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TIMING IN THE CEREBELLUM: A MATTER OF NETWORK INHIBITION
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Supervisor: Michael D. Mauk

The motor functions of an animal require precisely timed and coordinated

sequences of movements. The cerebellum is crucial for performing these

functions with precision. To investigate cerebellar computations involved in

precise motor movements, behavioral paradigms such as delay eyelid

conditioning have been used. Delay eyelid conditioning trains an animal to close

its eye in response to a previously neutral stimulus. The timing of the eyelid

closure responses suggests that the cerebellum is capable of keeping track of

the elapsed time since the onset of the stimulus. This dissertation proposes a

network mechanism for cerebellar timing based on biologically informed

simulations of the cerebellum. In chapter 2, a simulation with over a million cells

is described. This simulation approaches the observed cerebellar connectivity in

several well studied mammals. Graphics processing units (GPUs) provide the

computational power necessary to perform this simulation at a practical speed.

This chapter describes simulation algorithms that efficiently utilize GPUs. In
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chapter 3, the simulation is used to explore cerebellar timing mechanisms. The

lateral inhibition among cerebellar Golgi cells is observed to be a potential

mechanism for robust timing. Lateral Golgi inhibition enables the simulation to

better replicate animal eyelid conditioning behavior for longer inter-stimulus

intervals. In chapter 4, the emergent network mechanisms of lateral Golgi

inhibition are analyzed by decomposing the network into its individual

components. This component analysis demonstrates that nonreciprocal

connectivity (where one Golgi cell inhibits another but does not receive inhibition

in return) is useful for timing. Specifically, removing nonreciprocal connectivity

greatly degrades the simulation's ability to keep track of time. This implies that

the aforementioned component analyses are relevant to the emergent timing

mechanisms of the network. Finally, in chapter 5, this dissertation discusses the

relevance and limitations of the computational approach, biological predictions,

and component analysis presented in previous chapters.
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CHAPTER 1:

GENERAL INTRODUCTION
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The motor functions of an animal require precisely timed and coordinated

sequences of contractions of different muscles. The cerebellum has been shown

to be necessary to perform these functions with precision. Animals and humans

with lesions to the cerebellum exhibit impaired motor functions (Bastian,

Zackowski, & Thach, 2000; Flament, Vilis, & Hore, 1984; Manto et al., 2012;

Palliyath & Hallett, 1998; Topka, Konczak, & Dichgans, 1998). Existing evidence

suggests that while the cerebral motor cortex is necessary for initiating voluntary

motor movement (Arezzo & Vaughan, 1975; Davey & Romaiguere, 1994;

Deecke, Scheid, & Kornhuber, 1969; Roland & Larsen, 1980), the cerebellum

provides the tuning signals to make such movements precise (Flanagan & Wing,

1993; Manto et al., 2012; Nowak, Topka, Timmann, Boecker, & Hermsdörfer,

2007). The computations performed by the cerebellum to generate these tuning

signals have been investigated by several behavioral paradigms, such as smooth

pursuit (Lisberger & Fuchs, 1978; Medina & Lisberger, 2007; Stone & Lisberger,

1990), vestibulo-ocular reflex (DuLac, Raymond, Sejnowski, & Lisberger, 1995;

Ito, 1982; Miles & Lisberger, 1981), and delay eyelid conditioning (Garcia, Steele,

& Mauk, 1999; Mauk, Steinmetz, & Thompson, 1986; Mauk & Thompson, 1987;

McCormick & Thompson, 1984; Steinmetz et al., 1987; Steinmetz, Lavond, &

Thompson, 1989). These paradigms have revealed the timing (Jirenhed &

Hesslow, 2011a; Li & Lisberger, 2011; Medina, Garcia, Nores, Taylor, & Mauk,

2000), amplitude (DuLac et al., 1995; Kreider & Mauk, 2010), and adaptability
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(Boyden, Katoh, & Raymond, 2004; DuLac et al., 1995; Medina, Nores, & Mauk,

2002; Perrett & Mauk, 1995) properties of cerebellar output. Experimental results

based on these paradigms suggest that the cerebellum is capable of keeping

track of time internally (Ivry, Spencer, Zelaznik, & Diedrichsen, 2002), specifying

the amount of output to produce (Flanagan & Wing, 1993; Kreider & Mauk, 2010;

MacKay & Murphy, 1979; Nowak et al., 2007), and adapting to new conditions

with new output (Bastian, 2006; Carey & Lisberger, 2002; Contreras-Vidal,

Grossberg, & Bullock, 1997; Morton & Bastian, 2006; Ohyama, Nores, Murphy, &

Mauk, 2003). However, these claims are not universally accepted. Harrington et

al. (2004) conclude that impaired sensory and cognitive information transfer can

explain the impact on timing from cerebellar lesions. There are also alternate

theories of cerebellar computation that do not involve learning (Llinas, Lang, &

Welsh, 1997; Llinás & Welsh, 1993; Pellionisz & Llinas, 1979; Welsh et al.,

2005).

In addition to well defined behaviors, investigations into cerebellar

computation also benefit from detailed observations of the network architecture

of the cerebellum (Eccles, Ito, & Szentágothai, 1967; Ito, 1984, 2006a). The

connectivity and physiology of the neurons in the cerebellum have been studied

for over a century (Sotelo, 2003). These studies (Eccles et al., 1967; Ito, 1984,

2006b) provide important information for proposing biologically constrained and

relevant models of cerebellar computation (Buonomano & Mauk, 1994; Marr,
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1969; Medina et al., 2000; Pellionisz, Llinas, & Perkel, 1977; Pellionisz, 1973).

Cerebellar network architecture

The physiology and connectivity of the cerebellar architecture have been

extensively studied (Eccles et al., 1967; Ito, 1984). The microzone hypothesis of

the cerebellum postulates that the cerebellum is divided into different functional

areas (Balaban, Schuerger, & Porter, 2000; Ito, 1984; Oscarsson, 1979;

Sugihara, 2006). Each functional area (microzone) is responsible for driving a

muscle or set of related muscles (Gibson, Robinson, Alam, & Houk, 1987).

However, the cerebellum has been observed to be involved in extra-motor

functions such as cognition (Schmahmann, 2004; Strick, Dum, & Fiez, 2009; Van

Overwalle, Baetens, Mariën, & Vandekerckhove, 2013). The connectivity of each

microzone is relatively uniform (Ito, 1984) in the sense that the connectivity of

one microzone is similar to every other microzone (but see (DiÑO, Willard, &

Mugnaini, 1999) for differences). Classical observations (Eccles et al.,

1967) suggest that there are a limited number of cell types and input pathways.

Much of the connectivity has been observed in detail (Ito, 2006b; Palkovits,

Magyar, & Szentágothai, 1972). However, in recent years additional connectivity

has been observed (Hull & Regehr, 2012; Vervaeke, Lorincz, Nusser, & Silver,

2012; Xu & Edgley, 2008), suggesting the cerebellum network architecture is

more complex and interconnected than previously thought.
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There are two major input pathways into the cerebellum: mossy fibers

from the pontine nuclei (Ito, 1984), and climbing fibers from the inferior olivary

complex (Desclin, 1974; Shinoda, Sugihara, Wu, & Sugiuchi, 2000). The mossy

fiber activity has been observed to correlate with changes in limb positions (van

Kan, Gibson, & Houk, 1993), and the presence of various sensory stimuli (Aitkin

& Boyd, 1978; K Maekawa & Takeda, 1975). In addition, the primary motor cortex

has been observed to project to the pontine nuclei (Kelly & Strick, 2003). These

projections have been suggested to carry motor commands to the cerebellum

(Ito, 2005). Based on these observations, it is inferred that the mossy fibers carry

information about the state of the world to the cerebellum (Ito, 1984; Marr, 1969).

In contrast, the climbing fiber activity has been observed to correlate with the

onset of unexpected stimuli (Andersson & Armstrong, 1987; Gellman, Gibson, &

Houk, 1985; Gilbert & Thach, 1977; Simpson, Wylie, & De Zeeuw, 1996). The

climbing fiber activity is observed through the complex spike activity of Purkinje

cells (Bell & Grimm, 1969; Eccles, Llinas, & Sasaki, 1966; Ito & Simpson, 1971).

The climbing fibers have been hypothesized to carry error signals to the

cerebellum that instruct the cerebellum to modify its output (Marr, 1969; Simpson

et al., 1996). 

The mossy fiber inputs to the cerebellum connect to a large number of

granule cells in the cerebellar cortex (Palkovits, Magyar, & Szentágothai, 1971b;

Shinoda et al., 2000), and the granule cells in turn provide inputs to the Purkinje
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cells (Eccles et al., 1967). The Purkinje cells also receive inputs from climbing

fibers (Eccles et al., 1967; Ito & Simpson, 1971). The Purkinje cell axons are the

only output of the cerebellar cortex. They provide inhibition onto cerebellar deep

nucleus cells (M. Ito, Yoshida, Obata, Kawai, & Udo, 1970; Palkovits, Mezey,

Hámori, & Szentágothai, 1977). The deep nucleus cell axons are the output of

the cerebellum (Dum & Strick, 2003; Ito, 1984; Middleton & Strick, 1998).

Figure 1.1. Cerebellar connectivity. Red arrows: excitatory connections. Blue arrows:
inhibitory connections. P: plasticity at granule-Purkinje synapses. CF: climbing fibers. The
granule cells from the cortical input network (green) provide input to the basket, stellate, and
Purkinje cells of the output network (purple). The Purkinje cells inhibit the deep nucleus cells
in the output network that are the output of the cerebellum.
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The major cell types present in all areas of the cerebellum are granule

cells (Chadderton, Margrie, & Häusser, 2004; Gabbiani, Midtgaard, & Knöpfel,

1994), Golgi cells (Galliano, Mazzarello, & D’Angelo, 2010), Purkinje cells

(Eccles et al., 1967), stellate cells (V Chan-Palay & Palay, 1972), basket cells

(O’Donoghue, 1989; Palkovits, Magyar, & Szentágothai, 1971c), and deep

cerebellar nucleus cells (Jahnsen, 1986; Llinás & Mühlethaler, 1988; Ohyama,

Nores, Medina, Riusech, & Mauk, 2006; Palkovits et al., 1977), in addition to the

mossy fiber and climbing fiber input pathways. The architecture of the network

(figure 1.1) can be divided into two subnetworks: 1. the cortical input network

(D’Angelo & De Zeeuw, 2009; Kanichay & Silver, 2008; Mapelli & D’Angelo,

2007), which consists of mossy fibers, Golgi cells, and granule cells, for which

the granule cells produce the primary output, (Eccles et al., 1967; Palkovits et al.,

1971c) and 2. the output network, which consists of Purkinje cells, basket cells,

and stellate cells, all of which receive input from granule cells (Palkovits et al.,

1971c). The output network also contains inferior olivary cells (that provide

climbing fiber input), mossy fibers, and deep nucleus cells. The deep nucleus

cells provide the only output of the cerebellum. The predominant connectivity

between the input and output network is the granule cell output to Purkinje,

basket, and stellate cells. However, there is evidence that cerebellar Lugaro cells

(Melik-Musyan & Fanardzhyan, 2004) receive inputs from Purkinje cells and can

potentially provide input to Golgi cells. This would provide a feedback connection
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from the output network (Lainé & Axelrad, 1996, 1998).

Cerebellar cortical input network

The cortical input network consists of a large number of granule cells

(Lange, 1975), and a small number of mossy fibers and Golgi cells in the granule

layer (Palkovits et al., 1971b). The total granule cell population in the cerebellum

has been reported to account for over 50% of the total number of neurons in the

mammalian central nervous system (Ito, 1984). These cells vastly outnumber the

Golgi cells (Palkovits et al., 1971b) (5000 granule cells per Golgi cell) and mossy

fibers. The Golgi cells have been reported to be distributed in a two dimensional

grid in the granule layer (Palkovits et al., 1971b), while the spatial distribution of

mossy fibers terminals (part of the glomeruli) has been suggested to follow the

microzones on a gross scale (Ji & Hawkes, 1994). However, the significance of

this possible arrangement remains unclear. With the exception of granule input to

Golgi cells, the connectivity between these cell types primarily occurs in the

granule layer through the glomeruli.

The glomeruli are synaptic structures in the granule layer of the cerebellar

cortex that connect the mossy fibers, Golgi cells, and granule cells together

(Eccles et al., 1967; Ito, 1984; Jakab & Hámori, 1988; Palkovits et al., 1971b;

Spacek, Parízek, & Lieberman, 1973). Each glomerulus is composed of multiple

granule cell dendrites (between 20-110), (Eccles et al., 1967; Palkovits et al.,
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1972), a single Golgi cell axon terminal, occasionally a Golgi cell descending

dendrite (Hámori & Szentágothai, 1966), and a single mossy fiber terminal

(Eccles, Llinás, & Sasaki, 1966). Through these structures, the mossy fibers

provide excitatory output to the granule cells and Golgi cells (Hámori &

Szentágothai, 1966), and Golgi cells provide inhibitory output to granule cells

(Hámori & Szentágothai, 1966; S. Mitchell & Silver, 2000). However, see Victoria

Chan-Palay and Palay (1971) for observations that mossy fibers direct contact

Golgi soma. The number of gromeruli terminals per mossy fiber has been

estimated to be between 16 (Eccles et al., 1967) and 44 (Palkovits et al., 1971b).

This, combined with the number of granule dendrites per glomerulus, results in

320-4400 granule cells dendrites per mossy fiber. The Golgi cell axons have

been reported to connect to 60-100 gromeruli near the cell body (Eccles et al.,

1967; Palkovits et al., 1971b), and result in a divergence of 1200-11,000 granule

cell dendrites per Golgi axon. Golgi cells also have descending dendrites

(Hámori & Szentágothai, 1966) that connect to the glomeruli and receive mossy

fiber excitatory inputs (Ito, 1984). Each granule cell dendrite has been observed

to only connect to a single glomerulus (Eccles et al., 1967), and most granule

cells have been observed to have 4 dendrites (Eccles et al., 1967). The length of

dendrites has been reported to be 10-25um (Ito, 1984), which constrains a

granule cell to only receive inputs from the glomeruli that are close to the cell.

The granule inputs to Golgi cells are located in the molecular layer of the
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cerebellar cortex (Palay, 1974), which contains the axons and dendrites of

various neurons (Palkovits et al., 1971c). The granule cell axons first ascend to

the molecular layer and then bifurcate in the same direction to produce parallel

fibers (Eccles et al., 1967). The parallel fibers provide excitatory inputs to Golgi

cells and other neurons in the output network. The length of the parallel fibers

has been reported to be between 1-10 mm (Brand, Dahl, & Mugnaini, 1976; Ito,

1984), depending on the region of the cerebellum and the animal species. The

Golgi ascending dendrites have been observed to extend throughout the entire

molecular layer (Palay, 1974). The dendrites have been observed to not have

many branches and are spatially sparse (Eccles et al., 1967). Given the

orientation of the parallel fibers, a Golgi cell can potentially receive inputs from

granule cells that are far away from the Golgi cell but are located in the same

direction as the parallel fibers (Volny-Luraghi, Maex, Vos, & De Schutter, 2002).

In contrast, a granule cell that is located close to the Golgi cell but perpendicular

to the parallel fiber orientation would not provide input for that Golgi cell.

In addition to mossy fibers, Golgi cells, and granule cells, uni-polar brush

cells (Mugnaini, Sekerková, & Martina, 2011) have also been observed in the

granule layer of the cerebellar cortex. These cells receive inputs from mossy

fibers and Golgi cells and provide excitatory output to granule cells (Dino,

Schuerger, Liu, Slater, & Mugnaini, 2000; Nunzi & Birnstiel, 2001). These cells

have been observed to be concentrated in the medial vestibular regions of the

10



cerebellum (Diño, Nunzi, Anelli, & Mugnaini, 2000), and are less common in the

lateral regions (DiÑO et al., 1999). 

Cerebellar output network

The output network consists of basket cells, stellate cells, Purkinje cells,

deep nucleus cells and inferior olivary cells. The basket, stellate, and Purkinje

cells are in the cerebellar cortex, whereas the deep nucleus cells are in the deep

nuclei of the cerebellum, and inferior olivary cells are in the inferior olivary nuclei

in the brainstem. The Purkinje, basket, and stellate cells are thought to be

arranged into microzones (Balaban et al., 2000; Oscarsson, 1979; Ozden,

Sullivan, Lee, & Wang, 2009; Pijpers, Voogd, & Ruigrok, 2005), where each

functional unit is aligned in the direction perpendicular to the parallel fibers. All

three types of cells receive excitatory input from the parallel fibers. The Purkinje

cell dendrites are sheet-like structures that permeate throughout the height of the

molecular layer (Eccles et al., 1967; Sotelo, 2003). The orientation of each

dendritic sheet is perpendicular to the direction of the parallel fibers (Fox &

Barnard, 1957). It has been hypothesized that this arrangement maximizes the

number granule inputs to Purkinje cells with respect to a fixed amount of space

(Ito, 1984). Each Purkinje cell has been observed to receive between 80,000

(Palkovits et al., 1971c) to 200,000 (Eccles et al., 1967) granule cell inputs. The

granule-Purkinje synapses have been suggested as a site of plasticity that
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mediate learning in the cerebellar cortex (Albus, 1975; Marr, 1969), which is

further discussed below. The dendritic structures of basket and stellate cells are

in the same general orientation as Purkinje dendrites (Mertz, Koscheck, &

Schilling, 2000), but less regular (V Chan-Palay & Palay, 1972).

The primary output of basket and stellate cells has been observed to

inhibit Purkinje cells. The stellate cell axons have been reported to inhibit parts of

Purkinje cell dendrites (V Chan-Palay & Palay, 1972; Eccles et al., 1967;

Midtgaard, 1992), whereas the basket cells inhibit the Purkinje cell body

(O’Donoghue, 1989; Palkovits et al., 1971c). The basket cell axons are arranged

in the direction perpendicular to the parallel fibers (Palkovits et al., 1971c), which

is consistent with the orientation of the functional units. The Purkinje cells have

also been observed to inhibit basket cells (O’Donoghue, 1989). The Purkinje cell

axons are the only output from the cerebellar cortex (Eccles et al., 1967). They

provide inhibition to the deep cerebellar nucleus (Ito et al., 1970; Zheng &

Raman, 2010).

