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The present work addresses issues related to the derivation of reduced

models of atomistic systems, their statistical calibration, and their relation

to atomistic models of materials. The reduced model, known in the chemical

physics community as a coarse-grained model, is calibrated within a Bayesian

framework. Particular attention is given to developing likelihood functions,

assigning priors on coarse-grained model parameters, and using data from

molecular dynamics representations of atomistic systems to calibrate coarse-

grained models such that certain physically relevant atomistic observables are

accurately reproduced. The developed Bayesian framework is then applied

in three case studies of increasing complexity and practical application. A

freely jointed chain model is considered first for illustrative purposes. The

next example entails the construction of a coarse-grained model for a liquid
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heptane system, with the explicit design goal of accurately predicting a vapor-

liquid transfer free energy. Finally, a coarse-grained model is developed for an

alkylthiophene polymer that has been shown to have practical use in certain

types of photovoltaic cells. The development therein employs Bayesian deci-

sion theory to select an optimal CG potential energy function. Subsequently,

this model is subjected to validation tests in a prediction scenario that is

relevant to the performance of a polyalkylthiophene-based solar cell.
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Chapter 1

Introduction

As computational capabilities have increased, so too has the demand

to simulate physical phenomena over a tremendous range of length and time

scales. The atomic and molecular scale1 is a particularly important appli-

cation area for computer modeling and simulation due to the difficulties of

experimental and analytical methods at the molecular level. The challenge for

computer codes here is a great one as well. Ab initio quantum chemistry com-

putations promise accuracy in the prediction of electronic structure for one

or a few molecules, but their complexity restricts their application to small

systems.

Molecular mechanics methods significantly expand simulation range by

using parameterized potential energy functions in a classical mechanics frame-

work. In this case, the dynamics of a molecular system consisting of N atoms

are simulated by approximately solving the Newton equations,

mi r̈rri = −∇iU, i = 1, . . . , N, (1.1)

where mi and rrri are the mass and position vector of the ith atom and U is

the potential energy function. It is also necessary to supply initial conditions

1Roughly speaking, length scales from one angstrom up to several nanometers
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for atom positions and velocities. A popular approximation scheme for solv-

ing Newton’s equations in molecular dynamics (MD) is the velocity Verlet

integrator which is defined by the steps,

rrri(t+ ∆t) = rrri(t) + ∆t ṙrri(t) +
(∆t)2

2mi

FFF i(t)

ṙrri(t+ ∆t) = ṙrri(t) +
∆t

2mi

(FFF i(t) +FFF i(t+ ∆t)) .

(1.2)

Here, FFF i(t) is the force acting on atom i at time t as determined by the relevant

gradient of the potential energy function. The ∆t quantity indicates the size

of the timestep used and is often on the order of one femtosecond. This time

scale is set in reference to covalent bond vibrational modes which are generally

the highest frequency motions encountered in MD simulations.

We note here that the exact equations of motion conserve total energy,

with the velocity Verlet scheme doing so in an approximate sense. It is often

the case, however, that one is interested in the behavior of an atomistic sys-

tem when thermodynamic properties other than total energy are constrained.

Simulations at constant temperature or pressure are useful examples, as these

constraints more closely resemble the empirical scenarios frequently studied.

For a description of such scenarios, we appeal to the results of equilibrium sta-

tistical mechanics. Here, a molecular system is viewed stochastically, with the

relative likelihood of atomic configurations and momenta given by probability

distributions. A canonical example is found in the case of a temperature con-

straint on a system with a fixed volume and number of particles. In thermal

equilibrium at temperature T , the probability density for the configurational
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states is given by the Boltzmann formula,

%(rrr) =
exp {−U(rrr)/kbT}∫
exp {−U(rrr)/kbT} drrr

, (1.3)

where rrr represents a configuration of position vectors for all particles in the

system and kb is Boltzmann’s constant. The denominator in eq. 1.3 is gener-

ally referred to as a partition function. Observable, thermodynamic quantities

are now expressed as averages over the statistical mechanical probability dis-

tribution,

〈g〉 =

∫
g(rrr)%(rrr) drrr, (1.4)

where g is a general property depending on configuration. It is possible to

augment the Newton equations of motion to include constraints in such a way

as to generate the associated statistical mechanical equilibrium distributions

in the limit of long time2. Time-stepping schemes derived from the modified

equations of motion are then understood, assuming sufficient decoupling from

initial conditions, to provide samples that are approximately distributed ac-

cording to Boltzmann-type probability rules. Thus, the quantity in eq. 1.4 is

practically estimated via the Monte Carlo approximation,

〈g〉 ≈ 1

Ns

Ns∑
j=1

g
(
rrr(j)
)
, (1.5)

where the rrr(j) are MD samples of configuration, ideally independent of each

other, and Ns is the number of samples comprising the mean value calculation.

2We note here that the system must satisfy the ergodic hypothesis in order for this
statement to be true. That is, long time averages must be equivalent to “spatial” averages
over the relevant phase space.
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From the preceding discussion, it is clear that the potential energy func-

tion, U , is of fundamental importance since it determines molecular dynamics,

and equivalently when in equilibrium situations, the probability density for

configurational states. In an atomistic model, the potential energy is a func-

tion of atom configuration as well as a set of free parameters that must be

calibrated from experimental data, ab initio simulation, or some other ostensi-

bly more accurate model. In order to simulate systems of millions or billions of

atoms, the atomistic model can be reduced to a yet simpler model by grouping

multiple atoms into single sites. This procedure is known as “coarse-graining”

and the resulting reduced model is known as a “coarse-grained model.” In this

text, we restrict our study to coarse-grained (CG) models that are derived from

a source atomistic model, termed the “all-atom model.” The task we consider

in depth is that of determining a potential energy function for a CG model

when given a well-defined procedure for mapping all-atom configurations into

the coarse representation. The identification of such a mapping provides a

basis on which we may compare predictions of the CG model with those of the

all-atom model.

In principle, if one is provided the all-atom potential energy, UAA, and

a mapping M that produces CG configurations from all-atom configurations,

then one has a statistical mechanical expression (e.g. in the canonical ensem-

ble) for the corresponding CG potential energy,

exp {−UCG(RRR)/kbT} ∝
1

ZAA

∫
ΓAA

exp {−UAA(rrr)/kbT} δ (RRR−M(rrr)) drrr,

(1.6)
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Figure 1.1: An example coarse-grained model of a heptane molecule. The top
image shows the original all-atom system with CG groups identified by circles
while the bottom image shows the resulting CG model

where rrr andRRR denote all-atom and CG configurations, respectively, ZAA is the

all-atom configurational partition function, and ΓAA denotes the all-atom con-

figurational phase space. The δ function notation indicates that the integra-

tion is over the portion of the all-atom configuration space in which M(rrr) = RRR.

Therefore, eq. 1.6 merely states that the CG canonical ensemble probability

of state RRR should be proportional to the sum over the all-atom probabilities

of states consistent with CG configuration. Denoting the right side of eq. 1.6

by PAA(RRR), we then have,

UCG(RRR) = −kbT logPAA(RRR) + const. (1.7)

With UCG in hand, molecular dynamics simulations can be undertaken using

the reduced model. The coarse-grained potential defined in eq. 1.7 has the
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property that its negative gradients with respect to CG particle positions are

related to the mean all-atom forces acting between CG particles, where the

mean is taken over the all-atom configurations consistent with R [72]. For

this reason, UCG is termed a potential of mean force (PMF). We return to

this very important result in more detail later in the chapter. While the

PMF is a convenient interpretation for the coarse-grained potential, eq. 1.7 is

unfortunately a many bodied term that cannot be reasonably calculated for

most systems of practical interest. Thus, many coarse-graining approaches

seek to approximate this PMF with simpler, more easily computable terms.

Several of these approaches are reviewed in the following section.

1.1 A Survey of Relevant Literature

1.1.1 All-Atom Models

We begin with a selection of popular all-atom models utilizing molec-

ular mechanical potentials. Research related to the validation and calibration

of atomistic “empirical energy functions” goes back several decades. Promi-

nent projects in this area include CHARMM (Chemistry at HARvard Macro-

molecular Mechanics) [15], AMBER (Assisted Model Building and Energy

Refinement) [79, 108], and OPLS (Optimized Potentials for Liquid Simula-

tions) [45, 46], all of which consist of a potential energy functional form and

a tabulated set of parameters for evaluating the potential energy in different

molecular environments.

The energy formulas and parameter tables differ between CHARMM,
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AMBER, and OPLS; however, the general character of the potential is common

to all three. In all cases, the energy function is split into a sum of “bonded”

and “non-bonded” parts. Interactions between atoms connected through a se-

ries of one, two, or three covalent bonds are contained in the bonded terms of

the potential. The non-bonded portion contains interactions between atoms

not connected through any series of covalent bonds and interactions between

atoms connected by three or more covalent bonds. Non-bonded interactions

are expressed as a sum of van der Waals dispersion and Coulomb-type elec-

trostatic functional forms.

The potential energy parameters of CHARMM, AMBER, and OPLS

are determined from a combination of experimental data and ab initio simula-

tion. All three packages contain tables that give several values for each poten-

tial energy parameter depending on the molecular environment. An example

of this environmental dependence is found in the CHARMM carbon-carbon

equilibrium bond distance parameter. As this distance depends on the type of

molecule the bond is in, CHARMM tabulates several values for it. For general

alkanes (single bond between carbons), the distance is 1.53 Å, while it is 1.34 Å

for general alkenes (double bond between carbons) [106]. The carbon-carbon

equilibrium distance is tabulated for many other specialized environments as

well.

The described atomistic models are derived and calibrated in such a

way as to be useful for a wide variety of molecular systems with different

chemical compositions and thermodynamic states. In some cases, a model
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specific to a particular set of molecules or chemical environment is desired.

We encounter some particular examples of specialized atomistic models in the

final chapters of this dissertation, but, in general, we utilize the 2005 revision

of the OPLS potentials [6].

1.1.2 Coarse-Grained Models

Coarse-graining procedures have a relatively long history. For example,

the Flory-Huggins lattice fluid model, which predicts thermodynamic proper-

ties of polymer solutions using a parameterized interaction between monomer

and solvent units on a lattice, dates back to the early 1940s [27, 32]. Other rela-

tively early examples of coarse-graining include the so-called “extended atoms”

in the original versions of CHARMM and OPLS. Extended atom models sim-

plify hydrocarbon representation by grouping carbon atoms and their attached

hydrogen atoms into single sites [15, 45]. These models were originally pub-

lished in the 1980s and the modern incarnations of CHARMM, AMBER, and

OPLS still include extended atom models3.

The modern notion of a general, parameterized CG model designed for

use in a computer simulation is exemplified in a 1990 publication by Smit et

al. [102]. In the aforementioned work, the authors present an off-lattice CG

model of a water-oil interface that is commonly cited as the first of its kind for

a lipid system. The Smit model is a prototype for much of the current work

in CG modeling. In the remainder of the subsection, we review a selection of

3Although modern versions refer to these as “united atom models.”
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more contemporary CG models and calibration methods.

A general atomistic model calibration approach based on reproduction

of mean forces from a higher resolution model is published in a 1994 paper by

Ercolessi and Adams [24] and extended by Izvekov et al. in a 2004 publication

[35]. These calibration methods are generally referred to as “force matching”

methods. Force matching algorithms are developed for CG model calibration

in a pair of papers by Izvekov and Voth from 2005 [36, 37]. In these works,

the authors postulate parameterized CG potential energy functions and then

calibrate them by choosing parameters that minimize the squared difference

between all-atom force data and CG predicted forces at CG sites under compa-

rable thermodynamic conditions. The authors and their collaborators refer to

their calibration scheme as the “multiscale coarse-graining” (MS-CG) method.

A wealth of literature details the extension and application of MS-CG to the

simulation of various macro-molecular systems [33, 34, 38, 57, 96, 110]. Of par-

ticular interest is a 2008 publication in which Noid et al. show that the MS-CG

method is part of a general theoretical framework for deriving CG models that

are “physically consistent” with their source all-atom models [72]. Mullinax

and Noid further derive an “extended ensemble” formalism for the MS-CG

method in a publication from 2009 [69]. The extended ensemble framework

enables CG model calibration that is, in principle, transferrable between sys-

tems with different atomistic topologies.

Another prominent CG model calibration method is the so-called “Boltz-

mann inversion” algorithm published by Reith et al. in 2003 [84]. The Boltz-
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mann inversion procedure computes effective interaction potentials between

CG sites using an iterative algorithm driven by the discrepancy between all-

atom and CG pairwise potentials of mean force. The pairwise potential of

mean force (PMF) is defined in statistical mechanics as the potential energy

consistent with the average force along the lines connecting the centers of two

fixed particles, or sites, where the average is taken over the ensemble of config-

urational states for the remaining n− 2 particles. The PMF is closely related

to another important quantity called the pair correlation function (PCF). In

the statistical mechanical theory of materials, a PCF is a measure of the prob-

ability of observing a particle at a coordinate q relative to a given reference

particle. One can show that the PMF, w, is related to the PCF, g, via

w(q) = −kbT log g(q), (1.8)

where the variable q represents a generalized coordinate, such as a distance

or an angle, that characterizes the pair interaction. The Boltzmann inversion

algorithm begins with an initial guess for the CG interaction potential, v0(q),

and then updates the potential at the ith step according to,

vi+1(q) = vi(q)− kbT log

(
gi(q)

g(q)

)
, (1.9)

where g is the PCF predicted by simulating the all-atom system and gi is

the PCF that results from simulating the CG system with interaction po-

tential vi. The potential update is thus given by the difference between the

all-atom and CG PMFs for the targeted interaction. Iteration terminates

when the difference, vi+1 − vi, is smaller than some specified tolerance. It
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follows that, at convergence, the targeted interaction in the CG system ap-

proximately matches the all-atom PMF, and therefore, also the PCF predicted

by the all-atom model. PCFs approximately determine some of the thermo-

dynamic properties of a system4, thus it can be desirable to reproduce them

in CG models. There are a variety of applications in the literature that utilize

Boltzmann inversion for CG model calibration [8, 44, 47, 88, 100]. Chapter 13

of McQuarrie’s statistical mechanics text provides a readable background on

pair correlation functions and potentials of mean force in the context of liquid

systems [66].

Other notable methods for systematically determining effective CG in-

teraction potentials include the reverse Monte-Carlo (RMC) method and the

conditional reversible work (CRW) method. RMC methods are developed in a

series of papers starting in 1988 [60, 61, 65] and applied to CG model calibra-

tion in a 2003 paper by Lyubartsev et al. [59]. The RMC method in the latter

publication iteratively adjusts an effective interaction potential between CG

sites until the PCF associated with the targeted interaction, which is predicted

by a Monte-Carlo simulation of the CG system, converges to that predicted by

the all-atom model. In contrast, the more recently developed CRW method

[13, 14] non-iteratively determines a CG interaction potential between a pair

of CG sites by computing the reversible work, in the all-atom system, asso-

ciated with introducing interactions between the atomic constituents of the

4The pair correlation function exactly determines many system thermodynamic proper-
ties in the case of a pairwise additive potential energy function.
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CG sites. CRW is essentially a PMF framework, as the reversible work done

by introducing new interactions is related to the difference in PMF between a

system in which the interactions between the CG sites of interest are excluded

and one in which these interactions are included. The authors of CRW argue

that the CG potentials produced by their method are transferable between dif-

ferent chemical and thermodynamic environments because their potentials are

based on the free energies of effective pair interactions in the all-atom setting.

However, we note that the authors assume a pairwise, additive CG potential,

thus limiting the utility of the method.

Another general CG method of contemporary interest is M. S. Shell’s

relative entropy minimization method. Shell’s 2008 publication introduces his

method in the context of a target system and model system [93], where the

model system is some reduced representation of the target system. The au-

thor notes the importance of reproducing the statistical ensemble of the target.

