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This study aimed to understand the relationship between mobile device screen 

display size (laptops and smartphones) and text segmentation (continuous text, medium 

text segments, and small text segments) on learning outcomes, cognitive load, and user 

perception. This quantitative study occurred during the spring semester of 2015. Seven 

hundred and seventy-one chemistry students from a higher education university 

completed one of nine treatments in this 3x3 research design. Data collection took place 

over four class periods. The study revealed that learning outcomes were not affected by 

the mobile screen display size or orientation, nor was working memory. However, user 

perception was affected by the screen display size of the device, and results indicated that 

participants in the sample felt laptop screens were more acceptable for accessing the 

digital chemistry text than smartphone screens by a small margin. The study also found 

that neither learning outcomes, nor working memory was affected by the text 

segmentation viewed. Though user perception was generally not affected by text 

segmentation, the study found that for perceived ease of use, participants felt medium 
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text segments were easier to learn from than either continuous or small test segments by a 

small margin. No interaction affects were found between mobile devices and text 

segmentation. These findings challenge the findings of some earlier studies that laptops 

may be better for learning than smartphones because of screen size, landscape orientation 

is better for learning than portrait orientation in small screen mobile devices, and 

meaningful text segments may be better for learning than non-meaningful, non-

segmented, or overly segmented text. The results of this study suggest that customizing 

the design to the smartphone screen (as opposed to a one-size-fits-all approach) improves 

learning from smartphones, making them equal to learning from laptops in terms of 

learning outcomes and cognitive load, and in some cases, user perspective. 
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Chapter 1: Introduction 

 

Learning with mobile devices is on the rise. Laptops, tablets, and smartphones 

now offer a variety of applications and access for learners of all ages. Educators and 

instructional designers are working to better understand what design principles lead to the 

best learning experiences. These conversations consider learning gains, screen layout, 

cognitive load, ideal screen size, user interface (UI) design, content-specific guidelines, 

and user preferences. Although there are well established instructional design 

frameworks and principles that have been used with print, video, and computer-based 

instruction, there are questions related to the applicability of these frameworks to learning 

within the constraints of the small screen displays of smartphones. However, to date there 

are few noted instructional design principles for small screen mobile devices, especially 

for smartphones. Furthermore, research concerning the best practice utilization of specific 

design elements is sparse, leaving great space for additional research. 

In the current consumer landscape, mobile devices are everywhere. Laptop 

computers, tablets, and smartphones infiltrate communication, economic, political, and 

social realms. With the speed of technological evolution and the proliferation of mobile 

devices, industry, government, and education constantly struggle to stay abreast of 

development. There are many questions yet to be answered. Examples include: How 

should these devices be incorporated into the business, government, and educational 

practices which currently operate? Should technology be adapted to older educational 

models or should older educational models be updated to embrace the technology? How 
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can the affordances, as well as the constraints of the new generation of mobile devices be 

carefully considered and integrated into the teaching-learning process? 

Considering the broadly evolving platforms, operating systems, device sizes, 

capabilities, and integration of mobile devices, quality software development is a 

constant challenge. In its most ideal circumstance, software is iterative, adapting as the 

technology changes. However, such development is extensive and expensive, further 

adding layers to challenges of integrating these devices into the learning environment.  

As mobile device presence surges, expectations for more seamless integration 

increase (Noel-Levitz, LLC, 2014). A primary mode for both communication and access 

to information is through mobile devices (mainly smartphones). Given the use of and 

marketing projections for mobile devices, it seems probable that they are here to stay for 

the foreseeable future (Ericsson, 2015).  

Smartphones especially have risen in numbers sold, both in the United States and 

around the globe. These small mobile devices rarely leave their owners’ sides (“IDC 

Home,” 2015). The ever-evolving affordances and tools accessible through the 

omnipresent smartphone present unique learning opportunities (Crescente & Lee, 2011). 

This is especially interesting when one considers that in terms of learning, the relatively 

small screen is the least effective display for transferring information and knowledge 

(Kim & Kim, 2012). 

Therein lays the conundrum: the mobile device that is most accessed and utilized 

is seemingly the least advantageous for learning. This study exists within that emerging 

challenge. On its own, the small screen of a smartphone is less suitable for learning when 

compared to the larger screens of its mobile cousins, the laptop computer and the tablet 
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(Kim & Kim, 2012; Luong & McLaughlin, 2009; Molina, Redondo, Lacave, & Ortega, 

2014). This study will explore whether specific instructional and user-interface design 

techniques can be applied to small screens in ways that decrease cognitive load, increase 

learning, and meet user expectations, thus fostering learning equitability between various-

sized mobile devices. 

The material presented in chapter one will provide a high-level description of 

mobile technology, including definitions and statistics. Additionally, it will briefly 

introduce the body of research for mobile learning theories and the effects of cognitive 

load on learning (i.e., how human cognitive architecture works to process and store 

information), and mobile instructional design, which will aid in grounding the literature 

review, research background, and hypothesis. It will then touch on the significance of this 

study, both in terms of adding to the current body of research and leading the way for 

future research, before finally specifying the structure of the following chapters of this 

dissertation. 

MOBILE TECHNOLOGY 

Given the constant changing nature of mobile technology, it is necessary provide 

an overview of the current status of the development, access, and use of mobile 

technology at the time of this study. Next, statistical evidence demonstrating the 

proliferation of mobile devices globally and in higher education will help situate this 

research, which in turn will help identify possible directions for future research. 

Mobile technology requires three main components to function: the hardware 

(physical devices), the software (applications and operating systems, etc.), and 
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connectivity. Hardware refers to all tangible parts required to operate a mobile device. 

Hardware is the nuts and bolts, from the computer chips and processors to the display 

screen, casing, and physical buttons. Together these pieces create the variety of devices 

that exist today.  

Software includes all of the coded instructions and applications created to enable 

visual and informational interactions via the device. Operating systems (OS) are coding 

language platforms that act as software instructional platforms. OSs vary per device, 

meaning that the same application written in iOS for an iPhone cannot be used on a 

device that runs on an Android OS platform. Software is the input and output instructions 

that allows the device to operate and interact appropriately.  

Connectivity is the way in which the device “connects” with other devices and the 

internet. For mobile devices, connections are mainly wireless, meaning data is 

transmitted via radio waves and does not require the hard plug and cord connection. It is 

this wireless capability that has made mobile communication possible. There are several 

types of wireless connections, including Wi-Fi, Bluetooth, and mobile broadband (3G, 

4G, etc.). Each uses different wave lengths and systems to exchange and interpret data 

between devices.  

Mobile devices today take several forms. Mobile personal computers evolved 

from desk top computers, personal digital assistants (PDAs), and cellular phones into 

laptops, tablets, and smartphones. There are numerous types of mobile devices ranging 

from laptops to smartwatches. Of import in this study are laptops, tablets, and 

smartphones (see Table 1.1). Additionally, two hybrid devices are on the rise and while 

less directly impacting this study, laplets and phablets (see definition below) are 
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nevertheless worthy of mention given their unique blending of computing capabilities 

and size, and the increase in units sold.  

Laptops have the full computing functionality of a desk top computer with 

rechargeable battery-operated, portable, slim designs easy for carrying and computing on 

the go (PC Magazine, 2014a; wikipedia, 2014). Modern “laptops” include diverse 

categories of devices, such as netbooks, notebooks, and desktop replacements. Laptops 

feature full keyboards attached to the display, allowing for the clamshell device to flip 

open and closed. Laptops have fully capable Central Processing Units (CPUs), full-

featured OSs, and numerous input/output (I/O) ports. Most laptops are Wi-Fi enabled, but 

are not mobile broadband enabled. Laptop weights vary per device, while LCD displays 

range from 11 up to 18 inches.  

Tablets are wireless mobile computers accessed via a touchscreen interface. 

Tablets are smaller in size and computing power than laptops and larger than 

smartphones. Tablets have digital keyboards and are self-contained, although a few 

models allow for external keyboard hook up. They offer both Wi-Fi and mobile 

broadband capability. Tablets include slate tablets, mini tablets, and eReaders. While 

some larger slate tablets have 10 inch displays, the more popular tablets, like Apple’s 

iPad, have screens between 7 and 9 inches. Tablets are mostly used for web browsing, 

light-gaming, and media consumption, though music and design capabilities are 

expanding (PC Magazine, 2014c). Presently, they do not offer the fully functioning 

operating systems of laptops. 

Smartphones combine cellular telephone technology with some functionalities of 

a mobile personal computer (PC Magazine, 2014b). Paas, et. al. (2013) define 
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smartphone as mobile phones with mobile operating systems that allow for computing 

and interactivity. Like tablets, smartphones have limited computing power compared to 

laptops. Modern smartphone features include phone, SMS/MMS, email, web access, 

digital cameras, media players, full video and audio capabilities (i.e., you can view, 

create, share, and even edit your own videos using your smartphone), GPS capabilities, 

voice-to-text and text-to speech, and numerous tools and applications for measurement, 

health, language, etc. (Zabel, 2010). Smartphone connectivity includes mobile 

broadband, Wi-Fi, Bluetooth, and Near Field Communication (NFC). Smartphones range 

in display size from 3.5 to 5.1 inches. The size and phone capabilities of smartphones 

make them the most convenient mobile computing device.  

A phablet (PHone tABLET) is a hybrid of a smartphone and a tablet.  Example 

phablets include the Samsung Note 4 and the Apple iPhone 6 Plus. Phablets offer better 

visual experiences than traditional smartphones with larger displays ranging between 5 

and 6 inches, but still have the capability of a smartphone in terms of phone capability, 

connectivity, and personal computing functionalities (PCMagazine, 2014). While most 

smartphones fit conveniently into clothing pockets, phablets can be bulky.  

A laplet (LAPtop tabLET) is a hybrid of a laptop and tablet (also called 2-in-1s 

and ultramobiles. Example laplets are the Microsoft Surface Pro 3 and the Lenovo Yoga 

2. They combine the power and versatility of a traditional laptop with the mobility of a 

tablet. Like laptops, laplets run on x86-architecture CPU and a full-featured operating 

system. They include typical laptop I/O ports, such as USB. Some come with detachable 

keyboards.  Like tablets, laplets have touchscreen displays and can convert into a tablet-

like device when the keyboard is detached or flipped under.   
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Table 1.1. 

Mobile Devices 
Device Examples Power/CPU Connectivity Display Type Display 

Range 
Laptop Apple MacBook, 

HP Pavillion 
Full Range 
Computing 

Wi-Fi LCD Mouse, 
LCD 

Touchscreen 

10” – 17” 

Laplet Microsoft Surface 
Pro 3 

Full Range 
Computing 

Wi-Fi, Bluetooth, 
Mobile 

Broadband (some 
models) 

LCD 
Touchscreen 

10” – 13” 

Tablet Apple iPad, 
Samsung Galaxy 

Tab 10.5 S 

Limited 
Computing 

Wi-Fi, Bluetooth, 
Mobile 

Broadband 

LCD 
Touchscreen 

7” – 10” 

Phablet Samsung Galaxy 
Note 4, Apple 
iPhone 6 Plus 

Limited 
Computing 

Wi-Fi, Bluetooth, 
Mobile 

Broadband 

LCD 
Touchscreen 

5.2” – 6” 

Smartphone Samsung Galaxy 
S5, Apple iPhone 6 

Limited 
Computing 

Wi-Fi, Bluetooth, 
Mobile 

Broadband 

LCD 
Touchscreen 

3.5” – 
5.1” 

With so many offerings, it is common in the United States for individuals to have 

more than one mobile device. A 2014 study by Morgan Stanley even found that 91% of 

Americans keep their mobile devices within reach at all times and the upward trend in 

mobile device sales is not lagging, having reached 2.4 billion in 2013 with units sold still 

increasing (Gartner, Inc., 2014). According to Ericsson (2014), mobile subscriptions are 

predicted to reach 9.3 billion by 2019.  

Among the noted mobile computing devices, some are selling substantially more, 

while others lag behind. Ericsson (2014) predicted that of those 9.3 billion mobile 

subscriptions, 5.6 billion (well over half) will be for smartphones. Current statistics and 

marketing projections anticipate the continued proliferation of smartphones and phablets, 

while laptops and tablet sales decrease (Ericsson, 2015). However, professional use 

requires the computing power of a laptop, so while experts predict laptop sales to slow, 
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they do not anticipate laptops to fade out of use. Rather, with consumer demand for 

mobility, some experts speculate that laplets will grow in popularity, replacing laptop 

sales (Ericsson, 2015).  

Due to the continually increasing functionality, convenient size, and expanding 

connectivity, smartphones are predicted to remain the mobile device of choice for 

individual use. In fact, the International Data Corporation (IDC) estimates that by 2018, 

smartphone sales will reach 1.25 billion units, and will make up 51.2% of the total mobile 

device market (IDC, 2014). Phablet market shares, at 9.8% in 2014 are estimated to 

increase nearly 15% to 24.4%.  These two smart devices are predicted to hold nearly 76% 

of the global mobile computing device market (Noel-Levitz, LLC, 2014). Note: 

remember that today’s smartphone has the same power as a super computer 20 years ago, 

so their computing power of smartphones will continue to increase. 

Device market share is integral to any conversation that seeks to understand how 

best to use mobile devices for communication and learning because it provides a snapshot 

of consumer preferences and expectation of mobile technology, both from a device and a 

user perspective. Meeting device and use expectations requires utilizing the popular 

devices, and in expected ways, designing applications that seamlessly incorporate the 

features and functionality of the device (Seraj & Wong, 2014). Given the cost of mobile 

software development and maintenance, as well as the rapidity with which newly updated 

devices are available, government, industry, and educational organizations want to 

execute technology plans and allocate budgets wisely, while also meeting the 

expectations of consumers, employees, and students (Potcatilu, 2010; Su, Liu, & Lee, 

2011).  
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On the higher education campus especially, mobile devices blanket the landscape. 

ICEF Monitor (2014) found that 78% of students have regular access to a mobile device, 

owning an average of 6.9 mobile devices (2013). While that laptop is presently the most 

owned mobile device at 85%, smartphone ownership continues to increase as today’s 

high school students become tomorrow’s collegiates (Reidel, Chris, 2014). Noelle Levitz 

(2014) found that nearly 9 out of 10 high school students have access to connected 

smartphones, while laptop ownership is only at 50% (Noel-Levitz, LLC, 2014). These 

statistics support the market projections that predict the increasing demand for 

smartphones as the connected device of choice. 

Students tend to use their smartphones for browsing, entertainment, learning, and 

staying connected (via text, phone, email, and social networking) (ICEF Monitor, 2014). 

More and more participants in higher education calculate the value of smartphones for 

learning. 

Smartphones offer numerous opportunities for formal and informal learning as 

they are transforming the way we think about space, community, and discourse (Traxler, 

2007). The need to better understand the learning potential and efficacy of mobile 

devices, and smartphones especially is driven by student and consumer expectation (Seraj 

& Wong, 2014). Empirical studies on this combination of device and learning are 

increasing (Churchill, 2011; Kim & Kim, 2012; Reeves, Lang, Kim, & Tatar, 1999; Seraj 

& Wong, 2014). While the trend in research seems to be moving towards filling notable 

gaps, the study of mobile learning is still relatively new enough that the gaps remain large 

despite the increase in research. This body of research has focused on user perception 

(Al-Zoubi, Alkouz, & Otair, 2008; Demirbilek, 2010; Franklin et al., 2007; Kismihók & 



10 

 

Vas, 2011; Ryu & Parsons, 2012; Terras & Ramsay, 2012), cognitive load (Kim & Kim, 

2012; T.-C. Liu, Lin, & Paas, 2013; T.-C. Liu, Lin, Tsai, & Paas, 2012; Molina et al., 

2014), learning gains (Cobb et al., 2010; Tarumi et al., 2011), instructional principles 

(Elias, 2011; Gatsou, Politis, & Zevgolis, 2011; Gu, Gu, & Laffey, 2011), feature and 

affordance comparisons (Tarumi et al., 2011; Wu, Hwang, Tsai, Chen, & Huang, 2011), 

specific use applications (Seraj & Wong, 2014), blended use (Shen, Wang, Gao, Novak, 

& Tang, 2009), and design principles (Gatsou et al., 2011). Some empirical queries have 

asked questions like how would a mobile device deliver content and how will people 

perceive using these devices in educational settings (Crescente & Lee, 2011; Su et al., 

2011). Others have focused on specific environments to implement this combination of 

device and learning, like the high school classroom, college campus, or corporate office 

(T.-C. Liu et al., 2013; Molina et al., 2014; Seraj & Wong, 2014). Still others have 

investigated mobile learning's use for teaching and learning specific subjects, for 

example, language learning (Hwang, Shi, & Chu, 2011; Tim de Jong, Specht, & Koper, 

2010; Tarumi et al., 2011; Wyatt et al., 2010). 

Many studies produced positive results (Demirbilek, 2010; Kismihók & Vas, 

2011), while others have found that facets of mobile device use for learning in general 

and specific areas actually hinder performance (Kim & Kim, 2012; Luong & 

McLaughlin, 2009), communication (Al-Zoubi et al., 2008; Ryu & Parsons, 2012), recall 

(Luong & McLaughlin, 2009; Maniar, Bennett, Hand, & Allan, 2008; Sanchez & 

Goolsbee, 2010), and even entertainment (Heo, 2003; Reeves et al., 1999). Implications 

and application of those findings are further argued and tested. Growing this body of 

research is a challenge because the technology continuously evolves and to some degree 
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leaves researchers back at the drawing board with the emergence of new devices and new 

possibilities. Evidence of this is clearly demonstrated by the fact that many noted studies 

were completed with now antiquated PDAs, or older model tablets (C. Becker & Dürr, 

2004). 

Mobile devices, namely laptops, tablets, and smartphones, are now common 

features both generally and in higher education. Of those devices, smartphones have 

outpaced laptop and tablet sales and are projected to continue doing so. Consumer, 

employee, and student expectation for smartphone integration increases, as they rely on 

their smartphones more and more for integrated tasks that were previously performed on 

devices with larger displays. On the college campus, smartphone proliferation for 

learning merits continued research into best practices for combining devices and learning. 

To further situate this research, the following section will give an overview of mobile 

learning definitions and research, as well as introduce the variables to be utilized in this 

study, as they pertain to mobile learning. 

MOBILE LEARNING 

Mobile learning has been prevalent as a movement in education now for nearly 15 

years (Baharum, Ismail, & Idrus, 2010; Crescente & Lee, 2011; Demirbilek, 2010; 

Mostakhdemin-Hosseini, 2009a; Pimmer, Pachler, & Attwell, 2010). It is occurring 

because mobile devices are transforming our understandings of space, community, and 

discourse (Traxler, 2007). Definitions of mobile learning are varied, but range from 

unique learning experiences owed to handheld mobile devices (Crescente & Lee, 2011; 

Demirbilek, 2010; Frohberg, Göth, & Schwabe, 2009; Kukulska-Hulme et al., 2011; 
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Traxler, 2005) to ubiquitous learning (Crescente & Lee, 2011; Laine, Vinni, Sedano, & 

Joy, 2010; Y. Park, 2011; Pea & Maldonado, 2006; Terras & Ramsay, 2012; Uzunboylu 

& Ozdamli, 2011) to on-the-go learning (Becking et al., 2004; O’Malley et al., 2005; Yau 

& Joy, 2010) or just-in-time learning (Y. Park, 2011; Traxler, 2007). Mobile learning can 

be formal or informal, depending on the learner and the content, environment, and time 

accessed (Daoudi & Ajhoun, 2008; Traxler, 2010). 

Mobile learning offers unique device and learning affordances. Device 

affordances include the features of the hardware and software. Examples include GPS, 

camera, NFC, and anywhere connectivity (Zabel, 2010). The learning affordances of 

mobile learning include portability, expediency, immediacy, accessibility, flexibility, 

connectivity convenience, cross-context learning, individuality, and interactivity 

(Baharum, Ismail, & Idrus, 2010; Bhaskar & Govindarajulu, 2009; Crescente & Lee, 

2011; Elias, 2011; Klopfer & Squire, 2007; Y. Park, 2011; Terras & Ramsay, 2012; 

Traxler, 2005; Valk, Rashid, & Elder, 2010). The notions of immediacy and expediency 

additionally make possible just-in-time, just-in-case, just-for-me, and just-enough 

learning (Y. Park, 2011; Traxler, 2007). Mobile learning occurs in a range between 

communication intensive and independent work, with each extreme utilizing different 

mobile features and levels of productivity. The more independently one works, the 

greater content-intensive is their learning; while using the mobile device for 

communication activities relies heavier on learning collaboration (Graham Attwell, 2010; 

Eliasson, Pargman, Nouri, Spikol, & Ramberg, 2011; M. Wang & Shen, 2012).  
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User perception and acceptance 

At the heart of any technological success in education is the user. Positive user 

perception and acceptance of mobile learning is crucial for its success (Hwang et al., 

2011; Sanchez & Goolsbee, 2010; Seraj & Wong, 2014; Terras & Ramsay, 2012; 

Traxler, 2005; Valk et al., 2010; Y.-S. Wang, Wu, & Wang, 2009; Yau & Joy, 2010). As 

such, many studies have focused on these topics (Bhaskar & Govindarajulu, 2009; 

Crescente & Lee, 2011; Mostakhdemin-Hosseini, 2009b). Results have proven both 

negative and positive user perception, but generally suggest a positive response to mobile 

learning (Almaiah & Jalil, 2014; Demirbilek, 2010; Franklin et al., 2007; Kismihók & 

Vas, 2011; Y.-S. Wang, 2007). This makes sense given the proliferation of hand held 

devices (namely smartphones) within the bedrock of social, business, and educational 

culture. As individuals expect to use their devices ubiquitously, there is a growing 

expectation that use should extend to all facets of life, including into classrooms and 

offices. One well-tested method for gaging user perception and acceptance is the 

Technology Acceptance Model (TAM) (Legris, Ingham, & Collerette, 2003; Malhotra & 

Galletta, 1999; Ma & Liu, 2004; S. Y. Park, 2009; Schepers & Wetzels, 2006; Tsai, 

Wang, & Lu, 2011; Venkatesh, Morris, Davis, & Davis, 2003). TAM assumes that user 

perception and perceived ease of use together accurately measure a user’s acceptance of a 

specific technological tool for the task at hand (Davis, 1985, 1989; Davis, Bagozzi, & 

Warshaw, 1989; Venkatesh, 2000; Venkatesh et al., 2003). 
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COGNITIVE LOAD THEORY 

Cognitive Load Theory is an instructional design theory (Chandler & Sweller, 

1991). It operates under the assumption that we each have an infinite long-term memory 

capacity and a limited working memory (short-term) memory capacity (Ayres & Paas, 

2012; Baddeley, 1976; Miller, 1956; Sweller, 1988, 1994, 2002). For information to be 

learned, it must be moved from the working memory into the long-term memory (F. Paas, 

Renkl, & Sweller, 2003, 2004; Sweller, Merrienboer, & Paas, 1998). This transition is 

accomplished through the construction and automation of schema (Chandler & Sweller, 

1991; Sweller et al., 1998). A schema is anything learned as a single entity that is stored 

in the long-term memory (Baddeley, 2001; Hollender, Hofmann, Deneke, & Schmitz, 

2010; Sweller, Ayres, & Kalyuga, 2011). Schema reduce working memory load through 

recall, by combining to make ever-more-complex schema (Chi, Glaser, & Rees, 1982). In 

this way, working memory is reduced as the complex schema is now treated as only one 

element in the working memory instead of as the individual bits of information that 

composes it (Chandler & Sweller, 1991). This continued process leads to schema 

automation and automatic processing that stems from the long-term memory (Schneider 

& Shiffrin, 1977; Shiffrin & Schneider, 1977) and does not take up space in the working 

memory when accessed (Sweller, 2002). Although the working memory is limited to the 

number of elements it can process, the size, complexity, and sophistication of each 

element is unlimited (Hollender et al., 2010; Sweller, 2002, Sweller, 1994).  

CLT distinguishes between three types of cognitive load that must be processed 

for long-term recall to occur. CLT assumes that information is the basic element in 

learning (Sweller, 1988, 1994). Each element (piece of information) has an intrinsic 
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cognitive load (ICL), meaning what is required to know the element itself (Sweller et al., 

1998) or to understand how two elements interact (F. Paas et al., 2004). A single element 

can have low element interactivity, and therefore a low intrinsic load, or a high element 

interactivity, and therefore a high intrinsic load (Mayer & Moreno, 2003; Sweller, 1988).  

Extraneous cognitive load (ECL) occurs when the learning design includes material and 

activities that are outside of, or ‘extra’ to what is to be learned, which unnecessarily take 

up working memory space and may cause cognitive overload and prevent the 

construction and automation of schema (Chandler & Sweller, 1991; F. Paas et al., 2004; 

Sweller, 1988). Extraneous cognitive load can be altered via “instructional interventions” 

(Sweller et al., 1998).  

Germane cognitive load (GCL) is also produced by the instructional design of 

learning (F. G. W. C. Paas & Merriënboer, 1994; F. Paas et al., 2004; Sweller et al., 

1998). Germane load fosters active schema construction processes and is beneficial to 

learning. (Hollender et al., 2010; F. G. W. C. Paas & Merriënboer, 1994).  Adaptations on 

this definition of germane load include Jong’s (2010) distinction of intrinsic load as the 

complexity of the material and germane load as the cognitive process required to process 

material. Schnotz and Kürschner (2007) espoused that germane load goes beyond simple 

task performance to the use of meta-cognitive processing. 

The expertise level of the learner changes the load values of an activity, and 

likewise should alter the learning design (Merriënboer & Ayres, 2005). Experts and 

novices have similar working memory capacity. The difference in experts is simply that 

they have more schema concerning the topic of their expertise organized and stored in 

their long-term memory (Sweller, 1988). The total cognitive load of a learning experience 
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is comprised of the summation of ICL + ECL + GCL (Kirschner, 2002), as well as the 

expertise of the learners (Ton de Jong, 2010; Schnotz & Kürschner, 2007; Sweller et al., 

1998).  Total load cannot exceed the working memory resources if learning is to occur (F. 

Paas et al., 2004; F. Paas, Tuovinen, Tabbers, & Van Gerven, 2003; Sweller, 1994).  

The underlying goal of Cognitive Load Theory (CLT) is to design learning that 

increases cognitive recall by decreasing cognitive overload when information is being 

processed in the working memory (Chandler & Sweller, 1991; Sweller, 1988, 1994, 

2002; Sweller et al., 1998), simultaneously taking into account the expertise of the learner 

(Kalyuga, Chandler, & Sweller, 2000). Accordingly, instructional design should 

manipulate the types of load in ways that align task requirements with the learner’s level 

of expertise (Schnotz & Kürschner, 2007, p. 490). 

Cognitive Theory of Multimedia Learning 

Using the limited capacity assumption of Sweller’s CLT and the dual channel 

assumption of Baddelley’s (1976) Theory of Working Memory and Pavio’s (1986) Dual-

Channel Theory, in combination with Mayer’s (1999) own theory of Active Learning, 

Mayer and Moreno (2003) identified the Cognitive Theory of Multimedia Learning. This 

theory asserts, and follow-up research has seconded, that in specific circumstances, 

learning occurs more deeply when both the auditory and the visual channels are utilized 

than with the visual channel alone (Ayres & Sweller, 2005; Mayer, 2003; Mayer & 

Fiorella, 2014; Mayer & Moreno, 2003). However, some studies have found that there 

are limitations to the specific effects produced under CTML (Kalyuga, 2000; Schnotz & 
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Kürschner, 2007; Schüler, Scheiter, & Gerjets, 2013; Schüler, Scheiter, & Schmidt-

Weigand, 2011). 

CLT and CTML are both essentially instructional design theories based on 

cognitive psychology (Mayer, 2009; Sweller et al., 1998), and as such, it is commonly the 

case that when a cognitive overload effect is revealed, its design antidote is also 

suggested (Mayer & Moreno, 2003; Sweller et al., 2011). As this study is specifically 

interested in instructional design principles for mobile devices, it follows that avoiding 

specific cognitive overload effects is beneficial for learning.   

Cognitive load effects and text comprehension 

Cognitive Load Theory and Cognitive Theory of Multimedia Learning both 

promote the notion that the primary goal of instructional design is enabling schema 

construction and the automation of the information in the long-term memory (Sweller et 

al., 1998). When an instructional designer is designing learning, the goal is to transfer 

that intrinsic/germane cognitive load to the learner in ways that do not produce cognitive 

overload (Chandler & Sweller, 1991; Kalyuga et al., 2000; F. Paas, Renkl, et al., 2003). 

Towards the creation of well-designed instruction, several cognitive overload effects 

have been discovered. These effects, when observed, have overloaded the working 

memory and disrupted learning (Ayres & Sweller, 2005; Hollender et al., 2010; F. G. W. 

C. Paas, Van Merrienboer, & Adam, 1994). They have been observed across learning 

mediums (Chandler & Sweller, 1996; Mayer, 2003). 

Split attention effect occurs when a learner must integrate multiple sources of 

information in order to understand it, such that the individual pieces of information 
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cannot be understood in isolation (Ayres & Sweller, 2005; Hollender et al., 2010; 

Kalyuga, Chandler, & Sweller, 1999; Mayer & Fiorella, 2014; Sweller et al., 1998). The 

process of holding information in working memory, while simultaneously attempting to 

integrate it with other information is cognitively demanding (Cierniak, Scheiter, & 

Gerjets, 2009; Kalyuga et al., 1999; Mayer & Moreno, 1998), especially for low prior 

knowledge learners (Ayres & Sweller, 2005; Chandler & Sweller, 1991; Florax & 

Ploetzner, 2010). Split attention effect can be caused by the learning design (T.-C. Liu et 

al., 2013; F. Paas et al., 2004), or be caused by intrinsic or germane load when the 

material surpasses the learner’s zone of proximal development, thus over-whelming the 

working memory (Ginns, 2006; Kalyuga et al., 1999; Sweller, 2002; Sweller et al., 1998). 

Several studies about small screen mobile devices have reproduced split attention effect, 

mainly because the small display breaches the spatial and temporal contiguity of the 

learning content  (Austin, 2009; Keefe et al., 2012; Kim & Kim, 2012; T.-C. Liu et al., 

2013, 2012; Luong & McLaughlin, 2009; Maniar et al., 2008; Molina et al., 2014). 

A second cognitive load effect, segmentation effect occurs when something is 

divided into meaningful pieces such that it does not over-whelm the working memory as 

does continuous learning material (Ayres & Paas, 2012; Mayer, 2003; Mayer & 

Chandler, 2001; Mayer & Moreno, 2002; F. Paas, Renkl, et al., 2003; Spanjers, Gog, & 

Merriënboer, 2010; Spanjers, van Gog, & van Merriënboer, 2012; Wong, Leahy, Marcus, 

& Sweller, 2012). Segmentation assists with learning because it both creates pauses 

between segments, breaking up transience of dynamically presented material (Ayres & 

Paas, 2012; Florax & Ploetzner, 2010; Mayer & Chandler, 2001; Mayer & Fiorella, 2014; 

Mayer & Moreno, 2003; Moreno, 2007; Spanjers et al., 2010, 2012; Wong et al., 2012), 
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and because it helps break the content down into meaningful pieces improving text 

comprehension (Ayres & Paas, 2012; Catrambone, 1995, 1998; Florax & Ploetzner, 

2010; Hassanabadi, Robatjazi, & Savoji, 2011; Kurby & Zacks, 2008; Spanjers et al., 

2012, 2012; & Sung & Mayer, 2013). In all studies on segmentation, learner control of 

pre-segmented material appeared to better facilitate learning than system control by 

preventing transience and minimizing extraneous load (Ginns, 2005; Hassanabadi et al., 

2011; T.-C. Liu et al., 2013; Mayer, 2003, 2009; Mayer & Chandler, 2001; Moreno, 

2007; Spanjers et al., 2010, 2012; Tabbers, 2002).  

Another observed cognitive load effect is modality effect, which states that the 

addition of visualizations and the use of spoken, rather than written text, reduce the 

amount of cognitive effort required (Eitel, Scheiter, Schüler, Nyström, & Holmqvist, 

2013; Hollender et al., 2010; Kalyuga et al., 2000; Mayer, 1999, 2005; Mayer & Moreno, 

2002, 2003; Schüler et al., 2013). The modality effect also occurs when multiple sources 

of information are required for understanding. The extraneous load of the visual modality 

can be reduced by transforming written text into narration, thus using the auditory 

processor (dual-channel) in working memory (Ayres & Paas, 2012; Brunken, Plass, & 

Leutner, 2003; Chandler & Sweller, 1991; Hollender et al., 2010; Kalyuga et al., 2000). 

Studies have shown that when high element interactivity material was presented in 

audio/visual formats, performance was substantially higher as compared to presentations 

in visual/visual formats (Mayer, 2005; Mayer & Moreno, 2002, 2003; Savoji, 

Hassanabadi, & Fasihipour, 2011; Schmidt-Weigand, Kohnert, & Glowalla, 2010). These 

findings were extended to smartphone learning, when positive learning gains resulted 

from audio/visual presentations (T.-C. Liu et al., 2013). 
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The modality effect has some boundary conditions, under which the 

disappearance or reversal of the modality effect was witnessed. The reverse modality 

effect occurs when material has too low in intrinsic load (Mayer & Anderson, 1991; 

Mayer & Moreno, 1998, 2003), when students are high prior-knowledge learners 

(Kalyuga et al., 1999, 2000), when short phrases or single words accompany spoken text 

(Sombatteera & Kalyuga, 2012), when the lesson was learner-paced and transience was 

decreased (Huib K Tabbers, 2004; Scheiter, Schüler, Gerjets, Huk, & Hesse, 2014; 

Schmidt-Weigand et al., 2010; Schüler et al., 2013), and finally when the content was too 

long or too complex (Crooks, Cheon, Inan, Ari, & Flores, 2012; Schüler et al., 2013; 

Schüler, Scheiter, Rummer, & Gerjets, 2012; Schüler et al., 2011; Wong et al., 2012). In 

these cases, the advantage of the audio/visual duo decrease, disappear, or completely 

reverse (as noted when time is abundant and text is complex and long). 

The supremacy of written text when passages are longer, more complex, or 

expository is supported by numerous text comprehension studies (A. Furnham, Gunter, & 

Green, 1990; A. Furnham, Proctor, & Gunter, 1988; Kintsch, 1994; Mannes & Kintsch, 

1987; McNamara, Kintsch, Songer, & Kintsch, 1996; Schmidt-Weigand et al., 2010; 

Schüler et al., 2013, 2011). These studies explain this supremacy by the ability of readers 

under these conditions to utilize text comprehension strategies that are unavailable in 

system-controlled learning scenarios that offer only spoken text narration. Such strategies 

include learner control of the reading pace (Byrne & Curtis, 2000; Frazier & Rayner, 

1982; A. Furnham et al., 1990; Hyönä & Nurminen, 2006; Just & Carpenter, 1987; 

Kozma, 1991; Schüler et al., 2011), rereading as needed for understanding (A. Furnham 

et al., 1988; Hyönä & Nurminen, 2006; Schmidt-Weigand et al., 2010; Schüler et al., 
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2013), and self-selecting to skip extraneous or overly difficult passages (A. Furnham et 

al., 1990; Schmidt-Weigand et al., 2010; Schüler et al., 2013). Under these conditions, 

the reversal of the modality effect is expected, as well as a superiority of written text.  

MOBILE LEARNING DEVELOPMENT AND INSTRUCTIONAL DESIGN 

Instructional design does not occur in a vacuum if it is to deliver learning in the 

most appropriate, efficient, and successful ways. It seems appropriate, then to first 

present mobile development and its challenges, before engaging in a conversation about 

instructional design principles for mobile devices (mainly small screen handhelds, a.k.a. 

smartphones). There are several ways to use mobile devices for learning, including using 

the features of the device to supplement learning, accessing already published content 

and wrapping learning around it, accessing specifically tailored web content via a mobile 

device through mobile web, and finally, developing a dedicated mobile application or 

system to meet learning and educational needs. Mobile web pages for education content 

delivery are easier and cheaper to build and maintain, but do not have access to many of a 

mobile devices features (GPS, camera, etc.). Additionally, information accessed via the 

web has even less screen real estate given it must be viewed within a web browser. 

Dedicated mobile applications offer all of the capacity of computer software (including 

speed, device feature use, interactions specific to learning engagement, and full control 

over content). Dedicated mobile applications are, however, expensive to build and 

complicated to maintain. They also require thoughtful UX/UI design, various platforms 

development, and specific implementation (Potcatilu, 2010). 
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Mobile learning is not without its technological challenges. These include 

network connectivity, device limitations, platform inconsistency, and high development 

costs. Small screen display also present challenges for learning and cause user frustration. 

Some of these challenges are owing to the hardware, some the design of the content, and 

some to the ill-matched combination of the two. Several studies have used dedicated 

mobile applications to examine the possibilities of creating original content and software 

systems for mobile learning. Regardless of these issues, mobile devices are ingratiated 

into our cultural fabric in ways that are infiltrating homes, classrooms, and offices.  

Mobile learning and small screen devices 

Evidence suggests that small screen displays especially are not always ideal for 

learning. Researchers have both singularly examined the design and feature affordance of 

the devices for learning, as well as have compared small screen display devices with 

larger screen displays. 

DESIGN PRINCIPLES FOR MOBILE LEARNING 

While literature on mobile learning is growing, there are remarkably few studies 

that look specifically at instructional design (Al-Zoubi et al., 2008; Crescente & Lee, 

2011; Molina et al., 2014; Mostakhdemin-Hosseini, 2009a; Terras & Ramsay, 2012). 

Even fewer recommend instructional design principles, particularly in terms of 

smartphones and other small mobile devices. A few studies have approached the question 

of instructional design for small screen displays (Churchill, 2011; T.-C. Liu et al., 2013; 

Luong & McLaughlin, 2009; Seraj & Wong, 2014).  
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There are, however, numerous studies on minimizing cognitive overload that have 

implemented and recommended noted instructional design principles (Chandler & 

Sweller, 1991; Mayer, 2009; Sung & Mayer, 2013; Sweller et al., 2011). In terms of 

reducing cognitive overload, eliminating design created extraneous content is among the 

first recommendations (Ayres & Paas, 2012; Brunken et al., 2003; Chandler & Sweller, 

1991; Mayer, 2009; Mayer & Fiorella, 2014; Sweller et al., 2011). This is in line with the 

coherence principle (Mayer, Bove, Bryman, Mars, & Tapangco, 1996; Mayer & 

Chandler, 2001), namely that all visual and auditory material is pertinent to the topic of 

learning.  

In terms of reducing split attention, the spatial and temporal contiguity principles 

(Mayer, 1999, 2003; Mayer & Moreno, 2002, 2003) state that integrating content by 

combining two sources of information into one will alleviate split attention (Ayres & 

Sweller, 2005; Cierniak et al., 2009; Florax & Ploetzner, 2010; Kalyuga et al., 1999; 

Mayer, 2003). Several studies found cueing or signaling decrease split attention and assist 

with segmentation (Florax & Ploetzner, 2010; Kurby & Zacks, 2008; T.-C. Liu et al., 

2013, 2012; Spanjers et al., 2012; Sung & Mayer, 2013). For mobile devices, it is 

recommended that whenever possible, using mobile devices as the focus of learning is 

less over-whelming to the working memory than using it as a supplemental tool with real 

objects (T.-C. Liu et al., 2013, 2012). Finally, whenever possible, giving the learner 

control over the learning pace (specifically) has shown numerous times to decrease 

cognitive load (Hassanabadi et al., 2011; Mayer & Chandler, 2001; Schmidt-Weigand et 

al., 2010; Schüler et al., 2013; Spanjers et al., 2012; Sung & Mayer, 2013; Tabbers, 

2002).  
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Specific to small screen display mobile devices (namely smartphones), the design 

guidelines can be divided into two categories. First, in terms of screen real estate, 

maximizing space by utilizing the full screen is recommended (Churchill, 2011; Churchill 

& Hedberg, 2008; Seraj & Wong, 2014). With few exceptions (Jin, 2013; Leavitt & 

Shneiderman, 2006), scrolling has proven to lower reading comprehension. Zooming can 

increase cognitive load (Luong & McLaughlin, 2009). Finally, designing for landscape 

orientation was found to improve overall learning and user experience (Churchill, 2011; 

Churchill & Hedberg, 2008; Sanchez & Branaghan, 2011; Sanchez & Goolsbee, 2010). 

Recommendations for text formatting and small screen display make up the 

second category. Using a single (Churchill, 2011), smaller font (Sanchez & Goolsbee, 

2010) that is spaced enough for line distinction without unnecessarily causing the need to 

scroll (C.-H. Chen & Chien, 2005) seemed to produce the best learning outcomes. 

Limiting the amount of text on screen, through elimination or segmentation is 

emphasized (Churchill & Hedberg, 2008; Seraj & Wong, 2014; M. Wang & Shen, 2012). 

Finally, when possible, text should be replaced with images, audio, and narration 

(Bradley, Haynes, & Boyle, 2006; Churchill & Hedberg, 2008; Sung & Mayer, 2013). 

LITERATURE GAPS 

While the literature covers a great many topics of mobile learning, cognitive load, 

and instructional design, there are several critical research gaps that require empirical 

attention. A majority of the studies did not design full capability mobile applications and 

mobile devices under study were simulated (Kim & Kim, 2012; Luong & McLaughlin, 

2009), or learning was delivered via web browser, which limits control of space and 
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screen (Molina et al., 2014). In most cases, the design process was not revealed (Heo, 

2003; Keefe et al., 2012; T.-C. Liu et al., 2013, 2012; Reeves et al., 1999; Sung & Mayer, 

2013). Though some studies examined the effectiveness of specific dedicated mobile 

applications (T.-C. Liu et al., 2013; Seraj & Wong, 2014), they offered little in the way of 

generalizable and actionable design principles. Furthermore, when principles were 

recommended, the reasoning behind the recommendation was unclear. This is true of the 

recommendation to design smartphone learning in landscape orientation (Churchill, 2011; 

Sanchez & Branaghan, 2011). Additionally, it appeared that many of the studies 

comparing large and small screen displays retrofitted the learning design of the large 

screen for the small one (Churchill & Hedberg, 2008; Molina et al., 2014), which takes 

into account neither user perception and use of smartphones, nor the device affordances 

that are dissimilar to those of a laptop.  