The deep cerebellar nucleus cells have been observed to provide the only

output of the cerebellum (Palkovits et al., 1977), and receive excitatory input from

mossy fiber collaterals (Shinoda, Sugiuchi, Futami, & Izawa, 1992) (however, see

(Brodal, Dietrichs, & Walberg, 1986) for different observations) and inhibition

from Purkinje cells (Ito et al., 1970). The mossy fiber-deep nucleus synapses

have been observed to be plastic and mediated by inhibition from the Purkinje
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cells (Ohyama et al., 2006; Pugh & Raman, 2006, 2008). In the cat, each nucleus

cell has been estimated to receive inhibition from up to 200 Purkinje cells

(Palkovits et al., 1977). Deep nucleus cells have been observed to provide

inhibition to inferior olivary neurons (Best & Regehr, 2009; Lang, Sugihara, &

Llinás, 1996) and excitatory output to the downstream areas such as the red

nucleus (Asanuma, Thach, & Jones, 1983; Flumerfelt, Otabe, & Courville, 1973).

The inferior olivary neurons provide the climbing fiber inputs into the cerebellum

(Desclin, 1974) that are thought to carry teaching signals for the cerebellum to

modify its output (Marr, 1969; Simpson et al., 1996; Türker & Miles, 1986). These

neurons appear to have extensive electrical synapses among their dendrites

(Placantonakis, Bukovsky, Aicher, Kiem, & Welsh, 2006). The axon of each

inferior olivary neuron provides climbing fibers to multiple Purkinje cells (Desclin,

1974; H. Fujita & Sugihara, 2013), whereas each Purkinje cell receives a single

climbing fiber input (Eccles et al., 1967). It has been suggested that the Purkinje

cells that receive climbing fiber input from the same inferior olivary cell all

perform the same functions since they receive the same teaching signals (Ito,

2000).

In summary, the network architecture of the cerebellum has been studied

for over a century, and has been characterized in considerable detail. These

characterizations enable the construction of biologically informed models, and

enable these models to provide relevant and testable hypotheses of the
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computational properties and mechanisms of the cerebellum.

Delay eyelid conditioning is an important tool for investigating cerebellar

computation

Investigations of the computational properties of the cerebellum also enjoy

the advantages of well defined behaviors that directly engage the input and

output of the cerebellum (DuLac et al., 1995; Li & Lisberger, 2011; McCormick &

Thompson, 1984). Such a behavior needs well defined and controllable inputs to

the cerebellar network, and the network needs to produce clearly characterizable

behavioral output to provide the experimental foundations to test hypotheses

about the cerebellum. Ideally, the behavioral output should capture the richness

of cerebellar functions such that the behavior can be used to investigate all

aspects of cerebellar computation. The delay eyelid conditioning paradigm (figure

1.2) is one such behavior that provides the experimental basis for testing

hypotheses about cerebellar computation (Medina et al., 2000). 

The delay eyelid conditioning paradigm has been shown to directly

engage the cerebellum (McCormick & Thompson, 1984). Animals with the

cerebral cortex removed could still learn this paradigm (Mauk & Thompson,

1987), whereas animals with lesions in the cerebellum exhibited impaired

learning (Garcia et al., 1999; Lavond, Hembree, & Thompson, 1985; Steinmetz,

Logue, & Steinmetz, 1992). While the behavioral output of this paradigm does
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not reflect all of the functions in the cerebellum (such as coordination between

different muscles (Ramnani, Toni, Passingham, & Haggard, 2001; Thach,

Goodkin, & Keating, 1992; Thach, 1998)), the output does capture three

essential features thought to be useful for tuning signals for motor control:

adaptability (Kehoe & Holt, 1984; Medina, Garcia, & Mauk, 2001), timing (White,

Kehoe, Choi, & Moore, 2000), and amplitude (Kreider & Mauk, 2010). Each trial

of this paradigm presents the animal with a conditioned stimulus (CS) such as an

auditory tone. After a fixed delay to the onset of the CS, the unconditioned

stimulus (US) such as an air puff to the eye is presented to the animal. Initially,

the animal reflexively closes its eyelid after the onset of the US. However, after

many trials, the animal learns to associate the CS with the US by closing to its

eyelid to the CS prior to the onset of the US, even if the US is absent.

The delay eyelid conditioning paradigm is a useful tool for investigating the

cerebellum because the inputs to the cerebellum during the behavior have been

studied and can be manipulated (Steinmetz et al., 1989). Auditory sensory stimuli

(for the CS) have been observed with in vivo recording of mossy fibers (Aitkin &

Boyd, 1978), and the US inputs have been characterized by the Purkinje cells'

responses to climbing fiber inputs (Rasmussen, Jirenhed, & Hesslow, 2008).

Furthermore, the CS and US inputs can be replaced by stimulating mossy fibers
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Figure 1.2. The delay eyelid conditioning paradigm.  A single trial of the paradigm is shown.
The conditioned stimulus (CS, tone), is a tonic stimulus that is presented to an animal and
persists at least until the onset of the unconditioned stimulus (US, puff to the eye). After
training, the animal learns to close its eyelid to the CS prior to the onset of the US.
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(Hesslow, Svensson, & Ivarsson, 1999; Steinmetz, Rosen, Woodruff-Pak,

Lavond, & Thompson, 1986; Steinmetz, 1990) and climbing fibers (Mauk et al.,

1986) respectively, which provide effective tools for manipulating the inputs to the

cerebellum. For example, when the auditory stimuli are replaced by mossy fiber

stimulations, the stimulation (CS input) must persist until the onset of the US in

order for the animal to learn to respond (Kalmbach, Voicu, Ohyama, & Mauk,

2011). In contrast, when using an auditory tone as the CS input, the CS could

terminate well before the US onset and the animal can still learn to respond

(Trace eyelid conditioning) (Kalmbach, Ohyama, Kreider, Riusech, & Mauk, 2009;

Woodruff-Pak, Lavond, & Thompson, 1985). Given these results, it is predicted

that for auditory CS input, other brain regions are involved in providing an input

that persists though the stimulus-free interval. The ability of the cerebellum to

respond to such types of inputs was tested using dual mossy fiber stimulations

as the CS, where one stimulation terminated early and the other spanned the

stimulus-free interval. This showed that the animal could learn to respond to the

dual stimulation input (Kalmbach et al., 2011). In searching for the source of the

persistent input, the medial prefrontal cortex was shown to be necessary

(Kalmbach et al., 2009). Cells in the prefrontal cortex have been been observed

to produce persistent activity (Siegel, Kalmbach, Chitwood, & Mauk, 2012; Siegel

& Mauk, 2013) that spans the stimulus-free interval in response to the auditory

input.
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Animals trained using delay eyelid conditioning are capable of producing

specific levels of responses; the conditioned eyelid closure responses could be

partial (Kreider & Mauk, 2010). This suggests that delay eyelid conditioning can

be used to study the amplitude control of the cerebellar output, which has been

demonstrated previously in other behavior paradigms such as vestibulo-ocular

reflex (Robinson, 1976; E. Watanabe, 1984). Delay eyelid conditioning has been

used to study timing in the cerebellum because the conditioned eyelid closure

responses exhibit timing (Medina et al., 2000; Ohyama & Mauk, 2001). After

learning to respond to the CS, the animal does not close its eyelid at the onset of

the CS, but delays the response to shortly prior to the onset of the US. The

conditioned eyelid closure responses exhibit different timing with training at

different intervals between the CS and US onset (White et al., 2000). For

example the responses to 750ms interval are more delayed compared to 500ms

interval, which suggest that the cerebellum can keep track of the amount of time

that has passed since the onset of the CS (Perrett, Ruiz, & Mauk, 1993).

It is strongly suspected that the Purkinje cells are necessary to produce

these well timed responses. The four primary reasons for this are as follows. 1.

Purkinje cells are the sole output of the cerebellar cortex (Marr, 1969; Medina et

al., 2002; Ohyama et al., 2003; Simpson et al., 1996). 2. Purkinje cell recordings

during behavior show a decrease in activity immediately prior to the onset of

behavior (Jirenhed & Hesslow, 2011a, 2011b; Rasmussen et al., 2008;

18



Svensson, Jirenhed, Bengtsson, & Hesslow, 2010). 3. Optogenetic manipulations

to decrease Purkinje activity produce muscle responses (Heiney, Kim, Augustine,

& Medina, 2014). Finally, 4. lesioning the cerebellar cortex disrupt well timed

responses (Kalmbach et al., 2010; Perrett et al., 1993). 

The granule cell activity has been proposed to produce timing information

(time since the onset of the CS) for Purkinje cells. This enables Purkinje cells to

decrease activity immediately prior to the onset of the US. The granule cells were

proposed to produce timing information for the following reasons. 1. Purkinje

cells receive a large number of inputs from granule cells. 2. Granule cells convey

the input from mossy fibers (that carry the CS). 3. Plasticity at granule-Purkinje

synapses have been implicated in changes in Purkinje cell activity (Ito & Kano,

1982; Ito, 2001). 

In summary, delay eyelid conditioning is a behavior that directly engages

the input and output of the cerebellum. The behavior output of this paradigm

captures the cerebellum's ability to learn responses to new stimuli, and generate

precise amplitude output. This paradigm has shown that the cerebellum is

capable of producing well timed responses, and has been used to study the

timing mechanisms in the cerebellum. Combined with physiological and

anatomical evidence, the cerebellar granule cells have been proposed to

produce the temporal information so that Purkinje cells can learn well timed

responses. The theories of cerebellar computation relevant to timing and learning
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are discussed below.

Theoretical models for addressing computation in the cerebellum

The detailed characterization of the cerebellar network architecture and

well defined behaviors such as delay eyelid conditioning provide the tools

necessary for producing experimentally testable computational models of the

cerebellum. Based on the known cerebellar connectivity, many models of the

cerebellum attempt to hypothesize about the computational properties of two

features in the network: 1. the role of the immense population of granule cells

and their connectivity to mossy fibers and Golgi cells of the input network, and 2.

the role of Purkinje cells which receive a large number of granule cell inputs and

are the only cells receiving climbing fibers inputs. 

The first systematic model (Marr, 1969) of the cerebellum is inspired by

these features of the cerebellar architecture. The theory proposes that the

cerebellum is a learning system that can associate different mossy fiber input

patterns (that carry different information about the world) with different output.

The theory proposes that the input network is responsible for distinguishing

similar mossy fiber inputs. The output network uses the granule cell activity to

learn to associate specific mossy fiber inputs with specific responses.

For the input network, Marr's theory proposes that the connectivity

between mossy fibers, granule cells, and Golgi cells performs pattern separation.
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Specifically, The connectivity of the network enables two mossy fiber inputs that

are similar to produce activity in two dissimilar groups of granule cells. This

property arises from the connectivity from mossy fibers to granule cells; each

granule cell has four dendrites on average, and likely receives inputs from four

different mossy fibers (Ito, 1984; Palkovits et al., 1971b). Depending on the

threshold of activation for a granule cell, the cell could respond to the coincident

input of a combination of the mossy fiber inputs. The highest threshold for

granule cell activation requires all four mossy fiber inputs to activate. Each

granule cell is assumed to receive inputs from a random set of four mossy fibers.

For example, with this connectivity, two mossy fiber inputs that are 90% in

common could produce two groups of granule cell activity with 66% of granule

cells in common. This example is assuming the highest threshold for each

granule cell, which requires coincident input of all four mossy fibers for a granule

cell to activate.

However, the percentage of granule cells activated given a mossy fiber

input is very small when using the highest threshold. This is especially true when

a mossy fiber input only activates a small percentage of all mossy fibers. For

example, if a mossy fiber input only activates 5% of the mossy fibers, then the

percentage of granule cells that have four mossy fiber inputs that are in the 5% of

activated mossy fibers is 0.000625% of the granule cell population (six per million

cells), which could be too few to support learning for the output network.
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Therefore, the Golgi cells are proposed to adjust the granule cell threshold

depending on the size of the mossy fiber inputs. The feedforward connectivity

from mossy fibers to Golgi cells is proposed to support the ability of Golgi cells to

determine the size of the mossy fiber input. With a small mossy fiber input size

such as the 5% example above, the Golgi cells could decrease the granule cell

threshold (by decreasing inhibition), such that fewer coincident mossy fiber inputs

are necessary to activate a granule cell. This would increase the percentage of

granule cells active to a mossy fiber input, which could then support learning in

the output network. In contrast, if the size of the mossy fiber input is large, such

as when 30% of mossy fibers are activated, then the Golgi cells can raise the

granule cell threshold (by increasing inhibition) such that the granule cell

population is not overly active. However, decreasing the threshold of granule

cells decreases their selectivity in responding to mossy fiber inputs. For example,

a threshold that requires coincident input of two mossy fibers to a granule cell will

allow the cell to respond to six different combinations of two mossy fiber inputs.

In comparison, a threshold that requires coincident input of all four mossy fibers

will only allow the cell to be activated by a single combination of mossy fiber

inputs. Therefore, there is a tradeoff between the ability to perform pattern

separation and ensuring sufficient activity in the granule cell population for small

mossy fiber input sizes. In summary, Marr proposes that the connectivity of the

input network enables pattern separation of mossy fiber inputs in the granule cell
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activity, and that Golgi cells provide a role of adjusting the granule cell threshold

to enforce a relatively constant overall granule cell activity given different mossy

fiber input sizes.

The Purkinje cells in the cerebellar output network are unique in receiving

converging inputs from mossy fibers (by the path of granule cells) and climbing

fibers. Marr proposes that the role of the climbing fibers is to convey when the

output of the Purkinje cells are in error (a teaching signal). Given the connectivity,

Purkinje cells are proposed to use the teaching signal to modify their activity for a

given mossy fiber input by the way of modifying the granule-Purkinje synapses.

As a consequence, in subsequent presentations of the same mossy fiber input,

the Purkinje cell activity is modified, which could reduce or eliminate the teaching

signal. The pattern separation properties in the input network support the ability

of Purkinje cells to distinguish between similar mossy fiber inputs, so as to not

erroneously modify output to a potentially unrelated input. The Purkinje cell

activity is proposed to reflect the output of the cerebellum. Any changes to that

activity should reflect the changes in the granule-Purkinje synaptic strengths in

response to the teaching signal. However, it is possible for the overall granule

activity to fluctuate, which could change the activity of the Purkinje cells,

independent of the learned changes from the teaching signal. The basket and

stellate cells are proposed to normalize the Purkinje cells' activity given

fluctuating granule activity, such that any changes in the Purkinje activity only
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reflect the changes in the granule-Purkinje synapses (the learned responses). 

Plasticity at the granule-Purkinje synapses have been demonstrated

subsequent to Marr's theory (Ito & Kano, 1982; Ito, 2001; Jörntell & Hansel,

2006; Lev-Ram, Mehta, Kleinfeld, & Tsien, 2003; Wang, Denk, & Häusser, 2000).

Delay eyelid conditioning and other behaviors also strongly suggest that learning

is an essential computational feature of the cerebellum (Boyden et al., 2004;

Raymond, Lisberger, & Mauk, 1996). However, Marr's theory did not address the

ability of the cerebellum to produce well timed responses, as suggested by delay

eyelid conditioning and smooth pursuit (Li & Lisberger, 2011).

Cerebellar theories that attempt to address the temporal computation of

the cerebellum focus on the role of cerebellar granule cells in producing temporal

signals. The same anatomical observations which suggested that the granule

cells perform pattern separation in support of learning in the Purkinje cells also

suggest that granule cells are the most likely candidate to provide temporal

signals to support Purkinje cells' ability to produce well-timed responses. One of

the possibilities is that cerebellar granule cells could transform a tonic mossy

fiber input (the CS input in eyelid conditioning) into a population activity such that

different granule cells are active at different times during the input (stimulus-

temporal code) (De Schutter & Bjaalie, 2001). This in turn provides the Purkinje

cells the necessary timing information to generate responses at a specific time

(Berthier & Moore, 1986). 
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There are three categories of theories that have proposed mechanisms of

this possible transformation in the granule cell population. The first group of

theories is synfire chains (Aviel, Mehring, Abeles, & Horn, 2003; Hosaka, Araki, &

Ikeguchi, 2008; Sommer & Wennekers, 2005) and tapped delay lines (Freeman

& Nicholson, 1970), both of which rely on feedforward connectivity to produce a

chain of cells that are activated one after the other in response to a stimulus. This

feedforward connectivity could produce cells that are active at different times. A

related theory relies on the conduction velocity of granule cell axons and different

conduction lengths to achieve different delayed activity at the granule-Purkinje

synapses (Chapeau-Blondeau & Chauvet, 1991). Another group of theories

proposes that the intrinsic physiology is different between different granule cells,

such that some cells respond faster to a stimulus and others slower (Spectral

timing models) (Bullock & Grossberg, 1988; Grossberg & Schmajuk, 1989; Ulloa,

Bullock, & Rhodes, 2003). These differences in physiology could produce cells

that are active at different times. The difference in physiology could be produced

by different membrane time constants (Bullock, Fiala, & Grossberg, 1994), and/or

through other means such as different synaptic strengths at mossy fiber to

granule cell synapses (D’Angelo & De Zeeuw, 2009). The mossy fiber to granule

cell synapses have been observed to be plastic and controlled by Golgi cell

activity (Armano, Rossi, Taglietti, & D’Angelo, 2000; Mapelli & D’Angelo, 2007),

which could possibly support this model for limited time scales. The final group of
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theories proposes that granule cells act as oscillators and respond to a stimulus

with different phased delays (M. Fujita, 1982). In summary, these theories of

cerebellar timing either focus on the construction of very specific feedforward

network connectivities, or physiology of the granule cells, or local synaptic

interactions between mossy fiber, Golgi, and granule cells.

Using bottom-up simulations and eyelid conditioning to investigate

cerebellar timing

In contrast to the models that focused on the specific physiology of certain

cell types or specifically constructed connectivity, a biologically constrained

simulation by Buonomano, Medina, and Mauk (Buonomano & Mauk, 1994;

Medina et al., 2000) using a bottom-up approach suggests that the

transformation of a tonic mossy fiber input into stimulus-temporal code can be an

emergent property of the cerebellar network architecture without specifically

designed elements. The simulation modeled the observed physiology and

stochastic connectivity of the underlying cells of the network, and focuses on the

emergent properties that arise from the interactions among these cells. The

failures and successes of the simulation in reproducing eyelid conditioning

behavior have been useful for generating testable predictions in experiments

(Kalmbach et al., 2011; Medina et al., 2000). In this model, the interactions

between the granule and Golgi cell populations provide the basis for the
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emergent property of the network to keep track of time. These interactions are a

consequence of recurrent connectivity between the two cell populations. The

advantage of this model is its ability to partially reproduce the animal's behavior

without relying on any unobserved connectivity and physiology. 

