − 1)/2

• Y → Y + 2 at rate (N − Y )r−/2

which for yt := Yt/N gives

• y → y − 2/N at rate [r+y(y − 1/N)/2]N = (r+y
2/2)N − r+y/2

• y → y + 2/N at rate [(1− y)r−/2]N

Combining these transitions gives

d

dt
E(yt | yt = y) = −r+y2 + r−(1− y) +

r+y

N

In Lemma 2.6.6 we make a rigorous statement about the behaviour of yt. For now,

though, some heuristics are helpful. Letting y = Y/N and ∆y denote the increment

in y over a time step of size 1/N we find E∆y = O(1/N) while E(∆y)2 = O(1/N2)

which means Var(∆y) = O(1/N2). This suggests that as N → ∞ we should expect

the sample paths of y to approach solutions to the differential equation

y′ = −r+y2 + r−(1− y) (2.3.1)

Notice the right-hand side is positive at y = 0, negative at y = 1 and strictly decreases

with y, so there is a unique and globally stable equilibrium for y ∈ [0, 1], that lies in

(0, 1). Setting y′ = 0 and letting α = r+/r− gives the equation αy2 + y− 1 = 0 which

has the unique solution y∗ = 1/(2α)[−1 +
√

1 + 4α] in [0, 1]. Notice that y∗ ∼ 1− α
as α→ 0+ and y∗ ∼ 1/

√
α as α→∞.
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2.4 Survival Analysis

In this section we analyze R0, λc and ∆(i) which are defined in Section 2.2. We begin

with R0 defined in (2.2.2). Define the recruitment probability pr = r+y
∗/(1+r+y

∗) =

P(A→ E ∪F ∪G) which is the probability of finding a partner before recovering and

depends only on r+, r−. Define a = 1 + λ + r−, b = 2 + r− which are the rates at

which the Markov chain of Figure 2.1 jumps away from states B and C, respectively.

Also, let

σ =
∞∑
k=0

(
λ

a

2

b

)k
=

ab

ab− 2λ

It is easy to check that ab > 2λ. Notice that any path from A to E∪F ∪G must go to

B and then goes around the B,C loop some number of times before being absorbed at

E,F or G, and σ accounts for this looping. Summing probabilities over all possible

paths we find

P(A→ F ) = prσ
r−
a

and P(A→ G) = prσ
λ

a

r−
b

so we obtain the explicit expression

R0 = prσr−(1 + 2λ/b)/a

which after re-substituting and a bit of algebra gives

R0 = prr−
b+ 2λ

ab− 2λ
= prr−

2 + r− + 2λ

2 + 3r− + λr− + r2−
(2.4.1)

Lemma 2.4.1. Fixing r+ and r−, R0 is continuous and increasing with respect to λ.

Proof. Continuity is obvious from the formula above. We write R0(λ) and compute

the derivative R′0(λ), noting that pr is fixed. Letting c1 = 2 + r−, c2 = 2, c3 =

2 + 3r− + r2− and c4 = r−, R0(λ) = prr−(c1 + c2λ)/(c3 + c4λ) so R′0(λ) = prr−(c2c3 −
c1c4)/(c3 + c4λ)2 and c2c3 − c1c4 = 4 + 4r− + r2− > 0 so R′0(λ) > 0.

From this it follows that for fixed r+, r−, if R0(λ) = 1 has a solution then it is

unique and is equal to λc. So, setting R0 = 1 gives

prr−(2 + r− + 2λc) = 2 + 3r− + λcr− + r2− (2.4.2)
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To get a handle on this equation we first examine the limit of large r+ i.e., quick

formation of partnerships. As noted in Section 2.3, y∗ ∼ 1/
√
α =

√
r−/
√
r+ as

α = r+/r− → ∞, so for fixed r−, r+y
∗ ∼ √r−r+ → ∞, and so pr → 1, as r+ → ∞.

Setting pr = 1 in the equation above, after cancelling like terms and dividing both

sides by r− gives

λc = 1 + 2/r−

for fixed r−, when r+ =∞. For the contact process on a large complete graph λc = 1,

so here the only difference is the term 2/r− which makes it harder for the infection

to spread when partnerships last a long time.

Accounting for pr, we still get a fairly nice expression. From (2.4.2), putting all

terms involving λc on the left and all other terms on the right gives

λcr−(2pr − 1) = 2 + (3− 2pr)r− + r2−(1− pr)

Letting β = 2pr − 1 then substituting for β and dividing by r− gives

λcβ = 2/r− + (2− β) + (1/2)r−(1− β) (2.4.3)

This equation suggests that we view λβ as a sort of force of infection, which makes

sense as λ is the transmission rate and β = 2pr − 1 measures the chance of finding

a partner before recovering. Although β depends on r−, −1 ≤ β ≤ 1 regardless, so

we see from (2.4.3) that for fixed λ and r+, if r− is either too small or too large,

the infection cannot spread. The reason for this can be understood as follows: if

r− is too small, partners tend both to recover before breaking up and transmitting

the infection to anyone else, whereas if r− is too large, partnerships do not last long

enough for transmission to occur.

Using (2.4.3) we can now prove the first assertion of Theorem 2.2.1.

Proposition 2.4.2. For fixed r+, r− and λc given by (2.2.4), λc < ∞ if and only if

r+y
∗ > 1, if and only if r+ > 1 + 1/r− and in this case

λc =
2

r−

2

(r+y∗ − 1)
+

2

r−
+

4

r+y∗ − 1
+ 1 +

r−
r+y∗ − 1

Proof. It is easy to check, using the formula y∗ = (r−/(2r+))(−1 + (1 + 4r+/r−)1/2),
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Figure 2.2: Level curves of λc depicted in the r+, r− plane. Starting from the top
curve and going down, λc = 3, 5, 8, 13, 21, 34,∞.

that r+y
∗ > 1 if and only if r+ > 1 + 1/r−. Since β ∈ [−1, 1], the right-hand side

of (2.4.3) is positive, so to have a solution it is necessary that β > 0; dividing by

β on both sides shows that it is also sufficient. Then, observe that β > 0 if and

only if r+y
∗ > 1. To get the formula for λc, divide by β in (2.4.3) and observe that

β−1 − 1 = 2/(r+y
∗ − 1).

Figure 2.2 shows level curves of λc in the r+, r− plane. Using the formula for λc

we can see how it scales in various limits of r+, r− and α. First we see what happens

when we speed up and slow down the partnership dynamics. Let α = r+/r− be fixed

(and by extension, y∗) and let r∗− denote the unique value of r− such that r+y
∗ = 1.

We find that

• λc ↓ 1 + 1/(αy∗) as r+ ↑ ∞ (fast partner dynamics)

• λc(r+y∗ − 1) ↓ 4/r∗− + 4 + r∗− as r+y
∗ ↓ 1 (slow partner dynamics)

In particular, in the limit of fast partner dynamics λc approaches its value for the

contact process on a complete graph, plus a correction for the proportion of available
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singles. In the slow limit i.e., as the recruitment probability approaches 1/2, λc

diverges like 1/(r+y
∗−1), with a proportionality that itself diverges as r∗− approaches

either 0 or ∞. Now we fix r+ > 1 and vary r−. Note that y∗ ↓ 0 as r− ↓ 0.

• as r− ↑ ∞, y∗ ↑ 1, α ↓ 0 and λc/r− ↓ 1/(r+ − 1), and

• as r+y
∗ ↓ 1, λc(r+y

∗ − 1) ↓ 4/r∗− + 4 + r∗−.

Here, in both limits λc diverges, in the first case like r− and in the second case like

1/(r+y
∗ − 1). Finally we fix r− and vary r+, and we find that

• as r+ ↑ ∞, y∗ ∼ 1/
√
α =

√
r−/r+ and λc → 1 + 2/r−, and

• as r+y
∗ ↓ 1, λc(r+y

∗ − 1) ↓ 4/r− + 4 + r−

The first limit agrees with the previous large r+ approximation, and the second limit

shows that when r+y
∗ is close to 1, λ(r+y

∗ − 1)/2 ≈ λ(r+y
∗ − 1)/(r+y

∗ + 1) = λβ

behaves like the force of infection and we require again that r− be neither too small

nor too large in order for the infection to be able to spread.

We now examine ∆(i), defined in (2.2.3).

Lemma 2.4.3. ∆(0) = R0 − 1, and

• if R0 < 1 the equation ∆(i) = 0 has no solution i ∈ [0, y∗],

• if R0 = 1, the equation ∆(i) = 0 has the unique solution i = 0 and

• if R0 > 1 the equation ∆(i∗) = 0 has a unique solution i∗ ∈ (0, y∗).

Proof. Letting z = 1 + r+(y∗ − i/2) we recall the definition:

∆(i) = pS∆S + pII∆II + pSI∆SI (2.4.4)

with pS = 1/z, pSI = r+(y∗ − i)/z, pII = r+i/(2z), ∆S = −1, ∆II = −2 + P(C →
F ) + 2P(C → G) and ∆SI = −1 + P(B → F ) + 2P(B → G), where probabilities are

with respect to the Markov chain in Figure 2.1.
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First we show ∆(0) = R0 − 1. If i = 0 then pS = 1/(1 + r+y
∗) = P(A → D),

pII = 0 and pSI = r+y
∗/(1 + r+y

∗) = P(A→ B) so

∆(0) = −P(A→ D) + P(A→ B)(−1 + P(B → F ) + 2P(B → G))

= −P(A→ D ∪B) + P(A→ F ) + 2P(A→ G)

= −1 +R0

It is easy to check that ∆II ≤ 0, so if ∆SI ≤ 0 then ∆(i) < 0 for i ∈ [0, y∗], since

pS > 0 and ∆S < 0, and the other terms are ≤ 0. Since ∂iz = −r+/2, we find

∂ipS = r+/2z
2 > 0 and ∂ipII = r+/(2z) + r2+i/(4z

2) > 0

and since pSI = 1 − (pS + pII), ∂ipSI = −∂ipS − ∂ipII < 0. If ∆SI > 0 it follows

that ∂i∆(i) < 0 so if R0 < 1 but ∆SI > 0 then ∆(i) ≤ ∆(0) < 0 for i ∈ [0, y∗]. If

R0 ≥ 1 then since 0 ≤ ∆(0) = pS∆S + pSI∆SI and ∆S < 0, it follows that ∆SI > 0

and so ∂i∆(i) < 0. If R0 = 1, then since ∆(0) = 0 it follows that i = 0 is the only

solution in [0, y∗] to the equation ∆(i) = 0. If i = y∗ then pSI = 0 so ∆(y∗) < 0, and

clearly ∆(i) is continuous on [0, y∗]. Therefore, if R0 > 1 then since ∆(0) > 0, by the

intermediate value theorem the equation ∆(i∗) has a solution i∗ ∈ (0, y∗), and since

∂i∆(i) < 0 the solution is unique.

Write ∆(i) as ∆(λ, i) to emphasize the λ dependence. By Lemma 2.4.3 and since

R0 = 1⇔ λ = λc and R0 > 1⇔ λ > λc, for fixed r+, r− such that r+y
∗ > 1, we have

a function i∗(λ) defined for λ ≥ λc satisfying ∆(λ, i∗(λ)) = 0 such that i∗(λc) = 0

and i∗(λ) > 0 for λ > λc. Next we see how i∗ behaves for λ > λc near λc. As usual,

C1 means continuously differentiable.

Proposition 2.4.4. For fixed r+, r− such that r+y
∗ > 1, i∗ ∼ C(λ − λc) as λ ↓ λc

for some constant C > 0.

Proof. Clearly pS, pSI and pII depend only on i and are C1 in a neighbourhood of

0. Also, ∆S is fixed and ∆SI and ∆II depend only on λ and are rational functions

of λ whose range lies in a bounded interval, thus are C1 in a neighbourhood of λc.

Glancing at (2.4.4), this means that ∆(λ, i) is C1 in a neighbourhood of (λc, 0). If

λ ≥ λc then R0 ≥ 1, so as shown in the proof of Lemma 2.4.3, ∂i∆(λ, i) < 0 and in

particular, ∂i∆(λc, 0) 6= 0. Applying the implicit function theorem, there is a unique

C1 function i∗(λ) defined in a neighbourhood of λc (and thus coinciding with the
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previous definition of i∗(λ) when λ ≥ λc) satisfying ∆(λ, i∗(λ)) = 0 and, noting that

i∗(λc) = 0,

i∗(λ) ∼ −(λ− λc)
∂λ∆(λc, 0)

∂i∆(λc, 0)

as λ ↓ λc. A straightforward Markov chain coupling argument shows that ∂λ∆SI , ∂λ∆II >

0, which implies ∂λ∆(λ, i) > 0. Since ∂i∆(λ, i) < 0, the result follows.

2.5 Mean-Field Equations

A set of differential equations defined below are indispensable to our analysis of

the partner model as they enable a (better and better as N increases) approximate

description of the model, when N is large. First we write down the transitions for the

variables introduced in Section 2.2 that track the total number of singles and pairs

of various types; there are ten such transitions. Since the transition rates of the set

of variables (St, It, SSt, SIt, IIt) depends only on its present value, it is a continuous

time Markov chain.

• I → I − 1 and S → S + 1 at rate I,

• S → S − 2 and SS → SS + 1 at rate (r+/N)S(S − 1)/2,

• S → S − 1, I → I − 1 and SI → SI + 1 at rate (r+/N) · S · I,

• I → I − 2 and II → II + 1 at rate (r+/N)I(I − 1)/2,

• SI → SI − 1 and SS → SS + 1 at rate SI,

• II → II − 1 and SI → SI + 1 at rate 2II,

• SI → SI − 1 and II → II + 1 at rate λSI,

• SS → SS − 1 and S → S + 2 at rate r−SS,

• SI → SI − 1, S → S + 1 and I → I + 1 at rate r−SI, and

• II → II − 1 and I → I + 2 at rate r−II.

Focusing now on the rescaled quantities (st, it, sst, sit, iit) = (St, It, SSt, SIt, IIt)/N

and noting the relation st + it + 2(sst + sit + iit) = 1, we shall ignore sst since it plays

no role in the calculations that follow. Also, it will be convenient to use yt := st + it

instead of st. Doing so, the above transitions become
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• i→ i− 1/N at rate iN ,

• y → y−2/N at rate [r+(y−i)(y−i−1/N)/2]N = [r+(y−i)2/2]N−r+(y−i)/2,

• y → y − 2/N , i→ i− 1/N and si→ si+ 1/N at rate r+(y − i)iN ,

• y → y − 2/N , i → i − 2/N and ii → ii + 1/N at rate [r+i(i − 1/N)/2]N =

(r+i
2/2)N − r+i/2,

• si→ si− 1/N at rate siN ,

• ii→ ii− 1/N and si→ si+ 1/N at rate 2iiN ,

• si→ si− 1/N and ii→ ii+ 1/N at rate λsiN ,

• y → y + 2/N at rate [r−((1− y)/2− (si+ ii))]N ,

• si→ si− 1/N , y → y + 2/N and i→ i+ 1/N at rate r−siN , and

• ii→ ii− 1/N , y → y + 2/N and i→ i+ 2/N at rate r−iiN .

As we did for yt in Section 2.3, we derive some differential equations that approximate

the evolution of (yt, it, sit, iit); since we already have an equation for yt we focus on

it, sit, iit. We have

d

dt
E(it | it = i) = −(1 + r+(y − i) + 2r+(i− 1/N)/2)i+ r−(si+ 2ii)

d

dt
E(sit | sit = si) = r+(y − i)i+ 2ii− (1 + λ+ r−)si

d

dt
E(iit | iit = ii) = r+i(i− 1/N)/2 + λsi− (2 + r−)ii

and as before, in a time step of size 1/N the increment in each variable has expected

value O(1/N) while its square has expected value O(1/N2). Adding in the y′ equation

(2.3.1), this suggests again that in the limit as N →∞ we should expect the sample

paths of (yt, it, sit, iit) to approach solutions to the mean-field equations (MFE)

y′ = −r+y2 + r−(1− y) (2.5.1)

i′ = −(1 + r+y)i+ r−(si+ 2ii)

si′ = r+(y − i)i− (1 + λ+ r−)si+ 2ii

ii′ = r+i
2/2 + λsi− (2 + r−)ii
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It is sometimes convenient to replace si with ip := si + ii, where the ip stands for

“infected partnership”. Since si = ip − ii, both forms lead to the same solutions.

After the change of variables we have

y′ = −r+y2 + r−(1− y) (2.5.2)

i′ = −(1 + r+y)i+ r−(ip+ ii)

ip′ = r+(y − i/2)i− (1 + r−)ip+ ii

ii′ = r+i
2/2 + λip− (2 + r− + λ)ii

We will often use the shorthand u′ = F (u) for the MFE (2.5.1) or (2.5.2), where

u ∈ R4. In both cases the MFE have the form y′ = f(y), u′ = G(y, u), where u ∈ R3

i.e., the y dynamics does not depend on the other 3 variables, but it does influence

them; systems of this form are often referred to as skew product. The next three

results have natural analogues for the stochastic model, and in fact the analogue of

Lemma 2.5.2 shows up in Section 2.7 as Lemma 2.7.1. First we show the domain of

interest is an invariant set.

Lemma 2.5.1. The following set is invariant for the MFE:

Λ := {(y, i, ip, ii) ∈ R4
+ : i ≤ y ≤ 1, ii ≤ ip ≤ (1− y)/2}

Proof. We examine the boundary and use the form (2.5.2) of the MFE. If y = 0

then y′ > 0 and if y = 1 then y′ < 0, so [0, 1] is invariant for y. Let u = (i, ip, ii). If

u = (0, 0, 0) then u′ = (0, 0, 0), so (0, 0, 0) is invariant for u. If u 6= (0, 0, 0) and uj = 0

for coordinate j then u′j > 0 (note for ip′ that since i ≤ y, if i > 0 then y − i/2 > 0).

If i = y 6= 0 then since ip+ ii ≤ (1− y), i′ ≤ −y − r+y2 + r−(1− y) = −y + y′ < y′.

If i = y = 0 then i′ ≤ −y + y′ = y′ and since y′ > 0, i′′ ≤ −y′ + y′′ < y′′. For the

remainder we may assume i < y. If ii = ip 6= 0 then ii′ = r+i
2/2 − (2 + r−)ip ≤

r+(y− i/2)i− (2+ r−)ip < ip′ while if ii = ip = 0 then we may assume i > 0 in which

case ii′ = r+i
2/2 < r+(y − i/2)i = ip′.

Written in the form (2.5.2) the MFE have a useful monotonicity property which

is described in the following lemma.

Lemma 2.5.2. Let (y(t), u(t)) and (y(t), v(t)) be solutions to the MFE written in

(y, i, ip, ii) coordinates, and say that u ≤ v ⇔ uj ≤ vj ∀j ∈ {1, 2, 3}. If u(0) ≤ v(0)
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then u(t) ≤ v(t) for t > 0.

Proof. Since trajectories are continuous it suffices to check that if u ≤ v, u 6= v and

uj = vj then u′j < v′j. Referring to (2.5.2), i′ increases with ip and ii, ip′ increases

with i and ii (note ∂i(y− i/2)i = y− i and i ≤ y) and ii′ increases with i and ip.

For what follows we set y = y∗ in which case the MFE are three-dimensional.

Since Λ is invariant,

Λ∗ := {(y, u) ∈ Λ : y = y∗}

is also invariant. Since Λ∗ ∼= {(i, ip, ii) ∈ R3
+ : i ≤ y∗, ii ≤ ip ≤ (1 − y∗)/2} is three-

dimensional, elements of Λ∗ are usually written as a three-vector in either (i, si, ii) or

(i, ip, ii) coordinates.

Lemma 2.5.3. For the MFE (2.5.2) with y = y∗, written as u′ = G(y∗, u), say that

u = (i, ip, ii) is increasing if every coordinate of G(y∗, u) is > 0. For the MFE with

y = y∗ and any solution u(t),

• if (0, 0, 0) is the only equilibrium then u(t)→ (0, 0, 0) as t→∞, and

• if there is a unique equilibrium u∗ 6= (0, 0, 0) and a sequence of non-zero increas-

ing states tending to (0, 0, 0), then for u(0) 6= (0, 0, 0), u(t)→ u∗ as t→∞.

Proof. Defining u := (y∗, (1− y∗)/2, (1− y∗)/2), u ≥ v for all v ∈ Λ∗, so letting u(t)

be the solution to the MFE with u(0) = u, for s ≥ 0, u(0) ≥ u(s). Since y = y∗, by

monotonicity (Lemma 2.5.2) u(t) ≥ u(t + s) for t > 0, so u(t) is non-increasing in t.

Since Λ∗ is compact, limt→∞ u(t) exists and by continuity of the MFE is an equilib-

rium. If (0, 0, 0) is the only equilibrium, then since u(t) ≥ (0, 0, 0), u(t)→ (0, 0, 0) as

t → ∞, so for any solution v(t), since u(0) ≥ v(0), u(t) ≥ v(t) for t > 0, and since

v(t) ≥ (0, 0, 0), v(t)→ (0, 0, 0).

If u(0) is increasing then u(0) 6= (0, 0, 0) and by continuity of the MFE there is

ε > 0 so that u(s) ≥ u(0) for 0 ≤ s ≤ ε. By monotonicity u(t + s) ≥ u(t) for

0 ≤ s ≤ ε and if (k − 1)ε ≤ s ≤ kε, by iterating at most k times u(t + s) ≥ u(t),

so u(t) is increasing for all time. As in the previous case, limt→∞ u(t) exists and is

an equilibrium which in this case is not (0, 0, 0). If there is a unique equilibrium

u∗ 6= (0, 0, 0), and if for any non-zero solution v(t) there is T > 0 so that v(T ) ≥ u

for some increasing u, then setting u(T ) = u, since u(t) ≥ v(t) ≥ u(t) for t ≥ T and

limt→∞ u(t) = limt→∞ u(t) = u∗ it follows that limt→∞ vt = u∗. If v(0) 6= (0, 0, 0) then
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for t > 0, vj(t) > 0 in each coordinate j; this follows from the fact that for j = 1, 2, 3,

v′j ≥ −Cvj for some C, and if vj = 0 but vk > 0 for some k 6= j then v′j > 0. Thus,

fixing T > 0, if v(0) 6= (0, 0, 0) then since ε := minj vj(T ) > 0, if there is a sequence

of increasing states tending to (0, 0, 0) there is an increasing state u with maxj uj ≤ ε

and thus v(T ) ≥ u, as desired.

As the next result shows, on Λ∗ the MFE have a simple dynamics with a bifurcation

at R0 = 1. Since we refer back to quantities from Section 2.4, in this proof we mostly

use (i, si, ii) coordinates.

Theorem 2.5.4. For the MFE,

• if R0 ≤ 1 there is the unique equilibrium (0, 0, 0) which is attracting on Λ∗ and

• if R0 > 1 there is a unique positive equilibrium (i∗, s∗, ii∗) satisfying ∆(i∗) = 0

which is attracting on Λ∗ \ {(0, 0, 0)}.

Proof. By Lemma 2.5.3 it is enough to show that if R0 ≤ 1 then (0, 0, 0) is the

only equilibrium, and that if R0 > 1 there is a unique equilibrium (i∗, si∗, ii∗) 6=
(0, 0, 0) satisfying ∆(i∗) = 0, and a sequence of increasing states converging to (0, 0, 0).

Treating si, ii as a separate system with input function i, we have the non-homogenous

linear system (
si′

ii′

)
=

(
−a 2

λ −b

)(
si

ii

)
+ r+i

(
(y∗ − i)
i/2

)
or, in matrix form, v′ = Kv + Li, with v = (si, ii)>, K =

( −a 2
λ −b

)
and L = r+((y∗ −

i), i/2)>, whose solution is given by

v(t) = Φ(t)v(0) +

∫ t

0

Φ(t− s)L(s)i(s)ds (2.5.3)

where Φ(t) = exp(Kt) is the solution of the associated homogenous system - note

that Φ(t) is the restriction of the transition semigroup for the continuous-time Markov

chain from Figure 2.1 to the states B and C. Substituting the solution for the si, ii

system into the equation for i, we have

i′(t) = −(1 + r+y
∗)i(t) + r−(1, 2)

[
Φ(t)v(0) +

∫ t

0

Φ(t− s)L(s)i(s)ds

]
(2.5.4)

where (1, 2) is a row vector that multiplies the column vector in the square brackets.

This equation depends only on i, the initial values v(0) = (si(0), ii(0))> and the so-
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lution matrix Φ(t).

Linearizing (2.5.4) around (i, si, ii) = (0, 0, 0) and using the ansatz i(t) = exp(µt)

we obtain

µeµt = −(1 + r+y
∗)eµt + r−(1, 2)

[
Φ(t)v0 +

∫ t

0

Φ(t− s)eµsds
]
L0

where L0 = r+(y∗, 0)>, and using Φ(t) = exp(Kt) the integral in the square brackets

is

eKt
∫ t

0

e(µI−K)sds = eKt(µI −K)−1(e(µI−K)t − I) = (µI −K)−1(eµt − eKt)

where I is the identity matrix. Letting t→∞ and noting Φ(t) = eKt → 0 since K is

a stable matrix, we obtain the eigenvalue equation

µ = −(1 + r+y
∗) + r−(1, 2)(µI −K)−1L0

which, expanding, is

µ = −(1 + r+y
∗) + r−

µ+ b+ 2λ

(µ+ b)(µ+ a)− 2λ
r+y

∗ (2.5.5)

and setting µ = 0 gives the equation

1 =
r+y

∗

1 + r+y∗
r−

ab− 2λ
(b+ 2λ)

which, comparing to (2.4.1), is exactly R0 = 1. Recalling that ab− 2λ > 0,

d

dµ

(
µ+ b+ 2λ

(µ+ b)(µ+ a)− 2λ

)
=

(µ+ b)(µ+ a)− 2λ− (µ+ b+ 2λ)(2µ+ b+ a)

[(µ+ b)(µ+ a)− 2λ]2

=
−2λ− [(µ+ b)2 + 2λ(2µ+ b+ a)]

[(µ+ b)(µ+ a)− 2λ]2

is negative when µ ≥ 0. Setting µ = 0 in (2.5.5), the right-hand side is positive if

R0 > 1, so since both sides are continuous in µ, the left-hand side is equal to 0 at

µ = 0 and increases unboundedly as µ increases and the right-hand side decreases

with µ it follows that (2.5.5) has a positive solution µ > 0 when R0 > 1.
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To obtain the increasing states mentioned in Lemma 2.5.3 we show that for R0 > 1

the unstable eigenvector of the linearized system near (0, 0, 0) is strictly positive when

viewed in (i, ip, ii) coordinates; we can then take for the initial states small multi-

ples of the eigenvector. To show the eigenvector is strictly positive, linearize (2.5.3)

around (i, si, ii) = (0, 0, 0) with input i(t) = exp(µt), substitute the solution form

v(t) = v exp(µt) and let t → ∞ to obtain v = (µI − K)−1L0 which has positive

entries, which implies that in (ip, ii) coordinates it also has positive entries.

It remains to look for non-zero equilibria. Focusing again on (2.5.4), as our steady

state assumption we suppose the system was started in the distant past and has

remained in equilibrium up to the present time. Since Φ(t) → 0 as t → ∞ we

ignore Φ(t)v(0), and letting Φ∞ =
∫∞
0

Φ(s)ds = −K−1,
∫ t
0

Φ(t − s)L(s)i(s)ds be-

comes
∫ t
−∞Φ(t− s)L†i†ds = Φ∞L

†i† where L† = r+((y∗ − i†), i†/2)> and i† are the

equilibrium values, and we obtain

(1 + r+y
∗) = r−(1, 2)Φ∞L

†

Notice that r−(1, 2)Φ∞ returns the expected number of infectious singles that result

from an SI or an II partnership upon breakup, so we have r−(1, 2)Φ∞ = (1+∆SI , 2+

∆II) and

(1 + r+y
∗) = r+[(y∗ − i†)(1 + ∆SI) + (i†/2)(2 + ∆II)]

= r+y
∗ + r+[(y∗ − i†)∆SI + (i†/2)∆II ]

and subtracting r+y
∗, 1 = r+(y∗− i†)∆SI +r+(i†/2)∆II which comparing with (2.4.4)

is exactly the equation ∆(i†) = 0, as desired. By Lemma 2.4.3, we have the unique

solution i† = i∗ if R0 > 1, and there is no positive solution when R0 ≤ 1. Using

the steady state assumption and (2.5.3) gives (si†, ii†) = Φ∞L
†i†, that is, si†, ii† are

uniquely determined by i†. This proves uniqueness of the non-zero equilibrium when

R0 > 1 and uniqueness of (0, 0, 0) as an equilibrium when R0 ≤ 1.