In terms of the cognitive load effects specific to small screen mobile devices, 

there is a clear need for device specific design guidelines (T.-C. Liu et al., 2012). While 

the cognitive load design principles are applicable across devices (Sung & Mayer, 2013), 

the research does not advise on how to design efficient single-mode presentations 

(Reimann, 2003).  Split attention effect is more easily mitigated because it is easier to 

identify and the design recommendations for avoiding it are somewhat straightforward, 

even for text only, small screen mobile displays. Recommended design for modality 

effect, (Ginns, 2005; Hassanabadi et al., 2011; Kalyuga et al., 2000; Reimann, 2003; 

Savoji et al., 2011; Schmidt-Weigand et al., 2010) is a dual-modal approach. In cases 

where the learning material is long or complex text, text comprehension research 

suggests learners will implement reading comprehension strategies (Fournier, 2013; 
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Kalyuga, 2000; Kintsch, 1994; Mannes & Kintsch, 1987; Schüler et al., 2013, 2012).  

There is however, little information on how to craft such presentations in ways that 

minimize cognitive overload and promote schema construction and automation, much 

less in terms of constructing this type of learning scenario for a small screen mobile 

display. Studies on segmentation effect have shown the learning benefits of segmenting 

material, but offer little in the way of how to segment content (Eitel et al., 2013; 

Hassanabadi et al., 2011; Mayer et al., 1996; Mayer & Chandler, 2001; Molina et al., 

2014; Schüler et al., 2013).  Especially in terms of smartphone learning, segmenting 

material into meaningful chunks of content may prove beneficial and design guidelines 

for how to segment for small screen displays could be exceptionally helpful. 

Summary 

In summary, the critical gaps in the literature on mobile learning design include: 

offering actionable design principles for small screen displays to assist in increased 

learning outcomes and positive user perspective, empirically examining the effects of 

designing authentic and dedicated smartphone applications, explaining the reasoning 

behind landscape orientation design recommendations for small screen mobile displays, 

and comparing large and small screen displays when design is customized to the device, 

versus a retrofitted, one-size-fits-all design. 

The pertinent gaps in the literature on cognitive load and text comprehension 

include: investigating media configurations for smartphone devices and environments, 

detailing device specific design principles for avoiding split attention effect, maximizing 

design for segmentation effect, applying modality effect (especially when the material 
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does not lend itself to images, and/or is more complex than can be communicated through 

audio/visual presentation), crafting single-modal presentations of materials that minimize 

cognitive overload and promote schema construction and automation, and explaining 

how to design and segment appropriate text-only passages for a small screen mobile 

display.  

RESEARCH PURPOSE 

This study concerns instructional design for mobile learning, smartphones 

specifically. The greater goal of this study was to reveal design principles related to 

segmenting text specific to mobile devices displays in ways that promote user 

satisfaction, reduce cognitive overload, and maximize learning gains. This study 

compared large and small screen mobile displays for learning, namely laptops and 

smartphones. What this study adds to the body of research is an in-depth look at design 

approach that begins with designing a dedicated application for smartphones, and then 

migrates and customizes that design to the laptop screen. The results demonstrate the 

importance of design in both learning from and empirically studying varied mobile screen 

display sizes for learning.  

Additionally, in terms of mobile devices, this study compared landscape and 

portrait orientation for learning from smartphones. The results give a clearer view of 

current user preferences and learning results of designing for various screen orientations. 

Finally, this study analyzed what length of text segment is most beneficial for reading 

comprehension when low prior-knowledge learners access high intrinsic text via laptop 
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and smartphone. The results begin to uncover how to optimally design and prepare text 

for communicating and learning from these devices.  

Learning outcomes, cognitive load, and user perception were measured to assist in 

these comparisons. Learning outcomes measured whether or not participants could recall 

the content following each treatment. However, learning recall offered only one point of 

reference for determining if a particular treatment was successfully designed and/or was 

advantageously delivered given the display size and orientation (Churchill & Hedberg, 

2008; Kim & Kim, 2012; Molina et al., 2014). Measuring for cognitive load added 

perspective on participant experiences with each treatment by demonstrating whether 

students were cognitively overloaded, under loaded, or remained successfully in the ZPD 

(Schnotz & Bannert, 2003; Schnotz & Kürschner, 2007). Positive user perception has 

been demonstrated by the literature as a viable piece of total mobile learning success 

(Hwang, Shi, & Chu, 2011; Valk, et al., 2010; Yau & Joy, 2011; Traxler, 2005; Sanchez 

& Goolsbee, 2010; Seraj & Wong, 2014; Wang et al., 2009; Terras & Ramsey, 2012). It 

is thus important that the treatments not only produced positive learning outcomes and 

minimized cognitive load, but also were viewed positively by the participants.  Therefore, 

the research questions of this study are detailed below. 

Research questions 

To address the gap in literature concerning mobile device comparison when 

design is tailored specifically to the device, as well as to answer additional questions 

about smartphone screen display and orientation, this study conducted research around 

the following question group: 
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When specific formatting variables are held constant: 

RQ1 (mobile device comparison): Do display size and orientation affect  

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: cognitive load of a digitally delivered chemistry text lesson? 

C: user perception of a digitally delivered chemistry text lesson? 

To address the gap in literature regarding text segmentation characteristics for 

various screen displays, this study conducted research around the following question 

group: 

When specific formatting variables are held constant: 

RQ2 (text segmentation comparison): Do digitally continuous text, medium text 

segments, and short text segments compare in terms of 

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: minimizing cognitive load for a digitally delivered chemistry text lesson? 

C: influencing user perception of a digitally delivered chemistry text lesson? 

Finally, to determine if any interactions exist between the two groups, this study 

conducted research around the following question group: 

When specific formatting variables are held constant: 

RQ3 (mobile device and segmentation interaction): Do text segmentation and 

screen display size and orientation affect  

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: cognitive load of a digitally delivered chemistry text lesson? 

C: user perception of a digitally delivered chemistry text lesson? 
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LIMITATIONS OF THIS STUDY 

This research had several known technology, design, and measurement 

limitations. From a technology perspective, this study though it used both dedicated 

mobile applications and a web version of the application (for the laptops), assessment of 

this difference on the findings was not planned. The reason for this was two-fold. First, 

making this comparison in a balanced way would have required both web and dedicated 

treatment versions be created for all devices. Second, adding this to this research study 

would have extended the workload beyond the boundaries of practicality considering 

time and budget. The comparison between web and dedicated applications is an 

important one that should be examined in the future. 

A second limitation (both a technology and design condition) of this study was 

that navigation of the learning module will differ between the laptops, which use both 

mouse/click and touchscreen navigation, and smartphones, which have touchscreen 

navigation. Touchscreen technology offers a unique experience to the user. There are 

numerous studies on touchscreen technology (Brasel & Gips, 2014; Fong-Gong Wu, 

2011a, 2011b; Shamus P. Smith, 2012; Sunghyuk Kwon, 2010). While this is an 

interesting facet of mobile technology to research, the touchscreen interaction was not a 

focus here. To mitigate this limitation, the applications were designed with minimal 

navigation. For the laptop version, movement from screen to screen occurred via clicking 

on a left/right arrow. For the smartphone, swiping left and right moved participants from 

one screen to the next. 

Another limitation concerned how learning gains will be measured. The study 

only measured immediate recall given the parameters of the data collection environment 
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and limited access to the participants in that setting. However, measuring for transfer 

would reveal the long-term learning potential of the text and device treatments. This is an 

area where future research that continues exploring the topic, could unveil more specific 

design guidelines for mobile learning designers. After all, how to best design instruction 

for smartphones is at the heart of interest in this study, so any future work that continues 

in that vein would be beneficial. 

DISSERTATION STRUCTURE 

There are four remaining chapters of this dissertation. Chapter 2 reviews current 

literature applicable to this study. The literature review will be grouped by topic and 

summarily combined to describe how this research will meet at the intersection of these 

individual topics. Chapter 3 provides a thorough description of the research methodology, 

from the study design and data collection procedures through the data analysis 

techniques. It additionally includes explanation of the reasoning and design choices 

behind the learning module developed for this study.  Chapter 4 presents the results of the 

research and summarizes the important findings from the data analysis. Finally, Chapter 5 

provides discussion of and conclusions drawn from the data collected, as well as 

identifies topics for future research in this arena. 
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Chapter 2: Literature Review 

MOBILE LEARNING 

Mobile learning, as a concept, has numerous definitions, with none dominant at 

present (Crescente & Lee, 2011; Pimmer et al., 2010). Crescente and Lee (2011) link the 

absence of a standard definition back to the debate of where mobile learning belongs. The 

various camps argue that mobile learning is a “subset of e-learning,” or “an independent 

discipline,” or a “lateral move in the distance learning universe” (Crescente & Lee, 2011; 

Mostakhdemin-Hosseini, 2009a). While understanding mobile learning as a concept is 

still in nascent stages, its utilization is quickly catching the attention of K-12, higher 

education, and business and government institutions, as it provides numerous affordances 

that alter traditional concepts of learning (Lee, 2011). Mobile devices have altered the 

way we approach and consume information, and as a result, the way we learn (Baharum, 

Ismail, & Idrus, 2010; Baloch, Rahman, & Ihad, 2012). Traxler (2010) suggested that 

within the education system, mobile learning can be characterized as a specific project 

that some propose may upset the sustainability of the current education system.  

Agreement with this proposition may depend on the subscribed to definition of mobile 

learning. 

For example, initially many defined mobile learning as education, or learning 

opportunities through content delivery that use handheld and mobile devices as the sole 

or dominant technology (Baharum, Ismail, & Idrus, 2010; Crescente & Lee, 2011; 

Demirbilek, 2010; Frohberg et al., 2009; Kukulska-Hulme et al., 2011; Pimmer et al., 

2010; Traxler, 2005). As the concept evolved more attention was paid to the ubiquitous 
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affordances of mobile devices (Crescente & Lee, 2011; Laine et al., 2010; Y. Park, 2011). 

Uzunboylu and Ozdamli (2011) described mobile learning as “a kind of learning model 

allowing learners to obtain learning materials anywhere and anytime using mobile 

technologies and the Internet” (p. 544). Terras & Ramsey (2012) noted that the 24/7 

access provided by mobile technology allows users to engage in anytime learning and 

social networking. Park (2011) and Pea and Maldonado (2006) added the mobile 

technology enables learners to work at unique activities in ways that were previously 

impossible. Crescente and Lee (2011) further asserted that mobile learning is ubiquitous 

in terms of the now widespread availability and versatility of mobile devices, describing 

the concept of anyplace. 

Others have defined mobile learning as learning on the go, or “learning that 

happens when the learner is not at a fixed, predetermined location” regardless of the tool 

used to access the learning (Becking et al., 2004; O’Malley et al., 2005; Yau & Joy, 

2010). Mobile learning then is not necessarily an outcome of mobile technology.  This 

concept shifts the definition of mobile learning from the device and environment to the 

user’s individual or collaborative learning journey from place to place.   

Atwell (2003) identified mobile learning opportunities as newly offering 

contextualized learning access for those with limited access to traditional educational. 

Mobile learning overcomes traditional space and time constraints, while often enhancing 

the context and situation of both formal and informal learning (Daoudi & Ajhoun, 2008; 

Traxler, 2010). Mobile learning can help improve teaching and learning effectiveness 

through wireless technology, through flexibility and access (Baharum, Ismail, & 

Mohamed Idrus, 2010). Mobile learners can augment knowledge building with situated 



34 

 

and contextualized practice. In this way “mobile learning is considered as ‘the processes 

of coming to know through conversations across multiple contexts among people and 

personal interactive technologies’” (Pimmer et al., 2010; Sharples, Arnedillo-Sánchez, 

Milrad, & Vavoula, 2009, p. 238). Pimmer et al. noted the shift from a technical 

perception of meaning-making through technology to an educational one. They asserted 

that the conversation is moving towards examining mobile learning through social, 

cultural, and psychological lenses.  

Arguably, wherever one may fall in the debate, mobile learning exists at the 

intersection of several key components (Figure 2.1) (Koole, 2009; Y. Park, 2011; Traxler, 

2010). 

 

Figure 2.1. Key components of mobile learning. 



35 

 

According to Traxler (2007), mobile learning is occurring because mobile devices 

are transforming our understandings of space, community, and discourse. It allows 

learners to engage in personalized, collaborative, and interactive learning and has enabled 

teachers to instruct and communicate in innovative ways through the unique 

characteristics of the devices (Demirbilek, 2010).  Two types of mobile learning 

affordances, device affordances and learning affordances, describe the characteristics of 

the action of learning and the features that make it impossible and engaging.  

The ever-evolving technology itself provides numerous device affordances 

through the features and applications, which now come standard with purchase or are 

easily downloadable. Such features and applications include SMS, MMS, email, web 

access (Zabel, 2010), video, audio, and GPS to name a few. Better memory, larger 

storage capacity, and longer battery life all provide mobile-enabled learners advantages 

of which “facilitate a constructivist approach for maximum professional relevance like 

never before” (Zabel, 2010, p. 10).  

Some studies noted that certain features, like small screen size and limited web 

access, can present challenges for certain users (Crescente & Lee, 2011; Y. Park, 2011; 

Pea & Maldonado, 2006). Despite these constraints, Crescente and Lee asserted that 

mobile learning “may become a mode of choice with learners since current and future 

generations will not know life without elaborate electronic technology” (p. 112).  

Mobility permits greater control over learning experiences (Zabel, 2010), thereby 

allowing learners to take advantage of intervals of downtime (Traxler, 2005; Valk et al., 

2010). Mobile learning also provides alternate modes of delivery and optimal privacy for 

learners (Crescente & Lee, 2011). Unlike traditional models of education that operate by 
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transferring knowledge from teachers to students, mobile learning empowers learners to 

participate in the learning process and actively construct their own learning (Valk et al., 

2010). Therefore, the learning affordances of mobile learning include portability, 

expediency, immediacy, accessibility, flexibility (Baharum, Ismail, & Idrus, 2010; 

Crescente & Lee, 2011; Terras & Ramsay, 2012), connectivity convenience, cross-

context learning, individuality, and interactivity (Bhaskar & Govindarajulu, 2009; 

Eliasson et al., 2011; Klopfer & Squire, 2007; Y. Park, 2011). The notions of immediacy 

and expediency additionally make possible just-in-time, just-in-case, just-for-me, and 

just-enough learning (Y. Park, 2011; Traxler, 2007). Mobile learning also facilitates peer-

to-peer and collaborative learning both in person and virtually, allowing individuals and 

groups to create and share learning artifacts free of time and space (Graham Attwell, 

2010; Eliasson et al., 2011; M. Wang & Shen, 2012). 

Valk et al. note that as a facilitator of new learning, mobile learning goes beyond 

information possession to emphasize learner agency in locating, manipulating, and 

evaluating information. In professional settings, mobile technologies alter the nature of 

(knowledge) work as well as the balance between training and performance support 

(Pimmer et al., 2010; Traxler, 2007), in addition to further increasing the importance of 

human capital. Knowledge is the product of the interaction between people and the 

environment and is viewed more and more as a viable commodity inside organizations 

(Smits & Moor, 2004; M. Wang & Shen, 2012).  Human capital is the knowledge of 

humans, that which they cannot be separated from, also called tacit knowledge (G. 

Becker, 2008; Smits & Moor, 2004; Wenger & Snyder, 1999). Businesses seek to 

leverage that knowledge through a collection of processes that manage the creation and 
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dissemination of knowledge (Smits & Moor, 2004). The use of mobile devices to support 

situated work-based learning is based on the idea that appropriation of both technologies 

and processes will lead to the formation of developmental competences based on intrinsic 

motivation (Graham Attwell, 2010; Nyhan, Cressey, Tomassini, Kelleher, & Poell, 

2003). This is especially true in small and medium businesses, in which there exists a 

growing need for on-the-job, just-in-time learning.  

Additionally, mobile learning affordances simplify the training process in school 

and work settings, thereby decreasing training costs and increasing productivity and the 

return on investment (roi) (Crescente & Lee, 2011). Mobile devices are supporting 

corporate training for mobile workers (Gayeski, 2002; Lundin & Magnusson, 2003; 

Pasanen, 2003) and are enhancing medical education (Smørdal & Gregory, 2003), teacher 

training (Seppälä & Alamäki, 2003), music composition (Polishook, 2005), nurse training 

(Kneebone, 2005), science learning (Hwang, Yang, Tsai, & Yang, 2009; Wyatt et al., 

2010), language learning (Tim de Jong et al., 2010), social sciences learning (Tarumi et 

al., 2011), learning in general higher education settings (N.-S. Chen, Teng, Lee, & 

Kinshuk, 2011; Wu et al., 2011), vocational learning in areas with a broad occupational 

application (Akkerman & Filius, 2011; G. Attwell et al., 2003; Graham Attwell & Costa, 

2009; Uzunboylu & Ozdamli, 2011), and numerous other disciplines (Traxler, 2007, p. 

3).  

Mobile devices allow for a variety of learning behaviors and interactions that take 

place in a wider social context (Kukulska-Hulme & Traxler, 2005). According to Park 

(2011), mobile learning occurs in a range between communication intensive and 

independent work, with each range utilizing different mobile features and levels of 
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productivity. The more independently one works, the greater content-intensive is their 

learning; while using the mobile device for communication activities relies heavier on 

learning collaboration. “This shows that students can consume and create information 

both collectively and individually” (Koole, 2009, p. 26). The wide range of learning 

activities allows for numerous types of learning including memorizing (Schwabe & Göth, 

2005), scaffold learning (Crescente & Lee, 2011; Naismith, Lonsdale, Vavoula, & 

Sharples, 2004), situated learning (M. Wang & Shen, 2012), supplemental learning (T.-C. 

Liu et al., 2013), collaborative learning, informal and lifelong learning (M. Wang & 

Shen, 2012), and support coordination (Crescente & Lee, 2011; Naismith et al., 2004).  

In terms of learning gains, some studies have found evidence through quantitative 

methods with pre and post-test assessment that indicates mobile learning produces 

significant learning gains (Başoğlu & Akdemir, 2010; Cavus & Ibrahim, 2009; Chandran, 

2010; G. D. Chen, Chang, & Wang, 2008; I.-J. Chen & Chang, 2011; Che, Lin, Jang, 

Lien, & Tsai, 2009; Delgado-Almonte, Andreu, & Pedraja-Rejas, 2010; Hwang et al., 

2011; M. Liu, Geurtz, Karam, Navarrete, & Scordino, 2013; Wu et al., 2011).  Among 

these, Chen et al. (2008) found introductory compute science students test results were 

improved when scaffold learning was supported by a ubiquitous learning website. In 

another example, Cavus and Ibrahim (2009) found that mobile learners scored better than 

conventional learners in using short message system for learning vocabulary items. 

Positive learning gains were not universally reported. In fact, some studies, like Cobb et 

al. (2010) and Coens, Reynvoet, and Clarebout (2011) showed no significant learning 

gains when mobile learning was compared with more traditional forms of learning. 



39 

 

User perception and acceptance of mobile learning  

Terras and Ramsey (2012) stated, “It has long been recognized that an 

understanding of human behavior is essential to the design and development of effective 

and usable technology” (p. 822). If learning is about the learner, then mobile learning is 

more so personalized, learner-centered, situated, collaborative, ubiquitous, and lifelong 

(Hwang et al., 2011; Sharples et al., 2009; Valk et al., 2010), and design of mobile 

learning should be user-focused. Learners will approach mobile learning with their own 

learning styles or attitudes and behaviors that determine a preferred way of learning (Yau 

& Joy, 2010). This is amplified by the increase in mobile device features’ potential use to 

deliver learning and drives competition even more (Traxler, 2005). Crescente and Lee 

(2011) asserted that mobile learning “may become a mode of choice with learners since 

current and future generations will not know life without elaborate electronic technology” 

(p. 112). Sanchez and Goolsbee (2010) noted that “advances in the power and availability 

of mobile technology, coupled with the ‘on-the-go’ lifestyle of many individuals, have 

made small screen devices nearly ubiquitous in everyday life. Professionals and non-

professionals alike often carry at least one small device that is used regularly for many 

daily activities” (p.1056). User perspective on both the use of mobile devices for learning 

and the engagement and enjoyment of the learning applications are paramount for 

determining the success of mobile learning (Seraj & Wong, 2014). 

In their study on user perspectives of mobile learning, Wang et al. (2009) 

indicated the following factors as important determinants of users’ intentions to adopt 

mobile learning: “learning at a self-managed pace, perceived usefulness, social influence, 

performance expectancy, and effort expectancy” (p. 149-150). If learning agrees with the 
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learner, it will positively influence their success with mobile learning. Iqbal & Qureshi 

(2012) called this perceived usefulness. Mostakhdemin-Hosseini (2009) further added 

that there is need for mobile learning that will accommodate different learner 

perspectives. Although the application of technology is appealing, it is important to 

remember that the most successful applications tend to be those perceived by the users as 

useful (Bhaskar & Govindarajulu, 2009; Mostakhdemin-Hosseini, 2009b; Terras & 

Ramsay, 2012). Good user experience relies on proper utilization of the mobile device 

components and features. Wang et al. (2009) further elaborated that mobile learning 

systems designers who “focus on the development of valuable functions and content of 

m-learning systems on potential users” can increase the perceived usefulness and usage 

of mobile learning (p. 109). 

Rogers, Connelly, Hazlewood, and Tedesco (2009) explained that the versatility 

and mobility of mobile devices meant that people can use them in diverse settings. 

Several studies noted that mobile learners prefer to be aware of how they learn in general 

and how that changes when engaging in mobile learning (Platzer & Petrovic, 2011; 

Terras & Ramsay, 2012). In fact, “design relevance is enhanced by providing information 

concerning basic motivations for usage of mobile applications and linking them to best 

practice examples” (Platzer & Petrovic, 2011, p. 44).  

Numerous studies found users’ general perceptions of mobile learning positive 

(Almaiah & Jalil, 2014; Demirbilek, 2010; Franklin et al., 2007; Kismihók & Vas, 2011; 

Y.-S. Wang, 2007), and surmised that positive responses possibly stemmed from the 

notion that communication is a key feature in education and using mobile devices can 

enhance access and communication (Demirbilek, 2010). In a study by Corlett, Sharples, 
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Bull, and Chan (2005), students were supplied with PDAs to use for their studies and 

found the device highly useful in terms of organization. Additionally, some studies 

reported that well-designed mobile learning accelerated learning in ways that learners 

appreciated. Su et al. (2011) noted that self-learning of air traffic controllers increased 

when they enjoyed the curriculum design. 

While it was generally determined that users need an overall positive outlook 

when using mobile devices for learning, not all studies reported positive user feelings. In 

fact, several studies specifically identified several mobile learning challenges that left 

negative impressions on learners (Kismihók & Vas, 2011). Corlett et al. (2005), for 

example, found that there were significant issues with implementation, including 

hardware problems such as poor battery life, and external factors, such as the inability to 

view Web pages on the mobile device when required. Such occurrences frustrated 

learners, creating negative perspectives (Franklin et al., 2007).  In their study on the 

usefulness of a dedicated application which aided in measuring the change of trees over 

time, Rogers et al. (2009) found that participates felt using the mobile device as a 

learning supplement in a science class actually slowed learning down when interacting 

with the device and application became too tedious. 

Technology Acceptance Model 

User perception and acceptance of both learning tools and content delivery 

systems are important for the success of mobile learning. The Technology Acceptance 

Model (TAM) (Davis, 1985, 1989; Davis et al., 1989; Venkatesh, 2000; Venkatesh et al., 

2003) is one of the most widely accepted theories among information-system researchers 
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for studying the system acceptance behavior of users (Legris et al., 2003; Ma & Liu, 

2004; Schepers & Wetzels, 2006) and many studies have used it to gauge subjective user 

perception of mobile learning (Molina et al., 2014).  The Technology Acceptance Model 

(TAM) is an information systems theory which was adapted from the Theory of 

Reasoned Action (TRA) (Fishbein & Ajzen, 1975). TAM was the first model to mention 

psychological factors affecting computer acceptance, and the “model assumes that both 

perceived usefulness and perceived ease of use of a new technological resource are 

central in influencing the individual’s attitude towards using that resource. An 

individual’s attitude is hypothesized to influence the behavioral intention to use a certain 

technology, finally relating to actual use” (Molina et al., 2014, p. 447).  

The model is concerned with the determinants of consciously intended behaviors 

(Malhotra & Galletta, 1999; S. Y. Park, 2009). The basic theory of TAM is that perceived 

usefulness and perceived ease of use determine an individual's intention to use a system 

with intention to use serving as a mediator of actual system use (Gardner & Amoroso, 

2004). Perceived usefulness is also seen as being directly impacted by perceived ease of 

use (Davis, 1985, 1989; Davis et al., 1989; Venkatesh, 2000; Venkatesh et al., 2003). 

According to the TAM theory (Venkatesh et al., 2003), the two also directly influence 

one another. For example, an individual may find a colorful, interactive, and fun learning 

module to be useful even if the content and scaffolding for learning are lacking. 

Likewise, a very well-designed learning module may prove unsuccessful if the learners’ 

perception of it is negative. In their 2003 article, Lu et al. used TAM to understand user 

perceptions of accessing wireless internet via mobile devices. 
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Summary  

In summary, mobile learning has been prevalent as a movement in education now 

for nearly 15 years. It is occurring because mobile devices are transforming our 

understandings of space, community, and discourse. Definitions of mobile learning are 

varied, but range from unique learning experiences owed to handheld mobile devices to 

ubiquitous learning to on-the-go learning or just-in-time learning. Mobile learning can be 

formal or informal, depending on the learner and the content, environment, and time 

accessed. 

To describe the action of mobile learning and the characteristics that make it 

impossible and engaging, there are device affordances and learning affordances. Device 

affordances include the features of the hardware and software. Examples include GPS, 

camera, NFC, and anywhere connectivity. The learning affordances of mobile learning 

include portability, expediency, immediacy, accessibility, flexibility, connectivity 

convenience, cross-context learning, individuality, and interactivity. The notions of 

immediacy and expediency additionally make possible just-in-time, just-in-case, just-for-

me, and just-enough. Mobile learning occurs in a range between communication 

intensive and independent work, with each range utilizing different mobile features and 

levels of productivity. The more independently one works, the greater content-intensive 

is their learning; while using the mobile device for communication activities relies 

heavier on learning collaboration. 

At the heart of any technological success in education is the user. Positive user 

perception and acceptance of mobile learning is crucial for its success. As such, many 

studies have focused on these topics. Results have proven both negative and positive user 
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perception, but generally suggest a positive response to mobile learning. This makes 

sense given the proliferation of hand held devices (namely smartphones) within the 

bedrock of social, business, and educational culture. As individuals expect to use their 

devices ubiquitously, there is a growing expectation that use should extend to all facets of 

life, including into classrooms and offices. One well-tested method for gaging user 

perception and acceptance is the Technology Acceptance Model (TAM). TAM assumes 

that user perception and perceived ease of use together accurately measure a user’s 

acceptance of a specific technological tool for the task at hand. 

In the following section, I will present Cognitive Load Theory, beginning with its 

definition and evolution and then explaining the pertinent cognitive load effects that have 

developed as a way to determine cognitive overload. Finally, I will look at the research 

on text segmentation as it compares to the findings of cognitive load theory. 

COGNITIVE LOAD THEORY 

Human cognitive architecture, or the manner in which cognitive structures are 

organized, is composed of a limited capacity short term or working memory and an 

unlimited long-term memory (Miller, 1956; Sweller, 1988). The underlying goal of 

Cognitive Load Theory (CLT) is to design learning that increases cognitive recall by 

decreasing cognitive overload when information is being processed in the working 

memory (Sweller, 1988, 1994; Sweller & Chandler, 1994; Sweller et al., 1998). The term 

“working memory” was first proposed in the book Plans and the Structure of Behavior 

by Miller, Galanter, and Pribram (1960, 2013). The term has been adopted in Cognitive 

Psychology to describe the “system or systems involved in the temporary maintenance 
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and manipulation of information” (Baddeley, 2001, p. 852). CLT finds its roots in George 

A Miller’s (1956) The magical number seven, plus or minus two: some limits on our 

capacity for processing information, which describes the limitations of the working 

memory as incapable of holding more than seven items (plus or minus two depending on 

the person) in working memory. Of those only two or three can be actively processed 

simultaneously (Baddeley, 1976; Chandler & Sweller, 1996; Miller, 1956).  Humans can 

monitor only what is in their working memory. Other cognitive functionality is hidden 

from view unless and until it is brought into the working memory (Sweller et al., 1998).  

While some like Atkinson and Shiffrin (1968) see the working memory as a 

unitary short-term store, others such as Baddeley and Hitch (1974), proposed instead that 

it is a system comprising three main components, namely the visuospatial sketchpad, the 

central executive, and the phonological loop (this concept is explored further in the 

modality effect section of this literature review). Both approaches to understanding 

working memory agree to its limited capacity (Sweller et al., 1998). In fact, several 

studies have found that anything beyond the simplest cognition activities appear to over-

whelm working memory, such that meaning-making is impossible (Chandler & Sweller, 

1991; Miller, 1956; Sweller et al., 1998).  Meanwhile, the long-term memory capacity 

has been found to be vast. CLT assumes that the seat of human intellectual prowess 

comes from knowledge stored in the long-term memory (Chandler & Sweller, 1991). For 

information to be learned, i.e. become knowledge (Hollender et al., 2010), it must be 

moved from the short-term memory into the long-term memory (Baddeley, 1976, 2001; 

Chandler & Sweller, 1991; Sweller et al., 1998). This is accomplished through the 

construction and automation of schema (F. Paas et al., 2004; Sweller et al., 1998).  
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Derived from schema theory (Chi et al., 1982), which asserts that knowledge is 

stored in the long-term memory as mental schemata, this major learning mechanism 

categorizes elements of information according to how they will be used. Empirical 

research on schemas goes as far back as Piaget (1928) and Bartlett (1932), but de Groot 

(1966) and Chase and Simon (1973) demonstrated the importance of schemas in general 

problem-solving. Chi et al. (1982) further showed the critical role of schemas and expert 

problem-solving. Schema theory assumes that it is only with the creation of specific 

schema that expertise is achievable (Sweller, 2002).  

A schema is anything learned as a single entity that is stored in the long-term 

memory. Schema reduce working memory load through recall. Schema formation is an 

active, constructive process (Sweller, 2002; Sweller et al., 1998). As information grows, 

schema can be combined to make ever-more-complex schema (Chi et al., 1982). In this 

way, working memory is reduced as the complex schema is now treated as only one 

element in the working memory instead of as the individual bits of information that 

composes it (Chandler & Sweller, 1991). Although the working memory is limited to the 

number of elements it can process, the size, complexity, and sophistication of each 

element is unlimited (Sweller, 1994). With sufficient practice and exposure over time, 

application of complex information or procedures can be carried out with minimal effort, 

requiring few to no spots in the working memory (Shiffrin & Schneider, 1977). This 

continued process leads to schema automation.  

Schneider and Shiffrin (1977) and Shriffin and Schneider (1977) deduced that all 

information can be processed either consciously or automatically, with conscious 

processing taking place in the working memory and automatic processing stemming from 
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the long-term memory, without need of the working memory (Sweller, 2002). With 

practice and automaticity, procedures can be executed with minimal conscious effort, 

thereby leaving space in the working memory for new information to be processed and 

stored (Figure 2.2) (Hollender et al., 2010; Sweller, 2002).  

Until automated, a schema will act as one of the seven items taking up working 

memory space. However, long-term memory storage appears infinite and new 

information elements are constantly understood by recalling old information (Chandler & 

Sweller, 1991). Subsequently schema are created, enhanced, and stored, creating 

knowledge and expertise (Chi et al., 1982). In this regard, the difference between a 

novice and an expert is simply that the expert has numerous stored and automated schema 

to reference, where the novice has only what is presently before him or her (Chase & 

Simon, 1973; Groot, 1966). Both the novice and the expert are subject to the cognitive 

limitations of the working memory and are susceptible to cognitive overload when the 

process is inundated (Chandler & Sweller, 1996; Sweller, 1994). 

 

 

Figure 2.2. The process of schema automation. 
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schema construction and automation (F. Paas et al., 2004). CLT distinguishes between 

three types of cognitive load that must be processed for long-term recall to occur: 

intrinsic cognitive load, extraneous cognitive load, and germane cognitive load. The first 

is intrinsic to the thing to be learned. The last two are imposed by the design and 

organization of the learning material. Added together, these three make up the total 

cognitive load, which cannot exceed the working memory resources if learning is to 

occur (F. Paas et al., 2004; Sweller, 1994). 

Intrinsic cognitive load 

CLT assumes that information is the basic element in learning (Sweller, 1988, 

1994). Each element (piece of information) has an intrinsic cognitive load (ICL), 

meaning what is required to know the element itself (Sweller et al., 1998) or to 

understand how two elements interact (F. Paas et al., 2004). Intrinsic load cannot be 

altered (Sweller et al., 1998). There are two element intrinsic cognitive load 

measurements (Chandler & Sweller, 1991). Low element interactivity means an element 

is easy to learn, or has a low intrinsic load. Vocabulary words are an example of elements 

with low intrinsic load because each word can be learned independently (Hollender et al., 

2010). Elements which are harder to learn, in that they require numerous elements be 

held simultaneously in the working memory, have high element interactivity, or a high 

intrinsic load (Mayer & Moreno, 2003; Sweller, 1988). Using the same example, learning 

how to construct a sentence is a high intrinsic load activity because the learner must 

know the individual meanings of each word, understand how they fit together to make 
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meaning, and use proper grammar to make the sentence correctly (Hollender et al., 2010; 

F. Paas et al., 2004). 

Extraneous cognitive load 

When a learning experience includes learning material or activities that are extra 

to knowing the thing itself, this extra material creates extraneous cognitive load (ECL) 

(Mayer, Heiser, & Lonn, 2001; Sweller, 1988). Extraneous cognitive load can be altered 

via “instructional interventions” (Sweller et al., 1998) because it is determined by the 

instructional design. This “extraneous material” takes up scarce space in the working 

memory, making a learner reach cognitive overload more quickly (Chandler & Sweller, 

1991). In this case, the extraneous material does not contribute to the construction and 

automation of schema (F. Paas et al., 2004). Additionally, managing unnecessary 

information in the working memory can confuse the learner, forcing them to integrate the 

extra information into the process meaning making, again creating cognitive overload 

(Ayres & Sweller, 2005; Hollender et al., 2010). 

Germane cognitive load 

Germane cognitive load (GCL) is also produced by the instructional design of 

learning (F. G. W. C. Paas & Merriënboer, 1994; F. Paas et al., 2004; Sweller et al., 

1998). That is, if the extra load is imposed by relevant learning activities, it will have a 

positive effect on learning (F. G. W. C. Paas & Merriënboer, 1994). Where extraneous 

load disrupts schema construction and automation, germane cognitive load contributes to 

or fosters active schema construction processes and is thus beneficial for learning 

(Hollender et al., 2010). Germane load was first introduced by Paas and Van Merriënboer 
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(1994) who found that more complex variations of worked examples increased cognitive 

load, but still beneficially led to learning. In their study, they showed that learners 

profited from the germane load imposed by a high variability of practice problems when 

they studied previously worked examples. These findings were verified by Sweller, et al. 

(1998). These studies changed the focus of CLT from only minimizing extraneous load, 

to also optimizing germane load. 

The distinction of GCL is debated among theorists (Kalyuga, 2011; F. Paas, 

Tuovinen, et al., 2003; Sweller, 1988). Kalyuga (2011) argues that germane load is 

actually part of intrinsic load and is unnecessary to evaluate separately. He continues that 

distinguishing between intrinsic and germane load “clouds the applications of the theory 

for instructional design practitioners” (Kalyuga, 2011, p. 17). De Jong (2009) describes 

intrinsic load as the complexity of the material, while germane load refers to the 

cognitive process required to process material. Schnotz and Kürschner (2007) further 

elaborate that germane load goes beyond simple task performance. Rather, germane load 

is fostered by meta-cognitive processes such as application activities, pattern exploration, 

restructuring, and restructuring (Hollender et al., 2010; Schnotz & Kürschner, 2007). In 

this way, “learning can occur without germane load, but germane load can further 

enhance learning” (Schnotz & Kürschner, 2007, p. 497). 

Balancing cognitive load through instructional design 

Added together, these three (ICL + ECL + GCL) make up the total cognitive load 

(Kirschner, 2002), which cannot exceed the working memory resources if learning is to 

occur (F. Paas et al., 2004; F. Paas, Tuovinen, et al., 2003; Sweller, 1994). Early concepts 
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of the theory espoused that simply by reducing ECL, i.e. cognitive overload, learners 

have more working memory to process ICL and GCL for schema processing of relevant 

material (F. G. W. C. Paas & Merriënboer, 1993; Sweller, 1988, 1994; Sweller et al., 

1998). Avoiding cognitive overload can also be accomplished by reducing the amount of 

ICL by limiting the interacting elements in each segment of instruction (F. Paas et al., 

2004). Van Merriënboer, Kirschner, and Kester (2003) have argued that applying a 

simple-to-complex, scaffolded learning sequence can reduce intrinsic load while 

simultaneously allowing for full understanding (see also F. Paas et al., 2004).  

However, the nature of the intrinsic load can also influence overall learning 

(Hollender et al., 2010). In fact, it is now generally accepted that performance and 

learning decrease when learning scenarios have either extremely high or extremely low 

intrinsic load (F. Paas et al., 2004). Minimizing ECL such that learning is always at 

minimum load is not always beneficial to learning because extremely low load will not 

engage the learner (Hollender et al., 2010; Kirschner, 2002). Likewise, maximizing the 

ICL can overload the learner, preventing schema creation (F. Paas et al., 2004; Sweller, 

2002). In other words, learning ceases with both cognitive overload and cognitive under 

load and it is the goal of an instructional designer to balance the overall load by 

understanding the intrinsic and germane load of the content and the learning design, as 

well as knowing the learners (whether they novices or experts).  

The expertise level of the learner changes the load values of an activity, and 

likewise should alter the learning design. Experts and novices have similar working 

memory capacity. The difference in experts is simply that they have more schema 

concerning the topic of their expertise organized and stored in their long-term memory 
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(Sweller, 1988). De Groot (1966) compared the abilities of grand chess players with 

novice chess players.  He found that grand masters did not process more at any given 

time than novice players. Rather, they had stored in their long-term memories more game 

board configurations than novice players. These configurations allowed the experts to 

anticipate several more moves than the novice players who did not have the 

configurations memorized.  
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Figure 2.3. Cognitive Load Theory. Aggregated findings. No learning occurs the closer a 
learner gets to the top left and bottom right corners, where intrinsic load is 
either too high or too low. 

It was thus found that the learning process is more complex than the simple 

addition of ICL, ECL, and GCL (Ton de Jong, 2010; Schnotz & Kürschner, 2007), and in 

fact, learning changed depending on the expertise of a learner (Figure2.3) (Sweller et al., 

1998). In this way, an expert may still learn in scenarios that contain high ECL, where 

novices in similar scenarios will be overloaded (Hollender et al., 2010). To the expert, the 
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element of learning has a low intrinsic load. To the novice, the element of learning has a 

high intrinsic load. Schnotz and Kürschner (2007) further argued that learning designs 

with too high ICL can hinder learning from GCL and this balance depends on the 

expertise level of the learner. Learning optimized to the level of the learner allows for 

germane load to enhance learning (Hollender et al., 2010).  Schnotz and Kürschner 

(2007) use Vygotsky’s (1963) zone of proximal development (ZPD) to further explain 

this balance between the types of cognitive load. If the task difficulty and resulting 

cognitive schema construction are higher than the learner’s ZPD, the learner will face 

cognitive overload. Likewise, if the task difficulty and resulting cognitive processing is 

lower than the learner’s ZPD, the learner will face cognitive under load (Hollender et al., 

2010; F. Paas et al., 2004; Schnotz & Kürschner, 2007). It is, therefore, the goal of the 

instructional designer according to CLT to design learning experiences that are tailored to 

the experience of the learner and offer balanced loads for optimized learning without 

cognitive overload or under load. 

Summary 

Cognitive Load Theory is an instructional design theory, which operates under the 

assumption that human cognition has both a long-term and short-term, working memory. 

For learning to occur, it must be moved from the working memory into the long-term 

memory. This transition is accomplished through the construction and automation of 

schema. Schemas combine to make ever-more-complex schema, reducing working 

memory as the complex schema is now treated as a single element in the working 

memory. This continued process leads to automation. Automatic processing that stems 
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from the lone-term memory does not take up space in the working memory when 

accessed.  

CLT distinguishes between three types of cognitive load that must be processed 

for long-term recall to occur. Every learning element (piece of information) has an 

intrinsic cognitive load (ICL). A single element can have low element interactivity and 

therefore a low intrinsic load, or high element interactivity, and therefore a high intrinsic 

load.  Extraneous cognitive load (ECL) occurs when the learning design includes material 

and activities are outside of, or ‘extra’ to what is to be learned, which unnecessarily take 

up working memory space and may cause cognitive overload. Germane cognitive load 

(GCL), load also produced by the instructional design of learning, fosters active schema 

construction processes and is beneficial to learning. Adaptations on types of cognitive 

load include De Jong’s (2009) distinction of intrinsic load as the complexity of the 

material and germane load as the cognitive process required to process material and  

Schnotz and Kürschner’s (2007) espousal that germane load occurs during of meta-

cognitive processing. 

The expertise of the learner changes the load values of an activity, and likewise 

should alter the learning design. The total cognitive load of a learning experience is 

comprised of the summation of ICL + ECL + GCL, as well as the expertise of the 

learners.  Total load cannot exceed the working memory resources if learning is to occur. 

The underlying goal of Cognitive Load Theory (CLT) is to design learning that increases 

cognitive recall by decreasing cognitive overload when information is being processed in 

the working memory, simultaneously taking into account the expertise of the learner. 

Accordingly, instructional design should manipulate the types of load in ways that align 
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task requirements with the learner’s level of expertise. In the following section, I will 

explain the Cognitive Theory of Multimedia Learning and explain its importance in this 

specific study. 

COGNITIVE THEORY AND MULTIMEDIA LEARNING 

Mayer and Moreno’s (2003) Cognitive Theory of Multimedia Learning (CTML) 

extends CLT theory by adding its main assumption to those of Baddely’s (1976) Theory 

of Working Memory and Pavio’s (1986) Dual-Channel Theory, and well as to Mayer’s 

(1999) Theory of Active Learning. CTML operates under three main assumptions: the 

dual channel assumption, the limited capacity assumption, and the active processing 

assumption. Mayer (2003) defines a multimedia instructional message as a presentation 

consisting of words and pictures that is designed to foster meaningful learning. 

