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Integrative analysis of endocrine-disrupting chemical effects in the 

developing hypothalamus: adult behaviors and neural networks 

 

Viktoria Yuryevna Topper, Ph.D. 

The University of Texas at Austin, 2015 

 

Supervisor:  Andrea C. Gore 

 
Endocrine-disrupting chemicals (EDCs) are environmental pollutants known to 

perturb hormone systems and interfere with normal endocrine function.  Exposure to 

EDCs during hormone-sensitive developmental periods can result in profound 

dysfunction in reproductive physiology and behavior. In this dissertation, effects of 

gestational exposure to a class of EDCs called polychlorinated biphenyls (PCBs) were 

examined in the developing hypothalamus, which is known to control reproductive 

physiology and behavior in vertebrates. The specific hypothesis was that PCBs caused 

changes in sexually dimorphic hypothalamic nuclei, resulting in perturbation of adult 

sociosexual behaviors and alteration of neural networks with changes in expression of 

microRNAs and genes during development and in adulthood.   

This research focused on two brain areas relevant to understanding the PCB 

effects on the developing hypothalamus: 1) microRNA and related target gene expression 

during postnatal development, 2) adult sociosexual behaviors and gene expression. In 

both sections, molecular changes were examined in two sexually dimorphic hypothalamic 
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nuclei, medial preoptic nucleus (MPN) and ventromedial nucleus (VMN), known for 

their role in regulation of sociosexual behavior. In the first section of the dissertation, the 

effects of PCBs were examined on the expression of microRNAs and target genes at four 

ages during postnatal [P] development (P15, P30, P45, and P90). Age and sex specific 

effects were observed in both MPN and VMN, with greater effects in the MPN. The 

second research section of the dissertation explored whether sociosexual behaviors, 

namely ultrasonic vocalizations and sociosexual preference behaviors, were altered by 

gestational PCBs. Expression of forty-eight neuroendocrine candidate genes was also 

examined in the MPN and VMN of the same animals. Several sociosexual behaviors 

were affected, including number and acoustic properties of ultrasonic vocalizations, and 

nose-touching with opposite-sex animals. Gene expression was altered in sex and region-

specific manner in the brains of behaviorally affected rats.  Taken together, these findings 

suggest that gestational PCBs have lasting effects on molecular mechanisms during 

postnatal development and in adulthood, and could result in altered sociosexual behavior. 

These results have implications for human health and disease, as early life exposures to 

EDCs have been linked to reproductive decline in humans. 
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Chapter 1:  General introduction 

 
Background on reproductive physiology  

Sex differences in reproductive physiology and behavior are critical to the 

survival of vertebrate animals. Reproduction is controlled by the hypothalamic-pituitary-

gonadal [HPG] axis, and sexual dimorphism is apparent at all levels of the system. The 

HPG axis includes finely controlled hypothalamic signals to the anterior pituitary, which 

in turn sends hormonal stimuli to the gonads, ovaries in females, or testes in males (Gore, 

2010). The hypothalamus, located at the most rostral region of the brainstem, is a key 

neural center that regulates homeostatic functions in the body, integrates internal and 

external stimuli in the environment, and orchestrates the energetically costly process of 

reproduction. The gonadotropin-releasing hormone [GnRH] neuron bodies are located in 

hypothalamic preoptic area [POA] and mediobasal hypothalamus, with their axons 

extending to the median eminence at the base of the hypothalamus (Yin et al., 2010). The 

GnRH peptide is released from the axonal neuroterminals in the median eminence into 

the portal capillary system in a pulsatile manner. The release of a neurotransmitter 

peptide directly into the bloodstream is a defining feature of neuroendocrine cells; thus 

the GnRH peptide can be also appropriately referred to as a hormone or neurohormone. 

In the bloodstream, GnRH is transported to the anterior pituitary, where it acts 

upon its receptors to cause a similarly pulsatile release of pituitary gonadotropins: 

luteinizing hormone [LH] and follicle-stimulating hormone [FSH]. These hormones are 

released into the general circulation, and exert their effects on the gonads to drive 
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steroidogenesis and gametogenesis. Gonadal steroids [estrogen, testosterone, and 

progesterone], also known as sex steroid hormones, then act upon their respective steroid 

hormone receptors that are widely and heterogeneously expressed in reproductive and 

non-reproductive target tissues, including reproductive tract, genitalia, breast, bone, fat, 

muscle, kidney, liver, and many other organ systems (Takeda et al., 1990; Kuiper et al., 

1997; Uotinen et al., 1999). Steroid hormone receptors are also abundant in the central 

nervous system and pituitary gland, which enables gonadal hormones to exert feedback 

on the hypothalamic and pituitary levels of the HPG axis (Chakraborty et al., 2003). 

In the male brain, steroid hormone feedback involves negative feedback from 

testosterone and estradiol (Gooren, 1989). In females, the ovarian hormones estradiol and 

progesterone exert mostly negative feedback on the hypothalamic and pituitary hormone 

release. However, during the mid- to late follicular stage in primates, or on the day of 

proestrus in rats with a four-to-five-day estrous cycle, estradiol stimulates the release of 

GnRH, with the subsequent surge in LH, which causes ovulation (Gore, 2010). 

Interestingly, GnRH neurons themselves do not express most of the steroid hormone 

receptors; instead, negative feedback occurs via indirect effects of hormones on 

interneurons and glial cells that are abundant in estrogen [ER], progesterone [PR], and 

androgen receptors [AR] and support the GnRH neuron function (Herbison, 2008). 
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Hormonal and sex differences in the hypothalamus 

During development, the brain is organized by gonadal steroids during the critical 

period of sexual differentiation from late embryonic to early postnatal development 

(Phoenix et al., 1959; Barraclough, 1961). The concept of this critical period was first 

suggested by Phoenix et al. in 1959 and has since been extensively studied. Briefly, in 

male mammals, the developing embryonic testes produce testosterone (Forest, 1975), 

which is released into fetal general circulation, masculinizing reproductive and non-

reproductive tissues. In the brain, this masculinization is achieved through high levels of 

the aromatase enzyme, which converts fetal testosterone to estradiol (Roselli et al., 1985). 

Estradiol binds to estrogen receptors and activates the signaling cascades responsible for 

masculinization and defeminization of the developing male brain (Nordeen et al., 1983; 

Kudwa et al., 2005). Conversely, in the developing females, the ovary produces relatively 

low amounts of sex steroid hormones, resulting in brain feminization and 

demasculinization. These organizational effects of hormones on the male and female 

developing brains are necessary for the manifestation of sexually dimorphic adult 

physiology and behavior. 

Although many parts of the nervous system are sexually dimorphic in structure 

and function, the most well-studied component is the hypothalamus. For example, the 

anteroventral periventricular nucleus [AVPV], which provides input to GnRH neurons 

and is important for the female preovulatory GnRH/LH surge, is approximately two times 

larger in volume, cell number, and density in adult females than in males (Bleier et al., 

1982; Sumida et al., 1993). Conversely, the volumes of the sexually dimorphic nucleus of 
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the preoptic area [POA] and the medial preoptic nucleus [MPN] are two to four times 

higher in male rats than in the female rats (Gorski et al., 1978; Gorski et al., 1980). These 

regions are involved in regulating masculine and feminine sexual physiology and 

behavior [POA, MPN] (Davis et al., 1996). Beyond the hypothalamus, the spinal nucleus 

of the bulbocavernosis [SNB] and bed nucleus of stria terminalis [BNST] are both larger 

in males than in females (Nordeen et al., 1985; Chung et al., 2000). In males, the SNB is 

involved in maintaining the penile erection, while females lack the bulbocavernousus 

muscle that the SNB innervates, thus this region is virtually absent and plays minimal 

physiological role in females (Breedlove, 1986; Johansen et al., 2004). The BNST is 

involved in masculine and feminine reproductive physiology and affective behavioral 

pathways (Simerly, 2002). Thus, many regions of the rodent nervous system are sexually 

dimorphic in size and structure, due to the effects of sex hormones on the developing 

brain.  

While morphological differences in brain regions are part of sexual differentiation 

of the brain, more importantly, the neurochemistry and expression of neuropeptides, 

neurotransmitters, and receptors exhibit a number of sex differences. This dissertation 

will discuss a subset of such targets: steroid hormone receptors [Ar, androgen receptor; 

Esr1, estrogen receptor α; Esr2, estrogen receptor β], kisspeptin [Kiss1], and social 

behavior genes [Oxt, oxytocin; Oxtr, oxytocin receptor; Avp, vasopressin; Avpr1a, 

vasopressin receptor 1a], specifically in rats and mice.  

A variety of immunohistochemical studies have shown that there is sexual 

dimorphism in the distribution pattern of neuronal cell bodies and fibers containing Ar, 
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Esr1, Esr2 and Kiss1 in the hypothalamus (Herbison et al., 1993a; Herbison et al., 1993b; 

Dickerson et al., 2011a). Furthermore, in situ hybridization histochemical studies have 

revealed sex differences in mRNA expression of the same signaling receptors in the 

hypothalamus (Simerly et al., 1990; Chakraborty et al., 2010). In adult females, Esr1, 

Esr2, and Kiss1 are more abundant in the medial basal hypothalamus and preoptic area 

than in adult males; whereas Ar expression is higher in adult male hypothalamus than in 

adult females (Lauber et al., 1991; Herbison et al., 1993a; Imamura, 2011; Walker et al., 

2012). Additionally, Kiss1 gene and kisspeptin protein expression levels in the 

anteroventral periventricular nucleus [AVPV] of the hypothalamus are sexually 

differentiated, with adult females displaying higher levels than males (Kauffman, 2009).  

The neuropeptides and their receptors involved in social and sociosexual 

behaviors are, not surprisingly, sexually dimorphic in the brain. Within and beyond 

hypothalamus, Oxtr, Avp, and Avpr1a gene expression is higher in males than in females 

in ventromedial hypothalamus [Oxtr], bed nucleus of stria terminalis [Avp], and medial 

amygdala [Oxtr, Avp, Avpr1a] (de Vries et al., 1984; Bale et al., 1995; Ferguson et al., 

2001). Oxytocin gene expression was examined but found not to be sexually dimorphic in 

paraventricular nucleus of the hypothalamus, among other regions (Nomura et al., 2002). 
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Sexually dimorphic behaviors and hormonal influences 

Sex differences in brain morphology and steroid hormone levels are necessary for 

the manifestation of sex-appropriate behaviors, including copulatory and social 

behaviors. In male rodents, commonly analyzed copulatory behaviors include mounting 

females, penile intromissions, and ejaculations. Measurements of feminine copulatory 

behavior include proceptive [hops, darts, ear wiggling] and receptive [lordosis] 

behaviors. The brain regions controlling these behaviors in both sexes are almost entirely 

overlapping and include medial amygdala, BNST, POA, and ventromedial nucleus 

[VMN], as well as other midbrain, hypothalamic, and forebrain regions (Malsbury et al., 

1977; Mathews et al., 1977; Clark et al., 1981; Kato et al., 2000; Hull et al., 2006). It is 

possible that within these regions, the differences in steroid hormone receptors, 

neurotransmitters, neuron numbers, and phenotypes result in sex differences in behavior. 

Additionally, sex-dependent levels of estradiol, progesterone, and testosterone may exert 

sex-typical effects on the HPG axis, leading to the manifestation of male-like and female-

like behaviors (Crews, 2012). 

 

Male copulatory behaviors 

The importance of testosterone in regulating male-typical sexual behavior is 

shown by castration studies. Castration caused a decrease in serum testosterone levels 

and a corresponding decrease of sexual behavior, while administration of exogenous 

androgen reinstated the mounting behavior to pre-gonadectomy levels (Davidson, 1966; 

McGinnis et al., 1989). Although testosterone is the most abundant sex steroid hormone 
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in males, administration of its aromatization product, estradiol, has also been shown to 

elicit male-typical behaviors in gonadectomized rats and quails (Clancy et al., 2000; Ball 

et al., 2004). Progesterone has been similarly successful in reversing the effects of 

castration on the sexual behavior of gonadectomized sexually naïve male rats (Wagner, 

2006). Surprisingly, administration of the exogenous non-aromatizable androgen 

dihydrotestosterone does not reinstate sexual behavior in gonadectomized male rats and 

quails, but does so in guinea pigs and whiptail lizards (Alsum et al., 1974; Wade et al., 

1993). 

Sexual behavior in male rodents is not merely a simple effect of hormones but 

requires integration of sensory, integrative, and motor neural pathways. During a 

sociosexual encounter, olfactory information about an opposite-sex partner is carried to 

the olfactory bulb for interpretation. It gets further processed in the medial amygdala, the 

BNST, and the hippocampus, which in turn send projections to the POA, the central site 

of the sensory input integration in males (Kato et al., 2000; Hull et al., 2006). Efferent 

projections from the POA coordinate the CNS response by sending projections to the 

medial prefrontal cortex [mPFC], nucleus accumbens [NAc], as well as the VMN that are 

known to regulate the performance of motivated behaviors and help orchestrate the act of 

copulation (Malsbury et al., 1977; Mathews et al., 1977; Clark et al., 1981; Balfour et al., 

2004; Bell et al., 2009). The CNS input from the POA and the sensory input from the 

male genitalia is integrated in the brainstem nuclei, which send efferent projection to the 

SNB region, effecting a sensory-motor response pattern that results in penile erection and 

male-typical mounting behavior.  
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The importance of sex hormone signaling in the POA is highlighted by lesion 

studies, which inhibit male-typical sexual behavior in all vertebrate males (Paredes, 

2003). Furthermore, c-fos studies have shown that POA is activated in response to 

sociosexual stimuli, such as presence of a female conspecific or following exposure to an 

odor from an estrous female (Heeb et al., 1996; Neal et al., 2007). Expression of steroid 

hormone receptors [Ar and Er] in the POA mediates effects of these hormones on male-

typical behaviors. Additionally, intracranial implantation of androgens into the POA 

elicits mounting behavior in gonadectomized males (Fisher, 1956; Morgantaler et al., 

1978).  

 

Female copulatory behaviors 

In females, estrogen and progesterone are fundamental to the expression of 

copulatory behaviors. Increases in estradiol and progesterone during the follicular phase 

of the estrous cycle cause positive feedback on the HPG axis, resulting in ovulation and 

period of maximum receptivity, called behavioral estrus in rodents (Feder, 1981). In 

ovariectomized females, this positive feedback is abolished, as is ovulation and estrus. 

Administration of exogenous estradiol and progesterone to ovariectomized females in a 

pattern that mimics the natural production of hormones, reverses the effects of 

ovariectomy on sexual behavior and expression of estrogen and progesterone receptors in 

the relevant behavioral brain regions (Pfaff et al., 1994).  

The neural circuitry underlying female copulatory behaviors involve sensory, 

integrative, and motor neural pathways, similar to males. Sensory input from the body 
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flanks and genital region in females is carried to the motor nuclei in the brainstem and is 

then transmitted to hypothalamic, midbrain, and forebrain regions (Pfaff et al., 1994). 

Integration of this input occurs in the ventromedial nucleus of the hypothalamus [VMN], 

which controls lordosis behavior (Malsbury et al., 1977; Mathews et al., 1977; Clark et 

al., 1981). The afferent output from the VMN relays the information to the mPFC, NAc, 

and POA, as well as the motor control centers in the brainstem and spinal cord to 

coordinate the spinal response of dorsiflexion (Balfour et al., 2004; Bell et al., 2009).  

 

Mate choice behaviors  

Beyond the mechanics of copulation, another critical aspect of sociosexual 

interactions is the process of finding and evaluating a mate. Females must both perceive 

and evaluate male cues prior to reaching a mating decision. It is easy to envision that 

mate choice behaviors rest on species-specific exchange of communication signals, used 

to enable an individual to evaluate another as a potential mate. In some species, males are 

known to “advertise” their reproductive fitness through extravagant mating rituals, to 

influence the choice of receptive females (Andersson, 1994). Other cues, including 

auditory and even environmental cues have been shown to influence female mate choice 

(Westneat et al., 2000). The organizational and activational effects of hormones influence 

female mate preference and selectivity (Wilczynski et al., 2010). Developmental studies 

have shown that prenatal treatment with androgens and estrogens alters the mate 

preference for an opposite-sex partner, and results in abnormal mate choices (Matochik et 

al., 1992). Similarly, gonadectomy studies have established the dependence of mate 
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preference behaviors on proper hormone levels during puberty and in adulthoo. Studies 

using neural c-fos activation in a sociosexual context to determine the neural circuitry 

underlying female mate choice behaviors have identified forebrain, midbrain, and 

hypothalamic nuclei, similar to the brain regions regulating masculine and feminine 

copulatory behaviors (Gentner et al., 2001; Hoke et al., 2004; Woolley et al., 2008).  

 

Production of ultrasonic vocalizations  

Acoustic modalities are central in female choice and male mating displays for 

many species (Emerson, 2001; Collins, 2004). Rats vocalize in the ultrasonic range 

[22kHz to about 80kHz], which is above the human hearing capacity [20Hz to 20kHz], 

thus they remain mostly undetected by human observers. Two types of vocalizations are 

emitted by adult Sprague-Dawley rats, categorized by the general frequency of the calls 

as low [22-kHz] and high frequency [50+-kHz] ultrasonic vocalizations [USVs] 

(Brudzynski, 2001; Brudzynski et al., 2002). Evidence from behavioral and 

pharmacological studies suggests that USVs vary depending on social situations and 

experience, and may represent distinct affective states of the vocalizing subject. Adult 

rats emit low-frequency 22-kHz USV when exposed to predators (Blanchard et al., 

1991), or other aversive stimuli, such as unescapable foot-shocks (Vivian et al., 1993; 

Antoniadis et al., 1999; Wohr et al., 2005; Borta et al., 2006). While 22kHz USVs are 

important in certain social situations as described above, I will focus my review on 

50kHZ USVs, which are relevant to my project.  
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50kHZ USVs may serve a communicative function in rodents. They are emitted 

by rodents after removal of their partner from the home cage, or after a rat is separated 

and placed into a new clean cage (Wohr et al., 2008). Thus, the USV calls are thought to 

establish, re-establish, or maintain social contact. 50kHz USVs also occur in affective 

social contexts, including but not limited to juvenile play (Knutson et al., 1998), tickling 

(Burgdorf et al., 2001), social exploratory activity (Brudzynski et al., 2002), and mating 

behavior (McGinnis et al., 2003). Since 50-kHz USVs are also expressed during 

anticipation of copulation (Bialy et al., 2000), play (Knutson et al., 1998), and food 

(Panksepp et al., 2000), it has been suggested that these calls are a sensitive marker for 

reward states and could reflect a positive affective state (Knutson et al., 1999; Panksepp 

et al.).  

