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Semiconductor nanocrystal-based photovoltaics are an interesting new technology 

with the potential to achieve high efficiencies at low cost. CuInSe2 nanocrystals have 

been synthesized in solution using arrested precipitation and dispersed in solvent to form 

a “solar ink”. The inks have been deposited under ambient conditions to fabricate 

photovoltaic devices with efficiency up to 3%. Despite the low cost spray coating 

deposition technique, device efficiencies remain too low for commercialization. Higher 

efficiencies up to 7% have been achieved using a high temperature selenization process, 

but this process is too expensive. New nanocrystal film treatment processes are necessary 

which can improve the device efficiency at low cost. 

To this end, CuInSe2 nanocrystals were synthesized using a diphenyl 

phosphine:Se precursor which allows for precise control over the nanocrystal size. The 

size is controlled by changing the temperature of the reaction. The smallest size 

nanocrystals demonstrated extremely high device open circuit voltage. Ligand exchange 

procedures were used to replace the insulating oleylamine capping ligand used during 

synthesis with more conductive halide ions or inorganic chalcogenidometallate cluster 

(ChaM) ligands. These ligands led to improved charge transport in the nanocrystal films. 

A high-intensity pulsed light processing technique known as photonic curing was 

used which allows for high temperature sintering of nanocrystal films on temperature-
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sensitive substrates. High energy pulses cause the nanocrystals to sinter into large grains, 

primarily through melting and resolidification. The choice of metal back contact has a 

dramatic effect on the final film morphology, with Au and MoSe2 back contacts 

providing much better adhesion with the CuInSe2 than Mo back contacts. Nanocrystal 

sintering without melting can be achieved by replacing the oleylamine ligands with 

ChaM ligands prior to photonic curing. 

Low energy photonic curing pulses vaporize the oleylamine ligands without 

inducing sintering or grain growth. This greatly improved nanocrystal coupling and 

interparticle charge transport. Multiexcitons were successfully extracted from these 

nanocrystal films and external quantum efficiencies over 100% were observed. Transient 

absorption spectroscopy was used to study the multiexciton generation process in 

CuInSe2 nanocrystal films and colloidal suspensions. The multiexciton generation 

efficiency, threshold, and Auger lifetimes for CuInSe2 compare well with other 

nanocrystal materials. 
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Chapter 1: Introduction* 

 

1.1 INTRODUCTION TO PHOTOVOLTAICS 

Photovoltaic devices (PVs), also known as solar cells, convert sunlight directly to 

electricity.  Since solar energy is plentiful and freely available, PV electricity has obvious 

economic, environmental and social benefits.  Nonetheless, the high cost compared to 

fossil fuels currently limits its use.  The DOE estimates that solar energy needs to reach a 

total installed cost of about $1 per peak Watt ($1/Wp) to become achieve significant 

adoption and become a large part of our energy generation in the future.1 In general, 

approximately 50% of the total cost for solar energy comes from the cost of the module 

itself and the rest comes from installation, permitting, and other balance of systems 

costs.1 Thus, a significant reduction in the module cost (either through the use of less 

expensive materials or the reduction of processing costs) could have a large impact on the 

photovoltaics market.  

At the moment, PV technologies exhibit a tradeoff between cost and efficiency: 

the highest efficiency devices cost too much to produce while the devices that are 

inexpensive in terms of materials and manufacturing have efficiencies that are too low.  

Low efficiency leads to higher installation and operation cost, significantly increasing the 

overall cost of the “cheaper” technologies.  Therefore, PV research has sought to develop 

a new generation of PV devices that uses low cost materials and manufacturing processes 

combined with high efficiency.   

                                                 
* Reproduced in part with permission from: Stolle, C. Jackson; Harvey, Taylor B.; Korgel, Brian A., 
Nanocrystal Photovoltaics: A Review of Recent Progress, Current Opinion in Chemical Engineering 
(2013), 2, 160-167. Copyright 2013 Elsevier. CJS wrote the manuscript with assistance from TBH and 
BAK. 
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Figure 1.1 Department of Energy SunShot models of the amount of installed solar 
power depending on the average installed price of solar by the year 2020. 
The SunShot reference line is for power generated at $1/Wp. Source: DOE 
SunShot Vision Study.1 

 

 

Figure 1.2 Department of Energy SunShot Vision Study analysis of the total cost of 
installed solar energy in the United States in 2012. Source: DOE SunShot 
Vision Study.1 
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1.2 SOLAR CELL TECHNOLOGIES 

 

Figure 1.3 Chart of record solar cell efficiencies categorized by technology and tracked 
over time. Source: NREL National Center for Photovoltaics. 

 

1.2.1 Silicon Solar Cells 

The first modern solar cell was developed by Bell Labs in 1954 using a p-n 

junction in silicon.2 Sixty years later, silicon is still the dominant technology in the 

photovoltaics market. Silicon solar cells have not only benefited from their long history, 

but also from extensive research in the microelectronics industry into silicon material 

quality, manufacturing processes, and basic device physics. The current record efficiency 

for a single-junction silicon solar cell without concentration is 25.6% and module 

efficiencies are also quite high, with a record efficiency of 22.9%.3,4 Not only are silicon 

solar cells highly efficient, but they are rapidly becoming less expensive as well. The cost 
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of producing silicon modules has recently dropped below $1/Wp, a substantial 

improvement over the mark of ~$2/Wp only a few years ago.1 

Silicon solar cells currently make up 85-90% of the photovoltaics market.5 

Because the technology is so dominant, much of the balance of systems (such as power 

electronics and installation hardware) has been optimized for silicon solar cell 

technology. Thus, in order for new technologies to make a large impact in the market, 

they must either provide substantially lower module costs on a per Watt basis or allow for 

greatly reduced balance of systems costs. The only segment of the market where silicon 

is not dominant is in flexible photovoltaics. Crystalline silicon solar cells are ridged, 

typically requiring a glass substrate and, due to the poor light absorption in silicon, a 

thick silicon layer as well.  

 

1.2.2 Multijunction Solar Cells 

Multijunction solar cells have the highest record efficiencies of up to 44.7%; 

however, the cost of manufacturing these solar cells is extremely expensive.6 Currently, 

these solar cells are used primarily for extraterrestrial applications, where the cost per 

Watt is much less important than the power generated per unit area. Terrestrial 

multijunction solar cells almost always make use of solar concentrators, where a glass 

lens is used to collect light over a large area and concentrate it down to a very small 

device area. Traditional single junction solar cells use the relatively expensive 

semiconducting material to both harvest light and generate electricity. Concentrating 

solar cells, on the other hand, use relatively inexpensive glass lenses to collect the light 

and a very expensive, but also very small, semiconductor to generate electricity. 

Although this technology has the potential compete with traditional silicon solar cells on 
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a cost/Watt basis, there are many drawbacks to this technology as well. In particular, 

concentrating sunlight makes the semiconducting materials very hot, which tends to hurt 

performance. Furthermore, because a lens is used to harvest the sunlight, excellent solar 

tracking is required and diffuse sunlight (such as on a cloudy day) is very difficult to 

collect. 

 

1.2.3 Thin Film Solar Cells 

Thin film solar cells, most notably Cu(In,Ga)Se2 (CIGS), CdTe, and amorphous 

silicon (a-Si), make use of materials with very strong light absorption to make solar cells 

with a fraction of the thickness of silicon solar cells (~2 µm compared to ~250µm for 

silicon). By substantially reducing the thickness of the absorber layer, thin film solar cells 

use much less material and are far less ridged, allowing for the fabrication of flexible 

solar cells.7–9 Thin film solar cells can achieve relatively high efficiencies, with record 

CIGS and CdTe efficiencies just over 20%.10,11 Despite achieving relatively high 

efficiencies and the large reduction in materials costs compared to crystalline silicon, 

processing costs for CdTe and CIGS (especially) remain too high. Altogether, thin film 

solar cells make up about 10% of the solar energy market, with at least half of that 

coming from CdTe.5 

Thin absorber layers are particularly important for the most successful thin film 

solar cells (CIGS and CdTe) since indium and tellurium are rare and expensive elements. 

Amorphous silicon does not use any rare elements, but also suffers from low efficiency 

and stability, particularly under high light intensities.12 Cu2(Zn,Sn)S4 (CZTS) is being 

explored as an alternative to CIGS, since it shares many of the advantages of CIGS 

without using any rare or expensive elements. However, the efficiency of CZTS solar 
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cells is still very low and there are many fundamental challenges which must be 

overcome before CZTS is commercially viable.13 

 

1.2 4 Organic and Dye Sensitized Solar Cells 

Organic photovoltaics (OPVs) and dye sensitized solar cells (DSSCs) are 

interesting primarily due to their extremely low processing costs. OPVs typically utilize a 

light absorbing polymer combined with a fullerene-based electron acceptor in a bulk 

heterojunction.14 OPVs can be easily fabricated on flexible substrates, however the 

electron accepting fullerens are very expensive. DSSCs use an organic light absorbing 

dye adsorbed on the surface of porous TiO2 with a liquid electrolyte for hole transport.15 

All of the materials used in DSSCs are very inexpensive, although the TiO2 layer and 

liquid electrolyte make fabrication on flexible substrate more challenging. Both OPVs 

and DSSCs have achieved record efficiencies near 11%.3 Despite the relatively high 

efficiency and very low cost associated with these devices, low stability of the organics in 

OPVs and the electrolyte solution in DSSCs make them difficult to commercialize. 

 

1.2.5 Perovskite Solar Cells 

Research into perovskite solar cells has exploded in the past few years, with 

record efficiencies increasing from under 4% in 200916 to over 20% in 201417. Initially, 

perovskite solar cells utilized a similar structure to DSSCs, with a thin layer of 

CH3NH3PbI3 perovskite deposited onto a porous TiO2 network and a liquid electrolyte for 

hole transport. The first major advance came with the replacement of the liquid 

electrolyte with the solid electrolyte Sprio-OMeTAD. The current best perovskite solar 

cells no longer resemble DSSCs, as they do not use a porous TiO2 network or any 
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electrolyte material at all. Perovskite solar cells are also very low cost both in materials 

and processing. The primary challenge to commercialization of perovskite solar cells is 

their stability. CH3NH3PbI3 is highly soluble in water, and any exposure to moisture 

degrades the device performance. Thus, despite their promise for high efficiencies at low 

cost, perovskite solar cells still have a long way to go before reaching large scale 

commercialization. 

 

1.2.6 Nanocrystal Solar Cells 

Nanocrystal solar cells share many similarities with thin film solar cells, but use 

semiconductors with nanocrystalline grains instead of bulk. Semiconductor nanocrystals 

can be synthesized in solution and dispersed in solvent to form a nanocrystal ink.18–20  

The inks can be formulated with a wide range of chemical composition and tunable 

optical properties, and spread onto large substrate areas using high throughput printing 

processes.21–24  Nanocrystal inks share with organic PV materials the characteristics of 

solution-processability and large-scale synthesis, but also exhibit broadband light 

absorption, better air and thermal stability, and higher carrier mobilities.20,25  Inorganic 

nanocrystals can also be made from an assortment of materials, targeting those with 

highest availability, lowest toxicity, and lowest raw materials cost. Many different 

nanocrystals have now been tested, including CdTe,26–28 CIGS,29–31 CZTS,32,33 Cu2S,34 

PbSe,35,36 and PbS,22,37–39 and device efficiencies are approaching values needed to 

become commercially viable.  Further improvements in device efficiency predominantly 

require better charge transport and extraction from the nanocrystal layers and new 

processing strategies are being developed to address this issue. 
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1.3 DEVICE PHYSICS 

A PV device consists of a light-absorbing semiconductor layer sandwiched 

between two electrical contacts, one of which is optically transparent—usually a 

transparent conducting oxide (TCO) (See Figure 1.4A).  The semiconductor layer is 

either doped to create a p-n junction or interfaced with another semiconductor layer to 

form a heterojunction.  This leads to a built-in electric field that forces apart photoexcited 

electrons and holes to generate a photocurrent (Figure 1.4B).  The power conversion 

efficiency (PCE, η) of the device is a measure of how much incident solar radiation Pin, is 

converted to electrical power.  PCE depends on the illumination conditions, so the 

maximum power output Pmax, of devices intended for terrestrial PV applications is 

usually measured under simulated Air Mass 1.5 Global (AM1.5) full-sun illumination 

with 1 sun intensity (Pin =100 mW/cm2):40     

 

 𝜂 =
𝑃𝑚𝑚𝑚
𝑃𝑖𝑖

=  
𝐽𝑠𝑠 ∗ 𝑉𝑜𝑜 ∗ 𝐹𝐹

100 𝑚𝑚/𝑐𝑐2 (1.1) 

Other important solar cell parameters are the short circuit current (Jsc), open 

circuit voltage (Voc) and fill factor (FF) (Figure 1.4C). In contrast to PCE, external 

quantum efficiency (EQE) (or incident photon conversion efficiency (IPCE)) and internal 

quantum efficiency (IQE) are measures of how many electrons and holes are extracted 

from the devices as electrical current relative to the total incident photon flux in the case 

of EQE, and the amount of light absorbed by the semiconductor layer in the case of IQE, 

at specific wavelengths.  Device can have EQE and IQE values near 100% at certain 

wavelengths, whereas PCE is fundamentally limited to a maximum value of 34% for a 

single junction device with a semiconductor having an optimal band gap of around 1.3-

1.4 eV—this is the so-called Shockley-Quiesser limit.41  If it were possible using 

nanocrystal quantum dots to extract hot electrons and holes, or if more than one 
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electron/hole pair could be generated per absorbed photon (i.e., multiple exciton 

generation), the Shockley-Queisser limit could be exceeded.42   

 

 

Figure 1.4 (A) An illustration of a nanocrystal solar cell with an opaque metal contact, 
a p-n junction made with semiconductor nanocrystals, and a transparent 
contact. (B) A band diagram illustration of photogenerated carriers in a p-n 
junction solar cell. 

 

1.4 OVERVIEW OF NANOCRYSTAL PHOTOVOLTAICS 

Nanocrystals offer a flexible materials platform to fabricate PVs of different 

semiconductors using essentially the same device fabrication and processing approaches, 

equipment and methods.  Nanocrystal inks (Figure 1.5A,B) are simply synthesized with a 

desired chemical composition and then inserted into a standard PV process flow.  

Nanocrystals also enable device fabrication on light-weight mechanically flexible 

substrates with low thermal tolerance (Figure 1.5C,D).21  Plastic PVs with high efficiency 

could lead to new market opportunities in building-integrated PV applications and 

portable power applications in which weight and other architectural characteristics are 

just as important as power conversion efficiency.  Nanocrystal inks that can be deposited 

near room temperature under ambient conditions to create relatively high efficiency 
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devices could ultimately enable a wide range of new PV application opportunities 

currently unavailable with conventional materials and processing approaches.   

 

 

Figure 1.5 (A) Photograph of a dispersion of CuInSe2 nanocrystals in toluene forming a 
“solar ink.” (B) TEM image of CuInSe2 nanocrystals. (C) Photograph of 
ambient spray deposition of semiconductor nanocrystals into thin film 
photovoltaic absorber layers. (D) Photograph of a CuInSe2 nanocrystal 
photovoltaic device fabricated on a flexible polyimide substrate. 

 

For single junction PVs, the optimal band gap is 1.3-1.4 eV, which is one reason 

why Si (1.1 eV), CdTe (1.4 eV) and CIGS (1.0-1.6 eV) are commonly used.41  PbS and 

PbSe have band gaps that are too low, but can be used by increasing the band gap through 

quantum confinement in nanocrystals (Figure 1.6).  The ability to tune the optical 

properties of nanocrystals by varying size is especially useful in device constructions 

requiring semiconductors with a range of band gaps, as in tandem or multijunction 

PVs.24,43,44  Quantum dots (nanocrystals in the quantum size regime) with band gaps 
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much lower than 1.3-1.4 eV might also be useful for multiple exciton generation at 

visible photon energies since MEG occurs at photon energies two to three times higher 

than the band gap energy.45–47 

 

 

Figure 1.6 An illustration showing the change in band gap and energy level splitting 
from a bulk semiconductor to a quantum confined nanocrystal based on 
nanocrystal size. 

 

Despite their many advantages, nanocrystal photovoltaics have not yet made an 

impact on the solar energy market primarily due to their limited efficiency. Nanocrystals 

are typically synthesized with large insulating organic capping ligands, which allow the 

nanocrystals to be stabilized in solution for low cost processing, but greatly hinders 

charge transport through the nanocrystal film. Without any further processing to remedy 

this problem, device efficiencies have been limited to a record 5% for PbS nanocrystals.37 

Higher device efficiencies can be achieved by removing or altering this capping ligand 

either through high temperature nanocrystal sintering or a ligand exchange process 

(Figure 1.7). A list of record nanocrystal device efficiencies are shown in Table 1.1. 
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High temperature sintering is used to burn away the organic capping ligand and 

cause the nanocrystals to grow into large grains similar to traditional thin film solar cells 

(Figure 1.7A). This method allows nanocrystal photovoltaics to reach record efficiencies 

of 12.6% for CdTe.48 However, because this method requires high temperatures, much of 

the cost benefit of using nanocrystal inks (namely ambient processing conditions) is lost 

and it becomes challenging to make devices on flexible substrates.  

Ligand exchange procedures are used to replace the long organic ligands used 

during synthesis with much smaller organic, inorganic, or ionic capping ligands (Figure 

1.7B).26,38,39,49–54 These short ligands can passivate the nanocrystal surfaces to a greater 

extent than the long capping ligands and also cause the nanocrystals to come into closer 

contact, thereby improving interparticle charge transport.39,55,56 Ligand exchanges can be 

performed on nanocrystals in solution or in the solid state directly on a nanocrystal film. 

Using these methods, a record device efficiency of 8.6% has been achieved for PbS.38 

Although these methods have not yet reached the efficiencies attainable with nanocrystal 

sintering, ligand exchange processes do not require high temperatures and can be done on 

flexible substrates. 
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Figure 1.7 (A) An illustration and SEM images demonstrating high-temperature 
nanocrystal sintering. (B) An illustration of a ligand exchange procedure. 
The procedure can be done either through a solution-based method or a 
solid-state method. 
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Nanocrystal 
Material Design 

η 
(%) 

Jsc 
(mA/cm2) 

Voc 
(mV) 

FF 
Ref. 

CuInSe2 Au/CuInSe2/CdS/ZnO/ITO 3.1 16.3 410 0.46 [30] 
CuInS2 ITO/CuInS2/CdS/Al 4.0 12.4 590 0.55 [57] 
CuInSexS1-x FTO/TiO2/CuInSexS1-x/S2-/CuxS/Cu 5.5 16.8 560 0.59 [58] 
Cu2ZnSnS4 Au/CZTS/CdS/ZnO/ITO 0.2 1.95 320 0.37 [32] 
CdSe/CdTe Ca/CdTe/CdSe/ITO 2.9 13.2 450 0.49 [28] 
PbS ITO/ZnO/PbS/MoO3/Au 8.6 24.2 555 0.64 [38] 
PbSe ITO/TiO2/PbSe/MoO3/Al 6.2 23.4 517 0.52 [59] 
PbS/PbS tandem ITO/TiO2/PbS(1.6eV)/GRL/PbS(1eV)/Au 4.2 8.3 1060 0.48 [44] 
Cu2S-CdS Al/CdS/Cu2S/ITO 1.6 5.63 600 0.47 [34] 
CdS-P3HT NWs ITO/PEDOT/CdS-P3HT/BCP/Mg:Ag 1.6 10.9 1100 0.35 [60] 
       
High-Temperature Nanocrystal Sintering    
Cu(In,Ga)Se2  Mo/CIGS/CdS/ZnO/ITO 7.1 25.9 480 0.58 [61] 
Cu(In,Ga)(S,Se)2  Mo/CIGSSe/CdS/ZnO/ITO 12.0 28.8 630 0.66 [62] 
Cu2ZnSn(S,Se)4 Mo/CZTSSe/CdS/ZnO/ITO 9.8 38.1 404 0.64 [63] 
CdTe ITO/CdTe/ZnO/Al 12.3 25.8 684 0.71 [48] 
       
Selected Record Efficiencies for Comparison (from Solar Cell Efficiency Tables3) 
Cu(In,Ga)Se2  20.5 35.30 752 0.77  
Cu2ZnSn(S,Se)4  12.6 35.21 513 0.70  
CdTe  21.0 30.25 876 0.79  
Si (crystalline)  25.6 41.80 740 0.83  
Si (amorphous)  10.2 16.36 896 0.70  
DSSC  11.9 22.47 744 0.71  
Organic PV  11.0 19.40 793 0.71  
Perovskite  20.1 24.65 1059 0.77  

Table 1.1 PV performance for all-inorganic nanocrystal photovoltaics. The device 
structures are shown including the contact layers and the absorber layer in 
bold.  Power conversion efficiency (η), short circuit current density (Jsc), 
open circuit voltage (Voc) and fill factor (FF) were determined under 
AM1.5G (100 mW/cm2) illumination.  Record efficiencies of PVs made 
using conventional processes are shown for comparison and taken from the 
Solar Cell Efficiency Tables (version 44).3 
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1.5 MULTIEXCITON GENERATION 

Traditional single-junction photovoltaics are limited to a maximum theoretical 

efficiency of 34%, known as the Shockley-Queisser limit.41 This is primarily due to the 

fact that photons with energy greater than the band gap of the semiconductor loose that 

excess energy as heat and photons with energy less than the band gap are not absorbed at 

all. When a high energy photon is absorbed in a semiconductor, it produces a hot electron 

and hot hole which quickly relax down to the band edge via thermalization processes 

(heat loss) (Figure 1.8A).  There are a variety of ways in the Shockley-Queisser limit can 

be exceeded, most notably by using multijunction solar cells. Another interesting way to 

surpass this limit is by harnessing some of the excess energy from high-energy photons 

through multiexciton generation. Multiexciton generation (MEG), also referred to as 

multiple exciton generation or carrier multiplication (CM), is a process in which a single 

high-energy photon (with at least twice the semiconductor band gap energy) excites more 

than one electron-hole pair (Figure 1.8B). In bulk semiconductors, MEG is an inefficient 

process; however, MEG is much more efficient in nanocrystals due to the special 

confinement of the electron and hole.45 By utilizing efficient MEG in nanocrystals, the 

maximum theoretical efficiency can be increased up to 43% (Figure 1.9). 

 

 



 16 

 

Figure 1.8 (A) A schematic illustration of the thermalization process. High energy 
photons are absorbed and produce a hot electron and a hot hole. These hot 
carriers rapidly cool to the band edge in bulk semiconductors where they 
can then recombine. (B) A schematic illustration of the MEG process in 
nanocrystals. High energy photons are absorbed and produce a hot electron 
and a hot hole. These hot carriers can then cool by transferring their energy 
to promote a second electron hole pair. This creates a multiexciton, which 
decays very rapidly through Auger processes. 

 

 

Figure 1.9 The maximum theoretical efficiency of a single junction solar cell utilizing 
MEG (red) and without MEG (black) as a function of the band gap energy. 
Adapted from ref. [64], copyright 2008 Wiley-VCH. 



 17 

 

Multiexciton generation has been observed in colloidal suspensions of numerous 

semiconductor nanocrystals including PbSe, PbS, PbTe, CdSe, InAs, InP, Ag2S, and 

Si.65–72 Typically, multiexciton generation is studied by observing the inverse process, 

Auger recombination, with transient absorption spectroscopy (TAS). TAS is a pump-

probe technique wherein a low-intensity pulsed laser (pump) is used to excite carriers in 

the nanocrystals and the absorbance is measured after a set time delay using a white light 

pulse (probe). The absorbance is measured before and after the laser pulse and the change 

in absorbance is proportional to the average number of excited electrons in the 

conduction band of each nanocrystal. The kinetics of these excited electrons is observed 

by varying the time delay between the pump and probe from less than 1 ps up to 5 ns. A 

schematic illustration of a typical TAS setup is show in Figure 1.10. 

Multiexciton generation in colloidal nanocrystals is typically characterized using 

three key parameters, the MEG threshold, MEG efficiency, and Auger lifetime. The 

MEG threshold is the minimum photon energy required excite multiexcitons. This 

parameter depends on the band structure of the material. The MEG efficiency is the 

number of extra electrons produced per absorbed photon for each band gap multiple of 

energy that the photon has in excess of the MEG threshold energy. The Auger lifetime is 

the lifetime of multiexcitons within a single nanocrystal. The ideal multiexciton solar cell 

would use a material with an MEG threshold close to 2, an MEG efficiency near 100%, 

and would have a long Auger lifetime so that the multiexcitons can be easily extracted. 