A basic notion of CLT is that human cognition has a limited working memory 

capacity and an unlimited long-term memory (the limited capacity assumption) (Chandler 

& Sweller, 1991; Hollender et al., 2010; Miller, 1956). The human capacity to learn is fed 

via multiple sensory channels, which act as independent processors within the limited 

working memory (Baddeley, 1976, 2001; Mayer & Moreno, 2003). Of import in this case 

are the auditory and visual sensory channels. Baddeley’s (1976) Theory of Working 

Memory assumed auditory information occurred in a ‘‘phonological loop” and visual 

information occurred via a “visuo-spatial sketchpad.”  

Pavio’s (1986) dual-channel theory further adds credence to the notion that 

auditory and visual channels together can enhance learning. He assumes that human 

information processing has an auditory/verbal channel and visual/pictorial channel (the 



57 

 

dual-channel assumption). The working memory receives information through audio and 

visual, however these systems are separately processed. Separately, each channel has a 

limited capacity at any given moment (Baddeley, 1976; Chandler & Sweller, 1991; 

Mayer & Moreno, 2003). However, By including and specifically manipulating both 

sensory channels, as opposed to only one, the working memory capacity can be increased 

(Hollender et al., 2010). Information is more easily learned when both channels are 

represented (T.-C. Liu et al., 2013; Mayer & Moreno, 2003; Paivio, 1990). For example, 

something heard is processed in the auditory channel, while something viewed is 

processed in the visual channel.  

If something is both seen and heard (like a video or animation), both channels 

simultaneously process the information. However, for meaningful learning to occur, the 

learner must actively participate in the learning (the active processing assumption) 

(Mayer, 2003; Mayer & Moreno, 2003). CTML assumes that “meaningful learning 

occurs when learners engage in active cognitive processing including paying attention to 

relevant incoming words and pictures, mentally organizing them into coherent verbal and 

pictorial representations, and mentally integrating verbal and pictorial representations 

with each other and with prior knowledge. This process of active learning results in a 

meaningful learning outcome that can support problem-solving transfer” (Mayer, 2003, p. 

129). 

According to CTML, learning occurs when words and pictures are selected and 

organized in the working memory, after which they can be integrated into the long-term 

memory (Figure 2.4) (Ayres & Sweller, 2005; Mayer & Moreno, 2003). 
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Figure 2.4. Cognitive Theory of Multimedia Learning (Mayer & Moreno, 2003, p. 44) 

Mayer and Moreno’s (2003) noted three types of cognitive processing in CTML: 

essential processing, incidental processing, and representational holding. Essential 

processing is aimed at making sense of presented material, i.e., to select, organize, and 

integrate (words and images). Essential processing is required to make sense of the 

presented material. Incidental processing occurs when non-essential aspects of presented 

material are processed. This type of processing is created by the learning design. 

Representational holding occurs when verbal or visual representations must be held in 

working memory in order for essential processing to occur. The total of all three 

processes are considered the total cognitive load. If the total is greater than the limited 

working capacity can hold, then cognitive overload will occur (Ayres & Sweller, 2005; 

Mayer, 2003; Mayer & Moreno, 2003).  

CTML asserts that meaningful learning will only occur if all three processes are 

occurring for the visual and verbal representations (Mayer, 2005, 2009). Therefore, 

instructional methods should be designed to enable and promote these processes. Mayer 

(2003) asserts that single medium presentations will be less effective than dual-medium 

presentations. He calls this the multimedia effect (Mayer, 1999; Mayer & Anderson, 

1991; Mayer et al., 1996; Mayer & Chandler, 2001). According to this effect, learning 
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will occur more deeply when material is presented in words and pictures than from words 

alone (Ayres & Sweller, 2005; Mayer, 2003, 2009). Many studies have found that this 

assertion is true under specific circumstances (Austin, 2009; Ayres & Paas, 2012; 

Brunken et al., 2003; Eitel et al., 2013). Others have discovered that there are limitations 

to the multimedia effect and the CTML (Kalyuga, 2000; Leutner, Leopold, & Sumfleth, 

2009; Reimann, 2003; Scheiter et al., 2014; Schüler et al., 2013; Tabbers, 2002). 

Summary 

Using the limited capacity assumption of Sweller’s CLT and the dual channel 

assumption of Baddelley’s Theory of Working Memory and Pavio’s Dual-Channel 

Theory, in combination with his own theory of Active Learning, Mayer and Moreno 

describe the Cognitive Theory of Multimedia Learning. This theory asserts, and follow-

up research has seconded, that in specific circumstances, learning occurs more deeply 

when both the auditory and the visual channels are utilized than with the visual channel 

alone. However, some studies have found that there are limitations to the specific effects 

produced under CTML. 

CLT and CTML are both essentially instructional design theories based on 

cognitive psychology, and as such it is commonly the case that when a cognitive overload 

effect is revealed, its design antidote is also suggested. As this study is specifically 

interested in design principles, I will first define the pertinent cognitive overload effects 

and detail findings from various studies that support and negate these learning conditions. 

I will follow that section with a detailed description of suggested instructional design 
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principles as they relate to each effect, and as they have been more generally related to 

mobile learning. 

THE EFFECTS OF COGNITIVE OVERLOAD 

Cognitive Load Theory and Cognitive Theory of Multimedia Learning both 

promote the notion that the primary goal on instructional design is enabling schema 

construction and the automation of the information in the long-term memory (Sweller et 

al., 1998). With practice (Chandler & Sweller, 1991; Merriënboer & Ayres, 2005) and 

through active learning (Mayer, 2003; Mayer & Moreno, 2003), schema will be 

processed with decreasing conscious effort (Schnotz & Kürschner, 2007). Understanding 

occurs when high element interactivity material can be held simultaneously in working 

memory (Ayres & Sweller, 2005; Chandler & Sweller, 1996; Sweller et al., 1998). Mayer 

(2003) asserts that learning through auditory and visual sensory channels assists with this. 

Learning occurs when high element interactivity material can be easily recalled and 

applied towards various new understandings and complex activities (F. G. W. C. Paas & 

Merriënboer, 1994). However as Sweller et al. (1998) point out, “The implications of 

working memory limitations on instructional design can hardly be overestimated…and 

instructional design that flouts or merely ignores working memory limitations inevitably 

is deficient” (p. 252).  

When an instructional designer is designing learning, the goal is to transfer that 

intrinsic/germane cognitive load to the learner in ways that do not produce cognitive 

overload (Chandler & Sweller, 1991; Kalyuga et al., 2000; F. Paas, Renkl, et al., 2003). 

Intrinsic load cannot be altered, it is therefore essential to minimize extraneous load, and 
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when possible, to limit the elements to be learned (Sweller et al., 1998). In multimedia 

especially, it is a challenge to avoid adding extraneous cognitive load (Chandler & 

Sweller, 1991; Mayer, 2003, 2009). Towards the creation of well-designed instruction, 

several cognitive overload effects have been discovered. These effects, when observed, 

have either improved learning or overloaded the working memory and disrupted learning 

(Ayres & Sweller, 2005; Hollender et al., 2010; F. G. W. C. Paas et al., 1994). They have 

been observed across learning mediums (Chandler & Sweller, 1996; Mayer, 2003).While 

there are numerous cognitive overload effects aimed at manipulating the three types of 

cognitive load (Hollender et al., 2010; Merriënboer & Ayres, 2005; Schnotz & 

Kürschner, 2007), there are only a few that directly relate to the study at hand.  

Split attention 

One cognitive load effect discovered early on in the theory’s history and recreated 

numerous times with various media and content is split attention effect (see also spatial 

and temporal contiguity) (Chandler & Sweller, 1991; Mayer & Fiorella, 2014; Mayer & 

Moreno, 1998). Split attention occurs when a learner must integrate multiple sources of 

information in order to understand it, such that the individual pieces of information 

cannot be understood in isolation (Ayres & Sweller, 2005; Hollender et al., 2010; 

Kalyuga et al., 1999; Mayer & Fiorella, 2014; Sweller et al., 1998). The process of 

holding information in working memory, while simultaneously attempting to integrate it 

with other information is cognitively demanding (Cierniak et al., 2009; Kalyuga et al., 

1999; Mayer & Moreno, 1998). This is especially true for low prior knowledge learners 

or novices who are viewing high intrinsic load material (Ayres & Sweller, 2005; 
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Chandler & Sweller, 1991; Florax & Ploetzner, 2010). The split attention effect can be a 

form of extraneous cognitive load, when it is caused by the design and presentation of 

instruction (T.-C. Liu et al., 2013; F. Paas et al., 2004), or be caused by intrinsic or 

germane load when the material surpasses the learner’s zone of proximal development, 

thus over-whelming the working memory. According to Sweller, et al., split attention is a 

common design flaw (Kalyuga et al., 1999; Sweller, 2002; Sweller et al., 1998). Mayer 

(2001, 2003) also argues in his Cognitive Theory of Multimedia Learning that disparate 

words and images or animations and audio cause learners to search for and integrate 

information across the screen(s). This causes split attention effect, or special and 

temporal discontiguity because learners are forced to hold multiple pieces of information 

in their working memory to make whole meaning of them (Ginns, 2006). 

The split attention effect has been found in numerous empirical studies (Florax & 

Ploetzner, 2010; Ginns, 2006). For example, in a series of six experiments in which 

novice learners studied learning materials about electronic circuits or the human heart, 

Chandler and Sweller (1991) found that studying previously worked examples caused 

split attention instructions were not integrated with the diagrams. Additionally, they 

found that participants who were required to integrate text descriptions with separate 

illustrations performed less successfully than students who did not need to integrate the 

two. Chandler and Sweller (1996) found using secondary task analysis that when high 

element interactivity was involved accessing instructions on a computer, separate from 

the product itself created a split attention effect, whereas integrating the instructions with 

the product did not. Mayer and Moreno (1998) found that students who had to split 

attention between text and images performed lower than students who viewed the image 
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while listening to the same text. This resulting split-attention effect was consistent with a 

dual-processing model of working memory consisting of separate visual and auditory 

channels. Cierniak, Scheiter, and Gerjets, (2009) investigate split-source formatting and 

found that learners with the split-source formatting achieved lower learning outcomes 

than students with integrated formatting. By using secondary task performance as one 

form of measurement, they were also able to demonstrate that both extraneous and 

germane load contributed to split-attention effect.  

In terms of mobile devices specifically, several empirical studies have reproduced 

split-attention effect. Findlater and McGrenere (2008) noted that the limited display size 

of small screen mobiles forces designers to split content onto multiple screens. That small 

screen displays require the breach of the spatial and temporal contiguity of learning 

content is supported by numerous researchers (Austin, 2009; Keefe et al., 2012; Kim & 

Kim, 2012; T.-C. Liu et al., 2013, 2012; Luong & McLaughlin, 2009; Maniar et al., 2008; 

Molina et al., 2014).  

Keefe et al. (2012) found that split attention occurs when mobile devices were 

used as supplemental tools in informational visual design studies. This finding was 

replicated by Liu et al. (2012) and Liu et al. (2013), who both found that mobile devices 

used by science students to supplement a real-object botany lesson caused split-attention 

effect, when compared to the same lessons done entirely via the mobile device. 

Mainar et al. (2008) found that zooming on a mobile device to increase the size of 

the content created a split-attention when compared to viewing the same material on a 

larger screen. Luong and McLaughlin (2009) reproduced this effect in their study on 

viewing bar graphs on both large and small devices.  
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Segmentation effect 

One cognitive load effect that has been found in numerous studies is the 

segmentation effect (Spanjers et al., 2012).  Segmentation effect is simply that when 

something is divided into meaningful pieces, it does not over-whelm the working 

memory as does continuous learning material  (Ayres & Paas, 2012; Mayer, 2003; Mayer 

& Chandler, 2001; Mayer & Moreno, 2002; F. Paas, Renkl, et al., 2003; Spanjers et al., 

2012; Wong et al., 2012). Segmentation has been proposed as a way to improve the 

effectiveness of learning material (Mayer & Moreno, 2003). The effect was noted by 

Mayer and Chandler (2001), who found that students who had seen segmented 

animations were better able to solve transfer problems than those who viewed the 

continuous animation. This seems especially the case for low prior knowledge learners 

(Mayer, 2009). 

The research has given two main explanations for why segmentation assists in 

learning. First, segmentation creates pauses between segments, which breaks up the 

transience of dynamically presented information (Mayer & Chandler, 2001; Spanjers et 

al., 2010, 2012). In other words, system-controlled presentations will show the learning 

material for too brief a time before it disappears from screen. Under these conditions, 

learners are unable to process the elements in their working memory (Mayer & Moreno, 

2003; Moreno, 2007). The body of empirical research around this notion is growing (see 

Ayers & Paas, 2012; Leahy & Sweller, 2011; Wong, Leahy, Marcus, & Sweller, 2012). 

With pauses between segments, the learner has a chance to “catch up” to the content and 

appropriately process the information to combine it with prior knowledge (Mayer, 2003; 

Spanjers et al., 2012). This is especially true when the learning material has a high 
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intrinsic load. If not segmented, information is lost before it can be fitted into schema 

(Florax & Ploetzner, 2010; Mayer & Fiorella, 2014). 

Catrambone (1995) found that visually isolating tasks in worked examples 

fostered learning (i.e. segmenting). In their 2001 experiments, Mayer and Chandler found 

that giving the learner a button to click from one screen to the next, that pause placed less 

cognitive load on the learners, who outperformed the non-segmented group in transfer 

tests. Moreno (2007) showed participants shown segmented content outperformed 

participants who were shown continuous content on transfer tests. Hassanabadi, 

Robatjazi, and Savoji (2011) found that learner controlled pauses were beneficial for 

learning. Sung and Mayer (2013) found that learner-controlled pauses allowed for better 

learning performance than whole/continue learning pieces. 

The second explanation for why segmentation helps minimize cognitive load is 

that it helps break down the content into meaningful pieces, influencing the way learners 

organize and store information (Kurby & Zacks, 2008; Spanjers et al., 2012). When 

content is pre-segmented, these pieces provide cues or signals to learners about 

boundaries of meaning (Moreno, 2007). This reduces cognitive load by removing that 

task from the working memory process, thereby helping learners integrate information 

from the recent past to improve predictions about the near future (Kurby & Zacks, 2008), 

leading to an increase in what can be learned (Spanjers et al., 2010, 2012). Catrambone 

(1998) demonstrated this in his study of subgoal learning. Florax and Ploetzner (2010) 

found a significant effect on learning outcomes when text and images and text alone were 

segmented. Sung and Mayer (2013) found that participants presented segmented content 

outperformed those presented whole content. Studies also showed that when students 
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were asked to actively segment or make the segments themselves, this increased 

cognitive load because the extra information processing taxed the working memory and 

became extraneous load (Spanjers et al., 2012). Accordingly, performance was observed 

to be best when the content segments were pre-determined (Hassanabadi et al., 2011; 

Spanjers et al., 2010). 

Segmentation of text specifically was found to improve text comprehension 

(Ayres & Paas, 2012; Florax & Ploetzner, 2010), as segments inform learners how to 

create meaning units of the material (Florax & Ploetzner, 2010). In their 2010 study on 

split attention effect and text segmentation, Florax and Ploetzner demonstrated that split 

attention does not always occur when images and text are separated, rather they found 

that it is the segmentation of text that fosters learning and merging images and text (a 

recommendation for negating split attention) necessitated segmenting the text.  In their 

study on single medium learning material and segmentation, Singh, Marcus, and Ayres 

(2012) found that segmented written text produced higher learning outcomes that 

segmented spoken text, but segmented spoken text outperformed continuous spoken text 

(see also Ayers & Paas, 2012). 

In all studies on segmentation, learner control of pre-segmented material appeared 

to better facilitate learning than system control (Ginns, 2005; Mayer, 2003, 2009; Mayer 

& Chandler, 2001; Moreno, 2007; Spanjers et al., 2010, 2012), especially when 

comparing text only with bi-modal presentations  (Hassanabadi et al., 2011). Allowing 

the learner to control the pace of learning, prevents transience, thus minimizing 

extraneous load and enhancing the capabilities of the working memory to process 

information (T.-C. Liu et al., 2012; Mayer, 2003; Spanjers et al., 2012; Tabbers, 2002).  
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Modality effect 

Derived mainly from the dual channel assumption of the Cognitive Theory of 

Multimedia, and extending the multimedia effect, the modality effect is a much studied 

cognitive load effect (Hollender et al., 2010; Kalyuga et al., 2000; Mayer, 1999, 2005; 

Mayer & Moreno, 2002; Schüler et al., 2013). In CTML, the multimedia effect states that 

multimedia messages are more effective when they are presented simultaneously in text 

and images, rather than through one medium alone (Eitel et al., 2013; Mayer, 2003; 

Mayer & Moreno, 2002). This has been demonstrated through measuring perceived 

difficulty and learning gains (Mayer & Moreno, 2003; Schüler et al., 2013). Rather than 

text alone, the addition of visualizations reduces the amount of cognitive effort required.  

The modality effect also occurs when multiple sources of information are required 

for understanding. The extraneous load of the visual modality can be reduced by 

transforming written text into narration, thus using the auditory processor (dual-channel) 

in working memory (Hollender et al., 2010; Kalyuga et al., 2000). The modality effect 

further defines multimedia effect by adding that narration or spoken text (Brunken et al., 

2003; Kalyuga, 2000), when presented with images, provides even better learning 

moments because the visual and auditory senses are utilized, minimizing the workload to 

be processed in the working memory (Ayres & Paas, 2012; Kalyuga et al., 1999; Sweller 

& Chandler, 1994). Additionally, it continues that replacing written text with spoken text 

is different than adding spoken text to written text. This combination of both written and 

spoken text creates the redundancy effect, i.e., the working memory is over-whelmed by 

having to process both forms of redundant text (Chandler & Sweller, 1991; Mayer, 2003; 

Schüler et al., 2013). Adding audio to images also seemed to help reduce split attention as 
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the working memory was freed to only visually observe the images instead of having to 

integrate the meaning of the text with the meaning of the images (Kalyuga et al., 1999). 

Mayer and Moreno (1999, 2003) demonstrated that when high element 

interactivity material was presented in audio/visual formats, performance was 

substantially higher as compared to presentations in visual/visual formats. In a study by 

Kalyuga (2000), participants were tested on computer-based instruction using a visual 

diagram with visual text, visual diagram with audio text, or visual diagram with both 

audio and visual text. Results showed that presenting both audio and visual created a 

redundancy effect, while the visual diagram with audio text was rated the least difficult 

demonstrating the modality effect. An experiment with 80 8th-grade students, showed 

that less time and mental effort was spent by the group whose presentation was audio and 

visuals, versus the group who were presented with written text and visuals (Savoji et al., 

2011). Schmidt-Weigand, Kohnert, and Glowalla (2010) showed that when text was 

spoken instead of written, participants spent more time studying the images than when 

text was written, in which case, participants spent more time reading the text.  

In terms of technology specifically, Wong, Leahy, Marcus, and Sweller (2012) 

found that technology results in the transformation of permanent material into transient 

information (especially in cases of animation and narration) creating additional cognitive 

load. They found that when learning material is longer, static images and text are better 

for learning than animation and narration. Liu et al. (2013) conducted a study on modality 

effect using smartphones and showed positive learning gains when for groups with audio 

and images.  
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Reverse modality effect 

While the modality effect has been widely studied, there have been found 

numerous boundary conditions, under which, the modality effect is diminished, attributed 

to another factor, or completely reversed. For example, in two studies the modality effect 

was not found with material low in intrinsic load (Mayer & Anderson, 1991; Mayer & 

Moreno, 1998, 2003). In their 2000 study how learner experience alters the modality 

effect, Kalyuga et al., found that for high prior-knowledge learners, diagrams alone were 

preferred to diagrams with explanatory text demonstrating the importance of 

understanding expertise when designing instruction (Kalyuga et al., 2000).  

In their 2012 study how specifically placed key words and phrases affected 

learning from visuals and narrated text, Sombatteera and Kalyuga found that the 

redundancy effect was not repeated under these specific conditions, thus highlighting a 

boundary condition of the modality effect. Schüler, Scheiter, Rummer, and Gerjets 

(2012) examined whether the modality effect was a result of a lack of temporal contiguity 

or high visuo-spatial load. A hundred and forty-seven participants looked at scientific 

images either with audio or written text. Additionally, the text was provided either before 

the images, simultaneously with the images, or after the images. The results indicated no 

modality effect for verbal recall, but showed a modality effect for pictorial recall when 

text was simultaneously presented. In terms of the written text, participants in the 

simultaneous treatment tended to focus more on the text than the images. In their 2012 

study, a reverse modality effect was found as participants who studied the materials with 

written text outperformed those who studied the audio materials on free recall, matching 
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comprehension, and spatial recall tests (Crooks et al., 2012). The latter group however, 

expended less effort than the former group. 

Explanations for reverse modality effect are varied. Kalyuga (2011) espouses that 

the transiency produced by many animations may demonstrate why studies on animations 

do not always find the modality and redundancy effects. Transiency can over-whelm the 

working memory processes. Tabbers (2004) found in his study of 111 participants in a 

classroom setting that the modality effect was reversed when study was learner-paced. 

Schmidt-Weigand, Kohnert, and Glowalla (2010) made similar findings in their study, 

failing to find a modality effect in learner-paced learning scenarios. This was supported 

by Schüler et al. (2013), who also noted a reverse modality effect under learner-paced 

circumstances. Scheiter, Schüler, Gerjets, Huk, and Hesse (2014) found that the modality 

effect was reversed as well when learners had high prior-knowledge.  

Wong, Leahy, Marcus, and Sweller (2012) demonstrated that the modality effect 

disappears when content is longer. This lends evidence to a third possibility for the 

reversal of the modality effect. The auditory recency effect (Schüler et al., 2013) predicts 

the disappearance of the superiority of spoken text when the text is longer. Stemming 

from Penney (1989) and Baddelley (2001), this is due to the acoustic sensory code, which 

states that acoustic sensory is less susceptible to decay when the audio is short (Baddeley, 

2001; Penney, 1989; Rummer & Engelkamp, 2003; Rummer & Schweppe, 2005). This 

has been proved in studies where recall of single words or phrases is high, demonstrating 

the superiority of spoken text. However, when text is longer, the advantage disappears as 

one sentence is quickly replaced with the next (Schüler et al., 2011). In these 

circumstances, written text is superior to spoken text because the advantage of audio is no 
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longer there (Rummer, Schweppe, Fürstenberg, Scheiter, & Zindler, 2011; Schüler et al., 

2013). This effect appears independent of whether or not images partnered the text 

(Schüler et al., 2013). This supposition is supported by text comprehension research, 

which has found a superiority of written text when longer texts are presented with 

sufficient enough time for applying text comprehension strategies (discussed in the 

following section). Schüler et al. did observe a reverse modality effect in their 2013 study 

when longer text was presented, however, they did not find that this was based on the 

superiority of written text, but rather on the auditory recency effect. 

Text comprehension research 

Text comprehension research, as it pertains to the topic of this study, assumes that 

written texts are superior to spoken text when the text is long, complex, and/or expository 

(Schüler et al., 2013). This assumption is based on findings that suggests written text 

attracts attention, as compared to images and spoken text (Schmidt-Weigand et al., 2010). 

It is also argued that greater mental activity is involved in reading, which will result in 

better retention (A. Furnham et al., 1988). Several studies have noted a higher recall 

performance by participant groups who view written text materials as opposed to spoken 

text materials or audio visual materials (Byrne & Curtis, 2000; A. Furnham, 2001; A. F. 

Furnham & Gunter, 1985; A. Furnham & Gunter, 1989; A. Furnham et al., 1990, 1988; 

Gunter & Furnham, 1986; Hron, Kurbjuhn, Mandl, & Schnotz, 1985; Müsseler, Rickheit, 

& Strohner, 1985; Sanders, 1973). 

Mannes and Kintsch (1987) examined the effect of learning from text-only 

advanced organizers. They found that organized advanced organizers produced better 
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recall, while inconsistent organizers enhanced problem solving capabilities. In their 1990 

study comparing audiovisual, audio, and text only printed stimulus material, Furnham, 

Gunter, and Green found that the group who read the paper script remembered the most 

cued and free recalled details. In a second experiment, they repeated their measures with 

a complex science extract. Again the study revealed a supremacy of the printed text 

materials. Rasch and Schnotz (2009) found that adding pictures to text was neither 

beneficial nor harmful for learning. They also found that learning from text only was 

more successful in terms of learning efficiency that learning from text and images. In 

their study with 100 eleventh graders, Leutner, Leopold, and Sumfleth (2009) found that 

making mental images after reading expository science text lead to higher reading 

comprehension than actually drawing images of the same text. They concluded that 

constructing mental images reduces cognitive load, thus increasing comprehension and 

learning because the mental visualization processes are not disturbed by externally 

drawing pictures on paper.  

Kintsch (1994) looked at text comprehension differences for high and low 

knowledge learners. He found that novice learners benefit more from well-written texts 

while high knowledge learners benefit from less thoroughly written text. (McNamara et 

al., 1996) supported this finding by arguing that “poorly written text forces the 

knowledgeable readers to engage in compensatory processing to infer unstated relations 

in the text” (p. 1). Additionally, knowledge seems to facilitate different types of 

comprehension (Voss, Fincher-Kiefer, Greene, & Post, 1986).  

These findings are in direct conflict with the multimedia and modality effects 

which suggest that reading text, as opposed to viewing images and hearing spoken text, 
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will produce higher cognitive load and prevent recall  (Mayer, 1999; Schüler et al., 2011). 

Along those lines, text comprehension research consistently has found that when written 

and spoken texts are compared without images, a disappearance (and sometimes reversal) 

of the multimedia and modality effect occurs (A. Furnham et al., 1988). The 

disappearance/reversal is cause by the ability of the reader to implement three reading 

comprehension strategies.  

First, where spoken text is transient, written text is permanently available (Schüler 

et al., 2011). This permanence allows readers to slow down and take time reading the text 

(Furnham, Gunter, & Green, 1990; Byrne & Curtis, 2000; Kozma,1991) and to make as 

many regressions over the text as needed. This has been shown to lead to better 

understanding of the material (Craik & Tulving, 1975; A. Furnham et al., 1988), and is an 

especially useful strategy when text is complex and learners are lower-prior knowledge 

learners (Frazier & Rayner, 1982; Hyönä & Nurminen, 2006; Just & Carpenter, 1987; 

Schüler et al., 2011).  

Second, a reader of written text, given the time, is able to make several passes of 

the material (A. Furnham et al., 1988; Schüler et al., 2011), which aids in understanding 

complex or ambiguous passages (A. Furnham et al., 1990). Hyönä and Nurminen (2006) 

showed that learning recall is better the more passes that are made. Empirical evidence 

collected from eye-tracking studies support this finding (Schmidt-Weigand et al., 2010). 

Finally, when text is written, a reader can skip extraneous passages that are either 

not relevant or are too difficult to understand and concentrate on the more important parts 

of the text (Schüler et al., 2013, 2011). With the implementation of these three strategies, 
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and under the specific conditions (time and complex material), reading comprehension 

improves (A. Furnham et al., 1990; Schmidt-Weigand et al., 2010; Schüler et al., 2013).  

Under these conditions, the reversal of the modality effect is expected, as well as 

a superiority of written text. In their experiments on the topic, Schüler et al. (2013) did 

find a disappearance of the modality effect, but they were unable to show a superiority of 

written text unlike their colleagues. In terms of spoken verses written text under these 

specific conditions, one condition did not prove better than the other for comprehension 

despite the numerous studies before this one have found evidence of the superiority of 

written text. Nevertheless, Schüler et al. noted that the implications of the general text 

comprehension findings “have important theoretical but also practical implications: Due 

to the fact that written texts are normally cheaper to produce and easier to implement into 

computer based learning environments, instructional designers may decide to present 

longer text segments in written instead of spoken format” (p. 1598-99). They concluded 

that these findings in the least identify some boundary conditions for the multimedia and 

modality effects. 

Summary 

Towards the creation of well-designed instruction, several cognitive overload 

effects have been observed. Split attention effect occurs when a learner must integrate 

multiple sources of information in order to understand it, such that the individual pieces 

of information cannot be understood in isolation. The process of holding information in 

working memory, while simultaneously attempting to integrate it with other information, 

is cognitively demanding, especially for low prior knowledge learners. Split attention 
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effect can be caused by the learning design, or be caused by intrinsic or germane load 

when the material surpasses the learner’s zone of proximal development, thus over-

whelming the working memory. Several studies about small screen mobile devices have 

reproduced split attention effect, mainly because the small display breaches the spatial 

and temporal contiguity of the learning content. 

A second cognitive load effect, segmentation effect occurs when something is 

divided into meaningful pieces such that it does not over-whelm the working memory as 

does continuous learning material. Segmentation assists with learning because it both 

creates pauses between segments, breaking up transience of dynamically presented 

material, and because it helps break the content down into meaningful pieces improving 

text comprehension. In all studies on segmentation, learner control of pre-segmented 

material appeared to better facilitate learning than system control by preventing 

transience and minimizing extraneous load.  

Another observed cognitive load effect is modality effect, which states that the 

addition of visualizations, in combination with the use of spoken, rather than written text 

reduces the amount of cognitive effort required. The modality effect also occurs when 

multiple sources of information are required for understanding. The extraneous load of 

the visual modality can be reduced by transforming written text into narration, thus using 

the auditory processor (dual-channel) in working memory. Studies have shown that when 

high element interactivity material was presented in audio/visual formats, performance 

was substantially higher as compared to presentations in visual/visual formats. These 

findings were extended to smartphone learning, when positive learning gains resulted 

from audio/visual presentations (T.-C. Liu et al., 2013). 
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The modality effect has some boundary conditions, under which the 

disappearance or reversal of the modality effect was witnessed. The reverse modality 

effect occurs when material has too low and intrinsic load, when students are high prior-

knowledge learners, when short phrases or single words accompany spoken text, when 

the lesson was learner-paced and transience was decreased, and finally when the content 

was too long or too complex. In these cases, the advantage of the audio/visual duo, 

decrease, disappear, or completely reverse (as noted when time is abundant and text is 

complex and long). 

The supremacy of written text when passages are longer, more complex, or 

expository is supported by numerous text comprehension studies. These studies explain 

this supremacy by the ability of readers under these conditions to utilize text 

comprehension strategies that are unavailable in system-controlled learning scenarios that 

offer only spoken text narration. Such strategies include learn control of the reading pace, 

rereading as needed for understanding, and self-selecting to skip extraneous or overly 

difficult passages. Under these conditions, the reversal of the modality effect is expected, 

as well as a superiority of written text.  

In the following section, I will review mobile learning literature from a learning 

and describe the recommended development process for mobile applications.  This will 

include a detailed comparison of the differences between mobile web and dedicated 

mobile applications and an examination of some technical constraints. Finally, I will 

survey the literature on small screen displays and learning. 
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MOBILE LEARNING: APPLICATION DEVELOPMENT AND INSTRUCTIONAL DESIGN  

Early studies on mobile learning focused on theory (G. Attwell et al., 2003; 

Graham Attwell, 2010; Nyhan et al., 2003), on using mobile devices and existing content 

in a supplementary fashion (Kim & Kim, 2012), and on user acceptance (Al-Zoubi et al., 

2008; Demirbilek, 2010; Franklin et al., 2007; Kismihók & Vas, 2011; Y.-S. Wang, 

2007), however fewer studies looked at dedicated mobile application development. 

Especially in a formal learning setting, dedicated learning applications are especially 

useful (T.-C. Liu et al., 2013). Of those that examined the process and outcomes of this 

type of development, some designed individual applications (Du, Hao, Kwok, & Wagner, 

2010; Motiwalla, 2007; Taylor et al., 2010), while others built entire mobile educational 

systems (Hwang et al., 2009; Osawa et al., 2007; S.-L. Wang & Wu, 2011; Wu et al., 

2011). Generally, these studies focused on networked communication, dedicated learning 

material (Du et al., 2010), and content management systems (S.-L. Wang & Wu, 2011). 

In these cases, the mobile devices were used in lieu of traditional tools. The most 

common focus of the evaluation of these tools was usability, practicality, overall design, 

and learning outcomes of participants (M. Liu et al., 2013).  

There were a few studies which featured the unique affordances of mobile devices 

for learning. In these studies, such as the study by Hwang et al. (2011) which used 

smartphone digital cameras and quick response (QR) code readers to access database 

information, the unique attributes of mobile devices were applied in ways that created 

new learning experiences. Osawa et al. (2007) used the built in GPS capabilities of 

smartphones to complete outdoor science lessons. Taurie et al. (2011), created 

smartphone history lessons using GPS and augmented reality. They found that using the 
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mobile devices at the location in question provided students with a rich lesson that 

connected the past and the present. 

Interestingly, most of these studies spent little time reporting on the design and 

development of the mobile applications, instead evaluating feasibility, usability, and 

learning gains. Son, Park, & Kim (2011) used learner perspective surveys to measure the 

success of the software. Similarly, Chen and Huang (2010) used a technology acceptance 

model (TAM) approach with elementary education major students to determine the 

mobile learning capacity of a mobile knowledge management learning system and found 

that ease of use may improve learning. Other studies (e.g. Chen & Hsu, 2008; Foley & 

Luo, 2012; Huang et al., 2011; Motiwalla, 2007) used qualitative methods, such as in-

depth interviews, observations, and focus groups along with quantifiable survey ratings in 

order to rate the quality of the system implemented. Participants tended to respond 

positively, pointing to the importance of user buy-in.  However, while these studies did 

develop some type of dedicated mobile software, they did not make elaborate reports on 

the development process.  

Mobile application development for learning  

Given the unique affordances of mobile devices for learning, full integration will 

require dedicated application development (M. Wang & Shen, 2012), as opposed to using 

mobile devices as a supplemental tool or using retroactively integrating existing content. 

The benefits of mobile devices from a design point of view are numerous and the studies 

mentioned that the emergence of embedded intelligence, flexible and interactive features, 

and the ability to create instruction in multiple modalities have given educators a method 
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to engage learners in ways that are interesting and relevant to them (Laine et al., 2010; 

Ogata & Yano, 2004; Y.-S. Wang et al., 2009). Mobile consumers expect interactive, 

flexible, and seamless applications for their devices. Zabel (2010) acknowledged that 

mobile users are in an excellent position to choose their learning opportunities from a 

variety of applications. In response, developers must increase the complexity of mobile 

applications (Young, 2010). The disciple and research of mobile learning must begin to 

move from nascent research stages into more complex reviews, with the intention to 

identify replicable learning design principles. As there are multiple types and styles of 

learners, there are also multiple types and styles of mobile learning. Incorporating these 

factors into learning application development is essential (Crescente & Lee, 2011).  

The development of mobile education applications requires more than simply 

graphical treatment. Mobile devices allow for the manipulation of an infinite virtual 

space that a user can move around by clicking and dragging interactions with the device 

(Y.-S. Wang et al., 2009). A single mobile learning moment is the culmination of a 

massive body of design, development, and planning. Thoughtful design, development, 

and implementation of mobile learning in educational settings can be thought of as a total 

system (Seraj & Wong, 2014). Pocatili (2010) asserts that a mobile learning system has 

three main components: the device hardware, the device software, and the learning 

content. This definition pertains to both large, complex systems, and smaller dedicated 

applications.   

The mobile development process has several main components, including user 

experience (UX or UE) architecture, user interface (UI) design, programming (coding), 

beta-testing, and quality assurance (QA). Of these steps, instructional designers are most 
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concerned with UX and UI. Together these create the interactive communication between 

the users and application. UX architects anticipate the overall user feeling, both 

emotional and practical and attempt to design an application that delivers the intended 

experience. UI designers arrange all textual, graphical, and interactive elements keeping 

in mind the flow of the interaction and the ease-of-use. If the flow is clunky and the 

application is tedious or difficult to move within, users will dislike it, even if the 

computational power and functionality it exhibits are powerful (Faghih, Azadehfar, & 

Katebi, 2014).  

If the learning content must be developed (verses using what already exists and is 

accessible), perhaps the first consideration for mobile learning design, is identifying the 

best type of delivery. The software required for any mobile process comes in the form of 

simple mobile Web browser or a dedicated mobile application (Lee, 2011; Platzer & 

Petrovic, 2011). There are major differences between the two, which directly impact 

design, delivery, and success of learning.  

Mobile web vs mobile application 

Mobile web applications are accessed via the World Wide Web through the use of 

a browser-based Internet service. Essentially, a mobile web application is similar to a 

website. It is accessed through browsing and it is static and limited to the features of the 

site itself (as opposed to the features of the mobile phone – like GPS and camera). 

Additionally, it requires that a mobile device have a wireless or broadband connection. 

Access and navigation to a mobile web application will occur as quickly as the 

connection service allows. Mobile web applications are freely accessed, unless a specific 
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site is password protected or requires a membership fee to access. More recently, 

programming for mobile web applications is optimized, meaning they are often designed 

specifically for mobile devices, verses accessing a regular-sized website. The appeal of 

mobile web design is that it is comparatively inexpensive to build, it requires no approval 

from the device makers and vendors, and it has a still relatively fast operating speed, so 

long is the device is connected by a strong signal (3G, 4G, or wireless). 

 Mobile application (mobile app or app) is a type of dedicated application 

software designed to be downloaded to and run on a mobile device. Akin to downloading 

software to a desktop PC, mobile applications are installed and housed on your mobile 

device hard drive. From the users’ perspective, mobile applications are different from 

mobile web applications in two ways. First, the mobile applications do not necessarily 

need a connection to run once installed on a device. Second, the mobile applications can 

access and interact with the unique features of the mobile device, like camera, GPS, 

SMS, and NFC. Mobile applications are relatively small, individual software units with 

limited function. They have interactive user interfaces, and generally perform faster than 

the mobile web. They can be purchased from app vendors, like the Apple App Store or 

the Google Play store, or are restricted and accessed only via secure networks. Mobile 

applications sometimes require approval of the device makers and/or the vendors and can 

be very expensive to develop. 

Sometimes, mobile applications are built as hybrid applications. This means that 

the application is installed on device and operates without a connection. However, the 

app also, when connected, interacts via broadband or the web to deliver updated content 
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information or to exchange information and resources with other users through the 

Internet. 

The distinction between mobile web and mobile apps is an important one to make 

in conversations about mobile learning development. Consumers want “innovative end-

to-end service offerings and are increasingly aware that they need to measure the 

effectiveness of the services holistically” as the various parts of the industry work 

towards meeting consumer needs (Knight, 2011). From the development perspective, this 

requires constant changes to any application as operating systems are updated, new 

devices are created, and existing device displays and capabilities change. Constant 

updates and redesigns are expensive (G. Becker, 2008). Much of the empirical dialog 

about the topic includes discussion about the unique affordances and features of the 

devices (Seraj & Wong, 2014; Sung & Mayer, 2013; M. Wang & Shen, 2012). A mobile 

web application cannot utilize many of those features, but at the same time, is much 

cheaper and easier to produce. Whereas, the richly developed mobile learning platforms 

will be dedicated mobile applications, which take a long time to build, require the 

expertise of many people, must sometimes be approved by a completely separate entities, 

and for more complex apps, can run upwards of $100,000 to produce.  

Technical and design challenges of mobile learning.  

While mobile learning does present unique and engaging opportunities for 

learners (Elias, 2011), the genre is also fraught with challenges (Al-Zoubi et al., 2008; M. 

Wang & Shen, 2012). Studies discovered issues like poor network connectivity (Al-

Zoubi et al., 2008; Crescente & Lee, 2011; Y. Park, 2011; Pea & Maldonado, 2006), high 
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development costs (M. Wang & Shen, 2012), and mobile device feature incongruity 

(Mostakhdemin-Hosseini, 2009a). Sanchez & Goolsbee (2010) reported cognitive 

overload due to poor design, while Crowe & VanHooft (2006) found the lack of a 

standard platform across devices impeded successful integration of mobile device for 

learning. One of the most prevalently reported issues with mobile learning pertained 

specifically to the small screen displays of handheld devices, namely smartphones, PDAs, 

and iPod-type devices (T.-C. Liu et al., 2013, 2012; Luong & McLaughlin, 2009; Maniar 

et al., 2008).  

Mobile learning and small screen displays 

Sanchez & Goolsbee (2010) noted the prevalence of smartphones among both 

professionals and students, raising expectations for smartphone integration into school, 

work, and life. If fact, Sung and Mayer (2013) compared desktops with tablets and found 

that while recall and transfer tests were not better, students enjoyed using the tablet for 

the learning activity more than the desktop, increasing their motivation to learn. There is 

nevertheless some debate as to whether or not small screen displays are good for learning 

given the size constraints (Ng & Nicholas, 2009), especially as compared to the 

handheld’s larger display mobile cousins, i.e., laptops and tablets (Molina et al., 2014). 

Wang & Shen (2012) assert that learning from small screen mobile devices is not useful 

for full content, backing their statement with their finding that many scholars believe 

small screens do not provide a “comfortable learning environment” (p 568). This 

skepticism is supported by numerous studies, which found the small size of handheld 

devices problematic.  
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These reports can be split into three categories: user frustrations with small 

displays, physical limitations of small displays, and poor content and UI design issues of 

small displays (including interaction with onscreen content). Small screen displays were 

found to impede user reception of mobile learning (Crescente & Lee, 2011). Churchill & 

Hedberg (2008) found that small screen displays negatively impact both acceptance and 

educational integration, while Jones, Buchanan, & Thimbley (2003) reported that small 

screen displays reduce learning performance, resulting in user dissatisfaction. The general 

consensus of these studies is that frustrated learners make user perception of the learning 

experience negative, which in turn hinders user acceptance of the delivery method (Pea & 

Maldonado, 2006), thus impeding its success in education (Y. Park, 2011).  

In physical terms, viewing and interacting with a small screen device has 

limitations. In his study on small touchscreen displays, Cockburn et al. (2012), found that 

the error rate of finger input was high due to large finger size and small screen touch 

targets. This issue is often referred to as the “fat finger” problem. Maniar, Bennett, Hand 

& Allen (2008) refer to the limits of human visual perception, which limits the level of 

small details seen on small screens, affecting attention span. This finding was supported 

by Seraj and Wong (2014) who stated, “small screen displays trigger a more difficult 

reading process that directly impacts the normal pattern of eye movements and indirectly 

influences human interactions” (p. 24). Swan, et al. (2005) found that even using a stylus, 

accurate tap targeting was challenging.  