Sex steroid hormones are known to influence the production of 50kHz USVs 

(Ball et al., 2003; Moore et al., 2005; Bass et al., 2008). For example, testosterone affects 

vocalizations through actions on behaviorally relevant brain areas [motivational brain 

regions and central vocal motor nuclei] (Yamaguchi, 2002) or through actions on 

peripheral organs involved in USV production [larynx and syrinx] (Taylor, 2010; Pasch 

et al., 2011). Thus, it is not surprising that numerous sex differences in USV production 

exist.  In mongolian gerbils and prairie voles, adult males vocalize more than females 

(Brown et al., 1988; Ma et al., 2014). In another study, male golden hamsters were found 

to produce a higher number of complex, frequency-modulated USV calls compared to the 

females. Entropy of the calls [measure of how energy is dispersed over the frequency] 

was lower in males than in female golden hamsters (Fernandez-Vargas et al., 2015). In 
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the same animals, interquartile bandwidth similarly showed lower measures in males than 

in females (Fernandez-Vargas et al., 2015).  

 

MicroRNAs and sexually dimorphic brain development 

MicroRNAs are small non-coding RNA molecules that exert their effects on gene 

expression by binding to messenger RNA [mRNA], leading to degradation of the mRNA 

molecule or inhibition of protein translation (Kim et al., 2009). The identification of the 

first microRNA was done using forward genetics assays in C. elegans, which uncovered 

a novel, non-coding RNA molecule that mediated the temporal pattern of body formation 

in the worm (Lee et al., 1993; Wightman et al., 1993). Initially believed to be a finding 

confined to worms, the identification of phylogenetically conserved let-7 microRNA in 

rodents spurred an interest in the field of small regulatory RNAs (Reinhart et al., 2000). 

Interestingly, the sexually dimorphic nature of microRNAs was obvious from the initial 

studies. In C. elegans, let-7 is required for worm viability during development, and its 

absence was noted to be lethal [LEThal-7], with females dying at L3 larval stage [early 

developmental stage] and males dying at L4 [later developmental stage]. In the 20 years 

following the identification of the first microRNA, more than 2000 microRNAs have 

been identified in mammalian species, regulating nearly all essential cellular processes in 

development and disease (Olive et al., 2015).  

In the brain, microRNAs are involved in numerous processes, including immune 

responses, apoptosis, and cancer (Kim et al., 2008). They were found to be important in 

neurodevelopment (Conaco et al., 2006; Tan et al., 2012), circadian signaling [e.g. mir-
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132, mir-219] (Cheng et al., 2007), and neurotransmitter and growth factor regulation 

[e.g. mir-7] (Kocerha et al., 2009; Miller et al., 2012; Sakai et al., 2013). The expression 

of some microRNAs is hormone-sensitive, and microRNAs in turn influence the 

expression of genes involved in mediating hormone responses (Klinge, 2009; Rao et al., 

2013).  For example, estradiol treatment altered the microRNA profiles in breast cancer 

cell lines (Klinge, 2009) and in select brain areas in aging rat females (Rao et al., 2013).  

Many microRNAs display sexually dimorphic expression. Studies in fish 

(Bizuayehu et al., 2012), neonatal and adult rodent brains (Olsen et al., 2009; Morgan et 

al., 2012; Murphy et al., 2014), and post-mortem examinations of human brains (Mellios 

et al., 2012) have revealed sex-dependent differences in expression of individual 

microRNAs. For example, in the brains of the teleost fish Hippoglossus hippoglossus 

[Atlantic halibut], mir-451 and mir-9 were higher and lower, respectively in 3-year-old 

females compared to the males (Bizuayehu et al., 2012). Morgan and Bale (Morgan et 

al., 2012) demonstrated that seven microRNAs were sexually dimorphic in the whole 

brains of neonatal rats on postnatal [P] day 0 [day of birth]. Importantly, a single prenatal 

injection of aromatase inhibitor, which inhibits the conversion of testosterone to estradiol, 

feminized microRNA expression in the newborn males on P0. This suggests that some 

microRNAs in the brain affect or are affected by genes regulating the process of sexual 

differentiation. Furthermore, a number of hypothalamic microRNAs are expressed in a 

sexually dimorphic manner during development and are involved in mechanisms 

permitting or leading to puberty onset [e.g., lin28/let-7 family] (Sangiao-Alvarellos et al., 

2013). Finally, studies of post-mortem brains have identified mir-30b, which is estrogen 
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responsive, at significantly lower levels in females compared to males (Mellios et al., 

2012).   

 

Endocrine-disrupting chemicals (EDCs) 

Endocrine-disrupting chemicals (EDCs) are defined as “exogenous chemicals, or 

mixture of chemicals, that interferes with any aspect of hormone action” (Zoeller et al., 

2012). Many effects of EDCs are mediated by hormone receptors such as estrogen 

receptors, androgen receptors, thyroid receptors, and others, which are widely distributed 

in the brain, and thereby perturb endocrine and neurobiological systems. While the 

majority of EDCs tested have estrogenic properties, EDCs can also be anti-estrogenic, 

androgenic, anti-androgenic, or anti-thyroidogenic (Kelce et al., 1997; Schantz et al., 

2001; Zoeller et al., 2005). EDCs may also act via membrane steroid hormone receptors 

(Tokumoto et al., 2007) and thereby act via non-genomic mechanisms. EDCs have been 

also known to affect more global changes in steroid synthesis, metabolism, and 

degradation by influencing the expression of steroidogenic enzymes (Colciago et al., 

2009). Furthermore, EDCs can have neurotoxic effects on neuroendocrine physiology via 

modulation of neurotransmitter systems (Corey et al., 1996; Morse et al., 1996; Seegal et 

al., 2005). Beyond their effects on the reproductive and thyroid axis (Zoeller et al., 2005; 

Dickerson et al., 2007), EDCs can also affect hormone signaling in stress [hypothalamic-

pituitary-adrenal axis], growth [somatotropic axis], lactotrophic axis, and 

neurotransmitter signaling of neural and metabolic peptides (Schantz et al., 2001; Scarth, 

2006).  
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Polychlorinated biphenyls (PCBs) and their effects in the brain 

PCBs are a class of industrial chemicals and known EDCs that were mass-

produced in the United States for 40 years but eventually banned in the late-1970s for 

their toxic effects. Initially these chemicals were employed mostly in encapsulation of 

closed-system apparatuses such as transformers and capacitors (Carpenter, 1998). 

However, their stable chemical compositions and the ability of chemists to alter the 

structure-function relationship by varying their degree of chlorination led to the wide use 

of PCBs as industrial lubricants, adhesives, and sealants (Davila, 1993). Structurally, 

PCBs can be divided into two groups: coplanar and noncoplanar. The structural 

differences dictate functional effects of the PCBs, with the coplanar PCBs acting mostly 

at the steroid hormone receptors, and noncoplanar PCBs affecting neurotransmitter 

regulation (Corey et al., 1996; Morse et al., 1996; Schantz et al., 2001; Seegal et al., 

2005); however the distinction is not absolute. Some coplanar PCBs can also bind aryl 

hydrocarbon receptor, inducing dioxin-like effects (Denison et al., 2003). The degree of 

chlorination of the PCB compounds also dictates their metabolism rate and exposure 

routes. Heavily chlorinated PCBs have a longer half-life both in the environment and 

within the living organisms, while lightly chlorinated PCBs are readily metabolized and 

do not bioaccumulate (Platonow et al., 1975; Hermanson, 1989). Humans and wildlife 

are exposed to heavily chlorinated PCBs via ingestion of contaminated water and 

foodstuffs, primarily fish and meats, while lightly chlorinated PCBs are frequently 

aerosolized and thus exposures occur through inhalation or ingestion after concentration 

in plants.  
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This dissertation will focus on the PCB mixture Aroclor 1221 [A1221], a 

reconstituted mixture of lightly chlorinated PCB congeners that has a relatively short 

half-life, and is weakly estrogenic (Dickerson et al., 2007). This compound has been 

previously shown to have effects on rodent reproductive physiology and behavior 

following prenatal exposure. There are many other EDCs, such as organochlorine 

compounds, bisphenol A, and pesticides, which share some mechanistic features with 

PCBs, but are beyond the scope of this dissertation.   

 

PCBs and the developing hypothalamus 

Several studies have investigated the effects of gestational PCB exposure on brain 

sexual differentiation, highlighting the importance of the critical period of brain 

development. Gestational exposures to PCBs disrupted expression of steroid hormone 

receptors, aromatase activity, and neurotransmitter systems in age-, sex-, and PCB- 

specific manners. Estrogen and progesterone receptors are sensitive targets of gestational 

PCB exposures and may contribute to their effects on brain development. For example, 

gestational exposure to Aroclor 1254 [A1254] increased ERα [estrogen receptor α] and 

decreased PR [progesterone receptor] gene expression in the VMN of embryonic [E20] 

female rats (Lichtensteiger, 2003). Aromatase activity has also been investigated in many 

of the developmental PCB studies. Gestational exposure has been shown to downregulate 

aromatase protein expression and activity in the POA of neonatal [P0] male rats. That 

same study also demonstrated an effect of PCBs at the estrogen receptors, which 

contributed to a hormonal imbalance and resulted in altered brain development (Hany et 
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al., 1999). However, a separate study demonstrated an increase in aromatase gene 

expression at P21 in males exposed to PCBs during prenatal and postnatal development 

[from embryonic day 15 to postnatal day 21] (Colciago et al., 2009). Thus, when 

considering effects of gestational PCBs on gene and protein expression, age at analysis is 

important. The sex of the examined individual is equally important. Short-term 

gestational exposure to A1254 decreased AR protein expression in the hypothalamus of 

embryonic female but not male rats at E20 (Colciago et al., 2006). Other heavily 

chlorinated PCB congeners have also been shown to affect neurotransmitter regulation, 

including serotonergic, dopaminergic, and cholinergic systems at the gene and protein 

expression levels in a sex-specific manner (Corey et al., 1996; Morse et al., 1996; Seegal 

et al., 2005).  

Studies of prenatal exposure to A1221 demonstrated decreased numbers of ERα- 

positive cells in anteroventral perioventricular nucleus [AVPV] in adult female rats at 

postnatal [P] day 60. In the POA of the same females, gestational exposure to A1221 

decreased expression of androgen receptor, insulin-like growth factor 1, NMDA receptor 

subunit NR2b, and transforming growth factor β1, among others (Dickerson et al., 

2011b). In another study, A1221-treated adult females had increased expression of 

kisspeptin, ERα, and prodynorphin genes in the AVPV at P90 (Walker et al., 2014). As a 

whole, the studies in the Gore lab and others suggest that gestational exposures to PCBs 

disrupt the normal pattern of gene and protein expression in the developing brain.   
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PCB effects on adult behaviors  

PCB exposures during development have been associated with changes in adult 

behaviors related to social and sexual interactions. Gestational exposure to A1221 

disrupted sexual and social behavior in adult rats. This was manifested as an increase in 

time to mate in paced mating experiments in exposed females (Steinberg et al., 2007), 

and by decreased time spent nose-touching with same-sex gonadecomized males in 

sociability paradigm in exposed males (Reilly, under review). Exposure to other PCBs 

has shown similar effects on reproductive and social behaviors in rats. For instance, 

female rats that were gestationally exposed to PCBs showed depressed sexual receptivity 

(Wang et al., 2002) and altered timing of mating events (Chung et al., 2001). In another 

study, juvenile as well as adult social behaviors were altered in gestational PCB-exposed 

rats (Jolous-Jamshidi et al., 2010). Cummings et al demonstrated that females exposed to 

PCBs shortly after birth had decreased interest in males in a partner preference test 

(Cummings et al., 2008). Furthermore, maternal behaviors in rodents and play behaviors 

in humans and rodents were disrupted by gestational PCB exposures (Cummings et al., 

2005; Bell, communication). Additionally, PCBs affected cognitive development 

(Stewart et al., 2003), hyperactivity-associated behaviors (Neugebauer et al., 2015), and 

taste preference (Kaya et al., 2002). In summary, there is a robust literature for 

developmental effects of PCB exposures on a variety of behaviors, which may be due to 

PCB effects on developing neural networks. 
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PCBs and other EDC effects on microRNA expression 

The effects of EDCs on microRNAs is a burgeoning field that includes studies on 

several tissue and cell types, but there has been little research on the nervous system and 

the developing brain. Some work has been conducted in cell lines on the EDC bisphenol 

A [BPA]. In in vitro immortalized cytotrophoblast placental cell lines, BPA strongly 

induced mir-146a expression (Avissar-Whiting et al., 2010), and in human MCF-7 breast 

cancer cell line, BPA treatment altered the expression of multiple microRNAs, including 

mir-21 (Tilghman et al., 2012). Effects of another estrogenic EDC, nonylphenol, were 

investigated in mouse Sertoli cell lines in which a number of microRNAs were up- or 

down-regulated (Choi et al., 2011). In animal studies, oral BPA given to adult male rats 

for two months caused alterations in the transcriptional profiles of mRNA and microRNA 

expression within the penile shafts and resulted in a moderate corporal veno-occlusive 

erectile dysfunction (Kovanecz et al., 2014). 

Relatively little work has been published on EDCs and microRNAs in the brain, 

either in vitro or in vivo. Lesiak et al investigated the effects of PCB 95 on microRNA 

expression in primary dissociated rat hippocampal cultures and found that neurotoxic 

effects of PCB 95 were mediated via mir-132 upregulation, which in turn suppressed the 

translation of p250GAP, a negative regulator of synaptogenesis (Lesiak et al., 2014). Oral 

RDX, a common environmental contaminant, fed to adult mice for 28 days altered 

microRNA expression in the liver and brain (Zhang et al., 2009). These studies point to 

the susceptibility of microRNA signaling to endocrine disruption.  

 



 20 

Summary and goals of this dissertation 

Taken together, these data emphasize the importance of sexual dimorphisms in 

reproductive physiology and outline their sensitivity to endocrine disruption. A few 

global conclusions can be made. First, low-dose EDC exposures during the sensitive 

perinatal developmental periods underlie the field the developmental [fetal] basis of adult 

disease and will be the focus of this dissertation. This concept includes a potentially long 

latency from exposure to disease or dysfunction. Second, the examination of sexually 

dimorphic endpoints provides a sensitive framework for discerning the organizational 

effects of hormones and EDCs during development on microRNAs, genes, and adult 

behaviors in both sexes. Finally, and of particular relevance to humans, due to the reality 

of world-wide contamination, humans are primarily exposed to non-occupational low-

level mixtures of various chemicals. Thus, this dissertation will focus on gestational 

exposure to low-levels PCBs, and analyze sexually dimorphic endpoints that are related 

to brain sexual differentiation.  

In my dissertation, the effects of A1221 are investigated during the perinatal 

period when levels of endogenous hormones vary precipitously and are sex-specific, and 

the developing fetus exhibits heightened sensitivity to even slight changes in the 

hormonal milieu. Therefore, introduction of exogenous hormone mimics such as A1221 

allows for the investigation of perturbation of hormone-dependent brain sexual 

differentiation and its influence on permanent organizational effects on the developing 

neuroendocrine system, affecting physiology and behavior in adulthood. 
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Chapter 2 examines the effects of sex and age on the expression of hormone-

sensitive hypothalamic microRNAs during postnatal development and investigates the 

effects of endocrine disruption on microRNA expression. This work is the first 

developmental profile of hormone-sensitive microRNAs in two hypothalamic nuclei, the 

medial preoptic nucleus and ventromedial nucleus of the hypothalamus. Additionally, to 

my knowledge, there are no published studies that have examined the effects of 

gestational EDCs on microRNA expression.  

Chapter 3 investigates the effects of gestational PCB exposure on sexually-

dimorphic adult behaviors and gene expression relevant brain nuclei. Two sexually 

dimorphic adult behaviors examined are the production of ultrasonic vocalizations and 

sociosexual preference behaviors. The focus of the molecular work in Chapter II is the 

examination of gene expression changes in two sexually dimorphic hypothalamic brain 

regions, the MPN and VMN, known for their involvement in reproductive physiology 

and behavior. Relationships between behaviors and gene expression are also determined.  

In summary, the effects of PCBs on the developing HPG axis range from 

disruptions of neural differentiation of sexually dimorphic brain regions, to alterations in 

gene and protein expression, steroidogenic enzymatic activity, serum hormone levels, to 

interference with adult reproductive behaviors. From the studies described herein, it can 

be concluded that the developing neuroendocrine system constitutes a sensitive target of 

endocrine disruption. This dissertation will provide novel insight into the mechanisms by 

which PCBs cause neuroendocrine dysfunction.   
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Chapter 2: Sexually dimorphic effects of gestational endocrine-

disrupting chemicals on microRNA expression in the developing rat 

hypothalamus 

 
Abstract 

MicroRNAs are small non-coding RNAs involved in post-transcriptional 

regulation of gene expression. This study had two goals: first, to examine expression of 

eight microRNAs in two hypothalamic regions for developmental change and possible 

sexual dimorphisms, and second, to investigate whether low-level gestational exposures 

to environmental endocrine-disrupting chemicals [EDCs] altered these expression 

patterns. Pregnant Sprague-Dawley rats were injected on gestational days 16 and 18 with 

vehicle [DMSO], estradiol benzoate [EB, 50 μg/kg], or a weakly estrogenic mixture of 

polychlorinated biphenyls [A1221, 1 mg/kg]. Pups were born and littermates were 

euthanized on postnatal days [P] 15, 30, 45, or 90. The medial preoptic nucleus [MPN] 

and ventromedial nucleus [VMN] of the hypothalamus were assayed for expression of 

selected microRNAs [let-7a, let-7b, mir-124a, mir-132, mir-145, mir-219, mir-7, mir-9]. 