However, when this model was first proposed, the available computational

power constrained the number of granule cells in the simulation to 12,000. As a

consequence, the connectivity of the simulation deviated by several orders of

magnitude from the observed connectivity among mossy fibers and granule and

Golgi cells (see (Buonomano & Mauk, 1994) for a discussion of the choice of

compromise made). This leaves the possibility that the emergent computational

properties of the input network (mossy fiber-granule-Golgi network) observed in

the constrained simulation might not be relevant to the computation performed by

these cells in the cerebellum.

In this thesis, the mechanisms of the input network for which the

cerebellum can keep track of time are revisited using a simulation that expanded

the number of granule cells by 100 fold from the constrained simulation. The

expanded simulation contains 1 million cells, which approaches the observed

connectivity in the cerebellum. Using this simulation, the mechanisms that could

transform tonic mossy fiber inputs into granule stimulus-temporal code are

investigated. Chapter 2 describes the implementation of the expanded

simulation. The connectivity and representation of the neurons are discussed.
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The algorithms that utilize graphics processing units are discussed in the context

of overcoming the 100 fold increase in computation load. In chapter 3, alternate

mechanisms and connectivity constraints for generating stimulus-temporal code

are proposed based on the results from the expanded simulation of delayed

eyelid conditioning. The interactions between granule and Golgi cells (as

suggested by the constrained simulation) are found to produce stimulus-temporal

code, but under connectivity constraints that are beyond what current

observations would support. In searching for an alternate mechanism, a recently

discovered inhibition among Golgi cells (lateral Golgi inhibition) is found to be a

possibility for producing stimulus-temporal code. This connectivity allows the

simulation to more closely reproduce animal behavior in delay eyelid

conditioning. In chapter 4, the network mechanisms of lateral Golgi inhibition are

investigated by dissecting the network in detail. The Golgi cells that are active

early during the CS input (early cells) are found to be important for producing

stimulus-temporal code. Further dissections found that Golgi cells that inhibit

early cells and not inhibited by early cells in return (nonreciprocal inhibition) are

important for producing stimulus-temporal code. The predictions from the

dissections are tested in the intact simulation, demonstrating that the dissection

analysis is relevant to network mechanisms in the intact simulation. Finally, in

chapter 5 the limitations and significance of the results are discussed. The

relevance of the methodology of using graphic processing units in high
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performance computing, and further scaling of the simulation is discussed. The

specific functional hypotheses of lateral Golgi inhibition in producing stimulus-

temporal code in the cerebellum are discussed in the context of limitations of the

model. Then, the relevance of the network computational principles discovered

by the analysis to the field of recurrent neural networks is discussed. Finally, the

approach of the analysis in dissecting the lateral Golgi inhibition network is

discussed in the context of analyzing the mechanisms and components of

complex systems in general.
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CHAPTER 2:

EXPANDING THE CEREBELLAR SIMULATION TO APPROCH THE

OBSERVED CONNECTIVITY
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Introduction

Over 99% of neurons in the cerebellum are cerebellar granule cells

(Lange, 1975). These cells receive extensive excitatory inputs from mossy fibers,

which are one of the two major input pathways into the cerebellum. Recordings

of the activities of these fibers suggest that they convey information about the

world such as sensory stimuli (Aitkin & Boyd, 1978; K Maekawa & Takeda, 1975;

Kyoji Maekawa & Takeda, 1976; Ohyama & Nores, 2003; Winfield, Hendrickson,

& Kimm, 1978), and proprioception (Fuchs & Kornhuber, 1969; Murphy, MacKay,

& Johnson, 1973). Anatomical observations of the cerebellum show that the

mossy fibers provide extensive connections to granule cells (Eccles et al., 1967;

Palkovits et al., 1971b), and a large number of granule cells converge onto

Purkinje cells (Palkovits et al., 1971c) that provide the only output of the

cerebellar cortex (Eccles et al., 1967; Palkovits et al., 1977). This connectivity

suggests that the transformation of mossy fiber inputs by granule cells might be

an important aspect of the computation performed by the cerebellum (Bullock et

al., 1994; De Schutter & Bjaalie, 2001; Marr, 1969). One such transformation is

suggested by the delay eyelid conditioning paradigm with mossy fiber

stimulations (Kalmbach et al., 2010; McCormick & Thompson, 1984). Animals

trained with this paradigm learn to close their eyelid not at the onset of the mossy

fiber stimulation (conditioned stimulus, CS). Instead, the closure is timed (White

et al., 2000) to anticipate the onset of the eyelid stimulation (unconditioned
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stimulus, US). The timing of this learned behavior can be explained if the granule

cell population responds to a tonic mossy fiber input by producing stimulus-

temporal code (where different granule cells are active at different times) (Bullock

et al., 1994; D’Angelo & De Zeeuw, 2009).

Buonomano and Mauk (1994) proposed that the granule cells can produce

stimulus-temporal code from to the recurrent interactions between Golgi cells and

granule cells, as an emergent property of the network. However, due to the

computational power available at the time when the simulation was developed,

the number of simulated granule cells was constrained to 12000. The resulting

compromises in order to maintain a sufficient number of Golgi cells and mossy

fibers to make a meaningful network for eyelid conditioning require deviating from

the relevant connectivity ratios by 1-2 orders of magnitude (table 2.1). A majority

of the deviation are primarily in the connectivity with granule cells.

Presyn:Postsyn 12K
simulation

1M simulation observed

Mossy
fiber:granule

4:80 4:2048 4.2:400-1800

Golgi:granule 4:53.3 3:3072 3-4:5000-8000

Granule:Purkinje 500:1 32768:1 80K-200K:40

Table 2.1. Connectivity ratios of the 12000 granule cell simulation, the one million granule
cell simulation, and observed connectivity.  Presyn:PostSyn: convergence ratio from pre-
synaptic cell and divergent ratio to post-synaptic cell.

Such large deviations from the observed connectivity leave the possibility

that the emergent network properties observed in this model might not be
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relevant to the actual computation performed in the cerebellum. In order to

ensure that one is studying network computation that is as relevant as possible to

the cerebellum, the observed network connectivity and structure must be

represented faithfully in the simulated cerebellar network. Therefore, the number

of granule cells must be expanded in current simulations in order to approach

biologically relevant connectivity ratios across the eyelid conditioning-associated

cerebellar network.

Simulating a million granule cells would allow the number of mossy fibers,

Golgi cells, and Purkinje cells to be in sufficient numbers and still have

biologically relevant connectivity ratios with these cells (table 1). One million

granule cells represent a near 100-fold increase in the total number of cells

compared to the previous simulation, and as such present significant challenges

in implementation. The goal is that the simulation must run sufficiently fast to

produce results overnight, in order to allow for parameter adjustments in a timely

manner. The time step in the original simulation is chosen to be 1ms as a

compromise between performance and the ability of the neuron models to

reproduce empirically observed activity. The 12000 granule cell simulation can be

executed with a speed of at least 1000 time steps a second on computers

available in 2008. At this speed the simulation typically can show learned

responses within an hour. With a 100-fold increase in the number of cells, the

same implementation would have taken roughly 100-fold amount of time to do

33



the same, which would be at least 3 days—too slow to perform necessary

manipulations in a timely fashion. 

Considering that granule cells make up more than 99% of all the cells in

the simulation, the bulk of the computation is calculating their activity and

updating their inputs and outputs. The computation belongs to the easily parallel

class of computations, where the calculation of a granule cell's activity and

input/output during a time step does not depend on the calculation of other

granule cells. Thus, all the granule cells can be processed at the same time. In

addition, the instructions for calculating the activity of each granule cell is

identical to every other granule cell, thus conforming to the single instruction

multiple data (SIMD) computation pattern (i.e., applying the same instruction to a

large array of data). Updating the input/output of the simulated granule cells also

conforms to SIMD patterns, but the memory access pattern is non-sequential and

more random. While the computation pattern is simple, the amount of data

processed to calculate granule cell activity is immense. Each granule cell

requires 128 bytes of data to describe, all of which need to be read and/or written

to per time-step. Given one million granule cells the total amount of data is

128MB. Thus, to process 1000 time steps per second, (for real time

performance) the amount of memory that needs to be transferred is 128GB per

second.

The practical limit of the size of a silicon chip that can be produced and the
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minimum size of a transistor on the chip define the transistor budget of a

processor (the maximum number of transistors possible). This budget directly

limits the computational power of a processor, and the CPU (central processing

unit) and GPU (graphics processing unit) designs represent two optimization

points that use the transistor budget differently to handle different computations.

The CPUs are optimized for processing a few, complex and non-parallel

instruction streams quickly, while the GPUs are optimized for processing same

instructions on large amount of data, which is the type of computation that

characterizes the simulation. 

The design of the CPU is to use the transistor budget on a few large

complex cores, with each core capable of processing a single stream of

instructions quickly. This design is befitting to the programming model of the

majority of existing software, where the code is designed to be executed by a

single core in sequence. This type of code can be very complex because which

instruction to execute next is determined by the result of the previous instruction,

and therefore has no potential for execution at the same time. In practice, this

type of code usually contains sections of instructions that can be executed at the

same time, and CPU designs allocate the transistor budget to detect such

sections and to execute them as quickly as possible. In addition, the transistor

budget is used on predictively loading the instructions that are yet to be

executed, so that the actual processing unit does not have to wait for the
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instructions to be loaded. The ideal memory system that provide data and

instructions to the CPU has low latency (i.e., minimum time between issuing a

command to load instruction/data from memory and receiving said

instruction/data) so to minimize the wait time while handling unpredictable access

to different parts of memory. However, low latency memory requires the memory

to be on the same silicon chip as the processor cores, which consumes the

transistor budget and limits the amount of this memory type to typically less than

32MB, which is far less than the 128MB of memory needed for the expanded

simulation. On the other hand, memory that is not on the processor chip has a

high latency but can be very large (greater than 32GB). Thus, design of the

memory subsystem of a CPU is a compromise between these two types of

memory. The design is organized in a hierarchy, with the small but low latency

memory acting as a cache for the large high latency memory. The cache stores

temporary copies of data and instructions that are frequently accessed. Memory

bandwidth (the amount of data that can be transferred per unit of time) is typically

a secondary concern, since the computations for CPUs rarely need to access

large amount of data at the same time. 

In contrast, graphics processing units (GPUs) are optimized for a different

kind of computation: performing identical instructions on large amount of data at

the same time. The transistor budget spent on a GPU core is very small, which

allows GPUs to have hundreds of processing cores. The cores are grouped
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together into clusters, and each cluster contains an instruction fetcher and cache

memory. Each core cannot fetch an instruction by itself, but relies on the

instruction fetcher in the cluster to feed the instruction to it. Thus, a cluster of

cores must perform identical instructions. To keep hundreds of cores occupied,

the memory must have high bandwidth. The bandwidth of the memory is

achieved by accessing large amount of data per transfer, and thus can achieve

between 180-300GB/s of bandwidth, as compared to 30-50GB/s for the CPU.

The performance of a GPU relies on that the computation at each core does not

depend on the result from other cores, so that all the cores can process

instructions at the same time. In this case, the GPU can be 1-2 orders of

magnitude faster than the CPU. If the computation only engages a few cores,

such as the typical computation for a CPU, the GPU would be considerably

slower. For the expanded simulation, the bulk of the computation is applying

identical instructions to large sets of data, which is suitable for engaging all

available cores on the GPU, and thus can extract maximum performance. 

The first generation of GPUs capable of general purpose computing

(GPGPU) was developed in 2006 by Nvidia (Nvidia corp., www.nvidia.com) and

AMD (Advanced Micro Devices, www.amd.com). With that generation, Nvidia

started focusing on GPGPU in an effort to exploit the potential market in super

computers. Thus, Nvidia provided the CUDA framework (Compute Unified Device

Architecture) which is a combination of Nvidia's extensions to the C language, an
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application programming interface, and compilers to write general purpose

programs for the GPU. Prior to 2006, the GPUs could only be utilized by

embedding the computation as graphics instructions, which did not cover all

necessary instructions for general purpose computing, and was very complex to

implement. The CUDA framework contained methods for memory management

on the GPUs, data transfer between GPUs and CPU, and code execution on the

GPU. These features allow the programmer to write general purpose programs

without needing to work with graphics instructions. The alternative software

framework is OpenCL, which at the time did not have as mature of a design or

documentation. In addition, AMD did not focus on GPGPU until 2012, so while

their GPUs can perform general purpose computing, these GPUs are more

complex to program. Therefore, Nvidia and CUDA were chosen as the platform

for developing the expanded one million cell simulation.

As described above, the cores on the Nvidia GPUs are organized into

clusters(Nvidia, 2014). Within the cluster, all cores must execute the same

instructions and also share the L1 cache (cache memory that is on the chip and

very close to the cores). The L1 cache allows the different cores in a cluster to

communicate with each other with very short latency. Different clusters of cores

can be considered independent of each other. Consequently, the CUDA software

architecture is designed to reflect this organization. A CUDA thread is a sequence

of instructions to be executed on a core, and threads are executed in blocks on
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clusters of cores. To be efficient, each thread block should contain at least 32

threads, which also reflects the minimum number of cores in each cluster. Each

block can contain a maximum of 1024 threads, as defined by the CUDA engine.

The programmer must decide how many threads should be in a block, which

depends on the complexity of the task and the amount of registers and temporary

variables required for each thread. The number of blocks scheduled by a

computation task is the number of threads per block divided by the number of

elements that needs to be processed for that task. The latency penalty of

accessing main memory that is off the GPU chip can be compensated if multiple

transfers occur for a large sequential block of data. In addition, the programmer

can reserve a section of the L1 cache for specific data to allow threads within a

block to perform low latency random memory access. The size of this memory is

limited to 48KB for each cluster of cores (on current hardware), but is optimized

for access in irregular and unpredictable patterns.

The algorithms in the expanded simulation utilized this organization in the

GPU to achieve 2x real time execution with 4 GPUs. The minimum average

memory bandwidth required for the expanded simulation to execute at real time

(1000 time steps per second) is 128GB/s. In practice the peak memory

bandwidth requirement is higher when computation and memory transfer cannot

occur at the same time. Assuming that computation and memory transfer each

occupies 50% of the total time, the peak memory bandwidth necessary is
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256GB/s. The GPUs currently used (Nvidia GTX690) are capable of 192GB/s of

bandwidth per GPU, with an aggregated bandwidth of 768 GB/s across 4 GPUs.

Using the 50% assumption above, the peak memory bandwidth required is

512GB/s for 2x real time execution, which is well within the limit of the

aggregated GPU bandwidth. In contrast, modern workstations only have 40 GB/s

of memory bandwidth (Intel Ivy Bridge-E). The raw computation power available

to the GPUs is also much higher: each GPU used currently has 1536 cores, in

contrast to 8-16 cores available on the CPU. However, as discussed above, fully

utilizing the cores on a GPU requires SIMD type of computation, and incurs

additional software complexity. The algorithms described below are designed to

utilize the GPU cores efficiently to achieve the 2x real time performance.

Simulation connectivity

The algorithms used to connect the cells in the simulation together is

intended to mimic the observed numerical and spatial relationships of the

connectivity in the cerebellum. The cerebellar cortical network can be considered

as two networks: the cortical input network, which contains mossy fibers, granule

cells, and Golgi cells, and the output network, which receives input from the

granule cells (but does not provide input to granule cells) and is composed of

Purkinje, basket, and stellate cells. The Purkinje cell axons form the output of the

cerebellar cortex, and connect to cerebellar deep nucleus cells that form the
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output of the cerebellum. The Purkinje cells also receive inputs from the inferior

olive in the form of climbing fibers.

Mossy fiber-Golgi-granule network

In order to produce a biologically relevant spatial and numerical

representation of the mossy fiber-Golgi-granule network, the granule cells are

represented as a grid of 512 by 2048 cells (1048576 total), which in physical

dimensions represent about 1mm2 of cerebellar cortex in the cat (estimated 1.2

million granule cells per mm2 of the cat cerebellar cortex, (Lange, 1975; Palkovits

et al., 1971b)). The Golgi cells are placed in a grid of 16 by 64 cells (1024 total),

and stretched to evenly disperse in the granule cell grid. The glomeruli are

important for defining the spatial relationship of connectivity between the cells.

These are the synaptic structures formed by mossy fiber terminals, Golgi cell

axons, Golgi cell dendrites, and granule cell dendrites, and they are placed in a

128 by 512 grid (65536 total), also evenly interspersed in the granule cell grid. 

The connectivity between mossy fibers, granule cells, and Golgi cells is

largely determined by their connectivity to the glomeruli, with the exception of

granule cell inputs to Golgi cells. To define the connectivity between these cells,

their connectivity to the glomeruli is first defined, based on which the connectivity

to the other cells can be translated.

Mossy fibers have been observed to connect to 16-40 glomeruli on
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average (Eccles et al., 1967; Palkovits et al., 1972), with each glomerulus

containing a single mossy fiber terminal (Jakab & Hámori, 1988; Spacek et al.,

1973). In the simulation, there are 2048 mossy fibers and 65536 glomeruli, and

every mossy fiber is randomly assigned 32 unique glomeruli under the condition

that each glomerulus can only have a single mossy fiber assigned to it.

Each dendrite of a granule cell have been observed to connect to a single

glomerulus (Eccles et al., 1967; Palkovits et al., 1972). On average, a granule

cell has 4 dendrites. Therefore, 4 distinct glomeruli are assigned to each granule

cell in the simulation. The average reported lengths of granule dendrites are

around 14um in cats (Palkovits et al., 1972), and up to 120um in turtles

(Mugnaini, Atluri, & Houk, 1974). However these lengths cannot be used directly

to define the span in the simulation, since the granule cell population is arranged

as a purely 2 dimensional grid in the simulation and the granule cell layer in the

cerebellum is arranged in 3 dimensions. The lengths of these dendrites impose a

constraint of locality on the connectivity between glomeruli and granule cells,

however. Therefore, the 4 dendrites for each granule cell are constrained to

connect to glomeruli that are at most 64 granule cells away from the granule cell

of that dendrite, which is a span of 4 by 4 glomeruli. Each dendrite randomly

selects 1 of these 16 possible glomeruli to connect to.

The axon of a Golgi cell has been shown to connect to roughly 40

glomeruli within the vicinity of the cell body (Palkovits et al., 1971b), with each
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glomerulus containing a single axon connection. It is unclear, however, whether

Golgi axon arborization fields overlap with each other. In the simulation, each

Golgi cell axon can connect to up to 48 glomeruli randomly chosen from 144

possibilities formed by a span of 12 by 12 glomeruli centered on the Golgi cell

body. This produces partial overlap in the Golgi axon arborizations. 

The Golgi cell descending dendrites have been observed to connect to the

glomeruli (Hámori & Szentágothai, 1966). In the simulation, the Golgi descending

dendrites also connect to the glomeruli with the same algorithm as the axons.