In terms of UI and content design, smartphones and the like have limited capacity 

to present information (Kim & Kim, 2012). Small screen display research has included a 

variety of content topics and genres, presented in numerous ways, including but not 
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limited to talking head, text, animation, full-features vs. segments, comedy, and action-

adventure (Bracken, Pettey, Guha, & Rubenking, 2010; Heo, 2003; Kim & Kim, 2012; 

Luong & McLaughlin, 2009; Reeves et al., 1999).  Vogt, Schaffner, Ribar, & Chavez, 

(2010) found that small screen text diminished learning gains. Ng & Nicholas (2009) 

noted concerns that small screens caused overload by cutting off information found via a 

mobile we browser, forcing participants to scroll and navigate through ill-defined chunks 

of content. Churchill & Hedberg (2008) similarly found in their study that small screens 

adversely affected clarity and understanding of the learning material, given the small 

amount of content visible on the screen at one time. In this way, accessing longer 

resources via small displays is generally discouraged (Corlett, Sharples, Bull, & Chan, 

2005; Crowe & van’t Hooft, 2006), especially if the content is in text format verses 

enhanced with audio, video, and/or animation. Kim & Albers (2001) asserted that a lack 

of specific small screen design principles for text formatting, compression and scrolling 

resulted in poor learning design.  

Several studies specifically compared large and small mobile screens for learning 

and found the latter lacking. Kim & Kim (2012) found that small screens impeded 

vocabulary learning outcomes when compared to large and medium screens. Heo found 

in a 2003 study with 75 participants that large screen displays out performed small screen 

displays in terms of attention, arousal, and memory. Luong & McLaughlin’s 2009 

findings agreed that large screen displays are better for learning than small screen 

displays. Sanchez & Goolsbee (2010) examined the effects of text size and scrolling on 

both small and large screen mobile learning content. They found that scrolling negatively 

impacted learning on small screens especially. The small screen content in their study 
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was simulated and scrolling occurred via vertical scrollbar on the right side of the screen 

(Sanchez & Goolsbee, 2010). These results are consistent with those of Sanchez & 

Branaghan (2011), who found that the limited screen real estate of small displays created 

a need for scrolling when reading longer texts. This need to scroll negatively impacted 

recall.  

Small screens have also been found to limit spatial presence and social realism, as 

well as with content interaction when compared to 32 inch flat screens (Bracken et al., 

2010).  In their comparison of PCs, tablets, and smartphones which tracked eye 

movement in addition to learning gains, cognitive load, and user acceptance, Molina et al. 

(2014) found that students learned best from PCs before tablets, and both PCs and tablets, 

before smartphones, given the same content. The content was retrofitted to the various 

screens and delivered via mobile web, and the researchers found that special end 

temporal contiguity was diminished in the smartphone treatment. Reeves et al. (2000) 

found that regardless of content, large screen displays increase attention and arousal for 

media messages. One reason they attributed this finding to was that large displays allow 

for more picture to be viewed in the perimeter of vision, and peripheral vision has been 

shown to respond to novelty and motion more than faux real vision (Livingstone & 

Hubel, 1988; Reeves et al., 1999). 

Summary 

In summary, there are several ways to use mobile devices for learning, including 

using the features of the device to supplement learning, accessing already published 

content and wrapping learning around it, accessing specifically tailored web content via a 
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mobile device through mobile web, and finally, developing a dedicated mobile 

application or system to meet learning and educational needs. Mobile web pages for 

education content delivery are easier and cheaper to build and maintain, but do not have 

access to many of a mobile devices features (GPS, camera, etc.). Additionally, 

information accessed via the web has even less screen real estate given it must be viewed 

within a web browser. Dedicated mobile applications offer all of the capacity of computer 

software (including speed, device feature use, interactions specific to learning 

engagement, and full control over content). Dedicated mobile applications are, however, 

expensive to build and complicated to maintain. They also require thoughtful UX/UI 

design, various platform development, and specific implementation (Potcatilu, 2010). 

Mobile learning is not without its technological challenges. These include 

network connectivity, device limitations, platform inconsistency, and high development 

costs. Small screen display also present challenges for learning and cause user frustration. 

Some of these challenges are owing to the hardware, some the design of the content, and 

some to the ill-matched combination of the two. Several studies have used dedicated 

mobile applications to examine the possibilities of creating original content and software 

systems for mobile learning.  

Regardless of these issues, mobile devices are ingratiated into our cultural fabric 

in ways that are infiltrating homes, classrooms, and offices. The use of smartphones and 

tablets are significantly changing human-computer interaction and the way humans 

communicate and learn (Ahmadi & Kong, 2012; Molina et al., 2014; Sanchez & 

Branaghan, 2011).	While evidence does suggest that small screen displays are not always 

ideal for exemplar learning experiences, the devices will nevertheless remain a tool of 
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choice for the foreseeable future. Given that we know of these challenges, perhaps there 

is a new research direction to consider is: design recommendations for smartphone 

learning that enhance the learning experience, minimize cognitive load, and ensure better 

content recall/transfer in ways that are comparable to larger screen devices.  

In the following section, I will outline the design principles suggested in the 

research. I have subdivided these into two groups. The first includes design principles 

recommended to minimize cognitive overload. The second examines the suggestions for 

small screen display instructional design. 

DESIGN PRINCIPLES FOR SMALL SCREEN DISPLAYS 

Several studies noted that theoretical, practical, and design guidelines are needed 

to enable to the design and development of successful mobile learning (Al-Zoubi et al., 

2008; Crescente & Lee, 2011; Molina et al., 2014; Mostakhdemin-Hosseini, 2009b; 

Terras & Ramsay, 2012). Al-Zoubi1 et al. (2008) explained that such guidelines are 

needed to construct better mobile environments for learning and to create a more 

education mobile society in the future.  Design is also becoming more complicated, as 

instructional designers must now consider applying a variety of design principles in the 

design and evaluation of instructional media (M. Wang & Shen, 2012), while 

simultaneously considering user-perception, communication, learning, and systems 

architecture (UX/UI). Crescente and Lee (2011) noted that guidelines are needed to 

address not only the pedagogical learning styles aptitudes, and strategies, but also the 

andragogical ones (p. 114). Wang and Shen continued, “M-learning must overcome some 
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core challenges in order to have a signification impact on the global educational 

environment” (p. 566). 

Some studies have approached the question of design when it comes to learning 

from small screen displays (Churchill, 2011; T.-C. Liu et al., 2013; Luong & 

McLaughlin, 2009; Seraj & Wong, 2014). But design has numerous elements, any 

combination of which may provide a different outcome. Adding to this formula, the 

complexity and nature of the content to be learned can also alter the learning experience 

(Tarumi et al., 2011). For this reason, it seems necessary to look at individual design 

elements and the success of application of those design elements on learning from small 

screens. 

Design principles for minimizing cognitive load 

To begin, there are several design principles recommended to minimize the effect 

of cognitive overload (Chandler & Sweller, 1991; Mayer, 2009; Sung & Mayer, 2013; 

Sweller et al., 2011). First and foremost, eliminating extraneous content is necessary for 

preventing cognitive overload. In terms of mobile learning, this includes excluding 

background music (Brunken et al., 2003) and random animations or screen decorations 

(Mayer & Fiorella, 2014), which have been shown to be extraneous to learning material. 

This is in line with the coherence principle (Mayer et al., 1996; Mayer & Chandler, 

2001), namely that all visual and auditory material is pertinent to the topic of learning. 

Wherever possible, avoid repeating information by adding audio to written text. This will 

prevent the redundancy effect (Mayer, 2003; Sweller et al., 2011). 
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In terms of split attention, integrating content whenever possible is ideal (Ayres & 

Sweller, 2005; Mayer & Moreno, 2002). By combining two information sources into one, 

split attention should be alleviated (Cierniak et al., 2009; Florax & Ploetzner, 2010; 

Kalyuga et al., 1999). This is Mayer’s temporal contiguity principle (Mayer, 2003). 

Mayer further adds that where possible, aligning words with images will prevent split 

attention. This follows the spatial contiguity principle (Mayer, 1999; Mayer & Moreno, 

2002).  

For mobile devices, it is recommended that whenever possible, using mobile 

devices as the focus of learning is less over-whelming to the working memory than using 

it as a supplemental tool with real objects. The latter has proven in several studies to 

create split attention effect when learners must move from the mobile display to the real 

object and back again (T.-C. Liu et al., 2013, 2012).  

Cueing also a beneficial technique for decreasing split attention. Also called 

signaling, cueing alerts the learner to essential elements or to make connections. Liu et al. 

(2012, 2013) found that arrow line cueing significantly improved learning in mobile 

science lessons. They found that cuing guides learners to essential information and 

emphasized the organization of instruction (T.-C. Liu et al., 2013). 

Cueing through segmentation is also recommended to alleviate cognitive overload 

(Florax & Ploetzner, 2010). In this case, segmentation of longer content into meaningful 

pieces signals learners how to organization the information, reducing cognitive load 

(Kurby & Zacks, 2008; Spanjers et al., 2012; Sung & Mayer, 2013). It is also 

recommended to add strategic pauses to learning modules, so that students are not 

overloaded by the transience of continuous material (Hassanabadi et al., 2011; Moreno, 
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2007; Spanjers et al., 2010). Mayer and Chandler (2001) achieved this simply by adding 

arrow buttons at the end of each segment that learners clicked to move forward. 

Finally, whenever possible, giving the learner control over the learning pace 

(specifically) has shown numerous times to decrease cognitive load (Hassanabadi et al., 

2011; Mayer & Chandler, 2001; Schmidt-Weigand et al., 2010; Schüler et al., 2013; 

Spanjers et al., 2012; Sung & Mayer, 2013; Tabbers, 2002).  

Design recommendations for small screen displays 

Specific to small screen display mobile devices (namely smartphones), there is 

less research in terms of specific design principles. Additionally, many conflicting reports 

have been made in terms of specific recommendations, suggesting that some design 

questions can only be answered within context of the learning to be completed. The 

research included here has been divided into two larger groups: small screen display real 

estate design recommendations and small screen display text formatting 

recommendations. The findings mainly address navigation and manipulation of the 

device and the content, though some make content recommendations, which may or may 

not be possible given the topic at hand.  

Small display screen real estate design recommendations 

Maximizing space. The total display represents the total screen real estate. In 

terms of design for small screens, the more ratio of the screen utilized, the more space 

will be available for content (Churchill, 2011). For this reason, it is recommend to design 

for full screen and avoid web browsers, the header and footer ribbons of which take up 

valuable space(Churchill, 2011; Churchill & Hedberg, 2008). Seraj and Wong (2014) 
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advise that the application should not be taller or wider than the display, which would 

force users to slide the screen up/down and left/right to view the whole. 

Scrolling. Scrolling has been found to cause split attention effect (Luong & 

McLaughlin, 2009) and is generally recommended to avoid (Churchill, 2011; Churchill & 

Hedberg, 2008). Sanchez and Wiley (2009) found that scrolling while reading text 

reduces text comprehension because information had to continually be located and 

relocated as it was moved up and down the screen. Sanchez and Goolsbee (2010) 

confirmed this finding. In addition to limiting or eliminating scrolling, limiting the 

number of taps and/or swipes is also recommended for maximum learning gains (Seraj & 

Wong, 2014). 

In contrast, Leavitt & Shneiderman (2006) asserted that in cases of long text and 

reading for comprehension, scrolling was preferred to pagination. Jin (2013) followed 

that scrolling is better for expository text. However, these studies were done using larger 

screens, and it is unclear whether or not this extends to small screens. 

Zooming. Zooming has been shown to increase cognitive load, especially when 

the zoom is learner-controlled (Maniar et al., 2008). In their study that compared three 

zoom functionalities on small screens to determine cognitive load, Luong & McLaughlin 

(2009) found that zooming created higher cognitive load than no zooming. Additionally, 

they found that controlled zoom created less cognitive load than learner-controlled zoom. 

In contrast, Churchill (2011) recommends adding zoom functionality to content in small 

mobile device settings. 

Screen orientation. Several studies recommended using landscape orientation 

when designing instruction for small screen displays, thus turning the device so it is 
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wider than high. Most smartphones allow users to manipulate the view between portrait 

and landscape. In a 2011 study by Sanchez and Branaghan which sought to evaluate 

learner recall and complex reasoning when learning from smartphones, results indicated 

that turning the device to landscape mode eliminated decreased performance as compared 

to portrait orientation of the same device. This seemed especially true for lower working 

memory capacity learners. The benefits of user controlled adaptive design were also, 

recommended so that learners could adjust for their individual comfort (Sanchez & 

Branaghan, 2011). In contrast, it was also noted that multi-touch manipulation of text 

(including landscape view) still place demand on user to constantly manipulate screen 

(Sanchez & Goolsbee, 2010) creating extraneous load. 

Small screen display text formatting recommendations  

Text size. In a study that compared character size on small and larger screen 

displays, Sanchez and Goolsbee (2010) found that smaller font produced better overall 

retention than larger font on small screens, in part because it limited the need to scroll. 

Though earlier findings suggest that inter-character and inter-line spacing increases recall 

(C.-H. Chen & Chien, 2005), adding these buffers would increase the length of text on a 

small screen device and require either more scrolling or more pages to navigate through. 

Churchill (2011) recommends designing mobile learning with a single font, though varied 

shades, sizes and styles are okay. 

Text length and segmentation. Given the constraints of smartphone displays, the 

recommendation to limit the amount of written text content is repeatedly emphasized 

(Churchill & Hedberg, 2008; Seraj & Wong, 2014; M. Wang & Shen, 2012). When 
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possible, text should be replaced with images, audio, and narration (Bradley et al., 2006; 

Churchill & Hedberg, 2008; Sung & Mayer, 2013). When that is not possible, designing 

for short, task-centered interactions is appropriate (Churchill, 2011). Additionally, 

formatting text in ways that provide meta-knowledge (Churchill & Hedberg, 2008), 

segment text into smaller, manageable chunks (Seraj & Wong, 2014), and/or provide key 

point summaries (M. Wang & Shen, 2012) will assist with minimizing cognitive 

overload1.  

Summary 

While literature on mobile learning is growing, there are remarkably few studies 

that look specifically at instructional design. Even fewer recommend instructional design 

principles, particularly in terms of smartphones and other small mobile devices. A few 

studies have approached the question of instructional design for small screen displays.  

There are, however, numerous studies on minimizing cognitive overload that have 

implemented and recommended noted instructional design principles. In terms of 

reducing cognitive overload, eliminating design created extraneous content is among the 

first recommendations. This is in line with the coherence principle, namely that all visual 

and auditory material is pertinent to the topic of learning.  

                                                 

1 As a side note, some researchers have developed programs to automatically segment content 

based on advanced algorithms that measure content, subject, preferred user views, and display availability 

(Ahmadi & Kong, 2012; Beeferman, Berger, & Lafferty, 1999; Fournier, 2013). Though not of use in this 

study, automatic text segmentation is interesting to consider for future mobile learning content. 
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In terms of reducing split attention, the spatial and temporal contiguity principles 

state that integrating content by combining two sources of information into one will 

alleviate split attention. Several studies found that cueing (signaling) decreases split 

attention and assist with segmentation. For mobile devices, it is recommended that 

whenever possible, using mobile devices as the focus of learning is less over-whelming to 

the working memory than using it as a supplemental tool with real objects. Finally, 

whenever possible, giving the learner control over the learning pace (specifically) has 

shown numerous times to decrease cognitive load.  

Specific to small screen display mobile devices (namely smartphones), the design 

guidelines can be divided into two categories. First, in terms on screen real estate, 

maximizing space, by utilizing the full screen is recommended. With few exceptions, 

scrolling has proven to lower reading comprehension. Zooming can increase cognitive 

load. Finally, designing for landscape orientation was found to improve overall learning 

and user experience. 

Recommendations for text formatting and small screen display make up the 

second category. Using a single, smaller font, that is spaced enough for line distinction 

without unnecessarily causing the need to scroll seemed to produce the best learning 

outcomes. Limiting the amount of text on screen, through elimination or segmentation is 

emphasized. Finally, when possible, text should be replaced with images, audio, and 

narration. 
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LITERATURE GAPS  

While the literature covers a great many topics of mobile learning, cognitive load, 

and instructional design, there are several critical research gaps that require empirical 

attention. Mobile learning is a challenging field in part because the technology is 

constantly enhanced. Generally, by the time a study is published, the particular devices 

considered are antiquated. Every year, new smartphones are released with enhanced 

screens (dimensionally and higher definition clarity), features, connectivity, and 

capability. It is questionable how exactly the findings from studies completed with old 

style PDAs apply to the sleek handhelds today. From a user perspective alone, the 

immersion of smartphones into the social and cultural fabric paints a much different 

picture than it did ten, even five years ago (Ericsson, 2015). In this regard, the literature is 

clear that positive user acceptance and perspective of any mobile learning platform is 

crucial for its success (Bhaskar & Govindarajulu, 2009; Mostakhdemin-Hosseini, 2009a; 

Terras & Ramsay, 2012). 

A majority of the studies did not maximize the smartphone design used for 

testing. Maximizing in this case means designing dedicated smartphone applications that 

allow for maximum design control over screen real estate and content interactions.  

Perhaps limited by capacity, budget, or time, several studies used simulated small screen 

displays instead of real mobile devices (Kim & Kim, 2012; Luong & McLaughlin, 2009). 

While still valuable in terms of findings, such studies lack an authentic 

mobile/smartphone experience, which could potentially influence the results. Some 

studies did use mobile devices, but offered few details as to the thought process behind 

the design (Heo, 2003; Keefe et al., 2012; T.-C. Liu et al., 2013, 2012; Reeves et al., 
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1999; Sung & Mayer, 2013). Others created mobile web applications (Molina et al., 

2014) (as opposed to dedicated mobile applications), in which the screen display was 

decreased and manipulation of the content was limited by the web browsers (Churchill, 

2011). Though some studies examined the effectiveness of specific dedicated mobile 

applications (T.-C. Liu et al., 2013; Seraj & Wong, 2014), they offered little in the way of 

generalizable and actionable design principles.  

In terms of screen real estate specifically, some researchers advised designing for 

landscape orientation to promote learning transfer, as opposed to portrait orientation 

(Churchill, 2011; Sanchez & Branaghan, 2011). Sanchez and Branaghan (2011) 

attributed this landscape orientation benefit to limiting scrolling. However, this 

explanation was supposition and the topic needs further exploration, especially given the 

proliferation of eReaders and larger smartphones.  

Additionally, it appeared that many of the studies comparing large and small 

screen displays retrofitted the design of the large screen for the small one (Churchill & 

Hedberg, 2008; Molina et al., 2014). Some even recommended that this process was ideal 

for smartphone learning, i.e., design for eLearning, then fit for mobile (Ahmadi & Kong, 

2012; Churchill, 2011; M. Wang & Shen, 2012). This does not take into account, 

however, the differences in touchscreen, size, interaction capabilities, and user 

expectations. Smartphones offer a completely different ergonomic experience than a 

desktop PC or laptop (Maniar et al., 2008; Seraj & Wong, 2014). There are differences 

even in the way human eyes are capable of viewing the screens (Seraj & Wong, 2014). 

With these differences in mind, it seems appropriate to consider different instructional 

design approaches. As such, it is fair to question if the results of these comparisons would 
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vary if the instruction was first designed for a smartphone and then retrofitted for a larger 

screen, or if the designs used were custom designed for the screen and device. Otherwise, 

we are not comparing apples to apples. 

In terms of the cognitive load effects specific to small screen mobile devices, Liu 

et al. (2012) note the need to investigate the media configurations specific to the mobile 

learning device and environment. They asserted that doing so may add further clarity to 

design principles for mitigating cognitive overload in small screen instructional design, 

especially since extraneous load exists in part just by interacting with the device (T.-C. 

Liu et al., 2013). Sung and Mayer (2013) suggest that cognitive design principles work 

across devices and this has been supported by other recent studies (Ayres & Paas, 2012; 

Sweller et al., 2011; Wong et al., 2012).  However, these principles are generally applied 

to the design as a whole. They do not advise on how to design efficient individual 

elements. In the case of single modal instruction (i.e. pictures only, text only), there are 

limits to applying them (Reimann, 2003).  Split attention effect is more easily mitigated 

because it is easier to identify and the design recommendations for avoiding are 

somewhat straightforward, even for text only, small screen mobile displays.  

Modality effect, though seemingly simple, adds a layer of design complexity. 

Several studies (Ginns, 2005; Hassanabadi et al., 2011; Kalyuga et al., 2000; Reimann, 

2003; Savoji et al., 2011; Schmidt-Weigand et al., 2010) mention the relationship 

between prior-knowledge and the occurrence or disappearance of cognitive load effects 

given this range of novice to expert. In cases where the material has high intrinsic load 

and the learners are novices, Mayer (2003, 2005, 2009) recommends a dual-modal 

approach. In some cases, however, the material does not lend itself to images, and/or is 
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more complex than can be communicated through audio/visual presentation. Text 

comprehension research suggests in these cases that text is superior to audio/visual and/or 

audio (Fournier, 2013; Kalyuga, 2000; Kintsch, 1994; Mannes & Kintsch, 1987; Schüler 

et al., 2013, 2012), because given time and the permanence of written text, learners can 

implement reading comprehension strategies (Schüler et al., 2012, 2011). Though studies 

on the reverse modality effect questioned the superiority of dual-modal presentation for 

learning, there remains a question about how to craft a single-mode presentation of 

materials through the lens of CLT and CTML, in other words, how to craft such 

presentations in ways that minimize cognitive overload and promote schema construction 

and automation. Kintsch (1994) and McNamara et al. (1996) distinguished that well-

written passages work best for novices, while poorly written passages work better for 

experts. Outside of this recommendation, there is little offered in the way of how to 

design appropriate text-only passages, much less in terms of constructing this type of 

learning scenario for a small screen mobile display. 

Specific to the segmentation effect, the literature talks about segmenting material, 

but offers little in the way of how to segment content (Eitel et al., 2013; Hassanabadi et 

al., 2011; Mayer et al., 1996; Mayer & Chandler, 2001; Molina et al., 2014; Schüler et 

al., 2013).  For example, Eitle et al. (2013) admitted that their study did not aim to find 

the “optimal way to present text and pictures with regard to learning success” (p. 60). 

Hassanabadi et al. (2011) noted that future research should examine the critical role of 

segmentation length, pointing out that length of segments is different than how much is 

on screen. Segmentation is an important design implication for mobile learning 

(smartphones specifically) because the limitations of the screen displays may require 
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different or extra criteria for proper segmentation. Segments are meaningful chucks of 

content (Mayer & Moreno, 2003), but “meaningful chunks” can be small, medium, or 

large. The literature excluded this comparison. 

Summary 

In summary, the literature is clear that positive user perspective of a mobile 

learning platform is crucial for its success. However, few generalizable and actionable 

design principles for small screen displays to assist in increased learning outcomes and 

positive user perspective are defined. Of the studies that did examine instructional design 

for mobile learning, most did not design dedicated smartphone applications, which 

prevents a rich, authentic mobile/smartphone experience. In terms of screen orientation, 

some researchers advise designing for landscape orientation to promote learning transfer, 

but do not thoroughly explain this claim. 

Of the studies that compared large and small screen displays, few take into 

account the influence of device differences, i.e. touchscreen, display size, device 

ergonomics (like holding in the hand versus using a mouse), interaction capabilities, and 

user expectations. Furthermore, there is little discussion about how the empirical results 

of these comparisons may vary if customized smartphone UX/UI instructional design is 

implemented (versus a retrofitted, one-size-fits-all design).  

In terms of cognitive load effects, it is recommended (T.-C. Liu et al., 2013) that 

future research investigate media configurations specific to mobile learning device and 

environment to add clarity to design principles for mitigating cognitive overload in small 

screen instructional design. Since cognitive load principles are generally applicable, there 
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is little advice currently offered for device specific design for avoiding split attention 

effect, implementing segmentation effect, and applying modality effect (especially when 

the material does not lend itself to images, and/or is more complex than can be 

communicated through audio/visual presentation). Studies on the reverse modality effect 

question the superiority of dual-modal presentation for learning in all cases. However, 

there remains a question about how to craft a single-mode presentation of materials 

through the lens of CLT and CTML; in other words, how to craft such presentations in 

ways that minimize cognitive overload and promote schema construction and automation. 

Towards this end, the literature on segmentation effect and text comprehension offer little 

in the way of how to design and segment appropriate text-only passages, much less in 

terms of constructing this type of learning scenario for a small screen mobile display.  

RESEARCH QUESTIONS 

There are three main comparisons under examination in this study that attempt to 

fill in noted gaps in the literature. First, this study compared large and small screen 

mobile displays for learning when the design is specific to the device (as opposed to 

retrofitted or minimized). This comparison included a sub comparison of small screen 

display landscape versus portrait orientation for learning to determine if the findings from 

earlier studies apply to today’s mobile devices and why. Second, this study compared 

three text segmentation length variations for learning from the mobile devices under 

examination. Finally, this study identified if there exists any interactions between all 

treatments. The research questions which addressed these comparisons are following. 
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To address the gap in literature concerning mobile device comparison when 

design is tailored specifically to the device, as well as to answer additional questions 

about smartphone screen display and orientation, this study conducted research around 

the following question group: 

When specific formatting variables are held constant: 

RQ1 (mobile device comparison): Do display size and orientation affect  

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: cognitive load of a digitally delivered chemistry text lesson? 

C: user perception of a digitally delivered chemistry text lesson? 

To address the gap in literature regarding text segmentation characteristics for 

various screen displays, this study conducted research around the following question 

group: 

When specific formatting variables are held constant: 

RQ2 (text segmentation comparison): Do digitally continuous text, medium text 

segments, and short text segments compare in terms of 

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: minimizing cognitive load for a digitally delivered chemistry text lesson? 

C: influencing user perception of a digitally delivered chemistry text lesson? 

Finally, to determine if any interactions exist between the two groups, this study 

conducted research around the following question group: 

When specific formatting variables are held constant: 

RQ3 (mobile device and segmentation interaction): Do text segmentation and 

screen display size and orientation affect  
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A: learning outcomes of a digitally delivered chemistry text lesson? 

B: cognitive load of a digitally delivered chemistry text lesson? 

C: user perception of a digitally delivered chemistry text lesson? 

IMPLICATIONS OF RESEARCH 

As outlined in the previous section, there are several literature gaps which require 

research. To begin, this study compared large and small screen mobile displays for 

learning, namely laptops and smartphones. What this study adds to the body of research 

is an in-depth look at design approach that begins with designing a dedicated application 

for smartphones, and then migrates and customizes that design to the laptop screen. 

While building the dedicated mobile applications (for iOS and Android phones) was an 

important piece of the study, it was not the main focus in terms of learning outcomes. 

Rather, it was appropriate to provide complete design control, in terms of utilizing the 

full screen real estate and having maximum control over screen orientation, user 

interaction, and element/asset formatting. Given the low occurrence of dedicated mobile 

application development for the empirical study of mobile learning, future research will 

need to begin analyzing how such specifically designed applications influence learning 

and learner motivation. The results demonstrate the importance of design in both learning 

from and empirically studying varied mobile screen display sizes for learning. 

The benefits of screen orientation for mobile learning are surmised in the 

literature, but further analysis specific to smartphones is required. Therefore, this study 

also compared landscape and portrait orientation for learning from smartphones. The 
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results further explain earlier findings, giving a clearer view of current user preferences 

and learning results of designing for various screen orientations. 

Finally, this study focused on answering single mode, text segmentation questions 

yet addressed by the literature. It analyzed what length of text segment is most beneficial 

for reading comprehension when low prior-knowledge learners access high intrinsic text 

via laptop and smartphone. The results begin to uncover how to optimally design and 

prepare text for communicating and learning from these devices.  

Learning outcomes, cognitive load, and user perception were used to assist in 

measuring these comparisons. Learning outcomes measured whether or not participants 

can recall the content following each treatment. However, learning recall offered only 

one point of reference for determining if a particular treatment was successfully designed 

and/or was advantageously delivered given the display size and orientation (Churchill & 

Hedberg, 2008; Kim & Kim, 2012; Molina et al., 2014). Measuring for cognitive load 

added perspective on participant experiences and learning with each treatment by 

demonstrating whether students were cognitively overloaded, under loaded, or remained 

successfully in the ZPD (Schnotz & Bannert, 2003; Schnotz & Kürschner, 2007). 

Positive user perception has been demonstrated by the literature as a viable piece of total 

mobile learning success (Hwang et al., 2011; Sanchez & Goolsbee, 2010; Seraj & Wong, 

2014; Terras & Ramsay, 2012; Traxler, 2005; Valk et al., 2010; Y.-S. Wang et al., 2009; 

Yau & Joy, 2010). It is thus important that the treatments not only produced positive 

learning outcomes and minimize cognitive load, but also were viewed positively by the 

participants. The methodology for this study is discussed in Chapter Three.  
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Chapter 3: Research Methods 

The following sections present the research questions and describe the proposed 

approach to address them including the research design, the participants, the materials, 

the measurements and before-treatment surveys, the research design rationale, the 

planned statistical analysis, and the general timeline of the study. 

There were three main comparisons under examination in this study that 

attempted to fill in noted gaps in the literature. First, this study compared large and small 

screen mobile displays for learning when the design is specific to the device (as opposed 

to retrofitted or minimized). This comparison included a sub comparison of small screen 

display landscape versus portrait orientation for learning to determine if the findings from 

earlier studies apply to today’s mobile devices and why. Second, this study compared 

three text segmentation length variations for learning from the mobile devices under 

examination. Finally, this study identified if there exists any interactions between all 

treatments. Therefore, this study hoped to find answers to the following research 

questions: 

RESEARCH QUESTIONS 

To address the gap in literature concerning mobile device comparison when 

design is tailored specifically to the device, as well as to answer additional questions 

about smartphone screen display and orientation, this study conducted research around 

the following question group: 

When specific formatting variables are held constant (variables explained in 

materials section below): 
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RQ1 (mobile device comparison): Do display size and orientation affect  

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: cognitive load of a digitally delivered chemistry text lesson? 

C: user perception of a digitally delivered chemistry text lesson? 

To address the gap in literature regarding text segmentation characteristics for 

various screen displays, this study conducted research around the following question 

group: 

When specific formatting variables are held constant: 

RQ2 (text segmentation comparison): Do digitally continuous text, medium text 

segments, and short text segments compare in terms of 

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: minimizing cognitive load for a digitally delivered chemistry text lesson? 

C: influencing user perception of a digitally delivered chemistry text lesson? 

Finally, to determine if any interactions exist between the two groups, this study 

conducted research around the following question group: 

When specific formatting variables are held constant: 

RQ3 (mobile device and segmentation interaction): Do text segmentation and 

screen display size and orientation affect  

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: cognitive load of a digitally delivered chemistry text lesson? 

C: user perception of a digitally delivered chemistry text lesson? 
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QUANTITATIVE RESEARCH DESIGN 

These questions were answered using a 3x3 quantitative research design (Table 

3.1). The independent variable groups were mobile devices and text segmentation. Within 

the mobile device variable group wer three devices: laptops (LPT), smartphones 

landscape (SML), and smartphone portrait (SMP). The devices ranged in make and 

model and came from the participants of the study. Given that screen dimensions vary per 

device, the learning module was designed to cover as many screens as possible. Within 

the text segmentation group were three text segmentation types: long, continuous text 

(TS1), medium text segmentation (TS2), and short text segmentation (TS3). (Each text 

segmentation treatment is detailed in the materials section below.) 

The dependent variables to measure the outcomes were learning outcomes 

(material recall) (LO), cognitive load measurement (CLM), and user perception survey of 

the experience (UPS). The learning outcomes instrument was a twenty question multiple 

choice test. The cognitive load measurement was a ten-question, self-reporting survey. 

The user perception survey consisted of 12 survey questions that reported on perceived 

ease of use (PEU), perceived use (PU), use intentions (UI), and perceived satisfaction 

(PS). (These instruments are detailed in the measurements sections below.) 
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Table 3.1.  

Research Questions and Design 
   Text Segmentation Treatments   

  TS1 TS2 TS3   

 

       

D
ev

ic
e 

T
re

at
m

en
ts

 LPT  T1a T2d T3g 
RQ1a 
RQ1b 
RQ1c 

 

SML  T1b T2e T3h 

SMP  T1c T2f T3j 

  
 

RQ2a, RQ2b, RQ2c RQ3a 
RQ3b 
RQ3c 

 
 

 

 

Research design: 
9 treatment groups (3x3 design): T1a-T3j  
 
Independent variables: 
Device treatments: laptop (LT), smartphone landscape (SML), smartphone portrait (SMP) 
Text segmentation treatments: continuous text (TS1), medium segmented text (TS2), small segmented text (TS3) 
 
Research questions:  

 RQ1 (mobile device comparison): Do display size and orientation affect (a) learning outcomes of a digitally 
delivered chemistry text lesson, (b) cognitive load of a digitally delivered chemistry text lesson, (c) user perception 
of a digitally delivered chemistry text lesson? 
 RQ2 (text segmentation comparison): Do digitally continuous text, medium text segments, and short text 
segments compare in terms of (a) learning outcomes of a digitally delivered chemistry text lesson, (b) minimizing 
cognitive load for a digitally delivered chemistry text lesson, and (c) influencing user perception of a digitally 
delivered chemistry text lesson? 
 RQ3 (mobile device and segmentation interaction): Do text segmentation and screen display size/orientation 
affect (a) learning outcomes of a digitally delivered chemistry text lesson, (b) cognitive load of a digitally delivered 
chemistry text lesson, (c) user perception digitally delivered chemistry text lesson? 

Participants 

A total of 771 participants took part in this study. All participants were 

undergraduate chemistry students in a higher education university. The participants were 
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required to take a prerequisite Chemistry course to register for this Chemistry course, but 

the topic under examination here had not been covered prior to this study. 

Materials 

Content selection  

Based on the cognitive load literature, to ensure learners are not cognitively 

overloaded or under loaded, the material under examination must have a somewhat high 

intrinsic cognitive load, while the participants are low prior-knowledge learners (Kalyuga 

et al., 2000).  However, the material should not be so hard that it pushes them out of their 

ZPD (Schnotz & Kürschner, 2007). For this reason, the content selected for this study 

was the chemistry topic: protonation state. Protonation state is a key idea to consider with 

any acid/base conjugate pair at a given pH. If the molecule in a solution at a particular pH 

has the proton “on” the molecule, it is protonated, or if the proton is “off” the molecule, it 

is deprotonated (Vanden Bout & LeBrake, 2015). This topic was scheduled in the 

syllabus falls in the middle of the spring semester. While the students had not yet covered 

this material, they had built the foundational concepts needed to understand the material 

in earlier classes, a notion that was supported by the Chemistry faculty. In this way, it 

met the parameters of CLT as good material to conduct research. The content was 

provided by the Chemistry Department at the university. It made up one chapter of the 

Aqueous Equilibria Unit, material for an undergraduate Chemistry course, which is 

offered every spring semester. The material was assembled and approved by the 

Chemistry faculty and is used every spring for the course. 



110 

 

Content segmentation 

Mayer and Moreno (2003) describe a segment as a piece of text or image with a 

meaningful beginning and end. The content for protonation state already existed as a 

single chapter with three main sections (Vanden Bout & LeBrake, 2015). One goal of this 

study was to determine what length of segmented text, within a multi-page learning 

module is better for reading comprehension on the devices in question. Therefore, I made 

three copies of the material (see Figure 3.1). The first copy (TS1) was the continuous 

flow treatment (Kintsch, 1994; Mannes & Kintsch, 1987; McNamara et al., 1996). The 

continuous flow treatment appeared like an eBook, in that as much content as could fit on 

the display was viewable. It cut off where a sentence ran out of room and continued on 

the following screen until the text was completed. This treatment had fewer pages (4 to 9 

screens depending on the device), but the material on each screen did not necessarily 

begin and end a meaningful thought. The second copy (TS2) was the medium-sized 

segmentation treatment (Churchill, 2011). In this treatment, I segmented the content 

down into medium-sized, meaningful segments following the recommendations of Mayer 

and Moreno (2003). These segments were designed to fit on the screen, such that they 

began and ended on a single screen, but contained completed explanations and 

paragraphs. TS2 had 14 screens. However, they were longer that the third treatment 

(TS3) which was the short segmentation treatment. This final text treatment followed the 

advice of numerous researchers of modality effect (Mayer, 2005; Spanjers et al., 2012; 

Sung & Mayer, 2013) who determined that short blurbs of text are better for learning 

(Mayer & Moreno, 2002). TS3 showcased 1-3 sentence segments (no longer) per screen. 

This rule was applied even when a definition or explanation was longer than three 
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sentences. In these instances, the thoughts were cut into pieces no longer than two to 

three sentences. This left ample screen real estate around the text. This treatment had 37 

screens, many more screens that it’s two counterparts. While the simplicity of the design 

did not allow for much cuing, the navigation acted as a cue, which the research finds 

assists in limiting split attention by helping the learner connect essential elements (T.-C. 

Liu et al., 2013, 2012). In all treatments, an arrow cued the learners, in the case of 

laptops, where to click to proceed, and in the case of smartphones, which direction to 

swipe to proceed (T.-C. Liu et al., 2013, 2012).  

 

TS1  
continuous text 

TS2  
medium text segmentation 

TS3  
small text segmentation 

Figure 3.1. Text segmentation samples. Using the smartphone portrait treatments. 
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Validation of text segmentation 

In order to validate the segmentation of the text, I showed the three segments 

pieces to the Chemistry faculty, who approved the segments.  

Control variables 

To ensure that the experiment was as balanced as possible, I held several variables 

constant in all treatments. These were based on suggestions from the literature. 

No sound or decoration. To maintain focus on only the treatment content and to 

avoid extraneous load (Chandler & Sweller, 1991; Mayer, 2009; Sung & Mayer, 2013; 

Sweller et al., 2011), the only thing on the screen was the text and any necessary 

navigational buttons. There was no sound or background music (Brunken et al., 2003), 

and there was no decoration (Mayer & Fiorella, 2014), which have both been shown to 

cause cognitive overload. This is in line with the coherence principle (Mayer et al., 1996; 

Mayer & Chandler, 2001), namely that all visual and auditory material is pertinent to the 

topic of learning.  

No scrolling navigation. As scrolling has been found to create split attention 

effect, there was no scrolling in the modules (Churchill, 2011; Churchill & Hedberg, 

2008; Luong & McLaughlin, 2009). Additionally, because the literature recommends 

avoiding excessive swipes, taps, or clicks (Sanchez & Goolsbee, 2010; Seraj & Wong, 

2014), there was minimum interaction within the treatments applications. In the laptop 

module, pagination occurred via right/left arrows at the bottom right and left screen 

corners respectively. In the mobile applications, navigation occurred via left/right swipe.  
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No zooming. Zooming has been shown to increase cognitive load in cases when 

the zoom is learner-controlled (Churchill, 2011; Luong & McLaughlin, 2009; Maniar et 

al., 2008). Particularly in the case of mobile display text, zooming creates a need to scroll 

(Maniar et al., 2008) up and down and sometimes left and right to view the text (Figure 

3.2). Therefore, the applications were designed in a way that prevented zooming.  

 

 
Regular screen Zoomed in screen 

Figure 3.2. Zooming sample from smartphone screen. 

Text size. Sanchez and Goolsbee (2010) found that smaller font produced better 

overall retention than larger font on small screens, in part because it limited the need to 

scroll. Though earlier findings suggest that inter-character and inter-line spacing 

increases recall (Chen & Chien, 2005), adding these buffers would increase the length of 
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text on a small screen device and require either more scrolling or more pages to navigate 

through. Therefore, all text was kept the same size visually (i.e., similar sized text when 

devices were held up next to one another) and with the same formatting (in terms of inter-

line and character spacing) across treatment groups and devices.  

Learner control. Finally, as noted numerous times in the literature, giving the 

learner control over the learning pace (specifically) has proven to decrease cognitive load 

(Hassanabadi et al., 2011; Mayer & Chandler, 2001; Schmidt-Weigand et al., 2010; 

Schüler et al., 2012; Spanjers et al., 2012; Sung & Mayer, 2013; Tabbers, 2002). 

Therefore, all treatments were learner-paced, meaning the learner could move forward 

when they were ready. Additionally, they were able to move back to previous screens as 

needed. 

Development of web module and mobile application  

The study called for the development of web and mobile applications to deliver 

the text segmentation treatments, survey questions, and measurement questionnaires. To 

ensure complete control over the treatment delivery, and to report on the complete 

development experience, I opted to originally create the learning modules for the laptop 

and smartphones. Doing so entailed creating one web delivered module and two separate 

mobile applications, one for iOS and one for Android.  

I began by listing and organizing the application pieces required for the complete 

application. This included clarifying the purpose for the application, identifying the target 

audience, listing the sections needed and their sequence, and determining the general 

development timeline.  
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Next, I built a wire frame, or outline of the application flow (see Figure 3.3). I 

intentionally kept the design simple and the flow straight-forward to maintain the purpose 

of the research so as to avoid adding extraneous material or graphics. The application was 

somewhat complicated from a programming perspective. Mainly, this is due to the built-

in instrument items, treatment randomization, and data collection capabilities. 
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Figure 3.3: Application wireframe.  
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My professional experience in mobile application development is that design and 

development tend to overlap given the hurdles experienced when developing on a third 

party platform (iOS/Android). For example, my study called for some landscape and 

some portrait treatments. In this case, the landscape views only occurred during the actual 

text treatment – all other parts of the application were in portrait orientation. Apple has a 

sticky rule about screen orientation in certain applications that would have made 

“locking” the screen in landscape for only part of the application impossible. It was 

agreed (with my iOS developer) that to control for these variables, the best option was to 

provide the text as images. While this did not largely alter the design, it did make for 

considerably more design work and required more graphical assets be created. 

There are several safeguards and interactions built into the applications to 

maximize the efficiency of data collection. First, the applications were not be “active” 

until the day of the study, so that participants were not be able to access the treatments 

prior to their class period, even if they download the app ahead of time. Second, they 

were not able to leave the application once the session started. If they did leave the 

application, a notice alerted them that they would not be able to return once the screen is 

exited. Finally, the applications automatically timed the whole visit to the module, as well 

as the collected time-on-task for each screen of the actual text treatments. Additionally, 

the application recorded the number of visits to each treatment screen, so that individual 

interactions within the treatment were captured for further assistance with analysis.  

Given the constraints of Apple development requirements, it was recommended to 

create the iOS application before Android. This way, the Android developer was able to 

copy the completed iPhone application without having to retrofit both apps. As for the 

web version, the text treatments variable will remain constant, but to fill the laptop screen 

appropriately, some alterations needed to be made to the continuous text treatment.  



118 

 

I worked with three separate programmers to code the applications. All 

applications fed into a database where the data was aggregated and stored. The 

development process was long and detailed and cost around $3,000 (see Appendix E for 

more details about the development process). Each programmer followed specific 

instructions based on documentation that was created to both describe the application 

UX/UI and the code transfer required for accurate database transfer. Once completed, the 

mobile applications were downloadable for free from the Google Play and Apple App 

Enterprise. The web version was accessible using any web browser.   