MicroRNAs showed robust developmental changes in both regions, and most were 

sexually dimorphic in the MPN, but not the VMN. In the MPN, EDC effects on 

microRNA expression were sex and age-specific. In females, most microRNAs had 

higher expression levels in PCB- and EB-exposed animals compared to vehicle during 

the pubertal transition [P30]. In males, microRNA levels were lower in PCB- than 

vehicle-exposed groups in adulthood [P90]. There were fewer effects of treatment in the 
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VMN. In silico target prediction analysis was used to select mRNA targets of the affected 

microRNAs for gene expression analysis by qPCR [Ar, Pgr, Ppara, Igf1r, Grin2a, Clock, 

Lin28b, Lepr]. Modest effects of treatment were found but no clear relationship with 

microRNAs was identified.  In summary, hypothalamic microRNAs are sexually 

dimorphic and regulated by EDCs in a sex-, developmental age-, and brain region-

specific manner.  

 

Introduction 

During the period of brain sexual differentiation in gestation and early postnatal 

life, gonadal hormones organize the development of brain structures that govern sex-

typical physiology and behavior (Phoenix et al., 1959; Wallen, 2009). Exposure to 

exogenous hormones or endocrine-disrupting chemicals [EDCs] during this life stage 

results in structural and functional neurobiological changes (Diamanti-Kandarakis et al., 

2009). The underlying molecular pathways for these effects are varied, and can involve 

gene and protein expression, apoptosis, neurogenesis, and molecular epigenetic 

mechanisms such as DNA methylation and histone modifications (Dolinoy et al., 2007; 

Bredfeldt et al., 2010; Dickerson et al., 2011a; Dickerson et al., 2011b; Komada et al., 

2012).  

A recently identified player in brain sexual differentiation are microRNAs, a 

family of small regulatory noncoding RNAs that bind to the 3’-untranslated region of a 

target mRNA, causing mRNA translational repression and/or degradation (Filipowicz et 

al., 2005). The expression of some microRNAs is hormone-sensitive, and microRNAs, in 
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turn, influence the expression of genes involved in mediating hormone responses (Klinge, 

2009; Rao et al., 2013). Individual microRNAs are expressed in the nervous system in a 

region- and development-specific manner (Olsen et al., 2009; Ziats et al., 2014). Some, 

such as mir-124a and mir-9 are important in neurodevelopment (Conaco et al., 2006; Tan 

et al., 2012), and are highly expressed in the hypothalamus (e.g. mir-7, mir-132, mir-219) 

(Kocerha et al., 2009; Miller et al., 2012; Sakai et al., 2013). Furthermore, a number of 

hypothalamic microRNAs are expressed in a sexually-dimorphic manner during 

development [e.g., lin28/let-7 family] (Sangiao-Alvarellos et al., 2013). Although 

research on links between prenatal hormones on microRNA expression on the brain is 

limited, work on prenatal or maternal stress demonstrates effects on expression of a 

subset of these and other microRNAs (Morgan et al., 2011; Zucchi et al., 2013). 

The effects of prenatal EDCs on developmental expression of microRNAs have 

not been studied in the hypothalamus, but their effects have been shown in other tissues 

including mouse Sertoli cells (Choi et al., 2011), whole brains, and livers (Zhang et al., 

2009); rat penile shafts (Kovanecz et al., 2014) and hippocampal cultures (Lesiak et al., 

2014); and human breast carcinoma (Tilghman et al., 2012; Teng et al., 2013) and 

placental cell lines (Avissar-Whiting et al., 2010). In the current study, we addressed 

whether a class of prenatal EDCs affect the expression of microRNAs during brain sexual 

differentiation following prenatal exposure of rats to A1221, a mixture of polychlorinated 

biphenyls [PCBs] that has previously been shown to perturb expression of sexually 

dimorphic genes in the brain and cause reproductive and behavioral phenotypic changes 

in adulthood (Steinberg et al., 2007; Steinberg et al., 2008; Dickerson et al., 2011a; 
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Dickerson et al., 2011b; Walker et al., 2013; Walker et al., 2014). We also assayed 

several mRNA targets of the microRNAs. Work was conducted on two sexually-

dimorphic, hormone-sensitive hypothalamic regions involved in reproductive physiology 

and behavior (Malsbury et al., 1977; Mathews et al., 1977; Clark et al., 1981; Hoshina et 

al., 1994; Kato et al., 2000; Hull et al., 2006), the medial preoptic nucleus [MPN] and the 

ventromedial nucleus [VMN].  

 

Materials and methods 

Animals and treatments 

All protocols were performed in accordance with the guidelines from the National 

Institute of Health Guide for the Care and Use of Laboratory Animals and approved by 

the Institutional Animal Care and Use Committee at the University of Texas at Austin. 

Brain regions were collected from rats used for a published study on effects of EDCs on 

gene expression in other hypothalamic regions, and detailed husbandry is provided in that 

report (Walker et al., 2014). In brief, Sprague-Dawley dams and sires [Harlan, Houston, 

TX] were purchased, and provided low phytoestrogen Harlan Teklad 2019 Global Diet 

ad libidum for at least 2 weeks prior to mating. The first day of successful pregnancy was 

termed embryonic day [E] 0. At the beginning of the third trimester, corresponding to the 

onset of the period of hypothalamic sexual differentiation, on E16 and E18, the dams 

were injected intraperitoneally with one of three treatments: vehicle [100% 

dimethylsulfoxide [DMSO] Sigma number D4540; Sigma, St Louis, Missouri]; 50 μg/kg 

estradiol benzoate [EB; Sigma number E8515; or 1 mg/kg A1221 [AccuStandard, New 
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Haven, Connecticut, number C221N], all in 0.1 ml volume. The dosage, route, and timing 

of exposure were based on published work showing effects on reproductive function and 

gene expression in exposed rats (Steinberg et al., 2007; Steinberg et al., 2008; Dickerson 

et al., 2011a; Dickerson et al., 2011b; Walker et al., 2013; Walker et al., 2014).  

 

Brain tissue collection and storage 

On P15, P30, P45, and P90, one male and one female littermate were euthanized 

two - three hours before lights out by rapid decapitation. Trunk blood was collected, 

allowed to clot, and centrifuged to collect the serum for hormone assays. Body and organ 

weights were also measured at euthanasia. The brains were dissected and cut into one 

mm coronal sections using a rat brain matrix, and bilateral micropunches of MPN and 

VMN were collected using a Palkovits punch [0.98 mm in diameter] (Walker et al., 

2013). Post-pubertal females were monitored daily by vaginal smears and euthanized on 

proestrus. Ten animals per group were used for microRNA and mRNA gene expression 

studies. 

 

RNA isolation, preparation, and real-time PCR 

Total RNA was isolated from frozen MPN and VMN punches of individual male 

and female rats using a mirVana microRNA isolation kit according to the manufacturer’s 

protocols [catalog no. AM1560, Life Technologies, Carlsbad, CA]. All RNA samples 

were analyzed for quantity by Nanodrop spectrophotometry and run on the Bioanalyzer 
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2100 [catalog no. 5067-1511, Agilent Technologies, Santa Clara, CA] to assess RNA 

purity and integrity. Only RNA samples with the RIN of 8 or higher were used.  

Total RNA [200 ng total for mRNA, 10 ng for microRNA] was used to generate 

cDNA. Taqman MicroRNA Reverse Transcription kit [catalog no.4366596] with Taqman 

RT primers [catalog no. 4440886, Life Technologies] and high-capacity cDNA reverse 

transcription kit with RNase inhibitor [catalog no. 4374966, Life Technologies] were 

used for microRNA and mRNA, respectively, according to the manufacturer’s 

recommended protocols.  

For microRNA analysis, we selected eight specific microRNA assays based on 

evidence for their expression in the hypothalamus [let-7a, let-7b, mir-124a, mir-132, mir-

145, mir-219, mir-7, mir-9] (Cheng et al., 2007; Davis et al., 2012; Sakai et al., 2013). 

Due to the small amount of starting material, only biological replicates were used for 

analysis. Technical replicates were run prior to the experiment to validate each assay and 

intra-assay CV was determined to be <2%.  For these and other assays, a no-reverse 

transcription control was run to confirm the absence of genomic DNA contamination, and 

a positive control was run on each plate to control for inter-plate variability. Inter-plate 

variability was <4%.  

Messenger RNA targets were selected based on in silico predictions of gene 

targets for the microRNAs [see below] (Dickerson et al., 2011a; Dickerson et al., 2011b; 

Casati et al., 2013; Walker et al., 2013; Walker et al., 2014). We conducted real-time 

PCR analysis using Taqman primer and probe sets for subsets of 8 genes [Ar, Clock, 

Lepr, Lin28b, Ppara, Grin2a, Igf1r, Ar, Pgr] based on microRNA results by sex and 
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brain region. Samples were run in triplicate and any of the triplicates with a value of 1.5 

SD above the mean of that animal was removed, with up to 2 samples per gene removed. 

None of the triplicates had a coefficient of variation greater than 2%.  

 Real-time PCR for microRNA and mRNA analysis was carried out on an ABI 

ViiA7 using Applied Biosystems TaqMan Universal PCR Master Mix [catalog no. 

4324018, Life Technologies] and using the following run parameters: 95°C for 10 

minutes, 50 cycles of 95°C for 15 seconds, and 60°C for 1 minute.  

 

In silico analysis of combinatorial microRNA activity  

To determine the potential mRNA targets of the microRNAs that were affected by 

sex, treatment, or age, we used the prediction program ComiR, chosen for its 

combinatorial approach in gene target identification, to generate a list of mRNA targets 

for each region and sex (Coronnello et al., 2012; Coronnello et al., 2013). The selected 

genes were verified for the number of binding sites of the predicted microRNAs using 

Targetscan. The bioinformatic analysis was done across age in four groups: female MPN, 

male MPN, female VMN, and male VMN. The microRNA groups used for ComiR 

analysis were mir-145 and mir-7 in female MPN; mir-132, mir-219, mir-9, mir-145, let-

7a, and mir-124a in male MPN; let-7a, mir-124a, and mir-219 in female VMN; mir-124a 

in male VMN. DAVID was used to provide biological interpretation of the large gene 

lists generated by ComiR and annotate them by gene families and function (Huang da et 

al., 2009a; Huang da et al., 2009b). Putative targets were chosen for further analysis 

based on their known role in neuronal function and their algorithm score, as determined 
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by the computer modeling programs (Huang da et al., 2009a; Huang da et al., 2009b; 

Coronnello et al., 2012; Coronnello et al., 2013).  

 

Hormone assays 

Serum testosterone and estradiol levels in the same rats used herein have 

previously been measured, and assay characteristics and results were published 

previously (Walker et al., 2014). For the current study, hormone concentrations were 

used for correlation analysis with microRNA and mRNA levels in the MPN and VMN in 

bionetwork analyses.           

 

Statistics 

All microRNA and mRNA data [raw CT values] were normalized within sex to 

the median of the DMSO P15 group in an R statistical package for qPCR analysis which 

utilized a generalized linear mixed model with Poisson-lognormal errors and a Bayesian 

Marco Chain Monte Carlo sampling scheme (Matz et al., 2013). All data were normally 

distributed and homoscedastic. The statistical analysis was done using the multiple 

comparisons analysis of variance [MANOVA], which addresses the false discovery rates 

of multiple comparisons, to compare each endpoint [genes and microRNAs] using sex, 

age, and treatment as independent variables. The R package was run in naïve form, 

without specifying any control genes, and the statistical significance was set at P < 0.05. 

Post hoc analyses included t-test for sex effect and Tukey HSD for treatment effect and 

interactions. MicroRNA expression data were graphed as mean fold-change ± standard 
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error of the mean using DMSO female as a reference group. mRNA expression data were 

graphed as mean fold-change ± standard error of the mean using DMSO group within sex 

as a reference group. 

 

Bionetwork analysis  

To examine possible relationships among microRNAs, genes, and serum estradiol 

and testosterone levels, the latter from a companion paper already published on these rats 

(Walker et al. 2014) throughout development, the data were analyzed using a bootstrap 

technique, as previously reported (Walker et al., 2013; Walker et al., 2014).  

 

Results    

Effects of sex, age, and EDC treatment on microRNA expression in the MPN 

Effects of sex, age, treatment, and their interactions, on microRNA expression in 

the MPN were analyzed (Figure 2.1). Detailed statistics for mir-132, mir-219, mir-7, and 

mir-9 are presented in Table 2.1 and statistics for mir-145, let-7a, let-7b, and mir-124a 

are shown in Table 2.2. In the MPN, five microRNAs showed significant sex effects, 

with three higher in females than males [mir-219, mir-7 (both, p<0.05), mir-145 

(p<0.005)], and two higher in males than females [mir-9 (p<0.001) and let-7b (p<0.05)]. 

Significant age effects were found for six microRNAs, all of which increased with 

advancing age [mir-132, mir-219, mir-7, mir-145, let-7a, let-7b (all p<0.005)]. Mir-9 

expression decreased significantly with age (p<0.005). Only mir-124a showed no age-

related changes in the MPN.  
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The effects of prenatal treatment in the MPN were age- and sex-specific. A1221 

and EB females had significantly increased expression of six microRNAs and this was 

specific to one age, P30 [mir-219, mir-132, mir-7, mir-145, let-7a, and mir-124a (all 

p<0.005)]. Expression of mir-132 and mir-9 was increased by EB at P15 (both p<0.005), 

and mir-7 was decreased at P45 in the EB females. In the males, A1221 animals had 

decreased expression of 6 microRNAs, specifically at P90 [mir-132, mir-219, mir-9, mir-

145, let-7a, and mir-124a (all p<0.005)]. Mir-145 was decreased in A1221 males 

(p<0.005) and let-7b was increased (p<0.005) at P45.  EB males had decreased 

expression of mir-145 at P90 (p<0.005). EB males had increased expression of mir-219, 

mir-7, mir-9, and let-7b (all p<0.005) at P45.  

 

Effects of sex, age, and EDC treatment on microRNA expression in the VMN 

In the VMN, main effects of sex, age, treatment, and their interactions on 

microRNA expression were examined (Figure 2.2; detailed statistics for mir-132, mir-

219, mir-7, and mir-9 are presented in Table 2.3 and statistics for mir-145, let-7a, let-7b, 

and mir-124a are shown in Table 2.4). Only one sex difference was found, for mir-219 

(p<0.005), with expression higher in the females compared to males. All 8 microRNAs 

increased expression with advancing age in the VMN (p<0.005).  

The effects of prenatal treatment in the VMN were age- and sex-specific. In the 

A1221 females, mir-124a expression was increased at P15 (p<0.005), and let-7a 

expression was decreased at P90 (p<0.005). EB females had increased expression at P15 

of mir-219 (p<0.0005) and mir-124a (p<0.005). In the males, A1221 and EB rats had 
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increased expression at P30 of mir-9 and let-7b (both p<0.005), and decreased expression 

of mir-219 at P45 (p<0.0005). A1221 males also had decreased expression of mir-124a at 

P90 (p<0.005). 

 

In silico analysis of combinatorial microRNA activity  

In silico analysis was conducted separately for the female MPN, female VMN, 

male MPN, and male VMN, to identify mRNA targets. The microRNA groupings were: 

mir-132, mir-219, mir-9, mir-145, let-7a, and mir-124a in male MPN; mir-145 and mir-7 

in female MPN; let-7a, mir-124a, and mir-219 in female VMN; mir-124a in male VMN. 

To provide an example, the DAVID results in the males in the MPN are discussed. 

DAVID analysis of the combined male MPN target list from ComiR yielded 158 clusters, 

with 25 significantly enriched (score >1). Annotation clusters 1 and 2 (enrichment scores 

of 2.5) had the gene clusters that belonged to the nuclear-hormone receptor, ligand/DNA-

binding receptors families. The pathways included post-trascriptional silencing by small 

RNAs, nuclear receptor transcription pathway and nuclear receptors among the top six 

which highlighted the hormone regulatory function of chosen microRNA. The genes 

chosen for qPCR in each group are shown in Table 2.5.   

 

Effects of age and EDC treatment on mRNA expression in the MPN  

Because gene targets were different in males and females, analyses were 

conducted separately for each sex and region. In the female MPN, gene expression 

decreased with increasing developmental age for Grin2a and Igf1r (p<0.005 for both, 
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Figure 2.3A, 2.3B).  A main effect of treatment was also found for both genes, with 

decreased expression of Grin2a and Igf1r in the A1221-treated females compared to 

DMSO females (p<0.005). There were no treatment by age interactions. In the male MPN 

(Figure 2.3C, 2.3D, 2.3E), expression of Ar, Pgr, and Ppara decreased with 

developmental age (all p < 0.005). A main effect of treatment was found for Pgr and 

Ppara, with decreased expression in A1221 compared to DMSO males (both p < 0.005). 

A treatment by age interaction for A1221 was also found, with decreased expression of 

Ppara at P15 (p<0.005).  

