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The prevalence of obesity has necessitated developing safe and convenient tools

for timely assessing and monitoring this condition for a broad range of population. Three-

dimensional (3D) body imaging has become a new mean for obesity assessment. More-

over, it generates body shape information that is meaningful for fitness, ergonomics, and

personalized clothing. In the previous work of our lab, we developed a prototype active

stereo vision system that demonstrated a potential to fulfill this goal. But the prototype

required four computer projectors to cast artificial textures on the body which facilitate

the stereo-matching on texture-deficient surfaces (e.g., skin). This decreases the mobility

of the system when used to collect a large population data. In addition, the resolution of

the generated 3D images is limited by both cameras and projectors available during the

project. The study reported in this dissertation highlights our continued effort in improv-

ing the capability of 3D body imaging through simplified hardware for passive stereo and

advanced depth computation techniques.

The system utilizes high-resolution single-lens reflex (SLR) cameras, which became

widely available lately, and is configured in a two-stance design to image the front and

vi



back surfaces of a person. A total of eight cameras are used to form four pairs of stereo

units. Each unit covers a quarter of the body surface. The stereo units are individually cal-

ibrated with a specific pattern to determine cameras’ intrinsic and extrinsic parameters for

stereo matching. The global orientation and position of each stereo unit within a common

world coordinate system is calculated through a 3D registration step. The stereo calibra-

tion and 3D registration procedures do not need to be repeated for a deployed system if the

cameras’ relative positions have not changed. This property contributes to the portability

of the system, and tremendously alleviates the maintenance task. The image acquisition

time is around two seconds for a whole-body capture. The system works in an indoor

environment with a moderate ambient light.

Advanced stereo computation algorithms are developed by taking advantage of

high-resolution images and by tackling the ambiguity problem in stereo matching. A

multi-scale, coarse-to-fine matching framework is proposed to match large-scale textures

at a low resolution and refine the matched results over higher resolutions. This matching

strategy reduces the complexity of the computation and avoids ambiguous matching at the

native resolution. The pixel-to-pixel stereo matching algorithm follows a classic, four-step

strategy which consists of matching cost computation, cost aggregation, disparity compu-

tation and disparity refinement.

The system performance has been evaluated on mannequins and human subjects

in comparison with other measurement methods. It was found that the geometrical mea-

surements from reconstructed 3D body models, including body circumferences and whole

volume, are highly repeatable and consistent with manual and other instrumental mea-

surements (CV < 0.1%, R2 > 0.99). The agreement of percent body fat (%BF) estimation

on human subjects between stereo and dual-energy X-ray absorptiometry (DEXA) was

found to be improved over the previous active stereo system, and the limits of agreement
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with 95% confidence were reduced by half. Our achieved %BF estimation agreement is

among the lowest ones of other comparative studies with commercialized air displace-

ment plethysmography (ADP) and DEXA. In practice, %BF estimation through a two-

component model is sensitive to body volume measurement, and the estimation of lung

volume could be a source of variation. Protocols for this type of measurement should still

be created with an awareness of this factor.
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Chapter 1

Introduction

1.1 Motivation

Obesity has been a growing health concern in the United States (U.S.), and many

other countries. Obesity increases the likelihood of various diseases, particularly cardio-

vascular disease, type II diabetes, hypertension, osteoarthritis, and certain types of can-

cer [3, 4]. The World Health Organization (WHO) describes obesity as one of the most

apparent, yet most neglected, public health problems that threaten to overwhelm both

more and less developed countries [5]. The prevalence of obesity has made it necessary

to develop a safe, reliable and convenient tool for efficiently assessing and monitoring this

condition in the public health. WHO has accepted a Body Mass Index (BMI) as a quantita-

tive scale to classify the severity of obesity.

BMI is calculated by dividing a person’s weight in kilograms (kg) by the square of

the persons height in meters (m). A person with BMI index higher than 25.0 kg/m2 is con-

sidered as abnormal, while a BMI index greater than 30.0 kg/m2 is considered as obese.

Various techniques have been developed to assist BMI-based obesity assessment. For in-

stance, densitometry methods including underwater weighting [6] and air displacement

plethysmography [7] were accepted as standard methods for body density estimate, but

their accuracy in estimating the body fat percentage was questioned because of its two-

component model that only included fat and fat-free mass. In addition, BMI has become

controversial in medical assessments because BMI was originally proposed as a simple

mean of classifying sedentary individuals whose body compositions deviate from the av-
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erage [8]. It fails to take into account age, body shape or body composition, all crucial

factors in obesity designation and evaluation of associated health risks for the individual.

In addition to the fact that BMI only correlates to the overall percent body fat, the dis-

tribution of fat is also an important factor in assessing health risk. It is believed that the

accumulation of fat in abdominal section is associated with increased risk of cardiovascu-

lar disease and insulin resistance [9, 10]. Thus, with the same BMI, individuals with most

of their weight above the waist line (”apple-shaped”) have a higher risk of metabolic dis-

order than individuals with most of their weight below the waist line (”pear-shaped”). In

this case, waist circumference gives a better prediction of the individual’s health condition

than BMI [11].

A whole body 3D imaging device is an ideal tool for obesity research. Because

such a device captures the 3D profile of a person’s exterior surface, so that computations

can be used to calculate the volumes and the dimensions of various body parts. Such a

device, commonly referred to as a body scanner, captures the surface profile through non-

contact optical techniques. With these 3D surface data, a digital model representing the

shape of the scanned body can be generated. Total and regional body volumes, as well as

other measurements that are helpful in evaluating a person’s fitness level, such as various

circumferences, regional thicknesses and breadths can all be readily obtained from the 3D

digital model.

1.2 Goals and Contributions

Popular technologies that are utilized in 3D imaging devices involve laserline tri-

angulation, coded structured light, and stereo vision. A laserline scanner usually provides

good resolution but it requires mechanical devices to ”scan” the subject, thus the total cap-

ture time is limited by its scanning speed, and may require regular calibration due to the
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movement of the laser projector. Coded structured light and stereo vision are both static

technologies. The former uses active lighting to create multiple sets of light patterns for

depth sensing, in which the light patterns may last for a few seconds. A stereo vision de-

vice captures 3D scene by taking stereo pictures, hence the 3D capture is the fastest among

all three types of imaging techniques, although the depth computation in a stereo device

is the most sophisticated among all.

With 3D body imaging techniques maturing, a complete system dedicated to 3D an-

thropometry for body composition assessment with convenience to use and good accuracy

is still a challenge. The reason is multifold. First, a 3D imaging system that is accurate

in measurement and robust in field use usually requires active lighting, such as laser or

digital projector, for depth sensing. Their high price and bulkiness prevent them to be

massively deployed, thus limited its accessibility to the general public. Second, most of

the body imaging systems that are commercially available are limited to the use of cloth-

ing and animation industries [12, 13], the potential and value of this type of system have

yet been widely recognized by body composition researchers and health care providers.

Finally, software systems capable of body composition assessment are rarely available.

A previous project of developing a 3D anthropometry system based on stereo vi-

sion technology has been conducted [14]. It concludes that this technology is ready for

practical use as a body measurement system dedicated to body composition assessment.

In addition to volumetric measurements, other physical measurements and indirect mea-

surement that are meaningful for body composition and health risk assessment, such as

waist-hip ratio that is and indicator of central obesity, can all be obtained from the recon-

structed 3D digital model more accurately and efficiently than from a tape measure. How-

ever, the practical application of this developed system is limited by the low resolution and

specialized hardware that were designed for general computer vision tasks a decade ago.
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In the previous system, a total of four pairs of monochronical video cameras are used and

set apart at 12 feet away for whole body coverage. A digital projector is required in each

stereo unit to add artificial texture on scanned surface to assist stereo matching. Having

more hardware components increases the efforts in deploying such a system into the test

field. Dedicated hardware component is also less flexible in replacement and upgrade.

The work reported in this dissertation is a continued effort in improving the capa-

bility of a stereo vision system by the utilizing high resolution consumer-grade cameras,

and developing the state of the art stereo matching algorithms for 3D scene recovery. On

the hardware side, active lighting devices have been eliminated in the new system, thanks

to the higher resolution of stereo images in which the rich of skin textures, other than arti-

ficial pattern, provide adequate information for stereo matching. The new cameras have a

larger viewing angle so that cameras can be placed closer to a subject, effectively reducing

the space to deploy this system while maintaining the same coverage for imaging. On the

software side, the developed stereo matching algorithm takes advantage of the highly de-

tailed, chromatic stereo images, and incorporates sophisticated design concepts for robust

stereo matching. As demonstrated by our system-wise evaluation, the proposed stereo

matching algorithm together with dedicated surface reconstruction push the boundaries

of stereo imaging to a new level.

1.3 Structure of the Dissertation

The remainder of the dissertation is divided into eight chapters. Chapter 2 pro-

vides background for this research. Current body composition techniques for body fat

assessment are explored. Then the advantages and potential values of 3D body imaging

system for body composition research are discussed.

Chapter 3 presents the design of a 3D body imaging system after briefly reviewing
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current major techniques of 3D imaging. The principle of stereo vision is described, and

related work in developing stereo vision based depth estimation algorithms are discussed.

Chapter 4 introduces the framework design of a stereo vision system being used for

body imaging purpose. The hardware setup and system configuration are presented in this

chapter. A revised camera calibration approach and 3D registration are also proposed. An

accurate camera calibration is the foundation of stereo vision based depth estimation. The

proposed camera calibration technique improves optical distortion correction introduced

by camera lenses, and reduces the error in merging 3D data captured by multiple cameras

that are positioned at different locations. A multi-scale stereo matching framework is also

documented in this chapter. It provides an overlook of the stereo processing pipeline.

Chapter 5 and 6 documents the stereo matching algorithm which is the major chal-

lenge in developing such a system. Chapter 5 focuses on the computation of feature-

matching costs between left and right images, and proposes a novel hybrid cost function

combined with a sophisticated yet computationally efficient cost aggregation method to

improve algorithm robustness in areas that have low texture and contrast. Chapter 6 deals

with the optimization problem in assigning the correct depth value to each pixel of the

stereo images based on the computed and aggregated matching costs from the previous

steps.

Chapter 7 describes the processes that are essential for recovering a high quality

3D model from disparity data. These processes include sub-pixel refinement and surface

reconstruction. Sub-pixel refinement produces smooth surface with noise suppression and

geometrical detail enhancement. 3D surface reconstruction converts the dense 3D points

into more manageable and efficient data representation for measurement and display.

In Chapter 8, the performance evaluation of the developed stereo matching algo-

rithms is reported. System-wise performance is evaluated with volunteers by comparing
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the measurements of various circumferences and volumes computed from 3D models to

tape measurements, and data generated by other 3D scanners. Body fat percentage com-

puted from our system is compared to dual-energy X-ray absorptiometry. A pilot study is

carried out to test the accuracy and precision of the system.

Chapter 9 concludes the work and discusses the possible improvements for future

study.
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Chapter 2

Background

2.1 Introduction

Obesity is a medical disorder that is caused by excess body fat accumulated over

time. Thus, it is commonly accepted that body fat assessment is the primary focus of body

composition research. Body fat assessment plays an important role in weight management

and health risk evaluation. In this chapter, we first give a brief overview on overweight

and obesity and their associated threat to health complications. Then we review current

methods and technologies of body fat assessment. Finally, we propose stereo vision as an

potential alternative to accurate 3D body imaging for body fat assessment.

2.2 Overweight and Obesity

2.2.1 Health Risks from Rising Obesity

The major health risks that are associated with obesity are various chronic dis-

eases including type II diabetes, hypertension, cardiovascular diseases, and certain types

of cancer [3, 4]. For instance, every increment of BMI by 5 Kg/m2 raises a man’s risk of

esophageal cancer by 52% and colon cancer by 24%, and in women, endometrial cancer

by 59% and gall bladder cancer by 59% [15]. Evidence also indicates that excess body

weight leads to non-fatal but disabling disorders such as osteoarthritis [16]. Excess body

weight also contributes to many additional medical conditions, e.g., benign prostate hy-

pertrophy [17], infertility [18], asthma [19, 20], and sleep apnoea [2].

Overweight individuals are at higher risk to to have hypertension and hyperlipi-
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Figure 2.1: Obesity and its association to metabolic disorder and mortality. Reprinted
from [1]

demia, which can lead to coronary artery disease and stroke. It has been estimated that

more than 85% of hypertension cases arise in individuals with overweight or obesity. Obe-

sity, especially central or visceral obesity, is strongly associated with increased insulin re-

sistance and glucose intolerance. Visceral fat, which often wraps deep around the belly,

plays a role in the metabolic syndromes that increase the risk of type II diabetes and car-

diovascular disease. According to a recent finding [1], an estimated 21% of U.S. adults who

have an ”obese BMI” are metabolically unhealthy, while only 10% of U.S. obese adults are

metabolically healthy. Figure 2.1 lists the metabolic disorders and mortality among indi-

viduals with normal and obese BMI.

Currently the prevalence of obesity in many population is greater at a much younger
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age than in previous generations, this trend in obesity projects a growth in the proportion

of the population suffering from chronic disabilities, and presents a potential threat to the

increase in life expectancy that is achieved by medical and public health advances during

the past century [21].

2.2.2 Threat to Population Health

The increased prevalence of overweight and obesity has become a worldwide health

concern [22]. The obesity epidemic seemed to grow almost concurrently in most devel-

oped countries in the 1970s and 1980s [23]. Since then, other countries have joined the

global trend in obesity prevalence in adults and children [24]. By 2008, an estimated 1.46

billion adults globally were overweight and 502 million adults were obese. Furthermore,

an estimated 170 million children (age < 18) globally were classified as overweight or

obese [25]. Despite signs of stabilization in some populations [17, 26], the negative ef-

fects of consistently high prevalence of obesity are extensive: societies are burdened by

premature mortality, morbidity associated with many chronic disorders, and degrades of

health-related quality of life.

Figure 2.2 shows the prevalence of overweight in adults and children in selected

countries [2]. The U.S. and the U.K. have had the striking increases in the percentage of

their populations with BMI in overweight and obese ranges. If such trend were to continue,

it is estimated that about three out of four Americans and seven out of ten British people

will be overweight or obese by 2020 [2].

2.2.3 Economic Impact

In addition to many chronic and acute health disorders incurred by excess body

weight, a society is burdened by substantial cost in improving the health-related quality

of life of its affected people, notably from increased health care costs and lost productivity.
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Figure 2.2: Past and projected prevalence of overweight (BMI ≥ 25 Kg/m2). Reprinted
from [2].

The medical costs of the care for obesity include various resources dedicated to managing

obesity-related conditions, such as the costs incurred by excess use of ambulatory care,

hospitalisation, drugs, radiological or laboratory tests, and long term care. In an review

of the economic burden of obesity worldwide [18], it was found that obesity accounted

for 0.7-2.8% of a country’s total health care cost, and that obese individuals had medical

costs 30% more than those with normal weight. The combination of developing obesity

prevalence and the increased spending on obese people has been estimated to account

for 27% of the growth in the U.S. health care spending between 1987 and 2001 [20]. This

number is projected to double every decade to account for 16-18% of total health care

spending by 2030 [19]. Another recent study [27] reported that, compared with normal

weight individuals, obese patient incur 46% increased inpatient costs, 27% more physician

visits and outpatient costs, and 80% increased spending on prescription drugs. The annual

extra medical costs of obesity in the U.S. were estimated as $75 billion in 2003 [28] and

accounted for 4-7% of total health care expenditure [29].
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Besides the medical costs, society is also burdened by indirect costs from obesity

as a direct result of decreased years of disability-free life, increased mortality before retire-

ment, early retirement, disability pensions, and work absenteeism or reduced productiv-

ity. Several studies suggest that the monetary cost from lost productivity is several times

higher than medical costs [30–32]. For U.S. employee, it was reported in [32] that annual

missed workdays ranged from 0.5 more days for men who were overweight to 5.9 more

days for men who were class III obese (BMI ≥ 40 Kg/m2) than men of normal weight.

Moreover, the estimated annual cost from presenteeism in men who were very obese was

the equivalent of 1 month of lost productivity and cost employers $3800 per year.

2.3 Overview of Body Composition Assessment

Increased body fat is usually accompanied by increased total body mass, so BMI

has been one of the most important indices to measure the relative weight of body mass,

and has been commonly used to identify obesity. However, it was not originally invented

as an index of obesity but is now widely employed as such in epidemiologic studies, be-

cause it can be easily measured. Even though, the accuracy of BMI as a body composition

marker is controversial [33–35]. Some research data pointed out that BMI inadequately

predicts percentage of body fat [33, 36], whereas others suggested that BMI may be useful

to predict body fat indexed to height but not to predict percentage of body fat [37]. The

inaccuracy of BMI serving as an obesity indicator lies in the inability of the BMI to distin-

guish body fat from muscle, bone and other non-fat body mass. In addition, the relation-

ship between BMI and body fatness varies in gender, age and racial group. Furthermore,

a consensus report by WHO warned researches that BMI must be interpreted carefully to

avoid confusing muscularity with obesity [8]. Therefore, direct or indirect measurements

of body fat could provide a significant improvement towards evaluation and diagnosis of

obesity.
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SLM: Soft Lean Mass
LBM: Lean Body Mass

Figure 2.3: Illustration of body composition at molecular level.

2.3.1 Body Composition Models

In body composition research, a five-level model [38] was developed to provide a

structural framework for studying human body composition. These five levels are atomic,

molecular, cellular, tissue-organ and whole body. Among these five levels, the molecu-

lar level is most important because various methods for body composition assessment are

derived on this level. Figure 2.3 illustrates the molecular components of a body at this

level. The major components at this level include water, protein, mineral and fat. A sim-

plified two-component model that partitions the body into fat mass (FM) and fat-free mass

(FFM) is the most widely used approach to estimate body composition in adults. The lean

body that contributes to the fat-free mass includes protein, mineral, and total body water

(TBW). Protein is a main element of muscles and mineral is found mostly in bones. Body

water consists of intra-cellular and extra-cellular water. Intra-cellular water (ICW) gives

cell volume and extra-cellular water (ECW) is composed of blood, lymph, etc.

Within the two-component model, the proportion of FFM as water, protein and

mineral is assumed to be constant. Then the percentage of body fat (%BF) can be calculated
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by

%BF =

(
CFM

Db
− CFFM

)
× 100, (2.1)

where CFM and CFFM are constants derived from fat mass density (DFM) and fat-free mass

density (DFFM), Db is the measured body density. The DFM is relatively stable, because fat

cells in humans are composed almost entirely of pure triglycerides with an average density

of about 0.9 Kg/L. Most modern body composition laboratories today use the value of 1.1

Kg/L for the density of the FFM, with its theoretical composition of 72% water (density

= 0.993 Kg/L), 21% protein (density = 1.34 Kg/L) and 7% mineral (density = 3.0 Kg/L)

by weight. Different forms of (2.1) exist due to the slightly different composition for FFM

used. Commonly used %BF calculation are Siri’s formula [39]:

%BF =

(
4.95
Db
− 4.50

)
× 100, (2.2)

and Brozek’s formula [40]:

%BF =

(
4.57
Db
− 4.142

)
× 100. (2.3)

Body composition estimates based on two-components model will be inaccurate

when the assumptions that forms the basis for the model are not met. This may occur sys-

tematically with characteristics such as aging, pregnancy, weight reduction in obese peo-

ple, athletic fitness, and in various disease states. This model was not suggested to be used

with infants and young children as the proportions of FFM as water, protein, and min-

eral are constantly changing with growth. Some researchers considered four-component

model a more accurate measure of body composition. The four-component model involves

the measurement of body mass (or weight), total body volume, total body water, and bone

mineral. However, specialized laboratory equipment is required to conduct the measure-

ment, preventing its availability to many clinicians and researchers.
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2.3.2 Underwater Weighting and Air Displacement Plethysmography

Both underwater weighting (UWW) and whole body air displacement plethysmog-

raphy (ADP) are based on two-component body composition model. The goal of these

methods is to estimate the total body volume in order to calculate the average body den-

sity. In the UWW method, a person is completely submerged in water and the volume of

displaced water can be calculated by measuring weight difference before and after sub-

merging in the water. Estimation of %BF from UWW has long been considered to be the

best method available [39], especially in consideration of the cost and simplicity of the

equipment.

An air displacement plethysmography device, commercially available as the Bod-

Pod (Life Measurement Instrument, Concord, CA), presents an alternative to UWW. ADP

uses the same principles as the UWW, but introduces a densitometric method that is based

on air displacement rather than on water immersion [7]. The measurement relies on

Boyle’s law which states that when temperature stays unchanged, air will increase its vol-

ume proportionally to decrease in pressure [41]. Reliability of APD method was found to

be high for %BF and body density in adults [42, 43]. ADP offers several advantages over

the UWW, including a fast, comfortable and safe measurement process, and is accommo-

dating to various subject types, such as children, elderly and obese individuals.

2.3.3 Bioelectrical Impedance Analysis

Bioelectrical impedance analysis (BIA) measures the impedance or resistance to a

small electrical current as it travels through the body’s water with dissolved electrolytes.

It assumes that 73% of the body’s FFM is water, thus an estimate of total body FFM can

be acquired from TBW. Single-frequency BIA is the most common use for assessing TBW

and FFM, but its ability in distinguishing the distribution of ICW and ECW is limited.

14



The advantages of BIA include its portability and ease of use, relative low cost and safety,

which make it attractive for large-scale studies. The accuracy of BIA is also affected by

gender, age, health condition, race or ethnicity [44], and level of fitness, in which TBW and

relative ECW are greater in obese individuals [45].

2.3.4 Dual-energy X-ray Absorptiometry

Dual-energy X-ray absorptiometry (DEXA) utilizes a three-component model of

bone, lean soft tissue, and fat to estimate body composition [46, 47]. It measures X-ray

photon energy attenuation through different types of body components. The radiation

exposure from a whole body DEXA scan ranges from 0.04 to 0.86 mrem [48, 49], which is

equivalent to between 1 and 10% of a chest radiograph. Thus DEXA technique is accepted

as a noninvasive measurement method that can be applied in humans of all ages. The

advantages of DEXA include good accuracy and reproducibility, and it provides regional

assessment of body composition and nutritional status in disease states. Estimation of

body fat by DEXA was found to be strongly related to estimation via a four-component

model through criterion method in 78 subjects [50]. No significant difference was found

between these methods. The correlation between DEXA and UWW was strong for both

man and women following water loss and gain [51]. However, in a study of 110 men

and 225 women, DEXA was shown to overestimate body fat in men and underestimate in

women [52], as compared to UWW.

Assumptions associated with DEXA in %BF estimation include: the assumed con-

stant attenuation of fat and bone, the uniform attenuation model across regional thickness

(e.g., chest, leg and arm) on soft-tissue estimates, and the uniform fat content in that fat

in analyzed area (nonbone-containing area) is comparable with the fat in unanalyzed area

(bone-containing area) [53]. The limitation associated with these assumptions, when not

met, includes errors in the estimation of fat mass, lean and bone in both regional and whole
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body values. Estimate of fat mass may also be influenced by a person’s trunk thickness in

that error increases as the individual’s trunk thickness increases. In longitudinal studies

of persons who undergo significant changes in body composition, DEXA measures can be

biased [54].

2.3.5 Computed Tomography and Magnetic Resonance Imaging

X-ray computed tomography (CT) and magnetic resonance imaging (MRI) allow

the estimation of adipose tissue, skeletal muscle, and other internal tissues and organs.

Their primary application has been in quantifying the distribution of adipose tissue into

visceral, subcutaneous, and more recently intermuscular depots [55]. The application of

these depots may help health care provider evaluate cardiovascular disease risk [56]. A

further application of MRI has been in dissecting the FFM compartment for the quantifi-

cation of specific high metabolic rate in organs in vivo (e.g., liver, kidneys, heart, spleen,

pancreas, and brain) to improve our understanding of resting energy expenditure [57].

The limitations of CT and MRI include high costs owing to equipment and large

data processing requirements, and individuals with large body size cannot fit within field-

of-view. Neither CT nor MRI is capable of accommodating persons with BMI > 40 Kg/m2.

The field-of-view for most MRI scanners is limited to 48× 48 cm. This becomes a signifi-

cant limitation when there is a need to image persons before treatments such as bariatric

surgery, which typically involves persons with BMI greater than 40 Kg/m2.

2.3.6 3D Photonic Scanner

The need for accurate measurement of body shape and body dimensions in a cost-

effective manner has resulted in the development and application of a range of digitized

optical methods to capture three-dimensional photonic images of an individual. The es-

timation of %BF through 3D photonic scanner (3DPS) is based on two-component body
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composition model, with goals to generate values for total and regional body volumes

and dimensions. Other measurements, such as height, various circumferences, segment

lengths, and surface areas can all be calculated from the 3D model by using dedicated algo-

rithms. This technique provides a more efficient, more objective and more comprehensive

way for body dimension measurement than conventional tape anthropometry. Further, the

3D surface acquisition is non-contact and non-invasive, the 3D model is reusable so new

measurements can be extracted whenever needed. The accuracy of a laser based 3DPS for

the measurement of body volume, circumference, lengths and %BF compared with UWW

and tape measures was reported in [58]. The 3DPS systems offer a novel approach for epi-

demiologic research into associations between body shape and health risks and outcome.

2.4 3D Body Imaging for Body Composition Estimation

Table 2.1 summarizes the advantages and disadvantages of various methods for

body composition estimation. An ideal solution to acquire %BF is a system that is accurate

and reliable in measurement, cost-effective in operation, and can be easily deployed into

test field. Our proposed technique falls into the category of 3D photonic scanner that

captures the 3D body surface and computes %BF through a two-component body model.

The capturing of highly detailed 3D surface of human body is of interest in multiple

disciplines, including artistic 3D animation, customized fashion design, clinical use, obe-

sity research, or for fitness purpose. The demand of capturing a high-quality 3D surface

has intrigued extensive research in 3D acquisition technology, optical device design, and

rendering techniques. However, capturing an accurate 3D body with minimum error and

low hardware cost is still a challenge for computer vision and graphics researchers. This is

because the human body if rich in surface geometrical features that requires sophisticated

capturing and modeling techniques to reconstruct the realistic representation.
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Table 2.1: The primary measurements, advantages and disadvantages of body composition
estimation methods in humans.

Method Direct measurements Advantages Disadvantages

UWW Weight difference before and
after submerging

Inexpensive and accurate Uncomfortable, unaccommodating

ADP Total body volume Relatively high accuracy, fast Reduced accuracy for individuals in
disease states, expensive equipment

BIA Total body water Inexpensive, portable, simple, safe,
quick

Population specific, poor accuracy in
individuals and groups

DEXA Total and regional body fat,
lean mass and bone mineral
content

Accurate, especially for limbs Bias in body size and fitness, expen-
sive equipment

CT Specific regional bone density High accuracy and reproducibility High-radiation exposure, expensive
equipment

MRI Total and regional adipose tis-
sue , skeletal muscle, organs,
lipid content in liver and mus-
cle

High accuracy and reproducibility
for whole body and regional adipose
tissue and skeletal muscle

Expensive

3DPS Total and regional body vol-
ume

Can accommodate extremely obese
persons, easy to use, suitable for both
research and clinical applications

Technology is maturing but few
scanners are available

UWW, underwater weighting; ADP, air displacement plythsmography; BIA, bioelectrical impedance analysis; DEXA, dual-
energy X-ray absorptimetry; CT, computed tomography; MRI, magnetic resonance imaging; 3DPS, 3Dphotonic scanning.

Current 3D body imaging technologies can be broadly categorized into two classes:

those with active lighting and those are passive in capturing. Popular 3D imaging tech-

niques based on active lighting are laser, structured light, and gradient-based illumination.

