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Risk management plans improve the likelihood of mission success by identifying 

potential failures early and planning mitigation methods to circumvent any issues. 

However, in the aerospace industry to date, risk management plans have typically only 

been used for larger and more expensive satellites, and have rarely been applied to 

satellites in the shape of 10 x 10 x 10 centimeter cubes, called CubeSats. Furthermore, 

existing risk management plans typically require experienced personnel and significant 

time to run the analysis. The purpose of this research was to develop two risk 

management software tools, the CubeSat Risk Analysis tool and the CubeSat Decision 

Advisor tool, which could be used by anyone with any level of experience. Moreover, the 

tools simply require the user to enter their mission-specific data; the software tools 

calculate the required analysis.  

The CubeSat Risk Analysis tool was developed for the purpose of reducing the 

subjectivity associated with estimating the likelihood and consequence of spacecraft 

mission risks. The tool estimates mission risk in terms of input characteristics, such as 

satellite form factor, mass, and development cycle. Using a historical database of small 

satellite missions, which was gathered in the course of this research, the software 

determines the mission risk root causes which are of the highest concern for the given 

mission. 
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The CubeSat Decision Advisor tool uses components of decision theory such as 

decision trees, multi-attribute utility theory, and utility elicitation methods to determine 

the expected utility of a mitigation technique alternative. Based on the user’s value 

preference system, assessment of success probabilities, and resources required for a given 

mitigation technique, the tool suggests the course of action which will normatively yield 

the most value for the cost, personnel, and time resources required. 

The goals of this research were met in the development of two easily-accessible 

and free risk management software tools to assist in university satellite mission 

development. But more importantly, these tools will reach beyond the academic setting 

and allow small satellites to continue to evolve as a platform to accomplish educational, 

scientific, and military objectives. 
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Chapter 1: Introduction 

According to the NASA Risk Management Procedural Requirements
1
, “risk is the 

potential for performance shortfalls, which may be realized in the future with respect to 

achieving explicitly established and stated performance requirements.” These potential 

shortfalls range from lack of the needed institutional support for the mission to the areas 

of safety, technical, cost and schedule of the project.  

Based on this concept, risk management is the process of risk identification, 

analysis, mitigation planning and tracking of the root cause of problems and their 

ultimate consequences.  Risk management plans improve the likelihood of mission 

success by identifying potential failures early and planning methods to circumvent any 

issues. However, in the aerospace industry to date, risk management plans have typically 

only been used for larger and more expensive satellites, and have rarely been applied to 

smaller satellites with a mass less than 10 kg, called nanosatellites.  For this class of 

smaller satellites, which is becoming of greater interest to the aerospace industry, these 

larger-scale risk management plans need to be adapted to provide a suitable risk 

management methodology for nanosatellites.  A new set of practices is needed that is 

appropriate to the schedule, budget, and risk tolerance of this emerging class of satellites.  

Defining a method for applying risk management to nanosatellite projects will result in 

more informed decision making, ultimately producing more successful spacecraft 

missions.   It is timely to perform this research now, as this satellite class range continues 

to grow in use and importance. 

This research focuses on the development of two software tools to be used for risk 

management of small satellites. The CubeSat Risk Analysis tool is specific to the 

CubeSat platform, but the CubeSat Decision Advisor is applicable to any size spacecraft. 
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These tools use risk analysis, regression methods, and decision analysis theory to guide 

users through the risk management process that is typical of spacecraft missions. These 

tools are particularly useful to low-cost missions, or missions staffed by personnel with 

little experience. No tools specific to small spacecraft missions existed prior to this 

research, and so the impact of this research is largely due to the software tool innovations 

to be described in the coming chapters.  

  

1.1 RISK MANAGEMENT AND DECISION MAKING IN THE AEROSPACE INDUSTRY 

A risk management plan entails three major steps which each consist of sub-steps, 

as detailed in Table 1.1. The three major steps are to identify the mission risks, determine 

the appropriate mitigation techniques, and to closely monitor the progress of the risks.
2
 

By identifying, mitigating, and tracking the risks, it is believed that the mission will have 

a higher chance of success. There exist many examples of large-scale missions using the 

risk management process.
3,4,5,6,7,8,9

 Many of these missions, however, use high fidelity 

models, including quantitative assessments like Probabilistic Risk Assessment (PRA). 

Because of the limited resources and short program life-cycle of small satellite missions, 

it is desirable to avoid the more expensive and detailed methods of risk analysis such as 

PRA by employing analytical methods of identifying and tracking mission risks using 

common low-cost software tools. The following sections describe how cost-conscious 

missions may apply the risk management methodology from Table 1.1 to the small 

satellite platform. This risk management plan for small satellites was first published by 

Brumbaugh in 2012; the published article includes a case study as an example of how to 

apply the process.
10
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Table 1.1 - Steps of a Risk Management Plan 

Main Step Sub-steps 

A. Risk identification 1  Review the mission concept of operations 

2. Identify root causes 

3. Classify priority of risk 

4. Name responsible person 

5. Rank likelihood (L) and consequence (C) of root cause 

6. Describe rationale for ranking 

7. Compute mission risk likelihood and consequence 

values 

8. Plot mission risks on L-C chart  

B. Determine mitigation 

techniques 

Choices consist of: 

1. Avoid the risk by eliminating root cause and/or 

consequence 

2. Control the cause or consequence 

3. Transfer the risk to a different person or project 

4. Assume the risk and continue in development 

C. Track progress  Plot the mission risk values on an L-C chart at key life-cycle 

or design milestones to see progress.  
 

1.1.1 Risk Identification 

Before analyzing the mission risks, one must first identify the events which could 

cause harm to the spacecraft and/or mission. The process of risk identification has several 

steps: 

Review mission concept of operations 

To determine the risks which could potentially cause mission failure, it is useful 

to start with the mission concept of operations and the primary payloads. Often times 

launch and on-orbit checkout are the first steps of the concept of operations. With this 

approach in mind, what mission-specific actions would cause launch and on-orbit 

checkout to fail? The spacecraft design and integration team cannot control launch 

failures, but they can control spacecraft delivery delays. Moving along in the concept of 
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operations to the primary mission phase, consider what could cause the mission payloads 

to not function properly. Mission risks are higher-level failures; component and system-

level failures are the root causes of mission risks which are discussed in the next section. 

All risks should be analyzed in terms of hardware, software, and programmatic issues.
11

 

Table 1.2 lists typical sources of mission risk according to the Department of Defense 

(DoD) Risk Management guide.
2
  

Table 1.2 - Sources of Mission Risk 

Hardware/Software Programmatic 

Requirements Logistics 

Technical baselines Concurrency 

Test and Evaluation Cost 

Modeling and simulation Management 

Technology Schedule 

Production/Facilities External factors 

Industrial capabilities Budget 

Identify root causes for each risk 

The next step in assessing the potential risks to a spacecraft mission is to analyze 

the root causes of such a risk. Starting with the risks identified from the previous section, 

determine what hardware, software, or programmatic issues would eventually lead to the 

harmful event occurring. While the mission risks may be very similar between different 

university and industry missions, the root causes may greatly differ based upon the 

engineering practices in place in each environment. For instance, student teams may 

experience different personnel risk root causes than industry spacecraft projects which 

have career engineers as part of the team. Additionally, university projects tend to have 

smaller budgets leading to a higher cost risk. With each mission risk, it is encouraged to 

examine the requirements verification matrix, project schedule, budget and mission 
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overview documents to determine what root causes may contribute to the specified 

mission risk.  

 

Assign responsible person 

While the systems engineer and program manager are ultimately responsible for 

the risk analysis and management of the entire spacecraft and mission, respectively, the 

entire team should be held responsible for the mitigation of mission risk root causes. 

Thus, it is important to identify a responsible person for each root cause. This person 

should be the most knowledgeable about the root cause and to whom questions regarding 

its status will be directed. Most likely, the subsystem or task leads are the responsible 

persons, but this may not always be the case.   

 

Rank likelihood and consequence of root cause 

After having first identified the mission risks, their root causes, and named a 

responsible person for every root cause, each risk must then be ranked according to its 

likelihood and consequence (L-C). Both of these rankings are typically based upon a 1-5 

scale where a value of “1” is viewed as the least severe while “5” is most critical. These 

scales, however, greatly vary in the descriptions of each value based upon the source. The 

most detailed set of the two scales found, which is used in this analysis, is from the DoD 

Guide to Acquisition shown in Table 1.3 and Table 1.4.
2
 The decision of the root cause 

L-C value should be made by consensus of the identified person responsible, systems 

engineer, and program manager. 

While the likelihood criteria of Table 1.3 may be similar across many sources of 

L-C ranking scales, the DoD has identified three methods of assessing the consequence of 
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a root cause occurring in terms of the technical, schedule, and cost implications to the 

mission. Table 1.4 quantifies the schedule and cost of each consequence level. Note that 

the values of the two columns labeled “…application to CubeSats” in Table 1.4 have 

been added by the author and are specifically tailored for a 3U CubeSat mission with a 

budget of $1.5 Million (including personnel costs) and timeline of three years from 

design to launch with design reviews every six months. However, these schedule and cost 

values can easily be modified to reflect a different scale mission.  

 

Table 1.3 - DoD Likelihood Criteria for Risk Ranking 

Level Likelihood Probability of occurrence 

1 Not Likely ~10% 

2 Low Likelihood ~30% 

3 Likely ~50% 

4 Highly Likely ~70% 

5 Near Certainty ~90% 
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Table 1.4 - DoD Consequence Criteria for Risk Ranking 

Level Technical Schedule Schedule 

application 

to CubeSats 

Cost Cost 

application 

to CubeSats 

1 Minimal or no 

consequence to 

technical performance 

Minimal or 

no impact 

No change 

 

Minimal or 

no impact 

No change 

2 Minor reduction in 

technical performance 

or supportability, can 

be tolerated with little 

or no impact on 

program 

Able to meet 

key dates.  

Slip < 1 

month 

Budget 

increase or 

unit 

production 

cost increases 

 (1% of 

budget) 

Increase < 

$10K 

3 Moderate reduction in 

technical performance 

or supportability with 

limited impact on 

program objectives 

Minor 

schedule slip. 

Able to meet 

key 

milestones 

with no 

schedule 

float. 

Slip < 3 

months 

Budget 

increase or 

unit 

production 

cost increases  

(5% of 

budget) 

Increase < 

$50K 

4 Significant degradation 

in technical 

performance or major 

shortfall in 

supportability; may 

jeopardize program 

success 

Program 

critical path 

affected.  

Slip < 6 

months 

Budget 

increase or 

unit 

production 

increase 

 (10% 

budget) 

Increase < 

$100K 

5 Severe degradation in 

technical performance; 

cannot meet key 

technical/supportability 

threshold; will 

jeopardize program 

success 

Cannot meet 

key program 

milestones.  

Slip > 6 

months 

Exceeds 

budget 

threshold 

 (10 % of 

budget) 

Increase > 

$100K  
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Describe rationale for the L-C ranking 

During the likelihood and consequence ranking of each root cause, it is important 

to also include a rationale for the choice of the value made. This communicates the 

current status and issues surrounding each root cause to other team members and program 

evaluators. Additionally, if the root cause L-C values are tracked over time, the rationales 

can include updates for increasing or decreasing the L-C values.  

 

Risk Priority Classification 

With likelihood and consequence values assigned to each root cause event, the 

priority that should be given to assigning labor and financial resources to a given root 

cause can be objectively quantified. One method for assigning risk priorities is provided 

as follows. First determine the L-C product by multiplying the likelihood and 

consequence values together for a given root cause. Next, sort the root causes by highest 

to lowest L-C product, and assign a numerical priority of “1” to the root cause with the 

highest product. Assign a “2” to the next highest L-C product, and so on. It should be 

noted that with this method there may be multiple root causes with a given priority level. 

This product-based method of assigning L-C priorities is one of potentially many 

methods. The algorithm for assigning priorities can be adjusted if a different method is 

preferred. 

 

Determine mission risk L-C values 

After identifying the mission risks and their associated root causes and deciding 

upon an L-C value and rank for each root cause, each mission risk L-C value is calculated 

based on a weighted average of all its root cause L-C values. Many weighting methods 
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exist and the algorithm used here for assigning weights is based on historical practice. 

The weight associated with each root cause in this analysis is determined by a rank 

reciprocal method, given by Equation (1.1).
12

  

 

     
    

     
 
   

 
 

(1.1) 

  

In the above equation    corresponds to the ranking of root cause i, and N is the 

total number of root causes for a given mission risk. When compared to a rank sum or 

uniform weight methodology, the rank reciprocal method was chosen because it placed 

larger weight values on the higher ranked root causes. Future analysis is recommended to 

determine an optimal ranking method. Using this rank reciprocal methodology, each root 

cause is given a weighting factor between 0 and 1. The total mission risk L-C value is 

then calculated by multiplying the root cause likelihood or consequence value by its 

weighting factor and summing over all the root causes.   This algorithm for determining 

L-C values can be modified if an alternate method is preferred. 

 

Plot mission risks on the L-C chart  

Each of the mission risks first identified and developed with more detail 

throughout the previous sections is plotted on a Likelihood-Consequence (L-C) chart to 

provide a graphical representation of the project risk status. This chart is comprised of a 

5x5 grid. The horizontal axis is the consequence axis while the vertical axis displays the 

likelihood of the risk occurring. The upper right portion of the grid is colored red to 

signify that risks which are placed in this area should cause serious concern and 
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redistribution of resources. The lower left portion of the plot is commonly colored green 

to indicate these risks are not currently jeopardizing the potential to successfully 

complete the project. The region between the red and green areas is colored yellow to 

show the risks which are being managed but are not an imminent threat to mission 

success. Mitigation techniques are discussed in the next section. 

 

1.1.2 Determine Mitigation Techniques 

After identifying the risks and their root causes, the risk management plan is not 

complete until a mitigation strategy is determined. According to the DoD, risk mitigation 

is the selection of the option that best provides the balance between performance and 

cost.
2
 Risk mitigation can be accomplished in four possible ways—avoid, control, 

transfer, or assume:  

1. Avoid risk by eliminating root cause and/or consequence; 

2. Control the cause or consequence; 

3. Transfer the risk to a different person or project; or 

4. Assume the risk and continue in development. 

For each of the risks and their identified root causes, at least one mitigation 

strategy should be adopted. Having multiple methods of mitigation decreases the risk 

likelihood and consequence upon the mission. As the design status matures, these 

mitigation strategies also mature. The choice of mitigation technique is dependent upon 

the project resources available and may also be dependent upon the nature of the 

program–i.e. whether it is a university, industry, or government project. 
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1.1.3 Track Progress 

To monitor the progress of the mission risks via the mitigation strategies 

described in the previous section, re-evaluate the L-C values at key life-cycle or design 

milestones such as design reviews. The program manager and systems engineer should 

consult with subsystem or task leads as identified in the “responsible person” column of 

the risk assessment to obtain the most recent status of each root cause when completing 

the re-evaluation. Ideally, both of the L-C values will decrease with each successive re-

evaluation. However, if the mission risk increases in either likelihood or consequence, 

this re-evaluation will capture the change. For visualizing the change in mission risk L-C 

values, plot the previous and new mission risk coordinates on an L-C chart with arrows 

showing the L-C value movement. 

 

1.2 RISK MANAGEMENT AND DECISION MAKING IN OTHER INDUSTRIES 

While the focus of this research is in applying risk management and decision 

making principles to the small satellite platform, it is important to realize that risk and 

decision analysis are crucial in many industries. Risk analysis and decision-making are 

closely tied in industries such as insurance, investment and banking, nuclear and 

chemical, oil and gas, public health and medical, as well as when dealing with natural 

disasters, system acquisition, and matters of national security.  

 

1.2.1 Insurance 

One definition of risk, according to the insurance industry, is a state in which 

losses are possible. For the purposes of insurance, loss is considered a disappearance or 

reduction in value, or an unfavorable deviation from expectations.
13

 Risk management to 
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the insurance industry consists of comparable steps to those mentioned in Section 1.1: 

establishing objectives, identifying exposures to loss, evaluating measurable aspects of 

the exposures, selecting the best method for handling risks, implementing the handling 

methods, and reviewing the program continuously. Risk handling, according to the 

insurance industry, involves four options which are similar to the options of Section 

1.1.2: avoidance, loss prevention and reduction, retention, and transfer. Also analogous to 

the aerospace application, prevention involves reducing the probability of a loss 

occurring while reduction lessens the severity of such a loss.  

The fundamental purpose of the insurance industry is to be a vehicle of 

transferring risk from people or corporations to a separate entity, because the people or 

corporations do not want to be liable for the risk. Insurance companies are responsible for 

analyzing claims and determining the policy for which an entity, be it a person or a 

corporation, is eligible. The process is extremely similar across all the sub-categories of 

insurance, whether vehicle, home, or life insurance. The insurance industry assesses the 

risk the entity poses to the company, and classifies the entity into different premium 

levels based on this assessment. The type of assessment could be based on a class rate or 

an individual rate. A class rate system will group the entity in with other entities of a 

similar classification, while an individual rate will base the rate solely on the entity’s 

historical and likely future exposures.
14

 The classification methods may vary based on the 

company and type of insurance. In automobile insurance, for example, classifications 

may be based on the type of vehicle (commercial vs. private), type of driver (sex, age, 

health, accident record), and the location (city vs. rural). Many classification methods, 

though, rely upon regression and statistical analysis to predict the type and number of 

claims the person may submit to the company.
15,16,17

 Additionally, insurance companies 
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rely upon the law of large numbers and pooling principles to ensure that premiums are 

high enough to cover the insurance company’s expenses as well as all claim payments.
14

  

 

1.2.2 Investment, Banking, and Business Development 

Many companies employ considerably detailed risk and decision analyses when 

determining whether or not to invest in other entities, be they companies, countries, or 

people.
18,19,20

 In fact, one article mentions that their company applied decision analysis to 

capital investment, product and process development, acquisitions, licensing, and 

business/market strategy.
21

 The same article indicates that decision analysis makes it 

possible to quantify all known critical factors, and has saved time while providing a 

“rational solution [to] complex problems.”  

 

1.2.3 Nuclear, Chemical, Oil, and Gas 

The nuclear and chemical industries have been studying risk and decision analysis 

for a long time, and have been instrumental in developing numerous analytical tools, such 

as the SAPHIRE tool, for conducting these analyses.
22

 Because nuclear and chemical 

incidents have such low probability of occurring, but have a large consequence, they are 

considered Low-Probability High-Consequence events. Risk assessments, including the 

use of PRA techniques, have been applied to many scenarios ranging from developing 

safety goals to developing models of possible scenarios and probabilities of these 

scenarios.
23,24,25,26,27

  

As with the nuclear and chemical industries, the oil and gas industry deals with 

low probability but high consequence events. Many studies exist which deal with 

determining the risk acceptance posture for companies when it comes to certain situations 



 14 

such as oil spills.
28,29,30,31

 That is, how much risk is the company willing to accept before 

implementing risk reduction measures. This type of analysis typically combines both risk 

assessment as well as decision analysis. Additional examples of decision analysis within 

the oil and gas industry include decisions companies face on whether or not to build oil 

rigs or develop a site.  

 

1.2.4 Public health and Medical 

Doctors, nurses, and patients are often faced with difficult decisions; for example, 

whether or not to accept a transplant, amputation, or drug treatment. Whether formalized 

on paper or not, risk and decision analysis is used to determine the course of action.
32,33,34

 

Specifically, the people involved determine the possible outcomes for each line of 

treatment, the likelihoods of these outcomes, and then decide on the path with which they 

feel most comfortable. 

 

1.2.5 Natural disasters and other industries 

Risk and decision analysis can help to more adequately prepare for natural 

disasters such as floods, earthquakes, and fires. By completing these analyses, risk 

reduction measures can be established which will reduce the impact of the events when 

they do occur, since natural disasters cannot be prevented.
35,36,37

  

Risk and decision analysis is not just limited to the industries listed above. Risk 

analysis is also applied in system acquisition, project management, terrorism and national 

security, market forecasting, artificial intelligence, and computer science.
38,39,40,41,42,43,44
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1.3 SMALL SATELLITES 

Satellites have been built and launched for over sixty years. Initially, satellites 

were small with simple payloads. Over time these payloads became bigger, necessitating 

larger, more complex and expensive spacecraft. In the past decade, small satellites have 

reemerged as a lower cost alternative space platform. There are four classifications of 

small satellites, summarized in Table 1.5, which are gaining in popularity. Those 

spacecraft having a mass between 0.1-1 kilograms are considered “picosatellites” while 

those with masses between 1 and 10 kilograms are called “nanosatellites.” Larger classes 

of spacecraft include “microsatellites” and “minisatellites”, having masses between 10-

100 kg and larger than 100 kg, respectively. This research considers small satellites those 

spacecraft with a mass less than 100 kg. The University of Texas at Austin is currently 

developing nanosatellite missions, which will be explained in the next section. 

 

Table 1.5 – Satellite classification by typical mass ranges.
45

 

Satellite classification Typical Mass Range 

Picosatellites 0.1-1 kg 

Nanosatellites 1-10 kg 

Microsatellites 10-100 kg 

Minisatellites >100 kg 

  

California Polytechnic State University has established a standard launch 

mechanism for nanosatellites called the Poly-Picosatellite Orbital Deployer (P-POD). The 

P-POD is flown as a secondary payload on unmanned launch vehicles, making it easier 

for small satellites using the system to obtain launches.  In order to use the P-POD, the 

spacecraft must be built in the shape of 10 cm cubes – called CubeSats. One CubeSat 
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volume is called a 1-Unit (1U) and has a mass of approximately 1 kg. Multiple CubeSat 

volumes may be combined to form various size configurations of Units, such as 1U, 2U, 

and 3U. The current standard P-POD secondary launcher has a 3U size capacity, although 

larger launchers are starting to become available.  The P-POD and CubeSat standards 

were first demonstrated together in June 2003 with the launch of two P-POD devices and 

a total of six 1U CubeSats.
46

 Because of their lower cost and ability to rideshare on 

rockets with other satellites, CubeSats are becoming a popular configuration for small 

spacecraft missions, particularly by university labs. 

 

1.4 TEXAS SPACECRAFT LABORATORY  

Founded in 2003, the Texas Spacecraft Laboratory (TSL) at the University of 

Texas at Austin (UT-Austin) has an established research program of designing, building, 

launching, and operating student-built satellites. The lab has launched two nanosatellites 

(~25 kg each) and one pico-satellite (~1 kg) within the past 5 years, FASTRAC and 

Bevo-1, respectively. The RACE mission was delivered and launched aboard the Antares 

rocket in October 2014, which unfortunately exploded shortly after liftoff. Currently in 

the TSL, student teams are designing two 3U CubeSats (~4 kg) for launch in 2015 and 

2016, Bevo-2 and ARMADILLO. Additionally, students are involved with multiple 

research projects including interplanetary CubeSat missions, solar sail navigation design, 

spacecraft software design, small satellite risk management, and optical navigation. 

Having multiple missions and research projects in development provides a unique 

perspective to study the design practices, including risk identification and mitigation, for 

3U CubeSats across separate platforms. The TSL has learned lessons throughout previous 

mission life-cycles, such as the usefulness of documentation and quality control 



 17 

standards, to mitigate mission risks. Now, the TSL is applying these lessons and risk 

identification and mitigation techniques to the development of the current missions in 

order to improve their chances of mission success. 

 

1.4.1 FASTRAC 

Formation Autonomy Spacecraft with Thrust, RelNav, Attitude and Crosslink, 

also known as FASTRAC, was the winning entry of the University Nanosatellite 

Program (UNP) UNP-3 competition in January 2005. FASTRAC was comprised of the 

two satellites shown in Figure 1.1 – named Emma and Sara Lily – with the goals of 

demonstrating two-way inter-satellite crosslink, performing on-orbit real-time relative 

navigation using the Global Positioning System (GPS) and demonstrating real-time GPS 

attitude determination.  

As part of the UNP regulations, the design and fabrication of the two FASTRAC 

satellites were completed entirely by students. Faculty and industry contacts, however, 

served as advisors and mentors. Additionally, it should be noted that based on Table 1.5, 

FASTRAC is considered a microsatellite. With a total mass of approximately 25 

kilograms each, the two spacecraft do not meet CubeSat specifications.  

FASTRAC was launched aboard STP-S26 on 19 November 2010 and was 

operational for approximately 3 years once it was powered on at 30 minutes after 

separation. The first beacon was reported five hours after launch. Most of the mission 

objectives were accomplished, and as of this writing the spacecraft are still in orbit, 

although they are no longer operational.  The two satellites have provided many lessons 

in documentation methods, ground operations, and satellite design processes which 

ensured a successful delivery of RACE, and are currently being applied to the Bevo-2 
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and ARMADILLO satellites. FASTRAC’s success serves as a role model for future 

university satellite design projects.  

 

 

Figure 1.1 - FASTRAC satellites  

1.4.2 LONESTAR – Bevo-1 and Bevo-2 

Bevo-1 was the first of four proposed missions in a joint-university NASA-

sponsored satellite program called LONESTAR, Low Earth Orbiting Navigation 

Experiment for Spacecraft Testing Autonomous Rendezvous and docking. The first 

mission was designated as LONESTAR-1. UT-Austin and Texas A&M University each 

designed and built two picosatellites which were launched together aboard Space Shuttle 

STS-127 Endeavour on 15 July 2009, as shown in Figure 1.2. The main mission 

objectives of the LONESTAR-1 mission were to demonstrate a CubeSat compatible 

spacecraft bus and to test a Dual Radio Frequency Astrodynamic GPS Orbital Navigator 

(DRAGON) designed at NASA Johnson Space Center (NASA-JSC). Unfortunately, upon 

ejecting from the Space Shuttle Payload Launcher, the two satellites failed to separate 
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and thus neither satellite could successfully accomplish its mission objectives. However, 

both satellites were successfully integrated and demonstrated to work prior to launch. 

 

 

Figure 1.2 - Bevo-1 and AggieSat-2, part of the LONESTAR-1 mission.  Above:  

Deployment of Satellites from STS-127.  Below:  Close-up view of 

picosatellites. Photo credit: NASA 

Currently, the TSL is finishing software testing on the Bevo-2 3U CubeSat; the 

integrated flight unit is shown in Figure 1.3. Bevo-2 will complete proximity operations 

experiments with the Evolved Expendable Launch Vehicle (EELV) Secondary Payload 

Adapter (ESPA) class AggieSat-4 in the second of three LONESTAR missions. Bevo-2 

features active attitude determination and control, crosslink communication, a cold gas 

thruster made from additive manufacturing, and star tracker technology. Bevo-2 will be 

stowed inside of AggieSat-4, and together, the satellites will be deployed from the ISS 

JAXA airlock slated for sometime in 2015. This second mission is meant to demonstrate 

the technology necessary for autonomous rendezvous and docking of two small satellites.  
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Figure 1.3 - Bevo-2 integrated flight unit. Photo credit: Texas Spacecraft Lab 

 

1.4.3 Texas 2-STEP / ARTEMIS 

The Texas 2-STEP mission began as ARTEMIS (Autonomous Rendezvous and 

rapid Turnaround Experiment Maneuverable Inspection Satellite), which was the UT-

Austin entry into the UNP-4 competition in January 2005. ARTEMIS was re-branded as 

Texas 2-STEP for the UNP-5 competition.  

The main objectives of Texas 2-STEP were to rendezvous a chaser and target 

satellite from a minimum stand-off distance and to demonstrate the maneuvering satellite 

capabilities necessary for proximity operations as well as the on-orbit demonstration of a 
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camera. Additionally Texas 2-STEP aimed to develop a reusable satellite bus design in 

order to demonstrate rapid integration of a flight-ready satellite. 

Having not been selected as the UNP-4 or UNP-5 competition winner, the Texas 

2-STEP project was concluded without launch into orbit.  But the lessons learned from 

the design process have been implemented into TSL projects since then.  

 

1.4.4 RACE 

 The Radiometer Atmosphere CubeSat Experiment, RACE, was a 3U CubeSat 

mission studying the 183 GHz water vapor line. RACE was a partnership between the Jet 

Propulsion Laboratory (JPL) and UT-Austin. JPL provided the radiometer science 

experiment as well as environmental testing support. UT-Austin was responsible for the 

design, integration, and functional testing of the spacecraft. The left image of Figure 1.4 

shows solar panel testing completed on the RACE flight unit at UT-Austin. RACE was 

intended to demonstrate low noise radiometer performance and 183 GHz radiometer 

internal calibration strategies. It would have been the first spacecraft to have a 183 GHz 

LNA front-end receiver in space, electronically calibrated 183 GHz receiver, and a 183 

GHz direct detect system. This mission would have been a major step in the direction of 

constellation systems, as it provides a technology demonstration of the radiometer on a 

CubeSat platform.  
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Figure 1.4 - RACE flight unit undergoing solar panel testing (left) and vacuum chamber 

testing (right). Photo credits: Texas Spacecraft Lab (left) and Jet Propulsion 

Lab (right) 

 UT-Austin was given the go-ahead in April 2013 and delivered the flight unit to 

JPL for environmental testing, shown on the right in Figure 1.4, in February 2014. 

Unfortunately, as mentioned previously, RACE was aboard the Orbital Sciences Cygnus 

Crew Resupply mission on the Antares rocket which exploded shortly after liftoff on 28 

October 2014. 

 

1.4.5 ARMADILLO 

Space debris is an urgent topic of discussion throughout the aerospace industry. 

Most of the time, discussion focuses on larger debris (>1 cm in diameter) which could 

cause catastrophic impact damage. However, small particles of sub-millimeter size can 

cause serious damage as well. Unfortunately, little is known about this small particle size 

range and its distribution in Low Earth Orbit. As of today, these small particles cannot be 

tracked from ground radar systems. 
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In an effort to study this sub-millimeter level particle size range, UT-Austin has 

developed a 3U CubeSat named ARMADILLO, Atmosphere Related Measurements And 

Detection of submILLimeter Objects. The sub-millimeter space particle detection 

instrument is a Piezoelectric Dust Detector (PDD) which is being developed at the Center 

for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor 

University, and can be seen in Figure 1.5 on the end of the spacecraft.  

 

 

Figure 1.5 - ARMADILLO engineering unit design. Photo credit: Texas Spacecraft Lab 

ARMADILLO will study and characterize space debris in Low Earth Orbit (LEO) 

using the PDD.
47

 In order to precisely point the PDD space debris and cosmic dust 

experiment to obtain the best scientific results, the ARMADILLO picosatellite will have 

a precise six degree-of-freedom attitude control system. The satellite will also establish 

optical navigation and provide an independent verification of the GN&C unit with an in-

house developed star tracker, as well as have the capability to reprogram the on-board 

computer while in orbit. ARMADILLO will also study the Total Electron Content (TEC) 

in the atmosphere through the GPS radio occultation measurements of a dual frequency 
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GPS receiver, developed by the Radio Navigation Laboratory at UT-Austin.
48

 Finally, the 

CubeSat serves an educational purpose in training students in systems engineering 

processes. 

In January 2013, ARMADILLO won the University Nanosatellite Program in the 

CubeSat class. Additionally, the 3U CubeSat was awarded a launch opportunity through 

NASA’s ELaNa CubeSat Launch Initiative in spring 2012 and is expected to launch in 

late 2016.  

 

1.4.6 INSPIRE 

 The two 3U CubeSats which comprise the Interplanetary NanoSpacecraft 

Pathfinder In a Relevant Environment, INSPIRE, are a combined effort across four 

university partners with JPL managing and building the spacecraft. The 3U CubeSat pair 

will be the first CubeSats to travel beyond LEO. The primary mission objective of 

INSPIRE is to “Demonstrate and characterize key nano-spacecraft telecommunications, 

navigation, command & data handling, and relay communications for mother-

daughter.”
49

 The INSPIRE mission statement is to “…enable a new class of 

interplanetary explorer, while providing components to reduce the size and cost of 

traditional missions.” UT-Austin has delivered a cold gas attitude control system, seen in 

Figure 1.6, for rotation and translational attitude control. This cold gas design was 

originally developed for the Bevo-2 mission and has since been adapted for numerous 

other platforms, including INSPIRE. 
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Figure 1.6 - INSPIRE cold gas attitude control system. Photo Credit: Texas Spacecraft 

Lab 

1.4.7 Research Projects 

Many students who become involved in the TSL, quickly find research projects 

that become their undergraduate honors, Master’s, or Doctoral theses. Graduate student 

projects in the lab and research group have included: 

 Constrained Attitude Pathfinding as part of the integrated GN&C CubeSat 

module for three-axis stabilized missions 

 Autonomous Rendezvous & Docking algorithms to accomplish the 

LONESTAR goals 

 Command and Data Handling software design for multiple CubeSat 

missions 

 Instrumented six degree-of-freedom thruster, as explained in Section 1.4.6 

 Visual and Infrared Proximity Navigation  

 Solar Sail mission design as part of the Sunjammer mission 

 CubeSat risk management, the topic of this dissertation 
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1.5 RESEARCH MOTIVATION  

The research into small satellite risk management came about because of the 

author’s involvement in the Texas Spacecraft Laboratory (TSL) as the Lead Systems 

Engineer for many years. Additionally, she was the Student Program Manager for the 

ARMADILLO 3U CubeSat mission. As part of her duties, she compiled an initial risk 

assessment of the ARMADILLO mission for inclusion in UNP competition deliverables. 

While researching risk management plans, she learned that no concrete, step-by-step 

process existed for small satellites, and the processes that did exist were meant for much 

larger projects in terms of money, people, and time. The risk management plans found 

were intended for large missions such as the Space Shuttle or the International Space 

Station and utilized subjective reasoning in which an analyst’s experience level could 

significantly change the assessed risk level. Specifically, the Likelihood and 

Consequence values were subjectively chosen on a one to five scale based upon the 

analyst’s opinion of the risk. These existing tools typically required too much time and 

experience for a university mission, or for satellite designers just entering the industry, to 

understand and quickly generate results. Therefore, a need was identified to provide a 

quick and easy-to-use software tool that mission designers of all ages and experience 

levels could use quickly and effectively.  

During her experience researching and writing her Master’s thesis on cost and 

reusability of small satellites, the author learned of many cost models, their general 

layout and procedures.
50

 After having determined to pursue the development of a small 

satellite risk management plan and associated software tools as her PhD research, the 

author decided that many of the same methods used in the cost models would be useful 

for the risk analysis software tools. Namely, the use of user interface forms; summary, 
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plots, and outputs pages; and the use of general error regression to find a relationship 

between input and output variables.  

With the step-by-step and user-friendly concepts in mind, the author talked with 

many mission designers within the small satellite industry and learned what would be of 

use to these potential users. It is with all of these suggestions that the risk analysis tools to 

be described throughout the dissertation were created. 

 

1.6 CONTRIBUTIONS TO THE FIELD 

Reliability and risk analysis is a vital tool in the life-cycle of a spacecraft, and yet 

no scientific process exists for assessing risk on small satellite missions. While others 

have completed statistical analyses of spacecraft reliability according to mass categories, 

previous research classifies a “small spacecraft” in the mass range of 0-500 kg.
51,52

  

Currently, typical CubeSat missions have an allocated mass of 1-12 kg, depending on the 

form factor. Risks associated with larger class (500 kg) missions do not necessarily 

reflect risks associated with these small satellite, or CubeSat, missions. Furthermore, the 

initial phase of this PhD research is the first to indicate the root causes of mission failures 

or provide a detailed risk management method which is applicable to small satellite 

missions, but this portion of the research relies upon the user’s subjective opinion of 

ranking likelihood and consequence values.
10

 The CubeSat Risk Analysis tool is the first 

published method for calculating the risks of CubeSat missions based solely on a handful 

of Factors of Interest (FOI).
53

  

 For CubeSat missions, particularly of the university class, more detailed methods 

of risk analysis such as Failure Modes and Effects Analysis (FMEA) and Probabilistic 

Risk Assessment (PRA) are unfeasible.  While FMEA and PRA are used throughout the 
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aerospace industry, such as for the International Space Station, they typically require 

large amounts of labor hours in order to complete the analysis pertaining to a given 

system. While the resulting analysis may be useful for the larger spacecraft and missions, 

the same level of intensity is not appropriate for most CubeSat missions. For example, 

many mission designers are interested in CubeSat missions because they are typically 

cheaper and require less time and people. If the goal is to keep the mission as inexpensive 

as possible and to get the satellite in orbit as quickly as possible, then a long and detailed 

analysis process would seem wasteful and counter-productive. Also, many of the risk 

analysis programs delve into the “what-ifs” and analyze redundancies; CubeSat missions 

typically do not have hardware redundancy because of the compact form factor. 

Additionally, these industry tools usually require access to mission database information 

and software tools, which may be restricted. CubeSat missions typically do not have the 

required budget, schedule, or personnel resources that are necessary to conduct a full 

FMEA and PRA analysis.
54

 The CubeSat Risk Analysis software tool developed during 

the course of this research offers a free method of identifying key mission risks that is 

easily accessible and usable by people of all experience levels. Furthermore, this software 

tool is scaled to the level useful to CubeSat missions. That is, the tool is not too detailed 

and yet not too simple.  

 Similarly, decision analysis tools exist but are not commonly used within the 

aerospace industry. The existing tools are more commonly used in the investment, oil and 

gas, and medical fields (see Section 1.2). These decision analysis tools are quite 

expensive for low-cost or university missions and typically take a lot of time to 

understand and set up an accurate model. Some software packages include pre-defined 

decision analysis models which may be useful in some cases, but for the purposes of this 

research, the pre-defined models limited the analysis capabilities.  Moreover, any free 
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version typically has severely limited capability. The software tools developed as part of 

this PhD research and described throughout this dissertation have been distributed for 

free access and use. Additionally, the software tools require the user to input their data, 

but do not require the user to generate the model themselves. The software tools have 

already stored all necessary calculations and will implement these on the user’s 

command.  

 The PhD research described throughout this dissertation offers the small satellite 

community new and innovative software tools to help mission designers better enable full 

mission success. The goal of the research was not only to create these free and versatile 

tools, but to enable anyone, regardless of their experience level, to be able to understand 

and use the tools. As such, there are detailed user’s guides which accompany each 

software tool so as to ensure understanding.  

 

1.7 DISSERTATION ORGANIZATION 

 This dissertation describes risk management as it applies to small satellites. The 

first portion of the document describes the CubeSat Risk Analysis software tool, which 

utilizes the same regression techniques and validation methods as industry cost models to 

map input demographic parameters to the output risk likelihood and consequence values. 

The second portion of the dissertation details the CubeSat Decision Advisor software tool 

including the validation methods used to ensure its proper functionality. The CubeSat 

Decision Advisor tool uses decision trees and utility theory to guide the user through a 

series of decisions regarding which mitigation techniques to implement for reducing 

mission risk.  
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In this opening chapter, risk management was explored in aerospace applications 

as well as in the insurance, banking, chemical, oil and gas, medical, and environmental 

industries. While there are many similarities in how risk is defined and assessed between 

the industries, the application to small satellites deserves further discussion given the 

increasing interest in the platform and the current lack of existing risk management tools. 