Even though multiexciton generation is relatively efficient in a variety of colloidal 

nanocrystals, extracting multiexcitons in a working solar cell has proven much more 

difficult. The primary challenge is separating multiexcitons before they recombine so 

they can be extracted from the device. Multiexcitons recombine extremely rapidly 
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through Auger processes, with lifetimes typically on the order of 10-100 ps, compared to 

single excitons, which typically have lifetimes greater than a few nanoseconds up to a 

hundreds of microseconds.73–78 Thus, nanocrystal films must have excellent interparticle 

charge transport in order for the multiexcitons to separate before they recombine. Thus 

far there is only one report of external quantum efficiencies over 100% due to 

multiexciton generation and extraction.35 In this study, PbSe nanocrystals were 

electronically coupled by treated in film with hydrazine. Still, this process has not been 

successfully applied to other materials to achieve multiexciton extraction. 

 

 

Figure 1.10 (A) Schematic illustration of a typical pump-probe transient absorption 
spectroscopy setup. (B) Schematic illustrating the sample measurement. 
First, the sample is probed and the absorbance is measured. Then, after a 
long time delay (1ms), the sample is pumped with a laser and then probed 
after a short time delay (<5000 ps). (C) The difference in absorption is 
measured and then plotted as a function of delay time. Figure adapted from 
Ref. [64], copyright 2008 Wiley-VCH. 
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1.7 CUINSE2 NANOCRYSTAL PHOTOVOLTAICS 

CuInSe2 (CIS) and Cu(In,Ga)Se2 (CIGS) are some of the most promising thin film 

PV materials.  CIGS has a band gap in the appropriate range (1.0-1.7 eV depending on 

Ga content), it is a strong light absorber, and has the second highest record efficiency of 

all thin film PV materials of just over 20% (See Table 1.1 for a list of record device 

efficiencies).  However, CIGS commercialization has been hindered by expensive vapor-

deposition and high temperature processing (~525oC) under Se vapor that is challenging 

to control on large area substrates.  CIGS nanocrystals can be synthesized with targeted 

composition and chalcopyrite crystal phase by arrested precipitation in oleylamine 

(C18H37N):29   

 𝐶𝐶𝐶𝐶 + (1 − 𝑥)𝐼𝐼𝐼𝐼3 + 𝑥𝐺𝐺𝐺𝐺3 + 2𝑆𝑆

C 240

oleylamine
o
 →  𝐶𝐶(𝐼𝐼1−𝑥𝐺𝐺𝑥)𝑆𝑆2 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

(1.2) 

The In:Ga composition can be tuned by changing the In:Ga reactant ratio.29  CIS 

and CIGS nanocrystals disperse in various organic solvents and can be deposited into PV 

device structures under ambient conditions.  CIS PV devices have been made with spray-

deposited nanocrystals with efficiencies up to 3.1%,30 and similar devices on plastic 

substrates processed under ambient conditions have had efficiencies of  up to 2%.21  The 

efficiency of these as-deposited nanocrystal devices has been limited by relatively poor 

electron and hole transport due to the bulky organic oleylamine capping ligands.79   

Higher device efficiencies can be obtained from CIGS nanocrystals by sintering 

into polycrystalline films to improve electron/hole transport and extraction.  Sintering 

CIGS nanocrystals requires high temperature selenization—i.e., heating at temperatures 

exceeding 500oC under Se vapor.  Se vapor is required as CIGS nanocrystals do not sinter 

without it, even at temperatures exceeding 500oC, due to selenium outgassing from the 

nanocrystal film.80  Selenized CIGS nanocrystal films have exhibited device efficiencies 
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of up to 7%.61,81  Higher efficiencies of up to 12% have been achieved by selenizing 

sulfur-containing Cu(In,Ga)S2 nanocrystals.62,82  Hillhouse and Agrawal have explained 

that selenizing Cu(In,Ga)S2 nanocrystals instead of Cu(In,Ga)Se2 expands the film as the 

larger Se atoms replace S atoms.  This expansion is necessary to fill the significant void 

space in films.  The expansion can be significant with up to 14.5% expansion for 

complete replacement of S with Se. Although selenization allows for higher device 

efficiencies, the process adds significant cost and does not allow for device fabrication on 

flexible substrates such as plastic. 

 

1.8 CONCLUSIONS AND DISSERTATION OVERVIEW 

Since the first demonstration of an all-inorganic nanocrystal PV by Alivisatos in 

2005 of devices with almost 2% efficiency,28 nanocrystal PV efficiency has improved to 

8.6% for as-deposited nanocrystals38 and 12% with high-temperature nanocrystal 

sintering.48,62  Efficiencies continue to improve with better understanding of nanocrystal 

synthesis, processing and device fabrication and a large library of different nanocrystal 

materials is now available due to advances in synthetic chemistry. To become 

commercially viable, however, nanocrystal PVs must achieve higher device efficiency 

without adding significant processing costs or reducing process flexibility.   The major 

limitation to higher efficiency remains the need for improved charge transport in 

nanocrystal layers and more efficient charge extraction.  Either the nanocrystals must be 

sintered—preferably at relatively low temperature under mild processing conditions—or 

the interfacial chemistry, i.e., the capping ligand layer, needs to be modified to passivate 

electronic trap states while enabling efficient interparticle transport. 
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Chapter 2 discusses the synthesis and device properties of size-controlled CuInSe2 

nanocrystals. Chapter 3 explores solution-based ligand exchanges using inorganic 

chalcogenidometallate cluster (ChaM) ligands to improve charge transport in nanocrystal 

films. Chapters 4, 5, and 6 are based on photonic curing. Photonic curing is a high-

intensity pulsed light technique which allows for high temperature nanocrystal film 

processing on temperature-sensitive substrates. Chapter 4 discusses the sintering of 

CuInSe2 nanocrystals using photonic curing. In particular, Chapter 4 covers the effects of 

substrate choice and photonic curing pulse parameters on the film morphology and device 

performance. Chapter 5 focuses on uniform film sintering of ChaM-capped nanocrystals 

with photonic curing. Chapter 6 discusses the use of low-intensity photonic curing to 

vaporize organic ligands without nanocrystal sintering. This includes discussion of 

nanocrystal electronic coupling and multiexciton generation and extraction. Chapter 7 

covers multiexciton generation in colloidal CuInSe2 nanocrystals and provides 

comparison to other materials exhibiting MEG. Finally, Chapter 8 provides overall 

conclusions and future directions for this research. 
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Chapter 2: Synthesis and Device Performance of Size-Controlled 
CuInSe2 Nanocrystal Quantum Dots† 

 

2.1 INTRODUCTION 

Colloidal quantum dots (QDs) are interesting materials for photovoltaic devices 

(PVs) due to their unique properties, like size-tunable optical gap, enhanced absorption 

cross-section, extended carrier lifetimes, and solution processability.1–3  PbS and PbSe 

QD PVs have been made with relatively high power conversion efficiencies (PCE) of 

over 8%,4–6 and high external quantum efficiency (EQE) of over 100% EQE due to 

multiple exciton generation, which appears to occur commonly in QDs, including Si.7–13  

A major limitation of Pb-chalcogenide QD-based PVs, however, appears to be midgap 

carrier trapping that severely limits the open circuit voltage.14,15 

Higher device PCEs have been achieved by sintering nanocrystals of CdTe, 

Cu(In,Ga)S2, Cu(In,Ga)Se2, and Cu2ZnSnS4.16–21  Sintering, however, requires significant 

energy input, especially in the case of CIGS-related nanocrystals that require selenization 

at temperatures in excess of 500oC, which leads to significant increase in processing cost 

and complexity.  Unsintered films of colloidal nanocrystals have also been explored 

including PbSe,4 PbS,6 CdSe,22 and I-III-VI2 materials such as Cu(InxGa1-x)Se2 (CIGS),23 

CuIn(S,Se)2,24 and Cu2ZnSnS4 (CZTS).25  

                                                 
† Reproduced in part with permission from: Panthani, Matthew G.; Stolle, C. Jackson; Reid, Dariya K.; 
Rhee, DongJoon; Harvey, Taylor B.; Akhavan, Vahid A.; Yu, Yixuan; Korgel, Brian A., CuInSe2 Quantum 
Dot Solar Cells with High Open-Circuit Voltage, J. Phys. Chem. Lett. (2013), 4, 2030-2034. Copyright 
2013 American Chemical Society. MGP designed the initial experiments, developed the synthesis 
procedure, analyzed the results, and wrote the manuscript. CJS synthesized and characterized the range of 
nanocrystals sizes reported, fabricated and tested photovoltaic devices, assisted with data analysis, and 
assisted in writing the manuscript. DKR and DR assisted with nanocrystal synthesis. TBH and VAA 
assisted with materials characterization. BAK provided funding, guidance, and assisted with writing the 
manuscript. 
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A number of approaches have been developed to synthesize I-III-VI2 

nanocrystals, such as CuInSe2.20,23,26–28  One method involves reacting metal salts or 

complexes (such as halides, acetates, or acetylacetonates) with chalcogen powder or 

tertiary phosphine chalcogenides and  oleylamine as a capping ligand.  Depending on the 

precursors or reaction conditions, this approach can yield sphalerite, chalcopyrite, or 

ordered-vacancy Cu-In-Se nanocrystals.29  Wurtzite phase nanocrystals have also been 

made.30  In general, this approach yields larger non-quantum confined nanocrystals with 

band gap of the bulk semiconductor. 

An approach to I-III-VI2 nanocrystals that provides more size control has been the 

use of alkanethiols as a sulfur source and capping ligand.  For example, Cu and In 

precursors are heated in the presence of an alkanethiol like dodecanethiol, which begin to 

react when heated to over 180°C.  Se can be added as a tertiary phosphine selenide.  

Using this approach, quantum-size CuInS2 and CuInSexS2-x nanocrystals have been 

synthesized with size-tunable absorbance and photoluminescence and have been used for 

in vivo bioimaging and as sensitizers in QD-sensitized solar cells.24,31–33 

Here, we report a new synthesis for oleylamine-capped CuInSe2 (CISe) QDs. 

Diphenylphosphine selenide (DPP:Se) was found to be much more reactive than Se 

sources of tertiary phosphine selenides, trioctylphosphine selenide and tributylphosphine 

selenide.  The use of DPP:Se in turn leads to significantly higher conversion of precursor 

to nanocrystals and the ability to more accurately control nanocrystal size by carrying out 

reactions at lower temperatures than possible using tertiary phosphine selenides.  This 

enables the synthesis of CISe QDs without the use of thiol or S incorporation to limit the 

size.  PV devices were then made without heat or chemical treatment of the nanocrystal 

layer in a glass/Au/CISe QD/CdS/ZnO/ITO configuration. 
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2.2 EXPERIMENTAL METHODS 

2.2.1 Materials 

Oleylamine (OLA) was purchased from TCI America or Corsitech; copper (I) 

chloride (CuCl; 99.99+%), gallium (III) chloride (GaCl3; 99.999+%), selenium powder 

(Se; 99.99%), diphenylphosphine (DPP, 98%), and cadmium sulfate (CdSO4; 99.999%) 

from Aldrich Chemical Co.; indium (III) chloride (InCl3; 99.999%) from Strem 

Chemicals; ammonium hydroxide (18M NH3; ACS certified), toluene (99.99%), ethanol 

(absolute), and nitric acid (trace metal grade).  ) from Fischer Scientific; and thiourea (> 

99.0%) from Sigma-Aldrich.  Prior to use, oleylamine was degassed overnight under 

vacuum at 110°C.  All other chemicals were used as received without further purification.  

Copper (I) chloride, indium (III) chloride, diphenylphosphine, and degassed oleylamine 

were stored in a N2-filled glovebox. 

 

2.2.2 CuInSe2 Quantum Dot Synthesis 

In a N2-filled glove box, 1 mmol of CuCl, 1 mmol of InCl3, and 10 mL degassed 

OLA were loaded into a 3 neck flask.  DPP:Se solution was made by mixing 2 mmol 

each of Se powder and DPP and diluting with 5mL OLA.  The flask was sealed with 

septa, removed from the glovebox, and attached to a Schlenk line equipped with a stir 

plate and a heating mantle.  The reaction mixture was stirred and heated to 110°C under 

vacuum for a 30 minute period, forming a yellow solution.  It was then blanketed with 

nitrogen and heated to a desired injection temperature (between 100 and 180°C). When 

the solution stabilized at the injection temperature, the DPP:Se solution was injected and 

the reaction proceeded for one hour.  To make larger nanocrystals, an injection 

temperature of 180°C was used, and then the flask was heated to higher temperature.  



 31 

Injection temperatures of over 180°C were not used because the Cu and In precursors 

decomposed, forming a cloudy brown solution.  After one hour, the nanocrystals were 

precipitated with excess ethanol and centrifuged at 4000 rpm for 2 min.  The supernatant 

was discarded and the precipitate was redispersed with a minimal amount of toluene, 

usually about 5 mL.  The dispersion was centrifuged at 4000 rpm for 1 min to precipitate 

poorly-capped nanocrystals.  The supernatant was transferred to a centrifuge tube.  

Ethanol was added dropwise until the mixture became slightly turbid.  After 

centrifugation at 4000 rpm for 1 min, the supernatant was discarded and the precipitate 

was dispersed in toluene.  The nanocrystal dispersion was stored in a N2-filled glovebox.  

 

2.2.3 Device Fabrication 

A layer of CISe QDs approximately 200 nm thick was spray cast from a 20 mg 

mL-1 dispersion in toluene onto a patterned Au electrode on a glass substrate.  A ~10 nm 

layer of CdS was then deposited using a chemical surface deposition technique developed 

by McCandless and Shafarman.34   After depositing the CISe QD layer, the substrates 

were placed on a hotplate set to 90°C and covered with a glass petri dish.  The substrates 

were allowed to heat for 10 minutes.   Aqueous stock solutions of 0.015M CdSO4, 1.5M 

thiourea, and ~18M NH4OH were used.  To prepare the solution for chemical surface 

deposition, 0.22 ml CdSO4 solution, 0.22 mL thiourea solution, 0.28 mL NH4OH, and 1.5 

mL H2O were combined and chilled in an ice bath if storing for more than 10 minutes to 

prevent homogenous nucleation of CdS particles.  The dish was removed and 700 µL of 

the solution was dispensed on each of the substrates (25 mm x 25mm).  The petri dish 

was reapplied and the deposition was allowed to proceed for 2 min at which the 

substrates were removed from the hotplate, thoroughly rinsed with DI water, and blown 
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dry with a stream of clean air.  Top window layers of 50 nm of ZnO and 600 nm of 

indium tin oxide (ITO) were deposited by sputtering (sputtered ZnO: 99.9 % Lesker, 5 

ppm O2 in Ar; sputtered ITO:99.99 % Lesker, ultrahigh purity Ar) through shadow masks 

so that the active area of the device (defined by the electrode overlap) was 8 mm2 (a 4×2 

mm rectangle), which was confirmed by optical microscopy.  

  

2.2.4 Characterization Techniques 

Current-voltage (IV) characteristics were collected using a Keithley 2400 general 

purpose source meter and a Xenon lamp solar simulator (Newport) equipped with an 

AM1.5G filter. The light source intensity was calibrated using a Si photodiode 

(Hamamatsu, S1787-08) with certification traceable to NIST. External quantum 

efficiency (EQE) was measured using monochromatic light generated using a commercial 

monochromator (Newport Cornerstone 260 1/4M) chopped at 213 Hz and focused to a 

spot size of 1 mm diameter on the active region.  EQE measurements were made with the 

device at zero bias at wavelengths ranging from 300 and 1300 nm in 10 nm increments 

using a lock-in-amplifier (Stanford Research Systems, model SR830). Light intensity was 

calibrated using calibrated photodiodes of silicon (Hamamatsu) and germanium (Judson).   

Inductive coupled plasma mass spectroscopy (ICP-MS) data was acquired with an  

Agilent 7500ce Quadrupole ICP-MS.  A known fraction of CIS nanocrystal solution in 

toluene was dried and were digested in 70 wt% nitric acid. The resulting solution was 

diluted with 2 wt% nitric acid such that the concentration of Cu and In atoms would be 

between 1 and 100 ppm.    

XRD was collected on a Rigaku R-Axis Spider diffractometer equipped with a 

Bruker Sol-X Si(Li) solid state detector and 1.54 Å radiation (Cu Kα).  Data were 
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collected at 0.01 increments of 2θ at a scan rate of 6°/min.  Transmission electron 

microscope (TEM) images were collected with a FEI Tecnai G2 Spirit BioTwin 

microscope operating at 80 kV.   

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Nanocrystal Characterization 

Figure 2.1 shows TEM images of CISe QDs produced by arrested precipitation 

using DPP:Se reactant.  The nanocrystal size depended on the reaction temperature, with 

100°C producing the smallest nanocrystals of diameter near 1 nm and 240°C yielding the 

largest nanocrystals studied here of 6.6 nm diameter.  As shown in Figure 2.1f, X-ray 

diffraction (XRD) of all of the nanocrystals matched chalcopyrite CuInSe2, with the 

expected peak broadening with decreasing nanocrystal size.     

The secondary phosphine selenide reactant, DPP:Se, was found to yield 

significantly higher amounts of nanocrystals than the tertiary phosphine selenide, 

TBP:Se.  Under similar reaction conditions, DPP:Se gives typical conversions of metal 

precursor to nanocrystals of 85% compared to only 15% when TBP:Se is used.  The 

increase in reactant conversion using secondary phosphine selenide is similar to what has 

been found for PbSe nanocrystals.  Evans, et al.35 for example first showed that 

secondary phosphine impurities in trioctylphosphine are actually the predominant 

reactive species in the synthesis.  When they used pure DPP:Se as the Se precursor, the 

reaction yield was significantly higher and the synthesis could be carried out at lower 

temperature than when the tertiary phosphine selenide was used.  In the case of CISe 

QDs, the lower synthesis temperature enabled by DPP:Se enabled nanocrystals in the 

quantum size range to be synthesized.   
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Figure 2.1 TEM images of CISe QDs synthesized at (A) 130°C, (B) 160°C, (C) 180°C, 
and (D) 240°C.  The average QD diameters are 2.2, 3.3, 4.7, and 6.6 nm, 
respectively.  (E) Absorbance spectra and (F) XRD (λ=1.54 Å) of 
nanocrystals synthesized at temperatures between 100°C and 240°C (<1 nm 
to 6.6 nm diameter).  Inset in (E) shows Tauc plots used to determine the 
absorption edge reported in Table 1.  The reference XRD pattern in (F) 
(green bars) for chalcopyrite CuInSe2 is from JCPDS #97-006-8917.   
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The optical gap determined from absorbance spectra (Figure 2.1E) decreased in 

wavelength with decreasing size due to quantum confinement.  Furthermore, nanocrystals 

smaller than 5 nm diameter exhibited exciton peaks, similar to QDs of other I-III-VI2 

materials and CZTS.24,32,33,36  The optical absorption edges of the QDs determined by 

extrapolation of Tauc plots (Figure 2.1E, inset) varied over a wide range, from 1.65 eV 

(100°C) to 1.05 eV (240°C)—the optical gap of the largest nanocrystals was close to the 

bulk bandgap of CuInSe2 (0.95-1.05 eV). 

 

 

Figure 2.2 Absorbance and photoluminescence spectra of CIS QDs synthesized at 
100°C (< 1 nm diameter) and 115oC (1.1 nm diameter).  The PL maxima (< 
1 nm:1.68,  1.1 nm: 1.55 eV) match well with that determined by Tauc 
analysis (1.65 and 1.54 eV, respectively). 
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The CISe QDs also exhibited size-dependent photoluminescence (PL) (Figure 

2.2).  The smallest nanocrystals exhibited PL maxima at ~735 nm (1.68 eV) and 800 nm 

(1.55 eV), matching the absorption edge energies determined from the Tauc analysis 

(1.65 and 1.54 eV, respectively). Slightly larger QDs with diameters of 2 to 3.3 nm 

showed weak PL with broadened PL peaks due to the presence of some smaller diameter 

QDs.  QDs with diameter larger than 3.3 nm showed no detectable PL between 600 and 

1200 nm.   

 

2.3.2 Photovoltaic Device Analysis 

Solar cells of CISe QDs were fabricated by spray-coating under ambient 

conditions into a glass/Au/CISe QD/CdS/ZnO/ITO structure illustrated in Figure 2.3A.  

Figure 2.3B shows the current-voltage characteristics of CISe QD devices illuminated 

under AM1.5 (100 mW/cm2) solar simulation.  There is a trend of increasing open circuit 

voltage (Voc) and decreasing short circuit current (Jsc) with decreasing QD diameter.  

Device PCEs range from 0.3% to 1.2%.  Figure 2.3C plots Jsc, Voc, fill factor (FF) and 

power conversion efficiency (PCE) of devices compared to the optical gap of the CISe 

QDs. Relatively low Jsc values likely result from poor charge transport between 

nanocrystals due to the oleylamine capping ligands.  Both FF and Jsc decrease with 

decreasing QD diameter, most likely due to the increasing volume fraction of oleylamine 

in the QD films inhibiting charge transport.  Voc, however, increases substantially with 

decreasing QD size, consistent with the larger optical gap of the nanocrystals.  The 

highest Voc observed was 849 mV, which to our knowledge is the highest reported Voc 

obtained to date in any QD solar cell.  The ratios of Voc to optical gap (Eg,opt) are higher 

than PbS and CdSe-based QD solar cells reported in literature,22,37 reaching as high as 



 37 

76% of the theoretical maximum Voc for the CISe QDs with 1.45 eV optical gap.  Figure 

2.4 shows the ratio of the maximum theoretical open circuit voltage to the measured open 

circuit voltage of CISe QD PVs compared to other studies of nanocrystal PVs with high 

open circuit voltage. 

    

 

Figure 2.3 (A) Illustration of the cross section and top-view of a CISe QD solar cell. 
(B) J-V characteristics and (C) summary of device parameters (PCE, Jsc, FF, 
and Voc) of solar cells versus the optical gap of the CISe QDs under AM1.5 
illumination (100 mW/cm2).  
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Figure 2.4 Fraction of maximum theoretical open circuit voltage (top) and reported 
open circuit voltages (bottom) in this work and other works demonstrating 
high open circuit voltages.5,22,37 Theoretical maximum open circuit voltage 
is determined by formula described by C.H. Henry.38 

 

2.3.3 Comparison of Electronic and Optical Band Gaps 

The external quantum efficiency (EQE), or incident photon-to-current conversion 

efficiency (IPCE), was also measured for PVs made with CISe QDs of varying size.  The 

absorption edge observed in the EQE measurements shifts systematically to lower 

wavelength with decreasing size, consistent with quantum confinement and the 

absorbance spectroscopy measurements.  Also, the EQE generally decreased as the QD 

size decreased (Figure 2.5A), most likely from a combination of decreased absorbance 

with smaller size (i.e., because of the shift in absorption edge and the relatively low 
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density of states near the band edge) and the poorer charge transport between smaller 

QDs.  A relatively large (~200 meV) redshift of the absorption edge was also observed in 

the EQE measurements compared to the optical gap measured from the absorbance 

spectra of the dispersions (Figure 2.5B).  Table 2.1 compares the absorption edges of the 

CISe QDs determined by absorbance spectroscopy of toluene dispersions and observed 

from the EQE measurements.     

 

 

Figure 2.5 (a) EQE measurements of solar cells of solar cell made from CISe QDs.  
The average QD diameter in each device is shown in the inset.  (b) 
Comparison of the absorbance spectra of dispersed nanocrystals in toluene 
(dashed) and the PV EQE (solid) of 3.0 (top) nm and 1.1 nm (bottom) CISe 
QDs.   
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Synthesis 
Temperature 

100°C 115°C 130°C 145°C 160°C 180°C 240°C 

QD diameter (nm) < 1 1.1±0.4 2.2±.0.5 3.0±0.5 3.3±0.6 4.7±0.8 6.6±1.5 

Dispersion 
absorption edge  

(eV) 

 
1.65 

 
1.54 

 
1.45 

 
1.34 

 
1.30 

 
1.21 

 
1.05 

EQE absorption 
edge (eV) 

 
1.46 

 
1.33 

 
1.22 

 
1.13 

 
1.08 

 
1.01 

 
0.95 

Table 2.1 Absorption onsets of CISe QDs determined by absorbance spectroscopy of 
dispersions in toluene and from EQE measurements of PVs.  The 
nanocrystal diameter was determined by TEM. 