These technologies are usually robust because the depth information is computed from the

augmented light pattern that is purposefully projected onto the imaged surface, thus they

are insensitive to the native color and texture properties of the surface. However, they

require purpose-built illumination devices and often utilize time-multiplexing. Both laser

scanner and structured light imaging devices are based on profile measurements sampled

across the imaged surfaced. A series of images are captured when the light pattern shifts

overtime. Gradient illumination also requires multiple captures when the lights are pro-

jected from several directions. On the other hand, stereo vision based passive imaging

does not require artificial lighting, therefore is more flexible in configuration and requires

18



less effort in deployment. Stereo imaging is done through one single-shot, thus is more

convenient for the imaged individual to remain steady during the capture. Technical de-

tails of each 3D acquisition method as well as their applications are briefly reviewed in the

following subsections.

2.4.1 3D Capturing Techniques

2.4.1.1 Laser Scanning

There are two types of technologies available for a laser scanner to detect depth,

time-of-flight (ToF) and triangulation. The principle behind a ToF camera is the laser range

sensor that resolves distance based on the recorded time of the round-trip of a pulse of

light, with the known speed of light. A laser is usually used to emit a pulse of light and the

amount of time before the reflected light is seen by a detector is measured. The accuracy of

a ToF 3D device depends on the precision of the measurement of round-trip time. As light

has a speed of approximately 3× 108 meters per second, it takes 3.3 picoseconds to travel

1 millimeter. Since ToF is point based measurement, a scanner has to scan the field of view

one point at a time by changing the laser direction to scan different points. The change

of view direction is usually done by a rotating mirror because it can be operated very fast

and with great accuracy. A typical ToF laser scanner can perform distance measurement at

10,000–100,000 points per second.

With respect to ToF 3D scanner, the triangulation laser projects a laser spot on the

scanned surface and observes the spot through a camera. Depending on how far away the

laser reaches to a surface, the laser spot appears at different places in the camera’s image

plane. This technique is called triangulation because the laser spot on the scanned surface,

the camera and the laser projector form a triangle. The length of one side of the triangle,

e.g., the distance between the camera and the laser projector is known. The angle of the

laser projector corner is also known. The angle of the camera corner can be determined
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by looking at the location of the laser spot’s image on camera’s photonic sensor. These

three pieces of information fully determine the shape and size of the triangle and gives the

location of the laser spot corner of the triangle. In order to scan a 2D surface, a laser beam

projector instead of laser point projector is used to sweep across the imaged surface.

ToF and triangulation scanners each have strengths and weaknesses that make

them suitable for different applications. ToF devices are capable of measuring very long

distances, typically on the order of kilometers. Triangulation devices usually have a lim-

ited range of operation which is at a few meters, but their accuracy is relatively high and

can achieve to a resolution on the order of tens of micrometers. In most cases, a low res-

olution laser scan can finish within less than a second. But high resolution scans, which

may require millions of samples, can take several seconds. This leads to distortion from

motion. Since each point is sampled at a different time, any motion in the subject, or the

scanner, will distort the collected data. Recently, there has been research on compensating

for distortion from small amounts of vibration [59] and distortions due to motion or rota-

tion [60]. However, motion correction for body scanning still remain unsolved, due to the

difficulty in estimating the body movement during a full body scan.

2.4.1.2 Structured Light

Structured light 3D scanner projects a light pattern on the scanned surface and

observes the deformation of the pattern from a camera that slightly offsets from the pattern

projector [61]. The principle of depth estimation in structured light is similar to the laser

system and is also based on triangulation. Numerous techniques for surface imaging by

structured light are currently available. In a more general sense, all techniques can be

classified into two categories, sequential (multiple-shot) or single-shot. When the imaged

3D target is static and the image acquisition does not impose stringent constraint on the

capturing time, multiple-shot techniques can be used and may often result in more reliable
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(a) (b) (c)

Figure 2.4: Patterns used in structured light 3D imaging. (a) Sequential binary-coded pat-
terns; (b) Gray-level coding; (c) Sinusoidal fringe pattern for phase shift 3D imaging.

and accurate results. On the other hand, if an imaging task requires the capture of an target

that is in motion, single-shot techniques have to be used to acquire a snapshot of the image

at a particular time instance.

Popular patterns used in multiple-shot capture include binary patterns, gray level

patterns, and phase shift. The binary pattern (or, binary coding) [62, 63] uses black and

white stripes to form a sequence of projections, such that each point on the imaged surface

possesses a unique binary code that differs from any other codes of different points. In

general, N pattern frames can code 2N stripes. In other words, the horizontal resolution

of the capture is determined by the finest stripes in the pattern series. Figure 2.4a shows a

simplified 5-frame projection pattern.

To effectively reduce the number of patterns that are needed to obtain a high-

resolution 3D image, gray-level patterns are developed [64]. For example, one can use

M distinct levels of intensity, instead of only two in the binary code, to produce unique

coding of the projection patterns. Figure 2.4b shows an example of 3-frame pattern with

three levels of gray scale.

Binary coded pattern and gray-level coded pattern both use discrete step color pat-

terns. On the other hand, phase shift is a type of fringe projection method which uses

continuously colored patterns for imaging [65, 66]. A set of sinusoidal patterns is projected
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onto the object surface (Figure 2.4c). The intensity of each pixel (x, y) in the images of three

projected sinusoidal patterns are described as

I1(x, y) = I0(x, y) + A cos[φ(x, y)− θ],
I2(x, y) = I0(x, y) + A cos[φ(x, y)],
I3(x, y) = I0(x, y) + A cos[φ(x, y) + θ],

(2.4)

where I1(x, y), I2(x, y), and I3(x, y) are the intensities of three fringe patterns, I0(x, y) is

the DC component (background), A is the modulation signal amplitude, φ(x, y) is the

unwrapped, i.e., continuous and monotonically increasing, phase that we are looking for,

and θ is a constant phase-shift between the consecutive pattern frames. Once the phase

shifted images are captured, a process called phase unwrapping is used to convert the

relative, wrapped phase φ′(x, y), φ′ ∈ [0, 2π), to the absolute, unwrapped phase φ(x, y).

The wrapped phase information φ′(x, y) can be retrieved from the intensities in the

three fringe pattern images1:

φ′(x, y) = arctan
[√

3× I1(x, y)− I3(x, y)
2× I2(x, y)− I1(x, y)− I3(x, y)

]
. (2.5)

The discontinuity of the arc tangent function at 2π can be removed by adding or sub-

tracting multiples of 2π on the φ′ value, this unwraps the relative phase and generates

the absolute phase value at pixel (x, y). The 3D coordinates can be calculated based on

the difference of the absolute phase value between measured phase and the phase from a

reference plane [62].

2.4.1.3 Stereo Vision

Stereo vision works similarly in concept to human binocular vision. In a tradi-

tional passive stereo setup, two cameras placed horizontally apart from one another are

1The standard arctan() function produces results in the range (−π/2, π/2). In practice, an alternative
function, the atan2() should be used instead to produce results in the range (−π, π], which can be mapped
to [0, 2π) by adding 2π to negative results.
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used to obtain two different views of the same scene. By comparing these two images, the

relative depth information can be obtained in the form of disparities, which are inversely

proportional to the distances from the camera to the imaged objects. The primary compu-

tation involved in a stereo vision system is a process called stereo matching, which finds

the pixel-wise correspondences between left and right images. Various algorithms have

been developed to improve the accuracy and robustness of stereo matching [67, 68], be-

cause pixel correspondences would be weak in texture-less regions, in images where great

amount of noise presents, and between matched feature pixels whose colors are not con-

sistent due to different gains and biases used in image sensors. Multiple variant of global

optimization were proposed to reduce pixel-wise matching error, and to advance the state

of the art of stereo matching [67, 69].

Compared to laser scanner and structured light, stereo vision system captures a

3D scene in one shot, which is as quickly as taking a picture on the camera. The capability

of the fast scene capture makes stereo vision technology a great solution for body imaging,

because it is difficult to have the scanned subject to remain static and to avoid any involun-

tary body movement for a period of time. Stereo vision system is passive in nature, it does

not require any artificial lighting. Furthermore, since high resolution cameras are becom-

ing more affordable, the total hardware cost in building a stereo vision system is getting

lower. On the other hand, the primary disadvantage associated with stereo vision is the

complexity of the algorithm it uses to recover the 3D scene. The quality of reconstructed

3D scene largely depends on the richness of textures on the imaged surface. The com-

putational complexity of the 3D depth calculation in stereo vision is directly proportional

to the size of stereo pictures and the depth of the scene. As a result, stereo vision faces

great challenge in real-time application, and sometime requires parallel processing to fully

utilize the computing power of modern massively paralleled computation infrastructure.
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2.4.2 3D Acquisition Systems

3D body scanners are transforming the ability to accurately measure a person’s

body size, shape, and skin surface area. Originally developed primarily for the clothing

and movie industries, 3D scanner’s noninvasive nature and ease of use make them appeal-

ing for broad clinical applications and large scale epidemiological surveys [70]. Research

on building accurate and reliable methods to capture human bodies began in the middle

and late 1980s.

Today, numerous body scanners have emerged on the market, the majority of which

are based on laser scanning and structured light technologies, primarily because of their

robustness benefited from active lighting in depth sensing. According to a review [71] of

body scanners conducted in 2007, there were over 50 companies around the world that

are developing and producing systems for 3D measurement of human body at the time of

writing. Systems and products for body scanning were developed and produced in three

regions: North America, Europe and Asia. The majority of structured light systems were

developed in Europe, mainly in Germany and UK. Whereas laser scanning systems were

developed and produced in North America and Asia.

Cyberware developed the earliest body scanners for face scanning [72]. The scan-

ning system is composed of a laser line projector and a camera. It rotates 360 degrees

around the subject’s head to capture a 3D image. The system was used for visual effects in

the movie The Abyss, produced by 20th Century Fox in 1989, to digitize the face of two ac-

tors. Depending on the body parts to be measured, the type of movement and the number

of laser-camera units varies. Later on, Cyberware extended the capability of their sys-

tem to perform whole body scan by utilizing four vertically-moving scanning units. The

whole body scanner of Vitussmart (Vitronic, Germany) consists of three scanner units that

also moves vertically along three pillars. A foot scanner of Yeti (Vorum Research Corp.,
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Canada) is composed of three units, which moves horizontally, two laterally and one from

the bottom.

In fact, the first 3D whole body scanning system, named the Loughborough An-

thropometric Shadow Scanner (LASS) [73], was developed by the University of Loughbor-

ough (UK) in 1989. It uses white light projection instead of laser projection. Four vertical

lines are projected onto the scanned subject simultaneously and the images are captured by

multiple cameras. The system is rotated horizontally to cover the whole body. Structured

light based body scanner can be built into a static setup. However, the field of measure-

ment of such scanning devices is limited, thus multiple sensor units are needed to provide

whole body coverage. The NX-16 body scanner available from [TC]2 (US) consists of 16

sensors and every four of them are stacked at each corner of the cubic scanning booth to

cover partial of the body. NX-16 uses sinusoidal strip pattern for 3D surface capture and

the depth estimation is based on the phase shift computed at each pixel. Similar principles

have been applied in other systems, such as the body scanner Capturor (InSpeck, Canada),

which can measure surfaces with maximal size of half part of the human body, e.g., upper

torso. Customers can customize their body scanner with Capturor in terms of the number

of sensors to be used. With high resolution digital camera being available nowadays, the

resolution of a structured light based 3D scanner has been greatly improved. The Mephisto

EX (4DDynamics, Belgium) utilizes an HDTV machine vision camera with a resolution of

1920× 1080 pixels at 8 bits color depth as the main geometry camera. An optional Canon

DSLR camera can be used along with the geometry camera to capture texture maps. A

total of four scanner units are deployed at four corners for whole body coverage. The

Mephisto EX body scanner reaches to a point accuracy of 0.15 mm (average). A major dis-

advantage associated with structured light scanner is that multiple units cannot be used

simultaneously, since the light pattern from one sensor unit interferes with each other’s.
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Figure 2.5: A structured light based body scanner from 4DDynamics with four Mephisto
EX scanner units. Each units consists of an HDTV machine vision camera as the main
geometry camera, a digital projector, and a Canon DSLR texture camera.

Practically, this means that multiple units have to be used serially. This implies an exten-

sion of the acquisition time. Each sensor units in Mephisto EX scanner takes about one

second to capture a surface. A total of four seconds is required for a whole body scan.

In order to prevent measurement error cause by subject’s movement during a scanner, a

software based motion compensation is included in its 3D model construction.

Since Microsoftr released the Kinect gaming device for its XBox console in 2010, its

potential being a low-cost depth sensor has been extensively explored in the field of body

scanning. Kinect uses non-visible infrared light pattern and achieves depth estimation

through light coding. The details of the light coding technique has not been disclosed from

this developer PrimeSense (Israel), but researchers and developers speculate that depth is

calculated by triangulation against a known pattern from its infrared projector [74]. The

pattern may be unique to each of the individual Kinect, and is acquired at a known depth

during the manufacturing process. [TC]2 released a Kinect based body scanner KX-16 as

the successor to its NX-16 scanner, and for the first time announced a whole body scanner

under $10,000 price point across the industry. KX-16 uses 16 Kinect sensors and applies the
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same configuration as the NX-16. Similar system is available from Size Stream (US), which

uses 18 Kinect sensors. Size Stream body scanner configures all its sensors into two 3× 3

matrices, one placed in the front of the subject, and one in the back. Other Kinect based

body scanners include Styku (US) and Bodymetrics (UK), both of which utilize less sensor

unites and focus on the apparel industry. Kinect devices are calibrated during manufac-

turing with a proprietary algorithm. The calibrated parameters are stored in the devices’s

internal memory and are used by the official drivers to perform the reconstruction. Al-

though adequate for casual use such as during games, the manufacturer’s calibration does

not correct the depth distortion. Thus depth camera calibration [75,76] is usually required

for a system to be used for measurement purpose.

Apart from the active lighting 3D scanning technologies, passive stereo vision 3D imag-

ing technique is maturing over the past few years. The robustness and accuracy of the

stereo vision system greatly benefits from the availability of high resolution digital cam-

eras. Canfield Scientific, Inc (US) developed a family of VECTRAr 3D imaging systems

for face and partial body surface acquisition. The VECTRA H1 uses a camera with a split-

optical path stereo lens for facial imaging, while the VECTRA XT uses three pairs of stereo

sets for frontal upper torso imaging. A stereo vision system requires a well-illuminated

environment for the best quality of stereo images. The VECTRA systems are built with

light panels so the reflection of light on skin surface is minimum. Since a stereo unit works

best for the frontal-parallel surface and human body is full of curves, a whole body stereo

vision system requires multiple stereo unit configured around the body in order to get the

complete body surfaces. The Infinite-Realities (UK), a 3D scanning and character creation

studio, reported the deployment of a single shot whole body scanning systems with 115

Canon DSLR cameras. All cameras are hardware synchronized and arranged around the

scanned subject (Figure2.6).
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Figure 2.6: The stereo vision 3D imaging system deployed by Infinite-Realities (UK). Sys-
tem consists of 115 Canon DSLR cameras and studio lighting equipment.

2.5 Summary

The health threat and economical burden caused by the prevalence of obesity has

triggered the need of a robust and piratical solution for obesity assessment and monitor-

ing. 3D body imaging provides a convenient, noninvasive and radiation-free alternative

for body dimension measurement. 3D body imaging techniques have been maturing over

the years. We reviewed popular technologies and pointed out the advantages and dis-

advantages of each. Stereo vision has been one of the most active research topics in the

computer vision community, and is becoming the technology of choice for depth sensing

in a wide range of applications because of its fast image capturing, compact size and low

cost. In the following chapter, we will focus on the principles of stereo vision and highlight

the challenges in the application in body imaging.
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Chapter 3

Stereo Vision Principles

This chapter provides a background knowledge about the depth estimation from

stereo vision. The methods related to the problem of depth estimation from stereo images

are discussed first, then a brief review of recent advances of stereo is given. Most of stereo

algorithms follows a four-step framework. The key building blocks of this framework is

discussed. This chapter ends with a description of the quality metrics we use in evaluat-

ing the performance of our developed stereo algorithm. System-wise evaluation is out of

the scope of this topic and will be covered in later chapter. Much of the content in this

chapter is at fundamental level and may be safely skipped for readers who have working

experiences with stereo.

3.1 Depth Estimation from Images

Stereo vision recovers 3D shape from images taken under controlled lighting con-

ditions. The depth estimation is based on the principle of multi-view triangulation, which

is inspired from human binocular vision. By following this principle, a point’s 3D position

can be reconstructed by intersecting the lines of sight of the corresponding pixels in mul-

tiple images. Stereo vision assume the camera parameters are known and seeks to com-

pute pixel correspondence for dense 3D reconstruction. Reviews of recent advances in this

field can be found in [67, 77, 78]. The limitation of stereo vision comes from the difficulty

in finding the correct pixel-to-pixel correspondence. Correspondence based stereo meth-

ods perform well when the imaged surface is Lambertian and contains rich texture. But
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they may fail for surfaces that are non-Lambertain or Lambertian with little texture. Non-

Lambertain surfaces are reflective and result in inconsistent color when they are viewed

from different angles. Lambertain surfaces with little texture introduce ambiguities for the

correspondence because pixels within a neighborhood are similar in color and is difficult

to assign a one-to-one correspondence without regional information, such as the size and

shape of the color block. Modern stereo methods resolve matching ambiguities by assum-

ing the imaged surface is smooth or by applying planar prior model [79] for the imaged

3D shape. Nevertheless, obtaining accurate and robust depth estimation from stereo vision

remains a very active and challenging field of research with the computer vision commu-

nity. Since stereo matching is the main focus of this dissertation, Section 3.2 and 3.3 will

provide more detailed background information.

3.2 Preliminaries

3.2.1 Image Formation

Without the loss of generosity, we use perspective projection to describe the image

formation, through which a 3D scene is projected onto a 2D image plane and objects in the

distance appear smaller than objects close by. This projection model can be presented by

a pinhole camera (Figure 3.1a). Light from a feature point in the scene passes through a

pinhole and forms an inverted image of the scene on the image plane. The pinhole camera

model describes the mathematical relationship between the coordinates of a 3D point and

its projection on the 2D image plane. The pinhole camera is widely adopted in the field of

computer vision because it resembles closely the image formation process of a real camera.

However, the image of a 3D scene is inverted in the pinhole camera model. To further

simplify the image formation process and to prevent the image being inverted, the pinhole

camera model can be redefined by placing the image plane in front of the focal point.

An image is formed when light rays from a feature point in the 3D scene pass through
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Figure 3.1: Perspective projection through (a) pinhole camera geometry: each ray of light
passes through a common center of projection and intersects the image plane; (b) simpli-
fied camera model: each ray of light passes through the image plane and converges at the
focal point.

the ”imaginary” image plane and converges in the focal point. Figure 3.1b illustrated the

simplified camera model.

The primary difference between these projection models and real cameras is that

real cameras have a lens instead of a point. Geometrical distortions introduced by the lens

are not accounted for by the simple pinhole model. Fortunately, lens distortion can be

corrected by a non-linear image transformation with camera parameters computed from

camera calibration [80]. The pinhole camera also does not take into account the blurring of

unfocused objects caused by lenses and finite sized apertures. This generally requires the

3D scene to be well focused for computer vision application, such as stereo matching.

3.2.2 Binocular Stereo Geometry

So far we have discussed how an image is formed through perspective projec-

tion. We now turn to the binocular stereo cameras and introduce important parameters

for stereo correspondences and depth estimation. Stereo vision works similar in concept

to human binocular vision, as shown in Figure 3.2. Since the two cameras observe the

object from two different views, the captured left and right images are not the same due

to perspective projection. The relative displacement of the same feature point in the two
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Figure 3.2: Epipolar geometry of binocular stereo vision. The 3D feature point P, the opti-
cal canters Ol and Or, and the two image points pl and pr all lie in the same plane Π.

images is called the disparity, which is used to calculate the depth of the feature point with

respect to the camera. As a convention adopted in this dissertation, we use subscripts ”l”

and ”r” to denote the properties and measurements that are related to the left and right

camera, respectively.

Assume P is an arbitrary feature point in a 3D scene, pl and pr are two images of P

observed by two cameras with optical centers Ol and Or, respectively. The feature point P

and two optical centers define the epipolar plane Π. As is illustrated in Figure 3.2, the point

pr lies on the line lr where Π and the right image plane intersect. The line lr is the epiploar

line associated with the point pl , and it passes through the point er. Likewise, the point pl

lies on the epipolar line ll associated with the point pr, and the line ll passes through the

intersection el .

The points el and er are called the epipoles of the two cameras. The epipole er is the

projection of the optical center Ol in the right image observed by the right camera and vice

versa. Thus, if pl and pr are images of the same point, then pr must lie on the epipolar line

associated with pl . This epipolar constraint plays a fundamental role in stereo matching

because the search of correspondences can be restricted to one-dimensional instead of the

whole image space, greatly reduces search range. The epipolar geometry can be easily
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computed from camera parameters which can be acquired through camera calibration [80,

81].

Figure 3.3 shows a simple epiplar geometry that results from two cameras with

identical focal length and coplanar image planes. In this scenario, corresponding epipo-

lar lines are parallel to the horizontal axis of image planes and matched pixels pl and pr

have the same y-coordinates. This special configuration greatly simplifies the correspon-

dence problem since the explicit search of epipolar lines is no longer required. In addition,

for area-based stereo matching approaches, two rectangular regions surrounding matched

feature pixels can be evaluated directly without the need of image warping or interpo-

lation. Most of stereo systems adopt this configuration to take advantage the simplified

epipolar geometry. However, in practice it is technically difficult to install two identical

cameras so that they sit at the same horizontal level and their image planes are coplanar.

To achieve a geometrical equivalent to the simplified epipolar geometry with equal focal

lengths, we can rectify the left and right images by re-projecting them to a specific copla-

nar plane which is equidistance to the baseline OlOr. Rectification of stereo images can be

achieved by applying image warping using two 3× 3 homographies computed from the

camera parameters [82–84].

Given two rectified images and the known simplified epipolar geometry, the po-

sition of a 3D feature point P can be determined by intersecting two rays Ol pl and Or pr.

The correspondence between pl and pr is related by a disparity value d. The disparity is

defined as the horizontal difference of two matched pixel coordinates as d = xr − xl . Note

that yr ≡ yl since corresponding pixels must be on the same vertical position for rectified

images. Figure 3.3 illustrates how the depth of an arbitrary 3D point is computed from

disparity under the simplified epipolar geometry. Denote the 3D point P(X, Y, Z) and its
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Figure 3.3: Stereo geometry in parallel-axis stereo vision. The disparity of a scene point P
and its depth Z is related by Z = − f b/d.

2D images pl(xl , y) and pr(xr, y), we have

xl

f
=

X
Z

and
xr

f
=

X + b
Z

(3.1)

from the relationship of similar triangles. The constants f and b denote the camera focal

length and baseline, respectively. The disparity d = xr − xl is proportional to focal length

and baseline, and inversely proportional to the depth Z.

3.2.3 Stereo Correspondence

Stereo correspondence refers to the one-to-one match of the images of the same

feature point between left and right views. Solving the stereo correspondence, or in other

words, for each pixel in the reference image finding its corresponding matching points in

the other image, is the primary task of binocular stereo vision. It is commonly adopted by

most researchers that the image scene is composed of object with Lambertian surfaces and

brightness consistency is assumed in order to establish the matching criteria for correspon-

dences. The intensity consistency describes that corresponding points on a Lambertian
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surface have the same intensity if they are viewed from different viewpoints. In practice,

the Lambertian or intensity consistency assumption does not always hold for real-world

scenes. Specularities, reflections, and transparency typically introduces problems to stereo

matching algorithms. Even when the Lambertian assumption is true, stereo correspon-

dence still remains a challenging task for the following reasons:

• Sensor gain and bias. The imaging sensors used to capture images from different

viewpoints may have different gain and bias in their photonic response. This intro-

duces color difference between the correspondence.

• Repetitive patterns and textureless regions. The intensity-consistency constraint is

no longer valid for scenes that contain repetitive patterns or textureless retions.

• Occlusions. Occluded pixels, i.e., points visible from only one camera, does not

have a match in the other view, thus should not be matched. Correctly identifying

and handling occluded pixels is important for dense stereo vision.

• Non-frontal-parallel surfaces. Surfaces that are not parallel to camera’s image plane

may result in reduced resolution and blurring. The area of a non-frontal-parallel

surface visible to left and right viewpoints are also different.

• Depth discontinuities. Preserving sharp depth discontinuities along object bound-

aries is especially important for some applications such as 3D reconstruction.

• Noise. Noise is unavoidable. There are always uncertain intensity values due to

light variations, out-of-focus, and sensor noise introduced by the image formation

process.

Traditionally, stereo matching algorithms are classified into two categories, feature-

based and area-based. Feature-based approaches only establishes correspondences for

distinct feature pixels that can be robustly distinguished and unambiguously matched
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[85–87]. Other features, such as Scale-Invariant Feature Transform (SIFT) and Features

from Accelerated Segment (FAST) corners can also be used for sparse stereo matching [88].

These features can typically be detected and matched at high speed, making this type of

correspondence a viable solution for real-time robotic application. While feature points can

be matched with high confidence, these methods are limited to spare or semi-dense depth

estimation. Area-based approaches consider larger image regions that contain richer in-

formation than individual pixels to generate more stable matches. The matching function

used in the area-based method typically computes the dissimilarity between support re-

gions in stereo images. A major problem associated with area-based approaches is that

they assume pixels within the support region have the same disparity. This is not valid

for pixels near depth discontinuity or non-frontal-parallel surfaces. Therefore, in order to

get accurate depth estimation the size and shape of matching windows should be carefully

determined.

3.3 A Framework for Stereo Matching Algorithms

Following the taxonomy and evaluation of dense stereo matching algorithms re-

viewed by Scharstein and Szeliski [67], stereo matching algorithms generally follow four

steps:

1. Matching cost computation;

2. Cost aggregation;

3. Disparity computation and optimization; and

4. Disparity refinement.

In this section, we briefly introduce these key building blocks from which most

existing stereo matching methods are constructed.
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3.3.1 Matching Cost Computation

All stereo algorithms relies on a cost criteria which measure the similarity between

pixels to establish pixelwise correspondences. A matching cost is a metric indicating how

likely two pixels correspond to the same scene point. A low matching cost indicate a

high confidence in the pixel-to-pixel correspondence. Matching cost computation is very

often based on the absolute differences (AD), squared differences (SD), or Birchfield and

Tomasi’s (BT) sampling insensitive difference [89] of intensities and colors. Since these

costs are sensitive to radiometric differences, costs based on image gradients are also used

[90].

Besides the above methods, there are filter based cost function that are designed to

tolerant global intensity variations caused by gain and exposure difference, image noise,

different camera settings, etc. Images are preprocessed with certain types filters and then

the filtered images are matched using common cost criteria, such as AD and SD. Popular

filters include Laplacian of Gaussian (LoG) [91], rank filter [92], and mean filter. Nor-

malized Cross Correlation (NCC) is another method for measuring matching cost. The

normalization within a correlation support area effectively compensate variations in gain

and bias. The main limitation of NCC is that it tends to blur depth discontinuities more

than many other matching costs. A comprehensive evaluation of several matching costs

can be found in the work of Hirschmuller and Scharstein [93]

3.3.2 Cost Aggregation

Pixelwise cost calculation is generally ambiguous and wrong matches can easily

have a lower cost than correct ones, due to noise, imaging sensor gain and bias, and so

forth. Therefore, an additional constraint is usually applied to support smoothness by

penalizing or rejecting changes of neighboring disparities. Local area-based methods ag-
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gregate the matching cost by summing over a support region. A support region is typically

a rectangular window centered at the current pixel. Conventional 2D aggretation methods

smooth the cost volume by computing the weighted average of matching cost using box

or Gaussian filters [94]. The advantage of using linear filters, such as box filter, for cost ag-

gregation is that the 2D convolution process is separable and very fast implementation can

be achieved. However, these methods tend to blur object boundaries with the fixed size of

the support window. To avoid the blurring artifacts near depth discontinuities, shiftable

windows [95, 96], windows with adaptive sizes [97, 98] or adaptive weights [99, 100] have

been developed.