Quality-assurance and beta-testing 

Prior to the actual data collection, I ran numerous tests on the three applications to 

ensure that they are in proper working order, which included making sure that all 

questions, text segment treatments, database interaction and collection, and data 

spreadsheet generation were properly functioning.  

Measurement 

This study used three main measurements, as well as a demographic and mobile 

learning profile survey. The demographic and mobile learning profile (DMLP) was 

administered before the treatments (Appendix A). It assisted in generally defining the 

participant groups demographically and to assess the experience with and perception of 

mobile device and mobile learning. This survey was a series of sub-surveys planned to 

collect participant on socio-demographic information (gender, race, and age) (SD), as 

well as assess mobile device experience (MDE) and attitude towards mobile learning 

(AML). The MDE and AML surveys were borrowed from Molina et al. (2014), who 

conducted a study very similar to this study. Their study compared screen display sizes 
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between PCs, tablets, and smartphones. They used these surveys to compare the 

participant groups in terms of mobile learning profiles (p. 480).  

The MDE survey contained four items to gauge participant experience, ownership 

and expertise with mobile devices (Molina et al., 2014). MDE1 was added to the survey 

to determine how many mobile devices each student owns. Statistically on average, 

college students own seven mobile devices (ICEF Monitor, 2014). Participants were 

asked to select all that apply. As this item was not a numeric value, it therefore was not 

be calculated in the mean. The survey measured student experience using mobile devices 

(MDE2), experience with smartphones specifically (MDE3), and experience with mobile 

learning environments (MDE4). The questions were rated using a 5-point Likert scale, 

where five meant well experienced and one meant little to no experience. Molina et al. 

used the mean score of all survey questions (in this case MDE2-4) to determine mobile 

device experience, with five meaning a lot of experience and 1 meaning little to no 

experience. 

The AML survey was created to measure participant attitude towards mobile 

devices for use in educational contexts (AML1), for use in studying (AML2), the use of 

smartphones specifically in educational contexts (AML3), and the use of smartphones 

specifically in study (AML4). It also measured participant preference for studying with 

desktop computers (AML5), and their preferences for studying with printed material 

(AML6). The questions were rated using a 5-point Likert scale for how much they agree 

with the statements. Molina et al. used the mean score of the survey questions to 

determine attitude towards mobile learning, with five representing a positive attitude and 

1 representing a negative attitude. 

The post-treatment measures included the learning outcomes (LO) test, the 

cognitive load measurement (CLM), and the user perception survey (UPS). Learning 
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outcomes measured whether or not participants could recall the content following each 

treatment. However, learning recall offered only one point of reference for determining if 

a particular treatment was successfully designed (text segmentation and text treatment) 

and/or was advantageously delivered given the display size and orientation (Churchill & 

Hedberg, 2008; Kim & Kim, 2012; Molina et al., 2014). Measuring for cognitive load 

provided perspective on participant experience learning with each treatment by 

demonstrating whether students were cognitively overloaded, under loaded, or remained 

successfully in the ZPD (Schnotz & Bannert, 2003; Schnotz & Kürschner, 2007). 

Positive user perception has been demonstrated by the literature as a viable gauge of total 

mobile learning success (Hwang et al., 2011; Sanchez & Goolsbee, 2010; Seraj & Wong, 

2014; Terras & Ramsay, 2012; Traxler, 2005; Valk et al., 2010; Wang et al., 2009; Yau 

& Joy, 2010). It is thus important that the treatments not only produced positive learning 

outcomes and minimize cognitive load, but also were viewed positively by the 

participants. 

The LO test was a fifteen-question multiple choice test designed to measure 

immediate learning recall of the chemistry material (Appendix B). A search to find a pre-

existing empirically validated scale on protonation state was unsuccessful. The next best 

option was to procure a test that was approved by the subject matter experts as an 

accurate measure of the learning material. The LO test was written by the Chemistry 

faculty for this particular material and had been used for the course the last few years. 

Both the content and the associated test questions were reviewed and approved by the 

chemistry faculty. This measure was not empirically validated for the study.  

Given that an empirically validated scale could not be located and given that the 

study is already working at the margins of the class period, I opted to forgo comparing 

pre- and post-tests to measure learning gains. The intention of this test was to measure 
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learning outcomes, in terms of content recall. It was used to compare the treatments as 

learning tools, with higher scores signifying better learning than lower scores.  

The CLM instrument consisted of ten self-reporting, 10-point rating scale items 

(Appendix C). The instrument was borrowed from Leppink, Paas, Vleuten, Gog and 

Merriënboer (2013). This particular scale was recently developed to measure and 

distinguish between intrinsic cognitive load (ICL), extraneous cognitive load (ECL) and 

germane cognitive load (ECL), as opposed to generally measuring cognitive load. It 

measures the complexity of the activity (ICL), the instructions and explanations (ECL), 

and the enhancement of knowledge given the material (GCL).  

Leppink et al. conducted four separate experiments on the scale to assess 

reliability and validity, as well as compared it in study two and four to the widely used 

scales of Paas (1992) which measures cognitive load generally, Ayres (2006) which 

measures ICL, Cierniak et al. (2009) which measures ECL, and Salomon (1984) which 

measures GCL. With each experiment, they measured whether items 1-3 measure the 

“complexity of subject matter” (ICL), whether items 4-6 measure “negative 

characteristics of instructions and explanations” (ECL), and whether items 7-10 measure 

the extent to which “intrusions and explanations contribute to learning” (GCL), (Leppink, 

Paas, Vleuten, Gog, & Merriënboer, 2013, p. 1060).  

The experiments proved both the reliability and validity of the scale on its own 

and compared to the earlier created scales of Paas, Ayres, and Pachman (2008), Cierniak 

et al. (2009), and Salomon (1984). In one experiment using graduate level statistics 

content, the reliability analysis revealed Cronbach’s alpha values of .81 for items 1-3, .75 

for items 4-6, and .82 for items 7-10 (Leppink et al., 2013, p. 1061). In a second 

experiment using higher-education psychology content, the reliability analysis revealed 

Cronbach’s alpha values of .85 for items 1-3, .80 for items 4-6, and .81 for items 7-10 
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(Leppink et al., 2013, pp. 1062, 1065). In a third experiment using both higher-education 

psychology content for one group and higher-education health sciences content for a 

second group, the reliability analysis revealed Cronbach’s alpha values of .88 for items 1-

3, .81 for items 4-6, and .93 for items 7-10 (Leppink et al., 2013, pp. 1063, 1065). In a 

fourth experiment using higher-education inferential statistics content, the reliability 

analysis revealed Cronbach’s alpha values of .86 for items 1-3, .71 for items 4-6, and .94 

for items 7-10 (Leppink et al., 2013, p. 1066). The consistent reliability scores, in 

addition to the varied content used to test the scale signaled it a good cognitive load scale 

for this study. 

To make the CLM scale applicable to this study, I added the word “chemistry” in 

front of the word “formulas” in items CLM2 and CLM9. Additionally, I deleted the word 

“statistics” in CLM8 and added “protonation state.”  

The final scale, the user perception scale (UPS) was made up of four smaller 

scales. The first three scales are based on the Technology Acceptance Model (TAM) 

(Davis, 1993; Venkatesh et al., 2003). TAM assumes that perceived ease of use (PEU) 

and perceived usefulness (PU) of the technology influence a user’s behavior and attitude 

toward using the technology, called usage intentions (UI) (Davis, 1993; Venkatesh et al., 

2003; Gardner & Amoroso, 2004; Molina et al., 2014; Shroff et al., 2011). This in turn 

affects actual use. TAM is used to assess acceptance of educational resources and 

systems (Molina et al., 2014, p. 477). The scale used in this study was taken from Molina 

et al. Their scale was based on the subjective technology acceptance questionnaires of 

Davis. I opted to use this particular scale because the study conducted by Molina et al. 

closely related to this study, and as such, required no alterations.  

The final four questions in the UPS survey pertain specifically to perceived 

satisfaction (PS). This scale was also taken from Molina et al. I chose these because they 
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ask participants directly about their satisfaction and helped me better understand my 

overall findings. I made no grammatical or word changes to these four questions. 

RESEARCH PROCEDURES 

In the weeks prior to the days when data was collected, the Chemistry faculty 

agreed to administer a brief survey to determine how many students have both laptops 

and smartphones, and which percentage of those smartphones are iPhones, Androids, or 

other. This information gave me an idea of how many participants and devices we would 

have in each group.  

Data collection was scheduled for Friday, March 6th, 2015 (MWF classes), and 

Tuesday, March 10th, 2015 (TTH classes). Originally, data collection was scheduled for 

March 5th and 6th; however, the university cancelled classes on March 5th due to 

inclement weather and the TTH data collection was moved to the following Tuesday. 

This was when the content was scheduled in the syllabus. On the Tuesday and 

Wednesday (March 3nd and 4rd) ahead of those days, I instructed the classes to download 

the mobile applications and bring their laptops to the next class day. The applications 

were downloadable, but not “live” until class day, this ensured that participants were not 

able to view the application until the study commenced. I also briefly explained who I 

was and what the general plan was so that we did not have to spend time doing that 

during data collection.  

Data collection 

Data was collected on March 6th and 10th in the Chemistry classes. By collecting 

data for two days, I maximized participant numbers by attending all participating MWF 

and TTH classes.  

Each class was randomly split into three sections: laptops, smartphone landscape, 
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and smartphone portrait. As students arrived to class on the specific day, they were 

assigned a device group (either laptop or smartphone) in the order they arrived. The 

smartphone group was randomly split into the landscape and portrait groups once they 

signed into the application. Therefore, to ensure the participants were evenly split into 

three groups, I assigned two students to the smartphone group for every one in the laptop 

group. For example, student one was assigned to the laptop group, student two was 

assigned to the smartphone group, student three was assigned to the smartphone group, 

student four was assigned to the laptop group, and so on. If a student did not have the 

necessary equipment, they were reassigned to a group for which they did have a device. 

For example, if a student had a Microsoft Windows phone for which there was no mobile 

application available, they were instead assigned to the laptop group. The next 

assignments were adjusted accordingly. 

Those participants using smartphones accessed the content through the dedicated 

applications accessible via the Apple App Enterprise or the Google Play Store. They were 

required to download the application for free to their smartphones. Those participants 

using laptops accessed the content module via the web. Participants were first and 

foremost required to read the study agreement, which followed the approved Internal 

Review Board parameters. Accordingly, participation was voluntary. If a potential 

participant declined to complete the study, they were not given access to the digital 

material. The system was not set up to record the number of students who declined 

participation. However, given class counts and matching participant numbers, the great 

majority of students did participate. All applications communicated with the database to 

randomly assign one of the three text treatments, such that as participants agreed to 

participate, they were assigned a random participant ID and a text treatment in sequential 

order of login (the applications handled this). All data was aggregated in the database for 
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statistical analysis. 

Participants were given minimal instructions verbally, as the instructions and 

participant agreement forms, etc., were all housed within the applications. Once the pre-

surveys were completed, the students worked independently on their treatment modules 

until they finished. The activity ended with the post-treatments instruments (LO, CLM, 

UPS). The applications took no more than 35 minutes, which fit inside of the shorted 

MWF course times.  

QUANTITATIVE DATA ANALYSIS 

Before analyzing my data, I first tested the instruments for internal consistency 

using Cronbach’s alpha. I also ran descriptive analyzes and produce associated tables and 

or graphs (means, standard deviation, etc.).  

Next, I conducted ANOVA on each of the three groups to determine possible 

associations between the independent variables and instrument results (Table 3.2). The 

first set of research questions (RQ1a-c) asked if mobile device display size and 

orientation has an effect on (a) learning outcomes of a digitally delivered chemistry text 

lesson, (b) cognitive load of a digitally delivered chemistry text lesson, (c) user 

perception of a digitally delivered chemistry text lesson. To answer RQ1a, I ran a one-

way ANOVA to determine if there was a difference in test scores (LO) by device (LT, 

SML, SMP). To answer RQ1b, I ran a one-way ANOVA on each ICL, ECL, and GCL to 

determine if there was a difference in cognitive load by device. To answer RQ1c, I ran a 

one-way ANOVA on each PEU, PU, UI, and PS to determine if there was a difference in 

user perspective by device. 
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Table 3.2.  

Plan for Statistical Analysis 

 
 

Device Treatments Text Segmentation Treatments 

 LT SML SMP TS1 TS2 TS3 

In
st

ru
m

en
ts

 

LO 
One-Way ANOVA (RQ1a) One-Way ANOVA (RQ2a) 

Two-Way ANOVA (comparing all treatments) (RQ3a) 

CLM 
One-Way ANOVA(s) (RQ1b) One-Way ANOVA(s) (RQ2b)

Two-Way ANOVA (comparing all treatments)(s) (RQ3b) 

UPS 

One-Way ANOVA(s) (RQ1c) 
for PEU, PU, UI, and PS 

One-Way ANOVA(s) (RQ2c) 
for PEU, PU, UI, and PS 

Two-Way ANOVA(s) (comparing all treatments) (RQ3c) 
for PEU, PU, UI, and PS 

Research design: 
9 treatment groups (3x3 design): T1a-T3j  
 
Independent variables: 
Device treatments: laptop (LT), smartphone landscape (SML), smartphone portrait (SMP) 
Text segmentation treatments: continuous text (TS1), medium segmented text (TS2), small segmented text (TS3) 
 
Dependent variables: 
Learning outcome (recall test) (LO), cognitive load measurement (CLM), user perception survey (USP) 
 
Research questions:  
RQ1 (mobile device comparison): Do mobile display size and orientation affect (a) learning outcomes of a digitally 
delivered chemistry text lesson, (b) cognitive load of a digitally delivered chemistry text lesson, (c) user perception of a 
digitally delivered chemistry text lesson? 
RQ2 (text segmentation comparison): How do digitally continuous text, medium text segments, and short text segments 
compare in terms of (a) learning outcomes of a digitally delivered chemistry text lesson, (b) maximizing cognitive 
resources for a digitally delivered chemistry text lesson, and (c) influencing user perception of a digitally delivered 
chemistry text lesson? 
RQ3 (mobile device and segmentation interaction): Do text segmentation and mobile screen display size/orientation 
affect (a) learning outcomes of a digitally delivered chemistry text lesson, (b) cognitive load of a digitally delivered 
chemistry text lesson, (c) user perception digitally delivered chemistry text lesson? 

 

The second set of research questions (RQ2a-c) asked if digitally continuous text, 

medium text segments, and short text segments compare in terms of (a) learning 
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outcomes of a digitally delivered chemistry text lesson, (b) cognitive load of a digitally 

delivered chemistry text lesson, (c) user perception of a digitally delivered chemistry text 

lesson. To answer RQ2a, I ran a one-way ANOVA to determine if there was a difference 

in test scores (LO) by text segmentation (TS1, TS2, TS3). To answer RQ2b, I ran a 

similar test to determine if there was a difference in cognitive load by text segmentation. 

To answer RQ2c, I ran a one-way ANOVA on each PEU, PU, UI, and PS to determine if 

there was a difference in user perspective by text segmentation. 

The third set of research questions (RQ3a-c) asked if there an interaction affect 

between text segmentation and screen display size and orientation on (a) learning 

outcomes of a digitally delivered chemistry text lesson, (b) cognitive load of a digitally 

delivered chemistry text lesson, (c) user perception of a digitally delivered chemistry text 

lesson. To answer RQ3a, I ran a two-way ANOVA to determine if there was an 

interaction between mobile device (LT, SML, SMP) and text segmentation (TS1, TS2, 

TS3)on test scores (LO). To answer RQ3b, I ran a similar test to determine if there was 

an interaction between mobile device and text segmentation on cognitive load. To answer 

RQ3c, I ran a two-way ANOVA on each PEU, PU, UI, and PS to determine if there was 

an interaction between mobile device and text segmentation on user perspective. 

If statistical significance was found anywhere, I measured for effect size and ran 

appropriate post-hoc tests to determine how big the differences were and what variables 

were involved. 
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TIMELINE OF ACTIVITIES 

The timeline of activities for this study was as follows: 

Table 3.3. 

Timeline of Data Collection Activities 

 
Task 

Study 
prep 

 
MWF – 1 hour classes 

March 6th 
TTH – 1.5 hour classes 

March 10th 
 

 3/
3 

3/
4  :0
5 

:1
0 

:1
5 

:2
0 

:2
5 

:3
0 

:3
5 

:4
0 

:4
5 

:5
0 

:5
5 

:6
0 

:0
5 

:1
0 

:1
5 

:2
0 

:2
5 

:3
0 

:3
5 

:4
0 

:4
5 

:5
0 

:5
5 

:6
0 

:0
5 

:1
0 

:1
5 

:2
0 

:2
5 

:3
0 

1 
Pre-study 
preparation 

                                 

Data collection 
days: 

                                 

2 
Random 
assignment 

                                 

3 
Intro and 
instruction 

                                 

Application 
delivery: 

                                 

4 
IRB 
agreement 

                                 

Pre-treatment:                                  
5 DMLP                                  

Treatments:                                  
6 Treatments                                  

Post-treatment:                                  
7 PO                                  
8 CLM                                  
9 UPS                                  

10 
Activity 
concludes 

                                 

This opportunity for substantial quantitative research was unique for mobile 

learning research. With all three applications well-developed, the data provided numerous 

opportunities for additional papers and will be a springboard for future research. As a 

gesture of appreciation, I have agreed to allow the faculty of the College of Natural 

Science to use these applications, as developed at the time of research, for any future 

research delivered via mobile application.  
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Chapter 4: Results 

Using a quantitative research approach, this research examined the relationship 

between mobile device screen display size and orientation and text segmentation for 

learning. This chapter begins by describing the participants from a demographic 

perspective and is followed by research results organized by the overarching research 

questions: 

When specific formatting variables are held constant (variables explained in 

materials section below): 

RQ1 (mobile device comparison): Do display size and orientation affect  

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: cognitive load of a digitally delivered chemistry text lesson? 

C: user perception of a digitally delivered chemistry text lesson? 

RQ2 (text segmentation comparison): Do digitally continuous text, medium text 

segments, and short text segments compare in terms of 

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: minimizing cognitive load for a digitally delivered chemistry text lesson? 

C: influencing user perception of a digitally delivered chemistry text lesson? 

RQ3 (mobile device and segmentation interaction): Do text segmentation and 

screen display size and orientation affect  

A: learning outcomes of a digitally delivered chemistry text lesson? 

B: cognitive load of a digitally delivered chemistry text lesson? 

C: user perception of a digitally delivered chemistry text lesson? 
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PARTICIPANT DEMOGRAPHICS 

The sample group of participants was amassed from a higher education, 

undergraduate chemistry course. In total, four classes participated, each with well over 

100 students enrolled (Table 4.1). The data was collected in the 2015 spring semester, 

during the class periods of the classes included. In total, 950 entries were recorded. 

However, of those 179 entries were debunked, meaning the scores and times for that 

participant were not recorded in the database. This may have occurred for several 

reasons, including: (a) if a participant exited and reentered the module, it would have 

created a new user ID for them, (b) in some cases, the device connectivity was spotty and 

therefore after a certain point, information was either missed, or no longer transferred to 

the server. If data for a single participant did not include scores and times for all three 

dependent measures, I excluded that participant from the analysis. After cleaning the data 

accordingly, there were a total of 771 participants (N=771). 

Table 4.1 

Chemistry 302 Participant Class Breakdown 
Class# Day Time Total participants 
50203 Friday, March 6, 2015 1:00-2:00 221 
50150 Tuesday, March 10, 2015 9:30-11:00 202 
50155 Tuesday, March 10, 2015 11:00-12:30 201 
50160 Tuesday, March 10, 2015 12:30-2:00 147 

Participant demographic and mobile learning profile 

The demographic and mobile learning profile (DMLP) (Appendix A) was 

administered immediately before the treatments. It consisted of a series of questions and 

sub-surveys. The SD questions collected socio-demographic information, including 

gender, race, age, and GPA (Figure 4.1). In total, there were 336 males and 427 females, 

with 8 participants not responding (SD1). The participant racial breakdown showed that a 
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majority of the participants (90%) were white, Hispanic, or Asian. The participant group 

included 3% black students, 5% from other groups, and 2% (thirteen participants) did not 

log their race (SD2). Eighteen and Nineteen year olds comprised 79% of the participant 

group. Of the remaining participants, 19% were twenty years or older, while 1% were 

under eighteen. Four did not provide their age (SD3). Finally, 81% of participants had a 

grade point average (GPA) of 3.0 or higher (SD4), which fits with the Chemistry 

faculty’s assessment that because the students must first pass Chemistry 301, those 

students who are either not interested in chemistry or who suffer poor grades do not often 

continue with Chemistry 302.  

 
Gender 
(SD1) 

Figure 4.1. Socio-demographics findings for gender, race, age, and GPA 

males
44%

females
55%

no response
1%
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Race 
(SD2) 

 
Age 

(SD3) 

 
Figure 4.1 (cont.) Socio-demographics findings for gender, race, age, and GPA 

white
46%

black
3%
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18%

Asian
26%

American 
Indian

0%

Nat. Haw / 
pac. isle

0%

other 5%

NR
2%

Yng 1%
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34%

19
45%

20
12%

21 3%

22 2%

23 1% 24 0% 25 0% Older1% NR 1%
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GPA (SD4) 

 

Figure 4.1. (cont.) Socio-demographics findings for gender, race, age, and GPA 

 

The mobile device experience (MDE) survey contained four items to gauge 

participant experience, ownership, and expertise with mobile devices (Molina et al., 

2014). MDE1 was a multiple select question included to determine if the participants’ 

device ownership was consistent with statistics (Ericsson, 2015) on mobile device 

ownership (Figure 4.2).  Nearly 90% of participants owned laptops and 97% owned 

smartphones. Only 35% owned tablets or eReaders. Nearly 90% of participants owned 

more than one mobile device. Of those who owned more than one device, 98.54% owned 

laptops and 99.12% owned smartphones.   

1.0 0% 1.5
0%

2.0
6%

2.5
12%

3.0
28%

3.5
23%

4.0
30%

NR
1%
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Code Mobile device ownership Participants 
0 no response 3 
1 laptop 15 
2 tablet 1 
4 smartphone 67 
6 smartwatch 1 
12 laptop, tablet 3 
14 laptop, smartphone 328 
15 laptop, iPod 3 
24 tablet, smartphone 8 
34 eReader, smartphone 1 
46 smartphone, smartwatch 1 
124 laptop, tablet, smartphone 126 
134 laptop, eReader, smartphone 17 
145 laptop, smartphone, iPod 79 
146 laptop, smartphone, smartwatch 1 
245 tablet, smartphone, iPod 1 
1234 laptop, tablet, eReader, smartphone 6 
1245 laptop, tablet, smartphone, iPod 72 
1246 laptop, tablet, smartphone, smartwatch 2 
1345 laptop, eReader, smartphone, iPod 12 
1346 laptop, eReader, smartphone, smartwatch 2 
1456 laptop, smartphone, iPod, smartwatch 3 
12345 laptop, tablet, eReader, smartphone, iPod 14 
12456 laptop, tablet, smartphone, iPod, smartwatch 2 
123456 laptop, tablet, eReader, smartphone, iPod, smartwatch 3 

Total Participants     771 

Figure 4.2. Mobile device ownership. 

The MDE survey additionally measured student experience using mobile devices 

(MDE2), experience with smartphone devices (MDE3), and experience with mobile 
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learning environments (MDE4). The questions were rated using a 5-point Likert scale, 

where ‘5’ meant “well experienced” and ‘1’ meant “little to no experience.”  Molina et al. 

(2014) used the mean score of all survey questions (in this case MDE2-4) to determine 

mobile device experience of the participants, with ‘5’ meaning a lot of experience and ‘1’ 

meaning little to no experience (Figure 4.3). The mean score was 4.27, suggesting that 

the participant group as a whole had significant experience using mobile devices.  

 

 
Figure 4.3. Mobile device experience (MDE) summary. Rating on a scale of 1 for “no 

experience” to 5 or “well experienced.” 

In looking at the individual items of MDE, it can be determined that while 

participants had ample experience with mobile devices, and smartphones specifically, the 

score for mobile learning was slightly less (Figure 4.4). In this context, mobile devices 

refer to all devices that allow mobility with simultaneous connectivity. 

 

 



136 

 

 

 
MDE2 MDE3 MDE4 

 
X = scale options 1, 2, 3, 4, 5; Y = percent of total (0-100) 

 
Mobile device experience survey items: 
MDE2 Experience in the use of mobile devices. 
MDE3 Experience in the use of a smartphone device. 
MDE4 Experience in the use of mobile learning tools. 

Figure 4.4. Mobile device experience survey results per individual item. Rating on a 
scale of 1 for “no experience” to 5 or “well experienced.” 

The final DMLP section assessed participant attitude towards mobile learning 

(AML). The AML survey measured participant attitude towards mobile devices for use in 

educational contexts (AML1), for use in studying (AML2), for use of smartphones 

specifically in educational contexts (AML3), and for use of smartphones specifically in 

study (AML4). It also measured participant preference for desktop computers (AML5), 

and for printed material (AML6). The questions were rated using a 5-point Likert scale 

for how much they agree with the statements, with ‘5’ representing “strongly agree” and 

‘1’ representing “strongly disagree.” Molina et al. used the mean score of the survey 

questions to determine attitude towards mobile learning, with five representing a positive 

attitude and 1 representing a negative attitude (Figure 4.5).   
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Figure 4.5. Attitude towards mobile learning (AML) summary. Rating on a scale of 1 for 
“strongly disagree” to 5 or “strongly agree.” 

The mean score was 3.66, suggesting that the participant group as a whole had 

relatively neutral attitudes towards using mobile devices for learning, leaning slightly 

towards agreement in its use. In examining the individual items of AML, while students 

do think that mobile devices are useful in educational contexts and for studying, there 

remains still a propensity towards using desk top and printed materials for study (Figure 

4.6). 
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AML1 AML2 AML3 

 

AML4 AML5 AML6 

 
X = scale options 1, 2, 3, 4, 5; Y = percent of total (0-100) 

 
Attitude toward mobile learning survey items: 
AML1 I think it’s useful to use mobile devices in educational contexts. 
AML2 I think it’s useful to use mobile devices to study. 
AML3 I think it’s useful to use smartphones and tablets in educational contexts. 
AML4 I think it’s useful to use smartphones and tablets to study. 
AML5 I prefer to use a desktop computer or laptop to study. 
AML6 To study, I prefer to print the material.

Figure 4.6. Attitude toward mobile learning survey results per individual item. Rating on 
a scale of 1 for “strongly disagree” to 5 or “strongly agree.” 

INSTRUMENT RELIABILITY TESTING 

The post-treatment, dependent measures of this study included the learning 

outcomes (LO) test, the cognitive load measurement (CLM), and the user perception 

survey (UPS). Cronbach’s alpha reliability coefficient was calculated to determine 

reliability for each of these scales before further statistical analysis was run. Cronbach’s 

alpha reliability coefficient normally ranges between 0 and 1, where the closer the alpha 
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is to 1, the greater the internal consistency of the scale items. George and Mallery (2005) 

suggest that guidelines for determining internal consistency using Cronbach’s alpha are 

“_ > .9 – Excellent, _ > .8 – Good, _ > .7 – Acceptable, _ > .6 – Questionable, _ > .5 – 

Poor, and _ < .5 – Unacceptable” (p. 231). Others consider lower alphas to still be 

acceptable, especially in early stages of research (Nunnally, 1978). For reliability analysis 

in this study, the scales varied in terms of prior empirical testing. The LO scale was 

created for this study specifically by the chemistry faculty. The CLM and UPS were both 

taken from previous studies, in which reliability tests revealed the internal consistency of 

the scales were reliable.  

LO measured whether or not participants were able to recall the protonation state 

content following each treatment. It was used to compare the treatments as learning tools, 

with higher scores signifying better learning than lower scores. The LO scale consisted of 

15 items. The total score was reported as a percentage of total correct ranging from 100 

for all correct to zero for none correct. Given this was not previously empirically 

validated, and given it was an expert approved measure of content recall, no reliability 

statistics were administered.  

Cognitive load measurement (CLM) reliability statistics 

Measuring for cognitive load provided perspective on participant experience 

learning with each treatment by demonstrating whether students were cognitively 

overloaded, under loaded, or remained successfully in the ZPD (Schnotz & Bannert, 

2003; Schnotz & Kürschner, 2007). The CLM instrument was borrowed from Leppink et 

al., (2013). This particular scale measured the complexity of the activity (intrinsic 

cognitive load, ICL), the instructions and explanations (extraneous cognitive lead, ECL), 

and the enhancement of knowledge given the material (germane cognitive load, GCL). 
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The ten-item scale was broken down into three subscales (Table 4.2). Items 1-3 (ICL) 

measured the “complexity of subject matter” (Leppink et al., 2013). The ICL subscale 

reliability analysis revealed Cronbach’s alpha value 3 items (α = .87). Items 4-6 (ECL) 

measured “negative characteristics of instructions and explanations” (Leppink et al., 

2013). The ECL subscale reliability analysis revealed Cronbach’s alpha value 3 items (α 

= .88). Finally, items 7-10 (GCL) measured the extent to which “intrusions and 

explanations contribute to learning” (Leppink et al., 2013). The GCL subscale reliability 

analysis revealed Cronbach’s alpha value 4 items (α = .94). The reliability findings for 

the CLM were consistent with those of Leppink et al., indicating that the CLM had high 

intrinsic reliability and was therefore a good measure of cognitive load (Field, 2013; 

George & Mallery, 2005; Leppink et al., 2013). 
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Table 4.2  

Cognitive Load Measurement (CLM) Reliability Statistics      

     
Cronbach's Alpha 

Cronbach's Alpha Based 
on Standardized Items N of Items      

Intrinsic Cognitive Load (CLMICL) Subscale 0.87 0.87 3 
Extraneous Cognitive Load (CLMECL) Subscale 0.88 0.88 3 
Germane Cognitive Load (CLMGCL) Subscale 0.94 0.94 4 

   
  

Scale 
Mean if 

Item 
Deleted 

Scale 
Variance if 

Item Deleted 

Corrected 
Item-Total 
Correlation 

Squared 
Multiple 

Correlation 

Cronbach's 
Alpha if 

Item 
Deleted 

Intrinsic Cognitive Load (CLMICL) Subscale 
CLM1. The topics covered in the activity were very complex.  9.88 20.59 0.74 0.55 0.83 
CLM2.The activity covered chemistry formulas that I perceived as very complex. 10.89 18.06 0.74 0.55 0.83 

CLM3. The activity covered concepts and definitions that I perceive as very complex. 10.40 17.91 0.78 0.61 0.79 

Extraneous Cognitive Load (CLMECL) Subscale 
CLM4. The instructions and/or explanations during the activity were very unclear. 6.18 24.03 0.75 0.60 0.86 

CLM5. The instructions and/or explanations were, in terms of learning, very unclear. 6.08 22.50 0.85 0.71 0.77 

CLM6. The instruction and/or explanations were full of unclear language. 6.67 24.98 0.74 0.58 0.87 

Germane Cognitive Load (CLMGCL) Subscale 
CLM7. The activity really enhanced my understanding of the topics covered. 14.86 48.20 0.86 0.77 0.92 
CLM8. The activity really enhanced my knowledge and understanding of protonation 
state. 14.55 46.59 0.89 0.81 0.91 

CLM9. The activity really enhanced my understanding of the chemistry formulas 
covered. 15.21 50.61 0.80 0.65 0.94 

  
CLM10. The activity really enhanced my understanding of the concepts and 
definitions. 14.65 48.82 0.87 0.76 0.92 
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User perception scale (UPS) reliability statistics 

As positive user perception has been demonstrated by the literature as a viable 

gauge of total mobile learning success (Hwang et al., 2011; Sanchez & Goolsbee, 2010; 

Seraj & Wong, 2014; Terras & Ramsay, 2012; Traxler, 2005; Valk et al., 2010; Y.-S. 

Wang et al., 2009; Yau & Joy, 2010), the user perception scale (UPS) was used as a final 

measure for the study (Table 4.3). UPS consisted of four subscales. The first three 

subscales (perceived ease of use, PEU; perceived use, PU; and usage intentions, UI) were 

based on the Technology Acceptance Model (TAM) (Davis, 1993; Venkatesh et al., 

2003), which is used to assess acceptance of educational resources and systems (Molina 

et al., 2014, p. 477). The PEU subscale reliability analysis revealed Cronbach’s alpha 

value 3 items (α = .87). The PU subscale reliability analysis revealed Cronbach’s alpha 

value 3 items (α = .93). The PEU subscale reliability analysis revealed Cronbach’s alpha 

value 2 items (α = .93).  

The final UPS subscale (perceived satisfaction, PS), measured participant 

satisfaction with using the mobile device (Molina et al. 2014). The PS subscale reliability 

analysis revealed Cronbach’s alpha value 4 items (α = .94). The reliability findings for 

the UPS scale suggested each subscale had high intrinsic reliability and was therefore a 

good measure of user perceptions (Molina, et al., 2014).
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Table 4.3   

User Perception Survey (UPS) Reliability Statistics  
    

    
  

  
  Cronbach's Alpha 

Cronbach's Alpha Based 
on Standardized Items N of Items   

Perceived Ease of Use (PEU) Subscale 0.87 0.87 3 
Perceived Use (PU) Subscale 0.93 0.93 3 
Use Intentions (UI) Subscale 0.93 0.93 2 
Perceived Satisfaction (PS) Subscale 0.94 0.94 4 
       Scale Mean 

if Item 
Deleted 

Scale 
Variance if 

Item Deleted 

Corrected 
Item-Total 
Correlation 

Squared 
Multiple 

Correlation 

Cronbach's 
Alpha if Item 

Deleted        
Perceived Ease of Use (PEU) Subscale 

PEU1. Studying learning materials using this device is easy for me. 7.01 5.42 0.75 0.57 0.82 
PEU2. My interaction with this device has been flexible, direct, and fluid. 6.61 5.95 0.73 0.53 0.85 
PEU3. Overall, I believe that this learning environment is easy to use. 6.75 5.33 0.79 0.62 0.79 

Perceived Use (PU) Subscale 
PU1. I think that the use of this type of device could help me in my learning 
tasks. 6.35 6.52 0.86 0.75 0.89 
PU2. Using this device enables me to accomplish study tasks more quickly. 6.39 6.58 0.83 0.68 0.92 
PU3. Overall, I find that using this device is a useful studying tool. 6.27 6.40 0.88 0.78 0.88 

Use Intentions (UI) Subscale 
UI1. I intend to use this device for studying in the future. 3.09 1.87 0.87 0.75 . 
UI2. I would recommend the use of this device for study. 3.04 2.00 0.87 0.75 . 

Perceived Satisfaction (PS) Subscale 
PS1. I am satisfied with accessing learning contents using this device. 9.07 13.97 0.86 0.77 0.92 
PS2. I am satisfied with the interaction with this device for studying. 9.08 14.07 0.87 0.78 0.92 
PS3. I think that using this device for learning could be motivating. 9.43 13.86 0.83 0.71 0.93 

  PS4. I like using this device for studying. 9.35 13.17 0.86 0.75 0.92 
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ANALYSIS OF VARIANCE RESULTS 

The research design called for conducting ANOVA on each of the three research 

question groups to determine possible associations between the independent and 

dependent variables (Table 4.4). The first set of research questions (RQ1a-c) asked if 

mobile device display size and orientation has a main effect on (a) learning outcomes of a 

digitally delivered chemistry text lesson, (b) cognitive load of a digitally delivered 

chemistry text lesson, (c) user perception of a digitally delivered chemistry text lesson. 

To answer RQ1a, I ran a one-way ANOVA to determine if there was a main effect of 

device (LT, SML, SMP) on learning outcomes (LO). To answer RQ1b, I ran a one-way 

ANOVA to determine if there was a main effect of device on cognitive load (ICL, ECL, 

and GCL) To answer RQ1c, I ran a one-way ANOVA to determine if there was a main 

effect of device on user perception (PEU, PU, UI, and PS). 
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Table 4.4  

Plan for Statistical Analysis 

 
 

Device Treatments Text Segmentation Treatments 

 LT SML SMP TS1 TS2 TS3 

In
st

ru
m

en
ts

 

LO 
One-Way ANOVA (RQ1a) One-Way ANOVA (RQ2a) 

Two-Way ANOVA (comparing all treatments) (RQ3a) 

CLM 
One-Way ANOVA(s) (RQ1b) One-Way ANOVA(s) (RQ2b)

Two-Way ANOVA (comparing all treatments)(s) (RQ3b) 

UPS 

One-Way ANOVA(s) (RQ1c) 
for PEU, PU, UI, and PS 

One-Way ANOVA(s) (RQ2c) 
for PEU, PU, UI, and PS 

Two-Way ANOVA(s) (comparing all treatments) (RQ3c) 
for PEU, PU, UI, and PS 

Research design: 
9 treatment groups (3x3 design): T1a-T3j  
 
Independent variables: 
Device treatments: laptop (LT), smartphone landscape (SML), smartphone portrait (SMP) 
Text segmentation treatments: continuous text (TS1), medium segmented text (TS2), small segmented text (TS3) 
 
Dependent variables: 
Learning outcome (recall test) (LO), cognitive load measurement (CLM), user perception survey (USP) 
 
Research questions:  
RQ1 (mobile device comparison): Do mobile display size and orientation affect (a) learning outcomes of a digitally 
delivered chemistry text lesson, (b) cognitive load of a digitally delivered chemistry text lesson, (c) user perception of a 
digitally delivered chemistry text lesson? 
RQ2 (text segmentation comparison): Do digitally continuous text, medium text segments, and short text segments 
compare in terms of (a) learning outcomes of a digitally delivered chemistry text lesson, (b) minimizing cognitive load 
for a digitally delivered chemistry text lesson, and (c) influencing user perception of a digitally delivered chemistry text 
lesson? 
RQ3 (mobile device and segmentation interaction): Do text segmentation and mobile screen display size/orientation 
affect (a) learning outcomes of a digitally delivered chemistry text lesson, (b) cognitive load of a digitally delivered 
chemistry text lesson, (c) user perception digitally delivered chemistry text lesson? 

The second set of research questions (RQ2a-c) ask if there was a main effect of 

digitally continuous text, medium text segments, and short text segments compare on (a) 

learning outcomes of a digitally delivered chemistry text lesson, (b) cognitive load of a 

digitally delivered chemistry text lesson, (c) user perception of a digitally delivered 
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chemistry text lesson. To answer RQ2a, I ran a one-way ANOVA to determine if there 

was a main effect of text segmentation (TS1, TS2, TS3) on test scores (LO). To answer 

RQ2b, I ran a similar test to determine if there was a main effect of text segmentation on 

cognitive load (ICL, ECL, and GCL). To answer RQ2c, I ran a one-way ANOVA to 

determine if there was a main effect of text segmentation on user perception (PEU, PU, 

UI, and PS). 

The third set of research questions (RQ3a-c) asked if there was an interaction 

effect between text segmentation and screen display size and orientation on (a) learning 

outcomes of a digitally delivered chemistry text lesson, (b) cognitive load of a digitally 

delivered chemistry text lesson, (c) user perception of a digitally delivered chemistry text 

lesson. To answer RQ3a, I ran a two-way ANOVA to determine if there was an 

interaction effect between device (LT, SML, SMP) and text segmentation (TS1, TS2, 

TS3) on test scores (LO). To answer RQ3b, I ran a similar test to determine if there was 

an interaction effect between device and text segmentation on cognitive load (ICL, ECL, 

and GCL). To answer RQ3c, I ran a final two-way ANOVA to determine if there was an 

interaction effect between device and text segmentation on user perception (PEU, PU, UI, 

and PS).  

An alpha level of .05 was used for all analyses. Effect sizes were calculated using 

Omega squared. A measure of the strength of the association between the independent 

variable and then dependent variable in ANOVA is ω2, omega squared. Omega squared 

indicates the proportion of the total variance in the dependent variable that is accounted 

for by the levels of the independent variable. This is analogous to the coefficients of 

determination (r2). For this study, omega squared values of .01, .06, and .14, generally 

represent small, medium, and large effect sizes (Kirk, 1996).  
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Treatment group participants (N) 

The participants (N = 771) were randomly split into mobile device groups and 

text segmentation groups. There were two independent variables in this study: mobile 

device and text segmentation. The independent variable mobile device was split into 

three subgroups: laptop (LT), smartphone landscape (SML), and smartphone portrait 

(SMP). The independent variable text segmentation split into three subgroups: continuous 

text (TS1), medium text segments (TS2), and small text segments (TS3).  

As the participants entered the room for data collection, they were separated into 

two mobile device groups: laptops (LT), and smartphones. One laptop was assigned for 

every two smartphones. The smartphone group was then randomly split (via the 

application) into smartphone landscape (SML) and smartphone portrait (SMP). This 

made up the three mobile device groups (Table 4.5). 

There was some inconsistency in assignment due to a few factors. First, if a 

student arrived in class when a certain device was assigned and they did not have that 

specific device, they were switched with the next person to arrive who did have that 

device. Additionally, if a student had a smartphone that did not support either iOS or 

Android (like a Microsoft phone), they were automatically assigned to the laptop group. 

Next, because the server was inundated, even if they had the correct device, not all 

participants were able to download the application, requiring devices be swapped. 

Finally, some of the participants opted of their own accord to swap devices, from laptop 

to smartphone and vice versa.  
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Table 4.5  

Independent Variable: Mobile Device Frequencies 

 Frequency Percent Valid Percent Cumulative Percent
LT 292 37.9 37.9 37.9 

SML 234 30.4 30.4 68.2 
SMP 245 31.8 31.8 100.0 
Total 771 100.0 100.0  

The number of participants in these instances was relatively low.  However, these 

factors in addition to the participant data that was not captured by the database (from the 

950 original ids assigned) created a slight discrepancy in the distribution of the mobile 

device groups (NLT  292, NSML = 234, NSMP = 245). Given the participant numbers were 

well over the widely accepted 30 per group (Fields, 2013), these discrepancies were not 

expected to influence statistical outcomes. 

There were three subgroups of the text segmentation independent variable:  

continuous text (TS1), medium text segments (TS2), and small text segments (TS3). 

Participants in the laptop and smartphone groups were randomly assigned to a text 

segmentation group (Table 4.6). This was executed for the laptop group by order of those 

who clicked ‘yes,’ to the participation agreement, such that of every three participants 

using a laptop one was assigned TS1, one to TS2, and one to TS3 in order.   
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Table 4.6  

Independent Variable: Text Segmentation Frequencies 

 Frequency Percent Valid Percent Cumulative Percent
TS1 262 34.0 34.0 34.0 
TS2 271 35.1 35.1 69.1 
TS3 238 30.9 30.9 100.0 

Total 771 100.0 100.0  

 

A similar process was executed for the smartphone group, however, to also split 

the smartphone group into landscape and portrait respectively, smartphone participants 

were assigned in order to SML/TS1, SMP/TS1, SML/TS2, SMP/TS2, SMP/TS3, and 

SML/TS3. The resulting group numbers were NTS1 = 262, NTS2 = 271, NTS3 = 238. 