However, instead of 48 glomeruli per Golgi axon, the dendrites only connect to

16 glomeruli within the same glomeruli span.

After the Glomeruli are assigned for the mossy fibers, granule cells, and

Golgi cells, the identity of these assignments can then be translated to mossy

fiber to granule and Golgi cell connections, and Golgi to granule cell connections.

For example, the mossy fiber input to each granule cell is calculated by first

identifying the glomeruli that granule cell dendrite connects to, and then finding

the mossy fibers associated with these glomeruli.

The granule cell output to Golgi cells do not involve the glomeruli. Instead,

their synapses involve the granule cell axons (parallel fibers) contacting the Golgi

cell ascending dendrites (Palay, 1974). The parallel fibers from different granule

cells all traverse parallel to each other. Therefore, relative to the position of a

Golgi cell, it is possible for a granule cell that is located along the same direction
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as the parallel fiber to be much further than a granule cell that is located

perpendicular to provide input to the Golgi cell. This shapes the span of granule

cells that provide output to a Golgi cell to be a long rectangle, with the width of

the rectangle as the Golgi ascending dendrite span and the length of the

rectangle as the average length of the parallel fibers. However, the Golgi

ascending dendrite span has not been characterized, and in the simulation is

chosen to be 40 granule cells, which represented a partial overlap with

neighboring Golgi cells. The average length of parallel fibers has been

characterized to be longer than 2mm in the cat (Brand et al., 1976), and in the

simulation is chosen span across the entire length of the granule cell grid, at

2048. Within this span, 4096 granule cells are randomly chosen out of 81920

possible granule cells to connect to a Golgi cell. The number is chosen so that

the Golgi cell population samples the granule cell population 4 times, which is

consistent with the original constrained simulation.

Purkinje-basket-stellate network

The Purkinje, basket, and stellate cells all receive inputs from granule cells

and are arranged to mimic the arrangement in a functional unit of the cerebellum,

which is in a stripe perpendicular to the parallel fibers such that each cell

population received input from the entire granule population. There are 32

Purkinje cells, 128 basket cells, and 512 stellate cells in the simulation, and
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received 32768, 8192, and 2048 granule inputs respectively. The granule cells

are evenly divide among the 32 Purkinje cells, such that Purkinje cell 1 receives

inputs from granule cells 1-32768, and Purkinje cell 2 receives inputs from

granule cells 32769-65536, and so on. The plasticity at granule-Purkinje

synapses have been suggested as one of the sites of plasticity that supports

learns in the cerebellum. The granule cell inputs to basket and stellate cells are

arranged similarly.

Both basket and stellate cells have been observed to inhibit Purkinje cells,

where stellate cells inhibit parts of the Purkinje cell dendrite, and basket cells

inhibit the Purkinje cell body. In the simulation, each stellate cell inhibits a single

Purkinje cell, and a Purkinje cell receives input from 16 stellate cells. The basket

cell axons have been observed to inhibit 8-16 Purkinje cells along the same

stripe. In the simulation, each basket cell inhibits 4 Purkinje cells (due to a lack of

Purkinje cells). The Purkinje cells have also been observed to inhibit basket cells,

and in the simulation each Purkinje cell inhibits 4 basket cells.

Purkinje-deep nucleus-inferior olive network

The Purkinje cell axons are the only output of the cerebellar cortex and

inhibit deep cerebellar nucleus neurons. The deep cerebellar nucleus neurons

also receive excitatory inputs from mossy fibers (Shinoda et al., 1992), and there

is evidence to suggest that the mossy fiber to deep nucleus synapses are plastic
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and controlled by Purkinje cell activity (Ohyama et al., 2006; Pugh & Raman,

2006; Zheng & Raman, 2010). Similar to granule-Purkinje synapses, this

plasticity is also suggested to support learning in the cerebellum. The deep

nucleus neurons have been observed provide inhibition to inferior olivary neurons

(Best & Regehr, 2009; Lang et al., 1996). The axons of inferior olivary neurons in

turn provide climbing fiber inputs to the Purkinje cells, and it is thought that

Purkinje cells within a functional unit of the cerebellum receives inputs from a

similar group of inferior olivary neurons (Ito, 2000, 2006b). There are 8 deep

nucleus neurons and 4 inferior olivary neurons in the simulation. The Purkinje cell

to deep nucleus connectivity have been characterized in the cat (Palkovits et al.,

1977), however the number of Purkinje cells in the simulation is small and could

not satisfy the observed connectivity. In the simulation, each Purkinje cell provide

output to 3 deep nucleus cells, and each deep nucleus cell receives 12 Purkinje

inputs. The connectivity of the mossy fibers to deep nucleus cells have been

observed experimentally (Shinoda et al., 1992), and in the simulation each deep

nucleus cell receives inputs from 256 mossy fibers. GABAergic neurons in the

cerebellar deep nucleus have been observed to project to the inferior olivary

neurons (Lang et al., 1996). In the simulation this is implemented such that each

inferior olivary cell receives inputs from all deep nucleus cells. The inferior olivary

neurons provide climbing fiber inputs to Purkinje cells. Each Purkinje cell have

been observed to receive a single climbing fiber input (Eccles et al., 1967), and
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each inferior olivary cell has been observed to provide climbing fibers to a few

Purkinje cells (H. Fujita & Sugihara, 2013; Ito, 1984). In the simulation, each of

the 4 inferior olivary cells provides climbing fibers to 8 Purkinje cells.

Neuron representation in the simulation

The current work is intended to explore the emergent network

computational properties of the cerebellum. It is not intended to address the

specific computation of inputs by individual neurons (Mauk, 2000). As such, the

models of individual neurons in the simulation aim to provide phenomenological

representations of empirically observed neuronal activity in vivo. Thus, each

neuron is represented with a simplified iso-potential conductance model (Medina

et al., 2000). The membrane potential V m  of this model is represented by the

equation

dV m

dt
=
∑

i

g i(E i−V m)

Cm

where g i  is a conductance of the membrane, E i  is the reversal potential for g i

a n d Cm  is the capacitance of the membrane. This equation is solved by

simulation using discrete time steps as follows:

V m(t )=V m(t−1)+ΔV m(t)

and
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ΔV m(t )=∑
i

g i (t )(E i−V m(t−1))

where V m (t)  is the membrane potential at current time step t , t−1  is the

previous time step, ΔV m(t )  is the change in membrane potential at t , g i(t )  is

the magnitude of the conductance i  at t . Cm  is not explicitly modeled, but

instead is implicitly modeled in the magnitude of conductance g i . The

conductance g i  at t  is calculated as follows:

g i(t )=g i( t−1)∗decay i +s i∗input i

where decay i  is the decay constant for g i , s i  is the scaling constant for g i ,

and input i  is the total number of action potentials (spikes) that comprise the

input to that neuron at t . A free parameter s i  is included and is tuned for each

conductance. The constant decay i  is calculated as follows:

decay i=e(−Δ t / τi )

where Δ t  is the length of a time step in milliseconds, and τ i  is the decay time

constant for conductance g i  (in milliseconds) which is taken from published

experimental data. 

The length of the time step has to be microseconds in order to model the

active conductances of a spike (Lee, Neiman, & Kim, 1998). The decrease in

time step size requires a proportional increase in the number of time steps for

each second of simulated activity. This is computationally expensive and does

not necessarily improve the fidelity of these cellular models for the purposes of
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the current simulation. Thus, the representation of a spike is simplified to a

number whose value is 1 at the time step when it occurs, and 0 otherwise. A

spike occurs when V m  exceeds a threshold. To model the absolute and relative

refractory period of spikes, the threshold TH  at time step t  is computed as the

following:

TH (t )={ maxTH if AP=1
TH (t−1)−(TH (t−1)−baseTH)∗decay TH if AP=0

where AP  is 1 when there is a spike at t  and 0 otherwise. The constants

maxTH  and baseTH  are the maximum and minimum values that threshold can

reach, respectively. decay TH  is the decay constant that determines the rate that

threshold decreases toward baseTH . decay TH  is calculated as

decay TH=1−e(−Δ t / τTH)

where τTH  is the decay time constant for the threshold. The threshold reaches

maxTH  immediately after a spike, and then decays toward baseTH . maxTH is set

at or above the reversal potential of excitatory conductances and the threshold

must decay below that reversal potential in order for another spike to occur

(defining the absolute refractory period). Once the threshold is below that

reversal potential, the amount of excitatory conductance necessary for another

spike to occur decreases as the amount of time since the last spike increases

(relative refractory period).

The length of the time step Δ t  in the simulation is one millisecond, which
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provides sufficient resolution for modeling the dynamics of synaptic

conductances. This is appropriate to model the spiking patterns of cerebellar

neurons whose spiking frequency rarely exceeds 500 Hz. 

The general procedure for calculating the activity of a neuron in the

simulation for each time step is as follows: 1. calculate the number of spike

inputs for each conductance, 2. update the amplitude of each conductance, 3.

update the membrane potential V m , 4. compare V m  to threshold to determine if

a spike is generated, 5. update the threshold. The sources of input for each

conductance of each cell is specified in a connectivity array, which contains

indices that specify which cells provide input to that cell. To update the total

number of spike inputs for each conductance, the corresponding activity of the

input cells specified in the connectivity array are summed. The rest of the steps

are straightforward implementations of the equations described above.

The focus for the next section is on the division labor of implementing the

above algorithm between the GPU, which handles granule cell calculations and

the CPU, which handles basket, stellate, Purkinje, deep nucleus, and inferior

olive cells.

Granule cell calculations in the GPU

The activity of a million granule cells has to be calculated at each time

step in the GPU, which is accomplished by scheduling 2048 blocks of 512
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threads, where each thread executes the instructions for calculating the activity

of a granule cell. The activity of a granule cell i  is calculated by a thread with

index i , where index i  is calculated by 

i=IDblock∗sizeblock+ID thread

where IDblock  is the thread block index that contains the thread, sizeblock  is the

number of threads per block, and IDthread  is the index of the thread in that block. 

There are 5 variables that describe the state of a granule cell, each in 32 bit

floating point format. There are 3 variables describing the amount of excitatory,

inhibitory, and auto-inhibitory conductances, a variable for the membrane

potential, and a variable for the threshold for determining if a given membrane

potential should elicit a spike for the cell. For 1 million granule cells, there are 5

million variables. In the GPU, the variables are arranged into 5 arrays, so that the

variables describing the amount of excitatory conductances for all cells are in a

single array, the variables describing the amount of inhibitory conductances are

in another array, and so on. The thread with index i  accesses the element with

index i  in each array, with i  calculated as above. This ensures that data access

is sequential for each block of threads. The CUDA engine is free to schedule

different blocks in the order that can maximize the utilization of all the cores. An

important aspect of the algorithm is that the instructions for each thread are

identical, and are not dependent on the results from other threads. Thus, this

computational pattern satisfies the simplest SIMD pattern and can fully utilize the
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GPU. The more difficult problem is to update the inputs and outputs of granule

cells.

Updating inputs to granule cells in the GPU

Each granule cell can receive inputs from as many as 4 mossy fibers and

Golgi cells. The connectivity is specified by a matrix with a million rows and 4

columns. Each row contains the mossy fiber/Golgi cell indices that provide input

to a given granule cell. The connectivity is random but constrained by spatial

rules. The random connectivity produces random memory access patterns as the

input to granule cells are updated.

Memory latency cannot be negated when memory access pattern is

random. The main memory on the GPU is unsuitable for these kinds of access

patterns due its high access latency, which would result in the cores waiting for

data. However, the latency for the L1 cache on the GPU is orders of magnitude

lower (the specific latency varies from model to model), and so is utilized for this

task.

When the mossy fiber inputs to granule cells are updated at each time

step, the mossy fiber activity array is first transferred to the GPU from the CPU.

Each element in the array specifies whether a mossy fiber has produced a spike

at that time step. For updating granule cells, 2048 blocks of 512 threads are

scheduled on the GPU. For each block of threads, the mossy fiber activity array
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is first loaded into L1 cache. Then, each thread i  responsible for updating the

input for granule cell i  reads from row i  in the connectivity matrix. Each

element in the connectivity row specifies a mossy fiber index k , and the thread

access the k th  element in the mossy fiber activity array (now in L1 cache), and

updates the excitatory input to the granule cell according to the general algorithm

described above. Again, the instructions for each thread are identical and the

result is independent from other threads. The same algorithm applies to updating

the Golgi inhibitory inputs. 

Updating granule output to other cells in the GPU

Each granule cell can also provide output to as many as 4 Golgi cells.

Each row of the matrix that specifies this connectivity contains the Golgi cell

output targets for a given granule cell, and so has 1 million rows and 4 columns.

The algorithm for updating granule cell output is similar to updating granule cell

input. 2048 blocks of 512 threads are scheduled for this task. Each block of

threads writes to an array of integers that represent the input to Golgi cells. The

length of the array is the same as the total number of Golgi cells, and is first

loaded into L1 cache for each block of threads. For each granule cell that

produced a spike, the corresponding thread in the block will increment the

elements in the Golgi input array by 1 as specified by the connectivity matrix.

Because multiple threads may need to write to the same memory location, the

53



writing operation has to be atomic (i.e., the thread writing the data has exclusive

access to that memory location). After the threads have updated the Golgi input

array, the array is saved back to the main memory. Thus, each block of threads

produces an array of inputs to the population of Golgi cells. The final task is to

sum the 2048 arrays into a single array by summing the k th  element from each

array to produce the total input to the k th  Golgi cell. 

In addition to Golgi cells, granule cells also provide input to basket cells,

stellate cells, and Purkinje cells. Anatomical observations suggest that a row of

functionally related Purkinje cells likely receive distinct granule cell inputs. In the

expanded simulation this is also assumed to be the case for basket and stellate

cells, however the anatomical observations regarding these cells are sparse. 

There are 128 basket cells in the expanded simulation, each receiving

8192 granule cell inputs. The arrangement of the basket cells is such that the first

basket cell receives input from granule cells 1 through 8192, the second basket

cell receives input from granule cell 8192 to 16384, and so on. For each basket

cell, the total number of spikes from the 8192 granule cells that provide input

determines the change in its excitatory conductance. This requires that the

granule activity array be summed in blocks of 8192 elements. Nvidia has a

recommended algorithm for this problem, which utilizes the GPU cores to

perform summation of different parts of the array and then sum the resulting

partial sums until the final sum is achieved. A block of 1024 threads is used to
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calculate the sum of each array of 8192 elements. Each thread j  in the block is

responsible for first calculating the sum of 8 elements of the array, where the

index of each element is k∗1024+ j , with k  between 0 and 7. The resulting

1024 sums are stored in L1 cache as a temporary array. Then, half the threads in

the block (512 threads) are responsible for reducing the 1024 sums to 512

elements, with each thread summing 2 elements. 256 threads from the block

then further reduces the 512 sums to 256 elements. This process repeats until

there is only a single sum of the entire array of 8192 elements.

The granule cell input to stellate cells is computed using the same

algorithm, except that there are 512 stellate cells, each receiving 2048 granule

cell inputs. The algorithm for computing granule inputs to Purkinje cells is also

similar, with 32 Purkinje cells each receiving 32768 granule cell inputs. A key

difference is that the granule-Purkinje synapses have synaptic weights that are

individually adjustable, according to a set of plasticity rules described below.

Thus, for calculating the granule inputs to Purkinje cells, the granule cell activity

array is first multiplied by their weights before summation. 

Adjusting the weight of granule-Purkinje synapses

The weights of granule to Purkinje synapses are adjusted by rules based

on the timing of inferior olive spikes (which carries information about the

unconditioned stimulus) and the activity of the granule cells. There are 4 inferior
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olive neurons, each providing output to 8 Purkinje cells. The synaptic strength of

a granule to Purkinje synapse is reduced when the granule cell is active in the

time period 100-200ms prior to the onset of an inferior olive spike. Granule cell

activity at other times result in increased synaptic strength. As implemented here,

the synaptic strength is a scaling factor that saturates between 0 and 1, with the

initial strength set to 0.5 to allow for both decreases and increases to occur. The

actual implementation of this rule is controlled by a timer for each Purkinje cell.

This timer is reset to -200 whenever a given Purkinje cell receives an inferior

olive spike, and increments by 1 per time step. At every 5 time steps, the weights

of the granule-Purkinje synapses are adjusted. Each granule cell keeps a record

of its activity for the previous 384 ms. The weight of granule-Purkinje synapse i

for a Purkinje cell j  is adjusted by the following procedure: 1. if the timer for

Purkinje cell j  is greater than 0, then the plasticity step is set to a positive

constant (for potentiation), and if the timer is less than -100, then the plasticity

step is set to a negative constant (for depression); 2. if granule cell i  was active

exactly 200ms ago, then the granule-Purkinje synapse i  is adjusted by the

plasticity step and if granule cell i  was not active the synapse is not adjusted; 3.

if the weight of the granule-Purkinje synapse i  is less than 0 or greater than 1,

then the weight is set to 0 or 1, respectively.
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CPU calculations and communication to the GPU

The algorithms described utilize the GPU to compute the inputs to Granule

cells and the output from granule cells to other cell types. One of the reasons to

allocate the GPUs for these tasks is to minimize the data transfer between CPU

and GPU, because the data bus between CPU and GPU has a maximum limit of

16GB/s of bandwidth. However, the GPU is only responsible for calculating

granule cell activity, while the CPU is responsible for calculating the activity of

2048 mossy fibers, 1024 Golgi cells, 512 Stellate cells, 128 basket cells, 32

Purkinje cells, 8 deep cerebellar nuclei cells, and 4 inferior olivary cells in the

expanded simulation. This is because the number of cells is relatively small for

these cell types and cannot efficiently use the GPU. This division of computation

between the GPU and CPU requires only a small amount of data to be

transferred between the two processors.

For each time step, the activity of the mossy fibers (8192 bytes) and Golgi

cells (4096 bytes) is sent to the GPU so that it can update the inputs to granule

cells. The CPU in turn requests the granule cell input array to the Golgi cells

(4096 bytes), to stellate cells (2048 bytes), to basket cells (512 bytes), and to

Purkinje cells (128 bytes). All of these data combined requires at least 16.7MB/s

of bandwidth between the CPU and the GPU to execute in real time, which is far

less than the 16GB/s of bandwidth available.

The CPU is in control of which computation should be done by the GPU
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and when it is performed. This gives the CPU the ability to coordinate the GPU

calculations and CPU calculations to execute at the same time, reducing the

amount of time either processor has to wait for the other to finish. 