 

 PbS and PbSe QD solar cells have had much smaller (~10-20 meV) differences 

between their solvent dispersion absorbance spectra and EQE absorption edge measured 

from PVs,39 which have been attributed to slight differences in dielectric environment.  In 

the case of these CISe QD solar cells, the difference in absorption edge is too large to be 

simply due to differences in the dielectric environment.  The difference in absorption 

edge appears to be related to relatively poor capping of the CISe QDs.  Although 

oleylamine ligands are not intentionally removed during device fabrication, dispersions 

stored under ambient conditions lose colloidal stability within only a few hours of storage 

in air indicating that the capping is not very robust.  The relatively poor passivation could 

allow QDs to approach close enough for interparticle coupling to occur.  The observed 

size-dependence of the EQE absorption edge indicates that there is not a significant 

change in particle size, which would occur if the QDs were sintering.  Redshifts of up to 

120 meV have been reported in thiocyanate-capped PbSe nanocrystals annealed at 

250°C;40 however, the CISe QD films are not thermally treated and remain mostly coated 

with oleylamine, so a ~200 meV redshift simply due to coupling between QDs is 
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unlikely.  One possibility is that neighboring CISe QDs develop shallow defect levels 

upon close approach when passivating ligands are removed.  These states could create 

such a redshift in the absorption edge.   

 

2.4 CONCLUSIONS 

In summary, we show that for CISe QD synthesis, secondary phosphine selenide 

precursor (DPP:Se) shows much higher reactivity compared to tertiary phosphine 

selenides, leading to a significant increase in product yield and the ability to react at 

relatively low (100-180°C) temperatures enabling the synthesis of nanocrystals small 

enough for quantum confinement and enabling the tuning of CISe QD optical gap from 

1.65 eV to about 1.0 eV.  In solar cells, these QDs exhibit exceptionally high open circuit 

voltages without any additional surface modification.  We observe that EQE of solar cells 

show a large (~200 meV) shift in bandgap compared to the nanocrystals in toluene 

solution.  This could arise from the formation of shallow defect levels due to poor ligand 

passivation.  For CISe QD solar cells that were tested, the Voc reached 60-75% of the 

theoretical maximum Voc.  This compares favorably to PbS QD solar cells, which to date 

have achieved 50-65% of the theoretical maximum Voc. The high Voc indicates that if poor 

passivation leads to defect levels, these levels are shallow—i.e., midgap trapping does not 

occur.  The devices exhibit low short circuit currents, partially due to the fact that they 

are too thin to absorb all light, but also likely due to poor charge transport within the film.  

Because these nanocrystals show high Voc with low diffusion length, these QDs might be 

ideal for infiltration into mesoporous scaffolds, as in a QD-sensitized solar cell 

architecture. 
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Chapter 3: Inorganic Ligand-Capped CuInSe2 Nanocrystal 
Photovoltaics‡ 

 

3.1 INTRODUCTION 

There is an active search to identify semiconductor nanocrystals that can be 

deposited under ambient conditions to create light absorber layers in low cost, high 

efficiency photovoltaic devices (PVs).  Semiconductor nanocrystals can be dispersed in 

solvents and represent an alternative to organic PV materials that may have better air- and 

photostability and higher performance.  To date, the highest efficiency from a 

nanocrystal-based PV without high temperature processing is just over 8% power 

conversion efficiency (PCE) under AM 1.5 illumination, achieved using PbS 

nanocrystals.1 PVs using nanocrystals of PbSe,2 Cu2S,3 CdTe,4,5 Cu2ZnSnS4,6,7 and 

Cu(In1-xGax)Se2 (CIGS)8,9 have achieved efficiencies in the range of 1-5%.  Higher 

device efficiencies, even exceeding 10%, have been achieved by sintering films of 

CdTe,10,11 Cu(In1-xGax)Se2,12–14 Cu(In1-xGax)S2,15,16 and Cu2ZnSnS4
17 nanocrystals at high 

temperature to improve electrical transport and charge extraction from the nanocrystal 

layer.  This high temperature processing step, however, adds significant cost and 

eliminates the possibility of using plastic substrates.  The ideal case would be to achieve 

high efficiency (>10% PCE) without resorting to high temperature.  One thought is that 

                                                 
‡ Reproduced in part with permission from: Stolle, C. Jackson; Panthani, Matthey G.; Harvey, Taylor B.; 
Akhavan, Vahid A.; Korgel, Brian A., Comparison of the Photovoltaics Response of Oleylamine and 
Inorganic Ligand-Capped CuInSe2 Nanocrystals, ACS Appl. Mater. Interface (2012), 4(5), 2757-2761. 
Copyright 2012 American Chemical Society. CJS designed the experiments, fabricated and characterized 
the photovoltaic devices, analyzed the results, and wrote the manuscript. MGP assisted with the 
experimental design, data analysis, and manuscript writing. TBH and VAA assisted with characterization 
and data analysis. BAK provided funding, guidance, and assistance with writing the manuscript. 
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the capping ligands on the nanocrystals might be engineered and optimized for efficient 

performance.       

Nanocrystals are typically synthesized using organic capping ligands to stabilize 

their size and prevent aggregation, but these ligands create an insulating barrier that 

retards the passage of charge between particles.18  This limits device performance in PVs 

with nanocrystal absorber layers.19 Significantly enhanced carrier mobility has been 

reported in a few cases in nanocrystal films with the organic ligands exchanged with 

hydrazine20 or pyridine8.  Even higher carrier mobilities have been achieved by capping 

the nanocrystals with inorganic species;1,20,21 for example, mobilities of more than 10 

cm2/Vs were observed in films of CdSe nanocrystals capped with metal chalcogenide 

complexes (MCCs), also known as chalcogenidometallate clusters (ChaMs).22–24 

Although this would appear to be promising for PVs, there have been no reports of PVs 

made with inorganic ligand-capped nanocrystals.  If the high carrier mobilities of the 

inorganic ligand-capped nanocrystals are trap-related it may not be possible to use them 

in PVs.  Therefore, we sought to determine the viability of using inorganic ligands for 

improving nanocrystal-based PV device efficiency.   

As a benchmark, we compare the performance of oleylamine-capped CuInSe2 

(CIS) nanocrystal PVs with devices fabricated using CIS nanocrystals capped with 

inorganic MCC ligands.  With oleylamine-capped CIS nanocrystals deposited under 

ambient conditions without high temperature post-deposition processing, we have 

achieved reasonable power conversion efficiencies (PCE).19  We find that devices made 

from MCC-capped CIS nanocrystals exhibit similar device performance as those made 

with oleylamine-capped CIS nanocrystals, but using significantly thinner nanocrystal 

layers.   
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3.2 EXPERIMENTAL METHODS  

3.2.1 Chemicals  

Copper (I) chloride (CuCl, 99.99%), elemental selenium (Se, 99.99%), copper (II) 

sulfide (CuS, 99.99%), indium (III) selenide (In2Se3, 99.99%), elemental sulfur (S, 

99.98%), sodium sulfide nonahydrate (Na2S·9H2O, 99.99%), cadmium sulfate (CdSO4, 

99.99%), thiourea (99%), anhydrous hydrazine (98%), anhydrous toluene (99.8%), 

anhydrous ethanol (99.5%), and anhydrous acetonitrile (99.8%) were obtained from 

Aldrich; indium (III) chloride (InCl3, 99.99%) was obtained from Strem Chemical; 

oleylamine (>40%) was obtained from TCI America; toluene, ethanol, hexanes, and 

ammonium hydroxide (18M NH4OH) were obtained from Fisher Scientific. Oleylamine 

was degassed by pulling vacuum overnight at ~200 mTorr at 110 °C and stored in an N2 

filled glovebox before use.  Anhydrous hydrazine was distilled and stored inside an N2 

filled glovebox to prevent a possible explosion. Hydrazine is a highly toxic and explosive 

chemical, and all work with hydrazine was conducted inside of a N2 filled glovebox.  All 

other chemicals were used as received. 

 

3.2.2 CuInSe2 Nanocrystal Synthesis 

 CIS nanocrystals were synthesized as previously described.9  In a typical 

reaction, 2 mmol of CuCl, 2 mmol of InCl3, 4 mmol of Se, and 20 ml of degassed 

oleylamine are added to a 100 ml three neck flask inside an N2 filled glovebox. The flask 

is attached to a standard Schlenk line and degassed at 110 °C under vacuum for 45 

minutes. The flask is then filled with nitrogen and heated to 200 °C.  After 30 min, the 

temperature is raised to 260 °C.  After 10 min, the heating mantle is removed and the 

reaction is allowed to cool to room temperature. The nanocrystals are washed via 
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centrifugation using toluene and ethanol as the solvent and anti-solvent, respectively.  

Poorly-capped nanocrystals are then separated from the toluene solution via 

centrifugation. The final nanocrystals dispersion is then transferred to a glovebox for the 

ligand exchange. 

 

3.2.3 Metal Chalcogenide Complex Preparation   

MCCs of metal chalcogenide anions complexed with hydrazinium (N2H5
+)25–29 

were formed by dissolving metal and chalcogen in hydrazine following the procedures of 

Kovalenko et al.22.  A 0.25 M solution of N4H9Cu7S4 (Cu2S-MCC) was prepared by 

dissolving 2.5 mmol of Cu2S powder in 7.5 ml of hydrazine and adding 3.5 ml of 1 M S 

solution in hydrazine. A 0.25 M solution of (N2H4)2(N2H5)2In2Se4  (In2Se3-MCC) was 

prepared by dissolving 2 mmol of In2Se3 powder in 4 ml of hydrazine and adding 4 ml of 

1 M Se solution in hydrazine. A 0.25 M solution of (N2H4)x(N2H5)3(Cu2In2S3Se4) (CIS-

MCC ligand) was prepared by mixing equal volumes of the 0.25 M In2Se3-MCC and 0.25 

M Cu2S-MCC solutions. 

 

3.2.4 Oleylamine/MCC Ligand Exchange   

0.25 ml of 0.25 M MCC stock solution (in hydrazine), 10 ml of hydrazine and 5 

mL of CIS nanocrystals dispersed in toluene at a concentration of 200 mg/mL were 

combined and stirred for two days.  The nanocrystals transfer from the toluene phase to 

the hydrazine phase. The nanocrystals were isolated from the hydrazine phase by 

precipitation with ~4 ml acetonitrile and centrifugation (8000 rpm, 2 min).  The 

nanocrystals were redispersed in 5 mL of hydrazine. 5 mL of toluene is added and the 
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vial is mixed to remove any residual oleylamine.  The hydrazine phase was again 

decanted and the nanocrystals washed with the acetonitrile/hydrazine antisolvent/solvent 

combination. 

Oleylamine ligands were exchanged with S2-, HS-, and OH- ions as described by 

Nag et al.20  0.8 g of Na2S∙9H2O was dissolved in 20 mL of DI water.  5 mL of a toluene 

dispersion of CIS nanocrystals (200 mg/mL) was added to the aqueous Na2S solution and 

stirred overnight.  The majority of the nanocrystals transfer from the toluene phase to the 

water phase.  The nanocrystals were precipitated by adding 20 mL of acetone and 

centrifuging at 8000 rpm for 3 min. The S2-, HS-, and OH- capped (collectively, Na2S-

capped) nanocrystals were redispersed in 5 mL of DI water. Residual organics are 

removed by adding hexanes and decanting the mixture three times. 

 

3.2.5 Materials Characterization  

Nanocrystals were characterized by transmission electron microscopy (TEM) 

using either a Phillips 208 TEM operated at 80 kV accelerating voltage or a JEOL 2010F 

TEM at 200 kV accelerating voltage. TEM samples were prepared by drop-casting dilute 

nanocrystal dispersions in chloroform or water onto a 200 mesh nickel grid with a 

continuous carbon film (Electron Microscopy Sciences).  Scanning electron microscopy 

(SEM) was performed on a Zeiss Supra 40 VP SEM operated at 5 keV accelerating 

voltage through an In-lens detector with samples grounded using copper tape.  

X-ray diffraction (XRD) was performed using a Rigaku R-Axis Spider 

diffractometer with an image-plate detector and Cu Kα (λ=1.54 Ǻ) radiation operated at 

40 kV and 40 mA. XRD samples were prepared by drying a drop of concentrated 
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nanoparticle dispersion onto a glass slide in a glovebox. The nanocrystal powder was 

then suspended on a 0.5 mm nylon loop using mineral oil for analysis. Samples were 

scanned for 15 min while rotating at 2 deg/s. The 2D diffraction patterns were integrated 

using the Rigaku 2DP powder processing suite with subtraction of the background 

scattering from the nylon loop and mineral oil. 

 

3.2.6 CIS Nanocrystal PV Device Fabrication  

CIS nanocrystal PVs were fabricated with a Au/CIS/CdS/i-ZnO/indium tin oxide 

(ITO) device structure. A 5 nm layer of Cr followed by 60 nm of Au were thermally 

deposited onto soda lime glass (Delta Technologies, 25 mm x 25 mm x 1.1 mm polished 

float glass).  Films of CIS nanocrystals were then deposited.  Oleylamine-capped 

nanocrystals were spray deposited from toluene at room temperature as described 

previously.9 Na2S-capped nanocrystals were spray deposited from water onto substrates 

heated to 100 °C.  MCC-capped nanocrystals dispersed in hydrazine were deposited by a 

spin coating procedure.  A layer of MCC-capped nanocrystals was deposited by dropping 

70 μL of nanocrystal/hydrazine dispersion onto the substrate and rotating at 2000 rpm for 

90 seconds to dry the film. The substrate was then heated to 150 °C for 5 min prior to 

depositing the next layer of nanocrystals.  This spin coating procedure was repeated 1-4 

times. A CdS buffer layer was deposited by dropping 0.7 mL of a CdS precursor solution 

(1.25 ml of 15 mM CdSO4, 2.2 ml of 1.5 M thiourea, and 2.8 ml of 18 M NH4OH in 

water) onto the CIS nanocrystal film heated to 80 °C on a hot plate and covered with an 

inverted petri dish for 2 min.30 The substrate was removed from the hot plate, rinsed with 

DI water, and dried with a stream of compressed air.  Top layers of i-ZnO and ITO were 

deposited by RF sputtering from a ZnO target (Lesker, 99.9%) in a 0.5% O2 in Ar 
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atmosphere (Praxair, 99.95%) and a ITO target (Lesker, 99.99% In2O3:SnO2 90:10) in 

Ar atmosphere (Praxair, research grade). ZnO and ITO are deposited selectively onto 8 

rectangular regions with active device areas of 0.08 cm2.  Silver paint was applied for 

electrical contact to the devices.  Prior to the device measurements, the completed 

devices were placed in a vacuum oven for 10 minutes at 200 °C to improve the 

conductivity of the ITO. 

PV device response was measured using a Keithley 2400 General Purpose 

Sourcemeter under solar simulation using a Newport Xenon Lamp Solar Simulator with 

an AM 1.5 filter. Incident photon conversion efficiency (IPCE) was measured using a 

home-built device with lock-in amplifier (Stanford Research Systems, model SR830) and 

monochromator (Newport Cornerstone 260 1/4M), and calibrated with Si and Ge 

photodiodes (Hamamatsu). 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 CuInSe2 (CIS) Nanocrystals Before and After Inorganic Ligand Exchange   

Figure 3.1 shows TEM images of CIS nanocrystals made with oleylamine capping 

ligands before and after Na2S and CIS-MCC ligand exchange.  TEM and XRD (Figure 

3.2) confirmed that the particles are crystalline before and after ligand exchange.  

However, the inorganic ligand-capped nanocrystals are very prone to agglomeration and 

are not as easily deposited into thin films as the oleylamine-capped nanocrystals.  

Furthermore, the CIS-MCC capped nanocrystals disperse in hydrazine, which severely 

limits the way the nanocrystals can be deposited onto substrates.     
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Figure 3.1 TEM images of CIS nanocrystals: (a,b) as-synthesized with oleylamine 
capping ligands and after ligand exchange with (c,d) Na2S and (e,f) CIS-
MCC. (g) High-resolution TEM image and (h) corresponding FFT of a CIS 
nanocrystal after oleylamine ligand exchange with CIS-MCC.  The 
nanocrystal is imaged down the [110] crystallographic zone axis and the 
FFT is indexed to chalcopyrite CIS. The measured d-spacing is d112 = 3.3 Å. 
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Figure 3.2 XRD patterns from CIS nanocrystals synthesized with oleylamine capping 
ligands before and after exchange with Cu2S-MCC and In2Se4-MCC 
ligands. The red reference lines correspond to chalcopyrite CIS (PDF #97-
006-892).  The absence of the (112) peak indicates that there may be Cu and 
In positional disorder.   

 

3.3.2 CIS Nanocrystal Film Deposition  

For device fabrication, the oleylamine-capped CIS nanocrystals are dispersed in 

toluene (~20 mg/ml) and then spray-deposited into a uniform layer approximately 200 

nm thick.9   The Na2S-capped CIS nanocrystals disperse in water and could also be spray-

deposited, but the substrate needs to be heated to achieve uniform film thickness due to 

the low volatility of the solvent.  The low solvent volatility made it difficult to deposit 

thicker films, and even with heating of the substrate it was not possible to increase the 

thickness of the Na2S-capped CIS nanocrystal films above about 75 nm while retaining a 

uniform film thickness.  The MCC-capped CIS nanocrystals are dispersible in hydrazine 

and other polar solvents, like dimethyl sulfoxide, and water.  Films of MCC-capped CIS 

nanocrystals could be sprayed from dispersions in dimethyl sulfoxide and water, but 

devices using these layers performed extremely poorly.  Only when the MCC-capped CIS 
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nanocrystals were deposited from hydrazine could PV devices with reasonable response 

be made.  Unfortunately, nanocrystals dispersed in hydrazine cannot be spray-deposited 

due to the very high toxicity of hydrazine and its potential instability (i.e., explosiveness).  

Therefore, the MCC-capped CIS nanocrystals were spin-coated onto the device 

substrates, which ultimately limited the thickness of the nanocrystal films to about 75 nm.   

Figure 3.3 shows SEM images of films of CIS nanocrystals capped with CIS-

MCC ligands.  The SEM images show that the nanocrystal film is relatively uniform in 

density with a nanocrystalline morphology—there is no particle sintering or grain growth 

due to film heating on the hot plate.  The cross-sectional SEM image of a CIS-MCC-

capped nanocrystal device shows the lateral uniformity of the nanocrystal film and the 

relative thicknesses of the device layers.   
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Figure 3.3 SEM images of (a) the surface of a spin-coated CIS nanocrystal film and (b) 
a cross-sectioned PV device with a layer of CIS-MCC ligand-capped CIS 
nanocrystals.  The Au, CIS-MCC nanocrystal, ZnO and ITO layers are 70 
nm, 75 nm, 40 nm and 200 nm thick, respectively. 

 

3.3.3 PV Device Performance 

The PV response and IPCE for devices made with oleylamine-capped, CIS-MCC 

ligand-capped, and Na2S-capped CIS nanocrystals are shown in Figure 3.4.  The 

efficiency of the best CIS-MCC ligand-capped CIS device is similar to the best 

oleylamine-capped CIS device. The best efficiency for a Na2S-capped CIS device was 

significantly lower than the devices made with either oleylamine-capped or MCC-capped 
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CIS nanocrystals, but the devices worked, demonstrating that it may be possible to 

fabricate reasonable PV devices under ambient conditions using water as a solvent with 

further optimization.  

The IPCE data confirm that the CIS nanocrystals are the active light-absorbing 

material in the device with the absorption edge extending into the near infrared towards 

the CIS band gap of 1.0 eV. On average, the devices made with the MCC-capped CIS 

nanocrystals exhibited more consistent performance with fewer shorted devices, and the 

series resistance Rs, of the devices was consistently lower for the devices with inorganic-

capped CIS nanocrystals.  Table 3.1 lists the values of Rs and the shunt resistances Rsh, of 

the best devices estimated by fitting the dark I-V curves to the diode equation, 
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(3.1) 

A is the device area, J0 is the saturation current density under reverse bias, n is the 

ideality factor of the device, k is Boltzmann’s constant, and T is the temperature.   

 

 

 



 57 

 

Figure 3.4 Dark and light I-V characteristics for the highest performance devices 
fabricated using oleylamine-capped CIS nanocrystals (blue), CIS-MCC 
ligand-capped CIS nanocrystals (red), and Na2S-capped CIS nanocrystals 
(green). The dashed lines are the dark I-V characteristics and the solid lines 
are the light I-V characteristics. IPCE measurements for each device are 
shown in the inset. 

 

Ligand PCE (%) Voc (V) Jsc (mA/cm2) FF sR  (Ω) shR (MΩ) 

Oleylamine 1.56 0.349 9.59 0.467 69.0 0.92 

Cu2S-MCC 1.42 0.396 7.76 0.461 7.65 1.00 

CIS-MCC 1.68 0.340 10.96 0.450 6.46 0.36 

Na2S 0.35 0.274 3.10 0.416 11.6 0.09 

Table 3.1 Characteristics of PV devices fabricated with CIS nanocrystals capped with 
various ligands. 

Although the MCC-capped and oleylamine-capped CIS nanocrystal PVs exhibited 

comparable power conversion efficiency, the MCC-capped nanocrystal layers in the 

devices were much thinner than the oleylamine-capped nanocrystal layers, implying that 
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the internal quantum efficiency of the MCC-ligand capped nanocrystal devices may be 

higher.  At the moment, we have not been able to increase the thickness of the MCC-

ligand capped nanocrystals because they must be spin-coated under carefully controlled 

environmental conditions because of the hazardous nature of hydrazine.  Additionally, 

these spin-coated layers are often streaky and non-uniform.  The need for hydrazine 

represents one of the major bottlenecks to using these nanocrystals in PVs and new 

solvents and deposition techniques need to be explored in order to improve PV efficiency 

and deposit thicker, uniform films under ambient conditions.   

 

3.4 CONCLUSIONS 

The device results presented here prove that it is possible to use inorganic capping 

moieties for nanocrystal-based PVs.  The device efficiencies are still relatively low, at 

about 2% PCE under AM1.5 illumination, so it is still unclear if the use of inorganic 

ligands will yield the needed boost in device efficiency without resorting to high 

temperature sintering, but undoubtedly MCC-capped nanocrystals can yield PV response.  

One of the biggest problems with the metal chalcogenide complexes is the need to use 

hydrazine as a solvent.  With this limitation, it will never be possible to use these 

applications in commercial PVs.  Therefore, the device results from the inorganic capped 

CIS nanocrystals using water as a solvent are encouraging, even though the performance 

was substantially less.    
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Chapter 4: CuInSe2 Nanocrystal Sintering Using Photonic Curing§ 

 

4.1 INTRODUCTION 

Cu(In,Ga)Se2 (CIGS) is a promising semiconductor material for thin film 

photovoltaic (PV) devices, but has not made a commercial impact due to high fabrication 

cost compared to Si solar cells.1,2 The fabrication cost is primarily driven by the need to 

process the films in vacuum conditions and at high temperature in a toxic selenium 

atmosphere, also known as selenization.3 Selenization is used during CIGS film 

deposition during co-evaporation,4 or as a subsequent step after physical vapor deposition 

(PVD) of Cu, In, and Ga metal layers.5 To eliminate the high cost processing, 

Cu(In,Ga)Se2 films have been fabricated using nanocrystal inks spray deposited in 

ambient conditions, but PV device efficiency has been limited (~3%).6 Selenization of the 

nanocrystal films increases efficiency,7 however reintroduces the high temperature 

selenization process. A rapid, non-toxic, roll-to-roll compatible process is needed to 

reduce CIGS processing cost and complexity. The use of microsecond length pulses of 

light, known as photonic curing, to sinter nanocrystal films at ambient pressure in a non-

selenium environment is a promising route to low cost CIGS photovoltaics. 

Photonic curing, also known as photonic sintering or intense pulsed light (IPL) 

annealing, uses short pulses of light to heat and sinter particulate films. For the treatment 

to be effective, the material must be a good light absorber in the wavelength range of the 

                                                 
§ Parts of this chapter are adapted from: Harvey, Taylor B.; Stolle, C. Jackson; Akhavan, Vahid A.; 
Hibbert, Jarett I.; Pernik, Douglas R.; Du, Jiang; Korgel, Brian A., Photonic Curing of CuInSe2 Nanocrystal 
Films for Photovoltaic Devices, in preparation. TBH and CJS both designed the experiments, fabricated 
and characterized devices, and collected and analyzed data. TBH wrote the manuscript. CJS assisted with 
writing the manuscript. VAA and JIH assisted with the photonic curing process. DRP and JD assisted with 
characterization and data analysis. BAK provided funding, guidance, and assistance with writing the 
manuscript. 
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light source. The technique has been used primarily to sinter metal nanoparticles, with 

both Ag8–10 and Cu8,11,12 nanoparticle inks demonstrating increased conductivity after 

treatment. Nanoparticle semiconductor films have also been treated, primarily CIGS. 

Sintering of CIGS nanoparticles,13 CuInGa and Se nanoparticle mixtures,14 and, recently, 

CIGS nanocrystals15 has been carried out using photonic curing. While sintered films 

were reported in each of these cases, no working photovoltaics were demonstrated. 