This lack of existing tools was explored in more detail in the Motivation and 

Contributions portions of this chapter, Sections 1.5 and 1.6, respectively. 

 Chapter 2 defines the mathematical theory used in the development of the 

software tools. The regression methods are fully explained. The regression models not 

chosen are also included as reference with the reasons why they were not chosen. 

Decision trees and utility theory are described with a simple example to show how the 

two techniques work together and why when combined they are such useful tools for 

decision analysis applied to small satellite risk management.  Multi-attribute utility theory 

and decision trees are the fundamental techniques used in the CubeSat Decision Advisor 

software tool.  

 The regression methods described mathematically in Chapter 2 are then applied to 

the CubeSat risk analysis problem in Chapter 3 via the CubeSat Risk Analysis software 

tool. The chapter explains the algorithms for data processing, regression analysis, and 

designing the software in addition to the method used to gather data from the CubeSat 

community and the aggregate results of this data collection.  

 Validating the software is just as, if not more, important as the creation of the 

software tool itself. Chapter 4 details the methods used to verify that the regression 

models selected most accurately reflect the data. The methods employed include outlier 

and trade study analysis, leave-out-one and stratified testing, as well as moving beyond 

the data range to test the tool’s ability to extrapolate. 
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 The second portion of the dissertation begins with Chapter 5 describing the 

CubeSat Decision Advisor software tool. This tool complements the Risk Analysis tool in 

that it offers the user a mathematical method, using decision and utility theories, to 

determine which risks to mitigate and with which mitigation techniques. Chapter 5 

explains how the theory of Chapter 2 is applied to this problem, describes the tool, and 

provides a tutorial example.   

 Chapter 6 continues the discussion of the CubeSat Decision Advisor by 

demonstrating its capabilities through validation testing. Unlike with regression analysis, 

there are no clear-cut methods by which to validate such a tool. For the purposes of this 

research, the CubeSat Decision Advisor was validated by analyzing mathematically 

simple and error checking cases in addition to a mission case study, and sensitivity and 

Monte Carlo analyses.  

 The dissertation concludes with a summary of the two tools and their impact on 

small satellite risk management. Future work is outlined for additional student projects or 

other follow-on work. This dissertation demonstrates that two new easy-to-use tools have 

been developed for small satellite risk management to be used by mission designers of 

any project budget and experience level.  

 

                                                 
Chapter Notes: 

1
 “Agency Risk Management Procedural Requirements.” NASA Procedural Requirements, NPR 8000.4A. 

16 Dec 2008. Web. 11 Feb 2015. 

2
 “Risk Management Guide for DoD Acquisition, 6th ed.” Department of Defense. August 2006. Web. 11 

Feb 2015.  

3 
Frank, M.V. "Choosing among safety improvement strategies: a discussion with example of risk 

assessment and multi-criteria decision approaches for NASA," Reliability Engineering and System 

Safety 49.8 (1995): 311-324. Web. 

4
 Smith, C., Knudsen, J., Kvarfordt, K., Wood, T. "Key attributes of the SAPHIRE risk and reliablity 

analysis software for risk-informed probabilistic applications," Reliability Engineering and System 

Safety 93 (2008): 1151-1164. Web. 



 32 

                                                                                                                                                 
5
 Perera, J.S. "Risk Management for the International Space Station," Joint ESA-NASA Space-Flight 

Safety Conference. Edited by B. Battrick and C. Preyssi. European Space Agency, ESA SP-486, 

(2002): 339. Web. 

6
 "Orion Crew Exploration Vehicle Project Integrated Risk Management Plan." NASA, CxP 72091, Rev. B. 

18 November 2008. Web. 7 Feb 2014. 

7
 "International Space Station Risk Management Plan." NASA Johnson Space Center, SSP 50175, Revision 

C. September 2009. Web. 7 Feb 2014. 

8
 "Space Shuttle Risk Management Plan." NASA Johnson Space Center, NSTS 07700, Volume XIX. 

September 2006. Web. 7 Feb 2014. 

9
 "NASA Risk-Informed Decision Making Handbook.” NASA/SP-2010-576, Version 1.0, Office of Safety 

and Mission Assurance, NASA HQ. April 2010. Web. 6 Feb 2014. 

10
 Brumbaugh, K.M., Lightsey, E.G. “Systematic Approach to Risk Management for Small Satellites.” 

Journal of Small Satellites 2 (2013): 147-160. Web. 

11
 Blanchard, B. S. and Fabrycky, W. J. Systems Engineering and Analysis. 4

th
 ed. Englewood Cliffs: 

Prentice Hall, 2006. Print. 

12
 Stillwell, W.G., Seaver, D.A., Edwards, W. "A Comparison of Weight Approximation Techniques in 

Multiattribute Utility Decision Making." Organizational Behavior and Human Performance 28 

(1981):  62-77. Web. 

13
 Athern, J.L, Pritchett, S.T., Schmit, J.T. Risk and Insurance. 6

th
 ed. St. Paul: West Publishing Company, 

1989. Print. 

14
 Denenberg, H.S., et al. Risk and Insurance. 2

nd
 ed. Englewood Cliffs: Prentice Hall, 1974. Print. 

15
 Chang, L. and Fairley, W. B. "Pricing automobile insurance under multivariate classification of risks: 

additive versus multiplicative." Journal of Risk and Insurance 46.1 (1970): 75-98. Web. 

16
 Samson D., Thomas, H. "Linear models as aids in insurance decision making: the estimation of 

automobile insurance claims." Journal of Business Research 15 (1987): 247-256. Web. 

17
 Tryfos, P. "On classification in automobile insurance," Journal of Risk and Insurance 47.2 (1980): 331-

337. Web. 

18
 Spetzler, C. “The Development of a Corporate Risk Policy for Capital Investment Decisions.” Readings 

on the Principles and Applications of Decision Analysis, Vol. 2. Ed. Howard, R.A., and Matheson, 

J.E. Menlo Park: Strategic Decisions Group, 2004. 665-688. Print. 

19
 Bunn, D.W.  and Mustafaoglu, M.M. “Forecasting political risk.” Management Science 24 (1978) 1557-

1567. Web. 

20
 Matheson, J.E. “Managing the Corporate Business Portfolio.” Readings on the Principles and 

Applications of Decision Analysis, Vol. 1. Ed. Howard, R.A. and Matheson, J.E. Menlo Park: 

Strategic Decisions Group, 2004. 311-326. Print. 

21
 Egger, R.F., Menke, M.M. “An Inside View: Analyzing Investment Strategies.” Readings on the 

Principles and Applications of Decision Analysis, Vol. 2. Ed. Howard, R.A., and Matheson, J.E. 

Menlo Park: Strategic Decisions Group, 2004. 301-307. Print. 

22
 “Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) manual.” Oak 

Ridge National Engineering & Environmental Laboratory. September 2008. Electronic. 



 33 

                                                                                                                                                 
23

 Hill, R. "Implementing risk-informed life-cycle design," Nuclear Engineering and Design 239 (2009): 

1699-1702. Web. 

24
 Rathbun, D.K. “Risk Assessment at the Nuclear Regulatory Commission.” Low Probability High 

Consequence Risk Analysis. Ed. Waller, R. A. and Covello, V. T. New York: Plenum Press, 1984. 

285-292. Print. 

25
 Minarick, J.W., and Kukielka, C.A. “Precursors to Potential Severe Core Damage Accidents: 1969-

1979.” Low Probability High Consequence Risk Analysis. Ed. Waller, R. A. and Covello, V. T. 

New York: Plenum Press, 1984. 5-32. Print. 

26
 Vohra, K.G. “Statistical Methods of Risk Assessment for Energy Technology.” Low Probability High 

Consequence Risk Analysis. Ed. Waller, R. A. and Covello, V. T. New York: Plenum Press, 1984. 

201-216. Print. 

27
 Garrick, B.J. “Lessons Learned from First-Generation Nuclear Plant Probabilistic Risk Assessments.” 

Low Probability High Consequence Risk Analysis. Ed. Waller, R. A. and Covello, V. T. New 

York: Plenum Press, 1984. 221-238. Print. 

28
 Pelto, P.J. “Use of Risk Analysis Methods in LNG Industry.” Low Probability High Consequence Risk 

Analysis. Ed. Waller, R. A. and Covello, V. T. New York: Plenum Press, 1984. 239-256. Print. 

29
 Cox, R.A., and Slater, D.H. “State-of-the-Art of Risk Assessment of Chemical Plants in Europe.” Low 

Probability High Consequence Risk Analysis. Ed. Waller, R. A. and Covello, V. T. New York: 

Plenum Press, 1984. 257-284. Print. 

30
 Psarros, G., Skjong, R., and Vanem, E. "Risk acceptance criterion for tanker oil spill risk reduction 

measures." Marine Pollution Bulletin 62 (2011): 116-127. Web. 

31
 Aven, T., and Vinnem, J.E. "On the use of risk acceptance criteria in the offshore oil and gas industry." 

Reliability Engineering and System Safety 90 (2005): 15-24. Web. 

32
 Majzoub, R., et al. "Investigation of Risk Acceptance in Hand Transplantation." Journal of Hand Surgery 

31 (2006): 295-302. Web. 

33
 Reynolds, C, et al. "Risk Acceptance in Laryngeal Transplantation," Laryngoscope 116 (2006): 1770-

1775. Web. 

34
 Cunningham, M., et al. “Risk acceptance in composite tissue allotransplantation reconstructive 

procedures: instrument design and validation.” European Journal of Trauma and Emergency 

Surgery 30 (2004): 12–16. Web. 

35
 Ballestero, T.P., Simons, D.B., and Li, R.M. “Flood Prediction with Casual Analysis.” Low Probability 

High Consequence Risk Analysis. Ed. Waller, R. A. and Covello, V. T. New York: Plenum Press, 

1984. 55-64. Print. 

36
 Wagner, D.P., Casada, M.L., and Fussell, J.B. “Methodology for Flood Risk Analysis for Nuclear Power 

Plants.” Low Probability High Consequence Risk Analysis. Ed. Waller, R. A. and Covello, V. T. 

New York: Plenum Press, 1984. 65-80. Print. 

37
 Accorsi, R., Zio, E., Apostolakis, G.E. "Developing Utility Functions for Environmental Decision 

Making," Progress in Nuclear Energy 34 (1999): 387-411. Web. 

38
 Lambert, J. H., et al. “Identification, ranking, and management of risks in a major system acquisition.'' 

Reliability Engineering and System Safety 72.3 (2001): 315–325. Web. 

39
 Riggs, J. "Integration of technical, cost, and schedule risks in project management." Computers & 

Operations Research 21.5 (1994): 521-533. Web. 



 34 

                                                                                                                                                 
40

 Ezell, B.C., et al. "Probabilistic Risk Analysis and Terrorism Risk." Risk Analysis 30.4 (2010): 575-589. 

Web. 

41
 Wellman, M.P., Breese, J.S., and Goldman, R.P. "From knowledge bases to decision models." The 

Knowledge Engineering Review 7.1 (1992): 35-53. Web. 

42
 Quinlan, J.R. "Induction of Decision Trees," Machine Learning 1 (1986): 81-106. Web. 

43
 Abt., R., et al. “The Dangerous Quest for Certainty in Market Forecasting.” Readings on the Principles 

and Applications of Decision Analysis, Vol. 2. Ed. Howard, R.A., and Matheson, J.E. Menlo Park: 

Strategic Decisions Group, 2004. 287-296. Print. 

44
 Hunsucker, J. L., Turner, J.V., "Effective risk management: a goal based approach." International 

Journal of Technology Management 17.4 (1999): 438-458. Web. 

45
 “Edison Small Satellite Flight Demonstration Missions.” NASA Office of the Chief Technologist. 2 

February 2012. Web.  

46
 Nugent, R., et al. “The CubeSat: The Picosatellite Standard for Research and Education.” AIAA Space 

2008. Paper AIAA 2008-7734. San Diego, CA: AIAA, 9-11 September 2008. Web. 

47
 Brumbaugh, K., et al. "In-Situ Sub-Millimeter Space Debris Detection Using CubeSats." 2012 American 

Astronautical Society GN&C Conference. Paper AAS 12-001. Breckenridge, CO: AIAA, 3-8 

February 2012. Web. 

48
 Joplin, A., Lightsey, E.G., Humphreys, T. “Development and Testing of a Miniaturized, Dual-Frequency 

GPS Receiver for Space Applications.” Institute of Navigation International Technical Meeting. 

Newport Beach: ION, January 2012. Web. 

49
 Klesh, A., Castillo-Rogez, J. “Applications of NanoSats at Small Body Objects,” CubeSat Developer’s 

Workshop 2012. San Luis Obispo, CA, 19-20 April 2012. Web. 

50
 Brumbaugh, K. “The Metrics of Spacecraft Design Reusability and Cost Analysis as Applied to 

CubeSats,” MS thesis. The University of Texas at Austin, 2012. Web.  

51
 Dubos, G.F., Castet, J-F., Saleh, J.H. “Statistical reliability analysis of satellites by mass category: Does 

spacecraft size matter?” Acta Astronautica 67 (2010): 584-595. Web. 

52
 Monas L., Guo J., Gill E. “Small Satellite Reliability Modeling: A Statistical Analysis,” Small Satellites 

Systems and Services - the 4S Symposium 2012, Portoroz, Slovenia, 4-8 June 2012. Web. 

53
 Gamble, K.B, Lightsey, E.G. "CubeSat Mission Design Software Tool for Risk Estimating 

Relationships." Acta Astronautica 102 (2014): 226-240. Web. 

54
 “Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners.” NASA, 

NASA/SP-2011-3421, 2nd edition. December 2011. Web. 11 Feb 2015. Web. 

 

 

 

 

 



 35 

Chapter 2: Mathematical Theory and Background 

One goal of this research was to create statistically-based risk management 

software tools for mission designers of all experience levels to use easily. The CubeSat 

Risk Analysis tool was the first tool developed, and uses general error regression to 

obtain the equations which connect the input factors of interest to the output risk 

likelihood and consequence values. The second tool developed during the course of this 

research was the CubeSat Decision Advisor tool. While the Risk Analysis tool helps 

users to identify the risks which are potentially the most mission critical, the Decision 

Advisor helps these users determine the most effective use of resources to mitigate these 

risks. The Decision Advisor tool completes its task by using decision, utility, and 

probability theories. The following chapter describes in detail the mathematical 

background behind the Risk Analysis and Decision Advisor tools in terms of the 

regression methods applied, decision trees utilized, utility theory and elicitation methods 

employed, and general decision making principles. 

In order to build a risk analysis model that was based on statistics and data, it was 

first necessary to gather the data itself. A suitable statistical database of small satellite 

missions was not available, so one was created.  A survey was developed and distributed 

to the CubeSat community over a seven month period of time. For more details on the 

survey and the analysis of its results, see Chapter 3. Estimating the mission risk by 

following statistical methods with historical data gathered from the CubeSat Mission 

Risk Survey necessitates the creation of a Risk Estimating Relationship (RER) algorithm. 

Given the traditional approach of defining mission risks in terms of likelihood and 

consequence values, the RER algorithm defines two separate relationships:  Consequence 

Estimating Relationships (CqERs) and Likelihood Estimating Relationships (LERs).  
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Based on experience with spacecraft cost models used in industry, it was 

determined that the RERs should be developed using regression techniques similar to 

those used in the cost estimating relationship models of packages such as the Aerospace 

Corporation’s Small Satellite Cost Model (SSCM).
1
 Basing the RER algorithm on 

techniques already existing in the community provides a solid starting point for 

development. But before the details of the algorithm are described in Chapter 3, the rest 

of this chapter will establish a basic description of regression techniques.  

 

2.1 REGRESSION METHODS 

Regression analysis can be a powerful tool when trying to find patterns and 

describe behavior between input and output variables. These patterns then help to 

describe current trends and predict future values, which can be useful in many industries. 

Many times the application of regression in these industries coincides with risk analysis, 

as described in Chapter 1. There are many formal definitions and types of regression. 

This section will explain the basic terminology for regression analysis as well as provide 

typical methods used in classic regression analysis. The section will also describe the 

limitations of the classical approach while the next section will explain the specific type 

of regression used during the course of this research.  

Kutner et al. describe regression as “…a statistical methodology that utilizes the 

relation between two or more quantitative variables so that a response or outcome 

variable can be predicted from the other, or others.”
2
 They go on to define two types of 

relationships – functional and statistical. An example of a functional relationship is given 

in Figure 2.1 (a) while a statistical example is shown in Figure 2.1 (b). Specifically, a 

functional relation between variables can be expressed in terms of a mathematical 
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formula. That is, all the data fall on a single curve. Conversely, a statistical relation 

involves data points which do not precisely fall on a curve. Statistical relations are used 

during the course of this research, since the data gathered during the course of the 

CubeSat Risk Survey, to be described in Chapter 3, did not perfectly fall on a single 

curve.   

 

  

Figure 2.1 – Regression examples: (left) Functional relation; (right) Statistical relation 

 

 If the data follows a functional relationship, then there is no need for regression 

analysis, since the data already perfectly fits a single function. However, if the data 

follows a statistical relation, then there are many possibilities for a curve fit. The 

regression methods to be described in the following sections offer techniques to 

distinguish the function forms and parameters which best represent the data. In many 

research applications, one regression technique is applied to several function models, and 

the models themselves are then compared to see which function form best represents the 

data. Therefore, it is necessary to compare different linear and nonlinear models through 

various key parameters such as the sum of squared deviations (SSD), standard error of 
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the estimate (SEE), bias, and    values. Each of these quantities will be described 

quantitatively and qualitatively in the following sections. 

 The Method of Least Squares, also called Ordinary Least Squares (OLS), is one 

technique used to determine the parameters of a best fit curve after having first identified 

the predictor variables and function form. Because of the statistical relationship between 

the input and output variables, there will exist error between the predicted and actual 

values. OLS assumes that the function of best fit is of the form shown in Equation (2.1), 

where    is the observed response in the i-th trial;    is the input value or predictor 

variable;    and    are the parameters to be found through analysis. Notice that the 

function is linear in the parameters    and   . In addition, the model is considered an 

“additive error” model, because the error term is added to the parameter terms, as 

opposed to being multiplied. The OLS methodology calls for minimizing the sum squares 

residual, the sum of the squared difference between the observed value   , the left side of 

Equation (2.1), and the estimated value given by the right-side of (2.1) without the error 

term. Because of the error term, these values will not always be equal. The optimization 

constraint is given by Equation (2.2). The parameters    and    which minimize   are 

the parameters for the line of best fit.
3
  

 

                  
(2.1) 

  

                     
 

 

   

 (2.2) 

 

Traditional OLS analysis determines the effectiveness of the chosen predictor 

variables through statistical tests such as t- and F-tests as well as Analysis of Variation 
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(ANOVA) tables. If a parameter is identified as being ineffective, it may be removed 

from the function in favor of a simpler form. In this analysis, the error term is assumed to 

be normally distributed in addition to being additive. Because of this, the expected value 

of the error of each observation is unbiased:              . Furthermore, the error 

terms are assumed to be uncorrelated and independent. That is, the outcome of any one 

trial has no effect on the outcome of a different trial. All these assumptions combine to 

assume that the    terms are independent and normally distributed.  These assumptions 

are justified for many analyses, because many statistical procedures are only sensitive to 

large departures from normality. The benefit to these assumptions is the ability to use the 

aforementioned typical statistical tests such as ANOVA and t- and F-tests for determining 

the significance of function parameters.
2,3

  

However, a linear and additive model severely limits the regression analysis. 

Linear relationships between the parameters may not always be the best descriptor of 

trends in data. The same problems persist when OLS is involved in multiple regressions 

such as the function form shown in Equation (2.3), the polynomial function form in 

Equation (2.4), or the power form in Equation (2.5). After all, the multiple and 

polynomial function forms are just extended versions of the basic linear function form in 

Equation (2.1). When using OLS, power and exponential function forms such as 

Equation (2.5) must be re-formatted into a linear relationship. Notice that initially the 

function uses multiplicative error, an OLS assumption when nonlinear function forms are 

chosen. When the transformation from non-linear to linear is made, a biased solution is 

created because of the “transformation of the additive error term from logarithmic space 

to linear space.”
3
 Generally, more complex function forms than Equation (2.5) cannot be 

used with OLS, because it is impossible to transform into the classic linear regression 

form. Finally, when using an additive error model, “…the additive-error model attempts 
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to minimize the sum of squared deviations from all data points, thus giving the larger data 

points a perhaps unduly large influence in determining the ‘best-fitting’ curve.”
4
 

 

                                                   (2.3) 

 
                   

      (2.4) 

 
      

    (2.5) 

 

The benefit to using OLS analysis is the known statistical significance tests. But 

when the function form has been transformed, the parameters are also transformed and 

must be correctly interpreted in the analysis. All the difficulty with OLS lies in the 

assumptions regarding the nature of both the parameters and the error terms. The error 

terms, and thus the response values, are assumed to have a constant variance and are 

assumed to be additive for linear function forms while multiplicative for non-linear 

forms. Additionally, error terms are assumed to be uncorrelated, leading to uncorrelated 

response variables. These assumptions may not be valid for many data sets or analysis 

purposes. As such, a more generalized regression approach is needed.  

 

2.2 GENERAL ERROR REGRESSION  

The SSCM as well as other cost models like the Unmanned Spacecraft Cost 

Model (USCM) use a technique called General Error Regression (GER).
5,6

 The GER 

method is useful because it allows for both multiplicative and additive error models in 

more complex relationships such as factor, power, and triad function forms, as opposed to 
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being limited to additive and linear models when using traditional regression methods 

such as Ordinary Least Squares (OLS). The GER method offers many forms of 

minimization: Minimum Percentage Error (MPE), Iterated Least Squares / Minimum 

Unbiased Percentage Error (IRLS/MUPE), and Minimum Percentage Error – Zero 

Percentage Bias (ZPB-MPE).
7
 The preferred method for implementing GER is to use the 

ZPB-MPE method, which eliminates bias by slightly increasing the minimized value.
8
  

 

2.2.1 Types of General Error Regression 

 While the Ordinary Least Squares may be useful for initial analysis, more 

involved regression techniques are necessary for detailed research. General Error 

Regression (GER) allows the user to choose any function form and any error model, 

independent of one another. In other words, an additive error model could be paired with 

a power function form and a multiplicative error model could be included in a linear 

function form. A key benefit of GER is its easy implementation using computer search 

algorithms such as Excel Solver, rather than needing to solve sets of simultaneous 

equations as with OLS. The following sections describe the different methods of GER.   

 

MPE 

The Minimum Percentage Error (MPE) method is the GER technique most 

similar to traditional OLS in that the goal is to minimize the Sum of Squared Deviations 

(SSD). However, when using a multiplicative error, the SSD now represents the sum of 

squares of the percentage error. The benefit of using a percentage error involves having 

“stability of meaning across wide range of programs, time periods, and estimating 

situations.”
9
 Meaning, error should be proportional to the magnitude of the parameters. 
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An error of $10 expresses different error levels when the total budget is $100 versus 

$100,000. However, a percentage error of 10%, will indicate the same error value no 

matter the budget. In this way, percentage error allows for the direct comparison between 

linear and nonlinear models. Since the goal of regression analysis is to choose a function 

form which best represents the data, being able to directly compare linear and non-linear 

models is extremely helpful.  

The SSD key parameter along with the Standard Error of the Estimate (SEE) and 

Bias are calculated with the equations given in Table 2.1 when implementing General 

Error Regression. The calculated value for data point   is given by    with              

representing the chosen function form with the input parameters for a given data point, 

      , and the function coefficients vector,   . At the end of the regression routine,    

represents the vector of coefficients which minimize the SSD. The error    corresponds to 

the data point  . The number of data points is   and the number of coefficients for the 

function              is  . Note Table 2.1 provides equations for both additive and 

multiplicative models. The equations are highly similar; the only differences between the 

two models being the calculations as a form of percentage in the multiplicative cases. 
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Table 2.1 - Key parameters for additive and multiplicative error models.
7
  

 Additive Multiplicative 

Function form 
                                       

Sum of Squared 

Deviations (SSD) 
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Bias    
 

 
                    

 

   

    
 

 
   

                
            

 

 

   

 

 

When implementing the MPE technique, the percentage error is minimized, but a 

bias is introduced. Book and Lao describe bias as the tendency “…to overestimate the 

actual values of the dependent variable.”
7
 Obviously, bias is not desirable in a final 

function form solution. As such, Tecolote Research Inc. developed the technique called 

Iteratively Reweighted Least Squares (IRLS), also known as Minimum Unbiased 

Percentage Error (MUPE), as a potential solution to the issue of bias. The next section 

describes this technique in more detail.   

 

IRLS/MUPE 

Iteratively Reweighted Least Squares (IRLS) was created during the development 

of the Unmanned Spacecraft Cost Model (USCM) in response to the introduction of bias 

through the MPE method of GER. In the USCM documentation, IRLS is referred to as 

Minimum Unbiased Percentage Error (MUPE).
6
 This technique necessitates iteration and 
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convergence to a set of function parameters which result in zero bias, but a slightly higher 

percentage error than the MPE technique.  

The IRLS method uses a similar minimization criterion, shown in Equation (2.6) 

as the multiplicative SSD in Table 2.1. For this technique, though, the optimization is 

completed multiple times by using the previous set of parameter values as the a priori 

values for the next optimization run. The denominator parameter value vector,    , in 

Equation (2.6) comprise the a priori values. The numerator parameter value vector,      , 

is the value optimized in each iteration of the IRLS/MPE method. Because of the iterative 

nature of this technique, IRLS is difficult to implement.  

Despite reducing the bias to zero, Book and Lao show that the IRLS technique is 

actually minimizing “a weighted sum of additive squared errors.”
7
 For analysis purposes 

that call upon multiplicative error function forms, IRLS is not the appropriate GER 

technique. Because of this limitation, the Zero Percentage Bias, Minimum Percentage 

Error (ZPB-MPE or ZMPE) technique was created, and is described in the next section. 

 
 

                      
                    

             
 

 
 

   

 (2.6) 

 

ZMPE/ZPB-MPE 

The technique preferred by the Cost Estimating Relationship community is the 

Minimum Percent Error, Zero Bias (ZMPE) method better known as Minimum 

Percentage Error – Zero Percentage Bias (ZPB-MPE). There are several reasons analysts 

prefer ZPB-MPE, but at the forefront is its simplicity to implement in Excel using the 

Solver add-in and its unbiased solution. Additionally, ZPB-MPE allows the user to 
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minimize using an additive or multiplicative model and select any functional relationship 

to analyze. However, as with all models, ZPB-MPE also has limitations. There is no 

significance test, such as the t-test, for determining parameter importance. But as 

mentioned previously, in the development of estimating relationships, these significance 

tests are not of extreme importance. The biggest drawback of ZPB-MPE method is that 

the solution may not be a global minimum.
3 

 The ZPB-MPE method finds the function form parameter values which minimize 

the SSD value while holding the bias as close to zero as possible using the equations 

given in Table 2.1. The technique is easy to implement for either additive or 

multiplicative error models using Excel Solver or any other optimization program. 

Additionally, because there is no bias, the resulting calculated values more accurately 

reflect the actual values. Because of the additional constraint in ZPB-MPE, the 

percentage error will be larger than with the MPE method. However, recall that MPE had 

introduced bias whereas ZPB-MPE maintains a nearly zero bias value.
7 

 

2.2.2 General Error Regression Applied to Risk Analysis 

For the development of the CubeSat Risk Analysis Tool, the ZPB-MPE technique 

was implemented using an Excel Solver routine. The output values,   , are the risk 

likelihood and consequence values. The function forms,             , and input values chosen 

for the Risk Estimating Relationship (RER) analysis are described in Chapter 3. For each 

of these functions, the Sum of Squared Deviations (   ) value was minimized using 

multiplicative error models while keeping bias ( ) equal to zero by changing the 

coefficients of the functions of interest. The formulas for these values are given in Table 

2.1 for both additive and multiplicative models. Recall that the error    corresponds to the 
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data point  , the number of data points is  , and the number of coefficients for the 

function              is  . 

While the goal of GER and ZPB-MPE is to return a model with the least SSD and 

zero bias, the function must still be representative of the data. In linear regression the 

coefficient of linear determination is the square of the Pearson product-moment 

correlation coefficient,   , as given in Equation (2.7).
4
 Here,   represents the number of 

data points,    is the dependent variable, and    is the observed value. This traditional    

value is used to compare across many linear models and select the line of best fit in 

ordinary least squares methodology.  

 
 

    
                   

 

                              
 (2.7) 

 

The traditional definition of    indicates both the amount of variation that may be 

explained by linear regression as well as the variation due to other parameters. In linear 

relationships, though, this variation due to other parameters is subtracted to yield only the 

variation due to the regression relationship. But in nonlinear forms, there are cross-terms 

that prevent the subtraction of the other factors. Therefore, the typical calculation of the 

   value does not mean anything when dealing with nonlinear function relationships.
4,9

 

Another expression shown in Equation (2.8), called the Generalized Coefficient of 

Determination, can solve this issue and be used for both linear and nonlinear 

functions.
9,10

 The dependent variable is now the predicted values obtained from the 

function             , so the generalized    value now gives a fit determination between the 

calculated estimate values and the actual values instead of a linear fit relationship. This 
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generalized form of the    function is used for comparing linear and nonlinear risk 

estimating relationship function forms in this analysis. 
 

 

    
                                       

 

                                                  
 (2.8) 

 In many statistical regression analyses, significance tests such as the t- and F-tests 

are used to determine whether a parameter is useful as an input to the function. 

Unfortunately, many of these statistical tests require a list of assumptions that could not 

be guaranteed in this research, such as normality and independence of the error terms. 

Additionally, for this analysis, the descriptors of interest are the SSD, SEE, Bias, and 

generalized    values, since these values indicate how well the function will predict 

future cases. According to Book and Young, in regard to the derivation of the cost 

estimating relationships (CERs) developed for the Unmanned Spacecraft cost Model 

(USCM), the “use of t scores looks backward toward statistical derivation of linear CERs 

with Gaussian residuals, rather than forward toward application of CERs in the cost-

estimating process.”
9 

Chapter 3 goes into more detail regarding the specific application of these 

principles to the task of developing Risk Estimating Relationships. Chapter 3 also 

describes the factors of interest and function forms chosen for analysis, and how the 

functions were analyzed to select a single model for each root cause Consequence 

Estimating Relationship (CqER) and the Likelihood Estimating Relationship (LER).  

 

2.3 DECISION ANALYSIS 

Before explaining how decisions are made, a decision must be defined. According 

to Howard, a decision occurs when one makes a commitment “to follow a course of 
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action [and] to make an irreversible allocation of resources…”
11

 During the course of this 

research, resources are defined to be in the form of dedicating money, people, or time to 

mitigate a given mission risk. And so, to make a decision in the context of this research 

would be to select a certain number of people to work on a given task for a particular 

amount of time under a budget of a distinct amount. Decision analysis is the study of how 

these decisions are made, and how to make them in the most effective and logical manner 

possible. Howard goes on to describe decision analysis as a “combination of philosophy, 

methodology, practice and application in the formal introduction of logic and preferences 

to the decisions of the world.”  

Decision analysis techniques introduce logic and structure to reduce complex 

problems to a series of elemental steps, most commonly, by using decision trees. 

Decision trees represent, “…the structure of all possible sequences of decisions and 

outcomes…” while also containing information regarding the cost, value, and probability 

of these outcomes. Often times it is the decision-maker’s preference system being 

captured by the value placed on various outcomes. Additionally, the probabilities could 

be based on fact, or they may be elicited from experts. Decision analysis is therefore a 

normative technique with a goal of “…trying to show how a person subscribing to certain 

logical rules would make…decisions in order to maximize attainment of his 

objectives.”
12

  

The benefit of using decision analysis techniques, such as decision trees, is that 

once applied, the results will represent a normative and logical approach, and are thus 

defendable, but are also representative of a certain value system. In other words, the 

decision is reduced to choosing the alternative with the highest preference value based on 

the desires of the decision-maker. Howard and Matheson explain the point of decision 
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analysis is so that “…the impact of uncertainty upon the decision can be measured and 

interpreted – not left to intuition.”
12

  

   

2.3.1 History 

 Decision analysis has roots, and continues to take part, in military applications. 

According to Howard and Matheson, the first scientific application of decision-making 

was used to study air defenses during the Battle of Britain and continued in the study of 

the protection of the U.S. Navy fleet from submarines. After the end of World War II, 

portions of operations research became what is now known as management science. 

Operations research and management science were born from the formal field of decision 

analysis.
12

  

 Decision analysis was formalized in part because of technological advancements 

in the development of the computer. World War II helped to introduce the concepts, but 

the technological advancements brought decision analysis to the forefront of management 

science and operations research. Additionally, the transition of companies to boards and 

committees required that decisions have a well reasoned and documented rationale, 

something which decision analysis is uniquely poised to offer.
12 

 Decision analysis is now a critical component of many industries, as indicated in 

Chapter 1. Moreover, decision analysis has been used to develop decision support 

systems such as those in the medical industry and has played a major role in artificial 

intelligence systems through machine learning.
13

 For example, Quinlan mentions three 

classifications of tasks for which decision analysis is useful: 

1. The diagnosis of a medical condition from a list of symptoms, 

2. Playing the game of chess, and 
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3. Weather forecasting based on atmospheric observations.
14

 

Decision analysis plays a role in any task involving a robot making decisions based on 

the knowledge it has stored.  

 

2.3.2 Nomenclature 

In order to understand the decision analysis application to satellites, the following 

definitions and theory should be established: 

A decision-maker is “…an individual [group of people or single person] who has 

the power to commit the resources of the organization.”
12

 

Since a decision is “an irrevocable allocation of resources,” to change a decision 

would require modifying the amount of the given resource necessary for the decision’s 

implementation.  

Probability is a belief that an event will occur, and may differ from person to 

person. Howard and Matheson define probabilities as a “…measure [of] a person’s state 

of knowledge about phenomena rather than the phenomena themselves.” 

Decision trees in this research use decision and chance nodes. An example 

decision tree is shown in Figure 2.2 where there are two alternatives, A and B, each with 

two possible outcomes, S1 and S2.   A decision node is given by a square, and represents 

a choice to be made between several alternatives. The chance node is shown by a circle, 

and characterizes the possible outcomes of the alternative, typically noted by 

probabilities. Chance nodes are evaluated by taking the expectation of that node, whereas 

decision nodes are evaluated by the maximum value of the alternatives within the 

decision node. These evaluation methods will be explained in more detail as it applies to 

this research in Section 2.4 about Utility Theory. Note that decision trees may have any 
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number of outcomes and associated probabilities; Figure 2.2 simply represents a basic 

scenario in order to explain terminology. For alternative A, the probability of outcome S1 

is  , and therefore the probability of S2 is      . Similarly, the probabilities for S1 and 

S2 in alternative B are   and      , respectively. It is necessary that the probabilities 

for outcomes of a single alternative sum to unity. The probabilities for the different 

outcomes may be different between the alternative branches, thus the probability is 

expressed as depending on the alternative choice;         is read as the probability of 

outcome S1 given alternative A was chosen. 

 

 

Figure 2.2 - Example decision tree 

Decision trees, such as the example in Figure 2.2, are sometimes referred to as 

“lotteries.” Officially, Howard and Matheson define a lottery as “…a set of prizes or 

prospects with probabilities attached.”
12

 

The certain equivalent is an expression of the “…amount of worth received for 

certain so that the decision-maker would be indifferent between receiving this worth and 

participating in the lottery.”
12 

A

B

S1

S2

P (S1|A) = p

P (S2|A) = 1-p

S1

S2

P (S1|B) = q

P (S2|B) = 1-q

U-value

1

0

0.8

0.2
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Risk preference typically consists of three types of people: risk-averse, risk-

preferring, and risk-indifferent. Risk-averse people tend to be “…willing to forego some 

expected value in order to be protected from the possibilities of poor outcomes.” Risk-

preferring people are the opposite, and are “…willing to engage in…gambles that are 

unfair.” Risk-indifferent people are only willing to engage in a fair gamble or lottery.
12

  

 

2.4 UTILITY THEORY 

In some cases, such as with money or time, it is easy to measure the preference of 

an outcome. However, not all variables can be ranked so easily; a more general approach 

is to use utility theory. Utility is defined as a true measure of value to the decision-

maker.
15

 Furthermore, by using utility as a common measurement, comparisons between 

alternatives can be made and a set of axioms may be established. Before outlining the 

rules of utility theory, Table 2.2 explains the language of denoting preference between 

two alternatives. With the foundation of language as defined in Table 2.2, the axioms of 

utility theory are described in Table 2.3.
16

 

 

Table 2.2 - Symbolic representation of alternative preferences 

Symbols Meaning 

A  B A is preferred to B 

A   B A is preferred at least as much as B 

A   B Indifference between A and B 
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Table 2.3 - Axioms of utility theory
16 

Property Explanation 

(1) Orderability The preference between alternatives can be arranged in order of 

increasing preference: 

A  B,  A   B,  A   B,  A  B,  A   B 

(2) Transitivity  If A   B and B   C, then A  C. 

(3) Continuity  If A  B   C, there exists a value of   (between 0 and 1) such that a 

person is indifferent between (a) obtaining B definitely, and (b) getting 

A or C with probabilities   and      , respectively. This 

indifference is shown graphically by the following lottery: 

 
If   is 0, getting C is certain, hence, B is clearly preferred. Whereas if 

  is 1, the lottery implies getting A for sure, and B is not preferred. 

Therefore, for some value of 0< <1, the condition of indifference 

between (a) and (b) will emerge. In mathematical terminology, B is the 

certainty equivalent of the lottery. 

(4) Substitutability A lottery and its certainty equivalent are interchangeable without 

affecting preference, and are equally preferred. 

(5) Monotonicity If A  B, then 

 
If and only if     . 

(6) Decomposability A series of branches may be replaced by a single branch, as shown in 

the following lottery: 

 

~B
p = 1 p

1-p

A

C

>

p’

1-p’

A

B

p

1-p

A

B

pq

1-pq

A

B

p

1-p B

q

1-q

A
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2.4.1 Single Attribute 

Assuming that the axioms of Table 2.3 are met, a utility function may be created 

to map the degree of preference to a numerical format.
16

 Utility functions must follow the 

same axioms as described in Table 2.3. For example, if event A is preferred over event B, 

than the utility of A must be greater than the utility of B, or          . Because the 

preferences are now expressed in a numerical format, the preference of a certain scenario, 

or lottery, can be calculated. For the purposes of this research, the utility of a lottery is 

determined by the method of expected utility. It is acknowledged that several other forms 

of utility calculations exist.
16,17

 However, for the development of an initial software tool, 

expected utility was deemed to be the simplest to implement. Future iterations of the tool 

could implement these additional methods of utility assessment.   