 

Effects of age and EDC treatment on mRNA expression in the VMN  

Age and treatment effects on mRNA gene expression were found in the VMN 

(Figure 2.4; detailed statistics in Table 2.6). In the females (Figure 2.4A, 2.4B, 2.4C, 

2.4D), significant developmental increases were found for Lepr, Clock, and Ppara (all p 

< 0.005). Main effect of EB treatment were found, with increased gene expression of 

Clock in the female VMN (p<0.001). There were also treatment by age interactions in the 

female VMN for prenatal EB treatment, with increased expression at P45 of Lepr and  

Clock (both p < 0.005). In the males (Figure 2.4E, 2.4F), Ar expression increased with 

age (p<0.005) and Clock (p<0.005) decreased with age. Treatment by age interactions of 

prenatal A1221 and EB treatments were also found. Specifically, A1221 and EB males 

had decreased expression of Ar (p<0.0005), and Clock expression was decreased in 

A1221 males at P90 (p<0.05). 
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Bionetwork analysis of microRNAs, mRNAs, and hormones    

Bionetwork analysis was conducted using Pearson’s correlation coefficients to 

enable investigation into relationships among microRNAs, genes, and hormones, and to 

determine whether there were inverse relationships between microRNAs and their 

predicted mRNA targets. Only positive correlations were detected, with the correlation 

strength ranging from 0.5 to 1 (Figures 2.5, 2.6). The networks were examined within 

each region, and the numbers of identical (same as vehicle) and novel (different from 

vehicle) correlations were counted in A1221 and EB networks. In the females, there were 

few differences in correlations with treatment in either brain region (Figure 2.5). For 

example, in the female MPN, mir-132 and mir-145, mir-124a and let-7b, and mir-9 and 

let-7a, were significantly correlated in all three treatment groups. In the female VMN, 

mir-132 and mir-219, mir-132 and mir-7, and others, showed similar correlations across 

the different treatment networks. By contrast, males showed more differences between 

networks with treatment (Figure 2.6). In the MPN, the A1221 and EB males had 

correlations not seen in the DMSO males, such as for mir-124a, mir-7, let-7b, Ar, Ppara, 

and Pgr. The male VMN networks did not differ substantially by treatment. Interestingly, 

serum estradiol concentrations were positively correlated with mir-219 in both the male 

MPN and VMN of all treatment groups, and estradiol and mir-132 were correlated in four 

of these six groups (Figure 2.6). In females (Figure 2.5) estradiol was also correlated 

with mir-219 in the three treatment groups in the MPN, and in the DMSO and A1221 

VMN. 
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Figures and tables  

 

Figure 2.1: Developmental profiles of mir-132, mir-219, mir-7, mir-9, mir-145, let-7a, 

let-7b and mir-124a are shown in the MPN of female and male rats. Main effects of age, 

sex, and treatment are shown. Post-hoc effects of treatment are indicated when the sex by 

treatment by age interaction was significant. *p < 0.05, A1221 vs. DMSO at the same 

age; +p < 0.05, EB vs. DMSO at the same age. Significant age effects (p < 0.05) are 

shown as: a, P15 vs P30; b, P15 vs P45; c, P15 vs P90; d, P30 vs P45; e, P30 vs P90. 

Abbreviation: Trt, Treatment.  
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Figure 2.2: Developmental profiles of mir-132, mir-219, mir-7, mir-9, mir-145, let-7a, 

let-7a, and mir-124a are shown in the VMN of male and female rats. Main effects of age, 

sex, and treatment are shown. Post-hoc effects of treatment are indicated when the sex by 

treatment by age interaction was significant. *p < 0.05, A1221 vs. DMSO at the same 

age; +p < 0.05 EB vs. DMSO at the same age. Significant age effects are shown as: a, 

P15 vs P30; b, P15 vs P45; c, P15 vs P90; e, P30 vs P90; f, P45 vs P90, p<0.05 for all. 

Abbreviations: Trt, Treatment.  
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Figure 2.3: mRNA expression is shown in the MPN of females (A-B) and males (C-E). 

Main effects of age and treatment are shown. Significant age effects (p < 0.05) are shown 

as: b, P15 vs P45; c, P15 vs P90; d, P30 vs P45; e, P30 vs P90; f, P45 vs P90. 

Abbreviations: Trt, Treatment.  
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Figure 2.4: mRNA expression is shown in the VMN of females (A-D) and males (E-F). 

Main effects of age and treatment are shown. Post-hoc effects of treatment are indicated 

when the treatment by age interaction was significant. *p < 0.05 A1221 vs. DMSO at the 

same age; +p < 0.05 EB vs. DMSO at the same age. Significant age effects (p < 0.05) are 

shown as: a, P15 vs P30; b, P15 vs P45; c, P15 vs P90; d, P30 vs P45; e, P30 vs P90; f, 

P45 vs P90. Abbreviations: Trt, Treatment.  
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Figure 2.5: Cytoscape analysis of microRNAs, genes, and hormones for the three 

treatment groups in the females, collapsed across development, in the MPN (A-C) and 

VMN (D-F). Abbreviations: E2, estradiol, T, testosterone.  
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Figure 2.6: Cytoscape analysis of microRNAs, genes, and hormones for the three 

treatment groups in the males, collapsed across development, in the MPN (A-C) and 

VMN (D-F). Abbreviations: E2, estradiol, T, testosterone. 
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Table 2.1. Statistical results of multiple comparisons ANOVA using sex, age, and 
treatment as independent variables for mir-132, mir-219, mir-7, and mir-9 microRNA 
analysis in the MPN. Significant post-hocs for treatment when main effect of treatment or 
sex X treatment X age interaction was significant are indicated in bold.  
microRNA Tissue Main 

effect/Interaction 
F P Degree 

of 
freedom 

Residual 
degree of 
freedom 

mir-132 MPN Sex 1.21 0.27 1 207 
  Treatment 11.07 0.001 2 207 
  Age 134.00 0.001 3 207 
  Sex X Treatment 15.20 0.001 2 207 
  Sex X Age 0.95 0.41 3 207 
  Treatment X Age 2.81 0.01 6 207 
  Sex X Treatment X 

Age 
4.36 0.0003 6 207 

mir-219 MPN Sex 5.28 0.02 1 207 
  Treatment 13.59 0.001 2 207 
  Age 323.05 0.001 3 207 
  Sex X Treatment 18.13 0.001 2 207 
  Sex X Age 3.04 0.02 3 207 
  Treatment X Age 13.95 0.001 6 207 
  Sex X Treatment X 

Age 
8.33 0.001 6 207 

mir-7 MPN Sex 4.56 0.03 1 207 
  Treatment 3.36 0.001 2 207 
  Age 30.61 0.001 3 207 
  Sex X Treatment 6.65 0.001 2 207 
  Sex X Age 11.27 0.001 3 207 
  Treatment X Age 9.54 0.001 6 207 
  Sex X Treatment X 

Age 
24.04 0.001 6 207 

mir-9 MPN Sex 11.65 0.0007 1 207 
  Treatment 7.43 0.0007 2 207 
  Age 28.62 0.001 3 207 
  Sex X Treatment 4.90 0.008 2 207 
  Sex X Age 3.42 0.01 3 207 
  Treatment X Age 5.15 0.001 6 207 
  Sex X Treatment X 

Age 
11.54 0.001 6 207 
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Table 2.2. Statistical results of multiple comparisons ANOVA using sex, age, and 
treatment as independent variables for mir-145, let-7a, let-7b, and mir-124a microRNA 
analysis in the MPN. Significant post-hocs for treatment when main effect of treatment or 
sex X treatment X age interaction was significant are indicated in bold.  
microRNA Tissue Main 

effect/Interaction 
F P Degree of 

freedom 
Residual 
degree of 
freedom 

mir-145 MPN Sex 9.18 0.002 1 207 
  Treatment 7.61 0.0006 2 207 
  Age 22.35 0.001 3 207 
  Sex X Treatment 21.84 0.001 2 207 
  Sex X Age 5.61 0.001 3 207 
  Treatment X Age 10.52 0.001 6 207 
  Sex X Treatment X 

Age 
11.41 0.001 6 207 

let-7a MPN Sex 2.30 0.1 1 207 
  Treatment 5.57 0.004 2 207 
  Age 17.70 0.001 3 207 
  Sex X Treatment 4.00 0.01 2 207 
  Sex X Age 1.08 0.3 3 207 
  Treatment X Age 5.61 0.001 6 207 
  Sex X Treatment X 

Age 
9.77 0.001 6 207 

let-7b MPN Sex 4.72 0.03 1 207 
  Treatment 10.23 0.001 2 207 
  Age 20.30 0.001 3 207 
  Sex X Treatment 0.85 0.4 2 207 
  Sex X Age 1.75 0.1 3 207 
  Treatment X Age 5.80 0.001 6 207 
  Sex X Treatment X 

Age 
6.70 0.001 6 207 

mir-124a MPN Sex 0.79 0.3 1 207 
  Treatment 2.50 0.08 2 207 
  Age 2.58 0.05 3 207 
  Sex X Treatment 9.06 0.0001 2 207 
  Sex X Age 3.80 0.01 3 207 
  Treatment X Age 5.62 0.001 6 207 
  Sex X Treatment X 

Age 
6.81 0.001 6 207 
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Table 2.3. Statistical results of multiple comparisons ANOVA using sex, age, and 
treatment as independent variables for mir-132, mir-219, mir-7, and mir-9 microRNA 
analysis in the VMN. Significant post-hocs for treatment when main effect of treatment 
or sex X treatment X age interaction was significant are indicated in bold.  
microRNA Tissue Main 

effect/Interaction 
F P Degree 

of 
freedom 

Residual 
degree of 
freedom 

mir-132 VMN Sex 0.06 0.8 1 216 
  Treatment 2.46 0.08 2 216 
  Age 297.66 0.001 3 216 
  Sex X Treatment 0.10 0.9 2 216 
  Sex X Age 4.11 0.007 3 216 
  Treatment X Age 2.85 0.01 6 216 
  Sex X Treatment X 

Age 
2.06 0.05 6 216 

mir-219 VMN Sex 31.43 0.001 1 216 
  Treatment 0.46 0.6 2 216 
  Age 689.63 0.001 3 216 
  Sex X Treatment 16.64 0.001 2 216 
  Sex X Age 3.80 0.01 3 216 
  Treatment X Age 9.93 0.001 6 216 
  Sex X Treatment X 

Age 
4.76 0.0001 6 216 

mir-7 VMN Sex 0.55 0.4 1 216 
  Treatment 3.73 0.02 2 216 
  Age 81.82 0.001 3 216 
  Sex X Treatment 0.12 0.8 2 216 
  Sex X Age 1.75 0.1 3 216 
  Treatment X Age 7.16 0.001 6 216 
  Sex X Treatment X 

Age 
0.36 0.8 6 216 

mir-9 VMN Sex 1.60 0.2 1 216 
  Treatment 14.97 0.001 2 216 
  Age 70.03 0.001 3 216 
  Sex X Treatment 0.42 0.6 2 216 
  Sex X Age 7.16 0.0001 3 216 
  Treatment X Age 3.28 0.004 6 216 
  Sex X Treatment X 

Age 
8.14 0.001 6 216 
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Table 2.4. Statistical results of multiple comparisons ANOVA using sex, age, and 
treatment as independent variables for mir-145, let-7a, let-7b, and mir-124a microRNA 
analysis in the VMN. Significant post-hocs for treatment when main effect of treatment 
or sex X treatment X age interaction was significant are indicated in bold. 
microRNA Tissue Main 

effect/Interaction 
F P Degree 

of 
freedom 

Residual 
degree of 
freedom 

mir-145 VMN Sex 0.11 0.7 1 216 
  Treatment 0.87 0.4 2 216 
  Age 85.02 0.001 3 216 
  Sex X Treatment 2.19 0.1 2 216 
  Sex X Age 2.98 0.03 3 216 
  Treatment X Age 2.98 0.007 6 216 
  Sex X Treatment X 

Age 
5.02 0.001 6 216 

let-7a VMN Sex 1.37 0.2 1 215 
  Treatment 3.06 0.04 2 215 
  Age 23.78 0.001 3 215 
  Sex X Treatment 4.18 0.01 2 215 
  Sex X Age 3.21 0.02 3 215 
  Treatment X Age 11.86 0.001 6 215 
  Sex X Treatment 

X Age 
5.78 0.001 6 215 

let-7b VMN Sex 1.42 0.2 1 216 
  Treatment 14.86 0.001 2 216 
  Age 69.74 0.001 3 216 
  Sex X Treatment 0.44 0.4 2 216 
  Sex X Age 7.43 0.001 3 216 
  Treatment X Age 3.30 0.003 6 216 
  Sex X Treatment 

X Age 
8.49 0.001 6 216 

mir-124a VMN Sex 0.79 0.3 1 216 
  Treatment 2.30 0.1 2 216 
  Age 22.43 0.001 3 216 
  Sex X Treatment 2.12 0.1 2 216 
  Sex X Age 9.80 0.001 3 216 
  Treatment X Age 4.44 0.0002 6 216 
  Sex X Treatment 

X Age 
6.49 0.001 6 216 
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Table 2.5. Genes chosen for mRNA expression analysis in the MPN and VMN.  
Gene ID Gene name Tissue Predicted Targeting 

microRNA (# of 
binding sites) 

Igf1r Insulin-like growth factor 1 
receptor 

Female MPN 
 

mir-145 (2); mir-7 (3) 
 

Grin2a Glutamate receptor, ionotropic, N-
methyl-D-aspartate 2A 

Female MPN 
 

mir-7 (4); mir-145 (3) 
 

Ar Androgen receptor Male MPN 
Male VMN 

mir-124a (1) 
 

Pgr Progesterone receptor Male MPN 
 

mir-9 (2); let-7a (2); 
mir-124 (1)  

Ppara Peroxisome proliferator-activated 
receptor alpha 

Female VMN 
Male MPN 
 

mir-124a (2); mir-9 (1); 
let-7a (1); mir-219 (1) 

Lin28b Lin-28 homolog B Female VMN 
 

let7a (4) 
 

Clock Clock gene Female VMN 
Male VMN 

mir-124a (1) 
 

Lepr Leptin receptor Female VMN 
 

mir-219 (1) 
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Table 2.6. Statistical results of multiple comparisons ANOVA using age and treatment as 
independent variables for mRNA analysis in the MPN and VMN. Significant post-hocs for 
treatment when main effect of treatment or treatment X age interaction was significant are 
indicated in bold. 
mRNA Tissue Sex Main 

effect/Interaction 
F P Degree 

of 
freedom 

Residual 
degree of 
freedom 

Grin2a MPN Female Treatment 7.29 0.001 2 102 
   Age 13.26 0.001 3 102 
   Treatment X Age 3.96 0.001 6 102 
Igf1r MPN Female Treatment 7.21 0.001 2 102 
   Age 14.09 0.001 3 102 
   Treatment X Age 3.57 0.002 6 102 
Ar MPN Male Treatment 2.40 0.09 2 105 
   Age 11.50 0.001 3 105 
   Treatment X Age 4.15 0.0008 6 105 
Pgr MPN Male Treatment 12.04 0.001 2 105 
   Age 9.88 0.001 3 105 
   Treatment X Age 4.15 0.0008 6 105 
Ppara MPN Male Treatment 8.56 0.0003 2 105 
   Age 31.18 0.001 3 105 
   Treatment X Age 6.11 0.001 6 105 
Clock VMN Female Treatment 7.80 0.0006 2 107 
   Age 17.87 0.001 3 107 
   Treatment X Age 7.56 0.001 6 107 
Lepr VMN Female Treatment 0.54 0.5 2 107 
   Age 354.81 0.001 3 107 
   Treatment X Age 5.36 0.001 6 107 
Lin28b VMN Female Treatment 1.14 0.3 2 107 
   Age 4.55 0.004 3 107 
   Treatment X Age 5.06 0.0001 6 107 
Ppara VMN Female Treatment 2.30 0.1 2 107 
   Age 27.08 0.001 3 107 
   Treatment X Age 5.11 0.0001 6 107 
Ar VMN Male Treatment 1.22 0.2 2 108 
   Age 183.22 0.001 3 108 
   Treatment X Age 4.86 0.0001 6 108 
Clock VMN Male Treatment 0.25 0.7 2 108 
   Age 10.42 0.001 3 108 
   Treatment X Age 2.82 0.01 6 108 
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Discussion  

In the current study we profiled the expression of eight microRNAs in the 

developing MPN and VMN of the hypothalamus, and determined effects of gestational 

exposures to PCBs on microRNA expression. We further related changes in microRNA 

expression to changes in target gene mRNA expression changes in the same animals. Our 

major findings were that many more of the selected microRNAs were sexually 

dimorphic, and affected by prenatal EDC treatment in the MPN than the VMN. 

Importantly, EDC-treated females showed up-regulation of microRNAs at P30, in the 

midst of pubertal development, whereas males were affected (down-regulated) at P90, in 

adulthood. Relatively few EDC effects were found on the mRNA targets of these 

microRNAs, the implications for which are discussed below. As a whole, the results add 

to knowledge about EDC effects on microRNA expression, and provide new information 

about sex differences and developmental change in the hypothalamus. 

 

MicroRNA expression in the MPN changes with postnatal development and is 

sexually dimorphic 

The most common finding of our study was a developmental increase in 

microRNA expression as animals progressed from the juvenile through the pubertal 

period and into adulthood. In the MPN, six microRNAs (mir-132, mir-219, mir-7, mir-

145, let-7a, and let-7b) exhibited this pattern. The lin28/let-7 family has previously been 

investigated in the preoptic area, for which the expression of let-7a, let-7b, mir-132, and 

mir-145 increased with postnatal development. Changes in their expression were 
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suggested to be involved in the mechanisms permitting or leading to puberty onset 

(Sangiao-Alvarellos et al., 2013), as Lin28 overexpression in mice resulted in delayed 

puberty and increased body size (Zhu et al., 2010). Another previous study showed that 

seven of the eight microRNAs of the let-7 family were highly expressed in hypothalamic 

arcuate and paraventricular nuclei of adult rats (Amar et al., 2012). Our finding that let-

7a, let-7b, mir-132 and mir-145 expression increase with age in the MPN is consistent 

with those reports (Sangiao-Alvarellos et al., 2013) and add greater regional specificity 

by our focus on the MPN, which is a small sub-region of the entire preoptic area.  

To our knowledge, this is the first report on developmental changes in mir-219 in 

the brain. Together with mir-132, mir-219 is thought to be involved in the regulation of 

the biological clock (Cheng et al., 2007), with recent reports implicating a role in early 

development (Hudish et al., 2013), oligodendrocyte differentiation (Dugas et al., 2010), 

and modulation of NMDA receptor-mediated effects (Kocerha et al., 2009). Interestingly, 

the mir-219 and mir-132 expression patterns were quite similar across development, and 

most of our bionetwork analyses showed a significant positive correlation between these 

two microRNAs. Furthermore, these two microRNAs also frequently correlated with 

serum estradiol levels, especially in males. A previous study comparing mir-219 and mir-

132 in the fetal, adult, and diseased hippocampus, showed similar expression profiles 

(Lukiw, 2007), and NMDAR activation downregulated mir-219 and mir-132 expression 

in the adult dentate gyrus in vivo (Wibrand et al., 2010). Therefore, we speculate that in 

the MPN, and possibly other regions, mir-132 and mir-219 are involved in a common 

signaling pathway.  
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A developmental decrease in mir-9 was observed for both sexes. It has been 

reported that mir-9 is involved in regulating neurogenesis and maturational events at 

earlier, fetal stages of brain development (Krichevsky et al., 2003; Kapsimali et al., 2007; 

Denli et al., 2009). For example, mir-9 expression was highest in the fetal hippocampus 

and much lower in adult tissue (Lukiw, 2007). Our results are consistent with that 

finding. 