3.3.3 Disparity Computation and Optimization

Disparity computation and optimization refers to the methods of assigning a cor-

rect disparity value to a pixel. In general, these methods can be categorized into two major

classes: local method and global method. In the local method, the disparity value at a

pixel location is simply selected by a local Winner-Take-All strategy, that is, the disparity

associated with the minimum aggregated cost at each pixel is chosen. In this scenario,

the accuracy of selecting the correct disparity value largely depends on the quality and

effectiveness of the cost computation and cost aggregation stage.

In contrast, global method make explicit assumptions about the scene that the im-

aged surfaces are piecewise smooth (except for object boundaries) and neighboring pixels

should have very similar disparities. This assumption is generally true and the constraint

used to enforce piecewise smooth is referred to as the smoothness constraint in the stereo vi-

sion literature. Global methods are usually formulated in an energy-minimization frame-

work. Global methods are less sensitive to noise and textureless regions and are in general

more robust than local methods since prior constraints provide regularization for regions

difficult to match. However, global methods are usually more computationally intensive
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than local methods.

3.3.4 Disparity Refinement

Disparity refinement is usually the last stage of a stereo matching algorithm, and

it is done as a post-processing for checking the consistency, removing peaks and isolated

values, interpolating gaps, or increasing the accuracy by subpixel interpolation.

39



Chapter 4

Framework Design of a Stereo Vision System

In this chapter, we describe the framework of the stereo vision system we have de-

veloped for 3D body imaging. As has been concluded from the previous chapter, stereo

matching remains as a great challenge in the field of research. The quality of stereo images

is crucial for a successful depth estimation. Stereo images must be taken in a controlled

lighting condition that the scene is well illuminated but free from specular reflection, ob-

jects in the scene must be rich in surface texture, and the image should be corrected from

lens distortion and properly rectified to enforce epipolar geometry. This chapter presents

the setup of our stereo vision system and the calibration technique we apply in order to

capture high quality pictures for dense stereo matching. An overview of our developed

stereo algorithm will also be presented.

4.1 System Setup

The primary task of this research is to develop a robust solution for 3D body imag-

ing, so that such a technology can benefit obesity study in terms of body shape monitoring

and %BF estimation for a broad range of population. With this in mind, the engineering

focuses in developing this type of system are cost, portability, and accuracy. To reduce

the cost and shorten the duration of development, we have used off-the-shelf components.

The basic unit of the system is a stereo unit that consists of a pair of digital Single-Lens

Reflective (DSLR) cameras. Multiple stereo units are needed for whole body imaging. Our

previous work on a rotary laser scanner [101] indicates that full body reconstruction can be
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made from two scanning units that are placed in front and back of a subject, respectively.

Later on, our developed active stereo vision system with artificial pattern projection [102]

adopted this configuration but used two stereo units on one side to cover upper and lower

body. A total of four stereo units were needed to provide whole body coverage. The sim-

ilar construction of our active stereo system has been used in this study. However, this

developed stereo system utilizes the natural skin texture that are readily available from a

scanned subject as the stereo matching primitives, rather than the artificial projected ran-

dom pattern used in our previous active stereo system.

Our hardware setup is illustrated in Figure 4.1. Two DSLR cameras are fixed on

an aluminum plate through their tripod mounting holes to form a stereo pair. The optical

axes of these two cameras are in parallel, this will reduce the amount of image distortion

during rectification process. The baseline of the stereo unit is set to be around 150 mm.

A large baseline can increase the disparities and eventually improve the depth resolution.

However, a large baseline will cause a reduced common field-of-view, adversely reduce

the coverage to the 3D scene. Two stereo units are mounted on an stainless steel pole

vertically to provide coverage of one side of body. The stainless steel pole is attached to

a metal base and is placed about 1.1 m away from the scanned subject in order to image

a subject not taller than 1.9 m. The distance from the stereo units to the subject is largely

determined by the fan angle of camera lens and the expected subject’s height, thus it could

be adjusted accordingly. A space of about 2.4× 1.5 m will provide sufficient room for such

a system to work.

The cameras we used in our systems are Canon EOS Rebel T3i (Canon Inc., Japan)

DSLR cameras with 18-megapixel imaging sensor. The camera comes with a 18-55 mm

lens. In order to cover a large field-of-view with limited distance, 18 mm focal length is

applied on all cameras. To capture well focused image, each camera will take a few shots
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2.4 m

1.5 m

Stereo camera 

unit

Figure 4.1: Schematic illustration of the system setup. The stereo vision system consists of
four stereo units, and has eight cameras in total.

with ”Auto focusing” turned on to capture a random target placed at the imaging site

where subject will stand. Once a well-focused image is acquired, we switch the focus-

ing to ”Manual” mode and leave the focusing ring fixed at the best-focus position. This

ensures the internal camera parameters stay unchanged during camera calibration and

stereo picture taking. The advantages of DSLR camreras over less-expensive point-and-

shoot cameras are larger imaging sensor and static lens constructions. A larger imaging

sensor results in higher optical resolution, thus a higher signal-to-noise ratio (SNR) can be

achieved. In addition, once good focus is achieved, the DSLR camera lens can be swithed

to manual focusing and will stay in static, while a point-and-shoot camera’s lens will re-

tract everytime it is switched off and deploy when it is switched on. The motion of the

lens causes slight changes in internal camera parameters, thus may requires frequent cali-

bration.
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Our system is set up in a room with top ceiling lights and outdoor ambient lights

through windows. Uneven illumination may occur in this casual setting, for example a

subject’s shoulder may appear brighter than his lower leg because the shoulder received

more light from the ceiling lights. To reduced this uneven illumination, on-board cam-

era flash is used so that the contribution from in-door light sources are reduced. Other

researchers reported image capturing techniques by setting up cameras in a dark room

and uses very long exposure time with a single flash for face imaging [103]. This allows

the capture of highly synchronized images to minimize involuntary body motion, because

camera shutters are all released and they are all waiting for the flash to fire. Another ben-

efit of single flash image capturing is the ease to detect the region-of-interest (the scanned

subject) based on the intensity, because foreground target is usually close to the flash and

receives more photonic energy than background. A major disadvantage of this exposure

strategy is the failure to meet the Lambertian surface constraint in certain areas, especially

on face which is oily for some subjects. Pixels in the reflective area are usually white-out

and causes mismatch in the disparity map. An effective solution to reduce reflection is

to eliminate point-based light sources and to increase the ambient light or use surface-

based light sources, such as light umbrellas or diffusers. However, this requires profession

studio equipments and raises the effort in setting up such a system. The strategy we devel-

oped for picture taking takes the advantage of ambient lighting and balances the overall

exposure with camera on-board flash. This combined method effectively reduces uneven

illumination and significantly minimizes skin reflection.

The cameras are connected to a computer via USB cables, through which commu-

nication and data transfer are handled. Image capturing are trigged from our developed

camera control software. All cameras are set to ”Av” mode, in which the brightness of

captured pictures is determined by the duration of exposure. To avoid the interference of
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multiple flash firing during the same time, a short delay of 300 ms is applied between each

capture made from cameras attached to the same pole. The total time needed to finish a

whole body imaging is expected to be within two seconds.

4.2 System Calibration

System calibration involves two stages: camera calibration and 3D registration.

The camera calibration calculates the intrinsic and extrinsic parameters of the cameras and

determines the relative position and orientation between two cameras in a stereo setup.

The 3D registration finds out the poses of each stereo units in a user defined world coordi-

nate system, so that 3D surfaces captured from each individual stereo units can be merged

into a common coordinate system.

4.2.1 Stereo Calibration

The camera calibration is a procedure of calculating the intrinsic and extrinsic cam-

era parameters through feature point correspondences via nonlinear transformation from

a user defined 3D pattern coordinate space to the 2D image coordinate spaces. The in-

trinsic parameters include the effective horizontal and vertical focal lengths fx, fy of the

lens, the principle point (u0, v0) which describes the decentering of the lens, the radial lens

distortion coefficients k1, k2, k3 and the tangential lens distortion coefficients τ1, τ2. The

distortion coefficients along with the principle point are useful in correcting geometrical

distortion introduced by imperfect lens. The focal length is essential in estimating depth

from disparity. The extrinsic parameters can be described by a rotation matrix R and a

translation vector t, which define the camera pose with respect to the calibration pattern.

When working with perspective projection in computer vision or computer graph-

ics, it is customary and convenient to use homogeneous coordinates. Mathematically, each
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point in homogeneous coordinates is extended by an extra coordinate s 6= 0 that maps the

point to a line through the origin in a space whose dimension is one unit higher than that

of the original space. For example, a 2D image point (u, v) and a 3D scene point (X, Y, Z)

can be represented by vectors
[
su sv s

]T and
[
sX sY sZ s

]T , respectively. Homo-

geneous coordinates allow us to express perspective projection of a 3D scene point onto a

2D image plane using the following linear equation:

s

u
v
1

 = M
[
R t

] 
X
Y
Z
1

 , (4.1)

where
[
X Y Z

]T are the coordinates of a 3D point in the pattern coordinate space, [u, v]T

are the coordinates of the projection on the image in pixels, and s is an arbitrary scale

factor.
[
R t

]
is a 4× 3 matrix of extrinsic parameters, in which R is the rotation matrix

defined on Euler angles (α, β, γ) and constructed with Rodrigues’s rotation formula, t is

the translation vector between the pattern coordinate system and the image coordinate

system. M is called the camera intrinsic matrix, and is defined by

M =

 fx k u0
0 fy v0
0 0 1

 , (4.2)

in which k is the skewness of the axes in the image plane and is usually 1 for most of

cameras.

The image projection model defined by (4.1) is convenient because it is based on

a linear transform and its parameters can be estimated as a closed-form solution. How-

ever, the non-linear optical distortion is not included in (4.1), thus (4.1) alone is insufficient

for a complete camera calibration. In reality, a feature point detected on an image is geo-

metrically distorted. Creating a classic model that includes radial distortion involves four

steps:
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1. Let
[
X Y Z

]T be the coordinates of a feature point that is defined on the calibra-

tion pattern, and
[
x y z

]T be the same point transformed into camera’s coordinate

space with rotation R and translation t,

x
y
z

 =
[
R t

] 
X
Y
Z
1

 . (4.3)

2. The perspective projection of this point in 2D undistorted, normalized image coordi-

nates
[
x′ y′

]T is [
x′

y′

]
=

1
z

[
x
y

]
. (4.4)

3. The transformation to link the undistorted, or corrected, coordinates
[
x′ y′

]T to he

distorted coordinates
[
x′′ y′′

]T is a non-linear distortion function of parameters δ =[
k1 k2 k3 τ1 τ2

]
. [

x′′

y′′

]
=

[
x′

y′

]
+

[
D(r)

x + D(t)
x

D(r)
y + D(t)

y

]
, (4.5)

where D(r)
x and D(r)

y describes the radial lens distortion,[
D(r)

x

D(r)
y

]
= (k1r2 + k2r4 + k3r6)

[
x′

y′

]
, (4.6)

D(t)
x and D(t)

y describes the tangential lens distortion,[
D(t)

x

D(t)
y

]
=

[
2τ1x′y′ + τ2(r2 + 2x′2)
2τ2x′y′ + τ1(r2 + 2y′2)

]
, (4.7)

with r2 = x′2 + y′2.

4. The 2D digital image coordinates (u, v) with lens distortion can then be calculated as

s

u
v
1

 = M

x′′

y′′

1

 . (4.8)
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Figure 4.2: A set of images for camera calibration. Images are shown for individual camera
calibration. Stereo calibration requires a set of image pairs for both left and right cameras.

Our camera calibration follows the technique originally proposed by Zhang [104],

and uses a planar chessboard pattern to establish feature point correspondences. The pat-

tern was printed by a high-quality poster printer and was attached to a rigid planar board.

In includes 17× 11 blocks, and the size of each block is 40× 40 mm. The fabrication error

was controlled under 0.2 mm. The 160 internal corners are used as feature points, and

their locations on captured images are detected up to subpixel accuracy. The target should

be placed at different positions and orientation. A set of images captured by one of the

cameras are shown in Figure 4.2. The typical calibration errors are between 0.4–0.8 pixels.

Once each camera is calibrated individually, a stereo calibration is applied to compute a

rectification matrix for each stereo pair. The rectification matrix is used to reproject the

distortion-corrected images onto the coplanar imaging planes to achieve simplified eqipo-

lar geometry as discussed in Section 3.2.2. All the camera calibration procedures were

implemented with OpenCV [105].
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4.2.2 Global Registration

The 3D surfaced reconstructed from a stereo pair is defined in the reference cam-

era’s 3D coordinate system. Each stereo unit has its own camera coordinate system. The

goal of the 3D registration is to compute the transformation between the reference cam-

era’s 3D coordinate system to a common world coordinate system, so that 3D surface data

from each stereo unit can be merged. Since this transformation does not change the Eu-

clidean distance between any points, it follows the rigid body model and involves rota-

tion and translation only (no scaling). To determine a rigid body transformation, theo-

retically three non-collinear points are sufficient. Let {pi =
[
xi yi zi

]T |i = 1, 2, 3} and

{Pi =
[
Xi Yi Zi

]T |i = 1, 2, 3} be the coordinates of three non-collinear points in the

camera and world coordinate system, respectively. The registration task is to find a trans-

formation that maps a point from the camera coordinate space to the world coordinate

space

Pi = R∗pi + t∗, (4.9)

where R∗ is a rotation matrix and t∗ is a translation vector. Because there are measurement

error in determining the point coordinates, the transformation can only be solved in a

least-square fashion by minimizing the following error

3

∑
i=1
‖Pi − (R∗pi + t∗)‖2 (4.10)

According to Haralick and Shapiro [106], the problem of finding the rotation and

translation transformations by which one or more camera coordinate space can be made

to correspond to a world coordinate space is defined as the absolute orientation problem.

Horn [107] proposed a closed-form solution to this problem. The method has been so

successful that there has been limited improvement in this area [108]. The steps to solve

the absolute orientation problem is outlined as follows:
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1. Calculate the point coordinates with respect to their centroids,

p′i = pi − p, (4.11)

P′i = Pi − P, (4.12)

where p and P are the centroids of the points in the camera and world coordinate

spaces, respectively. Now the new centroids of the points are 0 in both coordinate

spaces.

2. The plane containing the points in the camera coordinate system is rotated to coin-

cide with the place containing the points in the world coordinate space, so that

p′′i = R1p′i, (4.13)

in which R1 is the rotation matrix that can be determined from the normals of the

two plane.

3. An in-plane rotation R2 is sought that minimizes

3

∑
i=1

∥∥P′i −R2p′′i
∥∥2 . (4.14)

4. The rotation and translation that relate the camera coordinate system to the world

coordinate system is

R∗ = R2R1, (4.15)

and

t∗ = P−R∗p. (4.16)

Horn’s method for absolute orientation problem works with 3 feature points. An

optimal solution can be achieved by running the Horn’s methods for multiple times over

different feature point combinations. We have designed a registration target with five
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(a) The target for 3D registration. (b) The combinations of three feature points selected out of five for
each absolute orientation computation.

Figure 4.3: The 3D registration target and the feature points attached on the surface of the
target.

feature points available to each of the stereo units, so that registration only requires one

shot of the target. As is shown in Figure 4.3a, the top five circles are visible to the stereo unit

that is to cover the upper body, and the bottom five circles are visible to the lower stereo

unit. The two circles lie in the middle are shared between both stereo units. The center

of each circle provides a feature point for the absolute orientation computation. We pick

three circles out of five to run the Horn’s method, and the orientations and translations

computed from each point sets are averaged to generate an optimized global solution. The

combinations of selecting three feature points out of five from the registration target are

illustrated in Figure 4.3b;

Figure 4.4 shows the results of the 3D registration for one of our stereo unit. The

stereo image pair captured by this unit is first rectified, then circle centers are detected from

the images. Once the transformation between the reference camera’s coordinate system
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Figure 4.4: The results of 3D registration. The white crosses are the centers of circles de-
tected from the image. The green crosses represent the back-projection of the circle centers
(defined in the world coordinate system) transformed with the computed global rotation
and translation. The agreement between white and green crosses indicates the accuracy
of the global transformation. Right column: zoom-ins of the crosses highlighted on the
picture.

and the world coordinate system is computed, the feature points (circle centers) measured

on the registration target are back-projected onto the images. Ideally, the projected points

should coincide with the circle centers that are detected from the image. The agreement

between the detected points and the back-projected points indicates the accuracy of the

absolute orientation.

4.3 Stereo Matching Algorithm Overview

4.3.1 Technical Challenges

The research proposed in this dissertation aims to make depth estimation from

stereo images more accurate and robust for demanding applications that requires precise,

reliable, and dense depth estimates. Towards this end, we address two key challenges for

reconstructing dense scene structure using stereo matching and contribute several novel

algorithms that are motivated by the specific requirements and limitations imposed by the
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application of body imaging.

Our developed 3D body imaging system is a passive stereo vision system, which

does not involve any artificial lighting for depth estimation purpose. The natural skin

texture provides the matching primitives. Even with high resolution cameras, the qual-

ity of skin texture is not on par with artificial pattern found in an active system. Thus,

the primary challenge this research addresses is to resolve the stereo matching ambigu-

ities to achieve high-accuracy in depth estimation. A practical stereo algorithm has to

deal with matching ambiguity results from inconsistent lighting during image capturing,

sensor noise in image formation, homogeneous or repeated texture, and unmatched pixels

due to occlusion. A robust stereo matching strategy must be able to accommodate all these

characteristics in captured images.

The benefit of better texture in higher resolution stereo images comes with the in-

creased computational cost, because more pixels are to be processed. With a total of four

pairs of stereo units being used in our system and each camera captures pictures at 18-

megapixel resolution, there are roughly 1.5 × 108 pixels to be processed to generate the

3D surfaces for a scanned subject. Stereo matching on high-resolution images is challeng-

ing because an algorithm may suffer from both long processing time and heavy memory

consumption. A matching algorithm needs to search every possible disparity step for ev-

ery pixel to determine the best match. The time cost for the algorithm is O
(
W × H × D

)
,

with W and H being the width and the height of the image, D being the range of disparity.

The time cost increases by the power of 3 as the size of the image increases. For example,

the stereo matching algorithm proposed by Mei, et al. [109], which is ranked number two

on Middlebury website [110] in term of matching accuracy, requires 15 seconds to process

both of the ”Teddy” and the ”Cones” images (450× 375 pixels) in a non-parallel imple-

mentation. If the same algorithm is applied on an 18-megapixel image of size 5184× 3456,
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the projected processing time would be 4.5 hours. The scale of increase also applies to

the memory consumption. In order to design a stereo matching algorithm that can handle

high-resolution images, novel strategies are needed to improve both the time and memory

efficiencies.

4.3.2 Multi-scale Matching

To develop a whole body stereo vision system with comparable capability to other

3D vision applications with reduced computational complexity, our proposed stereo match-

ing algorithm takes the advantage of the multi-scale, coarse-to-fine strategy to address the

stated challenges. A significant benefit of applying multi-scale matching is to utilize the

matching result from a lower resolution scale as an initial guess for the subsequent scale.

This prevents unnecessary search along the whole disparity space for a possible match,

greatly reducing the time complexity. To reduce matching ambiguity, we design the algo-

rithm such that both localized texture details and the texture gradient at the neighborhood

of a matching feature point will be taken into account in the computation of the matching

cost, enforcing a non-local optimization during matching.

In our multi-scale stereo matching framework, an image pyramid is first constructed

by successive Gaussian filtering and down-sampling by a factor of two from original im-

ages. A total of four scales was applied, and the image resolution at the top of the pyramid

is 1
8 of the original size. The number of layers of the pyramid is flexible and can be con-

figured as a parameter of the stereo matching. The criteria is that the major body surface

features are still visible at the lowest resolution images.

Given a pyramid of stereo images, stereo matching starts from the top level of

the pyramid. This is referred to as coarse match, since it matches large scale features and

generates a low resolution disparity map at that scale. Our coarse match performs a full
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disparity range search for every pixel in the image. This allows the algorithm to discover

3D surfaces at any depth within the predetermined depth-of-interest.

The disparity map computed from a lower resolution level provides input to the

next higher resolution level, where it is used to constrain the disparity search range for

match, and so on for the highest resolution level for the pyramid. A disparity map com-

puted at a previous scale only contains values in integer format. To produce an estimate

of the map at a higher resolution level, the map is first up-sampled by a factor of two with

nearest-neighbor interpolation. This results in a new disparity map that matches the size

of images at the new scale. Next, the value of each element in the map is scaled by a factor

of two, so that the disparity value at the new pixel location is scaled properly.

In order to constrain the search range for the new match, we took a strategy that

differentiate pixels that matched with high confidence, and pixels that were originally mis-

matched and were interpolated in the previous scale. Figure 4.5 illustrates the concept

of generating the disparity search range from a disparity map of the previous resolution

level. For pixels that passed left-right check in the previous scale, we are certain that these

pixels were matched with high confidence, thus their new disparity value in the current

scale should be close to their estimates with the only error being the error from the nearest-

neighbor interpolation introduced in the up-sampling step. Thus a±1 relaxation is applied

to these pixels. For those pixels that did not pass left-right check in the previous scale, their

disparity values were interpolated from their neighbors whose texture information is sim-

ilar. Even though constraints were applied in the interpolation as is described in Section

6.3, it is still possible that interpolated disparity deviates from the true value. This often

occurs on curved or slanted surfaces with low texture, where disparity changes over the

whole surface. For these pixels, the full disparity range that corresponds to the scene is

assigned to give these pixel the opportunity to find the true disparity value with surface
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texture at a higher resolution.

Dispari ty Dispari ty

: Dispari ty with high confidence

: Interpolated dispari ty

: Dispari ty range with ±1 relaxation

: Ful l  dispari ty range

Width Width

Figure 4.5: Generating disparity search ranges from the disparity estimates computed from
a previous resolution scale. Left: the disparities of one row of elements within a disparity
map. Right: the search ranges at each element location based on the confidence from a
previous match.

The coarse match computes a 3D matching cost volume with the base of the vol-

ume matches to the size of image and the height corresponds to disparity ranges at this

resolution level. Thus the complexity of the coarse match in big O notation is O
(
WjHjDj

)
,

in which j denotes the resolution scale, Wj and Hj are the width and height of stereo im-

ages at scale j, Dj is the disparity range at scale j. Subsequent stereo matches on higher

resolution scales only perform on fixed disparity range, i.e., [estimate - 1, estimate + 1] for

pixels matched with high confidence. Since these pixels cover the most of the 3D surfaces,

the complexity of the subsequent matches becomes O
(
WjHj

)
. This effectively reduces the

computation by an order of magnitude.

The cost volume in the subsequent matching becomes irregular in shape rather

than a rectangular prism in the coarse match stage. This is the result of variable disparity

range at each pixel location. This feature requires a flexible data structure to represent the

cost volume, and the modification of our cost aggregation procedure to handle the discon-

tinuity of disparity values between neighboring pixels. In additional to reduced compu-

tation, the benefit of these added algorithm complexity is the reduced memory footprint,

which also achieves an order of magnitude of saving. As the stereo matching reaches down

to the bottom of the pyramid, the memory consumption may becomes a major constraint
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(tens of gigabytes of usage) if the cost volume is defined as fixed height. The work flow of

our multi-scale stereo matching framework is presented in Figure 4.6.

Multiscale Stereo Matching

⁞ Virtual interface

Up‐sample

Update disparity search 
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=
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Upper rear unit

Lower rear unit

Point Cloud Generation

x

y

z

Meshing

Figure 4.6: The work flow of our multi-scale stereo matching framework.

Multi-scale stereo matching is a crucial strategy in handling large images for dense

disparity estimation. It reduces the amount of computation, thus saves total processing

56



time as well as memory consumption, making the matching problem solvable on a desk-

top computer in a reasonable time (a few minutes). Once the matching on the highest

resolution scale is done, a sub-pixel enhancement process based on quadratic polynomial

interpolation is performed to reduce the errors caused by discrete disparity steps. The final

disparity results are obtained by enhancing surface fine geometric details through bilateral

filtering.

4.3.3 Virtual Interface and 3D Background Segmentation

The virtual interface is the combination of surfaces in disparity space that corre-

spond to surfaces in the 3D space which segment an imaged person from the rest of the

space. The purpose of introducing a virtual interface is to provide a mechanism to auto-

matically specify the disparity search range which is short enough to avoid unnecessary

computation, but must be guaranteed to cover the depth of the ROI. To simply the com-

putation of the virtual interface, we define four planes that are placed in the front, rear,

top and bottom of the space where an imaged person will be standing in. The two side

planes are not required because objects beyond them are invisible to the cameras. Fig-

ure 4.7 shows the arrangement of the virtual planes.

The origin of the world coordinate system, OW , is at the center of the floor plane,

and the positive ZW-axis points to the frontal stereo units. To divide the 3D space into

the foreground and background, three of the four planes are applied. For example, the

bottom, top and rear planes are used for the frontal stereo units, and the bottom, top and

frontal planes are used for rear stereo units. To convert the virtual planes in the 3D space

to the virtual interface in the disparity space, the essential task is to compute the disparity

map of the 3D planes. Detailed instructions were provided in [14] in which a background

disparity map was computed with left camera being the reference of a stereo pair. In this

proposed stereo matching framework, in order to compute a disparity map with the right
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Figure 4.7: The virtual interface that defines the 3D region of interest. Four virtual planes
are utilized: bottom, top, front and rear.

camera as the reference for left-right check purpose, the background disparity for the right

camera should also be computed. The steps to generate the background disparity for the

right camera is presented below.