Shell argues that the model optimally represents the target when the relative

entropy, expressed as,

Srel =
∑
i

pT (i) log
pT (i)

pM(M(i))
+ Smap, (1.10)

is minimized. In (1.10), p(i) is the probability of configuration i in an ensem-

ble, and T and M denote the target and model ensembles, M maps target

structures into the model representation, and Smap is the so-called mapping

entropy which is not dependent on the model probability. In the case that the

target and model ensembles are canonical, the configuration probabilities have

12



simple forms related to Boltzmann factors. The author exploits the canonical

structure to derive an optimality condition for a model potential energy, UM ,

that is parameterized by a collection of adjustable values, {λi}ki=1. Specifically,

the relative entropy expression in (1.10) is minimized when UM satisfies, for

all i, 〈
∂UM
∂λi

〉
M

=

〈
∂UM
∂λi

〉
T

, (1.11)

where 〈·〉M denotes a canonical average in the model ensemble and 〈·〉T is

an average in the target ensemble. Shell then proposes a Newton-Raphson

type iteration, coupled with MD simulation, to solve for the model parameter

values that satisfy (1.11). In a later paper [17], Chaimovich and Shell suggest

that the relative entropy framework provides a mechanism for reducing errors

due to coarse-graining in observable quantities. If X is some observable that

can be predicted from knowledge of the configuration in the all-atom and

CG systems, then the authors suggest adding the term aX(R), where a is a

tunable parameter and R represents CG configuration, to the CG potential

formulation. Then, due to (1.11), there is the optimality condition for X,

〈X〉CG = 〈X〉AA. (1.12)

Chaimovich and Shell note that more terms can be added to the CG potential

energy to recover higher moments of the observable, X. In a 2012 publication,

Carmichael and Shell extend the relative entropy minimization framework with

a trajectory re-weighting scheme that accelerates the MD sampling procedure

used to evaluate relative entropy gradients [16]. In the same paper, they ap-

ply the trajectory re-weighting algorithm to a set of CG models of a peptide,
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where the CG potential energy function includes bonds described by harmonic

springs and angle, torsion, and non-bonded terms that are represented by cubic

splines. Thus, the calibration procedure determines the relative entropy-based

optimal spring stiffnesses and lengths as well as the values of the other inter-

actions at spline knots.

The methods reviewed so far are systematic attempts to calibrate gen-

eral CG models of atomistic systems. Also of interest, however, are CG meth-

ods that employ a combination of expert intuition regarding the system of

interest and systematic technique to produce CG models that reproduce spe-

cific, observable features of an atomistic model. A highly cited example of

such is a CG model of a phospholipid and water system developed by Shelley

et al. in a 2001 publication [94]. The authors first construct a CG model of

water with the requirements that the model carry momentum in a way that

is consistent with hydrodynamics, have the correct density, and have a liquid

phase over the correct temperature range. They point out that their choice of

model to meet the requirements is not unique, but nevertheless, will suit their

purposes. To this end, they select a Lennard-Jones form to characterize the

inter-molecular interactions between CG water particles and then calibrate the

two Lennard-Jones parameters in a heuristic way that gives good agreement

with experimental values of density and boiling temperature for water. In con-

structing the CG model of the phospholipid, the authors note that non-bonded

interactions between the hydrophilic components of the molecule are crucial

to obtaining the desired behavior. Thus, they take a systematic approach

14



to determining this set of interactions, using a Boltzmann inversion type of

iteration scheme to derive the potentials for CG sites that are expected to

be hydrophilic. More heuristic methods are used to model and calibrate the

alkane chain parts of the phospholipid molecule. The authors and their collab-

orators derive similar CG models of lipid systems in subsequent publications

[95, 97].

Another example of a set of application specific coarse-graining meth-

ods is found in the MARTINI project, which has attained relative prominence

as a framework for constructing CG models of biomolecular systems. The orig-

inal version of MARTINI, authored by Marrink et al. and published in a series

of papers beginning in 2004 [62, 63], consists of a CG lipid model with spe-

cific CG potential energy formulas chosen by the authors and a tabulated set

of parameters characterizing these potentials. The MARTINI model param-

eters are determined such that the resulting CG systems reproduce certain

atomistic thermodynamic quantities, particularly oil/water partitioning free

energies. The authors report using a trial and error procedure to select pa-

rameters such that the room temperature experimental densities, the mutual

solubility of oil and water, and relative diffusion rates are reproduced. More

recently, MARTINI has been extended to proteins [67] and carbohydrates [58].

As in the original MARTINI model, these models are calibrated primarily from

atomistic partitioning free energies.
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1.1.3 Model Calibration, Validation, and Uncertainty Quantifica-
tion

A substantial part of the present work involves the application of stan-

dard results from the field of verification, validation, and uncertainty quan-

tification (VV/UQ), particularly in the context of computer simulations in

mechanics and physics. Much of the philosophy behind verification and vali-

dation is reviewed in a 2004 publication authored by Babuška and Oden [3].

Many of the technical terms common to the VV field are also defined in the

aforementioned 2004 paper. The authors further describe model VV and il-

lustrate its application with a few case study problems from solid mechanics

and heat transfer in a 2005 publication [4]. The intertwined concepts of model

validation and uncertainty quantification are reviewed in a pair of documents

by Oden et al. in 2010 [75, 76]. In particular, these documents describe the

quantification of uncertainty in a Bayesian framework. Bayesian ideas about

probability and scientific inference are vital to the development of this dis-

sertation document. We specifically cite the work of Edwin T. Jaynes as a

strong philosophical influence on our application of Bayesian calibration and

uncertainty quantification techniques [40, 42]. Further description of VV/UQ

methods and philosophy can be found in [1, 74, 85].
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1.2 Fundamental Theorems of Coarse-Graining

In this section, we review the consistency results, originally presented

by Noid and Shell, that motivate the multiscale coarse-graining method/force

matching and relative entropy minimization methods. The basic results therein

are fundamental because they identify the theoretically optimal CG potential

energy function, given a mapping from all-atom to CG configuration. In a

mathematical sense, they give conditions for the almost everywhere equality

of the statistical mechanical probability density functions associated with a

CG representation and its source all-atom model.

We begin by defining the push-forward PDF of the all-atom statistical

mechanical probability by the CG mapping function, M,

M∗%AA(RRR) =
1

ZAA

∫
exp {−UAA(rrr)/kbT} δ (RRR−M(rrr)) drrr. (1.13)

Intuitively, this quantity is the PDF on the configurational states of the CG

representation that is implied by the all-atom potential energy function. Noid

has noted that if a CG potential energy can be found such that %CG = M∗%AA,

then this potential is optimal, in a rigorous sense, because it results in a

CG probability measure that reproduces all-atom measurements in the CG

configuration space [72]. The basic theorem of Noid is the identification of

this optimal potential with a potential of mean force arising from the CG

mapping:

Theorem 1.2.1 (Noid). Let M be a center-of-mass mapping of the all-atom

configurations into a CG representation such that each atom belongs to one,
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and only one, CG bead. Furthermore, let I label an arbitrary CG bead and

also represent an index set over the atoms assigned to the bead. If %CG is

the statistical mechanical PDF implied by the CG potential UCG, then %CG =

M∗%AA almost everywhere if and only if the CG potential energy satisfies,

−∇IUCG(RRR) =

∫ (∑
i∈I −∇iUAA(rrr)

)
exp {−UAA(rrr)/kbT} δ (RRR−M(rrr)) drrr∫

exp {−UAA(rrr)/kbT} δ (RRR−M(rrr)) drrr
,

(1.14)

for all I and a.e. RRR.

Proof. A version of this theorem, with more general assumptions on the CG

mapping, is proved in detail in ref [72]. The crux of the proof is an integration-

by-parts that transforms derivatives with respect to RRR into derivatives with

respect to rrr.

This result shows that the optimal CG forces follow from an averaging proce-

dure involving the net all-atom forces acting on each bead. For a given RRR, this

averaging happens over the portion of the all-atom configuration space that

conserves the given CG configuration.

We now consider Shell’s relative entropy minimization method and elu-

cidate its connection to Noid’s PMF. Shell’s algorithm seeks to minimize the

expression,

Srel =

∫
%AA(rrr) log

(
%AA(rrr)

%CG(M(rrr))

)
drrr + 〈Smap〉AA, (1.15)

with respect to the CG statistical mechanical probability density, %CG. The

quantity Smap is termed the “mapping entropy” and is a function of the all-
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atom potential and the CG mapping, but not the CG potential. Its all-atom

average is given by,

〈Smap〉AA =

∫
%AA(rrr) log

{∫
1(rrr′) δ (M(rrr′)−M(rrr)) drrr′

}
drrr, (1.16)

where 1 simply denotes the indicator function on the whole all-atom configura-

tion space. Thus, the quantity in the curly braces is related to the degeneracy

of the CG map.

Theorem 1.2.2. If a CG potential exists such that Srel = 0, then %CG =

M∗%AA almost everywhere.

Proof. We first show that %CG◦M can be renormalized by the argument of the

mapping entropy to obtain a PDF on the all-atom configuration space. This

is shown by a simple change of variables,∫
%CG(M(rrr))

exp(Smap(M(rrr)))
drrr

=

∫
%CG(RRR)

exp(Smap(RRR))

{∫
1(rrr) δ (RRR−M(rrr)) drrr

}
dRRR

= 1,

(1.17)

where the quantity in curly braces is the differential volume element associated

with the variable change. Thus, the mapping entropy factor cancels out and

the original integrand is normalized. Let %MCG(rrr) = %CG(M(rrr))/ exp(Smap(M(rrr))).

It follows that,

Srel =

∫
%AA(rrr) log

(
%AA(rrr)

%MCG(rrr)

)
drrr

≡DKL

(
%AA ‖ %MCG

)
,

(1.18)
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where DKL denotes the Kullback-Leibler divergence [52]. Due to the Gibbs

inequality5, it follows that Srel = 0 if and only if %AA = %MCG in an almost

everywhere sense. If the latter is true, then we can integrate over the all-atom

space associated with an arbitrary CG configuration to obtain,

M∗%AA(RRR) =

∫
%MCG(rrr) δ (RRR−M(rrr)) drrr

= %CG(RRR).

(1.19)

Corollary 1.2.3 (Relationship between Noid and Shell Optimal Potentials).

Let M satisfy the same conditions as in thm. 1.2.1. If a CG potential exists

such that Srel = 0, then this potential is, up to an additive constant, the Noid

PMF.

It is interesting to note that the converse of corollary 1.2.3 is not generally

true. That is, the Noid PMF as the CG potential does not necessarily imply

Srel = 0. The basic reason for this is that Srel is equivalent to a Kullback-

Leibler divergence in the all-atom configuration space between the all-atom

PDF and a renormalized version of CG PDF that assigns the same proba-

bility density to every all-atom configuration belonging to the same pullback

set, M−1(RRR). This is shown in the proof of theorem 1.2.2. In order for this

Kullback-Leibler divergence to be zero, the all-atom probability density would

5The Gibbs inequality is the result that DKL(%1‖%2) ≥ 0, with equality if and only if
the two PDFs are equal on sets with measure greater than zero. In order for the DKL to
be well-defined, it is also necessary to assume that if %2 = 0 on some set, then %1 vanishes
on this set as well.
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also have to make a constant assignment on these pullback sets. Thus, the

Shell condition of Srel = 0 is also a restriction on the all-atom probability den-

sity. It is important to observe, then, that Shell’s globally optimal condition

on the CG potential is not necessarily equivalent to that of Noid.

The preceding development begs the question: If the Noid PMF is the

rigorously optimal CG potential, what is the use of any CG potential opti-

mization technique that does not reference some kind of convergence to this

PMF? The answer therein is related to practicality of actually computing the

Noid PMF. Here, it is of vital importance to understand that the PMF is, in

general, an M body potential when the CG system consists of M beads. The

algorithms used by Noid and Shell are designed to converge in a subspace of

the function space containing the true PMF. This approximation space often

consists of additive potentials that are functions of a single, one dimensional

generalized coordinate, due to practical computing limits. As the true PMF

will not generally be in the span of the basis functions defining this approxi-

mation space, force-matching and relative entropy minimization in practice do

not have control over the residual between their subspace optimal potentials

and the rigorous PMF; that is, these methods do not determine the PMF to

arbitrary precision. The implication of this statement is that these methods

will not necessarily result in a CG potential that is able to reproduce a chosen

observable of the all-atom model to the degree of precision set by the modeler.

Thus, there is space within the field of CG potential optimization for methods

that are practical in reference to the eventual prediction scenarios intended by
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the designers and end-users of a particular CG model. The work presented in

this document seeks to exist in that figurative space.

1.3 Document Overview

We propose a Bayesian framework for calibrating atomistic coarse-

grained models that is driven by both observable information and principles of

physical consistency. More specifically, the likelihood function of the Bayesian

framework quantifies CG information about a specific set of observables rel-

ative to data gathered from an all-atom model. We intend these observables

to be chosen according to expert intuition regarding the intended prediction

scenarios of the CG model. The Bayesian prior information in our framework

is determined from loose principles governing the physical consistency of the

CG model with respect to the all-atom model.

The next chapter of this document describes theoretical aspects of ap-

plying Bayesian statistics to the coarse-graining problem. Of primary concern

here is the assignment of likelihood functions and prior probability. The fol-

lowing chapter presents a case study involving CG calibration of a short chain

molecule model. The final two chapters consider increasingly complicated sce-

narios where the Bayesian theory is applied, and augmented where necessary,

to produce CG models that are able to predict quantities of practical inter-

est in the realm of chemical physics. Chapter four considers a liquid heptane

system wherein the eventual quantity of interest is a free energy of vapor-to-

liquid trasfer. Finally, chapter five addresses a thiophene polymer that has
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been shown to have practical use in the design of certain kinds of photovoltaic

cells. Here, we construct a CG model that is designed to accurately predict

structural quantities believed to be related to the efficiency of power generation

in devices utilizing certain types of thiophene polymer.
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Chapter 2

A Bayesian Theory of Coarse-Grained Model

Calibration

In this chapter, we develop a Bayesian framework for calibrating a

coarse-grained model of an atomistic system relative to a prescribed observ-

able. The theory is developed in a general form with implementation details

left to a later chapter. The major goal here is to describe the model calibration

problem in an abstract setting and then to detail the ingredients of a Bayesian

formulation, the prior and the likelihood function, as they apply to the CG

model calibration procedure .

2.1 Model Calibration Concepts

We define an abstract mathematical model according to,

A(θ, S, u(θ, S)) = 0. (2.1)

A(·) is the collection of operators, constraints and conditions that define the

mathematical form of the model. The set of parameters needed to characterize

the model are contained in θ. These are the “degrees of freedom” of the model.

We generally assume that the parameters can take on values in a subset of a

real vector space, θ ∈ Θ ⊆ Rk, for a model with k parameters. The scenario, S,
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is a description of the environment in which the model is expected to operate; it

specifies the domains, initial/boundary conditions, and data source terms. The

state variable, u(θ, S), is the solution of (2.1) for given parameters and scenario.

As an example, consider a Lennard-Jones type atomistic system of identical

particles in a microcanonical ensemble. The model formula, A, consists of

differential operators derived from the application of Newton’s Second Law

to each particle in the system. The model parameters are the Lennard-Jones

constants, ε and σ. These constants enter the model equation through the

Lennard-Jones potential energy form,

V (r; ε, σ) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
.

The scenario, S, contains the spatial and temporal domains, the number of

particles, system total energy, and the initial positions and velocities of all the

particles. The solution state variable, u(θ, S), gives the position and velocity

vectors of each particle in the system as a function of time.

In the common case where the model parameter values are unknown,

we must determine them through a calibration procedure. This entails finding

parameter values such that predictions made by the model optimally “match”

a set of observable data that is gathered independently of the model. We

assume in this document that the observable data can be represented by a

sequence of real numbers, {Di}ni=1 ⊂ R. The Di values correspond to a series

of separate “observations” of the system of interest. Observable data could

come from an empirical procedure, or in our case, from a different model that

we trust to make accurate predictions of the observable. Generalizations can
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be made to multi-dimensional observable data, but we examine the case of

one-dimensional data for mathematical clarity. In order to compare the model

with data, we must also assume that we can calculate observable values from

the model through some functional of the solution state variable, d[u(θ, S)].