We recently reported CuInSe2 nanocrystal PVs exhibiting multiple exciton 

generation (MEG) after being treated with photonic curing.16 These devices were treated 

with mild energy pulses that did not sinter the nanocrystals, but reduced interparticle 

spacing allowing MEG extraction. In this work, the morphology of the nanocrystal layer 

and device characteristics after photonic curing with a wide range of pulse energies are 

investigated. Similar device performance is found using multiple back contact materials 

at mild pulse conditions. As the pulse energy increases, the nanocrystals begin to sinter 

into continuous films, and we find the pulsed film morphology is highly dependent on the 

back contact material. Nanocrystals on Mo back contacts exhibited dewetting and 

agglomeration, and the use of MoSe2-coated Mo reduced this dewetting. Au back 

contacts also reduced dewetting, but the back contact was destroyed as pulse energy 

increased. At lower pulse energy, devices treated with photonic curing exhibit increased 

power conversion efficiency (PCE) compared to nontreated films. While efficiency 

decreases as pulse energy increases, working devices of sintered CuInSe2 nanocrystal 

films are demonstrated on MoSe2-coated Mo.  
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4.2 EXPERIMENTAL METHODS 

4.2.1 Chemicals 

Copper (I) chloride (CuCl, 99.99%), elemental selenium (Se, 99.99%), 

diphenylphosphine (DPP, 98%) were purchased from Aldrich; oleylamine (>40%) from 

TCI America; indium (III) chloride (InCl3, 99.99%) from Strem Chemical; toluene and 

ethanol from Fisher Scientific.  Oleylamine (OLA) was degassed at 110°C overnight. 

CuCl, InCl3, DPP and OLA were stored in an N2 filled glovebox. 

 

4.2.2 Nanocrystal Synthesis   

CuInSe2 nanocrystals were synthesized using reported methods.17,16 In a N2 filled 

glove box, 0.198 g CuCl, 0.442 g InCl3, and 20 mL degassed OLA are combined in a 

three neck flask, removed from the glovebox and attached to a standard Schlenk line. 

Concurrently, 4 mmol of Se and DPP are mixed and diluted in 2 mL of OLA to form a 

DPP:Se solution. The 3 neck flask is degassed by heating to 100°C while pulling vaccum 

for 30 min. The flask is then filled with N2 and the temperature is raised to 180oC where 

the DPP:Se solution is injected.  The reaction mixture is then heated to 240 oC for 30 min, 

after which the heating mantle is removed and the reaction is allowed to cool to room 

temperature.  

Purification of the nanocrystals is conducted by centrifugation using 

toluene/ethanol as solvent and antisolvent. The nanocrystals are precipitated by 

centrifuging at 4000 rpm for 2 min after adding 20 ml of ethanol, then redispersed in 5 ml 

of toluene and centrifuged to separate the poorly-capped particles. The nanocrystals are 

precipitated again by adding 5 ml of ethanol and centrifuging. The final solution is 

prepared by redispersing the nanocrystals in 5 mL of toluene 
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4.2.3 Nanocrystal Film Preparation  

Bare glass substrates (Delta Technologies) were sonicated in 1:1 IPA/acetone for 

10 minutes followed by sonication in DI water for 10 minutes.  A two step rf-sputtering 

process was used to deposit Mo (99.95% Lesker). 400 nm of Mo was sputtered at 5 mtorr 

as an adhesive layer followed by 600 nm at 1.5 mtorr of highly conductive Mo.  Au 

substrates were fabricated by thermally depositing 5 nm of Cr followed by 60 nm of Au 

(Kurt J. Lesker Co). Ag substrates were fabricated by thermally depositing 5 nm of Cr 

followed by 60 nm of Ag (Kurt J. Lesker Co). Ni substrates were fabricated by thermally 

depositing 100 nm of Ni (Kurt J. Lesker Co). ITO substrates (Thin Film Devices) were 

cleaned in the same manner as the bare glass substrates and used without further 

treatment. MoSe2 coated Mo was prepared by converting the top 50 nm of a Mo substrate 

to MoSe2 by annealing in an Se-rich atmosphere at 450°C for 10 minutes as previously 

described.7  

CuInSe2 nanocrystal films with thickness between 0.5-1 µm were deposited by 

spray-coating from toluene dispersions (~50 mg/mL).    

 

4.2.4 Photonic Curing  

Photonic curing was performed with a Novacentrix PulseForge 3300 using pulse 

energies ranging from 1 J/cm2 to 7 J/cm2, controlled by varying the pulse voltage with a 

300 µs pulse length. The reported energy inputs were measured with a bolometer 

(Novacentrix BX-100).  For photonic curing, substrates were loaded into a stainless steel 

chamber with 2” thickness and 7” diameter and a 6” diameter circular quartz window.  

The chamber was purged with nitrogen for one minute and sealed, then positioned under 
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the center of the xenon lamps and pulsed. A single light pulse with duration of 300 µs 

was used. After photonic curing, the chamber was opened in a fume hood.   

 

4.2.5 Materials Characterization  

A Rigaku R-Axis diffractometer was used to collect X-ray diffraction (XRD) 

data. A 10° glancing angle was used between graphite monochromatized Cu Kα (λ = 

1.5418 Ǻ) radiation operated at 40 kV and 40 mA was and the samples, which were 

rotated at 1° per second. Spectra were collected on an image-plate detector and two-

dimensional diffraction patterns were radially integrated after background subtraction 

using 2DP V. 1.0 Data Processing Software (Rigaku). High resolution XRD over a short 

wavelength ranges was collected at 0.01 2 θ increments on a Bruker-Nonius D8 powder 

diffractometer equipped and 1.54 Å radiation (Cu Kα).   

Scanning electron microscopy (SEM) was conducted using an In-lens detector 

and a 5 keV accelerating voltage on a Zeiss Supra VP SEM. A Quanta 650 FEG SEM 

equipped with a Bruker XFlash EDS Detector 5010 was used to collect Energy-dispersive 

X-ray spectroscopy (EDS), and maps were generated at 20 kV accelerating voltage and a 

working distance of 10 mm with a spot size of 5.  

 

4.2.6 PV Device Fabrication   

A CdS layer (50 nm thick) was deposited on cured CuInSe2 nanocrystal films by 

chemical bath deposition (CBD). DI water (160 mL) was heated to 70 °C and 15 mM 

Cd(SO4)2 (25 mL), 1.5 M thiourea (12.5 mL), and 28 wt% ammonia hydroxide (32 mL) 

were added. The films were then immersed for 15 minutes.  ZnO (50 nm) and ITO (600 



 67 

nm) was then deposited by rf-sputter coating at 2 mtorr.  Physical shadow masks were 

used during window layer deposition, providing an active device area of 0.08 cm2.   

Current-Voltage characteristics were measured using a Keithley 2400 general 

purpose source meter.  The devices were illumination using a Xenon lamp solar simulator 

(Newport) equipped with an AM1.5G optical filter and calibrated to 100 mW/cm2 light 

intensity with a NIST-calibrated Si photodiode (Hamamatsu, S1787-08). 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Photonic Curing of Nanocrystal Films on Mo Back Contacts 

Photonic curing was carried out by exposing a CuInSe2 nanocrystal film to a 

single 300 µs pulse of high-intensity light from a Xe lamp.  Short pulse duration was 

utilized to limit total energy input and achieve the relatively low-energy, non-

equilibrium, heating conditions needed to ensure the integrity of the back contact while 

exceeding the power threshold required to sinter the films.18 The nanocrystal film heats to 

its peak temperature in approximately the same amount of time as the pulse length (300 

µs). The peak temperature and cooling rate is determined by the amount of light absorbed 

and the rate of heat transfer to the metal contact, underlying substrate, and surrounding 

N2 environment. Thus, the thickness of the nanocrystal film and the type of metal contact 

and substrate chosen greatly impact the heating profile of the film during photonic curing. 

Figure 4.1 shows a schematic illustration of the photonic curing process, wherein the 

light pulse heats up the nanocrystal film, vaporizes the organic ligands surrounding each 

nanocrystal, and induces grain growth in the film. 
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Figure 4.1 A schematic illustration of the photonic curing process. 

 

Figure 4.2 shows SEM of 600 nm thick CuInSe2 nanocrystal films deposited on 

Mo back contacts before and after photonic curing with a 300 µs pulse at increasing 

energy inputs. A 1.0 J/cm2 pulse (Fig 4.2B) leaves the majority of the film relatively 

unchanged from the untreated nanocrystal film (Fig 4.2A); however, some regions of 

sintered CuInSe2 are observed. Increasing the pulse intensity to 1.3 J/cm2 (Fig 4.2C) 

continues conversion of the nanocrystal film to isolated sintered CuInSe2 regions. As 

observed in Figure 4.2D and 4.2E, further increases of pulse energy lead to almost 

complete dewetting and agglomeration of the film into sintered CuInSe2 melt balls, 

leaving the Mo back contact almost completely exposed. 

Figure 4.3 shows XRD data for the films corresponding to the SEM in Figure 4.2. 

No new diffraction peaks appear after photonic curing and all peaks correspond to 

CuInSe2 and Mo (reference patterns at bottom of graph). The primary change is the 

narrowing of the (112) diffraction peak for CuInSe2 at 2ϴ=26.65o, indicating that 

sintering and crystal growth occur.  Slight (112) peak narrowing is observed after a 1.0 

J/cm2 pulse, which most likely corresponds to the formation of melted CuInSe2 in some 

regions of the film. The peak continues to narrow with higher intensity photonic curing 

treatment. Peak narrowing reaches the machine broadening limit with a 1.8 J/cm2 pulse.  
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Figure 4.2 SEM images of CuInSe2 nanocrystal films on Mo-coated soda lime glass a)  
before and after photonic curing with a 300 µs pulse with b) 1.0 J/cm2, c) 
1.3 J/cm2, d) 1.8 J/cm2, and e) 2.2 J/cm2 energy. Cross sectional SEM 
images f) before and g) after a 2.2 J/cm2 pulse are also shown.  
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Figure 4.3 XRD of CIS deposited on Mo. XRD is shown for CuInSe2 nanocrystals on 
Mo-coated soda-lime glass (solid lines) before and after photonic curing.  
Reference patterns are for chalcopyrite CuInSe2 (PDF # 97-006-8928) and 
Mo (PDF# 97-064-3959). 

 

4.3.2 Photonic Curing on MoSe2/Mo Bilayer Contacts 

Melt ball formation is significantly reduced in photonically cured CuInSe2 

nanocrystal films deposited on MoSe2-coated Mo back contacts. MoSe2-coated Mo back 

contacts were chosen based on the traditional CIGS photovoltaic structure. A small layer 

of MoSe2 between the CuInSe2 and Mo is formed during the selenization process, and 

optimization of this layer is important for high efficiency sintered nanocrystal devices.7 

In contrast to a selenization process, no MoSe2 is formed during the photonic curing 

process due to the rapid nature of the treatment. To add a MoSe2 layer, a 50 nm layer of 

MoSe2 on the Mo back contact was created prior to depositing the CuInSe2 nanocrystals. 

Figure 4.4 shows SEM and Figure 4.5 shows XRD from pulsed one micron nanocrystal 

films on MoSe2-coated Mo back contacts at different pulse energies. A 2 J/cm2 pulse has 

little effect on the nanocrystal film (Fig 4.4B) and there is minimal peak narrowing of the 
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(112) peak. Some small areas of sintered CuInSe2 are formed with 2.2 J/cm2 (Fig 4.4C) 

and 2.5 J/cm2 (Fig 4.4D) pulses, but the majority of the film continues to be small grained 

although the (112) peak narrows in XRD. At pulse energies of 3 J/cm2 and 3.5 J/cm2, 

significant sintering is observed and the (112) peak reaches the narrowing limit due to 

instrument broadening. A marked change in sintering threshold between nanocrystal 

films on Mo and MoSe2-coated Mo is observed in both the SEM and XRD. A 2.2 J/cm2 

pulse on Mo leads to strong melt ball formation and fully narrowed XRD peak, where on 

MoSe2-coated Mo very little sintering or peak narrowing is observed.  There is still 

coalescence of nanocrystals that leads to some exposed back contact; however, the 

majority of the film is covered with absorber layer unlike films treated on Mo.     

The increased grain size at higher energy pulses can also be observed in cross 

sectional SEM shown in Figure 4.6. Some necking of the nanoparticles can be observed 

after a 3 J/cm2 pulse (Fig. 4.6D); however the grain size in the majority of the film is still 

small. With a larger 3.5 J/cm2 pulse, large grains are seen through the entire film (Fig. 

4.6F). 
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Figure 4.4 SEM images of CuInSe2 nanocrystals films a) before and after b) 2 J/cm2, c) 
2.2 J/cm2, d) 2.5 J/cm2, e) 3 J/cm2 and f) 3.5 J/cm2 on MoSe2-coated Mo 
back contacts. Minimal change is observed with lower energy pulses from 
the as-deposited nanocrystal film. With increasing pulse energy, more 
sintering is observed. Some localized CuInSe2 sintering is observed; 
however, the formation of large melt balls is significantly reduced compared 
to the treatment of nanocrystal films on Mo back contacts. 
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Figure 4.5 XRD data of nanocrystal films before and after 2, 2.2, 2.5, 3 and 3.5 J/cm2 
pulses on MoSe2/Mo bilayer back contacts (from top to bottom). Indexed 
XRD references for chalcopyrite CuInSe2, Mo, and MoSe2 (pdf# 97-004-
9800) are also shown. As is typical of MoSe2 synthesized via selenization of 
Mo, the (103) peak intensity is significantly reduced due to the preferential 
orientation of the MoSe2 to the underlying Mo.19,20 
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Figure 4.6 Higher magnification SEM images of CuInSe2 on MoSe2. (a) Spatial and (b) 
cross sectional SEM of films with no photonic treatment. (c) Spatial SEM of 
film after 3 J/cm2 treatment showing some agglomeration of sintered CIS 
layer as well as areas of local sintering seen in more detail in (d)cross 
sectional SEM image. (e) SEM of film after 3.5 J/cm2 pulse showing 
increased sintering leading to large grain CIS seen in (F)cross sectional 
SEM image. 

The change in photonically treated film morphology from Mo to MoSe2-coated 

glass may have several explanations. Ghosh et al.21 show that the difference in thermal 

expansion between Mo and CuInSe2 can lead to poor adhesion during the high 

temperature treatments used in Cu(In,Ga)Se2 co-evaporation deposition. This thermal 

expansion mismatch is exacerbated due to large thermal gradients in the film due to the 
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brevity of the pulse, allowing the nanocrystal film to reach high temperatures while the 

underlying substrate remains at a lower temperature.18 Both the thermal expansion 

difference and the temperature mismatch likely destabilize the CuInSe2 film, leading to 

dewetting and agglomeration. Partial conversion of Mo to MoSe2 during the standard 

high temperature selenization process increases adhesion between CuInSe2 and Mo.22 

The increased adhesion between MoSe2 and CuInSe2 may prevent much of the dewetting 

after film destabilization during pulse treatment. Changes in surface roughness, film 

wetting, and potential interfacial reactions between the back contact and CuInSe2 layer 

may also contribute to the differences in observed film morphology on Mo and MoSe2.  

 

4.3.3 Optimization of Photonic Curing Pulse Length 

The PulseForge 3300 tool used for photonic curing was originally developed for 

making solution-deposited metal connects. For example, a slurry of CuO nanoparticles, a 

reducing agent, and binder material are dispersed in solvent and cast onto a substrate such 

as paper. The slurry is then treated with photonic curing, where the CuO is reduced into 

conductive copper. Figure 4.7 shows a patterned CuO slurry before and after photonic 

curing with a 380 V, 2000 µs pulse. Longer pulse durations are used for curing of CuO 

nanoparticles because the slurry must remain at a high temperature for a longer period of 

time in order for the nanocparticles to react with the reducing agent. Figure 4.8 shows 

SEM images of a CuO nanoparticle slurry spray cast onto a MoSe2/Mo bilayer substrate 

before and after photonic curing with varying pulse lengths. After a photonic curing pulse 

of 300 µs duration (Fig. 4.8B), the Cu tends to form large agglomerates, similar to what 

is observed for CuInSe2 nanocrystals at these pulse lengths. Using longer duration pulses 

of 1200 µs (Fig. 4.8C) or 2000 µs (Fig. 4.8D) yields much better film morphology and 
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allows for the successful conversion of CuO into conductive copper. Even at the longer 

pulse durations, the films still show some holes present, which can be attributed to the 

volatilization of the binder material from the slurry. 

 

 

Figure 4.7 A patterned CuO nanoparticle slurry before and after photonic curing with a 
380 V, 2000 µs pulse. During photonic curing, the CuO reacts with a 
reducing agent to form conductive copper. 
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Figure 4.8 SEM images of a spray-cast CuO nanoparticle slurry (A) before photonic 
curing and after photonic curing pulses with durations of (B) 300 µs, (C) 
1200 µs, and (D) 2000 µs. 

 

Figure 4.9 shows SEM images for CuInSe2 nanocrystals spray cast onto a 

MoSe2/Mo bilayer substrate and treated with various photonic curing pulse durations. 

Unlike the CuO nanoparticle slurry film, the CuInSe2 nanocrystal film uniformity 

actually decreases with longer pulse durations. At 300 µs (Fig. 4.9A), the film sinters into 

some large melt structures while the rest of the film remains unsintered. As the pulse 

duration increases, these melt structures get larger and larger, leaving greater area of 

exposed back contact. Longer pulse durations allow for the melted nanocrystals at film 

hot spots to wick up into even large melt structures while having little impact on the rest 

of the unsintered nanocrystals. 
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Figure 4.9 SEM images of a CuInSe2 nanocrystal film spray cast on a MoSe2/Mo 
bilayer substrate after photonic curing with varying pulse conditions of (A) 
600 V, 300 µs, (B) 550 V, 600 µs, (C) 520 V, 900 µs, (D) 500 V, 1200 µs, 
(E) 470 V, 1500 µs, and (F) 450 V, 2000 µs. The pulse voltage was varied 
inversely to the pulse duration in order to maintain a similar lamp output 
power (based on the NovaCentrix pulse modeling software). 

 

4.3.4 Photonic Curing on Au and Other Metal Contacts 

We have recently reported in depth about low energy photonic curing treatments 

on Au back contacts.16 Here we focus on higher pulse intensities that lead to necking and 
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sintering of the nanocrystals. Figure 4.10 shows XRD and SEM images of the a 

nanocrystal film deposited on a Au back contact after photonic curing at 3 and 3.5 J/cm2.  

At both energy inputs, the (112) diffraction peaks are significantly narrowed after curing 

(Fig. 4.10A). Cross sectional SEM images of films cured at 3 J/cm2 show nanocrystal 

necking (Fig. 4.10B) with no loss in integrity of the the 40 nm Au back contact.  Similar 

to nanocrystal films on MoSe2-coated Mo, a higher pulse energy of 3.5 J/cm2 pulse was 

required to fully sinter the CuInSe2 nanocrystal layer, but these conditions destroyed the 

Au back contact (Fig. 4.10D).  Figure 4.10E-4.10G shows an EDS map of the nanocrystal 

film after 3.5 J/cm2 curing with agglomerates of Au scattered throughout the CuInSe2 

film.  

Additional back contact materials besides Au and MoSe2/Mo were also 

investigated. Figure 4.11 shows a comparison of the nanocrystal film morphology on 

various metal back contact materials (Mo, MoSe2/Mo, Au, ITO, and Ni) after photonic 

curing. Ag metal back contacts were also used, but the adhesion was so poor between 

CuInSe2 and Ag that no film remained following photonic curing. Films on Mo substrates 

show significant delamination due to the poor CuInSe2-Mo adhesion. Unfortunately, we 

were unable to find a substrate material from our standard library of materials with 

sufficient adhesion to prevent melt ball formation. Films deposited on MoSe2/Mo bilayer 

substrates, Gold , Indium Tin Oxide, and Nickel substrates all show a similar film 

morphology after photonic curing. Ideally, the metal contact should be chosen such that 

liquid CuInSe2 would preferentially wet the substrate surface rather than agglomerate into 

large structures. 

 

 

 



 80 

 

Figure 4.10 (a) XRD of CIS (112) peak before and after photonic curing with 3 and 3.5 
J/cm2 pulses of nanocrystal films deposited on Au back contacts. Cross 
sectional SEM images (b)before, (c)  after 3 J/cm2 and  (d) 3.5 J/cm2 
treatment. (e) Spatial SEM and (f-g) Spatial EDS maps of film after 3.5 
J/cm2 pulse. (f) Composite EDS response for Cu (red), In (green), Se (dark 
blue), Au (light blue) and Si(violet). (g) Au EDS response showing Au 
agglomeration scattered across the substrate. 
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Figure 4.11 SEM images of CuInSe2 nanocrystal films deposited on Mo, MoSe2/Mo, 
Au, Ni, and ITO back contacts before photonic curing and after photonic 
curing at 1.6 J/cm2 and 3.1 J/cm2. 
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4.3.5 Photovoltaic Device Performance 

 

 

Table 4.1 Device Characteristics of Pulsed Films deposited on MoSe2-coated Mo and 
Au back contacts. 

 

Table 4.1 summarizes the performance of devices made with nanocrystal films 

before and after photonic curing.  Photovoltaic devices fabricated using the pulsed 

CuInSe2 nanocrystals on Mo-coated soda-lime glass as the absorber layer exhibited 

ohmic IV response without any measureable photocurrent due to the exposed Mo back 

contact. Use of the MoSe2-coated Mo back contact reduced the amount of exposed back 

contact, and working devices were fabricated at all pulse conditions. In addition to 

reducing exposed back contact, the MoSe2 layer is also important for device performance 

as it eliminates the Schottky barrier between CIGS and the Mo back contact in PV 

devices.18 Au also is a better back contact than Mo for spray-deposited CuInSe2 

nanocrystal films since it has a higher work function than Mo, making it more suitable to 

form contact with the p-type CuInSe2 layer.6  Figure 4.12 shows the current/voltage 

characteristics of the devices shown in Table 4.1. Power conversion efficiency (PCE) of 
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devices on MoSe2-coated Mo and Au back contacts improve after a 2.2 J/cm2 pulse, with 

both exhibiting decreases in Voc and FF and increases in Jsc. This arises from the fact that, 

under these pulse conditions, the film exhibits little sintering. This pulse energy regime is 

discussed further in Chapter 6. As pulse intensity increases and the nanocrystals begin to 

sinter, the PCE decreases; however the device still exhibit PCE even after sintering 

thresholds have been reached. Films treated with 3.5 J/cm2 pulses on Au did not have any 

measureable device current due to Au back contact destruction. 

 

 

Figure 4.12 Current/Voltage characteristics of photonic cured nanocrystal films on Au 
(left) and MoSe2-coated Mo (right) back contacts. 

In comparison with untreated nanocrystal films, Jsc values are slightly lower for 

both MoSe2/Mo and Au for a 3 J/cm2 pulse. Jsc improves on MoSe2/Mo from 3.2 to 4.0 

mA/cm2 when a nanocrystal film is pulsed with 3.5 J/cm2.  Additionally, due to exposed 

back contact, active CuInSe2 area is smaller in the photonically cured films than as-

deposited nanocrystal films.  Figure 4.13 shows EDS maps from the 3 J/cm2 pulse of 

films on MoSe2/Mo back contacts.  Sintered absorber layer is shown in the green [In] 

EDS Maps (Fig 4.13B), while dark areas in the In maps and bright areas in the Mo EDS 



 84 

maps (Fig 4.13D) have no sintered CuInSe2 absorber layer and would not contribute to 

the short circuit current. Correcting Jsc values for the reduced active area of the device in 

pulsed films would increase short circuit current values, highlighting the potential of this 

technique for increased device performance with improved sintered layers. Additional 

improvement is expected as back contact exposure from film dewetting is improved.   

 

 

Figure 4.13 EDS maps and IV curves of sintered CIS film on MoSe2/Mo back contacts 
with pulse energies of 3 J/cm2. a) Cu (red), In (green), Se (dark blue), and 
Mo (light blue) composite response, b) green In EDS response showing 
absorber layer location, and d) light blue Mo EDS response showing 
exposed back contact. d) IV response for device after 3 J/cm2 pulse. 