Combined together, there were a total of nine treatment in the 3x3 research design 

(Figure 4.7).  

 

 

Figure 4.7. Mobile device by text segmentation. Note: Each bar from left to right 
designates each of nine treatment groups (3x3 research design). 
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Assumptions of ANOVA 

To reduce the bias in the sample, assumptions are required to run a successful 

ANOVA. These include assumptions of independence, normality, and homogeneity of 

variance. The assumption of independence was met because the participants in each 

group were in no way dependent on one another, each interacting with their own device 

and treatment, working at their own pace. Additionally, they were assigned to the various 

groups randomly (see Treatment Group Participants (N) section above). 

In terms of the normality assumption, the central limit theorem states that when 

samples are larger than N=30, the sampling distribution will take the shape of a normal 

distribution regardless of the shape of the population from which the sample was drawn 

(Lumley, Diehr, Emerson, & Chen, 2002).  The size of the sample needed to meet this 

assumption may vary based on outliers (Fields, 2013). To ensure that outliers, z-scores 

and histograms of each dependent variable were examined.  

On the learning outcomes (LO) test, the 771 participants had a mean score of 

75.31 (SD = 15.06). Scores of 66.67, 80.00, and 86.67 represented the 25th, 50th, and 

75th percentiles, respectively. Initial examination of z-scores revealed several outliers. 

0.6 %, recorded extreme z-scores greater than -3.29. 0.5%, recorded z-scores between -

3.29 and -2.58. Together, these scores represented only 1.1% of the data. Further 

inspection of these cases revealed that these nine scores occurred because the individual 

incorrectly answered more than 12 items of the 15 item multiple choice test (LO). 0.5% 

of z-scores were between -1.96 and -2.58. There were no z-scores greater than 1.96. The 

LO distribution shows the low scores (Figure 4.8). However, the distribution appears 

otherwise evenly distributed and given the low percentage of extreme z-scores, normality 

is assumed.  
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On the cognitive load measurement, for the intrinsic cognitive load subscale 

(CLMICL), there was a mean score of 5.20 (SD = 2.10). Scores of 4.00, 5.33, and 6.67 

represented the 25th, 50th, and 75th percentiles.  Initial examination of CLMICL z-scores 

revealed no outliers. 4.5% had z-scores between than -1.96 and -2.58, while 2.9% had z-

scores between than 1.96 and 2.58.  A relatively normal distribution was evident (Figure 

4.8) and normality is assumed. 

 

Learning outcomes (LO) distribution. Intrinsic cognitive load (CLMICL) distribution. 

Extraneous cognitive load (CLMECL) distribution. Germane cognitive load (CLMGCL) distribution. 
Figure 4.8. LO, CLMICL, CLMECL, and CLMGCL histograms 
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For the extraneous cognitive load subscale (CLMECL), there was a mean score of 

3.16 (SD = 2.37). Scores of 1.33, 3.00, and 4.67 represented the 25th, 50th, and 75th 

percentiles. Initial examination of CLMECL z-scores revealed a few extreme cases. 1.8% 

had z-scores between 2.58 and 3.29, while 2.5% had z-scores between than 1.96 and 

2.58.  There were no z-scores lower than -1.96. Ninety-two z-scores were recorded at -

1.33 resulting in a positive skewness and highlighting that these participants selected 

extreme values on the CLMECL items. However, given that these particular z-scores 

were inside of 95%, given that there were no extreme z-scores, and given the distribution 

(Figure 4.8) was otherwise normal, normality is assumed. 

For the final subscale of the CLM, germane cognitive load (CLMGCL), there was 

a mean score of 4.94 (SD = 2.30). Scores of 3.50, 5.25, and 6.50 represented the 25th, 

50th, and 75th percentiles. Initial examination of CLMGCL z-scores revealed a no 

extreme cases. However, 5.7% had z-scores between than -1.96 and -2.58, while 2.1% 

had z-scores between than 1.96 and 2.58.  However, given that there were no extreme z-

scores, and given the distribution (Figure 4.8) was otherwise normal, normality is 

assumed.   

On the four subscales of the user perception survey (UPS), a mean of 3.44 (SD = 

1.09) resulted from the perceived ease of use (PEU) subscale, while scores of 2.67, 3.67, 

and 4.33 represented the 25th, 50th, and 75th percentiles. Initial examination of PEU z-

scores revealed no extreme cases, and 3.8% z-scores between than -1.96 and -2.58.  

There was a slightly negative skew on the distribution (Figure 4.9), however given that 

there were no extreme z-scores and given the skew was not extreme, normality was 

assumed.  

For the perceived use (PU) subscale, there was a mean score of 3.21 (SD = 1.21). 

Scores of 2.33, 3.33, and 4.00 represented the 25th, 50th, and 75th percentiles. 
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Examination of PU z-scores revealed no z-scores greater or less than ±1.96.  Given that 

the distribution was only slightly negatively skewed, normality was assumed (Figure 4.9). 

 

Perceived ease of use (PEU) distribution. 
 

Perceived use (PU) distribution. 
 

Use intentions (UI) distribution. 
 

Perceived satisfaction (PS) distribution. 
 

Figure 4.9. PEU, PU, UI, and PS histograms. 

For the use intentions (UI) subscale, there was a mean score of 3.11 (SD = 1.31). 

Scores of 2.00, 3.00, and 4.00 represented the 25th, 50th, and 75th percentiles. 
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Examination of UI z-scores revealed no extreme cases, while 0.1%. had z-scores between 

-1.96 and -2.58.  Given the otherwise normal distribution of scores (Figure 4.9), 

normality was assumed. 

For the final subscale of the UPS, perceived satisfaction (PS), there was a mean 

score of 3.11 (SD = 1.18). Scores of 2.25, 3.25, 4.00 represented the 25th, 50th, and 75th 

percentiles. Initial examination of PS z-scores revealed no z-scores greater or less than 

±1.96.  Given the distribution (Figure 4.9) was otherwise normal, normality was 

assumed. 

Results for research question one (RQ1): Mobile device comparison 

To address the gap in literature concerning mobile device comparison when 

design is tailored specifically to the device, as well as to answer additional questions 

about smartphone screen display and orientation, RQ1 asked if, when specific formatting 

variables were held constant, do mobile display size and orientation affect:  

RQ1a: learning outcomes of a digitally delivered chemistry text lesson? 

RQ1b: cognitive load of a digitally delivered chemistry text lesson? 

RQ1c: user perception of a digitally delivered chemistry text lesson? 

The independent variable mobile device had three groups, namely laptop (LT), 

smartphone landscape (SML), and smartphone portrait (SMP). The dependent variables 

included learning outcomes (LO), intrinsic cognitive load (CLMICL), extraneous 

cognitive load (CLMECL), germane cognitive load (CLMGCL), perceived ease of use 

(PEU), perceived use (PU), use intentions (UI), and perceived satisfaction (PS). 

Results for RQ1a 

To answer RQ1a, a one-way ANOVA was conducted to determine if there was an 

association in learning outcome test scores (LO) by device (LT, SML, SMP). The sample 
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participants were randomly split into three device groups, LT (N = 292), SML (N = 234), 

and SMP (N=245). 

To first ensure that the homogeneity of variance assumption of the ANOVA was 

met, Levene’s test (Levene, 1960) was used to test that variance of each group was equal. 

It revealed that the variance was roughly equal F(2, 768) = .129, p = .879 and therefore, 

the assumptions for ANOVA were tenable for this analysis. A one-way ANOVA found 

no significant effect of mobile device (LT, SML, SMP) on learning outcome (LO), F(2, 

768) = 1.163, p = .313, ω2 = 0, indicating that the mobile device used did not influence 

participant performance on the learning outcomes test (Table 4.7). Therefore, the null 

hypothesis was retained and no post hoc testing was required. 

Table 4.7  

Summary of ANOVA between Mobile Device and LO 

 
Sum of 

Squares
df

Mean 
Square

F Sig.

Between Groups 527.664 2 263.832 1.163 .313
Within Groups 174182.430 768 226.800
Total 174710.093 770

Results for RQ1b 

To answer RQ1b, a one-way ANOVA was conducted on each of the cognitive 

load measurement (CLM) subscales (ICL, ECL, and GCL) to determine if there was an 

association in cognitive load by device (LT, SML, SMP). The sample participants were 

randomly split into three device groups, LT (N = 292), SML (N = 234), and SMP 

(N=245). 
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Results for analysis of variance between mobile device and intrinsic cognitive 

load (CLMICL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 768) = 1.502, p = .223. 

A one-way ANOVA found no significant effect of mobile device (LT, SML, SMP) on 

intrinsic cognitive load (CLMICL), F(2, 768) = .223, p = .800, ω2 = 0, indicating that the 

mobile device used did not affect the intrinsic load of the digital material (Table 4.8). 

Therefore, the null hypothesis was retained and no post hoc testing was needed. 

Table 4.8  

Summary of ANOVA between Mobile Device and CLMICL 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 1.976 2 .988 .223 .800
Within Groups 3403.885 768 4.432
Total 3405.861 770

Results for analysis of variance between mobile device and extraneous cognitive 

load (CLMECL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 768) = .776, p = .461. A 

one-way ANOVA revealed no significant effect of mobile device (LT, SML, SMP) on 

extraneous cognitive load (GLMECL), F(2, 768) = 1.832, p = .161, ω2 = 0, indicating 

that the mobile device used did not add extraneous load to the learning material (Table 

4.9). Therefore, the null hypothesis was retained and no post hoc testing was required. 
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Table 4.9  

Summary of ANOVA between Mobile Device and CLMECL 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 20.588 2 10.294 1.832 .161
Within Groups 4316.541 768 5.620
Total 4337.129 770

Results for analysis of variance between mobile device and germane cognitive 

load (CLMGCL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 768) = 1.421, p = .242. 

A one-way ANOVA found no significant effect of mobile device (LT, SML, SMP) on 

germane cognitive load, F(2, 768) = .271, p = .763, ω2 = 0, indicating that the mobile 

device used did not affect the germane load of the digital material (Table 4.10). 

Therefore, the null hypothesis was retained and no post hoc testing was required. 

Table 4.10  

Summary of ANOVA between Mobile Device and CLMGCL 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 2.867 2 1.433 .271 .763
Within Groups 4068.796 768 5.298
Total 4071.663 770

Results for RQ1c 

To answer RQ1c, a one-way ANOVA was conducted on each of the four UPS 

subscales (PEU, PU, UI, and PS) to determine if there was a difference in user 



158 

 

perspective by device (LT, SML, SMP). The sample participants were randomly split into 

three device groups, LT (N = 289), SML (N = 231), and SMP (N=241).  

Results for analysis of variance between mobile device and perceived ease of use 

(PEU) 

Levene’s test indicated that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 759) = 1.98, p = .139. A 

one-way ANOVA revealed a significant main effect of mobile device on PEU at the p < 

.05 level, F(2, 759) = 10.751, p = .000, ω2 = .02.  

Table 4.11  

Summary of ANOVA between Mobile Device and PEU 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 24.845 2 12.422 10.751 .000
Within Groups 876.980 759 1.155
Total 901.825 761

 

This indicated that the null hypothesis was rejected. Accordingly, the mobile 

device used had a significant main effect on participant perception of ease of use of 

learning (Table 4.11). The estimated omega squared (ω2 = .02) indicated that 

approximately 2% of the total variation in device on PEU is attributable to difference 

between the three devices (Kirk, 1996). A boxplot visually illustrates the perceived ease 

of use score means and variance between and within the mobile device groups (Figure 

4.10). 
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Figure 4.10. Boxplot of mobile device by perceived ease of use. 

Pairwise comparisons were used to further analyze differences in means within 

mobile device groups and because the assumptions of ANOVA were met, post-hoc 

testing was conducted using Tukey’s HSD (Table 4.12). The means and standard 

deviation for the LT group was M = 3.67, SD = 1.04. The mean and standard deviation 

for the SML group was M = 3.30, SD = 1.06. The mean and standard deviation for the 

SMP group was M = 3.29, SD = 1.13.  Tukey’s HSD revealed that the mean of the LT 

group was significantly different from the SML group, t (759) = 3.88, p = .000, r = .14. 

The LT group was also significantly different from the SMP group, t (759) = 4.01, p = 

.000, r = .14. In both cases, the effect sizes were small. There was no pairwise 

significance between the SML and SMP groups, t (759) = 0.08, p = .996. This indicated 

that participants in the sample perceived laptops to be easier to use than smartphones for 

accessing a digitally delivered chemistry text, regardless of screen display orientation. 
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Table 4.12  

Tukey’s Post Hoc between Mobile Device and PEU 

(I) DEVICE (J) DEVICE 

Mean 
Difference 

(I-J) 

Std. 
Error 

Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

LT SML .36796* .09487 .000 .1452 .5907 
SMP .37603* .09366 .000 .1561 .5960 

SML LT -.36796* .09487 .000 -.5907 -.1452 
SMP .00806 .09888 .996 -.2241 .2403 

SMP LT -.37603* .09366 .000 -.5960 -.1561 
SML -.00806 .09888 .996 -.2403 .2241 

*. Significant at the 0.05 level. 

Results for analysis of variance between mobile device and perceived use (PU) 

Levene’s test revealed that the variance of each group was significantly unequal, 

F(2, 758) = 4.496, p = .011 and the homogeneity of variance assumption of ANOVA was 

not met. As such, the Welch’s F test was used and an alpha level of .05 was used for the 

subsequent tests (Table 4.13). The one-way ANOVA of the main effect of mobile device 

on PU revealed a significant effect of mobile device on perceived use (PU), Welch’s F(2, 

487.256) = 9.782, p = .000, indicating that the mobile device used had a significant effect 

on the perceived use of learning technology and the null hypothesis was therefore 

rejected.  

Table 4.13  

Summary of ANOVA between Mobile Device and PU 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 26.503 2 13.251 9.300 .000
Within Groups 1080.019 758 1.425
Total 1106.522 760
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The estimated omega squared (ω2 = .02) indicated that approximately 2% of the 

total variation in device on PU is attributable to difference between the three devices. A 

boxplot visually illustrates the perceived use score means and variance between and 

within the mobile device groups (Figure 4.11). 

 

 

Figure 4.11. Boxplot of mobile device by perceived use. 

Post hoc comparisons using the Games-Howell post hoc procedure were 

conducted to determine which mobile device means differed significantly (Table 4.14). 

The results indicated that participants who used laptops (M = 3.45, SD = 1.12) ranked 

perceived use significantly higher on average than participants who used either 

smartphone landscape (M = 3.06, SD = 1.20) or smartphone portrait (M = 3.07, SD = 

1.28) treatments. The effect sizes for these two significant effects were t (758) = 3.81, p = 

.000, r = .14 and t (758) = 3.59, p = .001, r = .13, respectively. However, there was no 

pairwise significance between the SML and SMP groups, t (758) = 0.11, p = .993. This 
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indicated that participants in the sample perceived laptops to be more useful than 

smartphones for accessing a digitally delivered chemistry text, regardless of screen 

display orientation. 

Table 4.14  

Games-Howell Post Hoc between Mobile Device and PU 

(I) DEVICE (J) DEVICE 

Mean 
Difference 

(I-J) 

Std. 
Error 

Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

LT SML .39087* .10260 .000 .1496 .6321 
SMP .37817* .10526 .001 .1307 .6256 

SML LT -.39087* .10260 .000 -.6321 -.1496 
SMP -.01270 .11376 .993 -.2802 .2548 

SMP LT -.37817* .10526 .001 -.6256 -.1307 
SML .01270 .11376 .993 -.2548 .2802 

*. Significant at the 0.05 level. 

Results for analysis of variance between mobile device and use intentions (UI) 

Levene’s test indicated that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 758) = 1.63, p = .197. A 

one-way ANOVA revealed a significant main effect of mobile device on UI at the p < .05 

level, F(2, 758) = 31.335, p = .000, ω2 = .07.  

Table 4.15 

Summary of ANOVA between Mobile Device and UI 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 98.899 2 49.450 31.335 .000
Within Groups 1196.191 758 1.578
Total 1295.090 760
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This indicated that the null hypothesis was rejected. Accordingly, the mobile 

device used had a significant main effect on participant intention to use the learning 

(Table 4.15). The estimated omega squared (ω2 = .07) indicated that approximately 7% 

of the total variation in device on UI is attributable to difference between the three 

devices (Kirk, 1996). A boxplot visually illustrates the use intentions score means and 

variance between and within the mobile device groups (Figure 4.12). 

 

 

Figure 4.12. Boxplot of mobile device by use intentions. 

Pairwise comparisons were used to further analyze differences in means within 

mobile device groups and because the assumptions of ANOVA were met, post-hoc 

testing was conducted using Tukey’s HSD (Table 4.16). The means and standard 

deviation for the LT group was M = 3.57, SD = 1.21. The mean and standard deviation 

for the SML group was M = 2.81, SD = 1.26. The mean and standard deviation for the 

SMP group was M = 2.83, SD = 1.30.  Tukey’s HSD revealed that the mean of the LT 
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group was significantly different from the SML group, t (758) = 6.78, p = .000, r = .24. 

The LT group was also significantly different from the SMP group, t (758) = 6.70, p = 

.000, r = .24. In both cases, the effect sizes were between small and medium. There was 

no pairwise significance between the SML and SMP groups, t (758) = 0.16, p = .987. 

This indicated that participants in the sample had greater intentions to use laptops than for 

smartphones for accessing a digitally delivered chemistry text, regardless of screen 

display orientation.  

Table 4.16  

Tukey’s Post Hoc between Mobile Device and UI 

(I) DEVICE (J) DEVICE 

Mean 
Difference 

(I-J) 

Std. 
Error 

Sig. 
95% Confidence Interval

Lower 
Bound 

Upper Bound

LT SML .75189* .11087 .000 .4915 1.0122 
SMP .73379* .10958 .000 .4765 .9911 

SML LT -.75189* .11087 .000 -1.0122 -.4915 
SMP -.01810 .11567 .987 -.2897 .2535 

SMP LT -.73379* .10958 .000 -.9911 -.4765 
SML .01810 .11567 .987 -.2535 .2897 

*. Significant at the 0.05 level. 

Results for analysis of variance between mobile device and perceived satisfaction 

(PS) 

Levene’s test indicated that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 759) = 2.08, p = .126. A 

one-way ANOVA revealed a significant main effect of mobile device on PS at the p < .05 

level, F(2, 759) = 15.126, p = .000, ω2 = .04.  
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Table 4.17 

Summary of ANOVA between Mobile Device and PS 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 40.934 2 20.467 15.126 .000
Within Groups 1027.008 759 1.353
Total 1067.942 761

 

This indicated that the null hypothesis was rejected. Accordingly, the mobile 

device used had a significant main effect on participant perceived satisfaction (Table 

4.17). The estimated omega squared (ω2 = .04) indicated that approximately 4% of the 

total variation in device on PS is attributable to difference between the three devices 

(Kirk, 1996).  A boxplot visually illustrates the perceived satisfaction score means and 

variance between and within the mobile device groups (Figure 4.13). 

 

 

Figure 4.13. Boxplot of mobile device by perceived satisfaction. 
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Pairwise comparisons were used to further analyze differences in means within 

mobile device groups and because the assumptions of ANOVA were met, post-hoc 

testing was conducted using Tukey’s HSD (Table 4.18). The means and standard 

deviation for the LT group was M = 3.41, SD = 1.11. The mean and standard deviation 

for the SML group was M = 2.91, SD = 1.16. The mean and standard deviation for the 

SMP group was M = 2.95, SD = 1.22.  Tukey’s HSD revealed that the mean of the LT 

group was significantly different from the SML group, t (759) = 4.84, p = .000, r = .17. 

The LT group was also significantly different from the SMP group, t (759) = 4.51, p = 

.000, r = .16. In both cases, the effect sizes were small. There was no pairwise 

significance between the SML and SMP groups, t (759) = 0.37, p = .929. This indicated 

that participants in the sample had greater perceived satisfaction with laptops than with 

smartphones for accessing a digitally delivered chemistry text, regardless of screen 

display orientation. 

Table 4.18  

Tukey’s Post Hoc between Mobile Device and PS 

(I) DEVICE (J) DEVICE 

Mean 
Difference 

(I-J) 
Std. 

Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

LT SML .49661* .10266 .000 .2555 .7377 
SMP .45756* .10136 .000 .2195 .6956 

SML LT -.49661* .10266 .000 -.7377 -.2555 
SMP -.03906 .10700 .929 -.2903 .2122 

SMP LT -.45756* .10136 .000 -.6956 -.2195 
SML .03906 .10700 .929 -.2122 .2903 

*. Significant at the 0.05 level. 
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Results for research question two (RQ2): Text segmentation comparison 

To address the gap in literature regarding text segmentation characteristics for 

various screen displays, RQ2 asked if, when specific formatting variables were held 

constant, do continuous text (TS1), medium text segments (TS2), and short text segments 

(TS3) compare in terms of: 

RQ2a: learning outcomes of a digitally delivered chemistry text lesson? 

RQ2b: minimizing cognitive load for a digitally delivered chemistry text lesson? 

RQ3c: influencing user perception of a digitally delivered chemistry text lesson? 

Results for RQ2a 

To answer RQ2a a one-way ANOVA was conducted to determine if there was an 

association in learning outcomes test scores (LO) by text segmentation (TS1, TS2, TS3). 

The sample participants were randomly split into three text segmentation groups (NTS1= 

262, NTS2= 271, and NTS3=238).  

To first ensure that the homogeneity of variance assumption of the ANOVA was 

met, Levene’s test (Levene, 1960) was used to test that variance of each group was equal. 

It revealed that the variance was roughly equal F(2, 768) = .128, p = .880 and therefore, 

the assumptions for ANOVA were tenable for this analysis. A one-way ANOVA found 

no significant effect of text segmentation (TS1, TS2, TS3) on learning outcomes (LO). 

There was no significant effect of text segmentation on learning outcome, F(2, 768) = 

0.703, p = .495, ω2 = 0, indicating that the text segmentation used did not directly affect 

participant performance on the learning outcomes test (Table 4.19). Therefore, the null 

hypothesis was retained and no post hoc testing was required. 

Table 4.19  

Summary of ANOVA between Text Segmentation and LO 
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Sum of 

Squares
df

Mean 
Square

F Sig.

Between Groups 319.204 2 159.602 .703 .495
Within Groups 174390.889 768 227.071
Total 174710.093 770

Results for RQ2b 

To answer RQ2b, a one-way ANOVA was conducted on each of the cognitive 

load measurement (CLM) subscales (ICL, ECL, and GCL) to determine if there was an 

association in cognitive load by text segmentation (TS1, TS2, TS3). The sample 

participants were randomly split into three text segmentation groups (NTS1= 262, NTS2= 

271, and NTS3=238). 

Results for analysis of variance between text segmentation and intrinsic cognitive 

load (CLMICL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 768) = .310, p = .734. A 

one-way ANOVA found no significant effect of text segmentation (TS1, TS2, TS3) on 

intrinsic cognitive load (CLMICL), F(2,768) = 2.341, p = .097, ω2 = 0, indicating that 

the text segmentation accessed did not affect the intrinsic load of the digital material 

(Table 4.20). Therefore, the null hypothesis was retained and no post hoc testing was 

needed.  
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Table 4.20  

Summary of ANOVA between Text Segmentation and CLMICL 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 20.640 2 10.320 2.341 .097
Within Groups 3385.221 768 4.408
Total 3405.861 770

Results for analysis of variance between text segmentation and extraneous 

cognitive load (CLMECL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 768) = 1.330, p = .265. 

A one-way ANOVA found no significant effect of text segmentation (TS1, TS2, TS3) on 

extraneous cognitive load (CLMECL), F(2,768) = .419, p = .658, ω2 = 0, indicating that 

the text segmentation accessed did not create extraneous load (Table 4.21). Therefore, the 

null hypothesis was retained and no post hoc testing was needed. 

Table 4.21  

Summary of ANOVA between Text Segmentation and CLMECL 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 4.723 2 2.361 .419 .658
Within Groups 4332.406 768 5.641
Total 4337.129 770

Results for analysis of variance between text segmentation and germane cognitive 

load (CLMGCL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 768) = .235, p = .791. A 
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one-way ANOVA found no significant effect of text segmentation (TS1, TS2, TS3) on 

germane cognitive load (CLMGCL), F(2,768) = 1.164, p = .313, ω2 = 0, indicating that 

the text segmentation accessed did not affect the germane load of the digital material 

(Table 4.22). Therefore, the null hypothesis was retained and no post hoc testing was 

needed. 

Table 4.22  

Summary of ANOVA between Text Segmentation and CLMGCL 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 12.306 2 6.153 1.164 .313
Within Groups 4059.357 768 5.286
Total 4071.663 770

Results for RQ2c 

To answer RQ2c, a one-way ANOVA was conducted on each of the user 

perception survey (UPS) subscales (PEU, PU, UI, and PS) to determine if there was an 

association in cognitive load by text segmentation (TS1, TS2, TS3). The sample 

participants (N = 762)2 were randomly split into three device groups (NTS1= 256/257, 

NTS2= 269, and NTS3=236).  

                                                 

2 Although there were a total of 771 participants, 9 were missing data for the PEU subscale, 10 

were missing data for the PU subscale, 10 were missing data for the UI subscale, and 9 were missing data 

from the PS subscale. As these were all the same participants, it can be speculated that for whatever reason, 

communication with the database was discontinued at this point.  
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Results for analysis of variance between text segmentation and perceived ease of 

use (PEU) 

Levene’s test indicated that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 759) = .455, p = .634. A 

one-way ANOVA revealed a significant main effect of text segmentation on PEU at the p 

< .05 level, F(2, 759) = 3.807, p = .023, ω2 = .01.  

Table 4.23 

Summary of ANOVA between Text Segmentation and PEU 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 8.956 2 4.478 3.807 .023
Within Groups 892.868 759 1.176
Total 901.825 761

This indicated that the null hypothesis was rejected. Accordingly, the text 

segmentation accessed had a significant main effect on participant perceived ease of use 

of learning technology (Table 4.23). The estimated omega squared (ω2 = .01) indicated 

that approximately 1% of the total variation in text on PEU is attributable to difference 

between the three segmentation types (Kirk, 1996). A boxplot visually illustrates the 

perceived ease of use score means and variance between and within the text segmentation 

groups (Figure 4.14). 
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Figure 4.14. Boxplot of text segmentation by perceived ease of use. 

Pairwise comparisons were used to further analyze differences in means within 

text segmentation groups and because the assumptions of ANOVA were met, post-hoc 

testing was conducted using Tukey’s HSD (Table 4.24). The means and standard 

deviation for the TS1 group was M = 3.36, SD = 1.08. The mean and standard deviation 

for the TS2 group was M = 3.58, SD = 1.07. The mean and standard deviation for the 

TS3 group was M = 3.35, SD = 1.10.  Tukey’s HSD revealed that the mean of the TS2 

group was significantly different from the TS1 group, t (759) = 2.36, p = .049, r = .09. 

The TS2 group was also significantly different from the TS3 group, t (759) = 2.38, p = 

.046, r = .09. In both cases, the effect sizes were small. There was no pairwise 

significance between the TS1 and TS3 groups, t (759) = 0.08, p = .997. This indicated 

that participants in the sample perceived medium text segments to be easier to use than 

either continuous text or small text segments. 
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Table 4.24 

Tukey’s Post Hoc between Text Segmentation and PEU 

(I) DEVICE (J) DEVICE 

Mean 
Difference 

(I-J) 

Std. 
Error 

Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

TS1 TS2 -.22313* .09461 .049 -.4453 -.0010 
TS3 .00759 .09779 .997 -.2220 .2372 

TS2 TS1 .22313* .09461 .049 .0010 .4453 
TS3 .23072* .09674 .046 .0035 .4579 

TS3 TS1 -.00759 .09779 .997 -.2372 .2220 
TS2 -.23072* .09674 .046 -.4579 -.0035 

*. Significant at the 0.05 level. 

Results for analysis of variance between text segmentation and perceived use 

(PU) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 258) = .762, p = .467. A 

one-way ANOVA found no significant effect of text segmentation (TS1, TS2, TS3) on 

perceived use (PU), F(2,758) = 1.469, p = .231, ω2 = 0, indicating that the text 

segmentation accessed did not affect the perceived use of the learning technology (Table 

4.25). Therefore, the null hypothesis was retained and no post hoc testing was needed. 

Table 4.25 

Summary of ANOVA between Text Segmentation and PU 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 4.272 2 2.136 1.469 .231
Within Groups 1102.250 758 1.454
Total 1106.522 760
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Results for analysis of variance between text segmentation and use intentions (UI) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 758) = 1.410, p = .245. 

A one-way ANOVA found no significant effect of text segmentation (TS1, TS2, TS3) on 

use intentions (UI), F(2,758) = 1.544, p = .214, ω2 = 0, that the text segmentation used 

did not affect use intentions of the learning technology (Table 4.26). Therefore, the null 

hypothesis was retained and no post hoc testing was required. 

Table 4.26 

Summary of ANOVA between Text Segmentation and UI 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 5.256 2 2.628 1.544 .214
Within Groups 1289.835 758 1.702
Total 1295.090 760

Results for analysis of variance between text segmentation and perceived 

satisfaction (PS) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(2, 759) = .398, p = .672. A 

one-way ANOVA found no significant effect of text segmentation (TS1, TS2, TS3) on 

perceived satisfaction (PS), F(2, 759) = 1.476, p = .229, ω2 = 0, indicating that the text 

segmentation used did not affect overall perceived satisfaction from the learning 

technology (Table 4.27). Therefore, the null hypothesis was retained and no post hoc 

testing was required. 
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Table 4.27  

Summary of ANOVA between Text Segmentation and PS 

 
Sum of

Squares
df

Mean 
Square

F Sig.

Between Groups 4.138 2 2.069 1.476 .229
Within Groups 1063.804 759 1.402
Total 1067.942 761

Results for research question three (RQ3): Interaction effects 

To address possible interactions between the mobile device (LT, SML, SMP) and 

text segmentation (TS1, TS2, TS3), RQ31 asked if, when specific formatting variables 

were held constant, do text segmentation and screen display size and orientation affect:  

RQ3a: learning outcomes of a digitally delivered chemistry text lesson? 

RQ3b: cognitive load of a digitally delivered chemistry text lesson? 

RQ3c: user perception of a digitally delivered chemistry text lesson? 

The three mobile device groups were laptop (LT), smartphone landscape (SML), 

and smartphone portrait (SMP). The three text segmentation groups were continuous text 

(TS1), medium text segments (TS2), and short text segments (TS3). 

Results for RQ3a 

To answer RQ3a, a two-way factorial ANOVA was conducted to determine if 

there was an interaction between mobile device and text segmentation on learning 

outcome (LO) test scores. The sample participants (N=771) were randomly split into the 

three mobile device groups (NLT = 292, NSML = 234, and NSMP = 245) and three text 

segmentation groups (NTS1 = 262, NTS2 = 271, NTS3 = 238). 

To first ensure that the homogeneity of variance assumption of the ANOVA was 

met, Levene’s test (Levene, 1960) was used to test that variance of each group was equal. 
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It revealed that the variance was roughly equal F(8, 762) = .736, p = .660 and therefore, 

the assumptions for ANOVA were tenable for this analysis. The two-way factorial 

ANOVA found no significant main effect of mobile device on learning outcomes (LO) 

test scores, F(8, 762) = 1.162, p = .313, ω2 = 0. There was also non-significant main 

effect of text segmentation on LO test scores, F(8, 762) = .688, p = .503, ω2 = .24. 

Finally, there were no significant interaction effects between mobile device and text 

segmentation on LO test scores, F(8, 762) = .411, p = .801, ω2 = .89. This indicated that 

the mobile device and text segmentation used did not affect learning outcomes (Table 

4.28). Therefore, the null hypothesis was retained and no post hoc testing was required. 

Table 4.28 

Summary of ANOVA between Mobile Device and Text Segmentation on LO 

Source 
Type III

Sum of Squares df Mean Square F Sig.
Partial Eta 

Squared

Corrected Model 1211.593a 8 151.449 .665 .722 .007

Intercept 4312436.643 1 4312436.643 18940.087 .000 .961

DEVICE 529.059 2 264.529 1.162 .313 .003

TEXT 313.206 2 156.603 .688 .503 .002

DEVICE * TEXT 374.448 4 93.612 .411 .801 .002

Error 173498.500 762 227.688

Total 4547910.742 771

Corrected Total 174710.093 770
a. R Squared = .007 (Adjusted R Squared = -.003) 

Results for RQ3b 

To answer RQ3a, a two-way factorial ANOVA was conducted to determine if 

there was an interaction between mobile device and text segmentation on cognitive load. 

The cognitive load measurement (CLM) had three subscales: Intrinsic cognitive load 

(CLMICL), extraneous cognitive load (CLMECL), and germane cognitive load 
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(CLMGCL), therefore, three separate ANOVAs were performed. The sample participants 

(N=771) were randomly split into the three mobile device groups (NLT = 292, NSML = 

234, and NSMP = 245) and three text segmentation groups (NTS1 = 262, NTS2 = 271, NTS3 = 

238).  

Results for analysis of variance between mobile device and text segmentation on 

intrinsic cognitive load (CLMICL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(8, 762) = 2.029, p = .0413 

and therefore, the assumptions for ANOVA were tenable for this analysis. The two-way 

factorial ANOVA found no significant main effect of mobile device on intrinsic cognitive 

load (CLMICL), F(8, 762) = .154, p = .857, ω2 = 0. There was also non-significant main 

effect of text segmentation on CLMICL, F(8, 762) = .2.303, p = .101, ω2 = .52. Finally, 

there were no significant interaction effects between mobile device and text segmentation 

on CLMICL, F(8, 762) = 2.023, p = .089, ω2 = .82. This indicated that the mobile device 

and text segmentation used did not affect the intrinsic load of the digital material (Table 

4.29). Therefore, the null hypothesis was retained and no post hoc testing was required. 
  

                                                 

3 Though Levene’s was violated for this two-way ANOVA, because significance was very close to 

.05 and because there was no significance found and effect sizes were relatively small, I opted not to 

conduct further testing on this specific ANOVA. 
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Table 4.29 

Summary of ANOVA between Mobile Device and Text Segmentation on CLMICL 

Source 
Type III

Sum of Squares df Mean Square F Sig.
Partial Eta 

Squared

Corrected Model 58.227a 8 7.278 1.657 .105 .017

Intercept 20476.619 1 20476.619 4660.960 .000 .859

DEVICE 1.356 2 .678 .154 .857 .000

TEXT 20.235 2 10.117 2.303 .101 .006

DEVICE * TEXT 35.542 4 8.885 2.023 .089 .011

Error 3347.633 762 4.393

Total 24223.874 771

Corrected Total 3405.861 770
a. R Squared = .017 (Adjusted R Squared = .007) 

Results for analysis of variance between mobile device and text segmentation on 

extraneous cognitive load (CLMECL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(8, 762) = 1.592, p = .123 

and therefore, the assumptions for ANOVA were tenable for this analysis. The two-way 

factorial ANOVA found no significant main effect of mobile device on extraneous 

cognitive load (CLMECL), F(8, 762) = 1.607, p = .201, ω2 = 1.15. There was also non-

significant main effect of text segmentation on CLMECL, F(8, 762) = .498, p = .608, ω2 

= 0. Finally, there were no significant interaction effects between mobile device and text 

segmentation on CLMECL, F(8, 762) = 1.211, p = .304, ω2 = .80. This indicated that the 

mobile device and text segmentation used did not affect the extraneous load of the digital 

material (Table 4.30). Therefore, the null hypothesis was retained and no post hoc testing 

was required. 
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Table 4.30 

Summary of ANOVA between Mobile Device and Text Segmentation on CLMECL 

Source 
Type III

Sum of Squares df Mean Square F Sig.
Partial Eta 

Squared

Corrected Model 52.458a 8 6.557 1.166 .317 .012

Intercept 7568.657 1 7568.657 1346.035 .000 .639

DEVICE 18.073 2 9.037 1.607 .201 .004

TEXT 5.604 2 2.802 .498 .608 .001

DEVICE * TEXT 27.248 4 6.812 1.211 .304 .006

Error 4284.671 762 5.623

Total 12012.723 771

Corrected Total 4337.129 770
a. R Squared = .012 (Adjusted R Squared = .002) 

Results for analysis of variance between mobile device and text segmentation on 

germane cognitive load (CLMGCL) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(8, 762) = 1.142, p = .333 

and therefore, the assumptions for ANOVA were tenable for this analysis. The two-way 

factorial ANOVA found no significant main effect of mobile device on germane 

cognitive load (CLMGCL), F(8, 762) = .249, p = .780, ω2 = .48. There was also non-

significant main effect of text segmentation on CLMGCL, F(8, 762) = 1.105, p = .332, 

ω2 = 0. Finally, there were no significant interaction effects between mobile device and 

text segmentation on CLMGCL, F(8, 762) = .533, p = .711, ω2 = .59. This indicated that 

the mobile device and text segmentation used did not affect the germane load of the 

digital material (Table 4.31). Therefore, the null hypothesis was retained and no post hoc 

testing was required. 
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Table 4.31 

Summary of ANOVA between Mobile Device and Text Segmentation on CLMGCL 

Source 
Type III

Sum of Squares df Mean Square F Sig.
Partial Eta 

Squared

Corrected Model 26.432a 8 3.304 .622 .759 .006

Intercept 18498.486 1 18498.486 3484.559 .000 .821

DEVICE 2.644 2 1.322 .249 .780 .001

TEXT 11.729 2 5.865 1.105 .332 .003

DEVICE * TEXT 11.321 4 2.830 .533 .711 .003

Error 4045.231 762 5.309

Total 22886.938 771

Corrected Total 4071.663 770
a. R Squared = .006 (Adjusted R Squared = -.004) 

Results for RQ3c 

To answer RQ3a, a two-way factorial ANOVA was conducted to determine if 

there was an interaction between mobile device and text segmentation on user perception. 

The user perception scale (UPS) had three subscales: Perceived ease of use (PEU). 

Perceived use (PU), use intentions (UI), and perceived satisfaction (PS), therefore, four 

separate ANOVAs were performed. The sample participants (N=762) were randomly 

split into the three mobile device groups (NLT = 289, NSML = 231, and NSMP = 241/2424) 

and three text segmentation groups (NTS1 = 256/257, NTS2 = 269, NTS3 = 236).  

                                                 

4 Although there were a total of 771 participants, 9 were missing data for the PEU subscale, 10 

were missing data for the PU subscale, 10 were missing data for the UI subscale, and 9 were missing data 

from the PS subscale. As these were all the same participants, it can be speculated that for whatever reason, 

communication with the database was discontinued at this point.  
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Results for analysis of variance between mobile device and text segmentation on 

perceived ease of use (PEU) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(8, 753) = .931, p = .490 

and therefore, the assumptions for ANOVA were tenable for this analysis. The two-way 

factorial ANOVA (Table 4.32) found a significant main effect of mobile device on 

perceived ease of use (PEU), F(8, 753) = 10.489, p = .000, ω2 = .85. Accordingly, the 

mobile device used had a significant main effect on participant perceived ease of use of 

the learning technology. The estimated omega squared (ω2 = .85) indicated that 

approximately 8.5% of the total variation in device on PEU was attributable to difference 

between mobile devices (Kirk, 1996). Tukey’s HSD revealed that participants in the 

sample perceived laptops to be easier to use than either smartphone landscape or 

smartphone portrait (both ps = .000). There was no significant difference in perceived 

ease of use between the smartphone landscape and smartphone portrait groups, p = .996. 

Table 4.32 

Summary of ANOVA between Mobile Device and Text Segmentation on PEU 

Source 
Type III

Sum of Squares df Mean Square F Sig.
Partial Eta 

Squared

Corrected Model 36.173a 8 4.522 3.933 .000 .040

Intercept 8769.402 1 8769.402 7628.198 .000 .910

DEVICE 24.116 2 12.058 10.489 .000 .027

TEXT 8.030 2 4.015 3.492 .031 .009

DEVICE * TEXT 2.689 4 .672 .585 .674 .003

Error 865.651 753 1.150

Total 9896.434 762

Corrected Total 901.825 761
a. R Squared = .040 (Adjusted R Squared = .030) 
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There was also a significant main effect of text segmentation on PEU, F(8, 753) = 

.3.492, p = .031, ω2 = .22. Accordingly, the mobile device used had a significant main 

effect on participant perceived ease of use of the learning technology. The estimated 

omega squared (ω2 = .22) indicated that approximately 2.2% of the total variation in 

device on PEU was attributable to difference between mobile devices (Kirk, 1996). 

Tukey’s HSD revealed that participants in the sample perceived medium text segments 

(TS2) to be easier to use than either continuous text (TS1) or small text segments (TS2) 

(both ps < .05). There was no significant difference in perceived ease of use between the 

continuous text (TS1) or small text segments (TS2) groups, p = .997. 

However, there were no significant interaction effects between mobile device and 

text segmentation on PEU, F(8, 753) = .585, p = .674, ω2 = 0. This indicated that the 

mobile device and text segmentation used did not affect participant perceived ease of use 

of the learning technology (Figure. 4.15). Therefore, the null hypothesis was retained. 

 

 

Figure 4.15. Interactions between mobile device and text segmentation on perceived ease 
of use. 
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Results for analysis of variance between mobile device and text segmentation on 

perceived use (PU) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(8, 752) = 1.962, p = .05 

and therefore, the assumptions for ANOVA were tenable for this analysis. The two-way 

factorial ANOVA (Table 4.33) found a significant main effect of mobile device on 

perceived use (PU), F(8, 752) = 9.181, p = .000, ω2 = 1.13. Accordingly, the mobile 

device used had a significant main effect on participant perceived use of the learning 

technology. The estimated omega squared (ω2 = 1.13) indicated that approximately 10% 

of the total variation in device on PU was attributable to difference between mobile 

devices (Kirk, 1996). Tukey’s HSD revealed that participants in the sample perceived 

laptops to be more useful than either smartphone landscape or smartphone portrait (both 

ps = .001). There was no significant difference in perceived use between the smartphone 

landscape and smartphone portrait groups, p = .993. 