Summary

Buonomano, Medina, and Mauk proposed that the transformation of tonic

mossy fiber inputs into a granule stimulus-temporal population code can be the

result of the emergent network computation from the interactions between

granule and Golgi cells. The simulation that is used to generate this hypothesis is

constructed with a bottom-up approach, where the known physiology and

connectivity of different types of neurons are modeled to study the emergent

network properties. The computational power available at the time restricted the

number of granule cells that can be represented in the simulation, such that the

relevant connectivity deviated from the relevant observations by 1-2 orders of

magnitude. Such deviations could mean that the emergent computational

properties of the simulation is different from the computation performed in the

cerebellum. 

The expanded simulation described above implements one million granule

cells, which allows the relevant connectivity to approach the observed

connectivity. The technical performance challenges of this expanded simulation

were overcome by utilizing GPUs instead of traditional CPUs. Compared to
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CPUs, the GPUs are optimized for performing the same computation on a large

amount of data at the same time, and are ideal for implementing the expanded

simulation. The implementation described above overcame 2 additional

challenges: 1. updating the input and output of granule cells, which requires

random memory access pattern, and is solved by using the L1 cache memory on

the GPU, and 2. overcoming the bottleneck presented by the data bus between

the GPU and CPU by assigning the GPU to perform most of the calculation and

only sending and receiving processed data over the data bus. The expanded

simulation using this implementation is capable of executing at 2x real time, and

allowed for performing manipulations in a realistic timeframe. 
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CHAPTER 3:

MECHANISMS OF TIMING IN THE CEREBELLUM
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Introduction

The delay eyelid conditioning paradigm has been shown to directly

engage the cerebellum (Garcia et al., 1999; Mauk et al., 1986; Mauk &

Thompson, 1987; McCormick & Thompson, 1984; Steinmetz et al., 1989). This

paradigm is used to study cerebellar computational properties (Ohyama et al.,

2003). Stimulation of mossy fiber inputs to the cerebellum (Steinmetz et al.,

1989) can be used as a conditioned stimulus (CS) in place of stimuli such as a

tone or light (Ohyama & Nores, 2003). Air puffs to the eye, electrical stimulation

of the eyelid, or stimulation of the inferior olive (Mauk et al., 1986) can be used

as the unconditioned stimulus (US). For each trial of this paradigm, the CS is

presented to an animal for a fixed duration, and the US is presented at a fixed

delay after the CS onset. This delay is called the inter-stimulus interval,

abbreviated ISI. With repeated presentations of the CS-US pairing the animal

learns to close its eyelid in anticipation of the onset of the US. Importantly, after

learning, the eyelid does not close at the CS onset. Instead, the response is

delayed until shortly prior to the US onset (Kalmbach et al., 2010). The onset of

eyelid responses is different for different ISIs (White et al., 2000). For example, if

an animal is trained to 750ms ISI, the onset of the eyelid response is more

delayed compared to an animal trained to 500ms ISI. Similarly, the peak of the

eyelid response occurs at the US onset (Chettih, McDougle, Ruffolo, & Medina,

2011). The cerebellar cortex is hypothesized to be the responsible region for
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generating this timed behavior. The supporting evidence for this hypothesis is the

observation that lesions of the eyelid region of the cerebellar cortex induce

animals to respond with a short fixed delay to the CS onset, as opposed delaying

the response until prior to the US onset (Kalmbach et al., 2010). 

These observations suggest that the cerebellar cortex can keep track of

the elapsed time since the CS onset (Mauk, Medina, Nores, & Ohyama, 2000).

Furthermore, a relatively small number of mossy fibers provide inputs to a large

number of cerebellar granule cells (Eccles et al., 1967). These granule cells in

turn provide a large number of inputs to a small number of Purkinje cells

(Palkovits et al., 1971b, 1971c). Since plasticity at granule-Purkinje synapses is

likely the mechanism for producing learned responses (Ito, 2005), cerebellar

granule cells are a prime candidate for providing timing information to Purkinje

cells. 

This timing information can be in the form of stimulus-temporal code,

where different granule cells respond to the tonic CS input (figure 3.1A, top) at

different times (Bullock et al., 1994; De Schutter & Bjaalie, 2001) (figure 3.1A,

middle, stimulus-temporal code). The stimulus-temporal code of a cell population

can be measured by calculating the correlations between the population activity

at one time point to another time point (Goudar & Buonomano, 2014). A matrix of

correlation scores is produced when the population activity at all time points is

correlated to all other time points (figure 3.1B). For a population with tonic
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activity, the population activity at each time point is highly correlated with the

other time points, which produces a matrix with high correlation values at all

points (figure 3.1B top). In contrast, a population that produces stimulus-temporal

code produces a matrix with low correlation values, especially for time points that

are not close to each other (figure 3.1B, bottom, white triangle). 

Granule cell stimulus-temporal code enables Purkinje cells to decrease

their activity specifically prior to the US onset (figure 3.1A, bottom). This is

achieved by decreasing the weight of granule-Purkinje synapses for granule cells

that were active immediately prior to the US onset (Ito & Kano, 1982; Wang et al.,

2000). The decrease in Purkinje cell activity then disinhibits deep cerebellar

nucleus cells. This disinhibition allows nucleus cells to increase activity

specifically prior to the US onset. The nucleus cells in turn are necessary to drive

the eyelid response (Lavond et al., 1985).

How the cerebellar cortex can transform tonic mossy fiber input into

stimulus-temporal code has been a subject of many theories of the cerebellum.

Several of these theories propose specific elements such as different time

constants for different granule cells (Bullock et al., 1994) and axon conduction

delays (Chapeau-Blondeau & Chauvet, 1991) as the mechanisms responsible for

this transformation. In contrast, a simulation of the cerebellum by Mauk,

Buonomano, and Medina suggests that the emergent network properties can be

the mechanism for transforming tonic mossy fiber inputs to stimulus-temporal

63



code (Buonomano & Mauk, 1994; Medina et al., 2000; Ohyama, Medina, Nores,

& Mauk, 2002). The emergent network properties are the result of recurrent

interactions between Golgi and granule cells. However, in the simulation, the

connectivity ratios among granule cells, Golgi cells, and mossy fibers are two

orders of magnitude lower than anatomical observations (Buonomano & Mauk,

1994). The possibility remains that the emergent network properties discovered

in this constrained simulation may not be relevant to the computations performed

in the cerebellum. The expanded one million granule cell simulation is able to

approach the observed connectivity. Therefore, it was used to re-examine the

emergent network hypothesis from the constrained simulation as well as to

explore other possible mechanisms that allow the cerebellar network to produce

stimulus-temporal code.

The results from the expanded simulation suggest constraints on the

connectivity for recurrent interaction between granule and Golgi cells.

Specifically, for this recurrent interaction to produce stimulus-temporal code, the

number of granule cell inputs per Golgi cell must be small. This limits the

connectivity to be similar to that of the constrained simulation; this connectivity is

unlikely to be within the ranges in the cerebellum (see discussions below). The

results from the expanded simulation suggest another mechanism which could

produce stimulus-temporal code. The proposed mechanism utilizes the recently

discovered phenomenon of lateral Golgi inhibition (Hull & Regehr, 2012). Lateral
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Figure 3.1. A mechanism with which the cerebellum can generate timed responses with
eyelid conditioning. A. Top: conditioned stimulus (CS) mossy fiber input to the cerebellum as
time-invariant step function activity. Middle: this input is transformed into stimulus-temporal
code in the granule cell population, where different granule cells activate at different times.
Each row is the activity of a granule cell, normalized by the maximum activity of that cell. The
cells are sorted by the time of peak of activity. Examples of granule cells that are specifically
active early and late are on the right. Bottom: Purkinje cells can use the granule stimulus-
temporal code to learn to decrease their activity near the onset of the unconditioned stimulus
(US), which drives the timing of the eyelid response. B. Correlation score matrix of the
population activity at every time point vs. every other time point. The diagonal in the matrix is
the correlation of the time point vs. itself. The triangle contains the points that are used to
calculate a score from the matrix, which in turn reflects the quality of the stimulus-temporal
population code. Top: correlation matrix of the mossy fiber activity. Bottom: population
correlation matrix for the granule cell activity from A.
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Golgi inhibition can produce stimulus-temporal code while maintaining

biologically feasible connectivity. These results also provided constraints on the

connectivity of a recurrent network that are suitable for producing stimulus-

temporal code.

Methods 

Simulating delay eyelid conditioning

The expanded simulation contains 1048576 granule cells, 1024 Golgi

cells, 2048 mossy fibers, 32 Purkinje cells, 128 basket cells, 512 stellate cells, 8

deep cerebellar nucleus cells, and 4 inferior olivary cells. It is implemented in the

C++ programming language and utilizes graphics processing units (GPUs) as

described in chapter 2. The simulation uses a Linux system containing eight

Nvidia GTX680 GPUs. The simulation emulates delay eyelid conditioning where

the inputs are provided by mossy fiber (CS) and climbing fiber (US) stimulations.

Many mossy fibers have been observed to have background activity (Aitkin &

Boyd, 1978; Gould, Sears, & Steinmetz, 1993; Shinoda, Sugiuchi, & Futami,

1987), which is implemented in the mossy fiber inputs to the simulation. It is

assumed that when the CS is presented to the animal through mossy fiber

stimulation, only a small fraction of these fibers are activated. In the simulation,

50 (2.5% of total) mossy fibers are randomly selected to be the CS mossy fibers.

These fibers have tonically elevated activity during the CS. The mossy fiber
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activity is modeled by Poisson regenerative models (to model refractory periods

between spikes) to provide noisy inputs to the simulation. The US is modeled as

a climbing fiber spike from the inferior olivary neurons.

Data recording

The spikes that each cell generates are recorded in peri-stimulus time

histograms (PSH) for 1000 trials. Each bin in the PSH is 10ms wide. The spike

activity is recorded for the duration of the CS and for 500ms before and after CS.

The state of the simulation is also recorded, which contains the connectivity

between different cells and the internal activity state of each cell (membrane

voltage, amount of conductances, and threshold). 

Data analysis

The analysis code is written using the Python programming language

(www.python.org). The analysis utilizes Numpy (www.numpy.org) and Matplotlib

(www.matplot l ib.org) for analyzing and visual iz ing data. PyCXX

(cxx.sourceforge.net) is used to allow Python to communicate with the C++ code

from the simulation in order to load and modify data from simulation recordings.

The recorded Golgi and granule PSHs are sorted by time of peak activity to aid in

visualizing the stimulus-temporal code (Figure 3.1A, middle). The Purkinje cell

activity is recorded on a trial by trial basis, and the average population activity of
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these cells over 200 trials is displayed.

In order to quantify the stimulus-temporal code of the Golgi and granule

cell populations, Pearson's correlation coefficients are calculated for the

population activity at different time points. A geometric interpretation of Pearson's

correlation coefficient between the population activity at two time points is the

cosine of the angle between the two normalized population activity vectors

(Schmid, 1947). This measure is useful in quantifying the dimensionality of the

population trajectory (Goudar & Buonomano, 2014). If the population activity is

well correlated at all time points, the dimensionality of the activity trajectory is low

and the cell population is effectively acting as one or a few cells. Conversely, if

the population activity is not well correlated at different time points, the

dimensionality of the activity of the population is high. High dimensional

population activity is useful for producing well-timed responses by a downstream

readout cell (Buonomano & Maass, 2009; Karmarkar & Buonomano, 2007). A

correlation matrix is constructed (Figure 3.1B) where the population activity at

each time point is correlated with all other time points. To reduce the matrix to a

single measurable quantity, the average of the correlation scores between time

bins that are 250ms apart (figure 3.1B, inside white triangles) is measured, and

then subtracted from one so that a population with no stimulus-temporal code

has a score of 0 and a population with perfect stimulus-temporal code has a

score of 1. 
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Results

Timing in the expanded simulation with low granule-Golgi convergence

ratios

The constrained simulation suggests that the interactions between granule

and Golgi cells is the mechanism that transforms tonic mossy fiber input into

stimulus-temporal code in the granule cell population activity. In order to test this

hypothesis in the expanded simulation, there are two connections that must be

defined. The first connection is the inhibitory output of Golgi cells to granule cells.

The parameters for this connection were characterized by direct observations of

the average number of dendrites per granule cell (Spacek et al., 1973), the

number of glomeruli that a Golgi axon provides output to (Palkovits et al., 1971b),

and the number of granule dendrites per glomerulus (Palkovits et al., 1972). A

few observations and inferences exist to provide a basis for estimating the

connectivity ratio of the second connection; the granule excitatory inputs to Golgi

cells. Electron-microscopy observations of granule cell to Golgi cell synapses

(Palay, 1974) suggest that a Golgi cell receives 1-6 granule synapses for every

20 microns of Golgi dendrite. Histological observations show that Golgi cell

dendrites have few branches (Eccles et al., 1967; Palay, 1974), and that each

Golgi cell has 3-10 of these dendrites (Eccles et al., 1967). Assuming that each

dendrite pervades throughout the entire molecular layer of the cerebellar cortex
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(the layer with granule cell axons and dendrites from various interneurons), the

length of each dendrite should be around 300-500 microns (Eccles et al., 1967).

Thus, a Golgi cell is likely to have between 1500-5000 microns of dendrite.

Based on these estimates, a Golgi cell might receive hundreds to thousands of

granule cell inputs. Another consideration is based on the observation that there

are around 5000 granule cells for every Golgi cell (Palkovits et al., 1971b).

Therefore, if the Golgi cell population receives inputs from the entire granule cell

population, then on average each Golgi cell would receive at least 5000 granule

cell inputs. Based on these considerations, in the expanded simulation, the

connectivity ratios are set so that each granule cell provides output to up to 4

Golgi cells, and each Golgi cell receives up to 4092 granule cell inputs. However,

there is considerable uncertainty in the above estimates, and the connectivity

ratios in the expanded simulation are considered free parameters.

Figure 3.2 shows the results from the expanded simulation after training

with the eyelid conditioning paradigm. The total Purkinje cell population

responses are used to examine the ability of the simulation to produce timed

anticipatory responses. This choice is appropriate because the timed decrease in

activity reflects the cerebellar output that drives conditioned responses. In

addition, the amplitude of the decrease reflects the robustness of the responses.

The simulation performs well at short inter-stimulus-intervals (ISIs). However, the

Purkinje cells in the simulation are not able respond robustly to long intervals
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Figure 3.2. The expanded simulation with 4096 granule inputs per Golgi cell does not exhibit well
timed responses. A. Average Purkinje response to mossy fiber inputs with different intervals.
Intervals: Black: 250ms, red: 500ms, blue: 750ms, green: 1000ms. The Purkinje responses
exhibit similar onset for all intervals and are not able to produce robust responses at longer
intervals (>750ms) B. Left: Granule cell activity for 1000ms tonic mossy fiber input. The activity of
each cell is normalized to its peak activity, and the cells are sorted by time of peak activity. Right:
correlation matrix of the granule population activity at every time point compared to every other
time point. The white triangle delineates the region of the scores used for the average of the
correlation scores, (score: 0.39) see methods. C. Left: Golgi cell activity in the same simulation as
the granule cells. Right: correlation matrix of the Golgi population activity. (score: 0.03)
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(>750ms, figure 3.2A). At these longer intervals the onset of the responses is

similar to the onset of the 500ms interval. This is contrary to the behavior

observed in rabbits, where the onset of the behavior is delayed more for longer

intervals (Medina & Mauk, 1999; White et al., 2000). The granule cell population

activity shows that while some granule cells are phasically active at the onset of

the CS, many cells produce tonic activity (figure 3.2B, left). The quality of the

stimulus-temporal code is quantified by the population correlation measure

(figure 3.2B, right, and see methods), which has a score of 0.39. Similarly, the

Golgi cells exhibit tonic activity (Fig. 3.2C), with a score of 0.03 for the stimulus-

temporal code. This activity is not surprising considering that the Golgi cells are

driven by mossy fiber and granule cell inputs, and that both inputs are tonic. In

summary, in the initial expanded simulation in which each Golgi cell receives

4092 granule cell inputs, the recurrent interaction between Golgi cells and

granule cells does not produce stimulus-temporal code that can support timed

responses for long intervals. This differs from animal behavior. 

It is possible that the large number of granule cell inputs to Golgi cells is

responsible for reducing the ability of the granule-Golgi recurrent interactions to

produce a stimulus-temporal code. This possibility is explored because the exact

convergence and divergence ratios of this connectivity remain as free

parameters, as discussed previously. An error in the expanded simulation where

the granule to Golgi input calculations effectively reduce the number of granule to
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Golgi inputs to less than 256 provides additional evidence that this possibility

exists. When this error is corrected so that each Golgi cell receives 4096 granule

inputs, the ability of the expanded simulation to produce timed responses is

diminished. To systematically test this possibility, the number of granule inputs to

each Golgi cell is reduced from 4096 to 1024, 256, 64 and 16 in different

simulations to examine the effect of the reduction on the generation of stimulus-

temporal code. Figure 3.3 shows that as the number of granule inputs to each

Golgi cell is scaled down, the Golgi cell populations exhibited slightly improved

stimulus-temporal code (figure 3.3F). While the granule cell populations do not

exhibit improved stimulus-temporal code by the correlation measures (figure

3.3E), the Purkinje cells produce more robust responses, which indicates that the

stimulus-temporal code is more robust. However, the number of granule inputs

per Golgi cell (64 and 16, which is similar to that in the constrained simulation)

that show the best stimulus-temporal code in the expanded simulations is well

beyond what the existing anatomical data supports. Therefore, an alternate

mechanism where Golgi cells directly inhibit each other is explored.
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Figure 3.3. Decreasing the number of granule inputs per Golgi cell improves stimulus-
temporal code for Golgi and granule cell population.  A, B, C, D are 1024, 256, 64, and 16
granule inputs per Golgi cell respectively. Top: granule cell activity. The activity of each cell is
normalized to its peak activity. The cells are arranged by time of peak activity. Middle: Golgi
cell population activity. Bottom: averaged Purkinje cell activity. E. Correlation matrix measure
of the granule activity in A-D (see methods). F. Correlation matrix measure of the Golgi
activity in A-D.
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Lateral Golgi inhibition is a mechanism for timing in the expanded

simulation

The recurrent interactions between Golgi and granule cells are between

two cell populations, without any interaction among cells within each population.

However, studies in recurrent networks and temporal computation suggest that

direct lateral interactions among cells in the same population can be useful in

generating stimulus-temporal code (Buonomano & Maass, 2009). Such direct

lateral interactions are unlikely to exist among granule cells as suggested by

known anatomical observations (Ito, 1984). The Golgi cells on the other hand

have been shown recently to directly inhibit each other (Hull & Regehr,

2012) (lateral Golgi inhibition). This lateral interaction might be a mechanism for

producing stimulus-temporal code in the Golgi cell population activity, which can

then induce stimulus-temporal code in the granule cell population activity. For

example, a Golgi cell that is specifically active during the early period of the CS

can inhibit the early responses of granule cells such that these cells would be

active only during the late period of the CS.