Procedures for choosing a “good” set of model parameters relative to a

set of observable data abound. A well-known example since at least the time

of Gauss and Laplace [2] is least squares minimization,

{θ̂LS} ⊆
{

argmin
θ∈Θ

n∑
i=1

‖Di − d[u(θ, Si)]‖2

}
, (2.2)

where we assume that the system of interest has a set of independent vari-

ables that we control in the observation setting and in the model through the

scenario specification. Thus, i is an index for the different values of these

controlled variables. We use set-inclusion notation to indicate that the least

squares problem may not have a unique solution, or any solution. Determining

θ̂ through (2.2) is potentially a challenging problem, as each evaluation of d[u]

at a specific scenario and parameter set requires a solution of (2.1). Despite

the potential practical difficulty, the least squares solution gives, under some

conditions, an optimal match to the data when the additive differences be-

tween observation and model, Di−d[u(θ, Si)], are represented by uncorrelated

random variables with equal variances and zero mean. The Gauss-Markov

theorem contains the conditions and proof of this optimality when the model

has a linear dependence on the parameters [48].

Least squares minimization is related to the more general method of

maximum likelihood estimation (MLE). In a MLE method, one derives or
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proposes a probability density, % (D | θ), of obtaining a set of observed data

from the model with a given set of parameters, θ. Here, the symbol D refers

to a conjunction of n data samples. When this probability is regarded as a

function of the parameter vector with fixed observed data, it is called a “likeli-

hood function.” Optimal parameter vectors are then those that maximize the

likelihood function, given the observed data:

{θ̂MLE} ⊆
{

argmax
θ∈Θ

% (D | θ)
}
. (2.3)

There is much literature on MLE methods, but the modern understand-

ing of the subject essentially begins with the publications of Sir R.A. Fisher.

In his seminal 1922 paper [26], Fisher defines the term likelihood:

The likelihood that any parameter (or set of parameters) should

have any assigned value (or set of values) is proportional to the

probability that if this were so, the totality of all observation should

be that observed.

Given Fisher’s definition, the likelihood function is determined for the simple

probabilistic models of coin tossing, dice rolling, and urn sampling. In these

cases, the likelihood involves a binomial or multinomial probability distribu-

tion regarded as a function of the long-running frequencies of certain event

occurrences. When the model under consideration is deterministic, additional

information is necessary to define a likelihood function. A common approach

is to postulate that the discrepancy between the model and data is given by a
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random variable with some generic properties, also known as a “noise model”

[18]. When the discrepancy is assumed to be additive and distributed accord-

ing to a gaussian with zero mean, the likelihood function takes the form,

%like (Di | θ) =
1

σi
√

2π
exp

[
−1

2

(
Di − d[u(θ, Si)]

σi

)2
]
. (2.4)

If the Di are regarded as independent samples and σi is the associated un-

certainty, then the MLE from gaussian noise coincides with the least squares

minimizer.

We note, however, that the likelihood formalism contains, not just in-

formation on optimal parameter values in reference to data, but also a rep-

resentation of uncertainty in the data model. This observation motivates the

construction of intervals in the parameter space which give a set of bounds

containing the “true” parameter value to a some preset level of certainty.

When quantification of uncertainty is important, parameter estimation in a

maximum likelihood setting entails (1) the selection of a “sufficient statis-

tic,” which is a function of the sampled data and is maximally informative

in relation to the unknown parameter, (2) deriving the sampling distribution

associated with the chosen statistic, and (3) computing the MLE and possibly

constructing confidence intervals in accordance with the sampling PDF which

indicate parameter uncertainty at a chosen confidence level. For a more de-

tailed development of sufficient statistics, we refer to Fisher’s 1922 work; the

concept of confidence interval estimation was developed in a seminal work by

J. Neyman [70].

Maximum likelihood estimation procedures are data driven in the sense
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that the optimal parameters and confidence intervals therein are determined

by the form of the noise model and the observed data sets. If there is infor-

mation that is relevant to the calibration of the model parameters, but not

contained in the data, MLE does not take this cogent information into ac-

count. It is often advantageous to broaden the scope of the calibration and

include so-called prior information that supplements the probability model of

the data by itself. Bayesian methods, bringing a view of probability theory

as a logical system of inference, are built to address this issue and are now

introduced for our purposes.

The informative quantity in the Bayesian case is a probability distri-

bution on the parameter space that is conditioned on two logical propositions:

(1) a set of data regarding the observables characterizing the calibration and

(2) so-called “prior information” which is information relevant to the model

parameters that is not contained in the data. The prior information could take

the form of a simple logical constraint on the parameters. For instance, it may

be known from a previous data set, from a theory, or from a calculation that

only a portion of the full parameter space produces a model that is physically

meaningful in the given scenario. The PDF conditioned on the data and on

this prior information is generally called a “posterior probability”; the reason

for this terminology is explained shortly.

Before quantitatively defining the posterior, we note that the definition

of probability in the Bayesian case is different from the traditional “frequen-

tist” definition. Here we interpret probability as a degree of belief in the
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truth of a proposition, as opposed to being a limiting frequency of an infi-

nite sequence of random variable realizations. Probability has meaning in the

Bayesian framework not because the proposition under evaluation is random,

but because one may not be in possession of enough knowledge to deductively

determine the truth of the proposition. It is in this sense that one may ask

about the probability that θ takes on a certain value.

The posterior distribution is given by Bayes’ Formula,

%post (θ |DI) =
%like (D | θI) %prior(θ | I)

%evidence (D | I)
, (2.5)

where the notation, %(· |DI), refers to a probability density conditioned on the

logical conjunction of D, an observed data set, and I, a set of prior informa-

tion. The quantity denoted %prior contains quantitative knowledge about the

parameters due to the prior information, %evidence is a normalizing factor called

the “evidence”, and %like is the familiar Fisher sort of likelihood function. The

posterior distribution represents an update of the prior information upon con-

sideration of the data, thus its name. The evidence factor is also known as a

“marginal likelihood” because it is constrained to be:

%evidence (D | I) =

∫
%like (D | θI) %prior(θ | I) dθ. (2.6)

It is argued by Edwin Jaynes that (2.5) is a consequence of a system of axioms

that constitute a logical theory of probability [42]. For the purposes of the

present document, we simply note that Bayes’ formula can be derived from a

simple set of postulates and we use it without trepidation.
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We find from experience that the all-atom MD simulations we per-

form contain a great deal of information about coarse-grained model param-

eters prior to undertaking CG system simulation. We heretofore operate in

a Bayesian framework where we may take advantage of abundant all-atom

information and compute representations of parameter uncertainty through

posterior parameter distributions. The remainder of the chapter is devoted to

specifying likelihood functions and prior probability distributions relevant to

CG model calibration.

2.2 Prior Probability for CG parameters

In this section, we develop some formalism for finding prior probabil-

ity distributions of free parameters found in coarse-grained potential energy

functions. The philosophical and mathematical underpinnings for these results

are stated thoroughly by Edwin Jaynes in his posthumously published book,

Probability Theory: The Logic of Science [42]. Following Jaynes, our main de-

vice is the principle of maximum entropy. Here, entropy refers to the inherent

uncertainty in a given probability distribution. To motivate this statement,

we consider a finite sample space {x1, . . . , xn} that has associated probabilities

{p1, . . . , pn}. We now seek a function, H(p1, . . . , pn), that characterizes uncer-

tainty in the distribution. Following Shannon [92], the following properties are

proposed for H:

I. H(p1, . . . , pn) is a non-negative real number,
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II. H(p1, . . . , pn) is a continuous function of the pi,

III. H
(

1
n
, . . . , 1

n

)
> H

(
1
m
, . . . , 1

m

)
when n > m,

IV. H(q1, . . . , qm, p2, . . . , pn) = H(p1, . . . , pn) + p1H
(
q1
p1
, . . . , qm

p1

)
for p1 =∑m

i=1 qi.

The third property indicates that, for uniform probabilities, H increases mono-

tonically with the number of outcomes. The fourth requirement states that if

one considers a subdivision of possibilities, then the entropy over the extended

sample space is the entropy of the original, undivided space plus the entropy

over the subdivision weighted by its probability. Shannon goes on to show

that,

H(p1, . . . , pn) = −
n∑
i=1

pi log pi, (2.7)

is the unique function, to within a multiplicative constant, satisfying the four

properties. We note the resemblance of this expression to the Gibbs entropy

common to statistical mechanics.

The continuum analog to the Shannon entropy is found from a limiting

procedure wherein the spacing between the discrete samples points is described

by a continuous density,

η(xi) ≡ lim
n→∞

1

n(xi+1 − xi)
. (2.8)
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Accordingly, the discrete probabilities, for large n, approach a probability

density function, %,

pi ≈%(xi)(xi+1 − xi)

≈ %(xi)

nη(xi)
.

(2.9)

The continuous expression for the entropy thus becomes1,

H[%] = −
∫

Ω

%(x) log
%(x)

η(x)
dx, (2.10)

where Ω denotes the sample space. The limiting density, η, is known as the

invariant measure. Since it transforms in the same manner as %, it is clear that

the presence of η ensures that the continuous entropy is invariant to coordinate

changes. The particular form of η depends on the underlying sample space, as

is evident from the described limiting procedure. For instance, if the sample

space is defined on radial values in a three dimensional spherical coordinate

system, then the invariant measure is the associated density, 4πr2. Thus, we

obtain an apparatus for finding a maximally uncertain probability distribution

that encapsulates the given prior information: maximize the quantity in eq.

2.10 while maintaining the constraints associated with the prior information.

A remaining question is what form the prior constraints should take.

A useful result is known in the case of a mean value constraint on a maximum

entropy distribution. We refer to the following conclusion, originally attributed

1Placing the expression in eq. 2.9 into the Shannon entropy formula results in a “log n”
term that diverges as n → ∞. To remedy this, we define the continuous entropy, H,
according to the limit, H ≡ limn→∞(H − log n)
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to Gibbs in the context of equilibrium statistical mechanics [41]: The PDF of

maximum entropy, %, subject to the constraint
∫

Ω
f(x)%(x) dx = F for some

function f , is given by:

%(x) =
η(x) exp {λf(x)}

Z(λ)
, (2.11)

where Z(λ) =
∫

Ω
η(x) exp {λf(x)} dx and λ is a Lagrange multiplier found

from,

∂ logZ

∂λ
= F. (2.12)

In analogy to the maximum entropy formulation of classical statistical me-

chanics, we hereafter use mean value constraints in concert with entropy max-

imization to translate prior information into probabilistic representation.

Considering the problem of parameterizing a CG model from a cor-

responding all-atom model, we argue that the fully specified all-atom model

provides a source of prior information. Suppose, for example, that we observe

from an all-atom model (via limited MD runs, or perhaps from inspection of

equilibrium configurations) that the distance between two sites, site A and site

B, on a particular molecule tends to be near 1.5 Å. From here, it seems reason-

able to hypothesize that a CG model having sites A and B as degrees of spatial

freedom could have a “bond” between A and B and this bond could have an

equilibrium distance on the order of 1.5 Å. The logic underlying this asser-

tion is that if our CG model is to be statistically consistent with the all-atom

model, then it seems unlikely that an A-B bond length that differs by orders

of magnitude from 1.5 Å would produce a trustworthy representation of the
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all-atom model. This sort of heuristic argument certainly does not constitute

a rigorous calibration; however, it does serve as a valid initial guess regarding

the properties of the coarse-grained A-B bond. In short, this argument is just

an application of common sense when we have some limited understanding of

the all-atom model.

In order to properly compute a posterior distribution for a set of CG

parameters, we require not only an initial guess, but a probability distribution

built on this initial guess. In particular, we would like a prior probability

distribution that encodes the information that the CG A-B bond is proba-

bly of order 1.5 Å. Simultaneously, we want this prior to be as uncertain as

possible as to the actual numerical value of this bond distance. Applying the

techniques of maximum entropy to prior probability assignment allow us to

satisfy both of these demands. The basic idea is to consider the class of all

probability distributions on [0,∞) having a mean of 1.5 Å and then to choose

the distribution from this class with maximal entropy. That is, we maximize

the functional,

H[%] = −
∫ ∞

0

%(Req) log
%(Req)

4πR2
eq

dReq, (2.13)

over all % such that 〈Req〉% = 1.5 Å. Since the integral in eq. 2.13 is over a

distance in three dimensional space, the invariant measure includes a factor of

4πR2
eq. The distribution of maximal entropy then has the form,

%(Req) =
4πR2

eq

Z(λ)
eλReq , (2.14)
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in which,

Z(λ) =

∫ ∞
0

exp(λReq) 4πR2
eq dReq, (2.15)

and λ is determined by solving the equation,

〈Req〉% =

∫ ∞
0

Req

(
exp(λReq)

Z(λ)

)
4πR2

eq dReq = R∗eq, (2.16)

where R∗eq is a general constraint value on the mean (e.g. R∗eq = 1.5 Å). Conve-

niently, a closed form solution for %(Req) can be found in this case by carrying

out the prescribed integrations,

%(Req) =
R2
eq

2

(
3

R∗eq

)3

exp

(
−3Req

R∗eq

)
. (2.17)

Thus, we find that %(Req) is the PDF for a gamma distribution2 with shape

parameter k = 3 and scale parameter θ = R∗eq/3.

We may also be able to “guess” the spring constant of the CG A-

B bond, in the case where we assign this CG interaction the form Kr(R −

Req)
2. According to the equipartition theorem of classical statistical mechan-

ics, quadratic terms in the Hamiltonian contribute 1
2
kBT to the total average

energy. So, we can loosely say that,

Kr ≈
kBT

2〈(R−Req)2〉 . (2.18)

The quantity 〈(R−Req)
2〉 is the second moment of the bond distance about its

equilibrium value. In order to gain information about the order of magnitude

2The PDF of a gamma distribution can be characterized in terms of parameters k and
θ with the functional form, %(x) = 1

Γ(k)θk
xk−1 exp

(
−xθ
)
, where Γ(·) denotes the gamma

function.
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Figure 2.1: Maximum entropy prior PDF for bond equilibrium distance with
prior information, R∗eq = 1.5 Å

of Kr, we thus estimate the variance, σ2
AB, of the A-B distance from an all-

atom MD simulation. Applying the maximum entropy framework as in the

case of the equilibrium distance yields the prior,

%(Kr) =
1

K∗r
exp

(
−Kr

K∗r

)
, (2.19)

where K∗r = kBT/2σ
2
AB. This procedure may be repeated to find a maximum

entropy prior for any force constant which multiplies a quadratic term in the

CG Hamiltonian.

In analogy with the A-B site distance, we may have information from

the all-atom model concerning the angle formed between sites A, B, and C.

Suppose, for instance that the cosine of this angle tends to be near some

number C∗ ∈ [−1, 1]. Again utilizing the maximum entropy framework, we
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find a prior for the A-B-C equilibrium angle, θ0,

%(θ0) =
sin(θ0)

Zθ(λθ)
exp (λθ cos(θ0)) , (2.20)

with,

Zθ(λθ) =

∫ π

0

exp (λθ cos(θ0)) sin(θ0) dθ0, (2.21)

and λθ determined by,

1

Zθ

dZθ
dλθ

= C∗. (2.22)

There is no closed form in this case, but we do find that

Zθ =
2 sinhλθ

λθ
, (2.23)

and λθ is a solution of the transcendental equation,

cothλθ −
1

λθ
= C∗. (2.24)

The results described in (2.14) - (2.20) are specific cases of the general result

that the maximum entropy distribution for a variable x with k mean value

constraints 〈fi(x)〉 = Fi, i = 1, . . . , k is given by,

%(x) =
η(x)

Z(λ1, . . . , λk)
exp

(
k∑
i=1

λifi(x)

)
, (2.25)

where Z and {λi}ki=1 are found by satisfying normalization and mean value

constraints.

In order to find prior probabilities for a Lennard-Jones type nonbonded

interaction, we borrow the iterative Boltzmann inversion procedure for finding

an initial guess for the pairwise PMF. That is, if the prescribed CG nonbonded
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Figure 2.2: Maximum entropy distribution for an angle parameter with con-
straint, 〈cos θ0〉 = −0.8

interaction between particles of type B has a Lennard-Jones functional form,

we can compute a radial distribution function, gBB(r) from all-atom MD and

then generate the trial PMF,

U∗BB(r) = −kbT log gBB(r). (2.26)

If this trial PMF has a well defined minimum value at r = r∗BB, then we may

regard r∗BB and U∗BB(r∗BB) as prior information regarding the Lennard-Jones

parameters σ and ε (with appropriate proportionality constants applied that

depend on the exponents employed in the Lennard-Jones form). Prior proba-

bility distributions for these parameters can then be obtained from applying

the maximum entropy formalism, regarding the trial estimates of Lennard-

Jones σ and ε as mean value constraints on the distributions.