 

4.4 CONCLUSIONS 

 Photonic curing is used to treat CuInSe2 nanocrystal films on Mo, MoSe2-coated 

Mo, and Au back contacts. During pulsing, large thermal gradients are generated, 

allowing the nanocrystal film to reach high temperatures while the underlying back 
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contact remains at a lower temperature.  Films on Mo back contacts dewett and 

agglomerated into large sintered CuInSe2 melt balls, exposing the back contact and 

making the films unsuitable for photovoltaics. Nanocrystal dewetting is reduced by using 

a MoSe2-coated Mo or Au back contact, and working devices are fabricated. Increase 

power conversion efficiency is demonstrated at low pulse intensities. As pulse intensity 

increases, PCE decreases, but working photovoltaics are manufactured with sintered 

CuInSe2 nanocrystal films.    
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Chapter 5: Photonic Curing of Nanocrystals Capped with Inorganic 
ChaM Ligands** 

 

5.1 INTRODUCTION 

Colloidal semiconductor nanocrystals are being investigated to create low-cost, 

high efficiency photovoltaic (PV) devices.1 Nanocrystals can be synthesized in large 

quantities, dispersed in solvents, and deposited under ambient conditions on virtually any 

type of substrate. The highest efficiency reported for a nanocrystal PV without high-

temperature processing  is 7% for PbS nanocrystals.2 High temperature sintering has been 

used to achieve higher efficiencies, of up to 12% for nanocrystals of CdTe3, Cu(In,Ga)Se2 

(CIGS)4, Cu(In,Ga)S2
5, and Cu2ZnSnS4.6 High-temperature processing, however, adds 

significant manufacturing cost—especially for CuInSe2 and CIGS nanocrystals, which 

require heating under a selenium-rich atmosphere to induce sintering (known as 

selenization).  To eliminate the need for high temperature selenization and still achieve 

reasonably high device efficiency from ink-processed CuInSe2 and CIGS nanocrystal 

devices, we have been exploring photonic curing as a way to sinter nanocrystal layers, 

which utilizes a high-intensity pulsed broad-band light source and is capable of high-

throughput roll-to-roll manufacturing.     

CuInSe2 nanocrystals were synthesized with either oleylamine capping ligands or 

chalcogenidometallate cluster (ChaM) ligands.  Oleylamine is a common capping ligand 

for CuInSe2 that enables good dispersibility in organic solvents and easy processing, but 

                                                 
** Reproduced in part with permission from: Stolle, C. Jackson; Harvey, Taylor B.; Korgel, Brian A., 
Photonic Curing of Ligand-Capped CuInSe2 Nanocrystal Films, Proc. IEEE Photovoltaic Specialists 
Conference 40 (2014). Copyright 2014 Institute of Electrical and Electronics Engineers. CJS designed the 
experiments, fabricated and characterized the films and devices, analyzed the data, and wrote the 
manuscript. TBH assisted with characterization and data analysis. BAK provided funding, guidance, and 
assisted with writing the manuscript. 
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also hinders charge transport in devices and limits efficiency.7  ChaM ligands, also 

referred to as metal chalcogenide complexes (MCCs) in the recent literature, can improve 

nanocrystal film electrical properties,8 and have been shown to aid sintering of CuInSe2 

and CIGS nanocrystals.9 

Oleylamine-capped or ChaM-capped CuInSe2 nanocrystals were deposited into 

films and then processed by photonic curing using a NovaCentrix PulseForge 3300 tool 

equipped with a broadband xenon flash lamp. Nanocrystal films can reach over 1000°C 

in less than a millisecond and then rapidly return to room temperature.10 Recently, mild 

photonic curing of CuInSe2 nanocrystals to remove capping ligands without sintering 

enabled enhanced charge extraction from the PV devices with peak external quantum 

efficiencies exceeding 100%, indicative of the generation and extraction of multiexcitons 

in the device.11 Higher energy photonic curing leads to nanocrystal sintering. We have 

found that higher energy photonic curing of oleylamine-capped nanocrystals leads to 

non-uniform sintered layers with extensive regions of exposed back contact; whereas, the 

ChaM-capped nanocrystals could be sintered into relatively uniform layers.   

 

5.2 EXPERIMENTAL METHODS 

5.2.1 Nanocrystal Synthesis 

CuInSe2 nanocrystals were synthesized by arrested precipitation following 

reported methods.11 Briefly, 2 mmol of CuCl and 2 mmol of InCl3 are added to a three 

neck flask under an inert atmosphere. 4 mmol of Se powder is dissolved in 1.5 mL 

diphenylphosphine and 2 mL oleylamine. The flask is attached to a standard Schlenk line 

and degassed at 110°C for 30 minutes under vacuum. The flask is then purged with 

nitrogen and heated to 180°C.  Once the flask reaches 180°C, the Se solution is injected 
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and the flask is rapidly ramped to 240°C and held for 30 minutes.  The heating mantle is 

then removed and the flask is allowed to cool to room temperature.  The nanocrystals are 

precipitated by adding excess ethanol and centrifugation at 4000 rpm. The nanocrystals 

are washed by precipitation using toluene/ethanol solvent/antisolvent pair.   

 

5.2.2 Ligand Exchange 

CIS-ChaM [(N2H4)x(N2H5)3(In2Cu2Se4S3)] was synthesized in hydrazine by 

established methods.12 CIS-ChaM is formed by mixing equal amounts of Cu2S-ChaMs 

[N4H9Cu7S4] and In2Se3-ChaMs [(N2H4)2(N2H5)2In2Se4].  Cu2S-ChaM was synthesized by 

dissolving 1 mmol of Cu2S and 1 mmol S powder in 4 mL of hydrazine. In2Se3-ChaM 

was synthesized by mixing 2.5 mmol In2Se3, 2.5 mL of 1M Se:N2H4 solution and 7.5 mL 

of additional hydrazine.  CIS-ChaM is dried under nitrogen and redispersed in ~10 mL of 

N-methylformamide (all subsequent processing can be completed without the need for 

hydrazine). Oleylamine ligand exchange was carried out in N-methylformamide.8,9,12 

Typically, 2 mL of oleylamine-capped nanocrystals dispersed in toluene (~100 mg/mL) 

are mixed with 5 mL N-methylformamide and 0.3 mL of CIS-ChaMs dispersed in N-

methylformamide and stirred overnight in an inert atmosphere. Nanocrystals are 

precipitated by adding 20 mL of acetonitrile and centrifuging at 4000 rpm and then 

redispersed in 5 mL N-methylformamide. 

 

5.2.3 Film Deposition and Treatment 

Oleylamine-capped CuInSe2 nanocrystals dispersed in toluene were spray cast 

onto Au-coated glass substrates heated to 80°C and ChaM-capped nanocrystals dispersed 

in N-methylformamide were doctor-bladed onto Au-coated glass substrates heated to 
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250°C. Photonic curing was performed using a PulseForge 3300 (NovaCentrix). Samples 

were loaded into a stainless steel chamber with a quartz window and purged with 

nitrogen for 30 seconds. Samples were then cured with a single, 300 µs pulse with 

energies ranging from 1.0-3.5 J/cm2, as measured by bolometer (NovaCentrix). SimPulse 

software (NovaCentrix) was used to calculate the temperature of the film during photonic 

curing.  

 

5.2.4 Characterization Techniques 

Scanning electron microscopy (SEM) was performed using a Zeiss Supra 40 VP 

operated at 5 keV accelerating voltage. X-ray diffraction (XRD) was performed using a 

Rigaku R-Axis Spider diffractometer using Cu Kα radiation (λ = 1.5418 Å) operated at 

40 kV and 40 mA and an image-plate detector. 2D diffraction patterns were radially 

integrated using Rigaku 2DP software. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Film Morphology and Photonic Curing Temperature 

Figure 5.1 shows SEM images of a 1 µm thick film of oleylamine-capped 

CuInSe2 nanocrystals before and after photonic curing.  The as-deposited film (Fig. 5.1A) 

is relatively uniform with some small cracks and thickness variations. After pulsing at 1.6 

J/cm2 (Fig. 5.1B), the film remains largely unsintered, although some regions of the 

nanocrystal film begin to peel off the substrate. The nanocrystal films cured with pulse 

energies ranging from 2.1 to 3.5 J/cm2 shown in Figures 5.1C-5.1F are all highly non-

uniform, regardless of pulse energy used, with a significant amount of exposed back 

contact. The temperatures of the films were calculated using SimPulse (Fig. 5.1G).  Local 
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variations in thickness can lead to hot spots in the film due to the absorption of more light 

in those regions.  These hot spots can nucleate the formation of melt balls in particular 

regions of the substrate that lead to exposed back contact. As the pulse energy was 

increased, the extent of nanocrystal sintering also increased (Fig. 5.1C-5.1F). Once the 

pulse conditions pushed the temperature of the film over the CuInSe2 melting point of 

~990°C, most of the film exhibited globular melt structures, as in Figure 5.1F especially. 

ChaM-capped CuInSe2 nanocrystals were found to respond much differently to 

photonic curing than the oleylamine-capped nanocrystals.  Figure 5.2 shows SEM images 

of 1 µm thick films of CIS-ChaM-capped CuInSe2 nanocrystals before and after photonic 

curing with pulse energies ranging from 1.0 to 2.8 J/cm2.  The film temperatures 

calculated with SimPulse for each pulse condition shown in Figure 5.2G. The as-

deposited film is relatively smooth (Fig. 5.2A) and the lowest energy, 1.0 J/cm2 pulse has 

little effect on the film (peak temperature ~400 oC, Fig. 5.2B). Higher pulse energies of 

1.4 and 1.8 J/cm2 (peak temperatures of ~600°C and ~800°C, respectively, Fig. 5.2C, 

5.2D) led to slight amount of sintering that was uniform across the substrate without any 

exposed back contact or melting structures. The film temperatures are too low to induce 

melting; however, curing temperature of 500°C is hot enough to induce crystal growth of 

ChaM-capped nanocrystals heated in argon.9 The crystal grains formed during photonic 

curing are much smaller than those formed during high-temperature annealing. The 

smaller grain size is likely due to the short heating times during photonic curing. At 

higher pulse energies of 2.3 and 2.8 J/cm2 (peak temperatures of ~1000°C and ~1200°C, 

respectively, Fig. 5.2E, 5.2F), the nanocrystal films exhibit significant melting. Unlike 

the oleylamine-capped nanocrystals, however, there is little exposed back contact and the 

film adhesion appears to be much better.  
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Figure 5.1 SEM images of a 1 µm thick oleylamine-capped CuInSe2 nanocrystal film 
(A) before photonic curing and after photonic curing pulses of (B) 1.6 J/cm2, 
(C) 2.1 J/cm2, (D) 2.6 J/cm2, (E) 3.1 J/cm2, and (F) 3.5 J/cm2.  (G) SimPulse 
modeling of the nanocrystal film temperature during photonic curing pulses 
of 1.6, 2.1, 2.6, 3.1, and 3.5 J/cm2, each 300 µs in duration. For the model a 
layered structure was used with a 1 µm thick CuInSe2 film on a 60 nm thick 
Au metal film deposited on a 1.1 mm thick soda-lime glass substrate. 
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Figure 5.2 SEM images of a 1 µm thick ChaM-capped CuInSe2 nanocrystal film (A) 
before photonic curing and after photonic curing pulses of (B) 1.0 J/cm2, (C) 
1.4 J/cm2, (D) 1.8 J/cm2, (E) 2.3 J/cm2, and (F) 2.8 J/cm2.  Higher 
magnification is shown for each image in the insets, with the scale bars 500 
nm long. (G) SimPulse modeling of the nanocrystal film temperature during 
photonic curing pulses of 1.0, 1.4, 1.8, 2.3, and 2.8 J/cm2, each 300 µs in 
duration. For the model a layered structure was used with a 1 µm thick 
CuInSe2 film on a 60 nm thick Au metal film deposited on a 1.1 mm thick 
soda-lime glass substrate. 
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Figure 5.3 Cross-sectional SEM of ChaM-capped nanocrystals (A) before photonic 
curing and after photonic curing pulses of (B) 1.8 J/cm2, (C) 2.3 J/cm2, and 
(D) 2.8 J/cm2. 

Figure 5.3 shows SEM images of cross-sectioned ChaM-capped nanocrystal 

films. Prior to photonic curing, the nanocrystals are too small to be easily resolved by 

SEM (Fig. 5.3A). Curing the nanocrystal film at 1.8 J/cm2 (Fig. 5.3B) leads to noticeable 

crystal grain growth; however, the crystal grain size is still nanometers in scale. The grain 

size is slightly larger near the surface of the film. Apparently, the nanocrystals near the 

surface of the film reach slightly higher temperature during the curing process. Higher 

pulse energies of 2.3 J/cm2 (Fig. 5.3C) appear to increase the film temperature above the 

CuInSe2 melting point and a layer of large CuInSe2 crystal domains appear on the top of 

the film.  Most of the film exhibits similar structure as the film cured at 1.8 J/cm2. The 
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film treated with 2.8 J/cm2 pulse energy (Fig. 5.3D), forms even larger crystal grains, 

indicating that significant melting of the nanocrystals occurred.  Unlike the oleylamine-

capped nanocrystals, the melted CuInSe2 layer remained adhered to the substrate in a 

relatively uniform layer. The film did also shrink considerably, due to the loss of void 

volume in the film. 

 

5.3.2 XRD Peak Narrowing and Phase Transformations 

Figure 5.4 shows X-ray diffraction (XRD) of oleylamine-capped and ChaM-

capped nanocrystals before and after photonic curing.  Both oleylamine-capped and 

ChaM-capped CuInSe2 nanocrystals exhibit narrowing of the diffraction peaks with 

increased photonic curing pulse energy, indicating that crystal grain growth has occurred. 

For oleylamine-capped nanocrystals, the (112) CuInSe2 diffraction peak (Fig. 5.4B) is 

broad for films with no photonic curing and films treated with a 1.6 J/cm2 pulse, which 

indicates that the grains are still primarily nanocrystalline for the low 1.6 J/cm2 pulse 

energy. When the pulse energy is increased, the (112) peak narrows considerably, which 

corresponds to the presence of large melt balls as seen in SEM (Fig. 5.1C-5.1F).  For 

ChaM-capped nanocrystals, the crystal grains grow more gradually with increasing pulse 

energy (Fig. 5.4C). At 1.0 J/cm2, there is only a small amount of peak narrowing. At 1.4 

J/cm2 and 1.8 J/cm2, the peaks begin to narrow significantly, which corresponds to the 

sintering of the nanocrystals into larger grains without melting (Fig. 5.2C, 5.2D). At the 

highest pulse energies of 2.3 J/cm2 and 2.8 J/cm2, the primary (112) peak continues to 

narrow towards the instrument resolution. At these pulse energies, the nanocrystals reach 

temperatures where nanocrystal melting is possible, leading to very large grains. The 

emergence of secondary peaks at 25.1° and 28.5° is also observed, which likely 
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corresponds to the formation of wurtzite-phase CuInSe2. Wurtzite is an unstable phase in 

bulk CuInSe2, but can be stabilized in nanostructures.13–15 In this case, the wurtzite phase 

may be kinetically trapped after nanocrystal melting due to the very rapid cooling of the 

film. It is not clear why the wurtzite phase only emerges for ChaM-capped nanocrystals. 

 

 

Figure 5.4 (A) XRD of both oleylamine-capped and ChaM-capped nanocrystals with 
and without photonic curing. The diffraction peaks for chalcopyrite CuInSe2 
(red lines, PDF #01-073-6321) and Au (blue lines, PDF #01-075-6560) are 
shown for reference. (B) XRD highlighting the (112) diffraction peak of 
CuInSe2 for oleylamine-capped nanocrystals before photonic curing (black), 
and after photonic curing pulses of 1.6  J/cm2 (red), 2.1 J/cm2 (blue), 2.6 
J/cm2 (green), 3.1 J/cm2 (purple), and 3.5 J/cm2 (gold). (C) XRD highlighting 
the (112) diffraction peak of CuInSe2 for ChaM-capped nanocrystals before 
photonic curing (black) and after photonic curing pulses of 1.0  J/cm2 (red), 
1.4 J/cm2 (blue), 1.8 J/cm2 (green), 2.3 J/cm2 (purple), and 2.8 J/cm2 (gold). 
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5.3.3 Device Performance 

Thus far, photovoltaic devices fabricated from CuInSe2 nanocrystal films sintered 

by photonic curing have not exhibited significant improvements in device performance.  

Figure 5.5 shows the photovoltaic device performance of ChaM-capped CuInSe2 

nanocrystal films treated with photonic curing. At the lowest pulse energy (Fig. 5.5B), 

there is no significant sintering or grain growth and the device performs similarly to the 

device with no photonic curing. At slightly higher pulse energies (Fig. 5.5C), the 

nanocrystals begin to neck together and sinter (see Figs. 5.2 and 5.4), which give the 

device improved short circuit current. However, this increased current also comes with a 

loss of open circuit voltage which could be caused by the formation of small cracks in the 

film. As the pulse energy increases, the nanocrystals further sinter together. At 1.8 J/cm2 

pulse energy, the enhanced electronic transport in the film is overwhelmed by the 

formation of cracks in the film and a dramatically lower voltage and fill factor (Fig. 

5.5D). Finally, at very high pulse energies where the film begins to melt, all photovoltaic 

device performance is lost (Figs. 5.5E and 5.5F). Interestingly, these films are highly 

resistive, which is not typical for a film with large areas of exposed back contact or even 

highly sintered CuInSe2. The high resistance could be due to the wurtize phase formation 

which occurs at these high photonic curing temperatures (See Figs. 5.3 and 5.4). 
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Figure 5.5 Current-voltage plots showing the dark (black curves) and light (red curves) 
photovoltaic response of ChaM-capped nanocrystals (A) before photonic 
curing and after photonic curing with pulse energies of (B) 1.0 J/cm2, (C) 
1.4 J/cm2, (D) 1.8 J/cm2, (E) 2.3 J/cm2, and (F) 2.8 J/cm2. 

 

5.4 CONCLUSIONS 

This work shows that CuInSe2 nanocrystals can be sintered into uniform films 

without the use of high-temperature annealing or a selenium-rich atmosphere. Photonic 

curing did not sinter films made with oleylamine-capped nanocrystals until temperatures 
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exceeding the CuInSe2 melting point are reached, which led to melt-ball formation and 

back contact exposure. Replacing oleylamine with inorganic ChaM ligand led to 

nanocrystal sintering without melting using the photonic curing process. This resulted in 

increased device currents for intermediate pulse energies. At high pulse energy, the 

nanocrystals exhibited wurtzite/chalcopyrite polytypism and devices had no device 

efficiency and very high series resistance as well. Utilizing ChaM ligands mostly 

eliminated back contact exposure after photonic curing, which is an important step 

towards achieving high device efficiency from nanocrystal films sintered by photonic 

curing. 
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Chapter 6: Ligand Removal with Photonic Curing: Enhanced 
Nanocrystal Coupling and Multiexciton Extraction†† 

 

6.1 INTRODUCTION 

A maximum of 34% of the energy available in sunlight can be converted to 

electricity by a single junction solar cell, known as the Shockley-Queisser limit.1  The 

semiconductor in the device does not absorb photons with energy less than its band gap 

energy and photon energy greater than the band gap is lost as heat due to the rapid 

relaxation of the photoexcited electron and hole to their band minima before they can be 

extracted as electrical current.  One way to surpass the Shockley-Queisser limit is to use 

quantum dots that convert high-energy photons into multiple electron-hole pairs that can 

be extracted as photocurrent by the device.2,3  Colloidal nanocrystals provide a 

convenient source of quantum dots in which multiexciton generation (MEG) has been 

observed optically from a host of materials, including PbS, PbSe, PbTe, CdSe, InAs, and 

Si.4–8  Extraction of more than one electron per absorbed photon as electrical current in 

devices has also been reported,9–12 with a few instances of device quantum efficiencies 

(QE) exceeding 100%—PbS (internal QE only),13 PbSe (external QE)14 nanocrystal solar 

cells and an organic device exhibiting a related process of singlet fission.15  Here, we 

                                                 
†† Reproduced in part with permission from: Stolle, C. Jackson; Harvey, Taylor B.; Pernik, Douglas R.; 
Hibbert, Jarett I.; Du, Jiang; Rhee, DongJoon; Akhavan, Vahid A.; Schaller, Richard D.; Korgel, Brian A., 
Multiexciton Solar Cells of CuInSe2 Nanocrystals, J. Phys. Chem. Lett. (2013) 5, 304-309. Copyright 2013 
American Chemical Society. CJS designed the experiments, fabricated and characterized the films and 
devices, collected and analyzed the data, and wrote the manuscript. TBH assisted with experimental design, 
device and film fabrication and characterization, and data analysis related to photonic curing. DRP assisted 
with experimental design, film characterization, and data analysis related to transient absorption 
spectroscopy. JIH, JD, DR, and VAA assisted with device and film fabrication and characterization related 
to photonic curing. RDS assisted with experimental design, data collection, and data analysis for transient 
absorption spectroscopy. BAK provided funding, guidance, and assisted with writing the manuscript. 
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report PV devices of CuInSe2 nanocrystals with multiexciton generation and extraction 

and peak external quantum efficiencies of just over 125%.   

CuInSe2 is an important model semiconductor for PV devices that is closely 

related to Cu(InxGa1-x)Se2 (CIGS), which holds the record for highest device efficiency of 

all thin film semiconductors at just over 20%.16  PV devices made from ink-deposited 

CuInSe2 nanocrystals have reached power conversion efficiencies of 3%, limited by poor 

charge transport.17–19  Ink-deposited Cu(InxGa1-x)S2 nanocrystals can be sintered into 

polycrystalline films by heating (>500 °C) under selenium vapor (i.e., selenization) to 

achieve much higher efficiencies of just over 12%.20,21  To try to avoid the need for high 

temperature selenization, an alternative nanocrystal film processing technique called 

photonic curing was explored here to improve charge transport in the nanocrystal film.  

Photonic curing was carried out using a PulseForge 3300 (NovaCentrix) tool that uses 

pulsed light from a flash lamp with Xenon fill gas with spectrally broad blackbody 

radiation that can produce very rapid heating to high temperature.  Photonic curing can 

provide enough energy to sinter nanocrystals,22 but in this study relatively mild pulse 

conditions were used to remove organic ligands and bring nanocrystals into better 

electrical contact without destroying their nanoscale dimensions.  Nanocrystal films 

processed in this way were found to yield PVs with peak external quantum efficiencies 

(EQE) exceeding 100%, indicating the occurrence of multiple exciton generation (MEG) 

and extraction from the devices.  Transient absorption spectroscopy was employed to 

verify that MEG does indeed occur in the nanocrystal films.     
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6.2 EXPERIMENTAL METHODS 

6.2.1 Materials 

  Oleylamine (OLA) was purchased from TCI America; copper (I) chloride (CuCl; 

99.99+%), gallium (III) chloride (GaCl3; 99.999+%), selenium powder (Se; 99.99%), 

diphenylphosphine (DPP, 98%), thiourea (< 99.0%), and cadmium sulfate (CdSO4; 

99.999%) from Aldrich Chemical Co.; indium (III) chloride (InCl3; 99.999%) from Strem 

Chemicals; ammonium hydroxide (18M NH3; ACS certified), toluene (99.99%), ethanol 

(absolute) from Fischer Scientific.  Prior to use, oleylamine was degassed overnight 

under vacuum at 110 °C.  All other chemicals were used as received without further 

purification.  Copper (I) chloride, indium (III) chloride, diphenylphosphine, and degassed 

oleylamine were stored in a N2-filled glovebox. 

 

6.2.2 CuInSe2 nanocrystal synthesis 

CuInSe2 nanocrystals were synthesized according to previously reported 

methods.19  Briefly, 2 mmol of CuCl, 2 mmol of InCl3, and 20 mL degassed OLA were 

loaded into a 3-neck flask inside an N2-filled glovebox.  DPP:Se solution was made by 

mixing 4 mmol each of Se powder and DPP and diluting with 2mL OLA.  The flask was 

sealed, removed from the glovebox, and attached to a Schlenk line.  The reaction mixture 

was stirred and heated to 110 °C under vacuum for a 30 minute period.  It was then 

blanketed with nitrogen and heated to 180°C at which point the DPP:Se solution was 

injected. The flask was heated to 240 °C and held for 30 minutes before the heating 

mantle was removed, allowing it to cool to room temperature. The nanocrystals were 

precipitated with excess ethanol and centrifuged at 4000 rpm for 2 min.  The supernatant 

was discarded and the precipitate was redispersed in 5 mL of toluene.  The dispersion 
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was centrifuged at 4000 rpm for 1 min to precipitate poorly-capped nanocrystals.  The 

supernatant was transferred to a centrifuge tube.  Ethanol was added dropwise until the 

mixture became slightly turbid.  After centrifugation at 4000 rpm for 1 min the 

supernatant was discarded, and the precipitate was dispersed in toluene.  The nanocrystal 

dispersion was stored in a N2-filled glovebox.  

 

6.2.3 Film Deposition 

Soda lime glass substrates (Delta Technologies) were cleaned by sonication for 10 

minutes in 1:1 IPA/acetone followed by sonication in DI water for 10 minutes.  5 nm of 

Cr followed by 60 nm of Au (Kurt J. Lesker Co.) was then deposited by thermal 

evaporation. CuInSe2 nanocrystals were spray-deposited on the Au-coated substrates in 

approximately 500 nm thick layers from toluene dispersions (~20 mg/ml).   