Figure 4.8 shows a 3D plane, Π, being viewed by stereo cameras configured in

parallel-axis setup. Ol and Or are focal points of the left camera and right camera, with

baseline distance of b. The normal of the plane Π is n =
[
nx ny nz

]T. Without loss of

generality, the plane is defined in the left camera’s coordinate system with the normal n

and the perpendicular distance from the origin s. Let Xl and Xr be the left and right camera
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Figure 4.8: The homography that is induced by a 3D plane observed by a pair of stereo
cameras.

coordinates of an arbitrary point P on Π. Thus, Xl and Xr satisfies

Xr = HXl , (4.17)

with

H = R +
1
s

tnT. (4.18)

R and t are the relative rotation and translation of the right camera with respect to the

left camera. H is the homography related with Π. Specifically, for the parallel-axis stereo

geometry, R = I, t = [−b 0 0]T , and thus we have

H =


1− b

s nx − b
s ny − b

s nz

0 1 0

0 0 1

 , (4.19)
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and

H−1 =


1

1− b
s nx

b
s ny

1− b
s nx

b
s nz

1− b
s nx

0 1 0

0 0 1

 . (4.20)

Denote x̃l = [xl yl f ]T and x̃r = [xr yr f ]T , which are the homogeneous co-

ordinates of the images of point P in the left and right image planes, respectively. Then

according to the perspective projection, we have λl x̃l = Xl and λrx̃r = Xr, where λl and λr

are scalar values. In addition, λl = λr stands for the parallel-axis stereo geometry. Then

by replacing Xl and Xr in (4.17), we obtain

x̃l = H−1x̃r. (4.21)

By combining (4.20) and (4.21) and rearrange, we can compute the disparity by

d = xl − xr =
1

1− b
s nx

[
1 b

s ny
b
s nz
] xr

yr
f

− xr. (4.22)

In practice, it is easier to define the plane Π in the global world coordinate system,

so it is necessary to transform it into camera’s coordinate system for background segmen-

tation. We assume the plane equation in the world coordinate system is

n̂TXW = ŝ, (4.23)

in which n̂ is the plane normal defined in the world coordinate system, and ŝ is its distance

to the world coordinate system origin. The transformation between the camera and world

coordinate system is

XW = R∗XC + t∗, (4.24)

in which we assume the camera coordinate system is defined on the left camera, i.e., XC =

Xl , R∗ and t∗ are camera coordinate systems’s rotation and translation with respect to the
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Table 4.1: Planes of virtual interface. Plane parameters are defined in the world coordinate
system.

n̂ ŝ (mm)

Plane 0 (floor) [0 1 0]T 2

Plane 1 (roof) [0 1 0]T 2000

Plane 2 (front) [0 0 1]T 400

Plane 3 (rear) [0 0 −1]T 400

world coordinate system and are obtained through 3D registration. Then by inserting

(4.24) to (4.23), we obtain (
n̂TR∗

)
XC = ŝ− n̂Tt∗. (4.25)

Comparing to nTXC = s, we obtain the plane parameters in the camera coordinate system,

n = n̂TR∗, (4.26)

and

s = ŝ− n̂Tt∗. (4.27)

Table 4.1 defines the four planes that serve as virtual interface for foreground and

background segmentation. The floor plane has been slightly lifted off the ground by 2 mm

to separate the body form the ground. Examples of the computed background disparity

maps are shown in Figure 4.9, in which Figure 4.9(a) are the maps from the upper stereo

unit and Figure 4.9(b) are the maps from the lower stereo unit. The grayscale values of

these maps have been scaled to highlight the variations within each map. Pixels of light

color indicate they are close to the stereo unit, while pixels of dark color indicate they

are far away. It can be observed from these disparity maps that the rear plane of our

virtual interface is visible to both the upper and the lower stereo unit, while the roof plane
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is only visible to the upper unit and the floor plane is only visible to the lower unit. The

right-camera in the upper unit sees more roof plane than the left-camera, because the right-

camera is mounted higher in elevation. The same applies to the lower unit that the left-

camera in the lower unit sees more floor plane. An interesting feature that is revealed by

these pairs of background disparity maps is that the variation of surface depth of the rear

plan shows a diagonal pattern in the upper unit, while the pattern in the lower unit is

horizontal. This is caused by the fact that our upper stereo unit has slight rotation angles

around both the y- and z-axis with respect to the world coordinate system, but the lower

unit has near zero rotation around the z-axis.

(a) Upper frontal stereo unit. (b) Lower frontal stereo unit.

Left Right Left Right

Roof plane

Rear plane

Rear plane

Floor plane

Figure 4.9: The background disparity maps computed for two frontal stereo units. Light
pixel value indicates near range, and dark pixel value indicates far range. The roof plane
and rear plane are visible to the upper unit, while the floor plane and rear plane are visible
to the lower unit.

4.4 System-wise Innovation

Considering the prevalence of obesity, a convenient, reliable, safe and relatively

inexpensive device is necessary for timely assessment and monitoring fitness in public

health. The stereo vision system for obesity assessment proposed here represents four

advances in the field of 3D body imaging:
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1. Stationary setup that does not require any moving objects, and is capable of fast

image capturing. The imaged subject is only required to remain stationary for one

second;

2. Simple and low cost hardware that is easy to be reconfigured and deployed;

3. Improved calibration method specifically designed to be used with high-resolution

cameras, and is able to be conducted in the test field;

4. Robust and efficient depth estimation algorithms with innovative functions for %BF

estimation.

Compared to other popular 3D imaging solutions, stereo vision is the most flexible

solution that requires less hardware but is capable of capturing high-resolution 3D images.

It is static and the depth sensing is non-active thus no artificial lighting device is required.

Our proposed stereo vision system is built upon consumer-grade, inexpensive cameras

only. The overall cost in hardware is among the lowest in all types of 3D imaging devices.

4.5 Summary

The framework of the proposed body imaging system has been described in this

chapter. We have set up a prototype with consumer-grade components. The construction

of our system is quite simple, since it only involves cameras and its associated mount-

ing accessories. The system can be easily disassembled, transported and reassembled. A

two-stage system calibration method has been described. The system does not need to

be calibrated frequently, as long as the camera parameters and camera positions remain

unchanged. This property improves the portability of the system and reduces the cost of

maintenance. The whole body image capturing only take about one second, greatly re-

duces the effect of motion. The 3D reconstruction is based on natural skin texture. The

stereo matching is performed in a multi-scale framework. A full-range search of the op-
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timized disparity values is only conducted at the highest scale with smallest image size.

The matching results from a previous scale provides a good guess of the disparity for the

next scale. This effectively reduces the amount of computation and saves processing time.

It also improves the matching accuracy because large scale features, which usually cause

less ambiguity, are matched first to generate a coarse map. The coarse map is then refined

at a finer scale with surface textures are higher resolution are available. The details of our

stereo matching algorithms are presented in the following chapters.
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Chapter 5

Matching Cost Computation and Aggregation

Matching cost computation and aggregation are the first two steps in a four-step

stereo matching framework. For a dense stereo matching, a matching cost is computed at

each pixel for all disparities within the search range. It evaluates the similarity between

the pixel-to-pixel correspondence. The cost aggregation connects the matching costs with

a certain neighborhood to reduce mismatches by supporting smoothness. This chapter

presents the cost computation and aggregation methods we developed for our 3D imaging

system. We starts with a brief review of related work, and then describe our method that

meets the requirements of our specific application.

5.1 Related Work

Stereo correspondence methods rely on matching costs for computing the dispar-

ities between matched pixels from left and right images. The simplest matching costs

assume constant intensities or colors at matched pixel locations, but robust cost metric

should compensate for certain radiometric differences and noise. Radiometric differences

can be caused by different gain and bias settings between imaging sensors. This type of dif-

ferences can be compensated by radiometric calibration. However, radiometric calibration

requires special equipment and may not be possible in all situations. Further differences

may be caused by non-Lambertian surfaces, for which the amount of reflected light de-

pends on the viewing angle. While such differences can be reduced by making the stereo

baseline smaller, this is limited by the physical dimensions of cameras. Small baseline also
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reduces the geometric accuracy of the reconstruction. Thus, a practical stereo matching

algorithm requires radiometric robustness.

Pixel-based matching costs include absolute differences (AD), squared differences

(SD), and sampling-insensitive absolute difference [111]. Window-based matching costs

include sum of absolute or squared differences (SAD/SSD) and normalized cross-correlation

(NCC). NCC is generally more robust than SAD and SSD, because NCC accounts for

gain differences in the matching windows due to normalization. Zero-mean versions of

window-based costs, such as ZSAD, ZSSD and ZNCC, are developed to compensate for

the bias in pixel intensities. Alternatively, bias can also be reduced by filtering the im-

ages before matching using a mean filter, computing a gradient magnitude image [112], or

Laplacian of Gaussian (LoG) [91,113], which generates a smoothed second order derivative

magnitude map. Unfortunately, all of these filters result in a blurred disparity image.

The weakness of a window-based methods is the inability to differentiate outliers

that occur near object boundaries. For example, a window-based method will take into

account background pixels when computing the matching cost for edge pixels of a fore-

ground object. Nonparametric matching costs [92, 114, 115] were introduced for being

robust against outliers near object boundaries. However, since nonparametric costs rely

only on the relative ordering or pixel values, they are also invariant under all radiometric

changes that preserve this order. In order words, a matched relative ordering of pixel val-

ues from two texture patches may be not necessarily sufficient to justify these two patches

are from the same part of an object. But when combined with radiometric difference

based measurement, nonparametric matching costs are more robust than when they are

used alone. The Rank and Census methods [92] can be implemented as a filter followed

by a comparison using the absolute difference or Hamming distance. Ordinal measure-

ments [114] compute the distance of rank permutations of corresponding windows.
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Another category of methods tries to explicitly model the complex radiometric

relationships between images. Mutual Information (MI) has been introduced in com-

puter vision by Viola and Wells [116]. Later work on MI in window-based stereo meth-

ods [117–119] demonstrated its power to model complex radiometric relationship. Oth-

ers used approximations of MI [120] for a segment-wise stereo matching. It has been

found [118, 119] that large windows are needed for collecting enough data to accurately

estimate the joint probability distribution, but large windows lead to blurring at object

boundaries. Towards this end, a hierarchical method [118] was proposed for estimating

probability priors over the whole image at a lower resolution. These priors are fused with

pixel values collected from smaller matching windows, which result in a reliable proba-

bility distribution. A pixel-based MI (without matching windows) in a global graph cuts

stereo method has also been reported [121]. The probability distribution is iteratively cal-

culated over the whole image using a prior disparity, which is random at the beginning.

It has been shown [122] that a hierarchical calculation of pixelwise MI is as accurate as

iterative calculation, but performance-wise MI is more computationally intensive.

According to the taxonomy [67], stereo matching algorithms are generally classi-

fied into two categories: local and global algorithms. In a local algorithm, the dispar-

ity computation at a given pixel location depends only on the intensities or colors with

a local regions. All local algorithms require cost aggregation and usually make implicit

smoothness assumption by aggregating supports. Global algorithms, on the other hand,

make explicit smoothness assumptions and compute the best disparities by solving an op-

timization problem. Such algorithms typically skip the cost aggregation, but rather seeks

a disparity solution that minimizes a global cost function. Popular global methods include

Dynamic Programming (DP) [96, 123, 124], Belief Propagation (BP) [125, 126] and Graph

Cut (GC) [79,127]. Unlike local algorithms, global algorithms estimate the disparity at one
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pixel using the disparity estimates at all other pixels.

Cost aggregation methods are traditionally performed locally by averaging match-

ing costs over a support region. The fastest local cost aggregation method is unnormalized

box filtering which runs in linear time (with respect to the number of image pixels) using

integral image [128]. The major drawback is that it blurs across depth edges. Yoon and

Kweon [99] demonstrated that edge-aware filters like bilateral filter [129] are very effec-

tive for preserving depth edges and Yang et al. [130] used bilateral filter for depth super-

resolution. However, a full-kernel implementation of the bilateral filter is computationally

expensive.

A number of approximation methods have been developed to accelerate bilateral

filtering, including Paris and Durand’s fast bilateral filter [131], Porikli’s O
(
1
)

bilateral

filter [132] and Yang’s real-time bilateral filters [133, 134]. These methods rely on quanti-

zation, and will degrade the performance as demonstrated in [135]. Paris and Durand’s

method was implemented on graphics processing unit (GPU) and was evaluated in stereo

matching. However, the depth map accuracy is much lower than the full-kernel imple-

mentation [99]. Recently, He et al. [136] proposed a new edge-aware filter called guided

image filter. Unlike bilateral filter, its runtime is linear with respect to the number of image

pixels, and was demonstrated [137] to outperform all the other local methods on Middle-

bury benchmark [110] both in speed and accuracy.

The stereo images captured by our developed body imaging system may contain

homogeneous texture regions and may show inconsistent lighting conditions due to the

casual illumination setting. The matching cost computation and aggregation methods that

are used in our study are designed to be robust to tolerant these image characteristics.

This chapter provides the detailed description of our cost computation and aggregation

methods.
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5.2 Matching Cost Computation

5.2.1 Overview

The matching cost is calculated for a base (left) image pixel p from its potential

correspondence pixel q = ebm(p, d) of the match (right) image. The function ebm(p, d) rep-

resents the epipolar line in the right image for the left image pixel p with the line parameter

d. For rectified images, we have ebm(p, d) =
[
px + d py

]T with d as disparity.

An important consideration in selecting a cost function is the size and shape of the

area that is considered for matching. The robustness of matching is increased with large

area. However, the implicit assumption of constant disparity inside the area is violated at

discontinuities, which leads to blurring object borders and fine structures. Although cer-

tain shapes and techniques can be used to reduce blurring, it cannot be avoided. Therefore,

the assumption of constant disparities in the vicinity of p is not always reliable. To bal-

ance the performance of matching accuracy and the robustness in dealing with matching

ambiguity, we propose a hybrid cost function that consists of there terms: cost of normal-

ized cross-correlation CNCC(p, d), cost of background suppressed color absolute difference

CAD(p, d), and cost of census CC(p, d). The combined cost function is in the form of

C(p, d) = ρ(CNCC, λNCC) + ρ(CAD, λAD) + ρ(CC, λC), (5.1)

where ρ(C, λ) is a robust function on variable C:

ρ(C[·], λ[·]) = 1− exp

[
−

C[·](p, d)
λ[·]

]
. (5.2)

The purpose of this function is twofold: first, it maps different cost measures to the range

[0, 1], such that (5.1) won’t severely biased by one of the measures; second, it allows cus-

tomizable control on the impact of the outliers with the parameter λ. This computation is

done for every pixel at every possible disparity. C(p, d) is usually called the matching cost

volume.
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5.2.2 NCC with Adaptive Support

Traditional window-based NCC tends to blur the depth discontinuities because

of outliers within the fixed window. To improve depth discontinuity in disparity maps,

adaptive window sizes and shapes should be used. To reduce computational complexity

for the NCC, traditional acceleration methods use two-dimensional integral image tech-

nique. However, this technique is inapplicable to NCC computation over non-rectangular

support regions. NCC is computationally intensive without the effective acceleration. So

here we present a fast NCC computation over shape- and size-adaptive support regions.

First, pixelwise shape-adaptive support regions are constructed using a cross-based ap-

proach. Then, the NCC computation is transformed and effectively accelerated using an

orthogonal integral image technique.

5.2.2.1 Cross-based Adaptive Support Region

To decide the pixelwise support regions U(p) for pixel p in the left image and U(q)

for pixel q in the right image, we adopt an approach [138] that is built on upright crosses.

As shown in Figure 5.1, a cross for a kernel pixel p composes of four arms with lengths of

{h−p , h+p , v−p , v+p }. The support region at pixel p is constructed in two steps. The pixel at the

end of left arm, pl , is determined by two following rules:

1. Dr(pl , p) < τ, where Dr(pl , p) is the radiometric difference between pl and p, and τ

is a pre-set threshold. The radiometric difference is defined as

Dr(pl , p) = max
i∈{R,G,B}

|Ii(pl)− Ii(p)|. (5.3)

2. Ds(pl , p) < L, where Ds(pl , p) is the spatial difference (or, distance) between pl and

p, and L is a preset maximum length measured in pixels. The spatial distance is

defined as Ds(pl , p) = |pl − p|.
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Figure 5.1: The adaptive support region U(p) at pixel p is constructed by merging multiple
horizontal segments H(p′) along the vertical segment V(p).

The two rules pose constraints on radiometric similarity and arm length with parameters

τ and L. The right, up and bottom arms of p are built in the same way. The support region

U(p) is constructed by merging multiple horizontal segments H(p′) along the vertical seg-

ment V(p), where p′ is a support pixel from V(p). Due to the orthogonal construction of

the cross, the complete map of support regions for each pixel in the image can be computed

conveniently.

The accuracy of cross-based matching cost algorithm is closely related to the pa-

rameters τ and L, since they control the shape of the support regions. Large textureless

regions may require large τ and L values to include enough color variation, but simply

increasing these parameters for all the pixels would introduce more errors at depth dis-

continuities. We therefore enhance the cross construction with a dual-threshold scheme:

1. Dr(pl , p) < τ1 and Dr(p+
l , pl) < τ1;

2. Ds(pl , p) < L1;

3. Dr(pl , p) < τ2, if L2 < Ds(pl , p) < L1.
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Figure 5.2: Construction of cross-based local support regions on the Aloe and Cones images.
Left column: pixelwise adaptive crosses are constructed from local support skeletons for
each kernel pixel. Right column: the shape-adaptive local support regions, which approxi-
mate local texture structures, are dynamically generated by integrating multiple horizontal
arms of neighboring crosses.

Rule 1 restricts not only the radiometric difference between pl and p, but also the radio-

metric difference between pl and its predecessor p+
l on the same arm, such that the arm

won’t run across an edge in the image. Rule 2 and 3 allow more flexible control on the arm

length. We use a large L1 to include enough pixels for textureless regions. But when the

arm length exceed a preset value L2 (L2 < L1), a much stricter threshold value τ2 (τ2 < τ1)

is used for Dr(pl , p) to make sure that the arm only extends in regions with very similar

color. Examples of the adaptive support regions from cross bounds are shown in Fig-

ure 5.2. Parameters used to compute cross arms are L1 = 30, L2 = 20, τ1 = 15, and τ2 = 8.

The local support regions approximate local texture structures with great consistency.
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5.2.2.2 NCC Computation Acceleration

To measure the correlation between two signals P = {pi|i = 1, . . . , N} and Q =

{qi|i = 1, . . . , N}, NCC computes the following correlation coefficient,

CP,Q =
∑i(pi − p̄)(qi − q̄)√

∑i(pi − p̄)2 ∑i(qi − q̄)2
(5.4)

where p̄ and q̄ are the mean values of the elements from P and Q. The numerator represents

the cross-correlation term and the denominator normalizes the coefficient to unit length.

Direct computation of NCC is computationally intensive and the time cost is pro-

portional to the support region size. Assume the average size of the support region is S,

the computational complexity to match two images with image size of M and disparity

range D is O
(

M× S×D
)
. Since M, S and D are usually large, the complexity is often pro-

hibitive for fast stereo matching. Accelerating NCC over shape-adaptive matching region

can be achieved by orthogonal integral image technique with a computational complexity

of O
(

M× D
)
, greatly accelerating the computing process.

First, the numerator and the denominator of (5.4) can be transformed as follows,

∑
i
(pi − p̄)(qi − q̄) = ∑

i
piqi −

∑i pi ∑i qi

N
(5.5)

∑
i
(pi − p̄)2 ∑

i
(pi − p̄)2 =

[
∑

i
p2

i −
(∑i pi)

2

N

]
×
[
∑

i
q2

i −
(∑i qi)

2

N

]
(5.6)

Equation (5.5) and (5.6) suggest that the essential computational component is to

sum the first and second order variables. In the case of stereo matching based on tow-

dimensional signals, the computational component can be generally represented as

G f (p) = ∑
(x,y)∈U(p)

f (x, y), (5.7)

with f (x, y) = Il(x, y), Ir(x, y), I2
l (x, y), I2

r (x, y), Il(x, y)Ir(x, y) for GIl , GIr , GI2
l
, GI2

r
, and

GIl GIr , respectively.
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An orthogonal integral image technique can be used to accelerate the computa-

tional component in the general form above. The accumulation over a two-dimensional

shape-adaptive region is first decomposed into two consecutive orthogonal one-dimensional

summing. Then each summing is further accelerated with integral image technique. The

complete computation flow can be summarized in four steps. For the simplicity presenta-

tion, we use p and (x, y) interchangeably to denote a pixel (p) at location (x, y).

Step 1 A horizontal integral image FH
f (x, y) is built on the image of f (x, y), accumulating

values at each row as

FH
f (x, y) = ∑

0≤m≤x
f (m, y) = FH

f (x− 1, y) + f (x, y). (5.8)

FH
f (x, y) can be iteratively computed with only one addition. When x = 0, FH

f (−1, y) =

0.

Step 2 Based on FH
f (x, y), we can compute the horizontal integral GH

f (p) at a pixel location

p as follows,

GH
f (p) = FH

f (xp + h+p , yp)− FH
f (xp − h−p − 1, yp). (5.9)

Step 3 Taking the GH
f (x, y) = GH

f (p) as the input, a vertical integral image FV
f is built to

store the cumulative column sum as

FV
f (x, y) = ∑

0≤n≤y
GH

f (x, n) = FV
f (x, y− 1) + GH

f (x, y). (5.10)

Step 4 The final result G f (p) for the pixel p = (xp, yp) is computed with one final subtrac-

tion

G f (p) = FV
f (xp, yp + v+p )− FV

f (xp, yp − v−p − 1). (5.11)

By taking Il , Ir, I2
l , I2

r , Il Ir as the input image function of f , we get GIl , GIr , GI2
l
, GI2

r
,

and GIl Ir , respectively. CNCC(p, d) can be computed as

CNCC(p, d) =
GIl Ir(p)−

GIl (p)GIr (q)
N√[

GI2
l
(p)− (GIl (p))

2

N

]
×
[

GI2
r
(q)− (GIr (q))2

N

] (5.12)
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where the pixel q in the right image is related to the pixel p in the left image with disparity

d, with
[
xp + d yp

]T
=
[
xq yq

]T. N = ‖U(p)‖ is the size of the support region at pixel

p. Note that I2
l (x, y) and I2

r (x, y) can be pre-computed independent of the disparity value

d, while Il(x, y)Ir(x, y) is computed at each iteration.

5.2.3 Cost of Census

Our second cost term is the census transform [92]. Census encodes local image

structures with relative orderings of the pixel intensities other than the intensity values

themselves, and therefore tolerates outliers due to radiometric changes and image noise.

Given a pixel p in the image and a disparity value d, we use a 9× 7 window centered at p to

encode each pixel’s local structure in a 64-bit string. If a neighbor pixel’s intensity is higher

than the kernel pixel p, the corresponding bit in the 64-bit string is set to 1, and 0 otherwise.

The cost of the match with census transform CC(p, d) is defined as the Hamming distance

of the two bit strings that stand for pixel p and its correspondence q that is related by

disparity d. The Hamming distance counts the number of bits that differ in the two bit

strings.

The census transform rely solely on the comparison between a neighbor pixel and

the kernel, and is therefore invariant under changes in gain or bias. If a small count of

pixels in a local neighborhood have a very different intensity distribution than the rest

majority of pixels, only comparisons involving a small member of pixels are affected. Such

pixels do not make a contributions proportional to their intensity, but proportional to their

number.

In a recent review by Hirschmüller and Scharstein [93], census shows the best over-

all results in local and global stereo matching methods. However, the census transform

could also introduce matching ambiguities in image regions with repetitive or similar lo-
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cal structures. To handle this problem, more detailed information should be incorporated

in the measure. For image regions with similar local structure, the color information might

help alleviate the matching ambiguities. While for regions with similar color distributions,

the census transform over a window is more robust than pixel-based measures, such as

absolute difference. This observation suggests the incorporation of pixel based measure

for overall robustness.

5.2.4 Background Suppressed Color AD

Our third cost term is the background suppressed absolute color difference. AD

is a point based matching cost, thus it preserves depth discontinuity. However, it assume

brightness constancy for corresponding pixels, which may not always be satisfied. To

improve the robustness of AD, we consider background subtraction by bilateral filtering

(BilSub). The bilateral filter sums neighboring values weighted according to proximity

and color similarity.

5.2.4.1 Bilateral Filter

The bilateral filter is a filtering technique to smooth an image while preserving

edges [129]. Its basic idea is very similar to Gaussian convolution: value of each pixel is re-

placed by a weighted average of its neighbors. The core difference is that the bilateral filter

takes into account the dissimilarity in pixel values with the neighbors while constructing

the blurring kernel. Given an image I and a kernel pixel p ∈ I, the support weight w(p, k)

of p’s neighbor k is written as:

w(p, k) = exp
(
−‖I(p)− I(k)‖

σr
− ‖p− k‖

σs

)
, (5.13)

where ‖I(p)− I(k)‖ and ‖p− k‖ represent the radiometric dissimilarity and the spatial

distance between p and k, respectively. The bilateral filter is controlled by two parameters
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σr and σs. These two values control the influence from radiometric similarity and spatial

proximity. An image filtered by a bilateral filter BF(·) is defined by

BF[I(p)] =
∑k∈Ωp [w(p, k)I(p)]

∑k∈Ωp
w(p, k)

, (5.14)

where Ωp denotes the set of all pixels in the support region and the normalization factor

∑k∈Ωp
w(p, k) ensures support weights sum to one. More interesting properties, imple-

mentation details, and applications of bilateral filtering can be found in [139].

5.2.4.2 Background Subtracted AD

Background subtraction is implemented by subtracting from each value the corre-

sponding value of the bilateral filtered image:

IBilSub(p) = I(p)− BF[I(p)]. (5.15)

This effectively removes a local offset without blurring high-contrast texture differences

that may correspond to depth discontinuities. We use a kernel of 15 × 15 pixels in our

bilateral filtering. The standard deviation of spatial distance is set to σs = 3. It defines the

amount of smoothing. The standard deviation of radiometric distance is set to σr = 20. It

prevents smoothing over high-contrast texture differences. On intensity images, the radio-

metric distance is computed as the absolute difference of intensities as defined in [140]. On

color images, distance in CIELab space was originally suggested in [129]. Our approach

however measure the chromatic difference in the RGB color space for simplicity and effi-

ciency. Examples of background subtraction by bilateral filtering is shown in Figure 5.3.

The edge preserving blurring effect can be observed in Figure 5.3b that only neighbor pix-

els whose color are similar to the kernel contribute to the filtering. In the background

subtracted images of Figure 5.3c, the local bias and gain in each individual image are sup-

pressed, and texture details on object surfaces are enhanced.
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(a) Originals. (b) Bilateral filtered. (c) Background subtracted with bi-
lateral filtering.

Figure 5.3: Examples of background subtraction with edge preserving bilateral filtering.
Local bias and gain in each individual image are suppressed, and texture details on object
surfaces are enhanced (highlighted in red) in the background subtracted images.

5.3 Cost Aggregation

Pixelwise cost calculation is generally ambiguous and wrong matches can easily

have a lower cost than correct ones, due to noise, and so forth. Therefore, additional

constraints should be added that supports smoothness by penalizing changes of neigh-

boring disparities. Our cost aggregation strategy adopts the method originally proposed

by Hirschmüller [122] that utilize multiple paths around a pixel for aggregation. We show
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that by refining the parameters along the aggregation path, this method can produce ag-

gregated results comparable to the adaptive weight method with much less computation

time.

5.3.1 Definition of Pixelwise Energy for Aggregation

Within the multi-path cost aggregation framework, the pixelwise cost and the smooth-

ness constraints are expressed by defining the energy E(D) that depends on the disparity

image D:

E(D) =∑
p

C(p, d) + ∑
k∈Ωp

P1T (|D(p)− D(k)| = 1)

+ ∑
k∈Ωp

P2T (|D(p)− D(k)| > 1)

 (5.16)

The first term of (5.16) is the sum of all pixel matching costs for the disparities of D. The

second term adds a constant penalty P1 for all pixel k in the neighborhood Ωp of p, for

which the disparity changes only by one step. The third term adds a larger constant

penalty P2, for all larger disparity changes. The function T(·) takes in a boolean expression

and return 1 if its value is True, and 0 otherwise. Using a lower penalty for small changes

permits an adaptation of slanted or curved surfaces in the 3D scene. The constant penalty

for all large changes, which are independent of their sizes, preserves discontinuities, since

discontinuities are often visible as intensity changes.

5.3.2 Multipath Aggregation

The searching for a disparity image D that minimizes an energy function E(D)

is a 2D global minimization problem, and is NP-hard for many discontinuity preserving

energies [141]. In contrast, the minimization along individual image rows in 1D can be per-

formed efficiently in polynomial time using DP [89,142]. However, DP solutions generally
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(b) 16 paths from all directions g for a
pixel at p.