To determine the expected utility of an alternative,        , the probability for 

each outcome of an alternative is multiplied by the utility value (u-value) for that 

outcome and summed over all the outcomes:               . In the example provided 

in Figure 2.2, the expected utility for alternative A would be             

         . Similarly, for alternative B,                         

        . The decision-maker would be indifferent between these two alternatives 

when their expected utilities are equivalent:                . Otherwise, the 

decision-maker would choose the alternative with the greater expected utility.
12

 Similarly, 

the continuity axiom of Table 2.3 provides another example. Since the probability of 

event B is 1, then it’s expected utility is simply     . The expected utility of the right-

side lottery is:                          . The axiom states that there must 

exist a probability   to make these two expected utility values equal, and the decision-

maker indifferent between the two options. In other words,              

          . So, if the utility of events A and C are known, the utility of event B can 
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be determined by establishing an appropriate probability  .
16

 This use of the continuity 

axiom to determine the utility of an event is the basis for utility elicitation and the 

backbone of the CubeSat Decision Advisor software tool. 

 

2.4.2 Multi-attribute Utility Theory 

In many cases it is necessary to determine a joint utility function which combines 

a set of important variables. Under the assumption of utility and preferential 

independence, a joint utility function,              , can be obtained from the 

combination of the attribute utility functions,       , by finding the   value which 

satisfies Equation (2.9) given a user’s preference system captured by the    values.
18

 To 

obtain these    values, the decision-maker would be asked whether they prefer attribute 

   at its best value while    and    are at their worst or whether they prefer attribute    at 

its best value while    and    are at their worst. A series of such questions fully 

characterize the    values which then allows combination of the attribute utility functions 

into a joint multi-attribute utility function in accordance with Equation (2.10). The   and 

   values act as weights for the input parameters, placing a user-determined emphasis on 

the parameters when combining the attribute utility curves into the joint curve.  

 

                           
(2.9) 

                                

 

   

 (2.10) 

For the purposes of this research, the joint utility function               

determines the user’s utility value for the combination of cost, people, and time required 

for implementing a given mitigation technique. The expected utility value for the 
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mitigation technique is therefore a function of this joint utility value as well as the 

probability of success for the technique outcome. The optimal mitigation technique 

choice is the technique which has the maximum expected utility value, as this technique 

will provide the most value for the given set of input parameters.  It is the identification 

of this optimal mitigation technique that is the primary purpose of the CubeSat Decision 

Advisor software tool. 

 

2.4.3 Decision Making Principles 

By mapping a decision-maker’s preference system to the decisions at hand, the 

decision-maker can more appropriately see which outcomes will benefit their situation. 

However, in order to do this, the decision-maker must follow the rules of actional 

thought, as described by Howard
19

 and which closely follow the axioms of Table 2.3. The 

rules of actional thought are: the Probability Rule, the Order Rule, the Equivalence Rule, 

the Substitution Rule, and the Choice Rule. The Probability Rule indicates that the 

decision-maker must be able to define probabilities of the possible outcomes to the 

decision alternatives. The Order Rule aligns with Utility Theory Axioms 1 and 2 in that 

the decision-maker must be able to arrange all the possible outcomes in order of most to 

least preferable with consistency (transitivity) upheld. The Equivalence Rule echoes the 

Continuity Axiom and requires the decision-maker to be able to identify a probability   

which would make them indifferent between a experiencing event B and an experiencing 

event A with probability   or event B with probability    . The Substitution Rule says 

that the decision-maker must be indifferent between scenarios they have already defined 

as equivalent, and reiterates Utility Theory Axiom 4. The Substitution Rule is helpful in 

replacing decision tree branches as is shown in the Decomposability axiom. The Choice 
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Rule requires the decision-maker, when given a choice between two outcomes, to always 

choose the outcome which they had ranked higher on their preference list. This is 

equivalent to saying the decision-maker must choose the alternative with the higher 

expected utility value. 

The CubeSat Decision Advisor makes use of the Equivalence Rule when 

determining the utility curve parameters which describe the user’s preference system, as 

will be described in the next section. The Choice Rule is used in the analysis portions of 

the tool; the software determines which mitigation techniques provide the maximum 

expected utility and stores these choices and their associated values at the next highest 

level of the decision tree as well as on the Summary page. All of these research-specific 

applications of decision analysis are described in more detail in Chapter 5.  

 

2.5 UTILITY ELICITATION  

The utility function can take many forms. During initial tool development, 

exponential, natural log, linear, and power equation forms were considered. These 

functions are given in Table 2.4. After talking with experts regarding methods used in the 

decision analysis industry, it was determined to use the exponential function only, as it 

provided the most possibilities by simply changing the exponent parameter. The baseline 

exponential function is given in Equation (2.11). The initial version of the tool found that 

    and     best represented logical utility preferences with four possible γ values 

for each of the attributes: cost, people, and time. These parameters are listed in Table 2.5 

and are shown graphically for the cost attribute in Figure 2.3 for the people attribute in 

Figure 2.4, and for the time attribute in Figure 2.5. Note that the attribute utility functions 

are scaled between the minimum value, 0, and maximum value designated by the user. 
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Engineering judgment and experience led to the selection of the three sets of four utility 

functions, and it is acknowledged that an infinite number of alternative functions exist. 

However, for the purposes of this research, the functions needed to be narrowed down to 

a select few with which to establish the software program. 

 

Table 2.4 - Utility function equation forms 

Function Form Equation 

Exponential              

Natural Log                   

Linear           

Power             

 

Table 2.5 - Exponential parameters for attribute utility functions 

 Cost People Time 

   0.0001 0.05 0.01 

   0.0005 0.15 0.025 

   0.001 0.25 0.05 

   0.002 0.5 0.1 

 

             (2.11) 
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Figure 2.3 - Cost attribute utility function options 

 

 

Figure 2.4 - People attribute utility function options 
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Figure 2.5 - Time attribute utility function options 

 

The four utility function choices for each of the three attributes provide a starting 

point for determining the preference system of the user. To determine which function best 

describes a user’s preference toward a certain attribute, industry applications typically ask 

the decision-maker questions in the format of the continuity axiom lottery of Table 2.3. 

There are many ways in which to ask these questions. The use of a single lottery system 

is called the Standard-Gamble method, whereas comparing two lottery scenarios is called 

a Paired-Gamble method. Assuming event A is the most preferred outcome, D is the least 

preferred, and events B and C fall in between A and D, Figure 2.6 and Figure 2.7 explain 

the difference between the two methods, including the manners in which the lottery 

question may be posed.
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Figure 2.6 - Standard-Gamble Method.
20 

 

Figure 2.7 - Paired-Gamble Method.
20

 

The Standard-Gamble method relies upon the use of comparing a guaranteed 

outcome to the possibility of obtaining either the most preferred or the least preferred 

outcome. This is illustrated in Figure 2.6 where event A is the most preferred outcome 

and D is the least preferred. Event B falls somewhere in between the two such that, A 

 B D. The Preference Comparison technique provides a probability of this A-D lottery 

and requests the decision-maker to decide whether the lottery is more desirable than the 

~
B

p = 1

p
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1. Preference Comparison [A, p, D] R B
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guarantee of event B. This comparison is denoted by the equivalence expression, [A, p, 

D] R B. It is the preference, R, which is being determined by the user and is therefore 

represented by an underline in its equivalence expression.   

The second comparison technique for the Standard-Gamble method is Probability 

Equivalence. In this scenario, it is the probability which is left for the user to determine 

and is thusly underlined in the expression, [A, p, D] ~ B. What probability, p, would 

cause the user to be indifferent between a guarantee of event B and a possibility of the 

best or worst outcome? In other words, how likely would event A have to be before the 

user would accept a deal with a nonzero possibility of receiving their worst outcome?  

Similarly, the Value Equivalence method asks the user for the Event A which, 

given the probability and other outcomes, would cause the user to be indifferent between 

a chance at Events A or D, or receiving event B for certain. Since this method requires 

the user to enter the event A, it is represented by the expression [A, p, D] ~ B.  

Finally, the Certainty Equivalence method asks the user for the event B which 

would make them indifferent between receiving B for certain and a chance at either event 

A or D. Event B therefore represents the user’s certain equivalent for the lottery of a   

probability for obtaining event A and a       probability of obtaining event D.  

Similarly as with the Standard-Gamble method, the Paired-Gamble method uses a 

lottery system to obtain user outcome preferences. The Paired-Gamble method, however, 

uses a set of two lotteries and asks the decision-maker to compare the two scenarios with 

one of three methods: Preference Comparison, Probability Equivalence, or Value 

Equivalence. These three methods are identical to their Standard-Gamble relatives, only 

now there are two lottery scenarios to consider, as depicted in Figure 2.7. With two 

scenarios comes an additional event, event C. The preference order of these events is 

augmented to A  B C  D. The Preference Equivalence, denoted by [A, p, D] R [B, q, 
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C], asks the user to identify which lottery they prefer. Would the user prefer a   

probability chance at their best scenario, or a   probability of receiving the second-

highest scenario? Both scenarios have a possibility of obtaining one of the least desirable 

outcomes. The Probability Equivalence scenario, denoted as [A, p, D] ~ [B, q, C], asks 

the user for the probability   which would make them indifferent between the lottery of 

experiencing event A with probability   and event D with probability     or the lottery 

of experiencing event C with probability   and event D with probability    . Finally, 

the Value Equivalence, represented as [A, p, D] ~ [B, q, C], requests the user to identify 

the event A which would cause them to be indifferent between the same two scenarios.  

As an example of each Standard-Gamble and Paired-Gamble situation, assume 

events A, B, C, and D are winning $100, $60, $20, and $0, respectively. Let the default   

probability be 0.8 and the default   probability be 0.6; these are the   and   values unless 

the Gamble method requires the decision-maker to identify a probability. The Standard-

Gamble Preference Comparison method asks the decision-maker to identify which lottery 

they prefer: (a) an 80% chance at winning $100 and a 20% chance at winning nothing, or 

(b) a guaranteed win of $60. The Probability Equivalence method asks a similar question, 

but requires the decision-maker to supply the probability of winning $100 which would 

make them indifferent between this lottery and a guaranteed win of $60. The Value 

Equivalence method returns to the default probability of 0.8 and asks the user to identify 

the outcome, with an 80% chance of winning, which would make them indifferent to a 

guaranteed win of $60. The Certain Equivalence method asks the decision-maker to 

decide what their guaranteed win value is which would make them indifferent between 

the default lottery of 80% chance of winning $100 and 20% chance of winning $0. This 

value is called the certain equivalent.  
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The Paired-Gamble methods are only slightly different from the Standard-Gamble 

comparisons in that the lotteries now feature a comparison between two scenarios. The 

Preference Comparison method now asks the users to indicate which lottery is more 

favorable: (a) an 80% chance at winning $100 and a 20% chance at winning $0, or (b) a 

60% chance at winning $60 and a 40% chance at winning $20. The purpose of these 

comparisons is to determine the risk attitude of the decision-maker. Clearly, lottery (a) 

has a higher risk with a higher reward, but does this accurately describe the risk attitude 

of the decision-maker? The Probability Equivalence method once again asks the 

decision-maker for the probability which makes them indifferent between the two 

lotteries: (a) a   probability of winning $100 and a       probability of winning $20, 

or, (b) a 60% chance at winning $60 and a 40% chance at winning $20.  Finally, the 

Value Equivalence method ask the decision-maker to indicate what outcome with an 80% 

chance of receiving would make them indifferent to a 60% chance at $60 and a 40% 

chance at $20.  

The methods explained through example and summarized in Figure 2.6 and 

Figure 2.7 are a way in which to determine the decision-maker’s preference system. The 

Preference Comparison Paired-Gamble method is used in the Decision Advisor software 

tool to establish the risk attitude of the user with regard to the individual attributes of 

cost, people, and time resources. The Probability Equivalence Standard-Gamble method 

is used to ascertain the manner in which the user is willing to trade worse outcomes of 

two individual attributes for a better outcome of the remaining attribute. The specific 

applications of these methods to the analysis of mitigation techniques are described in 

Chapter 5. 

This chapter has provided a mathematical background for understanding both of 

the software tools created during this research. The utility theory and decision analysis 
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material will be used in Chapter 5 with the Decision Advisor Tool. In the next two 

chapters, General Error Regression, as discussed in Section 2.2, is applied to the problem 

of small satellite risk management via the CubeSat Risk Analysis software tool. 
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Chapter 3: CubeSat Risk Analysis Software Tool 

The CubeSat Risk Analysis Software Tool and its Risk Estimating Relationship 

(RER) algorithm relies heavily on the mathematical foundation described in Chapter 2. 

The concept of using the same methodology as cost models was a result of the author’s 

Master’s Thesis work with cost and reusability of CubeSat missions.
1
 Cost Estimating 

Relationships (CERs), while not perfectly accurate, do provide a general idea of the costs 

associated with a mission. This allows easier comparison between missions for funding 

or other purposes. Similarly, developing RERs would allow users to compare missions in 

terms of risk levels. So, the basis of the RER development was the same as that of the 

CERs, General Error Regression, as described in Chapter 2.  

Although the General Error Regression technique is found in the development of 

many industry-used cost models,
2,3

 with cost models, the cost is a known quantity – both 

in concept and in value. For the risk likelihood and consequence values to be analyzed in 

this research, CubeSat mission data needed to be first defined, then gathered, and 

ultimately processed for use in creating the RER derivations and for display within the 

risk analysis software tool. This chapter will describe the processes of gathering and 

analyzing data to obtain the Likelihood and Consequence Estimating Relationships, LER 

and CqER, respectively, as well as the integration of the CubeSat Risk Analysis Software 

Tool.   

 

3.1 SURVEY CREATION AND DATA GATHERING 

Industry methods of managing and discussing mission risks typically reference 

Likelihood and Consequence scales similar to those given in Table 3.1 and Table 3.2, 

respectively.
4,5,6

 While a low-cost CubeSat Risk Management Plan has been established 
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in prior work, the primary recommendation of that work was to replace the subjective 

Likelihood and Consequence scales with more objective scales that are based on 

historical and statistical analysis.
7
 

 

Table 3.1 - DoD likelihood criteria for risk ranking 

Level Likelihood Probability of occurrence 

1 Not Likely ~10% 

2 Low Likelihood ~30% 

3 Likely ~50% 

4 Highly Likely ~70% 

5 Near Certainty ~90% 

Table 3.2 - DoD consequence criteria for risk ranking 

Level Technical Schedule Cost 

1 Minimal or no consequence to 

technical performance 

Minimal or no 

impact 

Minimal or no impact 

2 Minor reduction in technical 

performance or supportability, 

can be tolerated with little or no 

impact on program 

Able to meet key 

dates. 

Budget increase or 

unit production cost 

increases 

(1% of budget) 

3 Moderate reduction in technical 

performance or supportability 

with limited impact on program 

objectives 

Minor schedule 

slip. Able to meet 

key milestones 

with no schedule 

float. 

Budget increase or 

unit production cost 

increases 

(5% of budget) 

4 Significant degradation in 

technical performance or major 

shortfall in supportability; may 

jeopardize program success 

Program critical 

path affected. 

Budget increase or 

unit production 

increase 

(10% budget) 

5 Severe degradation in technical 

performance; cannot meet key 

technical/supportability 

threshold; will jeopardize 

program success 

Cannot meet key 

program 

milestones. 

Exceeds budget 

threshold 

(10 % of budget) 
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In order to achieve this historical and statistical analysis, it was necessary to 

collect data on current and past CubeSat missions. No collection of historical mission 

data for CubeSats previously existed that could be used for risk analysis, so an empirical 

data set was collected as part of this research. The collection of this data began in April 

2013 at the CubeSat Developers Workshop in San Luis Obispo, California.
8
  

When initially developing the CubeSat Mission Risk Survey, several 

considerations were made. It was important to have a survey which respondents could 

complete within 15-30 minutes and yet provide adequate information for analysis. 

Therefore, a proper balance was needed in terms of the number and depth of questions. 

The survey was also formatted so respondents could save their responses and continue 

later, in case of meetings, classes, or needing to find the appropriate information for 

accurate answers. It was desired that as many responses as possible be obtained, as such 

an easy-to-use and mobile-ready platform was preferred. There are many existing survey 

sites which offer these benefits, however, not all of these sites offer free access. Some 

sites offer student trial versions, but only one student version is equivalent to the full 

professional version. So, the CubeSat Mission Risk Survey was built on 

SoGoSurvey.com. This website allows save and continue options, mobile-ready surveys, 

and plenty of different types of question formats.  

The CubeSat Mission Risk Survey is an online form, shown in Figure 3.1, where 

mission developers can input information regarding their CubeSat missions. The 

questions are categorized into demographic information and risk events. After inputting 

basic demographic information, satellite designers submit the consequence values of any 

events they experienced during the design, integration and testing, and operations of their 

spacecraft. The spacecraft designers are requested to use the DoD consequence scale 

given in Table 3.2; in this way all responses are based on the same relative scale. It is 



 70 

acknowledged, however, that there is still a level of subjectivity in the response of the 

experts. Having multiple responses per mission is useful, as it can help remove survey 

bias and achieve a more accurate set of response values. The information types recorded 

in the survey are outlined in Table 3.3. This data is processed through the analysis and 

risk estimating relationship algorithms described in the following sections. 

 

 

Figure 3.1 - CubeSat Mission Risk Survey 
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Table 3.3 - Survey information 

Demographic information 

 (Factor of Interest) 

Risk root cause information 

 Mission name 

 Mission form factor 

 Mass limit 

 Mission success designator 

 Respondent years experience 

 Respondent role on team 

 Funding level of mission 

 Launch situation 

 Launch date 

 Life-cycle months 

 Institution responsible 

 Team demographic breakdown 

 Schedule risk events 

 Payload risk events 

 Spacecraft communication risk 

events 

 Spacecraft health data risk events 

 Spacecraft standards risk events 

 Personnel and management risk 

events 

 Cost risk events 

 

Several levels of user testing were completed on the survey before asking the 

broader CubeSat user community to supply their responses. The first round of testing was 

completed on UT-Austin TSL members to determine if the survey was easy to use and 

understand as well as work out any initial issues. Then, trusted academic collaborators 

were asked for their input as well. As part of the testing process, it was determined that a 

companion guide should be created to help users navigate the survey. This companion 

guide can be downloaded directly from the survey site, or from the author’s research 

website. The guide provides more information regarding why the question is being asked, 

and what type of answer is requested of the respondent. 

 

3.2 SURVEY DATA ANALYSIS  

The CubeSat Mission Risk Survey results were collected from April through 

November 2013. Several attempts were made to solicit responses at conferences and in 

publications. The total number of responses was 66, with 11 missions having more than 
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one response, one mission did not conform to the CubeSat standard and was thus 

removed from consideration, and two responses did not provide enough information to 

warrant including the data in regression analysis. With these considerations, 52 unique 

missions were represented in the survey. 

During initial analysis, three missions were consistent outliers when compared 

with the other data by plotting a series of root cause values against the factors of interest 

to determine possible regression equations. It was assumed that the missions were 

outliers based on the large form factor of one mission, and the extremely small values 

submitted for the life-cycle time periods of the other two missions. A trade study was 

completed to determine whether removing each mission would decrease the SSD values 

significantly. Results showed that removing the three missions simultaneously decreased 

61 of the 68 root cause SSD values, yielding an average reduction of the model squared 

deviations by 8.43%. Thus, these three missions were removed from consideration, 

though their demographic information is included in the following high-level analysis.  

The majority of missions represented were 3U CubeSats (29 missions) with the 

next most common form factor being 1U missions (16). Note that the one mission which 

did not follow the CubeSat standard was removed from high-level analysis. The survey 

asked whether the mission had launched, giving the options listed in Table 3.4. The most 

frequent response showed that the mission not yet launched but had been manifested at 

the time of survey response. Respondents were able to select multiple roles and 

subsystems in which they participated on the mission. These roles are shown graphically 

in Figure 3.2 and Figure 3.3. Additionally, respondents were asked to indicate how many 

years experience they have working on spacecraft. The majority of respondents (38) said 

they had between one and five years experience. The other categories, 0-1, 5-10, 10-15, 

15-20, and >20, each had between 3-7 responses per category. For type of funding, 
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respondents were also allowed to indicate more than one option and these results, along 

with the total amount of funding, are shown in Table 3.5. Figure 3.4 shows the 

breakdown of team demographic information. The x-axis represents the percentage of the 

team in a certain category while the y-axis represents the number of responses in that 

category. For example, the first bin shows 31 survey responses indicated their team was 

comprised of 0-25% professionals while 14 responses indicated 0-25% undergraduate 

and 26 responses show 0-25% graduate student involvement. Figure 3.5 illustrates the 

broad spectrum of managing organizations – from only universities to conglomerate 

relationships between universities, corporations, and government. 

Table 3.4 - Responses to launch questions 

No 10 

No, but a launch has been promised (ELaNa or similar) 13 

No, but satellite has been manifested for launch 28 

Yes 14 

Total 65 

Table 3.5 - Type and amount of funding 

Type of Funding Count Amount of Funding Count 

Internal funding 44 (0,50K] 7 

Non-Competitive award 18 (50K,100K] 3 

Competitive award 53 (100K,300K] 9 

Grant & Sponsorship 6 (300K,500K] 5 

  (500K, 1M] 6 

  (1M, 5M] 9 

  >5M 1 

  Blank & N/A 25 
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Figure 3.2 - Response to role on team 

 

Figure 3.3 - Response to subsystem involvement 
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Figure 3.4 - Team demographic percentages 

 

Figure 3.5 - Organization responsible 
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3.3 DATA PROCESSING ALGORITHMS 

The data gathered from the CubeSat Mission Risk Survey went through a series of 

processing algorithms prior to being inputted into the software tool. The raw data first 

went through pre-processing to ensure the file was in proper format for data analysis. 

Additionally, the processing computer code transformed the launch and role responses 

from text to numerical values, combined the life-cycle estimates, generated the likelihood 

values, converted the risk text entries to numerical values, and combined the multiple 

responses to a single record per mission.  Each of these steps is more fully described in 

the following sections. 

3.3.1 Pre-Processing Algorithms 

The raw data obtained from the risk survey often had data that was not properly 

formatted – such as mass, form factor, life-cycle months, or launch date. Thus, a major 

concern was formatting all these data in the format the processing code expected, which 

primarily consisted of removing units. Additionally, with multiple responses per mission, 

it was imperative to label the same missions with the same mission number. With the 

ability to select multiple roles on the team, including “other”, it was necessary to record 

what the respondent’s “other” role was with regards to the primary options. In some 

cases, if the entry did not provide the key factors of interest or was not in the CubeSat 

form factor, then it was removed from consideration prior to running the processing 

algorithms.  

3.3.2 Launch and Role Processing Algorithms 

To indicate whether or not the CubeSat mission had launched, respondents were 

given text options. These text responses were then transformed into numerical values. As 

a baseline, if the response indicated “No” it was given a value of 4; “No, but we have 
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been promised a launch” was given a value of 3; “No, but we’ve been manifested” was 

given a value of 2; “Yes” was given a value of 1. These values were chosen because the 

RER function forms use the Launch variable as a multiplier. If the launch response was 

“yes”, it should have a lower risk because most of the risk had been reduced by the time 

of launch.  

A trade study was completed to see how the data would be impacted by changing 

the numerical mapping scheme. The baseline and three sets of trial launch variable values 

are presented in Table 3.6. Each test case was used as the launch variable values during 

the regression analysis. The trial which produced the lowest SSD values, and thusly 

optimized the regression routine, was selected as the most appropriate launch response to 

numeric value mapping scheme. It is acknowledged that there are an infinite number of 

possible mapping schemes, but the values of Table 3.6 provided an initial assessment. 

The results, in fact, showed that the baseline was a good assumption. It is left as future 

work to expand upon the trials to find a better set of launch choice values. A more 

detailed account of the trade study analysis is given in Chapter 4, Section 4.2. 

 

Table 3.6 - Launch choice trade study values 

Response Baseline value Trial 1 value Trial 2 value Trial 3 value 

No 4 1 2 1 

No, promised launch 3 2 1.75 1.5 

No, manifested 2 3 1.5 1.75 

Yes 1 4 1 2 
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The risk survey also asked each respondent to indicate their role on the team.  The 

role information was used to combine multiple responses for the same mission, if 

necessary, as well as for the high-level demographic analysis which was presented in the 

previous section. A processing algorithm searched through the raw data and counted how 

many roles each respondent indicated in their response. For each role selected, they 

gained a certain weighted value as shown in Table 3.7. Some respondents indicated 

multiple roles, and therefore increased their weight. This is appropriate because the role 

value is only used during the combination of experts. Thus, the response of someone who 

had multiple roles in their mission will weigh more than someone who had a single role. 

It is acknowledged that this method represents one of many possible ways of combining 

responses. Future iterations of this analysis could investigate alternative methods.  

The weights were initially designed with the most knowledgeable person 

receiving a “1” and the next most knowledgeable people receiving a certain percentage of 

the top value.  The use of percentages was chosen for easy conceptualization. Since the 

values are based on percentages, a trade study could easily determine whether scaling the 

values has any impact on the utility curve (to be described later) and the fit to the data. 

However, this is left as a future study.  

The role values used in this analysis are based on experience with regard to the 

amount of knowledge such a team member would be able to provide during the entire 

mission. A trade study was completed to analyze alternative percentage-based role value 

schemes with the maximum still being “100%”. In an identical method to the launch 

choice value trade study, this trade study changed the role values according to the trial 

cases listed in Table 3.7, re-ran the General Error Regression method to obtain new risk 

estimating relationships, and compared the SSD values between the baseline and trial role 

value schemes. The study found that the Trial 3 values in Table 3.7 provided lower SSD 



 79 

values than alternative schemes, and therefore better represented the survey data. A more 

detailed account of the trade study analysis is given in Chapter 4, Section 4.2. The role 

values of Table 3.7 make some intuitive sense, as the program or project manager is most 

familiar with the technical, cost, and programmatic issues of the spacecraft. The systems 

and chief engineers are most familiar with the technical issues, and thus receive a smaller 

role value. The Principal Investigator is included in all technical, cost, and programmatic 

discussions, but may not be as familiar with the details as the program manager. The 

subsystem lead and subsystem members are typically familiar with only their subsystem, 

and therefore receive a smaller role value than the systems or chief engineer. 

 

Table 3.7 - Respondent role to value trade study options 

Role Baseline 

Value (%) 

Trial 1 

(%) 

Trial 2 

(%) 

Trial 3 

(%) 

Principal Investigator 50 100 15 50 

Program/Project  

Manager 

100 50 100 100 

Systems Engineer 75 75 50 75 

Chief Engineer 75 75 50 75 

Subsystem Lead 25 25 25 25 

Subsystem Member 5 per 

subsystem 

5 per 

subsystem 

5 per 

subsystem 

5 per 

subsystem 

 

3.3.3 Combining life-cycle estimates  

The CubeSat Mission Risk Survey asked for time durations (months) of six key 

phases of the mission life-cycle: development, integration, spacecraft functional testing, 

spacecraft environmental testing, waiting for a launch, and operations. The survey asked 

respondents to indicate with their estimates of time spent in each mission life-cycle phase 

whether the response was an actual or predicted value. For analysis purposes, however, it 
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was necessary to resolve the differences between actual and estimated event durations 

and transform these estimates to a common scale. 

Because missions tend to overrun estimated life-cycle durations, it is assumed that 

if the response specifies a predicted value, the actual duration value will be larger than 

indicated. Furthermore, as the mission predicts time durations further away from the 

current phase of the mission the estimate is expected to compound exponentially over 

time. For this reason, the time durations specified in the survey responses were modeled 

by Equation (3.1). In this equation,   is an index representing the current life-cycle phase 

of analysis and          represents the last time index with an actual value. If the life-

cycle phase index under consideration is the same as the last actual time value, then the 

common time is identical to the predicted time as one would expect.  

 

                                   (3.1) 

The root factor value of 1.25 was found to be the most appropriate value to 

mathematically describe the mission life-cycle time estimate growth as the estimated time 

moves away from the last actual reported value. Through a similar trade study to that of 

the launch and role value studies mentioned in the previous sections, the factor value of 

1.25 was compared against the four alternatives given in Table 3.8. The trial values were 

used in the regression analysis, and the resulting SSD values compared to the baseline 

case. Compared to the other values, a factor value of 1.25 was found to be the best 

assumption, because the other values did not provide a significant improvement. As with 

the other trade studies, the values tested here are but a small subset of possible schemes. 

A more detailed account of the trade study analysis is given in Chapter 4, Section 4.2. 
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Table 3.8 - Life-cycle factor trade study options. 

 Baseline Trial 1 Trial 2 Trial 3 Trial 4 

Value 1.25 1 1.5 1.75 2 

 

3.3.4 Likelihood Value and Text N/A Generation 

The CubeSat Mission Risk Survey only asked for the consequence values 

associated with each mission risk and their associated root causes. As previously 

discussed, the mission risk is the event that could happen which may jeopardize the 

mission, and the root causes are the methods by which this event could happen.
7
 It was 

assumed that if a consequence value was submitted for a root cause, then the event 

happened, and thus was given a likelihood value of 5 based on the DoD scale of Table 

3.1. However, if the response for the root cause was “Does not apply”, “Did not 

experience”, “Did not include in spacecraft design”, or “Included in spacecraft design, 

but event did not occur”, then the likelihood was given a value of 1. If the textual 

response indicated “Have not reached this phase yet”, then the likelihood was assigned 

the value of 3, since it was still likely the mission might encounter the given event. These 

textual responses were nicknamed the “special values” and were used to give the root 

cause consequence values a numerical representation. The mapping of these “special 

values” is the last step prior to the combination of experts algorithm. After combining 

experts, the data is fully processed and may be analyzed in regression analysis and input 

into the risk management tool.  
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3.3.5 Combining Experts 

Having more than one response for each mission allowed for validation and 

calibration of the values submitted. With multiple responses per mission, however, it 

became necessary to normalize and process the associated responses, so as not to double 

count missions in the RER formulation. The field of Decision Analysis has developed 

methods of combining expert opinions and information through the use of Bayes’ 

Theorem, and combining prior probability distributions.
9,10,11

 This method is not valid for 

the values obtained through the risk survey. It is not appropriate to overlay probability 

distributions on probability assessments as given in the risk survey responses, and as 

such, Bayesian inference methods do not apply in this situation. Instead, another concept 

from Decision Analysis was used – the utility curve.
12

  

An initial, common-sense approach for combining multiple expert opinions is to 

use a weighted average of responses. The question then becomes how to obtain the 

weights for each response while maintaining a measure of objectivity. Because of its 

mathematical form, the utility curve (u-curve) was chosen as the method of obtaining the 

weights for the weighted average combination of expert responses. The u-curve allows an 

input of multiple parameters, such as a respondent’s role and years of experience, and 

yields a singular output of the overall response value. Because of the multiple inputs, it 

was necessary to previously define the role value scheme prior to the u-curve function 

definition. The only subjectivity introduced in this development is the choice of utility 

function and parameters. The appropriate response parameters are then processed through 

the u-curve formula to obtain a utility value (u-value) for each response. A higher u-value 

indicates more importance associated with the expert response, and will thus yield a 

higher weight in the combined calculation. These u-values are normalized to yield 

weights associated with each response; the input parameter values were not previously 
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weighted. A combined root cause response for the mission designator is then given by the 

weighted average of the root cause response values. Because the mass, form factor, 

launch, and launch date should not differ between expert responses of the same mission, 

the values are not combined, but rather stored from the response associated with the 

higher u-value. This choice has no special significance other than the higher u-value 

indicates the more expert opinion. Finally, missions with multiple responses are removed 

and replaced by their combined response. This process of combining expert responses is 

illustrated in Figure 3.6. 

 

 

Figure 3.6 - Combining experts initial algorithm 

The u-curve function is based on the demographic information available in the 

CubeSat Mission Risk Survey. Namely, this includes the number of years of experience 

and the role of the respondent on the team. The selected u-curve function, tested through 

trade studies and determined to provide the best-fitting curve, is given in Equation (3.2) 
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and the function is plotted pre-normalization in Figure 3.7 for a range of experience years 

and role values. Note that the role values input into the utility curve are in decimal form 

and not the percentage format of Table 3.7. A total of six different u-curves were 

compared in the trade study by the SSD of the derived risk estimating relationships. The 

six equations are listed in Table 3.9. With 68 total SSD values, the values which were 

decreased by changing the u-curve function indicated that the new u-curve function fit 

the data better than the baseline function. Future iterations of this trade study could 

include different utility curve functions in the analysis.  A more detailed account of the 

trade study analysis is given in Chapter 4, Section 4.2. 

 

 

 

Figure 3.7 - Plot of un-normalized u-curve function 

 

 

 
                   

 
       

 
  

(3.2) 
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Table 3.9 - Combining experts trade study options. 

Trial Equation 

Baseline                             

Trial 1                       

Trial 2                              

Trial 3                        

Trial 4                
 
       

 
   

Trial 5                       

 

It is assumed that the more years of experience and more involved role the 

respondent has, the more valuable their information is in the combination of experts 

algorithm. Additionally, it is assumed that with slightly more experience both in years 

and role on the mission team, vastly more knowledge is obtained. In the university 

satellite lab, this characteristic is referred to as the “steep learning curve.” For these two 

reasons, the u-curve function Equation (3.2) takes the shape and form that it does. Recall 

that the u-values are normalized between the responses of the same mission. While the 

number of years of experience is self-explanatory, the respondent’s role on the team is 

described in Section 3.3.2 and detailed in Table 3.7.   

 

3.4 GENERAL ERROR REGRESSION APPLICATION  

Related research, using the general risk management plan described in Chapter 1, 

identified seven separate mission risks, each with between four and seven root causes.
7
 

With both consequence and likelihood to calculate, there are 68 total root causes. Twelve 

function forms, listed in Table 3.10, were studied for each root cause – one for the 
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Likelihood Estimating Relationship (LER) and one for the Consequence Estimating 

Relationship (CqER). In these equations, the letter variables correspond to the 

coefficients of the function while the factors of interest are the form factor (ff), whether 

or not the mission has launched (launch), and the time spent in development (dev), 

integration (int), spacecraft functional testing (scfunc), environmental testing (environ), 

waiting for launch (wait), and operations (ops).  

The SSD and    values, described in Chapter 2, were calculated for each 

function. An Excel Macro implemented the Excel Solver function to minimize the SSD 

while holding the bias equal to zero for each of the function forms of the given root 

cause. Figure 3.8 shows the Excel spreadsheet for one of the root causes of a particular 

mission risk. The spreadsheet ranks the SSD values from lowest to highest, and the 

generalized    value from highest to lowest, since it is desired to have a low SSD and a 

high   . To eliminate function forms with low SSD values, but also low    values, a 

combined rank score was established. This combined rank score determines the function 

form that is most representative of the data, and will thus be used as the risk estimating 

relationship for the given root cause. In the special case that the    value was determined 

to be unrealistically low, the next best function was selected, based on combined rank. If 

there was a tie between functions, the function with the lowest SSD value was selected. 

The number of times a function was chosen as the likelihood or consequence relationship 

is shown in Figure 3.9, with the function number corresponding to the entries listed in 

Table 3.10. 
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Table 3.10 - Risk Estimating Relationship Function Forms 

(1) L1 = a + b*ff 

(2) L2 = a + b*ff + cc*dev + d*int + e*scfunc + f*environ + g*wait + h*ops  

(3) L3 = a + b*ff + cc*launch 

(4) L4 = a + b*launch 

(5) L5 = a + b*dev + cc*int + d*scfunc + e*environ + f*wait + g*ops 

(6) E1 = a + b*cc^ff  

(7) E2 = a + b*cc^launch  

(8) E3 = a + b*cc^(dev+int+scfunc+environ+wait+ops) 

(9) T1 = a + b*ff^cc  

(10) T2 = a + b*dev^cc + d*int^e + f*scfunc^g + h*environ^I + j*wait^k + l*ops^m  

(11) T3 = a + b*launch^cc  

(12) T4 = a + b*ff^cc + d*launch^e  

 

 

 

Figure 3.8 - General Error Regression implementation 

 

Excel macro calculates 
combined rank and outputs 

best function 

Minimize SSD while 

keeping Bias = 0

General R^2 value allows 
comparison between any model 

(not just linear)
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Figure 3.9 - RER function selections 

Interestingly, the most chosen function by the algorithm, function 10, used only 

life-cycle development times as the input factors. This indicates that the risk likelihood 

and consequence values mostly relied upon the development cycle, and not necessarily 

on the form factor or whether or not the mission has launched. A quick look at the data 

results of Section 3.2 shows that most missions included in this analysis had not yet 

launched at the time of the survey, so the fact that the launch indicator does not play a 

significant role in the risk estimating relationships makes intuitive sense. However, it is 

interesting to note that function 10 did not universally represent all root cause 

consequence and likelihood values. In some cases, launch and form factor were important 

input factors, as is the case with functions 2 and 12. Other than the four root causes 

associated with the spacecraft standards risk which were found to use function 12 as the 

best fit, there was no clear pattern between which root causes were best described by 

including the form factor and launch indicator factors of interest. 
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3.5 SOFTWARE TOOL INTEGRATION  

Experiences in the Texas Spacecraft Lab, and conversations with other university 

and low-cost CubeSat missions, showed that the creation of a risk management tool 

would be valuable to the CubeSat designer community. This tool needed to be easily 

accessible to provide benefit to those who wish to use it. As such, using common 

software like Excel to create the tool is ideal. Also making the tool easy to understand 

and use is a necessity. Based on previous research completed studying various types of 

cost models and their application to CubeSat missions, it was determined that a tool 

similar in design to existing cost models is optimal for the purposes of low-cost risk 

management.
1
 The tool created in this analysis includes mission inputs, outputs, and plots 

pages, where the traditional 5x5 Likelihood-Consequence chart is displayed, as well as 

two pages listing the equations and coefficients chosen for each consequence and 

likelihood root cause. The only actions a user must perform to use the tool are to enter 

their mission input values on the inputs page and select their calculation and plotting 

methods. The output and function pages are calculated automatically. A User’s Guide 

exists to help users navigate and understand the intricacies of the software tool. This 

User’s Guide, along with a request to obtain the tool can be found on the author’s risk 

research website.*  

 

3.5.1 Inputs page 

Existing cost model tools typically have an area for the user to input various 

parameters.
2,3

 This inputs page is considered a necessity for the development of the risk 

management tool in an effort to make the tool as user-friendly as possible. For the 

                                                 
* https://sites.google.com/site/brumbaughresearch/  
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CubeSat Risk Analysis tool, the mission designer has to input their satellite form factor 

and mass, select a launch option from four choices, input their launch date, and input the 

months in development, integration, functional testing, environmental testing, awaiting 

launch, and operations. The internal calculations of the tool will then output the root 

cause likelihood and consequence values on the outputs page. This inputs page is shown 

in Figure 3.10. The user also has the ability to track the spacecraft risks at multiple 

milestones by indicating on the Options bar to which milestone the current inputs 

correspond. Then, the user may submit another set of inputs for a different milestone. 

Currently, up to three milestones may be tracked at a given time.  