 

6.2.4 PV Device Fabrication 

Photonic curing was carried out using a PulseForge 3300 (NovaCentrix).   Films 

were loaded into a 2 inch thick cylindrical stainless steel chamber with a 7 inch diameter 

and a 6 inch diameter circular quartz window on the top surface. The chamber was 

purged with nitrogen for one minute, sealed, positioned in the center of the xenon lamp 

illumination area, and then pulsed.  A single 160 µs light pulse was used on each film, 

and the pulse voltages varied from 500 V to 640 V. The energy of each pulse was 2 J/cm2 

to 3 J/cm2 as determined by bolometer (NovaCentrix) readings at the same position and 

distance from the xenon lamps. 10 pulses were measured at each pulse condition and 

averaged to determine energy input.  
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Nanocrystal surface repassivations were carried out after photonic curing by 

soaking the films for 60 seconds in either hexanethiol, pyridine, oleylamine, CTAB 

dissolved in methanol (1:9 by weight), or 5 mM InSe-ChaM ligands dispersed in DMSO. 

The films are then rinsed with methanol and dried under a stream of dry air. 

Devices were completed by depositing layers of CdS, ZnO, and ITO after the 

photonic curing process. A CdS layer (~20 nm thick) was deposited on the nanocrystal 

layer by drop casting 700 µL of CdS precursor solution (1.25 mL of 15 mM CdSO4, 2.2 

mL of 1.5 M thiourea, and 2.8 mL of 18 M NH4OH in water) onto the CuInSe2 film 

heated to 95 °C on a hot plate.  The CuInSe2 film was covered with an inverted Petri dish 

for two minutes while the reaction progressed. The substrate was then removed from the 

hot plate, rinsed with DI water, and dried under a compressed air stream. A 40 nm thick 

layer of ZnO followed by a 600 nm thick layer of ITO are deposited by RF-sputtering 

under a 2 mtorr Ar atmosphere. 

 

6.2.5 Characterization 

X-ray diffraction (XRD) was performed on a Rigaku R-Axis Spider 

diffractometer with an image-plate detector and using graphite monochromatized Cu Kα 

(λ = 1.5418 Ǻ) radiation operated at 40 kV and 40 mA. Data were collected on 

nanocrystal films with and without pulse treatment on Au-coated soda-lime glass 

substrates. Samples were placed at a 10° glancing angle and rotated at 1° per second for 

10 min. 2D diffraction patterns were radially integrated using 2DP V.1.0 Data Processing 

Software (Rigaku) for 2-Dimensional detectors with subtraction of background 

scattering. XRD was also performed on a Bruker-Nonius D8 advance θ−2θ powder 

diffractometer equipped with a Bruker Sol-X Si(Li) solid state detector and 1.54 Å 
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radiation (Cu Kα).  Data were collected at 0.01 increments of 2θ at a scan rate of 6 °/min. 

Scanning electron microscopy (SEM) was performed on a Zeiss Supra 40 VP SEM 

operated at 5 keV accelerating voltage through an In-lens detector.  Transmission 

electron microscopy (TEM) was performed on an FEI Tecnai G2 Spirit BioTwin 

microscopy operated at 80 kV. Thermogravimetric analysis (TGA) was collected using a 

Mettler-Toledo DCS/TGA instrument with a temperature ramp of 20 °C /min under a N2 

flow. Fourier transform infrared spectroscopy (FTIR) was acquired using a Thermo 

Mattson Infinity Gold FTIR with a Harrick VariGART crystal. UV-Vis-NIR absorbance 

spectra were acquired using a Cary 500 spectrophotometer equipped with an integrating 

sphere to collect diffuse reflection and transmission. Transient absorption (TA) 

measurements were performed using an 800 nm, 35 fs pulse width, 2 kHz amplified 

Ti:sapphire laser.  Pump pulses at 800 or 400 nm were spatially overlapped with a 

mechanically delayed white light probe that was produced by focusing 5% of the 

amplifier output into a 2-mm thick sapphire plate. 

 

6.2.6 PV Device Testing 

A Keithley 2400 general purpose source meter was used to collect current-voltage 

characteristics with and without exposure to a Xenon lamp solar simulator (Newport) 

equipped with an AM1.5G optical filter. The light source was calibrated with a NIST-

calibrated Si photodiode (Hamamatsu, S1787-08). Neutral density filters with optical 

densities of 0.1, 0.3, 0.6, and 1.0 where used to measure PV characteristics at lower 

intensity light. External quantum efficiency (EQE) was measured using monochromatic 

light generated using a commercial monochromator (Newport Cornerstone 260 1/4M) 

chopped at 213 Hz and focused to a spot size of 1 mm diameter on the active region.  
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EQE measurements were made with the device at zero bias at wavelengths ranging from 

350 and 1200 nm in 10 nm increments using a lock-in-amplifier (Stanford Research 

Systems, model SR830) with and without a 50 mW/cm2 white light bias. 

Monochromated light intensity was calibrated using calibrated photodiodes of silicon 

(Hamamatsu) and germanium (Judson) and white light bias intensity was measured with 

a thermopile (Newport 818P-020-12). Neutral density filters were used to reduce the 

monochromated and light bias intensity.  For additional confirmation, external quantum 

efficiency measurements were also taken using a QEX10 Solar Cell Spectral Response 

Measurement System purchased commercially from PV Measurements, Inc. The system 

uses monochromatic light chopped at 100 Hz and is calibrated using Si and Ge diodes 

and shows repeatability of better than 0.6% for the 300-400 nm range and better than 

0.3% for the 400-1000 nm range. 

 

6.3 RESULTS AND DISCUSSION 

6.3.1  Ligand Removal 

PV devices were made by spray-depositing CuInSe2 nanocrystals from toluene 

dispersions on Au-coated soda lime glass substrates similar to Akhavan, et al.,17 but the 

nanocrystal films were cured (Figure 6.1) in a closed chamber with a quartz window with 

a single 160 µs light pulse with flux ranging from 2-3 J/cm2 before adding the CdS buffer 

layer and top contact.  Nanocrystal films pulsed with 2.2 J/cm2 light reach about 600 °C 

within 1 ms, which removes oleylamine ligand but does not induce grain growth. 
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Figure 6.1 Photonic curing of nanocrystal films on Au-coated glass substrates.  (a) 
Photonic curing can be used to remove oleylamine capping ligands from the 
CuInSe2 nanocrystal film without inducing grain growth.  (b) When the 
capping ligands are present, they inhibit the collection of multiexcitons from 
the film, leading to electron-hole recombination by Auger recombination. 
(c) Without the ligand barrier between nanocrystals, multiexciton transport 
becomes much more probable.   

Loss of oleylamine capping ligands during photonic curing was confirmed by 

TGA and FTIR of the nanocrystal film.  Oleylamine vaporizes from the nanocrystal film 

between about 150 °C and 400 °C.  The TGA data in Figure 6.2 shows less mass loss in 

this temperature range from films that had been cured and there is systematically 

decreasing amount of mass loss from nanocrystal films treated with increasing pulse 

power. The FTIR data in Figure 6.3 shows loss of the C-H stretch absorption feature after 

photonic curing which is representative of the oleylamine capping ligands. 
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Figure 6.2 Thermogravimetric analysis (TGA) of CuInSe2 nanocrystals processed by 
photonic curing using various pulse conditions.     

 

 

Figure 6.3 FTIR analysis of CuInSe2 nanocrystals without photonic curing (black) and 
treated with a 2.5 J/cm2 pulse. 
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Figure 6.4 shows the calculated average temperature of a 500 nm thick CuInSe2 

nanocrystal layer on 60 nm thick Au on soda lime glass (1.1 mm thick) after a single (160 

µs) pulse.  The temperature was calculated using SimPulse software from NovaCentrix. 

The extent of nanocrystal sintering as a result of photonic curing was determined by 

examining X-ray diffraction peak widths.  Figure 6.5 shows the (112) diffraction peak for 

chalcopyrite CuInSe2. Decreasing peak width indicates an increase in crystal domain size.  

Using a Scherrer analysis, the as-deposited nanocrystals are 8.3 nm in diameter, which 

matches well with the size measured in TEM (Figure 6.6).  After curing at 2.2 J/cm2 and 

2.5 J/cm2, the nanocrystal size is 9.2 and 23.1 nm respectively.  After curing at 3 J/cm2 

and 3.5 J/cm2, the nanocrystals have sintered and the size is too large to calculate using 

Scherrer analysis.  

 

 

Figure 6.4 Temperature of a 500 nm thick CuInSe2 (CIS) nanocrystal layer on 60 nm 
thick Au on soda lime glass (1.1 mm thick) induced by a single (160 µs) 
photonic curing pulse (calculated using SimPulse software from 
NovaCentrix).   
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Figure 6.5 (A) X-ray diffraction (XRD) data highlighting the (112) diffraction peak of 
chalcopyrite CuInSe2. The crystal sizes for each pulse condition were 
calculated using Scherrer analysis. Prior to photonic curing, the nanocrystals 
are 8.3 nm in diameter, which matches well with the size measured in TEM.  
After curing at 2.2 J/cm2 and 2.5 J/cm2, the nanocrystal size is 9.2 and 23.1 
nm respectively.  After curing at 3 J/cm2 and 3.5 J/cm2, the nanocrystals 
have sintered and the size is too large to calculate using Scherrer analysis. 
(B) XRD data showing a nanocrystal film before and after curing at 3.9 
J/cm2.  The red reference lines are for chalcopyrite CuInSe2 (PDF #01-073-
6321) and the blue lines are for Au (the back contact material) (PDF #01-
075-6560). 
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Figure 6.6 TEM image of CuInSe2 nanocrystals with average particle diameter of 
8.1±2.1 nm based on the histogram shown in the inset generated from the 
TEM image. 

 

6.3.2 Film Morphology and Device Results 

Figure 6.7 shows scanning electron microscope (SEM) images of CuInSe2 

nanocrystal films before and after curing with 2.2 J/cm2 and >3 J/cm2 exposure.  The 

nanocrystals remain small grains after 2.2 J/cm2 exposure, but clearly grow into larger 

grains after >3 J/cm2 exposure. 
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Figure 6.7 CuInSe2 nanocrystal layers before and after photonic curing and their PV 
device performance.  Top-down and cross-section SEM images of 
oleylamine-capped CuInSe2 (CIS) nanocrystal film on Au-coated glass (a, d) 
before and after photonic curing with (b, e) 2.2 J/cm2 and (c, f) and 3 J/cm2 
pulse fluence.  (g, h, i) Corresponding current-voltage measurements (black 
curve is dark current; red curve is measured under AM1.5G illumination 
(100 mW/cm2)) of devices made with the nanocrystal films are provided 
below the SEM images.   

  

Although the nanocrystals could be grown into large grains by photonic curing, 

devices made from these sintered nanocrystals performed very poorly, as shown in Figure 

6.6.  Exposure of 3 J/cm2 sintered the nanocrystals, but also led to dewetting by the 

formation of melt balls, leaving significant back contact exposed and devices with almost 
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no short circuit current.  In contrast, devices made with nanocrystals cured using 2.2 

J/cm2 exposure gave reasonable device response with power conversion efficiency (PCE) 

of 1.25%, similar to the devices made with as-deposited nanocrystals (PCE=1.19%).  The 

biggest change in device response after photonic curing is a large increase in short circuit 

current (Jsc) and drop in open circuit voltage (Voc), for example in Figures 2g the Jsc 

and Voc changed from 5.65 mA/cm2 to 18.65 mA/cm2 and 0.41 V to 0.21 V, 

respectively.   

 

6.3.3 Quantum Efficiency Analysis 

EQE (also known as IPCE) measurements showed that most of the increased short 

circuit current in the devices made with cured nanocrystals occurred in the short 

wavelength (<600 nm) range.  Figure 6.8A shows a comparison of EQE spectra from 

PVs made with as-deposited CuInSe2 nanocrystals and nanocrystals that had been 

processed by photonic curing at 2.2 J/cm2.  The as-deposited CuInSe2 nanocrystal device 

has a peak EQE of about 25%, whereas the peak EQE of the cured nanocrystal device is 

123%.  It was also found that the application of a white light bias had a significant 

influence on the EQE spectra of the cured nanocrystal devices, which is usually not the 

case for the as-deposited nanocrystal devices (Figure 6.8B).   
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Figure 6.8 External quantum efficiency (EQE) enhancements resulting from photonic 
curing of the CuInSe2 nanocrystal layer used in PV devices.  (a) EQE 
measurements taken under white light bias for CuInSe2 nanocrystal devices 
without photonic curing (black curve) compared to the device made with 
cured (2.2 J/cm2 pulse fluence) nanocrystals (red curve).  The short circuit 
currents determined from these data, of 4.95 mA/cm2 and 14.29 mA/cm2, 
are consistent with the short circuit currents measured under AM1.5 
illumination (100 mW/cm2).  (b) EQE measured under varying white light 
bias intensity (100%, 50%, 25%, 10%, and 0% of the 50 mW/cm2 bias light) 
with the same intensity of monochromated probe light.  There is no change 
in EQE for the device made with as-deposited nanocrystals (inset), but the 
EQE decreases significantly for the cured device when the white light bias 
intensity was reduced to the amounts indicated.   
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Figure 6.9 shows the external quantum efficiency (EQE), internal quantum 

efficiency (IQE), and absorptance for a PV device made with CuInSe2 nanocrystals cured 

with a 2.2 J/cm2 pulse. The device absorptance is measured by UV-Vis with an 

integrating sphere to collect direct and diffuse reflectance and is given as 1-R, where R is 

the total device reflectance. IQE is calculated by dividing the device EQE by the 

absorptance. The peak EQE for this device is 123% and the peak IQE is 143%. 

 

 

 

Figure 6.9 External quantum efficiency (blue), internal quantum efficiency (red), and 
absorptance (black) for a PV device made with CuInSe2 nanocrystals and 
cured with a 2.2 J/cm2 pulse.  

 

The substantial effect of white light bias on the EQE of cured nanocrystal devices 

indicates that the curing process introduces traps into the nanocrystal layer that hinder 

charge extraction under low light conditions.23,24  EQE measurements typically use a low-

intensity monochromated probe beam to generate carriers in the device, which often does 
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not represent true device performance under full sunlight. EQE measurements should be 

acquired under realistic illumination conditions (i.e., under full sunlight), and a white 

light bias with intensity near 100 mW/cm2 is usually applied.25 The probe beam is passed 

through a chopper, and a lock-in amplifier is used to measure the current generated only 

by the probe beam and not by the unchopped bias light. EQE measurements taken 

without white light bias can give anomalous results.23–26  For example, traps in the CdS 

layer in CdTe/CdS devices usually filled under AM 1.5 illumination remain empty under 

low light conditions, significantly reducing device currents and leading to artificially low 

EQE values if white light bias is not used.23–26  CdTe and CIGS PV devices can also 

exhibit EQE variations with light bias intensity due to photoconductive CdS.23,24,26,27  In 

our case, the CdS layer is the same for all devices and the EQE of the as-deposited 

nanocrystal device is not affected by the white light bias intensity (Figure 6.8 (B inset)).   

 

6.3.4 Possible Anomalous Effects 

There have been numerous discussions about anomalous EQE measurements.23–27  

One common anomalous result related to light biasing comes from photoconductive gain, 

as in vapor-deposited CdTe devices with photoconductive CdS layers.23,27  

Photoconductive gain can lead to an erroneously large EQE when a red light bias is 

applied (bias light with high energy photons removed by a filter) and the photocurrent is 

measured using blue probe light. In this case, the red bias light is not absorbed by the 

CdS layer and only generates charges in the CdTe film. The blue probe light is absorbed 

by the CdS layer and can modulate its conductivity. Photons generated by the red light 

bias can be more easily extracted when the CdS conductivity is increased by illumination 

with blue light. Thus, photoconductive gain in EQE occurs as the modulation of the CdS 
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conductivity at the probe frequency causes charges not generated by the probe to be 

extracted and measured by the lock-in amplifier.23 This effect has also been reported for a 

white light bias in CdTe/CdS solar cells with the increase in EQE also attributed to 

modulation of the CdS layer.27 Therefore, experiments were carried out to rule out the 

occurrence of photoconductive gain in the CuInSe2 nanocrystal devices. Anomalous 

effects can also be observed if the charge carrier kinetics are slow compared to the 

chopping frequency, since such carriers may not be able to be extracted at the chopper 

frequency. We conducted EQE measurements on two different systems with two different 

frequencies (100 Hz and 213 Hz). The EQE is very similar, demonstrating that the 

measurements are not limited by charge carrier kinetics (Fig. 6.10). 

The white light bias lamp in the EQE testing setup has an intensity of ~50 

mW/cm2 (about half the intensity AM 1.5 solar radiation) and the monochromated light 

intensity is only ~50 µW/cm2, which is three orders of magnitude less than the bias light, 

making the modulation of the CdS conductivity very small compared to the conductivity 

increase from the bias lamp under standard white light bias. To confirm that 

photoconductive gain does not influence the measured EQE under white light bias, the 

EQE was measured under different probe beam intensity.  Neutral density filters were 

used to cut the light intensity of the monochromated probe beam. In the absence of 

photoconductive gain, the reduction in the probe beam should yield a proportional 

reduction in peak EQE and Jsc.  Photoconductive gain on the other hand results in a less 

significant decrease in peak EQE and Jsc, as charges generated by the bias light would 

still be measured.  Figure 6.11 shows EQE measurements of a cured nanocrystal sample 

with peak EQE >100% under white light bias. The monochromated probe is cut to 80%, 

50%, 25%, and 10% of its original intensity using neutral density filters.  The EQE and 
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Jsc match the expected values and the sample shows no photoconductive gain (See Table 

6.1).  

 

  

Figure 6.10 External quantum efficiency of a PV device made with CuInSe2 
nanocrystals cured at 2.2 J/cm2 taken with two separate testing setups. The 
setup using the Newport monochrometer had a probe beam chopped at 213 
Hz and the commercial setup from PV Measurements, Inc. had a probe 
beam chopped at 100 Hz. 
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Figure 6.11 External quantum efficiency of a PV device made with CuInSe2 
nanocrystals cured at 2.2 J/cm2.  Neutral density filters are used to cut the 
monochromated probe beam to 100% (no filter, black), 80% (red), 50% 
(blue), 25% (green), and 10% (pink) of its original intensity. The white light 
bias intensity (~50 mW/cm2) was the same for all measurements.   

 

Probe Beam Intensity 
(compared to maximum) 

Peak EQE (%) % Change in 
EQE 

Calculated Jsc 
(mA/cm2) 

% Change in 
Calculated Jsc 

100% 127  14.3  
80% 103 81% 11.4 80% 
50% 66 52% 7.5 52% 
25% 34 27% 3.8 27% 
10% 14 11% 1.6 11% 

Table 6.1 Table showing peak EQE and calculated Jsc for each probe beam intensity 
from Figure 6.11. 

Lastly, the measured Jsc values of the CuInSe2 nanocrystal devices in Figure 6.7 

agree pretty well with those calculated from the EQE measurements in Figure 6.8.  The 

measured Jsc from the as-deposited nanocrystal device was 5.65 mA/cm2 compared to 

4.95 mA/cm2 calculated from EQE data.  The cured nanocrystal device Jsc is 18.65 

mA/cm2 (Fig. 8.7h) compared to 14.29 mA/cm2 calculated from the EQE data.  The lower 

calculated Jsc value for the cured nanocrystal device results from the fact that the white 
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light bias intensity in our IPCE setup was limited to ~50 mW/cm2 and since the EQE of 

these devices was sensitive to the bias intensity the measured EQE under white light bias 

was still slightly lower than under true AM1.5 illumination at 100 mW/cm2.   

 

6.3.5 Transient Absorption Spectroscopy 

To confirm that MEG does occur in the nanocrystal films with peak EQE>100%, 

the recombination dynamics of photoexcited excitons were determined by transient 

absorption (TA) spectroscopy with 400 nm and 800 nm pump light.  Figure 6.12 shows 

transient absorption spectra for CuInSe2 nanocrystal films before and after photonic 

curing. The peak minimum corresponds to the optical gap and shifts to slightly lower 

energy after photonic curing. Figures 6.13 (A, B) show the decay in bleach signal near 

the absorption edge for the nanocrystal film after photonic curing with a 2.2 J/cm2 

pulse.28,29  Multiexcitons undergo Auger recombination (the inverse process to MEG) on 

very short time scales (typically ~100 ps) compared to much longer lived single 

excitons.28 With 800 nm pump light (Fig. 6.13A), an individual photon does not have 

enough energy to induce MEG and only one exciton per nanocrystal is generated at low 

pump fluence.  Under these conditions, the normalized TA kinetics curves overlap.  

When the 800-nm pump fluence is increased so that some nanocrystals absorb more than 

one photon per excitation pulse, multiexcitons can be created and Auger recombination 

dynamics can be observed. The 400 nm pump photons carry about three times the band 

gap energy, so multiexciton generation from a single photon is possible and Auger 

recombination dynamics can be observed even at low fluences.  Figure 6.13B shows the 

bleach signal for two low-fluence TA kinetics with 400 nm pump wavelength as well as 

an average of the 3, 6, and 15 µJ/cm2 TA curves at 800 nm pump wavelength for 
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comparison. The low fluence TA kinetics at 400 nm show increased signal at short times 

compared to the low fluence 800 nm pump TA kinetics, indicating the presence of Auger 

recombination and therefore multiexciton generation.  The possibility of anomalous 

results due to photocharging was eliminated by rapidly translating the sample through the 

measurement area.30  Figure 6.14 shows negligible differences between measurements of 

static and translating sample, which indicates that there is no influence of sample 

charging on the TA spectra. 

 

 

Figure 6.12 Transient absorption (TA) spectra showing the spectral peak in the bleach 
signal for a nanocrystal film without photonic curing (black) and a film 
cured with a 2.5 J/cm2 pulse (red). 
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Figure 6.13 Transient absorption (TA) spectroscopy of CuInSe2 nanocrystal films after 
photonic curing.  (a) TA kinetics normalized to –Δα=1 at 1000 ps with an 
800 nm pump wavelength  and pump fluences of 300 µJ/cm2 (dark blue), 90 
µJ/cm2 (green), 60 µJ/cm2 (pink), 30 µJ/cm2 (teal), 15 µJ/cm2 (blue), 6 
µJ/cm2 (red) and 3 µJ/cm2 (black).  (b) TA kinetics normalized to –Δα=1 at 
1000 ps with a 400 nm pump wavelength and pump fluences of 18 µJ/cm2 
(red) and 9 µJ/cm2 (blue). The average low fluence background (average of 
3, 6, 15 and 30 µJ/cm2 signals) at 800 nm pump wavelength is also shown 
for comparison (black). (c) TA kinetics showing the Auger recombination 
rate. The single exciton TA kinetics background (average 800 nm 
wavelength low fluence pump) is subtracted from the high fluence TA 
kinetics at 800 nm, 300 µJ/cm2 pump, which shows the creation of 
multiexcitons due to the absorption of multiple photons per nanocrystal. The 
kinetics are plotted on a log scale and can be fitted to a single exponential 
with a time constant of 92 ps. (d) TA kinetics showing Auger recombination 
at 400 nm pump and low fluence. The single exciton TA kinetics 
background (average 800 nm wavelength low fluence pump) is subtracted 
from the TA kinetics at 400 nm, 9 µJ/cm2 pump, which should only show 
Auger recombination if MEG is present. The kinetics are plotted on a log 
scale and can be fitted to a single exponential with a time constant of 74 ps. 
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Figure 6.14 Transient absorption kinetics measured with and without sample translation 
and normalized to –Δα=1 at 1 ns for a film photonically cured at 2.5 J/cm2. 
Sample translation helps ensure that sample charging does not affect the TA 
signal.   

The average single exciton recombination kinetics at 800 nm pump and low 

fluence was used as a baseline to determine the Auger recombination rate.  In Figures 

6.13A and 6.13B, the single exciton recombination background kinetics were subtracted 

(time constant ~600 ps) from the TA kinetics at 800 nm pump wavelength and 300 

µJ/cm2 fluence (a high-power regime where multiple photons are present per absorbing 

nanocrystal) and at 400 nm pump wavelength and 9 µJ/cm2 fluence (in the regime of less 

than one photon per nanocrystal).  The curves in Figures 6.13C and 6.13D both fit single 

exponentials with similar time constants of 93 ps and 74 ps, respectively.  The presence 

of Auger recombination at low fluences of 400 nm pump light supports the presence of 

MEG in the cured CuInSe2 nanocrystal films.  

Figure 6.15 shows the ratio of the TA signal at short time compared to long time 

at a range of pump fluences. The ratio, Rpop, is measured at low pump energy (1.6Eg) 

where only single excitons can be generated and at high pump energy (3.1Eg) where 
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multiexcitons can possible be generated. The curves can be fitted with a Poisson 

distribution which follows the form, 

𝑅𝑝𝑝𝑝 = 𝑄𝑄𝑄𝑄[1 − exp(−𝜎𝜎)]−1. 