Remark 2.5.5. Setting y = y∗ in (2.5.1) and writing the remaining equations in
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matrix form, we have u′ = Au with u = (i, si, ii)> and

A =

−(1 + r+y
∗) r− 2r−

r+(y∗ − i) −a 2

r+i λ −b


that depends on u. Using the technique of [50], if we evaluate A at i = 0 and write it

as F − V with

F =

 0 0 0

r+y
∗ 0 0

0 0 0

 , V =

(1 + r+y
∗) −r− −2r−

0 a −2

0 −λ b


and define R0 = ρ(FV −1) where ρ is the spectral radius, then it can be verified that this

definition of R0 coincides with the one given in (2.2.2). Then, according to Theorem

2 of [50], R0 < 1 implies (0, 0, 0) is locally asymptotically stable, while R0 > 1 implies

it is unstable.

2.6 Approximation by the Mean-Field Equations

In this section we show how to approximate the sample paths of (yt, it, sit, iit) with

solutions to the MFE (2.5.1), and use this to get some control on yt. Unless otherwise

noted, for a vector, | · | denotes the `∞ norm, that is, |u| = maxi |ui|. We begin with

a useful definition.

Definition 2.6.1. An event A depending on a parameter n is said to hold with high

probability or whp in n if there exists γ > 0 and n0 so that P(A) ≥ 1 − e−γn when

n ≥ n0.

When possible, probability estimates are given more or less explicitly, but we will

occasionally use this definition to reduce clutter, especially in Section 2.7. We begin

with a well-known large deviations result for Poisson random variables; since it is not

hard to prove, we supply the proof. For a reference to large deviations theory see

Section 1.9 in [13].
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Lemma 2.6.2. Let X be Poisson distributed with mean µ, then

P(X > (1 + δ)µ) ≤ e−δ
2µ/4 for 0 < δ ≤ 1/2,

P(X < (1− δ)µ) ≤ e−δ
2µ/2 for δ > 0

Proof. We deal separately with X > (1 + δ)µ and X < (1− δ)µ. For t > 0 and using

Markov’s inequality we have

P(X > (1 + δ)µ) = P(etX > e(1+δ)tµ) ≤ EetXe−(1+δ)tµ

Notice that

EetX =
∑
k≥0

etke−µ
µk

k!
= e−µ

∑
k≥0

(etµ)k

k!
= e−µee

tµ = exp((et − 1)µ)

so EetXe−(1+δ)tµ = exp(µ(et − 1 − (1 + δ)t)). Minimizing et − 1 − (1 + δ)t gives

t = log(1 + δ) and thus (1 + δ)− 1− (1 + δ) log(1 + δ) = δ − (1 + δ) log(1 + δ). Since

log(1 + δ) ≥ δ − δ2/2 this is at most δ − (1 + δ)(δ − δ2/2) = −δ2/2 + δ3/2 which is

≤ −δ2/4 for 0 < δ ≤ 1/2.

For the other direction we take a similar approach. For t > 0 and using Markov’s

inequality we have

P(X < (1− δ)µ) = P(e−tX > e−(1−δ)tµ) ≤ Ee−tXe(1−δ)tµ

and using Ee−tX = exp((e−t− 1)µ) the right-hand side above is exp(µ(e−t− 1 + (1−
δ)t)). Minimizing e−t− 1 + (1− δ)t gives −t = log(1− δ) and thus (1− δ)− 1− (1−
δ) log(1− δ) = −δ − (1− δ) log(1− δ). Since log(1− δ) ≥ −δ − δ2/2 this is at most

−δ + (1− δ)(δ + δ2/2) = −δ2/2− δ3/2 ≤ −δ2/2.

For the next three results we use the notation ut = (yt, i,sit, iit). First we give an

a priori bound on the change in ut over a short period of time.

Lemma 2.6.3. Let ut = (yt, it, sit, iit). There are constants C, γ > 0 so that for all

h > 0 and fixed t,

P( sup
t≤s≤t+h

|us − ut| ≤ Ch) ≥ 1− e−γNh
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Proof. Looking to the transitions listed in Section 2.5, jumps in ut are of size ≤ 2/N

and occur at total rate ≤ MN for some M > 0 that depends only on parameters.

Thus in a time step h > 0 the number of events affecting ut is stochastically bounded

above by a Poisson random variable X with mean MNh, so if X ≤ x then |us−ut| ≤
2x/N for all s ∈ [t, t + h]. By Lemma 2.6.2, P(X > (1 + δ)MNh) ≤ e−δ

2MNh/4

for 0 < δ ≤ 1/2. Taking δ = 1/4 and C = 2(1 + δ)M , γ = δ2M/4 completes the

proof.

Let u′ = F (u) denote the MFE (2.5.1). As N becomes large, for small h > 0 we

expect that with probability tending to 1, ut+h = ut + hF (ut) + o(h). Using Lemma

2.6.3 and re-using the estimate from Lemma 2.6.2 we obtain a quantitative bound on

the remainder.

Lemma 2.6.4. Let ut = (yt, it, sit, iit). For each ε > 0 there are constants C, γ > 0

so that for small enough h > 0,

P(|ut+h − ut − hF (u)| ≤ εh) ≥ 1− Ce−γNh

Proof. Let Qj(u), j = 1, ..., 10, denote the transition rates of the ten transitions

introduced in Section 2.5, as a function of u, and let Xj(t, h) denote the number

of type j transitions occurring in the time interval [t, t + h]. For each j, Qj(u) =

Nqj(u) + Rj(u) where qj(u) is a quadratic function of u and Rj(u) is a remainder

that satisfies |Rj(u)| ≤ M for some M > 0 and all u ∈ [0, 1]4. It is easily verified

that if ut = u and Xj(t, h) = Nqj(u)h for each j then ut+h = u + hF (u). Since each

transition changes u by at most 2/N , it is therefore enough to show that there are

constants C, γ > 0 so that for each j, small enough h > 0, and all u,

P(|Xj(t, h)−Nqj(u)h| ≤ εNh/20 | ut = u) ≥ 1− Ce−γNh

Since the domain of qj(u) is a subset of [0, 1]4 and thus bounded it follows that qj

is bounded and Lipschitz continuous i.e., for some L > 0 and all v, u in the domain

of qj, qj(u) ≤ L and |qj(v)− qj(u)| ≤ L|v − u|, and in particular, |Qj(v)−Qj(u)| ≤
NL|v − u|+ 2M ; for what follows, take L ≥ ε. Let A(t, h) be the event

{ sup
t≤s≤t+h

|us − ut| ≤ C1h},
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from Lemma 2.6.3, then on the event {ut = u} ∩ A(t, h),

sup
t≤s≤t+h

|Qj(us)−Nqj(u)| ≤ sup
t≤s≤t+h

|Qj(us)−Qj(u)|+|Qj(u)−Nqj(u)| ≤ N(LC1h+3M/N)

For ease of notation let q = qj(u) and let r = LC1h + 3M/N , and note that r → 0

as max(h, 1/N)→ 0. Then, on {ut = u} ∩A(t, h), Xj(t, h) is stochastically bounded

above and below respectively by Poisson random variables with means Nh(q+r) and

Nh(q − r), so from Lemma 2.6.2 it follows that for 0 < δ ≤ 1/2,

P({|Xj(t, h)−Nhq| ≤ Nh(qδ + r(1 + δ))} ∩ {ut = u} ∩ A(t, h)) ≥ 1− 2e−Nh(q−r)δ
2/4

(2.6.1)

Recalling that q ≤ L, let h, δ, 1/N > 0 be chosen small enough that Lδ + r(1 + δ) ≤
ε/20, then Nh(qδ+ r(1 + δ)) ≤ εNh/20. To bound the probability uniformly in q we

split into two cases according as q ≥ qδ + r(1 + δ) or not i.e., as q ≥ r(1 + δ)/(1− δ)
or not. If q ≥ r(1 + δ)/(1 − δ) then letting γ1 = r[(1 + δ)/(1 − δ) − 1]δ2/4 which is

> 0 it follows that Nh(q − r)δ2/4 ≥ γ1Nh. If q < qδ + r(1 + δ) the lower bound on

Xj(t, h)−Nhq is trivial and so in that case

P({|Xj(t, h)−Nhq| ≤ Nh(qδ + r(1 + δ))} ∩ {ut = u} ∩ A(t, h)) ≥ 1− e−Nh(q+r)δ2/4

Letting γ2 = rδ2/4 which is > 0 it follows that Nh(q+ r)δ2/4 ≥ γ2Nh. Letting γ3 be

such that P(A(t, h)) ≥ 1−e−γ3Nh and letting γ = min(γ1, γ2, γ3) and C = 3 completes

the proof.

Using the above estimate we obtain finite-time control on the evolution of ut, as

N becomes large.

Proposition 2.6.5. Let ut = (yt, it, sit, iit). For each ε, T > 0 there are constants

δ, C, γ > 0 so that from any initial condition u0 and any solution u(t) to the MFE

(2.5.1) satisfying |u0 − u(0)| ≤ δ,

P( sup
0≤t≤T

|ut − u(t)| ≤ ε) ≥ 1− Ce−γN

Proof. The proof is analogous to the proof in numerical analysis that the Euler

method is O(h) accurate. Fix h = T/M for integer M and define events A1, ..., Am
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as follows: A1 = B1 ∩D1 and given Aj−1, Aj = Aj−1 ∩Bj ∩Dj where

Bj = { sup
h(j−1)≤t≤hj

|ut − uhj| ≤ C1h}

is the event from Lemma 2.6.3 and

Dj = {|uhj − uh(j−1) − hF (uh(j−1))| ≤ µh}

is the event from Lemma 2.6.4, for µ > 0 to be chosen. If µ, h > 0 are fixed and h is

small enough then there are constants C, γ > 0 so that P(Bj ∩Dj) ≥ 1− (C/M)e−γN ,

and since AM =
⋂M
j=1(Bj ∩Dj), P(AM) ≥ 1− Ce−γN . For j = 1, ...,M let

Ej = sup
ω∈Aj
|uhj(ω)− u(hj)|

where ω denotes an element of the probability space for the partner model. Letting

u′ = F (u) denote (2.5.1) we have

u(hj)− u(h(j − 1)) =

∫ hj

h(j−1)
F (u(s))ds

Since F (u) is quadratic in u and its domain is bounded, it is bounded and Lipschitz

continuous i.e., for some L > 0 and all u, v in the domain, |F (u)| ≤ L and |F (v) −
F (u)| ≤ L|v − u|. From the first inequality it follows that |u(s) − u(h(j − 1))| ≤
L(s − h(j − 1)) for s ≥ h(j − 1) and from this and the second inequality it follows

that

|u(hj)− u(h(j − 1))− hF (u(h(j − 1)))| =

∣∣∣∣∫ hj

h(j−1)
(F (u(s))− F (u(h(j − 1))))ds

∣∣∣∣
≤

∫ hj

h(j−1)
|F (u(s))− F (u(h(j − 1)))|ds

≤
∫ hj

h(j−1)
L|u(s)− u(h(j − 1))|ds

≤
∫ hj

h(j−1)
L2(s− hj)ds = L2

∫ h

0

sds = L2h2/2
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Also,

|uhj − u(hj)| = |uhj − uh(j−1) − hF (uh(j−1)) + uh(j−1) − u(h(j − 1))

+hF (uh(j−1))− hF (u(h(j − 1))) + u(h(j − 1)) + hF (u(h(j − 1)))− u(hj)|

≤ |uhj − uh(j−1) − hF (uh(j−1))|+ |uh(j−1) − u(h(j − 1))|

+|hF (uh(j−1))− hF (u(h(j − 1)))|+ |u(hj)− u(h(j − 1))− hF (u(h(j − 1)))|

so using the definition of Aj, letting E0 := |u0 − u(0)| ≤ δ and using once more

Lipschitz continuity of F it follows that for j = 1, ...,M ,

Ej ≤ µh+ Ej−1 + hLEj−1 + L2h2/2 = (1 + hL)Ej−1 + h(µ+ hL2/2)

Setting q = (1 +hL) and r = µ+hL2/2 and iterating the inequality Ej ≤ qEj−1 +hr

we find EM ≤ qME0 + [(qM − 1)/(q− 1)]hr ≤ qM [E0 + hr/(q− 1)] = (1 + hL)M [E0 +

hr/(hL)] = (1 + LT/M)M [E0 + r/L] ≤ eLT [E0 + r/L] ≤ eLT [δ + r/L] and the

same inequality holds for all Ej, j = 1, ...,M . Since on Aj, |us − uhj| ≤ C1h for

h(j − 1) ≤ s ≤ hj, on AM we find for j = 1, ...,M and h(j − 1) ≤ s ≤ hj that

|us − u(s)| ≤ |us − uhj|+ |uhj − u(hj)|+ |u(hj)− u(s)|

≤ C1h+ Ej + Lh ≤ h(C1 + L) + eLT [δ + r/L]

and taking h, µ, δ > 0 small enough, this is ≤ ε.

Our first application of Proposition 2.6.5 is to control yt.

Lemma 2.6.6. For each ε > 0 there are constants C, T, γ > 0 so that from any value

y0 ∈ [0, 1],

P( sup
T≤t≤eγN

|yt − y∗| ≤ ε) ≥ 1− Ce−γN

Moreover, if |y0 − y∗| ≤ 2ε/3 we may take T = 0.

Proof. Let y′ = f(y) denote the y′ equation in (2.5.1) and let φ(t, y), φ : [0, 1]×R+ →
[0, 1] denote the flow for this equation i.e., the unique function satisfying ∂tφ(t, y) =

f(φ(t, y)) and φ(0, y) = y for each (t, y) in its domain. Since φ(t, 0) ≤ φ(t, y) ≤ φ(t, 1)

and limt→∞ φ(t, y) = y∗ for each y ∈ [0, 1], for each ε > 0 there is T > 0 so that

|φ(T, y) − y∗| ≤ ε/3 for all y ∈ [0, 1]. Letting y(t) = φ(t, y0) and using Proposition

2.6.5, there are constants C1, γ1 > 0 depending on ε but not on y0 so that with
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probability ≥ 1−C1e
−γ1N , |yT − y∗| ≤ |yT − y(T )|+ |y(T )− y∗| ≤ ε/3 + ε/3 = 2ε/3.

Then, for t ≥ 0 and y ∈ [y∗ − (2ε/3), y∗ + (2ε/3)],

y∗ − (2ε/3) ≤ φ(t, y∗ − (2ε/3)) ≤ φ(t, y) ≤ φ(t, y∗ + (2ε/3)) ≤ y∗ + (2ε/3)

and since all solutions approach y∗ there is h > 0 so that φ(h, y∗ − 2ε/3) ≥ y∗ − ε/3
and φ(h, y∗ + 2ε/3) ≤ y∗ + ε/3. Thus for the given value of h and any solution

y(t) of y′ = f(y), if |y(T ) − y∗| ≤ 2ε/3 then |y(t) − y∗| ≤ 2ε/3 for t ≥ T and

|y(T +h)− y∗| ≤ ε/3. Given yT such that |yT − y∗| ≤ 2ε/3 and setting y(T ) = yT , by

Proposition 2.6.5 there are constants C2, γ2 > 0 so that supT≤t≤T+h |yt − y(t)| ≤ ε/3

with probability ≥ 1− C2e
−2γ2N , in which case

sup
T≤t≤T+h

|yt − y∗| ≤ sup
T≤t≤T+h

|yt − y(t)|+ sup
T≤t≤T+h

|y(t)− y∗| ≤ ε/3 + 2ε/3 = ε

and |yT+h − y∗| ≤ |yT+h − y(T + h)| + |y(T + h) − y∗| ≤ ε/3 + ε/3 = 2ε/3 with the

same probability. Iterating this for eγ2N/h time steps we find that

sup
T≤t≤eγ2N

|yt − y∗| ≤ max
i∈{1,...,eγ2N/h}

sup
T+(i−1)h≤t≤T+ih

|yt − y∗| ≤ ε

with probability ≥ 1 − (C2/h)eγ2Ne−2γ2N = 1 − (C2/h)e−γ2N , then choose C =

C1 + C2/h and γ = min(γ1, γ2). Note that if |y0 − y∗| ≤ 2ε/3, the iteration step

is immediately applicable, in which case we may take T = 0.

2.7 Macroscopic Behaviour

In this section we prove the macroscopic side of Theorem 2.2.2 i.e., when |V0| ≥ εN .

We begin with the analogue of Lemma 2.5.2 for the partner model, which we refer to

later on as monotonicity. As for the MFE, define ipt := sit + iit.

Lemma 2.7.1. Let ≤ denote the partial order on R3 given by u ≤ v ⇔ uj ≤ vj, ∀j ∈
{1, 2, 3}, and let ut = (it, ipt, iit). If (V

(1)
t , E

(1)
t ) and (V

(2)
t , E

(2)
t ) are two copies of

the partner model with E
(1)
0 = E

(2)
0 and V

(1)
0 ⊆ V

(2)
0 then with respect to the coupling

given by the graphical construction, E
(1)
t = E

(2)
t and V

(1)
t ⊆ V

(2)
t for t > 0 and

correspondingly y
(1)
t = y

(2)
t and u

(1)
t ≤ u

(2)
t .

Proof. If E
(1)
0 = E

(2)
0 then E

(1)
t = E

(2)
t =: Et for t > 0. Given {Et : t ≥ 0}, the only

transitions affecting V
(1)
t and V

(2)
t are recovery of infectious sites and transmission
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from infectious to healthy sites along open edges, both of which preserve the order

V
(1)
t ⊆ V

(2)
t . The equality y

(1)
t = y

(2)
t follows directly from |E(1)

t | = |E(2)
t | and the

inequality u
(1)
t ≤ u

(2)
t follows directly from V

(1)
t ⊆ V

(2)
t .

Using Proposition 2.6.5 and Lemma 2.7.1 we can prove the macroscopic part of

Theorem 2.2.2 when R0 ≤ 1. In this section ut will generally refer to (it, sit, iit) or

(it, ipt, iit), with yt written separately.

Proposition 2.7.2. If R0 ≤ 1, for each ε > 0 there are constants C, T, γ > 0 so that,

from any initial configuration, with probability ≥ 1− Ce−γN , |VT | ≤ εN .

Proof. By Lemma 2.7.1 it is enough to show the result holds when V0 = V i.e., ev-

eryone is initially infectious; in this case y0 = 1 − 2E0/N , i0 = y0 and ip0 = ii0 =

(1− y0)/2. Let ut = (it, ipt, iit) and let (y(t), u(t)) be the solution to the MFE with

y(0) = y0 and u(0) = u0. By Lemma 2.6.6 and Proposition 2.6.5, for each δ > 0 there

are constants C1, T1, γ1 > 0 so that with probability ≥ 1 − C1e
−γ1N , |yT1 − y∗| ≤ δ

and |uT1 − u(T1)| ≤ δ, so with the same probability |(yT1 , uT1)− (y∗, u(T1))| ≤ δ.

Recall the set Λ∗ and let (y∗, u(t)) be the solution to the MFE with u(0) =

(y∗, (1− y∗)/2, (1− y∗)/2). As shown in the proof of Lemma 2.5.3, u(t) decreases to

an equilibrium. Since R0 ≤ 1, (0, 0, 0) is the only equilibrium, so u(t) → (0, 0, 0) as

t→∞. Moreover, u(0) ≥ v for each v ∈ Λ∗ so for any solution (y∗, u(t)), u(0) ≥ u(0).

By Lemma 2.5.2, u(t) ≥ u(t) for t ≥ 0, so there is T2 not depending on u(0) so

that |u(T2)| ≤ ε/2. Using Proposition 2.6.5, there are constants C2, γ2, δ > 0 not

depending on u(0) so that with probability ≥ 1−C2e
−γ2N , if |(y0, u0)−(y∗, u(0))| ≤ δ

then |uT2| ≤ |u(T2)|+ |uT2−u(T2)| ≤ ε/2+ε/2 = ε. Letting T = T1 +T2, C = C1 +C2

and γ = min(γ1, γ2) and combining the two steps completes the proof.

Using similar ideas we can prove the macroscopic part of Theorem 2.2.2 when

R0 > 1. Before showing approach to equilibrium, we first have to show long time

survival of the infection, and to do that, we need the following result concerning the

MFEs.

Lemma 2.7.3. Suppose R0 > 1 and let v ∈ R3 with |v| = 1 be an unstable eigenvector

of the MFEs on Λ∗ as given in the proof of Theorem 2.5.4, written in (i, ip, ii) coor-

dinates. For 0 < δ′ ≤ δ let (y(t), u(t)) be a solution to the MFE with |y(0)− y∗| ≤ δ

and u(0) := (i(0), ip(0), ii(0)) = δ′v. If δ > 0 is small enough then there is T > 0 so

that minj uj(T ) ≥ 2δ′ for all 0 < δ′ ≤ δ.
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Proof. First write the MFE (2.5.2), without the y equation, in matrix form as follows: i′

ip′

ii′

 =

−(1 + r+y) r− r−

r+(y∗ − i/2) −(1 + r−) 1

r+i/2 λ −(2 + r− + λ)


 i

ip

ii

 (2.7.1)

The y dynamics proceeds as in (2.5.1), and note |y(t) − y∗| ≤ |y(0) − y∗| for t > 0.

Write (2.7.1) as u′ = A(i, y)u with u = (i, si, ii)> to emphasize the dependence on

i, y. As noted in the proof of Theorem 2.5.4, if R0 > 1 then A := A(0, y∗) has a

positive eigenvalue µ > 0 with positive eigenvector v such that |v| = 1, so the system

v′ = Av has solutions v(t) = cveµt for any c > 0. Let | · | denote the operator norm

and let

L = sup
(i,y)∈[0,1]2

|A(i, y)|

then any solution u(t) to (2.7.1) has |u(t)| ≤ |u(0)|eLt for t > 0. Fix T > 0, then

for each ε > 0, by continuity there is δ > 0 so that if max(y − y∗, i) ≤ eLT δ then

|A(i, y) − A| ≤ ε. Let |y(0) − y∗| ≤ δ and for 0 < δ′ ≤ δ let u(t) be the solution to

(2.7.1) with u(0) = δ′v, then for 0 ≤ t ≤ T ,

|(u− v)′| = |A(i, y)u− Av| ≤ |(A(i, y)− A)u|+ |(A(u− v)|

≤ |A(i, y)− A||u|+ |A||u− v|

≤ ε|u|+ L|u− v|

≤ εeLtδ′ + L|u− v|

Letting v(0) = u(0), defining E(t) := |u(t) − v(t)|, noting that E(0) = 0 and inte-

grating,

E(T ) ≤ eLT εδ′T

Since v(T ) = δveµT ,

min
j
uj(T ) ≥ min

j
vj(T )−max

j
|vj(T )− uj(T )|

≥ δ′eµT min
j
vj − εeLT δ′T

= δ′eµT (min
j
vj − εe(L−µ)TT )

Choose T > 0 so that eµT minj vj/2 ≥ 2, then choose ε > 0 so that εe(L−µ)TT ≤
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minj vj/2, then it follows that minj uj(T ) ≥ 2δ′.

Now we can show long-time survival of the infection when R0 > 1 and |V0| ≥ εN .

Lemma 2.7.4. Suppose R0 > 1. For each ε > 0, there are constants δ, C, γ > 0 so

that if |V0| ≥ εN then

P( inf
0≤t≤eγN

|Vt| ≥ δN) ≥ 1− Ce−γN

Proof. Recall that an event holds with high probability or whp in N if for N large

enough it occurs with probability ≥ 1− Ce−γN for some C, γ > 0. If |V0| ≥ εN then

max(i0, ip0, ii0) ≥ ε/3, so in view of Lemma 2.7.1 it is enough to prove the result

starting from u0 := (i0, ip0, ii0) ∈ E := {(ε/3, 0, 0), (0, ε/3, 0), (0, 0, ε/3)}. For δ1 > 0,

by Proposition 2.6.6 there are T, γ1 > 0 so that whp |yt − y∗| ≤ δ1 for T ≤ t ≤ eγ1N .

If u(0) 6= (0, 0, 0) then for t > 0, minj uj(t) > 0; this is shown for u(0) ∈ Λ∗ in the

proof of Lemma 2.5.3, but the same proof applies if y 6= y∗. Also, since (0, 0, 0) is

an equilibrium solution, by uniqueness of solutions u(t) 6= (0, 0, 0) for 0 ≤ t ≤ T ,

so by continuity of solutions inf{|u(t)| : 0 ≤ t ≤ T} > 0. Therefore, there exists

0 < δ2 ≤ δ1 so that minj uj(T ) ≥ δ2 and inf{maxj uj(t) : 0 ≤ t ≤ T} ≥ δ2 for

all u(0) ∈ E . For u0 = u(0) ∈ E with y0 = y(0) ∈ [0, 1], by Proposition 2.6.5,

whp |ut − u(t)| ≤ δ2/2 for 0 ≤ t ≤ T in which case min(iT , ipT , iiT ) ≥ δ2/2 and

inf{max(it, ipt, iit) : 0 ≤ t ≤ T} ≥ δ2/2, which means that for the eigenvector v

with |v| = 1 mentioned in the proof of Lemma 2.7.3, (iT , siT , iiT ) ≥ (δ2/2)v, and also

|Vt| ≥ (δ2/2)N for 0 ≤ t ≤ T .

Taking y(t) = yt and u(T ) = (δ2/2)v, if |yt − y∗| ≤ δ1 then by Lemma 2.7.3

there is h > 0 so that minj uj(T + h) ≥ δ2, and as before there is δ3 > 0 so that

inf{maxj uj(t) : T ≤ t ≤ T + h} ≥ δ3. By Lemma 2.7.1 and the last paragraph, it

is enough to consider the case uT = u(T ) = (δ2/2)v. Letting δ = min(δ2/2, δ3/2)

and using Proposition 2.6.5, with probability ≥ 1 − Ceγ2N , |ut − u(t)| ≤ δ for T ≤
t ≤ T + h, in which case uT+h ≥ (δ2/2)v and |Vt| ≥ N min(it, ipt, iit) ≥ (δ3/2)N for

T ≤ t ≤ T + h. Letting γ = min(γ1/2, γ2/2) and iterating for eγN/h time steps as in

the proof of Lemma 2.6.6, whp |Vt| ≥ N min(it, ipt, iit) ≥ (δ3/2)N for T ≤ t ≤ eγN .

Combining with the previous estimate, whp |Vt| ≥ δN for 0 ≤ t ≤ eγN as we wanted

to show.
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We now wrap up the macroscopic side of Theorem 2.2.2.

Proposition 2.7.5. Suppose R0 > 1 and let (y∗, i∗, ip∗, ii∗) with i∗ > 0 be the non-

trivial equilibrium solution to the MFE (2.5.2). Let ut = (it, ipt, iit) and let u∗ =

(i∗, ip∗, ii∗). For each ε > 0, there are constants C, T, γ > 0 so that if |V0| ≥ εN then

P( sup
T≤t≤eγN

|(yt, ut)− (y∗, u∗)| ≤ ε) ≥ 1− Ce−γN

Proof. We begin with the lower bound. As shown in the proof of Lemma 2.7.4

there are T1, h1, δ1, γ1 > 0 so that whp min(it, ipt, iit) ≥ δ1, and thus ut ≥ δ1v, for

t = T1 + kh1, k = 1, ..., (eγ1N − T1)/h1, where v with |v| = 1 is the eigenvector from

Lemma 2.7.3. Let y(0) = y∗ and u(0) := (i(0), ip(0), ii(0)) = δ1v. If δ1 > 0 is small

enough then u′j(0) > 0 in each coordinate and since u∗ 6= (0, 0, 0) is unique, as shown

in the proof of Lemma 2.5.3 u(t) is increasing with respect to (i, ip, ii) coordinates

and limt→∞ u(t) = u∗, and in particular u(t) ≤ u∗ for t ≥ 0. We will need the stronger

fact uj(t) < u∗j for j = 1, 2, 3. Looking to the equations for i′, ip′, ii′ in (2.5.2), the

derivative of each variable increases with the other two variables, and of course is

equal to 0 at u∗. If we had i(t) = i∗, then since ip(t) ≤ ip∗ and ii(t) ≤ ii∗ we would

have i′ < 0 which contradicts the fact that u(t) is increasing, and the same applies to

ip(t) and ii(t).

Using the above facts, there is T2 so that u(T2) ≥ u∗ − ε/2, and since 0 <

minj(u
∗
j −uj(T2)) =: ε′ ≤ ε, there is h2 so that u(T2 +h2) ≥ u∗− ε′/2. By Proposition

2.6.5, there is δ2 > 0 so that if u0 = u(0) and |y0−y∗| ≤ δ2 then whp |ut−u(t)| ≤ ε′/2

for T2 ≤ t ≤ T2+h2 in which case ut ≥ u∗−ε for T2 ≤ t ≤ T2+h2 and uT2+h2 ≥ u∗−ε′

which means that uT2+h2 ≥ u(T2). By Lemma 2.6.6 there are T3, γ2 so that whp

|yt − y∗| ≤ min(δ2, ε) for T3 ≤ t ≤ eγ2N . Let k be such that T1 + kh1 ≥ T3 and

let T4 = T1 + kh1, then setting u(T4) = δ1v, whp uT4 ≥ u(T4) so it is enough to

consider the case where uT4 = u(T4). Letting T = T4 +T2, then for some γ3 > 0, with

probability ≥ 1−Ce−γ3N , ut ≥ u∗− ε for T ≤ t ≤ T + h2 and uT+h2 ≥ u(T ). Letting

γ = min(γ2/2, γ3/2) and iterating for (eγN−T )/h2 time steps (subtracting T to make

sure yt stays in bounds) as in the proof of Lemma 2.6.6 it follows that ut ≥ u∗− ε for

T ≤ t ≤ eγN .