Table 4.33 

Summary of ANOVA between Mobile Device and Text Segmentation on PU 

Source 
Type III

Sum of Squares df Mean Square F Sig.
Partial Eta 

Squared

Corrected Model 32.446a 8 4.056 2.840 .004 .029

Intercept 7640.566 1 7640.566 5349.442 .000 .877

DEVICE 26.227 2 13.113 9.181 .000 .024

TEXT 3.930 2 1.965 1.376 .253 .004

DEVICE * TEXT 1.871 4 .468 .328 .860 .002

Error 1074.076 752 1.428

Total 8949.804 761

Corrected Total 1106.522 760
a. R Squared = .029 (Adjusted R Squared = .019) 
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There was also non-significant main effect of text segmentation on PU, F(8, 752) 

= 1.376, p = .253, ω2 = .22. There were no significant interaction effects between mobile 

device and text segmentation on PU, F(8, 752) = .328, p = .860, ω2 = 0. This indicated 

that the mobile device and text segmentation used did not affect participant perceived use 

of the learning technology (Figure 4.16). Therefore, the null hypothesis was retained. 

 

 

Figure 4.16. Interactions between mobile device and text segmentation on perceived use. 

Results for analysis of variance between mobile device and text segmentation on 

use intentions (UI) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(8, 752) = 1.339, p = .221 

and therefore, the assumptions for ANOVA were tenable for this analysis. The two-way 

factorial ANOVA (Table 4.34) found a significant main effect of mobile device on use 

intentions (UI), F(8, 752) = 31.093, p = .000, ω2 = 1.03. Accordingly, the mobile device 
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used had a significant main effect on participant intentions to use the learning technology. 

The estimated omega squared (ω2 = 1.03) indicated that approximately 10% of the total 

variation in device on UI was attributable to difference between mobile devices (Kirk, 

1996). Tukey’s HSD revealed that participants in the sample had higher use intentions for 

laptops than either smartphone landscape or smartphone portrait (both ps = .000). There 

was no significant difference in use intentions between the smartphone landscape and 

smartphone portrait groups, p = .987. 

Table 4.34 

Summary of ANOVA between Mobile Device and Text Segmentation on UI 

Source 
Type III

Sum of Squares df Mean Square F Sig.
Partial Eta 

Squared

Corrected Model 105.697a 8 13.212 8.353 .000 .082

Intercept 7069.905 1 7069.905 4469.986 .000 .856

DEVICE 98.355 2 49.177 31.093 .000 .076

TEXT 4.944 2 2.472 1.563 .210 .004

DEVICE * TEXT 2.015 4 .504 .318 .866 .002

Error 1189.393 752 1.582

Total 8632.500 761

Corrected Total 1295.090 760
a. R Squared = .082 (Adjusted R Squared = .072) 

There was also non-significant main effect of text segmentation on UI, F(8, 752) 

= 1.563, p = .210, ω2 = .02. There were no significant interaction effects between mobile 

device and text segmentation on UI, F(8, 752) = .318, p = .866, ω2 = 0. This indicated 

that the mobile device and text segmentation used did not affect participant intention to 

use the learning technology (Figure 4.17). Therefore, the null hypothesis was retained. 
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Figure 4.17. Interactions between mobile device and text segmentation on use intentions. 

Results for analysis of variance between mobile device and text segmentation on 

perceived satisfaction (PS) 

Levene’s test revealed that the homogeneity of variance assumption of ANOVA 

was met, and the variance of each group was roughly equal, F(8, 753) = .971, p = .457 

and therefore, the assumptions for ANOVA were tenable for this analysis. The two-way 

factorial ANOVA (Table 4.35) found a significant main effect of mobile device on 

perceived satisfaction (PS), F(8, 753) = 15.077, p = .000, ω2 = 1.13. Accordingly, the 

mobile device used had a significant main effect on participant perceived satisfaction 

with the learning technology. The estimated omega squared (ω2 = 1.04) indicated that 

approximately 10% of the total variation in device on PS was attributable to difference 

between mobile devices (Kirk, 1996). Tukey’s HSD revealed that participants in the 

sample perceived more satisfaction with laptops than either smartphone landscape or 
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smartphone portrait (both ps = .000). There was no significant difference in perceived 

satisfaction between the smartphone landscape and smartphone portrait groups, p = .996. 

Table 4.35 

Summary of ANOVA between Mobile Device and Text Segmentation on PS 

Source 
Type III

Sum of Squares df Mean Square F Sig.
Partial Eta 

Squared

Corrected Model 47.521a 8 5.940 4.383 .000 .044

Intercept 7186.081 1 7186.081 5302.829 .000 .876

DEVICE 40.863 2 20.432 15.077 .000 .039

TEXT 3.687 2 1.844 1.360 .257 .004

DEVICE * TEXT 2.823 4 .706 .521 .721 .003

Error 1020.421 753 1.355

Total 8457.875 762

Corrected Total 1067.942 761
a. R Squared = .044 (Adjusted R Squared = .034) 

There was also non-significant main effect of text segmentation on PS, F(8, 753) 

= 1.360, p = .257, ω2 = .03. There were no significant interaction effects between mobile 

device and text segmentation on PS, F(8, 753) = .521, p = .721, ω2 = 0. This indicated 

that the mobile device and text segmentation used did not affect participant perceived 

satisfaction with the learning technology (Figure 4.18). Therefore, the null hypothesis 

was retained. 
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Figure 4.18. Interactions between mobile device and text segmentation on perceived 
satisfaction. 

SUMMARY  

A total of 771 students participated in this study. A large majority of the 

participants owned both laptops and smartphones. In general, the data pertaining to 

mobile device experience suggested that sample group as a whole had significant 

experience using mobile devices, but had a somewhat neutral attitude towards mobile 

learning.  

There were two independent variables in this study: mobile device and text 

segmentation. The independent variable mobile device had three groups, namely laptop 

(LT), smartphone landscape (SML), and smartphone portrait (SMP). The independent 

variable text segmentation had three groups, namely continuous text (TS1), medium text 

segments (TS2), and small text segments (TS3).  
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There were three main dependent variables. The first was the learning outcomes 

(LO) 15 item test gauged to measure digital content recall. The second dependent 

variable, the cognitive load measurement (CLM), had three subscales that measured 

intrinsic cognitive load (CLMICL), extraneous cognitive load (CLMECL), germane 

cognitive load (CLMGCL). The reliability findings for the CLM indicated that all three 

subscales had high intrinsic reliability and were therefore good measures of cognitive 

load. The third dependent variable, the user perception survey (UPS), had four subscales 

that measured perceived ease of use (PEU), perceived use (PU), use intentions (UI), and 

perceived satisfaction (PS) of the learning technology. The reliability findings for the 

UPS suggested all four subscales had high intrinsic reliability and were therefore good 

measures of user perception.  

The results for research question one (RQ1) found significant main effects of 

mobile device on all four UPS subscales: perception of ease (PEU), perceived use (PU), 

use intentions (UI), and perceived satisfaction (PS). Post hoc testing revealed that in all 

four cases, laptops had significantly higher means than either smartphone landscape or 

smartphone portrait, while there was not a significant difference between smartphone 

landscape and smartphone portrait. No significant effects of mobile device were found on 

learning outcomes (LO), intrinsic cognitive load (CLMICL), extraneous cognitive load 

(CLMECL), or the germane cognitive load (CLMGCL). 

The results for research question two (RQ2) only found a significant main effect 

of text segmentation on perceived ease of use (PEU). Post hoc testing indicated that 

medium text segments had higher means than continuous text or small text segments. No 

significant effects of text segmentation were found on learning outcomes (LO), intrinsic 

cognitive load (CLMICL), extraneous cognitive load (CLMECL), the germane cognitive 

load (CLMGCL),  perceived use (PU), use intentions (UI), or perceived satisfaction (PS). 
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The results for research question three (RQ3) found no significant interaction 

effects between mobile device and text segmentation on any of the dependent variables. 

The implications of these results will be presented in Chapter Five, along with the 

limitations of the study, suggestions for future research, and concluding remarks.  
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Chapter 5: Discussion 

This research applied a quantitative methodology to make three main comparisons 

about mobile device screen displays and text segmentation, the results of which will help 

fill gaps in the current body of literature on mobile learning, specifically instructional 

design principles for smartphones. This study first compared large and small screen 

mobile displays for learning, namely laptops and smartphones, using device specific 

design approaches, rather than a one-design fits all approach. This comparison included 

examining distinctions in screen orientation for mobile learning, namely landscape and 

portrait orientation for learning from smartphones. The second comparison highlighted 

possible differences in learning from three distinctive text segmentation lengths, namely 

continuous text, medium text segments, and small text segments.  The final comparison 

looked at possible interaction between mobile device screen display size and orientation 

and text segmentation. 

Learning outcomes, cognitive load, and user perception were measured to assist in 

these comparisons. Learning outcomes measured whether or not participants could recall 

the content following each treatment. However, learning recall offers only one point of 

reference for determining if a particular treatment was successfully designed and/or was 

advantageously delivered given the display size and orientation (Churchill & Hedberg, 

2008; D. Kim & Kim, 2012; Molina et al., 2014). Measuring for cognitive load added 

perspective on participant experiences learning with each treatment by demonstrating 

whether students were cognitively overloaded, under loaded, or remained successfully in 

the ZPD (Schnotz & Bannert, 2003; Schnotz & Kürschner, 2007). Positive user 

perception has been demonstrated by the literature as a viable piece of total mobile 

learning success (Hwang et al., 2011; Sanchez & Goolsbee, 2010; Seraj & Wong, 2014; 

Terras & Ramsay, 2012; Traxler, 2005; Valk et al., 2010; Y.-S. Wang et al., 2009; Yau & 
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Joy, 2010). It is thus important that the treatments not only produced positive learning 

outcomes and minimized cognitive load, but also were viewed positively by the 

participants.  

This final chapter interprets the research findings of each research question group, 

and then follows each with implications for instructional design of mobile learning. Next, 

recommendation for future research that lends itself to continuing this study is provided. 

Finally, the limitations of this study are presented.   

INTERPRETATION AND IMPLICATIONS OF FINDINGS 

The demographic data helped define the context of the study in terms of the 

participants and possible generalizations that can be made from the outcomes of this 

particular sample group. A majority of the participants were 18 and 19 years old, and in 

this regard, have probably grown up with mobile devices. As such, the participants were 

generally well experienced with mobile devices, both laptops and smartphones. This is 

supported by the findings of the mobile device experience (MDE) survey. Additionally, a 

majority of the participants had grade point averages of B or higher, suggesting that they 

were relatively high academic achievers. It is important to note, therefore, that the context 

and demographics of this particular situation and sample group should be factored in 

when compared with sample groups of different demographics. This point is addressed in 

detail in the future research section below, but it is important to keep in mind as the 

findings are discussed. 

Sanchez and Goolsbee (2010) noted the prevalence of smartphones among both 

professionals and students, consequently raising expectations for smartphone integration 

into school, work, and life. This is supported by national statistics that found 78% of 

students have regular access to a mobile device (ICEF Monitor, 2014). It has also been 
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found that while the laptop is presently the most owned mobile device at 85%, 

smartphone ownership continues to increase as today’s high school students become 

tomorrow’s collegiates (Reidel, Chris, 2014). Interestingly, the demographics from this 

study suggest that these numbers are significantly higher in the sample than suggested. In 

fact, while nearly 90% of participants owned laptops, 97% owned smartphones.  

The mobile device experience (MDE) survey gauged participant experience and 

expertise with mobile devices (Molina et al., 2014). With a mean score of 4.27 out of 5, 

the participants considered themselves nearly expert in the use of mobile devices 

(specifically smartphones). While they felt more than comfortable using their mobile 

devices generally, they were slightly less accustomed to using mobile devices in 

educational contexts. However, while students did think that mobile devices were useful 

in educational contexts and for studying, there remained a propensity towards using desk 

top and printed materials for study. There is some discrepancy as to whether all 

participants had the same definition of mobile devices, and this may have influenced the 

responses. Generally speaking, however, the group was well adept at and comfortable 

with interacting with both laptops and smartphones. 

Mobile display size and orientation comparison (RQ1) 

To address the gap in literature concerning mobile device displays when the 

learning design was tailored specifically to the device, this study compared mobile 

display screen size and orientation of a digitally delivered chemistry text lesson. It used 

learning outcomes (RQ1a), cognitive load (RQ1b) and user perception (RQ1c) to 

compare treatments. Learning outcome and cognitive load were found unaffected by 

mobile screen display size and orientation, while user perception was higher for laptops 

than for smartphones, regardless of orientation. 
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Specific to learning outcomes, cognitive load, and user perception  

The study revealed that learning outcomes were not affected by the mobile screen 

display size or orientation (RQ1a). This challenges the findings of numerous studies that 

learning is reduced when content is delivered on a small display (Churchill & Hedberg, 

2008; Jones, Buchanan, & Thimbleby, 2003; Vogt, Schaffner, Ribar, & Chavez, 2010). 

Churchill and Hedberg (2008) in their qualitative study with educational professionals 

found that small screens were a key detriment to learning from handheld devices. This 

further challenges the findings that compared to laptop displays, smartphones screens do 

not provide a comparable learning experience and are therefore harder to learn from 

(Heo, 2003; D. Kim & Kim, 2012; Luong & McLaughlin, 2009; Molina et al., 2014). 

Kim and Kim’s (2012) study including one hundred and thirty-five Korean middle school 

students for example, found that large screens were more effective than small screens for 

learning English vocabulary. In their study with twenty-six higher education computer 

science students, Molina et al. (2014) compared large, medium, and small mobile device 

screens for learning and also found that participants both learned better from and 

preferred larger screens to medium and small screens.   

These results of this study further dispute previous research findings that 

landscape orientation is better for learning than portrait orientation when small screen 

displays are used for delivery (Churchill, 2011; Churchill & Hedberg, 2008; Sanchez & 

Branaghan, 2011; Sanchez & Goolsbee, 2010). In their study with thirty-four higher 

education psychology students, Sanchez and Branaghan (2011) found that landscape 

orientation eliminated a reasoning deficit when compared to portrait orientation.  

The study additionally revealed that the variations in screen display size and 

orientation did not affect the working memory differently (RQ1b). This was true for 

intrinsic cognitive load (CLMICL), meaning what is required to know the element itself 
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(Sweller, Merrienboer, & Paas, 1998) or how two elements interact (Paas, Renkl, & 

Sweller, 2004), as well as for extraneous cognitive load (CLMECL), which occurs when 

the learning design includes material and activities that are outside of, or ‘extra’ to what 

is to be learned (Chandler & Sweller, 1991; Paas et al., 2004; Sweller, 1988). The results 

found similarly that germane cognitive load (CLMGCL), which fosters active schema 

construction processes and is beneficial to learning (Hollender et al., 2010; F. G. W. C. 

Paas & Merriënboer, 1994), did not vary based on display size and orientation. 

These results counter the findings of Ng and Nicholas (2009) and Wang and Shen 

(2012) which both asserted that overload occurred when participants accessed full 

content on a small screen. They also contradict the results of Molina et al. (2014), who 

found in their comparison of PCs, tablets, and smartphones with twenty-six higher 

education students that given the same content students experienced less cognitive 

overload from PCs before tablets, and both PCs and tablets, before smartphones. 

Unlike the findings of RQ1a and RQ1b from this research question group, this 

study found that user perception was affected by the screen display size of the device 

used (RQ1c). This was true for all four subscales of user perception, including perceived 

ease of use (PEU), perceived use (PU), use intentions (UI), and perceived satisfaction 

(PS). Additional results indicated that participants in the sample felt laptop screens were 

more acceptable for accessing the digital chemistry text than smartphone screens, though 

only by a small margin. Screen orientation however, did not seem to have an effect on 

user perception.  

According to the Technology Acceptance Model (TAM), this means that overall 

user acceptance of the specific technological tool for the task at hand was lower for 

smartphones in this particular instance than for the larger-screened laptops (Davis, 1985, 

1989; Davis et al., 1989; Legris et al., 2003; Venkatesh et al., 2003). This supports the 
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findings of Crescente and Lee (2011), Churchill and Hedberg (2008), and Pea and 

Madonado (2006), all of which found that small screen displays seemed to impede user 

acceptance of mobile learning.  However, this specific finding contradicts that of Sung 

and Mayer (2013) who found in their study with eighty-nine college psychology students 

that student enjoyment of smaller screens increased motivation to learn. This is not to say 

that participants who used smartphones did not like them. In fact, the average score for 

all UPS subscales were closer to strongly agree on the five item scale than to strongly 

disagree. Rather, it suggests that under these treatment and research conditions, laptops 

were perceived with slightly higher regard in terms of usefulness for learning and 

satisfaction. 

Implications for instructional design 

From a design perspective, these findings add detail to some blurry aspects of the 

mobile learning research picture, including the impact of dedicated mobile applications 

on learning, the differences in screen display orientation on learning, the extraneous load 

added by the device itself, and the influence of user perception on learning. 

This study specifically looked at the screen display size comparisons when the 

learning design was customized to the device, verses retro-fitted from a larger display. 

Current research suggests that larger screens are better for learning (Kim & Kim, 2012; 

Molina et al., 2014; Reeves et al., 1999), without expounding on appropriate design 

except to say to design for eLearning and convert to mobile learning (M. Wang & Shen, 

2012). Creating dedicated smartphone applications, tailored to the device did seem to 

equalize the learning between groups, such that no group significantly outperformed 

another group. This lends evidence to the notion that instructional design must consider 

the device(s) used for delivery.  
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In terms of screen display orientation, this study indicated that the orientation of 

the screen has less of an impact than suggested in the literature (Churchill, 2011; 

Churchill & Hedberg, 2008). While there remain questions as to why this mattered less 

than suggested, there nevertheless seemed to be little distinction between landscape and 

portrait orientation in terms of learning outcomes, cognitive load, and user perception. 

With regard to reducing cognitive overload, eliminating extraneous content 

unnecessarily added by the design is among the first recommendations (Ayres & Paas, 

2012; Brunken et al., 2003; Chandler & Sweller, 1991; Mayer, 2009; Mayer & Fiorella, 

2014; Sweller et al., 2011). In terms of the cognitive load effects specific to small screen 

mobile devices, Liu, et al. (2013) asserted that extraneous load exists in part just by 

interacting with the smartphone itself.  

Findlater and McGrenere (2008) noted that the limited display size of small 

screen mobiles force designers to split content onto multiple screens. In this way, the split 

attention effect can be a form of extraneous cognitive load, when it is caused by the 

design and presentation of instruction (Liu et al., 2013; Paas et al., 2004). According to 

Sweller, et al., split attention is a common design flaw (Kalyuga, Chandler, & Sweller, 

1999; Sweller, 2002; Sweller et al., 1998). In fact, several studies about small screen 

mobile devices have reproduced split attention effect, mainly because the small display 

breaches the spatial and temporal contiguity of the learning content  (Austin, 2009; Keefe 

et al., 2012; Kim & Kim, 2012; Liu et al., 2013, 2012; Luong & McLaughlin, 2009; 

Maniar et al., 2008; Molina et al., 2014). 

However, in the present study, participants reported only low levels of extraneous 

load, suggesting that designing a simple, dedicated, and learner-controlled user interface 

seemed to eliminate unnecessary cognitive load. This may explain why students remained 

in the zone of proximal development despite slightly elevated intrinsic load ratings 
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(Hassanabadi et al., 2011; Mayer & Chandler, 2001; Schmidt-Weigand et al., 2010; 

Schüler et al., 2013; Spanjers et al., 2012; Sung & Mayer, 2013; Tabbers, 2002).  

Finally, user perspective on both the use of mobile devices for learning and the 

engagement and enjoyment of the learning applications are paramount for determining 

the success of mobile learning (Seraj & Wong, 2014). If learning satisfies with the 

learner, it will positively influence their success with mobile learning. Iqbal and Qureshi 

(2012) called this perceived usefulness. If learning is about the learner, then design of 

mobile learning should be user-focused, (Hwang, Shi, & Chu, 2011; Sharples et al., 2007; 

Valk et al., 2010). In fact, the general consensus of the literature on the matter is that 

negative user perception of a mobile learning component impedes its success in education 

(Park, 2011; Pea & Maldonado, 2006).  

While positive user perception of mobile learning is in fact critical for overall 

success, the results of this study indicated that it is not necessarily linked to increased or 

decreased learning outcomes. In other words, no matter the mobile device, learning 

occurred even when individual participants registered lower user perception scores, 

suggesting that instruction design of mobile learning requires approaching design and 

implementation from multiple directions for success. 

Text segmentation comparison (RQ2) 

To address the gap in literature regarding text segmentation characteristics for 

various screen displays, this study compared three segmentation variations of a digitally 

delivered chemistry text lesson, namely continuous text, medium text segments, and 

small text segments. The study sought to determine which was most beneficial for 

reading comprehension when low prior-knowledge learners accessed high intrinsic 

cognitive load text via laptop and smartphone. Learning outcomes (RQ2a), cognitive load 
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(RQ2b), and user perception (RQ2c) were used to compare treatments. The results for 

RQ2 revealed that learning outcomes and cognitive load were unaffected by text 

segmentation. Of the four user perception subscales, only perceived ease of use (PEU) 

was affected by the variations in text segmentation. The other three UPS subscales were 

unaffected by text segmentation treatments.  

Specific to learning outcomes, cognitive load, and user perception  

The results indicated that learning outcomes were not affected by text 

segmentation (RQ2a). These results supported previous findings that text seemed to 

produce the most cued and free recalled details (Furnham, Gunter, & Green, 1985). 

Learning outcomes may have been relatively similar between text treatments because the 

design of the chemistry lesson allowed for the readers to implement reading 

comprehension strategies (Byrne & Curtis, 2000; Furnham, 2001; Furnham et al., 1990), 

which include pausing (Hassanabadi et al., 2011), rereading (Hyönä and Nurminen, 2006; 

Schmidt-Weigand et al., 2010), and learner-paced processing (Mayer, 2003; Spanjers et 

al., 2012).  

However, the results challenge the notion that segmentation is only beneficial if 

the content is cut into meaningful chunks (Ayres & Paas, 2012; Mayer, 2003; Mayer & 

Chandler, 2001; Mayer & Moreno, 2002; Paas et al., 2003; Spanjers et al., 2012; Wong et 

al., 2012), which Spanjers et al. (2012) explain help foster understanding by eliminating 

the need for learners to create their own meaningful segments of information.  

These findings that there were no significant differences in learning outcomes by 

text segmentation treatment conflict with some studies on the multimedia and modality 

effects which suggest that reading continuous text produces higher cognitive load and 

therefore prevents recall (Mayer, 1999; Schüler et al., 2011).  
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The study additionally revealed that the variance in text segmentation did not 

impact the working memory differently (RQ2b). This result challenges previous studies 

which found meaningful pieces of content caused less cognitive overload than continuous 

text (Ayres & Paas, 2012; Mayer, 2003; Mayer & Chandler, 2001; Mayer & Moreno, 

2002; Paas et al., 2003; Spanjers et al., 2012; Wong et al., 2012). Accordingly, 

performance was observed to be best when the content segments were pre-determined 

(Hassanabadi et al., 2011; Spanjers et al., 2010), as opposed to self-segmented by the 

students. Moreno (2007) for example, showed participants shown segmented content 

outperformed participants who were shown continuous content on transfer tests.  

While these findings do counter those of numerous studies, there may be an 

explanation for this discrepancy, in that the learner-controlled nature of the treatments 

allowed the participants to control the pace of learning, thus minimizing extraneous load 

and enhancing the capabilities of the working memory to process information (Liu, Lin, 

Tsai, & Paas, 2012; Mayer, 2003; Spanjers et al., 2012; Tabbers, 2002).  When text is 

written, a reader can skip extraneous passages that are either not relevant or are too 

difficult to understand and concentrate on the more important parts of the text (Schüler et 

al., 2013, 2011). Additionally, it is important to note here that the context of this study 

and participant sample may account for some of those differences given device 

familiarity and academic achievements of the participants. However, the extent of such a 

determinant cannot be fully known under the current conditions of the study. 

Surprisingly, even though the small text segments were segmented using a two-

three sentence rule and not “meaningful” chunking, causing content to be cut mid 

explanation, this appeared not to cause the cognitive overload resulting from split 

attention effect. Split attention effect occurs when a learner must integrate multiple 

sources of information in order to understand it, such that the individual pieces of 
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information cannot be understood in isolation (Ayres & Sweller, 2005; Hollender et al., 

2010; Kalyuga et al., 1999; Mayer & Fiorella, 2014; Sweller et al., 1998). The process of 

holding information in working memory, while simultaneously attempting to integrate it 

with other information is cognitively demanding (Cierniak et al., 2009; Kalyuga et al., 

1999; Mayer & Moreno, 1998). The results of this study challenge previous studies 

which found split attention effect was especially true for low prior knowledge learners or 

novices who are viewing high intrinsic cognitive load material (Ayres & Sweller, 2005; 

Chandler & Sweller, 1991; Florax & Ploetzner, 2010), which is the exact relationship of 

the participants to the learning content of this study. In other words, the participants in 

this study had not examined the material in question, which the faculty assured was of 

high intrinsic load, making those students novices to some degree. 

As pertains to user perspective, only perceived ease of use (PEU) was affected by 

text segmentation (RQ2c). Participants with the medium text treatments gave higher 

ratings for PEU than did participants with continuous and small text segment treatments. 

There were no differences between text segmentation treatments by perceived use (PU), 

use intentions (UI), and perceived satisfaction (PS). 

Implications for instructional design 

In terms of instructional design, the RQ2 results spark an interesting conversation 

pertaining to reading comprehension and the segmentation effect, as they inform the 

active segmenting of content by instructional designers. Segmentation of text provides 

learner-controlled (Hassanabadi et al., 2011; Sung & Mayer; 2013), or automatic pauses 

(Mayer & Chandler, 2001), which break up the transience of dynamic text (Spanjers et 

al., 2012). Pauses allow the readers to catch up (Mayer, 2003), reread for better 

understanding (Byrne & Curtis, 2000; Furnham et al., 1990, 1988; Hyönä & Nurminen, 
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2006; Kozma, 1991; Schmidt-Weigand et al., 2010; Schüler et al., 2011), and process the 

new information before moving on (Spanjers et al., 2010). Implementing text 

comprehension strategies (Furnham et al., 1990) allows readers to read at their own pace 

(Schüler et al., 2011). In this study, participants may have used these strategies no matter 

the treatment, which may account for the lack of significance differences between said 

treatments. 

However, the segmentation effect (Mayer & Moreno, 2002, 2003) of the 

Cognitive Load Theory, specifically states that “segments” are learning pieces that have 

been divided into meaningful content chunks (Ayres & Paas, 2012; Mayer & Chandler, 

2001; Wong et al., 2012). Pre-segmented content provides cues or signals to learners 

about boundaries of meaning (Moreno, 2007) which reduce cognitive load by removing 

that task from the working memory process. This in turn helps learners integrate 

information from the recent past to improve predictions about the near future (Kurby & 

Zacks, 2008), leading to an increase in what can be learned (Spanjers et al., 2010, 2012). 

Segmentation of text specifically was found to improve text comprehension (Ayres & 

Paas, 2012; Florax & Ploetzner, 2010), as segments inform learners how to create 

meaning units of the material (Florax & Ploetzner, 2010).  

In this study, it can be said that all three treatments were technically segmented. 

They were cut into chunks based on screen real estate (continuous text), as well as by the 

meaningful beginning and end of content (medium text segments), and finally by a 

sentence limiting rule (small text segments). No treatment outperformed the other when 

measured for learning outcomes and cognitive load. In this way, the findings contradict 

the idea that learning only benefits from segmentation when content is segmented into 

meaningful pieces, for although the various segmentation treatments seemed to generally 
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benefit from segmentation, they did not fully meet the criteria for segmentation defined 

by previous studies. 

Interactions between mobile device and text segmentation (RQ3)  

The final set of research questions looked for possible interactions between 

mobile screen display size and orientation and text segmentation on learning outcomes 

(RQ3a), cognitive load (RQ3b) and user perception (RQ3c). Results indicated no 

interaction effects between mobile device screen display size and orientation and text 

segmentation. In other words, there was no statistical association between screen 

size/orientation and text segmentation on learning outcomes, cognitive load, or user 

perception. This is not to say that individual participant results were not a result of both 

the device and the text treatment. Rather, this indicates that there was so little variance in 

the treatment means that an affect was not found.  

FUTURE RESEARCH 

This study laid the empirical foundation for numerous future studies that could 

help identify and explore learning design principles for mobile devices in authentic ways. 

Mobile smartphone applications  

Given the low occurrence of dedicated mobile application development for the 

empirical study of mobile learning, future research will need to begin analyzing how such 

specifically designed applications influence learning and learner motivation. A majority 

of earlier studies did not design dedicated smartphone applications that allow for 

maximum control over screen real estate and content interactions.  Perhaps limited by 

capacity, budget, or time, several studies used simulated small screen displays instead of 

real mobile devices (Kim & Kim, 2012; Luong & McLaughlin, 2009). While still 
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valuable in terms of findings, such studies lack an authentic mobile/smartphone 

experience, which could potentially influence the results.  

Some studies did use mobile devices, but offered few details as to the thought 

process behind the design (Heo, 2003; Keefe et al., 2012; Liu et al., 2013, 2012; Reeves, 

et al., 1999; Sung & Mayer, 2013). Others created mobile web applications (Molina et al., 

2014) (as opposed to dedicated mobile applications), in which the screen display was 

decreased and manipulation of the content was limited by the web browsers (Churchill, 

2011). Though some studies examined the effectiveness of specific dedicated mobile 

applications (Liu et al., 2013; Seraj & Wong, 2014), they offered little in the way of 

generalizable and actionable design principles. Additionally, it appeared that many of the 

studies comparing large and small screen displays retrofitted the design of the large 

screen for the small one (Churchill & Hedberg, 2008; Molina et al., 2014). Some even 

recommended that this process was ideal for smartphone learning, i.e., design for 

eLearning, then fit for mobile (Ahmadi & Kong, 2012; Churchill, 2011; Wang & Shen, 

2012). This does not take into account, however, the differences in touchscreen, size, 

interaction capabilities, and user expectations. Smartphones offer a completely different 

ergonomic experience than a desktop PC or laptop (Maniar et al., 2008; Seraj & Wong, 

2014). There are differences even in the way human eyes are capable of viewing the 

screens (Seraj & Wong, 2014).  

This study created two dedicated smartphone applications, recorded the design 

and development process, and specifically compared these smartphone applications to 

one another and to a web version of the application. The results already contradicted 

earlier studies. Future research that would build upon this must include the creation and 

testing of dedicated applications, both in terms of design process and implantation. The 
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results of such studies will help further identify repeatable and generalizable design 

principles for mobile learning. 

Dedicated smartphone applications verses mobile web applications 

Another interesting possibility for future research would, in a similar vein as this 

study, compare dedicated smartphone applications with web applications accessed via 

smartphones instead of laptops. This way, all treatments would be accessed via 

smartphone, allowing the researcher to compare dedicated smartphone applications with 

mobile web applications accessed from the same screen size. This would help identify 

any differences between dedicated and mobile web apps that may influence design 

choices for smartphone learning. 

Text segmentation criteria 

Given the results in this study, there seems more still to learn about text 

segmentation principles for small screen mobile devices. RQ2 identified that medium text 

was perceived as easier to use in this circumstance, but there is no way to determine why 

this is under the current study.  Text comprehension research suggests that in instances 

like this one, where the text is long and has high intrinsic cognitive load, text is superior 

to audio/visual and/or audio (Fournier, 2013; Kalyuga, 2000; Kintsch, 1994; Mannes & 

Kintsch, 1987; Schüler et al., 2013; Schüler et al., 2012), however there is little beyond 

that to inform design choices for small screens. Though studies on the reverse modality 

effect questioned the superiority of dual-modal presentation for learning, there remains a 

question about how to craft a single-mode presentation of materials through the lens of 

Cognitive Load Theory (CLT) and the Cognitive Theory of Multimedia Learning 

(CTML), in other words, how to craft such presentations in ways that minimize cognitive 

overload and promote schema construction and automation. Kintsch (1994) and 
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McNamara et al. (1996) distinguished that elaborately descriptive passages work best for 

novices, while simple passages, with limited descriptions work better for experts. Outside 

of this recommendation, there is little offered in the way of how to design appropriate 

text-only passages, much less in terms of constructing this type of learning for a small 

screen mobile display. Eitle et al. (2013) even admitted that their study did not aim to 

find the “optimal way to present text and pictures with regard to learning success” (p. 

60). Hassanabadi et al., (2011) noted that future research should examine the critical role 

of segmentation length, pointing out that length of segments is different than how much 

is on screen. Segmentation is an important design implication for mobile learning 

(smartphones specifically) because the limitations of the screen displays may require 

different or extra criteria for proper segmentation. This study identified that medium-

sized segments may be preferred in mobile settings, but there is still much to learn.  

Dual- and multi-modal instruction 

Sung and Mayer (2013) suggest that cognitive design principles work across 

devices and this has been supported by other recent studies (Ayres & Paas, 2012; Sweller 

et al., 2011; Wong et al., 2012).  However, these principles are generally applied to the 

design as a whole. They do not advise on how to design efficient individual elements. In 

the case of single modal instruction (i.e. pictures only, text only), there are limits to 

applying them (Reimann, 2003).  This study used the segmentation effect and reading 

comprehension strategies to dissect chemistry text into large, medium, and small pieces 

to determine the best text length for web and mobile applications. 

While split attention effect is more straightforwardly mitigated because it is easier 

to identify and the design recommendations for avoiding it are somewhat specific, even 

for small screen mobile displays, the modality effect adds a layer of design complexity. 
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Several studies (Ginns, 2005; Hassanabadi et al., 2011; Kalyuga et al., 2000; Reimann, 

2003; Savoji et al., 2011; Schmidt-Weigand et al., 2010) mention the relationship 

between prior-knowledge and the occurrence or disappearance of cognitive load effects 

given this range of novice to expert. In cases where the material has high intrinsic 

cognitive load and the learners are novices, Mayer (2003, 2005, 2009) recommends a 

dual-modal approach. In some cases, however, the material does not lend itself to images, 

and/or is more complex than can be communicated through audio/visual presentation.  

Meanwhile, smartphone users have certain expectations for interacting with their 

smartphones. Future research might build upon this study by exploring ways to combine 

text segmentation with audio, visual, and interactive elements in ways that maintain 

proper levels of cognitive load, while also increasing learning and user perception. Such 

specific design principles would be extraordinarily useful.  

About laptops 

The literature is clear that positive user acceptance and perspective of any mobile 

learning platform is crucial for its success (Mostakhdemin-Hosseini, 2009-1; Terras & 

Ramsey, 2012; Bhaskar et al., 2010). This study found that for this specific activity, 

laptops were slightly more accepted by participants than smartphones. Future studies that 

explored exactly why this is might help smartphone application designers improve 

learning design to equalize this difference. 

Application within various contexts 

The context of this study was very specific in that it was conducted in a higher 

education chemistry course, in which students were close to the same age, had regular 

access to and extensive experience with mobile devices and online content, and were 

academically high achieving students. Conducting this study under different 
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circumstances and with a different participant group may affect the results. Future 

research, therefore, might conduct a similar study with different age groups. A middle 

school group, for example, may produce different results given that they have never 

known a time without smartphones. While a group of older participants may result in 

completely different findings given they may not operate smartphones with the same 

level of expertise as the participants in this study. 

Future research might consider conducting this study outside of the formal 

education setting, maybe in an office setting or an informal learning setting. For example, 

conducting a similar study inside a large company may reveal quite different findings if 

work content was delivered in ways similar to this study. 

Future research might conduct the similar studies using different content to 

determine if mobile device and text segmentation would unveil similar findings in 

various content areas. A history text, for example, may be received differently than a 

chemistry text when presented in this way. Such studies would be important in better 

understanding if design principles are really universal, or if instead, they are better 

practiced in only limited educational contexts. 

Expanding learning outcomes 

Finally, this study looked at immediate recall of the material, called learning 

outcomes for the purposes of this study. However, simply measuring immediate recall 

offers only one small piece of understanding the depth of learning in this scenario. Future 

research that conducts similar studies might consider examining postponed recall, 

retention over time, and transfer of knowledge.  
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LIMITATIONS OF THIS STUDY 

This research had known technology, design, execution, and measurement 

limitations. From a technology perspective, this study did not include all of the possible 

comparisons. A full comparison would have included treatments that accessed the web 

application using a smartphone through the mobile web, as well as, a laptop treatment 

that was downloaded to the laptop like a software program and accessed outside of the 

web browser. Making this comparison in a balanced way would have required both web 

and dedicated treatments be created for all devices, which would have increased the 

number of participants required and extended the workload beyond the boundaries of 

practicality considering time and budget. The comparison between web and dedicated 

applications is an important one that should be examined in the future. 

A second limitation (both a technology and design condition) of this study was 

that navigation and input of the learning module differed between the laptops, which used 

both mouse/click navigation and touchscreens, and smartphones, which had touchscreens. 

Touchscreen technology offers a unique experience to the user. There are numerous 

studies on touchscreen technology (see Brasel & Gips, 2014; Fong-Gong Wu, 2011a, 

2011b; Shamus P. Smith, 2012; Sunghyuk Kwon, 2010). While this is an interesting facet 

of mobile technology to research, the touchscreen interaction was not a focus here. To 

mitigate this limitation, the applications were designed with minimal navigation; however 

it is not known what affect device input and navigation had on learning outcomes, 

cognitive load, or user perception.  

A third limitation of this study appertained to the lack of control over the mobile 

devices of the participants, which spanned consumer brands, operating systems, and size 

variations. While these differences may have had no effect on the results, there was no 

way to either (a) control for all variables, or (b) assign weight to possible associations on 
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the results. Without providing a thousand devices, this may always be a limitation of this 

type of study. 

A fourth limitation of this study was time span. This study was completed within 

a single class period (from the student’s perspective). Therefore, some of the self-

reported answers may have been influenced (in positive and negative ways) by the 

brevity of the study. Learning outcomes, cognitive load, and user perception may change 

if the participants accessed material in similar ways all semester long, or over the course 

of several weeks. In this way, this particular study provides only a snapshot of a moment 

of learning, rather than a long-term learning experience. 

A final limitation concerned the learning outcomes test. The current study only 

measured immediate recall given the parameters of the data collection environment and 

limited access to the participants in that setting. However, measuring for transfer and 

retention over time might reveal the long-term learning potential of such text and device 

treatments. This is an area where future research would mostly likely unveil more 

specific learning design guidelines. It would additionally, allow for the creation of 

empirically validated instruments and pre- and post-tests. 

SUMMARY 

There is much yet to add to our understanding of mobile learning design, specific 

to smartphones. This research verified the proliferation of smartphones in the fabric of 

higher education and the expertise with which students utilize the devices. While 

smartphones are abundant among higher education campuses, they are not yet utilized at 

length in the classrooms. In part, this is true because there is a decided lack of 

customized, dedicated applications for use in higher education classrooms.  
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Designing effective learning applications for smartphones requires accurate 

design principles. Such principles can only be authenticated under circumstances similar 

to those with which mobile device users are accustomed. In this way, the look, feel, and 

interaction of the applications under study must replicate those applications preferred by 

the users. Three dedicated applications were designed for this study and the results 

challenged findings from previous studies that did not use dedicated applications, 

demonstrating the importance of authentic delivery. 

This study used learning outcomes, cognitive load, and user perception to help 

gauge the effects of mobile device display size and orientation, as well as text 

segmentation on learning outcomes, cognitive load, and user perception. The findings 

suggested that when learning is designed for the device, the gap between learning from 

smartphones and laptops is diminished, although user perception may still vary. 

Empirical exploration of the pros and cons of mobile learning design principles will 

require measuring learning applications in multiple ways, so a more complete picture can 

be drawn.  

Finally given the required cost and development time, it would be ideal if 

researchers could work together and build on or improve dedicated applications such that 

researchers are not required to start from scratch with every query. This would save time 

and money, as well as allow for expanding research. 
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Appendix 

APPENDIX A:  DEMOGRAPHIC AND MOBILE LEARNING PROFILE (DMLP) 

DMLP = 16 total items 
Social demographic items (SD) – 3 items 
(single selection) 

SD1 Gender: Male, Female 
SD2 Race: Caucasian, Black, Hispanic, Asian, Other 
SD3 Age: Under 18, 18, 19, 20, 21, 22, 23, 24, 25, Over 25 
SD4 What was your GPA in Chemistry 301 (please round to the nearest GPA)? 

1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00 

 
Mobile device experience, ownership, and expertise (MDE) – 4 items 
(For items MDE2-4: 5 pt. Likert scale where 1 is “no experience” and 5 is “well 
experienced”) 
MDE1 I own the following mobile devices: (select all that apply) 

Laptop, tablet, smartphone, mp3/iPod, smartwatch 
MDE2 Experience in the use of mobile devices. 
MDE3 Experience in the use of a smartphone device. 
MDE4 Experience in the use of mobile learning tools. 

 
Attitude towards mobile learning (AML) – 6 items 
(5 pt. Likert scale where 1 is “no experience” and 5 is “well experienced”) 
AML1 I think it’s useful to use mobile devices and educational contexts. 
AML2 I think it’s useful to use mobile devices to study. 
AML3 I think it’s useful to use smartphones and tablets in educational contexts. 
AML4 I think it’s useful to use smartphones and tablets to study. 
AML5 I prefer to use a desktop computer or laptop to study. 
AML6 To study, I prefer to print the material. 
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APPENDIX B:  LEARNING OUTCOMES: PROTONATION RECALL (LO)  

 
Post-test on protonation (LO) – 15 items 
(single selection) 

LO1 
Answer: 

C 

An acid that is protonated: 
A. Has lost all of its acidic protons 
B. Is an uncommon form of an acid used in biologic research 
C. Has its acidic proton(s) “on” 
D. Is a term used only for polyprotic acids 

 
LO2 

Answer: 
D 

Understanding how pH affects the protonation states of compounds is 
important in biochemical research and in particular pharmaceutical 
development because: 

A. The pH of biological systems is not buffered. 
B. The body takes up compounds the same regardless of charge. 
C. Blood tends to be much more acidic than stomach acid. 
D. The solubility of compounds changes dramatically as their 

protonation states change. 
 

LO3 
Answer: 

A 

For a conjugate acid/base pair, the conjugate acid is the ______ form and the 
conjugate base is the ______ form? 

A. protonated; deprotonated 
B. deprotonated; protonated 

 
LO4 

Answer: 
B 

When the pH of a solution equals the value of the pKa of an acid, what can 
we say about the concentrations of the protonated form of the acid, HA, and 
its deprotonated form A-? 