Several microRNAs in the MPN had sexually dimorphic expression. Females had 

higher levels of expression of mir-219, mir-7, and mir-145 than males, an effect driven 

by differences at P30. Although we do not know what this may represent, females mature 

earlier than males and are farther along in pubertal development than males at this age. 

There were also sexual dimorphisms in expression of mir-9 and let-7b, with males having 

higher levels of expression than females at P45, an age when males have just begun to 

attain adult reproductive function and where serum testosterone concentrations are at 

their peak (Zanato et al., 1994). We suggest that changes in sexually dimorphic 

microRNAs may be involved in, or reflect, pubertal changes in the MPN, but further 

work is needed to get at causal relationships. 

 

MicroRNA expression in the MPN increased by A1221 and EB in P30 females, and 

decreased by A1221 in P90 males  

In the females, prenatal A1221 and EB treated rats had increased expression of 

mir-219, mir-132, mir-7, mir-145, let-7a, and mir-124a at P30. Similarities between 

A1221 and EB are consistent with A1221’s ability to act via estrogenic mechanisms 
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(Dickerson et al., 2007). Effects of estrogens on neural microRNA expression have 

primarily been investigated in adults (Rao et al., 2013). In the aging female brain, for 

example, estradiol treatment differentially altered microRNA levels in an age- and brain 

region-dependent manner (Rao et al., 2013). To our knowledge, there are no studies that 

examined the effect of prenatal estradiol on microRNA expression in hypothalamus; 

however adult exposure studies in zebrafish and rodents (Cohen et al., 2008; Rao et al., 

2013), in addition to in vitro reports on effects of estradiol on microRNA expression in 

breast cancer cell lines [reviewed in (Klinge, 2009)], underscore the sensitivity of 

microRNA expression to estradiol treatment.  

In the male MPN, expression of all eight microRNAs examined was decreased in 

prenatally treated A1221 males on P90, an effect not mimicked by EB. This suggests that 

the mechanism for this A1221 effect in males likely involves a pathway other than 

through estrogen receptors. A reason for the sex difference may be the already greater 

exposure of prenatal male than female brains to estradiol (Forest, 1975; Roselli et al., 

1985), such that the addition of low-levels of exogenous EB had little influence in males 

compared to females. A1221 is weakly estrogenic but also has been shown to be anti-

androgenic at low doses (Bonefeld-Jorgensen et al., 2001; Portigal et al., 2002) and the 

decrease in microRNA expression observed in A1221 males may be caused by an 

antagonistic effect on the androgen receptor. 

The finding that prenatal EDC treatment effects are manifested at only a subset of 

developmental ages is consistent with our previously published study on these same rats, 

in which we measured mRNA expression in the anteroventral periventricular nucleus 
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(AVPV) and arcuate nucleus (ARC) (Walker et al., 2014). Results from that study 

showed individual postnatal gene expression profiles that were often affected at one or 

two ages, but not all ages, in prenatally exposed individuals. In other words, the age of 

analysis of EDC effects is critically important in determining the outcome. This is not 

surprising, as the profiles of different genes and proteins in the brain undergo dynamic 

change throughout postnatal development and may continue to change through aging 

(Kermath et al., 2014). 

 

MicroRNA expression in the VMN changes with postnatal development but have 

few sex differences or EDC effects  

In the VMN, all of the microRNAs studied increased their expression with age in 

both sexes. Our results for mir-132, mir-7, mir-145, let-7a, and let-7b are consistent with 

recent studies on microRNA expression in the medial basal hypothalamus (Sangiao-

Alvarellos et al., 2013). Mir-9, on the contrary, decreased during postnatal development 

in the medial basal hypothalamus (MBH) (Sangiao-Alvarellos et al., 2013), a result that 

may be explained by our VMN punch being a small sub-region within the entire MBH in 

which gene expression levels differ from those in neighboring regions.  

There were relatively few sex differences or effects of EDCs on microRNA 

expression in the VMN. In the females, there were modest changes in let-7a, mir-124a, 

and mir-219 in response to the EDCs that were developmental age-specific. In the male 

VMN, similarly to the male MPN, A1221 decreased the expression of mir-124a. To our 
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knowledge, there are no other EDC studies examining microRNA expression in the 

VMN.  

 

mRNA expression of targets of selected microRNAs 

We examined the expression levels of mRNAs that were selected based on the 

microRNA results. In the MPN, few EDC effects were found, but there were several 

changes with age. In the female MPN, Igf1r and Grin2a decreased expression with 

advancing developmental age. Consistent with that result, we reported that Igf1r mRNA 

decreased postnatally from P1 through P60 in the whole preoptic area (POA) of 

developing male and female rats (Walker et al., 2012). However that same study showed 

a small developmental age-related increase in Grin2a, with disparate results from the 

current study presumably due to differences in the dissection size from the previous 

(whole POA) and current (MPN) work. In our males, expression of Ar, Pgr, and Ppara 

decreased across development. These results were surprising, as the expression of Ar in 

the MPN was reported to increase with age in male hamsters during puberty (Meek et al., 

1997), and in our earlier rat studies, Ar as well as Pgr expression underwent significant 

postnatal developmental increases in the whole POA (Walker et al., 2009; Walker et al., 

2012). We are unaware of any reports on Ppara expression in the developing MPN. 

Results in the VMN also indicated few gene expression changes, but there were 

several age effects. In females, an age-related increase in expression of Lepr, Ppara, and 

Clock was detected. These genes have not been previously examined in the postnatal 

developing VMN, to our knowledge. In the male VMN, Ar increased with age, consistent 
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with other work in whole MBH (Walker et al., 2012), and Clock expression decreased 

with age. As the only mRNA measured in the VMN of both sexes, Clock expression had 

opposite developmental patterns (increase in females, decrease in males).  

Interestingly, for all of the mRNA results in both regions, we did not see a 

predicted inverse relationship with the microRNA expression. In fact, our network 

analysis revealed only positive correlations among mRNAs, microRNAs, and hormones. 

The lack of such a finding is attributable to a number of possibilities. First, we were only 

able to measure a small number of microRNAs and their mRNA targets. Other 

microRNAs not measured, and their combinations, may have a stronger association with 

mRNAs, and vice versa. Second, there are other molecular mechanisms for the regulation 

of gene expression that include DNA methylation, histone modifications, transcription 

factors, and post-transcriptional processes, that were not explored in the current study, 

but which contribute to the absolute expression of any gene. Finally, we have not looked 

at protein expression, thus changes in microRNA expression might affect protein 

translation.  

 

Conclusions and implications 

Several global conclusions can be drawn for the microRNAs and mRNAs 

measured herein. First, while both the MPN and VMN are sexually dimorphic in 

expression of various genes and proteins (Herbison et al., 1995; Cao et al., 2011), of the 

microRNAs measured here, expression was sexually dimorphic in the MPN, but not the 

VMN. Second, the PCB mixture A1221 affected microRNA expression in the MPN, and 
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to a lesser degree, in the VMN, in a region-, sex-, and age-specific manner. This finding 

indicates the importance of analyzing endpoints in both sexes and at multiple ages during 

postnatal development. Third, few treatment changes in the target mRNA expression 

were found, suggesting that mechanisms of action other than the selected subset of 

microRNAs are involved in regulation of their overall expression levels. Sex differences 

in microRNA expression have become an area of investigation for sex-biased 

neurobiological diseases such as autism, schizophrenia, and stroke (Guan et al., 2014; 

Mundalil Vasu et al., 2014; Selvamani et al., 2014). Furthermore, an increase in EDC 

exposures has been linked to playing a role in the rise in these multifactorial disorders 

(Brown, 2009; Melzer et al., 2012; Kalkbrenner et al., 2014). While it is premature to 

draw any strong inferences from these correlations, further research on connections 

among EDCs, microRNAs, and neurobehavioral outcomes is warranted.  
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Chapter 3: Sexually dimorphic effects of gestational endocrine-

disrupting chemicals on adult behaviors and mRNA expression 

 

Abstract 

Prenatal endocrine-disrupting chemicals [EDCs] exposures during critical periods 

of development may influence reproductive behaviors and the underlying neural 

architecture later in adulthood. This study examined effects of low-level gestational 

exposures to environmental EDCs on adult sociosexual behaviors, numbers and spectral 

characteristics of ultrasonic vocalizations [USVs], and gene expression changes in two 

hypothalamic nuclei. Pregnant Sprague-Dawley rats were injected on gestational days 16 

and 18 with vehicle [DMSO], estradiol benzoate [EB, 50 ug/kg], or a weakly estrogenic 

mixture of polychlorinated biphenyls [A1221, 1 mg/kg or 0.5 mg/kg]. Littermates were 

behaviorally characterized on P60. After the behavioral testing was completed, the 

animals were euthanized on P90. The medial preoptic nucleus [MPN] and ventromedial 

nucleus [VMN] of the hypothalamus, selected for their roles in reproductive function and 

behaviors, were microdissected and assayed for expression of 48 hypothalamic genes. 

The number and bandwidth of ultrasonic vocalizations were sexually dimorphic and 

sensitive to prenatal 0.5mg/kg A1221 treatment. Principle component analysis identified 

five sexually dimorphic USV measures that comprised the feminization score, and was 

used to accurately predict sex effects in the USV experiment. Females, but not males, 

showed the sociosexual preference for hormone-primed opposite-sex conspecific. 

Treatment with EB, 0.5mg/kg A1221 or 1mg/kg A1221 decreased nose-touching in 
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males [salient measure of direct social contact]. In the MPN, steroid hormone receptors 

and Kiss1 gene expression was increased in 0.5mg/kg A1221 females, while in the VMN, 

PCB effects were sex- and treatment-specific on a subset of neuroendocrine genes [Lepr, 

Foxp2, Esr1, Drd1a, Avpr1a, Crh, Oxt]. Bionetwork analysis showed the 0.5mg/kg 

A1221 group as the most different from DMSO, and, when examined for USV-associated 

behavioral measures, showed a robust increase in the number of correlations and network 

complexity. In summary, adult behaviors and selected hypothalamic genes were affected 

by prenatal EDCs, with 0.5mg/kg A1221 groups showing the most changes.  

 

Introduction 

Heightened sensitivity to circulating gonadal hormones during late gestation 

could sculpt the developing brain into male- or female-typical patterns. Exposure to 

environmental endocrine-disrupting chemicals [EDCs] during this period can change the 

neuroendocrine substrates and result in impaired metabolic, reproductive, neurochemical, 

and hormonal function in adulthood (Steinberg et al., 2007; Dickerson et al., 2011a; 

Dickerson et al., 2011b; Walker et al., 2013; Leon-Olea et al., 2014; Walker et al., 2014). 

A discernable consequence of endocrine disruption of the developing brain is the 

perturbation of adult behaviors. Published data on many EDCs, including polychlorinated 

biphenyls (PCBs), bisphenol A (BPA), and vinclozolin, show effects on social and 

sociosexual behavior in a sex and treatment-specific manner (Colbert et al., 2005; Ogi et 

al., 2013; Reilly et al., under review). Exposure to the single PCB congener 77 

diminishes partner preference in female rats for a male over a female stimulus animal 
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(Cummings et al., 2005). Aroclor 1221 (A1221), a more complex mixture of lightly 

chlorinated PCBs used in the current study, disrupts paced mating behavior in female rats 

(Steinberg et al., 2007) and same-sex social interactions in male rats (Reilly et al., under 

review). BPA exposures in mice decrease social motivational behavior in group setting in 

females, but increase it in males (Ogi et al., 2013), resulting in decreased preference to 

mate with exposed males (Jasarevic et al., 2011), and masculinized play behaviors in 

treated females (Dessi-Fulgheri et al., 2002). Prenatal treatment with anti-androgen 

vinclozolin increases play behaviors, but reduces copulatory behaviors in male rats 

(Colbert et al., 2005). Interestingly, environmentally low doses of 17alpha-ethinylestadiol 

also disrupt appetitive components of sexual behavior that influence the rate of 

copulation (Della Seta et al. 2008).  

We hypothesized that low doses of estrogenic A1221 would similarly disrupt 

affiliative components of opposite-sex interactions. The first test examined the number 

and quality of ultrasonic vocalizations produced after a period of interaction with the 

opposite-sex animal. A second behavioral test investigated sociosexual preference 

behaviors, namely whether the rats preferred to spend time with a hormone-implanted 

opposite-sex rat or a hormone-deprived opposite-sex animal. Finally, we measured 

hypothalamic gene expression in two sexually-dimorphic, hormone-sensitive 

hypothalamic nuclei, medial preoptic nucleus (MPN) and ventromedial nucleus (VMN), 

known to be involved in neuroendocrine control of social and sociosexual behaviors 

(Mathews et al., 1977; Clark et al., 1981; Malsbury et al., 1977; Hull et al., 2006; 

Hoshina et al., 1994, Kato et al., 2000).  
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Materials and methods 

Experimental animals  

All animal protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) at University of Texas at Austin, permit number 201003712. Virgin 

female (n=40) and male Sprague-Dawley rats (n=15), two-three months of age, were 

purchased from Harlan Laboratories (Houston, TX). On arrival, animals were housed in 

same-sex groups, 2-3 animals per cage and provided low phytoestrogen Harlan-Teklad 

Extruded 2019 Global Rodent diet and water ad libidum. Animals were acclimated to 

housing conditions: temperature (21 – 22 ° C) with a partially reversed 12:12 light cycle 

(lights on at 12:00 AM). After two weeks of regular estrous cycles, the female rats were 

impregnated by the males from the same cohort.  

In the ultrasonic vocalizations experiment, the stimulus rat for male subjects was 

an ovariectomized [OVX] + E2 female of confirmed receptivity. The stimulus rat for 

female subjects was a sexually experienced intact male [age-matched unrelated sire]. 

Two novel gonadectomized opposite-sex animals (one hormone-implanted [E2-females; 

T-males] and one without hormone) were used as stimulus animals in the sociosexual 

preference experiment. 

 

Treatments 

On embryonic days 16 and 18 (E1 = day of confirmed sperm presence in vaginal 

smear), dams were weighed and randomly assigned to one of four treatment groups and 

injected intraperitoneally with 0.1 ml of vehicle (3% dimethylsulfoxide [DMSO], catalog 
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no. D4540; Sigma-Aldrich, St. Louis, MO; diluted in sesame oil, catalog no.156621, MP 

Biomedicals, Carlsbad, CA), 50µg/kg estradiol benzoate [EB] (catalog no. E8515; 

Sigma-Aldrich) as a positive estrogenic control, 0.5 mg/kg A1221 or 1 mg/kg A1221 

(catalog no. C-221N, AccuStandard, New Haven, CT). The dosages are within the range 

of PCB body burdens found in humans (Mitchell et al., 2012). Previous work in the 

laboratory using these dosages has been shown to be non-toxic to dams nor cause fetal 

loss (Steinberg et al., 2007; Dickerson et al., 2011a; Dickerson et al., 2011b); Walker et 

al., 2013; Walker et al., 2014). On the day after birth (postnatal day [P] 1), litter 

composition was recorded and the litters culled to equal sex ratios of 4 males and 4 

females (8 pups) per litter. Pups were weaned at P21 and rehoused in same-sex dyads 

where they were monitored daily for signs of pubertal development: vaginal opening 

(VO) in females and preputial separation (PPS) in males (Steinberg et al., 2007; Walker 

et al., 2012). Following VO, daily vaginal smears were taken and cell cytology examined 

as a measure of estrous cyclicity in the females. 

 

Behavior testing 

Beginning at age P60, male and female littermates were tested in the ultrasonic 

vocalizations and sociosexual behavioral paradigms. Testing was conducted under dim 

red light, two - six hours after lights off, with experimental females tested on proestrus 

when confirmed sexually receptive. Due to the extensive behavioral testing and the large 

number of animals necessary for the study, the animals were tested in eight cohorts (of 10 

animals each) with treatments equally assigned to each cohort.  
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Ultrasonic vocalizations: Ultrasonic vocalizations experiment was a three-day 

test in a sound-attenuated Plexiglas apparatus with a chamber (23l X 29w X 40h cm) 

divided by a wire mesh, and a microphone (CM16/CMPA, Avisoft, Germany). Days 1 

and 2, the experimental rat was placed into the apparatus, and USVs recorded for 10 

minutes to establish a baseline. Day 3, the rat was returned to the chamber and an 

unfamiliar opposite-sex stimulus animal placed on the other side of the wire mesh. After 

five minutes, the stimulus animal was removed and USVs recorded from the 

experimental animal for 10 minutes (McGinnis et al., 2003). USVs were recorded with 

UltraSoundGate hardware and software and analyzed with Saslab Pro (all Avisoft). 

Recordings were played at 512 FFT-length and 75% overlap while whistle tracking 

element separation, optimized to testing conditions, was used to automatically detect and 

characterize calls. Number of flat and frequency-modulated 50kHz USVs were quantified 

for Days 1-3. Power spectrum measures (dominant frequency, entropy, bandwidth, 

internode interval, and duration) were quantified for Day 3 only. Frequency-modulated 

USVs were further characterized by the type of modulation into rises, trills, and steps 

(Wright et al., 2010).  

Principle component analysis: We performed a principle component analysis on 

data from vehicle-treated males and females to identify the attributes of vocalizations that 

loaded strongly on sex. Using JMP 11 statistical software, we scored sex as a dummy 

variable (-1 = male, +1 = female), and analyzed all of our measures of Day 3 

vocalizations. These measures included numbers of vocalizations in each category of 

USV, as well as bandwidth, entropy, and duration measures in each category. After 
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varimax rotation of the PCA results, we identified a single factor that loaded highly on 

sex; we interpret this factor as a measure of feminization/masculinization. We used the 

factor loadings to create a composite score that could be used to investigate the effects of 

our treatments on the sex-typical patterns of vocalization.  