Note that other details such as the mission success, objectives, and budget are not 

included. For the purposes of initial regression analysis, the factors of interest were 

limited to those which were provided by all responses in the same format and included 

little subjectivity. To include a mission success indicator, difficulty scale to rank the 

objectives, or budget indicator would be to introduce another level of subjectivity since 

the survey responses were in an inconsistent text format for these questions. Additionally, 

providing a mission success evaluation is inherently subjective and biased based on the 

respondent’s role on the project. Moreover, many fewer responses provided the necessary 

information to analyze these details than compared to the objective indications of form 

factor, life-cycle development, and launch indication. It is left as a future implementation 

to incorporate more factors into the regression analysis based on the needs of the 

community.    
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Figure 3.10 - Risk Tool Inputs page 

3.5.2 Outputs page 

 Once the option to calculate the L-C values is selected, a Visual Basics for 

Applications (VBA) program takes the user-provided inputs and calculates the 

consequence and likelihood values for each root cause based on the formulas established 

from the regression analysis mentioned in the previous section to yield the outputs page 

similar to those shown in Figure 3.11. If the user has selected to track multiple 

milestones, additional columns are used to represent the spacecraft risk status at these 

additional milestones. Currently, the tool can only track three milestones at a time. If a 

user wishes to track more than three, they will need to use multiple versions of the tool, 

or run the tool multiple times. A future version of the tool may allow for tracking more 

than three milestones at a time. There are separate details pages which provide the 

selected formulas and associated coefficients for user reference. Note that because the 

data for each root cause is different, the coefficients are different for every function. Once 

the root cause likelihood-consequence (L-C) values have been calculated, the mission 

risk L-C is established through a weighted average of the root cause values using the rank 

Parameter Input

Actual or 

Predicted? Description

Form factor 3

Enter a numeric value corresponding to the number of U's your spacecraft 

design uses (e.g. 3U would be entered as "3")

Mass 4 Enter a numeric value of the mass limit (in kg)

Launched?

No, but we have a launch promised 

(ELaNa or similar)

Select an answer using the drop-down menu: Yes, the s/c has launched; No, 

but we've been manifested;  No, but we have a launch promised (ELaNa or 

similar);   No, we have not been manifested or given a promise of a launch

Launch Date 2014

Give the date of the launch; If the s/c has yet to be launched, give the 

projected date. (Can be in MM/DD/YYYY or MM/YYYY or YYYY format)

Months in Development 7 Actual

Enter a numeric value corresponding to the number of months in s/c design 

and development, including everything up until flight integration; Indicate 

whether this value is actual or predicted

Months in Integration 4 Actual

Enter a numeric value corresponding to the number of months taken for s/c 

integration; Indicate whether this value is actual or predicted

Months in S/C Functional Testing 7 Predicted

Enter a numeric value corresponding to the number of months spent on 

integrated s/c testing at the organization level, including functional testing; 

Indicate whether this value is actual or predicted

Months in S/C Environmental Testing 5 Predicted

Enter a numeric value corresponding to the number of months spent on 

necessary testing to satisfy launch provider requirements (usually includes 

thermal vac, vib tables, and mass properties testing); Indicate whether this 

value is actual or predicted

Months S/C is awaiting launch 3 Predicted

Enter a numeric value corresponding to the number of months the 

spacecraft was "on the shelf" waiting for launch after all testing had been 

completed; Indicate whether this value is actual or predicted

Months S/C is in operations 6 Predicted

Enter a numeric value corresponding to the number of months the 

spacecraft was operational in orbit; Indicate whether this value is actual or 

predicted

Milestone LVINT Enter the name of the milestone for which these numbers reflect the status

Options:

Calculate L-C values for Milestone 1

Calculate L-C values for Milestone 2

Calculate L-C values for Milestone 3

Clear Error Messages and Warnings

Clear Milestone 1 Values

Clear Milestone 2 Values

Clear Milestone 3 Values

Life cycle values may not 
be based on experience, 
but could be predicted

Current factors of interest 
in regression analysis

Macro buttons will 
calculate the L-C values for 

multiple milestones
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reciprocal method to determine the weights.
7
 It is acknowledged that the rank reciprocal 

method is one of many weighting methods available, and future iterations of the tool may 

include options for the user to select a different weighting method or input their own 

algorithm. 

 

 

Figure 3.11 - Risk Tool Outputs page 

3.5.3 Plots page 

 The plots page, shown in Figure 3.12, provides a quick and easy way to view the 

mission risks on a traditional L-C chart. The mission risk consequence is plotted on the x-

axis while the likelihood is plotted on the y-axis. Familiarity and ease of use were the 

primary motivators for the development of this plots page. The mission risk L-C values 

are copied from the outputs page and displayed next to the 5x5 chart for quick reference. 

If the user chooses to track multiple milestones, these additional mission risk values are 

located along the bottom of the 5x5 chart. The color of the milestone value background 

corresponds with the text boxes on the 5x5 chart. Additionally, interactive macro-enabled 

buttons allow the user to plot combinations of milestones, combinations of risks, or the 

Mission Risk Root Cause

Consequence 

value

Likelihood 

value

Consequence 

value

Likelihood 

value

Consequence 

value

Likelihood 

value
Schedule 2.435950567 3.902217953

1. Inability to find desired spacecraft 

components 1.793762493 3.497981526

2. Mechanical design delays (such as 

issues with the CAD or drawings) 1.867057819 3.891167303

3. Software design delays (such as basic 

component functionality or embedded 

coding issues) 3.258759749 4.460266281

4. Delay due to issuse with payload 

provider (may be related to delivery of 

EDU or flight unit, documentation, or 

interface issues) 1.037530574 3.342646902

5. Delay due to inadequate 

documentation 2.257486097 2.678764683

Payload 2.383127902 3.4017201

1. Software interface issues between 

payload and spacecraft bus 2.67419539 3.385299564

2. Hardware/electrical interface issues 

between payload and spacecraft bus 2.144890433 3.31600523

3. Payload malfunction due to mechanical 

issues 2.14784212 3.74968676

Milestone 1 Milestone 2 Milestone 3

Mission risk L-C values 
calculated via rank reciprocal 

weighting scheme

Root causes calculated via 
VBA-programmed functions

Currently able to track up to 
3 milestones at one time
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ability to mix and match milestones and risks. Furthermore, the diagram is easily copied 

to presentations for mission status updates. 

 

Figure 3.12 - Risk Tool Plots page 

This chapter has described the development of the CubeSat Risk Analysis 

software tool, including gathering the data through the use of a survey, processing of the 

survey data into the necessary format for regression, the application of General Error 

Regression to the small satellite data, and the design of the software tool itself. As with 

any software package prior to its release, the tool must be thoroughly tested and 

validated, which is the subject of the next chapter.  
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Chapter 4: Validation of CubeSat Risk Analysis Software Tool  

In an effort to determine that the derived risk estimating relationships successfully 

predict CubeSat mission risk, the Risk Analysis Tool was subjected to a number of 

different testing and validation methods, including outlier analysis, trade studies, and 

model validation techniques. According to Snee, there are four types of regression model 

validation: comparison of model predictions and coefficients with theory, collection of 

new data to check model predictions, comparison of results with theoretical models and 

simulated data, and cross-validation.
1
 Because no theory exists for risk estimating 

relationships, it is difficult to complete the first method of validation suggested by Snee 

other than moving outside the data ranges to test the extrapolation capability of the RERs. 

The CubeSat Mission Risk Survey described earlier serves as the first-ever collection of 

data needed for deriving these risk estimating relationships. Thus, no other data readily 

exists for checking model predictions in the near term. Similar to the first method, no 

theoretical models or accurate simulated data exist by which to compare the derived 

relationships. Therefore, the software tool and its risk estimating relationships are first 

validated by a version of cross-validation followed by testing the extrapolation capability 

by moving outside the data ranges used to derive the RERs. Stone
2
 and Shao

3
 both 

describe methods of cross-validation as using a portion of data on which to base the 

regression coefficients while reserving the rest of the data for testing the model 

predictions. After conversations with the developers of the USCM and SSCM models, the 

best approach was selected as the “Leave-One-Out”, or “simple” cross-validation 

methodology. 
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4.1 OUTLIERS 

 Methods of determining outlier data points include residual analysis, box-and-

whisker plots, interquartile range calculations, and various other statistical methods. 

However, many of these methods require the use of certain types of regression models 

which inherently make a set of assumptions which are not valid for this research.
4
   

Because the methods employed in the development of the Risk Analysis tool involved the 

General Error Regression (GER) technique, the method of determining which data points 

were outliers relied on comparing the regression Sum of Squared Deviations (SSD) with 

and without the potential outlier data point. Recall from Chapter 2 that the SSD is a 

measure of fit between the regression equation and the data. That is, the lower the SSD, 

the less deviation between the data points and the regression function. So, if removing a 

data point significantly improves the SSD, then it is concluded the data point is an outlier 

and should be removed before running the final regression analysis. Significant 

improvement was judged to be better than a 50% reduction in the SSD value, based on 

the number of root causes which had a lower SSD value than the baseline analysis. Recall 

that the regression is completed by root cause within each mission risk.  

 The candidates for this outlier analysis were hand-picked based on knowledge of 

the data set and initial analysis showing trends between the demographic inputs and risk-

oriented output values. Because of privacy agreements, none of the three mission names 

will be provided, but the overview of why the missions were considered outliers will be 

described. While most form factors were quite small, mission #11 had a large form 

factor, and was thus immediately an outlier concern. Mission #20 had an unusually low 

value submitted as the time waiting for launch, and mission #50 had a very small time 

submitted for operations. All of these missions were then flagged as outliers. Notice that 

these three missions were the only missions selected as outliers, because of unique 
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answers to the CubeSat Mission Risk Survey questions. It was the goal of this research to 

use all the data possible in order to best represent the gamut of CubeSat missions. The 

same data were used for the regression analysis of all mission risk – root cause 

combinations.   

 To determine whether or not each mission was an outlier, the regression analysis 

was run on the data without the mission data point. The new SSD values were then 

compared to the original baseline SSD values. Table 4.1 shows an example comparison 

when removing mission #50, the mission with an unusually small operations time. The 

far right column indicates how many of the root cause SSD values for each of the mission 

risk likelihood (lrc) or consequence (c) analyses were smaller than the baseline value. 

The impact of removing the mission data is seen by the total number of root cause SSD 

values which improved as a direct result of excluding this mission from the regression 

analysis. In other words, root causes which exhibit a decrease in SSD values from the 

baseline to the trial case are characterized by negative differences in Table 4.1, and these 

negative differences represent a better fit to the data, since SSD is a measure of how well 

the equation represents the data. For the case of removing mission #50, Table 4.1 

shows that 85.29% of root causes improved when this mission was excluded from 

regression analysis. Therefore, it was concluded that mission #50 was an outlier.  
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Table 4.1 - Example outlier comparison of SSD values. 

% Difference between all data and removing 50 # < 0 

 

RC1 RC2 RC3 RC4 RC5 RC6 RC7 

 sch_c_SSD -17.10 -0.86 -1.88 -2.41 -0.54 

  

5 

sch_lrc_SSD 0.18 -0.35 0.05 -3.89 -0.80 

  

3 

pay_c_SSD 0.16 -1.59 -6.83 -1.02 

   

3 

pay_lrc_SSD -0.74 0.02 -3.44 -5.90 

   

3 

cost_c_SSD -0.60 -6.70 -17.72 -1.48 

   

4 

cost_lrc_SSD 0.17 -3.04 -2.10 -2.08 

   

3 

per_c_SSD 13.01 -1.05 -3.10 -2.87 -1.48 

  

4 

per_lrc_SSD -3.64 -23.88 -4.57 -0.14 -4.82 

  

5 

sc1_c_SSD -0.13 -9.99 -13.19 -0.12 -0.73 

  

5 

sc1_lrc_SSD -1.37 -13.95 -7.51 -2.33 -7.17 

  

5 

sc2_c_SSD -1.30 -2.05 -2.32 0.05 -0.44 -0.89 -2.98 6 

sc2_lrc_SSD -2.49 -12.47 -13.63 -10.94 -3.09 -2.29 -15.17 7 

sc3_c_SSD -1.97 -3.54 0.17 0.13 

   

2 

sc3_lrc_SSD -12.86 -4.80 3.68 -1.10 

   

3 

       
TOTAL 58 

       
TOTAL % 85.29% 

 

Similar analyses as the one summarized in Table 4.1 were completed for mission 

#11 and mission #20 and the overall results are summarized in Table 4.2. For each 

potential outlier mission, the SSD value was sufficiently decreased indicating that all 

three missions were outliers. In order to increase the predictive accuracy, all three 

missions were excluded from the regression analysis, but still included in high-level 

survey results analysis.  
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Table 4.2 - All potential outlier mission SSD comparisons. 

 Mission RCs improved 

 #11  #50  #20  

sch_c_SSD  4 5 2 

sch_lrc_SSD  1 3 3 

pay_c_SSD 1 3 4 

pay_lrc_SSD 4 3 1 

cost_c_SSD 1 4 1 

cost_lrc_SSD 1 3 3 

per_c_SSD 3 4 3 

per_lrc_SSD 2 5 4 

sc1_c_SSD 3 5 5 

sc1_lrc_SSD 3 5 5 

sc2_c_SSD 3 6 7 

sc2_lrc_SSD 5 7 7 

sc3_c_SSD 2 2 1 

sc3_lrc_SSD 1 3 3 

TOTAL  34 58 49 

TOTAL %  50%  85.29% 72.06% 

 

4.2 TRADE STUDIES  

 Many assumptions were made during the development of the Risk Analysis Tool 

in order to process the data via the combining experts, life-cycle, and launch choice 

algorithms described in Chapter 3. Of particular interest in these trade studies were the 

coefficients and function form of the utility curve used to combine experts, the role 

values assigned to the experts, the life-cycle factor used in translating actual and 

predicted life-cycle value to the same scale, and a launch choice to numeric value 

mapping scheme. A series of alternative values were run through the regression analysis 

in an effort to determine whether the original baseline assumptions were the most 

appropriate choices. As with the outlier analysis, the SSD value was used to compare the 

alternative value output to the original baseline values. 
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4.2.1 Role Value Trade Study 

The previous chapter describes how a user’s indicated role on the team was 

translated into a numerical value. However, Chapter 3 supplied the final numerical 

mapping scheme arrived at through a trade study of three different alternatives, shown in 

Table 4.3. Notice that Trial 1 involves switching the PI and PM values; Trial 2 and Trial 

3 use a different valuation on the core leaders. 

 

Table 4.3 - Role value trade study trials. (* denotes for each subsystem) 

 
Weight 

Role  Baseline Trial 1 Trial 2 Trial 3 

Principal Investigator  1  0.5 0.155 0.5  

Program Manager  0.5  0.1 1  1  

Systems Engineer  0.35  0.35 0.5  0.75  

Chief Engineer  0.35  0.35 0.5  0.75  

Subsystem Lead  0.15  0.15 0.25  0.25  

Team member  0.05* 0.05* 0.05*  0.05* 

 

Each alternative set of role values were input, the regression analysis re-run, and 

the SSD values captured for each risk likelihood and consequence. The new SSD values 

were then compared against the baseline; the number of root causes having smaller SSD 

values than the baseline were counted. Additionally, an average percent difference for 

each risk likelihood or consequence was calculated, the number of these averages less 

than zero was reported (“TOT Avg < 0”), and an average of all these averages was also 

calculated (“Avg of Avg”).  
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Table 4.4 - Role value trade study results. 

Model Number of RCs < 0 % RCs < 0 TOT Avg < 0 Avg of Avg 

rTrial_1 43 63.235% 9 -0.2977 

rTrial_2 42 61.765% 10 -0.6963 

rTrial_3 46 67.647% 11 -0.5625 

 

The results of Table 4.4 show that the baseline set of role values may not have 

been the most appropriate. Instead, the Trial 3 mapping scheme is the most effective, 

since it has a greater number of root causes which improved from the baseline than Trial 

1, and a higher number of averages which improved than Trial 2. Therefore, the role 

values used in the final development of the software tool, as described in Chapter 3, are 

the values associated with Trial 3 given in Table 4.3. 

4.2.2 Utility Curve Trade Study 

After first defining how user-indicated roles on the mission translate to a 

numerical value, it is necessary to combine the user’s role and years of experience to a 

weight, or a measure of the usefulness of their survey response. For the purposes of 

combining multiple expert opinions to a single data point for a given mission, it was 

necessary to determine weights for each expert. It was decided that the weights, or 

usefulness of the response, were a function of the expert’s years of experience and the 

role on the team. Because an expert could have any combination of these values, a 

continuous function was deemed the most appropriate. To find this function, the six 

different functions listed in Table 4.5 and shown graphically in Figure 4.1, with years 

experience on the horizontal axis, were tested. Note that the baseline function was 

arbitrarily chosen. These functions were chosen specifically because of the relationship 

for increasing relevance as experience and role increased. Part of the trade study 
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exploration, though, was to determine how steep this relevance curve should be and 

whether it should continuously increase. The concept of mapping a set of inputs to the 

usefulness of the result is part of Utility Theory as described in Chapter 2. 

 

Table 4.5 - Utility curve trade study alternatives 

 Function 

Baseline                                  

Trial 1                 
 
       

 
  

Trial 2                                 

Trial 3                             

Trial 4                     
 
      

 
   

Trial 5                       
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Figure 4.1 - Plots of expert data processing ucurve alternatives. 

 

0 10 20 30 40 50 60

0
1

2
3

4

Years experience

U
-v

a
lu

e

Trial 1

0 10 20 30 40 50 60

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Years experience

U
-v

a
lu

e

Baseline

0 10 20 30 40 50 60

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Years experience

U
-v

a
lu

e

Trial 2

0 10 20 30 40 50 60

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Years experience

U
-v

a
lu

e

Trial 3

0 10 20 30 40 50 60

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Years experience

U
-v

a
lu

e

Trial 4

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Years experience

U
-v

a
lu

e

Trial 5



 104 

 As with the role value trade study, the different expert response utility curves 

were used in the data processing algorithms, then the regression analysis was run, and the 

SSD values for each root cause likelihood and consequence function were compared 

against the baseline function. Refer to Section 3.4 for an explanation of the regression 

analysis approach, including how SSD is calculated for each root cause likelihood and 

consequence function. Table 4.6 shows results in the same format as the Role value 

results of Table 4.4. Clearly, any choice other than the baseline function would be an 

improvement in the SSD values. However, notice that Trial 1 has the most number of 

improved root cause SSD values (51), the greatest improved averages (14), and the 

highest improved average of all SSD values (-1.44). Therefore, Trial 1 is the utility 

function referred to in Chapter 3 as the function which maps a user’s years of experience 

and role on the team to their weight used in the combining experts algorithm. 

Table 4.6 - Utility curve trade study results. 

Model Number of RCs < 0 % RCs < 0 TOT Avg < 0 Avg of Avg 

uTrial_1 51 75.000% 14 -1.445 

uTrial_2 43 63.235% 12 -0.368 

uTrial_3 44 64.706% 10 -0.540 

uTrial_4 47 69.118% 12 -0.835 

uTrial_5 51 75.000% 11 -1.027 

 

4.2.3 Life-cycle Factor Trade Study 

Section 3.3.3 describes the method in which life-cycle estimates are transformed 

to a common time scale. The equation is repeated here for reference. The common base 

time (       ) increases as the number of life-cycle steps ( ) between the last actual 

value (        ) and the current predicted value (          ) increases. Table 4.7 gives an 

example of how this equation works. If the current life-cycle phase is the “Development” 
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phase and this value is fully known, “actual”, then the time prediction holds without any 

additional factor. When predictions are made, the predicted time is then multiplied by the 

life-cycle factor coefficient, X, to be studied in this trade study. As the predicted phases 

move away from the current/actual phase, the coefficient exponentially increases. This 

trade study focuses on the coefficient value, X = 1.25, and investigates the system 

response when this value is changed to the alternatives listed in Table 4.8.  

 

                                   (3.3) 

Table 4.7 - Life-cycle combination example. 

Life-cycle Phase  Development Integration Functional Testing 

Text  Actual  Predicted  Predicted  

Equation                                                

Table 4.8 - Life-cycle factor trade study alternatives. 

 Coefficient value 

Baseline X = 1.25 

Trial 1 X = 1 

Trial 2 X = 1.5 

Trial 3 X = 1.75 

Trial 4 X = 2 

 

With the alternatives listed in Table 4.8, the same SSD analysis was completed as 

in the utility curve and role value trade studies. The life-cycle combination factor trade 

study results are given in Table 4.9. Notice that none of the alternatives yield a 
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significant, greater than 50%, improvement as was seen in Table 4.4 and Table 4.6 for the 

role value and utility curve trade studies, respectively. This lack of noteworthy 

improvement indicates that the baseline life-cycle combination factor was sufficient for 

the data set collected.  

Table 4.9 - Life-cycle trade study results 

Model Number of RCs < 0 % RCs < 0 TOT Avg < 0 Avg of Avg 

lcTrial_1 26 38.235% 7 0.365 

lcTrial_2 17 25.000% 2 1.728 

lcTrial_3 16 23.529% 2 2.207 

lcTrial_4 19 27.941% 4 1.912 

 

4.2.4 Launch Choice to Numeric Value Trade Study 

When filling out the CubeSat Mission Risk Survey, users were asked to indicate 

whether they had launched, were manifested, had a promise of a launch through a 

program such as ELaNa, or no launch information. These textual answers needed to be 

transformed into numerical values for the regression analysis algorithms explained in 

Chapter 3. Specifically, the function forms used in the regression analysis, see Table 3.7, 

refer to the launch choice value as the “launch” variable. It was initially assumed that 

having more uncertainty (no information on launch) would yield a higher root cause 

likelihood and consequence value. This is the rationale behind the baseline values for the 

launch choice numerical mapping trade study alternatives given in Table 4.10. 
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Table 4.10 - Launch choice numerical mapping alternatives. 

 Value 

Response Baseline Trial 1 Trial 2 Trial 3 

No information 4  1 2 1 

No, promise  3  2 1.75 1.5 

No, manifested  2  3 1.5 1.75 

Yes  1  4 1 2 

 

For each launch choice mapping alternative, the regression analysis was run and 

the SSD values recorded as was done with the role value, utility curve, and life-cycle 

factor trade studies. Table 4.11 gives the results for the launch choice numerical mapping 

trade study. None of the alternatives are significantly better than the baseline. Thus, the 

baseline numerical mapping scheme is what is used in the final regression analysis and 

software tool.   

Table 4.11 - Launch choice numerical mapping trade study results. 

Model Number of RCs < 0 % RCs < 0 TOT Avg < 0 Avg of Avg 

laTrial_1 1 1.471% 1 0.424 

laTrial_2 15 22.059% 7 -0.448 

laTrial_3 4 5.882% 2 0.376 

 

4.2.5 Infinite trade study possibilities 

 The trade studies completed as part of the Risk Analysis Tool validation are but a 

subset of the possible analyses. There are an infinite number of alternative combinations 

which could have been studied in the preceding sections, as well as other assumptions 

which could have been tested. For the purposes of this research, the role value, utility 

curve, life-cycle factor, and launch indicator were deemed the most critical assumptions 
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to test. In some cases, e.g. role value mapping and utility curve, the baseline assumption 

was shown to be inadequate and was subsequently updated in the final version of the 

software tool. On the other hand, the life-cycle factor and launch indicator were shown to 

be acceptable assumptions and were not modified.  
  

4.3 LEAVE-ONE-OUT / SIMPLE VALIDATION 

Stone describes simple cross-validation as the division of the   data into a 

construction subsample of       and a validation subsample of size 1. Because of the 

size of the validation subsample, this technique is referred to as “Leave-One-Out”.
2
 The 

construction subsample is used when deriving the coefficients for the function via 

regression techniques. The function is then tested on its accuracy of prediction with the 

validation subsample.  

This technique was applied to the risk estimating relationships after determining 

the function form for each of the 68 consequence and likelihood root causes. The simple 

cross-validation method tests how well the chosen function describes the data when one 

piece of data is removed the regression calculation. After having used the GER method to 

obtain the function coefficients with the construction subsample, the purposely missing 

validation data point was input into the model and values were calculated for each of the 

68 root causes. This “Leave-One-Out” process was repeated 49 times for each of the 49 

missions under consideration. Recall the sample size was consolidated to 52 missions 

after processing, and three outliers were removed. Of the 1666 calculated consequence 

root cause values, 54.5% were calculated to be less than the actual value. Similarly, 

57.6% of the likelihood values were calculated to be lower than the actual values. These 

results indicate that the model shows slight preference for under-prediction.   
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The model validation techniques described in the literature describe the technique 

itself, but do not include information on the proof necessary to conclude the model is 

validated. It is therefore left to the designer to conclude whether or not the validation 

results meet the expectations of the analysis. The 68 calculated root cause values for each 

of the 49 missions were compared against the actual values using Equation (4.1). The 

results are shown in Table 4.12 where 91% of the calculated consequence root causes and 

nearly 82% of likelihood root cause values fall within +/- 1.5 times the actual value. It is 

acknowledged that the model is not perfect, and there do exist predicted values beyond 

these acceptable limits. These outliers are due to the range of values being included in the 

model construction, especially when removing values as is done with the “Leave-One-

Out” method. Section 4.5 will discuss the dangers of moving outside the data range in 

more detail. The results of Table 4.12 suggest that, for the purposes of the low-cost risk 

analysis tool, the model is validated, since most of the predicted data matches to within 

50% of the actual collected responses. 

 

 
                   

                   

      
     

(4.1) 

 

Table 4.12 - Percent deviation range for simple cross-validation 

Deviation Consequence Likelihood 

(+/-) 50% 64.046% 70.648% 

(+/-) 100% 80.492% 76.531% 

(+/-) 150% 91.116% 81.873% 
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Note that the survey results are inherently subjective to the opinion and expertise 

of the respondent. Future iterations of this tool and associated analysis may prove to find 

better fitting functions. However, for this initial software version, the risk estimating 

relationships offer an innovative risk analysis tool for CubeSat mission designers. 

 

4.4 ALL-DATA ANALYSIS 

In addition to the simple cross-validation technique mentioned in the previous 

section, high-level analysis was completed to calculate how well the models predicted the 

values used to derive the function coefficients. That is, all the data were used to derive 

the coefficients of each function model. Then, each mission was input into the model and 

the calculated values were compared against the actual values using Equation (4.1). A 

similar table to Table 4.12 is shown in Table 4.13. Note that only small increases are 

achieved by using the coefficients derived from all the data in testing the accuracy of the 

model prediction over the simple cross-validation technique. 

 

Table 4.13 - Percent deviation range of calculated values from actual data 

Deviation Consequence Likelihood 

(+/-) 50% 69.328% 73.830% 

(+/-) 100% 82.593% 77.311% 

(+/-) 150% 93.337% 82.893% 

 

Because the model validation literature simply provides the technique, but no 

structured method of accepting or rejecting a model, Table 4.14 and Figure 4.2 provide 



 111 

the information on which this model is validated. Table 4.14 highlights the key measures 

output by the models: the Sum of Squared Deviations (SSD), Standard Error of Estimate 

(SEE), and the generalized coefficient of determination (R^2). This table summarizes 34 

consequence functions and 34 likelihood function models with the minimized SSD and 

zero bias values per the MPE-ZPB regression technique described in Chapter 2 while 

maintaining as small a SEE value as possible. Note that the standard deviation is small 

for all key statistics, which indicates that there is little variation of SSD, SEE, or R^2 

values between the 34 likelihood functions as well as between the 34 consequence 

functions. The low standard deviation values indicate a majority of the functions have 

SSD, SEE, and R^2 values near the averages captured in Table 4.14. Recall that the SSD 

values are a measure of relative error and the SEE values are a measure of percentage 

error.
5
 Thus, it can be concluded that all the functions have similarly small error values. It 

appears that the R^2 values captured in Table 4.14 are low with what one might expect to 

find in a regression analysis, and yet the error values are low, which indicates a decent 

regression fit. It is acknowledged that it may be possible to further decrease the error 

values and increase the R^2 by using different function forms or methods. However for 

an initial assessment, the quantities listed in Table 4.14 are deemed appropriate.  

As mentioned previously, model validation literature does not provide a concrete 

method of accepting or rejecting a model, and it was left to the author to determine 

appropriate criteria. Given the limited number of responses and the preliminary nature of 

the regression analysis, the author determined the model was validated if a majority of 

the key statistics data fit within two standard deviations of the average. Figure 4.2 

illustrates that all 34 consequence and 34 likelihood root cause SSD, SEE, and R^2 

values fit within three standard deviations with most of the values fitting within two 

standard deviations. 
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The model is accepted because of its ability to capture the root cause consequence 

and likelihood values with overall small error and variation. It is acknowledged that the 

conclusion of successful model validation is subjective. However, for the purposes of the 

initial risk estimating relationships, the values of Table 4.14 and the root cause 

distribution of Figure 4.2 indicate success. To improve the model and further reduce the 

SSD and SEE while increasing the R^2 values, additional function choices could be 

tested in future iterations of this analysis. 

 

Table 4.14 - Key statistics of function models based on full dataset 

 Consequence Likelihood 

 SSD SEE R^2 SSD SEE R^2 

MAX 
4.4064 0.6800 0.3800 4.4663 0.7444 0.3592 

AVG 
2.8381 0.4586 0.2496 2.8945 0.4723 0.1815 

MIN 
1.7904 0.2984 0.0874 2.0974 0.3315 0.0009 

STDEV 
0.5786 0.0884 0.0778 0.5711 0.0917 0.0925 
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Figure 4.2 - Root cause key value distributions 

4.5 STRATIFIED TESTING VALIDATION  

Similar to Stone, McCarthy
6
 identifies an additional method of validating 

mathematical models by clustering the data into groups of similar characteristics and 

sampling from those groups to form the training (construction) and testing (validation) 

data sets. The training set is then used in the regression while the testing set is used to 

determine how accurate the model is in predicting the data points.  For the purposes of 

this analysis, the post-processed data were clustered in two ways: by form factor and by 

launch indicator. These strata were then randomly split in half to obtain the testing and 

training data.  
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 Unfortunately, when data points are removed from the construction of the RER 

equations, the accuracy will become worse, as illustrated in Table 4.15. The “Leave-One-

Out” section of the table was described in Section 4.3 and the “All-Data” was described 

in Section 4.4. The “Form Factor” and “Launch Indicator” sections are the result of this 

stratified cross-validation technique where the data is organized according to the form 

factor and launch indicator and sampled according to these strata, respectively. Note that 

the Form Factor and Launch Indicator sections use approximately half the data to build 

the RER equations and half the data to test the accuracy of the relationships. Thus, the 

accuracy is worse with the stratified method than when all, or nearly all, of the data is 

used as in the All-Data and Leave-One-Out trials, respectively. 

Table 4.15 - Comparison of model validation methods 

Form Factor Leave-One-Out 

Deviation C L Deviation C L 

(+/-) 50% 55.882% 61.397% (+/-) 50% 64.046% 70.648% 

(+/-) 100% 74.387% 72.672% (+/-) 100% 80.492% 76.531% 

(+/-) 150% 83.701% 78.922% (+/-) 150% 91.116% 81.873% 

Launch Indicator All-Data 

Deviation C L Deviation C L 

(+/-) 50% 59.559% 64.461% (+/-) 50% 69.328% 73.830% 

(+/-) 100% 73.529% 73.652% (+/-) 100% 82.593% 77.311% 

(+/-) 150% 82.598% 78.922% (+/-) 150% 93.337% 82.893% 

 

The stratified cross-validation technique was used in an effort to try several model 

validation techniques in order to prove these Risk Estimating Relationships accurate. 

However, with limited data, it is more prudent to use the results of the Simple Cross-

Validation technique and the All-Data Analysis to determine whether or not the model is 

sufficiently validated. Since the Leave-One-Out and All-Data Analysis trials show 
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predictive accuracy, it is concluded that the equations are effectively validated and may 

be used by CubeSat mission designers for helping to identify risks affecting their mission 

success. Potential modification to the algorithm and its resulting improvement by 

validation are left as work for future research. 

 

4.6 MOVING OUTSIDE DATA RANGE VALIDATION  

Another validation technique proposed by Snee involves testing the regression 

equations by using data outside the ranges used to construct the model.
1
 The risk analysis 

model used data with the ranges shown in Table 4.16. Here, FF represents the form factor 

of CubeSat Units, e.g. 1U, 2U, 3U. Launch indicates whether or not the mission has 

launched, see Table 3.6 for more information. Dev, Int, Func Testing, Environ testing, 

Waiting, and Ops represent the time (months) in development, integration, spacecraft 

functional testing, environmental testing, waiting for launch, and operations, respectively. 

Fourteen trial cases were devised to test the model’s predictive capability after increasing 

and decreasing the input values from the maxima and minima, respectively, shown in 

Table 4.17. Only one Factor of Interest (FOI) was changed for each trial case, and the 

remaining FOIs were input as their respective rounded average values in Table 4.16.  The 

fourteen trial cases are shown in Table 4.17. The first seven trials involved increasing the 

input values while the second seven trials decreased the FOI from the limits below.   

Table 4.16 - Model input data ranges 

     Life-cycle Duration (Months) 

 FF 

(U) 

Mass 

(kg) 

Launch Year Dev Int Func 

Testing 

Environ 

testing 

Waiting Ops 

Max 6 15 4 2016 83.60 45.78 23.44 23.44 87.89 73.24 

Average 2.62 3.80 2.45 2013 30.17 10.27 6.68 4.95 14.67 21.82 

Min 1 0.6 1 2009 5 1 0.878 0.47 1 2.44 



 116 

Table 4.17 - Trial cases for testing outside data ranges 

Case FOI  FF Mass Dev Int Func Testing Environ testing Waiting Ops 

1 FF 12 15.96 30 10 7 5 15 22 

2 Dev 3 4 100 10 7 5 15 22 

3 Int 3 4 36 60 7 5 15 22 

4 Func testing 3 4 36 10 40 5 15 22 

5 Environ testing 3 4 36 10 7 40 15 22 

6 Waiting  3 4 36 10 7 5 100 22 

7 Ops 3 4 36 10 7 5 15 100 

8 FF 0.5 0.665 36 10 7 5 15 22 

9 Dev 3 4 1 10 7 5 15 22 

10 Int 3 4 36 0.5 7 5 15 22 

11 Func testing 3 4 36 10 0.25 5 15 22 

12 Environ testing 3 4 36 10 7 0.25 15 22 

13 Waiting  3 4 36 10 7 5 0.51 22 

14 Ops 3 4 36 10 7 5 15 1 

 

The software tool recognizes when extremely large positive values are calculated, 

and replaces these values with the maximum range value 5. Similarly, when largely 

negative values are calculated the software replaces the value with 2.5 to represent the 

most uncertainty available in the model. Also, when the output value is calculated to be 

between 0 and -1, the value is replaced with a 0. With these data assurances installed, the 

trial cases resulted in the plots shown in Figure 4.3. In both the Consequence and 

Likelihood analyses, Cases 14, 13, and 11 generate largely positive and largely negative 

values (represented by 5, 2.5). Case 12 generates many largely negative values in 

Consequence, but largely positive in Likelihood. For Case 9, the biggest impact is largely 

negative Likelihood values. Cases 1, 3 and 5 have some largely positive Consequence 

values. Cases 3 and 5 have some largely positive Likelihood values. In general, more 

cases are likely to produce both largely negative and largely positive Likelihood values 

due to the nature of the data processing. 
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Figure 4.3 - Outside data range response - Consequence (left), Likelihood (right) 

This test shows that the risk model is not well equipped to handle drastic 

decreases in the life-cycle development time inputs beyond the minimum values used in 

the model construction. This is evidenced by the severe increase of largely negative and 

largely positive Consequence and Likelihood values for those cases. It should be noted 

that decreasing the form factor accounts for only two of the largely negative Likelihood 

values and the rest are due to the life-cycle inputs. Furthermore, only in the largely 

positive Consequence category (a value of 5) is there any substantive representation of 

the trial cases involving increasing the FOI values. In other words, the risk estimating 

relationships are more sensitive to changes in mission life-cycle and less sensitive to 

changes in satellite form factor. 
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Moving beyond the ranges of the data used to construct the model is purely meant 

to educate the users of this software tool of the sensitivities associated with inputting their 

data. However, if the data is within the expected range, the user may conclude that the 

risk likelihood and consequence values are good estimates. 

 

4.7 DISCUSSION OF VALIDATION RESULTS 

Conversations with model developers as well as analysis of regression validation 

literature show that there is no concrete method to prove a regression model successfully 

represents the data of interest. It is therefore left to the analyst to determine appropriate 

metrics by which to measure their validation results. For the purposes of this software 

tool, the regression was deemed validated if more than half the data was accurately 

represented to within +/- 50% of the actual value. This criteria was tested via four 

different methods, and Table 4.12 through Table 4.15 illustrate that the criteria was met 

in all cases, even when using the least accurate, stratified, cross-validation approach. 

Additionally, Table 4.15 shows that all methods of cross-validation produce similar 

results. That is, no method of cross-validation shows a significant reduction in the 

model’s ability to predict the actual values. Instead, the results are as one would expect. 

The models which used the most data were best at prediction while the model which used 

the least data, the stratified approach, was worst at prediction. Because the cross-

validation results follow expectation, it is concluded these techniques were executed 

successfully. Furthermore, since the criteria of at least half of the data being represented 

to within +/- 50% of the actual value was met, it is concluded that these cross-validation 

techniques successfully validate the regression models used in the CubeSat Risk Analysis 

tool.  
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The results of validation by moving outside the data range illustrate the dangers of 

a user inputting values which were not used in the formulation of the regression model. It 

was expected that the model would be able to extrapolate the risk calculations for inputs 

outside the acceptable data range. The results of Section 4.6 show this intuition to be 

correct for values larger than the maximum data entry. Interestingly, the tool had the most 

difficulty with input values smaller than the acceptable data range. This makes physical 

and logical sense because the input parameters can only be so small, and the minimum 

values are already at the lower boundary of what is physically possible. Namely, size and 

time cannot be negative. The model was unable to properly represent these small, but 

positive, values. One potential way to alleviate this issue would be to obtain data 

specifically corresponding to small CubeSats (<1U) which also had a rapid development 

cycle (<1 month in each phase). 

 

4.8 CUBESAT RISK ANALYSIS CONCLUDING REMARKS 

 The CubeSat Risk Analysis Tool was released to the CubeSat Community in 

April 2014. Since then, 71 individuals have requested access to the tool through a short 

survey which allows demographic tracking of tool users. Figure 4.4 and Figure 4.5 show 

a summary of the user demographics as of April 2015. The tool was primarily meant for 

students, and Figure 4.4 illustrates that a majority of the users are, in fact, universities. 

However, there are a significant number of corporate and government users as well. 

Interestingly, the majority of requests have come from international universities, which 

highlights the increasing popularity of the CubeSat platform throughout the world. Many 

of the users have also indicated that they plan to pass the tool on to other colleagues.  
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Figure 4.4 - Risk Analysis Tool User Institutions. 