Figure 5.4: Aggregation of costs in disparity space.

suffer from streaking effects, due to difficulty in relating the 1D optimization of individ-

ual image rows to their neighbor rows in a 2D image. The problem is that very strong

constraints in one direction along image rows are combined with none or much weaker

constraints in the other direction, that is, along image columns.

This leads to the idea of aggregating matching costs in 1D from all directions equally.

The aggregated, or smoothed, cost S(p, d) for a pixel p and disparity d is calculated by sum-

ming the costs of all 1D minimum cost paths that end in pixel p at disparity d, as shown in

Figure 5.4. These paths through matching cost volume are projected as straight lines onto

the left image but as non-straight lines onto the corresponding right image, according to

disparity changes along the paths. It is noteworthy that only the cost along the path is of

interest, but not the path itself.

The cost L′g(p, d) along a path traversed in the direction g of the pixel p at disparity
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d is defined recursively as

L′g(p, d) = C(p, d) + min[L′g(p− g, d),

L′g(p− g, d− 1) + P1,

L′g(p− g, d + 1) + P1,

min
i

L′g(p− g, i) + P2] (5.17)

The pixelwise matching cost C(p, d) is computed from our three-component cost

computation as is presented in Section 5.2. The rest of the terms add the lowest cost of the

previous pixel p− g of the path, adjusted with appropriate penalty if depth discontinuity

occur. This aggregation implements the behavior of (5.16) along a 1D path. Adding costs

along an arbitrary path would not allow us to enforce ordering and visibility constraint, be-

cause they cannot be applied for the paths that are identical to epipolar lines. We will leave

these constraint to subsequent processes. The values of L′g increase constantly along the

path, which may lead to very large values. However, (5.17) can be modified by subtracting

the minimum path cost of the previous pixel from the whole term

Lg(p, d) = C(p, d) + min[Lg(p− g, d),

Lg(p− g, d− 1) + P1,

Lg(p− g, d + 1) + P1,

min
i

Lg(p− g, i) + P2]−min
j

Lg(p− g, j). (5.18)

This adjusted cost aggregation does not change the actual path through disparity

space, since the subtracted value is constant for all disparities at a given pixel location at

p. Thus the disparity step that has the lowest cost at pixel p does not change. The costs Lg

are summed over paths in all directions g:

S(p, d) = ∑
g

Lg(p, d). (5.19)
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We selected a total of 16 paths covering 360◦ of a pixel for a good coverage of the 2D image.

Paths that are not horizontal, vertical, or diagonal are implemented by going one step

horizontal or vertical followed by one step diagonally. This will not generate paths that are

evenly distributed around 360◦, but it avoids the interpolation of costs between adjacent

pixels.

5.3.3 Aggregation with Adaptive Penalties

During the aggregation along a specific path, P1 and P2 are two parameters for

penalizing the disparity changes between neighboring pixels. While P1 penalize small

disparity change (|∆d| = 1), P2 penalize large disparity change (|∆d| > 1). As suggested in

[122], instead of using a constant value, P2 can be made adaptive to the intensity gradient,

that is,

P2 =
P∗2

|I(p)− I(k)| , (5.20)

for neighboring pixels p and k in the reference (left) image, where P∗2 is a chosen constant.

equation (5.20) is an inverse function of absolute radiometric difference between to neigh-

boring pixels. It generates a large penalty value when the absolute difference is small due

to its non-linearity, and it is a continuous function with respect to the absolute difference.

However, this function only depends on the radiometric differences in the reference im-

age, ignoring the differences in the match image. It may reject disparity changes from an

incorrect value at the previous pixel to the correct one at the current pixel, when the pixel

color barely changes in the reference image. This behavior can be corrected by checking

the radiometric differences in both the reference image and the match image. Instead of

taking the inverse of difference, we apply a step function based on radiometric differences

D1 = Dr(p, p− g) in the reference image and D2 = Dr(p + d, p− g + d). Dr(·, ·) is the

same function as is defined in (5.3), then P1 and P2 can be adaptively adjusted:
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Table 5.1: Parameters setting for our cost computation and aggregation methods.
Parameters Values Descriptions

λNCC 1.0
λAD 30

λCensus 1.0
The control parameters for robust cost function ρ(C[·], λ[·])

L1 22
L2 10

Arm lengths for calculating adaptive support regions

τ1 20
τ2 6

Thresholds of color difference for adaptive support

σr 20 Variance for radiometric difference in bilateral filtering
σs 3 Variance for spatial distance in bilateral filtering

P∗1 1.0
P∗2 3.0

Penalties to the costs at disparity discontinuity in cost aggregation

τAgg 15 Threshold of radiometric difference to determine disparity discontinuity

1. P1 = P∗1 , P2 = P∗2 , if D1 < τAgg, D2 < τAgg ;

2. P1 = P∗1 /4, P2 = P∗2 /4, if D1 < τAgg, D2 ≥ τAgg ;

3. P1 = P∗1 /4, P2 = P∗2 /4, if D1 ≥ τAgg, D2 < τAgg ;

4. P1 = P∗1 /10, P2 = P∗2 /10, if D1 ≥ τAgg, D2 ≥ τAgg .

In the above rules, P∗1 , P∗1 are constants, and τAgg is a threshold value for radiomet-

ric difference. This ensures that a fairly large penalty will be applied to disparity change

when radiometric differences between two neighboring pixels in both reference image and

match image are small, while a relatively small penalty will be applied when radiomet-

ric differences between neighboring pixels are large. For any cases in between these two

conditions, a median penalty will be applied. But still, it has always to be ensured that

P∗2 ≥ P∗1 .

The results of applying adaptive penalties at depth discontinuities for cost aggre-

gation are shown in Figure 5.5. Parameters for these methods are given in Table 5.1, which

are kept constant for all test image pairs. Incorrectly matched pixels have been removed

from all disparity maps, therefore the black areas in Figure 5.5 represent either occluded
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Figure 5.5: Cost aggregation with adaptive penalties at depth discontinuity. Top row:
depth maps computed without cost aggregation; middle row: depth maps computed with
static penalties in cost aggregation; bottom row: depth maps computed with adaptive
penalties.

areas or mismatched areas. The middle row in Figure 5.5 shows the disparity map gener-

ated by cost aggregation with constant penalties, and the bottom row shows the disparity

map generated with adaptive penalties. The images on the bottom row have less holes,

and the edges of foreground objects are more accurate than the images on the middle row.

It can also be observed that our adaptive cost aggregation algorithm has limited ability

in picking up clear and sharp edges for the foreground object. This is because our aggre-

gation is done by following 16 aggregation directions evenly distributed around a pixel.

When an edge is encountered during the aggregation, about half of the directions are from

background to the foreground, in which a large penalty is applied to the disparity change

from background to foreground. As a result, the aggregation on an edge pixel is only about
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half as effective as on a pixel within a foreground surface. But even with this reduced effec-

tiveness in aggregation on edge pixels, the disparity map computed from aggregated cost

volume is still more accurate than a disparity map computed without aggregation. Over-

all, our result indicates that mismatches have been greatly reduced, and our algorithms is

capable of generating complete surfaces based on robust matching cost computation and

aggregation.

5.4 Acceleration on Multi-core Processors

To achieve high performance in computing, we take advantage of the parallel com-

puting power in modern multi-core processor, and implement the matching cost com-

putation and cost aggregation in multiple threads to enhance computational speed. The

computation parallelism is implemented in OpenMP [143]. OpenMP parallelizes a com-

putation task by branching the master thread, which is a series of instructions executed

consecutively, into a number of slave threads, through which a task is divided among them

(Figure 5.6). The threads then run concurrently, with the runtime environment allocating

threads to different cores and processors.

5.4.1 Parallelized Matching Cost Computation and Aggregation

In theory, the amount of speed gain that can be achieved by parallelizing a task de-

pends solely on the fraction of serial code which could have been executed simultaneously.

A helpful guide to discover the underlying parallelism while ensuring data integrity is to

look for the same repeated computation performed on different data, because the oper-

ations that execute on the current data does not affect the results from the previous and

subsequent data. In the matching cost computation stage, most of the operations can be

parallelized because the same operation is performed on each image pixel at each disparity

step. Our parallelized operations include adaptive support region computation, bilateral
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Parallel Task I Parallel Task II Parallel Task III

Master Thread

Parallel Task I Parallel Task II Parallel Task III

Master Thread

Figure 5.6: An illustration of OpenMP multi-threading where the master thread forks off a
number of threads which execute blocks of code in parallel.

filtering, census transform, fast NCC computation, Hamming distance computation, and

absolute color distance computation. The first three operations are done in two nested

for loops which iterate through all pixels in an image, while the last three operations are

done in three nested for loops with one more dimension in the disparity space. Figure 5.7

shows an example of the parallel execution of the adaptive support region computation on

a quad-core processor with four threads running at the same time. The inner loop that is

highlighted in red in Figure 5.7 is treated as a work unit and it handles an individual row

of the image. All work units are evenly assigned to all work threads.

The result of matching cost computation is a three-dimensional volume C(p, d) of

size W × H × D, with W and H being the width and height of the image, and D being

the range of disparities. The cost aggregation is performed on this cost volume, following

16 path directions defined at each slice of W-H plane at every disparity step. Illustration

of the parallelized cost aggregation is displayed in Figure 5.8. Three path directions are

shown for horizontal (east), vertical (south), and diagonal (southeast). The rest of cost

paths are similar. According to (5.18), the aggregated value at a voxel in the cost volume is

dependent on its immediate neighbors preceding to it along the path at current disparity,
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parallel for row = 0 to Rows – 1 do 

for col = 0 to Cols – 1 do

cb ← new CrossBound

cb.left = compute left arm at (row, col) 

cb.right = compute right arm at (row, col) 

cb.top = compute top arm at (row, col) 

cb.bottom = compute bottom arm at (row, col) 

supportRegionMap(row, col) = cb

end for

end parallel for 

row = 0

row = 1

row = 2

⁞

row = 3

row = 0

row = 4

row = 8

⁞

row = 12

row = 1

row = 5

row = 9

⁞

row = 13

row = 2

row = 6

row = 10

⁞

row = 14

row = 3

row = 7

row = 11

⁞

row = 15

Thread #0 Thread #1 Thread #2 Thread #3

Serial execution Parallel execution

Figure 5.7: Example of the parallelization of adaptive support region computation through
cross bound on a quad-core processor. The codes listed at left shows the nested loops that
iterate through every pixel to compute the cross bounds. The codes highlighted in red are
treated as a code block that is executed for an individual row of pixels. Each thread in the
parallelized execution chain takes one forth of the total work load.

the disparity that is one step less, and the disparity that is one step greater, namely the

Lg(p− g, d), Lg(p− g, d− 1), and Lg(p− g, d + 1) as is defined in (5.18). However, within

a parallel computing framework, the order of execution of the same operation on multiple

data cannot be predetermined during the programming stage, and it is handled by the

operating system’s task scheduling mechanism at the run time. This data dependency

calls for careful design of our parallel algorithm to ensure that all the required data have

been updated when following the path to compute the aggregated costs.

It is clear from (5.18) that the computation of aggregated cost at a new pixel location

is dependent on its predecessor pixel location along the path. This suggests the use of a

synchronization mechanism among all thread once they finish updating one pixel along

the path. Before the start of cost aggregation at a new direction, all the header pixels that

define the beginnings of each path along current direction are collected (edges highlighted

in red in Figure 5.8). Each thread then take one row of voxels of the cost volume at a

specified disparity step, and update the aggregated cost at the new location. Once updates

are done, all threads synchronize and get ready to move on the next voxel along the path.
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Cost path direction: East

Vertical aggregation

Cost path direction: South

Diagonal aggregation

Cost path direction: Southeast

Cost volume L[W×H×D]

Figure 5.8: Parallelized cost aggregation. Edges highlighted in red on the cross-sectional
slice indicate the header pixels for all paths. Three path directions are shown, others are
similar. The shaded surfaces on the cost volume represent the voxels serve as path headers
for each aggregation direction at each disparity step.

This procedure can be visualized as the shaded faces as indicated in Figure 5.8 shift along

the path direction one layer at a time when updating the cost volume. The details of the

parallel algorithm is illustrated in Algorithm 1.

5.4.2 Performance Evaluation

We tested our matching cost computation and aggregation algorithms with the

Middlebury stereo images illustrated in Figure ??. The test platforms are two desktop

computers. One is with an Intel c© quad-core 2.8 GHz CPU and dual-channel 8 GB sys-

tem memory, and the other is with a high-end Intel c© hex-core 3.2 GHz CPU and quad-

channel 8 GB system memory. Both processors feature Intel’s proprietary simultaneous

multi-threading technology marketed as Hyper-Threading, through which the operating

system addresses two virtual or logical cores for each processor core that is physically

present. Workloads is shared between these logical cores when possible. This feature en-

ables the number of threads to be run concurrently two times as many as the number of
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Algorithm 1: Parallel implementation of matching cost aggregation

1 initialize a new cost volume Lg [W × H × D];
/* header pixels are highlighted in red from Figure 5.8 */

/* they remain the same across all slices of the cost volume */

2 ptHeaders← CollectHeaderPixels(pathDirection);
3 pathLengthMax← GetLongestPath(pathDirection);

/* the aggregation at each pixel along the path has to be computed */

/* sequentially, from 0→ pathLengthMax */

4 for i← 0 to pathLengthMax do
/* selecting a slice at depth d is done concurrently */

/* entering parallel region */

5 parallel for d← dispMin to dispMax do
6 foreach p0 ∈ ptHeaders do
7 if i ≥ GetCurrentPathLength(p0, pathDirection) then

/* reached to the end of current path */

8 break;

9 ptCurr← GetCurrentPixelLocation(p0, pathDirection);
10 ptPrev← GetPreviousPixelLocation(p0, pathDirection);
11 (x, y)← ptCurr;
12 Lg [x, y, d]← ComputeAggregatedCost(ptCurr, ptPrev, d);

/* leaving parallel region */

physical cores on the processor, that is eight threads on the quad-core system and twelve

threads for the hex-core system. Our cost computation and aggregation algorithms are de-

veloped in C++ programming language, and the multi-threading is done through OpenMP

parallelized loops.

The number of concurrent threads for a parallel code region can be controlled by

OpenMP’s API call omp set num threads(). Thread numbers from 1 to 8 are tested on the

quad-core system, and numbers from 1 to 12 are tested on the hex-core system. The multi-

threading speedup is calculated by computing the ratio of the processing time in serial

codes to the time in parallel codes. According the Amdahl’s law [144] of theoretical max-

imum speedup using multiple processors, the speedup that can be achieved by executing
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a given algorithm on a system capable of executing n threads of execution is

S(n) =
T(1)
T(n)

=
T(1)

T(1)
[
B + 1

n (1− B)
] = 1

B + 1
n (1− B)

, (5.21)

in which n ∈ N is the number of threads of execution, B ∈ [0, 1] is the fraction of the

algorithm that is strictly serial, and T(n) is the time an algorithm takes to finish when

being executed on n thread(s) of execution. T(1) is the time the algorithm takes to run in

strictly serial, and is taken as the reference to calculate the speedup.

The speedup calculated by Amdahl’s law is the theoretical maximum. Actual values

are usually lower than the theoretical values, because of various factors that affect the

performance, such as system overheads to initiate parallelism, cache miss in fetching data

for execution, memory bus bandwidth, etc. In our implemented algorithm, the processing

time is recorded by invoking the time() system call immediately before and right after the

code blocks of interest.

We execute the serial version and parallel version of the same algorithms eight

times on the Cones and Aloe images. The average of speedups at each thread number

setting are calculated. Figure 5.9 shows the graphs of the speedups measured on three

sub-algorithms: the bilateral filtering of the input images, the accelerated computation of

NCC on adaptive supports, and the cost aggregation. It is clear that performance gain

was achieved by applying multiple threads in the computation, however, the amount of

speedups varies among the three sub-algorithms on our two test systems.

The bilateral filtering (BiFil) shows the highest potential in speed gains when con-

verting into multi-threading. The speedup is almost linear with respect to the thread num-

bers, especially when the thread number does not exceed the number of physical cores on

the processors (thread count from 1 to 4 on the quad-core system, and thread count from

1 to 6 on the hex-core system). On our quad-core system, the speedup of the BiFil tends to
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(a) Speedups on a quad-core system.

0.5

1.5

2.5

3.5

4.5

5.5

6.5

1 2 3 4 5 6 7 8 9 10 11 12

S
p
e
e
d
u
p

Num of cores

Speedup of parallel computing

BiFil

NCC

Aggregation

(b) Speedups on a hex-core system.

Figure 5.9: Performance analysis of parallel computation on multi-core desktop comput-
ers. Performance was evaluated on three sub algorithms: bilateral filtering (BiFil), fast
computation of NCC, and cost aggregation.

level off after logical cores are engaged in the computation. And it reaches to 3.4x speed

gain at our predefined maximum thread number. The speedup curve of the BiFil on our

hex-core system shows an interesting feature that the trend of the curve breaks off when

the number of threads reaches to 7, when one of the physical core has to run two threads

concurrently while the others run one thread. There is performance loss at this point, but

the speed gain picks up and the trend was remained. It finally reaches to 6.3x speedup at

the maximum thread count, showing less level off than on the quad-core system.

The NCC computation and the cost aggregation achieve less speedup comparing

to the BiFil. While NCC reached to the highest speedup at 1.8x on quad-core and 2.8x

on hex-core, the cost aggregation only reached to 1.3x on quad-core and 1.7x on hex-core.

This can be explained that the NCC and the aggregation are more data-intensive than the

BiFil. The BiFil runs on a two dimensional image, while the NCC and the aggregation run

on a three dimensional cost volume, which is close to a hundred of times larger then two

dimensional image for our test data. This requires frequent access to the memory for read

and write operations. Memory access is very slow compared to the arithmetic operation

on the processor, and it results in hundreds of idle CPU cycles time waiting for the data to
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Figure 5.10: The total speedups of cost computation and aggregation on our quad-core and
hex-core test systems.

be fetched from memory. In addition, BiFil is more cache friendly because several rows of

image pixels can be fitted into the high-speed cache, so that fetching the data in the cache

is almost as fast as the arithmetic operations on the core. This, in turn, reduces the chances

of accessing the slow system memory for data. On the other hand, the cost aggregation not

only need to access the cost volume slice at depth d (5.18), it also has to access the slices

at depth d− 1 and d + 1 for one aggregated cost value for pixels at depth d. The slices at

d− 1 and d + 1 are stored far away from slice at d in the memory. All these three slices are

too large to be fit into the cache, thus more frequent memory accesses are required in the

cost aggregation, and it has the lowest speed gain among all the three sub-algorithms.

For calculating the overall speedup of our parallelized cost computation and ag-

gregation algorithms, we compare the total times they take to finish the computation at

each different core-count setting. Amdahl’s law tells us that the overall speedup is related

to the fraction of code that cannot be parallelized. In our case, only the main computation

is parallelized, the rest runs in serial, these include memory allocation, data initialization,

and other operations that require a great effort to parallelize but does not account for too

much speedup. In addition, the speedup of each individual sub-algorithm that has been
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parallelized varies a lot, therefore the overall speedup also depends on the fraction of each

sub-algorithm with respect to the whole program. For example, the execution time of BiFil

sub-algorithm only takes up a small fraction of the total processing time. Even though

it can achieve a relatively high speedup, its contribution to the overall speedup is very

limited. On the other hand, the cost aggregation takes up about 50% of the total compu-

tation time, the speedup of the cost aggregation sub-algorithm has a significant impact to

the overall speedup. We observed a maximum of speedup at 1.8x and 2.4x total speedups

(Figure 5.10) on our quad-core (8-thread) and hex-core (12-thread) systems, respectively.

Our hex-core system reached a higher speed-gain then the quad-core system as expected,

due to 50% more physical cores available from the processor. Furthermore, the hex-core

system features the quad-channel memories while the quad-core system is dual-channel

in configuration. This boosts the memory bandwidth to twice as much as the dual-channel

system, and effectively reduces data traffic confession between the processor and the main

memory, allowing additional cores on the hex-core system to spend less time waiting for

data and be more efficient in calculation.

5.5 Summary

In this chapter, we briefly reviewed popular methods for matching cost computa-

tion and aggregation, and then proposed a robust cost computation algorithm that com-

bines three components of matching costs: the cost of color difference from background

suppressed images, the cost of census, and the cost computed from normalized cross-

correlation (NCC). A multi-path cost aggregation framework was also introduced.

The stereo images captured by our proposed imaging system exhibit features such

as different brightness levels due to different gain and bias between cameras, surfaces

with rich geometric changes, and textureless regions. Images with different brightness
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levels call for a matching strategy that is insensitive to the absolute color values, and re-

quire the cost function to rely on texture information instead of color information. Since

NCC computes the correlation of neighborhood pixels with respect to the kernel between

an image pair, the matching cost computed from NCC is insensitive to different gain and

bias settings. The cost from census transform is non-parametric because it generates the

matching cost based on the relative ordering of color values between the kernel pixel and

its neighbors, thus it is also insensitive to brightness level. However, NCC and census

are all window-based cost function. A windows-based function usually degrades on non-

frontal-parallel surfaces, because it assumes constant disparity within the window. This

may introduce large error when computing the costs for feature points at depth disconti-

nuity. A point-based cost function, the background suppressed absolute color difference,

is included in our combined cost evaluation. The point-based cost term also works well for

surfaces with rich geometrical changes, because it does not take into account any neigh-

boring pixels, which may have different disparities on steep or curvy surfaces.

Our multi-path cost aggregation method simulates the concept of global energy

minimization by finding a disparity path that yields the lowest total costs. It adds penalty

to disparity changes along the path, awarding the disparity values that would result in a

smooth surface. The cost aggregation suppresses noise and prevents incorrect matching

that yields a cost value lower than the real match.

The cost computation and aggregation are both computation-intensive tasks, be-

cause they both work on a three-dimensional cost volume. To improve the algorithm per-

formance, we applied parallel computing technique, allowing the computation tasks to be

distributed among multiple cores on the processor and to be executed simultaneously. Our

performance analysis show that the overall speedups of 1.8x and 2.4x were reached on a

quad-core and a hex-core desktop computer.
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Chapter 6

Disparity Computation and Refinement

A disparity map computed from the aggregated cost volume may contain outliers

in occlusion regions and mismatched regions, especially at the depth discontinuity. This

requires additional step to detect occlusion regions and correct mismatches. A final dis-

parity refinement step is also needed to interpolate the disparity map to achieve subpixel

accuracy. This chapter describes the third and the forth step in a stereo matching frame-

work: the disparity computation/optimization, and disparity refinement.

6.1 Related Work

Disparity computation and optimization refers to the methods of assigning a cor-

rect disparity value to a pixel. Local method through Winner-Takes-All (WTA) strategy can

be implemented to be very efficient and sometimes may meet the requirement of real-time

application. But they are more prone to noise and local ambiguity in textureless regions

and occluded areas, because only local information collected from a small neighborhood

of pixels contributes to the selection of disparities.

In contrast, global method make explicit assumptions about the scene that the im-

aged surfaces are piecewise smooth. This assumption is generally true and the constraint

used to enforce piecewise smooth is referred to as the smoothness constraint in the stereo vi-

sion literature. Global methods are usually formulated in an energy-minimization frame-

work. The standard and classical global stereo formulation aims to find an optimal dispar-
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ity assignment function f (p) that minimizes the following energy function

E( f ) = Edata( f ) + λ× Esmooth( f ), (6.1)

where the data term Edata( f ) comes from the matching cost and penalizes disparity assign-

ments that are inconsistent within the pair of stereo images, whereas the second term, the

smoothness term Esmooth( f ), imposes the spatial coherence of labeling the disparity within

a defined neighborhood. It enforces piecewise smoothness by encouraging neighboring

pixels to have similar disparities. λ is a weight that adjusts the contribution of the smooth-

ness term. In general, global energy minimization involves more computation than local

methods. To make the optimization computationally affordable, the smoothness energy is

often defined with a small neighborhood, e.g., using the common Potts model [141] or the

truncated linear model [125]. Once the global energy function has been formulated, the

lowest energy corresponding to the optimal disparity assignment can be solved using the

methods surveyed by Szeliski el al. [69].

The strategies for finding the minimum of the global energy function differ. Belief

Propagation (BP) [125, 126] and Graph Cut (GC) [79, 127] are two popular choices among

stereo researchers. By applying various smoothness constraint and selecting robust cost

functions, BP- and GC-based stereo methods were reported to produce state-of-the-art re-

sults in terms of 3D scene depth accuracy [90, 145, 146]. In contrast to BP and GC which

approximate the global minimum of the energy defined in (6.1) over the two-dimensional

pixel grid, the Dynamic Programming (DP) [96, 123, 124] finds the global minimum for

each image scan line independently. The DP approach reduces the amount of computa-

tion and results in polynomial time complexity. The main problem with DP is the difficulty

of enforcing disparity consistency between scan lines and it commonly leads to streaking

effects.
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Global methods are less sensitive to noise and textureless regions and are in general

more robust than local methods since prior constraints provide regularization for regions

difficult to match. However, global methods are usually more computationally intensive

than local methods.

Disparity refinement is usually done as a post-processing for removing peaks and

isolated values, interpolating gaps, or increasing the accuracy by subpixel interpolation.

Occluded regions are usually detected using left-right consistency check [91, 147, 148] and

unmatched pixels can be filled via interpolation or depth completion algorithms [149,150].

Median filter can also be used to remove small isolated mismatches. Due to the low com-

putational cost and the edge-preserving property, median filtering particularly favored

in real-time stereo algorithms as a post-processing step. Most stereo algorithms generate

disparity estimates in discretized integer space. While integer disparities may be suffi-

cient for application such as segmentation and object tracing, for view synthesis, 3D re-

construction and measurement, integer disparity maps usually result in stepped surface

and unappealing visual artifacts. To overcome this limitation and improve the resolution

of the disparity map, many stereo algorithms utilize a subpixl refinement stage to gener-

ate subpixel-accurate disparity values. One of the standard method is to fit a parabolic

or Gaussian curve [151] to the matching costs defined at discrete values. Symmetric re-

finement can also be done by fitting a parametric surface over a 2D neighborhood of the

matching cost function [152].

6.2 Disparity Computation and Optimization

The result of our previous matching cost computation and cost aggregation is a

three-dimensional cost volume S(p, d), in which each voxel represents the aggregated cost

of assigning a disparity value d to a pixel p that is indexed in the reference image. Our cost
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aggregation step minimizes a global energy function so that an optimal disparity map can

be found by selecting a disparity value at each pixel that yields the minimal cost at this

pixel location. This procedure implements the WTA strategy.

The disparity map Db that corresponds to the base image Ib is determined by se-

lecting for each pixel p the disparity d that corresponds to the minimum cost, that is

Db(p) = arg min
d

S(p, d). (6.2)

The disparity map Dm that corresponds to the match image Im can be determined from

the same costs by traversing the epipolar line that corresponds to the pixel q of the match

image. The same procedure can be used to determine the d, that is d is selected with the

minimum cost

Dm(q) = arg min
d

S[emb(q, d), d], (6.3)

where emb(q, [·]) is the epipolar line in the base image that corresponds to the pixel q in

the match image, and emb(q, d) is the matched pixel in the base image. Since the cost

aggregation relies on a reference image, which is the base image in our case, it does not

treat the base and match images symmetrically. Slightly better results can be expected,

if Dm is calculated separately, that is, by performing pixelwise matching and aggregation

with Im as the reference and Ib as the match.