The theme of this section is the use of the maximum entropy framework
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Figure 2.3: An example of a trial PMF derived from a radial distribution
function. The RDF is estimated from all-atom MD simulation at T = 300K.
In this case, r∗BB = 5.3 Å and U∗BB(r∗BB) = −0.08 kcal/mol.

to find prior probability distributions from simple mean value constraints. The

constraints themselves are regarded as the cogent prior information to be en-

coded into the prior probabilities. We have shown several examples of finding

maximum entropy priors for parameters one commonly finds in molecular me-

chanical type potential energy functions. We expect that similar techniques

can be applied to prior probabilities for different types of potential energy

parameters due to the generality of the maximum entropy formalism.
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2.3 Calibration Observables and Likelihood Functions

To complete the picture for full Bayesian calibration of a CG model, we

need to specify the data against which the model will be calibrated, as well as

the mechanism for comparison of CG and all-atom predictions regarding the

data. The former we will refer to as calibration observables, while the latter

is accomplished by finding a suitable likelihood function for the calibration

observables.

The nomenclature of calibration observable is chosen in order to de-

lineate those observables determining the model parameters in a calibration

setting from other quantities that may be used to test the validity of the cal-

ibrated CG model. We adopt the view here that the CG model is designed

with the goal of computing a set of quantities of interest (QOIs). More specif-

ically, a CG model is valid (or, more properly, not invalid) when it is able to

accurately predict these QOIs, where the accuracy is relative to all-atom pre-

dictions. Therefore, we anticipate that choosing calibration observables that

are correlated with, but are not the same as, the QOIs is vital to the problem

of CG model validation. Of course, one may always increase the scope of CG

model validation tests beyond the initial set of QOIs and in doing so may in-

validate the CG model. The process of choosing calibration observables is thus

an iterative one that requires feedback from the predictive capacity of the CG

model with respect to QOIs. We also imagine that some cases of invalidation

necessitate a refinement of the CG model itself (i.e. changing the mapping,

potential energy function form, etc.). Although an inevitable direction for CG
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research, this latter case is beyond the immediate scope of the present work.

We now address the issue of comparing all-atom and CG calibration

observables through a likelihood function. Presently, we treat the case of just

one calibration observable taking values on the real line. We further assume

that the calibration observable can be expressed as the ensemble average of

a function of statistical mechanical microstate in both the all-atom and CG

models. The central question that must be answered is the following: What

is the probability that the CG model could have generated a set of calibra-

tion observable values sampled from the all-atom model? In order to quantify

the statistical properties of the calibration observable from the CG model, let

fCG be the function characterizing the observable and assume {ωi,CG}ni=1 are

sampled microstates. An estimate of 〈fCG〉 in the CG model is given by the

sample mean,

S
(n)
f,CG =

1

n

n∑
i=1

fCG (ωi,CG) . (2.27)

If n is “large enough,” then the random variable realized by S
(n)
f,CG has an ap-

proximately gaussian distribution about the true mean, µf,CG, regardless of

the exact form of the fCG distribution function. This statement is a straight-

forward application of the central limit theorem and yields the probability

distribution,

%(S
(n)
f,CG |µf,CG, σ2

f,CG) =

√
n

2πσ2
f,CG

exp

−n
2

(
S

(n)
f,CG − µf,CG

)2

σ2
f,CG

 , (2.28)

where σ2
f,CG is the true variance of the fCG random variable. If a sample

mean is instead computed from all-atom microstate samples, ωi,AA, through
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the relation,

S
(n)
f,AA =

1

n

n∑
i=1

fAA (ωi,AA) , (2.29)

then p(S
(n)
f,AA |µf,CG, σ2

f,CG) measures the probability that the all-atom sample

mean, S
(n)
f,AA, is consistent with sample mean predictions made by the CG

model. Thus, if m independent sample means are taken from the all-atom

model, we obtain the likelihood function,

%like(D |Θ, µf,CG, σ2
f,CG) =(

n

2πσ2
f,CG

)m/2

exp

−n
2

∑m
j=1

(
S

(n)
f,AA,j − µf,CG

)2

σ2
f,CG

 ,
(2.30)

where D represents the conjunction of the m all-atom sample means and Θ is

the CG potential energy parameter set upon which the statistical properties

of the CG model predictions are implicitly conditioned.

One issue that must be addressed is that the likelihood function in

(2.30) is conditioned on µf,CG and σ2
f,CG. Generally, one does not know these

values exactly and must estimate them from CG model samples for a partic-

ular Θ. If these estimates have significant uncertainty, then this uncertainty

should be encoded into the likelihood function. In short, one can include

these “hyperparameters” in the Bayesian calibration (necessarily providing

prior probabilities on µf,CG and σ2
f,CG) and then integrate the posterior over

µf,CG and σ2
f,CG to obtain the desired marginal posterior. In the examples

we consider in the following chapter, µf,CG and σ2
f,CG can be estimated to

very high precision (less than 1% error), so uncertainty associated with their

estimation is not included in the calibration. Nevertheless, considerations of
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hyperparameter uncertainty should generally not be ignored and are addressed

in chapters four and five.

44



Chapter 3

Calibration of a Coarse-Grained Model of a

Chain Molecule

3.1 The Freely Jointed Chain

The goal of this chapter is to implement the coarse-graining theory in

a simple, illustrative model. To that end, we produce a CG model of a chain

molecule that closely resembles a freely jointed chain (FJC). The close analogy

with a freely jointed chain is desirable as a case study due to the latter’s simple

physical and statistical properties and because of its ubiquity as an idealized

model for a general polymer chain. We subsequently describe the FJC as well

as our slightly modified version.

Geometrically, a freely jointed chain is represented by a sequence of

points in euclidean space in which neighboring points are constrained to be a

set distance apart.

Definition 3.1.1 (The Freely Jointed Chain). A freely jointed chain with

N bonds of length l is the set,
{
{ri}Ni=0 ⊂ R3 : ‖ri − ri+1‖ = l, i ∈ {0, . . . , N − 1}

}
.

A realization of the FJC is any element of this set.

A realization of a chain can be generated by an N step random walk in R3,

where r0 is chosen randomly and each subsequent step must have length l.
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Figure 3.1: Freely jointed chain realization with N = 6, l = 1.0 Å

The “freely jointed” descriptor in the name comes about because there are no

constraints imposed on angles formed by triples of neighboring points.

We study the freely jointed chain as a statistical mechanical ensemble

by postulating that all realizations generated by fixed N and l are equally

likely to occur. In this context, a property of interest for the chain is the

end-to-end distance, Re−e = ‖rN − r0‖. The end-to-end distance thus labels

macrostates of the FJC ensemble and there is a probability density associated

with each end-to-end distance value. Conveniently, an exact formula for this

probability distribution exists and is well known [9, 43]. We find from the book

of Boyd and Phillips,

ρN,l(Re−e) =
2

π

∫ ∞
0

(
sin(ls)

ls

)N
(sRe−e) sin(sRe−e) ds, (3.1)
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where ρN,l is the probability density. Intuition suggests that the probability

density is low near Re−e = 0 and Re−e = Nl. This is because there are “few”

chain realizations that are near full extension or curled back completely on

themselves. Indeed, when N > 2, this is the case. Figure 3.2 displays the
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ρ
6

,1

Figure 3.2: Freely jointed chain end-to-end PDF with N = 6, l = 1.0 Å

output of eq. 3.1 when N = 6; the density values are calculated by composite

trapezoid rule numerical integration.

Subsequent sections of this chapter develop a coarse-grained model of

a “flexible” freely jointed chain (FFJC). The end-to-end distance fills the role

of the observable against which we calibrate this CG model. Consequently, a

key part of selecting CG model parameters is the degree to which end-to-end

distances predicted by a resultant CG model reproduce that of the flexible

freely jointed chain.
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3.2 Computational Models

3.2.1 The All-Atom Model

We implement an “all-atom” model of the FFJC with N = 6 and

l = 1.0 Å in the LAMMPS molecular dynamics simulator [82]. This model

consists of seven point particles, each of nominal mass 1 amu, connected by

six harmonic bonds. The bonds have the associated energy functions,

U(ri, ri+1) = k (‖ri − ri+1‖ − req)2 , (3.2)

for i ∈ {0, . . . , N − 1}. In order to loosely enforce freely jointed chain con-

straints, we set req = 1.0 Å and k = 500.0 kcal/mol · Å2. The nearest neighbor

distance constraint is, therefore, enforced in a weak sense in our model, instead

of strongly through rigid bonds. This is the origin of the “flexible” modifier

in our model nomenclature. We carry out molecular dynamics on the chain

using a velocity Verlet time integrator with step size ∆t = 1.0 fs. The sys-

tem is maintained at temperature T = 300 K using a Langevin thermostat,

which modifies the Newton equations of motion with a drag term proportional

to particle velocity and a stochastic diffusion term. The coefficients of drag

and diffusion in the Langevin equation are related to each other, and the im-

posed temperature, through the well-known fluctuation-dissipation theorem

[66]. For implemention details of the Langevin thermostat, we refer to works

of Schneider and Dunweg [22, 90]. We set the drag coefficient in our simula-

tions to γ = 100.0 fs. It happens that the statistics of the FFJC found from

MD simulation qualitatively match those of the exact FJC model, as can be
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seen in figure 3.3.

One concern associated with using molecular dynamics to charac-
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Figure 3.3: Comparison of the end-to-end distance distribution from the flex-
ible freely jointed chain implemented in MD with that of the exact chain.

terize statistical properties of a system is correlation between samples taken

from the MD code. Unbiased statistical estimators generally assume indepen-

dence of samples, so it serves us to study the correlation times of the FFJC

dynamics. We quantify this length by calculating the autocorrelation of the

end-to-end vector time-series, r
(j)
06 = r

(j)
6 − r(j)

0 , where j is an index over the

discrete timesteps in a simulation. The calculation determines a normalized

covariance between the original time-series and a time-shifted copy,

ak =

∑Nt−k
j=1 (r

(j)
06 − r̄06)T (r

(j+k)
06 − r̄06)∑Nt

j=1(r
(j)
06 − r̄06)T (r

(j)
06 − r̄06)

, (3.3)
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where Nt is the number of time-steps in the simulation, k is the number of

time-steps to shift, known as the ”lag,” and r̄06 is the average end-to-end vector

over the time span of the simulation. Figure 3.4 displays the autocorrelation,

ak, as a function of the time-step lag for the FFJC MD simulation. We draw
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Figure 3.4: Autocorrelation in a time-series of the end-to-end vector in the
freely jointed chain, with Nt = 25,000.

two conclusions from this experiment. First, any meaningful MD simulation

should have Nt � 100. Second, it is prudent to ”burn” time-steps between

samples, that is, to allow the chain to de-correlate from its near past. We

adopt the convention of saving a sample every 100 time-steps. Although a truly

independent time-series of samples cannot be guaranteed, staggered samples

over a long run of the simulation can be procured to adequately sample the

configuration space.
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3.2.2 The Coarse-Grained Model

We choose a coarse-grained model for the all-atom system that consists

of three CG groups, or beads. Bead 1 contains the particles labeled by r0 and

r1 in the all-atom model, bead two contains r2, r3, and r4, while bead three

has r5 and r6. We define coordinates, R1, R2, and R3 for the three beads and

set them to be the center of mass point of their respective beads.

More precisely, letmk be the mass of the kth atom, where k ∈ {0, . . . , 6}.

For each CG bead, define the index set, Ij = {k | atom k ∈ CG bead j} for

j ∈ {1, 2, 3}. The CG coordinates can now be expressed in terms of the all-

atom coordinates,

Rj =
∑
k∈Ij

mk

Mj

rk, (3.4)

where Mj =
∑

k∈Ij mk is the total mass of bead j. In the language of chapter

two, we have defined the mapping, M , from all-atom to CG phase space. This

mapping can be represented by a matrix with entries defined by,

Mjk =

{
mk

Mj
, if k ∈ Ij

0, otherwise.
(3.5)

In the present case, mk = 1. Thus, Mj is simply the number of atoms in CG

bead j.

A potential energy for the CG model is chosen to consist of identical

harmonic bonds between R1-R2 and between R2-R3,

U (CG)(R1, R2, R3) = K (‖R1 −R2‖ −Req)
2 +K (‖R2 −R3‖ −Req)

2 . (3.6)

Figure 3.5 shows a cartoon of the chosen CG model. When the parameters,
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1 2

3

Figure 3.5: Coarse-Graining scheme for the flexible freely jointed chain. Red
x’s represent center-of-mass points for each CG bead. Dashed lines represent
harmonic bonds between CG COM sites.

K and Req, are provided, the CG potential energy governs the interaction

between CG beads, and can thus be used in an MD simulation of the CG

system. The task at hand is to evaluate different choices for the CG model

parameters. Subsequent sections utilize a Bayesian framework to compute a

probability that the CG model, with a particular pair of K and Req, reproduces

the end-to-end distance properties of the all-atom FFJC.

3.3 Bayesian Calibration

The first step in the calibration process is to gather prior information

from all-atom MD runs. From a 750 ps trajectory, we find R∗eq = 1.265 Å

and K∗ = 1.508 kcal/mol · Å2. The “soft” CG bond suggested by the prior

information is not surprising given the freely jointed nature of the molecule
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chain. The pdf of the prior is then given, according to (2.17) and (2.19), by,

p(Req, K) =
R2
eq

2K∗

(
3

R∗eq

)3

exp

(
−3Req

R∗eq
− K

K∗

)
, (3.7)

With the prior specified, the next issue is the likelihood function. We
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Figure 3.6: Prior PDF as given by (3.7) with R∗eq = 1.265 Å and K∗ =

1.508 kcal/mol · Å2

use the average end-to-end distance of the chain as our calibration observ-

able for this particular example. The likelihood function is, therefore, given

by the form in eq. 2.30. Calibration data consists of sample end-to-end dis-

tance means gathered from all-atom MD. We use n = 120 MD samples per

mean and m = 42 independent mean estimates. Evaluation of the likelihood
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function at given pair (Req, K) requires a MD simulation of the CG model

in order to estimate µe−e, CG and σ2
e−e, CG, the mean and variance of the CG

end-to-end distance. The modularity of the LAMMPS MD code is used to

great advantage here, as we are easily able to extract run statistics and alter

the CG force field during an MD simulation using a linked library interface.

In order to enhance our sampling of the CG end-to-end distance, we run 30

non-interacting replicas of the CG chain simultaneously. We observe that a

likelihood function evaluation requires approximately 1 s of CPU time on a

single core of a commodity workstation.

As there is no closed form expression for the posterior distribution in

this case1, we use a Markov chain Monte Carlo (MCMC) algorithm to gener-

ate independent samples from the posterior. Metropolis-Hastings type MCMC

methods [87] are particularly suited to Bayesian posterior sampling, since they

only require as input a function proportional to the actual posterior. In the

present case, that function is the product of the prior pdf value and the likeli-

hood value at a given (Req, K). We use the QUESO statistical analysis code to

carry out “mutlilevel” MCMC sampling [83] of the posterior distribution. The

modularity of LAMMPS allows us to compile the MD code directly into the

sampler, which facilitates efficient communication between the Markov chain

evolution code and the likelihood function evaluator. Since the MCMC sam-

pler requires a likelihood function evaluation for each trial move of a Markov

chain, the likelihood function is the rate limiting step in the posterior calcu-

1This is almost always the case for a calibration problem such as this.
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lation. In our experience running on commodity, single CPU workstations,

the time required to produce one posterior sample can be as much as half an

hour. It should be noted, however, that this time includes the usual “burn in”

period for the Markov chains.

An estimate of the posterior from MCMC samples is shown in fig. 3.7.
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Figure 3.7: Kernel density estimate of Bayesian posterior from 15,000 MCMC
samples. The Red ’X’ indicates the position of the prior information, R∗eq =

1.265 Å and K∗ = 1.508 kcal/mol · Å2

From the figure, it is evident that considerations of end-to-end distance data
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have both shifted and more sharply focused the parameter estimates in com-

parison to the prior information. A “sanity check” of the calibration results

can be done by comparing end-to-end distance distributions from all-atom

runs with those of CG models having high posterior probability density. The

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

[Å
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Figure 3.8: End-to-end distance histograms: All-atom and CG model with
Req = 0.97 Å, K = 1.1 kcal/mol · Å2. The black lines indicate mean values.
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results of one such check are displayed in fig. 3.8. In this case, the CG end-to-

end distance average attains a 0.5% relative error with respect to the all-atom

results. We note that in this example, the CG model is able to predict not only

the mean of the end-to-end distance, but also the shape of the distribution2.