To prove the upper bound it is enough to consider any value of y0 and let

u0 = (y0, (1/2)(1 − y0), (1/2)(1 − y0)). Setting y(0) = y∗ and u(0) = (y∗, (1/2)(1 −
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y∗), (1/2)(1 − y∗)), then as shown in the proof of Lemma 2.5.3, u(t) decreases to

u∗. Moreover, uj(t) − u∗j > 0 for the same reason as above, so there is T1 so

that u(T1) ≤ u∗ + ε/2, and since 0 < minj(uj(T1) − u∗j) =: ε′ ≤ ε, there is h

so that u(T1 + h) ≥ u∗ − ε′/2. By Proposition 2.6.5, there is δ > 0 so that if

max(|u0 − u(0)|, |y0 − y(0)|) ≤ δ then whp |ut − u(t)| ≤ ε′/2 for T1 ≤ t ≤ T1 + h

in which case ut ≤ u∗ + ε for T1 ≤ t ≤ T1 + h and uT1+h ≤ u∗ + ε′ which means

that uT1+h ≤ u(T1). By Lemma 2.6.6 there are T2, γ1 so that whp |yt − y∗| ≤ δ for

T2 ≤ t ≤ eγ1N . Letting T = T1+T2 and setting u(T2) = (y∗, (1/2)(1−y∗), (1/2)(1−y∗)
and uT2 = (yT2 , (1/2)(1 − yT2), (1/2)(1 − yT2)), then for some γ2 > 0, with probabil-

ity ≥ 1 − Ce−γ2N , ut ≤ u∗ + ε for T ≤ t ≤ T + h and uT+h ≤ u(T ). Letting

γ = min(γ1/2, γ2/2) and iterating for (eγN −T )/h time steps it follows as before that

ut ≤ u∗ + ε for T ≤ t ≤ eγN .

In the next section we use a comparison to prove that if R0 < 1 the infection disap-

pears quickly from the population. To make this work we will need a complementary

result to Lemma 2.7.4.

Lemma 2.7.6. If R0 ≤ 1 then for each ε > 0 there are C, T, γ > 0 so that

P( sup
T≤t≤eγN

|Vt| ≤ εN) ≥ 1− Ce−γN

Proof. The proof is similar to that of Lemma 2.7.4. Letting u = (y∗, (1− y∗)/2, (1−
y∗)/2) as in Lemma 2.5.3 and letting (y∗, u(t)) be the solution to the MFE with

u(0) = u, since u(t) decreases to (0, 0, 0) and u ≥ v for all v ∈ Λ∗, there is T1 so that

for any solution (y∗, u(t)), |u(T1)| ≤ ε/6, and since ε′ := minj uj(T1) > 0, there is h

so that |u(T1 + h)| ≤ ε′/2. There is δ > 0 so that if max(|u0 − u(0)|, |y0 − y∗|) ≤ δ

then whp |ut − u(t)| ≤ min(ε′/2, ε/6) for T1 ≤ t ≤ T1 + h in which case |ut| ≤ ε/3 for

T1 ≤ t ≤ T1 + h and |uT1+h| ≤ ε′ which means uT1+h ≤ u(T1). There are γ1, T2 > 0

so that whp |yt − y∗| ≤ δ for T2 ≤ t ≤ eγ1N . By monotonicity it is enough to

consider uT2 = u. Letting u(T2) = uT2 and T = T1 + T2, there are C1, γ2 so that with

probability ≥ 1 − C1e
γ2N , |ut| ≤ ε/3 for T ≤ t ≤ T + h and uT ≤ u(T ). Letting

γ = min(γ1, γ2) and iterating for (eγN − T )/h time steps, whp |ut| ≤ ε/3 and thus

|VT | ≤ εN for T ≤ t ≤ eγN .
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2.8 Microscopic Behaviour

In this section we compare the partner model in the regime |V | ≤ εN for small ε > 0

to a branching process to get decisive information when R0 6= 1.

2.8.1 Subcritical Case: R0 < 1

First we introduce the comparison process to use when R0 < 1.

Definition 2.8.1. Define the upperbound process (UBP) Bt = (It,SIt, IIt) on

state space {0, 1, 2, ...}3 with parameter 0 ≤ δ ≤ y∗ by the following transitions:

• I → I − 1 at rate I,

• I → I − 1 and SI → SI + 1 at rate r+(y∗ − δ)I,

• SI → SI + 1 at rate 2r+δI,

• II → II + 1 at rate r+δI,

• SI → SI − 1 at rate SI,

• SI → SI − 1 and I → I + 1 at rate r−SI,

• SI → SI − 1 and II → II + 1 at rate λSI,

• II → II − 1 and SI → SI + 1 at rate 2II,

• II → II − 1 and I → I + 2 at rate r−II

Note the UBP describes the evolution of the total number of particles of each of

the three types I,SI, II in a multi-type continuous-time branching process; for an

introduction to branching processes see [27]. We now show that for fixed R0 < 1, if

δ > 0 is small enough the UBP quickly dies out.

Lemma 2.8.2. For fixed λ, r+, r− let Bt denote the UBP with parameter δ′ and let

R0 be as defined in (2.4.1). If R0 < 1 there are C, δ > 0 so that if |B0| ≤ N and

δ′ ≤ δ then

P(|BC logN | = 0)→ 1 as N →∞
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Proof. For a multi-type continuous time branching process Bt = (b1(t), ..., bn(t)), with

bj(t) denoting the number of type j particles alive at time t, we can extract some

useful information from the mean matrix Mt defined bymij(t) = E(bj(t) | bk(0) = δik).

Since particles evolve independently, E(Bt) = B0Mt and it is not hard to show that

Mt satisfies the equation
d

dt
Mt = AMt

and therefore Mt = exp(At), where A = (rij) is the matrix whose entries rij give

the rate at which a particle of type i produces particles of type j. If Re(λ) < 0

for each eigenvalue λ of A, then letting γ0 = min{|Re(λ)| : λ ∈ σ(A)} where σ(·)
denotes the spectrum, from standard matrix theory it follows that for any γ1 < γ0,

there is C1 > 0 so that mij ≤ C1e
−γ1t for each pair ij. Since each bi(t) is valued on

non-negative integers,

P(Bt 6= (0, ..., 0)) ≤
∑
i

P(bi(t) 6= 0) ≤
∑
i

Ebi(t)

=
∑
ij

bi(0)mij(t) ≤ |B(0)|n2C1e
−γ1t

If |B(0)| ≤ N then letting t = C logN for C > 1/γ1 and setting γ = Cγ1 − 1 and

C2 = n2C1 we find

P(BC logN 6= (0, ..., 0)) ≤ NC2e
−γ1C logN = NC2N

−γ1C = C2N
1−γ1C = C2N

−γ

which tends to 0 as N →∞. In our case,

A = A(δ) =

−(1 + r+(y∗ − δ)) r+(y∗ + δ) r+δ

r− −(1 + r− + λ) λ

2r− 2 −(2 + r−)


Letting σ(A) denote the spectrum and defining the spectral abcissa µ(A) := max{Re(λ) :

λ ∈ σ(A)}, if µ(A(δ)) < 0, then the real part of each eigenvalue of A is negative, and

the above argument applies. By continuity of eigenvalues in the entries of a matrix,

it is enough to show µ(A(0)) < 0, since then there is δ > 0 so that if δ′ ≤ δ then
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µ(A(δ′)) ≤ µ(A(0))/2 < 0. Setting δ = 0,

A(0) =

−(1 + r+y
∗) r+y

∗ 0

r− −(1 + r− + λ) λ

2r− 2 −(2 + r−)


and looking to Section 2.5 we see that A(0, 0) is the (transpose of the) linearized

matrix at (0, 0, 0) for the MFE on Λ∗, which we denote A. As noted in Remark 2.5.5,

(0, 0, 0) is locally asymptotically stable when R0 < 1, and in the proof of Theorem 2

in [50] this is done by showing that µ(A) < 0.

We now complete the proof of the case R0 < 1 in Theorem 2.2.2.

Proposition 2.8.3. If R0 < 1 there are constants C, T, γ > 0 so that, from any

initial configuration,

P(|VT+C logN | = 0)→ 1 as N →∞

Proof. Let Ut := (It, SIt, IIt) denote variables in the partner model and for δ > 0 such

that y∗− δ ≥ 0 and y∗+ δ ≤ 1, let Bt denote the UBP with parameter δ. We first de-

scribe a coupling with the property that U0 ≤ B0 ⇒ Ut ≤ Bt for t > 0, with respect to

the usual partial order U ≤ V ⇔ Uj ≤ Vj, j = 1, 2, 3. For j = 1, ..., 10 define a count-

able number of independent Poisson point processes (ppp’s) {ej(n) : n = 1, 2, ...}
with respective rates 1, r+, r+, 1, r−, λ, 2, r−, r+, r−, together with independent uni-

form [0, 1] random variables attached to each event in e2(n), e3(n), e9(n), n = 1, 2, ....

These correspond to the nine transitions listed in the definition of the UBP, except

that the second and third transition in the UBP are lumped into e2, plus an additional

transition for S + S → SS and one for SS → S + S. Note that the rates of e2, e3, e9

appear too large at the moment and are corrected in the next paragraph.

Construct the UBP one transition at a time as follows, letting (I,SI, II) denote

the present state. Each event in e1(1), ..., e1(I) reduces I by 1. For an event in

e2, e3 let p denote the corresponding uniform [0, 1] random variable. If an event in

e2(1), ..., e2(I) occurs and p ≤ (y∗ − δ), reduce I by 1 and increase SI by 1, while if

y∗− δ < p ≤ y∗+ δ simply increase SI by 1. If an event in e3(1), ..., e3(I) occurs and

p ≤ δ, increase II by 1. Each event in e4(1), ..., e4(SI) reduces SI by 1, each event in

e5(1), ..., e5(SI) reduces SI by 1 and increases I by 1, each event in e6(1), ..., e6(SI)
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reduces SI by 1 and increases II by 1, each event in e7(1), ..., e7(II) reduces II
by 1 and increases SI by 1, and each event in e8(1), .., e8(II) reduces II by 1 and

increases I by 2. It can be checked that the transition rates are correct.

Similarly, construct the Markov chain (St, It, SSt, SIt, IIt) for the partner model as

follows, letting (S, I, SS, SI, II) denote the present state. Define αt = yt−y∗− it and

βt = it/2−1/(2N) and note that αt and βt are piecewise constant in time. Each event

in e1(1), ..., e1(I) reduces I by 1 and increases S by 1. If an event in e2(1), ..., e2(I)

occurs and p ≤ y∗ + αt reduce S and I by 1 and increase SI by 1. If an event in

e3(1), ..., e3(I) occurs and p ≤ βt reduce I by 2 and increase II by 1. Each event in

e4(1), ..., e4(SI) reduces SI by 1 and increases SS by 1, each event in e5(1), ..., e5(SI)

reduces SI by 1 and increases S and I by 1, and events in e6, e7, e8 have the same effect

as before. If an event in e9(1), ..., e9(S) occurs and p ≤ st/2−1/(2N) reduce S by 2 and

increase SS by 1, and each event in e10(1), ..., e10(SS) reduces SS by 1 and increases

S by 2. Recalling that Ut := (It, SIt, IIt), if U0 ≤ B0 and sups≤t max(|αs|, βs) ≤ δ

then Ut ≤ Bt since (as can be easily checked) the order is preserved at each transition.

By Lemma 2.6.6 there are T1, γ1 > 0 so that whp |yt− y∗| ≤ δ/2 for T1 ≤ t ≤ eγN

and since R0 < 1, by Lemma 2.7.6 there are T2, γ2 so that |Vt| ≤ (δ/2)N and thus

it ≤ δ/2 for T2 ≤ t ≤ eγ2N . Letting T = max(T1, T2) and γ = min(γ1, γ2), whp

max(|αt|, βt) ≤ δ for T ≤ t ≤ eγN . Setting BT = UT and using Lemma 2.8.2

completes the proof.

2.8.2 Supercritical Case: R0 > 1

We introduce the comparison process for R0 > 1, which is similar to the UBP, but

different.

Definition 2.8.4. Define the lowerbound process (LBP) Bt = (It,SIt, IIt) on state

space {0, 1, 2, ...}3 with parameters δ ≥ 0 such that y∗ − δ ≥ 0 by the following

transitions:

• I → I − 1 at rate (1 + 2r+δ)I,

• I → I − 1 and SI → SI + 1 at rate r+(y∗ − δ)I,

• I → I − 2 at rate r+δI,
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• SI → SI − 1 at rate SI,

• SI → SI − 1 and I → I + 1 at rate r−SI,

• SI → SI − 1 and II → II + 1 at rate λSI,

• II → II − 1 and SI → SI + 1 at rate 2II,

• II → II − 1 and I → I + 2 at rate r−II

As before, the LBP describes the evolution of the total number of particles of each

of the three types I,SI, II in a multi-type continuous-time branching process. We

now show that for fixed R0 > 1, if δ > 0 is small enough then the LBP survives.

Lemma 2.8.5. Let Bt denote the LBP with parameter δ′. If λ, r+, r− are such

that R0 > 1 then there are C, δ > 0 so that if δ′ ≤ δ then lim infN→∞ P(BC logN 6=
(0, 0, 0)) > 0 and

P(|BC logN | ≥ δN | BC logN 6= (0, 0, 0))→ 1 as N →∞

Proof. As in the proof of Lemma 2.8.2 define the mean matrix M(t) = exp(At) and

the spectral abcissa µ(A). If δ′ = 0 for both the UBP and the LBP they coincide,

in which case A is the transpose of the linearized matrix at (0, 0, 0) of the MFE

on Λ∗. As shown in the proof of Theorem 2.5.4, if R0 > 1 then µ(A) > 0. By

continuity of eigenvalues in the entries of a matrix, there is δ > 0 so that if δ′ ≤ δ

then µ(A(δ′)) ≥ µ(A)/2 > 0. As shown in V.7 of [27], if M(t) is such that for some

t0 > 0 and each entry mij(t) of M(t) one has mij(t0) > 0 (which is the case here), then

µ(A) =: λ1 is an eigenvalue of A, and if λ1 > 0 the process is said to be supercritical.

In this case, Bte
−λ1t → Wv where v is a left eigenvector of A with eigenvalue λ1 and

W is a real-valued random variable. Setting t = C logN with C > 1/λ1 and letting

γ = Cλ1 > 1, BC logNN
−γ → Wv, so for each ε > 0,

lim inf
N→∞

P(|BC logN | ≥ δN) ≥ lim
N→∞

P(|BC logN | ≥ εNγ) = P(W |v| ≥ ε)

and letting ε→ 0+ and using continuity of measure,

lim inf
N→∞

P(|BC logN | ≥ δN) ≥ P(W > 0)

Under a mild regularity assumption on the offspring distribution that holds trivially

in this case, P(W > 0) = limt→∞ P(Bt 6= (0, 0, 0)) > 0. Since |Bt| ≥ δN implies
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Bt 6= (0, 0, 0), this means lim supN→∞ P(|BC logN | ≥ δN) ≤ limt→∞ P(Bt 6= (0, 0, 0)) =

P(W > 0), so limN→∞ P(|BC logN | ≥ δN) exists and is equal to P(W > 0). The result

then follows by observing that for t, x > 0, P(|Bt| ≥ x | Bt 6= (0, 0, 0)) = P(|Bt| ≥
x)/P(Bt 6= (0, 0, 0)).

We now complete the proof of Theorem 2.2.2.

Proposition 2.8.6. If R0 > 1, there are constants δ, p, C, T > 0 so that if |V0| > 0

then P(|VT+C logN | ≥ δN) ≥ p.

Proof. We use the same approach as in the proof of Proposition 2.8.3. Let Ut :=

(It, SIt, IIt) denote variables in the partner model and for δ1 > 0 such that δ1 ≤ 1,

y∗ − δ1 ≥ 0 and y∗ + δ1 ≤ 1, let Bt denote the LBP with parameter δ1. Let e1, ..., e10

be as in the proof of Proposition 2.8.3.

Construct the LBP one transition at a time as follows, letting (I,SI, II) de-

note the present state. Each event in e1(1), ..., e1(I) reduces I by 1. For an event

in e2, e3 let p denote the corresponding uniform [0, 1] random variable. If an event

in e2(1), ..., e2(I) occurs and p ≤ (y∗ − δ1), reduce I by 1 and increase SI by 1,

while if y∗ − δ1 < p ≤ y∗ + δ1 simply reduce I by 1. If an event in e3(1), ..., e3(I)

occurs and p ≤ δ1, reduce I by 2. Events in e4, e5, e6, e7, e8 have the same effect as

in the dynamics of the UBP. The Markov chain (St, It, SSt, SIt, IIt) for the partner

model is constructed in the same way as in the proof of Proposition 2.8.3, with αt, βt

defined in the same way, and it is easy to check in this case that if U0 ≥ B0 and

sups≤t max(|αs|, βs) ≤ δ1 then Ut ≥ Bt.

Define the stopping time τ = inf{t : |Ut| ≥ δ1N/2} and note that |Vτ | ≥ (δ1/2)N .

By Lemma 2.7.4 and using the strong Markov property, there are δ, γ > 0 so that

whp |Vt| ≥ δN for τ ≤ t ≤ τ + eγN . There are T, γ > 0 so that whp |yt − y∗| ≤ δ1/2

for T ≤ t ≤ eγN . If τ ≤ T , then since T is fixed, we are done. If t < τ then it ≤ δ1/2,

so letting BT = UT , if T ≤ t < τ then max(|αt|, βt) ≤ δ1, so Ut ≥ Bt for T ≤ t < τ .

The result follows from this inequality and from Lemma 2.8.5.
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Chapter 3

The SEIS Process

Abstract

The susceptible-exposed-infectious-susceptible (SEIS) model is well-known in mathe-

matical epidemiology as a model of infection in which there is an average incubation

time between the moment of infection and the onset of infectiousness. The compart-

ment model is well studied, but the corresponding particle system has so far received

no attention. We define the model and estimate critical values, also proving conver-

gence of critical values in the limit of small and large incubation time, and identify a

limiting process to which the SEIS model converges in the limit of large incubation

time.

3.1 Introduction

The SEIS model is a model of the spread of an infection that in addition to the usual

susceptible and infectious classes includes an exposed class that is infected but not

yet infectious; it can be used to model infections such as gonorrhea in which there

is a short latent stage before the onset of infectiousness, and in which recovery from

the infection confers no immunity. The classical model, usually called a compartment

model, is deterministic and consists of a set of three differential equations describing

the evolution of the number of susceptible, exposed and infectious individuals (the

three compartments), which for simplicity are taken to be real-valued; for a formal

definition see [5], Chapter 2. The model has either a globally stable disease-free state

or an unstable disease-free state together with a globally stable endemic state, ac-
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cording as the basic reproduction number for the infection is ≤ 1 or > 1; see [28] for

a proof using Lyapunov functions.

Now, the classical SEIS model is deterministic and assumes that the population

is well-mixed. However, there is a natural way to define an SEIS model that incorpo-

rates both spatial and random effects, using an interacting particle system (see [32]

for an introduction to interacting particle systems). For the simpler SIS model with

no exposed class, this system is called the contact process, and has been well studied

over the last forty years, in a variety of spatial settings including the d-dimensional in-

teger lattices, trees, random graphs, and even more general sequences of finite graphs;

[32] and [34] give an overview of results up to 1985 and 1999 respectively, and [14]

includes a survey of results on random graphs up to about 2009; a recent result on

fairly general sequences of finite graphs can be found in [36].

For the contact process on the d-dimensional lattice Zd with a single initially in-

fectious site there is a critical value λc of the infection parameter λ such that for

λ ≤ λc the process dies out with probability 1, and for λ > λc the process survives

with a positive probability, spreading linearly in time and converging to a non-trivial

invariant measure when it survives; for a proof of convergence see [34], Part I, and

for a proof of linear spread in d = 1 and linear spread with convergence to a limiting

shape in d ≥ 2, see [7] and [9].

According to numerical simulations in d = 1, 2, the SEIS model behaves in the

same way as the contact process, in this case with a critical value that varies slightly

with the incubation time, and spreading linearly in time when it survives. However,

for the SEIS model it is not clear how to prove this, because of the absence of a prop-

erty called monotonicity that enables much of the analysis of the contact process.

Nevertheless, we can show that the infection survives when the infection parameter is

large enough, uniformly in the incubation time, and we can obtain reasonable bounds

when the incubation time is either very large or very small. In addition, in the limit of

large incubation time the model, when properly rescaled in time, approaches a limit

process, and we describe the limit process and the convergence to the limit process.

We begin by describing the process and summarizing the main results.
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3.2 Main Results

To distinguish it from the compartment model, we use “SEIS process” to refer to the

SEIS model as an interacting particle system. Given a finite or countably infinite

connected undirected graph G = (V,E) with bounded degree i.e., for some d < ∞,

|{y ∈ V : xy ∈ E}| ≤ d for each x ∈ V , the SEIS process with infection parameter

λ > 0 and incubation time τ ≥ 0 is defined as follows. Letting 0 denote susceptible,

1 denote exposed and 2 denote infectious, each site x ∈ V is in one of the states 0, 1

or 2 (that we later refer to as types), with transitions

• 2→ 0 at rate 1 (recovery)

• 1→ 2 at rate 1/τ or instantaneously if τ = 0 (onset)

• 0→ 1 at rate λn2(x) (transmission)

where n2(x) is cardinality of the set {xy ∈ E : y is in state 2 }. The case τ = 0 is the

contact process with transmission parameter λ. The meaning of “rate” is that in the

absence of other transitions, each transition occurs after an amount of time which is

exponentially distributed with parameter given by the rate.

A standard reference on particle systems, and methods for constructing them, can

be found in [32]. Since it will help us later on, we follow [26] and use a graphical

representation to construct the process. We begin with the spacetime set S = G ×
[0,∞), which we picture as a copy of G extruded upward along fibers in the increasing

time direction; this is particularly easy to imagine if G is a planar graph. When

required we use the topology on S with base {a} × (t, t′) : a ∈ V ∪ E, t < t′}. Place

independent 1-dimensional Poisson point processes (p.p.p.’s) along fibers {·}× [0,∞)

as follows:

• at each site x ∈ V , recovery with intensity 1 and label ×,

• at each site x ∈ V , onset with intensity 1/τ and label ? if τ > 0, or omitting if

τ = 0, and

• along each edge xy ∈ E, transmission with intensity λ and label ↔.

This furnishes the probability space Ω, which we can think of as a random labelling

of S, and which we refer to as the substructure; the notation P is used to denote
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the law of the substructure, and when necessary, we write for example Pλ or Pτ to

emphasize the dependence on parameters. Define the following notation: for a Borel

measurable set R ⊂ S let F(R) denote the σ-algebra generated by the restriction of

the substructure to R, and for t > 0 let F(t) = F(G× [0, t]). If we view the substruc-

ture as a function of time Ut then Ut is adapted to the filtration F(t) and it follows

from the strong Markov property applied to Ut that for any stopping time s the law

of E(Ut+s|F(s)) is the same as the law of Ut. Also, it follows from standard properties

of p.p.p’s that if {Ri : i = 1, 2, ...} are pairwise disjoint then {F(Ri) : i = 1, 2, ...}
are independent; the same is true if the sets are disjoint up to measure zero in the

measure on S given by the product of counting measure on edges and vertices of G

with Lebesgue measure on [0,∞). Both of these facts will be useful throughout the

paper.

Given an initial configuration η0 ∈ {0, 1, 2}V , to determine ηt(x) for each realiza-

tion ω ∈ Ω consider the set Tt(x) of points (u, s) ∈ G× [0, t] that can reach (x, t) by

moving either upwards in time along vertices or horizontally along transmission labels

↔. In order to compute ηt(x) from the transition labels it suffices to compute ηs(y)

for (y, s) ∈ Tt(x). By a simple comparison, |{u ∈ G : (u, t− s) ∈ Tt(x)}| is bounded

above by a branching process with no deaths in which pairs of offspring are produced

at rate λd, so with probability 1, Tt(x) is a bounded set, and it follows easily (for

example, by considering the events Tt(x) ⊂ Gn × [0, t] for a sequence of graphs Gn

with ∪Gn = G) that the number of labels in Tt(x) is almost surely finite. Denote the

timing of labels by t1 < t2 < ... < tm, then given ηti(x) for x such that (x, ti) ∈ Tt(x),

if the label at time ti+1 is

• × at x and ηti(x) = 2 then ηti+1
(x) = 0,

• ? at x and ηti(x) = 1 then ηti+1
(x) = 2,

• ↔ along xy and ηti(x) = 0, ηti(y) = 2 then ηti+1
(x) = 1 if τ > 0 and ηti+1

(x) = 2

if τ = 0.

otherwise nothing happens. Then, let ηt(x) = ηtm(x). The reader may easily verify

that this approach defines ηt(x) for all x ∈ V , t ≥ 0 in a consistent manner. For what

follows, say that x is active at time t if ηt(x) 6= 0. Letting C0 denote the set of configu-

rations having only finitely many active sites, if η0 ∈ C0 then bounding the number of

active sites by a branching process in which each particle produces offspring at rate λ
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it follows that ηt ∈ C0 for t > 0, and ηt behaves like a continuous time Markov chain on

C0 in the sense of [41], with transition rates as specified in the description of the model.

The above graphical representation supplies a natural coupling of the process for

all choices of η0, namely the one in which, for each η0, ηt is determined from η0 for

t > 0 via the substructure. With respect to this coupling, the reader may verify

that the contact process, which is the case τ = 0, is monotone in the partial order

η ≤ η′ ⇔ ∀x, η(x) ≤ η′(x) in the sense that η0 ≤ η′0 implies ηt ≤ η′t for t > 0. In fact,

the process is also monotone with respect to λ: if λ < λ′ then we can couple processes

ηt with parameter λ and η′t with parameter λ′ so that η0 ≤ η′0 implies ηt ≤ η′t for t > 0.

To do so, for transmission events place independent p.p.p.’s along each edge

• with intensity λ and label ↔

• with intensity λ′ − λ and label ↔′

with recovery events as before, and for transmission events, for ηt use only the labels

↔, while for η′t use both the labels ↔ and ↔′. Using this fact, and the fact that any

configuration with a positive and finite number of active sites can reach any other

such configuration, it follows directly that there is a critical value of the transmission

parameter that we denote λ0c (which may a priori be equal to 0 or ∞) such that the

infection survives with positive probability when λ > λ0c and |η0| ≥ 1 (|η| denotes

the number of active sites in η) and dies out with probability 1 when λ < λ0c and

|η0| < ∞, where survival means |ηt| > 0 ∀t and dying out means |ηt| = 0 for t large

enough. Whenever we refer to critical values in what follows, they will have this

property; the only exceptions are the upper and lower critical values for the SEIS

process defined below, for which the above property is split between the two.

Given that τ = 0 gives the contact process it is natural to ask whether we obtain

something as τ →∞. The answer is yes, if we rescale time so that onset occurs at rate

1. We first describe the limit process, then state the sense in which the SEIS process

converges to it. The limit process has the state space {0, 1}V where 1 can be thought

of as occupied and 0 as vacant. It is defined using the dispersal distributions p(x, ·)
given by letting p(x,A) be equal to the probability that for the contact process with

the single infectious site x, transmission from x to every site in A occurs, followed

by recovery at x, without transmission to any sites in Ac, and ignoring subsequent

transmissions from other newly infected sites. Each occupied site x becomes vacant
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at rate 1, at which point, with probability p(x,A) all the vacant sites in A become

occupied.

There is an obvious graphical representation of the limit process: at each site

place a p.p.p. with intensity 1 and label ?, and at each occurrence of ? at site x

sample the dispersal distribution p(x, ·), placing a → label from x to y for each y to

which x disperses, and let the samples be independent. The rest of the construction

follows the same pattern so we omit the details. It is easy to see the limit process is

monotone, and is also monotone in λ; to see the latter property, for λ < λ′ make a

joint construction by coupling dispersal distributions in the obvious way. Thus the

limit process has a critical value that we denote λ∞c such that the same dichotomy

holds as for the contact process above. The following result describes convergence of

the SEIS process to the limit process.

Theorem 3.2.1. For fixed λ, let ηt denote the SEIS process on a countable graph

with bounded degree, under the rescaling t 7→ t/τ , and let ζt denote the limit process.

Let S = {t : ηt(x) = 2 for some x} denote the set of times when the rescaled SEIS

process has an infectious site. Fix T > 0 and an initial state with no infectious sites

and finitely many exposed sites, then for each τ there is a coupling of ηt and ζt so

that with probability tending to 1 as τ →∞,

• ζt = ηt for t ∈ [0, T ] \ S and

• `(S ∩ [0, T ])→ 0 where ` is Lebesgue measure on the line.