 

 

Figure 4.5 - Risk Analysis Tool location of user 
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recommendations were to include more information on the various elements of the tool as 

the user was inputting or analyzing their data, e.g. pop-up information blocks to help 

them better understand the tool. No significant issues were discovered through these 

users’ analyses. One user, in fact, published a study using the CubeSat Risk Analysis tool 

to compare the risk profiles between multiple missions.
7
   

Having shown that the CubeSat Risk Analysis tool is validated and currently 

being used, the first portion of this research is concluded. The CubeSat Risk Analysis 

Tool, however, only helps the user identify and quantify the mission risks. The next 

logical question is “Now what?” The second portion of the research, beginning with the 

next chapter, strives to answer this question by helping users pinpoint the best methods of 

mitigating these mission risks based on their own preferences through decision analysis 

and utility theory.  
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Chapter 5: CubeSat Decision Advisor Software Tool 

Once a mission risk is identified and quantified, as with the CubeSat Risk 

Analysis Tool described in the previous chapters, it is usually the responsibility of the 

systems engineer to determine the best ways to mitigate the mission risk. Recall the 

mitigation categories listed in Table 1.1 of avoiding, transferring, controlling, or 

assuming the risk. But which of these would best suit the mission? How should the 

mission implement these methods? The CubeSat Decision Advisor Software Tool is the 

second half of the small satellite risk management software tool suite, and is meant to 

answer these questions and aid the user in determining how best to mitigate the risks 

identified while using the CubeSat Risk Analysis Tool. 

Chapter 2 described the principles of decision analysis used in the development of 

the CubeSat Decision Advisor. This chapter specifically describes how these concepts are 

used in practice throughout the software tool. The tool employs a normative risk 

management methodology with an interactive framework by which users can examine 

their spacecraft mission risks. The risk management function of the software tool queries 

users for their choice of mitigation techniques and the probability of success for each 

technique, their cost, time, and people resource allocation, and their outcome preferences. 

Together, these inputs generate the utility curves which are then used for determining the 

expected utility of each mitigation technique and ultimately for providing the suggestions 

captured on the Summary page. 

 

5.1 TOOL OVERVIEW 

As described in Chapter 1, decision theory has commonly been used in 

applications of insurance, investment strategy, the oil and gas industry, medicine, and a 
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variety of other industries. Existing applications in the aerospace industry are limited to 

large-scale missions or design studies. This software tool serves as the first known 

application of decision theory to the emerging topic of small spacecraft missions. The 

tool uses the methods of decision analysis applied to the area of spacecraft risk 

management to identify the mission risk and/or root cause which, when mitigated, is the 

most efficient use of resources given the user-defined constraints of implementation cost, 

people needed, and time to completion. The software tool solves this problem via multi-

attribute utility theory combined with decision analysis principles and is purposely 

designed for use by a spacecraft mission designer of any background or experience level. 

The software prompts the user to enter their mission-specific data, and provides options 

for the user to select the calculations they wish to analyze.  

An initial effort has been made to appropriately scale risk management practices 

to smaller satellites, since risks associated with larger (500 kg) class missions do not 

necessarily reflect risks associated with CubeSat missions. Related research identified 

seven primary mission risks and 32 root causes for these risk events.
1,2

 These risks, listed 

in Table 5.1, and their associated root causes are used as the framework for the CubeSat 

Decision Advisor software tool. 

 The CubeSat Decision Advisor software tool contains a number of worksheets, 

and each serves a different purpose. The Summary page, shown in Figure 5.1, displays all 

the relevant information needed to make a decision regarding which mitigation technique 

is the most effective way to decrease the mission risk likelihood and/or consequence 

given the user’s preference system, assessment of success probabilities, and resources 

required for a given mitigation technique. The Summary page also contains the Options 

bar, circled in green in Figure 5.1, which allows users to select and enter the relevant 

information for the analysis they wish to complete.  
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Table 5.1 - Seven mission risks with descriptions 

Mission Risk (Acronym) Description 

Schedule (SCH) The event of a slip in meeting schedule milestones 

or deadlines. 

Payload (PAY) The event of failure to gather payload data. 

Spacecraft-1 (SC1) The event of inability to communicate with the 

spacecraft. 

Spacecraft-2 (SC2) The event of inability to gather health data from 

spacecraft. 

Spacecraft-3 (SC3) Inability to meet spacecraft standards (i.e. 

international standards for spacecraft design, 

development, launch, and operation). 

Personnel and Management (PER) The event of insufficient personnel management. 

Cost (COST) The event of lack or delay of funding. 

 

 

Figure 5.1 - Portion of summary page showing all mission risks 
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A number of tabs allow the user to inspect and modify various features of the 

Decision Advisor should they wish to do so.  These tabs are circled in red in Figure 5.1. 

The Mitigation Techniques sheet displays all the possible mitigation techniques for each 

risk and root cause. This sheet allows users to select a pre-defined mitigation technique, 

or to write one of their own into the analysis.  

Once the user enters information through the Options Bar on the Summary page, 

the results are captured in the Form Responses sheet. The user will be able to edit this 

page in the event they realize they entered data incorrectly. The data from the Form 

Responses sheet is used in the calculations and analysis throughout the tool, therefore it is 

imperative to ensure the data is correct.  

The next seven worksheets in the CubeSat Decision Advisor software tool 

represent the seven mission risks, as identified during previous portions of this research
1
: 

Schedule (SCH), Payload (PAY), Spacecraft-1 (SC1), Spacecraft-2 (SC2), Spacecraft-3 

(SC3), Personnel and Management (PER), and Cost (COST). Each sheet contains the 

mission risk decision tree with pre-defined root causes and mitigation techniques to be 

analyzed. The user-entered data is reflected in the right-most columns of the decision tree 

– probabilities, implementation cost, people needed, and time estimates. A portion of the 

Schedule mission risk is shown in Figure 5.2, the other mission risks are similar in 

format, but will differ based on the user’s inputs. 
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Figure 5.2 - Portion of the schedule (SCH) mission risk decision tree 

In addition to the user-accessible pages, there are a few pages which are for 

internal tool calculations. The ucurves sheet contains the data obtained from eliciting the 

user’s preference system. The restore worksheet stores case study data, so that by the 

click of a macro-enabled button, the case study data can be restored to the software tool 

for learning and/or analysis purposes. This is primarily useful for the testing and 

validation of the tool, so in the event data is lost it can be recovered, but the feature may 

also help users who simply wish to learn how to use the tool. The Additional (“Addtl”) 

and joint sheets provide analysis for the user-entered data, and will be explained more in 

Section 5.3.7. 

 

5.2 APPLICATION OF DECISION ANALYSIS THEORY  

Decision Analysis and Utility theory was described from a general perspective in 

Chapter 2. The rest of this chapter describes how these theoretical concepts were 

practically applied to the problem of small satellite risk management.  

 

Implementation Cost People Needed Time Estimate U(total)

($ hundreds) (#) (days)

p(F|M1,RC1) = 0.1 0 2 5 0.7527

M1

p(P|M1,RC1) = 0.4 0 4 7 0.6611

E[U(M1)] = 0.623944

p(D|M1,RC1) = 0.5 0 6 10 0.5684

p(F|M2,RC1) = 0.1 0 1 5 0.7737

M2

p(P|M2,RC1) = 0.4 0 2 7 0.6980

E[U(M2)] = 0.613964

p(D|M2,RC1) = 0.5 0 10 10 0.5148

p(F|M3,RC1) = 0.1 0 4 5 0.7138

M3

p(P|M3,RC1) = 0.3 0 10 7 0.5703

E[U(M3)] = 0.494117

p(D|M3,RC1) = 0.6 0 20 10 0.4194

E[U(RC1)]= 0.871285 p(F|M4,RC1) = 0.6 0 2 5 0.7527

With M6 M4

p(P|M4,RC1) = 0.3 0 4 7 0.6611

E[U(M4)] = 0.706833

p(D|M4,RC1) = 0.1 0 6 10 0.5684

p(F|M5,RC1) = 0.1 0 5 5 0.6957

M5

Schedule risk - The event of a slip in meeting schedule milestones or deadlines. The five root causes identified 
here were used in the gathering of survey data. 

RC1

Fully works

Does not work

Partially works

Fully works

Does not work

Partially works

Fully works

Does not work

Partially works

Fully works

Does not work

Partially works

Fully works

Partially works

Root cause 1 - The inability to find 
desired spacecraft components.

Find Max Utility
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5.2.1 Decision Trees and Utility Theory 

Figure 5.3 shows how decision theory applies for the problem of small satellite 

risk management. The seven mission risks, associated root causes, and identified 

mitigation techniques are represented as decision nodes, since the user faces the decision 

of which risk and root cause combination to mitigate as well as the technique to 

implement. The chance node consists of the possibilities that the mitigation technique 

fully works, partially works, and does not work. The user provides the necessary input 

data: probabilities, resource allocations, and the choice of mitigation technique through a 

series of Graphical User Interfaces (GUIs). In addition, the software tool prompts the user 

for their cost, time, and people value preference systems, to be explained in the next 

section. After submitting all this data, the user prompts the tool to calculate the expected 

joint utilities and output the results on the summary page. With the analysis completed by 

the software tool, the user may then decide which risks or root causes to mitigate. 

 

 

Figure 5.3 - Decision analysis framework 

The decision tree is a necessary component of decision analysis. Figure 5.2 shows 

a portion of the Schedule (SCH) mission risk decision tree. The other six mission risks 

have a similar decision tree. The root causes are listed in numerical order down the page, 

SCH

PAY

SC1

SC2

SC3

PER

COST

RC1

RC2

RC3

RC4

RC5

RC6

RC7

Decide which mission risk 

to mitigate

Decide which root cause 

(RC) to mitigate. 

Note: the number of root 

causes varies between 

mission risks.

Fully works

Partially works

Doesn’t work

Uncertainty regarding whether or not 

the technique will work

Calculations:

U(cost, people, time)

Inputs:

Cost, People, Time for each 

mitigation technique and 

associated probability

Expected utility of  mitigation technique

Maximized expected utility at root cause or mission risk level

User may then use this information to determine which root 

cause(s) and/or mission risk(s) they wish to mitigate.

Inputs: the user assigns probabilities 

based on their unique situation

MT1

MT2

MT3

MT4

MT5

MT6

Decide which mitigation 

technique (MT) to use. 
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each with the associated six mitigation techniques selected for analysis and the three 

possible outcomes of fully works, partially works, and does not work. When entering the 

data for each root cause, the user can choose to select up to six mitigation techniques but 

need not select all six. Any piece of information not provided is assumed to be zero and 

will not affect the decision analysis. Similarly, if the user deems one of the root causes 

does not apply to their mission, they need not enter data for that root cause. The input 

data of cost, people, and time needed for technique implementation are listed to the right 

of the decision tree, in line with the mitigation technique to which they reference. The 

joint utility value completes the tree to the right of these input parameters.  

Once the user has provided all the necessary input parameter data, they must 

select the option to replace their data into the decision tree, using the “Replace values and 

probabilities” option shown in Figure 5.4, which appears in the Options bar of the 

Summary Page. This button is a Macro-Enabled button and sifts through the data stored 

in the “form_responses” worksheet, placing the data in the appropriate location of the 

appropriate risk decision tree. Should the users realize they had incorrectly input data, 

they are able to update the information in the “form_responses” sheet at any time, and 

simply click the button again to replace the new data.  

After ensuring the data in the risk trees are correct, the user may select “Only 

calculate utilities” and the software will automatically calculate the expected utility for 

each mitigation technique of each root cause for all mission risks. The utility functions 

themselves, as defined in the Utility Theory section, are user-defined functions in Excel 

VBA. The functions rely upon the user preference system obtained from the Utility 

Elicitation methods described in the next section. These values fully define not only the 

utility functions for a given attribute, but the manner in which the single functions are 

combined to the joint utility function. If “Only summarize utilities” is selected, the 
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software highlights the mitigation technique with the maximum expected utility per each 

root cause, and places this information in a box at the root cause level of the decision tree 

as well as on the Summary Page. “Calculate and summarize utilities” first calculates the 

mitigation technique expected utilities and then summarizes these on the decision tree 

and on the Summary Page. It is recommended to always use the “Calculate and 

summarize utilities” option, so as to avoid having calculated the utilities but not having 

replaced the summary information or vice versa. However, the options exist in separate 

buttons for tool flexibility. Refer to Section 2.4 for an explanation of expected utility 

theory.   

 

Figure 5.4 - Calculations options on Summary page 

Once the utilities have been calculated, and the summaries provided not only on 

the mission risk worksheets but on the Summary page, the user is ready to make their 

decision. The Summary page lists all of the mission risks, their root causes, the associated 

“Winning Mitigation Technique” and expected utility values. In addition, the Summary 

page lists the rank of that root cause expected utility within the mission risk as well as 

compared to all root causes. Following the Rules of Actional Thought, as described in 

Section 2.4.3, the user would choose to mitigate the root cause which has the highest 

expected utility, with an overall rank of 1. The highest expected utility means that the 
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mitigation technique has the user-defined best combination of success probabilities and 

cost, people, and time required for implementation. However, it may be possible that the 

user can afford to implement more than one mitigation technique. The rankings allow the 

user to successively apply their resources to reduce their mission risk in the most 

effective manner.   

 

5.2.2 Utility Elicitation  

The elicitation of the attribute utility function uses the Preference Comparison 

Paired-Gamble method presented in Section 2.5 and asks a series of eight lottery 

comparison questions. The determination of the    values exactly follows the Probability 

Equivalence Standard-Gamble method, and the user is requested to provide a probability 

that would make them indifferent between the attribute parameter scenarios. This section 

describes, in detail, the mathematics and programming behind the utility elicitation 

methods. The Tutorial section offers a quick-start guide to using the software tool, 

including providing the user with more detailed explanations on entering their preference 

information via examples.  

To enter the attribute utility curve preferences, the user selects one of the 

following buttons on the Summary page: “Enter Time utility preference”, “Enter Cost 

utility preference”, or “Enter People utility preference,” as shown in Figure 5.5. Once an 

option is selected, the associated preference Graphical User Interface (GUI) will appear, 

such as the one shown for the Cost attribute in Figure 5.6. The first screen for any of the 

attribute preference GUI screens will prompt the user to enter a maximum value to be 

used in the analysis. This maximum value identifies the best and worst scenarios. These 

limiting situations also scale the utility value results so that the best scenarios have a 
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utility value of unity, and the worst situations have a utility of zero. The user must enter a 

maximum value, otherwise the program will not let them continue. For example, assume 

the maximum allowable cost to be spent on any mitigation technique is $5000. 

 

 

Figure 5.5 - Entering preference data on the summary page 

 

 

Figure 5.6 - Entering maximum cost allowed 

Once the user has entered a maximum attribute value, the following eight screens 

go through a series of lottery questions with the purpose of teasing out which exponential 

parameter best describes the user’s value preference system. For a description of the 
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utility functions and parameters, see Section 2.5. Each question consists of a set of two 

lottery scenarios in which the user selects the more preferable scenario. By selecting one 

lottery over another, one of the utility function forms is selected. When the user finishes 

the series of eight questions, the tally of utility function selections is calculated and the 

function with the most scenarios selected is determined to be the user’s preference system 

for the given attribute. 

With a maximum allowable cost of $5000, the first lottery scenario is shown in 

Figure 5.7. This scenario provides two lottery options and asks the user to identify which 

option more accurately represents their opinion of the cost attribute. The best scenario is 

defined as a mitigation cost of $0 while the worst case scenario is defined as a cost of the 

maximum allowable amount. The left-side lottery is asking whether the user thinks $1151 

is the certain equivalent of a 10% chance at the best scenario and a 90% chance at the 

worst scenario. Essentially, if someone were to say, “I guarantee that the mitigation cost 

will be $1151,” would the user find this guarantee equivalent to a 10% chance at the best 

and a 90% chance at the worst scenarios? Or, as the right-side lottery suggests, does the 

user value a higher cost, but a higher chance at the best scenario? Is a guarantee of $3497 

equivalent to a 25-75 chance at the best and worst scenarios? Most panels of lottery 

scenarios ask this question: is the user willing to sacrifice a higher chance at the worst 

scenario for a lower attribute value? If the answer is consistently yes, the user’s responses 

will result in selecting the most conservative utility function. Some of the panels serve as 

consistency checks in that the questions purposely ask if the user would prefer a lower 

attribute value for a lower risk value. If the decision-maker is logical, they would 

consistently prefer the lower value-risk combination. 
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Figure 5.7 - Example lottery scenario for Cost attribute preference 

These lottery scenarios are created based on the user’s defined maximum value 

and follow the Continuity Axiom of Table 2.3. Namely, the software is trying to find the 

certain equivalent that best describes the user’s preferences. Recall that the utility 

functions follow an exponential form,             , with     and    . 

Therefore, changes in utility function are solely due to the change of the gamma 

parameter. Because the attribute utility functions are scaled according to Equation (5.1), 

the best and worst scenarios correspond to a utility of 1 and 0, respectively, and the utility 

of the certain equivalent is then the probability of the lottery. This is because of expected 

utility calculations:                                        . 

Rather than asking the user to supply a probability or a certain equivalent value, it was 

decided to provide two lottery options and have the user select the more preferred 

scenario; each option represents a different γ parameter for the exponential utility 

function. These certain equivalent options were calculated based on four probabilities, 

0.1, 0.25, 0.5, and 0.75. Thus, these four probabilities represent the certain equivalent 
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utility value. The certain equivalent value, x, may then be calculated using Equation (5.2) 

and these values are shown, rounded as in the software, in Table 5.2 for each probability 

and γ value of an example set of scenarios with specific maximum attribute value 

amounts: $5000, 10 people, and 20 days.  

 

    
             

                
 

(5.1) 

    
 

 
                                

(5.2) 

 

Table 5.2 - Lottery parameters for each attribute and exponential value 

 

Cost Attribute, $5000 maximum 

     = 0.01    = 0.025    = 0.05    = 0.1 

0.1 $4,371 $3,499 $2,244 $1,151 

0.25 $3,497 $2,332 $1,366 $693 

0.5 $2,191 $1,229 $686 $346 

0.75 $1,035 $521 $285 $143 

 

People Attribute, 10 maximum 

     = 0.05    = 0.15    = 0.25    = 0.5 

0.1 9 8 7 4 

0.25 7 6 5 3 

0.5 4 3 2 1 

0.75 2 1 1 1 

 

Time Attribute (days), 20 maximum 

      = 0.01     = 0.025     = 0.05     = 0.1 

0.1 18 17 17 15 

0.25 15 14 13 10 

0.5 10 9 8 6 

0.75 5 4 3 2 

 

The eight scenarios presented on each attribute preference GUI correspond to the 

same pattern, and represent different combinations of the gamma parameters. The pattern 
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employed for each attribute is shown in Table 5.3. 120 pairs are possible with 16 possible 

probability-gamma combinations and two combinations per pair, i.e.   
       

 
     . 

Since the user would not be willing to choose between 120 combinations, it was 

determined that eight pairs was the proper balance between obtaining enough information 

and not frustrating the user. These eight combinations are designated by numeric values 

of 1-8 in Table 5.3. The two cells which have the same number signify the pair which 

appears on the given number’s preference panel of the GUI. For example, the first screen 

after entering the maximum allowable attribute value is the comparison between a 

probability of 0.1 and gamma parameter 4 versus a probability of 0.25 and gamma 

parameter 1. This is evident in the example of a $5000 maximum mitigation cost shown 

in Figure 5.7. It is observed by means of comparing the parameter combination 1 from 

Table 5.3 to the values of Table 5.2 that the left-hand lottery corresponds to a gamma 

parameter of 0.01 while the right-side lottery represents a gamma of 0.05. Recall that 

Figure 2.3, Figure 2.4, and Figure 2.5 show the utility values for each the Cost, People, 

and Time attributes, respectively, according to the gamma parameters. 

 

Table 5.3 - Lottery gamma parameter pattern 

              

0.1    1, 5 

0.25 1 5 2, 7 3 

0.5 3 2, 4 6 8 

0.75 6, 8 7 4  

 

Once the user completes the set of eight lottery scenarios for a given attribute, the 

software tallies how many times each gamma parameter was selected and stores this 

information on a worksheet of the tool. Another Excel VBA routine then determines 
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which gamma parameter was selected the most frequently. In the event of a tie, the more 

conservative parameter is selected. This most conservative parameter is also selected by 

default should errors occur during user entry of preferences. The most conservative 

parameter is defined as the parameter which has the most significant decrease of utility as 

the value parameters increase. It is observed from Figure 2.3 - Figure 2.5 that this most 

conservative value also corresponds to the largest gamma parameter, which is evident 

because the gamma value determines the rate of decay in a decaying exponential function 

form.  

After submitting the preferences for each of the attributes to obtain three attribute 

utility functions, the user must supply their preferences for the combination of these 

attribute functions into the joint utility curve.  Figure 5.5 shows the option, “Enter joint 

utility preferences” from which the user can identify their preferences of the combined 

attributes. This step is crucial for obtaining the parameters necessary to combine the 

attribute utility functions, the    values, per the method discussed in Chapter 2.  

After selecting the “Enter joint utility preferences” option, the user will see the 

screen given in Figure 5.8. This lottery uses the Probability Equivalence Standard-

Gamble method and asks the user to supply a probability,  , which would make them 

indifferent between receiving a specified guaranteed outcome and a   probability chance 

at the best scenario with a       chance at the worst scenario. There are only three 

panels for eliciting the joint utility preferences, as the resulting three values fully 

characterize the manner in which to combine the attribute utility functions into a joint 

function.  
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Figure 5.8 - Entering joint utility preferences 

The first panel shows a guaranteed outcome of cost at its best, people at its worst, 

and time at its worst. This combination is denoted by <cost at best, people at worst, time 

at worst>. Let the lottery of this first panel be denoted as    and represent a chance with 

   probability that all the attributes are at their best with a        probability the 

attributes are at their worst. Recall that the best scenario consists of $0, 0 people, and 0 

days to implement the mitigation technique, whereas the worst scenario consists of the 

maximum allowable values of each of the attributes. The user is asked to specify what 

probability    would make them indifferent between the lottery    and a guaranteed set 

of attribute values consisting of the best cost, $0, but the maximum number of people and 

time required for the mitigation technique implementation. Basically, the user is asked for 

the percentage of the “perfect” case they view the <cost at best, people at worst, time at 

worst> scenario. 

The second panel displays a similar choice to the first panel, only the guaranteed 

outcome has changed to <cost at worst, people at best, time at worst>. The same lottery 

exists, and the user is asked to provide another probability value. Namely, the user should 
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indicate the probability    that makes them indifferent between the guaranteed outcome 

and the lottery,   , of a    probability of the best scenario and a        chance at the 

worst outcome.  With this lottery, the user is determining how highly they value the 

people attribute when the others are held at their worst values. How much of the “perfect” 

outcome is the best people attribute value worth by itself? 

The third and final panel once again asks the user to provide a probability    

which makes them indifferent between the lottery    and the guaranteed outcome of 

<cost at worst, people at worst, time at best>. Similar to the other two cases, this question 

is determining the user’s value on time. How much of the “perfect” outcome is the best 

implementation time value worth by itself? 

These three panels are asking the user to decide which, if any, of the attributes 

they value more highly. It is possible to have all attributes viewed equally, in which case 

the probability values would be the same for each of the three panel scenarios. However, 

it is possible that users will value one or more of the attributes higher than the others. As 

an example, assume the user valued cost more highly than the people or time required to 

complete the mitigation technique, but viewed time and people as equally valuable.  The 

responses for each of the panels in this case could be:                      . A 

probability value of 0.9 for cost at its best signifies that the user believes this scenario is 

90% of the best case possible. Similarly, people,    , and time,   , at their best are 70% 

of the best scenario. If the user did not value one of the attributes, say people, highly, the 

probabilities could be:                      . This would indicate that people at 

its best value is only 20% of the best scenario while the cost and time attributes at their 

best are 90% and 70% of the best outcome, respectively. 

The probability values obtained through the three joint utility elicitation panels 

are equivalent to the    values necessary for combining the attribute utility functions into 
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a joint utility function. That is,                   . This is because of the special 

way in which the questions are asked: two of the three attributes being set to their worst 

value while one attribute is at its best. With these    values, the   value needed to 

properly combine the attribute utility functions into the joint function according to 

Equation (2.5) can be found implicitly by an Excel Solver routine following Equation 

(5.3). Once the user submits their joint attribute probability values via the GUI, these    

values are stored, and the software tool automatically calculates the   value required to 

satisfy Equation (5.3). 

 

                          
(5.3) 

With the attribute utility functions and    values properly defined, the software 

tool is able to calculate the joint utility value (u-value) for any combination of cost, 

people, and time inputs. The resulting u-value is then scaled by the best and worst 

scenarios following Equation (5.4), where    is the post-scaled u-value and   is the pre-

scaled value; the worst case scenario is represented by          and the best outcome is 

denoted           It is these scaled u-values which are used in the decision tree analysis. 

 

    
          

                  
 

(5.4) 

5.3 TUTORIAL EXAMPLE  

The following sequence of steps will guide the user through an example of 

inputting all the data necessary in order to use the CubeSat Decision Advisor software 

tool. Detailed descriptions of the decision analysis theory used in the software 

development can be found in Chapter 2. For specific information on the software 

development or algorithms, see Section 5.2.  
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The software tool is a Macro-Enabled Excel workbook and was built in Excel 

2007. For the most successful use of the tool, Excel 2007 or newer is recommended. If 

using an older version of Excel, some functionality may be lost. Additionally, please 

make sure to enable the Macros and a Solver connection prior to opening the software 

tool. 

 

5.3.1 Step 0: Open the spreadsheet 

To begin using the CubeSat Decision Advisor, first open the spreadsheet 

“decision_advisor_vX.Y” from which ever location it is currently stored. Note that the X 

and Y should represent the most current version of the tool. For example, at the time of 

writing this Tutorial, the software tool was version 1.0. Once the spreadsheet is open, 

ensure that the Summary page is the current worksheet. If it is not, simply click on the 

“Summary” tab along the bottom of the screen. Once the Summary page is the active 

worksheet, the screen should resemble Figure 5.9. 
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Figure 5.9 - Getting started on the Summary page 

 

5.3.2 Step 1: Ensure mitigation techniques properly encompass mission 

In Step 2, the user will select the mitigation techniques they wish to analyze 

through the decision tree. However, the user should first ensure that the software tool is 

using the mitigation techniques they would like to study. The Mitigation Techniques 

worksheet lists all the mitigation techniques for a given mission risk. If the list of 

mitigation techniques is not sufficient, the user may enter up to three additional 

mitigation techniques per mission risk in the cells which contain phrases such as “Enter 

your own mitigation technique #1” , as illustrated in Figure 5.10. Once the user replaces 

these cells with their own mitigation techniques, the resulting technique will appear as an 

option in the GUI for the given mission risk, as described in the next step. Note that this 
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worksheet allows the user to keep track of the different types of mitigation techniques: 

Avoidance, Control, Assumption, and Transfer.
3
 

 

 

Figure 5.10 - Mitigation techniques worksheet 

5.3.3 Step 2: Enter risk and mitigation technique data 

For the decision analysis to apply to a user’s mission, they must first enter their 

unique mission parameters for analysis. The Options Bar on the Summary page contains 

buttons for entering data relevant to each of the seven mission risks, as shown in Figure 

5.11. Note that the Spacecraft-2 risk has two separate buttons; this is due to the 

limitations of building graphical user interfaces (GUIs) in Excel. If all root causes for the 

Spacecraft-2 risk are to be analyzed, it is necessary to complete the information on both 

GUIs. Once a risk button is selected, a GUI, such as the one shown in Figure 5.12, will 

appear. The user selects the mitigation techniques they wish to analyze, and provides 

their estimates of success probabilities and resource allocation of cost, time, and people 

required for each success outcome of each mitigation technique. 

 

RC1 RC2 RC3 RC4 RC5 RC6 RC7 Mitigation techniques Avoid Control Assume Transfer

Schedule M1 M1 M1 M1 M1 x x formulate schedule milestones with students in mind x

M2 M2 M2 M2 M2 x x

coordinate between sub-groups/subsystems to ensure each 

group has necessary information x

M3 M3 M3 M3 M3 x x

work with payload providers to develop payload schedule 

and deadlines x

M4 M4 M4 M4 M4 x x build margin into schedule milestones x

M5 M5 M5 M5 M5 x x

maintain updated documentation throughout mission life 

cycle x

M6 M6 M6 M6 M6 x x allocate more resources to the task needing completion x

x x Enter your own mitigation technique #1

x x Enter your own mitigation technique #2

x x Enter your own mitigation technique #3
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Figure 5.11 - Entering risk data from the Summary page 

 

 

Figure 5.12 - Mission parameter input graphical user interface 
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The user may choose up to six mitigation techniques to analyze, though they need 

not select all six. Any single mitigation technique or set of techniques for a root cause left 

blank will simply be represented by zeros in the analysis and will not affect the results of 

the other mitigation techniques. It is suggested that the user fill in the desired number of 

mitigation techniques for each root cause. However, as with the mitigation technique 

information, any information left blank on a root cause form will not affect the analysis 

of the other root causes. In other words, if the user desires to analyze the mitigation 

techniques for only one root cause, they are free to do so. The tool was built with 

versatility in mind, and allows the users to tailor the analysis to the needs of their 

mission.  

Versatility is also offered in the entry of attribute parameters. Separate boxes exist 

for three types of mitigation technique outcome: the technique fully works, partially 

works, and does not work. Users may enter different values into each box to reflect the 

differences in cost, people, or time required should a technique fully work, only partially 

work, or not work at all. For example, if a technique fully works, one might expect less 

cost, people, and time to implement said technique. However, if a technique does not 

work, one may expect more money, people, and time to be required in order to find the 

problem with the technique.  

The buttons at the bottom of the form allow users to move from one root cause to 

another, by selecting the “Next” or “Previous” buttons, and to save and/or exit the form. 

If probabilities are entered, then the tool requires these values sum to one before moving 

to the next root cause, saving, or exiting the form. If the data is saved, it is stored on the 

Form Responses sheet. Should the user realize they mistakenly entered incorrect data 

they are free to modify their responses on the Form Responses sheet. The values on the 

Form Responses sheet are used in the decision tree calculations. 
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As an example, assume the user wanted to study three mitigation techniques for 

the Schedule risk root cause 1 – “Inability to find desired spacecraft components”. Three 

choices of mitigation techniques and their associated input parameters are given in Table 

5.4 and are shown entered into the GUI of Figure 5.12. Having entered the desired data, 

the “Save & Exit” button is selected resulting in the Form Responses worksheet storing 

the entered data, as illustrated in Figure 5.13.  Notice that there are zeros above and 

below the entered data, this is because risk information was only entered for three of six 

mitigation techniques on the second root cause panel. 

Table 5.4 - An example of entering risk information 

Mitigation Technique 1 Formulate schedule milestones with students in mind. 

 Fully Works Partially Works Doesn’t Work 

Probability 0.8 0.1 0.1 

Cost ($) 0 0 0 

People 2 4 6 

Time (days) 4 10 15 

Mitigation Technique 2 Build margin into schedule milestones 

 Fully Works Partially Works Doesn’t Work 

Probability 0.6 0.3 0.1 

Cost ($) 0 0 0 

People 1 6 10 

Time (days) 1 6 10 

Mitigation Technique 3 Allocate more resources to the task needing completion 

 Fully Works Partially Works Doesn’t Work 

Probability 0.7 0.2 0.1 

Cost ($) 500 1000 1500 

People 1 2 4 

Time (days) 7 12 20 

 

 

Figure 5.13 - Example Form Responses sheet after entry of data 

Risk Root Cause MT # MT Choice Mitigation Technique Fully Works Prob Partially Works Prob Doesn't Work

SCH 1 1 1 formulate schedule milestones with students in mind 0.8 0.1 0.1

SCH 1 2 4 build margin into schedule milestones 0.6 0.3 0.1

SCH 1 3 6 allocate more resources to the task needing completion 0.7 0.2 0.1

SCH 1 4 0
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5.3.4 Step 3: Enter outcome preference data 

After entering the mission-specific information for analysis, the user must supply 

their outcome preferences in two manners. First, attribute utility functions are determined 

for each of the three variables: Time, Cost, and People required for implementation of the 

mitigation technique. To provide the necessary information for each attribute utility 

function, simply select the parameter in the Option bar section shown in Figure 5.14. For 

example, to submit information regarding the time attribute, select the “Enter Time utility 

preferences” button. Second, the user must supply their evaluations of the relative 

importance of these three parameters by selecting the “Enter joint utility preferences” 

button in the Options bar of the Summary page. 

 

 

Figure 5.14 - Entering preference data on the Summary page 

If the user chooses “Enter Time utility preference,” they will first need to enter 

the maximum number of days they are willing to dedicate to implementing a mitigation 

technique. This screen is shown in Figure 5.15. This maximum number of days is used to 

calibrate the remaining responses, and to serve as the worst case scenario. 
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Figure 5.15 - Entering maximum time allowed 

For example, let the maximum time allowed be 20 days, as entered in Figure 5.15, 

the next screen which appears is shown in Figure 5.16. Here, the user decides between 

two alternatives which help to determine which utility function best represents the user’s 

value system for time.  There are a series of eight questions such as the one shown in 

Figure 5.16. At the end of the eight scenarios, the user’s attribute utility curve for the 

time attribute is established and can be combined with the other parameters once they are 

determined to form the joint utility function. For a more detailed explanation of the 

theory behind multi-attribute utility theory, see Chapter 2 and Section 5.2.2. 
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Figure 5.16 - Selecting time preference alternatives 

Each scenario of the eight panels is asking the user which lottery system better 

describes their preference system. The software is asking the user to identify whether or 

not the certain equivalent meets their preference system. Using the first panel as an 

example, which scenario better represents the user’s preference system: (a) a guaranteed 

implementation time of 15 days is equivalent to a 10% chance at the best scenario, and a 

90% chance at the worst scenario, or (b) 15 days is equivalent to a 25-75 chance at either 

the best or worst scenarios? In this case, the two implementation times are the same but 

the chance at the best scenario is different. A rational user would choose (b) because of 

the higher likelihood of the best outcome.  

As an example of completing the Time Preference GUI, assume the user prefers 

the following scenarios, in order they are displayed: 

1. The implementation time is the same, therefore the user prefers the higher 

chance at the best outcome – “15 days” and “25% chance for 0 days” is 

chosen. 
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2. A decrease of 4 days implementation time and a higher chance at the best 

scenario – “9 days” is chosen. 

3. The implementation time is the same, therefore the user prefers the higher 

chance at the best outcome – “10 days” and “50% chance for 0 days” is 

chosen. 

4. A decrease of 6 days implementation time and a higher chance at the best 

scenario – “3 days” is chosen. 

5. A decrease of 1 day implementation time and a higher chance at the best 

scenario – “14 days” is chosen. 

6. Fewer days implementation time is equivalent to a higher likelihood of the 

best scenario – “5 days” is chosen. 

7. A decrease of 9 day implementation time and a higher chance at the best 

scenario – “4 days” is chosen. 

8. A decrease of 1 day implementation time and a higher chance at the best 

scenario – “5 days” is chosen. 

Once the user identifies their preferences, they are requested to select “Save & 

Exit”, though they can save their preferences at any time by selecting “Save”. The 

number of times the user selected certain scenarios is tallied, and their utility function is 

established per the algorithms described in Section 5.2.2.  

Similar to the input of time preferences, the user must enter their cost and people 

preferences through the Options bar buttons shown in Figure 5.14 by selecting either 

“Enter Cost utility preferences” and “Enter People utility preferences”. The first screen 

once the button has been selected will request the user to input the maximum amount of 

money or people they are willing to use for a given mitigation technique implementation. 

Then, similar questions to the scenario of Figure 5.16 will determine the user’s attribute 
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utility functions for the cost and people attributes. For this tutorial example, a maximum 

cost of $5000 and a maximum number of 10 people were assumed. Answers were 

supplied to similar questions as given in Figure 5.16 so that the cost and people gamma 

values were determined to be 0.002 and 0.5, respectively. 

After each attribute utility function has been entered, the user should select the 

“Enter joint utility preferences” option shown in Figure 5.14 to provide the information 

necessary to combine the attribute utility functions into a joint function, as explained in 

Section 5.2.2. The first screen visible is given in Figure 5.17. The software is asking the 

user to identify the worth of the cost attribute being at its best value while the people and 

time attributes are at their maximum, or worst, values. This scenario is denoted by <cost 

at best, people at worst, time at worst>. The example given in Figure 5.17 shows a user 

believing that the cost attribute, alone, at its best is worth 72% of the best scenario. In 

other words, given a choice between the worst scenario and <cost at best, people at worst, 

time at worst>, the user would choose the latter 72% of the time. 

 

 

Figure 5.17 - Entering joint utility preferences 
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Similarly, the second screen contains the same lottery as Figure 5.17, but asks 

with respect to the combination of cost at its worst, people at its best, and time at its 

worst. Assume, as example, the user views this scenario as less valuable than the first 

scenario, and claims it is 60% of the best outcome. The third, and final, screen completes 

the session with the combination of cost at its worst, people at its worst, and time at its 

best. Consider a mission under a tremendous time crunch, and the implementation time is 

highly valuable. In this situation, the user may enter a high value, such as 90%, to 

indicate this preference. Once the user has supplied these three probability values, they 

should select “Save & Exit” to complete the process. These three combinations help to 

establish the values which will allow combination of the attribute utility functions into a 

joint function.  

The joint utility function is what is used during the decision tree calculations to 

obtain the expected utility for a given mitigation technique. A joint utility function is 

used to represent the trade space between mitigation techniques with varying costs, 

people required, and times to completion. Each decision-maker will have a different 

preference system and may value these three parameters differently than someone else. 

For a more detailed explanation of these concepts, see Section 2.4 for more information 

on utility theory. 

 

5.3.5 Step 4: Calculate and Summarize Utilities 

Having completed Steps 0-3, the user has entered all the critical information 

necessary for the software tool to complete its decision analysis calculations. Before 

running any calculations, however, the user should select the “Replace values and 

probabilities” option of the Calculations box shown in Figure 5.18. This Excel Macro 
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takes the data obtained from the user’s entry of risk information in Step 5.3.3 and places 

the data in the proper locations of the mission risk decision trees. Should the user realize 

data is incorrect, they are able to modify the data in the Form Responses worksheet and 

select the “Replace” option again. Additionally, the choices of mitigation techniques 

made by the user are captured on the Mitigation Techniques worksheet for future 

reference during the course of decision-making.  

 

 

Figure 5.18 - Calculations options 

After ensuring the replaced data is correct, the user selects which mission risks 

they wish to analyze by selecting or de-selecting the checkboxes on the left-hand side of 

the Options bar, illustrated in Figure 5.19. Recall that these checkboxes represent the 

seven mission risks, described in Table 5.1, Schedule (SCH), Payload (PAY), Spacecraft-

1 (SC1), Spacecraft-2 (SC2), Spacecraft-3 (SC3), Personnel (PER), and Cost (COST). 

After doing so, the user has three options: “Only calculate utilities”, “Only summarize 

utilities”, and “Calculate and summarize utilities”. Table 5.5 discusses why the user 

would want to select one option over another. 

 



 153 

 

Figure 5.19 - Checkbox options 

Table 5.5 - Calculation options explained 

Option Description Why Select? 