A. [HA] > [A-] 
B. [HA] = [A-] 
C. [HA] < [A-] 

 
LO5 

Answer: 
A 

When the pH of a solution is greater than the pKa of the acid, what is true of 
the ratio of the protonated, HA, to the deprontated, A-, form of the acid 
[HA]/[A-]? 

A. [HA]/[A-] < 1 
B. [HA]/[A-] = 1 
C. [HA]/[A-] > 1 
D. [HA]/[A-] = ½  
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LO6 
Answer: 

D 

Which of the following would be the protonated form of the base methyl 
amine, CH3NH2? 

A. CH3NH4
+ 

B. CH3NH- 
C. CH3NH2

+ 
D. CH3NH3

+ 
 

LO7 
Answer: 

A 

The pKa of formic acid is 3.75. In a solution with pH = 2.52, which will 
have the highest concentration? 

A. Formic acid, HCOOH 
B. The formate ion, HCOO- 
C. They will be equal 

 
LO8 

Answer: 
B 

A polyprotic acid has: 
A. An unknown amount of protonation states 
B. Multiple acidic protons 
C. At least two amine functional groups 

 
LO9 

Answer: 
D 

A polyprotic acid has two Ka values. How many protonation states does this 
acid have? 

A. Zero 
B. One 
C. Two 
D. Three 

 
LO10 

Answer: 
B 

There exists some polyprotic acid, H2A, with the following pKa values: 
 
pKa1 = 1.92 
pKa2 = 7.18 
 
Would this acid be fully protonated, fully deprotonated or somewhere in-
between at pH 10? 

A. Fully Protonated 
B. Fully Deprotonated 
C. Somewhere in-between 
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LO11 
Answer: 

B 

Phosphoric acid, H3PO4 , has three acidic protons with the following pKa 
values and equilibrium reactions: 
 
H3PO4 (aq) + H2O (l)  H2PO4

-
 (aq) + H3O

+ (aq)    pKa1 = 2.15 
H2PO4

-
 (aq) + H2O (l)  HPO4

2-
 (aq) + H3O

+ (aq)   pKa2 = 7.2 
HPO4

2- (aq) + H2O (l)  PO4
3-

 (aq) + H3O
+ (aq)     pKa3 = 12.35 

 
At which pH would we observe equal concentrations of H2PO4

- and HPO4
2- 

in solution? 
A. 2.15 
B. 7.20 
C. 12.35 
D. 14.00 

 
LO12 

Answer: 
B 

A certain drug must be deprotonated to properly bind at its active site and 
therefore perform its desired function. A doctor should carefully consider: 
If the drug is deprotonated when given to the patient because it will remain 
this way in the body. 

A. How the drug is administered (IV versus orally) because the pH of 
the body differs in different parts of the body 

B. How to neutralize the drug before entering the body to minimize the 
damage to the human systems. 

 
LO13 

Answer: 
C 

 

A particular drug is more readily absorbed when it is uncharged. This drug is 
a weak base and remains uncharged only when deprotonated. It has a pKa of 
6.4 at its active site. 
 
Will this drug be better absorbed in the stomach (pH = 2) or in the small 
intestine (pH = 7.5)? 

A. The stomach because the the pH is high enough to deprotonate the 
drug. 

B. The stomach because the the pH is low enough to deprotonate the 
drug.  

C. The small intestine because the the pH is high enough to deprotonate 
the drug. 

D. The small intestine because the the pH is low enough to deprotonate 
the drug. 

 
LO14 

Answer: 
C 

A new medication has a pKa of 7.40. In which bodily system will the 
medication be about equally protonated and deprotonated? 

A. pH values of all biological systems vary too greatly to say 
B. The stomach; pH between 2 and 3 
C. The blood; pH between 7.35 and 7.45 
D. The large intestine; pH between 5.5 and 7 
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LO15 

Answer: 
C 

Hemoglobin, a blood protein, changes protonation state based on the pH of 
its environment. The pH of venous blood is slightly lower the pH of arterial 
blood. You will find a greater concentration of protonated hemoglobin in 
which type of blood? 

A. Venous blood because its lower pH results in a higher degree of 
protonation. 

B. Arterial blood because its lower pH results in a higher degree of 
protonation. 

C. Venous blood because its higher pH results in a higher degree of 
protonation. 

D. Arterial blood because its higher pH results in a higher degree of 
protonation. 
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APPENDIX C:  COGNITIVE LOAD MEASUREMENT (CLM) 

This is what full sentence looks like. I am tired of formatting this shit and hope 

the rest of it goes quickly! 

 
Cognitive load measurement (CLM) – 10 items 
(10 pt. rating scale) 
INSTRUCTIONS: All of the following questions refer to the mobile learning activity 
that just finished. Please respond to each question on the following scale (0 means not 
at all the case and 10 means completely the case). 0,1,2,3,4,5,6,7,8,9,10 

In
tr

in
si

c 
co

gn
it

iv
e 

lo
ad

 (
IC

L
) 

CLM1 The topics covered in the activity were very complex.  
CLM2 The activity covered chemistry formulas that I perceived as very 

complex. 
CLM3 The activity covered concepts and definitions that I perceive as very 

complex. 
 

E
xt

ra
ne

ou
s 

co
gn

it
iv

e 
lo

ad
 (

E
C

L
) 

CLM4 The instructions and/or explanations during the activity were very 
unclear. 

CLM5 The instructions and/or explanations were, in terms of learning, very 
unclear. 

CLM6 The instruction and/or explanations were full of unclear language. 
 

G
er

m
an

e 
co

gn
it

iv
e 

lo
ad

 
(G

C
L

) 

CLM7 The activity really enhanced my understanding of the topics covered. 
CLM8 The activity really enhanced my knowledge and understanding of 

protonation state. 
CLM9 The activity really enhanced my understanding of the chemistry 

formulas covered. 
CLM10 The activity really enhanced my understanding of the concepts and 

definitions. 
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APPENDIX D:  USER PERCEPTION SURVEY (UPS) 

This is what full sentence looks like. I am tired of formatting this shit and hope 

the rest of it goes quickly! 

 
Technology Acceptance Method (TAM) – 8 items  
(5 pt. Likert scale where 1 is “strongly disagree” and 5 is “strongly agree”) 
PEU1 Studying learning materials using this device is easy for me. 
PEU2 My interaction with this device has been flexible, direct, and fluid. 
PEU3 Overall, I believe that this learning environment is easy to use. 

 
PU1 I think that the use of this type of device could help me in my learning tasks. 
PU2 Using this device enables me to accomplish study tasks more quickly. 
PU3 Overall, I find that using this device is a useful studying tool. 

 
UI1 I intend to use this device for studying in the future. 
UI2 I would recommend the use of this device for study. 

 
Perceived Satisfaction (PS) – 4 items 
(5 pt. Likert scale where 1 is “strongly disagree” and 5 is “strongly agree”) 

PS1 I am satisfied with accessing learning contents using this device. 
PS2 I am satisfied with the interaction with this device for studying. 
PS3 I think that using this device for learning could be motivating. 
PS4 I like using this device for studying. 
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APPENDIX E:  MOBILE DEVELOPMENT DOCUMENTS AND INFORMATION 

The mobile applications for this study were created from scratch. I created the 

architecture and design of the application, as well as created all graphics included. The 

content was provided by the chemistry department and was taken from their online 

course material. The text, however, was retrofitted to meet the device display and text 

segmentation parameters of this study.  

The programming was completed by three different coders, an iOS programmer 

from Austin, and Android programmer from San Francisco, and a web and database 

programmer from Salt Lake City. These programmers were interviewed and hired to 

complete the project for a total cost of $3,000.  

The planning, architecture, and graphics development occurred over the course of 

four months (from November through February). The coding, quality assurance (QA), 

and beta testing occurred following my dissertation proposal on January 31, 2015, and 

ran the length of February and through the first week of March. This was an unusually 

tight turn-around and as such, I had as much prepared ahead of time (documents, 

graphics, etc.) as possible. 

The project was not without its challenges. In addition to managing the schedules 

of three programmers in three different states, it was difficult to ensure that all three 

applications looked alike. This required a significant bit of back and forth, as well as 

several hours of beta testing and QA.  

The database collected an enormous amount of data and had to be created 

specifically for this project. All three applications fed into the same database, which 

produced a comma delimited file with two hundred and eight columns of information. To 

ensure that each column was properly functioning also required detailed testing. 
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The following is the development document that was created for the various 

developers. The document was directly copied, and as such does not follow the standard 

APA formatting. I decided to include it to demonstrate how robust the planning and 

communication was for the applications development. 

________________________________________________________________________ 
LAPTOPS ONLY – Dark Gray highlight 
SMARTPHONES ONLY – Light Gray highlight  
 
SMARTPHONE Icon 
For smartphones only, the screen icon: 
 

 
Icon: Asset file(s):  
research-101-icon.png 
 
Visual Screen Details (bkgd color, font, etc.) 
Unless a graphic is provided all backgrounds should be gray (R242, G242, B242). 
Answer selections should fill in circles with RGB Blue. 
INSTUCTIONS, CLASS SELECTION, and AGREEMENT: Black, Arial, Size (see 
samples) 
Question Items Font: Black, Times New Roman, Size (see samples) 
 
Loading screen – (smartphone apps ONLY) 
 

 
Loading screen: Asset file(s):  
research-101-loadingscreen.png 
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Screen 1: Home screen - Welcome Message  
 
Welcome to the Research 101 [Web, iPhone, Android] Application.  
 
This application is specifically for use for Angela Marie Karam’s dissertation research, 
through the University of Texas at Austin, College of Education, Department of 
Curriculum and Instruction and the College of Natural Sciences, Department of 
Chemistry, entitled “A comparison of the effects of mobile device display size and 
orientation, and text segmentation on learning, cognitive load, and user perception in a 
higher education chemistry course.” 
© 2015 All material is copy righted and intellectual property owned by Angela Marie 
Karam. 
 

    
Screen 1: Asset file(s): 
research-101-homescreen-start.png 
research-101-homescreen-startselect.png 
 
Screen 2: Participation Agreement  
 
Consent to Participate in Research 
 
Identification of Investigator and Purpose of Study 
 
You are invited to participate in a research study, entitled “A comparison of the affects of 
mobile device display size and orientation, and text segmentation on learning, cognitive 
load, and user perception in a higher education chemistry course.”  The study is being 
conducted by Angela Karam, PhD Candidate, Department of Curriculum and Instruction, 
College of Education, The University of Texas at Austin, available at 
angmkaram@gmail.com. 
 
The purpose of this research study is to examine how mobile device screen display size 
and orientation and text segmentation affect learning, cognitive load, and user perception. 
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Your participation in the study will contribute to a better understanding of instructional 
design principles to improve learning, balance cognitive load, and enhance user 
perception of learning from display specific mobile devices.  You are free to contact the 
investigator at the above email address to discuss the study.  You must be at least 18 
years old to participate. 
  
If you agree to participate: 
The learning module will take approximately 50 minutes of your time. 
You will complete an activity about protonation state. 
You will be compensated for your participation by receiving in-class credit for the day of 
the study. 
 
Risks/Benefits/Confidentiality of Data 
 
There are no known risks.  There will be no costs for participating, nor will you benefit 
from participating.  Your name and personal information will not be collected. You will 
instead be assigned a random user ID. A limited number of research team members will 
have access to the data during data collection.  
 
Participation or Withdrawal 
 
Your participation in this study is voluntary.  You may decline to answer any question 
and you have the right to withdraw from participation at any time.  Withdrawal will not 
affect your relationship with The University of Texas in anyway.  If you do not want to 
participate either simply stop participating or close the browser window.   
 
This study will be finished today and we will not contact you in any way in the future. 
 
Contacts 
 
If you have any questions about the study, contact the researcher Angela Karam via email 
at angmkaram@gmail.com.  This study has been reviewed by The University of Texas at 
Austin Institutional Review Board and the study number is [STUDY NUMBER]. 
  
Questions about your rights as a research participant. 
If you have questions about your rights or are dissatisfied at any time with any part of this 
study, you can contact, anonymously if you wish, the Institutional Review Board by 
phone at (512) 471-8871 or email at orsc@uts.cc.utexas.edu.  
 
If you agree to participate, click the AGREE button below; otherwise, please exit the 
learning module now. 
 
Thank you. 
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Agree  Will Not Participate 
    
Data spreadsheet:  
Column D 

Column 
name 

AGREE 

Column 
returns 

0 = Agree  
1 = Will not participate 

 
Backend: Device Determination 
 
LAPTOPS: Automatically returns “laptop” 
SMARTPHONES: What device are they using? 
 
Data spreadsheet:  
Column F 
Column 
name 

MOBILE 

Column 
returns 
(alpha) 

Laptop 
iPhone 5 
S4 
S5, etc. 

 
Backend: Participant ID Assignment 
Assigns Numeric ID Based on order of “agree” 
 
iPhones ID#s:   1001-1999 
Andriod ID #s:  2001-2999 
Laptops ID #s:  3001-3999 
 
Data spreadsheet:  
Column C 
Column 
name 

PID 

Column 
returns 

1001 
1002 
1003 
1004, etc 

   
Backend: Device and Treatment Assignment 
 
Independent variable groups: Devices (3) and Text segmentation (3)  
Treatments: Combination of device and text segmentation (9)  
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  Text Segmentation 

TS1 TS2 TS3 
D

ev
ic

e 
T

re
at

m
en

ts
 LT T1a T2d T3g 

SML T1b T2e T3h 

SMP T1c T2f T3j 

 
 
How assignments are made 
 
LAPTOP: Examples of random treatment assignment for laptops (3 total 
treatments): 
Laptop 1 clicks agree and is assigned T1a (continuous text passage). 
Laptop 2 clicks agree and is assigned T2d (medium segments). 
Laptop 3 clicks agree and is assigned T3g (short segments). 
Laptop 4 clicks agree and is assigned T1a (continuous text passage). 
Laptop 5 clicks agree and is assigned T2d (medium segments). 
Laptop 6 clicks agree and is assigned T3g (short segments), etc. 
 
SMARTPHONE: Examples of random treatment assignment for smartphones (6 
total treatments): 
Smartphone 1 clicks agree and is assigned T1b (landscape, continuous text passage). 
Smartphone 2 clicks agree and is assigned T1c (portrait, continuous text passage). 
Smartphone 3 clicks agree and is assigned T2e (landscape, medium segments). 
Smartphone 4 clicks agree and is assigned T2f (portrait, medium segments). 
Smartphone 5 clicks agree and is assigned T3h (landscape, short segments). 
Smartphone 6 clicks agree and is assigned T3j (portrait, short segments). 
Smartphone 7 clicks agree and is assigned T1b (landscape, continuous text passage). 
Smartphone 8 clicks agree and is assigned T1c (portrait, continuous text passage). 
Smartphone 9 clicks agree and is assigned T2e (landscape, medium segments). 
Smartphone 10 clicks agree and is assigned T2f (portrait, medium segments). 
Smartphone 11 clicks agree and is assigned T3h (landscape, short segments). 
Smartphone 12 clicks agree and is assigned T3j (portrait, short segments), etc. 
 
Data spreadsheet:  
Column G 
Column 
name 

DEVICE 

Column 
returns 

1 = LT = laptop 
2 = SML = smartphone landscape 
3 = SMP = smartphone portrait 
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Data spreadsheet:  
Column H 
Column 
name 

TEXT 

Column 
returns 

1 = TS1 = continuous text 
2 = TS2 = medium segments 
3 = TS3 = short segments 

   
Data spreadsheet:  
Column I 
Column 
name 

TRTMT 
LOGIC  
#: ColG + ColH  is DEVICE+TEXT = TRTMT 

Column 
returns 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Laptops (will always assign 1,4,7): 
1: 1+1 is LT+TS1 = T1a 
4: 1+2 is LT+TS2 = T2d 
7: 1+3 is LT+TS3 = T3g 
 
Smartphones (will always assign 2,3,5,6,8,9): 
2: 2+1 is SML+TS1 = T1b 
3: 3+1 is SMP+TS1 = T1c 
5: 2+2 is SML+TS2 = T2e  
6: 3+2 is SMP+TS2 = T2f 
8: 2+3 is SML+TS3 = T3h 
9: 3+3 is SMP+TS3 =  T3j  

 Screen 3: Class Selection 
 
Class# Day Time Prof 
50140 MWF 10:00-11:00 MCCORD 
50145 MWF 11:00-12:00 MCCORD 
50203 MWF 1:00-2:00 BIBERDORF 
50150 TTH 9:30-11:00 VANDEN BOUT 
50155 TTH 11:00-12:30 SPARKS 
50160 TTH 12:30-2:00 SPARKS 

NOTE: Students will see class number, day/time, and prof so they know to pick the 
correct class. 
However, Class# is the only item that will go into the data spreadsheet.  
 
Data spreadsheet:  
Column B 
Column 
name 

CLASS_ID 
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Column 
returns 

50140 
50145 
50203 
50150 
50155 
50160 

Screen 3a (LAPTOP ONLY): 
 
Are you using a touchscreen laptop?  
 

Yes  No 
 
NOTE for SMARTPHONE: Should automatically put a “1” in Column E 
 
Data spreadsheet:  
Column E 
Column 
name 

INPUT 

Column 
returns 

0 = mouse  
1 = touchscreen 

   
Section 1 Instructions/Assets 
LAPTOP:  
Read the following carefully: 
 
The Research 101 UTCOE application has three main sections: 
Section 1: Pre-lesson survey 
Section 2: Protonation state learning material 
Section 3: Post-lesson test and survey  
 
Once you begin, you must complete the full activity.  DO NOT leave the application until 
you are finished or your responses will not be saved. 
 
You must answer every question to complete the study. 
 
Once you leave each section, you will not be able to return to it. 
 
If you have any questions, please raise your hand and a facilitator will come to you. 
 
When you are ready to begin, click/tap the START button below. 
 

START Section 1 
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SMARTPHONES:  
 
Use images provided. 

     
Section 1: Asset file(s): 
Section 1 Instructions start.png 
Section 1 Instructions start_selected.png 
Section 1: Pre-lesson Survey Questions 
Demographic and mobile learning profile (DMLP) 14 total items 
Questions will appear as one survey to participants with no breaks in between question 
sections. 
 
Social demographic items (SD) – 4 items 
(single selection) 
Code Item text/copy and possible answers 
SD1 1. Select your gender. 

Male, Female 
SD2 2. Select your race. 

White, black, Hispanic, Asian, American Indian, Native Hawaiian/Pacific 
Islander, Other 

SD3 3. Select your age. 
Under 18, 18, 19, 20, 21, 22, 23, 24, 25, Over 25 

SD4 4. What was your GPA in Chemistry 301? (please round to the nearest half)  
1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00 

 
Data spreadsheet:  
Column J 
Column 
name 

SD1 

Column 
returns 

0=male 
1=female 

   
Data spreadsheet:  
Column K 
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Column 
name 

SD2 

Column 
returns 

1=white 
2=black 
3=hispanic 
4=asian 
5=american indian 
6=native hawaiian/pacfic islander 
7=other 

  
Data spreadsheet:  
Column L 
Column 
name 

SD3 

Column 
returns 

17=younger than 18 
18 
19 
20 
21 
22 
23 
24 
25 
26=older than 25 

   
Data spreadsheet:  
Column M 
Column 
name 

SD4 

Column 
returns 

1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

   
 
Mobile device experience, ownership, and expertise (MDE) – 4 items 
(For MDE2-4: 5 pt. Likert scale where 1 is “no experience” and 5 is “well 
experienced”) 
MDE1 5. I own the following mobile devices: (select all that apply) 

Laptop, tablet, smartphone, mp3/iPod, smartwatch 
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MDE2 6. Experience in the use of mobile devices. 
MDE3 7. Experience in the use of a smartphone device. 
MDE4 8. Experience in the use of mobile learning tools. 

 
Data spreadsheet:  
Column N 
Column 
name 

MDE1 
LOGIC 

Column 
returns 

1=laptop 
2=tablet 
3=eReader 
4=smartphone 
5=iPod 
6=smartwatch 
 

Should list in numerical order 
each number selected. EX: If they 
selected laptop, tablet, and 
smartphone, it would list the 
number 124 
1 for laptop, 2 for tablet, 4 for 
smartphone 

   
Data spreadsheet:  
Column O-Q 
Column 
name 

MDE2-MDE4 

Column 
returns 

1 no experience 
2 
3 
4 
5 well experienced 

    
Data spreadsheet:  
Column R 
Column 
name 

MDEAVG 
LOGIC 

Column 
returns 

#.### 
 

Will average totals of MDE2-
MDE4. 
 
(MDE2+MDE3+MDE4)/3 
 
EX: (2+3+5)/3 =3.667 

   
 
Attitude towards mobile learning (AML) – 6 items 
(5 pt. Likert scale where 1 is “strongly disagree” and 5 is “strongly agree”) 1,2,3,4,5 
AML1 9. I think it’s useful to use mobile devices in educational contexts. 
AML2 10. I think it’s useful to use mobile devices to study. 
AML3 11. I think it’s useful to use smartphones and tablets in educational contexts. 
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AML4 12. I think it’s useful to use smartphones and tablets to study. 
AML5 13. I prefer to use a desktop computer or laptop to study. 
AML6 14. To study, I prefer to print the material. 

 
Data spreadsheet:  
Column S-X 
Column 
name 

AML1-AML6 

Column 
returns 

1 strongly disagree 
2 
3 
4 
5 strongly agree 

    
Data spreadsheet:  
Column Y 
Column 
name 

AMLAVG 
LOGIC 

Column 
returns 

#.### 
 

Will average totals of AML1-AML6. 
 
(AML1+AML2+AML3+AML4+AML5+AML6)/
6 
 
EX: (1+4+2+3+5+4)/6 =3.16 

   
Section 1: Pre-lesson Survey Look and Feel 
Samples of each type of question on screen below.  
 

gender sample  race sample 
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age sample  GPA sample 
 

MDE 1 sample   MDE 2-4 sample 
 

AML 1-6 sample 
 
Missed Questions 
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If a question is not answered, the participant will be notified and given the question 
number they missed. This goes for all survey and test items in the module. 
 
Section 2 Instructions/Assets 
LAPTOP: When they have completed the first section 
 
You have completed the Section 1.  
 
Remember! Once you leave Section 1, you will not be able to return to it. 
 
In the following Section 2, you will be presented with chemistry material on Protonation 
State.  
 
Read through the material carefully.  
 
Take your time.  
 
You can revisit pages, as needed.  
 
A short test on the material and survey will follow this activity. 
 
When you are ready to begin Section 2, click/tap START. 
 

START Section 2 
 
SMARTPHONES:  
 
Use images provided. 

     
Section 2 Instructions: Asset file(s): 
Section 2 Instructions start.png 
Section 2 Instructions start_selected.png 
 
Section 2: Treatment options 
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The assigned treatment will load here. Screens will vary based on treatment, but screen 
numbers per text segmentation are the same across the board. (NOTE: only continuous 
text differs per device/orientation)  
 
Total screens/graphics per treatment group 

  Text Segmentation 

TS1 Continuous 
Text 

TS2 
Medium 
Segments 

TS3 
Small 
Segments 

D
ev

ic
e 

T
re

at
m

en
ts

 LT T1a (4 screens) T2d (14 screens) T3g (37 screens) 

SML T1b (9 screens) T2e (14 screens) T3h (37 screens) 

SMP T1c (8 screens) T2f (14 screens) T3j (37 screens) 

 
Data spreadsheet:  
Column  
LOGIC:(cumulative, so if they go to 
screen 2 and come back, it should add the 
times on screen 1 for total time on screen 
1. 
 
 

EX: Say they visit screen 1 for :30 
seconds then move to screen 2 for :20 
seconds, then come back to screen 1 for 
another :45 seconds, it would compute 
like this: 
TS11T = 1:15    added (0:30+0:45) 
TS11V = 2 
TS12T = 0:20 
TS12V = 1 

TS_T Column TS_V Column 

TS1_1T 
Treatment screen 
time 
TS1 = continuous 
text 
1=first screen of 
text 
T=total time on 
screen 

# TS1_1V 
Treatment screen 
time 
TS1 = continuous 
text 
1=first screen of text 
V=total times 
visiting screen 

# 

TS1 Continuous Text Treatments 
Laptop (4 screens) will only use TS1_1T,V through TS1_4T,V 
Smartphone landscape (9 screens) TS1_1T,V through TS1_9T,V 
Smartphone portrait (8 screens) TS1_1T,V through TS1_8T,V 
Leave additional columns blank. 

TS1_1T Z TS1_1V AA 
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TS1_2T AB TS1_2V AC 

TS1_3T AD TS1_3V AE 

TS1_4T AF TS1_4V AG 

TS1_5T AH TS1_5V AI 

TS1_6T AJ TS1_6V AK 

TS1_7T AL TS1_7V AM 

TS1_8T AN TS1_8V AO 

TS1_9T AP TS1_9V AQ 

TS2 Medium Segmented Text Treatments 

TS2_1T AR TS2_1V AS 

TS2_2T AT TS2_2V AU 

TS2_3T AV TS2_3V AW 

TS2_4T AX TS2_4V AY 

TS2_5T AZ TS2_5V BA 

TS2_6T BB TS2_6V BC 

TS2_7T BD TS2_7V BE 

TS2_8T BF TS2_8V BG 

TS2_9T BH TS2_9V BI 

TS2_10T BJ TS2_10V BK 

TS2_11T BL TS2_11V BM 

TS2_12T BN TS2_12V BO 

TS2_13T BP TS2_13V BQ 

TS2_14T BR TS2_14V BS 

TS3 Small Segmented Text Treatments 

TS3_1T BT TS3_1V BU 

TS3_2T BV TS3_2V BW 

TS3_3T BX TS3_3V BY 

TS3_4T BZ TS3_4V CA 

TS3_5T CB TS3_5V CC 

TS3_6T CD TS3_6V CE 

TS3_7T CF TS3_7V CG 

TS3_8T CH TS3_8V CI 

TS3_9T CJ TS3_9V CK 

TS3_10T CL TS3_10V CM 

TS3_11T CN TS3_11V CO 
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TS3_12T CP TS3_12V CQ 

TS3_13T CR TS3_13V CS 

TS3_14T CT TS3_14V CU 

TS3_15T CV TS3_15V CW 

TS3_16T CX TS3_16V CY 

TS3_17T CZ TS3_17V DA 

TS3_18T DB TS3_18V DC 

TS3_19T DD TS3_19V DE 

TS3_20T DF TS3_20V DG 

TS3_21T DH TS3_21V DI 

TS3_22T DJ TS3_22V DK 

TS3_23T DL TS3_23V DM 

TS3_24T DN TS3_24V DO 

TS3_25T DP TS3_25V DQ 

TS3_26T DR TS3_26V DS 

TS3_27T DT TS3_27V DU 

TS3_28T DV TS3_28V DW 

TS3_29T DX TS3_29V DY 

TS3_30T DZ TS3_30V EA 

TS3_31T EB TS3_31V EC 

TS3_32T ED TS3_32V EE 

TS3_33T EF TS3_33V EG 

TS3_34T EH TS3_34V EI 

TS3_35T EJ TS3_35V EK 

TS3_36T EL TS3_36V EM 

TS3_37T EN TS3_37V EO 
      
Data spreadsheet:  
Column EP 
Column 
name 

TRMTOT 
 

LOGIC 

Column 
returns 

##.## 
 

Will add all time from all text screens. 
So, if the treatment has five screens, it will add the 
totals from all five screens. 
EX: 
TS11T+TS12T+TS13T+TS14T+TS15T=TRMTO
T 
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Section 3 Instructions/Assets 
LAPTOP: WHEN THEY COMPLETE THE TEXT TREATMENT 
 
You have completed Section 2.  
 
Remember! Once you leave Section 2, you will not be able to return to it. 
 
In the following Section 3, you will take a short test on Protonation State, followed by 
survey questions. 
 
Please answer all questions. 
 
If you do not know an answer, please take your best educated guess. 
 
When you are ready to begin Section 3, click/tap START. 
 

START 
 
SMARTPHONES:  
 
Use images provided. 

     
Section 3: Asset file(s): 
Section 3 Instructions start.png 
Section 3 Instructions start_selected.png 
 
Section 3: Post-Lesson Test and Survey 
 
Learning outcomes: Protonation state recall (LO) Total 15 total items 
Post-test on protonation (LO) – 15 items 
(single selection) 
LO1 
Answer: 

An acid that is protonated: 
Has lost all of its acidic protons 
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C Is an uncommon form of an acid used in biologic research 
Has its acidic proton(s) “on” 
Is a term used only for polyprotic acids 

LO2 
Answer: 
D 

Understanding how pH affects the protonation states of compounds is 
important in biochemical research and in particular pharmaceutical 
development because: 
A. The pH of biological systems is not buffered. 
B.  The body takes up compounds the same regardless of charge. 
C.  Blood tends to be much more acidic than stomach acid. 
D. The solubility of compounds changes dramatically as their protonation 
states change. 

LO3 
Answer: 
A 

For a conjugate acid/base pair, the conjugate acid is the ______ form and the 
conjugate base is the ______ form? 
protonated; deprotonated 
deprotonated; protonated 

LO4 
Answer: 
B 

When the pH of a solution equals the value of the pKa of an acid, what can 
we say about the concentrations of the protonated form of the acid, HA, and 
its deprotonated form A-? 
[HA] > [A-] 
[HA] = [A-] 
[HA] < [A-] 

LO5 
Answer: 
A 

When the pH of a solution is greater than the pKa of the acid, what is true of 
the ratio of the protonated, HA, to the deprontated, A-, form of the acid 
[HA]/[A-]? 
[HA]/[A-] < 1 
[HA]/[A-] = 1 
[HA]/[A-] > 1 
[HA]/[A-] = ½  

LO6 
Answer: 
D 

Which of the following would be the protonated form of the base methyl 
amine, CH3NH2? 
CH3NH4

+ 
CH3NH- 
CH3NH2

+ 
CH3NH3

+ 
LO7 
Answer: 
A 

The pKa of formic acid is 3.75. In a solution with pH = 2.52, which will 
have the highest concentration? 
Formic acid, HCOOH 
The formate ion, HCOO- 
They will be equal 

LO8 
Answer: 
B 

A polyprotic acid has: 
An unknown amount of protonation states 
Multiple acidic protons 
At least two amine functional groups 
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LO9 
Answer: 
D 

A polyprotic acid has two Ka values. How many protonation states does this 
acid have? 
Zero 
One 
Two 
Three 

LO10 
Answer: 
B 

There exists some polyprotic acid, H2A, with the following pKa values: 
 
pKa1 = 1.92 
pKa2 = 7.18 
 
Would this acid be fully protonated, fully deprotonated or somewhere in-
between at pH 10? 
Fully Protonated 
Fully Deprotonated 
Somewhere in-between 

LO11 
Answer: 
B 

Phosphoric acid, H3PO4 , has three acidic protons with the following pKa 
values and equilibrium reactions: 
 
H3PO4 (aq) + H2O (l)  H2PO4

-
 (aq) + H3O

+ (aq)    pKa1 = 2.15 
H2PO4

-
 (aq) + H2O (l)  HPO4

2-
 (aq) + H3O

+ (aq)   pKa2 = 7.2 
HPO4

2- (aq) + H2O (l)  PO4
3-

 (aq) + H3O
+ (aq)     pKa3 = 12.35 

 
At which pH would we observe equal concentrations of H2PO4

- and HPO4
2- 

in solution? 
2.15 
7.20 
12.35 
14.00 

LO12 
Answer: 
B 

A certain drug must be deprotonated to properly bind at its active site and 
therefore perform its desired function. A doctor should carefully consider: 
If the drug is deprotonated when given to the patient because it will remain 
this way in the body. 
How the drug is administered (IV versus orally) because the pH of the body 
differs in different parts of the body 
How to neutralize the drug before entering the body to minimize the damage 
to the human systems. 

LO13 
Answer: 
C 
 

A particular drug is more readily absorbed when it is uncharged. This drug is 
a weak base and remains uncharged only when deprotonated. It has a pKa of 
6.4 at its active site. 
 
Will this drug be better absorbed in the stomach (pH = 2) or in the small 
intestine (pH = 7.5)? 
The stomach because the the pH is high enough to deprotonate the drug. 
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The stomach because the the pH is low enough to deprotonate the drug.  
The small intestine because the the pH is high enough to deprotonate the 
drug. 
The small intestine because the the pH is low enough to deprotonate the 
drug. 

LO14 
Answer: 
C 

A new medication has a pKa of 7.40. In which bodily system will the 
medication be about equally protonated and deprotonated? 
pH values of all biological systems vary too greatly to say 
The stomach; pH between 2 and 3 
The blood; pH between 7.35 and 7.45 
The large intestine; pH between 5.5 and 7 

LO15 
Answer: 
C 

Hemoglobin, a blood protein, changes protonation state based on the pH of 
its environment. The pH of venous blood is slightly lower the pH of arterial 
blood. You will find a greater concentration of protonated hemoglobin in 
which type of blood? 
Venous blood because its lower pH results in a higher degree of protonation. 
Arterial blood because its lower pH results in a higher degree of protonation. 
Venous blood because its higher pH results in a higher degree of protonation.
Arterial blood because its higher pH results in a higher degree of 
protonation. 

 
Data spreadsheet:  
 
Column 
name 

LO1-LO20 
LOGIC 

Column 
returns 

A 
B 
C 
D 
E 

LO1-LO20 
 
Should list which item they 
selected as the answer. 
 
A,B,C,D, or E 

Column 
name 

LO1P-LO20P 
LOGIC 

Column 
returns 

5=correct 
0=incorrect  

All LO items are multiple choice 
 

LO# Column LO#P Column 
LO1 EQ LO1P ER 
LO2 ES LO2P ET 
LO3 EU LO3P EV 
LO4 EW LO4P EX 
LO5 EY LO5P EZ 
LO6 FA LO6P FB 
LO7 FC LO7P FD 
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LO8 FE LO8P FF 
LO9 FG LO9P FH 
LO10 FI LO10P FJ 
LO11 FK LO11P FL 
LO12 FM LO12P FN 
LO13 FO LO13P FP 
LO14 FQ LO14P FR 
LO15 FS LO15P FT 

    
Data spreadsheet:  
Column FU 
Column 
name 

LOPER 
LOGIC 

Column 
returns 

100 
93.33 
86.67 
80 
73.33 
67.67 
60 
53.33 
46.67 
40 
33.37 
26.67 
20 
13.33 
6.67 
0 

Total out of 15 correct: 
Total correct = times 5 = percentage 
 
15 correct = 75 = 100% 
14 correct = 70 = 93.33% 
13 correct = 65 = 86.67% 
12 correct = 60 = 80% 
11 correct = 55 = 73.33% 
10 correct = 50 = 66.67% 
9 correct = 45 = 60% 
8 correct = 40 = 53.33% 
7 correct = 35 = 46.67% 
6 correct = 30 = 40% 
5 correct = 25 = 33.33% 
4 correct = 20 = 26.67% 
3 correct = 15 = 20% 
2 correct = 10 = 13.33% 
1 correct = 5 = 6.67% 
0 correct = 0 = 0 

 
 
Cognitive load measurement (CLM) 10 total items 
Cognitive load measurement (CLM) – 10 items 
(10 pt. rating scale) 
INSTRUCTIONS: All of the following questions refer to the mobile learning activity 
that just finished. Please respond to each question on the following scale (0 means not 
at all the case and 10 means completely the case). 0,1,2,3,4,5,6,7,8,9,10 
CLM1 1. The topics covered in the activity were very complex.  
CLM2 2. The activity covered chemistry formulas that I perceived as very complex. 
CLM3 3. The activity covered concepts and definitions that I perceive as very 



241 

 

complex. 
CLM4 4. The instructions and/or explanations during the activity were very unclear. 
CLM5 5. The instructions and/or explanations were, in terms of learning, very 

unclear. 
CLM6 6. The instruction and/or explanations were full of unclear language. 
CLM7 7. The activity really enhanced my understanding of the topics covered. 
CLM8 8. The activity really enhanced my knowledge and understanding of 

protonation state. 
CLM9 9. The activity really enhanced my understanding of the chemistry formulas 

covered. 
CLM10 10. The activity really enhanced my understanding of the concepts and 

definitions. 
 
CLM1-CLM3 
Data spreadsheet:  
Column FV-FX 
Column 
name 

CLM1-CLM3 
LOGIC 

Column 
returns 

0 not at all the case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 completely the case  

0-10 single select 
0=not at all 
1-9 are just numbers, no words 
10=completely the case 

    
Data spreadsheet:  
Column FY 
Column 
name 

CLMICL 
LOGIC 

Column 
returns 

#.### 

 
Will average rankings from 
CLM1-CLM3 to find intrinsic 
cognitive load (ICL) rate. 
 
(CLM1+CLM2+CLM3)/3 
 
EXS:  
(9+5+4)/3=6 
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(7+3+9)/3=6.333 
(9+8+9)/3=8.667 
(1+3+4)/3=2.667 
 

 
Data spreadsheet:  
Column FZ-GB 
Column 
name 

CLM4-CLM6 
LOGIC 

Column 
returns 

0 not at all the case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 completely the case  

0-10 single select 
0=not at all 
1-9 are just numbers, no words 
10=completely the case 

    
Data spreadsheet:  
Column GC 
Column 
name 

CLMECL 
LOGIC 

Column 
returns 

#.### 

CLM4-CLM6 to find extraneous 
cognitive load (ECL) rate. 
 
(CLM4+CLM5+CLM6)/3 
 
EXS:  
(9+5+4)/3=6 
(7+3+9)/3=6.333 
(9+8+9)/3=8.667 
(1+3+4)/3=2.667 

 
Data spreadsheet:  
Column GD-GG 
Column 
name 

CLM7-CLM10 
LOGIC 

Column 
returns 

0 not at all the case 
1 
2 

0-10 single select 
0=not at all 
1-9 are just numbers, no words 
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3 
4 
5 
6 
7 
8 
9 
10 completely the case  

10=completely the case 

    
Data spreadsheet:  
Column GH 
Column 
name 

CLMGCL 
LOGIC 

Column 
returns 

#.### 

CLMGCL 
Will average rankings from CLM7-
CLM10to find germane cognitive 
load (GCL) rate. 
 
(CLM7+CLM8+CLM9+CLM10)/4 
 
EXS:  
(9+5+4+4)/4=5.5 
(7+3+9+6)/4=6.25 
(9+8+9+8)/4=8.5 
(1+3+4+4)/4=3 

 
 
User perception survey (UPS) 12 total items 
Technology Acceptance Method (TAM) – 8 items  
(5 pt. Likert scale where 1 is “strongly disagree” and 5 is “strongly agree”) 1,2,3,4,5 
PEU1 11. Studying learning materials using this device is easy for me. 
PEU2 12. My interaction with this device has been flexible, direct, and fluid. 
PEU3 13. Overall, I believe that this learning environment is easy to use. 
PU1 14. I think that the use of this type of device could help me in my learning 

tasks. 
PU2 15. Using this device enables me to accomplish study tasks more quickly. 
PU3 16. Overall, I find that using this device is a useful studying tool. 
UI1 17. I intend to use this device for studying in the future. 
UI2 18. I would recommend the use of this device for study. 

 
Data spreadsheet:  
Column GI-GK 
Column PEU1-PEU3 



244 

 

name 

Column 
returns 

1 strongly disagree 
2 
3 
4 
5 strongly agree 

    
Data spreadsheet:  
Column GL 
Column 
name 

PEUAVG 
LOGIC 

Column 
returns 

#.### 
 

Will average totals of PEU1-
PEU3. 
 
(PEU1+PEU2+PEU3)/3 
 
EX: (1+4+2)/3 =3.16 

   
Data spreadsheet:  
Column GM-GO 
Column 
name 

PU1-PU3 

Column 
returns 

1 strongly disagree 
2 
3 
4 
5 strongly agree 

    
Data spreadsheet:  
Column GP 
Column 
name 

PUAVG 
LOGIC 

Column 
returns 

#.### 
 

Will average totals of PU1-PU3. 
 
(PU1+PU2+PU3)/3 
 
EX: (1+4+2)/3 =3.16 

   
Data spreadsheet:  
Column GQ, GR 
Column 
name 

UI1-UI2 
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Column 
returns 

1 strongly disagree 
2 
3 
4 
5 strongly agree 

    
Data spreadsheet:  
Column GS 
Column 
name 

UIAVG 
LOGIC 

Column 
returns 

#.### 
 

Will average totals of UI1-UI2. 
 
(UI1+UI2)/2 
 
EX: (1+4)/2 =2.5 

   
 
Perceived Satisfaction (PS) – 4 items 
(5 pt. Likert scale where 1 is “strongly disagree” and 5 is “strongly agree”) 
PS1 19. I am satisfied with accessing learning contents using this device. 
PS2 20. I am satisfied with the interaction with this device for studying. 
PS3 21. I think that using this device for learning could be motivating. 
PS4 22. I like using this device for studying. 

 
Data spreadsheet:  
Column GT-GW 
Column 
name 

PS1-PS4 

Column 
returns 

1 strongly disagree 
2 
3 
4 
5 strongly agree 

    
Data spreadsheet:  
Column GX 
Column 
name 

PSAVG 
LOGIC 

Column 
returns 

#.### 
 

average of PS 1-5 
 
(PS1+PS2+PS3+PS4)/4 

   
Section 3: Post-lesson Test/Survey Look and Feel 
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Samples of each type of question on screen below (see graphics folder question samples 
for full images).  
 

LO sample   CLM sample 
 

PEU, PU, UI, PS sample 
 
Missed Questions 
If a question is not answered, the participant will be notified and given the question 
number they missed. This goes for all survey and test items in the module. 
Final Instructions/Complete 
 
LAPTOP:  
WHEN THEY COMPLETE THE TEST AND SURVEY 
 
You have completed the Section 3.  
 
Remember! Once you leave Section 3, you will not be able to return to it. 
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You have completed all three sections of this study. To complete the study, click/tap 
COMPLETE below. 
 
Thank you for participating in this research study. 
 

COMPLETE 
 
SMARTPHONES:  
 
Use images provided. 

     
Screen Complete: Asset file(s): 
LAST SCREEN_Completion screen.png 
LAST SCREEN_Completion screen_selected.png 
 
Data spreadsheet:  
Column GY 
Column 
name 

TIME 
LOGIC 

Column 
returns 

##.## 
 

TOTAL TIME DURING APP 
Clock starts after IRB agreement 
and ends when module completes.

   
 
Data spreadsheet:  
Column GZ 
Column 
name 

COMPLETE 
LOGIC 

Column 
returns 

0=completed 
1=not completed 
 

This will register once they 
complete all items in the 
application. If they never click the 
button to exit the app, they 
automatically are assigned a “1” 
for not completed. 
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