QY is the quantum yield of the sample and can be determined by Rpop in the limit 

of low pump fluence (J). The absorption cross section, σ, can be determined by fitting the 

data to the equation and can then be used to calculate the exciton occupancy, 〈𝑁0〉 = 𝜎𝜎. 

Rpop is normalized to one in the limit of low pump fluence for the low energy pump, since 

only a single exciton can be generated per incident photon. The quantum yield at 3.1Eg is 

estimated to be ~125%. 

 

 

Figure 6.15 The ratio of exciton population (Rpop) at early-time compared to late-time 
TA signal for high energy (circles, 3.1Eg) and low energy (squares, 1.6Eg) 
pump energy with varying exciton occupancy (<N0>). The exciton 
population is normalized so that the exciton population at low energy pump 
is one in the limit of low pump fluence, since only a single exciton can be 
generated per nanocrystal. The data is fitted to the expected Poisson 
statistics for high energy (dashed line) and low energy (solid line) pump 
energy.  
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6.3.6 Surface Trap States 

The influence of the trap states limiting multiexciton extraction under low light 

conditions on the exciton decay dynamics was tested by applying an intense white light 

bias during TAS measurements. Figure 6.16 shows that white light biasing has little 

effect on the TA kinetics, which implies that the traps only have a detrimental effect on 

charge extraction and do not effect charge generation. Perhaps these traps are related to 

unpassivated surface defects.31–33  TEM shows that prior to photonic curing the 

nanocrystals have a diameter of 8.1 ± 2.1 nm, which is smaller than the Bohr exciton 

radius for CuInSe2 (Figure 6.6).34 The red-shift of 60 meV in the peak wavelength of the 

absorption bleach in the TA spectrum (Figure 6.12) after curing probably results from a 

loss of quantum confinement.  However, the fact that the reduction in optical gap is larger 

than this (0.12 eV, Figure 6.17) and that the TA spectrum exhibits an asymmetric 

broadening into the red part of the spectrum (Figure 6.12) indicate that trap-related 

defects are present after photonic curing.  In order to extract multiexcitons from a device, 

the photogenerated multiple electron-hole pairs must separate before Auger 

recombination can occur.  CdTe and PbS nanocrystals both show charge transfer rates 

between nanocrystals of ~100 ps and biexcitons can be extracted from separate 

nanocrystals without Auger recombination.9,35–37 Charge transfer rates as fast as 50 fs 

have been observed in PbSe nanocrystals and reported for hot carrier extraction.38 Our 

calculated biexciton decay time is similar to coupled PbSe quantum dot films (~100 ps), 

which have also demonstrated MEG in devices.14,28 Enhanced coupling in films of PbSe 

nanocrystals allows for efficient conversion of multiexcitons into free charge carriers 

compared to the competing Auger recombination process.39 In CIS nanocrystal films with 

organic ligands attached, charge carriers cannot rapidly dissociate by transferring to 

neighboring nanocrystals and multiexcitons are lost to Auger recombination (See Fig. 
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6.1B). However, attaining peak quantum efficiencies over 100% after photonic curing 

indicates that nanocrystal coupling is sufficient for multiexcitons to dissociate and be 

extracted prior to recombination (See Fig. 6.1C).  

 

 

Figure 6.16 Transient absorption kinetics normalized to –Δα=1 at 1 ns for a nanocrystal 
film cured at 2.5 J/cm2. The kinetics were taken using 9 and 18 µJ /cm2 
pump fluences at 400 nm pump wavelength.  

 

Figure 6.17 Absorptance measurements of a CuInSe2 nanocrystal film before (black) and 
after photonic curing (red, 2.5 J/cm2).  Inset: Absorptance measured near the 
band edge; the dashed lines indicate the optical gap of each film: 0.91 and 
0.79 eV for the nanocrystals before and after curing. 
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6.3.7 Photonic Curing of Multi-Layer Films 

Although nanocrystal films electronically coupled with photonic curing exhibit 

significantly increased device current, the loss of voltage and fill factor prevent these 

devices from achieving high efficiencies. One possible reason for the loss in voltage and 

fill factor relates to the formation of small regions of exposed back contact in the film 

after photonic curing. The pulse energies used for electronic coupling are not high 

enough to cause significant nanocrystal sintering; however, there may still be small local 

regions of sintering. This is most likely caused by non-uniformities in the film prior to 

photonic curing. Slightly thicker regions of the film will absorb more of the pulse light 

and heat to a higher temperature, allowing for small melt structures to form along with 

small areas of exposed back contact. One possible way to improve the device 

performance is to fill the areas of exposed contact with a new layer of nanocrystals. This 

new layer could possibly be treated with photonic curing to remove the organic ligands 

and further enhance nanocrystal coupling. 

Figure 6.18 shows SEM images for a series of nanocrystal films with additional 

spray deposition and photonic curing steps. Figure 6.18A shows a film treated with a 2.5 

J/cm2 pulse. The film is largely unsintered, but does show some small regions of exposed 

back contact. After the initial photonic curing treatment, an additional layer of 

nanocrystals is spray cast on the film (Fig. 6.18B), which fills in all of the exposed 

contact. Ideally, a non-conformal coating of nanocrystals would be achieved; however, 

this proved difficult even using a wide variety of deposition techniques (spray coating, 

spin coating, drop casting, blade coating) and the new nanocrystal film conformally coats 

the underlying film. Next, the film is again treated with photonic curing at 2.5 J/cm2 to 

remove the organic ligands (Fig. 6.18C). In this case, much larger areas of exposed 

contact are formed and more significant sintering is observed. Because the second spray 
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deposition step coats conformally, the overall film thickness is increased, which causes 

the film to reach higher temperatures than before. Furthermore, the film is more 

susceptible to melt structures forming at hot spots since the overall film uniformity is 

worse after the second coat compared to the first coat. A third nanocrystal layer is then 

deposited (Fig. 6.18D), which fills in the exposed contact, but leaves the film much less 

uniform. 

 

 

Figure 6.18 SEM images of nanocrystal films pulsed at 2.5 J/cm2 and with some 
additional spray deposition steps. (A) A nanocrystal film pulsed one time. 
(B) After the photonic curing pulse, a new layer of nanocrystals is spray 
deposited. (C) The second nanocrystal layer is treated with a photonic 
curing pulse. (D) Finally, a third nanocrystal layer is deposited on top of the 
twice-pulsed film. 
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Table 6.2 shows the photovoltaic device results for the films discussed above. 

Although non-conformal coatings of nanocrystals was not possible, ideally a thin layer of 

nanocrystals deposited on the surface of an electronically coupled film remove any 

possible voltage loss due to exposed back contact while still allowing high device 

currents. However, we instead observe a tradeoff between device voltage and current, 

with the most recent treatment step (either photonic curing or spray casting) dominating 

the device performance. When the top layer of the film is treated with photonic curing, 

ligands are removed from the entire film and some exposed contact is revealed, yielding 

low voltage and high current. When the top layer of the film is left untreated, the exposed 

contact is removed, but the excellent charge transport from the underlying layer is 

masked by the poorly conducting top layer, yielding high voltage and low current.  

Although this approach proved unsuccessful, high efficiencies may yet be achieved if 

non-conformal nanocrystal coatings can be developed which preferentially fill gaps in the 

underlying film. 

 
PCE Voc Jsc 

 Film Treatment (%) (V) (mA/cm2) FF 
No Pulse 0.30 0.34 -2.36 0.37 
Pulse 1.13 0.27 -9.61 0.43 
Pulse → Spray 0.48 0.33 -4.26 0.34 
Pulse, Spray → Pulse 1.10 0.28 -13.54 0.29 
Pulse, Spray, Pulse → Spray 0.57 0.37 -4.07 0.38 
     

Table 6.2 Table showing the PV device PCE, Voc, Jsc, and fill factor for devices 
corresponding to the films shown in Figure 6.18. 
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6.3.8 Surface Repassivation 

Another possible reason for the low device open circuit voltage after nanocrystal 

coupling is the formation of a large number of surface trap states. These surface trap 

states likely arise from unpassivated bonds on the surface of the nanocrystals after ligand 

removal and such states have been shown to lie within the band gap.31 Because the 

voltage extracted from the device is proportional to the band gap of the constituent 

semiconductors, the presence of a large number of mid-gap trap states would effectively 

reduce the band gap and lead to substantially reduced device voltage. High device 

efficiencies could be achieved if these surface trap states could be passivated while still 

retaining excellent electronic contact between nanocrystals. 

Chemical surface passivation via solid-state ligands exchanges have been 

extensively explore in the literature.20,31,32,40–45 The procedure involves simply soaking 

the nanocrystal film in a solution containing the desired ligand, which will replace the 

original ligand so long as the new ligand binds preferentially to the nanocrystal surface. 

For films with ligands removed with photonic curing, the passivating ligand should 

passivate as many of the surface traps as possible without increasing the spacing between 

nanocrystals. 

Post photonic curing ligand exchanges using hexanethiol, oleylamine, pyridine, 

Br- ions, and inorganic ChaM ligands were conducted and the device results are shown in 

Figure 6.19 and Table 6.3. Device results are not shown for hexanethiol repassivation, 

since treating the nanocrystal film caused the film to disperse in the hexanethiol. It 

appears as though hexanethiol is such a strong passivant that it separated the coupled 

nanocrystals completely. Treating the nanocrystal film with oleylamine or pyridine led to 

an increase in device current compared to the pulsed film with no surface repassivation, 

however there was no increase in open circuit voltage or fill factor. It is possible that 
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pyridine and oleylamine are too large to penetrate deep into the film. After photonic 

curing, the nanocrystal film becomes denser with the removal of the organic ligands, 

which could make it difficult for large molecules to penetrate. A partial passivation, 

particularly of the nanocrystal film should give a small increase in device current, but 

without passivating through the entire nanocrystal layer, the voltage may not increase. 

Passivation through the entire thickness of the film could be achieved by using much 

smaller ligands such as Br- ions or ChaM ligands; however, these ligands appear to be 

poor passivants for these films, as the device current substantially decreased without 

giving any increase in voltage as well. Although none of these ligands were successful in 

repassivating the nanocrystal film to achieve higher device efficiency, the ligands studied 

do not make an exhaustive list and it is possible that different small ligands could 

sufficiently passivate the nanocrystal surface trap states. 

 

 

Figure 6.19 Current-voltage measurements for photovoltaic devices fabricated from 
nanocrystal films before photonic curing (black), after photonic curing with 
no further repassivation treatments (red), and after photonic curing with 
repassivation treatments using oleylamine (blue), pyridine (green), Br- ions 
(magenta), and InSe-ChaM ligands (gold). 
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PCE Voc Jsc 

 Film Treatment (%) (V) (mA/cm2) FF 
No Pulse 0.95 0.42 -5.57 0.41 
Pulse → No Repassivation 0.68 0.14 -15.14 0.31 
Pulse → Oleylamine Repassivation 0.70 0.14 -16.67 0.31 
Pulse → Pyridine Repassivation 0.81 0.15 -18.22 0.30 
Pulse → Br- Ion Repassivation 0.15 0.15 -3.83 0.27 
Pulse → ChaM Repassivation 0.13 0.14 -3.36 0.27 

Table 6.3 Table showing the PV device PCE, Voc, Jsc, fill factor, and peak quantum 
efficiency for the devices shown in Figure 6.19. 

 

6.4  CONCLUSIONS 

Ink-deposited CuInSe2 nanocrystal PVs treated by photonic curing exhibited high 

short circuit currents and peak external quantum efficiencies of over 120% due to the 

extraction of multiexcitons in the high energy wavelength region of the solar spectrum.  

TAS measurements substantiate the claim of MEG in cured nanocrystal films.  It appears 

that photonic curing brings the nanocrystals into better electrical contact to enable 

multiexciton extraction.  Ligand removal, however, still appears to induce a significant 

amount of traps in the nanocrystal film, which reduces device performance, especially 

under low light conditions.  Still, the coupled nanocrystals can more readily transfer 

charge and allow for rapid separation and extraction of multiexcitons. TAS measurements 

show little difference in multiexciton generation with and without light biasing, which 

indicates that surface traps only affect multiexciton extraction and not generation.  

Passivation of these surface traps could perhaps provide a route to high efficiency devices 

that utilize multiexciton generation and extraction along with reasonably efficient charge 

extraction for electrons and holes photoexcited closer to the band gap energy.  
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Chapter 7: Multiexciton Generation in Colloidal CuInSe2 Nanocrystals‡‡ 

 

7.1 INTRODUCTION 

The absorption of a photon by a semiconductor typically leads to the formation of 

a single electron-hole pair and the photon energy exceeding the band gap is lost as heat.  

However, an absorbed photon can also create more than one electron-hole pair, or 

exciton, if the photon provides enough energy.  In bulk semiconductors, multiexciton 

generation (MEG)—or carrier multiplication (CM)—typically requires photons with at 

least more than four times the band gap energy.1  Quantum dots on the other hand, can 

exhibit especially efficient MEG and the MEG efficiency tends to increase with 

decreasing quantum dot size.1–3 The mechanism of multiexciton formation has been the 

subject of several experimental and theoretical studies.1,4–7 MEG has been observed 

spectroscopically in a variety of nanocrystals, including Si, PbS, PbSe, PbTe, CdSe, 

Ag2S, InP, InAs and CuInSe2 with photon energies nearing two times the optical gap.8–16  

Photovoltaic devices of PbSe17 and CuInSe2
16 nanocrystals have also been made showing 

peak external quantum efficiencies exceeding 100% in the wavelength range where MEG 

occurs, indicating that photogenerated multiexcitons can also be extracted.  In the case of 

the CuInSe2 nanocrystal films used to make PV devices with >100% EQE, transient 

absorption spectroscopy (TAS) measurements confirmed spectroscopically that MEG 

indeed occurred in those CuInSe2 nanocrystal films.16  Here we report a more extensive 

set of size-dependent TAS measurements of CuInSe2 nanocrystal dispersions to 

                                                 
‡‡ Reproduced in part with permission from: Stolle, C. Jackson; Schaller, Richard D.; Korgel, Brian A., 
Efficient Carrier Multiplication in Colloidal CuInSe2 Nanocrystals, J. Phys. Chem. Lett. (2014), 5, 3169-
3174. Copyright 2014 American Chemical Society. CJS designed the experiments, synthesized and 
characterized the samples, collected and analyzed the data, and wrote the manuscript. RDS assisted with 
experimental design, data collection and analysis, and manuscript preparation. BAK provided funding, 
guidance, and assistance writing the manuscript. 
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determine the MEG efficiency, the energy threshold for MEG, the carrier cooling rates, 

absorption cross-sections and Auger lifetimes of CuInSe2 nanocrystals.  The CuInSe2 

nanocrystals had slightly lower MEG threshold energy, longer Auger lifetimes, and 

similar MEG efficiency as compared to PbSe nanocrystal quantum dots.     

 

7.2 EXPERIMENTAL METHODS 

7.2.1 Nanocrystal Synthesis 

CuInSe2 nanocrystals were synthesized using the methods described by Panthani, 

et al.18 Briefly, 2 mmol CuCl (anhydrous beads, Aldrich), 2 mmol InCl3 (anhydrous, 

Strem), and 20 ml of degassed oleylamine (OLA, TCI America) were added to a 100 ml 

three neck flask inside an N2 filled glovebox. The flask is then sealed, removed from the 

glovebox, and attached to a standard Schlenk line setup. The flask is degassed for 30 

minutes at 110oC under vacuum. In a separate vial, 4 mmol Se powder (Aldrich) is 

dissolved in 1.5 ml diphenylphosphine (DPP, Aldrich) and 2 ml degassed oleylamine 

inside the glovebox. The OLA:DPP:Se solution is drawn into a syringe and removed 

from the glovebox.  

The size of the nanocrystals was controlled by manipulating the injection and 

reaction temperature. Following degassing, the reaction flask is heated under nitrogen to 

between 100oC and 180oC, depending on the desired nanocrystal size before injecting the 

OLA:DPP:Se solution. For reactions carried out at temperature higher than 180oC, the 

OLA:DPP:Se solution is injected at 180oC and then the reaction is rapidly heated to the 

final reaction temperature of either 200oC or 240oC.  After one hour, the reaction flask is 

allowed to cool to room temperature. The nanocrystals are washed twice using an 

ethanol/toluene antisolvent/solvent pair and then centrifuged in toluene to precipitate 



 140 

poorly-capped nanocrystals.  The nanocrystals are then stored in the glovebox.  

Nanocrystals with average diameters of 4.5 ± 0.8 nm, 6.2 ± 1.5 nm and 9.2 ± 3.2 nm were 

synthesized using reaction temperatures of 180oC, 200oC, and 240oC.   

 

7.2.2 Characterization Techniques 

UV-Vis-NIR absorbance data was taken using a Cary 500 spectrophotometer. X-

ray diffraction was taken using a Rigaku R-Axis Spider diffractometer using Cu Kα 

radiation operated at 40 kV and 40 mA. Transmission electron microscopy images were 

collected using an FEI Tecnai G2 Spirit BioTwin microscope operated at 80 kV.  

Transient absorption spectroscopy measurements were carried out at the Center for 

Nanoscale Materials using an 800 nm, 35 fs pulse width, 2 kHz amplified Ti:sapphire 

laser and white-light seeded optical parametric amplifier. Pump pulses of 800, 400, 340, 

or 320 nm were spatially overlapped with a mechanically delayed white light probe beam 

formed by focusing 5% of the amplifier output into a 2 mm thick sapphire plate. 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 Materials Characterization 

TAS measurements were performed on CuInSe2 nanocrystals of three different 

sizes synthesized using the methods of Panthani, et al.18 Figure 7.1 shows transmission 

electron microscopy (TEM) and UV-Vis Absorbance spectra of the nanocrystals, which 

have average diameters of 4.5 ± 0.8 nm, 6.2 ± 1.5 nm and 9.2 ± 3.2 nm.  The optical 

absorption edge shifts to higher energy with decreasing size due to quantum confinement.  

There are no exciton peaks in the spectra for these relatively large sizes.  Absorbance 

spectra of smaller nanocrystals with exciton peaks are shown in Figure 7.2.  These 
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smaller sizes were not studied by TAS because of the relatively high photon energies 

required to produce multiple excitons.  X-ray diffraction (XRD) showed that the 

nanocrystals are composed of the compositionally-ordered chalcopyrite CuInSe2 crystal 

phase (Figure 7.3). 

 

 

Figure 7.1 CuInSe2 nanocrystals studied by TAS. (A) optical absorbance spectra and 
(B-D) TEM images. (A) Absorbance spectra were measured at room 
temperature for nanocrystals dispersed in toluene.  Spectra are offset by 0.2 
O.D. for clarity.  The temperatures noted in (A) correspond to the synthesis 
temperatures used to make the samples with corresponding TEM images in 
(B) 180oC, (C) 200oC, and (D) 240oC.  The insets of (B-D) are size 
histograms obtained from the TEM images average diameters of (B) 4.5 ± 
0.8 nm, (C) 6.2 ± 1.5 nm and (D) 9.2 ± 3.2 nm. The absorption edges 
determined in the inset of (A) are  0.98 eV (240 °C), 1.05 eV (200 °C), and 
1.14 eV (180 °C).§§  

                                                 
§§ The band gap energy values estimated from optical absorption spectroscopy are different from those 
measured from TAS. For the purpose of these calculations, we used the band gap values measured from 
TAS. 
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Figure 7.2 Optical absorbance spectra of CuInSe2 nanocrystals dispersed in toluene 
synthesized at the reaction temperatures indicated.  Higher reaction 
temperatures yielded larger nanocrystals, consistent with the observed shift 
of the exciton peak and absorption edge to longer wavelength. Absorbance 
spectra are normalized to 1 at 400 nm and offset for clarity.   

 

 

Figure 7.3 X-ray diffraction data for CuInSe2 nanocrystals synthesized at 200oC. The 
reference pattern corresponds to chalcopyrite CuInSe2 (PDF #01-073-6321). 
The ordered chalcopyrite phase is distinguished from the disordered 
sphalerite phase by the presence of the (211) diffraction peak at 35.6°. 
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7.3.2 TA Spectra, Carrier Cooling, and Absorption Cross Sections 

Figure 7.4 shows TA bleach spectra of three different sizes of CuInSe2 

nanocrystals dispersed in toluene obtained using an 800 nm pump laser and a white light 

probe beam. All TAS measurements were carried out with magnetic stirring to ensure 

that photocharging did not influence the detected signal.19  The peaks in the TA bleach 

spectra appear at 1170 nm (1.06 eV), 1050 nm (1.18 eV), and 910 nm (1.36 eV) for 

nanocrystals with average diameters of 9.2 nm, 6.2 nm, and 4.5 nm, respectively, 

corresponding to the 1S absorption edge.  In the very early time regime (<2 ps), the TA 

peak appears initially at slightly shorter wavelength than the 1S feature because of the 

presence of hot carriers.  As the hot carriers relax to the conduction and valence band 

minima, the bleach peak shifts to slightly longer wavelength.20  After 2.5 ps of delay, the 

wavelength of the 1S-related peaks in the TA spectra are largely unaffected by delay time 

or pump fluence, as shown in Figures 7.4 (B,D,F).    