“Only 

calculate 

utilities” 

The software will automatically 

calculate the expected utility for each 

mitigation technique of each root 

cause for all mission risks. 

May want to simply look at the 

decision tree, and not the summary 

page.  

“Only 

summarize 

utilities” 

The software highlights the mitigation 

technique with the maximum 

expected utility per each root cause, 

and places this information in a box at 

the root cause level of the decision 

tree as well as on the Summary Page 

May have already calculated 

utilities and only want to look at 

the summary analysis.  

“Calculate 

and 

summarize 

utilities” 

The software first calculates the 

mitigation technique expected utilities 

and then summarizes these on the 

decision tree and on the Summary 

Page 

This is the recommended option. 

Calculations and summary 

information is updated at the same 

time, relieving any possibility of 

mismatched information.   

Using the data obtained through the examples provided in Step 2 and Step 3, 

Figure 5.20 shows the resulting Schedule decision tree after selecting the “Calculate and 

summarize utilities” option. Notice that Mitigation Technique 2 (M2), Build Margin into 

Scheduled Milestones (as shown in Fig. 5.22), is highlighted in green, signifying that it 

has the highest expected utility value. This mitigation technique is therefore the technique 
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which, given the probability and attribute parameter values, provides the most effective 

use of resources. Figure 5.21 shows the Summary page resulting from selecting 

“Calculate and summarize utilities”. Notice that only the second root cause of the 

Schedule risk has a “Winning Mitigation Technique” and an “Associated Expected 

Utility”. The remaining root causes refer to “No data entered” to remind the user they did 

not provide data for that portion of the analysis. 

 

 

Figure 5.20 - Schedule risk decision tree with calculations 

 

 

Figure 5.21 - Summary page with calculations 

 

Mission Risk Root Cause

Winning 

Mitigation 

Technique

Associated 

Expected 

Utility

Rank 

w/i Risk

Rank 

All

Schedule The event of a slip in meeting schedule milestones or deadlines.

RC1 Inability to find desired spacecraft components With M2 0.635030483 1 1

RC2 Mechanical design delays (such as issues with the CAD or drawings) No data entered 0 2 2

RC3

Software design delays (such as basic component functionality or embedded 

coding issues) No data entered 0 2 2

RC4

Delay due to issuse with payload provider (may be related to delivery of EDU 

or flight unit, documentation, or interface issues) No data entered 0 2 2

RC5 Delay due to inadequate documentation No data entered 0 2 2
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5.3.6 Step 5: Make the Decision 

The user has all the information necessary now to make the decision of which 

mitigation technique(s) to implement. The results given on the Summary page, shown in 

Figure 5.21, allow the decision-maker to identify the order in which to apply their 

resources for a given mission risk using the “Rank w/i [within] Risk” column, or among 

all root causes using the “Rank All” column. Remember to follow the Rules of Actional 

Thought described in Section 2.4.3. Namely, the normative and logical decision is to 

choose to mitigate the root cause with the highest expected utility. This root cause has 

been calculated to yield the best outcome for the input parameters and the user-defined 

preference system. Recall that the list of mitigation techniques chosen for analysis is 

provided on the Mitigation Techniques worksheet, as can be seen in Figure 5.22. 

 

 

Figure 5.22 - Example mitigation techniques page after calculations 

 

 

 

 

RC1 RC2 RC3 RC4 RC5 RC6 RC7 Mitigation techniques

Schedule M1 x x formulate schedule milestones with students in mind

x x

coordinate between sub-groups/subsystems to ensure each 

group has necessary information

x x

work with payload providers to develop payload schedule 

and deadlines

M2 x x build margin into schedule milestones

x x

maintain updated documentation throughout mission life 

cycle

M3 x x allocate more resources to the task needing completion

x x Enter your own mitigation technique #1

x x Enter your own mitigation technique #2

x x Enter your own mitigation technique #3
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5.3.7 Step 6: Additional Options – Clearing Data 

While the software tool may be used fully with Steps 0-5, the user may require the 

use of the following additional options illustrated in Figure 5.23, and located on the 

Summary page Options Bar: 

 

Figure 5.23 - Clearing data options 

1. Restore values – this option restores values from a case study using the 

UT-Austin ARMADILLO mission. This option allows the user to see how the tool works 

without entering any of their own mission-specific data. Additionally, users could simply 

modify the ARMADILLO data to meet their own mission information. For the 

ARMADILLO case study inputs and outputs, see Appendix A.  

2. Restore Utility Curve Parameters – this option allows users to use the 

pre-set utility curve preferences from the ARMADILLO case study in case they do not 

wish to enter their own preference data or do not have the time or knowledge to do so. 

These default parameters are listed in Table 5.6. 
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Table 5.6 - Default utility curve preferences. 

 Cost (USD $) People (# people) Time (days) 

Max 60000 30 180 

Chosen gamma 0.002 0.05 0.1 

K values 

K = -0.99156 K1 = 0.9 K2 = 0.75 K3 = 0.7 

3. Reset Checkboxes – this option clears the checkboxes on the left-hand 

side of the Options bar. If users are only analyzing a subset of the mission risks, they may 

wish to clear the checkboxes prior to moving to a different subset of risks.  

4. Clear Form Responses – this option clears the contents of the Form 

Responses sheet. Users may want to use this option when they decide to enter a new set 

of information for analysis.  

5. Clear Summary Contents – this option allows users to clear the 

calculated values of the summary page. Users may want to use this if they will be 

entering new information, so as not confuse old and new results.  

6. Clear Mitigation Technique Selections – this option allows the user to 

clear the Mitigation Techniques page of any selections made during the entry of risk 

information.  

7. Clear Risk Decision Tree Data – this option will clear the calculated 

values and input parameters for each decision tree as indicated by the checkboxes. For 

example, if the “All” checkbox is selected, “Clear Risk Decision Tree Data” will clear the 

data on all the decision tree pages.  

8. Clear All Data – this function clears the form responses, summary 

contents, mitigation technique selections, and decision tree data. It is advised to only use 

this when analyzing a completely new set of data.  
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9. Clear Utility Curve Parameters – this option will delete the default or 

user-entered utility curve parameters. This function is included in the “Clear All Data” 

button, but is also available as a stand-alone command.  

  

Note: The analysis cannot occur without some specific data: 

• Probabilities and input values for the mitigation technique/root cause 

combinations the user wishes to analyze. 

• Utility curve parameters. The user may use the default utility curve 

parameter settings by selecting the “Restore Utility Curve Parameters” options mentioned 

above. Then, they could modify the settings by examining the “ucurves” worksheet 

within the tool. If the user tries to complete analysis without having entered utility curve 

preferences, a message box will pop up requesting they complete this step. Any 

calculations displayed should therefore be ignored until the data has been properly 

entered. 
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5.3.8 Step 7: Additional Options – Analyzing Data 

While the software tool may be used fully with Steps 0-5, and the additional items 

of Step 6, the user may wish for the analysis options illustrated in Figure 5.24 and located 

on the Summary page Options Bar: 

 

 

Figure 5.24 - Analyzing data options. 

1. Examine Joint Utility Curve  

This option will direct the user to the “joint” worksheet where there exists an 

interactive plot similar to the one shown in Figure 5.25. The user must enter the number 

of people for which they wish to view the joint utility curve in order to hold one attribute 

constant for viewing in a 3-D manner, and then select the “PLOT!” button. Recall that the 

joint utility curve gives the user’s preference system with respect to all three variables – 

cost, people, and time – required for a given mitigation technique. This plot details the 

importance of certain values of the cost, people, and time parameters. The user may 

determine the utility of any given set of parameters by examining the data table. 
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Figure 5.25 - Joint utility curve. 

 

2. Determine Preferred Mitigation Techniques 

This option directs the user to the Additional (“Addtl”) page where the mitigation 

technique preferred the most number of times within a mission risk is displayed, as 

shown in Figure 5.26. This helps the user determine if there are any mitigation techniques 

which would be useful across the entire mission risk, not just for a given root cause. Note 

that the displayed mitigation technique should match with the mode for each mission risk 

category of the “Winning Mitigation Technique” column of the Summary page. The 

example shown in Figure 5.26 reflects the results of the ARMADILLO case study. 
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Figure 5.26 - Mitigation technique summary. 

 

3. Sensitivity Analysis 

This option requires the user to first indicate which risks they wish to analyze by 

checking or un-checking the checkboxes within the Options panel. A few key notes, the 

reader is requested to pay extra attention to the third bullet: 

 The more risks selected, the longer the analysis will take.  

 Because of limitations with Excel, not all seven risks can be selected at 

once for the sensitivity analysis. It is suggested to run multiple analyses, 

so as not to lock the computer for too long. While it is possible to 

complete other work while the analysis is running, it is not possible to use 

Excel at the same time.  

 Running the sensitivity analysis multiple times will overwrite the 

output file, so make sure to save the desired output file as a different 

name if multiple analyses are to be completed.  

 Two output workbooks will be created as a part of the program. These 

files will be stored at the same location as where the software tool itself 

has been stored. These output files are named: 

“sensitivity_analysis_Mi_results.xls” and 

“sensitivity_analysis_U_results.xls.” 

Mitigation technique summary

SCH The most preferred mitigation technique for the SCH risk is: M6


PAY The most preferred mitigation technique for the PAY risk is: M2


SC1 The most preferred mitigation technique for the SC1 risk is: M4


SC2 The most preferred mitigation technique for the SC2 risk is: M5


SC3 The most preferred mitigation technique for the SC3 risk is: M1
, M2
, M3
, M4


PER The most preferred mitigation technique for the PER risk is: M4


COST The most preferred mitigation technique for the COST risk is: M3
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The sensitivity analysis looks at the user’s input and determines how the output 

would be affected if the user’s preferences were slightly different. That is, the program 

re-calculates the decision result with different u-curve preference information in the form 

of varying   and gamma values. Recall that the   values are used to combine the 

individual parameter utility functions while the gamma value is a parameter of the utility 

function itself.  

The “Addtl” page of the Decision Advisor software tool includes, as a reference, 

the different combinations of gamma and   values used in the sensitivity analysis for the 

specific user. These values are also located on the first page, “Parameters,” of the two 

output workbooks, “sensitivity_analysis_Mi_results” and 

“sensitivity_analysis_U_results.”  

The sensitivity analysis is meant to provide the user a sense of how their decision 

would change if their preference system was slightly different. The software has been 

limited to four values of the gamma parameter for each cost, people, and time. Thus, 

there are 64 combinations of gamma parameters which are studied for the sensitivity 

analysis. The   values used in the sensitivity analysis depend upon the user’s completion 

of the “Enter joint utility preferences” step. The program takes each individual   ,   , 

   and uses three values below and three values above, in increments of 0.1, with a 

minimum value of 0 and a maximum value of 1 as the k value parameters for the 

sensitivity analysis. So, if the user had a   =0.72,   =0.6,   =0.9, then the values used in 

the sensitivity analysis would be those shown in Table 5.7. Because there are seven 

options for each    ,   , and   , there are 343 different k value combinations. 
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Table 5.7 - Example k values for sensitivity analysis. 

 

Call sign          

-0.3 -3d 0.42 0.3 0.6 

-0.2 -2d 0.52 0.4 0.7 

-0.1 -1d 0.62 0.5 0.8 

Base 0d 0.72 0.6 0.9 

+0.1 1d 0.82 0.7 1 

+0.2 2d 0.92 0.8 1 

+0.3 3d 1 0.9 1 

 

The output workbooks will contain the data set itself, as well as several useful 

plots and summaries. The first page a user will see when opening the output workbook is 

the “Parameters” page, which lists the gamma and   values used in the analysis as well as 

the trial reference number used in some of the output plots. Note that to open the output 

workbooks, users may have to select “yes” when asked if they wish to open a file with a 

different extension. This appears to be due to the VBA programming of opening and 

closing the workbooks. It should be safe to select “yes.”  

After the “Parameters” page will be a page for each mission risk root cause. If 

multiple mission risks were selected, all root causes for those multiple mission risks 

should be displayed as separate worksheets. For the workbook, 

“sensitivity_analysis_Mi_results” the output will be the mitigation technique number 

which maximizes the utility of that root cause of the given mission risk. Similarly, the 

output of the “sensitivity_analysis_U_results” is the maximum utility value for the root 

cause of the given mission risk. Thus, the plot which overlays the data set represents the 

output value as a function of the   and gamma value trials. Recall the trial number and 

associated values can be found on the “Parameters” worksheet. An example plot is shown 

for Schedule Root Cause 1 in Figure 5.27. Note that this plot is not the result of running 
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the sensitivity analysis on the example from Steps 1-5. This plot shows the oscillation 

between the mitigation techniques 3, 4, and 6. Obviously, the 6th mitigation technique is 

chosen much less frequently. In the example shown in Figure 5.27, the Schedule Root 

Cause 1 output tends to fluctuate between Mitigation Technique 3 and 4 much of the 

time. This fluctuation is most likely due to the specific set of   and gamma values, and it 

would be incumbent upon the user to determine which cases, located behind the plot, 

result in a specific mitigation technique. The plot and numerical sensitivity analysis 

output are purely meant to help the user identify how their decisions would change if 

their utility preferences were slightly different. The highlighted formatting represents an 

example of post-processing the user could complete. That is, if they wish to look for 

which trials yield a certain mitigation technique, then they could use the Excel 

conditional formatting options.   

 

 

Figure 5.27 - Sensitivity analysis results example. 
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The second set of plots displayed for each mission risk root cause are shown in 

Figure 5.28. These plots count the number of times the output value falls within a certain 

utility range or is equal to a given mitigation technique, depending on the output value, 

for the set of trials which vary individual parameters. The utility ranges have an inclusive 

lower bound, but exclusive upper bound, i.e. [0.2, 0.4). As an example, the user may be 

interested in the sensitivity output if only the    value was changed, or if only the gamma 

parameter for the People input value was changed. These plots allow the user to 

determine how big of an impact an individual preference parameter has on the decision 

outcome.  

Columns with the titles, “-3d,” “-2d,” etc., indicate the change in the given 

parameter, as detailed with an example in Table 5.7. For example, within the K1 section 

of Figure 5.28, “-3d” means that the values in that column correspond to when    was 

equal to -3 times the delta value, in this case 0.1. By examining either the histogram data 

output or the graphical display, users can see how changing a given utility function 

parameter may affect either their mitigation choice or the maximum expected utility 

associated with the mitigation choice. As an example, the K1 section of Figure 5.28 

shows that the expected utility is consistently between 0.2 and 0.8 and only dips below 

0.2 when   = “-3d” or “-2d.” Additionally, when no change is made to   , the utility 

value tends to be in the [0.4, 0.6) range. However, when increased or decreased slightly, 

the utility value becomes more spread out. This is more evident in the lower ranges of 

  than the increased value range. 
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Figure 5.28 - Individual histogram sensitivity analysis example output. 

 

The usefulness of the tool is negated if it cannot be shown to produce meaningful 

results in many different situations. Just as with the CubeSat Risk Analysis software tool, 

the Decision Advisor tool must be thoroughly tested and validated prior to being released 

to the small satellite community. The next chapter presents the testing and validation 

methods used in this analysis.  

                                                 
Chapter notes: 

1
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Chapter 6: Testing of CubeSat Decision Advisor Software Tool 

Since there is no inherent data set associated with the Decision Advisor with 

which to test the assessment accuracy of the tool, and no similar existing tool is readily 

accessible, validation and testing is completed via case study analysis. Mathematically 

simple cases provided a method of error-checking the software to ensure that known 

results were obtained when the associated inputs were supplied. Sensitivity analysis 

supplied insights into how the decisions would change should a parameter only slightly 

deviate from its nominal value. Monte Carlo analysis investigated the effect of different 

combinations of parameters on the chosen mitigation technique and expected utility 

value. A series of case studies were completed based on data from the ARMADILLO 3U 

CubeSat mission to illustrate the impact this software tool can make on a mission at any 

point of its development cycle. Finally, the software tool has been released to the Small 

Satellite community with a request to return feedback in addition to the data input and 

resulting conclusions for further case study material. 

 

6.1 MATHEMATICALLY SIMPLE CASES / ERROR CHECKING 

Before running more detailed validation and testing cases, it was necessary to 

ensure that the software tool was properly functioning. To do this, a series of 

mathematically simple or error-checking cases were devised. These cases consisted of 

inputs which would nominally yield a set of obvious outputs, if the software tool was 

working appropriately. Because both the inputs and nominal outputs were known, the 

accuracy of the tool could be established. The following test cases were initially built and 

tested on the Schedule mission risk, but were later tested on the remaining mission risks 

to ensure the entire tool functioned appropriately.  
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6.1.1 Missing or inappropriate data 

The tool must be able to handle missing or blank data, since the user may wish to 

only analyze a single risk or root cause. As such, test cases were created to test whether 

or not the tool would flag missing data as an error. One test case focused on the Schedule 

risk and provided inputs for two mitigation techniques (MT) associated with root cause 

(RC) 1, one MT with RC2, RC3 and RC4 were left blank, and two MTs associated with 

RC5. Thus, both data left blank within the root cause as well as whole root causes left 

blank were tested. The result was that the software tool treats missing data as if it is a 

zero value and indicates on the Summary page that no data was entered. It should be 

noted that a probability value may be left blank only if the remaining values sum to unity, 

or no data for the mitigation technique is entered. However, cost, time, and people input 

parameters may be left blank at any time. Another test case examined the outcome should 

a user leave the utility preferences blank. Since these values are necessary to determine 

the expected utility, the tool was initially unable to calculate the utilities and returned an 

error message. After implementing this test case, a feature was added so that when the 

user selects the calculation option, the tool automatically checks to make sure all the 

appropriate utility preference data has been entered. If any of the utility values are 

missing, then a message box appears with the missing data listed.  

The input parameter user interface also checks to ensure the values are numeric. If 

a user enters a non-numerical value, e.g. $, %, *, then a message box appears when the 

user tries to Save the input parameters. The message box lists the boxes which contain a 

non-numerical value and the user is asked to change the values entered. 
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6.1.2 Maximum and Minimum Input Values 

Because of the way the attribute utility functions are scaled, a maximum attribute 

parameter would yield a utility value of zero while a minimum attribute parameter would 

yield a utility value of one. Similarly, if all the attributes were at their maximum, then the 

joint utility would be zero. If all the attributes were at their minimum values, then the 

joint utility value would be one. These relationships provide a set of test cases to ensure 

that the utility values are properly calculated. A set of maximum values is shown in Table 

6.1. The minimum values are all zero, since it is not reasonable to have negative cost, 

people, or time. 

Table 6.1 - Set of maximum input parameter values. 

 Cost (USD $) People (# people) Time (days) 

Maximum value 5000 10 20 

 

A first test case used all maximum values to ensure that the resulting utility 

calculations were all zero. Figure 6.1 shows the decision tree result of this all-maximum 

value test case. Notice that the far right column consists only of zeros and the expected 

utility value is also zero. The far right column, though, is the joint utility. This joint utility 

value will only be zero if all the attribute values correspond to the maximum values as 

indicated by the user.  A similar test case was developed to test the tool response when all 

the minimum input parameters, namely all zeros, were entered. The result was a set of 

utility values equaling one, as expected. A final set of test cases employed involved 

testing inputs which go above and below the maximum and minimum values indicated by 

the user. Going above the maximum value simply resulted in a negative utility. A 

negative utility value is not impossible; it simply indicates that the parameter is not 

acceptable given the user’s preferences. An input value less than the minimum, namely a 
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negative value, results in a message box during parameter entry indicating the user must 

supply a different value. 

 

 

 

Figure 6.1 - Example maximum value test case decision tree result. 

 

6.1.3 Modifying utility curve parameters 

The utility curve parameters describe the user preference of a specific attribute – 

cost, people, or time. A set of test cases were devised to test how the software tool would 

react when these utility curve parameters were altered. In a way, these test cases 

comprised a controlled sensitivity analysis, because specific combinations of the gamma 

parameters were used in order to determine if changing the gamma values in a known 

fashion would result in a predicted outcome.  

Table 6.2 shows the individual utility values for each gamma changing case. Case 

1 involved changing the cost gamma value while Case 2 changed the people value and 

Case 3 changed the time value. Recall that the decision tree incorporates three outcomes 

of the mitigation technique: either it fully works, partially works, or does not work. Note 

that each outcome is defined by the user. That is, each user could have a different 

definition of what it means for a technique to fully work. The baseline shows the starting 
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sections contain only their attribute utility value. For example, the Cost section values are 

only the cost utility values, since the other input parameters did not change and the utility 

value therefore stays the same. From this data, it is seen that as the gamma parameter is 

decreased (increasing case letters a-b-c), the utility value increases as expected.  

 

Table 6.2 - Utility values interaction due to changing gamma values. 

Baseline Cost 

Cost  People Time Case 1a Case 1b Case 1c 

0.980199 0.367879 0.904837 0.99005 0.995012 0.999 

People Time 

Case 2a Case 2b Case 2c Case 3a Case 3b Case 3c 

0.606531 0.740818 0.904837 0.951229 0.97531 0.99005 

 

The utility functions, such as the People functions in Figure 6.2, show that with a 

lower gamma value, the same input parameter will yield a larger utility value. All other 

values being the same, it would be expected that with a decrease in the gamma parameter 

would see higher utility values. However, this is only true in the joint utility values for 

decreasing the people gamma. In fact, the utility values decrease in the cost gamma case, 

and mostly increase in the time gamma cases. Given the output of Table 6.2 and the 

associated discussion, the non-increasing trend must be due to the interaction between all 

three of the cost, people, and time input parameters.  
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Figure 6.2 - People utility functions for varying gamma parameters. 
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Similarly, when both the gamma and input parameters are large, the lowest joint utility 

value is obtained. These values were first calculated by hand for the software tool to 

verify. The tool matched the calculations exactly. 

 

Table 6.3 - Changing both gamma and input values. 

 Cost (USD hundreds $) People (# people) Time (days) 

Small Gamma 0.0001 0.05 0.01 

Large Gamma 0.002 0.5 0.1 

Small input 5 2 1 

Large input 10 6 10 

 

Table 6.4 - Changing both gamma and input values results. 

 

Cost People Time Joint 

A 0.9900 0.3679 0.9048 0.6502 

B 0.9802 0.0498 0.3679 0.2954 

C 0.9990 0.7408 0.9048 0.6040 

D 0.9995 0.9048 0.9901 0.8842 

 

 

6.2 SENSITIVITY ANALYSIS 

By conducting a sensitivity analysis, it is possible to determine how the choice of 

mitigation technique is subject to change given a slight modification of preferences. This 

is particularly insightful because users may realize during the course of inputting their 

data that they had misrepresented their preferences. Namely, how they value cost, people, 

and time. Because of the infinite combinations of inputs, an assumed set of probabilities, 

cost, people, and time parameters were held constant throughout the sensitivity analysis. 

Additionally, only one risk, Schedule, was analyzed, since the same attribute inputs on 

other mission risks would yield the same output. Instead, the utility function   values and 
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gamma parameters were varied in order to examine how changing preferences would 

change the decision analysis outcome. Modifying all of the parameters will be described 

in the Monte Carlo Analysis section.   

With four gamma parameters for each of the three attributes, 64 different gamma 

value combinations were possible. To ensure computing capability,    value 

combinations were also limited to values between 0.2 and 1 in increments of 0.2. Thus, 

with three attributes, there were a total of 64    value combinations. The   value is then 

dependent upon the three    values according to Equation (2.9). A software program 

stepped through each gamma and   value combination and calculated the winning choice 

of mitigation technique and its associated expected utility for each root cause within the 

Schedule risk.  

Recall the probabilities and attribute values were constant for all gamma and   

value combinations. Thus, the result shows only the effect of changing the gamma and/or 

  values in the utility function calculations. That is, the results relate to changing the 

utility curve or the manner in which the utility curves are combined. The histograms 

shown in Figure 6.3 and Figure 6.4 illustrate the number of times a certain combination 

of   or gamma values, respectively, yielded the maximum expected utility. The more 

spread out the root cause is on the histograms of Figure 6.3 and Figure 6.4, the more 

susceptible the root cause is to fluctuations in gamma or   values. Particularly, a slight 

change in a user’s preference will yield a different mitigation technique and expected 

utility result. As illustrated in Figure 6.3 and Figure 6.4, Root Cause 3 and Root Cause 5 

appear to be the most unstable due to their more varied distributions than the other root 

causes. Specific to the Schedule risk, Root Cause 3 is “Software design delay (such as 

basic component functionality or embedded coding issues)” while Root Cause 5 is 

“Delay due to inadequate documentation.” When compared to the other Schedule root 



 175 

causes, it would make sense that these two root causes would be sensitive to small 

changes in preference systems and input values, since both are highly dependent upon 

circumstances. However, the sensitivity data is specific to the unique test case. Results 

may vary for other users. The sensitivity seen in this example could be explained by the 

input parameters of those specific root causes. In other words, the combination of 

probabilities and attribute values affects the utility values, and a slight change in gamma 

and   values may sway the mitigation technique choice. 

 

 

Figure 6.3 - Histogram of k combination yielding maximum expected utility. 
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Figure 6.4 - Histogram of gamma combinations yielding maximum expected utility. 
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Figure 6.5 - Maximum expected utility for Root Cause 1 as a function of the gamma 

combination trials. 

 

 

Figure 6.6 - Maximum expected utility for Root Cause 1 as a function of the k 

combination trials. 
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built into the tool so that users may produce their own sensitivity analysis to see how 

their decision could change if their preferences were slightly different. The sensitivity 

analysis tested the decision analysis output dependence upon the input parameters. There 

are levels of interaction due to the attribute utility values being a function of multiple 

inputs, and the joint utility value being a function of the attribute values with additional 

inputs. All in all, the sensitivity analysis provides insights into how the decision may 

change should user preferences slightly vary.    

 

6.3 MONTE CARLO ANALYSIS  

While the sensitivity analysis looked at only changing the gamma and   values 

while keeping a set of input parameters constant, the Monte Carlo simulation changed the 

input parameters as well. The same 64 combinations of gamma and   values were used in 

this analysis as in the sensitivity analysis. Additionally, 21 probability combinations were 

created based on probabilities ranging from 0 to 1 in increments of 0.2. A constraint of 

probabilities summing to unity was applied to these probabilities, thus the 21 

combinations of probabilities. Cost was varied from $0 to $5000 in increments of $500. 

The people parameter was varied from 0 to 10 in increments of 2. Time was varied from 

0 to 30 days in increments of 5. Therefore, there were a possible 11 cost, 6 people, and 7 

time values. Between the probability, attribute, gamma, and   values, there were on the 

order of 10
12

 possible combinations for a single mitigation technique. Therefore, 

modeling an entire risk was out of the question, and the Monte Carlo analysis focused on 

modeling the parameter choices for a single mitigation technique. Additionally, the 

results from a single mitigation technique are applicable to the remaining techniques 

across all of the mission risks.  



 179 

The purpose of the Monte Carlo simulation was to model the decision analysis 

outcome for the possible sets of inputs. To aid in computational intensity, it is often 

helpful to generate Monte Carlo samples in a number of runs. Samples are the data points 

used in analysis, but are drawn from distributions during the run. Runs are a way of 

organizing these samples. This Monte Carlo analysis used 100,000 samples. Rather than 

sample 100,000 times during a single run, it is often more computationally advantageous 

to spread the samples across numerous runs. This analysis used 100 runs of 1000 

samples, yielding the desired 100,000 samples. Figure 6.7 illustrates how the simulation 

was completed, including the variables which were sampled, determination of the utility 

values as well as calculation of expected utility, and outputting the key statistics for 

analysis. Furthermore, Figure 6.7 shows the relationship between samples and runs. The 

decision analysis outcome is based on the maximum expected utility. For each run, the 

inputs resulting in the maximum expected utility were stored as well as plotted. In this 

way, analysis could be completed on an individual run as well as an aggregated basis.  

Since no prior distribution was imposed on the input parameters, the Monte Carlo 

simulation should call upon each parameter an approximately equal number of times, in 

other words, using a uniform distribution. This should be true both in terms of an 

individual run as well as the entire compilation of data. Figure 6.8 shows the 

approximately even distribution of cost, people, and time parameters chosen on an 

individual run basis. The aggregate data shows a similar trend.  
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Figure 6.7 - Monte Carlo simulation flowchart. 
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maximum expected utility values, as shown in Figure 6.9 for the cost parameter. Similar 

plots exist for the people and time parameters. Note that the minimum value does not 

always provide the maximum expected utility. The other values may at times provide the 

maximum expected utility due to the other input parameters and the utility preference 

information. For example, if cost is not preferred as highly as people, then a higher cost 

value may be offset by a lower people value. Additionally, probabilities can play a 

significant role in a larger attribute value still resulting in a maximum expected utility.  

The Monte Carlo simulation showed that the decision theory applied in the tool 

was working properly. Results were obtained which match theory. Namely, lower input 

parameters, higher probabilities on lower input parameters, or lower probabilities on 

higher input parameters are more likely to generate maximum expected utility values. 

 

 

 

Figure 6.8 - Individual run histogram of cost, people, and time parameters chosen for the 

Monte Carlo Simulation. 
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Figure 6.9 - Cost parameter chosen in Monte Carlo simulation for the maximum expected 

utility value. 
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6.4.1 ARMADILLO Case Study 

A case study was created using the ARMADILLO 3-Unit CubeSat mission, 

described in Section 1.4.4 with input parameters current as of September 2014. The full 

set of inputs can be found in Appendix A as well as the Decision Advisor User’s Guide.  

Analysis of the output resulted in Table 6.5 in which the overall top five mitigation 

techniques are listed. These are the mitigation techniques across the seven mission risks 

with all 32 root causes which would be most advantageous to mitigate given the user’s 

preferences. Interestingly, applying the CubeSat Risk Analysis software tool detailed in 

Chapter 3 to the ARMADILLO mission in its current status resulted in the identification 

of the COST and SCH risks as the highest concern. Table 6.5 shows four methods to help 

mitigate several of the root causes to combat these highest concern risks. PER was the 

lowest concern, but it obviously has one of the easiest and most worthwhile root causes to 

mitigate according to Table 6.5. The Loss of Hardware root cause was deemed a 

personnel risk because of the possibility that team members may not adequately track 

their handling of hardware and the team may physically lose the hardware or it may be 

damaged without knowing the reason. A simple mitigation technique to implement is to 

introduce a hardware tracking method such as certification logs. This mitigation 

technique seems to work well for the Texas Spacecraft Lab. 
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Table 6.5 - Top five mitigation techniques for ARMADILLO case study. 

Mission 

Risk  

Root 

Cause 

Explanation Mitigation 

Technique 

Expected 

Utility 

Overall 

rank 

COST RC2 COTS component 

price increases 

Include contingency 

in budget allocations 

0.893 1 

COST RC1 Incomplete 

understanding of 

projected total 

mission costs 

Include contingency 

in budget allocations 

0.879 2 

SCH RC1 Inability to find 

desired spacecraft 

components 

Allocate more 

resources to the task 

needing completion 

0.871 3 

SCH RC2 Mechanical design 

delays 

Allocate more 

resources to the task 

needing completion 

0.871 3 

PER RC2 Loss of hardware Have tracking 

method for hardware 

(e.g. inventory 

system, certification 

logs) 

0.856 5 

 

A sensitivity analysis was completed on the ARMADILLO case study data to 

show how the results would be affected by small changes in the utility curve parameters. 

Interestingly, of the top five root causes to mitigate, as described in Table 6.5, the COST 

RC1 and RC2 both had no variation in the mitigation technique selected for maximum 

utility. This indicates that no matter the combination of utility preferences, the mitigation 

technique listed will remain the best choice for the defined input parameters. 

Additionally, the maximum utility value for the COST RC1 and RC2 showed little 

variation, implying that these two root causes would consistently be ranked among the 

top root causes to mitigate.  

The Schedule risk showed more deviation in both mitigation technique chosen 

and expected utility. Figure 6.10 shows the variability in the chosen mitigation technique 
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across different values of utility preferences (gamma trial) and methods in which these 

preferences were combined (k trial). Figure 6.11 illustrates the same variability in the 

maximum expected utility value associated with the chosen mitigation technique. The 

Schedule RC2 root cause showed similar variability in both chosen mitigation technique 

and associated expected utility.  Plots similar to Figure 6.10 and Figure 6.11 are available 

for the other root causes, but are not shown here. 

The variability shown in Figure 6.10 is mostly between mitigation techniques 3 

and 4, with occasional jumps to mitigation technique 6. Figure 6.11 is much more 

variable, but with good reason, as this plot shows the maximum expected value across all 

the six mitigation techniques for the Schedule risk Root Cause 1. In general, the 

maximum expected utility plot will always appear more volatile, since it is capturing the 

change in the decimal-valued utility as opposed to the integer-valued mitigation 

technique. The variability in both figures is due to the slight change in the user’s 

preference system, the gamma and   parameters, during the sensitivity analysis. The 

more variability in these plots, the more the root cause is susceptible to changes in 

mitigation technique choice. Some root cause mitigation technique output plots show a 

smooth plane, indicating that throughout the sensitivity analysis the mitigation technique 

choice did not change, as is the case with the Cost risk output. However, for this example, 

the Schedule risk volatility is shown. The purpose of examining the sensitivity output is 

purely for the user’s benefit. By examining how the smallest variation in their preference 

system can affect the choice of mitigation technique, the user will hopefully be more 

accurate in their data assessment, or, at the very least, they will understand why their 

decision has changed if their preference information has changed.   

Interestingly, the Personnel (PER) risk had less variability in both chosen 

mitigation technique and maximum expected utility value than the Schedule root causes 
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listed in Table 6.5. This is most likely due to the combination of input parameters and 

probabilities, since the sensitivity analysis tests different values of the utility gamma 

parameter and methods of combining these attribute utility functions (k values). Little 

variation simply indicates that the PER root cause will consistently be one of the best 

choices of root causes to mitigate. 

 

 

Figure 6.10 - SCH RC1 Mitigation Technique sensitivity output for ARMADILLO case 

study. 
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Figure 6.11 - SCH RC1 maximum expected utility output for sensitivity analysis on 

ARMADILLO case study.   

 

6.4.2 Life-cycle Case Studies 
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integration phase. 
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Development Phase 

Assume that when the spacecraft is in development, the probabilities that 

mitigation techniques are going to fully work are much lower, while the probabilities that 

the technique either partially works or does not work at all are higher than the 

ARMADILLO integration phase data. Also, assume that the cost, people, and time 

necessary for mitigation technique implementation are a lot higher. This is deemed 

appropriate because learning how to interface, test, and fix issues with a system may take 

longer when the system is in the initial life-cycle phases as opposed to later in the life-

cycle when the user learns the intricacies of the system.  

Assume the maximum values are the same: $60,000 for cost, 180 days for time, 

and 30 people. But because it is the beginning of the spacecraft life-cycle, assume a 

higher risk tolerance. That is, the user is willing to sacrifice some of the attribute value 

for a higher chance at the best outcome. So, the utility curve gamma parameters will 

change to the lowest value parameter. Suppose also that because the spacecraft is in the 

beginning of its life-cycle, the mission views each individual attribute at their best while 

the other attributes are at the worst in the same manner: the   ,   , and    values are 

equal. Assume these attribute preferences are all set to 0.7, meaning that each attribute 

being at its best while the others are at their worst is equivalent to 70% of the best case 

scenario. For these reasons, the probabilities, attribute and utility inputs have changed to 

those in Appendix B. Note that not all values needed to change; those that did change are 

highlighted for easy identification. 

After supplying the values in Appendix B, the top five overall root causes to 

mitigate are listed in Table 6.6. It is interesting how the four COST root causes are the 

top four root causes to mitigate, and that the suggested technique is to include 

contingency in the budget. This outcome makes sense for a mission in the development 
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phase, as many of the components have not yet been purchased. Including budget 

contingency is perhaps one of the easiest ways to avoid cost overruns, especially for 

small satellite missions. Also interestingly is the suggested technique of maintaining 

relationships with vendors. Within the small satellite community, most satellite builders 

have personal relationships with vendors. These relationships can be valuable in the case 

that, as this analysis points out, mission funding is delayed. By having a solid relationship 

with the vendor, missions may be able to delay an invoice, or even negotiate a price to a 

more acceptable value. Maintaining good relationships with the vendors has helped 

mitigate cost risk in the Texas Spacecraft Laboratory on more than one occasion. Finally, 

inadequate documentation was identified as an easy-to-fix root cause in the development 

phase. This makes sense because at the beginning phases, many missions are still 

developing their documentation standards. But, according to this analysis, a mission need 

only build extra margin into their schedule milestones to avoid a schedule slip due to 

documentation issues.  

 

Table 6.6 - Development phase results. 

Root 

Cause 

Description MT description Expected 

Utility 

Rank 

COST / 

RC2 

COTS component price 

increases 

M3 / Include contingency 

in budget 

0.9266 1 

COST / 

RC1 

Incomplete 

understanding 

M3 / Include contingency 

in budget 

0.9192 2 

COST / 

RC4 

Delay of receiving 

promised funding 

M2 / maintain 

relationships with 

vendors 

0.9079 3 

COST / 

RC3 

Inability to obtain new 

funding 

M3 / Include contingency 

in budget 

0.8968 4 

SCH / 

RC5  

Delay due to inadequate 

documentation 

M4 / Build margin into 

schedule milestones 

0.8917 5 
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Integration Phase 

The original ARMADILLO case study represents a mission which is at the 

beginning of its integration life-cycle phase. All the same inputs will be used as the 

ARMADILLO case study for this test case, with the exception of the preference 

information. Assume that less risk is tolerated now that the mission is passed initial 

development and is in the integration phase. This lower risk tolerance makes sense 

because the mission would not be willing to jeopardize cost, people, or time as much now 

that it has flight hardware undergoing flight integration. Also assume that the attributes 

are no longer viewed equally as during the Development phase. Perhaps, now, cost and 

time are viewed as more important than people. Perhaps there are deadlines and budgets 

that need to be met. Say the cost and time attributes are viewed equally, and slightly more 

importantly than people, at 0.8 each. Table 6.7 gives the preference system applied for 

the integration phase analysis. Note that a   value of zero simply means the trivial 

solution was the solution most easily found by the Solver routine. With a   value of zero, 

the    values become conventional weights when combining to obtain the joint utility 

function. 

Table 6.7 - Integration phase preference system 

 
Gamma 

 

K 0 

Time 0.025 

 

K1 0.8 

Cost 0.0005 

 

K2 0.7 

People 0.15 

 

K3 0.8 

 

 Based on the ARMADILLO case study data and the preference system listed in 

Table 6.7, the top five overall root causes to mitigate are shown in Table 6.8. It is 

interesting that moving from the development phase to the integration phase removes two 

of the Cost root causes seen in Table 6.6. According to this analysis, delay of funding and 
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inability to obtain new funding are now no longer worth mitigating at the integration 

phase. This makes sense, because at the integration phase, a mission should have 

purchased a vast majority of the spacecraft components and need money only for testing 

and operations. At the integration phase, Schedule is now the primary risk to mitigate. 