We calculated the feminization/masculinization PCA score for all animals (all 

treatments and sexes) by converting each of the variables that loaded highly onto sex into 

a Z-score, then weighting each of the variables by its loading onto the sex-specific factor 

identified in the PCA. For simplicity, we included only those variables with a factor 

loading of magnitude greater than 0.30. The formula for computing the composite score 

was: PCA score = 0.32 x number of flat calls Z score - 0.34 x duration of rises Z score + 

0.47 x duration of steps Z score + 0.46 x bandwidth of steps Z score + 0.42 x bandwidth 

of trills Z score.  To confirm that this score was sexually dimorphic, we first performed a 

one-way ANOVA for effects of sex on the score, as well as on its component variables. 

Lastly, we calculated a PCA score for all individuals in our study, and used a two-way 

ANOVA to calculate the effects of sex, treatment, and sex-by-treatment interactions.  

Sociosexual preference behavior: The sociosexual behavior test used a Stoelting 

Any-Maze three-chamber plexiglas apparatus (100l X 100w X 34.5h cm total size), with 

restraint cages containing the stimulus animals placed in opposite corners of the side 

chambers (Moy et al., 2004; Crews et al., 2012). The test took place immediately after 

USV testing on Day 3 was completed. The experimental animal was habituated in the 

center compartment for five minutes with the side chamber doors closed. After 

habituation, the doors were opened, and the experimental animal allowed to explore the 
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whole arena for 10 minutes. Any-Maze software quantified distance travelled, average 

speed, time standing still, and time spent near each stimulus animals. Other behaviors 

(time at plexiglas, time spent investigating stimulus animals enclosure, rearing, 

grooming, and nose touching) were manually scored by a trained observer blind to 

treatment.  

 

Tissue collection and storage 

Testing was completed by P90 and experimental animals were weighed and 

euthanized one – to - three hours before lights out via rapid decapitation. Trunk blood 

samples were collected, allowed to clot, and centrifuged to obtain serum samples. Brains 

were removed and cut into one mm sections; and one mm micropunches of MPN and 

VMN were collected using methods reported previously (Walker et al., 2013; Walker et 

al., 2014). Females exhibiting estrous cycles were euthanized on proestrus based on 

vaginal cytology. Tissues and organs were stored at -80°C until use.  

 

RNA isolation 

Total RNA was isolated from frozen MPN and VMN punches of behaviorally 

tested male and female rats using a mirVana miRNA isolation kit according to the 

manufacturer’s protocols (catalog no. AM1560, Life Technologies, Carlsbad, CA). All 

RNA samples were analyzed for quantity by Nanodrop spectrophotometry and run on 

Bioanalyzer 2100 nanodrop kit (catalog no. 5067-1511, Agilent Technologies, Santa 

Clara, CA) to assess RNA purity and integrity. Only RNA samples with the RIN of eight 
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or higher were used in subsequent experiments. Based on this criterion, five samples 

were excluded from the analysis in the MPN, and eight were excluded from the analysis 

in the VMN, resulting in a sample size of eight – to – ten animals per group.  No animals 

failed this criterion for both regions.  

 

cDNA synthesis and Taqman microfluidic real-time PCR cards  

Total RNA (200 ng total) was used to generate cDNA using high-capacity cDNA 

reverse transcription kit with RNase inhibitor (catalog no. 4374966, all Life 

Technologies) according to the manufacturer’s recommended protocols. For Taqman Loq 

Density Array (TLDA) analysis, custom-designed microfluidic 48-gene PCR cards (Life 

technologies) were used to analyze the chosen mRNAs. Real-time PCR was carried out 

on an ABI ViiA7 using Taqman universal master mix (catalog no. 4324018, Life 

Technologies) and the following run parameters: 95 °C for 10 minutes, 50 cycles of 95 

°C for 15 seconds, and 60°C for 1 minute. Relative expression was determined for each 

sample using the comparative cycle threshold (Ct) method (Pfaffl, 2001). The Cts were 

further calibrated to the median δ-cycle threshold of the DMSO females to determine the 

relative Ct value for each mRNA. 

  

Statistics  

All statistical analyses were conducted using R software. Initial statistical 

analyses using Analysis of variance (Terranova et al., 1993) were used to identify any 

potential cohort, litter, and sex effects within groups. ANOVA tests were also used to 
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compare the treatment groups. All data were normally distributed and homoscedastic. 

When appropriate, a repeated measures multiple comparisons MANOVA (which 

addresses the false discovery rate of multiple comparisons) was used to analyze 

behavioral measures between the lateral chambers in the Anymaze apparatus and the 

numbers of ultrasonic vocalizations on three days of USV experiment. Grubb’s test was 

used to exclude up to 2 outliers per group in the dataset.  Posthoc analyses included t-test 

for sex effect and Tukey HSD for treatment and interaction effects. All data are presented 

at mean ± standard error of the mean. Because genes and behavioral measures were 

specifically chosen based on an a priori hypothesis, we report statistical significance as P 

< 0.05 and trends as P < 0.1.  

 

Bionetwork analysis 

To examine possible relationships among behaviors, genes, and serum 

corticosterone levels (hormone data published in Reilly et al., under review), the data 

were analyzed using a bootstrap technique, as previously reported (Walker et al., 2013; 

Walker et al., 2014). The TLDA data for MPN and VMN were used to generate the 

networks for each region. The following behavioral data were affected by treatment and 

selected for network generation: USV numbers and bandwidth on Day 3, time spent near 

each stimulus animal, stimulus animal enclosure exploration, and nose touching. The 

sociosexual measures were presented as ratio of GDX+hormone measure divided by sum 

of GDX+hormone and GDX measures.  
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Results  

There were no effects of litter or cohort on any of the behavioral or gene 

expression measures examined.   

Ultrasonic vocalizations (USV): Females vocalized higher numbers of USVs 

than males: numbers of flat (F1, 476  = 18.7, p < 0.001), rise (F1, 480  = 4.7, p < 0.05), and 

step (F1, 477  = 10.5, p<0.005) USVs, but not trill USVs, were significant for the main 

effect of sex. Number of calls increased across the three-day trial and were significantly 

higher for all call categories on Day 3 compared to Days 1 or 2 (females: flats: F2, 148  = 

39.2; rises: F2, 152  = 37.5; steps: F2, 151  = 52.7; trills: F2, 148  = 34.2; males: flats: day, F2, 

144  = 107.7; rises: F2, 145  = 85.5; steps: F2, 149  = 99.6; trills: F2, 147  = 58.2, all p < 0.001).  

A main effect of prenatal treatment was found, with the 0.5 mg/kg A1221 groups having 

increased numbers of rise calls in females (F3, 79  = 5.6, p < 0.005) and males (F3, 71  = 9.4, 

p < 0.0005) compared to their DMSO counterparts. In males, the 0.5 mg/kg A1221 group 

also had increased numbers of step calls (F3, 75  = 8.0, p < 0.001). Furthermore, the 

treatment x day interaction was significant with the increase in the numbers of USVs 

produced by 0.5 mg/kg A1221-treated rats observed on day 3 only for numbers of rises 

(F6, 152  = 2.8), steps (F6, 151  = 2.8, both p < 0.05) and trills (F6, 148  = 3.88, p < 0.005) in 

females and numbers of rises (F6, 145  = 4.95) and steps (F6, 149  = 5.05, both p < 0.0005) in 

the males (Figure 3.1A-H).  

Power spectrum analysis revealed bandwidth of the flat, rise, step, and trill 

USVs significant for the main effect of sex (flats, F1, 78  = 5.5; rises, F1, 72  = 5.0, both p < 

0.05; steps, F1, 75  = 12.2; trills, F1, 70  = 12.9, both p < 0.001) where the females produced 
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calls with higher bandwidth compared to males. The entropy was also significant for the 

main effect of sex, with the females producing calls with higher entropy than males in 

rise (F 1, 74  = 8.7, p < 0.005), step (F1, 72 = 5.7, p < 0.05), and trill (F1, 73  = 7.1, p < 0.01), 

but not flat USVs. Main effect of prenatal EB and 1 mg/kg A1221 treatment increased 

bandwidth of male calls with EB increasing it for rise calls (F3, 34  = 3.9, p < 0.05), and 1 

mg/kg A1221 increasing it for trill calls (F3, 31  = 4.5, p < 0.01) (Figure 3.2A-H). There 

were no sex effects for duration, internode interval, and dominant frequency. In males, 

main effect of prenatal treatment with 0.5 mg/kg A1221 increased duration of flat calls 

(F3, 35  = 3.2, p < 0.05) (Figure 3.3A-L).   

Principle component analysis (PCA) of acoustic properties and USV 

numbers: There were 16 components total in the PCA analysis of acoustic properties and 

USV numbers. Sex loaded onto components 1 (score = 0.49) and 7 (score = 0.46) most 

strongly. To clarify the interpretation of factors, we performed a varimax rotation of the 

PCA analysis. After rotation, the factor loadings for 1 and 7 were (0.35) and (0.74), 

respectively. Because factor 7 loaded most strongly on sex, we interpret it as a measure 

of feminization/masculinization in USV. We identified five measures in factor 7 with a 

factor loading of magnitude > 0.30: trill bandwidth (0.42), step bandwidth (0.46), step 

duration (0.47), rise duration (-0.34), and numbers of flat USVs (0.32). These measures 

were analyzed in DMSO animals for the effects of sex. Consistent with the signs of their 

factor loadings, four measures (trill bandwidth, step bandwidth, step duration, and 

numbers of flat calls) were higher in DMSO females than DMSO males, while duration 
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of rise calls was higher in DMSO males than DMSO females (all, p < 0.01) (Figure 

3.4A-D).  

A PCA score based on our factor loadings was calculated for all animals as 

described in the methods, and then analyzed by two-way ANOVA for effects of sex, 

treatment, and their interactions. We found a main effect of sex (F1, 19 = 14.28, p < 0.01), 

but no treatment or treatment x sex interactions (Figure 3.4E).     

Sociosexual preference behavior: The main effect of sex was significant in 

several sociosexual behavior measures. Females, but not males, spent more time near the 

hormone primed stimulus animal (F1, 65  = 19.1, p < 0.0005), investigating its enclosure 

(F1, 64  = 13.7, p < 0.0005), and nose-touching with it (F1, 63  = 8.5, p < 0.005) compared to 

the castrated animal. Males took longer time to start investigating the stimulus animal 

enclosure (F1, 228  = 19.8, p < 0.0005). Additionally, the main effect of treatment was 

significant for males treated with prenatal PCBs (1 mg/kg or 0.5 mg/kg A1221) or EB 

who spent less time nose-touching with stimulus animals, irrespective of the stimulus 

animal hormone status (F3, 61  = 7.6, p < 0.0005) (Figure 3.5A-D). Distance travelled (F1, 

132  = 89.7, p < 0.0005), average speed (F1, 132  = 90.2, p < 0.0005), and time at plexiglas 

(F1, 132  = 44.0, p < 0.0005) were significant for the main effect of sex with females 

engaging more time in these activities than males. Compared to females, males spent 

more time standing still (F1, 129  = 35.2, p < 0.0005) and grooming (F1, 127  = 9.3, p < 

0.005). Main effect of treatment was significant for the 1 mg/kg A1221 males who spent 

less time rearing than DMSO males (F3, 60  = 3.2, p < 0.05) (Figure 3.6A-F).  
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Medial preoptic nucleus TLDA results: In females, main effect of prenatal 

treatment with 0.5 mg/kg A1221 increased the expression of Ar (F3, 35  = 6.7, p < 0.05), 

Esr1 (F3, 36  = 7.4, p < 0.001), Esr2 (F3, 35  = 5.6, p < 0.005), and Kiss1 (F3, 29  = 6.6, p < 

0.005). Ar expression was also increased by prenatal 1 mg/kg A1221 treatment in females 

(F3, 35  = 6.7, p < 0.05). There were no treatment effects in the males compared to the 

DMSO. Esr1 (F1, 73  = 4.4, p < 0.05) was significant for the main effect of sex in the MPN 

with higher levels of expression in the females compared to the males (Figure 3.7A-D). 

The following genes were also significant for the main effect of sex in the MPN, and had 

higher levels of expression in females compared to males: Drd2 (F1, 72  = 4.9, p < 0.05), 

Crh (F1, 71  = 15.2, p < 0.0005), Egr1 (F1, 68  = 24.6, p < 0.0005), Igf1 (F1, 72  = 7.0, p < 

0.01), Igr1r (F1, 70  = 4.7, p < 0.05), and Per1 (F1, 71  = 6.9, p < 0.05). The genes Slc6a3 

(F1, 64  = 7.7, p < 0.01) and Oprd1 (F1, 69  = 10.0, p < 0.005) showed main effect of sex 

with higher levels of expression in males compared to females (Figure 3.8A-H).  

Ventromedial nucleus TLDA results: In females, the main effect of prenatal EB 

treatment increased expression of Esr1 (F3, 34  = 3.9, p < 0.05), while 0.5 mg/kg A1221 

decreased expression of Drd1a (F3, 37  = 4.9, p < 0.01), and 1 mg/kg A1221 increased 

expression of Avpr1a (F3, 38  = 3.6, p < 0.05). In males, the main effect of prenatal EB and 

0.5 mg/kg A1221 increased expression of Crh (F3, 32  = 3.8, p < 0.05), while 0.5 mg/kg 

A1221 increased the expression of Foxp2 (F3, 36  = 3.3, p < 0.05) and Lepr (F3, 36  = 4.9, p 

< 0.01); 1 mg/kg A1221 increased the expression of Oxt (F3, 34  = 4.1, p < 0.05). Esr1 

expression was significant for the main effect of sex in the VMN with higher levels of 

expression in the females compared to the males (Figure 3.9A-G). The following genes 
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were also significant for the main effect of sex in the VMN with higher levels of 

expression in females compared to males: Pgr (F1, 80  = 13.6, p < 0.0005), Drd3 (F1, 78  = 

8.1, p < 0.01), Oprk1 (F1, 78  = 11.7, p < 0.005), and Per2 (F1, 80  = 8.9, p < 0.005). The 

genes Grin2a (F1, 80  = 11.0, p < 0.005), Foxp2 (F1, 78  = 11.4, p < 0.005), Rapgef4 (F1, 80  = 

4.3, p < 0.05), and Shank1 (F1, 80  = 6.0, p < 0.05) were significant for the main effect of 

sex with higher levels of expression in males compared to females (Figure 3.10A-H).  

Bionetwork analysis: Bionetwork analysis was conducted using Pearson 

correlation coefficients to enable investigation into relationships among behaviors, 

hormones, and gene expression in the MPN. In the female MPN (Figure 3.11), all 

networks showed more positive than negative correlations, however the complexity of the 

networks (qualitative visual measure of network organization) and the identity of the 

correlated measures in DMSO and treated networks differed. Relative to DMSO, EB 

treatment resulted in visually more complex and organized networks with higher number 

of correlations, and 1mg/kg A1221 resulted in less organized networks, while 0.5mg/kg 

A1221 did not differ visually. Additionally, female EB networks showed a greater 

number of positive correlations between genes than DMSO and PCB-treated females.  

The effects of treatment on the identity of correlated measures were examined by 

comparing the correlations formed by bandwidth of rise calls. Bandwidth of flat, rise, 

step and trill USVs correlated with several interesting measures in the female MPN. 

While there are too many bandwidth correlations to discuss here, we will provide a 

detailed description of correlations formed by bandwidth of rise calls. In DMSO females, 

bandwidth of rise calls formed positive correlations with Avpr1a, Ar, Foxp2 gene 
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expression, in addition to positive correlations with the numbers of rise and step USVs, 

and negatively correlated with Avp and Oxt gene expression. In EB females, bandwidth 

of rise calls formed positive correalations with Oprd1, Esr2, Shank1, and negatively 

correlated with Lepr, Oxtr, and Oprk1. In 0.5mg/kg A1221 females, bandwidth of rise 

calls formed positive correlations with gene expression of the following genes in the 

MPN: Rapgef4, Oprd1, Oprl1, Fmr1, Grin2b, Grin1, Kiss1, Oxt, Oxtr, Crh, Ar, Nlgn3, 

Clock, Per2, Nr3c1, Slc6a3, Foxp1, and negatively correlated with Drd1a, Bdnf, and Th 

gene expression. In 1mg/kg A1221 females, bandwidth of rise calls formed one positive 

correlation with Th gene expression (Figure 3.11A-D).  

In the male MPN (Figure 3.12), 0.5mg/kg A1221 treatment, but not EB or 

1mg/kg A1221, affected network complexity and resulted in a more organized network 

with higher number of correlations, compared to DMSO. Despite this differential effect 

on network organization, all treatments affected the identity of correlated relationships.  

We will compare the effects of treatment on identity of correlated measures by 

comparing the correlations formed by bandwidth of rise calls. In DMSO males bandwidth 

of rise calls did not form any correlations. In EB males, bandwidth of rise calls formed 

positive correlations with Bdnf, Gper, Lepr, and Drd1a, and a negative correlation with 

Grin2b. In 0.5mg/kg A1221 males, bandwidth of rise calls formed positive correlations 

with bandwidth of flat calls and gene expression of Drd1a and negative correlations with 

Oprd1, Oprl1, Lepr, Drd2, Kiss1r, Clock, Per1, Nlgn3, Fmr1, and Nr3c1. In 1mg/kg 

A1221 males, bandwidth of rise calls formed a positive correlation with Igf1r and a 

negative correlation with Ar gene expression.  
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Bionetworks were also used to analyze the relationships among behaviors, 

hormones, and gene expression in the VMN. In the female VMN (Figure 3.13), the 

complexity of the networks were as follows: EB > DMSO > 0.5mg/kg A1221 > 1mg/kg 

A1221, where EB treatment resulted in more complex networks, with higher number of 

correlations, and 0.5mg/kg A1221 and 1mg/kg A1221 networks having fewer number of 

correlations, all compared to DMSO.  In the female VMN, bandwidth of rise calls was 

differentially affected in treated networks compared to DMSO, and illustrates an example 

of EDC effects on gene-behavior-hormone relationships. In DMSO females, bandwidth 

of rise calls formed positive correlations with numbers of rise and step USVs, and Oprd1, 

and formed negative correlations with Oprk1, Dbh, Drd1a, Foxp1, Crh, Egr1, Nlgn3, 

Fmr1, Igf1r, Clock, and Shank 1.  In EB females, the bandwidth of rise calls formed 

positive correlations with Oxt, Drd1a, Pgr, Esr2, Igf1, and Grin2a, and formed negative 

correlation with Oprm1. In 0.5mg/kg A1221 or 1mg/kg A1221 females, bandwidth of 

rise calls did not form any correlations.  