The calculation of Db and Dm permits the determination of occlusions and mis-

matches by performing a left-right consistency check. The left-right check ensures that the

matching needs to be bijective: if p in the base image Ib matches to q in the match image

Im, then q must also matches to p. Or, in mathematical form, Db(p) = −Dm(q). To take

different foreshortening into account, we tolerate a disparity mismatch of up to one dis-

parity step in our implementation. A disparity is set to invalid (Dinv = 0, which represents
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Figure 6.1: Summary of processing steps for matching cost computation, aggregation, and
disparity computation.

infinite distance in the 3D space), if both differ by more than one:

D(p) =
{

Db(p), if |Db(p) + Dm(q)| ≥ 1
Dinv, otherwise

(6.4)

The consistency check enforces the uniqueness constraint, by permitting one-to-one

match only. The disparity computation and consistency check requires visiting each pixel

at each disparity a constant number of times, thus is linear in complexity. The process of

generating a validated disparity map is now complete, and a summary of all precessing

steps is given in Figure 6.1.

6.3 Disparity Refinement

Even with the left-right consistency check, the disparity map computed from pre-

vious step can still contain certain kinds of errors. Furthermore, there are generally areas

of invalid disparity values that need to be corrected. The post-processing procedures de-

scribed in this section is designed to handle these issues.

6.3.1 Removal of Isolated Regions

Disparity map can contain small areas of wrong disparities, due to reflection, low

texture, and noise. They usually show up as small patches of disparity that is very different
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Figure 6.2: Errors in disparity map. Black regions on the disparity map: pixels with in-
valid disparity; highlighted region centered at the edge of a cone: untextured background;
highlighted region on the box: isolated region;

from their neighboring pixels’, as shown in Figure 6.2. Depending on the structure of the

scene, a threshold value of the size of small disparity patches can be predefined such that

smaller patches are unlikely to represent valid fine structure of the scene.

For identifying isolated regions, a segmentation method is applied by allowing 4-

connected neighboring disparities within one segment to vary by one disparity step. The

disparity patches of all segments below a certain size are set to invalid, and are to be either

interpolated or extrapolated by the following steps.

6.3.2 Intensity Consistent Disparity Validation

6.3.2.1 Problem Definition

For most of indoor scene, it is common that foreground objects are in front of a low

textured or textureless background. For example, the highlighted region in Figure 6.2. This

is also the case for our body images that the background is mostly solid colored walls. Our

energy function E(D) for cost aggregation as shown in (5.16), however, does not exhibit a

preference for the disparity value at different regions. It is unaware of the type (foreground

or background) of current surface, thus it does not differentiate between placing a disparity

step correctly just next to a foreground object, or a bit further away within a textureless
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background. Section 5.3.3 suggests applying an adaptive penalty P2 that is consistent with

the intensity change. This helps placing a correct disparity step next to a foreground object,

because this location coincides with only small intensity change.

However, our adaptive cost aggregation applies the energy function not in 2D over

the whole image but along multiple individual 1D paths from all directions and then com-

putes the summed energy. Depending on the location and direction of 1D aggregation

paths, they may encounter textured foreground or background objects around an texture-

less region (Figure 6.3), in which case two different approaches are needed to determine

disparity values within the textureless region. If the disparity value stays constant along

the aggregation direction as shown in Figure 6.3a, the same disparity value should be as-

signed to the textureless region because the aggregation most likely pass through a frontal-

parallel surface. Otherwise if the surface is slanted as shown in Figure 6.3b, interpolation

may be needed to fill in disparity values within the textureless region.

Textureless areas may have different shapes and sizes and can extend beyond im-

age borders. This is quite common for our body images with backgrounds are usually

walls. For these cases, the 1D aggregation paths may also encounter either foreground or

background texture, or leave the image with the textureless areas in which case no dispar-

ity values would be placed. Summing all those inconsistent paths may easily lead to fuzzy

discontinuities around foreground objects in front of textureless background.

6.3.2.2 Assumptions

This feature of our multiple 1D aggreagtion paths based method calls for special

care that only applies to certain scenes in structured environments. To present a solution

to this, we may need to make some general assumptions:

1. Disparity discontinuity do not occur within textureless regions.
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(a) An untextured region on a frontal-parallel surface results in a set of consistent disparity maps.
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(b) An untextured region on a slanted surface (with continuously changing disparities) results in a set of in
consistent disparity maps along two opposite aggregation directions, indicating the disparities should vary
within the untextured region.

Figure 6.3: Examples of disparity selections along aggregation paths.

2. There should be some visible texture somewhere on an generally textureless surface.

3. The surface of a textureless area can be approximated by a plane.

The first assumption is mostly correct, since depth discontinuities usually cause

at least some visible change in intensities. Otherwise, the discontinuity would be unde-
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tectable. The second assumption is necessary, because the disparity of an absolutely un-

textured background surface would be impossible to be detected. The third assumption is

the weakest among all three. Its justification is that a textureless surface with varying dis-

tance to the viewpoint usually appears with varying intensities. Thus, piecewise constant

intensity can be treated as piecewise planar.

6.3.2.3 Solution

Untextured areas are identified by a fixed-parameter Mean Shift Segmentation [153]

on the base image Ib. A small variance of radiometric difference σr is applied, so that in-

tensity changes below this value is are treated as noise. The variance of spatial distances σs

is also set to a low value for fast processing. Both σr and σs are empirically chosen, and we

found σr = 3 and σs = 5 are sufficient for good segmentation. Furthermore, all segments

that are smaller than a certain threshold, for example 20 pixels, are ignored, because small

untextured areas are expected to be handled well by our adaptive cost aggregation.

After our cost aggregation and disparity computation, disparity discontinuities

may occur in untextured areas. Thus, these areas are expected to contain incorrect dispar-

ities of the foreground object and correct disparities of the background, if the background

surface contains at least some texture (Assumption 2). This leads to the state that some

disparities within the i-th segment Si are correct. Thus, several hypotheses for the correct

disparity of Si can be identified by segmenting the disparities within the Si. This is done

by simple segmentation with smoothness constraint, that is by allowing neighboring dispar-

ities within one segment to vary by one disparity step. This simple yet fast segmentation

results in several segments Sik with each Si.

The next step is to create the surface hypotheses Fik by calculating the best fitting

planes (Assumption 3) through the disparities of Sik. Very small segments, for example,
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less than 12 pixels, are ignored, as it is unlikely that such small patches belong to the correct

hypothesis. Then each hypothesis is evaluated within the patch Si by replacing all pixels

of Si by the surface hypothesis and calculating Eik as defined in (5.16) for all non-occluded

pixels of Si. A pixel p is considered to be occluded if another pixel with higher disparity

maps to the same pixel q in the match image. This detection is performed by first mapping

p into the match image by q = ebm(p, D(p)). Then the epipolar line of q in the base image

emb(q, d) is followed for d > D(p). The pixel p is occluded if the epipolar line passes a

pixel with a disparity larger than d. More details of determining whether a pixel is an

occluded pixel or a mismatched pixel can be found in Section 6.3.3.

For each segmented patch Si, the surface hypothesis Fik with the minimum cost Eik

is chosen, that is

Fi = Fik′withk′ = arg min
k

Eik. (6.5)

All disparities within Si are replaced by values on the chosen surface for making the dis-

parity selection consistent to the intensities of the base image, fulfilling Assumption 1:

D′(p) =
{

Fi(p), if p ∈ Si
D(p), otherwise

(6.6)

The above approach is similar to some other methods [120,147,154] as it refines an

initial disparity map through image segmentation and plane fitting. Compared to other

methods, the initial disparity map generated by our multi-path adaptive cost aggregation

is quite accurate already so that only untextured areas above a certain size are modified.

Another difference is that disparities of the considered area are selected by considering

a small number of hypotheses that are inherent in the initial disparity map. There is no

time-consuming iteration involved.
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(a) The mean-shift segmented image defines surfaces with
constant disparities.

(b) Before the dispar-
ity replacement.

(c) After the disparity
replacement.

Figure 6.4: Result of the intensity consistent disparity selection. Ambiguous disparities
within a texture less region is replaced by disparities matched with high confidence within
the same region.

6.3.3 Discontinuity-preserving Interpolation and Extrapolation

The left-right disparity consistency check of Section 6.2, as well as isolated region

filtering of Section 6.3.1 may invalidate some disparities. There are also outliers in oc-

cluded regions and depth discontinuities. These lead to holes in the disparity map, which

need to be properly fixed for a dense stereo matching result. After detecting these outliers,

the simplest strategy is to fill them with reliable disparities [67], which is only useful for

small occluded regions.

Invalid disparities can be classified into occlusions and mismatches. The treat-

ments for both case must be conducted differently. Occlusions must not be interpolated

from the foreground, but only from the background to avoid the extension of the fore-

ground surface into the occluded regions. Thus, an extrapolation of the background into

occluded regions is desired. In contrast, holes caused by mismatches can be smoothly

interpolated from all neighboring pixels.
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Figure 6.5: Differentiating between occluded pixels and mismatched pixels.

6.3.3.1 Occlusion Detection

Occlusions and mismatches can be distinguished as part of the left-right consis-

tency check. Figure 6.5 shows the concept of differentiating between occluded pixels and

mismatched pixels with the assistance of epilines. In Figure 6.5a, p1 and p2 are two pixels

on the same row in a disparity map generated with base image as the reference, while q1

and q2 are determined by q1 = p1 + Db(p1) and q2 = p1 + Db(p1). The occluded pixel

p1 in the base image goes through discontinuity that causes the occlusion. Its epiline in

the match image does not intersect the disparity function Dm, indicating that there is no

pixel in the match image that matches to p1. Thus, p1 is an occluded pixel. In contrast, the

epiline of p2 in the match image intersects with Dm. However, the intersection point does

not coincide with q2, indicating that p2 and q2 are a pair of mismatched pixels. Therefore,

for each invalidated pixel, an intersection of the corresponding epiline with Dm is sought,

for marking it as either occluded or mismatched.

6.3.3.2 Iterative Region Voting

The detected outliers, either occluded pixels or mismatched pixels, should be filled

with reliable neighboring disparities. We process these outliers with the constructed cross
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based support regions and a robust voting scheme. For an outlier pixel p, all the reliable

disparities in its support region are collected to build a histogram Hp with dmax + 1 bins.

The disparity with the highest bin (most voted) is denoted as d∗p, and the total number

of the reliable pixels is denoted as Qp = ∑d=dmax
d=0 Hp(d). The new disparity of p is then

updated with d∗p if enough reliable pixels and votes are found in the support region, that

is

Qp > τQ, (6.7)

and
Hp(d∗p)

Qp
> τH, (6.8)

where τQ and τH are two threshold values. To precess as many outliers as possible, the

voting process runs for 6 iterations. The filled outliers are marked as reliable pixels and

used in the next iteration, such that valid disparity values can gradually propagate into

occluded regions.

This strategy works well for filling outliers in textureless regions, because the sup-

port of a pixel within this region is usually quite large. Thus it has a good chance to include

more disparities from reliable pixels for the voting procedure, yielding a more accurate es-

timation of the disparity value within the occluded region.

6.3.3.3 Depth Consistent Extrapolation

Unlike the iterative region voting, the rest of outliers are filled with an extrapo-

lation strategy that treats occlusion and mismatch differently. For an outlier pixel p, we

find the nearest reliable pixel in 16 directions around p. If p is an occluded pixel, the pixel

with the lowest disparity value (furthest distance in depth) is selected for extrapolation,

since p most likely comes from the background; otherwise if p is a mismatched pixel, the

pixel with the most similar color in its 8-neighbor region is selected for extrapolation. With
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region voting and extrapolation, most outliers are effectively removed from the disparity

results.

6.3.3.4 Depth Discontinuity Adjustment

In this step, the disparities at the depth discontinuities are further validated and

refined with the information form neighboring pixels. All edges in the disparity map is

first detected with two separable masks, which detect disparity change in both horizontal

and vertical direction. Then, for each pixel p on the disparity edge, two pixels p1 and p2

from both sides of the edge are identified. The new disparity at pixel p is replaced either

by D(p1) or D(p2) if one of the two pixels corresponds to a lower aggregated matching

cost than S(p, D(p)). This procedure has to be run a few times to allow the new edge to

converge to real depth discontinuity. However, this method can be made more efficient

after the first iteration, because only the updated edge pixels requires further validation.

An edge mask can be used to identify these edge pixels. This method helps to reduce the

small errors around depth discontinuities.

6.4 Summary

This chapter covers the third and the forth step within a stereo matching frame-

work, namely, the disparity computation and disparity refinement. Disparity computation

focuses on assigning a correct disparity value to each pixel in the disparity map, based on

the previously generated matching cost volume. Although a global method usually gen-

erate more reliable disparity map, for performance consideration, we proposed to use a

winner-takes-all strategy and select the disparity value that corresponds to the lower cost

at each pixel local. This method works well because our semi-global cost aggregation step

has already take the neighbor information into account, thus the cost volume has relatively

reliable matching cost values. Furthermore, errors in assigning an incorrect disparity value
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to a pixel can have a change to be validated by the subsequent disparity refinement step.

The disparity refinement step serves as the last stage of the stereo matching pipeline

to correct any errors in the computed disparity with various constraint, such as surface

smoothness, color consistency. These constraints can be enforced by certain rules in val-

idating a disparity value, for example, disparity discontinuity cannot occur within tex-

tureless regions, and the surface of a textureless area can be approximated by a plane on

which some visible texture may be visible somewhere. The disparity refinement proce-

dure first identify the occlusion regions on a disparity map, because the occluded pixels

and mismatched pixels need to be handled differently. Then the mismatched areas and

the occluded areas undergo an iterative region voting and depth consistent extrapolating,

which allows reliable disparity values from a neighborhood region to propagate into the

problematic areas. Finally, the disparity edges are checked and made consistent to the

texture map.
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Chapter 7

3D Body Model Generation

The result of stereo matching is 2D disparity map from which a dense 3D point

cloud can be recovered with the known stereo geometry. The raw 3D point data are usually

comprised of hundred thousands of scattered 3D points, and is hard to handle efficiently

for measurement and rendering. This chapter presents the technique to effectively reduce

the density of the data through 3D surface reconstruction, a method that converts dense

3D points into triangle mesh with proper surface approximation. A highly accurate, sub-

pixel refinement procedure is performed on the discrete disparity map before the surface

reconstruction is applied. The sub-pixel refinement recovers fine geometrical details, and

it suppresses noise and enforces smoothness, which significantly improves the quality of

the dense point cloud and provides an accurate input for surface reconstruction.

7.1 Sub-pixel Disparity Refinement

So far, we have presented detailed steps in Chapter 5 and Chapter 6 to compute the

disparity map which corresponds to the 3D surface geometries in the scene. However, this

disparity map takes discrete values and is not sufficient to recover fine geometric details.

A dedicated disparity refinement process is needed to achieve sub-pixel accuracy.

Disparity refinement is often performed in an iterative fashion. A simple and

straightforward way to implement sub-pixel refinement is to interpolate the matching cost

at the previous, current and next disparity step, i.e., the cost at d− 1, d, and d + 1 to find

the local minimum of the matching cost at sub-pixel disparity step. This strategy has been
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adopted in the work of [103] for face stereo imaging with added surface smoothness con-

straint. Although less computation is involved within each iteration, the interpolation

method does not account for texture match when updating the disparity value, thus is less

effective in converging into the ideal disparity value and it may take more than a hundred

of iterations to produce a smooth surface [103].

Refinement can also be done through curve fitting [90, 155]. But curve fitting usu-

ally suffers from systematic error called ”pixel-locking” effect in which disparity values

are pulled towards discrete values [90]. Research efforts have been made to address this

problem. For example, Nehab et al. [152] suggested symmetric refinement by fitting a

parametric surface over a 2D neighborhood of the matching cost function. Stein et al. [156]

proposed an iterative refinement method that is essentially based on Lucas-Kanade algo-

rithm [157]. These aforementioned improvements are all focused on reducing the ”pixel-

locking” effect and make disparity refinement on each individual pixel independently.

However, in practice, like all other local methods, the result is prone to be noisy. Thus,

it is a good practice to take the spatial coherence into account during disparity update.

7.1.1 Local Sub-pixel Estimation

The sub-pixel refinement method developed in this study adopts the iterative re-

finement framework proposed in [14], and here we show that its performance can be im-

proved by introducing the bilateral filter for fine geometric detail enhancement. The itera-

tive refinement works at a global level within a regularization framework. To begin with,

the amount of update is estimated locally for each pixel. The estimation can be made by

minimizing the hybrid matching function defined in (5.1) by

∆d = arg min
∆d

C(x, y, d + ∆d) = arg max
∆d

ρ(x, y, d + ∆d), (7.1)
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where d is the current disparity value, and ∆d is the amount to be updated. Equation

(7.1) is difficult to solve since the correlation function ρ is highly nonlinear. Although it is

possible to perform linearization of ρ with first-order approximation, the computation is

still intensive. So instead, we replace the correlation function ρ with the sum of squared

differences (SSD) as the matching cost as in Lucas-Kanade’s algorithm [157]. Now for the

disparity refinement purpose, the matching cost is redefined as

CSSD(x, y, d) = ∑
(u,v)∈W(x,y)

[Ir(u + d, v)− a(Il(u, v) + b)]2 , (7.2)

where a and b are the gain and bias factors, respectively. Here we assume the disparity is

constant within the matching window W. But this assumption is generally not true except

for frontal-parallel surfaces. To allow the disparity to vary within the window, we first

warp the right image based on the current disparity map,

Îr(x, y) = Ir [x + d(x, y), y] . (7.3)

To estimate ∆d, a and b, we define an error function with Îr based on the SSD,

Err2(∆d, a, b; x, y) = ∑
(u,v)∈W(x,y)

[
Îr(u + ∆d, v)− (aIl(u, v) + b)

]2 . (7.4)

With a first-order approximation, we get

Err2(∆d, a, b; x, y) = ∑
(u,v)∈W(x,y)

[
Îr(u, v) + Îrx(u, v)∆d− (aIl(u, v) + b)

]2 , (7.5)

where Îrx = ∂ Îr
∂x is the intensity gradient of the warped right image.

Let p =
[
∆d a b

]T, a =
[
Irx −Il −1

]T, then a concise form of (7.5) can be

written as

Err2(p) = ∑
(

aTp + Ir

)2
. (7.6)

This is a classic least squares problem. To minimize Err2(p) is equivalent to solve the

normal equations,

Ap = b, (7.7)
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where A = ∑ aTa, and b = −∑ Ira.

7.1.2 Global Refinement

The previous sub-section describes the method to estimate ∆d at each pixel, here we

show how to update the disparity map at a global level. The global refinement minimizes

a global energy function which takes the same form of (6.1), and is defined by

E(d) =
∫∫ [

d(x, y)− d̃(x, y)
]2

dx dy + λ×
∫∫ (

d2
x + d2

y

)
dx dy, (7.8)

where d̃ is the local estimate of the disparity, and dx, dy are the disparity gradients. The

first term in (7.8) measures the coherence with the local estimation, and the second term

imposes smoothness constraint on the solution. λ is called the regularization parameter

that weights the smoothness term.

For the n-th iteration, we set d̃(n) = d̃(n−1) + ∆d(n). Then the discrete form of (7.8)

can be expressed as

E(D) = ∑
(i,j)∈I

{[
d(n)(i, j)−

(
d(n−1)(i, j) + ∆d(n)(i, j)

)]2
+

λ×
[(

d(n)(i + 1, j)− d(n)(i, j)
)2

+
(

d(n)(i, j + 1)− d(n)(i, j)
)2
]}

, (7.9)

where (i, j) is the discrete coordinates of a pixel in the image plane I, and the discrete

gradients are computed using the forward difference. Minimizing the energy function

yields

(1 + λkp)× d(n)p − λ× ∑
q∈N(p)

d(n)q = d(n+1)
p + ∆d(n)p (7.10)

for each pixel p whose number of neighboring pixels is kp = |N(p)|. Then we can establish

a linear system

Pd = h (7.11)
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where the main diagonal of P is 1+λkp, i.e., [P]p,p = 1+λkp, [P]p,q(p 6=q) =

{
−λ, q ∈ N(p)
0, otherwise

,

[d]p = d(n)p , and [h]p = d(n−1)
p + ∆d(n)p . Since P is a sparse, positive, and symmetric matrix,

the solution can be searched efficiently using the conjugate gradient method [158].

7.1.3 Geometric Detail Enhancement

The smoothness term that is regulated by a coefficient λ from (7.8) apply con-

straints to prevent rapid disparity change within a small neighborhood, which is usually

the result of noise or mismatch. However, the side effect of applying a smoothness term

in the global energy function is that it smooths out the surface where fine geometric vari-

ation exists. To recover these fine surface details, a bilateral filter is applied to the refined

disparity map. Due to the computational cost of the filtering, it is only applied as a post-

processing after the sub-pixel refinement.

The concept of bilateral filtering for geometric enhancement is similar to the one

that is used for background suppression in computing the cost of color difference for

matching (Section 5.2.4). Instead of working on an image with pixel data stored in RGB

channels, the input of the filtering is the disparity map with single channel pixel data. The

support weight w(p, k) of a kernel pixel p’s neighbor k has the same form as the weight

that is defined in (5.13), but takes in the sub-pixel disparity difference and the spatial dis-

tance between p and k, respectively. The operation of bilateral filtering on the disparity

map is defined by

BF[I(p)] =
∑k∈Ωp [w(p, k)d(p)]

∑k∈Ωp
w(p, k)

, (7.12)

where Ωp denotes the set of all pixels in the support region and the normalization factor

∑k∈Ωp
w(p, k) ensures the support weights sum to one.
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7.1.4 Point Cloud Generation

Once a refined disparity map is computed, the 3D surface point cloud in the world

coordinate system can be computed in two steps. First, each pixel in the disparity map is

back-projected into a 3D point in the camera’s coordinate system. It is then transformed

into the world coordinate system. For a pixel (u, v) in a disparity map with its disparity

value being d, the 2D to 3D back-projection (u, v, d)→
[
x y z

]T is defined asx
y
z

 = − b
d
×

u
v
f

−
u0

v0
0

 , (7.13)

where b is the baseline between two calibrated stereo cameras, (u0, v0) is the camera center,

and
[
x y z

]T is the back-projected 3D point in camera’s coordinate system. Its coordi-

nate in the world coordinate system
[
X Y Z

]T is then computed asX
Y
Z

 = R∗ ×

x
y
z

+ t∗, (7.14)

in which R∗ and t∗ are the relative rotation and translation of the reference camera (in our

case, the left camera) with respect to the world coordinate system. They were calculated

from our global registration procedure (Section 4.2.2) for each stereo unit.

7.1.5 Refinement Results

Table 7.1 lists the parameters that are used in our sub-pixel disparity refinement.

The refinement was done in an iterative fashion, a total of 15 iterations are performed for

each disparity map for a balanced computational cost and surface smoothness. We plot

the total disparity value changes at each iteration, and the graph is shown in Figure 7.1.

The convergence rate is close to exponential and the disparity update does not change no-

ticeably after 10 iterations. We thus stop the refinement at iteration 15. Compared to the

bilateral filtering used for background suppression in matching cost computation (Section
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Table 7.1: Parameters for our sub-pixel disparity refinement and geometric enhancement.

Parameters Values Descriptions

NIter 15 Number of iterations for sub-pixel disparity refinement
WSSD 11× 11 Window size of SSD in disparity refinement
λ 10.0 Regularization parameter in disparity refinement

σd 0.0784 Variance for disparity difference in bilateral filtering
σs 6 Variance for spatial distance in bilateral filtering
WBiFil 21× 21 Window size of bilateral filtering
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Figure 7.1: Convergence of the sub-pixel disparity refinement over the first 100 iteration.
The initial convergence is close to exponential and the update of disparity does not change
noticeably after 10 iterations.

5.2.4), the size of filtering window (WBiFil) and the variance of spatial distance σs are kept

the same, however, a significantly smaller variance for the disparity difference (σd) is used

here. This is due to the fact that on a smooth surface, disparity values within a neighbor-

hood window are not expected to change by a large step. And for most of the pixels, the

update to the disparity value after each iteration are at the scale of 1
100 .

Figure 7.2 shows an example of the reconstructed 3D point clouds before and after

the sub-pixel refinement. The depth steps are very visible (Figure 7.2a) in the surface point

cloud that is not refined. Figure 7.2b shows a refined surface though our global energy

minimization approach. Depth steps get smoothed out, however, we also lose fine surface
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(a) Surface point cloud reconstructed from discrete
disparity map. Surface depth steps are visible.

(b) Surface reconstructed from sub-pixel refined dis-
parity map. Depth steps are smoothed out.

(c) Surface detail enhanced by bilateral filtering. Fine
details (high-lighted in the figure) are recovered.

Figure 7.2: The results of sub-pixel refinement.

details, such as the wrinkles and edges on the subject’s underpants, and the wrist string

on subject’s left hand. Our bilateral filtering works as a post processing after the iterative

refinement procedure, and is able to recover these fine surface details as is demonstrated

in Figure 7.2c.

7.2 Surface Reconstruction

The raw surface point cloud data computed from stereo matching and depth con-

version are usually comprised of hundred thousands of scattered 3D points, from which

it is hard to read and to extract desired information directly. A body modeling process is
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required to accurately fits the surface point data with a more manageable representation

so that the data can be manipulated and interpreted more easily. In general, such a repre-

sentation is in the form of 3D surface, the proess is also called body surface reconstruction.

We used the same software that was developed in [14] for surface reconstruction.

It utilizes sub-division surface reconstruction algorithm. The basic idea of the method

can be described in three steps. First, the original 3D data points is re-sampled on a pre-

defined regular grid. The explicit neighborhood information of the re-sampled data is

then used to create an initial dense mesh. Secondly, the initial dense mesh is simplified

to produce an estimate of the control mesh. Finally, the control mesh is optimized by

fitting its sub-division surface to the original data, and accordingly, the body model is

reconstructed. In the surface reconstruction processing, the upper and lower mesh from

the same side of the subject is blended together at the overlapped region between the

waist and hip lines to smooth out the transition between the upper and lower surfaces

captured by two different stereo units. The gaps along the side of the body model that are

occluded to the stereo units are closed by stitching the edges of the surface point cloud. The

final results of the surface reconstruction is a closed surface mesh comprised of triangles

that approximate the original point cloud. The number of vertices on the surface mesh is

greatly reduced from the original point cloud, and it represent a simplified form efficient

feature characterization.

Figure 7.3 shows a collection of reconstructed body models for circumference and

volume measurements. It can be observed that surfaces on the reconstructed body mod-

els are smooth due to the re-sampling and sub-division mesh simplification. A negative

effect of the smoothed surface is that we may lose some fine geometrical details that are

enhanced by our sub-pixel refinement step. However, this should not affect body vol-

ume measurement because the simplified surface mesh approximates the original surface
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points in a least mean square error fashion.

Figure 7.3: Reconstructed body models of subjects with various body shapes and sizes.
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Chapter 8

Body Measurement and System Evaluation

This chapter is presented in two parts. In the first part, we describe how to per-

form body dimension measurement and percent body fat estimation on the reconstructed

3D body models. In the second part, we present methods and results on the evaluation

of the developed stereo body imaging system. Measurement results were compared to

physical tape measures, commercialized portable 3D scanner, and DEXA. The system was

tested on mannequins and human subjects to evaluate its accuracy and repeatability.