3.4 Conclusions

We have shown in this section a full Bayesian calibration for a coarse-

grained model of a flexible, freely jointed chain. In particular, we used “com-

mon sense” values from short all-atom MD simulations to find prior prob-

abilities for CG harmonic bond constants and we chose average molecular

end-to-end distance as the calibration observable characterizing the likelihood

function. The posterior distribution resulting from MCMC sampling features

a single peak in the CG bond parameter space, with a clear covariance in ef-

fect. A check of end-to-end distribution predictions for CG parameter values

at the mode of the posterior probability density shows close agreement with

all-atom results. We emphatically note, however, that the posterior gives us

much more than just a set of reasonable bond constants to use in a CG model

- the posterior also quantitatively represents our uncertainty in the calibration

results. The utility of this uncertainty information is explored in subsequent

chapters.

2The all-atom end-to-end distribution has a shorter “tail” than the analytical freely
jointed chain result would suggest because the end-to-end distance is calculated from ‖(r0 +
r1)/2− (r5 + r6)/2‖ to facilitate comparison with the CG model results.
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Chapter 4

Liquid Heptane Case Study

We develop a Bayesian learning method for inferring the free parame-

ters of coarse-grained (CG) potential energy functions in reference to training

data from higher resolution atomistic models. Particular attention is given to

informing a CG model toward an a priori chosen quantity of interest (QOI)

and to validating the CG model in a way that takes into account quantified

uncertainty in QOI prediction. We apply the method to a simple, but sub-

stantive CG model of liquid heptane (C7H16) in which the QOI is the Gibbs

vapor-liquid transfer free energy. For this example, we employ a Markov chain

Monte Carlo sampler alongside molecular dynamics simulations to estimate the

joint posterior probability distribution of CG parameters that are associated

with common molecular mechanical potential energy functions. Sequential

Bayesian updates are used to improve the parameter inferences with respect

to the transfer free energy. We then evaluate the accuracy and precision of

the free energy predictions using samples from the parameter posterior.
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4.1 Introduction

Coarse-grained (CG) models derived from source atomistic models have

become a popular tool in the biochemical and materials science communities

for extending the length and time scales reachable by molecular dynamics

(MD) simulation. In the present work, we assume that a CG model is a re-

duced representation of a more detailed, “all-atom” model which lists all, or

most, of the atoms comprising a substance along with a description of the

connectivity of these atoms through chemical bonds. The CG representations

we are concerned with are produced by a map which associates a priori chosen

groups of atoms with single positions in three dimensional space. For instance,

a CG mapping could associate groups of atoms with their respective centers-

of-mass. The central task of CG modeling is then finding a potential energy

function governing CG site interactions such that important features of the

all-atom physics are retained. Once this is accomplished, simulations with the

CG model are undertaken in scenarios heretofore inaccessible to the all-atom

model due to its expense at large system size, long simulation time, or both.

The task of finding CG potential energy functions given a reduced rep-

resentation has generally been approached as a regression analysis involving

parameterized energy functions and optimization of a particular objective func-

tion in reference to training data from all-atom MD trajectories. Some popu-

lar examples include Boltzmann inversion [84], force matching [36, 72, 73], and

relative entropy minimization [16, 93]. The defining differences between these

methods lie in the choice of objective function. In the case of Boltzmann in-
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version, the objective function involves a difference between CG and all-atom

potentials of mean force that arise from relevant pair correlation functions. For

force-matching, an ensemble average of the squared difference between CG and

all-atom forces drives the objective function. Relative entropy methods mini-

mize an objective function involving the relative entropy, or Kullback-Leibler

divergence, between CG and all-atom statistical mechanical probability distri-

butions. For a more thorough discussion of these and other CG methods, we

refer to the excellent perspective article of W. Noid [71].

The goal quantity in the aforementioned CG methodologies is the op-

timal vector of potential energy parameters, as determined by the choice of

objective function, that is necessary to fully specify the CG Hamiltonian. In

contrast, we develop a Bayesian method for potential energy inference that

computes probability distributions for the model parameters. There are a

number of advantages to this approach: (1) Uncertainties in CG model pre-

dictions of physical observables and quantities of interest (QOIs) are naturally

quantified due to the probabilistic representation of information inherent in

Bayesian methodology, (2) The CG model can “learn” in the sense that previ-

ously inferred parameter distributions can be improved or adapted when new

types of all-atom training data are supplied, (3) Competing CG models can

be compared to each other on a rigorous, quantitative basis using methods

of Bayesian model plausibility and selection. Uncertainty analysis, as intro-

duced in (1), relates to issues of model validation; that is, determining the

confidence one has in the ability of the model to predict QOIs to within pre-
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set tolerances based on the accuracy with which the model predicts specific

observables [75, 77]. We demonstrate CG model validation in tandem with

Bayesian learning in this work. For an exploration of Bayesian model selec-

tion as it applies to CG modeling, we refer to the work of Farrell and Oden [25].

We also note the work of Koutsourelakis and Bilionis for their application of

Bayesian inference to multiscale modeling of general dynamical systems [50].

In the following section, we provide a brief review of Bayesian method-

ology and derive prior probabilities and likelihood functions relevant to CG

modeling. The basis of our prior probability representations is the principle

of maximum entropy, which gives a maximally spread out probability distri-

bution that satisfies constraints of our choosing. Likelihood functions follow

from applying the central limit theorem to molecular dynamics estimation of

observables deemed important to the eventual prediction of a specific QOI.

We then devote a section to developing a CG model of liquid heptane that

is designed to predict, to within a preset tolerance, vapor-liquid transfer free

energy at standard temperature and pressure. Within this development, prin-

ciples of model validation and Bayesian learning via posterior updating are

explored.

4.2 A Bayesian Theory for Coarse-Grained Parameter
Learning

The most basic idea underlying Bayesian methodology is that prob-

ability is a quantitative degree of belief in the truth of a given proposition.
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This contrasts with the “frequentist” definition of probability as a limiting

frequency of occurrence for an event in a large number of repeated trials. In

the Bayesian setting, probabilistic statements are updated upon consideration

of data through Bayes’ formula,

posterior︷ ︸︸ ︷
%(θθθ |ddd) =

likelihood︷ ︸︸ ︷
%(ddd |θθθ)

prior︷︸︸︷
%(θθθ)∫

dθθθ %(ddd |θθθ)%(θθθ)
, (4.1)

where θθθ is the proposition of interest, in our case a vector of model parameters,

and ddd represents observed data. In eq. 5.1, we assume θθθ and ddd take values

in a continuum, so the %(·) indicate probability density functions (PDFs).

Statements of the form %(xxx |yyy) indicate the usual shorthand for conditional

probability wherein the degree of belief in xxx is conditioned on the truth of the

fixed statement, yyy. We take the term “Bayes update” to mean the procedure

by which the posterior probability, conditioned on the data, is produced from

a given prior probability, which is independent of the data. The likelihood

function is the connective device in this context, giving the probability of the

data as a function of the parameter vector. This updating procedure can be

iterated when new data is available by using the previous update’s posterior

as the current prior. For a thorough review of Bayesian probability theory, we

refer to the book of E. T. Jaynes [42]. The likelihood function concept has

a long history in frequentist statistics; we refer to the seminal work of R. A.

Fisher on this topic [26].

To specify the prior probability in our framework, we state two require-

ments: (1) The prior should be be maximally uncertain, as measured by the
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Shannon entropy functional [92], over the range of the CG model parameters

and (2) initial guesses for parameter values should be encoded into the prior

through mean value constraints. These requirements certainly do not consti-

tute the only way to define a prior probability; however, the procedure they

imply is in close correspondence with information theoretic formulations of sta-

tistical mechanics [40]. Hence, we find the mean value constrained maximum

entropy solution to be a reasonable and useful choice. It is now a straight-

forward problem in constrained optimization to find the PDF maximizing the

Shannon entropy,

H[%] = −
∫
dθi %(θi) log

%(θi)

η(θi)
, (4.2)

such that
∫
dθi %(θi) f(θi) = µi. Here, η(θi) is the so-called invariant measure

which contains the relevant differential volume factor for θi, f is a known func-

tion of the parameter for which prior information is obtainable, and µi is the

prescribed mean value. The differential volume contains the Jacobian for inte-

gration in three dimensional space in the case of parameters that correspond

to locations in space, such as equilibrium positions for generalized coordinates.

Solutions of the optimization problem take the form [40, 42],

%(θi) =
η(θi)

Z(µi)
exp {λ(µi) f(θi)} , (4.3)

where λ is a Lagrange multiplier, and Z is a normalization constant. We note

that the joint prior for the parameter vector is simply a product of the com-

ponent priors. That is, the parameters are initially assumed independent in

the absence of prior information specifying parameter covariance.
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The final issue we encounter in defining the prior is the origin of the

prescribed mean value constraints. Here, we find that short, all-atom MD tra-

jectories that are a posteriori mapped into the CG representation provide a

wealth of prior information, or initial guesses, for CG potential energy param-

eters. Particularly, we calculate statistical properties, such as means, modes

and variances, from observed distributions for generalized coordinates associ-

ated with model parameters in the CG representation. We emphasize that the

goal of these calculations is to provide order-of-magnitude information on the

parameters. The maximum entropy requirement for prior probability implies

that the resulting distributions are necessarily broad, and thus, highly accu-

rate estimates of the parameters are not desired at this initial stage.

In defining the likelihood function, we restrict our attention to data

that can be expressed as an ensemble average from MD simulation. This in-

cludes a wide variety of observables that are of practical interest to molecular

modelers, thus the following development is quite general. To begin, we note

that the distribution of data sampled from a CG simulation is asymptotically

gaussian due to the central limit theorem for convergence of sample means,

%(d |n,θθθ, µ, σ2) ≈
√

n

2π σ2(θθθ)
exp

{
−n

2

(d− µ(θθθ))2

σ2(θθθ)

}
. (4.4)

Here, n is the number of independent samples comprising the sample mean,

d, while µ and σ2 are the true mean and variance for the observable. The

former is the usual statistical mechanical ensemble average which corresponds

to a thermodynamic quantity; the latter arises from the inherent uncertainty

in the statistical mechanical ensemble. Since the CG Hamiltonian governs the
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physics producing these values, there is an explicit dependence on the CG

model parameters. In practice, the µ and σ2 from eq. 4.4 are not known

exactly, but estimated from a finite number of samples taken from CG MD

simulation. We incorporate the uncertainty from this estimation by including

the hyper-parameters, µ and σ2, in the parameter inference and integrating

over their full ranges. Using Bayes’ formula, the parameter posterior now takes

the form,

%(θθθ |n,m, d) ∝
∫ ∞

0

dσ2

∫ ∞
−∞

dµ %(d |n,θθθ, µ, σ2) %(θθθ, µ, σ2 |m), (4.5)

where we now condition on the number m of CG MD samples used to estimate

the hyper-parameters. Following the usual rules of conditional probability, the

joint prior in eq. 4.5 factors into three products,

%(θθθ, µ, σ2 |m) = %(µ |m,θθθ, σ2) %(σ2 |m,θθθ) %(θθθ). (4.6)

Assuming the MD estimates µ̂m and σ̂2
m have been computed, we assign the

priors,

%
(
µ |m,θθθ, σ2

)
=

√
m

2πσ2
exp

{
−m

2

(µ− µ̂m(θθθ))2

σ2

}
, (4.7)

and,

%
(
σ2 |m,θθθ

)
=

1

σ̂2
m(θθθ)

exp

{
− σ2

σ̂2
m(θθθ)

}
. (4.8)

The PDFs in eqs. 4.7 and 4.8 are maximum entropy densities with respect to

given constraints. In the case of eq. 4.7, the prior mean is constrained to the

estimated observable mean and the variance is constrained to σ2/m, in line

with the central limit theorem for convergence to a mean. The distribution
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of maximum entropy with mean and variance constrained in this manner is

a Gaussian. Eq. 4.8 is an example of eq. 4.3 where a prior is found from a

mean value constraint. With the priors specified, the integrals in eq. 4.5 can

be evaluated analytically,

posterior︷ ︸︸ ︷
%(θθθ |n,m, d) ∝

reduced likelihood︷ ︸︸ ︷
1

2 γ̂mn(θθθ)
exp

{
−|d− µ̂m(θθθ) |

γ̂mn(θθθ)

}
×

prior︷︸︸︷
%(θθθ), (4.9)

where γ̂mn(θθθ) = σ̂m(θθθ)
√

1
2

(
1
m

+ 1
n

)
. The calculations leading to this result are

detailed in the appendix for the interested reader.

Eq. 4.9 gives the final symbolic expression for the posterior. Here, the

reduced likelihood has the form of a Laplace distribution [49]; the consequence

of accounting for hyper-parameter uncertainty is that the sampling distribu-

tion for the data has broader tails than the original Gaussian. It is assumed

that the data, d, in the likelihood expression is supplied by averaging n inde-

pendent samples drawn from all-atom MD simulation. Thus, the likelihood

is maximized for CG parameters that produce an observable estimate that is

identical to that of the all-atom model. In the case of multiple observables,

we assume that data for each observable can be gathered independently of the

others so that the full likelihood expression is simply a product of single observ-

able likelihoods. We note also that no uncertainty is assumed in the all-atom

data. Such a quantity could be included in the likelihood by adding a term,

σ2
AA, to the variance in eq. 4.4; however, this term is of limited consequence

in this context because we restrict our development to observables than can

be calculated to high accuracy in the all-atom model and because we already
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consider a wide variance range by integrating over the hyper-parameters.

It is clear from eq. 4.9 that an exact, closed form expression for the pos-

terior is not generally available, as µ̂ and γ̂mn depend on MD simulations with

varying parameter vectors. We therefore utilize Metropolis-Hastings (MH)

Markov chain Monte Carlo (MCMC) techniques to obtain numerous indepen-

dent samples from the exact posterior [104]. Once acquired, these samples

are used as the seeds for future posterior updates via Bayes’ Rule and also to

calculate distributions of QOIs for the purposes of prediction and validation.

The latter is accomplished through the integral,

%(q |ddd) =

∫
dθθθ %(q |θθθ) %(θθθ |ddd), (4.10)

where q represents a scalar QOI and %(q |θθθ) is the PDF for QOI values com-

puted by a CG model with given parameter vector. The posterior QOI is thus

expressed as a posterior-weighted average of predictions from all possible pa-

rameter vectors. In practice, we approximate eq. 4.10 from posterior samples{
θθθ1, . . . , θθθNp

}
via the Monte Carlo expression,

%(q |ddd) ≈ 1

Np

Np∑
i=1

κ (q − q̂ (θθθi)) , (4.11)

where κ is a kernel PDF with mean zero and q̂ is an estimate of the QOI

computed by the CG model. The kernel function is often chosen to be gaussian

with a variance parameter that depends on the input samples. We refer to

the book of Silverman for a development of such “kernel density estimation”

methods [101].
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The theory is now in place for computing PDFs of CG potential energy

parameters given all-atom data for chosen observables, and subsequently, for

making probabilistic predictions of QOIs. In the next section, we apply the

Bayesian theory to a CG model of heptane, developing a maximum entropy

prior from simple constraints and a likelihood function from a small collection

of observables. Following eqs. 4.10 and 4.11, PDFs for a free energy are

computed, providing a goal-oriented basis on which to evaluate and improve

the CG model.

4.3 Application to a Liquid Heptane Model

The reference atomistic model for our CG demonstration is the TraPPE

model for alkanes [64]. TraPPE consists of a united atom1 representation and

molecular mechanical potentials parameterized to reproduce free energies of

transfer and other quantities related to phase equilibria. We pick a simple

CG designation of atomistic heptane into three beads, as shown in fig. 5.3a.