There are three free parameters for implementing Golgi lateral inhibition in

the expanded simulation. These are 1. the divergence ratio of the connectivity, 2.

the convergence ratio of the connectivity, and 3. the spatial pattern of the

connectivity. The acute slice physiology used by Hull and Regehr to report this

connectivity cannot completely characterize these parameters. However, one
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suggestive clue is that the findings (Hull & Regehr, 2012) are from paired

recordings of nearest neighbor Golgi cells. The observed inhibition was a

GABAergic synaptic conductance, likely from Golgi axons to Golgi soma or

dendrites. The spread of Golgi axons in the granule layer is observed to be

largely constrained to near the Golgi soma (Palkovits et al., 1971b). Therefore,

assuming that the inhibitory connectivity comes from Golgi axons in the granule

layer, the lateral Golgi inhibition connectivity is most likely constrained to nearest

neighbors. Classical anatomical observations suggest that Golgi cells are

arranged in a regular grid (Palkovits et al., 1971b), and in the simulation the Golgi

cells are arranged in a grid where each cell had 8 nearest neighbors. Since many

connections are cut in acute slices, it is likely that the number of connections

observed (Hull & Regehr, 2012) represents an underestimate of the true

connectivity in vivo. To attempt to correct for this underestimate, the proportion of

connections that are observed to be reciprocal is used to estimate the probability

of making a connection. Hull and Regehr report that 25 pairs of cells are

recorded, each pair tested in two directions for the existence of a connection. Out

of the 50 directions tested, 10 are found to connected, with 3 reciprocally

connected pairs (i.e., 60% of the connections observed are reciprocal), which

provides an estimate of the probability of making a connection at 0.6. This

probability is implemented in the simulation as the probability of a Golgi cell

making an inhibitory output to a neighbor.
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Figure 3.4 shows that in the expanded simulation with a biologically

feasible granule-to-Golgi convergence, the addition of Golgi lateral inhibition

improves stimulus-temporal code in both granule and Golgi cell populations, as

measured by the population correlation measures and Purkinje cells responses.

The simulations used for this comparison are identical to the simulation in figure

3.2 (each Golgi cell in the simulations receives up to 4092 granule inputs), except

with the addition of lateral Golgi inhibition. The granule cells are able to produce

stimulus-temporal code that enables the Purkinje cells to learn more robust timed

responses at the longer ISIs of 750, 1000, 1500, and 2000ms (figure 3.4A).

These results are more consistent with delay eyelid conditioning in rabbits, for

which rabbits can show timed responses beyond 1000ms (White et al., 2000).

Interestingly, the ability of the expanded simulation with lateral Golgi inhibition to

learn longer intervals is in contrast to the constrained simulation, which cannot

produce timed responses at intervals longer than 750ms (Medina & Mauk, 1999).

It is possible that the improved stimulus-temporal code in the Golgi cell

population activity is partially explained by the improved stimulus-temporal

coding in the granule cell population activity. In other words, it is possible that an

improvement in granule stimulus-temporal code enables the recurrent

interactions between granule and Golgi cells to contribute to the stimulus-

temporal code. To test this possibility, the total granule input to Golgi cells is

examined. The results show that all Golgi cells received similar granule cell
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Figure 3.4. Lateral Golgi inhibition improves stimulus-temporal code in the expanded
simulation and produced well timed responses.  A. Purkinje responses to different ISIs. Black,
red, blue, green, cyan, and magenta correspond to intervals 250ms, 500ms, 750ms,
1000ms, 1500ms, and 2000ms. B. Granule cell activity in response to 1000ms tonic mossy
fiber input. Left: granule population activity. The activity of each cell is normalized to its peak
activity. The cells are sorted by time of peak activity. Right: correlation matrix of the granule
population activity at every time point compared to every other time point. The correlation
measures are taken from the white triangle to produce a score (score: 0.66, compared to
0.39 in figure 3.2B, see methods) C. Golgi cell activity. Left: population activity. Right: Golgi
correlation matrix, score: 0.14 (compared to 0.03 in figure 3.2B).
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inputs regardless of the activity of the individual Golgi cell's activity (figure 3.5).

This is unsurprising, since each Golgi cell receives input from 4096 granule cells,

so although different granule cells are active at different times (stimulus-temporal

code), the total input to each Golgi cell is tonic. This suggests that in the

expanded simulation with lateral Golgi inhibition, the interaction between granule

and Golgi cells does not play a role in producing stimulus-temporal code.

To further test if lateral Golgi inhibition is sufficient to generate Golgi

stimulus-temporal code, the Golgi cell network from the full expanded simulation

is extracted to be simulated without the granule cell population. The total

excitatory input (combined mossy fiber and granule cell inputs) to each Golgi cell

is recorded from the full simulation. The excitatory input is modified to be purely

tonic to test if lateral Golgi inhibition is sufficient to generate stimulus-temporal

code from tonic inputs. To test if lateral Golgi inhibition is necessary to generate

stimulus-temporal code, this inhibition is disabled while the excitatory inputs are

unmodified. Figure 3.6 shows that with lateral Golgi inhibition, the Golgi-only

network is capable of generating stimulus-temporal code from tonic inputs (figure

3.6A). The excitatory inputs from granule cells to Golgi cells are insufficient to

produce stimulus-temporal code without lateral Golgi inhibition (figure 3.6B).

79



Figure 3.5. The activity of Golgi cells does not reflect the inputs from granule cells for the
expanded simulation with lateral Golgi inhibition. A. Golgi cells in the simulation in figure 3.2,
without lateral Golgi inhibition. Top: Golgi cell population activity. The activity of each cell is
normalized to its peak activity. The cells are sorted by the time of peak activity. Bottom: total
granule input per Golgi cell. The total input to each Golgi cell is normalized to the peak of
input. The inputs are sorted in the same order as the Golgi cell activity. B. Input to Golgi cells
In the simulation in figure 3.4, with lateral Golgi inhibition. Top: activity of Golgi cells, bottom:
total granule input per Golgi cell.
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Figure 3.6. Lateral Golgi inhibition is necessary and sufficient to produce Golgi stimulus-
temporal code. A. A network with only Golgi cells provided with recorded tonic excitatory
inputs from the intact simulation. The network does not have lateral Golgi inhibition. Left:
Golgi cell population activity. The activity of each cell is normalized to the peak of its activity.
The cells are sorted by the time of peak activity. Right: correlation measure of the population
activity. The measures in the white triangle is used to score stimulus-temporal code (score:
0.03, see methods). B. A network with only Golgi cells and with lateral Golgi inhibition. Left:
Golgi cell activity, right: correlation measure of Golgi population activity (score: 0.13).
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Summary and discussion

The results from the expanded simulation suggest that the interaction

between granule and Golgi cells can transform tonic mossy fiber input into

stimulus-temporal code so long as the convergence ratio of granule inputs per

Golgi cell is similar to or less than the granule-Golgi convergence ratio in the

constrained simulation. While there is no direct anatomical evidence regarding

this ratio, a few electron-microscopy observations and the ratio between the

number of granule cells to the number of Golgi cells provide the foundation for an

order-of-magnitude estimation of this parameter. This estimation suggests that

the conditions imposed by the connectivity in the expanded simulation are

unlikely.

As a result, an alternate hypothesis for transforming tonic mossy fiber

input to stimulus-temporal code is examined. The recent discovery that Golgi

cells provide lateral inhibition to each other suggested the possibility that the

lateral recurrent interactions within the Golgi cell population can be the primary

mechanism for producing stimulus-temporal code. The results from the expanded

simulation show that lateral Golgi inhibition produces stimulus-temporal code.

This stimulus-temporal code yields more robust Purkinje cell responses for

significantly longer intervals between CS and US onset. This is more consistent

with rabbit delay eyelid conditioning behavior. Further manipulations of the

network show that lateral Golgi inhibition is both necessary and sufficient to
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produce stimulus-temporal code in the expanded simulation.

The results from the expanded simulation suggest constraints on the

connectivity between two populations of cells that can produce stimulus-temporal

code from tonic inputs. The limit on the number of granule inputs per Golgi cell

that could produce stimulus-temporal code imply that only a small fraction (1/64

or less) of the granule cell population participates in the interaction with Golgi

cells. More generally, the limit applies to networks where the only interactions in

the network are between two populations of cells. When the size of one

population is much larger than the other, these constraints limit the number of

cells in the larger population that can participate to produce stimulus-temporal

code.

However, these constraints only apply to situations where the interactions

are strictly between two populations of cells, where there are no direct

interactions within each population. The more likely situation is that one or both

populations have lateral interactions within themselves. In such situations, as in

the case of lateral Golgi inhibition, the above constraints no longer apply. Instead,

lateral interactions within a cell population can be the primary mechanism for

producing stimulus-temporal code (Buonomano & Maass, 2009). 

The specific functional prediction from the expanded simulation that lateral

Golgi inhibition is responsible for transforming tonic mossy fiber inputs to

stimulus-temporal code has several unknowns. First, there is no direct
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observation for the number of granule inputs per Golgi cell. Furthermore, the

spatial connectivity pattern granule inputs to Golgi cells is unknown. This leaves

open the possibility that Golgi cells receive segregated granule inputs, such that

some Golgi cells only receive granule cell inputs that are active during the

beginning of a mossy fiber input, while other Golgi cells receive granule cell

inputs that are active near the end of a mossy fiber input. Such segregated inputs

permit a relaxation of the connectivity constraints that are suggested by the

simulation. If this is the case, or if future observations show that the number of

granule inputs per Golgi cell is within the range suggested by the expanded

simulation, then the functional role of lateral Golgi inhibition would need to be

revisited.
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CHAPTER 4:

COMPUTATIONAL MECHANISMS OF LATERAL GOLGI

INHIBITION
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Introduction

The results in chapter 3 suggest that in the expanded simulation, lateral

Golgi inhibition can be the mechanism for transforming tonic mossy fiber inputs

to stimulus-temporal code. This stimulus-temporal code enables the expanded

simulation to more closely reproduce animal behavior in the delay eyelid

conditioning paradigm. For the cerebellum, this paradigm presents the

conditioned stimulus (CS) as tonic mossy fiber input, and the unconditioned

stimulus (US) is presented at a fixed delay after the CS onset. The stimulus-

temporal code that is produced from the tonic mossy fiber input enables the

simulated network to keep track of the elapsed time since the CS onset. Purkinje

cells use this stimulus-temporal code to produce responses in anticipation of the

US onset. 

The lateral Golgi inhibitiory network is similar to many recurrent networks.

Studies of these networks emphasize that recurrent connectivity in the network

can perform computation useful for keeping track of time (Buonomano & Maass,

2009; Buonomano & Merzenich, 1995, 1999; Buonomano, 2005; Laje &

Buonomano, 2013; Liu & Buonomano, 2009; Lukoševičius & Jaeger, 2009; Miller,

2003; Sussillo & Abbott, 2009; Sussillo, 2014; Toyoizumi & Abbott, 2011; Wong &

Wang, 2006). The computation is a result of the ongoing activity in a network of

cells in response to an external stimulus. The ongoing activity is the result of the

positive and negative feedback in the network (Maass, Joshi, & Sontag, 2007).
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These feedback interactions produce cells with time-varying activity, such that the

activity of different cells are decorrelated with each other. As a consequence, the

population activity is also decorrelated between different time points (Buonomano

& Maass, 2009). The pattern of population activity contains sufficient temporal

information for a downstream readout cell to keep track of the elapsed time since

the stimulus onset. The readout cell receives converging input from the entire

network, and can learn to generate temporally specific responses by adjusting

the weights of the input synapses. In contrast to networks with specifically

designed neurons or circuitry (Aviel et al., 2003; Freeman & Nicholson, 1970),

this class of models has stochastic connectivity and relies on the emergent

network properties to perform its computation (Wiechert, Judkewitz, Riecke, &

Friedrich, 2010).

However, the emergent properties of these networks present challenges in

understanding their mechanisms. Understanding the properties of the

components in the network generally provides very limited insight into the

mechanisms of the entire network, because the network properties depend on

the complex interactions among components (Funtowicz & Ravetz, 1994). These

complex interactions can render manipulations of the network difficult to interpret,

in part due to the potential ability of the network to to compensate for the

manipulations. As a consequence of these difficulties, many of these models do

not attempt to dissect the specific network mechanisms in detail. Instead, these
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analyses focus on characterizing the behavior and the structure of the network,

such as the connectivity (Laje & Buonomano, 2013) and the parameter spaces

that produces different behaviors (Ostojic, 2014).

The analysis of the lateral Golgi inhibitory network in this chapter attempts

to provide insight into the mechanisms of the network beyond describing the

properties of the network. The lateral Golgi inhibitory network is dissected in

detail, which shows that a small percentage of Golgi cells (~8%) that were active

during early part of the CS are disproportionally important for producing stimulus-

temporal code. Detailed dissections of the inhibitory sources to these early cells

suggest that the nonreciprocal inhibition is important in producing early cell

activity. The nonreciprocal inhibition is where cell A inhibits cell B, but cell B

doesn't inhibit cell A. The results from the dissections are tested in the simulation

by specifically removing the nonreciprocal inhibition to early cells (3% of the total

number of connections). This manipulation disproportionally disrupts stimulus-

temporal code in the simulation.

Methods

Manipulating Golgi network connectivity

Similar to the methods used in in chapter 3, Python, PyCXX, and Numpy

are used for analysis. PyCXX is used to interface between the analysis code in
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Python and the simulation (in C++). The simulation provides the recorded activity

of Golgi cells (as peri-stimulus histograms, chapter 3 methods) and the

connectivity matrix of the lateral Golgi inhibition network to the analysis code. The

early cells are identified by the criteria that the time of peak activity is within the

first 350 ms of the tonic mossy fiber input (CS), and that the activity at 800ms into

the CS must be at most 50% of the peak. Once the early cells are identified, the

cells that inhibit the early cells are also identified by using the connectivity matrix.

In order to test the contributions of specific connections to producing stimulus-

temporal code, the analysis instructs the simulation to add or remove specific

connections. The activity of the Golgi cell activity in the manipulated network is

recorded. The activity is used to observe the changes in stimulus-temporal code.

Producing isolated Golgi cell networks to test the contributions of

components of the network

Isolated Golgi cell networks are used to test the contributions of specific

connections for generating stimulus-temporal code in the lateral Golgi inhibitory

network. These isolated networks are used to minimize possible feedback

interactions from manipulating specific connections. The isolated networks are

extracted from intact simulations. The excitatory inputs from the intact simulations

are provided to the isolated network. These inputs are recorded from executing

the intact simulation for 1000 trials of eyelid conditioning. During the execution,

the input from granule cells and mossy fibers to each Golgi cell is recorded as
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peri-stimulus histograms. These recorded inputs are provided to the isolated

Golgi cell networks to substitute as the excitatory inputs. 

Results

Early Golgi cells are important for generating a stimulus-temporal code

The Golgi cells that respond near the onset of the CS are chosen as the

focus of analysis in order to understand the mechanism of the lateral Golgi

inhibitory network. These neurons increase their activity during the beginning of

the CS, and then decrease their activity during the late period of the CS. During

the decrease, other Golgi cells (late cells) increase their activity. Therefore, it is

possible that the activity patterns of the early cells delayed the responses of late

cells by providing inhibition and then release of inhibition to late cells. This

interaction can produce Golgi cells that respond to the CS at different times,

which results in stimulus-temporal code. If this is true, disrupting the inhibition to

early cells, such that their activity remain tonically elevated throughout the

duration of the CS, should entirely inhibit the late cell responses. This should

disrupt the stimulus-temporal code. To test this hypothesis, five simulations are

constructed, each with the same connectivity parameters but with different

specific connectivity. This is due to the stochastic nature of making the

connections (see chapter 2, Simulation connectivity for a detailed description of

the stochastic process for connecting the cells in the simulation). The reason to
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use multiple simulations is to ensure that the results are reliable. These

simulations are modified to remove all inhibition to early Golgi cells. The early

cells are defined as cells whose time of peak activity is less than 350ms into the

CS. In addition, only the early cells that decrease activity during later period of

the CS (i.e., show strong temporal coding) are selected. Overall, these cells

account for 9% of all Golgi cells in the five simulations. In another identical set of

five simulations, a matching number of Golgi cells (that are not early cells) are

randomly selected. The inhibition to these cells are removed to provide a control

comparison. If the early cells are important for producing stimulus-temporal code,

then disrupting the inhibitory input to these early cells should have a greater

impact on the stimulus-temporal code compared to disrupting the randomly

selected cells.

Prior to the manipulation, each simulation is trained for 1000 trials using

the 1000ms inter-stimulus training protocol (see chapter 3 methods). At the end

of 1000 trials, the Purkinje cells in the simulations are making robust learned

responses in anticipation of the US. The early Golgi cells are then identified, and

all inhibition to these cells is removed from the simulation. As a control, the

inhibition to a matching number of randomly selected cells are removed from an

identical copy of that simulation (but with intact inhibition to early cells). For both

manipulations, the granule-Purkinje synaptic plasticity is frozen so that the

simulations do not extinguish their acquired responses. The behavior of each
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simulation is observed for 500 trials after the manipulation, during which the

Golgi cell and Purkinje cell activities are recorded for analyzing the timing

performance and stimulus-temporal code. 

Figure 4.1 shows the representative results from one of the five

simulations. In this simulation, the inhibition to 88 early Golgi cells is removed,

which produced tonically elevated activity in the early cells (figure 4.1, compare A

to B). Disrupting the activity of these 88 cells (out of the 1024 total number of

Golgi cells in the simulation) significantly reduces the robustness and timing of

the Purkinje cell responses to the CS (figure 4.1D, compare black to red lines).