In the male VMN (Figure 3.14), treatment with EB or 0.5mg/kg A1221 resulted 

in visually more complex networks compared to DMSO, while 1mg/kg A1221 networks 

did not differ from DMSO. However, identity of the correlated relationships was affected 

by PCB treatment and differed depending on the treatment. In DMSO males, bandwidth 

of rise calls did not form any correlations, while in EB males bandwidth of rise calls 

correlated positively with Pgr expression and negatively with Per1 gene expression. In 

0.5mg/kg A1221 males, bandwidth of rise calls formed positive correlations with Ar, 

Esr1, Kiss1, Lepr, Per2, Per1, Arntl, Drd1a, Pgr, Grin2b, and Grin1, and a negative 
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correlation with Foxp2. In 1mg/kg A1221 males, bandwidth of rise calls formed negative 

correlations with Esr2, Arntl, and Th.  
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Figures  

 

Figure 3.1: Number of flat, rise, step, and trill ultrasonic vocalizations (USVs) in females 

(A-D) and males (E-H). Significant main effects of day, sex, and treatment are shown. 

Significant post-hocs for treatment are indicated when the treatment x day interaction was 

significant as *p < 0.05 0.5 mg/kg A1221 vs. DMSO on same day. Abbreviations: A1221 

(0.5), 0.5 mg/kg A1221; A1221 (1.0), 1 mg/kg A1221. 
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Figure 3.2: Bandwidth (A-D) and entropy (E-H) of flat, rise, step, and trill ultrasonic 

vocalizations (USVs) on Day 3 in males and females. Significant main effects of sex are 

shown. Significant post-hocs for treatment are indicated when the main effect of 

treatment within each sex was significant as +p < 0.05 1 mg/kg A1221 vs. DMSO; #p < 

0.05 EB vs. DMSO. Abbreviations: A1221 (0.5), 0.5 mg/kg A1221; A1221 (1.0), 1 

mg/kg A1221.  
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Figure 3.3: Duration (A-D), internode interval (E-H), and dominant frequency (I-L) of 

flat, rise, step, and trill ultrasonic vocalizations (USVs) on Day 3 in males and females. 

Significant post-hocs for treatment are indicated when the main effect of treatment within 

each sex was significant as *p < 0.05 0.5 mg/kg A1221 vs. DMSO. Abbreviations: 

A1221 (0.5), 0.5 mg/kg A1221; A1221 (1.0), 1 mg/kg A1221.  
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Figure 3.4: Sexually dimorphic USV measures that comprise the feminization score: 

bandwidth of trills and steps, duration of steps, number of flats, and duration of rises (A-

E). Feminization score is shown in F. Significant main effect of sex is shown for F as p-

value. Significant effects of sex are shown for A-E as *p<0.05 DMSO female vs. DMSO 

male. Abbreviations: A1221 (0.5), 0.5 mg/kg A1221; A1221 (1.0), 1 mg/kg A1221.  
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Figure 3.5: Sociosexual preference behaviors: time spent near stimulus animals, 

exploring their enclosures, and nose-touching with them (A-C). Latency to first 

exploration of stimulus animal enclosure is also shown (D). Significant main effects of 

sex and hormone status in females are shown. Significant post-hocs for treatment are 

indicated when the main effect of treatment was significant within each sex as *<0.05 0.5 

mg/kg A1221 vs. DMSO; #p < 0.05 EB vs. DMSO. Abbreviations: A1221 (0.5), 0.5 

mg/kg A1221; A1221 (1.0), 1 mg/kg A1221; GDX male, gonadectomized male; GDX+T 

male, gonadectomized male with testosterone replacement; OVX female, ovariectomized 

female; OVX+E2 female, ovariectomized female with estradiol replacement.   
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Figure 3.6: Sociosexual preference behaviors: distance travelled, average speed, time 

standing still, grooming, rearing, and time at Plexiglas (A-F). Significant main effects of 

sex are shown. Significant post-hocs for treatment are indicated when the main effect of 

treatment within each sex was significant as +p < 0.05 1 mg/kg A1221 vs. DMSO. 

Abbreviations: A1221 (0.5), 0.5 mg/kg A1221; A1221 (1.0), 1 mg/kg A1221.  
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Figure 3.7: Gene expression of androgen receptor [Ar], estrogen receptor α [Esr1], 

estrogen receptor β [Esr2], and kisspeptin [Kiss1] in MPN (A-D). Significant main 

effects of sex are shown. Significant post-hocs for treatment are indicated when the main 

effect of treatment within each sex was significant as *p < 0.05 0.5 mg/kg A1221 vs. 

DMSO; +p < 0.05 1 mg/kg A1221 vs. DMSO. Abbreviations: A1221 (0.5), 0.5mg/kg 

A1221; A1221 (1.0), 1mg/kg A1221.  
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Figure 3.8: Gene expression of sexually dimorphic genes dopamine receptor D2 [Drd2], 

corticotropin releasing hormone [Crh], early growth response 1 [Egr1], insulin-like 

growth factor 1 [Igf1], insulin-like growth factor 1 receptor [Igf1r], period circadian clock 

1 [Per1], dopamine transporter [Slc6a3], δ-opioid receptor [Oprd1] (A-H) in the MPN. 

Significant main effects of sex are shown. Abbreviations: A1221 (0.5), 0.5 mg/kg A1221; 

A1221 (1.0), 1 mg/kg A1221.  
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Figure 3.9: Gene expression of estrogen receptor α [Esr1], dopamine receptor D1 

[Drd1a], arginine vasopressin receptor 1a [Avpr1a], forkhead box protein P2 [Foxp2], 

corticotropin releasing hormone  [Crh], leptin receptor [Lepr], and oxytocin [Oxt] in 

VMN (A-G). Significant main effects of sex are shown. Significant post-hocs for 

treatment are indicated when the main effect of treatment within each sex was significant 

as *p < 0.05 0.5 mg/kg A1221 vs. DMSO; +p < 0.05 1 mg/kg A1221 vs. DMSO; #p < 

0.05 EB vs. DMSO. Abbreviations: A1221 (0.5), 0.5mg/kg A1221; A1221 (1.0), 1mg/kg 

A1221. 
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Figure 3.10: Gene expression of sexually dimorphic genes progesterone receptor [Pgr], 

dopamine receptor D3 [Drd3], k-opioid receptor [Oprk1], period circadian clock 2 

[Per2], ionotropic glutamate receptor NMDA 2A [Grin2a], forkhead box protein P2 

[Foxp2], Rap guanine nucleotide exchange factor 4 [Rapgef4], SH3 and multiple ankyrin 

repeat domains protein 1(Shank1) (A-H) in the VMN. Significant main effects of sex are 

shown. Abbreviations: A1221 (0.5), 0.5 mg/kg A1221; A1221 (1.0), 1 mg/kg A1221.  
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Figure 3.11: Cytoscape analysis of behaviors, genes, and serum corticosterone in the 

female MPN (A-D). Abbreviations: nose touching, time spent nose-touching with 

hormone-primed rat; investigating enclosure, time spent investigating hormone-primed 

animal enclosure; time near rat, time spent near hormone-primed rat; flat, number of flat 

USVs; rise, number of rise USVs; step, number of step USVs; trill, number of trill USVs; 

flat BW, bandwidth of flat USVS; rise BW, bandwidth of rise USVs; step BW, 

bandwidth of step USVs; trill USV, bandwidth of trill USVs; cort, corticosterone.  
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Figure 3.12: Cytoscape analysis of behaviors, genes, and serum corticosterone in the 

male MPN (A-D). Abbreviations: nose touching, time spent nose-touching with 

hormone-primed rat; investigating enclosure, time spent investigating hormone-primed 

animal enclosure; time near rat, time spent near the hormone-primed rat; flat, number of 

flat USVs; rise, number of rise USVs; step, number of step USVs; trill, number of trill 

USVs; flat BW, bandwidth of flat USVS; rise BW, bandwidth of rise USVs; step BW, 

bandwidth of step USVs; trill USV, bandwidth of trill USVs; cort, corticosterone.  
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Figure 3.13: Cytoscape analysis of behaviors, genes, and serum corticosterone in the 

female VMN (A-D). Abbreviations: nose touching, time spent nose-touching with 

hormone-primed rat; investigating enclosure, time spent investigating hormone-primed 

animal enclosure; time near rat, time spent near hormone-primed rat; flat, number of flat 

USVs; rise, number of rise USVs; step, number of step USVs; trill, number of trill USVs; 

flat BW, bandwidth of flat USVS; rise BW, bandwidth of rise USVs; step BW, 

bandwidth of step USVs; trill USV, bandwidth of trill USVs; cort, corticosterone.  
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Figure 3.14: Cytoscape analysis of behaviors, genes, and serum corticosterone in the 

male VMN (A-D). Abbreviations: nose touching, time spent nose-touching with 

hormone-primed rat; investigating enclosure, time spent investigating hormone-primed 

animal enclosure; time near rat, time spent near the hormone-primed rat; flat, number of 

flat USVs; rise, number of rise USVs; step, number of step USVs; trill, number of trill 

USVs; flat BW, bandwidth of flat USVS; rise BW, bandwidth of rise USVs; step BW, 

bandwidth of step USVs; trill USV, bandwidth of trill USVs; cort, corticosterone.  
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Discussion  

This study was first to report the effects of sex and prenatal PCB disruption on 

ultrasonic vocalizations in rats. A principle component analysis was used to identify 

sexually dimorphic USV measures. Additionally, sociosexual preference behaviors were 

analyzed in the same animals. The changes in neuroendocrine gene expression were 

examined in the behaviorally tested animals for sexual dimorphisms and effects of PCB 

exposures. Finally, a bionetwork analysis was conducted on behavioral and molecular 

endpoints to examine the PCB effects on gene-behavior-hormone relationships.   

 

Ultrasonic vocalizations were sexually dimorphic and sensitive to prenatal PCB 

disruption  

We found that numbers of flat, rise, and step, but not trill USVs were significant 

for the main effect of sex, with females having higher numbers of USVs than males. We 

also found that both males and females vocalized higher number of USVs after 

interaction with an opposite-sex animal. This finding was expected since presence of an 

opposite-sex conspecific is a known salient cue (Andersson, 1994), and salient cues are 

known to elicit higher numbers of vocalizations (Ma et al., 2014; Brown et al., 1988). 

Previous studies show that exposure of adult rats to novel (i.e. salient) social cues evoked 

differential increases in USVs across sex, with males exhibiting a much more robust 

increase in USV production both with respect to the frequency and complexity of USV 

production (Ma et al., 2014). Exposure to an estrous female in particular causes an 
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extraordinary increase in USVs in male subjects (Ma et al., 2014). Others have reported 

that presence of a partner’s odor is sufficient to increase the number of vocalizations 

(Brown et al., 1988). We find that prenatal treatment with 0.5mg/kg A1221 increased the 

number of rise calls in both males and females, and number of step calls in males. The 

increase in the numbers of USVs produced by 0.5 mg/kg A1221-treated rats was 

observed on Day 3 only for the number of rises, steps and trills in females and the 

number of rises and steps in the males. We speculate that since treatment preferentially 

affected the frequency-modulated calls, they might be programmed prenatally and, as a 

result, be more sensitive to hormonal perturbation by EDCs. This is the first report 

examining the effects of endocrine disruption on numbers of USVs; no comparisons to 

previous literature can be made.  Other studies have investigated the effect of sex 

hormone (estradiol and testosterone), mediating a clear dependence of USV production 

on intact hormonal system (reviewed in Yamaguchi et al., 2002), with loss of 

vocalizations in castrated animals with its restoration to pre-gonadectomy levels with 

testosterone replacement (Ball et al., 2004; Bass et al., 2008).  

 

Bandwidth of calls was sexually dimorphic and sensitive to disruption with prenatal 

PCBs 

Power spectrum analysis revealed that bandwidth and entropy of rises, steps, and 

trills were higher for females compared to males. Bandwidth, but not entropy, was higher 

for female flats compared to male flat USVs. Bandwidth and entropy are related power 

spectrum measures and similarly measure how energy is dispersed over frequency of the 
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call (Fernandez-Vargas et al., 2015). We suggest that changes in bandwidth and entropy 

may underlie motivational-structural differences between sexes in USV production. Two 

conclusions can be made from these results: first, females are more motivated to vocalize 

(thus the higher bandwidth and entropy of the calls); second, males have more capacity to 

vocalize (thus the higher bandwidth and entropy are not needed for USV production). We 

are unable to exclude either, and both could be contributing to the sex differences in 

bandwidth and entropy. Previous studies have examined bandwidth and entropy in 

rodents, and show higher entropy and bandwidth in female golden hamster calls 

(Fernandez-Vargas et al., 2015), and minor sex differences in acoustic characteristics in 

mouse calls (Hammersmidt et al., 2012). Prenatal EB and 1mg/kg A1221 treatment 

increased bandwidth of male rise and trill calls, respectively. This finding was interesting 

since prenatal treatment increased the bandwidth of male calls, possibly leading to 

female-like bandwidth levels in treated males. Bandwidth has not been previously shown 

to be affected by PCB treatment, thus we report it for the first time herein.  

 

Principle component analysis (PCA) identified sexually dimorphic USV measures 

Principle component analysis for USV power spectrum and numbers data 

indicated a score that strongly predicted sex differences. The PCA score was composed 

of five vocalization measures (trill bandwidth, step bandwidth, duration of rise and step 

USVs, and numbers of flat USVs). Four of the five measures were found to be higher in 

DMSO females than DMSO males, while duration of rise calls were found to be higher in 

DMSO males relative to DMSO females. When we examined the effects of sex and 
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treatment across all animals (all treatments and sexes), we found significant sex effects, 

but no treatment or treatment X sex interactions. The significant sex effects confirmed the 

usefulness of a score as a predictor for sex differences in USV outcomes. We interpreted 

absence of treatment effects or treatment by sex interactions as a lack of feminizing or 

masculinizing effects of EDC treatment on the USV outcomes. No such analysis has been 

previously conducted, thus we are unable to make any previous comparisons to the 

literature. We suggest that five vocalization measures that comprise the PCA score may 

underlie the sexually dimorphic nature of USVs in our experimental setup.  

 

Males, but not females, lack preference for hormone-primed conspecific, and are 

more sensitive to PCB disruption  

Females, but not males, spent more time near the gonadectomized, hormone-

treated stimulus animal, investigating its enclosure, and nose-touching with it compared 

to the gonadectomized animal. This suggests that females, but not males, preferred to 

interact with hormone-primed opposite-sex partner when given a choice of 

gonadectomized animal with hormone treatment versus without treatment. This finding 

was unexpected since, based on previous literature (Pankevich et al., 2004), we expected 

both males and female to show this preference. However, when examined in evolutionary 

context, this result supports previous findings that females are the “choosier” sex and 

have higher investment in offspring rearing, thus their preference for the hormone-primed 

animal might be necessitated by the need to select a more advantageous potential mate 

(Crews et al., 2007). We also found that males took longer time to begin investigating the 
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stimulus animal and spent more time standing still and grooming. These data similarly 

suggest that males are less interested in sociosexual interactions. Males treated prenatally 

with EB, 0.5mg/kg A1221 or 1mg/kg A1221 spent less time nose-touching with stimulus 

animals, irrespective of the hormone status of the stimulus animal. The same animals 

have been previously analyzed in a sociability experiment where males treated with 

prenatal 0.5mg/kg A1221 exhibited an overall decrease in nose-to-nose investigations 

(Reilly et al., under review). The differences between Reilly study and this report might 

stem from the different social context where nose-touch was examined: sociosexual vs. 

sociability. Nevertheless, nose-touching in males is sensitive to endocrine disruption by 

PCBs, and in a sociosexual context, PCB might be exerting their effect via estrogenic 

mechanisms.   

 

Steroid hormone receptors and Kiss1 gene expression was increased in 0.5mg/kg 

A1221 in the MPN of females 

In the MPN, 0.5mg/kg A1221 treatment increased the gene expression of Ar, 

Esr1, Esr2 and Kiss1 in females, but not males. This finding was unexpected since 

previously our lab has reported decreased Ar expression in preoptic area in adult 1mg/kg 

A1221 females (Dickerson et al., 2011b). However, the differences in gene expression 

results might stem from using a lower 0.5mg/kg A1221 dose. A1221 is known to be 

estrogenic (Dickeron et al., 2007), but at lower doses it has also shown anti-estrogenic 

activity (Kelce et al., 1997; Schantz et al., 2001). Thus, it is possible that Ar, Esr1, Esr2 

and Kiss1 gene upregulation in the MPN is due to the anti-estrogenic effects of A1221.  
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Neuroendocrine genes in the VMN are affected by PCBs in a sex and treatment-

specific manner 

In the VMN, the effects of PCB treatment were sex- and treatment-specific. In 

females, EB increased Esr1 gene expression, while 0.5 mg/kg A1221 decreased 

expression of Drd1a, and 1 mg/kg A1221 increased expression of Avpr1a. These genes 

are involved in neuroendocrine function and have established gene-behavior relationships 

in social and sociosexual behaviors (De Vries et al., 1984; Bale et al., 1995; Ferguson et 

al., 2001; Nomura et al., 2002). We suggest that changes to these genes may underlie the 

increase in ultrasonic vocalizations observed in 0.5mg/kg A1221 females. In males, the 

main effect of prenatal EB and 0.5 mg/kg A1221 increased expression of Crh, 0.5 mg/kg 

A1221 increased the expression of Foxp2 and Lepr, and 1 mg/kg A1221 increased the 

expression of Oxt. Some of these gene products regulate social behavior (e.g. Oxt, Crh, 

Foxp2) as well as feeding behaviors (Lepr). We suggest that changes in the pattern of 

expression of these genes may underlie changes to sociosexual interactions in males 

(decreased nose-touching in EB, 1mg/kg A1221 and 0.5mg/kg A1221 males).  