The two end beads comprise CH3 −CH2 atom groups, while the middle bead

contains the group, CH2−CH2−CH2. To describe the configuration of these

three beads from an atomistic configuration, we map the atom groups to their

respective centers-of-mass. Accordingly, the CG model has two end particles

assigned to one particle type, ’E,’ and a middle particle assigned its own dis-

tinct type, ’M.’ Fig. 5.3b displays this representation with effective chemical

1The TraPPE model does not include hydrogen atoms; their cumulative effect is con-
tained in “united atoms” CH3 and CH2.
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bonds shown between adjacent beads. We propose a simple, molecular me-

Figure 4.1: (a) Atomistic heptane in skeletal representation with CG bead
designations and (b) corresponding CG heptane with particle types E and M.

chanical potential energy function for the CG model: linear springs govern

the E-M bonds and the E-M-E angle, while a Lennard Jones 9-6 form with a

cutoff at 14.0 Å defines the non-bonded interactions. Thus, the potential is

the sum of three terms:

UCG(xxx;θθθ) =
∑

i∈ bond

kr(ri(xxx)− r0)2

+
∑

i∈ angle

kϕ(ϕi(xxx)− ϕ0)2

+
∑

i,j ∈ pair

4 εij

[(
σij
rij(xxx)

)9

−
(

σij
rij(xxx)

)6
]
I{
rij<14Å

},
(4.12)

where xxx denotes the vector of 3-D positions constituting an “atomic” config-

uration in the CG system and ri, ϕi, and rij are generalized coordinates in-

dicating, respectively, bond length, angle between connected bonds, and pair

distance between sites not connected by bonds. In this case, the parameter

vector θθθ consists of eight quantities: r0, kr, ϕ0, kϕ, σEE, εEE, σMM , and εMM .

We set the E-M Lennard-Jones parameters via the common mixing rules,

σEM = (σEE + σMM)/2

εEM =
√
εEE εMM .

(4.13)
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The physical scenario for parameter inference is given by 128 heptane

molecules in a cubic volume with periodic boundary conditions and held at a

temperature of 300 K and 1 atm of pressure. Tail corrections are applied to

the energy and pressure to account for the Lennard-Jones cutoff [99]. In both

all-atom and CG simulations, the temperature is controlled by a Langevin

thermostat [22, 90] while the pressure is maintained with a Parrinello-Rahman

type barostat [78]. We use the LAMMPS MD code with a time step of 1.0 fs

for all physics simulations [82]. The all-atom system is initialized on a lattice

and then equilibrated for one nanosecond, enough time for the mean energy

and domain volume to reach stable values. Prior information is then gath-

ered from a 100 ps MD trajectory that is mapped into the CG representation.

From this trajectory, we extract initial guesses for the bond and angle param-

eters by estimating the mean and variance of the corresponding generalized

coordinate distributions. The mean values are associated with equilibrium

positions, while the variances are related to the spring constants. Lennard-

Jones parameters are informed by computing radial distribution functions,

along with their corresponding potentials of mean force, for E-E and M-M

pairs. Maximum entropy priors are then calculated using the initial guesses as

mean value constraints, as per eq. 4.3. The invariant measures use the form

4πr2 for distance parameters r0, σEE, and σMM and the form sinϕ0 for angle

parameter ϕ0. In all other cases, the invariant measure is assumed constant.

The resulting PDFs are shown in fig. 4.2. We refer to section 2.2 for a more

detailed account of prior PDF construction. We note the wide spread in the
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Figure 4.2: 1-D prior PDFs for CG heptane parameters. Energy units are
kcal/mol.

prior PDFs, indicating relatively large uncertainty for parameter values in the

initial representation of knowledge.

To improve on the prior knowledge, we undertake a Bayes’ update us-

ing all-atom training data for two observables: mass density and molecular

interaction energy. The latter is computed by summing all non-bonded en-

ergy between a single heptane molecule and the remaining 127 molecules, plus

a correction energy arising from the finite Lennard-Jones cutoff. The ratio-

nale behind selecting these observables is that the CG model should be in-

formed about configurational entropy and interaction energy when predicting

vapor-liquid transfer free energy; the chosen observables are easily computed

in simulation and provide relevant information about these two components

of the free energy. Average values for these observables are computed from

n = 50 samples gathered over a nanosecond of all-atom simulation. Although
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the observables attain stability after much shorter time spans, we run for a

nanosecond to aid in sample independence. The means computed from the

samples then serve as data for likelihood functions having the form given in

eq. 4.9. Given the data, posterior samples are produced using the QUESO2

multilevel MCMC code [83]. As each Markov chain transition requires an esti-

mation of CG hyper-parameters, the LAMMPS MD code is compiled into the

QUESO likelihood function to allow MD simulation in the course of Markov

chain construction. The CG MD, for each sampled parameter vector, is started

from a reference state and further equilibrated for 200 ps. Hyper-parameters

are then estimated from m = 60 samples gathered over 60 ps. To speed pos-

terior sampling, Markov chains are run in parallel on 56 CPU cores. Figure
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Figure 4.3: 1-D posterior PDFs for CG heptane parameters from kernel density
estimates. Energy units are kcal/mol.

2Quantification of Uncertainty for Estimation, Simulation and Optimization
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4.3 displays kernel density estimates of the 1-D posteriors derived from 2800

independent samples. We note, however, that the 1-D views show a limited

subset of the information available from the full, 8-D joint posterior. For in-

stance, the joint posterior samples show a strong, negative correlation between

σEE and σMM which is expected since that the system density is a targeted

observable.

We now examine the distribution of Gibbs transfer free energy that

results from the estimated parameter posterior. Transfer free energies are cal-

culated using a variant of the free energy perturbation method. Here, the

“perturbation” is the introduction of a new heptane molecule into the simula-

tion box. The calculated free energy is thus a difference involving two states:

an initial state where the new molecule is intermolecularly uncoupled from

the original system and a final state with full coupling. To mitigate phase

space overlap issues, 14 intermediate states are defined. We use a “soft-core”

Lennard Jones potential in the intermediate states to improve MD sampling

and to remove the singularity arising from the repulsive term in the usual

Lennard Jones form [105]. Free energy differences between states are then

computed using the Bennett acceptance ratio (BAR) method [7] as imple-

mented in the pyMBAR python code [98]. We find that four nanoseconds of

MD simulation per state is sufficient for our calculations, with an estimated

uncertainty of approximately 0.02 kcal/mol for each full transfer free energy

computation. Figure 4.4 displays an estimate of the QOI PDF based on free

energy calculations at 300 different parameter samples from the joint poste-
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Figure 4.4: Kernel density estimate of CG transfer free energy PDF from 300
free energy calculations. The black bar marks the all-atom free energy, while
the hatched area shows the portion of the PDF within kbT of the all-atom
value.

rior. Using more samples does not appreciably change the features of this

PDF. To evaluate the predictive capacity of the CG model, we compute the

proportion of QOI probability density within kbT of the all-atom free energy.

The latter is calculated from all-atom simulation and found to be -4.42 +/−

0.01 kcal/mol. We note that this is within 0.25 kcal/mol of both the con-

figurational bias Monte Carlo simulation result of Martin et al. [64] and the

experimental measurements of Eikens [23]. We then find that approximately

77% of the free energy PDF is within kbT of the all-atom value, as illustrated

in fig. 4.4.

The next consideration is whether the former parameter inference can

be improved in reference to the free energy. It is observed that the posterior
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distribution for CG heptane radius of gyration is relatively wide, and further-

more, posterior free energy and radius of gyration are strongly correlated, as

show in figure 4.5. This suggests that the CG model could be better informed
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Figure 4.5: Radius of gyration value vs. transfer free energy for 300 posterior
samples.

in relation to configurational entropy if the radius of gyration were included in

the training data. Starting from the posterior samples previously determined,

a Bayes’ update using all-atom radius of gyration data results in new poste-

riors estimated from 16,000 samples, as shown in figure 4.6, and an improved

free energy prediction. Figure 4.7 displays the updated free energy PDF; we

now find about 99% of the probability density within kbT of the all-atom re-

sult. Clearly, the update results in a quantitatively better inference for the CG

potential energy parameters and we can say, with high confidence, that the
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Figure 4.6: Improved 1-D posteriors with radius of gyration training. Energy
units are kcal/mol.

proposed CG model predicts the transfer free energy to within chemical ac-

curacy when trained with all-atom density, molecular interaction energy, and

radius of gyration.

4.4 Discussion

Uncertainty is an essential feature of CG model construction. In reduc-

ing the number of atomistic degrees-of-freedom, we introduce a degeneracy of

coarse models that reproduce subsets of features from the full resolution model.

In this work, we directly address that degeneracy in relation to CG potential

energy parameterization. Thus, we avoid computing an optimal vector of pa-

rameters relative to a particular objective function and seek, instead, to answer

the questions, (1) How well determined by the data are the model parameters?

(2) What consequence does parameter uncertainty have on the calculation of
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Figure 4.7: Improved estimate of CG transfer free energy PDF from 300 free
energy calculations. The black bar marks the all-atom free energy, while the
hatched area shows the portion of the PDF within kbT of the all-atom value.

quantities that the model is designed to predict? (3) Can we improve parame-

ter inferences in reference to a QOI when new or different information becomes

available? The tools of Bayesian statistics give us a robust platform for an-

swering these questions, as we show in this work for a CG model of heptane.

In particular, we illustrate the value of representing parameter uncertainty to

the issue of CG model validation. Here, we go beyond validating particular

parameter values and asses the information that determines these values. We

find in this case that a set of three easily computed and intuitively grounded

observables suffices to train a simple CG model toward chemically accurate

and precise prediction of a free energy. We do not believe this conclusion to

be obvious given the coarseness of the model, its simple molecular mechanical
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potential energy ansatz, and the complex nature of calculating free energy in-

tegrals.

The rigorous consideration of uncertainty, although providing a great

deal more information to a CG model than parameter optimization only, does

this at significant computational expense. Even with a 56 core cluster, gath-

ering the posterior samples used in this work requires around three weeks

of continual calculation. This is because the MCMC incurs MD simulation

at each chain transition in order to evaluate the likelihood function. We ar-

gue, however, that this sluggish performance can be greatly improved and

that the benefits of quantifying parameter uncertainty, particularly to issues

of validation, are worth extra computation in many cases. To address the

former, we note that the sampling algorithm used here is of a “brute force”

type. Order-of-magnitude improvements in speed are likely to be found by

constructing surrogate likelihood response surfaces that require sparser MD

simulation to evaluate. Furthermore, a careful choice of physical scenario for

parameter inference can result in significantly faster MD simulations in the

course of likelihood evaluation. As to the utility of extra computation in the

name of uncertainty quantification, we observe that the increasing emphasis on

molecular dynamics simulations to make predictions in biophysical scenarios

and material design necessitates the construction of multiscale models. The

variety of these applications means that it is also increasingly important to

validate the accuracy and precision of model predictions for a diverse set of

QOIs in a multitude of physical scenarios, many of which the model may not
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be explicitly trained to calculate. In line with this last point, we would also

like to be able to improve the model, if possible, for customized applications

in a goal-oriented way. The cost of working in a Bayesian framework is more

than justified, in our opinion, when a quantitative assessment of uncertainty

is vital to the predictive power of a model.
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Chapter 5

Polythiophene Case Study

We develop a coarse-grained (CG) model of 3-polyethylthiophene (P3ET)

utilizing common molecular mechanical potential energy functions. The free

parameters therein are calibrated via a Bayesian learning approach that ref-

erences training data from all-atom molecular dynamics (MD) simulations.

In such an approach, we use Markov chain Monte Carlo (MCMC) sampling

to estimate posterior probability distributions for CG parameters that are

conditioned on important all-atom observable values and then apply Bayesian

decision theory to select a “best” parameter set relative to the posterior expec-

tation of a chosen loss function. The CG model determined by this procedure

is finally subjected to validation tests involving the aggregation properties of

P3ET oligomers. These tests are particularly pertinent to models of certain or-

ganic photovoltaic (OPV) materials in which aggregates of thiophene polymer

function as electron donating material.

5.1 Introduction

In parallel with recent advances in organic photovoltaic (OPV) materi-

als research is an increasing interest in the atomic scale behavior of thiophene

80



polymers in aggregated states. Certain thiophene polymers, in mixture with

other constituents, have been shown to be effective electron donors upon ab-

sorption of visible light. In particular, so called bulk heterojunction (BHJ)

cells containing phase separated blends of poly-alkyl-thiophene and fullerene

make up some of the most promising OPVs for commercial solar cell develop-

ment [10, 11, 109]. The amount of electrical power deliverable by such devices

Figure 5.1: Basic representation of a bulk heterojunction solar cell

is governed by several processes at the atomic and device scale. Among the

most important are the efficiencies of light absorption, charge separation, and

charge transport through the BHJ [5, 39, 89]. Many aspects of these processes

are difficult to understand through purely empirical means, and hence, the con-

struction of accurate models is imperative to the continued improvement of

device fabrication techniques and eventual solar cell performance [19, 29, 103].

Of particular note for the present work are efforts to build molecular mechani-

cal, atomistic models of poly-alkyl-thiophenes using information from quantum

chemical calculations [21, 68]. These models enable the study of polymer con-

formation in physical scenarios involving the aggregation of multiple chains,

as one finds in electron donating regions of BHJs. Here, the space of likely
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conformations is important to understand, as conformation is widely believed

to influence the optical and electronic properties of polythiophenes.

As the typical BHJ device thickness is on the order of 50-100 nm

[5], atomic scale modeling is a logistic and computational challenge. Coarse-

graining, the process of reducing certain collections of atoms to single sites,

is thus one method of choice for reducing model complexity in molecular dy-

namics simulation of BHJ constituents. The principle challenge in producing

a coarse-grained (CG) model is generally in finding a suitable potential en-

ergy function that describes the physical interactions between CG sites in a

way that is “compatible” with a source atomistic model [71]. In this work,

we construct a CG mapping and potential energy for poly-ethyl-thiophene,

a representative member of the class of poly-alkyl-thiophenes of interest in

OPV device research. Our purpose with this model is to enable efficient study

of poly-akyl-thiophene in aggregate states. Specifically, we are interested in

reproducing all-atom conformational properties such as the inter-monomer di-

hedral angle distribution, single chain radius-of-gyration and end-end distance,

and minimal contact distances between monomers on separate chains. These

properties give indications of polymer geometry, packing, and, in the case

of the dihedal angle distribution, the degree of planarity within the polymer

chains. Increased planarity in consecutive sections of polythiophene is asso-

ciated with a greater degree of pi electron delocalization, and subsequently,

more favorable optical properties for the purposes of photocurrent generation;

thus, it is assumed that the inter-monomer dihedral angle is a very important
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observable to preserve in a CG model.

In our previous work, we introduced a Bayesian learning method for

inferring CG potential energy parameters from all-atom training data. The

data was assumed to come from MD estimates for a chosen set of ensemble

averages; these averages correspond with observables deemed important for

the eventual application of the CG model. A major benefit here is that the

resulting CG potential is ostensibly optimized with respect to the chosen ob-

servables. Additionally, the posterior probabilities generated by the Bayesian

inversion provide a measure of the uncertainty in the parameter estimation and

also, importantly, a basis from which to improve the CG parameters with re-

gard to other observables as needed. We utilize, and build upon, this Bayesian

framework to calibrate a CG model of poly-ethyl-thiophene with respect to

a small set of conformational observables. The two major additions to the

framework that we undertake here are (1) the derivation of a likelihood func-

tion in the case that the all-atom data is an estimated probability distribution

for an observable, in contrast to the case where the data is an estimated mean

of an observable and (2) the use of Bayesian decision theory to determine the

“best” parameter set relative to the posterior parameter expectation of a cho-

sen loss function. The former is relevant to CG modeling of polythiophene

because we would like to reproduce the all-atom inter-monomer dihedral angle

distribution and the latter is necessary for the validation and reporting of a

single, specified CG model.
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5.2 Bayesian Theory for CG Model Calibration

A Bayesian view of CG model calibration begins with Bayes’ formula

for the posterior probability density of a model parameter set conditioned on

data,

posterior︷ ︸︸ ︷
%(θθθ |ddd) =

likelihood︷ ︸︸ ︷
%(ddd |θθθ)

prior︷︸︸︷
%(θθθ)∫

dθθθ %(ddd |θθθ)%(θθθ)
, (5.1)

where θθθ refers to a vector of CG potential energy parameters and ddd refers to

an observed all-atom data set. The calibration of the model parameters first

necessitates a specification of a prior probability for the parameters as well

as a probability density for data sampled from a model with a given param-

eter vector. When the latter quantity is regarded as a function of parameter

vector with given data, it is known as a likelihood function. The prior proba-

bility carries information about admissible model parameters without regard

to the observed data set. We refer to our earlier work for a detailed develop-

ment of prior probabilities and likelihood functions in the case of data that

corresponds to a MD estimation of an ensemble average. The major themes

developed therein are (1) use of maximum entropy distributions for prior prob-

abilities that encode minimal parameter information from all-atom simulation

through mean value constraints and (2) likelihood functions for all-atom MD

data arising from the central limit theorem for convergence of sample means.