The analysis highlights the mitigation technique of allocating more resources to the task 

needing completion as the technique most useful for mitigating the mechanical design 

delay root cause. This was seen in the TSL on a number of occasions. The lab needed the 

mechanical drawings completed within a certain amount of time, and simply put more 

students on the task. Soon enough, the root cause had been mitigated. Also note that a 

Personnel root cause has appeared in the integration phase. Specifically, the root cause is 

“Loss of Hardware”. This particular root cause appearing in the integration phase makes 

sense, because it is in this phase that all flight hardware arrives and can easily be 

misplaced or misused without a tracking system such as a certification log. 

 

Table 6.8 - Integration phase results 

Root 

Cause 

Description MT description Expected 

Utility 

Rank 

SCH / 

RC1 

Inability to find desired 

spacecraft components 

M6 / allocate more resources to 

the task needing completion 

0.9353 1 

SCH / 

RC2 

Mechanical design 

delays 

M6 / allocate more resources to 

the task needing completion 

0.9353 1 

COST 

/ RC2 

COTS component price 

increases 

M3 / Include contingency in 

budget 

0.9052 3 

COST 

/ RC1 

Incomplete 

understanding of the 

projected total mission 

cost 

M3 / Include contingency in 

budget 

0.8954 4 

PER / 

RC2 

Loss of hardware M4 / have tracking method for 

hardware (e.g. inventory system, 

certification logs) 

0.8896 5 
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Testing Phase 

Assume that when the spacecraft is in the testing phase, the probabilities that 

mitigation techniques are going to fully work, partially work, or not work at all are 

probably the same as in the integration phase. Also, assume that the cost, people, and 

time necessary for mitigation technique implementation are the same or less than in the 

integration phase. This is deemed appropriate because the team must have already 

learned the majority of how to work with the systems to be in the system testing phase.  

Assume the maximum values are the same: $60,000 for cost, 180 days for time, 

and 30 people. But because it is the middle of the spacecraft life-cycle, assume a 

conservative risk tolerance. That is, since the spacecraft is already built, the mission does 

not want to jeopardize, nor can they afford, more time, money, or people than absolutely 

necessary. So, the utility curve gamma parameters will be the highest parameter. Suppose 

also that because the spacecraft is in the middle of its life-cycle, the mission views cost as 

slightly more important than people or time. Perhaps the budget is getting tighter, but the 

schedule is doing alright as compared to the Integration life-cycle. Assume these attribute 

preferences are 0.8, 0.7, and 0.7, respectively for cost, people, and time. For these 

reasons, the probabilities, attribute and utility inputs have changed to those in Appendix 

C. Note that not all values needed to change; those that did change from the integration 

phase/ARMADILLO case study data are highlighted for easy identification. 

Based on the testing phase data and the preference system given in Appendix C, 

the top five overall root causes to mitigate are shown in Table 6.9. Notice how the results, 

with the exception of the expected utility values, are identical to the integration phase 

results of Table 6.8. This makes sense, though, because testing is essentially an extension 

of the integration phase. Additionally, most of the changes made from the integration 

phase to the testing phase involved altering attribute and utility parameter values, but not 
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probabilities. Notice that the expected utility for each root cause has decreased, indicating 

that it is less favorable to mitigate these than during the integration phase. 

Table 6.9 - Testing phase results 

Root 

Cause 

Description MT description Expected 

Utility 

Rank 

SCH / 

RC1 

Inability to find desired 

spacecraft components 

M6 / allocate more resources to 

the task needing completion 

0.9074 1 

SCH / 

RC2 

Mechanical design 

delays 

M6 / allocate more resources to 

the task needing completion 

0.9074 1 

COST 

/ RC2 

COTS component price 

increases 

M3 / Include contingency in 

budget 

0.837 3 

COST 

/ RC1 

Incomplete 

understanding of the 

projected total mission 

cost 

M1 / document all costs to ensure 

proper knowledge for future 

missions 

0.8285 4 

PER / 

RC2 

Loss of Hardware M4 / have tracking method for 

hardware (e.g. inventory system, 

certification logs) 

0.8182 5 

Operations Phase 

Once the spacecraft has launched and mission operations have begun, then most 

likely the mission does not have much money remaining and the team values a quick 

response to problems. Additionally, the team may be extremely risk averse, because they 

do not want to jeopardize accomplishing the mission objectives. For these reasons, the 

utility function parameters are assumed to be the largest, and most conservative, values. 

Because of the lack of money remaining and necessity for a quick response, let the 

combining parameters be heavier on cost and time. In this test case, it is assumed that the 

attribute preferences are 0.95, 0.7, and 0.9 for the cost, people, and time attributes.  

Money can still be spent to improve risks associated with the ground station or 

documentation. On the other hand, any mitigation techniques involving hardware changes 

have been removed from consideration, since hardware changes on the spacecraft can no 
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longer be made. De-scoping or changing components falls into the hardware change 

category. While hardware changes may be necessary for ground-based testing, the 

spacecraft can no longer change and it is spacecraft issues that ground-based testing 

would be meant to fix. Therefore, costs associated with testing are now assumed to be 

zero, with the exception of ground station related issues. Any testing is still a valid 

mitigation technique and its probability of success has increased, assuming the mission 

has a ground-based system to work through any on-orbit issues. With such a system, the 

team could run similar tests as were run on the spacecraft. By running these tests, the 

team could determine issues the satellite is facing and how to fix the problems. However, 

pre- and post-integration functional tests no longer make sense as a mitigation technique 

when the mission is the operations phase, other than to help identify unusual spacecraft 

behavior in-orbit by using equipment on the ground. For the purposes of this analysis, the 

mitigation technique was removed from consideration for the operations phase.  

Based on these rationales, the input parameter values have been modified from 

the testing life-cycle phase, and are available in Appendix D, where the highlighted 

values indicate those values changed from the testing phase. Note that Schedule risk is no 

longer a mission risk, since the spacecraft is in the operations phase. In the other risks, 

any mitigation techniques referencing schedule have also been removed. Time values 

also may have decreased for the operations phase considering the teams experience on 

the system at this point in the life-cycle. In reality, the spacecraft would not be allowed 

on the launch vehicle if the SC3 root cause events occurred. However, for the purposes of 

this research, the SC3 mission risk is still analyzed after removing any mitigation 

techniques involving hardware changes. 

Based on the operations phase data and the preference system given in Appendix 

D, the top five overall root causes to mitigate are shown in Table 6.10. Notice that the 
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Schedule risk does not appear and recall that the data was removed from consideration, 

since the spacecraft is now in operations and will not experience a schedule slip. 

Intriguingly, additional Personnel root causes have replaced the Schedule root causes 

seen in the previous phases. This makes sense, since the operations phase relies heavily 

upon team participation for collecting and analyzing the spacecraft data. Table 6.10 

shows the easiest root causes to mitigate have to do with team training and attrition. This 

is especially true with university missions. Notice that the suggested mitigation technique 

is to have a group of core students. This technique was applied within the TSL with great 

success; new members are trained by the core members and the core members maintain a 

level of continuous work through school breaks and graduations.  

 

Table 6.10 - Operations phase results. 

Root 

Cause 

Description MT description Expected 

Utility 

Rank 

PER / 

RC3 

Lack of sufficient 

training for team 

members 

M1 / have group of core (paid) 

staff/students to ensure things get 

done on time, provide continuity 

and leadership 

0.8681 1 

PER / 

RC4  

Attrition or turnover of 

team members 

M1 / have group of core (paid) 

staff/students to ensure things get 

done on time, provide continuity 

and leadership 

0.8681 1 

COST 

/ RC2 

COTS component price 

increases 

M3 / Include contingency in 

budget 

0.8519 3 

COST 

/ RC1 

Incomplete 

understanding of the 

projected total mission 

cost 

M3 / Include contingency in 

budget 

0.8483 4 

PER / 

RC1 

Loss of information M1 / have documentation method 

for saving/storing work  

0.8455 5 
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Case Study Concluding Remarks 

Notice the risks missing from case study results of Table 6.5 through Table 6.10 – 

the spacecraft and payload risks. For the values input, the Decision Advisor tool found 

that it was more beneficial to mitigate the root causes associated with the schedule, cost, 

and personnel risks, than to mitigate those root causes involving spacecraft or ground 

station hardware. Intuitively, this makes sense, because mission designers are limited in 

what they can do to protect components against the harshness of space. However, the 

cost, personnel, and schedule can be mildly controlled.  

The purpose of the life-cycle phase analysis was two-fold. First, the analysis was 

a method of validating that the Decision Advisor tool could handle any phase of a 

spacecraft mission and respond with results which made sense for that particular phase. 

Second, the analysis, along with the data in the appendix, serves as another starting point 

for missions who wish to use the Decision Advisor tool, but may not know where to start.  

6.4.3 Small Satellite Community case studies 

As of October 2014, the Decision Advisor software tool was released to a small 

set of mission designers in an effort to gather initial feedback and work through any 

preliminary errors. The tool was formally released to the general Small Satellite 

community in January 2015. As of February 2015, six people have filled out a short 

survey, similar to the one for the CubeSat Risk Analysis tool, to request the Decision 

Advisor. Users range from the Jet Propulsion Lab to Adler Planetarium, with a few 

international organizations as well. With each successive release, the community is asked 

for feedback as well as their inputs and conclusions. The feedback is collected and saved 

for a possible future revision of the tool. The inputs and resulting conclusions obtained by 

using the Decision Advisor will be used as additional case studies to show the tool’s 

functionality and usefulness. 
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Chapter 7: Conclusion 

7.1 SUMMARY OF RESEARCH 

Risk management plans improve the likelihood of mission success by identifying 

potential failures early and planning mitigation methods to circumvent any issues. 

However, in the aerospace industry to date, risk management plans have typically only 

been used for larger and more expensive satellites, and have rarely been applied to 

satellites in the shape of 10 x 10 x 10 centimeter cubes, called CubeSats. Furthermore, 

existing risk management plans typically require experienced personnel and significant 

time to run the analysis. The purpose of this research was to develop two risk 

management software tools which could be used by anyone with any level of experience. 

Moreover, the tools simply require the user to enter their mission-specific data; the 

software tools calculate the required analysis.  

The CubeSat Risk Analysis tool was developed for the purpose of reducing the 

subjectivity associated with estimating the likelihood and consequence of spacecraft 

mission risks. The tool estimates mission risk in terms of input characteristics, such as 

satellite form factor, mass, and development cycle. Using a historical database of small 

satellite missions, which was gathered in the course of this research, the software 

determines the mission risk root causes which are of the highest concern for the given 

mission. This risk identification is the first step of a risk management process.    

The next step is to determine which mitigation techniques will most effectively 

decrease the likelihood and/or consequence of the risk event. The CubeSat Decision 

Advisor tool uses components of decision theory such as decision trees, multi-attribute 

utility theory, and utility elicitation methods to determine the expected utility of a 

mitigation technique alternative. Based on the user’s value preference system, assessment 
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of success probabilities, and resources required for a given mitigation technique, the tool 

suggests the course of action which will normatively yield the most value for the cost, 

people, and time resources required.  

To ensure ease-of-use for users of all backgrounds and experience levels, the tools 

were built in a software package most people already have installed, Microsoft Excel. 

The Risk Analysis tool has already been released, after extensive testing, to the CubeSat 

community and has been met with enthusiasm. The tool was validated and the insights 

gleaned were incorporated into the User’s Guide. The first version as well as initial 

validation and testing of the Decision Advisor tool has been completed. The tool has been 

released to the Small Satellite Community for use, with a request for feedback and case 

studies to show the tool working.  

The goal of this research was to create a set of risk management software tools 

never before available, and yet easily accessible and usable, for low-cost small satellite 

missions. The target audience was originally university labs, who could not otherwise 

afford expensive software packages. However, the interested parties now also include 

government, corporate, and international organizations. The research has been well 

received and the tools are currently providing the expected results.   

 

7.2 FUTURE WORK 

 During development of the two Excel-based software tools, many tasks were 

assigned to Future Work in an effort to finish an initial version of each tool. These tasks 

are left to future students of risk management and decision analysis who wish to improve 

upon these two tools. Future students may also wish to find additional methods of 

expanding the reach of the tool, such as through instructional websites, videos, as well as 
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partnering with existing programs such as the University Nanosatellite Program to 

encourage more universities to use these resources.  

 

7.2.1 Future Developments for the CubeSat Risk Analysis Tool 

Chapter 4 detailed the trade studies completed as part of testing assumptions made 

during the development of the Risk Analysis Tool. Future analysis could expand upon 

these trade studies and investigate additional alternatives for each of the assumptions 

mentioned in Chapter 4, as well as assumptions not covered. Specifically, it would be 

beneficial to step through each piece of the data processing and regression algorithms to 

ensure the assumptions and steps taken are logical and well-founded. Section 3.3.5 

explains the Combining Experts algorithm which would be an excellent starting point for 

a future researcher to start identifying potential areas for additional trade study analysis. 

Automation of many of the validation analyses would be useful for expanding the trade 

space. 

For the initial development of the software tool, all input and output terms were 

assumed to be independent. Obviously, this may not be true. Therefore, it would be 

useful to have some measure of correlation between input terms such as the time in 

development versus time in functional testing as well as output root cause likelihood and 

consequence values. For example, the root cause of an antenna not working may 

influence the root cause of the radio not working, or vice versa. Additionally, experts 

were assumed to have independent assessments, but this may not be accurate. Identifying 

a way to correlate experts may be an area of future study. 

Many in industry question the use of the 5x5 L-C chart that is a key element of 

any risk analysis, and was featured prominently in this research. Complaints range from 
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the issue of subjectivity, which this research attempted to address, to the issue of a linear 

scale on which to judge risk. While many attempts were made, an adequate replacement 

for the 5x5 was not created. It is suggested that future students of risk management strive 

to find alternatives to this heavily-used graphic.  

Some demographic information, such as launch date, funding situation, team 

demographics, and mission success, were not included in the initial regression analysis. 

Future analyses may consider expanding upon the function forms tested to include these 

additional terms, e.g. risk as a function of time. Additionally, it is suggested to continue 

collecting data to improve the model. For example, the survey mentioned in Chapter 3 

could be required of all CubeSats to participate in ELaNa, the CubeSat Launch Initiative, 

or other small satellite launch programs. Once this additional data is collected, future 

versions of the tool could stratify the data into different relevant classes, such as high 

school, collegiate, and industry missions, to better reflect the risks posed to each 

institution. 

Many of the data processing algorithms were still subjective. In an effort to 

minimize subjectivity in this analysis, it is suggested to revisit many key algorithms such 

as the “Likelihood and N/A” algorithm which mapped whether the event occurred and 

textual answers such as “N/A” to numerical values (see Section 3.3.4).   

 

7.2.2 Future Developments for the CubeSat Decision Advisor Tool 

The biggest improvement for the Decision Advisor Tool would be to expand its 

capabilities for analysis. That is, to find a way for the user to suggest additional, or 

modify current, root causes or mitigation techniques for analysis. On the decision tree, 

the root causes and mitigation techniques are listed generically. But in the user interface, 
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where the user enters all their mission-specific data, the mission risk and root cause is 

explicitly stated. A user could simply ignore the text, and use the tool for a different 

purpose, or they could modify the VBA code. Additional versions of the tool could allow 

the user more flexibility to enter their own risk and root cause textual explanations. 

Future iterations could also allow users to identify the exact number of mitigation 

techniques they wish to analyze for a given root cause, rather than the definitive six in the 

current tool. Users may also find flexibility in the number of outcomes useful. That is, not 

limiting the outcomes to “Fully Works”, “Partially Works”, and “Does Not Work”.  

As with the Risk Analysis Tool, all values were assumed to be independent of one 

another. This may not be the case, since mitigating one root cause may also mitigate a 

second root cause, or make additional mitigation techniques more or less likely for that 

second root cause. Future versions of this tool could include a method by which to 

indicate this correlation. The reason this type of correlation was not implemented in the 

current version of the tool was because of limitations with Excel. Therefore, it is also 

suggested to investigate writing an executable file for the software tool in order to 

hopefully increase the tool capability.  

Typical analysis of decision trees may include a value of information. That is, 

how would the decision change if given additional information. This additional 

information could be perfect (such as knowing with certainty whether the mitigation 

technique would work) or imperfect (an expert opinion on whether the mitigation 

technique would work). Analysts then determine whether the decision would change, and 

by how much, yielding the value of the information. Future iterations of the Decision 

Advisor Tool may consider adding this  functionality.   
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7.3 CONCLUDING REMARKS  

Two new Excel-based software tools have been validated and are ready for small 

satellite mission designers to use in tandem in an effort to increase the likelihood of 

mission success for low-cost small satellite missions. The Risk Analysis Tool offers a 

statistical method to identify and analyze the mission risks of highest concern. The 

Decision Advisor tool allows users to determine how they can best mitigate these risks. 

Before now, access to such software tools has been deemed proprietary or would cost 

missions an extraordinary amount of money and time to implement.  

This research initiated the use of regression equations to map demographic 

information to risk likelihood and consequence values. It is hoped that this approach is 

updated with new data, expanded upon in the function forms tested, and continuously 

improved to provide the most useful tool possible for small satellite mission designers to 

help them identify and quantify their risks based on mathematical analysis rather than 

subjective assessment. The research also established the inaugural use, to the author’s 

knowledge, of decision and multi-attribute utility theories to the problem of small 

satellite risk management. As with the Risk Analysis tool and the regression equations, 

additional research could be done to enhance the Decision Advisor tool and make the tool 

more rigorous in its techniques. It is sincerely hoped that improved versions of the 

Decision Advisor tool will be developed and released to the small satellite community.  

The beneficiaries of this research are numerous. While the initial goal was to 

provide universities with free software tools to help them develop successful satellite 

missions, the methods employed are also useful to non-academic institutions such as 

government agencies and corporations. Additionally, the techniques are applicable across 

disciplines outside of the small satellite realm. Many programmers, chip designers, and 
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ground station developers are interested in the Decision Advisor tool developed during 

this research and in learning how to use it for their own purposes.  

The goals of this research were met in the development of two easily-accessible 

and free risk management software tools to assist in university satellite mission 

development. But more importantly, these tools will reach beyond the academic setting 

and allow small satellites to continue to evolve as a low-cost platform to accomplish 

educational, scientific, and military objectives. 
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Appendix A: ARMADILLO Case Study Data 

SCHEDULE RISK 

 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.5 0.3 0.2 0.5 0.3 0.2 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 2 4 6 2 4 6 2 4 6 

Time (days) 5 7 10 5 7 10 5 7 10 

 MT 2 Choice 2 MT 2 Choice 2  MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.2 0.3 0.5 0.4 0.4 0.2 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 2 10 1 2 10 2 4 10 

Time (days) 5 7 10 5 7 10 2 15 30 

 MT 3 Choice 3 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 0.25 0.5 0.25 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 4 10 20 4 10 20 4 10 20 

Time (days) 5 7 10 5 7 10 5 30 90 

 MT 4 Choice 4 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.3 0.6 0.1 0.3 0.6 0.1 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 2 4 6 1 2 4 1 2 4 

Time (days) 5 7 10 5 7 10 5 15 30 

 MT 5 Choice 5 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.2 0.5 0.3 0.1 0.2 0.7 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 5 10 15 5 10 15 5 10 15 

Time (days) 5 10 15 5 10 15 5 10 15 

 MT 6 Choice 6 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.15 0.05 0.8 0.15 0.05 0.8 0.15 0.05 

Cost ($) 0 500 1000 0 500 1000 0 500 1000 

People 0 5 10 0 5 10 2 5 10 

Time (days) 0 5 10 0 5 10 2 5 10 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.5 0.3 0.2 0.5 0.3 0.2 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 7 10 5 7 14 

 MT 1 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.4 0.4 0.4 0.4 0.2 

Cost ($) 0 0 0 0 0 0 

People 2 4 10 2 4 10 

Time (days) 2 15 30 2 7 14 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.25 0.05 0.3 0.6 0.1 

Cost ($) 0 0 0 0 0 0 

People 4 10 20 4 10 20 

Time (days) 5 30 90 5 15 30 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.5 0.3 0.2 0.6 0.3 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 4 1 2 4 

Time (days) 5 15 30 5 15 30 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.2 0.7 0.8 0.15 0.05 

Cost ($) 0 0 0 0 0 0 

People 5 10 15 5 10 15 

Time (days) 5 10 15 5 10 15 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.15 0.05 0.7 0.2 0.1 

Cost ($) 0 500 1000 0 0 0 

People 2 5 10 2 5 10 

Time (days) 2 5 10 2 5 10 
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PAYLOAD RISK 

 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 4 10 20 4 10 20 

Time (days) 5 7 10 5 7 10 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 7 10 5 7 10 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.4 0.4 0.2 0.8 0.15 0.05 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 10 30 45 10 30 45 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 10 30 45 10 30 45 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 10 30 45 10 30 45 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 4 10 20 4 10 20 

Time (days) 5 7 10 5 7 10 

 MT 2 Choice 1 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 7 10 5 7 10 

 MT 3 Choice 3 MT 3 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.3 0.4 0.3 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 10 30 45 10 30 45 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.3 0.4 0.3 0.3 0.4 0.3 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 10 30 45 10 30 45 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.85 0.1 0.05 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 10 30 45 10 30 45 
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SC1 RISK 

 
 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.4 0.5 0.1 0.4 0.5 0.1 

Cost ($) 5000 7500 10000 2500 5000 7500 2500 5000 7500 

People 4 6 10 2 4 6 2 4 6 

Time (days) 30 60 90 10 20 30 10 20 30 

 MT 2 Choice 7 MT 2 Choice 3 MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.85 0.1 0.05 0.65 0.25 0.1 0.8 0.1 0.1 

Cost ($) 0 5000 7500 0 0 0 0 0 0 

People 2 4 8 4 6 10 4 6 10 

Time (days) 15 30 60 5 10 15 5 10 15 

   MT 3 Choice 4 MT 3 Choice 4 

    Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability    0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($)    0 0 0 0 0 0 

People    4 6 10 4 6 10 

Time (days)    5 10 15 5 10 15 

   MT 4 Choice 5 MT 4 Choice 5 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.8 0.1 0.1 0.65 0.25 0.1 

Cost ($)    0 0 0 0 0 0 

People    4 6 10 4 6 10 

Time (days)    5 10 15 5 10 15 

   MT 5 Choice 6 MT 5 Choice 6 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($)    0 0 0 0 0 0 

People    2 4 6 2 4 6 

Time (days)    10 15 20 10 15 20 

   MT 6 Choice 8 MT 6 Choice 8 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.6 0.3 0.1 0.7 0.2 0.1 

Cost ($)    0 0 0 0 0 0 

People    2 4 6 2 4 6 

Time (days)    10 15 20 10 15 20 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.6 0.3 0.1 

Cost ($) 5000 7500 10000 2500 5000 7500 

People 4 6 10 4 6 10 

Time (days) 30 45 60 10 15 30 

 MT 2 Choice 3  MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.65 0.25 0.1 0.75 0.15 0.1 

Cost ($) 0 0 0 0 0 0 

People 4 6 10 4 6 10 

Time (days) 5 10 15 5 10 15 

 MT 3 Choice 4 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 

People 4 6 10 4 6 10 

Time (days) 5 10 15 5 10 15 

 MT 4 Choice 5 MT 4 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 4 6 10 4 6 10 

Time (days) 5 10 15 5 10 15 

 MT 5 Choice 6 MT 5 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 10 15 20 10 15 20 

 MT 6 Choice 8 MT 6 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.65 0.25 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 10 15 20 10 15 20 
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SC2 RISK 

 
 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.6 0.3 0.1 0.6 0.3 0.1 

Cost ($) 0 500 1000 0 12000 24000 0 20000 60000 

People 2 4 6 2 4 6 2 4 6 

Time (days) 5 10 15 5 30 60 5 60 180 

 MT 2 Choice 2 MT 2 Choice 2  MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 500 1000 0 12000 24000 0 20000 60000 

People 4 8 10 4 8 10 4 8 10 

Time (days) 10 20 30 10 30 60 10 60 180 

 MT 3 Choice 3 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 500 1000 0 12000 24000 0 20000 60000 

People 6 12 15 6 12 15 6 12 15 

Time (days) 14 30 45 15 30 60 15 60 180 

 MT 4 Choice 6 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 500 1000 0 12000 24000 0 20000 60000 

People 4 8 10 4 8 10 4 8 10 

Time (days) 10 20 30 15 30 60 15 60 180 

 MT 5 Choice 7 MT 5 Choice 8 MT 5 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 500 1000 0 12000 24000 0 20000 60000 

People 4 8 10 2 4 6 2 4 6 

Time (days) 10 20 30 5 30 60 5 60 180 

 MT 6 Choice 8 MT 6 Choice 10 MT 6 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.2 0.4 0.4 0.2 0.4 0.4 

Cost ($) 0 500 1000 2000 12000 24000 3000 20000 60000 

People 2 4 6 4 6 10 4 6 10 

Time (days) 5 10 15 60 90 180 60 90 180 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.6 0.3 0.1 

Cost ($) 0 3500 7000 0 2000 9500 

People 2 4 6 2 4 6 

Time (days) 5 15 42 5 15 90 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 3500 7000 0 2000 9500 

People 4 8 10 4 8 10 

Time (days) 5 15 42 5 15 90 

 MT 3 Choice 3 MT 3 Choice 3  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 3500 7000 0 2000 9500 

People 6 12 15 6 12 15 

Time (days) 5 15 42 5 15 90 

 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 3500 7000 0 2000 9500 

People 4 8 10 4 8 10 

Time (days) 10 15 42 10 15 90 

 MT 5 Choice 9 MT 5 Choice 9 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 3500 7000 0 2000 9500 

People 2 4 6 2 4 6 

Time (days) 5 15 42 5 15 90 

 MT 6 Choice 10 MT 6 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.2 0.4 0.4 0.2 0.4 0.4 

Cost ($) 3500 7000 14000 2000 7500 9500 

People 4 6 10 4 6 10 

Time (days) 60 90 180 15 90 90 
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 Root Cause 6 Root Cause 7 

 MT 1 Choice 7 MT 1 Choice 12 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.65 0.25 0.1 0.8 0.1 0.1 

Cost ($) 0 500 1000 0 500 1000 

People 4 8 10 8 16 24 

Time (days) 5 15 30 10 30 60 

 MT 2 Choice 12 MT 2 Choice 14 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.75 0.15 0.1 

Cost ($) 0 500 1000 0 500 1000 

People 8 16 24 4 8 10 

Time (days) 10 30 60 10 30 60 

 MT 3 Choice 13 MT 3 Choice 16 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.75 0.15 0.1 0.7 0.2 0.1 

Cost ($) 0 500 1000 0 500 1000 

People 4 8 10 4 6 8 

Time (days) 10 30 60 30 60 90 

 MT 4 Choice 15   

 Fully  Partially  Doesn’t    

Probability 0.7 0.2 0.1    

Cost ($) 0 500 1000    

People 4 6 8    

Time (days) 30 60 90    

 MT 5 Choice 3   

 Fully  Partially  Doesn’t    

Probability 0.65 0.25 0.1    

Cost ($) 0 500 1000    

People 2 4 8    

Time (days) 10 15 30    
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SC3 RISK 

 
 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 4 6 10 4 6 10 

Time (days) 30 60 90 30 60 90 

 MT 2 Alternate #1 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.75 0.15 0.1 

Cost ($) 500 1000 1500 200 400 600 

People 6 10 15 2 4 6 

Time (days) 60 90 120 10 20 30 

   MT 3 Choice 3 

    Fully  Partially  Doesn’t  

    0.65 0.25 0.1 

    500 1500 3000 

    2 4 6 

    10 20 30 

   MT 4 Choice 6 

    Fully  Partially  Doesn’t 

    0.8 0.1 0.1 

    0 0 0 

    10 20 30 

    2 5 10 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 4 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 4 6 10 

Time (days) 10 20 30 30 60 90 

 MT 2 Choice 5 MT 2 Choice 6 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 6 8 10 10 20 30 

Time (days) 15 30 45 2 5 10 

 MT 3 Choice 6   

 Fully  Partially  Doesn’t     

Probability 0.6 0.2 0.2    

Cost ($) 0 0 0    

People 10 20 30    

Time (days) 2 5 10    
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PER RISK 

 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 

1 

Choice 3 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.4 0.4 0.2 0.8 0.15 0.05 

Cost ($) 0 0 0 20000 40000 60000 20000 40000 60000 

People 2 4 6 1 5 10 1 5 10 

Time (days) 4 10 15 0 15 30 0 15 30 

 MT 

2 

Choice 4 MT 2 Choice 6 MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.5 0.3 0.2 0.9 0.05 0.05 0.8 0.15 0.05 

Cost ($) 0 0 0 0 1000 5000 0 0 0 

People 3 9 12 2 4 6 3 6 9 

Time (days) 10 30 45 1 5 10 1 5 10 

 MT 

3 

Choice 5 MT 3 Choice 7 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.6 0.2 0.2 0.5 0.3 0.2 

Cost ($) 0 0 0 0 1000 5000 0 0 0 

People 2 4 6 2 4 6 3 9 12 

Time (days) 2 5 10 1 5 10 10 30 45 

 MT 

4 

Choice 10 MT 4 Choice 11 MT 4 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.8 0.15 0.05 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 3 9 12 2 4 6 3 6 9 

Time (days) 10 30 45 1 5 10 2 30 45 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.15 0.05 0.7 0.15 0.15 

Cost ($) 20000 40000 60000 20000 40000 60000 

People 1 5 10 1 5 10 

Time (days) 0 15 30 0 15 30 

 MT 2 Choice 3 MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.6 0.3 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 4 10 15 4 10 15 

 MT 3 Choice 4 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 

People 3 9 12 3 9 12 

Time (days) 10 30 45 10 30 45 

 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.6 0.2 0.2 0.5 0.3 0.2 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 5 10 1 5 10 

 MT 5 Choice 8 MT 5 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.5 0.3 0.2 

Cost ($) 50 100 200 50 100 200 

People 2 4 6 2 4 6 

Time (days) 1 4 5 1 4 5 

 MT 6 Alternate #1  MT 6 Choice 9 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.6 0.2 0.2 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 4 6 10 3 9 12 

Time (days) 10 30 45 10 30 45 
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COST RISK 

 
 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 5 10 2 5 10 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.8 0.05 0.15 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 2 4 1 2 4 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.15 0.05 0.9 0.1 0 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 2 4 1 2 4 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.3 0.6 0.1 0.4 0.2 0.4 

Cost ($) 100 200 500 100 200 500 

People 4 8 12 4 8 12 

Time (days) 5 15 30 5 15 30 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.5 0.3 0.2 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 5 15 30 5 15 30 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.6 0.2 0.2 0.8 0.1 0.1 

Cost ($) 1000 5000 10000 1000 5000 10000 

People 4 8 12 4 8 12 

Time (days) 15 30 45 15 30 45 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 5 10 2 5 10 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 2 4 1 2 4 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.1 0.8 0.1 0.1 0.8 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 2 4 1 2 4 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.3 0.3 0.4 

Cost ($) 100 200 500 100 200 500 

People 4 8 12 4 8 12 

Time (days) 5 15 30 5 15 30 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.1 0.8 0.3 0.3 0.4 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 5 15 30 5 15 30 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 1000 5000 10000 1000 5000 10000 

People 4 8 12 4 8 12 

Time (days) 15 30 45 15 30 45 

TIME PREFERENCE 

For completing the Time Preference GUI, we use the following for the 

ARMADILLO mission, in the order they are displayed: 

1. A maximum of 180 days (which aligns with the maximum value entered 

during entering of risk information)  
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2. A decrease of 75 days implementation time is worth the increased risk of 

the worst scenario – “23 days” is chosen. 

3. Fewer days implementation time and a higher likelihood of the best 

scenario is preferred – “27 days” is chosen.  

4. A decrease of 40 days implementation time is worth the increased risk of 

the worst scenario – “14 days” is chosen. 

5. Fewer days implementation time and a higher likelihood of the best 

scenario is preferred  – “6 days” is chosen. 

6. A decrease of 31 days implementation time is worth the increased risk of 

the worst scenario – “23 days” is chosen. 

7. A decrease of 9 days implementation time is worth the increased risk of 

the worst scenario – “14 days” is chosen. 

8. Fewer days implementation time and a higher likelihood of the best 

scenario is preferred – “11 days” is chosen. 

9. While the worst scenario has a higher likelihood, the implementation time 

is decreased by 16 days – “7 days” is chosen.  

Once these values are entered and the “Save and Exit” option is chosen, the 

preferences are summarized on the “ucurves” page and should match the values in Table 

A.1. 

Table A.1 - Time preference results from "ucurves" page. 

 

Max 180 

   

 

Counts 3 2 0 3 

 

Gammas 0.01 0.025 0.05 0.1 

Chosen Time 

Gamma: 0.1 
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COST PREFERENCE 

For completing the Cost Preference GUI, we use the following for the 

ARMADILLO mission, in the order they are displayed: 

1. A maximum of $60,000 (which aligns with the maximum value entered 

during entering of risk information)  

2. A decrease of $12,638 implementation cost is worth the increased risk of 

the worst scenario – “$1151” is chosen. 

3. The two values are the same, and so the one with a higher likelihood of the 

best scenario is chosen.  

4. A decrease of $6,214 implementation cost is worth the increased risk of 

the worst scenario – “$693” is chosen. 

5. A decrease of $1,098 implementation cost is worth the increased risk of 

the worst scenario – “$288” is chosen. 

6. A decrease of $1,622 implementation cost is worth the increased risk of 

the worst scenario – “$1151” is chosen. 

7. A decrease of $2,176 implementation cost is worth the increased risk of 

the worst scenario – “$693” is chosen. 

8. The lower cost also coincides with the higher likelihood at the best 

scenario, so “$575” is chosen.  

9. While the worst scenario has a higher likelihood, the implementation cost 

is decreased by $2,522 – “$347” is chosen.  

Once these values are entered and the “Save and Exit” option is chosen, the 

preferences are summarized on the “ucurves” page and should match the values in Table 

A.2 
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Table A.2 - Cost utility preference summary from "ucurves" page. 

 

Max 60000 

   

 

Counts 3 2 0 3 

 

Gammas 0.0001 0.0005 0.001 0.002 

Chosen Cost 

Gamma: 0.002 

    

PEOPLE PREFERENCE 

For completing the People Preference GUI, we use the following for the 

ARMADILLO mission, in the order they are displayed: 

1. A maximum of 30 people (which aligns with the maximum value entered 

during entering of risk information)  

2. A decrease of 12 people to implement is worth the increased risk of the 

worst scenario – “5 people” is chosen. 

3. Fewer people to implement and a higher likelihood of the best scenario is 

preferred – “5 people” is chosen.  

4. A decrease of 7 people to implement is worth the increased risk of the 

worst scenario – “3 people” is chosen. 

5. Fewer people to implement and a higher likelihood of the best scenario is 

preferred  – “1 person” is chosen. 

6. A decrease of 4 people to implement is worth the increased risk of the 

worst scenario – “5 people” is chosen. 

7. A decrease of 1 person to implement is not worth the increased risk of the 

worst scenario – “4 people” is chosen. 

8. Fewer people to implement and a higher likelihood of the best scenario is 

preferred – “2 people” is chosen. 
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9. A decrease of 3 people to implement is not worth the increased risk of the 

worst scenario – “4 people” is chosen.  

Once these values are entered and the “Save and Exit” option is chosen, the 

preferences are summarized on the “ucurves” page and should match the values in Table 

A.3 

Table A.3 - preference summary from "ucurves" page. 

 

Max 30 

   

 

Counts 4 1 0 3 

 

Gammas 0.05 0.15 0.25 0.5 

Chosen People 

Gamma: 0.05 

    

JOINT PREFERENCE 

For completing the Joint Preference GUI, we use the following for the 

ARMADILLO mission, in the order they are displayed: 

1. Assume that cost being at its best while the people and time attributes are 

at their worst is equivalent to 90% of the best of all three attributes. Perhaps the budget is 

very tight on this mission, and every dollar matters. For this mission, people and time 

may be more flexible.  

2. Since the number of people used to implement a mitigation technique may 

be more flexible than the cost for the ARMADILLO mission but less flexible than the 

amount of time it takes, assume that people at its best while the other two parameters are 

at their worst is equivalent to 75% the best of all three attributes.  

3. For the ARMADILLO mission, time has not been a huge factor, but it will 

become more important as the mission enters into fabrication and testing. However, 

people and cost are still the top priorities. So, assume that time at its best while the other 
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two are at their worst is equivalent to 70% of all the parameters at their best. Because this 

value is just slightly less than the value for people at the best, we show that people and 

time are valued almost the same amount.  

After selecting “Save and Exit”, a solver routine is automatically run to find the 

final joint utility function variable. Once the routine is finished, the joint utility 

parameters should match Table A.4 

 

Table A.4 - Joint utility function parameters. 

ksolve -0.99156 

k1 0.9 

k2 0.75 

k3 0.7 
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Appendix B: Development Life Cycle Phase Data 

Recall that the highlighted values represent values changed from the 

ARMADILLO case study from Appendix A.  