The main idea of the proof is that with probability tending to 1 as τ →∞ in the

SEIS process, between any two onset events a recovery event occurs, and when this

happens the SEIS process behaves like the limit process. The assumption of finitely

many initially active sites is necessary.

Unfortunately, unlike the contact process or the limit process, with respect to the

graphical representation given above, for τ > 0 the SEIS process is not monotone in

the partial order induced by the order 0 < 1 < 2 on types (or, it can be checked,

for any other order, though 0 < 2 < 1 is the only other real possibility), since if we

take configurations η ≤ η′ with η(x) = 1 and η′(x) = 2 the 2 can flip to a 0 before

the 1 becomes a 2, since type 1 ignores the × labels. Intuitively, this makes sense
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Table 3.1: Lower bounds on λ−c (τ)
τ 104 103 100 10 1 0.58 1/10 1/100 10−3 10−4

λ−c (τ) > 1.57 1.57 1.56 1.45 1.15 1.13 1.24 1.32 1.34 1.34

because although type 2 can spread the infection while type 1 cannot, type 1 is not

vulnerable to recovery events while type 2 is. Of course, it is possible to search for

other graphical representations, or even more general types of coupling, to try to show

monotonicity. After a long search, we have found no such coupling, but the reader is

encouraged to try!

So, lacking monotonicity, we define the following two critical values for the SEIS

process; note Pλ,τ denotes the law of the process with parameters λ, τ .

λ−c (τ) = sup{λ′ : Pλ,τ (ηt dies out ||η0| <∞) = 1 if λ < λ′}

λ+c (τ) = inf{λ′ : Pλ,τ (ηt survives ||η0| > 0) > 0 if λ > λ′}

Clearly, λ−c (τ) ≤ λ+c (τ) for each τ . The next result gives quantitative estimates on

critical values, both for the SEIS process and for the limit process, on Z, i.e., on the

graph G = (V,E) with V = Z and E = {xy : |x− y| = 1}.

Theorem 3.2.2. For the SEIS process on Z, λ+c (τ) < 6.875 when τ ≤ 1/10, and

λ−c (τ) has the lower bounds given in Table 1. For the limit process on Z, 1.944 <

λ∞c < 8.563.

Lower bounds on λ− are obtained using the method of [51] applied to a monotone

process that upperbounds the SEIS process, and the upper bound on λ+ for small τ

is obtained with the method of [10] applied to a monotone process that lowerbounds

the SEIS process. In both cases the estimates are achieved with the assistance of

a computer and are rigorous up to the rounding error on computations. Unfortu-

nately, in this case each lower bound on λ− is computed for a single value of τ ; it is

possible to make guesses by interpolating, but these are not a priori rigorous. Note

also that the lower bounds suggest, but again do not prove, that the critical value

of the upperbound process has a unique minimum near τ = 0.58 and is otherwise

increasing/decreasing. Numerical simulations of the SEIS process on Z suggest that
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λ−c (τ) = λ+c (τ) and that this value increases monotonically from about 1.6 at τ = 0

to about 2.4 as τ →∞.

For the limit process, the lower bound is obtained using the method of [51] and

the upper bound, using the method of [10]. Note that for the contact process,

1.539 ≤ λc ≤ 1.942 (lower bound from [51] and upper bound from [33]), and from the

upper bound together with our estimate we note that the strict inequality λ∞c > λ0c

holds.

Using different methods, we obtain some “qualitative” estimates on critical values.

Theorem 3.2.3. For the SEIS process on Z,

• there exists λ0 <∞ such that λ+c (τ) < λ0 for all τ ,

• λ+(τ), λ−(τ)→ λ0c as τ → 0 and

• λ+(τ), λ−(τ)→ λ∞c as τ →∞.

Here we show only that λ0 < ∞ exists, as it appears difficult to get any sort of

realistic estimate. The proof uses the block construction idea of [10] with a bit of

extra work to get around the lack of monotonicity. Convergence of λ+, λ− as τ → 0

is proved with the help of the results of [15] and [51], in both cases by passing to

a sequence of finite systems and using continuity with respect to parameters. Con-

vergence of λ+, λ− as τ → ∞ is proved in the same way, with a couple of technical

points that first need to be proved for the limit process.

The paper is laid out as follows. In Section 3.3 we prove Theorem 3.2.1. In Section

3.4 we prove Theorem 3.2.2. In Section 3.5 we prove Theorem 3.2.3.

3.3 Theorem 3.2.1: Convergence to the Limit Pro-

cess

Here we prove Theorem 3.2.1. We begin with a useful lemma. Using the graphical

representation given in Section 3.1, construct the SEIS process ηt rescaled by t 7→ t/τ ,

so that onset occurs at rate 1, recovery at rate τ and transmission at rate λτ . Recall

that S = G× [0,∞) denotes the spacetime set.
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Lemma 3.3.1. Let G = (V,E) be a finite graph. In the rescaled SEIS process, for

each T > 0 with probability tending to 1 as τ →∞, for each onset label ? at a point

(x, t) ∈ S there is a t′ > t and a recovery label × at (x, t′) such that there are no

onset labels in V × (t, t′].

Proof. Let {(xi, ti) : i = 1, 2, ...} be the set of points (x, t) ∈ S such that there is

a ? label at (x, t), with t1 < t2 < ...; since the total intensity of ? labels is finite,

with probability 1 the times can be ordered in this way. Say a discrepancy occurs

at time ti+1 if in the interval {xi} × (ti, ti+1) there are no × labels, then the desired

event holds if the first discrepancy occurs after time T . The intensity of × labels

at each site is τ and the intensity of ? labels is |V |, so for each N , with probability

[τ/(|V |+ τ)]N which ↑ 1 as τ →∞, there are no discrepancies up to time tN+1. Since

P(tN+1 > T ) ↑ 1 as N →∞, the result follows.

Proof of Theorem 3.2.1. We prove the result when G is a finite graph. The result for

infinite graphs is implied by the following fact that can be seen from the construction

of the process. Fix T > 0 and let η0 be an initial condition for the SEIS process with

no infectious site and finitely many exposed sites. Define the graph distance ρ(x, y)

to be the least number of edges in any path between x and y with ρ(x, y) =∞ if there

is no path from x to y. For k ≥ 0 let Gk be the graph induced by the set of vertices

y ∈ V such that ρ(x, y) < k for some x such that η0(x) = 1 and let Sk = Gk× [0,∞),

then define ηkt for 0 < t ≤ T using the restriction of the substructure to Sk. Then,

ηkt = ηt for 0 < t ≤ T with probability tending to 1 as k →∞.

First use the graphical representation to build two independent substructures

U
(1)
t and U

(2)
t with respective filtrations F (1)(t) and F (2)(t), one as for the rescaled

SEIS process and another as for the limit process. Construct the rescaled SEIS pro-

cess ηt from η0 using U
(1)
t and let {(xi, ti); i = 1, ...,m} with t1 < t2 < ... < tm

denote the points (x, t) at which ηt(x) goes from 1 to 2. For i = 1, ...,m let

si = min{t > ti : ηt(x) = 0} be the first recovery time of xi after ti. Say that a

discrepancy occurs if ti+1 < si for some i ∈ {1, ...,m− 1}. So long as no discrepancy

has occurred we will use U
(1)
t to construct the limit process ζt; U

(2)
t will help to con-

struct ζt in the event of a discrepancy.

For i = 1, ...,m − 1 define the stopping times ri = max si, ti+1, and let ζt =

ηt for t ∈ [0, t1]. For t ∈ [0, t1] let ζt = ηt. Then, working inductively, suppose
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ηt is determined for t ∈ [0, rj−1], is measurable with respect to F (1)(rj−1), and no

discrepancy has occurred up to time rj−1 i.e., ri = ti+1 for i = 1, ..., j − 1. To

determine ζt for t ∈ [rj−1, tj+1], use the ↔ labels in {xj·} × (tj, sj) and the × label

at (xj, sj) to obtain the propagation distribution at (xj, tj) and use the ? label at

(xj+1, tj+1) to obtain the next onset transition; note these transitions depend only on

ζrj−1
and E(Ut+rj−1

|F(rj−1)) so have the correct distribution, and are measurable with

respect to F(rj). If rj = tj+1 then ζt is determined for t ∈ [0, rj] and no discrepancy

has occurred up to time rj. If rj = sj a discrepancy has occurred; in this case,

use the second substructure to determine ζt for t ∈ [tj+1, T ], noting that the second

substructure is independent of the first. Proceeding in this way determines ζt for

t ∈ [0, T ], and by Lemma 3.3.1, with probability tending to 1 as τ → ∞, there are

no discrepancies in the time interval [0, T ] and so ηt = ζt, 0 ≤ t ≤ T . It is left to

the reader to show that for S = {t : ηt(x) = 2 for some x}, `(S ∩ [0, T ]) → 0 with

probability tending to 1 as τ →∞; to do so it suffices to prove a slight refinement of

Lemma 3.3.1.

3.4 Theorem 3.2.2: Quantitative Estimates

In this section we prove Theorem 3.2.2, in three parts: estimate of λ+, estimates of

λ−, estimate of λ∞c . First we define the lowerbound and upperbound processes, which

we denote ηt and ηt. The idea is to modify some transitions in the SEIS process so

that we end up with a monotone process that either lowerbounds or upperbounds

the original process. The definition is only relevant for τ > 0, since if τ = 0, in both

cases it coincides with the contact process.

3.4.1 Lowerbound Process

Starting from the graphical representation for the SEIS process, to obtain ηt, con-

struct the process as if it was the SEIS process, except that whenever an exposed site

sees a recovery label ×, it becomes healthy. As it turns out, this gives a particular

case of what is called the two-stage contact process [29], [19], which is known to be

monotone, as well as monotone increasing in λ and monotone decreasing in τ , with

respect to the partial order on configurations induced by the order 0 < 1 < 2 on

types; given what was shown for the contact process in Section 3.1, this is not hard to
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check. Intuitively, the reason why the stated monotonicity holds is because now the

exposed type is in every sense weaker, in its ability to spread the infection, than the

infectious type. Monotonicity in λ is intuitively clear, and monotonicity in τ can be

explained by saying that the longer an exposed site has to wait to become infectious,

the less it will spread the infection. This gives the existence of a critical value λc(τ)

that is non-decreasing in τ . It is also not hard to check that η0 is a genuine lower

bound, that is, if η0 ≤ η0 then ηt ≤ ηt for t > 0, with respect to the partial order

just described. This implies in particular that λc(τ) ≥ λ+(τ) for each τ . As shown in

[19], for a graph of bounded degree, λc(τ) → ∞ at a finite value of τ , so this upper

bound is only useful for small values of τ .

3.4.2 Upperbound Proces

To get ηt we first picture ηt as follows. Recall that S = G × [0,∞) is the spacetime

set, which we picture as a copy of G extruded upward in the increasing time direction.

Given η0, and determining the process on each realization for all time, if ηt(x) = 1

for t ∈ [t1, t2), draw a thick dashed line on the line segment {x} × [t1, t2) in S, and

if ηt(x) = 2 draw a thick solid line; if ηt(x) = 0 leave it blank. If the infection is

transmitted along an edge e ∈ E then draw a thick solid line with an arrow pointing

in the direction it was transmitted.

Now, modify the graphical representation so that transmission labels are directed.

That is, for xy ∈ E, with intensity λ place transmission labels → from x to y and

with intensity λ, place independent transmission labels ← from y to x. Clearly, this

does not change the law of ηt. Then, to define ηt we simply allow both a dashed line

and a solid line to exist at the same site, at the same time; that is, if both x and y

are infectious and there is a transmission label from x to y, then y becomes “both”

infectious and exposed; with respect to the above visualization, along y there is both

a dashed line and a solid line, each behaving as it would in the SEIS process. This is

why we make labels directed; if both x and y have a solid line and a↔ appears along

edge xy there is no way to tell which of the two sites x, y will receive a dashed line.

So, if y has both a dashed and solid line and the next event is

• an onset label ?, the dashed line coalesces with the solid line, and only a solid
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line remains, and if it is

• a recovery label ×, the solid line is knocked out and only the dashed line persists

Then, as in the SEIS process, only a solid line is able to use the transmission labels.

Also, at most one line of each type is allowed at a single site, so if x already has a

dashed line and there is a transmission event to x, it still has only one dashed line.

In order to refer to it, we denote by type 3 the presence of both a dashed and solid

line. It is not hard to check that ηt is monotone, and is monotone increasing in λ,

with respect to the partial order on configurations induced by the order 0 < 1, 2 < 3

on types; it is not, however, monotone in τ , effectively because in this process, as in

the SEIS process, types 1 and 2 are not comparable. Thus for each τ , ηt has a critical

value λc(τ) whose variation in τ is not known a priori. Clearly, ηt is an upper bound

for ηt in the sense that η0 ≥ η0 implies ηt ≥ ηt for t > 0, with respect to the partial

order just described, which implies that λc(τ) ≤ λ−(τ), for each τ .

3.4.3 Some Definitions

We introduce a couple of definitions that will be useful in this section and the next

section. Notice that, given a finite state space S and transition rates qij for i, j ∈ S,

we can construct a continuous time Markov chain on S as follows. Given that Xt = i,

then corresponding to the set of k such that qik > 0 we have an independent col-

lection of exponential random variables sk with rate qik, and setting s = min sk and

j = argmin sk, we let Xt+s = j. Note this is the same Markov chain as the one

in which each i to j transition is generated by a Poisson point process with inten-

sity qij. It can be checked by a calculation that pij = P(Xt+s = j|Xt = i) = qij/qi

if qi 6= 0, where qi =
∑

k 6=i qik; if qi = 0 the chain remains at i once it has arrived there.

Definition 3.4.1. The discrete time Markov chain on S determined by the transition

probabilities pij defined above is called the embedded jump chain.

Note that the embedded jump chain encodes the changes of state in the contin-

uous time chain. In fact, the continuous time chain can be reconstructed from the

embedded jump chain by waiting an independent exponential time of rate qi at each

state i before making a transition; see [41] for details.
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Our next task is to define a notion of path for the infection in spacetime.

Definition 3.4.2. A path in spacetime is a list of alternating vertical and horizontal

line segments

(v1, h1, ..., vm−1, hm−1, vm)

in S with each vi = {xi} × (ti−1, ti), ti−1 < ti and each hi = {xixi+1} × {ti}. The

base of a path is the point (x1, t0), and the end is the point (xm, tm).

The notion of active path is here defined only for the contact, lowerbound, and

limit processes. Although it is easy to define for the upperbound process we will have

no need for it, and for the SEIS process the definition will be a bit different.

Definition 3.4.3. For the contact process, a path is active if for i = 1, ...,m−1 there

is a ↔ label at hi and for i = 1, ..,m there are no × labels on vi. For the lowerbound

process, a path is active if in addition, for i = 1, ...,m − 1 there is a ? label on vi.

For the limit process, a path is active if instead of a ↔ label at hi, xi+1 belongs to the

offspring of (xi, ti).

Say a point (x, t) is active for a process ηt if ηt(x) 6= 0. It is easy to check for the

contact process, the lowerbound process and the limit process that if (x, t) is active

and there is an active path with base (x, t) and end (y, s) then (y, s) is active; one

way to express this is that active paths take active points to active points. It is also

true that (y, s) is active if and only if there is an active point (x, 0) and an active

path with base (x, 0) and end (y, s). This implies a useful property called additivity

which is discussed in the proof of Lemma 3.5.2 in Section 3.5.4.

3.4.4 Estimate of λ+

We will use the method described in [10], applied to the lowerbound process on Z, to

obtain upper bounds on λc(τ). Our first task is to describe the method and to justify

its usage in this setting. Recall that S = G× [0,∞) is the spacetime set, for R ⊂ S,

F(R) is the σ-algebra generated by the restriction of the substructure of R. In what

follows, we say an event holds “on R” if it is F(R)-measurable.

Letting L := {(m,n) ∈ Z2 : n ≥ 0,m+ n is even}, define oriented site percolation

on L to be the process in which sites in L are independently open with probabil-

ity p and closed with probability 1 − p, and there is a path from (k, l) to (m,n)



88

or (k, l) → (m,n) if there is a list (k, l) = (k1, l1), (k2, l2), ..., (kj, lj) = (m,n) such

that li+1 = li + 1 and ki+1 = ki ± 1 for i = 1, ..., j − 1, and (ki, li) is open for

i = 1, ..., j − 1; note the last site is not required to be open. The cluster of (m,n) is

the set C(m,n) = {(k, l) ∈ L : (m,n)→ (k, l)}. We say that percolation occurs from

(m,n) if |C(m,n)| = ∞. If p < 1 is close enough to 1, then percolation occurs from

(0, 0) with positive probability; as shown in [10], p ≥ 0.819 suffices.

The idea of the method of [10] is to use the above result for oriented percolation

to prove survival of the infection in the process of interest. In our case the discussion

applies to the lowerbound process, the contact process, the limit process, and any

process whose active paths take active points to active points as described above.

Embed the spacetime set (Z, {xy : |x− y| = 1})× [0,∞) into the half-space {(x, y) ∈
R2 : y ≥ 0} then draw the rectangles {Rm,n : (m,n) ∈ L} defined by

Rm,n = R0,0 + (mK,nT )

for some K,T to be determined, where R0,0 = [0, J ] × [0, T ] for some integer K ≤
J < 2K and for a set S and a point r, S + r := {s + r : s ∈ S}; the range of J en-

sures that Rm,n does not intersect Rm−2,n or Rm+2,n, but does intersect Rm−1,n+1 and

Rm+1,n+1 along its top edge; let j denote the number of sites along which Rm,n inter-

sects Rm−1,n+1, which is also the number of sites along which Rm,n intersects Rm+1,n+1.

Fix a parameter i ∈ {1, ..., j}. Say that a configuration η is good for Rm,n if

among either the leftmost or rightmost j sites in Rm,n there are at least i distinct

sites x1, ..., xi such that η(xk) 6= 0 for k = 1, ..., i. For (m,n) ∈ L, and for η that

is good for Rm,n, define Am,n(η) as follows: Am,n(η) occurs if for at least i of the j

leftmost sites y1, ..., yi and at least i of the j rightmost sites yi+1, ..., y2i in Rm,n at

time (n + 1)T , for p = 1, ..., 2i there is an q ∈ {1, ..., i} such that there is an active

path lying in Rm,n with base (xq, nT ) and end (yp, (n + 1)T ). See Figure 3.1 for a

picture.

If ηnT is good for Rm,n and Am,n(ηnT ) occurs, then η(n+1)T is good for both

Rm−1,n+1 and Rm+1,n+1. Moreover, given ηnT that is good for Rm1,n, Rm2,n, ..., the

events Am1,n(ηnT ), Am2,n(ηnT ), ... are independent. It is then straightforward to show

that if for each (m,n) ∈ L, P(Am,n) ≥ p for every configuration that is good for Rm,n
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Figure 3.1: Depiction of rectangles Rm,n for −2 ≤ m ≤ 2 and 0 ≤ n ≤ 2, as well as
the event A0,0(η0) in R0,0, with i = 2.
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then if η0 is good forR0,0, the set {(m,n) ∈ L : there is an active point for ηt in Rm,n}
stochastically dominates the cluster C(0, 0) of oriented site percolation with param-

eter p. Moreover, taking η at time 0 that is good for R0,0 together with the set

of labellings of R0,0 belonging to the event A0,0 given η and translating both by

(mK,nT ) gives η′ that is good for Rm,n together with the set of labellings belonging

to Am,n given η′. Thus, by translation invariance of the law of the substructure, to

show the lowerbound process survives with positive probability starting from η0 that is

good for R0,0, it suffices to show that P(A0,0) ≥ 0.819 for each η0 that is good for R0,0.

Using blocks with J = 7 and K = 6 and setting T so that there are an average of

650 labels in R (650 just chosen to match the choice in [10]), following [10] we estimate

numerically the transition matrix P for the embedded jump chain corresponding to

the lowerbound process restricted to the sites in R, counting redundant transitions

(i.e. points in the Poisson process that have no effect) so that the rate of transitions

is fixed and is equal to the total intensity of p.p.p.’s, that we denote γ, and then by

computing the first couple of thousand terms in the sum

∞∑
i=1

e−γT
γi

i!
P i

by monotonicity we obtain a lower bound on the entries of the transition matrix at

time T in the continuous time chain. If λ = 6.875 and τ = 1/10, then letting i = 1,

with respect to the estimated transition matrix we find that for each configuration

favourable for R0,0, A0,0 has probability at least 0.819, which implies λc(1/10) ≤ 6.875

and by monotonicity in τ , that λc(τ) < 6.875 when τ ≤ 1/10, so that for the SEIS

process λ+c (τ) < 6.875 when τ ≤ 1/10.

3.4.5 Estimates of λ−

For the upperbound process we use the method of [51]. Starting with the upperbound

process on Z with τ > 0 and initial configuration η0(x) = 3 for x ≥ 0 and η0(x) = 0

for x < 0, for integer m ≥ 0 we define the modified process ηmt (x) by evolving like

the upperbound process but with the added constraint ηmt (x) = 3 for x > lmt + m,

where lmt = inf{x : ηmt (x) 6= 0}. The vector v(t) = (ηmt (lmt ), ..., ηmt (lmt + m) evolves

like a finite state continuous time homogenous Markov chain on the state space S =

{η ∈ {0, 1, 2, 3}m+1 : η(0) 6= 0}, so we let Xn denote the embedded jump chain, which
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evolves on the same space. For this chain each state communicates with the state

defined by X(x) = 3, x = 0, ...,m, so the chain is irreducible on S with a unique

invariant measure that we denote µ. Letting k(i, j) denote the number of distinct

transitions in ηmt that take v(t) from i to j, and letting ∆(i, j, r) be the increment in

lmt and p(i, j, r) be the transition probability for the rth transition, 1 ≤ r ≤ k(i, j),

we define λm as sup{λ : Eµ∆ > 0}, where

Eµ∆ =
∑
i,j∈S

µ(i)

k(i,j)∑
r=1

p(i, j, r)∆(i, j, r) (3.4.1)

is the average increment in lmt at each transition. Since ηmt ≥ ηt and Eµ∆ > 0 implies

lmt → ∞, if λ < λm then lt → ∞. A simple coupling argument as in [7] then shows

that the upperbound process on Z started from a finite number of active sites dies out

with probability 1 when lt →∞, which implies λm ≤ λc. To estimate λm we construct

the embedded jump chain, compute µ, and iterate to find λ such that Eµ∆ ≈ 0. With

m = 3 we obtain the table of values given in Theorem 3.2.2.

3.4.6 Estimate of λ∞c

Defining an active path for the limit process as in Definition 3.4.3, we have that ac-

tive paths take active points to active points, so we can use the method of [10] as

described. Doing so with L = 10, j = 4 and i = 2 and T chosen to give an average of

650 labels gives the upper bound on λ∞c .

To get a lower bound we use again the method of [51]. From the limit process ζt,

for m ≥ 0 the modified process ζmt is defined by evolving like the limit process but

with the added constraint ζmt (x) = 1 for x > lmt +m, with lmt as defined above. The

definition of λm, µ and Eµ∆ are as above, with µ now supported on the state space

{η ∈ {0, 1}m+1 : η(0) 6= 0}. We give the coupling argument that shows lt →∞ implies

the limit process started from a finite number of active sites dies out with probability

1: letting 1 denote the indicator function define ζ−t , ζ
0
t and ζ+t by ζ−0 = 1(x ≤ 0),

ζ00 = 1(x = 0) and ζ+0 = 1(x ≥ 0), then by monotonicity ζ0t ≤ min ζ−t , ζ
+
t . If

l+t = inf{x : ζ+t (x) 6= 0} → ∞ then by symmetry r−t = sup{x : ζ−t (x) 6= 0} → −∞,

moreover r−t < l+t implies ζ0t ≡ 0, so there is almost surely finite time s so that ζ0t ≡ 0

for t > s. An analogous argument works when ζ0t is replaced with ζNt defined by

ζN0 = 1(x ∈ [−N,N ]). Computing λm for m = 8 in the same way as above gives the
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lower bound on λ∞c .

3.5 Theorem 3.2.3: Qualitative Estimates

In this section we prove Theorem 3.2.3, in five parts: existence of λ0, upper bound

on λ+ as τ → 0, lower bound on λ− as τ → 0, upper bound on λ+ as τ →∞, lower

bound on λ− as τ →∞.

3.5.1 Existence of λ0

To show the existence of λ0 we use a comparison to oriented site percolation, in the

spirit of [10]. As in the previous section, let L := {(m,n) ∈ Z2 : n ≥ 0,m+n is even}
and for T to be determined, define the set of rectangles {Rm,n : (m,n) ∈ L} by

R0,0 = R = [0, 3]× [0, T ] and

Rm,n = R + (2m,nT )

where for a set S and a point r, S+r := {s+r : s ∈ S}. For the SEIS process on Z, the

graphical representation embeds in a natural way into the set {(x, y) ∈ R2 : y ≥ 0},
as do the rectangles Rm,n. In light of the upper bound on λ+(τ) given for τ ≤ 1/10

in Theorem 3.2.2, it is enough to show that survival occurs with positive probability

when λ > λ0 and τ ≥ τ0 > 0 for some τ0 ≤ 1/10; we phrase it in this way because we

will be able to take τ0 > 0 as small as we choose.

For each m, let xm denote the site such that Rm,n = [xm, xm + 3]× [nT, (n+ 1)T ],

when m+ n is even. To show survival we define, for each p < 1, a value λ0 such that

for each λ and τ there is a time T and a collection of events Am,n each one depending

only on the corresponding F(Rm,n), the restriction of the substructure to Rm,n, with

the property that if ηnT (y) 6= 0 for some y ∈ [xm, xm + 3] and Am,n occurs, then

η(n+1)T (y) 6= 0 for some y ∈ [xm, xm+ 1] and some y ∈ [xm+ 2, xm+ 3], and such that

if λ > λ0, then P(Am,n) ≥ p. Then, provided η0(0) 6= 0, if λ > λ0 the set of (m,n)

such that ηt(x) 6= 0 for some (x, t) ∈ Rm,n dominates the cluster C(0, 0) of oriented

percolation with parameter p, so if p is chosen close enough to 1 we conclude that

survival in the SEIS process occurs with positive probability uniformly in τ , for any

value λ > λ0.
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For simplicity we define Am,n to have the property that if ηnT (y) 6= 0 for some y ∈
[xm, xm+1] then η(n+1)T (y) 6= 0 for some y ∈ [xm, xm+1] and some y ∈ [xm+2, xm+3].

By reflection symmetry of the substructure, if P(Am,n) ≥ 1− ε/2 then the probability

that the same conclusion holds with the weaker hypothesis ηnT (y) 6= 0 for some

y ∈ [xm, xm+ 3] is at least 1− ε. By translation-invariance it is enough to define A0,0,

for which xm = 0. Letting B(t) = (ηt(0), ηt(1)) and C(t) = (ηt(2), ηt(3)), say that

either is active at time t if at least one of its two coordinates is not zero. Then, it is

enough that A0,0 have the following two properties:

1. if B(s) is active for some s ∈ [0, T ) then B(t) is active for s < t ≤ T , and the

same is true for C(t), and

2. if B(0) is active (which it is by the assumption η0(0) 6= 0) then for some s ∈
[0, T ), C(s) is active

Before choosing T it is convenient to rescale the model in time so that ? labels occur

at rate 1, × labels at rate τ and ↔ labels at rate λτ ; this is ok since T is allowed to

depend on τ , and is convenient since after rescaling, it won’t have to.

To get property 1 for both B(t) and C(t) (and a bit more besides) it is enough

that the following event depending on a fixed parameter h > 0, that we denote E1,

hold: in the time interval [0, h] there is a ↔ label on each of the edges 01, 12, 23

before there is a × label on any of the sites {0, 1, 2, 3} and everywhere on the set

[0, 3] × [0, T ], after any ? label on {0, 1, 2, 3} and within at most h amount of time,

there is a ↔ on each of the edges 01, 12, 23 before there is a × label on any of the

sites {0, 1, 2, 3}. Since after rescaling, ? labels occur at rate 1, × labels at rate τ and

↔ labels at rate λτ , it is a simple exercise to show that given h, τ0 > 0, for each

ε, T > 0 we can choose λ0 so that P(E1) ≥ 1− ε if λ > λ0 and τ > τ0.

To get property 2, it is enough to show that t ≤ T where t is the first time such

that ηt(1) = 2 and a ↔ on 12 occurs at time t. If E1 holds, it is enough to have one

of the following:

• η0(1) = 2 and T ≥ h,

• η0(1) = 1 and there is a ? label at (1, t) for some t ≤ T − h,
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• η0(0) = 2 and there is a ? label at (1, t) for some h < t ≤ T − h, and

• η0(0) = 1 and there is a ? label at (0, t1) for some t1 ≤ T − 2h and a ? label at

(1, t2) for some t2 ∈ (t1 + h, T − h]

Since we can choose T ≥ h and since one of the four conditions on B(0) holds by

assumption, we denote by E2 the intersection of the label events just described, so

that E2 depends only on F(R0,0) as desired. Given ε > 0, it is not hard to check that

for T large enough, P(E2) ≥ 1 − ε/2. Then, we can choose λ0 so that if τ > τ0 and

λ > λ0, P(E1) ≥ 1− ε/2, so that P(E1 ∩ E2) ≥ 1− ε, and this completes the proof.