8.1 Measurement Principles

8.1.1 Body Measurement on 3D Model

With the fast growing demand for full body imaging and the maturing of 3D cap-

ture technology, the segmentation and measurement on imaged 3D data have also received

great attention form the research community. Early attempts for 3D measurements are

mainly based on sliced scan data. A model-based approach was proposed by Dekker et

al. [159] to aggregate sliced data into sectors, of which the centroid can be analyzed to au-

tomatically detect body surface landmarks. Body volume can be measured by integrating

over the slices. Ju et al. [160] proposed a method in which the body is first segmented

into head, torso, arms, and legs according to slice settings, and then the girth profiles of

individual body parts are used to locate the neck, shoulders, waist, elbows, wrists, knees

and ankles. Sliced data are usually captured by laser-based scanner, and a 3D surface is

acquired by accumulating surface profiles as the laser bean scans across the body. Later on,
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as other 3D surface acquisition methods became available and be more popular in terms of

scanning speed, body measurement techniques based on point cloud and triangular sur-

face mesh started to gain momentum. Xiao et al. [161] used geodesic distance to segment

the body into primary parts. The advantage of this method is that geodesic distance is

independent of body postures. Leong et al. [162] proposed an algorithm in which the torso

data is transformed to cylindrical coordinates and then converted into a 2D depth map so

that the problem is transformed into 2D scope in which image processing techniques can

be used to extract features. A great review of segmentation and modeling of human body

has been presented in [163].

In the previous work of our research group, Zhong and Xu [164] reported a body

segmentation and measurement system that works on triangular meshes with the goal for

application in virtual apparel fitting. In this method, geometric landmarks are searched in

their target zones that are predetermined based on the proportion relative to the stature.

The armpits and neck are searched with the criterion of minimum inclination angle be-

tween neighboring triangles. The crotch is identified by detecting the transition of cusps

along successive horizontal contours. Once key landmarks are located, the body is then

segmented into head, torso, arms and legs. With segmented body parts, various measure-

ments including circumferences and lengths can be extracted. Even with these useful func-

tions, this system is not sufficient for body composition research. For example, functions

for body volume measurement is very limited and the computation cost is very high. To

accurately estimate whole body volume, it needs to section the body parts into dense slices

and divide each slice into dense line segments, so that the body volume can be computed

by integrating these slices. The procedure involves extensive computation of plane-to-

plane and line-to-line intersection. To reduce the computational cost, this 3D measurement

system was extended by Yu [14] to utilize the depth-buffer of the 3D scene available from
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a computer graphics API to accelerate surface circumference and volume computation.

Graphics API allows a higher level application to access 3D geometric functions that are

implemented on hardware compute unit, thus is optimized for performance. We follow

this practice for fast and efficient body geometric parameter calculation. The basic con-

cept of using computer graphics API to accelerate the computation is briefly introduced in

Section 8.1.2.

8.1.2 3D Measurements

8.1.2.1 Volume Measurement

In computer graphics, the depth buffer (also called z-buffer) is a 2D map which

records a depth value (distance to the viewport) for each rendered pixel of a 2D frame.

With 3D graphics APIs such as OpenGL, we can switch the z-buffer to keep track of the

minimum or maximum depth for each pixel on the frame. To measure the body volume,

the 3D body model is rendered twice, one is for the front surface, and the other is for the

back surface. During the two renderings, we choose the z-buffer to record the minimum and

the maximum depth of each pixel, respectively. By taking the difference of the two z-buffer,

we get a thickness map of the body. Finally, the body volume is calculated by integrating

over the thickness map based on the known pixel’s physical scale. It should be notices

that, when generating the z-buffer for each rendering, orthographic projection is applied to

reflect the actual size of the body. In principle, the z-buffer rendering method is equivalent

to re-sample the surface data on a regular grid, thus the size of the viewport (in pixels) that

determines the sampling interval may affect the measure accuracy. A moderate size of the

viewport such as 500× 500 yields a physical resolution of 3.6 mm/pixel. In practice, we

found this is sufficient to reach high accuracy. It is reported in [14] that it takes about 50 ms

to render a typical model presented in a triangular mesh with 15,000 vertices. Thus, this

technique is extremely efficient time-wise compared to slice-based methods. For regional
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(a) The circumference is
marked on a 3D body model.

D
ep
th

Breadth

(b) Circumference, breadth and
depth measurement.

(c) Cross-sectional area mea-
surement.

Figure 8.1: Measurements extracted from a contour on a 3D body model.

volume measurement, instead of projecting the whole body on the z-buffer, we only need

to project the individual segment and employ the same z-buffer difference method.

8.1.2.2 Circumference Measurement

Circumference measurement is especially convenient to evaluate the measurement

accuracy with respect to manual measurement with a tape. With this function, a user has

the freedom to take circumference measurement at any region on the body by marking a

contour with a line-drawing tool. With the z-buffers of the front surface and back surface

being readily available, the 3D data for the contour can be obtained instantaneously with

sub-pixel accuracy. Then, the circumference as well as the breadth and depth of the contour

can be calculated. It is worthy noting that the location of the front part of the contour does
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not need to match the location of the back contour. The contour can be slanted or tilted in

any way to fit the location where needs to be measured. An example is demonstrated in

Figure 8.1. A contour is marked on the body model as shown in Figure 8.1a, and then its

circumference, breadth and depth are calculated as shown in Figure 8.1b.

8.1.2.3 Area Measurement

Once a contour is extracted in the circumference measurement, its cross-sectional

area can be estimated by re-facing the contour with the normal of the cross-sectional plane

coincident with the normal of the screen plane. Then the cross-section is projected onto the

depth buffer, and the image of the projection is read for area calculation. The area of the

cross-section is estimated by counting the pixels inside the contour. An example is shown

in Figure 8.1c, where the shaded pixels are counted to get the cross-sectional area.

In addition to cross-sectional area, body surface area can also be estimated by sum-

ming up the areas of all triangles in the surface mesh. In our current system this computa-

tion is not graphics hardware accelerated, because the surface area computation does not

involve user interaction and it is only computed once for each 3D body model. However,

graphics acceleration can be made possible for modern graphics hardware that supports

geometry shader. With geometric shader, the computation of the triangle area of the sur-

face mesh can be programmed to be executed on the shader compute unit which is mas-

sively parallel.

To illustrate the output of the body measurement system, results of two subjects

are shown in Figure 8.2. The measured body parameters include circumferences and cross-

sectional areas of a number of body components (such as the chest, waist, abdomen, hip,

upper thigh, etc), whole body volume, segmental volumes (such as the abdomen-hip vol-

ume and the upper thigh volume), and body surface area.
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(a) Body measurement with various circumferences and land-
marks highlighted.

(b) Body segments used
for the abdomen-hip vol-
ume measurement.

Figure 8.2: Illustration of body measurement.

8.2 Subjects and Methods

To evaluate the accuracy and repeatability of the developed prototype body imag-

ing system, we have tested it on some mannequins whose body dimension can be mea-

sured manually. Tape measurement was conducted to acquire various circumferences

from the mannequins. A commercialized handheld 3D scanner was used to scan our

mannequins. Volume measurement from our stereo imaging system was compared to

the results from the handheld scanner. The system was also tested on human subjects for

the measurement of body circumference and volume. To validate its feasibility in body

fat assessment, body densities of human subjects were calculated with body weight and

volume, and their percent body fat (%BF) were estimated. The results were compared to

DEXA.
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8.2.1 Mannequins and Measurements

Three standard mannequins (Wolf Form Co., Englewood, NJ) for bridal dress fit

were used to evaluate the accuracy and reliability of the system. The manufacturer-defined

sizes of these mannequins are 8, 10 and 12. The reconstructed 3D models of these man-

nequins are shown in Figure 8.3. Models were zoomed at the same scale to show the size

differences. A MyoTape body tape measure (AccuFitness LLC, Greenwood Village, CO)

was used for circumferences measurement. Each mannequin was imaged five times with

repositioning for each trial. Chest, waist and hip circumferences, and total body volume

were measured on the 3D model automatically. The coefficient of variance (CV) was com-

puted to estimate repeatability. To evaluate the accuracy on circumference and volume

measurement, the results were compared to those obtained with physical tape measure

and handheld scanner.

To estimate the longitudinal day-to-day repeatability of the system, the size-12

mannequin was imaged in five trails with no more than one trail was conducted on a

single day. For each trial, the measurement were repeated three times.

A portable 3D scanner, Go!SCAN 3D (Creaform Inc., Quebec, Canada), was used to

acquire the 3D models of our mannequins. These 3D body models were used as references

for volume measurement. Go!SCAN 3D is an active lighting device. Its imaging principle

is based on triangulating patterns projected onto the scanned surface. It has a working

depth range of about 20–50 cm. The 3D reconstruction of a scan is performed at real-time.

To initiate a 3D scan, the scanner has to be held steadily to image the same surface for

a few seconds, so that sufficient frames can be captured to constructed an initial set of

surface feature points. These feature points are used for new surface alignment. Once the

initial surface is acquired and is stabilized, a user can move the scanner over the target to

scan the complete surface. Whenever the scanner is moved to a new position to cover new
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(a) Size 8. (b) Size 10. (c) Size 12.

Figure 8.3: Mannequins of three different sizes were used to verify the accuracy our devel-
oped body imaging system.

surfaces that have not been imaged before, it extracts feature points from the current frame,

and matches these feature points to the collection of all feature points that it maintains.

Parameters that are needed to align newly acquired 3D surfaces is calculated from feature

matching.

8.2.2 Human Subjects and Measurements

Twenty adult subject (twelve males and eight females) were recruited in this study

to help evaluate our developed body imaging and measurement system. The subjects were

aged 24–41 years, with weights 38.6–101.0 kg, heights 153.7–182.4 cm, and BMI 16.33–30.37

km/m2.

The study was approved by the Internal Review Board of the University of Texas at

Austin. The data collection procedure together with the informed consent form were sent

127



to each subject before their visit. Signatures from the subjects on the consent form were

collected when they were on site. The subjects were instructed to fast at least three hours,

stay hydrated, and avoid excessive sweating, heavy exercise, and caffeine or alcohol use

before all procedures were performed.

Subjects were asked to wear tight-fit underwear for body imaging. First, height,

weight, chest circumference, waist circumference and hip circumference were measured

with conventional anthropometric methods using the same tape that was used as in man-

nequin measurement. Then, the subjects were imaged by stereo cameras at maximum

exhalation after normal breathing. Subject’s body volume was corrected by subtracting

the lung residual volume from the raw body volume. The residual volume was estimated

by prediction equations that are functions of height and age [165], RV(Men) = 0.0216H + 0.0207A− 2.840

RV(Women) = 0.0197H + 0.0201A− 2.421
(8.1)

in which H is the height in cm, and A is the age in years. The estimated volume is in L.

Image capture took place in a burst mode, in which the computer software launched

a batch of threads, and each of the thread was dedicated to send a shutter release command

to their assigned camera and to wait for the image to be transferred in. Even though the

picture taking was made to be multi-threaded and all threads were executed at the same

time, the total time needed before all images were transferred back into computer may

add up to two seconds, due to various software/hardware delays and the duration of ex-

posure. It is crucial for a subject to remain steady, otherwise subject’s motion will cause

mis-alignment of captured 3D surfaces and eventually lead to measurement error. In or-

der to minimize involuntary movements, the subjects were asked to stand still in a specific

posture with the legs slightly spread and the arms abducted from the torso. Subjects were

also asked to have their hands touch their hip with their thumbs and open their palms flat.
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(a) The original image. (b) The image with scrambled pixels.

Figure 8.4: To help protect privacy of our subjects, stereo pictures were scrambled to hide
image contents before they were saved to our computer.

The imaging was repeated 10 times for each subject. The subjects were asked to relax for a

few seconds and were repositioned between scans.

Since the body imaging system captures pictures of the volunteers and pictures are

personally identifiable information, their privacy needs to be protected to prevent unau-

thorized use of these pictures. All pictures were encoded with a special procedure so that

the color of each pixel is scrambled before they were saved onto our computer. Only the

same software that was used for image capture and 3D reconstruction was able to decode

these images. An example of the pixel scrambling is shown in Figure 8.4.

The subjects were also assessed for body fat by DEXA (Lunar iDXA, General Elec-

tronic, Fairfield, Connecticut). During the DEXA test, subject lied down on an open ”table”

for approximately eight minutes while the X-ray sensor scaned over their body. DEXA

measures the whole body fat, lean, and bone mneral mass and fat percentage. In addition,

the DEXA test determines the fat, lean, and bone mineral content and fat percentage for

the arms, legs, and trunk. However, only the whole body fat percentage is compared to

the stereo imaging system.
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8.2.3 Statistical Analysis

The repeatability of the developed body imaging system was determined by com-

puting the coefficient of variance (CV) and the intra-class correlation coefficient (ICC) from

the results of one-way random effects ANOVA. Based on the between- and within-group

mean errors available from ANOVA, CV is computed as the ratio of within-group standard

deviation (SDw) to the global mean, and is presented in percentage format, or

CV =
SDw

Mean
× 100%. (8.2)

The ICC is determined as

ICC =
MSb −MSw

MSb + (n− 1)×MSw
, (8.3)

in which MSb and MSw are the between- and within-group mean square errors (MS), re-

spectively. n is the number of samples per group. The comparisons of measurements using

tape and stereo imaging were performed with t-tests and linear regression analysis.

Percent body fat was calculated from whole body volume measured by stereo

imaging using Siri’s equation (2.2). The paired-sample t-tests and linear regression were

applied to compare the %BF estimates between stereo imaging and DEXA. In additional,

Bland and Altman analysis was used to assess agreement of %BF between these two. A

95% agreement was estimated by the mean difference±1.96SD. For all analyses, statistical

significance was P < 0.05.

8.3 Results

8.3.1 Evaluation on Mannequins

All circumference measurements were automatically computed based on various

landmark locations detected on the reconstructed 3D body models. The volume measure-

ments were calculated through depth buffer integration by calling graphics APIs. The
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Table 8.1: Repeatability test on mannequins of three different sizes.

Circumferences/Volume Mean MSw SDw CV (%)

Chest (mm) 902.8 5.2 2.3 0.25

Waist (mm) 672.2 1.9 1.4 0.20

Hip (mm) 941.6 2.0 1.4 0.15

Volume (L) 50.789 0.0022 0.047 0.09

MSw, within-subject mean square error (MS); SDw, within-subject standard
deviation; CV, coefficient of variance.

results of repeatability test were computed from ANOVA in which the three mannequins

were treated as three subject groups, and repeated scans of each mannequin were treated

as multiple tests performed within one group. Each mannequin was imaged five times,

thus five tests were available for each group. Table 8.1 shows the results from the ANOVA

analysis, the within-subject standard deviation (SDw) and CV. It should be noted that the

between-subject mean square errors (MSb) and the P-value reported by ANOVA were ig-

nored for this evaluation, because we have already known that significant differences exist

among the three groups.

The CVs for our multi-group analysis are presented as percentage values. The CVs

were ≤ 0.2% for waist and hip circumferences, and was < 0.1% for volume. A low CV

value indicates small variation in measurements. The CV increased to 0.25% for chest

circumference due to the rapid variation of the circumference sampled at different vertical

locations that were above or below the true chest line. A small change at the vertical

location could result in larger circumference change than in the waist and hip lines. This

pattern has been observed on both mannequins and female human subjects, because their

waist circumferences are significantly shorter than their chest circumferences.

The results of longitudinal repeatability test based on the volume of size-12 man-
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Table 8.2: Longitudinal repeatability test on the size-12 mannequin’s volume.

Source of Variation SS DF MS F P-value Fcrit

Between Trials 0.001901 4 0.000475 0.924 0.49 3.478

Within Trials 0.005142 10 0.000514

Total 0.007043 14

The global mean of the multiple tests over five trials is 52.628 L.
SS, sum of squares; DF, degree of freedom; MS, mean square errors.

nequin are given in Table 8.2. A total of five trials were conducted on five days, and three

scans were performed for each trial. The trials were treated as independent groups in

ANOVA. Thus, the between-trial degree-of-freedom is 4 (5 − 1 = 4), and the within-

trial degree-of-freedom is 10 (5× 3− 5 = 10). The P-value of the variance analysis was

0.49 > 0.05, which indicated that there was no significant difference in the body volume

measurements over these five days.

Table 8.3 shows the comparison of circumference measurements between stereo vi-

sion and manual tape method on size-12 mannequin. The measurement data are presented

in (Mean± SEM) format. The SEM (Standard Error of the Mean) is computed by divid-

ing the standard deviation by the square root of the number of samples. The mannequin

was imaged five times, and tape measured five times. The comparison results were gener-

ated by paired two sample t-tests, with one variable being the stereo measurement and the

other being the tape measurement. With all P-values being > 0.05, the measurements be-

tween these two methods are not considered to be significantly different. However, since

all P-values are still relatively low, noticeable differences could be expected. The ”Differ-

ence” colume in Table 8.3 shows that the system may generate measurement results that

are slightly higher than the tape measure.

Table 8.4 shows the whole body volumes of three mannequins measured by stereo

imaging and the handheld scanner. The mannequins were imaged by stereo vision five
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Table 8.3: Circumferences of the size-12 mannequin measured by stereo imaging and tape.

Circumferences Stereo imaging Tape Difference P-value

Chest (mm) 925.6± 0.9 923.6± 0.4 2.0± 0.8 0.09

Waist (mm) 702.2± 0.8 699.1± 0.5 3.0± 1.1 0.06

Hip (mm) 972.3± 0.5 965.2± 0.5 2.1± 1.0 0.13

Measurement data are presented in (Mean± SEM) format. The mannequin was
imaged and tape measured five times. The P-values were obtained from paired
two sample t-tests.

Table 8.4: Whole body volumes of the three mannequins measured by stereo imaging and
Go!SCAN.

Mannequins Stereo imaging Go!SCAN Difference

Size 8 (L) 48.324± 0.018 48.077 0.247

Size 10 (L) 51.418± 0.026 51.138 0.280

Size 12 (L) 52.626± 0.009 52.349 0.277

Volumes measured by stereo imaging are presented in (Mean± SEM)
format. The mannequins were imaged by stereo system five times, but
they were scanned by Go!SCAN only one time, due to the inability to
close body surface mesh on small body parts, e.g., the end of legs.

times, but they were only scanned by Go!SCAN one time. We experienced a great amount

of difficulty in get the complete surfaces of the mannequins from the handheld scanner.

The software that the Go!SCAN uses to perform real-time surface fusion had trouble align-

ing small body parts. This typically happened when imaging the end of the legs. Possible

reasons for the inability to align could be the small surface area and the lack of geometrical

variation and features to identify a match. A third party software was used to close the

scanned body meshes, and some manual editing was needed to fill up the missing regions.

As a result, we could expect some error from Go!SCAN’s measurements. The differences

between these two methods were about 0.3 L for a 50± 2 L body. The ratio of the difference

with respect to the measurement value was around 0.6% (0.3/50× 100%). A t-test was not
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performed on these two methods because of the limited number of measurements from

the Go!SCAN.

8.3.2 Evaluation on Human Subjects

The overall age and physical body dimension measurements of the twenty human

subjects are listed in Table 8.5. Out of these twenty subjects, fifteen have thin to regular

body build with BMI within the range of 18.5–25 kg/m2. One subject was professional

athlete, and has a BMI value over 30 kg/m2. Among the rest four subjects, two exercises

regularly for muscle build, the other two have relatively more fat than average. Their BMIs

are in the 25–29.9 kg/m2 range. None of the subjects is obese.

Table 8.5: Human subject characteristics.

Mean SD Range

Age (yr) 27.6 3.7 23–41

Height (cm) 168.1 9.6 153.7–182.9

Weight (kg) 64.2 16.0 38.6–101.0

BMI (kg/m2) 22.3 3.79 16.33–30.37

The initial results of our system evaluation showed that the chest and waist cir-

cumferences measured by stereo imaging correlated very well with tape measurements,

but the hip circumference and %BF were significantly different from tape measure and

DEXA scan. The cause of these differences was a systematic, positive bias found in the

reconstructed 3D models. After reviewing each of the 3D body models, we discovered

that one of the major cause of over-estimated hip circumference and body volume was the

loose-fit clothes the subjects wore during imaging. Although we advised tight-fit clothes,

this requirement was hard to enforce. Some of the clothes were not tight enough to expose

body shape. Another cause of the over-estimated body volume is the hair volume. An
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Figure 8.5: A 3D body model was sculpted to reveal the actual body surface. Modified
body surfaces include head (hair volume) and underwear. The unsculpted body model of
the same subject can be found in Figure 8.1a.

over-estimated body volume reduces body density, and ultimately increase %BF.

To overcome the positive bias of body volume measurement, we modified the re-

constructed 3D body models by manually sculpting the inflated regions to reflect the actual

body profile. This procedure was performed in Meshmixer (Autodesk, Inc., San Rafael,

CA) with editing tools. Figure 8.5 shows an example of a sculpted body. The unsculpted

body model of the same subject can be found in Figure 8.1a. Subject’s underwear was

flattened to reveal the actual body surface, and the hair volume was also reduced. Our re-

ported hip circumference and body volume measurements were computed from the man-

ually modified body models. Table 8.6 shows parts of the measurements and statistics for

all subjects. In the ”Subject ID” column, a mark is placed next to a subject’s ID if that sub-

ject’s body models were sculpted to flatten out loose clothes. All body models were edited

to remove hair volume. In addition to %BF estimation through Siri’s equation, the esti-

mation from Brozek’s equation is also listed in Table 8.6. Compared to the DEXA results,
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Table 8.6: Measurements and statistics of twenty human subjects.

Subject
ID

BMI
(kg/m2)

Raw
Volume

(L)

Lung
Residual

(L)

DEXA
%BF

Stereo
%BF
(Siri)

Stereo
%BF

(Brozek)

1† 18.5 53.756 1.542 11.9 8.5 9.1

2 21.6 48.781 1.107 30.6 30.1 29.1

3 20.7 51.444 1.409 20.2 22.0 21.6

4† 26.4 85.300 1.541 15.4 17.2 17.1

5 15.5 38.263 1.079 24.5 27.1 26.3

6 18.1 47.013 1.266 20.6 22.9 22.4

7 20.2 49.530 1.150 32.4 31.4 30.2

8 23.1 62.206 1.267 22.6 25.1 24.4

9† 31.0 96.561 1.470 15.3 16.0 16.0

10† 30.5 90.010 1.336 20.8 23.1 22.6

11 24.2 63.582 1.208 23.5 21.5 21.1

12 27.0 84.206 1.526 26.0 24.5 23.9

13 20.8 56.244 1.187 17.9 15.8 15.9

14 24.5 66.314 1.203 22.3 21.1 20.7

15 19.4 58.842 1.462 10.6 8.0 8.7

16† 21.1 59.637 1.317 16.3 15.4 15.5

17 22.2 67.090 1.431 20.8 17.2 17.1

18 21.8 52.192 1.152 31.4 28.8 27.9

19 23.4 55.083 1.077 33.9 31.4 30.3

20 26.3 62.123 1.072 40.6 37.6 36.0

All body models were edited to remove hair volume.
† Body sculpting was performed on subject’s 3D body models to flatten out loose
clothes.

the Brozek’s equation has a higher chance to underestimate a person’s %BF than the Siri’s

equation. However, for individuals with thin body build, the Brozek’s equation actually

performs more consistently with DEXA.

The repeatability of all circumference measurements and body volume measure-

ments is shown in Table 8.7. All ICCs were > 0.99, and all CVs were < 1.0%. The highest
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Table 8.7: Repeatability test on 20 human subjects.

Circumference/Volume Mean MSw MSb SDw CV ICC

Chest (mm) 914.3 31.0 27255.6 5.6 0.61 0.9966

Waist (mm) 767.2 12.6 26409.2 3.5 0.46 0.9986

Hip (mm) 956.6 20.9 18916.2 4.5 0.48 0.9967

Raw Volume (L) 62.408 0.047 718.290 0.218 0.35 0.9998

MSw, within-subject mean square error (MSE); MSb, between-subject MSE; SDw,
within-subject SD; CV, coefficient of variance; ICC, intra-class correlation coeffi-
cient.

precision was reached in body volume with the lowest CV value. This is mainly because

there was no ambiguity to calculate whole body volume from a 3D model. However, it

was difficult to locate precisely the chest, waist and hip lines. Compared to the repeata-

bility tests of circumferences on mannequins, the CVs of human subject measurements

were relatively higher. This is a sign that a higher variation exists in the measurements

from multiple scans of the same human subject. There are several causes to this variation.

Firstly, determining the location where a circumference should be taken is even more dif-

ficult than on mannequins. Secondly, the amount of air in a person’s lung can be different

at each time the person was imaged. This affects chest circumference measurement most

(notice the CV for chest circumference is the highest in Table 8.7), and it may also affect

waist measurement.

The measurement accuracy of stereo imaging with reference to tape for circum-

ference measurements is shown in Table 8.8. The P-value is computed by paired sample

t-tests. The P-value for chest circumference measurement is > 0.05, and it indicates there

is no significant differences between stereo imaging and tape measure. However, the P-

values for waist and hip circumference measurements are < 0.05.

The degree of agreement on circumference measurements were characterized by
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Table 8.8: Comparison of circumferences measured by stereo imaging and tape on human
subjects.

Circumferences Stereo imaging Tape Difference P

Chest (mm) 914.3± 20.8 912.3± 20.4 2.0± 0.9 0.053

Waist (mm) 767.2± 20.4 764.6± 20.4 2.6± 0.9 0.012

Hip (mm) 934.4± 14.2 930.4± 13.8 4.0± 1.5 0.017

Measurement data are presented in (Mean± SEM) format. The P-values were
from paired-sample t-tests.

linear regression analysis, and the results are shown in Figure 8.6. The graphs of fitted

linear equations are shown on the left and the Bland-Altman plots are on the right. A

very high correlation was observed between stereo imaging and tape measure in chest

and waist circumferences with R2 > 0.99 and sum of squared errors (SSEs) being less than

5 mm. The correlation of hip measurement was slightly lower than chest and waist with

R2 = 0.989 and SSEs being 6.9 mm.

Siri’s equation was used to predict %BF from stereo measurement. The average

body density was computed by dividing the body weight by total body volume. The

estimated %BF was compared to DEXA, and the prediction equation was obtained from

linear regression with DEXA as the reference method. The results are shown in Figure 8.7.

The predicted equation from linear regression was y = 0.95x + 0.508 with SSE = 2.2 %BF

and R2 = 0.9231. The bias and SD of difference is shown in Table 8.9. Paired sample t-test

was performed to discover the difference between these two methods. With the P-value

being 0.2, we infer that the %BF estimation through manually corrected 3D models is not

significantly different from DEXA.
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Figure 8.6: Agreement of tests of measurements on chest, waist, and hip circumferences.
Left column: linear regression of the measurements between stereo imaging and tape mea-
sure. Right column: Bland-Altman plots of measurement agreement. n: sample size (20);
SSE: sum of squared error; R2: Pearson R-value squared; equation: slope and intercept
equation; RPC(%): reproducibility coefficient (1.96× SD) and % of mean value.
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Figure 8.7: Agreement of tests of %BF after body volume correction. Left: linear regression
of the measurements between stereo imaging and DEXA. Right: Bland-Altman plot of
measurement agreement. n: sample size (20); SSE: sum of squared error; R2: Pearson R-
value squared; equation: slope and intercept equation; RPC(%): reproducibility coefficient
(1.96× SD) and % of mean value.

Table 8.9: Bland-Altman analysis on percent body fat through corrected body volumes.

Bias SD Reproducibility coef. P

Stereo imaging — DEXA -0.64 2.15 4.20 0.20

Reproducibility coefficient is defined as 1.96× SD. The P-value was from paired
sample t-test.

8.4 Discussion

8.4.1 Analysis of Results

To evaluate the measurement consistency of circumference and %BF among stereo

imaging, tape measure and DEXA, we first looked at the correlation of the measurements.