As a control, disrupting the inhibition to 88 randomly selected Golgi cells do not

affect the Purkinje cell responses to the same degree (figure 4.1C and D,

compare black to blue lines). The results from the other four simulations are

similar to that in figure 4.1. These results suggest that early cells are specifically

important for producing stimulus-temporal code, and that further analysis can

focus on these cells.
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Figure 4.1. Early Golgi cells are specifically important for producing stimulus-temporal code.
A. Unmodified simulation. Top: activity of early cells. The activity of each cell is normalized to
its peak activity. The cells are sorted by the time of peak activity. Bottom: correlation matrix of
the Golgi cell population activity at every time point compared to every other time point (see
methods, chapter 3). The correlations in the white triangle are used to calculate the score
(0.13, see chapter 3 methods). B. The simulation in A modified by removing inhibition to the
early cells. Top: activity of the same early cells as that in A. Bottom: correlation matrix of the
Golgi cell population activity, score: 0.05. C. Removing inhibition to a matching number of
randomly selected Golgi cells from the simulation in A. Top: activity of the same early cells as
that in A and B. Bottom: correlation matrix of the Golgi cell population activity, score: 0.10. D.
Average Purkinje cell activity across 200 trials for the simulations in A-C. Black: Purkinje cell
activity for the unmodified simulation (A). Red: Purkinje cell activity for the simulation that
removed inhibition to early cells (B). Blue: Purkinje cel activity for the simulation that
removed inhibition to randomly selected cells (C).
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Component analysis of the inhibition to early cells

Figure 4.1 shows that the stimulus-temporal code is disrupted when

inhibition to early cells are removed (fig. 4.1B). An important aspect of the early

cell activity is that the activity decreased during later period of the CS. This is

disrupted by removing the inhibition to these cells as shown in figure 4.1B.

Therefore, the sources of inhibition that induce early cells to decrease activity is

chosen as the focus of the analysis. To this end, a total of 274 early cells from the

five simulations from the previous section are analyzed. These early cells are

selected based on the criterion that each cell must show strong decrease in

activity during late period of the CS. The initial observations reveal two types of

inhibitory connectivity to the early cells: 2/3 of the cells that inhibited the early

cells also receive inhibition from the early cells (i.e., reciprocal connections),

while the other 1/3 of the cells show only nonreciprocal connectivity. To

investigate which connectivity is important in inhibiting early cells, each early cell

and the 1st order cells (cells that provide inhibition to the early cell) are simulated

in isolation from the rest of the network. The aim of this reductionist approach is

to determine which 1st order cells are sufficient to decrease the activity of an early

cell during late period of the CS. However, simulating an early cell and its 1st

order cells in complete isolation can result in false positives. Specifically, it is

possible that a 1st order cell can decrease the early cell's activity in the isolated

network, but cannot in the full simulation. In order to eliminate this possibility, all
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1st order cells also receive the cumulative inhibitory inputs from 2nd order cells

(cells that provided inhibition to 1st order cells). Since these 2nd order cells are not

present in the isolated network, their recorded activity from the full simulation is

given to the 1st order cells as a substitute. This method enables the isolated

network to operate under the same inhibitory environment of the full simulation.

Under this scheme, the 1st order cells receive the full inhibition as they do in the

full simulation. In contrast, the early cell only receives inhibition from the different

categories of 1st order cells outlined below. Under these conditions, the early cell

receives less inhibition than in the full simulation, whereas the 1st order cell that is

tested receives at least the same amount of inhibition as that in the full simulation.

If a selected category of 1st order cells can still decrease the activity of the early

cell in these conditions, then it should also be able to do so in the full simulation.

Each early cell is first tested with a single reciprocal 1st order cell. Figure

4.2A shows an example of the isolated network scheme. The trial activity of an

early cell is shown. The example shows a single reciprocal 1st order cell is able

to inhibit the early cell’s activity. The activity of the early cell without any inhibition

is shown (grey line) as a comparison for the decreased activity due to the

reciprocal 1st order cell (blue line) in the isolated simulation. 15 of the 274 early

cells have such a reciprocal 1st order cell. It is possible that some early cells

require the full complement of reciprocal 1st order cells in order to decrease
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activity. To test this possibility, the isolated simulation for each of the remaining

259 early cells contains all of the reciprocal 1st order cells. Only 10 of the 259

early cells (2.6%) decrease activity as the result of this configuration (e.g., figure

4.2B). In total, the early cell response pattern can only be partially replicated in

35 of the 274 cells (12.8%) by reciprocal inhibition from 1st order cells. The only

remaining candidate category of connectivity for 1st order cells is that with

nonreciprocal connectivity. For each of the 274 early cells, an isolated simulation

is constructed and contained only nonreciprocal inputs from 1st order cells. In this

configuration, 197 out of 274 cells (71.9%) show decreased activity (figure 4.2C).

These results from dissecting the components of the inhibition to early Golgi cells

suggest that nonreciprocal lateral inhibition within the Golgi cell network is the

primary factor for inhibiting early cells.
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Figure 4.2. Early cell activity in isolated simulations shows that nonreciprocal 1st order cells
are the primary factor for decreasing early cell activity.  Each isolated simulation contains an
early cell and the 1st order cell(s) of that early cell in the category that is tested. Left:
schematic of each isolated simulation. Right: activity of the early cell without inhibition (grey),
in the isolated network (blue and red), and in the full network (black). A. Isolated network
containing a single reciprocal 1st order cell. 15 out of 274 early cells decrease activity due to
a single reciprocal 1st order cell. B. Isolated network containing all reciprocal 1st order cell,
10 out of 274 early cells decrease activity due to all reciprocal cells. C. Isolated network
containing all nonreciprocal 1st order cell. 192 out of 274 early cells decrease activity due to
nonreciprocal cells.

97



Testing the necessity of the nonreciprocal inhibition to early Golgi cells for

the emergence of stimulus-temporal code

The analysis of the components of the inhibition to early cells from the

previous section suggests that nonreciprocal 1st order cells are important to

decrease the activity of early cells during late period of the CS. The decreased

early cell activity can then disinhibit the neighboring cells to allow these cells to

respond during late period of the CS. If this is the case, and if the results from the

component analysis are relevant to the emergent properties of the full network,

then specifically removing the nonreciprocal connections to the early cells in the

full simulation should disrupt the simulation's ability to produce stimulus-temporal

code. To test this hypothesis, the same five simulations used above are modified

so that all nonreciprocal inhibition to early cells is removed. This manipulation

affects approximately 3% of all lateral connections between Golgi cells. As a

control, in the same five simulations (in the unmodified state), a matching number

of reciprocal inhibitory connections to the early cells are removed. If

nonreciprocal inhibition is specifically necessary to decreasing the activity of the

early cells, then the early cell activity should be tonically elevated when

nonreciprocal inhibition is removed. The effect should be similar to removing all

inhibition to these cells (shown in figure 4.1). This effect should be stronger than

removing reciprocal inhibition. The stimulus-temporal code in the Golgi cell

population should be more disrupted with nonreciprocal inhibition removed.
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Figure 4.3B shows that removing nonreciprocal inhibition to the early cells

disrupts early cell activity and Golgi population stimulus-temporal code more than

removing reciprocal inhibition to the early cells (figure 4.3C). The Purkinje cells

are not able to to produce robust and well-timed responses (figure 4.3D,

compare blue and red lines). These results suggest that the findings from the

component analysis are applicable and relevant to the emergent properties of the

full network.

Nonreciprocal inhibition enhances stimulus-temporal code

If nonreciprocal lateral Golgi inhibition is important to generate stimulus-

temporal code within the cerebellar network, then a simulation with only

reciprocal Golgi inhibition should not be able to produce stimulus-temporal code.

To test this, a simulation is constructed with only reciprocal lateral Golgi

inhibition, but with a similar number of connections (6000) as that of one of the

unmodified simulation (5583 connections) in figure 4.3A. Figure 4.4B shows that

the simulation with only reciprocal lateral inhibition cannot produce stimulus-

temporal code. The resulting Purkinje cell behavior is similar to the simulation

without lateral Golgi inhibition (figure 4.4C). 

An extension to the previous result is that a Golgi network with only

nonreciprocal inhibition might produce better stimulus-temporal code than a
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network with mixed reciprocal and nonreciprocal inhibition. To test this possibility

and other network connectivity patterns and conditions that can all a network to

generate stimulus-temporal code from tonic inputs, hypothetical neural networks

(based on the Golgi cell network) are constructed. These networks contain a

single population of neurons with lateral inhibition to each other. These networks

are used to test various connectivity patterns. Each cell in the network received

an external excitatory input that is independent of the network, and mimicked the

excitation during the CS input in the expanded simulation. In these networks,

different connectivity patterns are tested under a range of inhibitory synaptic

strengths to explore the robustness of these networks in producing stimulus-

temporal code. The connectivity patterns tested are as follows: 1. nearest

neighbor mixed reciprocal and nonreciprocal connectivity similar to the simulation

in figure 4.4A, 2. nearest neighbor fully reciprocal connectivity similar to the

simulation in figure 4.4B, 3. nearest neighbor fully nonreciprocal connectivity, 4.

spatially unconstrained (not constrained to nearest neighbor, but instead can

connect to any cell in the network, with the constraint that the number of inputs

and outputs per cell is the same as that in the nearest neighbor cases) fully

reciprocal connectivity, and 5. spatially unconstrained nonreciprocal connectivity.

The stimulus-temporal code produced by these networks is measured by the

correlation matrix. Figure 4.5 shows that regardless of the spatial constraints of

the connectivity, fully reciprocal connectivity (figure 4.5D and E) can not produce 
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Figure 4.3. Nonreciprocal inhibition to early cells is important for producing stimulus-temporal
code. A. Unmodified simulation. Top: schematic of the type of inhibitory connectivity to the
early cells. Middle: activity of early cells. The activity of each cell is normalized to its peak
activity. The cells are sorted by the time of peak activity. Bottom: correlation matrix of the
Golgi population activity at one time point compared to another time point (see methods in
chapter 3). The measures in the white triangle are used to score the stimulus-temporal code.
(score: 0.13). B. The same simulation in A, with nonreciprocal inhibition to early cells
removed (top). Middle: activity of the same early cells as in A. Bottom: correlation matrix of
the Golgi population activity (score: 0.07). C. The same simulation in A, with reciprocal
inhibition to early cells removed (matched to the same number of connections removed as in
B). Middle: activity of the same early cell as in A and B. Bottom: correlation matrix of the
Golgi population activity (score: 0.10). D. Averaged Purkinje cell activity for the simulations in
A-C. Black: unmodified simulation, red: removed nonreciprocal inhibition to early cells, blue:
removed reciprocal inhibition to early cells.

101



Figure 4.4. Exclusive reciprocal lateral Golgi inhibition does not produce stimulus-temporal
code. A. A Simulation with mixed reciprocal and nonreciprocal lateral Golgi inhibition, similar
to the simulation in figure 4.1A and 4.3A. Top: schematics of types of connectivity in the
lateral Golgi inhibition. Middle: Golgi cell activity. The activity of each cell is normalized to its
peak. The cells are sorted by time of peak activity. Bottom: Correlation matrix of Golgi
population at every time point compared to every other time point. See methods in chapter 3.
The correlations in the white triangle are used to score the stimulus-temporal code. (score:
0.13). B. Simulation with only reciprocal lateral Golgi inhibition (top). Middle: Golgi cell
activity. Bottom: correlation matrix of Golgi population activity (score: 0.04). C. Simulation
without lateral Golgi inhibition (top). Middle: Golgi cell activity. Bottom: correlation matrix of
Golgi population activity (score: 0.03). D. Average Purkinje cell activity of the simulations in
A-C.
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Figure 4.5. Networks containing only Golgi cells show that nonreciprocal inhibition generated
stimulus-temporal code in a wide range of inhibitory synaptic strengths.  Top: the quality of
the stimulus-temporal code (as measured by the scoring the correlation matrix of the
population activities, see chapter 3 methods) of Golgi-only networks across a range of
synaptic strengths of lateral Golgi inhibition. The synaptic strengths shown are normalized to
the values initially tuned for the simulations in figure 4.1A, 4.3A, and 4.4A. Bottom: the
behavior of the networks at the selected points shown at top. First row: Golgi cell activity.
Second row: correlation matrix of the Golgi population activity. A. Lateral inhibition not
constrained to the nearest neighbor, B. constrained to the nearest neighbor, with mixed
reciprocal and nonreciprocal connectivity, C. constrained to the nearest neighbor, and only
nonreciprocal connectivity, D. constrained to the nearest neighbor, and only reciprocal
connectivity, E. not constrained to nearest neighbor, and only reciprocal connectivity.
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stimulus-temporal code within most of the inhibitory synaptic strength range. In

contrast, networks that are fully (figure 4.5A and C) or partially (figure 4.5B)

nonreciprocal can produce stimulus-temporal code in a wider range of synaptic

strengths.

Summary and discussion

The analysis in this work dissects the lateral Golgi inhibitory network (a

recurrent network) to understand its emergent properties in transforming tonic

mossy fiber inputs (the CS) into stimulus-temporal code. The early Golgi cells are

proposed to be important for this transformation, since these cells increase

activity before other cells (near the onset of the CS), and subsequently decrease

activity in late period of the CS. The decrease in activity is thought to be

important for disinhibiting neighbor cells. These neighbor cells can then respond

during late period of the CS. To test this hypothesis, all inhibition to early cells is

removed in the expanded simulation, which transformed early cell activity to tonic

activity, and severely disrupted the stimulus-temporal code. In contrast, removing

all inhibition to a matching number of randomly selected cells has little effect.

These results suggest that the inhibition to early cells is important for

transforming tonic mossy fiber input into stimulus-temporal code.

The connectivity suggests two sources of inhibition to early cells:

reciprocal and nonreciprocal. The early cells provide inhibition to the source cells
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for the reciprocal connectivity, and not for the nonreciprocal connectivity. To

determine which type of sources is important for inhibiting the early cell, the

network around each early cell is dissected individually using isolated

simulations. Each of these simulations contains an early cell and the neighboring

cells. In these isolated networks, each neighboring cell is tested individually for

its ability to decrease the early cell's activity. To eliminate possible false positives,

each neighboring cell is provided with the inhibition recorded in the full

simulation. This way the early cell only receives inhibition from the neighboring

cell being tested, while the neighboring cell receives full inhibition as in the

conditions of the full simulation. Under these conditions, if the neighboring cell

can inhibit the early cell activity, then the it should be able to perform the same

function in the full simulation. The results from these isolated simulations show

that for the majority of early cells, the nonreciprocal inhibition is important to

decrease their activity. 

A critical test of these findings is to manipulate the intact full network and

test the effects of this proportionately minor but very specific change in

connectivity on the stimulus-temporal code generated by the network. The results

from manipulations of the full simulation are consistent with the predictions from

the isolated networks. These results suggest that the analysis of the isolated

networks are relevant to the full network. Further tests of different connectivity

patterns show that simulations with only reciprocal inhibition can not produce
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stimulus-temporal code. Finally, hypothetical networks using a single population

of cells with lateral inhibition show that nonreciprocal inhibition is important for

the network to produce stimulus-temporal code in a wide range of inhibitory

synaptic strengths.

The isolated network analysis does not explain the mechanisms for which

all early Golgi cells decreased activity. Out of 274 cells, the analysis is able to

explain the sources of inhibition for a total of 217 cells, which left 57 cells

unexplained. This can be due to the limited fidelity of the isolated network

simulation in representing the inputs from the intact simulation. This is a

consequence of using the peri-stimulus histograms as the basis of the input.

Each peri-stimulus histogram represents the average activity for 1000 trials and

does not capture trial to trial variability. Therefore, peri-stimulus histograms are

not a complete representation the network activity. It is possible that further

analysis using trial to trial activity can account for the remaining 57 cells.

Despite the incompleteness of the isolated network analysis, the relevance

of its results to the mechanism of the full simulation indicates that the analysis is

insightful for the emergent properties of the lateral Golgi inhibitory network. Given

the complexity of recurrent networks and the potential existence of many

compensatory pathways, it is not expected that the predictions from the isolated

networks can be directly applicable to the mechanisms in the full network. The

results show that these predictions are applicable and suggest that the approach
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used in dissecting the individual early cells is productive. 
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CHAPTER 5:

LIMITATIONS AND SIGNIFICANCE
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Summary

The cerebellum is vital for precise motor control (Bastian et al., 2000;

Morton & Bastian, 2004; Palliyath & Hallett, 1998) and is believed to produce the

tuning signals for coordinated, smooth, and precise motor movements (Ito, 1984;

Manto et al., 2012). The information carried by such tuning signals can involve

precise amplitude and timing information (Ivry et al., 2002; Ulloa et al.,

2003) (i.e., how much output and when to produce the output). In addition, the

tuning signal may need to be adaptable to adjust to new environments and

changing conditions. The delay eyelid conditioning behavior paradigm has been

shown to directly engage the cerebellum and exhibits the amplitude (Kreider &

Mauk, 2010), timing (Kalmbach et al., 2010; Perrett et al., 1993), and adaptability

(Garcia et al., 1999) properties of the cerebellum. Therefore, this paradigm has

been used as a powerful tool for understanding the computational properties of

the cerebellum.

An important property of the delay eyelid conditioning behavior is that

animals learn to produce well-timed responses given a tonic mossy fiber input as

the (Aitkin & Boyd, 1978; Hesslow et al., 1999) conditioned stimulus (CS). After

training, an animal does not respond at the CS onset, but delays its response

(White et al., 2000) until shortly prior to the onset of the air puff to the eye

(unconditoned stimulus, US). This aspect of the behavior suggests that the

cerebellum is capable of keeping track of the elapsed time since the CS onset
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(Medina et al., 2000). Previous constrained simulations by Buonomano, Medina,

and Mauk (Buonomano & Mauk, 1994; Medina et al., 2000) have suggested that

the emergent properties of the cerebellar network can transform tonic mossy

fiber inputs into stimulus-temporal code in the granule cell population. This

stimulus-temporal code can be used by the Purkinje cells to generate timed

responses. The emergent properties are dependent on the stochastic

connectivity between Golgi and granule cells, without specifically designed

circuitry or cellular properties beyond the existing observations of the cerebellum.

However, when the simulation is first constructed, the limitations of the

computational power available constrained the simulation to only contain 12000

granule cells, and greatly departed from the observed connectivity. These

constraints leave the possibility that the emergent properties of the constrained

simulation are not relevant to the computations performed in the cerebellum. The

current work expands the simulation to over a million cells to approach the

observed connectivity. This expanded simulation is used to further investigate

possible mechanisms for transforming tonic mossy fiber inputs into stimulus-

temporal code.

The expanded simulation incorporates over a million cells which

represents a nearly 100 fold increase in the number of cells compared to the

constrained simulation. The amount of computation required by this expanded

simulation is proportionally increased by 100 fold. For the expanded simulation to
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be used practically, its speed needs to be within the same order of magnitude as

the constrained simulation. This is achieved using graphics processing units

(GPUs) to handle the increased computational load and allow the expanded

simulation to perform at the same speed as the constrained simulation. This

allows for timely implementations of manipulations.

Using this expanded simulation, the question of how the cerebellar

network can keep track of time is revisited. Specifically, the network interactions

that can transform tonic mossy fiber inputs into stimulus-temporal code are

investigated. The results from the expanded simulation suggest that the recurrent

interactions between granule and Golgi cells (as the constrained simulation

suggests) are effective only when the number of granule inputs per Golgi cells is

small, beyond what the existing anatomical observations support.