3.5.2 Upper bound on λ+ as τ → 0

We now show that λ+(τ), λ−(τ) → λ0c , the critical value of the contact process, as

τ → 0. We first use the lowerbound process to show that lim supτ→0 λ
+(τ) ≤ λ0c .

In the proof we mention a 1-dependent oriented site percolation process with pa-

rameter p; this is a model in which each site is open with probability p, and sites

(m1, n1), ..., (mk, nk) are independent provided |mi − mj| + |ni − nj| > 2 for i 6= j.

The definition of paths, clusters and percolation is the same as before. As shown in

[15], for a 1-dependent oriented site percolation process, if p = 1 − ε for ε > 0 small

enough, then percolation from (0, 0) occurs with positive probability.

In [15] it is shown for the contact process that if λ > λ0c then for each ε > 0, for

a suitable choice of rectangles Rm,n ∈ S and F(Rm,n)-measurable events Am,n with

indicator Im,n, the set {(m,n) ∈ L : Im,n = 1} dominates a 1-dependent oriented site

percolation process with parameter p = 1− ε. The 1-dependence arises from the fact

that Rm,n overlaps with each of Rm±1,n±1 on a set of positive measure in S; see Fig.

1 in [15] for a picture. The events Am,n are such that for appropriate choice of initial

configuration with finitely many active sites, the set of (m,n) ∈ L such that there

is an active point in Rm,n stochastically dominates C(0, 0), so to show survival it is

sufficient to have P(Am,n) ≥ 1− ε for ε > 0 small enough.

Now, since each rectangle Rm,n is bounded, if Pλ(Am,n) > p then for small enough

δ > 0, Pλ−δ(Am,n) > p. To see this, proceed as in Section 3.1: first generate transmis-

sion labels↔ and↔′ using independent p.p.p’s with intensity λ−δ and δ respectively,

then let the process with transmission parameter λ use both types of labels, and let
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the process with transmission parameter λ − δ use only the labels ↔. Since R is a

bounded region in spacetime, with probability tending to 1 as δ → 0 there are no ↔′

labels in R, and on this event the p.p.p.’s for the two processes agree on R. Viewing

the contact process as the lowerbound process with τ = 0, a similar argument shows

that if Pλ,0(Am,n) > p then for small enough δ and τ , Pλ−δ,τ (Am,n) > p; for a detailed

argument see [19], but the main idea is that for a bounded region in spacetime, with

probability tending to 1 as τ → 0, between any two consecutive labels of type ↔ or

× in time there is a ? label at every site. Therefore if λ > λ0c then taking p = 1 − ε
where ε > 0 is such that percolation occurs with positive probability in a 1-dependent

oriented site percolation model with parameter p, for small enough δ, τ > 0, started

from some initial configuration with finitely many active sites the lowerbound process

with parameters λ − δ, τ survives with positive probability. In other words, λ > λ0c

implies λ > λc(τ) for small enough τ > 0, and noting that λ+(τ) ≤ λc(τ) the desired

result follows.

3.5.3 Lower bound on λ− as τ → 0

Next we show that lim infτ→0 λ
−(τ) ≥ λ0c , using the upperbound process and a com-

parison. In Section 3.4 we described the method of [51] that gives, for each τ > 0,

a sequence of lower bounds λ0(τ) ≤ λ1(τ) ≤ λ2(τ) ≤ ... ≤ λc(τ), each is which is

determined by a process ηmt that approximates the upperbound process; we did not

show that the λm are increasing but this follows from the observation ηmt ≥ ηm+k
t

for k ≥ 0. For τ = 0 which is the contact process, starting from the process with

initial configuration η0(x) = 2 for x ≥ 0 and η0(x) = 0 for x < 0, then for integer

m ≥ 0 define ηmt by evolving like the contact process but with the added constraint

ηmt (x) = 2 for x > lmt +m, with again lmt = inf{x : ηmt (x) 6= 0}. The definition of λm,

µ and Eµ∆ are as before. Since ηmt ≥ ηm+k
t we have again λ0(0) ≤ λ1(0) ≤ ...λ0c . It

is shown in [51] that λm(0) ↑ λ0c ; the proof relies on the fact, proved as Theorem 4 in

[22], that λ0c = sup{λ : α > 0}, where for lt = inf{x : ηt(x) 6= 0}, α = limt→∞ lt/t was

shown to exist in [7].

For τ > 0, µ is supported on S = {η ∈ {0, 1, 2, 3}m+1 : η(0) 6= 0} and for τ = 0,

µ is supported on S0 = {η ∈ {0, 2}m+1 : η(0) 6= 0} ⊂ S. Define S1 = {η ∈ S :

η(x) ∈ {1, 3} for some x and η(y) ∈ {0, 2}, y 6= x}, the set of states with exactly one

exposed site. Modify the embedded jump chain Xn when τ = 0 to include inter-
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mediate transitions to configurations with an exposed i.e. type 1 or type 3 site; µ

is then supported on S0 ∪ S1 and from any state in S1 there is a unique transition

with probability 1 to the corresponding state in S0 in which onset of the exposed

site has occurred. Since this modification preserves the sign of Eµ∆ the value of

λm is unchanged. Writing Eµ∆(m,λ, τ) to emphasize the dependence and noting

that λm(τ) = sup{λ : Eµ∆(m,λ, τ) > 0}, to prove the result it suffices to show

that for each m and λ, Eµ∆(m,λ, τ) is continuous in τ at τ = 0, since if λ < λ0c then

λ < λm(0) for some m and Eµ∆(m,λ, 0) > 0 and then by continuity Eµ∆(m,λ, τ) > 0

and thus λ < λm(τ) for small enough τ > 0 and the result follows from the inequali-

ties λm(τ) ≤ λc(τ) ≤ λ−(τ).

Recall equation (3.4.1):

Eµ∆ =
∑
i,j∈S

µ(i)

k(i,j)∑
r=1

p(i, j, r)∆(i, j, r)

Thus to show Eµ∆(m,λ, τ)→ E∆(m,λ, 0) as τ → 0 it suffices to show µ(i)(m,λ, τ)→
µ(i)(m,λ, 0) for i ∈ S and p(i, j, r)(m,λ, τ)→ p(i, j, r)(m,λ, 0) as τ → 0 for i, j ∈ S
and r = 1, ..., k(i, j). In fact, we can make a further reduction.

Lemma 3.5.1. Let p(i, j)(s), 0 ≤ s ≤ 1, be a family of transition probabilities on

a finite state space S such that for each s, p(i, j)(s) has a unique invariant measure

µ(i)(s). If p(i, j)(s)→ p(i, j)(0) as s→ 0 for each i, j ∈ S then µ(i)(s)→ µ(i)(0) as

s→ 0 for i ∈ S.

Proof. Let n = |S| and define the simplex Λ = {x ∈ Rn : xi ≥ 0, i = 1, ..., n,
∑

i xi =

1} that corresponds to probability measures on S. Suppose by way of contradiction

that there is a sequence (sk) tending to 0 and an ε > 0 such that maxi |µ(i)(sk) −
µ(i)(0)| > ε for each k. By compactness of Λ there is a subsequence (skm) tending

to 0 and an element µ∗ ∈ Λ with µ∗ 6= µ(0) such that µ(i)(skm) → µ∗(i) for each i.

However, since p(i, j)(skm)→ p(i, j)(0) for each (i, j) and each µ(skm) is invariant for

p(i, j)(skm), µ∗ is invariant for p(i, j)(0), and by assumption of uniqueness, µ∗ = µ(0),

a contradiction.

By the lemma above, since for Xn, p(i, j) =
∑k(i,j)

r=1 p(i, j, r), and µ is determined

from p(i, j) it suffices to show p(i, j, r)(m,λ, τ) → p(i, j, r)(m,λ, 0) as τ → 0. For
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each i, j ∈ S and r ∈ {1, ..., k(i, j)} the transition rate qijr for ηmt is of the form 1/τ ,

λ, 2λ or 1. Using the formula pijr = qijr/
∑

(k,s) 6=(i,r) qiks and writing pijr(m,λ, τ) to

emphasize the dependence, fix m and λ. For i ∈ S0, pijr(m,λ, τ) does not depend on

τ and agrees with p(i, j, r)(m,λ, 0) provided we include intermediate transitions in Xn

as discussed above, and for i ∈ S1 there is a unique j ∈ S0 and r ∈ {1, ..., k(i, j)} such

that pijr(m,λ, τ) ↑ 1 as τ ↓ 0; j and r are determined by forcing onset to occur, which

again agrees with Xn. Defining S2 = S \ (S0 ∪ S1), for i ∈ S2 each p(i, j, r) converges

to some number a(i, j, r) such that
∑

j∈S,r=1,...,k(i,j) a(i, j, r) = 1 and such that with

respect to a(i, j, r), S0 ∪S1 is accessible from S2; since for τ = 0, S0 ∪S1 is invariant,

we can define p(i, j, r)(m,λ, 0) = a(i, j, r) without affecting Xn, so convergence of the

p(i, j, r) is proved, & we are done.

3.5.4 Upper bound on λ+ as τ →∞

We use the same approach as in the case τ → 0, and begin by describing the con-

struction of [15] in somewhat better detail.

As mentioned in Section 3.5.2, the idea of [15] is that given p < 1, we can choose

rectangles Rm,n and initial data for the process so that the set of (m,n) ∈ L such

that there is an active point in Rm,n dominates the cluster C(0, 0) in a 1-dependent

oriented percolation model with parameter p. The specific event on Rm,n that allows

this is the existence of active paths going from the bottom centre of Rm,n to the top

left and top right, with the property that if, say, Rm,n and Rm−1,n+1 both have these

paths, then said paths can be concatenated to form a longer active path through both

rectangles.

Our strategy is first to show that the construction of [15] applies to the limit

process, so that if λ > λ∞c then for any p < 1 we can choose Rm,n for the limit process

that have the desired active paths, in a 1-dependent way, with probability ≥ p for

each (m,n). Then, by defining a condition for initial data at the base of Rm,n, and an

event on each rectangle Rm,n, that allow us to deal with the possibility of discrepancies

as encountered in the proof of Theorem 3.2.1 in Section 3.3, we can show that with

nearly the same probability, for τ large enough the SEIS process has the same active

paths, and these paths can be concatenated. First we address applicability of the
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construction of [15] to the limit process.

Lemma 3.5.2. The comparison to oriented percolation given in [15] is valid for the

limit process on Z, i.e., if λ > λ∞c and ε > 0 then suitably rescaled, the limit process

dominates oriented site percolation with parameter p > 1− ε.

Proof. First note that our definition of the critical value is the same as theirs, namely

of survival with positive probability starting from a single infectious site. As men-

tioned at the end of Section 2 of [15], their construction is valid for a broader class of

models they call “nearest neighbour additive growth models” that includes the limit

process. The key properties required are additivity, described in Section 4 of [7], and

the coupling property described in Lemmas 3.1 and 3.4 of [7], both of which are easily

verified to hold for the limit process. Additivity means that for configurations ζ and

ζ ′, defining ζ ∨ ζ ′ for each x by (ζ ∨ ζ)(x) = max(ζ(x), ζ ′(x)), then with respect to

the coupling given by the graphical construction, if ζ ′′0 = ζ0 ∨ ζ ′0 then ζ ′′t = ζt ∨ ζ ′t for

t > 0. The desired coupling property is that, if we let ζ10 (x) ≡ 1, ζ+0 (x) = 1(x ≥ 0)

and ζ00 (x) = 1(x = 0) then for l+t = inf{x : ζ+t (x) 6= 0, l0t = inf{x : ζ0t (x) 6= 0} or

=∞ if ζ0t (x) = 0 for all x, and r0t = inf{x : ζ0t (x) 6= 0} or = −∞ if that set is empty,

it holds that ζ0t = ζ+t ∩ [l0t , r
0
t ] = ζ1t ∩ [lt, rt] i.e., on the interval [lt, rt], ζ

0
t agrees with

ζ+t and with ζ1t , and if r0t > −∞ then l0t = l+t . The coupling property can be checked

by examining transitions occurring near the endpoints l0t , r
0
t .

Next we introduce two slightly different definitions of active path for the SEIS

process that will be helpful. An active path literally implies that all points along

that path are active, while a potentially active path will, under some additional

conditions on the state of the process near the base of the path and on the surrounding

substructure, also be active.

Definition 3.5.3. For the SEIS process ηt, given η0 and τ > 0, a path as defined in

Definition 3.4.2 is active if for i = 1, ...,m − 1, ηti(xi) = 2, ηti(xi+1) = 1, there is a

↔ label at hi, and for i = 1, ...,m, ηt(xi) 6= 0 for t ∈ (ti−1, ti).

Definition 3.5.4. For the SEIS process and a path γ = (v1, h1, ..., vm−1, hm−1, vm) as

defined in Definition 3.4.2 say that γ is potentially active if

1. for i = 1, ...,m− 1, there is a ↔ label at hi,

2. for i = 1, ...,m−1 there is a ? label at a point (xi, t) ∈ vi = {xi}×(ti−1, ti) called

the activating label, which is such that there are no ? labels in {xi} × (ti−1, t)

and no × labels in {xi} × (t, ti), and
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3. for any ? label at a point (xm, t) ∈ vm = {xm}× (tm−1, tm) there are no × labels

in {xm} × (t, tm).

Next we generalize the condition on the initial configuration given in Theorem

3.2.1, and the event described in Lemma 3.3.1, to a larger class of spacetime sets.

Together these are probably the simplest conditions under which the SEIS process is

well behaved.

Definition 3.5.5. Let R ⊂ S be a set in spacetime which is the closure of an open

set, and define the base of R as

base(R) = {(x, t) ∈ R : (x, t− ε) /∈ R for all small enough ε > 0}

For the rescaled SEIS process, say that R is onset-ordered if the event described in

Lemma 3.3.1 holds on R i.e. if there is a ? label at (x, t) ∈ R and {x} × (t, t′) ⊂ R

for t < t′ then for any ? label at a point (y, s), s ∈ (t, t′) there is a × label at {x}× s′

for some s′ ∈ (t, s). Say that ηt is good for R if ηt(x) 6= 2 for (x, t) ∈ base(R).

The following result allows us to promote a potentially active path to an active

path, when the above-stated conditions hold.

Lemma 3.5.6. Let R be as in Definition 3.5.5. If R is onset-ordered and ηt is good

for R then

1. for each t ≥ 0, ηt(x) = 2 for at most one x in the set {x ∈ V : (x, t) ∈ R}, and

2. a potentially active path γ with base (y, s) satisfying ηs(y) = 1 is active in the

sense of Definition 3.5.3.

Proof. If ηt(x) = 2 for (x, t) ∈ R then by tracing back in time along the fiber {x}×R+,

there is a point (x, s), s ≤ t such that if s < t then {x} × (s, t) ∈ R and there are no

× labels in {x} × (s, t), and such that either

1. (x, s) ∈ int(R), the interior of R, ηs−ε(x) = 1 for all small enough ε > 0 and

there is a ? label at (x, s) or

2. (x, s) ∈ base(R) and ηs(x) = 2

If ηt is good for R then the second case does not occur. Suppose ηt(x) = ηt(y) = 2 for

some x 6= y, and let sx, sy be the times such that (x, sx) and (y, sy) have the property
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stated above; we may assume that sx ≤ sy, and since labels almost surely do not

occur simultaneously, that sx < sy. But then there is an interval {x} × (sx, t) ∈ R
and a ? label at a point (y, sy) ∈ R, sx < sy < t, such that there are no × labels in

the interval {x} × (sx, sy), so R is not onset-ordered. The second statement follows

from the first statement, the definition of potentially active path, and the transition

rules.

The next result allows us, under fairly mild conditions, to concatenate a collection

of potentially active paths into a longer potentially active path. The words before,

after, starts, etc. are with respect to the order of events in time.

Lemma 3.5.7. Let R be as in Definition 3.5.5 and suppose γ1, ..., γk are potentially

active paths on R with respective bases (x1, t1), ..., (xk, tk) satisfying

1. ti < ti+1, i = 1, ..., k − 1 i.e., γi starts before γi+1, and

2. (xi+1, ti+1) does not intersect γi, i = 1, ..., k − 1 i.e., γi+1 does not start some-

where on γi,

and with intersection points (yi, si) ∈ γi ∩ γi+1, i = 1, ..., k − 1, yi ∈ V , satisfying

1. si < si+1, i = 1, ..., k − 2,

2. yi 6= yi+1, i = 1, ..., k − 2, and

3. yk−1 is not on the last vertical segment of γk.

If R is onset-ordered then the path γ obtained by concatenating γ1, ..., γk through the

points (yi, si), i = 1, .., k − 1 is a potentially active path.

Proof. For i ∈ 1, .., k−1 let ui, vi be the vertical segments in γi, γi+1 respectively that

satisfy (yi, si) ∈ ui ∩ vi and let wi be the vertical segment in γ containing (yi, si).

For i = 1, ..., k − 1, wi is not the last vertical segment in γ, wi ⊂ ui ∪ vi and more

precisely, wi = {yi} × [minui,max vi] where minui is the lowest point (in time) on

ui and max vi is the highest point on vi; for i = 1, ..., k − 2 this follows from the

assumption yi 6= yi+1 and for i = k − 1 it follows from the assumption yk−1 is not

on the last verical segment of γk. Except for the segments wi, i = 1, ..., k − 1, the

segments of γ correspond to segments in the paths γ1, ..., γk, so it suffices to check

for i = 1, .., k − 1 that on wi there is an activating label i.e. a ? label with no ×
labels on wi after it and no ? labels on wi before it; we consider separately the cases
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min vi < minui, minui = min vi and minui < min vi.

If min vi < minui then since the base of γi comes before the base of γi+1 there

is a vertical segment ui−1 in γi that precedes ui. Since neither ui−1 nor vi are the

last vertical segments on their respective paths, there is a ? label on ui−1 with no ×
labels on ui−1 after it, and a ? label ` on vi with the analogous property. Since R

is onset-ordered, it follows that there are no ? labels between the time ` occurs and

max vi, so ` cannot occur before minui. Thus ` occurs after minui and lies on wi. It

is easy to check that ` is an activating label for wi.

If minui = min vi then wi = vi and wi inherits the activating label from vi. If

minui < min vi, then since γi+1 does not start on γi, there is a vertical segment vi−1

preceding vi. Any ? label on ui has no × labels on ui after it. From the same argument

as in the previous paragraph with vi−1 playing the role of ui−1 and ui playing the role

of vi, it follows that there are no ? labels on ui \ vi, and so wi inherits the activating

label from vi.

After assembling the above ideas, we can prove in a straightforward way the

domination of a 1-dependent oriented percolation process. Once we have shown this

is true, the rest of the proof of the upper bound on λ+ proceeds in the same way as

when τ → 0, which we leave to the reader.

Lemma 3.5.8. For fixed λ > λ∞c and ε > 0, for τ large enough the SEIS process with

parameters λ, τ dominates a 1-dependent oriented percolation process with parameter

p ≥ 1− ε.

Proof. First, construct the limit process ζt and apply the construction of [15] to ob-

tain rectangles Rm,n = (mK,nT ) + [−J, J ] × [0, 1.2T ] such that the corresponding

events Am,n have P(Am,n) ≥ 1 − ε/3. As specified more precisely in [15], each event

Am,n corresponds to the existence of some active paths in Rm,n going from the base

of Rm,n to some locations in the top of Rm,n, such that if Ami,ni = 1 for each (mi, ni)

in a path (0, 0) = (m1, n1), ..., (mk, nk), then the resulting paths intersect to produce

an active path from some point (y, 0), y ∈ [−J, J ] to a point (x, t) in Rmk,nk .

Independently, construct the rescaled SEIS process ηt and superimpose onto it

the rectangles Rm,n from the last paragraph. For δ > 0, define the region Pm,n =

(mK,NT ) + [−J, J ] × [−δ, 0] that lies just below Rm,n in spacetime, and say that
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Pm,n is good for Rm,n if, depending only on the labelling on Pm,n, for all possible

configurations ηnT−δ, ηnT is good for Rm,n. It is easy to check that for τ large enough

and δ > 0 small enough, with probability ≥ 1 − ε/3, Pm,n is good for Rm,n, due to

the resulting plenitude of × labels and lack of ? labels on Pm,n. Suppose ηt is good

for Rm,n, then construct a new copy ζ
(m,n)
t of the limit process only on Rm,n using

the method of Section 3.3 with initial configuration {ηnT (x) : (x, nT ) ∈ Rm,n}, and

note that when Rm,n is onset-ordered, to each active path in ζ
(m,n)
t corresponds a

potentially active path for ηt on Rm,n in the obvious way. Let Qm,n = Rm,n ∪ Pm,n
and define new events Bm,n on Qm,n by

Bm,n = {Pm,n is good for Rm,n, Rm,n is onset-ordered and Am,n holds for ζ
(m,n)
t }

If τ is large enough then P(Rm,n is onset-ordered ) ≥ 1 − ε/3, and if δ > 0 is

small enough then the oriented percolation model defined by the events A′m,n is 1-

dependent, so for τ large enough and δ > 0 small enough, A′m,n is 1-dependent and

P (A′m,n) ≥ 1− ε.

If ηt is good for a finite collection of sets then it is good for the union of those

sets. Moreover, if (m1, n1), ..., (mk, nk) is a lattice path, Rm1,n1 , ..., Rmk,nk are onset-

ordered and Am1,n1 , ..., Amk,nk holds for ζ
(m1,n1)
t , ..., ζ

(mk,nk)
t , then it is easy to see

from the geometry of the construction in [15] that the potentially active paths for

ηt in the rectangles Rm1,n1 , ..., Rmk,nk corresponding to the relevant active paths for

ζ
(m1,n1)
t , ..., ζ

(mk,nk)
t satisfy the conditions of Lemma 3.5.7. Thus if Bm1,n1 ∩ ...∩Bmk,nk

holds for a path (m1, n1), ..., (mk, nk) then in each of the rectangles Rm1,n1 , ..., Rmk,nk

there is a potentially active path for ηt, such that the concatenation of those paths

is a potentially active path through the union Rm1,n1 ∪ .... ∪ Rmk,nk which, since ηt

is good for the union, is an active path for ηt, and the desired stochastic domination

follows.

3.5.5 Lower bound on λ− as τ →∞

An argument given in [22] shows that the coupling property described in the proof

of Lemma 3.5.2 implies that λ∞c = sup{λ : α > 0}, where α = limt→∞ l
+
t /t; note that

our definition of critical value agrees with the one in [22], namely as survival with

positive probability, started from a single infectious site. With this fact, the proof

given in [51] that λm ↑ λc applies without modification to the limit process. We then
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proceed in the same way as when τ → 0. In this case we shall have S as before,

S0 = {η ∈ {0, 1, 2, 3} : η(x) ∈ {0, 1}, x = 1, ...,m + 1} and S1 = {η ∈ {0, 1, 2, 3} :

η(x) = 2 for some x and η(y) /∈ {2, 3}, y 6= x}, and modify Xn when τ = ∞ to

include intermediate transitions through the infectious state and propagation before

recovery. Since the proof is analogous, the details are omitted.
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Chapter 4

New Results for the Two-Stage

Contact Process

This chapter consists of the journal article [19] of the same title, appearing in Journal

of Applied Probability 52.1 (March 2015).

Abstract

Here we continue the work started by Steve Krone on the two-stage contact process.

We give a simplified proof of the duality relation, and answer most of the open

questions posed in that paper. We also fill in the details of an incomplete proof.

4.1 Introduction

The contact process is a stochastic spatial model of population growth that was intro-

duced in the 1970’s [24] and has since been widely studied. In its simplest form, each

site is in one of two states, occupied or vacant, and a great deal is known about this

model (see for example the books [32] and [34] of Liggett). More recently, variants

of the model have been studied in which there is more than one type of individual

[38], [30] or more than one stage of development [29]. In [49], a multitype framework

is used to model infection spread between households located at the vertices of a ho-

mogenous tree. In [31], a two-stage model of infection spread is studied on scale-free

networks.
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Here we consider the two-stage contact process introduced in [29]. It is a natural

generalization of the contact process in which there is an intermediate juvenile type

that must mature before it can produce offspring. More precisely, it is a growth model

on Zd defined by the rates

0 → 1 at rate λn2

1 → 2 at rate γ

1 → 0 at rate 1 + δ

2 → 0 at rate 1

where n2(x) is the cardinality of the set {y ∈ Zd : 0 < ‖y − x‖∞ < r, y is in state 2}
for some fixed r ≥ 1. The state space for the process is {0, 1, 2}Zd , so that each site

is either unoccupied, recently occupied, or occupied by a mature organism that can

give birth at other sites. Aside from the choice of neighbourhood, there are three

parameters λ, γ and δ, respectively the transmission rate, the maturation rate, and

the juvenile death rate.

A number of basic properties of the process are proved in [29], including additivity

and monotonicity with respect to parameters (increasing in λ and γ and decreasing in

δ), as well as a duality relation, and some bounds on the survival region (the set of pa-

rameters for which an initially finite population has a chance of surviving for all time).

Here we consider the process in the more general setting of a countable graph

(V,E) with finite maximum degree, proving some results in this setting and more

precise results on Zd. We simplify the proof of the duality relation given in [29] and

answer most of the open questions posed in Section 4 of that paper. As we shall see,

for the two-stage contact process there is a critical value of the maturation rate below

which survival does not occur (Theorem 4.1.1). Also, it shares many of the properties

of the contact process; in particular, there is complete convergence (Theorem 4.1.3).

The following is a summary of the main results.

Our first result is an upper bound on the set of values γ so that the process dies

out, i.e., reaches the all 0 state with probability 1. The bound depends only on the

maximum degree M = maxx deg x of the graph.
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Theorem 4.1.1. If γ < 1/(2M −1) then starting from any finite number of occupied

sites, the process dies out, no matter the value of λ and δ.

This answers question 6 in [29], where the author supplies a bound for Z1 in the

case of nearest neighbour interactions, and asks whether a bound exists for other

interactions, or for Zd with d > 1.

Our next result shows that two notions of survival for the two-stage contact process

coincide, answering question 1 in [29] affirmatively. For terminology see Sections 4.3.1

and 4.3.5.

Theorem 4.1.2. For the two-stage contact process on Zd, single-site survival occurs

if and only if the upper invariant measure is non-trivial.

The proof uses the construction of [3] to show that for both the process and its

dual, single-site survival implies the upper invariant measure is non-trivial.

An important question for growth models is that of complete convergence, which

we show is true for the two-stage contact process, answering question 3 in [29]. Here

λc is the critical value for single-site survival as defined in Section 4.3.1 and µt denotes

the distribution of the process at time t. The ⇒ denotes weak convergence.

Theorem 4.1.3. If λ > λc then complete convergence holds, i.e.,

ξt ⇒ αδ0 + (1− α)ν

where ν is the upper invariant measure, δ0 concentrates on the configuration with

all 0’s and α = Pµ0(ξt dies out ) where Pµ0 is the law of the process with initial

distribution µ0.

We now summarize the organization of the paper. In Section 4.2 we construct the

process and prove the duality relation. In Section 4.3.1 we recall the critical values

defined in [29]. In Section 4.3.2 we fill in some missing details in the proof of Propo-

sition 3.6 in [29]. In Section 4.3.3 we prove Theorem 4.1.1. In Section 4.3.3 we give a

sufficient condition for the edge speed of the process in one dimension to characterize

survival, providing a partial answer to question 2 in [29]. In Section 4.3.5 we prove

Theorem 4.1.2, and in Section 4.3.6 we prove Theorem 4.1.3. We discuss the survival

region in Section 4.3.7, and using the construction from the proof of Theorem 4.1.2
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we find that the process dies out on the boundary of the survival region, providing

a partial answer to question 5. We argue that question 4 appears not to have an

affirmative answer, and we give some informal arguments as to why this should be

so.

4.2 Construction and duality

We recall briefly the construction of the process. Here the process ξt lives on the

state space {0, 1, 2}V where V is the vertex set of an undirected graph (V,E), with

V = Zd and E = {xy : 0 < ‖x − y‖∞ < r} for some r ≥ 1 being common choices.

The state space is equipped with the partial order ξ ≤ ξ′ ⇔ ξ(x) ≤ ξ′(x) for each

x ∈ V , where 0 < 1 < 2 is the order on the state at each site. The process is at-

tractive if there exists a coupling so that ξ0 ≤ ξ′0 ⇒ ξt ≤ ξ′t for t > 0. It is additive

if ξ0 = ξ′0 ∨ ξ′′0 ⇒ ξt = ξ′t ∨ ξ′′t , where (ξ ∨ ξ′)(x) = max(ξ(x), ξ′(x)) for each x. It is

monotone increasing (decreasing) with respect to a parameter λ if ξ0 ≤ ξ′0 and λ ≤ λ′

(λ ≥ λ′) ⇒ ξt ≤ ξ′t. We shall often use the word active to refer to a site or a point in

spacetime where the state is not 0.