The circumference measurements between stereo imaging and tape showed high corre-

lation (R2 > 0.99). However, good correlation alone is not sufficient to imply that two

methods generate similar data. Thus we applied Bland-Altman method to measure the

agreement between any pair of comparison. A Bland-Altman plot is primarily used to

compare two clinical measurements that each provides some errors in their measure. The

mean difference of measurements is the estimated mean bias, and the SD of the differences
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measures the random fluctuations around this mean. It is common to look at the 95% lim-

its of agreement for each comparison (bias± 1.96× SD of difference), which tell us how

far apart measurements by 2 methods were more likely to be for most individuals. It is

also commonly accepted in clinical measurements that if the difference within the limits of

agreement are not clinically important, the two methods may be used interchangeably.

For system evaluation on human subject, circumference measurements from stereo

imaging were compared to tape measures, and %BF estimations from stereo imaging were

compared to DEXA. We observed that circumference measurements received a higher de-

gree of agreement than the %BF estimation. The biases in circumference measurements

were within 2–4 mm range (Table 8.8). Compared to the average circumference measure-

ments of our human subjects on chest, waist and hip, the biases are only 0.2%, 0.3% and

0.4%, respectively. The limits of agreement in all three circumference measurements were

compact, with the chest measurement being 8.4 mm, waist being 8.3 mm, and hip being 14

mm (Figure 8.6). As we experienced that 5–10 mm measurement differences were common

in tape measurements for circumference on our human subjects, we would accept that the

measurement method on circumferences using stereo imaging and tape are similar.

8.4.2 Sources of Errors

It should also be noticed that the biases on circumference measurements were all

positive values. This is actually inline with the measurement principles which are slightly

different on 3D body models and on human subjects. On a 3D body model, the measure-

ment is taken by fitting a curve that is precisely on the surface of the 3D mesh, and it traces

the exact geometrical changes at the measurement site. While on the human subject with

tape measure, the tape usually cannot follow surface areas that are concave and it only fits

to the ”envelope” of these areas. Thus, tape measurement could be shorter than the fitted

curve on the 3D body model, if the circumference does not exhibit monotonic curvature
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on its loop.

The measurement agreement on %BF between stereo imaging and DEXA was rel-

atively low. Even though the bias was only 0.42% of body fat, the limits of agreement

span a wide range. The reproducibility coefficient (1.96× SD) was 4.2% of body fat, and it

accounted for 18% of mean value. This low measurement agreement on %BF lies in the na-

ture of Siri’s equation in estimating %BF from a two-component body composition model.

The %BF is very sensitive to the accuracy of body volume measurement. For example,

Siri’s equation yields

∆(%BF) =
495× ∆V

W
, (8.4)

where W is the body weight in kg, and ∆V is the error of body volume measurement in L.

If we assume W = 60 kg, then an error of 0.5 L in ∆V would lead to an over 4% difference

in %BF. A small error in body volume measurement can readily result from inaccuracy of

lung volume estimate or a slight body movement during imaging.

In our study, subjects’ residual lung volume was estimated through empirical equa-

tions (8.1) that are functions of height and age. These equations were predicated from 245

healthy nonsmokers with a variety of body builds and a wide range of ages [165]. The 95%

confidence intervals of the estimation were all below 0.8 L for both men and women. As

pointed out in another study [166], using a predicted rather than a measured lung resid-

ual would not significantly affect %BF estimates in adults. While this statement might

be considered acceptable in group comparison, the difference between true and predicted

residual volume may have an impact on derived %BF at an individual level. Since these

equations do not account for body weight and body shape, it is very likely that they may

overestimate the residual volume on tall and skinny persons, and underestimate on mus-

cular persons who exercise daily and thus have an active lung function. Note from Ta-

ble 8.6 that subject 1 and 15 were both tall and with sub-twenty BMIs. Their actual lung
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residual may be well below the average of persons of their heights, but were estimated to

be larger than two muscular subjects (9 and 10) who exercises regularly. This could explain

the tendency that the stereo vision system underestimates %BF on tall and thin persons,

and overestimate on muscular persons due to inaccurate estimation of lung residual. It

would be prudent to measure lung residual whenever possible; however, for a body imag-

ing system that is designed to simplify the measurement steps, it may not be practical to

implement.

Even if a person’s body volume is measured with good accuracy, the person’s ac-

tual densities of body components can still contribute to errors in %BF estimation from the

two-component body model. The two-component model assumes the fat mass density to

be 0.9 kg/L and fat-free mass density to be 1.09 kg/L. For example, a 60 kg person with

20% of body fat should have a body volume of 57.37 L according the two-component body

model. However, if the person actually has a lower fat-free mass density of 1.05 km/L

(0.04 kg/L less than the average), the actual %BF should be 23.8% with 14.3 kg of fat mass

and 45.7 kg of fat-free mass (the total body weight and volume stay unchanged). In other

words, the two-component body model may underestimate %BF for persons with his or

her fat-free mass density lower than average. Among our volunteers for system evalu-

ation, subject 11 has a bone density 0.1 kg/L lower than average. This brings down his

fat-free mass density, and the stereo vision gave a lower %BF estimation than DEXA.

8.4.3 Comparison of Results

Compared to the active stereo body imaging system developed in Yu’s work [14],

this reported passive stereo body imaging system reached better measurement agreement

in %BF estimation. In [14], three %BF estimation methods were evaluated, and the meth-

ods between active stereo and air displacement plethysmography (ADP) were found to

have the highest measurement agreement (−0.789% bias and 8.189% reproducibility coef-
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ficient). ADP computes whole body volume through air pressure change within a sealed

chamber, and its %BF estimation is based on the same Siri’s equation, while the other

method for %BF estimation is based on bioelectrical impedance. This may explain that ac-

tive stereo vision and ADP had the highest measurement agreement in Yu’s findings. Our

achieved agreement was also better than the work in [166], in which ADP was compared

to underwater weighing (UWW). Their reported 95% confidence interval was −7 to +9

%BF, and the SD was approximately 4 %BF. More comparative study results are listed in

Table 8.10. Recent %BF studies [167–169] have compared the DEXA to the four-component

(4-C) body model, which is believed to be more accurate in %BF estimation. It was sug-

gested in [170] that in order to verify two %BF estimation methods to be similar, an SD

between 2% and 3% and a systematic bias less than 2% are both essential. For the %BF es-

timation through our passive stereo vision system, both the bias and standard error were

within the advised criterion, and were among the lowest ones in Table 8.10. The improved

measurement agreement report for this developed passive stereo imaging system benefits

most from the high resolution imaging and the robustness of the stereo computation.

In general, this study confirms that the methodological error associated with body

imaging appears to be comparable, and perhaps favorable to that of ADP and UWW,

which all derive %BF from body density. Nevertheless, despite good reliability shown

in our findings and other studies, there still remains certain methodological issues which

may affect accuracy and precision. For example, the impact of body hair, gender differ-

ence, and the inflation of body surface by clothes. In addition, it is important to note that,

to date, accuracy of body composition by body imaging compared with other methods

has yet to be confirmed. The difference seen between UWW, ADP and DEXA were re-

viewed in [174] and demonstrated limits of agreement between ADP and DEXA or UWW

of approximately ±4 %BF. This potentially large difference could be due to the combined
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Table 8.10: Comparison of %BF estimation from multiple studies.

Paired comparison Sample size Mean diff. Individual diff.

References Method 1 Method 2 M F (%BF) (%BF) P-value

This dissertation Passive stereo DEXA 12 8 −0.64± 2.15 −3.6–2.6 0.20

Yu, 2008 [14] Active stereo ADP 10 10 −0.79± 4.18 – 0.41

Prior et al., 1999 [171] DEXA UWW 91 81 −0.8± 3.0 −8.4–9.3 –

Fields et al., 2001 [172] ADP DEXA 0 43 0.6± 3.4 – –

Millard-Stafford et al.,
2001 [173] ADP DEXA 50 (total) −2.5± 3.7 – –

Demerath et al., 2002 [166] ADP UWW 41 46 1.6± 4.0 – < 0.05

Mahon et al., 2007 [167] DEXA 4-C 0 29 0.6± 4.5 – –

Minderico et al., 2008 [168] DEXA 4-C 48 0 −1.7± 2.0 – –

Santos et al., 2010 [169] DEXA 4-C 7 0 0.81± 2.3 – –

Mean difference is presented in (Mean± SD) format; ADP, air displacement plythsmography; DEXA, dual-energy X-ray
absorptimetry; UWW, underwater weighting; 4-C, four-component body model; M, male; F, female.

imprecision of the methodologies within each, but also due to true methodological dif-

ferences. It is technically difficult to state better accuracy of one method over another as

differences between methods could be due to errors in the underlying assumptions they

rely on, such as the assumed constancy of FFM in densitometry, or tissue hydration as-

sumptions made in DEXA. To fully elucidate this issue more comparative studies of body

imaging with other body composition methods need to be undertaken, methods that do

not rely as heavily on physiological or chemical assumptions such as MRI, or methods

based on body shape analysis.

8.5 Summary

We have evaluated the automatic body measurement system based on passive

stereo vision, which is an extension to its earlier form (active stereo) dedicated to the needs

of body composition assessment. Various body circumference measurements were auto-

matically detected and calculated on reconstructed 3D body models. The computation
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of both circumferences and volume are accelerated on graphics hardware. %BF is esti-

mated by Siri’s equation using the average body density with the available body weight

and volume. The measurements were highly repeatably both in mannequins and in hu-

man subjects. The %BF estimates were found to be consistent with DEXA (P = 0.20). The

agreement of %BF estimation between stereo imaging and DEXA were tested with Bland-

Altman plot. The bias was found to be −0.64 of %BF, and the limits of agreement is ±4.2

of %BF. Compared to the active stereo imaging system, the results were improved in the

form of the compactness of the limits of agreement. Our results meet the advised criterion

justifying two %BF estimation methods, and reached lower limits of agreement than most

of other similar studies. The limitation of using a two-component body model through an

empirical equation for %BF estimation were also discussed.
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Chapter 9

Conclusions and Future Work

9.1 Summary of the Dissertation

The prevalence of obesity has made it necessary to develop a reliable and safe

tool for timely assessing and monitoring obesity in public health. After reviewing vari-

ous 3D imaging techniques and their application in body imaging for body composition

analysis, we suggested that 3D anthropometry based on passive stereo vision can provide

convenient and accommodating means for the body composition assessment purpose.

This dissertation reports our efforts on developing such a system with the goal

to make it more affordable, reliable and easy to deploy. A total of eight cameras were

used to capture stereo images for 3D reconstruction. The system is configured to a two-

stance design that is the minimum configuration required for whole body imaging. The

system is calibrated in two stages: camera calibration and 3D registration. The camera

calibration procedure involves relatively more work than the 3D registration, because the

poses of a calibration target needs to be changed several times for better results. However,

camera calibration does not need to be repeated frequently as long as the relative positions

of cameras in a stereo pair stay unchanged. This can be readily achieved by fixing the

cameras and locking the lenses. Therefore, only 3D registration needs to be redone when

the system is deployed to a new location. This property meets the portability requirement

of the system, and it effectively reduces cost of maintenance.

The hardware requirements of a passive stereo vision system are relatively low

when comparing it with other active imaging techniques, such as laser scanner and struc-
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tured light. Active lighting has been the most popular technique for 3D imaging, mainly

due to its robustness under various lighting conditions and surface properties. But the

complexity of the hardware that is involved in an active light system prevents it from

being widely accepted. A passive stereo vision system has the benefits of fast image ac-

quisition and simple hardware configuration, but its 3D computation is more complex and

intensive, and it still poses great challenge in the related research community. In this dis-

sertation, we proposed a multi-scale stereo matching strategy to meet the robustness and

efficiency requirements.

Within a multi-scale stereo matching framework, an image pyramid is constructed

by successively Gaussian filtering and down-sampling the original images. Stereo match-

ing starts from the top level of the pyramid by matching large scale features. It generates

a low resolution disparity map, which can be used as the disparity estimates for the next

pyramid level. The matching done at the top level requires a full disparity range search.

However, it only has to be done on the smallest image on the top of the pyramid. Suc-

cessive matching takes the disparity map computed from a previous level as an estimate,

and only searches a narrow range for the correct disparity value at current scale. This ef-

fectively reduces the amount of computation by avoiding the unnecessary searches out of

the range, which is an expensive operation in the dense stereo matching algorithm. A full-

sized disparity map is generated when the matching on the lowest level of the pyramid is

done.

A stereo matching is sensitive to lighting conditions and surface textures. Passive

stereo system usually suffer from poor image quality. To develop a robust stereo matching

algorithm that is appropriate for body imaging, we took design inspirations from various

sources and implemented the algorithm within a classic four-step matching framework.

Pixel-wise matching cost was computed first. We used a hybrid matching cost function
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which includes three cost terms. These cost terms take into account both local and regional

color information, and generate a combined matching cost that is less sensitive to noise.

Following cost computation, cost aggregation applies constraints to the computed cost

volume to support smoothness by penalizing changes within a neighborhood. Our cost

aggregation follows the multiple linear paths around a pixel for aggregation. This method

simulates global optimization and can be performed in parallel because every aggregation

path is independent. Our disparity computation step implements the winner-takes-all

strategy. It converts a 3D cost volume into a 2D disparity map. With relative reliable

results from the previous aggregation step, the winner-takes-all is extremely fast. The final

disparity refinement step corrects any errors in the computed disparity map with various

constraints. It first identify the occlusion regions on a disparity map, because the occluded

pixels and mismatched pixels need to be handled differently. An iterative region voting

method is then applied on mismatched and occluded areas, allowing reliable disparity

values from a neighborhood region to propagate into the problematic areas. Once region

voting finishes, disparity edges are checked and made consistent to the texture map. The

result of the stereo matching is a complete disparity map free of holes and smooth on

continuous surfaces.

With the known camera parameters, a disparity map can be converted into a 3D point

cloud in each stereo units’ coordinate system. Points clouds from multiple stereo units are

then merged into the global, common world coordinate system with the 3D registration re-

sults. The merged point cloud can be converted to a body surface model in triangle mesh

to be more interpretable and manageable. The surface mesh generation is performed in

the software that was previously developed for our active stereo system. To make the

3D anthropometry system ready for practical use, automatic body measurement is indis-

pensable. A body measurement system dedicated to body composition assessment was
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developed based on an earlier system. The function of 3D measurement were enhanced

by taking advantage of graphics hardware APIs. The parameters that are made available

from the hardware accelerated methods include circumference, whole body volume, seg-

mental volumes, cross-sectional areas, and body surface areas.

The overall performance of the presented system was evaluated. The measure-

ments were highly repeatable. The chest, waist, and hip circumference measurements were

found to be accurate and reliable. The %BF estimate based on 3D body models shows no

significant difference compared to DEXA. The limits of agreement of %BF estimation be-

tween stereo and DEXA were found to be comparable with other studies. Despite good re-

peatability shown in our findings, there still remains certain methodological issues which

affect accuracy and precision. In general, %BF estimate derived from body density is sen-

sitive to body volume measurement, and an accurate estimation of lung residual volume is

usually difficult to achieve with simple steps. The potentially disagreement between stereo

imaging and DEXA could be due to the combined imprecision of the two methodologies,

but also due to two methodological differences, i.e., the densitometry assumes constancy

of FFM while DEXA assumes the constancy in tissue hydration.

9.2 Suggestions on Future Work

In our current hardware configuration, eight cameras were used to form four stereo

units. Each stereo unit covers half of body on one side. However, in our multi-scale match-

ing framework, the disparity map computed at half-size images has already shown good

quality. This indicates that there is potential to reduce the number of cameras by half, so

that each stereo unit covers the whole body on one side. The resolution of stereo images

in a four-camera system is at the same level as the images that are reduced by half in the

eight-camera system. A system with less cameras are easier to deploy and requires less
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work for cameras calibration. The stereo matching also costs less time due to fewer images

to process. Another improvement to the imaging system in terms of hardware configura-

tion is to place cameras in a multi-view setup, in which cameras are placed on a circle with

equal distances between two adjacent cameras. In the binocular stereo setup, two cameras

are placed close to each other and only one 3D observation is made from the stereo unit.

While in the circular setup, the number of 3D observations is the same as to the number

of cameras in use. A body imaging system that is configured in the multi-view setup can

also reduce occlusion.

As is common in almost all passive stereo imaging, lighting always plays an im-

portant role for a successful matching. Specularity on oily skins is a problem when doing

imaging under direct lighting. This usually occurs on faces. Specular areas are textureless,

and they typically causes mismatch and distort the reconstruct mesh. Ways to deal with

this including preventing it from happening in the first place by using indirect lighting.

The desirable solution is a studio setup for photography, in which light intensity is suffi-

cient and specular reflection is minimized. When professional studio setup is not available

or limited in space, cross-polarization lighting may be an alternative.

There is still room for improvement on the algorithm for 3D surface mesh gener-

ation. In the current implementation, the 3D point cloud is first re-sampled on a regular

grid and then triangulated to form the initial mesh. Re-sampling on a regular grid simpli-

fies the triangulation, but it loses rapid geometrical changes on the surface. An example

of this is that the fine surface details achieved through sub-pixel refinement with bilateral

filtering are no longer visible in the reconstructed 3D surface mesh. It is preferred to make

the algorithm more adaptive to local geometrical details when doing re-sampling. Im-

provements can also be made in the fusion of front and back surfaces to create the whole

body model. Edges of the meshes are currently stitched by connecting front and back edge
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points to form triangles. Direct connection of edge points takes short cut on body curves,

and it may result in reduced body circumference and volume. A better way to avoid this is

to extrapolate the side point, or to perform a curve fitting on the circumference to recover

a few side points.

The capability of the developed body imaging system is beyond the requirement

for whole body imaging. Localized body parts, such as fingers and face, are also very

visible in the reconstructed body models. This system can be easily reconfigured to im-

age regional body parts with greater resolution. In an unreported study, we have suc-

cessfully imaged faces without modifying the stereo matching and surface reconstruction

algorithms. However, to achieve even better results for high resolution 3D imaing, some

optimizations may be need to handle the rich geometrical features at a fine scale.

The potential of the applications of 3D body imaging in public health is enormous.

For example, it may be of great value if new indices can be developed for estimating the

distribution of body fat in localized regions or more directly predicting health risks. The

accuracy of %BF estimation may by improved by using a more reliable model that does

not rely on the average body density but on body shape and dimensions. A body imaging

system that is conveniently accessible to its users is an ideal tool for tracing changes in

body size and shape and monitoring related health conditions.

152



Bibliography

[1] R. S. Ahima and M. A. Lazar, “The health risk of obesitybetter metrics imperative,”

Science, vol. 341, no. 6148, pp. 856–858, 2013.

[2] F. Sassi, Obesity and the economics of prevention: fit not fat. OECD Publishing, 2010.

[3] A. Must, J. Spadano, E. H. Coakley, A. E. Field, G. Colditz, and W. H. Dietz, “The

disease burden associated with overweight and obesity,” JAMA: the journal of the

American Medical Association, vol. 282, no. 16, pp. 1523–1529, 1999.

[4] D. W. Haslam and W. P. T. James, “Obesity,” Lancet, vol. 366, no. 9492, pp. 1197–1209,

2005.

[5] WHO, “Obesity: preventing and managing the global epidemic,” WHO, Tech. Rep.

WHO Technical Report Series 894, 2000.

[6] T. Rankinen, S.-Y. Kim, L. Perusse, J.-P. Després, and C. Bouchard, “The prediction of

abdominal visceral fat level from body composition and anthropometry: Roc analy-

sis,” International journal of obesity, vol. 23, no. 8, pp. 801–809, 1999.

[7] P. Dempster, S. Aitkens et al., “A new air displacement method for the determination

of human body composition,” Medicine and Science in Sports and Exercise, vol. 27,

no. 12, pp. 1692–1697, 1995.

[8] WHO, “Physical status: The use and interpretation of anthropometry,” WHO, Tech.

Rep. WHO Technical Report Series 854:9, 1995.

153



[9] P. Björntorp et al., “The regulation of adipose tissue distribution in humans.” In-

ternational journal of obesity and related metabolic disorders: journal of the International

Association for the Study of Obesity, vol. 20, no. 4, p. 291, 1996.

[10] P. Björntorp, “Centralization of body fat,” in International Textbook of Obesity. New

York: Wiley, 2001, ch. 16, pp. 213–224.

[11] M. Lean, T. Han, and C. Morrison, “Waist circumference as a measure for indicating

need for weight management,” BMJ: British Medical Journal, vol. 311, no. 6998, p.

158, 1995.

[12] C. L. Istook and S.-J. Hwang, “3d body scanning systems with application to the

apparel industry,” Journal of Fashion Marketing and Management, vol. 5, no. 2, pp.

120–132, 2001.

[13] J.-M. Lu, M.-J. J. Wang, C.-W. Chen, and J.-H. Wu, “The development of an intelligent

system for customized clothing making,” Expert Systems with Applications, vol. 37,

no. 1, pp. 799–803, 2010.

[14] W. Yu, “Development of a three-dimensional anthropometry system for human body

composition assessment,” Ph.D. dissertation, University of Texas at Austin, 2008.

[15] A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, “Body-mass in-

dex and incidence of cancer: a systematic review and meta-analysis of prospective

observational studies,” The Lancet, vol. 371, no. 9612, pp. 569–578, 2008.

[16] D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham, and A. H. Anis,

“The incidence of co-morbidities related to obesity and overweight: a systematic

review and meta-analysis,” BMC public health, vol. 9, no. 1, p. 88, 2009.

154



[17] M. Nichols, A. de Silva-Sanigorski, J. Cleary, S. Goldfeld, A. Colahan, and B. Swin-

burn, “Decreasing trends in overweight and obesity among an australian population

of preschool children,” International Journal of Obesity, vol. 35, no. 7, pp. 916–924,

2011.

[18] D. Withrow and D. Alter, “The economic burden of obesity worldwide: a systematic

review of the direct costs of obesity,” Obesity Reviews, vol. 12, no. 2, pp. 131–141,

2011.

[19] Y. Wang, M. A. Beydoun, L. Liang, B. Caballero, and S. K. Kumanyika, “Will all

americans become overweight or obese? estimating the progression and cost of the

us obesity epidemic,” Obesity, vol. 16, no. 10, pp. 2323–2330, 2008.

[20] K. E. Thorpe, C. S. Florence, D. H. Howard, and P. Joski, “The impact of obesity on

rising medical spending,” HEALTH AFFAIRS-MILLWOOD VA THEN BETHESDA

MA-, vol. 23, pp. 283–283, 2004.

[21] S. J. Olshansky, D. J. Passaro, R. C. Hershow, J. Layden, B. A. Carnes, J. Brody,

L. Hayflick, R. N. Butler, D. B. Allison, and D. S. Ludwig, “A potential decline in life

expectancy in the united states in the 21st century,” New England Journal of Medicine,

vol. 352, no. 11, pp. 1138–1145, 2005.

[22] M. Finucane, G. Stevens, M. Cowan, G. Danaei, J. Lin, C. Paciorek, G. Singh, H. Gutier-

rez, Y. Lu, A. Bahalim et al., “Global burden of metabolic risk factors of chronic dis-

eases collaborating group (body mass index). national, regional, and global trends

in body-mass index since 1980: systematic analysis of health examination surveys

and epidemiological studies with 960 country-years and 9.1 million participants,”

Lancet, vol. 377, no. 9765, pp. 557–567, 2011.

155



[23] F. Sassi, M. Devaux, M. Cecchini, and E. Rusticelli, “The obesity epidemic: analysis

of past and projected future trends in selected oecd countries,” OECD Publishing,

Tech. Rep., 2009.

[24] M. M. Finucane, G. A. Stevens, M. J. Cowan, G. Danaei, J. K. Lin, C. J. Paciorek,

G. M. Singh, H. R. Gutierrez, Y. Lu, A. N. Bahalim et al., “National, regional, and

global trends in body-mass index since 1980: systematic analysis of health exami-

nation surveys and epidemiological studies with 960 country-years and 9· 1 million

participants,” The Lancet, vol. 377, no. 9765, pp. 557–567, 2011.

[25] T. Lobstein, L. Baur, and R. Uauy, “Obesity in children and young people: a crisis in

public health,” Obesity reviews, vol. 5, no. s1, pp. 4–85, 2004.

[26] B. Rokholm, J. Baker, and T. Sørensen, “The levelling off of the obesity epidemic

since the year 1999: a review of evidence and perspectives,” Obesity Reviews, vol. 11,

no. 12, pp. 835–846, 2010.

[27] E. A. Finkelstein, J. G. Trogdon, J. W. Cohen, and W. Dietz, “Annual medical spend-

ing attributable to obesity: payer-and service-specific estimates,” Health affairs, vol. 28,

no. 5, pp. w822–w831, 2009.

[28] E. A. Finkelstein, I. C. Fiebelkorn, and G. Wang, “State-level estimates of annual

medical expenditures attributable to obesity*,” Obesity research, vol. 12, no. 1, pp.

18–24, 2004.

[29] E. A. Finkelstein, I. C. Fiebelkorn, G. Wang et al., “National medical spending at-

tributable to overweight and obesity: how much, and who’s paying?” HEALTH

AFFAIRS-MILLWOOD VA THEN BETHESDA MA-, vol. 22, no. 3; SUPP, pp. W3–219,

2003.

156



[30] J. Trogdon, E. Finkelstein, T. Hylands, P. Dellea, and S. Kamal-Bahl, “Indirect costs of

obesity: a review of the current literature,” Obesity Reviews, vol. 9, no. 5, pp. 489–500,

2008.

[31] B. Popkin, S. Kim, E. Rusev, S. Du, and C. Zizza, “Measuring the full economic costs

of diet, physical activity and obesity-related chronic diseases,” obesity reviews, vol. 7,

no. 3, pp. 271–293, 2006.

[32] E. A. Finkelstein, M. daCosta DiBonaventura, S. M. Burgess, B. C. Hale et al., “The

costs of obesity in the workplace,” Journal of Occupational and Environmental Medicine,

vol. 52, no. 10, pp. 971–976, 2010.

[33] R. Roubenoff, G. E. Dallal, and P. Wilson, “Predicting body fatness: the body mass

index vs estimation by bioelectrical impedance.” American journal of public health,

vol. 85, no. 5, pp. 726–728, 1995.

[34] D. C. Frankenfield, W. A. Rowe, R. N. Cooney, J. S. Smith, and D. Becker, “Limits of

body mass index to detect obesity and predict body composition,” Nutrition, vol. 17,

no. 1, pp. 26–30, 2001.

[35] R. V. Burkhauser and J. Cawley, “Beyond bmi: the value of more accurate measures

of fatness and obesity in social science research,” Journal of health economics, vol. 27,

no. 2, pp. 519–529, 2008.

[36] K. J. Smalley, A. N. Knerr, Z. V. Kendrick, J. A. Colliver, and O. E. Owen, “Reassess-

ment of body mass indices.” The American journal of clinical nutrition, vol. 52, no. 3,

pp. 405–408, 1990.

[37] T. VanItallie, M.-U. Yang, S. B. Heymsfield, R. C. Funk, and R. A. Boileau, “Height-

normalized indices of the body’s fat-free mass and fat mass: potentially useful indi-

157



cators of nutritional status.” The American journal of clinical nutrition, vol. 52, no. 6,

pp. 953–959, 1990.

[38] Z.-M. Wang, R. Pierson, and S. B. Heymsfield, “The five-level model: a new approach

to organizing body-composition research.” The American journal of clinical nutrition,

vol. 56, no. 1, pp. 19–28, 1992.

[39] W. E. Siri, “Body composition from fluid spaces and density: analysis of methods,”

Techniques for measuring body composition, vol. 61, pp. 223–44, 1961.
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