 

0.5mg/kg A1221 group had the highest number of USV-associated correlations in 

the bionetwork analysis 

The networks were examined for organization (total number of correlations) and 

the identity of relationships. The most complex network organization in both MPN and 

VMN was exhibited in the 0.5mg/kg A1221 animals. When examined for USV-
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associated measures, 0.5mg/kg A1221 networks exhibited a higher number of measures 

that correlated with bandwidth of rise calls. This finding supports the higher number of 

USVs in the 0.5mg/kg A1221 males and females. In general, bionetwork findings 

correlated with the finding that 0.5mg/kg A1221 group had the highest number of 

behavioral and molecular changes of all treatment groups, compared to DMSO.  
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Chapter 4: General discussion 

 

In 1962, Rachel Carson in her book “Silent Spring” documented the detrimental 

effects on the environment – particularly on birds – from the indiscriminate use of 

pesticides (Carson, 1962). Her book brought environmental concerns to the American 

public, and inspired an environmental movement that led to the creation of U.S. 

Environmental Protection Agency. More than 50 years later, endocrinologists have 

advanced the knowledge on the understanding of how pesticides and other exogenous 

environmental chemicals influence wildlife and humans. Recent scientific evidence has 

linked a class of these compounds, known as endocrine-disrupting chemicals (EDCs) to 

an overall decline in human reproductive health (Chandra et al., 2005). The structures of 

these compounds enable them to mimic steroid hormones and interact with endocrine 

systems throughout development and into adulthood. There are documented effects of 

EDCs on the reproductive, growth, thyroid, stress, and lactotrophic endocrine systems 

(Dickerson et al., 2007; Zoeller, 2005; Anderson, 2010; Schantz et al., 2001; Scarth 

2006). Such effects are particularly detrimental during the critical period of development, 

when the reproductive organs, genitalia, and the brain are sculpted into sexually 

dimorphic structures with the help of endogenous hormones. This chapter will review the 

findings of this dissertation and provide a detailed discussion and implications of the 

findings.  
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Gestational PCBs and microRNA expression  

In Chapter 2, the expression of eight microRNAs and select relevant target genes 

were analyzed for effects of sex, age, and gestational PCB treatment during postnatal 

development at postnatal [P] day 15, P30, P45, and P90 in male and female rats. The 

relationship between microRNA and mRNA gene expression was examined in the 

bionetwork analysis. 

In the MPN, the most important finding was a developmental increase in 

microRNA expression with age, during the transition from juvenile (postnatal [P] day 15) 

to pubertal period (P30). Six microRNAs (mir-132, mir-219, mir-7, mir-145, let-7a, and 

let-7b) showed this increase with age in the MPN. The previous literature has linked the 

expression of four of the microRNAs (let-7a, let-7b, mir-132, and mir-145) to 

mechanisms leading to or permitting the onset of puberty in rats (Sangiao-Alvarellos et al 

2012). The expression pattern of let-7a, let-7b, mir-132, and mir-145 had been previously 

examined in the preoptic area in the hypothalamus of the developing rats, and as in this 

work, was found to increase with age (Sangiao-Alvarellos et al., 2012). Numerous age-

related changes in microRNA expression have also been observed in the female aging rat 

brain (Rao et al., 2013). This suggests that the developmental effects of age on 

microRNA expression are important during the transitional hormone-sensitive periods in 

development, such as puberty.  

Puberty is characterized by significant increase in serum hormone levels, which 

exert effects on reproductive and non-reproductive tissues to prepare the individual for 

sexual maturity (Matochik et al., 1994). During puberty, which occurs around P30-P45 in 



 96 

rats, hormone-sensitive changes at all levels of the HPG axis have been reported, 

including but not limited to changes in gene and protein expression. MicroRNAs regulate 

target gene expression by inducing mRNA proteolytic degradation, and/or inhibition of 

protein translation (Kim et al., 2009). This dissertation evaluated the effects of 

microRNA perturbation by examining target gene mRNA expression in the same-aged 

animals, and, surprisingly, did not find the predicted inverse relationship with microRNA 

expression. However, this does not necessarily dictate that microRNAs had no effect on 

protein expression. As microRNAs exert their influence through reduced translational 

activity, in addition to mRNA degradation, it is possible that protein expression was 

reduced with no corresponding decrease in mRNA. Further studies correlating 

microRNA levels with protein expression should be conducted.  

In the MPN, another major finding was the discovery that microRNAs are 

sexually dimorphic, with the sexual dimorphisms most apparent during puberty. Females 

had higher levels of expression of mir-219, mir-7, and mir-145 than males, an effect 

driven by differences at P30. Males, on the other hand, had higher levels of expression of 

mir-9 and let-7b at P45. Thus, these differences are possibly involved in the pubertal 

changes in the MPN, and may be the result of hormone-related changes during puberty as 

the hypothalamus transitions from juvenile quiescence to adult function.  

The results of EDC treatment on microRNA expression in the MPN were age and 

sex specific. In females, prenatal A1221 and EB increased expression of mir-219, mir-

132, mir-7, mir-145, let-7a, and mir-124a at P30. It is worth noting that similarities 

between A1221 and EB are consistent with their similar actions on estrogenic pathways. 
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In the male MPN, expression of all 8 miRNAs examined was decreased in prenatally 

treated A1221 males on P90, an effect not mimicked by EB. In addition to being 

estrogenic, A1221 is known to be partially anti-estrogenic and anti-androgenic (reviewed 

in Schantz et al., 2001), thus it is possible that A1221 effects on the male MPN were 

mediated via its partial antagonistic actions at the estrogen receptor or, perhaps more 

likely, agonistic actions at the androgen receptor.  

In the VMN, expression of all eight examined microRNAs increased with age, 

with the difference driven by the increase in expression from juvenile [P15] to pubertal 

[P30] levels. This finding was expected as mir-132, mir-7, mir-145, let-7a, and let-7b 

were previously found to increase with age in medial basal hypothalamus (Sangiao-

Alvarellos et al., 2013). Similar to the MPN, the microRNA expression profiles in the 

VMN suggest that microRNA levels vary the most during the transition from juvenile to 

adult. Interestingly, in the VMN, mir-9 expression increased with age, despite previous 

reports on its age-related decrease in medial basal hypothalamus, which contains the 

VMN (Sangiao-Alvarellos et al., 2013). The finding of age-related increase in mir-9 

expression in the more precise VMN underscores the tissue specificity of microRNA 

expression.  

There were no effects of sex and relatively few effects of EDC treatment on 

microRNA expression in the VMN. In the females, there were age-specific EDC effects 

in let-7a, mir-124a, and mir-219 expression; while in the male VMN, A1221 decreased 

the expression of mir-124a. Additionally, since only a handful of microRNAs were 

examined, it is possible that other microRNAs would have shown more EDC-related 
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effects in the VMN. It was surprising to observe no sex-related changes in the microRNA 

expression in the VMN, given the rich literature of sexually dimorphic gene and protein 

expression in the region (Herbison et al., 1995; Cao et al., 2011).  

To ascertain the functional importance of microRNA changes, the expression of 

several target mRNAs (Ar, Clock, Lepr, Lin28b, Ppara, Grin2a, Igf1r, Ar, Pgr) was 

analyzed in the same animals. Within sex, modest effects of age and EDC effects were 

observed in both regions. Contrary to predictions, the data did not show an inverse 

relationship between microRNA and mRNA expression. In fact, in the bionetwork 

analysis, only positive relationships between microRNAs, mRNAs, and estradiol and 

testosterone serum hormone levels were observed. Such finding could be due to a number 

of possibilities. First, out of 2000 microRNAs currently catalogued in mammals (Olive et 

al., 2015), only eight microRNAs were examined. It is possible that other microRNAs 

not measured have stronger associations with the examined mRNAs. Second, the effects 

of the selected microRNAs might not be as strong as anticipated, and thus their effects 

were masked by additional gene regulatory mechanisms such as DNA methylation, 

histone modifications, transcriptional factors, and other various forms of regulation. 

Third, protein expression was not analyzed, thus it is possible that reported microRNA 

changes contributed to inhibition of protein translation.  

This study documented postnatal microRNA expression profiles in two 

hypothalamic nuclei, MPN and VMN for the effects of age, sex, and EDC treatment. I 

found that individual microRNAs were affected in both a sexually dimorphic and age-

specific manner in prenatally PCB-exposed individuals. Importantly, these results 
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underlie the importance of age of analysis in examination of gestational PCB effects on 

adult endpoints. This is not surprising, as the profiles of different genes and proteins in 

the brain undergo dynamic change throughout postnatal development (Kermath et al., 

2014). This study and others (Sangiao-Alvarellos et al., 2013; Rao et al., 2014) also 

suggest the importance of hormone-sensitive periods in development, such as puberty and 

menopause. Additionally, these studies point to the possibility that microRNAs are 

gestationally programmed by estradiol and altered by estrogenic PCBs during embryonic 

development.  Thus, studies to elucidate the timing of organizational events in microRNA 

programming in utero should be undertaken to better understand their importance in 

neural development.  

 

Gestational PCBs, adult behaviors, and mRNA expression 

In Chapter 3, I examined the sex and gestational effects of 50ug/kg EB (positive 

control), 1mg/kg A1221, or 0.5mg/kg A1221 treatment on two sociosexual behaviors, 

ultrasonic vocalizations and partner preference. For these behaviors, number and quality 

of ultrasonic vocalizations produced after an encounter with an opposite-sex partner were 

analyzed, as was time spent with a hormone-implanted opposite-sex rat or a hormone-

deprived opposite-sex animal. Finally, gene expression of 48 candidate neuroendocrine 

genes was measured in the MPN and VMN of the behaviorally characterized rats. The 

endpoints were selected to provide a broad assessment of how gestational PCBs alter 

developing neuroendocrine systems, sex-typical reproductive function, and behaviors in 

adulthood. This work provides novel insight into the mechanisms through which 
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gestational low-level exposures to PCBs disrupt neuroendocrine function in adult 

animals. 

Ultrasonic vocalizations were found to be sexually dimorphic and influenced by 

the animal’s sociosexual environment. The number of flat, rise, step USVs, but not trill 

USVs was sexually dimorphic, with females vocalizing more USVs than males. I also 

found that both males and females vocalized higher number of USVs after interaction 

with an opposite-sex animal. Bandwidth and entropy of the USVs were examined and 

found to be sexually dimorphic, with female calls having higher bandwidth and entropy 

than male calls. This implies that females have a greater interest in producing 

vocalizations, or have a greater capacity at vocalizing at higher numbers. Additionally, 

increases in USVs following exposure to an opposite-sex animal suggest that sociosexual 

cues are a significant factor for USV production in both sexes.   

PCB exposure significantly affected USV production. Prenatal treatment with 

0.5mg/kg A1221 increased the number of rise calls in both males and females, and 

number of step calls in males. Following interaction with an opposite-sex partner, an 

increase in vocalizations was observed only for numbers of rises, steps and trills in 0.5 

mg/kg A1221-treated females and numbers of rises and steps in the 0.5 mg/kg A1221-

treated males. In the same animals, the effects of gestational EDCs on bandwidth and 

entropy were examined. Prenatal EB and 1mg/kg A1221 treatment increased bandwidth 

of male rise and trill calls, respectively. This finding suggests that USV production is a 

sensitive measure of endocrine disruption, and sex differences in USVs may be altered 

during gestation by PCBs. The PCB effect on USV numbers was not mimicked by the EB 



 101 

treatment, thus it is unlikely PCBs are acting via estrogenic mechanisms. A1221 is 

known to be anti-estrogenic and androgenic, thus it is possible A1221 effects on USVs 

occurred via its antagonistic actions at the estrogen receptor, or agonistic action at the 

androgen receptor. Importantly, gestational PCB exposure in the males resulted in 

female-like numbers, entropy, and bandwidth of vocalizations. Analysis via a principle 

component analysis, identified five USV measures that were highly sensitive indicators 

of sex differences in the examined animals; bandwidth of trill and step USVs, duration of 

rise and step USVs, and numbers of flat USVs. However, PCB treatment did not produce 

an overall feminizing effect. The doses of PCBs used in the study are in the very low-

level range of exposures, similar to the levels of PCB exposure found in the environment, 

however the exposure occurred only during gestation, while humans may be exposed to 

PCBs continually throughout development, and in adulthood. Thus, effects of multiple 

low-level exposures on vocalizations warrants further investigation. These findings also 

highlight the extent of the detriment that can be caused by even the lowest levels of 

exposure to PCBs during pregnancy.  

The sociosexual preference behaviors, namely whether the rats preferred to spend 

time with the gonadectomized, hormone-primed versus gonadectomized hormone-

deprived opposite-sex animals, were also examined. Males, but not females, lacked the 

preference for the hormone-primed partner, and are more sensitive to PCB disruption. For 

example, females, but not males, spent more time near the hormone primed stimulus 

animal, investigating its enclosure, and nose-touching with it compared to the castrated 

animal. This result supports previous findings that females are the “choosier” partners, 



 102 

due to their higher investment in offspring rearing, thus their preference for the hormone-

primed animal might be necessitated by the need to select a more advantageous potential 

mate. In addition, males were slower to start investigating the stimulus animal enclosure 

and spent more time standing still and grooming. Thus, these data similarly suggest that 

males are less interested in sociosexual interactions. 

This dissertation also examined a multitude of sociosexual behaviors, and found 

that nose-touching was the only measure of dyadic interaction that was altered in PCB-

treated animals. Gestational exposure to EB, 0.5mg/kg A1221 or 1mg/kg A1221 resulted 

in decreased nose-touching in treated males. The effects of PCB treatment were 

mimicked by EB, and thus may be potentiated via estrogenic mechanisms. This also 

suggests that nose-touching is a sensitive measure of endocrine disruption. In a similar 

study by Reilly et al, nose-touching behavior was similarly decreased in PCB-treated 

males in a social recognition experiment (Reilly et al., under review). Thus, nose-

touching is a sensitive indicator of PCB exposure and in future studies, nose-touching 

alone may be used to evaluate disruption of sociosexual and social behaviors.  

Expression of 48 neuroendocrine genes was examined in the MPN and VMN of 

the behaviorally characterized animals. In the MPN, steroid hormone receptor (Ar, Esr1, 

Esr2) and Kiss1 gene expression was increased in 0.5mg/kg A1221 females, while the 

males were unaffected. Since the effects of PCBs were not mimicked by EB, it is likely 

that the effect was not mediated via PCB effects on estrogen receptor. Effects of PCB 

treatment in the VMN were sex- and treatment-specific. In females, EB increased Esr1 

gene expression, 0.5 mg/kg A1221 decreased expression of Drd1a, and 1 mg/kg A1221 
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increased expression of Avpr1a. In males, EB and 0.5 mg/kg A1221 increased expression 

of Crh, 0.5 mg/kg A1221 increased the expression of Foxp2 and Lepr, and 1 mg/kg 

A1221 increased the expression of Oxt. It is interesting to note that PCBs affected 

expression in the MPN and VMN differently. Gene expression, behaviors, and serum 

corticosterone were examined in the bionetwork analysis. In general, 0.5mg/kg A1221 

networks were the most distinct, and different from vehicle. This correlates with the 

finding that 0.5mg/kg A1221 group had the highest number of behavioral and molecular 

changes of all treatment groups, compared to vehicle.  

 

Concluding remarks 

Taken together, the results of this dissertation provide novel insight into the 

effects of gestational PCBs on adult reproductive physiology and behavior. The 

dissertation contains novel findings on PCB effects on first, hypothalamic microRNA and 

related target mRNA expression during postnatal development, and second, adult 

reproductive behaviors and candidate neuroendocrine hypothalamic gene expression. In 

Chapter 2, PCB effects on microRNA expression were region-, sex- and age-specific, 

with most changes observed in the MPN. In the females, prenatal PCB treatment 

increased microRNA expression during puberty [P30], and in the males, PCB effects on 

microRNA expression were observed in adulthood [P90]. In Chapter 3, prenatal PCB 

treatment increased the number of ultrasonic vocalizations and altered the acoustic 

qualities of the calls in treated females and males. In the PCB-treated females, but not the 

males, the gene expression of estrogen receptor alpha, estrogen receptor beta, androgen 
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receptor, and kisspeptin genes was increased in the MPN. The results of this dissertation 

research have relevance for human public health and disease, as EDCs are increasingly 

linked to reproductive decline in humans (Chandra et al., 2005). Indeed, a growing body 

of scientific evidence suggests that early life exposure to EDCs may alter development of 

reproductive tract and genitalia and hormonal responsiveness in adulthood (reviewed in 

Diamanti-Kandarakis et al., 2009). Coupled with this evidence are a number of disturbing 

trends in some geographic regions, including reduction in fertility, an increase in 

hormone sensitive cancers, an earlier age of puberty in girls, and a decrease in the 

number of boys being born (reviewed in Janssen et al., 2007). Additional basic and 

translations studies that investigate the EDC effects during gestation are needed to 

uncover the mechanisms behind these disease phenotypes. 

 

Future directions 

This dissertation is a precursor to an understanding of the complex regulatory 

mechanisms underlying effects of endocrine disruption and could be expanded in several 

ways. For example, using the microRNA candidates that were identified in the 

dissertation, microRNA mimic and antagomir studies could be conducted using cells 

expressing target mRNAs (e.g. hypothalamic GT1 cells) to measure gain and loss of 

microRNA function and demonstrate the specificity of target mRNA and protein 

downregulation by select microRNAs. Additionally, select microRNA antagomir/mimics 

could be infused directly into specific nuclei in the brains of prenatally-exposed adult or 

adolescent rats to ameliorate or reverse the effects of endocrine disruption. Finally, the 
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dissertation could be expanded by altering the timing of exposure to PCBs allowing us to 

identify and define a window of susceptibility for PCB exposure, thereby shedding light 

on the organizational vs. activational effects of PCBs and their long-term consequences 

on health outcomes. 
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