We can construct the process on any undirected graph (V,E) by taking n2(x) to

be the cardinality of the set {y ∈ V : xy ∈ E, y is in state 2}. Assign independent

Poisson processes to each of the events:

• death of 1’s and 2’s at each site, at rate 1

• death of 1’s at each site at the additional rate δ

• transmission across each edge at rate λ

• maturation at each site, at rate γ

Place the events on the spacetime graph V × R+ and fix a configuration at time 0.

The configuration at later times can then be determined from the events on the graph.

To ensure it is well-defined it suffices to work backwards from a point (x, t) on the

spacetime graph and ensure that with probability 1, only finitely many events occur

that can influence the state of (x, t). For this to be true it suffices that the graph has

finite maximum degree, i.e., for some M we have deg x ≤ M < ∞ for each x ∈ V ;
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the desired property then follows by comparison with a branching process in which

births occur at rate λM .

Additivity of the process is immediate from this construction and from the fact

that each transition is additive. Monotonicity with respect to parameters can be es-

tablished in the usual way; for example, to compare processes with identical values of

γ and δ and transmission rates λ < λ′ on the same graph, simply add a point process

at rate λ′ − λ for the extra transmission events in the second process, and note that

this tends to give larger configurations as the process evolves.

For each δ, there is a dual process ζt given by the rates

0 → 1 at rate λn2

1 → 2 at rate γ

2 → 1 at rate δ

1, 2 → 0 at rate 1

and which Krone calls the “on-off” process because of the 2→ 1 transition. Note the

dual is similar to the original process, in that type 0 represents a vacant state, and

type 2’s give birth to type 1’s. Define the compatibility relation ξ ∼ ζ ⇔ ξ(x) ∼ ζ(x)

for some x, where 1, 2 ∼ 2 and 2 ∼ 1. Notice that type 2 in the dual process corre-

sponds to type 1 or type 2 in the original process and that dual type 1 corresponds

to original type 2.

The interpretation of compatibility is that the configuration ξ is strong enough to

be compatible with ζ at some site, and the stronger the dual type, the easier it is to

match up. We give a simple proof of the following fact, the proof of which occupies

several pages in [29].

Proposition 4.2.1. The dual process has the property that

ξt ∼ ζ0 ⇔ ζt ∼ ξ0

with the dual running down the (same) spacetime graph from time t to time 0, so that

ζs is on the time line t− s.
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Proof. We start from the above condition to construct the dual, showing that it has

the stated transitions and rates. The proof is given for the case |V | < ∞, that is,

when the set of sites is finite, since only finitely many events occur in a finite time

and we can proceed by induction on the events. To extend this to the case |V | =∞
fix a finite subset V0 and let Vk = {y ∈ V : ρ(y, V0) ≤ k}, where ρ is the graph

distance. Denoting by Vkξt the process constructed using the events on the subset

Vk × R+ of the spacetime graph, there is an almost surely finite value of k0 so that

Vkξs(x) = ξs(x) for x ∈ V0 and 0 ≤ s ≤ t when k ≥ k0, and this suffices to make the

extension.

Say that a set of (forward) configurations Λ is dualizable if there is a dual config-

uration ζ so that

Λ = {ξ : ξ ∼ ζ}

Note that ζ is unique, if it exists. For fixed ζ0 and 0 ≤ s ≤ t let Λs = {ξt−s : ξt ∼ ζ0}.
Clearly, Λ0 is dualizable with dual configuration ζ0. If Λs is dualizable, denote by

ζs its dual configuration. Suppose there is an event at time s, and use the notation

ξt−s+ and Λs+ to denote the state just prior to its occurrence (which corresponds to

just after its occurrence in backward time, which is why we denote it s+ rather than

s−). Note that

Λs+ = {ξt−s+ : ξt−s ∈ Λs}

Suppose that Λs is dualizable with dual configuration ζs, then Λs+ = {ξt−s+ : ξt−s ∼
ζs}. We show that Λs+ is dualizable by producing its dual configuration ζs+ . A type

2 death at x (i.e., a rate 1 death event) kills both active types, so ζs+(x) = 0 whatever

the value of ζs(x); this causes the dual 1, 2→ 0 transition at rate 1. A type 1 death at

x (i.e., a rate δ death event) kills only type 1. If ζs(x) = 2 i.e., a 1 or a 2 is sufficient

for compatibility after the event, then a 2 is required for compatibility before, so

ζs+(x) = 1; this is the dual 2 → 1 transition at rate δ. A (forward) transmission

event from y → x leads to a 1 at x after the event, if y is in state 2 just before the

event, so ζs+(y) = 1 if ζs(x) = 2; this is the dual transmission event. A maturation

event at x causes a 1→ 2 transition, so that ζs+(x) = 2 if ζs(x) = 1; this is the dual

1→ 2 transition at rate γ. For values of ζs(x) not mentioned, or for sites that aren’t

involved in the transition, it is easily verified that ζs+(x) = ζs(x). This finishes the

induction step and establishes the dual transitions, completing the proof.
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Before moving on, we note that the dual process is also additive and monotone

increasing in λ and γ, and monotone decreasing in δ, a fact which is noted in [29] and

which we use later.

4.3 Main Results

4.3.1 Critical values for survival

Denoting by ξot the process starting a single mature site (the “o” stands for “origin”,

which if the process lives on the lattice, we can without loss of generality set to be

the initially occupied site), we say ξot survives if

P(∀t > 0,∃x : ξot (x) 6= 0) > 0

and dies out otherwise. Defining the critical value

λc(γ, δ) = inf{λ > 0 : ξot survives }

it follows by monotonicity that λc is an increasing function of δ and a decreasing

function of γ and that ξot survives if λ > λc. For each δ, by taking γ and λ large

enough and comparing to a (suitably scaled in time) 1-dependent bond percolation

diagram it is possible to show that ξt survives, which implies that λc(δ, γ) < ∞ if γ

is large enough. The first proof of this type is given by Harris for the contact process

in [24]; its application to the two-stage process is noted in [29].

For fixed δ the parameter space for the process is the quadrant {(λ, γ) : λ ≥
0, γ ≥ 0}, and by identifying the survival region S = {(λ, γ) : ξot survives } we obtain

a phase diagram for survival. We can define the critical lines

λ∗(δ) = inf{λ : ξot survives for some (λ, γ)}

γ∗(δ) = inf{γ : ξot survives for some (λ, γ)}

that bound the survival region below, and on the left. From monotonicity it fol-

lows that λ∗(δ) ≥ λc(∞, 0), the critical value for the contact process, and also that

γ∗(δ) ≥ γ∗(0), the left-hand critical line when δ = 0. We shall have more to say

about the survival region in Section 4.3.7. First, we complete a proof given in [29]



111

that characterizes λ∗ for any value of δ.

4.3.2 Correction to Proposition 3.6

In Krone, Proposition 3.6 it is claimed that λ∗(δ) = λc(∞, 0) for the process on Zd,
for any dimension d. However, the proof given covers only the case d = 1. This is

because the paper to which it refers gives a finite spacetime condition for survival

only when λ > λ
(1)
c , the critical value for the contact process in one dimension. Here

we use the more general construction of [3], plus a perturbation argument, to show

that λ∗(δ) ≤ λc(∞, 0) in any dimension, which combined with the previous inequality

implies the desired result.

In [3] it is shown for the contact process that if λ > λc and ε > 0, we can place a

latticework structure over an effectively two-dimensional region in Zd×R+ and make

a 1 : 1 correspondence between certain spacetime boxes contained in this structure

and the set {(x, y) ∈ Z2 : y ≥ 0, x + y is even} with the property that when the

process starts with a large disc of active sites in the box corresponding to (x, y), then

with probability > 1 − ε it can produce a large disc of active sites in the boxes cor-

responding to both (x− 1, y + 1) and (x + 1, y + 1). In their paper, they then show

that if one decreases λ slightly, this property still holds, and using results for oriented

percolation in two dimensions, conclude that the process still survives.

In our case it suffices to show that the property still holds when γ is decreased

slightly from∞, i.e., when γ is large enough. From this we may then conclude that if

λ > λc(∞, 0) then λ > λc(γ) for some γ, which implies that λ > λ∗, or λc(∞, 0) ≥ λ∗,

and combining the inequalities, λc(∞, 0) = λ∗.

It is sufficient to show that on a bounded spacetime region, when γ is large enough

and the two processes are started from the same configuration (with mature sites in

the place of active sites in the two-stage process), with high probability,

• between any two transmission events incident at a given site, there is a matu-

ration event, and

• if at a fixed time the contact process has a certain set of active sites, then in

the two-stage process those sites are all mature sites
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The first condition ensures that no connections are cut due to a juvenile site being

unable to give birth at a neighbouring site. The second condition ensures that if the

contact process has produced a large disc of active sites, then the two-stage process

has produced a large disc of mature sites.

To satisfy both conditions, it suffices to ensure that maturation events occur ar-

bitrarily often, since on a finite spacetime region B ⊂ Zd × R+, for each ε > 0 there

is a δ > 0 so that with probability > 1 − ε, the waiting time between transmission

events is ≥ δ everywhere on B. However, for each δ > 0 and ε > 0 there is a γ0 so

that if γ > γ0, with probability > 1− ε the waiting time between maturation events

is < δ everywhere on B, thus for γ > γ0 the conditions hold.

The two assertions of the last paragraph (those regarding waiting times) require

proof, and it suffices to consider a spacetime region which is a single interval of length

L. To prove the first assertion, notice that with high probability a finite number N

of events occur in the interval, and with probability e−δλN which → 1 as δ → 0, each

event takes time ≥ δ to occur. To prove the second assertion, break up the interval

into pieces of length δ, so that the number of events on each piece is distributed like a

Poisson random variable with mean δ. The probability that on each interval at least

one event has occurred is (1− e−δγ)L/δ which → 1 as γ →∞, for fixed δ.

4.3.3 Critical maturation rate (q.6)

In [29], a lower bound on γ∗(δ) is given for the process on Z with nearest-neighbour

interactions which is about 1/4 when δ = 0 and increases towards 1 as δ →∞. Here

we answer question 6 in that paper, which asks for lower bounds on γ∗(δ) in other

settings; we obtain here a simple lower bound on γ∗(0) (and by monotonicity, on

γ∗(δ)) that works for any graph of finite maximum degree, and depends only on the

maximum degree. A graph has finite maximum degree if there is a number M so that

deg x ≤M <∞ for each x ∈ V .

Proposition 4.3.1. If δ = 0 and γ < 1/(2M − 1) the process dies out for any value

of λ.

Proof. It suffices to show this for λ = ∞, i.e., when the 0 → 1 transition at x is

instantaneous if n2(x) > 0. The result is obtained by estimating the average number
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of offspring of a site x in state 1. The transition 1 → 2 occurs with probability

γ/(1 + γ), since 1 → 0 at rate 1 and 1 → 2 at rate γ. If the 1 → 2 transition

occurs at x, then each unoccupied neighbour of x becomes occupied. In order for x

to send a second offspring to a neighbour y, the existing offspring at y has to die off.

Denoting by Nt a Poisson process with rate 1 (representing the number of deaths at y,

starting from the moment the 1→ 2 transition occurs at x) and by Xt an independent

exponential random variable (representing death of the mature organism at x), the

number of additional offspring produced at y is equal to NXt . Intuitively, we might

expect ENXt = ENEXt = 1, and computing, we confirm that

ENXt =

∫ ∞
0

∑
k

kxk
e−x

k!
e−xdx

=

∫ ∞
0

∑
k

k
xk

k!
e−2xdx

=
∑
k

k

∫ ∞
0

xk

k!
e−2xdx

=
∑
k

k2−(k+1)

= 1

Thus the expected number of offspring at each initially unoccupied neighbouring site

is 1 + ENXt = 1 + 1 = 2, so the expected number of offspring of a site in state 2 is

at most 2M . Since the probability of making the 1 → 2 transition before dying is

γ/(1 + γ) = 1/(1 + 1/γ) the expected number of offspring of a site in state 1 is at

most 2M/(1 + 1/γ). Setting this < 1 and comparing to a branching process gives the

result.

From Proposition 4.3.1 we conclude that γ∗(0) ≥ 1/(2M − 1), so that γ∗(δ) ≥
γ∗(0) ≥ 1/(2M − 1) for any δ, proving Theorem 4.1.1. For the nearest-neighbour

process on Zd we have M = 2d, giving γ∗(δ) ≥ 1/(4d− 1), which is 1/3 for d = 1, 1/7

for d = 2, etc.

4.3.4 Single-site survival and edge speed (q.2)

Let ξ−t denote the process starting from type 2’s on Z−, and let rt = sup{x : ξ−t (x) 6=
0} denote the right edge of ξ−t . A result of Durrett shows that rt/t converges to



114

a constant α as t → ∞. It is asked in [29] (question 2 in Section 4) whether

λc = inf{λ : α(γ, δ) > 0}. Here we do not prove this, but we give a sufficient

condition for it to be true. To get a sense of what it means, note that this property is

equivalent to the property that ξt is supercritical (i.e., λ > λc) if and only if the right

edge of the process started from a half-line of mature sites has a positive spreading

speed. For the equivalence of these statements, note that α is upper semi-continuous

in λ, since it is the infimum of a family of continuous functions as described in [7].

One side of the result is easy; letting ξ+t denote the process starting from type 2’s

on Z+ and `t its left edge, by attractiveness ξot ≤ min ξ+t , ξ
−
t , so ξot (x) = 0 for x > rt

and for x < lt. If α < 0 then by symmetry `t/t → −α > 0. Since rt → −∞ and

lt →∞, eventually rt < lt and ξot (x) = 0 for all x, i.e., ξot dies out.

For the converse, for x ∈ Z denote by Cx the “active cluster” of x, i.e., the set

of spacetime points (y, t) such that if site x is initially in state 2, then site y is ac-

tive at time t, and denote by |Cx| its width, that is, |Cx| = sup{|y − x| : (y, t) ∈
Cx for some y, t}. On the event that the process does not die out, the number of

active sites tends to∞, so if ξot survives, P(|Cx| =∞) > 0 and so E|Cx| =∞ for each

x, thus if E|Cx| <∞ then λ ≤ λc. By analogy with percolation theory [23] we might

guess that the converse holds, i.e., that if λ < λc then E|Cx| < ∞; this is proved,

for example, for the contact process in [4]. We do not pursue this here, but instead

show that if E|Cx| < ∞ then α ≤ 0. Thus a sufficient condition for edge speed to

characterize single-site survival is for the subcritical process to have a finite expected

size.

Proposition 4.3.2. If E|Cx| <∞ then α ≤ 0.

Proof. If E|Cx| < ∞ but α > 0 then each Cx is bounded almost surely, but for each

ε > 0 eventually rt/t > α − ε, which means with probability 1 there is an infinite

sequence of sites (xk) in Z− and (yk) in Z+ with xk+1 < xk for each k, and an

infinite sequence of times (tk) with tk → ∞ such that for each k, (xk, 0) → (yk, tk).

This is because the cluster of any finite collection of sites is almost surely bounded,

which means that later activity of the process must originate from sites which are

progressively further to the left; note that this implies also that the stated paths must

be disjoint, although we will not need this here. In any case, the event |Cx| ≥ |x|
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occurs for infinitely many x ∈ Z−. However,∑
x∈Z−

P(|Cx| ≥ |x|) = P(|C0 ≥ 0|) + E|Cx| <∞

so applying the Borel-Cantelli lemma, |Cx| ≥ |x| occurs infinitely often with proba-

bility zero, contradicting our assumption.

4.3.5 Equality of critical values (q.1)

For any attractive growth model there is at least one other characterization of sur-

vival aside from single-site survival, or divergence of the expected cluster size, which

is the existence of a non-trivial upper invariant measure ν, obtained as the weak limit

of the distribution of the process started from its largest initial configuration (in the

case of ξt, when started from all sites in state 2). For either the two-stage contact

process or the on-off process, this weak limit exists by attractiveness, and from the

Feller property is an invariant measure for the system; see [32], Chapter, Theorem

2.3 on page 135 for a proof. The proof is for spin systems but generalizes without

modification to any attractive system with a largest configuration.

It is possible that ν = δ0, the measure that concentrates on the configuration with

all 0’s; we say that ν is non-trivial if ν 6= δ0, equivalently, if ν assigns positive density

at each site, that is, ν({ξ : ξ(x) 6= 0}) > 0 for each x. In [29] (question 1 in Section

4), it is asked whether single-site survival is equivalent to this property. First we

show that single-site survival of either the two-stage contact process, or of the on-off

process, implies that ν 6= δ0, which supplies one direction of the proof. We then use

the duality relation to observe that

ν({ξ : ξ(o) 6= 0}) = P(ζot survives )

where ξt is the two-stage contact process and ζt is the on-off process, and that the same

property holds when ξt and ζt are exchanged in the formula. Thus if the two-stage

contact process has a non-trivial stationary distribution, then the on-off process has

single-site survival, which means that the on-off process has a non-trivial stationary

distribution, which means that the two-stage contact process has single-site survival,

which supplies the other direction of the proof, and shows that the two notions of
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survival are in fact equivalent, proving Theorem 4.1.2. Therefore, it suffices to show

that single-site survival of the two-stage process, or of the on-off process, implies that

ν 6= δ0.

For the (single-stage) contact process ηt on Zd, if λ > λc then the method described

in [3] allows us to conclude that under a suitable renormalization and started from

a finite number of active sites, ηt dominates a supercritical 1-dependent oriented site

percolation process in two dimensions, for which it is known that the origin is active

for a positive fraction of the time, and from which it follows that lim inft P(ηot (0) 6=
0) > 0, which since ηo0 ≤ η10 and by attractiveness implies that ν({η : η(0) 6= 0}) =

limt→∞ P(η1t (0) 6= 0) > 0, where η1t is the contact process started from all sites active.

The following lemma allows to conclude the same fact for the two-stage contact

process, whenever the interaction neighbourhood is symmetric about permutation

and sign change of coordinates, and such that with some probability, any site can

infect any other site; the first condition we call coordinate symmetry, and the second

we call irreducibility. Note the interaction neighbourhood must of course be finite.

Lemma 4.3.3. The construction in [3] is valid for the two-stage contact process and

for the on-off process on Zd, for any coordinate-symmetric and irreducible interaction

neighbourhood.

Proof. The basic strategy is to repeat the construction, replacing “infected site” with

“active site”. Most of the steps go through without modification, and the required

changes are addressed below.

In the construction in [3], nearest-neighbour interactions are assumed. This condi-

tion can be relaxed by redefining the “sides” of the box to be a region whose width is

equal to the interaction range of the process. In this way, we can control transmission

from the sides of the rectangle to the outside world as is done in the nearest-neighbour

case; see [2] for an example where this modification is carried out.

When widening the sides, it is necessary to make sure that a large finite disc can

be produced at an extra distance corresponding to the range of the interaction, but

this can be prescribed. Irreducibility is required to ensure that, starting from a single

infectious site, all sites in a large finite disc can be made infectious with a certain

probability.
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Coordinate symmetry is implicit in the construction, and it is assumed when prov-

ing that the process reaches each orthant of the top and sides of the box with high

probability.

When defining the event where a single site produces a large finite disc, it doesn‘t

matter too much which type is produced in the disc; arbitrarily, we pick mature sites.

However, we should require that a juvenile site can produce the disc, since whatever

a juvenile site can produce, a mature site can produce.

The construction uses the property that the process dies out if its population dips

below a certain value infinitely often. This is a property that holds for any growth

model in which there is a finite number of active types, and each active type dies

before reproducing with a certain probability.

When arguing along the sides of the box, it is also important that active sites die

at a certain uniform rate; for example, the argument would not carry over directly

if juvenile sites had to mature before being subject to death events. Note that the

argument in [3] along the sides of the box is somewhat convoluted; for a clearer proof

of this part see [34], Part 1, Proposition 2.8.

For the (usual) contact process, the application of the FKG inequality given in the

construction follows from the invariance of positive correlations (see [32], Theorem

2.14 on page 80), for which it is sufficient that the process be attractive and that

its transitions occur only between comparable states, a property which is true of the

two-stage contact process and of the on-off process.

We have addressed the changes needed to adapt the construction of [3] to the

two-stage and on-off processes. The rest of the construction consists of geometrical

or “resetting” arguments, and no modification is required.

It follows from the Lemma and from the discussion preceding it that for the

two-stage contact process or the on-off process on Zd, whenever there is single-site

survival (λ > λc) the upper invariant measure assigns a positive density at each site,

i.e., ν({ξ : ξ(x) 6= 0}) > 0 for each x. The proof is now complete.
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4.3.6 Complete convergence (q.3)

Let δ0 be the measure that concentrates on the configuration with all 0’s, and let ν

be the upper invariant measure introduced in the previous section. For an attractive

growth model, complete convergence means that

ξt ⇒ αδ0 + (1− α)ν

as t → ∞, where ⇒ denotes weak convergence and α = P(ξt dies out ). In [29] it is

asked whether complete convergence holds for the two-stage contact process, when

λ > λc. We follow [16], Section 5, where the argument is used for the contact process;

the idea is originally due to Griffeath [21]. Fix an arbitrary configuration ξ0, and a

dual configuration ζ0 with finitely many active sites; doing this for all such ζ0 we will

recover the finite-dimensional distributions of the upper invariant measure. We have

that

ξ2t ∼ ζ0 ⇔ ξt ∼ ζt

where ζs, 0 ≤ s ≤ t is constructed on the same spacetime graph as ξt and run from

time 2t down to time t, with initial configuration ζ0. Use the notation ξ 6= 0 to denote

“not identically zero”. Then observe that

P(ξt ∼ ζt) = P(ξt 6= 0, ζt 6= 0)− P(ξt 6= 0, ζt 6= 0, ξt � ζt)

Since they are built over disjoint parts of the graph, ξs, 0 ≤ s ≤ t and ζs, 0 ≤ s ≤ t

are independent, so

P(ξt 6= 0, ζt 6= 0) = P(ξt 6= 0)P(ζt 6= 0)

for each t > 0. Using the duality relation, P(ζt 6= 0) = P(ξt ∼ ζ0) with ξ0 in this case

being the configuration with all 2’s. Letting t→∞

P(ξt 6= 0)P(ζt 6= 0)→ (1− α)ν({ξ : ξ ∼ ζ0})
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To have complete convergence, it therefore suffices to show that

P(ξt 6= 0, ζt 6= 0, ξt � ζt)→ 0

as t → ∞. A method for doing this is outlined in [16] for a certain class of growth

models. They use a restart argument to show that whenever the process survives,

and suitably rescaled, it eventually dominates a two-dimensional oriented percola-

tion process, which is known to have a positive density of sites. Using this fact it

is then argued that if run for long enough, the process and its dual intersect with

high probability. In Section 5 of [3] it is noted that, using their construction and the

ideas from [16], the same can be concluded for the contact process in Zd. Noting the

equality of critical values proved in the previous section, if λ > λc the construction of

[3] can be applied to both the two-stage contact process and the on-off process, and

the same arguments apply to show that the two processes eventually intersect with

high probability, which proves Theorem 4.1.3.

4.3.7 Structure of the survival region (q.5 and q.4)

Continuing the analysis of the survival region S begun in Section 4.3.1, we show that

the process dies out on the boundary ∂S. By monotonicity λc(γ) can have only jump

discontinuities, which means that the boundary of the survival region is the set

{(γ, λ) : γ ≥ γ∗, λ
−
c (γ) ≥ λ ≥ λ+c (γ)}

where λ−c (γ) and λ+c (γ) are the left-hand and right-hand limits of λc at γ; set

λ−c (γ∗) =∞.

It follows from Lemma 4.3.3 that survival of the two-stage contact process is given

by a finite spacetime condition of the form “a certain event happens with probability

> 1 − ε”, where ε is sufficiently small. Moreover, the probability of this event is

continuous in λ and γ (also δ, but we will not use this fact here). This is because

by a small enough change in parameters, on a finite spacetime region we can ensure

that the probability of even one more or one fewer transmission/maturation events

can be made arbitrarily small. This implies that S is an open subset of the plane, in

any dimension and for any value of δ. Since S is open it follows that the process dies
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out on its boundary ∂S, which includes the critical values λc(γ).

It seems that question 4, namely, whether there is a formula for λc in terms of

λc(∞, 0), γ and δ, should be false. One good reason to believe this is that for the

contact process, a sequence of approximants is known that converges to the criti-

cal value, and these are roots of successively more complicated rational functions,

as shown in [51]. There is no obvious reason to believe why the introduction of an

additional stage to the process should lead to a critical value which is any simpler

to determine, even if the critical value of the contact process is used in the expression.

Remaining questions for the survival region include whether λc(γ) is continuous,

whether it is strictly decreasing on {γ > γ∗} and whether

lim
γ→γ+∗

λc(γ) =∞

We believe the answers are respectively yes, yes, and yes, but we are not sure how to

prove this.
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Chapter 5

Duality and Complete

Convergence for Multi-Type

Additive Growth Models

This chapter consists of the journal article [17] of the same title, to appear in Advances

in Applied Probability 48.1 (March 2016). Moreover, it includes Sections 5.5 and 5.6

that do not appear in the above article, yet provide some additional context and

connections with other models.

Abstract

We consider a class of multi-type particle systems having similar structure to the

contact process and show that additivity is equivalent to the existence of a dual

process, extending a result of Harris. We prove a necessary and sufficient condition for

the model to preserve positive correlations. We then show that complete convergence

on Zd holds for a large subclass of models including the two-stage contact process

and a household model, and give examples.

5.1 Introduction

The contact process [32],[34] is a model of infection spread in which each individual

is in one of two states, either healthy or infectious. Specifically, given an undirected

graph G = (S,E) where S stands for “sites”, we define the contact process (ηt)t≥0 on
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G with rate λ > 0 to have the state space {0, 1}S and transitions

• 0→ 1 at site x ∈ S at rate λn(x) (transmission) and

• 1→ 0 at site x ∈ S at rate 1 (recovery)

where n(x) is the cardinality of the set {y ∈ S : xy ∈ E, ηt(y) = 1}. A graphical

method for constructing the process, originally due to [26], is described in Section 5.2.

This construction allows us to define multiple copies of the process, with different

initial data, on the same probability space. With respect to this construction, the

model has a number of convenient properties including

• additivity : define η ∨ η′ by (η ∨ η′)(x) = max(η(x), η′(x)), for x ∈ S. Suppose

η0 and η′0 are given and let η′′0 = η0 ∨ η′0. Denote by ηt, η
′
t, η
′′
t the processes with

respective initial data η0, η
′
0 and η′′0 . Then, additivity means that the equality

η′′t = η′t ∨ ηt holds for all t > 0.

• The existence of a dual process: the contact process has a dual process (ζt)t≥0

with state space {0, 1}S, with the following property. For fixed t > 0, (ζs)0≤s≤t

can be constructed using the graphical construction for the contact process

starting at time t and going down to time 0. Moreover, when defined in this

way, ηt(x) = ζ0(x) = 1 for some x if and only if for every s ∈ [0, t), there is an

x for which ηs(x) = ζt−s(x) = 1. Note that for the contact process, the dual

behaves in the same way as the contact process i.e. it is self-dual.

• Preservation of positive correlations : define the partial order η ≤ η′ by η(x) ≤
η′(x) for all x ∈ S, and an increasing function f : {0, 1}S → R to be one

with η ≤ η′ ⇒ f(η) ≤ f(η′), and say that a distribution µ on {0, 1}S has

positive correlations if Eµfg ≥ EµfEµg for all increasing functions f, g. Then

letting µt, t ≥ 0 denote the distribution of ηt, if µ0 has positive correlations then

µt has positive correlations for t > 0.

Note that as stated, the first two properties hold pointwise on realizations of the

process, when it is constructed graphically. These properties are all described in [26],

and as shown in [34], they suffice to prove complete convergence (defined precisely in

Section 5.2) for the contact process on the lattices Zd, which characterizes not only

the set of extremal invariant measures as a function of the infection parameter but

also the convergence to a combination of these measures, from any initial configura-

tion. Since the proof relies only on the three properties mentioned above and not, for
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example, on the number of infectious types, it is natural to suppose the same results

hold for a much wider class of models.

To this end, we consider a class of processes that we call multi-type particle sys-

tems, with a finite set of types F = {0, 1, ..., N}, so that the state space of configura-

tions is F S. The local dynamics is given by a family of transition rates

{cT (φ, ψ) : φ, ψ ∈ F T , T ⊆ S finite }

that give the rate at which η|T , the restriction of η to T , flips to ψ when its value is

φ. These types of systems are well-studied, particularly those in which F = {0, 1};
the interested reader may consult [32] for sufficient conditions on the rates so that

the process is uniquely defined. In Section 5.2.2 we give a simple and more easily

proved sufficient condition for this to hold, and a graphical construction that shows

existence and uniqueness.