Here, we augment the likelihood function development with a treat-

ment that takes into account more general features of the data for a chosen

observable than just an estimated mean. This likelihood function is, in fact,
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maximized by minimizing an estimated Kullback-Leibler divergence between

the all-atom and CG distributions of the observable. To show this result, we

define the observable, ϕ, and assume that values of this observable can be cal-

culated from any configuration of beads in a given, fixed CG representation.

There are thus two different ways to define a distribution on the possible val-

ues of the observable: (1) through a given CG potential energy function, UCG

and (2) through the all-atom potential energy along with a mapping, M, that

takes all-atom configurations into the CG representation. Both ways deter-

mine ensemble dependent probabilities for the observable values, but they do

so from different statistical mechanical bases. As such, it is reasonable to com-

pare the two distributions with the intuitive goal of selecting a CG parameter

set such that the observable distribution arising from the CG potential best

matches that resulting from the all-atom potential. We now label these distri-

butions according to their probability density functions (PDFs), %CG(ϕ |θθθ, T )

and %AA(ϕ |M, T ), where we have conditioned on the CG model parameters

and the CG mapping as well as the ensemble temperature, T . The “closeness”

of these two distributions can be measured using the Kullback-Leibler diver-

gence which we express as a difference between two expectations with respect

to %AA,

DKL(θθθ) = 〈log %CG(· |θθθ)〉AA − 〈log %AA〉AA . (5.2)

As both quantities on the right side of eq. 5.2, which are actually entropies,

involve computation of average values, they are amenable to estimation by

way of MD simulation. Using the machinery of our previous work, we find a
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sampling PDF for estimates of the cross-entropy term, 〈log %CG(· |θθθ)〉AA, that

are computed from n all-atom MD samples,

%(d |θθθ, n) =
1

2

√
n

s2
n(θθθ)

exp

{
−
√

n

s2
n(θθθ)

∣∣∣d− Ĥn(θθθ)
∣∣∣} . (5.3)

This result follows from the central limit theorem for convergence of sample

means and an integration over unknown hyperparameters. In eq. 5.3, Ĥn is

the MD estimate of the cross-entropy,

Ĥn(θθθ) = −
n∑
i=1

log %CG (ϕAA,i |θθθ) , (5.4)

where {ϕAA,i}ni=1 are all-atom MD samples of ϕ. The quantity s2
n/n, where

s2
n is the variance of the samples, {log %CG (ϕAA,i)}ni=1, is a measure of the

uncertainty inherent in the cross-entropy calculation. If the data, d, in eq. 5.3

is defined to be an MD estimate of the all-atom entropy,

d = −
n∑
i=1

log %AA (ϕAA,i |M) , (5.5)

then it follows from eq. 5.2 and the Gibbs inequality that the misfit term in

the resulting likelihood function is an MD estimate of DKL,∣∣∣d− Ĥn(θθθ)
∣∣∣ = D̂KL,n(θθθ). (5.6)

It is important to note in the above development that, in practice,

one does not know the exact densities for %AA and %CG; these densities are

themselves estimated from MD simulation. Thus we actually use the esti-

mates, %̂AA,n and %̂CG,m, where n and m denote numbers of all-atom and CG
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MD samples used to calculate the density estimates. In particular, we uti-

lize the algorithm of Wang et al. to estimate DKL via k-nearest neighbor

approximations of the probability densities [107]. A notable consequence of

estimating the probability densities is higher uncertainty in the sampling dis-

tribution. We include this uncertainty in an approximate sense through the

s2 parameter in the likelihood. Instead of s2
n, we calculate s2

nm which is the

variance of the samples, {log %̂CG,m (ϕAA,i)}ni=1. In this paper, we consider a

one-dimensional, bounded observable wherein probability densities can be ac-

curately approximated for DKL estimation. Here, the preceding treatment of

density uncertainty is adequate for our purposes; however, in more complex

cases, the potentially large amount of uncertainty contributed to the likelihood

function by density estimation may require a more careful treatment.

Parameter calibration via Bayes’ formula necessitates finding the pos-

terior parameter distribution from a specified prior and likelihood function.

However, the posterior distribution does not on its own specify which pa-

rameter value is the “best” for the model at hand. The latter goal is often

accomplished by posing a mapping from pairs of parameter vectors into the

real numbers called a “loss function” and finding the parameter values that

minimize the expectation of the loss function under the posterior probabil-

ity. Denoting the loss function by L(θθθ,λλλ), this procedure is specified by the

expression,

θ̂θθ = argmin
λλλ

∫
dθθθ L(θθθ,λλλ)%(θθθ |ddd). (5.7)
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The intuition underlying the loss function is that it measures the cost associ-

ated with using a sub-optimal parameter vector, thus quantifying the notion

of a “best” set of parameters. For the remaining calculations in this paper, we

propose the simple loss function,

L(θθθ,λλλ) = ‖θθθ − λλλ‖, (5.8)

which is the `2, or euclidean, distance between θθθ and the optimal candidate,

λλλ. As noted in previous work, a closed form expression for the posterior PDF

is not generally available, and hence, we resort to gathering posterior samples,

{θθθi}Np

i=1, via a Markov chain Monte Carlo (MCMC) algorithm. The optimal

parameter vector is thus estimated by,

θ̂θθ ≈ argmin
λλλ

{
Np∑
i=1

‖θθθi − λλλ‖
}
. (5.9)

The parameter vector associated with eq. 5.9 is, in fact, the geometric median

of the Np posterior samples and can be found from iterative techniques such

as Weiszfeld’s algorithm [51].

5.3 All-Atom and Coarse-Grained Models of Thiophene
Polymers

The alkyl-thiophene variety we consider here consists of a five sided

thiophene ring with an alkane side-chain originating from the 3 position in the

carbon ring. Figure 5.2 shows a skeletal representation of 3-3’-polyhexylthiophene,

also known as P3HT. Atomistic models of polythiophene are a topic of contem-
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Figure 5.2: Atomic constituents and bond topology of 3-3’-polyhexylthiophene

porary research as stock atomistic potentials such as CHARMM and OPLS fail

to describe relevant physics related to the distribution of electrical charge on

the thiophene rings and the potential energy associated with twisting around

the inter-monomer dihedral angle. Thus, it is necessary to consider atomistic

potentials developed from first principle quantum chemical calculations that

have been carried out specifically for alkylthiophenes. For the part of the

potential governing the inter-monomer dihedral, as well as the deformations

involving two and three bonded atoms, we use the model of DuBay et al.

[21] due to their relatively comprehensive study of the polythiophene torsional

landscape in the presence of alkane side-chains of varying length. Of note

in their findings is a sizable energetic penalty for planar conformations due

to steric hindrance from alkane side chains. For coulombic point charges we

take values from Moreno et al. [68]. The remainder of the potential, which

comprises side-chain terms, is taken from stock alkane parameterizations in
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OPLS-2005 [6]. Since the DuBay model itself is posed as a modification to the

OPLS parameterization, this choice for side-chain parameters is a reasonable

one and is, in fact, the route they take as well. We have implemented the

described atomistic potential in the LAMMPS MD simulation program [82]

and, hence, this potential forms the basis from which we calibrate our CG

potential energy functions.

We now take up the description of a suitable CG representation of 3-3’

polyethylthiophene. The choice of ethyl side chains is due to the computational

ease of modeling ethyl groups and, also, to the observation from the study of

DuBay et al. that ethyl chains are of sufficient volume to generate the steric

hindrance that so influences the conformational space of alkylthiophenes. We

choose a three site per monomer CG scheme that is as coarse as possible while

still resolving the ethyl side chain and the inter-monomer dihedral angle. Our

coarse representation is shown in figure 5.3, with the three CG bead types in-

dicated by letters ’S’, ’R’, and ’C’. To compare all-atom MD trajectories with

Figure 5.3: Left: P3ET atomistic model. Right: coarse representation with
three sites per monomer. ’S’ stands for sulfur bead, ’R’ for ring and ’C’ for
side-chain.

those of our CG model, we define a mapping that sends the sulfur atom to the
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’S’ bead position, the center-of-mass (COM) of the remaining ring atoms to

the ’R’ position, and the COM of the ethyl side-chain to the ’C’ position. We

further pose a potential energy functional form consisting of harmonic spring

forms for bond and angle terms, a four term OPLS style cosine series for the

S-R-R-S inter-monomer dihedral angle, and a 12-6 Lennard-Jones form for

interactions involving sites not connected by bonds and those separated by

three or more bonds. Thus, the free parameters of the CG potential consist

of stiffnesses and equilibrium positions for the harmonic spring terms, four

Fourier coefficients for the dihedral, and a Lennard-Jones σ and ε for each of

the three bead types. Mixing rules for the non-bonded terms are geometric in

ε and arithmetic in σ: εij =
√
εiεj, σij = (σi + σj)/2.

5.4 CG Potential Energy Calibration

To find values for the free parameters of the CG potential, we first

select a physical scenario for the calibration. We anticipate the need for nu-

merous, sequential MD simulations in this scenario, thus we choose a setting

of minimal complexity that can still deliver discriminating information. A

system consisting of two interacting P3ET trimers at 300 K makes up this

scenario. Prior information for the CG parameters is then gathered from all-

atom MD trajectories for the dual trimer that are mapped into the described

CG representation. For location parameters, that is, equilibrium bond and

angle positions and Lennard-Jones σ parameters, we estimate the average val-

ues of the generalized coordinates associated with these parameters from the
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MD trajectory. Spring constants for the bond and angle terms are estimated

from an energy equipartition relation involving the variances of the associated

generalized coordinates,

kQ ≈
kbT

2s2
Q

, (5.10)

where Q denotes the generalized coordinate of interest and s2
Q is the sample

variance for Q over the MD trajectory. The prior information values for the

bonds and angles are given in tables 5.1 and 5.2. Prior information for

Bond Parameters r0 (Å) kr (kcal/mol · Å2)

S-R 1.825 88.6
R-R 4.094 22.52
R-C 2.902 37.0

Table 5.1: Prior information for CG bonds: 1
2
kr(r − r0)2

Angle Parameters α0 (deg) kα (kcal/mol · rad2)

S-R-C 141.7 14.0
S-R-R 69.0 19.44
R-R-R 131.2 7.34
C-R-R 79.6 11.24

Table 5.2: Prior information for CG angles: 1
2
kα(α− α0)2

Lennard-Jones ε parameters is found by observing average interaction energies

between associated beads belonging to distinct trimers; table 5.3 lists the

values for this prior information. We take a different approach for the four

dihedral parameters associated with the S-R-R-S dihedral,

USRRS(φ) =
4∑

k=1

Vk
2

(
1 + (−1)k−1 cos kφ

)
. (5.11)
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Lennard-Jones Parameters σ (Å) ε (kcal/mol)

S 3.64 0.25
R 5.99 0.21
C 6.47 0.11

Table 5.3: Prior information for CG non-bonded parameters: 12-6 Lennard
Jones

Here, we take prior information directly from the quantum chemical calcula-

tions of DuBay et al. In particular, we note an energy barrier of 10 kcal/mol

separating the lowest energy torsion state from the cis-planar state1. In the all-

atom model, a non-bonded steric hindrance between the hydrogen connected

to the 4 position on the thiophene ring and an adjacent side-chain accounts

for the majority of this barrier. As the CG model lacks a representation of

this hydrogen, we seek to build this cis-planar barrier into the CG dihedral

potential instead of the non-bonded part of the potential. Setting restrictions

on the V1 parameter gives control over the barrier, since it is peaked only in

the cis-planar state. Thus, we insist that the prior for V1 have a mean con-

strained to 10 kcal/mol, in line with the calculation of DuBay et al., and assign

zero probability to negative values. This is the extent of the dihedral prior

information we use.

As in the previous work, we quantify the prior information with mean

constrained, maximum entropy distributions on the parameters we include in

the Bayesian inversion. Presently, this includes the dihedral coefficient, V1,

1In this case, the cis-planar state is achieved when the dihedral angle is zero. For a dimer
in this state, both alkyl side-chains are on the same side of the thiophene rings.
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the C-R-R angle parameters, and the Lennard-Jones parameters. The basic

functional form for these PDFs is that of a gamma distribution. Uniform pri-

ors between -20 and 20 kcal/mol are used for V2, V3, and V4, reflecting prior

ignorance over the dihedral energy scale. We do not expect the bond parame-

ters, nor the S-R-C, S-R-R, and R-R-R angle parameters, to influence the final

results in an interesting way, so we simply set them to their nominal values in

the prior information and exclude them from the inversion procedure. This is

equivalent to posing strong priors that approach delta functions centered on

the nominal values. The C-R-R angle parameters are included in the inversion

because they influence the hindrance effect between the side-chain bead and

beads on adjacent monomers, an effect that impacts the torsional conforma-

tions accessible to the polymer as a whole. With all of these issues taken into

account, the parameter space for the calibration is defined by the 12 dimen-

sional domain implied by the prior PDFs.

It remains to specify the observables providing data to the parameter

calibration. Three observables are used in total. We choose two that give

information on the aggregation properties of P3ET: the average distance be-

tween the trimer COMs and the average interaction energy between them.

The third observable, anticipated in the previous section’s likelihood function

development, is the entropy of the inter-monomer dihedral angle distribution.

We assume logical independence of the data sets associated with these three

observables so that the likelihood function factors into a simple product of one

observable likelihoods. The likelihoods associated with the first two observ-
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ables are derived in earlier work and have the form of Laplace distributions.

The third follows from eq. 5.3 and is given by,

%(d |θθθ, n,m) =
1

2

√
n

s2
nm(θθθ)

exp

{
−
√

n

s2
nm(θθθ)

D̂KL,nm(θθθ)

}
, (5.12)

where the presence of m indicates the density estimation originating from CG

MD samples.

The parameter posterior is sampled via a MCMC method implemented

in the QUESO code [83]. All-atom data for the first two observables consists of

75 samples each of average trimer separation and interaction energy taken from

1 ns trajectories. For the dihedral angle PDF estimate, 2400 dihedral angle

samples are taken from a 10 ns all-atom trajectory. Evaluation of the likeli-

hood function further requires MD estimates from the CG model. In practice,

this results in MD simulation undertaken at every Markov chain transition.

Average trimer separation, interaction energy, dihedral angle PDF, as well as

the uncertainties associated with these observables, are estimated from 250

ps of CG MD simulation to complete the evaluation of likelihood. One di-

mensional posterior estimates for each parameter are shown in figure 5.4. We

note here that the full 12 dimensional posterior includes covariances among

the parameters that are not possible to show using 1-D representations, but

these covariances are nonetheless present in the MCMC samples. The Bayes’

estimate of the CG potential energy parameter values is then calculated by

estimating the geometric median of the posterior samples. We have insured

in this median calculation that enough MCMC samples have been gathered

to give a stable estimate that does not change appreciably with additional
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Figure 5.4: 1-D parameter posteriors estimated from 46,500 samples gathered
from MCMC. Energy units are kcal/mol.

posterior samples. Table 5.4 displays these values for the parameters included

in the calibration; omitted bond and angle parameters remain identical to the

prior estimates. With the CG potential energy specified, MD simulation can

be carried out to predict values of important observables in the reduced repre-

sentation. Figure 5.5 shows a comparison of the cosine of the inter-monomer

dihedral angle PDFs from all-atom and CG Bayes MD for the dual trimer

system comprising the calibration scenario. The Kullback-Leibler divergence

between all-atom and CG dihedral cosine PDFs is small, as expected, esti-

mated from trapezoid rule quadrature to be about 0.02. In the following

section, we consider validation tests of the Bayes’ estimated CG potential that

involve a more complicated physical scenario.
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Dihedrals V1 V2 V3 V4 (kcal/mol)

S-R-R-S 1.92 -2.18 0.421 -0.775

Angles α0 (deg) kα (kcal/mol · rad2)

C-R-R 62.92 14.6

LJ 12-6 σ (Å) ε (kcal/mol)

S 2.87 0.41
R 5.13 0.52
C 4.30 0.19

Table 5.4: Bayes’ posterior estimate of CG potential energy parameters

5.5 CG Model Validation Tests

We now subject the Bayes’ estimated CG potential energy to valida-

tion tests that push the model to make predictions outside of the calibration

realm. If this CG model is to be realistically used to accelerate MD investiga-

tions of polythiophene aggregation properties, there must be some such test

of predictive capacity. Thus, we consider a system of four interacting decamer

chains in thermal equilibrium at 300 K. In this validation scenario, we pose

four quantities of interest: radius-of-gyration and end-end distance of single

polymer chains, minimum distances between thiophene rings belonging to dif-

ferent polymer chains, and the inter-monomer dihedral angle distribution. The

minimal ring distance for the ith thiophene ring is calculated according to,

dmin,i = min {‖ri − rj‖2 : c(j) 6= c(i)} , (5.13)
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Figure 5.5: Kernel density estimated inter-monomer dihedral angle cosine
PDFs for the dual trimer calibration scenario. The Solid line is from all-atom
MD, the dashed line is from CG MD with the Bayes estimated potential.
DKL(%AA‖%CG) ≈ 0.02.

where ri and rj are the position vectors of ’R’ beads in the CG representation

and c(·) is an integer representing the chain that contains a given thiophene

ring.