SCHEDULE RISK 

 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.2 0.5 0.3 0.2 0.5 0.3 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 2 4 6 2 4 6 2 4 6 

Time (days) 10 14 20 10 14 20 10 14 20 

 MT 2 Choice 2 MT 2 Choice 2  MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.2 0.3 0.5 0.2 0.4 0.4 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 2 4 20 2 4 20 4 8 20 

Time (days) 10 14 20 10 14 20 4 30 45 

 MT 3 Choice 3 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 0.15 0.6 0.25 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 8 20 30 8 20 30 8 15 25 

Time (days) 10 14 20 10 14 20 10 45 100 

 MT 4 Choice 4 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.2 0.6 0.2 0.3 0.6 0.1 0.1 0.6 0.3 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 4 8 12 2 4 8 2 4 8 

Time (days) 10 14 20 10 14 20 10 30 45 

 MT 5 Choice 5 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.2 0.5 0.3 0.1 0.2 0.7 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 10 20 30 10 20 30 10 20 30 

Time (days) 10 20 30 10 20 30 10 20 30 

 MT 6 Choice 6 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.55 0.35 0.05 0.8 0.15 0.05 0.15 0.8 

Cost ($) 500 1000 1500 500 1000 1500 0 500 1000 

People 5 10 15 5 10 15 2 5 10 

Time (days) 5 10 15 5 10 15 2 5 10 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.2 0.5 0.3 0.2 0.3 0.5 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 2 4 6 

Time (days) 10 14 20 5 7 14 

 MT 1 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.4 0.4 0.2 0.4 0.4 

Cost ($) 0 0 0 0 0 0 

People 2 4 10 2 4 10 

Time (days) 2 15 30 2 7 14 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.05 0.7 0.25 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 8 20 30 4 10 20 

Time (days) 10 45 100 5 15 30 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.2 0.5 0.3 0.1 0.6 0.3 

Cost ($) 0 0 0 0 0 0 

People 2 4 8 1 2 4 

Time (days) 5 15 30 5 15 30 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.2 0.7 0.05 0.8 0.15 

Cost ($) 0 0 0 0 0 0 

People 10 20 30 10 15 20 

Time (days) 10 20 30 5 10 15 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.05 0.15 0.8 0.1 0.2 0.7 

Cost ($) 500 1000 1500 0 0 0 

People 4 10 20 4 10 15 

Time (days) 4 10 20 8 15 25 
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PAYLOAD RISK 

 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 8 20 40 8 20 40 

Time (days) 10 14 20 10 14 20 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 10 14 20 10 14 20 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.4 0.4 0.05 0.8 0.15 

Cost ($) 0 0 0 0 0 0 

People 8 16 24 8 16 24 

Time (days) 45 90 120 45 90 120 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.7 0.2 0.05 0.85 0.1 

Cost ($) 0 0 0 0 0 0 

People 8 16 24 8 16 24 

Time (days) 45 90 120 45 90 120 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.7 0.2 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 8 16 24 4 8 12 

Time (days) 45 90 120 10 30 45 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 4 10 20 4 10 20 

Time (days) 5 7 10 5 7 10 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 2 4 6 

Time (days) 10 14 20 5 7 10 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.2 0.5 0.3 

Cost ($) 0 0 0 0 0 0 

People 8 16 24 8 16 24 

Time (days) 20 45 90 20 60 90 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.3 0.4 0.3 0.2 0.5 0.3 

Cost ($) 0 0 0 0 0 0 

People 8 16 24 8 16 24 

Time (days) 45 90 120 45 90 120 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.05 0.8 0.15 0.05 0.8 0.15 

Cost ($) 0 0 0 0 0 0 

People 8 16 24 8 16 24 

Time (days) 45 90 120 45 90 120 
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SC1 RISK 

 
 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 

1 

Choice 1 MT 

1 

Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.5 0.3 0.1 0.5 0.4 

Cost ($) 10000 14000 20000 5000 10000 14000 5000 10000 14000 

People 8 12 20 4 8 12 4 8 12 

Time (days) 60 120 180 20 40 60 15 25 35 

 MT 2 Choice 7 MT 

2 

Choice 3 MT 

2 

Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.05 0.8 0.15 0.25 0.65 0.1 0.1 0.8 0.1 

Cost ($) 5000 7500 10000 250 500 1000 250 500 1000 

People 4 8 16 8 12 20 8 12 20 

Time (days) 30 60 120 10 20 30 10 20 30 

   MT 

3 

Choice 4 MT 

3 

Choice 4 

    Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability    0.2 0.7 0.1 0.1 0.7 0.2 

Cost ($)    250 500 1000 250 500 1000 

People    8 12 20 8 12 20 

Time (days)    10 20 30 10 20 30 

   MT 

4 

Choice 5 MT 

4 

Choice 5 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.1 0.8 0.1 0.25 0.65 0.1 

Cost ($)    250 500 1000 250 500 1000 

People    8 12 20 8 12 20 

Time (days)    10 20 30 10 20 30 

   MT 

5 

Choice 6 MT 

5 

Choice 6 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($)    100 200 300 100 200 300 

People    4 6 8 4 6 8 

Time (days)    15 20 25 15 20 25 

   MT 

6 

Choice 8 MT 

6 

Choice 8 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.1 0.6 0.3 0.1 0.7 0.2 

Cost ($)    0 0 0 0 0 0 

People    4 8 12 4 8 12 

Time (days)    15 20 25 15 20 25 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.6 0.3 0.1 0.6 0.3 

Cost ($) 10000 14000 20000 5000 10000 14000 

People 8 12 20 8 12 20 

Time (days) 60 120 180 20 30 60 

 MT 2 Choice 3  MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.65 0.25 0.15 0.75 0.1 

Cost ($) 250 500 1000 250 500 1000 

People 8 12 20 8 12 20 

Time (days) 10 20 30 10 20 30 

 MT 3 Choice 4 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.7 0.2 0.1 0.7 0.2 

Cost ($) 250 500 1000 250 500 1000 

People 8 12 20 8 12 20 

Time (days) 10 20 30 10 20 30 

 MT 4 Choice 5 MT 4 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 250 500 1000 250 500 1000 

People 8 12 20 8 12 20 

Time (days) 10 20 30 10 20 30 

 MT 5 Choice 6 MT 5 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 100 200 300 100 200 300 

People 4 6 8 4 6 8 

Time (days) 15 20 25 15 20 25 

 MT 6 Choice 8 MT 6 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.8 0.1 0.1 0.65 0.25 

Cost ($) 100 200 300 100 200 300 

People 4 6 8 4 6 8 

Time (days) 15 20 25 15 20 25 
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SC2 RISK 

 
 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.6 0.3 0.1 0.6 0.3 0.1 0.6 0.3 

Cost ($) 500 1000 1500 1500 12000 24000 1500 20000 60000 

People 8 12 20 4 8 12 4 8 12 

Time (days) 60 120 180 10 45 80 10 45 80 

 MT 2 Choice 2 MT 2 Choice 2  MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.7 0.2 

Cost ($) 250 500 1000 1500 12000 24000 1500 20000 60000 

People 8 12 20 8 16 20 8 16 20 

Time (days) 20 40 60 20 60 90 20 60 90 

 MT 3 Choice 3 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 500 1000 1500 1500 12000 24000 1500 20000 60000 

People 12 24 30 12 24 30 12 24 30 

Time (days) 30 60 90 30 60 90 15 60 180 

 MT 4 Choice 6 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 500 1000 1500 1500 12000 24000 1500 20000 60000 

People 12 24 30 8 16 20 8 16 20 

Time (days) 30 60 90 20 60 90 15 60 180 

 MT 5 Choice 7 MT 5 Choice 8 MT 5 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.8 0.1 0.1 0.7 0.2 0.1 0.7 0.2 

Cost ($) 500 1000 1500 1500 12000 24000 1500 20000 60000 

People 12 24 30 4 8 12 4 8 12 

Time (days) 30 60 90 10 60 90 5 60 180 

 MT 6 Choice 8 MT 6 Choice 10 MT 6 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.7 0.2 0.2 0.4 0.4 0.2 0.4 0.4 

Cost ($) 500 1000 1500 2000 12000 24000 3000 20000 60000 

People 12 24 30 4 6 10 4 6 10 

Time (days) 30 60 90 60 90 180 60 90 180 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.3 0.6 0.1 0.3 0.6 0.1 

Cost ($) 1000 3500 7000 1000 2000 9500 

People 4 8 12 4 8 12 

Time (days) 10 30 60 10 30 120 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.7 0.1 0.2 0.7 0.1 

Cost ($) 1000 3500 7000 1000 2000 9500 

People 8 16 20 8 16 20 

Time (days) 10 30 60 5 15 90 

 MT 3 Choice 3 MT 3 Choice 3  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 1000 3500 7000 1000 2000 9500 

People 6 12 15 6 12 15 

Time (days) 5 15 42 5 15 90 

 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 1000 3500 7000 1000 2000 9500 

People 4 8 10 8 16 20 

Time (days) 30 60 90 20 30 120 

 MT 5 Choice 9 MT 5 Choice 9 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 1000 3500 7000 1000 2000 9500 

People 4 8 12 4 8 12 

Time (days) 10 30 60 10 30 120 

 MT 6 Choice 10 MT 6 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.2 0.4 0.4 0.2 0.4 0.4 

Cost ($) 3500 7000 14000 2000 7500 9500 

People 4 6 10 4 6 10 

Time (days) 60 90 180 15 90 90 
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 Root Cause 6 Root Cause 7 

 MT 1 Choice 7 MT 1 Choice 12 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.25 0.65 0.1 0.1 0.8 0.1 

Cost ($) 250 500 1000 250 500 1000 

People 8 16 20 16 32 48 

Time (days) 10 30 60 20 60 90 

 MT 2 Choice 12 MT 2 Choice 14 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.8 0.1 0.15 0.75 0.1 

Cost ($) 250 500 1000 250 500 1000 

People 16 32 48 8 16 20 

Time (days) 20 60 90 30 60 90 

 MT 3 Choice 13 MT 3 Choice 16 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.15 0.75 0.1 0.2 0.7 0.1 

Cost ($) 250 500 1000 250 500 1000 

People 8 16 20 8 12 16 

Time (days) 30 60 90 60 90 120 

 MT 4 Choice 15   

 Fully  Partially  Doesn’t    

Probability 0.2 0.7 0.1    

Cost ($) 250 500 1000    

People 8 12 16    

Time (days) 60 90 120    

 MT 5 Choice 3   

 Fully  Partially  Doesn’t    

Probability 0.25 0.65 0.1    

Cost ($) 250 500 1000    

People 4 8 16    

Time (days) 20 30 45    

 
  



Appendix B  Development Phase 233 

SC3 RISK 

 
 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 0 0 0 0 0 0 

People 4 6 10 4 6 10 

Time (days) 30 60 90 30 60 90 

 MT 2 Alternate #1 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.3 0.6 0.1 0.15 0.75 0.1 

Cost ($) 1000 2000 3000 400 800 1200 

People 12 20 30 4 8 12 

Time (days) 120 180 240 20 40 60 

   MT 3 Choice 3 

    Fully  Partially  Doesn’t  

    0.25 0.65 0.1 

    1000 3000 6000 

    4 8 12 

    20 40 60 

   MT 4 Choice 6 

    Fully  Partially  Doesn’t 

    0.1 0.8 0.1 

    0 0 0 

    20 40 60 

    4 10 20 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 4 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.7 0.2 0.1 0.7 0.2 

Cost ($) 100 200 300 0 0 0 

People 4 8 12 8 12 20 

Time (days) 20 40 60 60 120 180 

 MT 2 Choice 5 MT 2 Choice 6 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.8 0.1 0.1 0.8 0.1 

Cost ($) 100 200 300 0 0 0 

People 12 16 20 15 25 35 

Time (days) 30 60 90 5 10 15 

 MT 3 Choice 6   

 Fully  Partially  Doesn’t     

Probability 0.2 0.2 0.6    

Cost ($) 0 0 0    

People 15 25 35    

Time (days) 5 10 15    
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PER RISK 

 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 

1 

Choice 3 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.8 0.1 0.2 0.4 0.4 0.15 0.8 0.05 

Cost ($) 200 400 600 40000 80000 120000 40000 80000 120000 

People 4 8 12 2 10 20 2 10 20 

Time (days) 8 20 30 10 30 60 10 30 60 

 MT 

2 

Choice 4 MT 2 Choice 6 MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.5 0.3 0.1 0.8 0.1 0.15 0.8 0.05 

Cost ($) 100 200 300 1000 2000 10000 0 0 0 

People 6 18 24 4 8 12 6 12 18 

Time (days) 20 60 90 2 10 20 2 10 20 

 MT 

3 

Choice 5 MT 3 Choice 7 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.2 0.6 0.2 0.2 0.5 0.3 

Cost ($) 0 0 0 1000 2000 5000 100 200 300 

People 4 8 12 4 8 12 6 18 24 

Time (days) 4 10 20 2 10 20 20 60 90 

 MT 

4 

Choice 10 MT 4 Choice 11 MT 4 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.15 0.8 0.05 0.1 0.85 0.05 

Cost ($) 200 400 600 100 200 300 200 400 600 

People 6 18 24 4 8 12 6 18 24 

Time (days) 20 60 90 2 10 20 20 60 90 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.15 0.8 0.05 0.15 0.7 0.15 

Cost ($) 40000 80000 120000 40000 80000 120000 

People 2 10 20 2 10 20 

Time (days) 10 30 60 10 30 60 

 MT 2 Choice 3 MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.6 0.3 0.1 0.6 0.3 

Cost ($) 200 400 600 200 400 600 

People 4 8 12 4 8 12 

Time (days) 8 20 30 8 20 30 

 MT 3 Choice 4 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.7 0.2 0.05 0.8 0.15 

Cost ($) 100 200 300 100 200 300 

People 6 18 24 6 18 24 

Time (days) 20 60 90 20 60 90 

 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.2 0.6 0.2 0.2 0.5 0.3 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 4 8 12 

Time (days) 2 10 20 2 10 20 

 MT 5 Choice 8 MT 5 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.7 0.2 0.2 0.5 0.3 

Cost ($) 100 200 400 100 200 400 

People 4 8 12 4 8 12 

Time (days) 2 8 10 2 8 10 

 MT 6 Alternate #1  MT 6 Choice 9 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.2 0.6 0.2 0.1 0.8 0.1 

Cost ($) 0 0 0 0 0 0 

People 8 12 20 6 18 24 

Time (days) 20 60 90 20 60 90 
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COST RISK 

 
 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.05 0.9 0.05 0.2 0.2 0.6 

Cost ($) 100 200 300 100 200 300 

People 4 8 12 4 8 12 

Time (days) 2 10 20 4 10 20 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.7 0.2 0.05 0.8 0.15 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 2 4 1 2 4 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.05 0.8 0.15 0.1 0.9 0 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 2 4 1 2 4 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.6 0.3 0.2 0.4 0.4 

Cost ($) 200 400 1000 200 400 1000 

People 8 16 24 8 16 24 

Time (days) 10 30 60 10 30 60 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.2 0.5 0.3 0.1 0.7 0.2 

Cost ($) 0 0 0 0 0 0 

People 8 16 24 8 16 24 

Time (days) 10 30 60 10 30 60 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.2 0.6 0.2 0.1 0.8 0.1 

Cost ($) 2000 10000 20000 2000 10000 20000 

People 8 16 24 8 16 24 

Time (days) 30 60 90 30 60 90 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.2 0.6 

Cost ($) 100 200 300 100 200 300 

People 4 8 12 4 8 12 

Time (days) 2 10 20 2 10 20 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 2 4 1 2 4 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.1 0.8 0.1 0.1 0.8 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 1 2 4 1 2 4 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.1 0.8 0.3 0.3 0.4 

Cost ($) 200 400 1000 200 400 1000 

People 8 16 24 8 16 24 

Time (days) 10 30 60 10 30 60 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.1 0.8 0.3 0.3 0.4 

Cost ($) 0 0 0 0 0 0 

People 8 16 24 8 16 24 

Time (days) 10 30 60 10 30 60 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.7 0.2 0.1 0.7 0.2 

Cost ($) 2000 10000 20000 2000 10000 20000 

People 8 16 24 8 16 24 

Time (days) 30 60 90 30 60 90 

 

PREFERENCE SYSTEM 

 
Gamma 

 

K 0 

Time 0.01 

 

K1 0.7 

Cost 0.0001 

 

K2 0.7 

People 0.05 

 

K3 0.7 
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Appendix C: Testing Life Cycle Phase Data 

Recall that the highlighted values represent values changed from the 

ARMADILLO case study from Appendix A.  

SCHEDULE RISK 

 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.5 0.3 0.2 0.5 0.3 0.2 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 2 3 1 2 3 1 2 3 

Time (days) 2 3 5 2 3 5 2 3 5 

 MT 2 Choice 2 MT 2 Choice 2  MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.2 0.3 0.5 0.4 0.4 0.2 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 2 5 1 2 5 1 2 5 

Time (days) 1 3 5 2 3 5 1 7 15 

 MT 3 Choice 3 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 0.25 0.5 0.25 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 2 5 10 2 5 10 2 5 10 

Time (days) 2 3 5 2 3 5 2 15 45 

 MT 4 Choice 4 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.3 0.6 0.1 0.3 0.6 0.1 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 2 3 1 2 2 1 2 4 

Time (days) 2 3 5 2 3 5 2 7 15 

 MT 5 Choice 5 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.4 0.5 0.2 0.5 0.3 0.1 0.2 0.7 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 2 5 7 2 5 7 2 5 7 

Time (days) 2 5 7 2 5 7 2 5 7 

 MT 6 Choice 6 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.15 0.05 0.8 0.15 0.05 0.8 0.15 0.05 

Cost ($) 0 250 500 0 250 500 0 500 1000 

People 0 2 5 0 2 5 1 2 5 

Time (days) 0 2 5 0 2 5 1 2 5 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.5 0.3 0.2 0.5 0.3 0.2 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 2 3 5 2 3 7 

 MT 1 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.4 0.4 0.4 0.4 0.2 

Cost ($) 0 0 0 0 0 0 

People 1 2 5 1 2 5 

Time (days) 1 7 15 1 3 7 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.25 0.05 0.3 0.6 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 5 10 2 5 10 

Time (days) 2 15 45 2 7 15 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.5 0.3 0.2 0.6 0.3 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 4 1 2 4 

Time (days) 2 7 15 2 7 15 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.2 0.7 0.8 0.15 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 5 7 2 5 7 

Time (days) 2 5 7 2 5 7 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.15 0.05 0.7 0.2 0.1 

Cost ($) 0 500 1000 0 0 0 

People 1 2 5 1 2 5 

Time (days) 1 2 5 1 2 5 
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PAYLOAD RISK 

 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 5 10 2 5 10 

Time (days) 2 3 5 2 3 5 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 2 3 5 2 3 5 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.4 0.4 0.2 0.8 0.15 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 15 22 5 15 22 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 15 22 5 15 22 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 15 22 5 15 22 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 2 5 10 2 5 10 

Time (days) 2 3 5 2 3 5 

 MT 2 Choice 1 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.3 0.6 0.1 0.3 0.6 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 2 3 5 2 3 5 

 MT 3 Choice 3 MT 3 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.3 0.4 0.3 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 15 22 5 15 22 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.3 0.4 0.3 0.3 0.4 0.3 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 15 22 5 15 22 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.85 0.1 0.05 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 5 15 22 5 15 22 
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SC1 RISK 

 
 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.4 0.5 0.1 0.4 0.5 0.1 

Cost ($) 2500 3450 5000 1250 2500 3450 1250 2500 3450 

People 2 3 5 1 2 3 1 2 3 

Time (days) 15 30 45 5 10 15 5 10 15 

 MT 2 Choice 7 MT 2 Choice 3 MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.85 0.1 0.05 0.65 0.25 0.1 0.8 0.1 0.1 

Cost ($) 0 2500 3450 0 0 0 0 0 0 

People 1 2 4 2 3 5 2 3 5 

Time (days) 7 15 30 2 5 7 2 5 7 

   MT 3 Choice 4 MT 3 Choice 4 

    Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability    0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($)    0 0 0 0 0 0 

People    2 3 5 2 3 5 

Time (days)    2 5 7 2 5 7 

   MT 4 Choice 5 MT 4 Choice 5 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.8 0.1 0.1 0.65 0.25 0.1 

Cost ($)    0 0 0 0 0 0 

People    2 3 5 2 3 5 

Time (days)    2 5 7 2 5 7 

   MT 5 Choice 6 MT 5 Choice 6 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($)    0 0 0 0 0 0 

People    1 2 3 1 2 3 

Time (days)    5 7 10 5 7 10 

   MT 6 Choice 8 MT 6 Choice 8 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.6 0.3 0.1 0.7 0.2 0.1 

Cost ($)    0 0 0 0 0 0 

People    1 2 3 1 2 3 

Time (days)    5 7 10 5 7 10 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.6 0.3 0.1 

Cost ($) 2500 3450 5000 1250 2500 3450 

People 2 3 5 2 3 5 

Time (days) 15 22 30 5 7 15 

 MT 2 Choice 3  MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.65 0.25 0.1 0.75 0.15 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 2 5 7 2 5 7 

 MT 3 Choice 4 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 2 5 7 2 5 7 

 MT 4 Choice 5 MT 4 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 2 5 7 2 5 7 

 MT 5 Choice 6 MT 5 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 5 7 10 5 7 10 

 MT 6 Choice 8 MT 6 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.65 0.25 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 5 7 10 5 7 10 
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SC2 RISK 

 
 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.6 0.3 0.1 0.6 0.3 0.1 

Cost ($) 0 250 500 0 6000 12000 0 10000 30000 

People 1 2 3 1 2 3 1 2 3 

Time (days) 2 5 7 2 15 30 3 30 90 

 MT 2 Choice 2 MT 2 Choice 2  MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 250 500 0 6000 12000 0 10000 30000 

People 2 4 5 2 4 5 2 4 5 

Time (days) 5 10 15 5 15 30 5 30 90 

 MT 3 Choice 3 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 250 500 0 6000 12000 0 10000 30000 

People 3 6 7 3 6 7 3 6 7 

Time (days) 7 15 22 7 15 30 7 30 90 

 MT 4 Choice 6 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 250 500 0 6000 12000 0 10000 30000 

People 2 4 5 2 4 5 2 4 5 

Time (days) 5 10 15 7 15 30 7 30 90 

 MT 5 Choice 7 MT 5 Choice 8 MT 5 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 250 500 0 6000 12000 0 10000 30000 

People 2 4 5 1 2 3 1 2 3 

Time (days) 5 10 15 2 15 30 2 30 90 

 MT 6 Choice 8 MT 6 Choice 10 MT 6 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.2 0.4 0.4 0.2 0.4 0.4 

Cost ($) 0 250 500 1000 6000 12000 1500 10000 30000 

People 1 2 3 2 3 5 2 3 5 

Time (days) 2 5 7 30 45 90 30 45 90 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.6 0.3 0.1 

Cost ($) 0 1750 3500 0 1000 4750 

People 1 2 3 1 2 3 

Time (days) 2 7 21 2 7 45 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 1750 3500 0 1000 4750 

People 2 4 5 2 4 5 

Time (days) 2 7 21 2 7 45 

 MT 3 Choice 3 MT 3 Choice 3  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 1750 3500 0 1000 4750 

People 3 6 7 3 6 7 

Time (days) 2 7 21 2 7 45 

 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 1750 3500 0 1000 4750 

People 2 4 5 2 4 5 

Time (days) 5 7 21 5 7 45 

 MT 5 Choice 9 MT 5 Choice 9 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 1750 3500 0 1000 4750 

People 1 2 3 1 2 3 

Time (days) 2 7 21 2 7 45 

 MT 6 Choice 10 MT 6 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.2 0.4 0.4 0.2 0.4 0.4 

Cost ($) 1750 3500 7000 2000 7500 9500 

People 2 3 5 2 3 5 

Time (days) 30 45 90 7 45 45 
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 Root Cause 6 Root Cause 7 

 MT 1 Choice 7 MT 1 Choice 12 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.65 0.25 0.1 0.8 0.1 0.1 

Cost ($) 0 250 500 0 250 500 

People 2 4 5 4 8 12 

Time (days) 2 7 15 5 15 30 

 MT 2 Choice 12 MT 2 Choice 14 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.75 0.15 0.1 

Cost ($) 0 250 500 0 250 500 

People 4 8 12 2 4 5 

Time (days) 5 15 30 5 15 30 

 MT 3 Choice 13 MT 3 Choice 16 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.75 0.15 0.1 0.7 0.2 0.1 

Cost ($) 0 250 500 0 250 500 

People 2 4 5 2 3 4 

Time (days) 5 15 30 15 30 45 

 MT 4 Choice 15   

 Fully  Partially  Doesn’t    

Probability 0.7 0.2 0.1    

Cost ($) 0 250 500    

People 2 3 4    

Time (days) 15 30 45    

 MT 5 Choice 3   

 Fully  Partially  Doesn’t    

Probability 0.65 0.25 0.1    

Cost ($) 0 250 500    

People 1 2 4    

Time (days) 5 7 15    
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SC3 RISK 

 
 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 15 30 45 15 30 45 

 MT 2 Alternate #1 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.75 0.15 0.1 

Cost ($) 250 500 750 100 200 300 

People 3 5 7 1 2 3 

Time (days) 30 45 60 5 10 15 

   MT 3 Choice 3 

    Fully  Partially  Doesn’t  

    0.65 0.25 0.1 

    250 750 1500 

    1 2 3 

    5 10 15 

   MT 4 Choice 6 

    Fully  Partially  Doesn’t 

    0.8 0.1 0.1 

    0 0 0 

    5 10 15 

    1 2 5 

 Root Cause 3 Root Cause 4 

 MT 1 Choice 4 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 2 3 5 

Time (days) 5 10 15 15 30 45 

 MT 2 Choice 5 MT 2 Choice 6 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 3 4 5 5 10 15 

Time (days) 7 15 22 1 2 5 

 MT 3 Choice 6   

 Fully  Partially  Doesn’t     

Probability 0.6 0.2 0.2    

Cost ($) 0 0 0    

People 5 10 15    

Time (days) 1 2 5    
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PER RISK 

 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 

1 

Choice 3 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.4 0.4 0.2 0.8 0.15 0.05 

Cost ($) 0 0 0 10000 20000 30000 10000 20000 30000 

People 1 2 3 1 2 5 1 2 5 

Time (days) 2 5 7 0 7 15 0 7 15 

 MT 

2 

Choice 4 MT 2 Choice 6 MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.5 0.3 0.2 0.9 0.05 0.05 0.8 0.15 0.05 

Cost ($) 0 0 0 0 500 2500 0 0 0 

People 1 4 6 1 2 3 1 3 4 

Time (days) 5 15 22 1 2 5 1 2 5 

 MT 

3 

Choice 5 MT 3 Choice 7 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.6 0.2 0.2 0.5 0.3 0.2 

Cost ($) 0 0 0 0 500 2500 0 0 0 

People 1 2 3 1 2 3 1 4 6 

Time (days) 1 2 5 1 2 5 5 15 22 

 MT 

4 

Choice 10 MT 4 Choice 11 MT 4 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.3 0.4 0.3 0.8 0.15 0.05 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 4 6 1 2 3 1 3 4 

Time (days) 5 15 22 1 2 5 1 15 22 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.15 0.05 0.7 0.15 0.15 

Cost ($) 10000 20000 30000 10000 20000 30000 

People 1 2 5 1 2 5 

Time (days) 0 7 15 0 7 15 

 MT 2 Choice 3 MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.6 0.3 0.1 0.6 0.3 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 2 5 7 2 5 7 

 MT 3 Choice 4 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 

People 1 4 6 1 4 6 

Time (days) 5 15 22 5 15 22 

 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.6 0.2 0.2 0.5 0.3 0.2 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 2 5 1 2 5 

 MT 5 Choice 8 MT 5 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.5 0.3 0.2 

Cost ($) 25 50 100 25 50 100 

People 1 2 3 1 2 3 

Time (days) 1 2 2 1 2 2 

 MT 6 Alternate #1  MT 6 Choice 9 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.6 0.2 0.2 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 5 15 22 5 15 22 
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COST RISK 

 
 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 2 5 1 2 5 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.8 0.05 0.15 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 1 2 1 1 2 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.15 0.05 0.9 0.1 0 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 1 2 1 1 2 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.3 0.6 0.1 0.4 0.2 0.4 

Cost ($) 50 100 250 50 100 250 

People 2 4 6 2 4 6 

Time (days) 2 7 15 2 7 15 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.5 0.3 0.2 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 7 15 2 7 15 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.6 0.2 0.2 0.8 0.1 0.1 

Cost ($) 500 2500 5000 500 2500 5000 

People 2 4 6 2 4 6 

Time (days) 7 15 22 7 15 22 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 2 5 1 2 5 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 1 2 1 1 2 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.1 0.8 0.1 0.1 0.8 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 1 2 1 1 2 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.3 0.3 0.4 

Cost ($) 50 100 250 50 100 250 

People 2 4 6 2 4 6 

Time (days) 2 7 15 2 7 15 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.1 0.1 0.8 0.3 0.3 0.4 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 7 15 2 7 15 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 500 2500 5000 500 2500 5000 

People 2 4 6 2 4 6 

Time (days) 7 15 22 7 15 22 

PREFERENCE SYSTEM 

 
Gamma 

 

K 0 

Time 0.1 

 

K1 0.8 

Cost 0.002 

 

K2 0.7 

People 0.5 

 

K3 0.7 
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Appendix D: Operations Life Cycle Phase Data 

Recall that the highlighted values represent values changed from the testing life 

cycle phase from Appendix C.  

PAYLOAD RISK 

 Root Cause 1 Root Cause 2 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.6 0.2 0.2 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 7 11 2 7 11 

 MT 4 Choice 4 MT 4 Choice 4 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.75 0.15 0.1 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 7 11 2 7 11 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.75 0.15 0.1 0.6 0.3 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 7 11 2 7 11 

 
 Root Cause 3 Root Cause 4 

 MT 3 Choice 3 MT 3 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.4 0.3 0.3 0.5 0.2 0.3 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 7 11 2 7 11 

 MT 4 Choice 4 MT 4 Choice 4  

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.4 0.3 0.3 0.5 0.2 0.3 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 7 11 2 7 11 

 MT 5 Choice 5 MT 5 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 2 7 11 2 7 11 
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SC1 RISK 

 
 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 2 Choice 7 MT 2 Choice 3 MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.75 0.15 0.1 0.9 0.05 0.05 

Cost ($) 0 1250 1725 0 0 0 0 0 0 

People 1 2 4 2 3 5 2 3 5 

Time (days) 3 7 15 1 2 3 1 2 3 

   MT 3 Choice 4 MT 3 Choice 4 

    Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability    0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($)    0 0 0 0 0 0 

People    2 3 5 2 3 5 

Time (days)    1 2 3 1 2 3 

   MT 4 Choice 5 MT 3 Choice 4 

    Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability    0.9 0.05 0.05 0.75 0.15 0.1 

Cost ($)    0 0 0 0 0 0 

People    2 3 5 2 3 5 

Time (days)    1 2 3 1 2 3 

   MT 5 Choice 6 MT 5 Choice 6 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($)    0 0 0 0 0 0 

People    1 2 3 1 2 3 

Time (days)    2 3 5 2 3 5 

   MT 6 Choice 8 MT 6 Choice 8 

    Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability    0.7 0.2 0.1 0.8 0.1 0.1 

Cost ($)    0 0 0 0 0 0 

People    1 2 3 1 2 3 

Time (days)    2 3 5 2 3 5 
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 Root Cause 4 Root Cause 5 

 MT 2 Choice 3  MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.75 0.15 0.1 0.85 0.05 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 1 2 3 1 2 3 

 MT 3 Choice 4 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 1 2 3 1 2 3 

 MT 4 Choice 5 MT 4 Choice 5 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 1 2 3 1 2 3 

 MT 5 Choice 6 MT 5 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 2 3 5 2 3 5 

 MT 6 Choice 8 MT 6 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.9 0.05 0.05 0.75 0.15 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 2 3 5 2 3 5 
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SC2 RISK 

 
 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 1 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 2 3 1 2 3 1 2 3 

Time (days) 1 2 3 1 7 15 1 15 45 

 MT 2 Choice 2 MT 2 Choice 2  MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 2 4 5 2 4 5 2 4 5 

Time (days) 2 5 7 2 7 15 2 15 45 

 MT 3 Choice 3 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 3 6 7 3 6 7 3 6 7 

Time (days) 3 7 11 3 7 15 3 15 45 

 MT 4 Choice 6 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 2 4 5 2 4 5 2 4 5 

Time (days) 2 5 7 3 7 15 3 15 45 

 MT 5 Choice 7     

 Fully  Partially  Doesn’t       

Probability 0.9 0.05 0.05       

Cost ($) 0 0 0       

People 2 4 5       

Time (days) 2 5 7       
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 3 10 1 3 22 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 5 2 4 5 

Time (days) 1 3 10 1 3 22 

 MT 3 Choice 3 MT 3 Choice 3  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 3 6 7 3 6 7 

Time (days) 1 3 10 1 3 22 

 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 4 5 2 4 5 

Time (days) 2 3 10 1 3 22 

 MT 5 Choice 9 MT 5 Choice 9 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 3 10 1 3 22 
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 Root Cause 6 Root Cause 7 

 MT 1 Choice 7 MT 1 Choice 12 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.75 0.15 0.1 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 4 5 4 8 12 

Time (days) 1 3 7 2 7 15 

 MT 2 Choice 12 MT 2 Choice 14 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.85 0.1 0.05 

Cost ($) 0 0 0 0 0 0 

People 4 8 12 2 4 5 

Time (days) 2 7 15 2 7 15 

 MT 3 Choice 13 MT 3 Choice 16 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.85 0.1 0.05 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 5 2 3 4 

Time (days) 2 7 15 7 15 22 

 MT 4 Choice 15   

 Fully  Partially  Doesn’t    

Probability 0.8 0.1 0.1    

Cost ($) 0 0 0    

People 2 3 4    

Time (days) 7 15 22    

 MT 5 Choice 3   

 Fully  Partially  Doesn’t    

Probability 0.75 0.15 0.1    

Cost ($) 0 0 0    

People 1 2 4    

Time (days) 2 3 7    
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SC3 RISK 

 
 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 7 15 22 7 15 22 

   MT 4 Choice 6 

    Fully  Partially  Doesn’t 

Probability    0.9 0.05 0.05 

Cost ($)    0 0 0 

People    5 10 15 

Time (days)    1 2 5 

 
 Root Cause 3 Root Cause 4 

 MT 1 Choice 4 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 2 3 5 

Time (days) 2 5 7 7 15 22 

 MT 2 Choice 5 MT 2 Choice 6 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 3 4 5 5 10 15 

Time (days) 3 7 11 1 2 5 

 MT 3 Choice 6   

 Fully  Partially  Doesn’t     

Probability 0.7 0.1 0.2    

Cost ($) 0 0 0    

People 5 10 15    

Time (days) 1 2 5    
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PER RISK 

 Root Cause 1 Root Cause 2 Root Cause 3 

 MT 1 Choice 3 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.5 0.3 0.2 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 2 3 1 2 5 1 2 5 

Time (days) 1 2 3 0 3 7 0 3 7 

 MT 2 Choice 4 MT 2 Choice 6 MT 2 Choice 2 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.6 0.2 0.2 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 4 6 1 2 3 1 3 4 

Time (days) 2 7 11 1 2 5 1 2 5 

 MT 3 Choice 5 MT 3 Choice 7 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.4 0.3 0.3 0.7 0.1 0.2 0.6 0.2 0.2 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 2 3 1 2 3 1 4 6 

Time (days) 1 2 5 1 2 5 2 7 11 

 MT 4 Choice 10 MT 4 Choice 11 MT 4 Choice 10 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t Fully  Partially  Doesn’t  

Probability 0.4 0.3 0.3 0.9 0.05 0.05 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 0 0 0 

People 1 4 6 1 2 3 1 3 4 

Time (days) 2 7 11 1 2 5 1 7 11 
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 Root Cause 4 Root Cause 5 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 5 1 2 5 

Time (days) 0 3 7 0 3 7 

 MT 2 Choice 3 MT 2 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.7 0.2 0.1 0.7 0.2 0.1 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 2 3 1 2 3 

 MT 3 Choice 4 MT 3 Choice 4 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 1 4 6 1 4 6 

Time (days) 2 7 11 2 7 11 

 MT 4 Choice 7 MT 4 Choice 7 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.2 0.1 0.6 0.2 0.2 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 2 5 1 2 5 

 MT 5 Choice 8 MT 5 Choice 8 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.6 0.2 0.2 

Cost ($) 25 50 100 25 50 100 

People 1 2 3 1 2 3 

Time (days) 1 2 2 1 2 2 

 MT 6 Alternate #1  MT 6 Choice 9 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.1 0.2 0.9 0.05 0.05 

Cost ($) 0 0 0 0 0 0 

People 2 3 5 2 3 5 

Time (days) 2 7 11 5 15 22 
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COST RISK 

 
 Root Cause 1 Root Cause 2 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 2 5 1 2 5 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.8 0.1 0.1 0.8 0.05 0.15 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 1 2 1 1 2 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.9 0.05 0.05 0.9 0.1 0 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 1 2 1 1 2 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.7 0.1 0.2 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 3 7 11 3 7 11 
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 Root Cause 3 Root Cause 4 

 MT 1 Choice 1 MT 1 Choice 1 

 Fully Partially Doesn’t Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 2 5 1 2 5 

 MT 2 Choice 2 MT 2 Choice 2  

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.2 0.2 0.6 0.2 0.2 0.6 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 1 2 1 1 2 

 MT 3 Choice 3 MT 3 Choice 3 

 Fully  Partially  Doesn’t  Fully  Partially  Doesn’t  

Probability 0.1 0.1 0.8 0.1 0.1 0.8 

Cost ($) 0 0 0 0 0 0 

People 1 2 3 1 2 3 

Time (days) 1 1 2 1 1 2 

 MT 6 Choice 6 MT 6 Choice 6 

 Fully  Partially  Doesn’t Fully  Partially  Doesn’t 

Probability 0.8 0.1 0.1 0.8 0.1 0.1 

Cost ($) 0 0 0 0 0 0 

People 2 4 6 2 4 6 

Time (days) 3 7 11 3 7 11 

 

 

PREFERENCE SYSTEM 

 
Gamma 

 

K 0 

Time 0.1 

 

K1 0.95 

Cost 0.002 

 

K2 0.7 

People 0.5 

 

K3 0.9 
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Glossary 

ANOVA Analysis of Variation 

ARMADILLO 
Atmosphere Related Measurements And Detection of 

submILLimeter Objects 

CER Cost Estimating Relationship 

Certain equivalent 

Amount of worth received for certain such that the decision-maker 

is indifferent between receiving the amount and participating in the 

lottery. 

CqER Consequence Estimating Relationship 

CubeSats 
Satellites in the shape of 10x10x10 centimeter (1U) cubes; multiple 

units may be combined to form larger spacecraft. 

Decision tree A set of prospects with associated probabilities (also called lotteries) 

Decision tree An irrevocable allocation of resources. 

Decision-maker 
An individual (group of people or single person) who has the power 

to commit the resources of the organization 

DoD Department of Defense 

DRAGON Dual Radio Frequency Astrodynamic GPS Orbital Navigator 

FASTRAC 
Formation Autonomy Spacecraft with Thrust, RelNav, Attitude, and 

Crosslink 

FOI Factors of Interest 

GER General Error Regression 

GPS Global Positioning System 

INSPIRE 
Interplanetary NanoSpacecraft Pathfinder In a Relevant 

Environment 

IRLS Iteratively Reweighted Least Squares 

JPL Jet Propulsion Lab 

L-C Likelihood-Consequence 

LEO Low Earth Orbit 

LER Likelihood Estimating Relationship 
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LONESTAR 
Low Earth Orbiting Navigation Experiment for Spacecraft Testing 

Autonomous Rendezvous and docking 

MPE Minimum Percentage Error 

MUPE Minimum Unbiased Percentage Error 

OLS Ordinary Least Squares 

PDD Piezo-electric Dust Detector 

Probability A belief that an event will occur 

RACE Radiometer Atmosphere CubeSat Experiment 

RER Risk Estimating Relationship 

Risk mitigation 
An option that best provides the balance between performance and 

cost to reduce the mission risk likelihood and/or consequence 

Risk preference The level of preference, indifference, or aversion to taking risks. 

SEE Standard Error of the Estimate 

Small satellite Spacecraft with a mass of less than 100 kilograms 

SSCM Small Satellite Cost Model 

SSD Sum of Squared Deviations 

TEC Total Electron Content 

TSL Texas Spacecraft Laboratory 

UNP University Nanosatellite Program 

USCM Unmanned Spacecraft Cost Model 

UT-Austin The University of Texas at Austin 

VBA Visual Basics for Applications 

ZPB-MPE Zero Percentage Bias, Minimum Percentage Error 
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