For the next definition, let 0 denote the configuration η with η(x) = 0 for all x.

Our focus is on growth models, where F is a partially ordered set (generally not with

the usual order on {0, 1, ..., N}) with a distinguished passive type 0 and active types

{1, ..., N} satisfying

• 0 ≤ a for each a ∈ F ,

• 0 is absorbing, and

• 0 is reachable with positive probability from any configuration with only finitely

many active sites.

We can generalize the above three properties to growth models as follows:

• to define additivity for a multi-type growth model, we define a join operation ∨
to be a symmetric binary operation defined for all pairs a, b ∈ F , that satisfies

a ∨ b ∈ F , a ∨ b ≥ a, b and c ≥ a, b ⇒ c ≥ a ∨ b. Note the ≤ and ∨ extend

from F to F S in the obvious way: η ≤ η′ ⇔ η(x) ≤ η′(x) ∀x and (η ∨ η′)(x) =

η(x)∨η′(x) for all x. If it has a join operation, the process is said to be additive

if with respect to an appropriate graphical construction called an event coupling,

it satisfies the property described above i.e., η′′t = ηt ∨ η′t for t > 0 whenever

η′′0 = η0 ∨ η′0. A precise definition is given in Definition 5.2.6.
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• Duality is defined in a similar way. In this case we want a process (ζt)t≥0 with

state space F̃ S where F̃ is a certain collection of subsets of F , and the duality

relation is that ηt(x) ∈ ζ0(x) for some x if and only if for every s ∈ [0, t), there is

an x for which ηs(x) ∈ ζt−s(x), where (ζs)0≤s≤t is again constructed graphically

from time t down to time 0. A precise definition is given in Definition 5.3.4.

• Preservation of positive correlations is defined in the same way as above, since

it depends only on the existence of a partial order.

In general there is more than one way to define a dual process. The definition we will

use here gives a dual process valued on F S for some finite set F and is well suited

to models of growth and reproduction of an organism. More general dual processes

are possible (see for example [40]) in which the state space consists of collections of

finite subsets of S, or the duality relation may differ (see for example [32] for a more

general definition of duality). The existence of a dual process is a key component in

the proof of complete convergence, as first described in [21].

The term growth model is borrowed from [16], however here we work in continu-

ous rather than discrete time, and with systems having generally more than one type

of active particle. Examples of additive growth models are the two-stage contact

process [29], [19] the household model studied in [48] and a spatial analogue of any

multi-type branching process (see [35] for an introduction to these processes). On the

other hand, the multitype contact process from [39] is not an additive growth model,

since it is not additive.

The paper is organized as follows. In Section 5.2 we introduce the graphical

method and describe the set of couplings that it furnishes, exploring some basic

properties of these couplings and giving a precise definition of additivity. In addition,

we state the main results of the paper. In Section 5.3 we define the dual process

and prove Theorem 5.2.7. In Section 5.4 we define multi-colour systems and prove

Theorems 5.2.8 and 5.2.9. In Section 5.7 we discuss positive correlations. In Section

5.8 we prove Theorem 5.2.10, and in Section 5.9 we conclude with some examples.
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5.2 Graphical method and main results

We begin by introducing a graphical method with the intention of describing a large

but manageable class of couplings for multi-type particle systems. The usual setting

for particle systems is an undirected graph V = (S,E) where S is a countable set.

Generally the edge set determines which sites can interact, but in the construction

below, the edge set is not used explicitly. Graphical methods have been extensively

applied to particle systems; see [26] for one of the first papers on the subject.

Definition 5.2.1. A local mapping is a function e : F T → F T for some finite T ⊆ S.

An event structure is a family of triples (Ti, ei, ri)i∈I where I is some index set, each

ei : F Ti → F Ti for the corresponding Ti, and ri > 0 is the associated rate.

Our goal is to turn an event structure into a device for constructing a process

(ηt)t≥0, given an arbitrary η0 ∈ F S. Since ηt is constructed from a collection of space-

time events, we call this the event construction. First define a family of independent

Poisson point processes {ui} such that each ui has intensity ri; we can think of each

ui as an alarm clock that rings at random times.

If |S| <∞ (i.e., the set of sites is finite) and for each T ⊆ S at most finitely many

mappings ei send F T → F T , then for each t > 0, only finitely many ringing events

occur in the interval (0, t]. Thus, given the initial configuration η0 we can determine

ηt for t > 0 by accounting for each event. If ui rings at time s, use ηs− to denote the

state just prior to the event. Letting φ = ηs−|T be the restriction of ηs− to T , we let

ηs|T = ei(φ)

and ηs(x) = ηs−(x) for x /∈ T . In general, to determine the state at each spacetime

point (x, t) ∈ S, it is sufficient that with probability 1, only finitely many ringing

events occur within the set of spacetime points (y, s) that can affect the state at

(x, t), as follows.

For s < t, say there is an influence path from (y, s) to (x, t) if there is a finite se-

quence of sites y = x0, x1, ..., xk = x and a sequence of times s = s0 < s1 < ... < sk = t

so that for j = 1, ..., k, {xj−1, xj} ⊂ Ti for some i ∈ I such that ui rings at time sj.

Define the influence set Sx,t to be the set of points (y, s), s < t such that there is
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an influence path from (y, s) to (x, t). Roughly speaking, Sx,t is the set of points in

S whose state can affect the state at (x, t). In order to determine the state at (x, t)

from the state at time 0, it is sufficient that the set of times s < t such that some ui

rings, for some (y, s) ∈ Sx,t such that y ∈ Ti, is a finite set. This is because then, we

can proceed one event at a time to determine the state at (x, t).

• the set of points Sx,t ⊂ S that can affect the state at (x, t) is a bounded set,

and that

• the total rate of Poisson processes affecting points in Sx,t is bounded

since then, only finitely many ringing events occur on Sx,t and we can proceed as

before to determine the state at (x, t). The following condition is sufficient for this

to hold.

Lemma 5.2.2. Given an event structure (Ti, ei, ri)i∈I , if there is an M and an L so

that

• for each x ∈ S,
∑

i∈I:x∈Ti |Ti| ≤M , and

• each ri ≤ L

then for each spacetime point (x, t) ∈ S, with probability 1 at most finitely many

ringing events occur within the influence set Sx,t.

Proof. Starting at (x, t) and looking backwards in time, the cardinality of the set

{y ∈ S : (y, t − s) ∈ Sx,t} is dominated by a branching process Zs with Z0 = 1 in

which each individual gives birth to M individuals at rate LM , so the cardinality of

the set Ux,t = {y ∈ S : (y, s) ∈ Sx,t for some s < t} is dominated by
∑n

i=0 Zsi where

0 = s0 < s1 < s2 < ... < sn < t < sn+1 are the jump times of Zs. It is easy to

show this last sum is finite with probability 1. To obtain the second conclusion, note

that Sx,t ⊂ Ux,t × [0, t], and that for each y ∈ S, the intensity
∑

i∈I:y∈Ti ri of Poisson

processes that may influence y is by assumption at most LM .

Remark 5.2.3. These are fairly mild conditions, since we assume only that the

change of the state at each site depend on the state of at most M other sites, and that
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each type of event occurs at rate at most L. Note, however, that there are well-behaved

systems not satisfying the first condition; see for example the nearest particle systems

of Chapter 7 in [32].

To construct a multi-type particle system from its transition rates, one way to

do it is for each T, φ, ψ such that cT (φ, ψ) > 0, define the mapping ei that sends φ

to ψ while leaving other local configurations unchanged, and the rate ri = cT (φ, ψ).

Letting cT =
∑

φ,ψ cT (φ, ψ) for each T ⊂ S, to satisfy the conditions of Lemma 5.2.2

it suffices, for example, to have an M so that for each x ∈ S,
∑

T⊂S:x∈T cT ≤M . We

call this the independent event construction, since an independent point process is

assigned to each transition. There may be other constructions, which we now describe.

Recall that a coupling is a probability space on which two or more processes are

defined. In the event construction, copies of the process starting from any set of

initial configurations are automatically coupled, since they are determined from the

same set of Poisson processes.

For a multi-type particle system, the independent event construction leads to a

certain coupling of realizations. Using the same point processes to determine some

transitions, we can obtain other couplings.

Definition 5.2.4. An event coupling for a multi-type particle system is an event

structure (Ti, ei, ri)i∈I such that

• corresponding to each transition cT (φ, ψ) is a subcollection Ic of indices i such

that

1. Ti ⊇ T ,

2. ei(φ
′)|T = ψ and ei(φ

′)|Ti−T = φ′|Ti−T whenever φ′|T = φ, and

3. cT (φ, ψ) =
∑

i∈Ic ri

• aside from this, ei(φ) = φ, and

• if ei is assigned to the transitions cTj(φj, ψj), j = 1, 2, ... then

{η : η|Tj = φj} ∩ {η : η|Tk = φk} = ∅, j 6= k (5.2.1)
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In the context of an event coupling the ei are called transition mappings. The first

condition is so that the correct transitions occur, and at the correct rate. The second

condition is so that nothing else happens. The third condition is to ensure that we

respect the independence of distinct transitions cT (φ, ψ).

We note that from any valid event coupling we obtain a coupling of any number

of copies of the process starting from any collection of initial configurations. In cer-

tain cases, some of these couplings may be more useful than others, for example if

the resulting evolution of the system respects a certain natural partial order on the

states, as we now describe.

Definition 5.2.5. A mapping e : F T → F T is attractive if φ ≤ φ′ ⇒ e(φ) ≤ e(φ′).

An event coupling is attractive if each of its mappings is attractive. A process is

attractive if it has an attractive event coupling.

Note that attractiveness of a process is equivalent to the existence of an event

coupling so that η0 ≤ η′0 ⇒ ηt ≤ η′t for all t > 0.

The historical reason for the word “attractive” is given in [32], Chapter 2, Section

2; in that context, the “spins” at adjacent sites tend to align, which means that the

spin state at one site tends to be attracted to the spin state at adjacent sites.

Definition 5.2.6. A mapping e : F T → F T is additive if e(φ∨φ′) = e(φ)∨e(φ′). An

event coupling is additive if each of its mappings is additive, and a process is additive

if it has an additive event coupling.

Note that additivity of a process is equivalent to the existence of an event coupling

so that ηt = η′t ∨ η′′t whenever η0 = η′0 ∨ η′′0 .

If a and b are comparable i.e., a ≤ b or b ≤ a, then a ∨ b is just max(a, b). From

this it follows that if η0 ≤ η′0, then η0 ∨ η′0 = η′0 and so ηt ∨ η′t = η′t and in particular,

ηt ≤ η′t. Thus additivity implies attractiveness.

We now summarize the main results, which are proved subject to the conditions

of Lemma 5.2.2. Note a growth model is defined in the Introduction, additivity in

Definition 5.2.6, and a dual is defined in Definition 5.3.4.
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Theorem 5.2.7. Every additive growth model with an additive event coupling that

satisfies the conditions of Lemma 5.2.2 has a dual which is an additive growth model.

The above result was proved in [26] for F = {0, 1}, using graphical methods, and

also in [16] for their definition of additive growth model, which is a generalization

of discrete-time oriented percolation in two dimensions. As mentioned above, the

contact process is self-dual, and in Example 5.3.6 we show that for each N there is

an N -stage contact process which is also self-dual.

In [26] it is shown that for F = {0, 1} the converse is true, that is, the existence

of a dual implies additivity. In order to show this we first need to define a slightly

nicer type of growth model.

For an additive growth model we define the set of primitive types to be those

a ∈ F such that a 6= b ∨ c for any b, c ∈ F with b 6= a, c 6= a. If we imagine primitive

types a, b as individual organisms, we can think of a∨ b as a state in which both an a

and a b organism live together at a single site. We can then expand the set of types

F so that it distinguishes all combinations of primitive types; a growth model that

satisfies this condition is called multi-colour.

Our next result shows that any additive growth model can be “lifted” to an

additive multi-colour growth model, showing that being multi-colour is a natural

condition. In the statement F∗ ⊇ F , the understanding is that for each b ∈ F ,

write b in exactly one way as a1 ∨ ...∨ ak for some primitive types a1, ..., ak, then the

containment holds under the identification a1 ∨ .... ∨ ak ∈ F with {a1, ..., ak} ∈ F∗.

Theorem 5.2.8. Every additive growth model η with types F and an additive event

coupling that satisfies the conditions of Lemma 5.2.2 has a lift ξ with types F∗ ⊇ F

which is an additive multi-colour growth model, and is such that

π(ξ0) = η0 ⇒ π(ξt) = ηt for t > 0

where π : F S
∗ → F S is given by π(ξ)(x) = π(ξ(x)) for some π : F∗ → F that preserves

the join.

Since as constructed, ξ has the same event coupling as η, if η’s event coupling

satisfies the conditions of Lemma 5.2.2, then so does ξ’s. If we focus on multi-colour
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growth models, we can show the following. Because of Theorem 5.2.7, we only need

to show that existence of a dual implies additivity.

Theorem 5.2.9. For a multi-colour growth model with an event coupling that satisfies

the conditions of Lemma 5.2.2, additivity is equivalent to the existence of a dual

process.

For an additive multi-colour growth model we can give a precise characterization

of the property of preserving positive correlations. Since it requires some extra defi-

nitions, the statement is deferred to Section 5.7 and is given as Theorem 5.7.2.

By taking the join of all configurations we see that an additive model has a largest

configuration. If with respect to the graphical construction, η0 ≥ η′0 implies ηt ≥ η′t

for t > 0 we say the model is attractive. It follows from the definition of ∨ that

η ≥ η′ ⇔ η = η∨η′, so an additive model is attractive. For an attractive model with a

largest configuration, the distribution of the process ηt started from that configuration

is decreasing in time, since for s < t, η0 ≥ ηt−s and evolving by s forward in time,

by attractiveness ηs ≥ ηt. By first examining cylinder sets of configurations whose

probabilities decrease in time, and then using these to determine finite-dimensional

distributions, we can show the distribution of the process converges to an upper

invariant measure ν; details of this are given in [32]. We say the model exhibits

complete convergence if for any initial configuration η0 we have

ηt ⇒ (1− σ(η0))δ0 + σ(η0)ν

where δ0 is the measure that concentrates on the all zero configuration and σ(η0) =

P(ηt 6= 0 ∀t > 0} is the probability of survival starting from η0, and ⇒ denotes weak

convergence of measures.

The following result is proved in Section 5.8, and uses the construction of [3]. On

Zd” just means that the set of sites is the d-dimensional integer lattice Zd, where

d ≥ 1 is any integer. Irreducible means that any active type at one site can pro-

duce any active type at any other site via some sequence of transitions. Translation

invariant and symmetric means that transitions are invariant under translation and

under reflection in each coordinate. Finite range means that there is an M > 0 so

that cT (φ, ψ) = 0 if DiamT > M , where DiamT = maxx,y∈T d(x, y), and d(x, y) is

the graph distance. For an additive model, a productive interaction is a transition
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mapping such that ei(φ) ≥ φ for all φ ∈ F Ti , and a destructive interaction is one in

which ei(φ) ≤ φ; an equivalent definition is given in Definition 5.7.1, just prior to the

statement of Theorem 5.7.2.

Theorem 5.2.10. An additive multi-colour growth model on Zd that is irreducible,

has finite range, is translation invariant, symmetric and has an additive event coupling

that has only productive and destructive interactions exhibits complete convergence.

Moreover, single-site survival is equivalent to having ν 6= δ0.

It is easy to check that any additive event coupling which is both translation

invariant and has finite range satisfies the conditions of Lemma 2.1, which means the

result of Theorem 5.2.7 applies to the models considered in the statement of Theorem

5.2.10. Since the proof of this theorem in [3] is lengthy, and since the generalization

to multi-colour growth models is straightforward, we only give a sketch of the proof

in which we indicate how to make the necessary modifications.

5.3 Growth models and duality

In order to say more about additivity, we now focus on growth models, defined in

the introduction, which are natural choices for either population growth or disease

spread. If we think of the active types as representing organisms in various stages

of development this means that vacancy is the “lowest” type, that no spontaneous

birth occurs, and that a finite population has a chance of dying out. For a population

model, unoccupied territory is the passive type, and for a disease model in which each

site represents a particular individual, the passive type might be a healthy individual.

For a growth model we are interested in questions of survival, that is, whether

the process started from a finite number of active sites has a chance of avoiding the

0 state for all time.

We will show that each additive growth model has an additive counterpart going

backwards in time; the first step is to define its configurations.

Definition 5.3.1. For a growth model with types F and join ∨, a set of active types

E ⊆ F is

• increasing if a ∈ E, a ≤ b⇒ b ∈ E, and is
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• decomposable if a ∨ b ∈ E implies a ∈ E or b ∈ E.

The dual types F̃ are the set of increasing and decomposable sets of active types E,

together with a passive type 0, with the partial order 0 ≤ E for each E ∈ F̃ and

E ≤ E ′ if E ⊆ E ′.

A partially ordered set of dual configurations F̃ S is defined in the same way as for

F S. From the following proposition we see that the dual types come equipped with

a join.

Proposition 5.3.2. The set of dual types has a join ∨ given by E ∨ E ′ = E ∪ E ′.

Proof. If E and E ′ are increasing and a ∈ E ∪ E ′ then b ≥ a implies b ∈ E ∪ E ′, so

E ∪E ′ is increasing, and that if E and E ′ are decomposable and b∨ c ∈ E ∪E ′ then

b ∈ E ∪E ′ or c ∈ E ∪E ′, so E ∪E ′ is decomposable; therefore, E ∪E ′ ∈ F̃ whenever

E,E ′ ∈ F̃ . If E ′′ ≥ E,E ′ then E ′′ ⊇ E,E ′ so E ′′ ⊇ E ∪E ′, moreover E ∪E ′ ≥ E,E ′.

In order to relate configurations in F S with dual configurations in F̃ S we introduce

the following compatibility relation.

Definition 5.3.3. A configuration η ∈ F S is compatible with a dual configuration

ζ ∈ F̃ S, denoted η ∼ ζ, if for some x, η(x) is an active type and η(x) ∈ ζ(x). For

local configurations φ ∈ F T , θ ∈ F̃ T this reads

φ ∼ θ ⇔ φ(x) ∈ θ(x) 6= 0 for some x ∈ T

When the 6= 0 is understood it is usually omitted. With the compatibility relation

comes the natural identification ζ ↔ {η : η ∼ ζ} (or, for local configurations, θ ↔
{φ : φ ∼ θ}) of dual configurations with the set of configurations with which they are

compatible.

Definition 5.3.4. A growth model with configurations in F S has a dual if there is an

event coupling for the model and a multi-type particle system with configurations F̃ S

so that in the event construction for the process, the following duality relation holds:

ηt ∼ ζ0 ⇔ η0 ∼ ζt
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where the process ηs, 0 ≤ s ≤ t is run forward in time from 0 to t, and the dual ζs,

0 ≤ s ≤ t, is run backward in time from t to 0 (so that ζs is on the timeline t − s),

using the dual mappings given by

ẽ(θ) = {φ ∈ F T : e(φ) ∼ θ}

Note the identification θ ↔ {φ : φ ∼ θ} is assumed on the right-hand side of the

equation.

Remark 5.3.5. Duality for particle systems (the use of relations pairing particle

systems with other systems going backwards in time) comes in more than one form;

the form described here is known as coalescing duality in Chapter III of [32]. An

application of this form of duality can be found in [16], where it is used to help prove

complete convergence of the growth models described in that paper. Other forms of

duality exist; see for example the paper [47] in which a form of duality is used for

nonattractive contact processes.

Returning to the task at hand (and to the definition of duality just given), we

now prove that every additive growth model has an additive dual.

Proof of Theorem 5.2.7. Given the additive coupling of ηs, 0 ≤ s ≤ t, for all possible

η0, and given the dual configuration ζ0, set Λ0 = {η : η ∼ ζ0} and

Λs = {ηt−s : ηt ∼ ζ0}

Λs+ = {ηt−s+ : ηt ∼ ζ0}

where ηt−s+ is the configuration just preceding an event, if an event occurs at time

s. Suppose for the moment that |S| < ∞ so that events happen one at a time. In

the case |S| =∞, we suppose the hypothesis of Lemma 5.2.2 are satisfied. Then, for

any finite T ⊂ S and t > 0, run the process on an increasing sequence of sets Ti with

∪iTi = S, that is, for each i, construct the process using only the events that occur

on Ti. Then from the conclusion of Lemma 5.2.2 there exists an almost surely finite

i0 such that if i ≥ i0, then ηs|T , 0 ≤ s ≤ t, run on Ti, is equal to ηs|T , 0 ≤ s ≤ t,

for the process itself. The duality relation then follows from the proof in the finite case.

Say that a collection of configurations Λ ⊂ F S is dualizable if there is a dual
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configuration ζ, called the minimal configuration, so that

Λ = {η : η ∼ ζ}

If such a ζ exists it is unique. It is immediate that Λ0 is dualizable. Suppose that Λs

is dualizable and that there is an event at time s. We have Λs+ = {ηt−s+ : ηt−s ∈ Λs},
so we examine the mapping e : F T → F T that corresponds to the event at time s.

Let ζ be the minimal configuration for Λs and let θ be its restriction to T . Then

η ∈ Λs+ if and only if e(φ) ∼ θ where φ is the restriction of η to T . Equivalently,

η ∈ Λs+ ⇔ e(φ)(y) ∈ θ(y) for some y ∈ T

For each y ∈ T we have by additivity that e(φ)(y) = ∨xe(φx)(y) where φx(x) = φ(x)

and φx(y) = 0 if y 6= x. Since θ(x) is decomposable it then follows that

e(φ)(y) ∈ θ(y)⇔ e(φx)(y) ∈ θ(y) for some x ∈ T

We then set δx(a) to be the local configuration φ with φ(x) = a and φ(y) = 0 for

y 6= x and since

e(δx(a ∨ b)) = e(δx(a)) ∨ e(δx(b))

it follows that if e(δx(a∨ b))(y) ∈ θ(y), then either e(δx(a))(y) ∈ θ(y) or e(δx(b))(y) ∈
θ(y), since θ(x) is decomposable. By attractiveness and since θ(x) is increasing, if

φ ≤ φ′ and e(φ)(y) ∈ θ(y) then e(φ′)(y) ∈ θ(y). It follows that for each x, y ∈ T the

set

θ+,y(x) = {a ∈ F : e(δx(a))(y) ∈ θ(y)}

is increasing and decomposable, thus is a dual type. Thus, setting

ζs+(x) = {a ∈ F : δx(a) ∈ θ(y) for some y ∈ T}

when x ∈ T (and ζs+(x) = ζs(x) when x /∈ T ) we observe that ζs+(x) = ∪yθ+,y(x) is

a dual type, since dual types are closed under unions, and moreover that

η ∈ Λs+ ⇔ η(x) ∈ ζs+(x) for some x

or in other words, Λs+ is dualizable, and ζs+ is its minimal configuration. This

completes the induction step and shows that an additive process has a dual which is
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defined in the manner just described. Dual mappings ẽ : F̃ T → F̃ T can be given as

ẽ(θ)(x) = {a ∈ F : e(δx(a)) ∼ θ}

with the property that e(φ) ∼ θ ⇔ φ ∼ ẽ(θ). We observe that φ ∼ ẽ(θ∨θ′)⇔ e(φ) ∼
θ∨θ′ ⇔ e(φ)(x) ∈ θ(x)∪θ(x) for some x⇔ e(φ) ∼ θ or e(φ) ∼ θ′ ⇔ φ ∼ ẽ(θ) or φ ∼
ẽ(θ′) ⇔ φ ∼ ẽ(θ) ∨ ẽ(θ′), which shows that the dual is additive. By definition of the

dual types and the duality relation, it follows that the dual is a growth model.

In order to push the duality relation backwards through an event it was necessary

to decouple the interactions in the forward process, first by sites, then by type. It

was in order to decouple by type that we required dual types be decomposable. In

general, considerable complexity can arise, however in the following simple case we

can easily identify the dual.

Example 5.3.6 (An N-stage contact process). Take F = {0, 1, ..., N} with primitive

types 1, ..., N totally ordered in the usual ordering of integers. Let G be an undirected

graph, then define a process on G using the transitions

• i→ i+ 1 at rate γ, for i = 1, ..., N − 1,

• i→ 0 at rate 1, for i ≥ 1, and

• 0→ 1 at rate λ times the number of neighbours in state N .

The set of dual types is 0 and Ej = {i ∈ F : i ≥ j}, for j = 1, ..., N , with Ej ⊂ Ek

for j > k. It is not hard to check that the dual transitions are

• Ei+1 → Ei at rate γ, for i = 1, ..., N − 1,

• Ei → 0 at rate 1, for i ≥ 1, and

• 0→ EN at rate λ times number of neighbours in state E1.

Introducing the correspondence Ej ↔ N + 1 − j, the set of dual types becomes

{0, 1, ..., N} with the usual order, and the transitions are identical to those in the

original process. Thus we see that this process is self-dual.
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5.4 Primitivity and colour decomposition

The goal of this section is to prove Theorem 5.2.9. We will make our way towards

multi-colour systems in a few steps. First we need a couple of definitions.

Definition 5.4.1. For a growth model with a join, an active type a ∈ F is primitive

if a = b ∨ c ⇒ a = b or a = c, and is compound otherwise. The primitive types are

denoted Fp.

It is possible to have a, b ∈ Fp with a < b; this is true for example when F is totally

ordered, since in that case all active types are primitive. We say that a, b ∈ F are

incomparable or a <> b if a � b and b � a, which is the opposite of being comparable.

Definition 5.4.2. A set C ⊂ Fp satisfying a = b or a <> b for a, b ∈ C is called a

colour combination. We denote by C the set of colour combinations.

Notice that C is partially ordered by C ≤ C ′ ⇔ for each a ∈ C, there exists b ∈ C ′

such that b ≥ a. There is also a join defined by

C ∨ C ′ = {a ∈ C ∪ C ′ : a 6< b for any b ∈ C ∪ C ′}

Definition 5.4.3. For the set of types F of a growth model with a join, the multi-

colour expansion F∗ is the set C of colour combinations of F , together with a passive

type 0 satisfying 0 ≤ a for each a ∈ F∗.

From the definition of the join on C it follows that the sets {a}, for a ∈ Fp, are

the primitive types in F∗.

There is a mapping π : F∗ → F defined by π(0) = 0 and

π : C 7→
∨
a∈C

a

for C ∈ C. Notice that for b ∈ F , π−1(b) = {C ∈ C : b =
∨
a∈C a}. If π(C) = a we

say that C is a decomposition of a, and if a has a unique decomposition we use C(a)

to denote it. Notice that C(a ∨ b) = C(a) ∨ C(b), if they exist.

Proposition 5.4.4. The mapping π : F∗ → F has the following properties:
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• a ≤ b⇒ π(a) ≤ π(b).

• π(a ∨ b) = π(a) ∨ π(b).

• π is surjective.

• π−1(a) = {a} for each a ∈ Fp.

Proof. The first and second assertions are clear. To see that π is surjective, first

note that F can be partitioned into {0}, primitive types, and compound types. By

definition, π(0) = 0. If a ∈ Fp, the set {a} belongs to C and π({a}) = a. Finally,

if b ∈ F is compound, then by repeatedly breaking up joins, we see that b can be

written as

b =
∨
a∈C

a

for some C ∈ C, and π(C) = b.

For each a ∈ Fp, from primitivity it follows that a has no decomposition containing

more than one element, moreover π({c}) 6= a if c 6= a. Since π({a}) = a it follows

that π−1(a) = {a}.

For future use we note that π can be defined on configurations by letting π(η)(x) =

π(η(x)) for each x.

From Proposition 5.4.4 it follows that

• each primitive type has exactly one decomposition,

• each compound type has at least one decomposition, and

• primitive types in F lift to primitive types in F∗ in the sense that

1. the sets {a} are the primitive types in F∗,

2. π−1(a) = a for each a ∈ Fp and

3. the order is preserved under π−1

From the lifting property we see that the sets of primitive types F∗p and Fp are iso-

morphic, π being a natural isomorphism between them.
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Remark 5.4.5. A compound type in F can have more than one decomposition and

thus more than one preimage under π, as in the case F = {0, 1, 2, 3, 4} with 0 <

1, 2, 3 < 4, so that Fp = {1, 2, 3} and 4 = 1 ∨ 2 = 1 ∨ 3 = 2 ∨ 3 = 1 ∨ 2 ∨ 3. Here

F∗ can be labelled {0, 1, 2, 3, 4, 5, 6, 7} with π(a) = a and π−1(a) = a for a = 0, 1, 2, 3,

4 = 1 ∨ 2, 5 = 1 ∨ 3, 6 = 2 ∨ 3 and 7 = 1 ∨ 2 ∨ 3, and with π−1(4) = {4, 5, 6, 7}. If

we add 1 < 2 to the order on F then Fp is still {1, 2, 3} but 4 = 1 ∨ 3 = 2 ∨ 3 only

(in the sense of colour combinations). In this case F∗ can be labelled {0, 1, 2, 3, 4, 5}
with π(a) = a and π−1(a) = a for a = 0, 1, 2, 3, 4 = 1 ∨ 3 and 5 = 2 ∨ 3, and with

π−1(4) = {4, 5}.