In order to make quantitative comparisons, we run the validation sce-

nario with the all-atom model and with the CG Bayes model, calculating

the QOIs from 10 ns MD trajectories in each model. We simulate both sys-

tems using replica exchange dynamics to bolster sampling of the phase spaces;

replica temperatures are set according to a geometric spacing rule-of-thumb

[105]. A summary of the all-atom, CG comparisons is displayed in table 5.5.

Each entry in the table is an estimate of a mean from MD simulation. The

all-atom estimates are calculated by first mapping the MD trajectory to the

CG representation. Comparisons of radius-of-gyration and end-end distance
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QOI All-atom (Å) Coarse-grained (Å)

R̂g 7.15 ± 0.1 6.72 ± 0.1

R̂ee 15.1 ± 0.64 14.1 ± 0.64

d̂min 5.21 5.58

Table 5.5: All-atom and CG QOI calculations from MD for average radius-
of-gyration, end-end distance, and minimal thiophene ring distance in the
validation scenario. Reported uncertainties are at the 95% confidence level.
Uncertainties below 0.1 Å are not reported.

indicate relative agreement between all-atom and CG ensembles for conforma-

tional properties at the polymer chain scale, with hairpin-like shapes being the

most common conformational feature in both cases. In the case of d̂min, which

is an average over all rings and all MD samples in a trajectory, we note that

in both all-atom and CG cases, 80% of the samples making up the estimates

are between 4 and 6 Å. This observation motivates the statement that the

polymer packing behavior in the CG setting is similar to that in the all-atom

model, albeit with a slightly larger ring-ring separation on average. It is also

interesting to examine the angle between normal vectors for thiophene ring

pairs that satisfy the dmin condition in eq 5.13. In the all-atom case, it is

straightforward to define a vector normal to the plane of a thiophene ring; in

the CG representation, we estimate the plane normal for ring i from the
−−→
RiSi

vector and the
−−−−→
RiRi+1 vector, except at the right edge where

−−−−→
RiRi−1 is used.

The contour plot in figure 5.6 shows probability density estimates for cos β, the

cosine of the angle between plane normals corresponding to thiophene rings

satisfying the dmin condition, versus the minimal ring pair distance. These
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Figure 5.6: Kernel density estimates of the cos β vs. dmin joint PDF for all-
atom and CG cases.

plots show that in both all-atom and CG cases, the minimal ring pairs tend

to stack on top of each other in relative planar or anti-planar (cos β ≈ ±1)

configurations.

Figure 5.7 shows a comparison of the S-R-R-S dihedral angle PDF from

all-atom and CG MD. We observe that the CG potential tends to concentrate

the dihedral probability density closer to the peak of the PDF, in the cis-

distored state, while the all-atom distribution is more spread out, but also

peaked in the cis-distorted state. As a consequence, the CG potential under-

estimates the probabilities of cis-planar and trans-planar conformations; the

approximate probability of the inter-monomer dihedral being within 30 de-

grees of either planar state is 4% in the all-atom model and 1.5% in the CG

model. Despite these issues, general agreement between the two distributions

is still intact, with an estimated Kullback-Leibler divergence of 0.06. Another,

more intuitive way to quantify the “degree of disagreement” between the two

distributions is with the total variation distance, dTV . This metric computes
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Figure 5.7: Kernel density estimated inter-monomer dihedral angle cosine
PDFs for the four decamer validation scenario. The Solid line is from all-
atom MD, the dashed line is from CG MD with the Bayes estimated potential.
DKL(%AA‖%CG) ≈ 0.06

the largest possible probability difference that the two distributions can assign

the same event and is, in this case, computed according to,

dTV (%AA, %CG) =
1

2

∫ 1

−1

d(cosφ)
∣∣∣%AA (cosφ |M)− %CG

(
cosφ | θ̂θθ

)∣∣∣ , (5.14)

where we have indicated conditioning on the CG mapping, M, and the optimal

CG potential energy parameters, θ̂θθ. For the PDFs in fig. 5.7, dTV ≈ 0.126.

Thus, the greatest difference in probability assignment that the distributions

can make is about 12.6%. These observations give us quantitative motivation

to state that the equilibrium conformations sampled by the CG model are

similar to those sampled in the all-atom model, with some minor discrepancies

where noted. We finally point out that the CG MD simulation of the validation

scenario required fewer CPU hours, by a factor of 36, than the equivalent
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all-atom MD on our parallel processing workstations, thus demonstrating an

obvious benefit of using the reduced model.

5.6 Discussion

We begin the section by noting that coarse-grained representations and

potentials for varieties of polythiophene have been previously posed and cal-

ibrated in the works of Lee [54] and Huang [30, 91]. Both of these groups

build models for 3-polyhexylthiophene (P3HT) that coarse-grain thiophene

rings into single sites, thus their models lack the resolution to precisely define

an inter-monomer dihedral angle. The Huang group is able to approximately

define the inter-monomer dihedral using side-chain sites on adjacent monomer

units in the dihedral definition. However, the atomistic torsional energy pro-

file that is used to parameterize their CG model indicates potential energy

minima at planar conformations, thus conflicting sharply with the source of

atomistic information for our CG model. This planar minima conclusion seems

to be based on density functional theory (DFT) calculations undertaken by

Darling and Sternberg in 2009 [19]. DuBay et al. address this 2009 work as

well, concluding that the planar minima found in that case are, in fact, local

minima in the torsional energy landscape and that the global minima involve

distorted dihedral angles. Due to the more current information in the atom-

istic model of DuBay et al., on which our CG model is based, we regard our

model as having a more accurate representation than the Huang model for

the inter-monomer dihedral angle potential. The Huang model is also rela-
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tively complex in comparison, using anharmonic spring potentials for bonds

and angles which require the specification of up to four parameters for each

interaction type. Additionally, the non-bonded potentials therein are gleamed

from Boltzmann inversion and are hence specified by tabulated energies at

equally spaced intervals of 0.1 Å. Our model is able to describe the major fea-

tures of the polythiophene conformational space with an order of magnitude

fewer number of parameters; furthermore, our CG potential energy consists

entirely of functional forms already implemented in most major MD codes,

making it easy to physically interpret, report, and share with other people

studying thiophene polymers.

It is instructive, at this point, to note some key differences between

computing optimal CG potential energy parameters via Bayes’ estimation,

as we have done in this work, and through other established algorithms. In

particular, the popular methods of Boltzmann inversion, multi-scale coarse

graining/force matching, and relative entropy minimization present some in-

teresting contrasts. First and foremost, the goal all-atom quantity to repro-

duce using these methods is the potential of mean force (PMF) that arises

from Boltzmann-weighted averaging of the net all-atom forces on CG beads.

The average therein takes place over the portion of the all-atom phase space

that conserves CG bead configuration. This PMF, if it can be found, is the

best possible CG potential energy function, from the standpoint of statistical
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mechanics, because it satisfies the relation,

1

ZPMF

exp

{
−VPMF (RRR)

kbT

}
=

1

ZAA

∫
drrr exp

{
−UAA(rrr)

kbT

}
δ (M(rrr)−RRR) ,

(5.15)

where RRR and rrr represent CG and all-atom configurations, the Z quantities are

relevant partition functions, and δ(·) selects the all-atom configurations con-

serving CG configuration RRR. This relation implies that coarse-grained simula-

tions undertaken with VPMF as the potential energy function are guaranteed

to reproduce any configurational observable from the all-atom model, mod-

ulo the all-atom-to-CG mapping. W. Noid has proved this identification of

the PMF with the “consistent” CG potential energy. Unfortunately, VPMF is

generally an unknown function of all the CG coordinates. In practice, force-

matching, relative entropy minimization, and Boltzmann inversion construct

iterative approximations to the PMF in vector spaces that generally assume

additive interactions of functions of single generalized coordinates. Hence, the

exact, many-body PMF is not generally in the asymptotic span of the of the

function spaces used. Consequently, differences between general ensemble av-

erages in the all-atom and resulting CG models are not necessarily bounded

by any constants related to the convergence criteria of the potential energy

optimization algorithm. Put another way, finding the potential energy in a

space of additive, pairwise functions that minimizes a residual involving mean

forces, relative entropy, or select pair correlation functions does not guarantee

that the resulting CG potential energy will reproduce the all-atom value for

a general observable. A rigorous determination for general observables can-
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not be made unless the potential energy approximation spaces are enlarged to

contain the true PMF, but this is, as yet, not a practical possibility.

The Bayes estimation scheme introduced here and in previous work

is decidedly different in philosophy and motivation than the PMF methods

mentioned. We make no attempt, nor any claim, to produce a method that

converges to the exact PMF arising from a CG mapping. Rather, the Bayes

estimation procedure addresses potential shortcomings of PMF methods by

targeting observables that are physically relevant, in a practical sense, to de-

signers and end-users of a particular CG model. In this setting, the method

seeks to quantify the degree to which CG potential energy parameters are de-

termined by constraining the values of a small collection of ensemble averages.

The resulting posterior probability distributions allow us not only to quantify

uncertainty in parameter estimates, but also to iteratively build more compre-

hensive posterior representations of parameter knowledge given new varieties

of observable information. We’ve shown in this paper for a polythiophene

model, and in previous work for a heptane model, that the Bayes estimation

procedure can produce CG models with predictive capacity in reference to

QOIs that are informed to some degree by the calibration observables. It is

important to note that the success of these examples depended on the ability

of the method to find sets of CG parameter vectors such that the calibration

observable values could all be accurately reproduced in the CG setting. If the

CG potential energy space is not rich enough to reproduce these features, then

it must be expanded in some way to include them. Here, PMF methods may
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be able to provide valuable prior information on the nature of the potential

energy function space enrichment that is necessary. Due to the substantial

difficulties associated with CG modeling of complex chemical systems in bio-

physical and materials science, it is likely that the most useful CG models

will be posed and calibrated using a hybrid approach that references the con-

sistency principles embodied in Noid’s PMF theorem while still taking into

account the practical importance of optimizing potential energy parameters in

reference to observables that are relevant to the original design goals of the CG

model. We have pursued the latter, with loose consistency imposed by max-

imum entropy priors defined from mean value constraints. Many subsequent

improvements are likely as the different perspectives on the coarse-graining

problem are brought to bear.
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Appendix

The objective of this appendix is to show that, given certain maximum

entropy priors, a gaussian sampling distribution admits a Laplace distribution

upon integration over its hyper-parameters. We begin with the gaussian form

likelihood that results from applying the central limit theorem to a sample

mean computed from n independent samples,

%(d |n,θθθ, µ, σ2) =

√
n

2π σ2
exp

{
−n

2

(d− µ)2

σ2

}
, (A.1)

where µ and σ are the true mean and variance for the sampling PDF. In

the CG calibration setting, these values are implicitly dependent on the CG

potential energy parameters, θθθ. Consequently, the true mean and variance

are unknown and must be estimated from MD samples gathered from the

CG model. We eliminate these values, now referred to as hyper-parameters,

from the likelihood expression by applying appropriate prior probabilities and

integrating over the parameter domains. We now define the sampling PDF

according to,

%(d |n,m,θθθ) ≡
∫ ∞

0

dσ2

∫ ∞
−∞

dµ %(d |n,θθθ, µ, σ2) %(µ, σ2 |m,θθθ), (A.2)

where we now condition on the number m of CG MD samples used to esti-

mate the hyper-parameters. The prior on the right side of eq. A.2 is then
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factored according to, %(µ, σ2 |m,θθθ) = %(µ |m,θθθ, σ2) %(σ2 |m,θθθ), where the

single parameter priors are assigned from maximum entropy requirements,

%
(
µ |m,θθθ, σ2

)
=

√
m

2πσ2
exp

{
−m

2

(µ− µ̂m(θθθ))2

σ2

}
,

%
(
σ2 |m,θθθ

)
=

1

σ̂2
m(θθθ)

exp

{
− σ2

σ̂2
m(θθθ)

}
.

(A.3)

The quantities, µ̂m and σ̂2
m, are the MD estimates computed from CG simula-

tion. Expanding terms and completing the square in the first integral yields,

√
nm

2πσ2

∫ ∞
−∞

dµ exp

{
−n

2

(d− µ)2

σ2
− m

2

(µ− µ̂m)2

σ2

}

=

√
nm

2πσ2
exp

{
−nm (d− µ̂m)2

2(n+m)σ2

}∫ ∞
−∞

dµ exp

{
−n+m

2σ2

(
µ− nd+mµ̂m

n+m

)2
}

=

√
nm

2(n+m)πσ2
exp

{
−nm (d− µ̂m)2

2(n+m)σ2

}
.

(A.4)

This last line of (A.4) indicates that the integral over µ produces a new gaus-

sian PDF with mean µ̂m and variance (n−1 +m−1)σ2.

We now show, by way of a duality argument, that the final integral over

the unknown variance implies a random variable with a Laplace distribution.

That is, we show that the characteristic function, or the Fourier transform, of

the integral is equivalent to that of a Laplace PDF. To simplify the expres-

sions, we let κ2 = n−1 +m−1 and x = d. Furthermore, we denote the gaussian

PDF of mean zero and variance σ2 by G(x;σ2). We begin the calculation by

noting that the following iterated integral has a clearly finite value,∫ ∞
0

dσ2

∫ ∞
−∞

dx
∣∣eitxG(x− µ̂m;κ2σ2) %

(
σ2 |m,θθθ

)∣∣ = 1 <∞. (A.5)
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It follows that the conditions of the Fubini theorem for iterated integrals are

satisfied, and hence we can compute the characteristic function by reversing

the integration order,

ϕ(t) ≡
∫ ∞
−∞

dx eitx
∫ ∞

0

dσ2G(x− µ̂m;κ2σ2) %
(
σ2 |m,θθθ

)
=

∫ ∞
0

dσ2 %
(
σ2 |m,θθθ

) ∫ ∞
−∞

dx eitxG(x− µ̂m;κ2σ2)

=

∫ ∞
0

dσ2 %
(
σ2 |m,θθθ

)
exp

{
i µ̂mt−

1

2
κ2σ2t2

}
,

(A.6)

where, in the last line, we have substituted the known characteristic function

for a gaussian PDF. The final result is obtained by carrying out the integration,

ϕ(t) =
ei µ̂mt

σ̂2
m

∫ ∞
0

dσ2 exp

{
−
(

1

σ̂2
m

+
1

2
κ2t2

)
σ2

}
=

ei µ̂mt

1 + 1
2
κ2 σ̂2

m t
2
.

(A.7)

The computed characteristic function is the Fourier dual of a Laplace PDF

with mean µ̂m and variance κ2 σ̂2
m. Thus, we find,

%(d |n,m,θθθ) =
1

2 γmn(θθθ)
exp

{
−|d− µ̂m(θθθ) |

γmn(θθθ)

}
, (A.8)

with γmn(θθθ) = σ̂m(θθθ)
√

1
2

(
1
m

+ 1
n

)
. The identification of the hyper-parameter

integral with a Laplace PDF is thus established.
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