In searching for alternate mechanisms that can transform tonic mossy

fiber inputs to stimulus-temporal code, a newly discovered inhibition among Golgi

cells (lateral Golgi inhibition) is shown by the expanded simulation to be a

possible mechanism. This lateral recurrent interaction provide a mechanism for

producing stimulus-temporal code in the Golgi cell population, which then induce

stimulus-temporal code in the granule cell population. Using this mechanism, the

expanded simulation is able to produce robust responses for long CS-US

intervals beyond 750ms and up to 2000ms, which better reproduced animal

behavior.
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To understand the mechanisms of lateral Golgi inhibition, the Golgi

network is dissected. Immediately after the onset of the CS input, a set of Golgi

cells (early cells) responded by increasing their activity, and then decreasing

activity during late period of the CS input. It is possible that the activity patterns of

the early cells can delay the responses of other cells by providing inhibition and

disinhibition. Since the early cells respond first to the CS input, disrupting their

activity such that these cells remain elevated throughout the CS input should not

allow other cells to become active. As a consequence, the stimulus-temporal

code is disrupted. This is observed in the expanded simulation, where disrupting

the early cell activity is more effective than disrupting a matching number of

randomly selected Golgi cells. Using isolated Golgi network simulations, it is

found that the cells that provide nonreciprocal inhibition to early cells are

important to decrease early cell activity during late period of the CS input. The

predictions from the isolated network results are tested by specifically removing

the nonreciprocal inhibition to early cells. These tests reveal that removing

nonreciprocal inhibition to early cells disrupt the stimulus-temporal code more

effectively than removing a matching number of reciprocal inhibition to early cells.

Finally, to examine if nonreciprocal inhibition is generally important for

transforming tonic input into stimulus-temporal code, hypothetical single layer

networks are constructed with different connectivity patterns of lateral inhibition.

These networks show that while pure reciprocal inhibition can produce stimulus-
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temporal code in a very limited range of inhibitory strength parameters,

nonreciprocal inhibition allow the network to produce stimulus-temporal code that

is robust in a wide range of inhibitory strength parameters.

The following sections discuss the limitations and significance of the

results from this work. First, the relevance of the computational methodology to

further scaling the simulation and the broader field of high performance

computation is discussed. Second, the specific functional hypothesis regarding

lateral Golgi inhibition is discussed in the context of the limitations of the

approach of the simulation. Third, the connectivity constraints identified by this

work is discussed in the context of the recurrent network field. Finally, the

approach in this work that dissected and analyzed the lateral Golgi inhibition

network is discussed in the context of recurrent networks and more generally,

complex systems.

Implications for future scaling the simulated cerebellar network

The expanded simulation contains over a million cerebellar granule cells to

approach the observed connectivity in the cerebellum. The significant increase in

computational load is handled by utilizing graphics processing units (GPUs) to

achieve 2x real-time performance for practical use. The number of cells

represents roughly 1mm2 of cerebellar cortex and is likely only a fraction of the

cells in a microzone (hypothesized to be the functional units of the cerebellum) in
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larger animals such as the cat and rabbit (Ito, 2000). However, the algorithms

utilized in the simulation can scale further to construct simulations with more

cells. The algorithms are not limited by the number of granule cells that can be

represented, but rather the number of Golgi cells and mossy fibers that must be

implemented to maintain a biologically relevant connectivity ratio. This is due to

the limited size of the fast on-chip memory in the GPU, which is used by the

simulation for updating the mossy fiber and Golgi cell inputs to granule cells. For

example, the number of mossy fibers is scaled from 2048 to 8192 when the

granule cells are increased from one million to four million, which requires four

times the amount of on-chip memory. The latest GPU hardware constrains the

number of mossy fibers and Golgi cells to 262,144 fibers and 32,768 cells

respectively. These constraints allow for 128 million granule cells to be

represented. Multiple GPUs are necessary for the performance of such a

simulation to be practical. The current implementation provides the algorithms to

utilize multiple GPUs.

The current implementation of the expanded simulation allow near linear

performance scaling when using multiple GPUs. The speed of the expanded

simulation doubles when using two GPUs compared to one GPU, and doubles

again when using four GPUs compared to two GPUs. However, scaling to eight

GPUs only achieves the same speed as four GPUs. On the other hand, when the

simulation is expanded to four million cells, it is able to utilize eight GPUs to
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achieve the same speed as the one million cells simulation with two GPUs. This

is consistent with linear performance scaling with size. Given these scaling

results, a system with eight newest generation GPUs (GTX Titan X) should be

able to execute a simulation with 128 million granule cells at between 1/16 to

1/64 realtime. The cost of such a system is between $16,000 to $20,000 US

dollars. 

Given the current estimates, 128 million granule cells account for half of

the rat cerebellum (~260 million granule cells) (Korbo, Andersen, Ladefoged, &

Møller, 1993) and 1/20 of the cat cerebellum (~2 billion granule cells) (Palkovits

et al., 1971b). A simulation of this size spans a significant portion of cerebellar

cortex and across multiple functional areas in many species, and can be used as

a tool to investigate coordinations between these areas. These investigations can

illuminate the gaps in the knowledge about the cerebellar architecture and its

computation properties in more complex tasks.

Utilizing graphics processing units for high performance computing

The algorithms utilized in this simulation demonstrate the feasibility of

using massively parallel hardware to simulate neural networks. The cerebellum

architecture provides advantages in that the granule cells do not interact with

each other directly. If the granule cells directly interact with each other, especially

over long distances, the number of granule cells that can be feasibly modeled
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would be much smaller. However, even in that context utilizing the fast on-chip

memory of the GPU can still yield performance increases compared to the

traditional processors (CPUs). 

The trend in modern supercomputers is to increasingly incorporate GPUs

along with CPUs (www.top500.org). This trend suggests that the future of high

performance computing is in a hybrid model with a few CPU cores to handle

complex tasks and the GPUs (or other parallel co-processors) to handle simple

tasks that are data heavy. The concepts implemented in this simulation utilize this

hybrid system to achieve maximum performance, and are likely to be relevant for

the foreseeable future in high performance computing.

Simulation predictions of the timing mechanism in the cerebellum

The results from the expanded simulation provide a hypothesis for the

functional role of lateral Golgi inhibition in transforming tonic mossy fiber inputs to

stimulus-temporal code to support well-timed learned motor responses. The

hypothesis predicts that 1. electrophysiological recordings from Golgi cells in vivo

during eyelid conditioning with mossy fiber stimulations should exhibit temporally

varying activity, and that recordings from different Golgi cells should show

different temporal patterns of activity, and 2. disabling the inhibitory conductance

in Golgi cells should produce Golgi cell activity that is tonic, and animals should

fail to learn well-timed responses in anticipation of US onset in delay eyelid
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conditioning.

If disrupting the inhibitory conductance in Golgi cells do not result in tonic

Golgi activity, then it is possible that the interactions between granule cells and

Golgi cells are be important in producing a stimulus-temporal code. In this case,

the results from the expanded simulation suggest that the number of granule

inputs per Golgi cell must be small in order for this interaction to be effective. This

can be examined with more detailed anatomical observations of the average

number of Golgi cells that a granule cell outputs to. More directly, this can be

examined by observing the number of granule inputs each Golgi cell receives. If

the number of inputs is much lower than current estimates, then the functional

hypothesis for lateral Golgi inhibition needs be reevaluated. 

However, when evaluating the relevance of these predictions to the

computation performed by the cerebellum, there are several limitations that must

be considered. The nature of these limitations is not specific to this work, but to

theories in general. 

First, while the current understanding of cerebellar computation suggests

the possibility that the granule cell population produces a stimulus-temporal code

in response to a tonic mossy fiber input, direct experimental observations of

granule cell activity is sparse (Jörntell & Ekerot, 2006). The existing evidence is

insufficient to support or refute the hypothesis that the granule population actually

produce stimulus-temporal code during delay eyelid conditioning. This is partly
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because the difficulty in recording granule cell activity in vivo, due to their small

size, dense packing, and lack of activity. The most promising technique to

observe the granule population activity is likely in vivo calcium or voltage imaging

which can observe many cells at once. 

Second, the relevance of the simulation to the biological system remains a

concern. While the expanded simulation has one million granule cells and so can

approximate the known connectivity ratios within an order of magnitude, key

connectivity parameters are not exactly characterized, such as the number of

granule inputs per Golgi cell. The connectivity of granule cell output to basket

and stellate cells (cells that receive granule inputs and inhibit Purkinje cells) has

been observed (Eccles et al., 1967), but without sufficiently precise connectivity

parameters. In addition to these connectivity, the uni-polar brush cells (Diño et

al., 2000; Dino et al., 2000; DiÑO et al., 1999; Nunzi & Birnstiel, 2001) and

Lugaro cells (Lainé & Axelrad, 2002; Melik-Musyan & Fanardzhyan, 2004) are

not modeled in the simulation, due to a lack of data about their connectivity

parameters and spatial distribution. It is possible that these cells play an

important role in the recurrent interactions in the network to produce stimulus-

temporal code.

The simulation is incomplete in capturing the known physiology of the

cerebellum (Armano et al., 2000; D’Angelo, De Filippi, Rossi, & Taglietti, 1995;

D’Angelo & De Zeeuw, 2009; Nieus et al., 2006; D. Watanabe & Nakanishi, 2003).
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It has been shown that Golgi cells have electrical synapses (gap junctions) in the

distal dendrites (S. J. Mitchell & Silver, 2003; Vervaeke et al., 2010, 2012).

Models using these gap junctions suggest that these junctions play an inhibitory

role by relaying the after-hyperpolarization of an action potential to the

neighboring cell, which hyperpolarizes the neighbor (Vervaeke et al., 2010).

However, in the current simulation, the after-hyperpolarization is not explicitly

modeled, and would require a significant change in the method to represent

neurons. In addition, the neurons in the current simulation are modeled as iso-

potential point neurons, so cannot capture the spatial distribution of these gap

junctions. It is possible that the interactions between the electrical coupling and

inhibition among Golgi cells are important for generating stimulus-temporal code.

In addition to the limited Golgi cell physiology, the simulation only

implements two sites of synaptic plasticity, at granule-Purkinje synapses and

mossy fiber-deep cerebellar nucleus synapses. However, plasticity has been

observed in almost all other synapses in the cerebellum (Hansel, Linden, &

D’Angelo, 2001; Kenyon, 1997; Rancillac & Crépel, 2004; Robberechts,

Wijnants, Giugliano, & De Schutter, 2010), such as mossy fiber to granule cell

synapses (D’Angelo & De Zeeuw, 2009). These observations lack sufficiently

detailed parameters for these synapses, therefore in the simulation they are

modeled as non-plastic connections. It is possible that plasticity at these

synapses can play a role in shaping the stimulus-temporal code that is not
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captured in the simulation.

Third, the delay eyelid conditioning behavior that the simulation attempts

to model is not consistent across species. The biological predictions from the

expanded simulation are in the ability of the cerebellum to generate stimulus-

temporal code for time scales beyond 500ms, which is fitting for modeling eyelid

conditioning in the rabbit (White et al., 2000). However, the rabbit appears unique

in its ability to perform eyelid conditioning at long intervals that are not observed

in mice (Chettih et al., 2011). Of interest is that the data that the simulation uses

is from multiple species: cat cerebellum for connectivity (Palkovits, Magyar, &

Szentágothai, 1971a; Palkovits et al., 1971c, 1972), rat and mice cerebellum for

physiology (Chadderton et al., 2004; V Chan-Palay & Palay, 1972; Galliano et al.,

2010; Holtzman, Rajapaksa, Mostofi, & Edgley, 2006; Wang et al., 2000), and

rabbit for delay eyelid conditioning behavior (Medina et al., 2000; Medina &

Mauk, 2000). The inconsistency of delay eyelid conditioning among different

species, and the fact that the simulation uses data across species, suggest that

the simulation might not be closely relevant to any species.

The final concern regarding the simulation's relevance to the biological

system is the approach of constructing the simulation. The detailed

characterization of the cerebellar network connectivity and cellular physiology

allows both the constrained and expanded simulation to be constructed with a

bottom-up approach. This approach models the individual components of the
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network by empirical approximations in order to study the emergent property of

the network itself (Mauk, 2000). A fundamental aspect of this approach to

maintain biological relevance depends on reliable empirical approximations of the

underlying components. In this case, these approximations are of the activity of

different cell types in the cerebellum. However, beyond Purkinje cells with

relatively well characterized activity in various conditions in vivo (Bell & Grimm,

1969; Gilbert & Thach, 1977; Jirenhed & Hesslow, 2011a; Rasmussen et al.,

2008), the other neurons in the cerebellum remain to be characterized in more

detail. One group has attempted to relate the recorded activity of various cell

types in the cerebellum by juxtacellular labeling (Ruigrok, Hensbroek, &

Simpson, 2011; Simpson, Hulscher, Sabel-Goedknegt, & Ruigrok, 2005) .

However, these recordings only provide a snapshot of the activity of these cells in

a very restricted context, and at best provide a single data point for

approximation. Given these limitations, it is possible that the empirical

approximations of these cells in the simulation are not representative of the

biological system, which can limit the biological relevance of the emergent

properties observed in the simulation. On the other hand, it has been suggested

that at least in certain networks, some of the emergent properties are robust for a

range of parameter values for the underlying cells (Prinz, Bucher, & Marder,

2004).

The nature of the limitations discussed above are not unique to this work,
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since simulations and models are necessarily simplified systems that typically do

not capture all of the complexity in the biological system. However, the specific

biological predictions derived from this particular simulation should be considered

in the context of these limitations.

Network connectivity properties illustrated by the simulation

 The constrained simulation of the cerebellum by Buonomano and Mauk is

one of the early models in the field of theoretical Neuroscience that focused on

the computational power and properties of recurrent neural networks. This field

has emphasized the computation power of recurrent interactions in a network of

neurons (Buonomano, 2005; Couey et al., 2013; Laje & Buonomano, 2013; Liu &

Buonomano, 2009; Lukoševičius & Jaeger, 2009; Sussillo, 2014; Toyoizumi &

Abbott, 2011; Wong & Wang, 2006), especially for generating complex temporal

output. With recurrent interactions, each neuron in the network can produce a

pattern of activity that is decorrelated from other neurons (Wiechert et al., 2010).

When perturbed by a stimulus, the network responds by propagating the

perturbation throughout the entire network through the recurrent connections

(Maass, Natschläger, & Markram, 2002; Yamazaki & Tanaka, 2007). The

interactions among neurons in the network through these connections transform

the stimulus into complex patterns of activity for each neuron. A downstream

neuron that receives input from all the neurons in the network can generate any
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output activity pattern by adjusting the synaptic weight of individual inputs. It

should be emphasized that for this to be possible, the patterns of activity among

neurons in the network must be decorrelated (Laje & Buonomano, 2013).

Following the footsteps of the constrained simulation, the results from the

expanded simulation further contribute to this field by specifying the constraints

on the connectivity that can contribute useful recurrent interactions for generating

stimulus-temporal code. The first constraint is that when the recurrent interaction

in the network is strictly between two populations of cells (no lateral recurrence

within each population), the recurrent connectivity is effective in generating

stimulus-temporal code when the convergence ratio is low (i.e., each cell in either

population only receives a few inputs from cells of the other population). This

constraint is especially relevant when the size of the two populations are very

different, such as Golgi cells and granule cells. In that case, the consequence of

the constraint is that only a few cells in the larger population can participate in the

recurrent interactions to produce stimulus-temporal code. The second constraint

is that in networks with purely inhibitory lateral recurrent connectivity, the

connectivity that are nonreciprocal (i.e., cell A inhibits cell B, but not vice versa) is

important for the network to produce stimulus-temporal code. While the

probability of reciprocal connectivity is low when there are no spatial constraints,

in spatially constrained connectivity the probability of reciprocal connectivity is

much higher. In these spatially constrained networks, the necessity of
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nonreciprocal connectivity is relevant for constraining the sparsity of the network

connectivity.

 

Decomposing the Golgi network and its relevance to complex systems

 In analyzing the mechanisms of Golgi lateral inhibition that transformed

tonic mossy fiber input into stimulus-temporal code, the early cells are found to

be important. The network is manipulated by eliminating all inhibition to these

cells, which disrupted the stimulus-temporal code. The inhibition to each early

cell is then dissected in detail, and the nonreciprocal inhibition is found to be

important in inhibiting early cells. Finally, the results from the dissection are found

to be relevant to the full network by selectively eliminating the nonreciprocal

inhibition to early cells in the intact simulation. It is conceivable that the principle

of nonreciprocal connectivity can be discovered by directly manipulating the

intact network to eliminate nonreciprocal inhibition and entirely avoid the detailed

dissections of early cells. However, the detailed dissection approach itself has

relevance to understanding recurrent neural networks and complex systems in

general. In analyzing the components of the network, the effort to eliminate false

positives in the analysis of the isolated networks provides an exercise in

analyzing the deconstructed components of a complex system. A complex

system (Barrat, Barthelemy, & Vespignani, 2008), by definition is a system that is

difficult to understand by evaluating its underlying components. Complex
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systems tend to have many components that have non-linear complex

interactions with each other (Funtowicz & Ravetz, 1994). Decomposing the

system into smaller systems can result in a drastic change in the interactions due

to the change in connectivity, such that the behavior of the smaller system does

not provide insight to the full system (Barrat et al., 2008). Such complex systems

are common in many areas of biology, and understanding their mechanisms

presents significant challenges due to the interactions among the components.

The approach used in this work to simulate isolated Golgi cell networks while

eliminating false positives provides an insightful exercise in considering how to

decompose a complex system so that the resulting components can still be

relevant to the full system. The fact that the results from the isolated networks are

relevant to the full network is an unexpected surprise, given the number of other

recurrent connections that can potentially compensate for the removal of a few

connections. The result that removing a few specific connections within a large

and relatively complex network can indeed disrupt the emergent stimulus-

temporal code suggests that the result from the decomposed networks is indeed

relevant to the emergent properties of the intact system. 

It should be noted however, that the current approach is able to identify

the components of the connectivity that are specifically important, but does not

provide a complete answer to the emergent mechanisms of the network. In

addition, this approach to identify the network components likely will be most
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insightful for network connectivity that does not have any obviously important

components. For example, this approach would be unnecessary for a network

whose neurons are strictly connected in a chain. In that case, disrupting any link

in the chain would disrupt the behavior of the network. Finally, the approach in

this work is specific to analyzing this simulation network, and benefitted from

well-defined components (focusing specifically on early Golgi cells) and well

defined questions (sources of inhibition that can decrease early Golgi cell's

activity). The generality of this approach appears promising but remains to be

tested in other complex systems.
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