Definition 5.4.6. A set of types F with a join is multi-colour if every compound

type has exactly one decomposition. If F is multi-colour and b ∈ F , C(b) denotes its

decomposition.

For any set of types F with a join, its multi-colour expansion F∗ is multi-colour.

From Proposition 5.4.4, F being multi-colour is equivalent to π : F∗ → F being injec-

tive, which is equivalent to F∗ and F being isomorphic, π being a natural isomorphism

between them. Thus for a multi-colour system there is a 1 : 1 correspondence between

the set of active types and the set of colour combinations.

Before proving Theorem 5.2.8, we consider the following simple example of a multi-

type system and its lift.

Example 5.4.7 (A 3-type system). Take the model with F = {0, 1, 2, 3, 4} with

incomparable primitive types Fp = {1, 2, 3} and 4 = 1∨ 2 = 1∨ 3 = 2∨ 3 = 1∨ 2∨ 3.

Each non-zero type dies at rate 1, and produces an individual of type 1, 2 or 3 at

rate λ/3. Then the lift has types F∗ = {0, 1, 2, 3, 1 ∨ 2, 1 ∨ 3, 2 ∨ 3, 1 ∨ 2 ∨ 3}, and the

transitions are the same: each non-zero type dies at rate 1, and produces an individual

of type 1, 2 or 3 at rate λ/3. The only difference is that if, for example, a 2 lands on

a site occupied by a 3, then in the lift the resulting type is 2 ∨ 3 instead of just 4; in

the lift we distinguish the various joins of primitive types.

We now prove Theorem 5.2.8. For the proof, define the minimal elements min(E)

of a set E to be the elements a ∈ E such that a 6> b for any b ∈ E. Each set E has a

layer partition E1, E2, ..., Ek given by E1 = min(E) and Ei = min(E−Ei−1) for i > 1.
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Proof of Theorem 5.2.8. We take transition mappings e : F T → F T to new mappings

e∗ : F T
∗ → F T

∗

Having done this, ξt is constructed using the transitions e∗. To ensure that π(x0) =

η0 ⇒ π(ξt) = ηt for t > 0 it suffices to show that π ◦ e∗ = e ◦ π. Since F∗p and Fp are

isomorphic we use a to denote both a ∈ F∗p and π(a) ∈ Fp.

Partition Fp into layers Fp1, ..., Fpk. For a set B let ∨B denote ∨b∈Bb. For a ∈ F1

and x ∈ T let

e∗(δx(a)) = ∨π−1(e(δx(a)))

Since for a, b ∈ F∗, π(a) = π(b) ⇒ π(a ∨ b) = π(a) ∨ π(b) = π(b), it follows that

π(e∗(δx(a)) = e(δx(a)). To extend e∗ to other layers in an additive way we first make

the following observations. If a < a′ then a′ = a ∨ a′ and

e(δx(a
′)) = e(δx(a ∨ a′)) = e(δx(a) ∨ δx(a′)) = e(δx(a)) ∨ e(δx(a′))

by additivity of e. If φ′ = φ ∨ φ′ and ψ ∈ π−1(φ), ψ′ ∈ π−1φ′ then

π(ψ ∨ ψ′) = π(ψ) ∨ π(ψ′) = φ ∨ φ′ = φ′

Thus, for i > 1 suppose e∗ is defined on δx(a) for each x ∈ T , a ∈ Fpj and j < i.

Then let

e∗(δx(a
′)) = ∨π−1(e(δx(a′))) ∨

∨
{e∗(δx(a)) : a < a′, a ∈ Fpj, j < i}

It follows from the last observation that π(e∗(δx(a
′))) = e(δx(a

′)), moreover e∗(δx(a)∨
δx(a

′)) = e∗(δx(a
′)) for any a < a′, a ∈ Fpj for some j < i. Doing this for each i, we

find that e∗(δx(a)) is defined for each x ∈ F T and each a ∈ Fp, and is additive on

that set.

For each compound type b ∈ F∗ and x ∈ T , let

e∗(δx(b)) =
∨
{e∗(δx(a)) : a ∈ C(b)}

Finally, for arbitrary φ ∈ F T
∗ let e∗(φ) =

∨
x e∗(φx) where φx(x) = φ(x) and φx(y) = 0
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for y 6= x. Both extensions preserves additivity, and so e∗ is defined and additive on

all of F T
∗ .

To check that π(e∗(φ)) = e(π(φ)) observe that π(e∗(δx(a))) = e(π(δx(a))) for

a ∈ Fp and so

π(e∗(φ)) = π(∨e∗(δx(a)))

= ∨π(e∗(δx(a)))

= ∨e(π(δx(a)))

= e(π(∨δx(a)))

= e(π(φ))

where the ∨ is over x ∈ T and a ∈ C(φ(x)).

Remark 5.4.8. If ξt is the lift of ηt and ηt = 0 then ξt = 0, since the configuration

with all 0’s has only itself as a preimage under π. Therefore ηt survives, i.e., ηt 6= 0

for all t > 0, if and only if ξt survives. For this reason, when studying questions of

survival (which are usually the interesting questions for growth models), it is sufficient

to restrict our attention to multi-colour systems.

Having lifted to a multi-colour system, we now consider duality in that context,

for which the following fact is helpful.

Lemma 5.4.9. If F is multi-colour and a ∈ F is primitive then

a ≤ b ∨ c⇒ a ≤ b or a ≤ c

Proof. It suffices to think in terms of colour combinations. If a ≤ b ∨ c then a ≤ a′

for some a′ ∈ C(b ∨ c). Since C(b ∨ c) = C(b) ∨ C(c) ⊂ C(b) ∪ C(c), a′ ∈ C(b) or

a′ ∈ C(c), so that a ≤ b or a ≤ c.

If F is not multi-colour this may not hold, as in the case F = {0, 1, 2, 3, 4} with

0 < 1, 2, 3 < 4, in which case 3 ≤ 4 = 1 ∨ 2 but 3 � 1, 2.

From Lemma 5.4.9 we conclude that for a multi-colour system the set

Ea = {a ∈ F : b ≥ a}
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is not only increasing, but also decomposable, when a is primitive. Thus for a multi-

colour growth model and each primitive a, Ea is a dual type. We show next that

these are exactly the primitive dual types.

We say that C(c) � C(b) if a′ ≥ a for some a′ ∈ C(c), a ∈ C(b). Note that � is

reflexive but not necessarily antisymmetric or transitive; for example, let bi = ai∨ai+1

for some set of incomparable ai, then C(bi) � C(bj)⇔ |i− j| ≤ 1.

Define also C tC ′ = {a ∈ C ∪C ′ : a 6> b for any b ∈ C ∪C ′}, or = 0 (the passive

type) if C ∩ C ′ = ∅.

Proposition 5.4.10. If F is multi-colour then F̃ is multi-colour with primitive types

F̃p = {Ea : a ∈ Fp}

and F identifies with F̃ on active types via

b↔ Eb = {c ∈ F : C(c) � C(b)}

Moreover,

Ea ∨ Eb = {c ∈ F : C(c) � C(a) t C(b)}

In particular, the identification a↔ Ea of Fp with F̃p is order-reversing.

Proof. We first exhibit the identification of F with F̃ , then deduce the rest. For

E ∈ F̃ define the minimal types

Em = min(E) = {a ∈ E : a 6> b ∀b ∈ E}

Each minimal type a ∈ Em is primitive, since if a = b ∨ c then since E is decompos-

able, b ∈ E or c ∈ E; if b ∈ E then a 6> b, but since a ≥ b it follows that a = b.

Moreover, a <> b for a, b ∈ Em thus Em is a colour combination.

Since E is increasing, E ⊇ {b : b ≥ a for some a ∈ Em} =
⋃
a∈Em Ea, moreover

b ∈ E ⇒ b ∈ Em or b > a for some a ∈ Em which means E ⊆
⋃
a∈Em Ea, thus E =⋃

a∈Em Ea. Therefore E = {c ∈ F : C(c) � Em}, or E = Eb = {c ∈ F : C(c) � C(b)}
where b ∈ F is the unique active type that satisfies C(b) = Em. To each active type
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b corresponds a different set Eb, which yields the identification of F with F̃ . The

expression for Ea ∨ Eb follows easily.

Observe that if a ∈ Fp and a ∈ C(b) t C(c) then either a ∈ C(b) or a ∈ C(c), so

that if Ea = Eb ∨ Ec then a ∈ minEb or a ∈ minEc. Supposing the former, Ea ⊂ Eb

which means Ea = Eb, i.e., Ea is primitive. On the other hand, if b is compound

then C(b) = ta∈C(b)C(a), so that Eb = ∨a∈C(b)Ea and Eb is not primitive. Thus

F̃p = {Ea : a ∈ Fp}.

Since Eb 6= Ec when C(b) 6= C(c), the dual is multi-colour. If a, b ∈ Fp are

primitive and a < b then C(a) t C(b) = C(a), so Ea > Eb.

We now approach the double dual. If a growth model has a dual, then from the

proof of Theorem 5.2.7 it follows that its dual is additive, and so the dual has a dual,

which is the double dual, whose set of types we denote by F , using λ to denote an

element of F . For a multi-colour system, it follows from an application of Proposition

5.4.10 to F̃ that the double dual is multi-colour and has primitive types

λa = {E ∈ F̃ : E ⊇ Ea}

where a ∈ Fp, which are in 1 : 1 correspondence with Fp. Since duality is order-

reversing on primitive types, double duality is order-preserving on primitive types.

By identifying active types with colour combinations, we obtain an order-preserving

identification of F with F given by

b↔ λb = {E ∈ F̃ : E ⊇ Ea for some a ∈ C(b)}

For a local configuration φ ∈ F T , let Ξφ ∈ F
T

denote the corresponding local double

dual configuration, under the above identification. The following relationship holds

for compatibility.

Lemma 5.4.11. Let φ ∈ F T and θ ∈ F̃ T , then

φ ∼ θ ⇔ θ ∼ Ξφ

Proof. It is sufficient to have b ∈ E ⇔ E ∈ λb, for each b ∈ F and E ∈ F̃ , and it
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is not hard to check that b ∈ Ec ⇔ C(b) � C(c) ⇔ ∃a ∈ C(b) : C(a) � C(c) ⇔
C(a) t C(c) = C(c)⇔ Ea ∨ Ec = Ec ⇔ Ec ⊇ Ea ⇔ Ec ∈ λb.

We now prove Theorem 5.2.9 by showing that if an additive multi-colour growth

model has a dual, then it identifies with its double dual, which since the double dual

is additive, implies that the process itself is additive.

Proof of Theorem 5.2.9. It suffices to show that transitions in the double dual com-

mute with the identification of F S with F
S
, i.e., to show that for double dual transition

mappings e,

e(Ξφ) = Ξe(φ)

Transition mappings e of the double dual are given by

e(Ξ) = {θ : ẽ(θ) ∼ Ξ}

where the identification Ξ ↔ {θ : θ ∼ Ξ} is implicit. However, ẽ(θ) ∼ Ξφ ⇔ φ ∼
ẽ(θ) ⇔ e(φ) ∼ θ ⇔ θ ∼ Ξe(φ), using Lemma 5.4.11 and the duality relation for the

process on F S. Therefore,

e(Ξφ) = {θ : θ ∼ Ξe(φ)} = Ξe(φ)

as desired.

5.5 Percolation viewpoint

A percolation model (percolation process) is any stochastic model with some sort of

spatial structure and a notion of path from one point to another. We distinguish three

models in increasing order of resemblance to a particle system.

1. The classical percolation model [23]: take the random subgraph of the graph

(V,E) with V = Z2 and E = {xy : ‖x−y‖∞ = 1} in which each edge is included

independently with probability p ∈ (0, 1). Sites x, y ∈ V are connected if they

are linked by a path of edges. Percolation occurs if (0, 0) belongs to an infinite

cluster of connected sites.

2. Oriented percolation in two dimensions [8]: take the random subgraph of the

directed graph (V,E) with V = {(x, y) ∈ Z2 : y ≥ 0, x + y is even} and edges
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from (x, y)→ (x− 1, y+ 1) and from (x, y)→ (x+ 1, y+ 1) for each (x, y) ∈ V ,

again with each edge included independently with probability p. Percolation

occurs if there is an infinite path of directed edges starting at (0, 0).

3. The contact process (this one is a particle system): take the particle system

with types {0, 1} and transitions

• 0→ 1 at site x at rate λn1(x) and

• 1→ 0 at each site at rate 1

where n1(x) is the cardinality of the set {y : xy ∈ E, y is in state 1 }. The

spacetime event map for the process leads to a percolation model on the space-

time set V ×R+ in which the interval {x} × [s, t] is an upward directed edge if

there are no deaths on the interval, and (x, t)→ (y, t) is a directed edge when-

ever there is a transmission event from x to y at time t. Percolation occurs from

(x, 0) if there is an infinite path (i.e., a path of infinite length) of directed edges

starting at (x, 0).

For the contact process it is not hard to confirm that percolation from (x, 0) implies

survival starting from the single active site x, and vice versa. For a multi-particle

system it may seem less clear how to prescribe a percolation process. However, for an

additive multi-colour system it can be easily achieved, provided that we colour code

the edges, as we show now.

On the spacetime set V × R+, the interval {x} × [s, t) is an edge of every colour

if there are no events on that interval, since any colour can propagate upwards along

it. If an event occurs at time t in the transition mapping e : F T → F T , there is an

edge from (x, t−)→ (y, t) (where x = y is allowed) with initial colour a and terminal

colour b if b ∈ C(e(δx(a))(y)), that is, if type a at x produces type b at y through e.

Edges {x} × [s, t) with colour a and {y} × [t, u)} with colour b can be linked by an

edge from (x, t−)→ (y, t) if it has initial colour a and terminal colour b. Percolation

occurs from type a at (x, 0) if there is an infinite path of directed coloured edges

starting at (x, 0) with colour a, and it characterizes survival:

Theorem 5.5.1. For an additive multi-colour particle system, survival occurs starting

from the single type a active site x if and only if percolation occurs from type a at

(x, 0).
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Proof. If there is a t > 0 so that all coloured paths from (x, 0) are contained in

V × [0, t) then it follows by additivity that the process has died out by time t. If there

is an infinite path, then it follows again by additivity that the process survives.

5.6 Population viewpoint

Multi-colour systems can be understood in a natural way as models of interacting

populations. Let each colour correspond to a type of organism (plant, animal, fungus

etc.). Recalling what it means to be a colour combination, at each site we can have

up to one each of any collection of organisms of different types, provided the types

are incomparable. Thus the restrictions on the population are that

• there can be at most one organism of a given type, at a given site, and

• organisms of comparable type cannot exist together at the same site.

These are realistic assumptions, if we think of populations having a carrying capac-

ity, and of stronger types excluding weaker types. If we wanted to model a carrying

capacity K > 1 we could just assign a primitive type to each number 1, 2, 3, ..., K of

organisms of a certain type and then order them 1 < 2 < ... < K.

At an event with transition mapping e : F T → F T , for a, b ∈ Fp and x, y ∈ T we

say that a at x produces b at y, denoted e : (a, x)→ (b, y), if

b ∈ C(e(δx(a))(y))

that is, if b is one of the organisms in e(φ)(y), when φ is the local configuration having

only the organism a at site x and no other organisms at sites y ∈ T, y 6= x.

Using this notion of production, we can define a multi-type branching process

in which each individual gives birth to individuals of the appropriate types at the

appropriate rates. We can then ask how the spatial process differs from the branching

process, which is answered by the following result.

Theorem 5.6.1. For an additive multi-colour system, the only interactions between

organisms are due to the effects of crowding and exclusion.
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Proof. For an additive system, to compute the effect of a transition we first focus on

each organism (x, a) present before the event and include everything that it produces.

Then, if for example (x, a) produces (z, c) but (y, b) produces (z, d) with d > b,

organism d excludes organism b; if (y, b) also produces (z, b) then only one copy of

organism b is retained at z. Thus, accounting for each organism’s production and

then clearing any duplicate or excluded organisms gives the result of a transition.

With this characterization in hand we now describe which types of interaction fail

to be additive:

1. If the system exhibits inhibition, that is, the presence of one type of organism

decreases the production of another organism, then it cannot be additive, or

even attractive; here’s why. The introduction of an organism increases the con-

figuration. However, for some organism its introduction decreases the produc-

tion of another organism, so we have a transition e with φ > φ′ but e(φ) < e(φ′).

2. If the system exhibits cooperation, that is, multiple organisms can produce to-

gether what they could not produce alone, then e(∨x,aδx(a)) > ∨x,ae(δx(a)) for

some collection of organisms (x, a). Thus the system may be attractive, but

cannot be additive.

In an additive system, organisms neither inhibit nor enhance each other’s production.

In this sense, additive systems are the least interactive of all interacting particle sys-

tems. However, mathematically, they are relatively easy to analyze and have fairly

strong properties, and biologically, they lie on the boundary between inhibition and

cooperation, and make good models of situations where, to first order of approxima-

tion, the only interaction between organisms arises from the fact that they take up

space.

5.7 Positive Correlations

We begin by recalling some definitions mentioned in the introduction. On a partially

ordered state space, we say a function f is increasing if η ≤ η′ ⇒ f(η) ≤ f(η′), and

is decreasing if −f is increasing. For a particle system, increasing functions include
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indicators of the events {η(x) ≥ a} for some a, x. A measure µ on a partially ordered

state space has positive correlations if

Eµfg ≥ EµfEµg

for all increasing functions f, g, provided the expectations are defined. It can be

checked, for example, that deterministic configurations, that is, measures concen-

trated on a single configuration, have positive correlations. Letting µt denote the

distribution of the process at time t, we say a particle system preserves positive

correlations or preserves PC if for any µ0,

µ0 has positive correlations ⇒ µt has positive correlations for all t > 0

It is shown in [32], Chapter II, that a particle system preserves PC if and only if all

transitions are between comparable states, that is, for each e, φ, either e(φ) ≥ φ or

e(φ) ≤ φ.

To describe the following it is helpful to introduce a bit of language. At an event

with transition mapping e : F T → F T , for a, b ∈ Fp and x, y ∈ T we say that a at x

produces b at y, denoted e : (a, x)→ (b, y), if

b ∈ C(e(δx(a))(y))

that is, if b is one of the organisms in e(φ)(y), when φ is the local configuration having

only the organism a at site x and no other organisms at sites y ∈ T, y 6= x.

For an additive system, we can use this result to characterize PC in terms of

production. Say that an organism (x, a) waxes if (x, a) produces at least (x, a) (birth

or persistence) and wanes if it produces at most (x, b) for some b ≤ a and nothing

else (persistence, demotion or death).

Definition 5.7.1. A transition mapping e is said to be productive if each (x, a)

waxes, and destructive if each (x, a) wanes. An organism (x, a) compensates for the

loss of another organism (y, b) in a transition if (y, b) is demoted or dies, but (x, a)

produces (y, b).

Theorem 5.7.2. For an additive multi-colour system, if each transition is either
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productive or destructive, then the system preserves PC. A necessary and sufficient

condition is that for each transition mapping,

• each organism either waxes or wanes, and

• if (x, a) waxes then it compensates for the loss of every organism that wanes.

Proof. The sufficient condition follow easily from additivity, using the fact that φ ≤
ψ, φ′ ≤ ψ′ ⇒ φ ∨ φ′ ≤ ψ ∨ ψ′. If a transition mapping has both a waxing organism

(x, a) that is not waning ((x, a) produces both (x, a) and something else, possibly

(x, b) for b > a or b <> a, or possibly another organism elsewhere) and a waning

organism (y, b), and (x, a) does not compensate for (y, b)’s loss, then letting φ =

δx(a) ∨ δy(b), e(φ)(y) < b = φ(y) but e(φ)(z) > φ(z) for some z, so e(φ) <> φ. If

the condition given does hold, then for any collection of organisms (x, a) joined into

a local configuration φ, if at least one of them is waxing then e(φ) ≥ φ since all

losses are compensated for by the waxing organism, and if they are all waning then

e(φ) ≤ φ.

As shown in the following example, it is possible that a model preserves PC, but

its dual does not.

Example 5.7.3. Define the dandelion process with types {0, 1} as follows. For each

x ∈ V , fix a dispersal distribution p(x, ·) which is an atomic measure on subsets of

V . At each site x, at rate 1, if x is occupied then it dies and disperses, occupying

the unoccupied sites in the set A with probability p(x,A). Equivalently, for each site

x ∈ V and each subset A ⊂ V , at rate p(x,A) (possibly = 0), if x is occupied then it

dies and disperses to the sites in A. This process is additive and multi-colour. The

dual to the dandelion process is the helper process in which at rate p(x,A), x becomes

(or remains) unoccupied unless some site in A is occupied, in which case x remains

(or becomes) occupied. Since the dandelion process has death/dispersal transitions, it

does not preserve PC. In the helper process, however, all waning organisms have their

losses compensated for, so it follows that the helper process preserves PC.

5.8 Complete Convergence

We focus now on additive multi-colour growth models having only productive and

destructive transitions, which by Theorem 5.7.2 preserve positive correlations; for
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convenience we call these models simple. We first note the following fact.

Lemma 5.8.1. The dual of a simple model is simple (and thus preserves PC).

Proof. Reversing a productive transition (i.e., looking at the dual transition) gives a

productive transition, and the same is true of a destructive transition.

As in the Introduction, we say the model has single-site survival or more succinctly,

survives if, started from a single active site, with positive probability there are active

sites for all time.

Proof sketch of Theorem 5.2.10. There are three main steps:

• Apply the construction of [3] to both the process and its dual to show that for

any ε > 0, starting from a large enough patch of infectious sites,

survival ⇒ dominates oriented percolation with parameter 1− ε

where the domination is in spacetime, with respect to a rescaled block construc-

tion,

• Conclude that the process survives if and only if its dual survives.

• Use the argument of [16] to show complete convergence.

First we use step 1 to show step 2, i.e. that if a simple model survives, then so does

it dual. Applying the result of step 1, since supercritical oriented percolation has a

nontrivial stationary distribution, we find survival⇒ ν 6= δ0, which using the duality

relation shows that process survives⇒ dual survives, and applying the same argument

to the dual and noting the dual of the dual is the process itself, the converse also holds.

We now address step 1. The construction of [3] works roughly as follows: starting

from a large patch of infectious sites in Zd, on a large spacetime box R0,0 ⊂ Rd×R+,

there will be a large number of infectious sites on the top and sides of the box, in-

cluding a large number on each orthant of the top of the box – this step uses positive

correlations. From these infectious sites, with good probability in every coordinate

direction, at least one of them will produce a large patch of infectious sites. Using,

say, the positive and negative directions in the first dimension, with good probabil-

ity the process spreads in both directions and can be restarted with a large patch
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of infectious sites in a deterministic location above and to the left and right of the

starting location, with spacetime boxes R−1,1 and R1,1, which gives the comparison

to oriented percolation.

A large number of additional geometrical details are addressed in [3]. Note that

attractiveness, translation invariance, coordinate symmetry, and positive correlations

are needed. We also want the model to be irreducible, so that from a single site we

can produce a large finite disc of active sites with some probability. In [3] the inter-

actions are nearest neighbour, but the proof is extended in [2] to include finite range

interactions. Finally, to show that survival implies the existence a large number of

active sites on the top and sides of the spacetime box R0,0, the zero state must be

reachable from any configuration with finitely many active sties. Notice that if it were

not, survival with positive probability would be trivial. It can then be checked that

the proof given in [3] extends to the case of an additive growth model that preserves

positive correlations, as we have defined it, and step 1 is complete.

It remains to show step 3. The proof given in [16] relies on a calculation in [21]

that gives a relatively simple condition for complete convergence. Fix an arbitrary

configuration η0, and a dual configuration ζ0 with finitely many active sites; doing

this for all such ζ0 we will recover the finite-dimensional distributions of the upper

invariant measure. We have that

η2t ∼ ζ0 ⇔ ηt ∼ ζt

where ζs, 0 ≤ s ≤ t is run from time 2t down to time t, with initial configuration ζ0.

Use the notation η 6= 0 to denote “not identically zero”. Then observe that

P(ηt ∼ ζt) = P(ηt 6= 0, ζt 6= 0)− P(ηt 6= 0, ζt 6= 0, ηt � ζt)

Since they use disjoint parts of the Poisson processes, ηs, 0 ≤ s ≤ t and ζs, 0 ≤ s ≤ t

are independent, so

P(ηt 6= 0, ζt 6= 0) = P(ηt 6= 0)P(ζt 6= 0)

for each t > 0. Using the duality relation, P(ζt 6= 0) = P(ηt ∼ ζ0) with (ηt)t≥0 the
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process started from the largest possible configuration. Letting t→∞

P(ηt 6= 0)P(ζt 6= 0)→ (1− α)ν({η : η ∼ ζ0})

To have complete convergence, it therefore suffices to show that

P(ηt 6= 0, ζt 6= 0, ηt � ζt)→ 0

that is, that when both processes survive, they intersect with probability tending to

1. This is shown in [16], using only a comparison to oriented percolation, and thus

applies when we use the construction of [3].

5.9 Examples

We conclude with some examples of additive multi-type growth models.

5.9.1 Two-Stage Contact Process

This is a natural generalization of the contact process introduced in [29] and fur-

ther studied in [19] in which (viewing the contact process as a model of population

growth) there is an intermediate juvenile type that must mature before it can produce

offspring. There are three types 0, 1, 2 and the transitions at a site x ∈ V are

• 2→ 0 at rate 1

• 1→ 0 at rate 1 + δ

• 1→ 2 at rate γ

• 0→ 1 at rate λn2(x)

where n2(x) is the cardinality of the set {xy ∈ E : y is in state 2}. In order to obtain

an additive process we take the event structure with transition mappings

• recovery of both type 1 and 2 at each site at rate 1

• recovery of type 1 at the additional rate δ

• onset i.e., 1→ 2 at rate γ
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• transmission along each edge at rate λ

In other words, it is enough to make sure that whenever a 2 recovers, a 1 also recovers.

It is then easy to check that the resulting process has the correct transition rates and

is additive with respect to the join operation on types given by a∨b = max a, b, so the

partial order is 0 < 1 < 2. Since each transition is either productive or destructive,

the model preserves positive correlations. Taking the model on Zd with nearest-

neighbour interactions, the conditions of Theorem 5.2.10 are satisfied, so complete

convergence holds. This was shown in [19], with the proof given along the same lines

but specifically for the two-stage contact process.

5.9.2 Bipartite Infection Model

Consider the following model with primitive types {0,m, f, } where m stands for

infectious male and f stands for infectious female. We can construct a two-sex model

of infection spread by defining the following transitions on primitive types:

• m→ 0 at rate 1

• f → 0 at rate 1

• m→ m ∨ f at rate λ

• f → m ∨ f at rate λ

• 0→ f at rate λnm(x)

• 0→ m at rate λnf (x)

where nf (x) is the cardinality of the set {xy : y has an m type particle} and nm(x)

is the cardinality of the set {xy : y has an f type particle}, and then extending tran-

sitions to the compound type m∨ f in the obvious way (for example m∨ f → f and

m ∨ f → m each at rate 1 from either m or f recovering). Thus in this model we

can imagine that at each site there is one male and one female each of which is either

healthy or infectious, and males can only transmit to females, and females to males,

either at the same site, or at neighbouring sites. Taking the event construction in

which each of the above transitions, at each site/edge, is assigned its own transition

mapping, the model is additive with respect to the join with 0 ∨m = m, 0 ∨ f = f
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and m∨ f assigned its own (compound) type, moreover each transition is either pro-

ductive or destructive. Taking the model on Zd with nearest-neighbour interactions,

the conditions of Theorem 5.2.10 are satisfied, so complete convergence again holds.

5.9.3 Household Model

Consider the following model introduced in [48], which is somewhat similar to the N -

stage contact process considered in Example 5.3.6. The set of types is {0, 1, ..., N},
with parameters λ, γ and the transitions are

• i→ 0 at rate 1

• i→ i+ 1 at rate iγ

• 0→ 1 at rate λnN(x)

where nN(x) is the cardinality of the set {xy : y is in state N}. They also exam-

ine the variant where nN(x) is replaced by λ
∑

xy∈E η(y), the sum of the values at

neighbouring sites. In the first case, take the event construction in which at each site

there is a transition mapping for recovery i → 0 and one mapping for each of the

i → i + 1 transitions, i = 1, ..., N − 1, and along each edge, there is a mapping for

transmission at rate λ. In the second case take the same event construction except

with N transition mappings for transmission e1, ..., eN each at rate λ, with exactly

the mappings e1, ..., ei being used when η(y) = i. In both cases the resulting process

is additive with respect to the join given by a ∨ b = max a, b, and each transition

is either productive or destructive. Taking the model on Zd with nearest-neighbour

interactions, the conditions of Theorem 5.2.10 are satisfied, so complete convergence

again holds.
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