The carrier cooling rates were calculated from the intraband cooling times 

determined from the evolution of the TA peak absorption at relatively short delay times 

(<5 ps) in Figure 7.5A.21  Figure 7.5B shows the carrier cooling rates plotted as a 

function of nanocrystal size.  The carrier cooling rate increases as the nanocrystals 

become smaller, and there is a linear relationship between particle volume and carrier 

cooling rate, which is consistent with experimental results and theory for other 

semiconductor nanocrystals.20–22   
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Figure 7.4 CuInSe2 nanocrystal transient absorption spectra (TAS) acquired with 800 
nm pump wavelength.  Samples with three different average diameters were 
measured: (A,B) 4.5 ± 0.8 nm, (C,D) 6.2 ± 1.5 nm, and (E,F) 9.2 ± 3.2 nm. 
(A,C,E)  show the evolution of the TA bleach spectra as function of delay 
time (spectra with 0.1 ps delay time are shown in black) and (B,D,F) show 
TA spectra of each sample after 2.5 ps delay time with varying average 
number of photons absorbed per nanocrystal, 〈𝑁〉.  〈𝑁〉 was varied by 
changing the pump fluence, jp (# of photons/cm2): 〈𝑁〉 = 𝜎 ∙ 𝑗𝑝  , where σ is 
the absorption cross section of each nanocrystal sample (cm2). 
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Figure 7.5 Carrier cooling rates. A) Early–time (<5 ps) TA kinetics for each 
nanocrystal sample at 800 nm pump wavelength  (black squares, 4.5 nm 
nanocrystals; red circles, 6.2 nm nanocrystals; blue triangles, 9.2 nm 
nanocrystals). The TA kinetics are examined at the location of the 
absorption bleach maximum for each sample (910 nm for the 4.5 nm 
diameter nanocrystals, 1050 nm for the 6.2 nm nanocrystals, and 1170 nm 
for the 9.2 nm nanocrystals). The maximum bleach signals are normalized to 
one.  To calculate the carrier cooling rate, the characteristic cooling times 
were taken as the delay time when the normalized TA bleach reached 1 − 1

𝑒
 

(dashed line).23 B) Carrier cooling rates versus nanocrystal volume 
measured using 800 nm pump wavelength. Carrier cooling rates were 
calculated from the difference in energy between the 800 nm pump energy 
and the nanocrystal optical gap (taken as the peak of the TA bleach) divided 
by the carrier cooling time.  The nanocrystal volume was determined from 
the average diameter assuming spherical shape. The error bars shown for the 
carrier cooling rate represent the standard deviation obtained from four 
measurements using different pump fluence.  The error bars for nanocrystal 
volume correspond to the standard deviation of particle size distribution.   
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Figure 7.6 shows the absorption cross-sections calculated from TAS.  In Figure 

7.6A and 7.6B, the bleached absorption signals measured after 1 ns delay time using 

different pump fluences of 400 nm and 800 nm light are shown. After 1 ns, only single 

excitons are present in the nanocrystals (i.e., the biexciton lifetime is much shorter than 1 

ns).  The increase in the absorption bleach signal with increasing pump fluence (or 

photon flux jp) depends on the absorption cross section σ:23  

−𝛥𝛥 ∝ �1 − 𝑒−𝜎∗𝑗𝑝� 7.1 
 

As shown in Figure 7.6C, the bleached absorption signal increases linearly with 

increasing pump fluence and then saturates.  The ratios of the (400 nm and 800 nm) 

absorption cross sections in Figure 7.6C are consistent with the absorbance spectra in 

Figure 7.1 (8:1 for all three nanocrystal sizes by TAS compared to 7:1 from the 

absorbance spectra).  The absorption cross-sections are also comparable to those of PbSe 

nanocrystals with similar size.15 
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Figure 7.6 Absorption Cross Section. Transient absorption signal at long delay time 
(1000 ps) for each nanocrystal sample (4.5 nm, black squares; 6.2 nm, red 
circles; 9.2 nm, blue triangles) as a function of pump fluence for (A) 800 nm 
pump wavelength and (B) 400 nm pump wavelength.  C) Absorption cross 
section plotted against particle volume for both (blue) 400 nm pump 
wavelength and (red) 800 nm pump wavelength. The absorption cross 
section is calculated by fitting the data in A and B to Eq. (7.1).  The error 
bars for absorption cross section correspond to error in the fit of the data. 
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7.3.3 TA Kinetics, Auger Lifetimes, and Multiexciton generation 

Figure 7.7 shows the TA kinetics of three different sizes of CuInSe2 nanocrystals 

using two pump wavelengths (400 nm and 800 nm).  A single absorbed 800 nm photon 

cannot generate more than one exciton, so the TA kinetics at low fluence (normalized at 1 

ns) represent the single exciton decay.  Multiple excitons are photoexcited with 800 nm 

light by increasing the pump fluence to induce multiphoton absorption.9 When 

multiphoton absorption occurs, the normalized TA kinetics show a higher intensity early 

time signal with a biexponential decay and two carrier relaxation processes come into 

play: (1) a fast Auger recombination process (the process inverse to MEG) and (2) a 

much longer lived single exciton signal.  The biexciton (Auger) lifetimes were 

determined by subtracting the single exciton baseline TA kinetics (low fluence, 800 nm 

pump wavelength) and fitting the signal to a single exponential function (Figure 7.8). The 

Auger lifetimes are plotted in Figure 7.9A as a function of particle volume.  The 

biexciton lifetime scales linearly with particle volume, consistent with literature reports.26  

The TA kinetics measured using 800 nm pump light provide the single exciton 

TA kinetics baseline (using low fluence pump) and the biexciton Auger recombination 

kinetics (using high fluence pump) for comparison to the TA kinetics using 400 nm pump 

light.  Figure 7.7B shows the TA kinetics of the 4.5 nm diameter nanocrystals measured 

using 400 nm and 800 nm pump light.  The signals overlap, indicating that the TA decay 

does not result from hot carrier cooling and that the energy of the 400 nm photons (equal 

to 2.28Eg) lies below the energy threshold for MEG.  The TA kinetics for the larger 

nanocrystals (6.2 nm and 9.2 nm) obtained using 400 nm pump light (Fig. 7.7D, 7.7F), 

show much faster kinetics at early times, indicative of Auger recombination. The average 

number of photons absorbed per nanocrystal is low under these conditions  and therefore 

the observed Auger recombination is attributed to multiexciton generation.9 
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Figure 7.7 Transient absorption kinetics of (A,B) 4.5 ± 0.8 nm nanocrystals, (C,D) 6.2 
± 1.5 nm nanocrystals, and (E,F) 9.2 ± 3.2 nm diameter CuInSe2 
nanocrystals measured using two different pump wavelengths of 400 nm 
and 800 nm. All curves are normalized at long delay times (1 ns) where only 
single excitons are present in the nanocrystals. TA kinetics taken with a low 
pump fluence at 400 nm and 800 nm pump wavelength for (B) 4.5 nm 
nanocrystals, (D) 6.2 nm nanocrystals, and (F) 9.2 nm nanocrystals, where 
the kinetics measured at 400 nm are shown in blue and kinetic measured at 
800 nm are shown in red. The kinetics are taken at the peak in the 
absorption bleach for each sample (910 nm for the 4.5 nm particles, 1050 
nm for the 6.2 nm particles, and 1170 nm for the 9.2 nm particles). 
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Figure 7.8 Transient absorption kinetics at 800 nm pump wavelength used to determine 
the biexciton lifetime for CuInSe2 nanocrystals with varying diameter (9.2 
nm nanocrystals, black squares; 6.2 nm nanocrystals, red circles; 4.5 nm 
nanocrystals, blue triangles). The low-fluence (single photon per 
nanocrystal) background is subtracted from high-fluence (multiple photons 
per nanocrystal) and fitted to a single exponential. The error in the 
calculated Auger lifetimes comes from error in the exponential fit of the 
data (See Fig. 7.9A). 
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Figure 7.9 Auger lifetimes and MEG quantum yield. A) Biexciton lifetimes plotted 
against particle volume for the 4.5 ± 0.8 nm, 6.2 ± 1.5 nm, and 9.2 ± 3.2 nm 
diameter CuInSe2 nanocrystals. The error bars for nanocrystal volume 
correspond to the standard deviation of nanocrystal sizes within each 
sample. The error bars for biexciton lifetime correspond to error in the 
single exponential fit in Fig. S3.  B) MEG quantum yield plotted as a 
function of pump energy (relative to the nanocrystal band gap energy).  Data 
were collected for 4.5 nm, 6.2 nm, and 9.2 nm diameter nanocrystals using 
pump wavelengths of 400 nm, 340 nm, and 320 nm. The data are fit to a 
straight line, excluding the data point at 2.28Eg, which is below the MEG 
threshold. The intersection of the lines QY=0 and the fit line is defined as 
the MEG threshold ((2.4 ± 0.2)Eg) and the slope of the fit line times 100% is 
defined as the MEG efficiency (36 ± 6%).  The open red box corresponds to 
the MEG quantum yield measured for the CuInSe2 nanocrystal film from 
Chapter 6. Error bars for the measured MEG quantum yield correspond to 
the standard deviation of quantum yields measured for a range of pump 
fluences (See Fig. S4). 
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To determine the MEG quantum yield, TAS was performed using a range of low 

pump fluences where the TA signal is independent of the pump-fluence (Figure 7.10). 

The MEG quantum yield was measured using a range of pump wavelengths of 800 nm, 

400 nm, 340 nm, and 320 nm by taking the ratio of the average TA signal at high energy 

pump (either 400 nm, 340 nm, or 320 nm) to the average single exciton TA signal (800 

nm pump wavelength).  Figure 7.9B shows the MEG quantum yield measured as a 

function of photon energy relative to the nanocrystal optical gap.  A weighted fit of the 

data gives a straight line with a slope corresponding to the MEG efficiency (36 ± 6%).  

The energy where the line intersects QY=1 is the MEG threshold (2.4 ± 0.2)Eg.1 This 

means that an extra 0.36 excitons are generated per absorbed photon (on average) for 

each band gap multiple of energy that the incident photon energy is increased above the 

MEG threshold.  These data fit well with our previous transient absorption measurements 

on CuInSe2 nanocrystal thin films, which showed a MEG QY of ~1.25 at photon energies 

of 3.1Eg.16 
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Figure 7.10 The ratio of the transient absorption signal at short time delay (5 ps) and 
long time delay (1000 ps) as a function of pump fluence for low pump 
fluences. The ratio is shown for (black) 800 nm, (red) 400nm, (teal) 340 nm, 
and (blue) 320 nm pump wavelengths. The ratio for each nanocrystal 
samples is represented by squares (4.5 nm), circles (6.2 nm), and triangles 
(9.2 nm). The MEG quantum yield is calculated by dividing the average 
ratio at each high-energy pump wavelength by the average ratio at 800 nm 
pump wavelength (See Fig. 7). The error in the MEG quantum yield is 
derived from the standard deviations of the measured ratios. 

 

7.3.4 Comparison of MEG Efficiency, MEG Threshold, and Auger Lifetimes 

Multiexciton solar cells require a light-absorbing layer with a combination of high 

MEG efficiency, low MEG threshold, long Auger lifetimes, and an optimal band gap.  A 

table listing the MEG efficiency and threshold for a variety of semiconductor 

nanocrystals is given in Table 7.1.8,12,19,24,25 The MEG efficiency of the CuInSe2 

nanocrystals is comparable to PbSe (36% vs 40%), which is the only other material to 

demonstrate EQE values exceeding 100% in PV devices.17,26  The MEG threshold for 

PbSe is 3Eg.26  The lower MEG threshold for CuInSe2 nanocrystals of 2.4Eg provides for 

the possibility of slight gains in the device efficiency.  For example, the maximum 
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efficiency of a multiexciton device, assuming 100% MEG QY, could be slightly 

enhanced from 33.7% to 37.2% with a reduction in MEG threshold from 3Eg to 2Eg.27  It 

might be possible for the MEG threshold of CuInSe2 to be further reduced.  The 

minimum MEG threshold of CuInSe2 can be estimated based on the relationship28 

 

𝐸𝑡ℎ = �2 +
𝑚𝑒

𝑚ℎ
�𝐸𝑔 (7.2) 

where Eth is the MEG threshold energy, me and mh are the electron and hole effective 

masses.  Using bulk values for CuInSe2 of me=0.1m0 and mh=0.7m0, Equation (7.2) give 

Eth = 2.14Eg, which is slightly lower than the measured value of 2.4Eg.   

 

 
Threshold Efficiency Bulk Eg 

 Nanocrystal (hv/Eg) (%) (eV) Ref 
CuInSe2 2.4 36 1 

 PbSe 3 40 0.37 [19] 
PbS 3 40 0.50 [24] 
InAs* 2 35 0.36 [25] 
Ag2S 2.28 73 0.90 [12] 
Si* 2.5 ~100 1.1 [8] 

Table 7.1 A table showing the MEG threshold, MEG efficiency, and Bulk band gap 
values for a variety of semiconductor nanocrystals. Nanocrystals marked 
with an * were measured without sample stirring to eliminate effects from 
photocharging and may not be accurate. 

 

CuInSe2 nanocrystals can be made with band gaps near the optimal band gap 

range of 0.75-1.15 eV while simultaneously achieving long biexciton lifetimes, both of 

which depend on nanocrystal size.27,29  The Auger lifetime is important for multiexciton 

extraction in solar cells, as the biexciton lifetime relates to the ability to extract the 

generated multiexcitons.30 From the perspective of carrier extraction in a multiexciton 
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solar cell, large nanocrystals with long Auger lifetimes would be used to minimize 

biexciton annihilation.  At the same time, the benefit of slow Auger decay must be 

balanced with the need for increased band gap through quantum confinement. Detailed 

energy balances have shown that for an MEG efficiency of 100% and a MEG threshold 

of 2Eg, the peak optimal nanocrystal band gap is near ~0.9 eV.9,27,31 Figure 7.11 shows 

the Auger lifetimes for several semiconductor nanocrystals.8,12,19,24,25 To achieve this 

near-optimum band gap from small band gap materials like PbS (0.5 eV) and PbSe (0.37 

eV), relatively small nanocrystals are needed.  Larger band gap semiconductors like 

CuInSe2 (~1 eV) do not require significant quantum confinement and therefore can make 

use of nanocrystals with slower Auger decay that still exhibit relatively high MEG 

efficiency.  For CuInSe2, the largest nanocrystals measured (9.2 nm diameter) have a near 

optimal band gap of 1.06 eV and a biexciton lifetime of 130 ps. PbSe has a bulk band gap 

of 0.37 eV, and particles must be confined to a diameter of 5-6 nm to achieve a band gap 

near 0.75 eV.32,33 At these sizes, PbSe has a biexciton lifetime of ~30 ps.34  The relevant 

biexciton lifetime for CuInSe2 is therefore much longer than for PbSe. 
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Figure 7.11 Auger lifetimes as a function of nanocrytstal volume and band gap energy 
for CuInSe2, PbSe19, PbS24, InAs25, Ag2S12, and Si8 nanocrystals. The green 
box shows the optimal band gap range for an MEG solar cell. 

 

7.4 CONCLUSIONS 

In summary, TAS measurements showed that the MEG efficiency of CuInSe2 

nanocrystals is comparable to other types of nanocrystals.  The MEG threshold of the 

nanocrystals was slightly higher (2.4Eg) than the value predicted by the carrier effective 

mass (of 2.14Eg).  A lower MEG threshold closer to 2Eg and higher MEG efficiency 

would improve the efficiency of multexciton solar cells.  Nonetheless, the biexciton 

lifetimes are relatively long in the CuInSe2 nanocrystals in this size range, which could 

aid in extracting multiexcitons from a solar cell.  For these reasons, CuInSe2 looks to be 

an interesting, and perhaps reasonably unique, material for the study and fabrication of 

multiexciton solar cells. 

 



 157 

7.5 REFERENCES 
1. Beard, M. C. et al. Comparing Multiple Exciton Generation in Quantum Dots To 

Impact Ionization in Bulk Semiconductors: Implications for Enhancement of 
Solar Energy Conversion. Nano Lett. 10, 3019–3027 (2010). 

2. Midgett, A. G. et al. Size and Composition Dependent Multiple Exciton 
Generation Efficiency in PbS, PbSe, and PbSxSe1–x Alloyed Quantum Dots. 
Nano Lett. 13, 3078–3085 (2013). 

3. Nootz, G. et al. Size dependence of carrier dynamics and carrier multiplication in 
PbS quantum dots. Phys. Rev. B 83, 155302 (2011). 

4. Schaller, R. D., Agranovich, V. M. & Klimov, V. I. High-efficiency carrier 
multiplication through direct photogeneration of multi-excitons via virtual single-
exciton states. Nat. Phys. 1, 189–194 (2005). 

5. Franceschetti, A., An, J. M. & Zunger, A. Impact Ionization Can Explain Carrier 
Multiplication in PbSe Quantum Dots. Nano Lett. 6, 2191–2195 (2006). 

6. Allan, G. & Delerue, C. Influence of electronic structure and multiexciton spectral 
density on multiple-exciton generation in semiconductor nanocrystals: Tight-
binding calculations. Phys. Rev. B 77, 125340 (2008). 

7. Velizhanin, K. A. & Piryatinski, A. Numerical Study of Carrier Multiplication 
Pathways in Photoexcited Nanocrystal and Bulk Forms of PbSe. Phys. Rev. Lett. 
106, 207401 (2011). 

8. Beard, M. C. et al. Multiple Exciton Generation in Colloidal Silicon Nanocrystals. 
Nano Lett. 7, 2506–2512 (2007). 

9. Schaller, R. D. & Klimov, V. I. High Efficiency Carrier Multiplication in PbSe 
Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 92, 
186601 (2004). 

10. Ellingson, R. J. et al. Highly Efficient Multiple Exciton Generation in Colloidal 
PbSe and PbS Quantum Dots. Nano Lett. 5, 865–871 (2005). 

11. Lin, Z., Franceschetti, A. & Lusk, M. T. Size Dependence of the Multiple Exciton 
Generation Rate in CdSe Quantum Dots. ACS Nano 5, 2503–2511 (2011). 

12. Sun, J. et al. Generation of Multiple Excitons in Ag2S Quantum Dots: Single 
High-Energy versus Multiple-Photon Excitation. J. Phys. Chem. Lett. 5, 659–665 
(2014). 

13. Stubbs, S. K. et al. Efficient carrier multiplication in InP nanoparticles. Phys. Rev. 
B 81, 081303 (2010). 

14. Califano, M. Direct and Inverse Auger Processes in InAs Nanocrystals: Can the 
Decay Signature of a Trion Be Mistaken for Carrier Multiplication? ACS Nano 3, 
2706–2714 (2009). 



 158 

15. Luther, J. M. et al. Multiple Exciton Generation in Films of Electronically 
Coupled PbSe Quantum Dots. Nano Lett. 7, 1779–1784 (2007). 

16. Stolle, C. J. et al. Multiexciton Solar Cells of CuInSe2 Nanocrystals. J. Phys. 
Chem. Lett. 5, 304–309 (2014). 

17. Semonin, O. E. et al. Peak External Photocurrent Quantum Efficiency Exceeding 
100% via MEG in a Quantum Dot Solar Cell. Science 334, 1530–1533 (2011). 

18. Panthani, M. G. et al. CuInSe2 Quantum Dot Solar Cells with High Open-Circuit 
Voltage. J. Phys. Chem. Lett. 4, 2030–2034 (2013). 

19. McGuire, J. A., Sykora, M., Joo, J., Pietryga, J. M. & Klimov, V. I. Apparent 
Versus True Carrier Multiplication Yields in Semiconductor Nanocrystals. Nano 
Lett. 10, 2049–2057 (2010). 

20. Blackburn, J. L., Ellingson, R. J., Mićić, O. I. & Nozik, A. J. Electron Relaxation 
in Colloidal InP Quantum Dots with Photogenerated Excitons or Chemically 
Injected Electrons. J. Phys. Chem. B 107, 102–109 (2003). 

21. Yu, P., Nedeljkovic, J. M., Ahrenkiel, P. A., Ellingson, R. J. & Nozik, A. J. Size 
Dependent Femtosecond Electron Cooling Dynamics in CdSe Quantum Rods. 
Nano Lett. 4, 1089–1092 (2004). 

22. Shabaev, A., Efros, A. L. & Nozik, A. J. Multiexciton Generation by a Single 
Photon in Nanocrystals. Nano Lett. 6, 2856–2863 (2006). 

23. García-Santamaría, F. et al. Suppressed Auger Recombination in ‘Giant’ 
Nanocrystals Boosts Optical Gain Performance. Nano Lett. 9, 3482–3488 (2009). 

24. Binks, D. J. Multiple exciton generation in nanocrystal quantum dots – 
controversy, current status and future prospects. Phys. Chem. Chem. Phys. 13, 
12693–12704 (2011). 

25. Schaller, R. D., Pietryga, J. M. & Klimov, V. I. Carrier Multiplication in InAs 
Nanocrystal Quantum Dots with an Onset Defined by the Energy Conservation 
Limit. Nano Lett. 7, 3469–3476 (2007). 

26. Midgett, A. G., Hillhouse, H. W., Hughes, B. K., Nozik, A. J. & Beard, M. C. 
Flowing versus Static Conditions for Measuring Multiple Exciton Generation in 
PbSe Quantum Dots. J. Phys. Chem. C 114, 17486–17500 (2010). 

27. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and 
photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 
074510 (2006). 

28. Schaller, R. D., Petruska, M. A. & Klimov, V. I. Effect of electronic structure on 
carrier multiplication efficiency: Comparative study of PbSe and CdSe 
nanocrystals. Appl. Phys. Lett. 87, 253102 (2005). 



 159 

29. Beard, M. c. & Ellingson, R. j. Multiple exciton generation in semiconductor 
nanocrystals: Toward efficient solar energy conversion. Laser Photonics Rev. 2, 
377–399 (2008). 

30. Trinh, M. T. et al. Direct generation of multiple excitons in adjacent silicon 
nanocrystals revealed by induced absorption. Nat. Photonics 6, 316–321 (2012). 

31. Klimov, V. I. Detailed-balance power conversion limits of nanocrystal-quantum-
dot solar cells in the presence of carrier multiplication. Appl. Phys. Lett. 89, 
123118 (2006). 

32. Moreels, I. et al. Size-Dependent Optical Properties of Colloidal PbS Quantum 
Dots. ACS Nano 3, 3023–3030 (2009). 

33. Moreels, I. et al. Composition and Size-Dependent Extinction Coefficient of 
Colloidal PbSe Quantum Dots. Chem. Mater. 19, 6101–6106 (2007). 

34. Stewart, J. T. et al. Comparison of Carrier Multiplication Yields in PbS and PbSe 
Nanocrystals: The Role of Competing Energy-Loss Processes. Nano Lett. 12, 
622–628 (2012). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 160 

Chapter 8: Conclusions and Future Directions 

 

8.1 CONCLUSIONS 

Semiconductor nanocrystal photovoltaics have the potential to make a big impact 

on the solar cell market, particularly in the area of light-weight flexible solar power. 

Nanocrystal absorber layers can be processed under ambient conditions at low cost using 

high-throughput manufacturing techniques, which offers a substantial cost benefit 

compared to traditional bulk thin film photovoltaics.1 However, despite this cost benefit, 

the device efficiencies are too low to be commercially viable without resorting to 

expensive high-temperature processing techniques. This research has explored a variety 

of ways by which nanocrystal device performance might be improved, both from a 

fundamental and applied perspective. The effects of nanocrystal size and surface 

chemistry on device performance were investigated, which involved the development of 

new nanocrystal synthesis techniques and ligand exchange procedures.2,3 A new 

processing technique called photonic curing was explored with the goal of achieving 

high-temperature sintering and device improvements at very low cost and on flexible, 

temperature-sensitive substrates.4,5 Finally, the fundamental aspects of charge carrier 

generation in nanocrystals and charge extraction in nanocrystal devices were studied, 

particularly as it relates to multiexciton generation.6 
 

8.1.1 Nanocrystal Synthesis and Ligand Exchanges 

CuInSe2 nanocrystals are typically synthesized with sizes typically in the range of 

12-20 nm in diameter with a large polydispersity. Nanocrystals in this size range are 

larger than the Bohr exciton radius (~10nm) and therefore do not show any quantum 
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confinement effects. The synthesis of smaller nanocrystals with more tightly controlled 

size distribution could allow for the tuning of optical properties of CuInSe2. Nanocrystals 

with tunable size from 2 to 9 nm diameter were made using a secondary phosphine 

selenide as the Se source. Compared to tertiary phosphine selenide precursors, secondary 

phosphide selenides were found to provide higher product yields and smaller 

nanocrystals that elicit quantum confinement with size-dependent optical gap. 

Photovoltaic devices fabricated from spray-cast nanocrystal films demonstrated large, 

size-dependent open circuit voltages—up to 849 mV for absorber films with a 1.46 eV 

optical gap—a record for any colloidal nanocrystal-based solar cell. However, the device 

currents were much lower than for larger nanocrystal films due to the larger optical gap 

and the larger organic content associated with smaller nanocrystals.2 

In order to improve charge transport between nanocrystals in photovoltaic 

devices, short inorganic chalcogenidometallate cluster (ChaM) ligands and S2- ionic 

ligands were investigated as a replacement for oleylamine. Nanocrystals were capped 

with ChaM ligands or S2- ionic ligands using a solution-based ligand exchange procedure 

in hydrazine or water, respectively. Nanocrystal films were deposited from these new 

nanocrystal solutions to make photovoltaic devices. The ChaM ligand-capped nanocrystal 

devices exhibited power conversion efficiencies (1.7%) comparable to the oleylamine-

capped nanocrystals (1.6%), but with significantly thinner absorber layers. This is due to 

the enhanced interparticle charge transport between ChaM-capped nanocrystals. S2—

capped nanocrystal devices exhibited lower device performance, but allow for device 

fabrication from aqueous solutions.3 
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8.1.2 Photonic Curing 

Photonic curing is a promising new technique which could allow for the 

fabrication of very high efficiency devices on flexible, temperature-sensitive substrates. 

Photonic curing uses Xe flash lamps to generate ~300 µs long, high-intensity, broad band 

light pulses. The light is absorbed by the nanocrystal film, which causes it to rapidly heat. 

The temperature reached in the film is dependent on how much light is absorbed (the film 

thickness) and the thermal conductivity of the film and substrate. When using thermally 

insulating substrates such as glass or plastic, the film dissipates most of its heat 

radiatively and the substrate remains cool. There are two pulse energy regimes of interest. 

High intensity photonic curing pulses cause the nanocrystal film to sinter into large grains 

whereas lower intensity photonic curing pulses cause the organic ligands to vaporize 

from the film, but the nanocrystal grain sizes remain intact. 

High-intensity photonic curing was examined as a way to convert CuInSe2 

nanocrystals into large grains without the need for selenization. Nanocrystal films were 

deposited on a variety of metal back contact materials and treated with photonic curing. 

In all cases, the nanocrystals grew into large grains without the presence of a selenium-

rich atmosphere. However, the curing process was found to dewet CuInSe2 nanocrystal 

from Mo back contacts and form large agglomerations. These agglomerations left large 

regions of exposed back contact which destroyed device performance. Nanocrystals 

cured on Au, Ni, ITO, and MoSe2/Mo bilayer substrates demonstrated much better 

adhesion, making it possible to form sintered films with relatively uniform thickness that 

could be used to make working photovoltaic devices. Device performance was still low, 

due largely to regions of exposed back contact, but this work still provides the first report 

of a working CuInSe2 nanocrystal device sintered with broad-band light. 
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Thermal modeling of the photonic curing process showed that oleylamine-capped 

CuInSe2 nanocrystals grow into larger grains via melting and resolidification rather than 

traditional sintering mechanisms, resulting in somewhat non-uniform films and 

significant regions of exposed back contact. When the nanocrystals are capped with 

ChaM ligands, however, the films can be sintered at significantly lower pulse energies to 

avoid melting and thereby retain layer integrity. At higher pulse energies, ChaM-capped 

nanocrystals melt, but adhere more uniformly to substrate. Device performance is poor, 

however, most likely due to the formation of wurtzite phase CuInSe2 after photonic 

curing.4 

Treating nanocrystal films with lower-intensity photonic curing removes organic 

ligands from the film, but the nanocrystals retain their small size. This leads to greatly 

enhanced electronic coupling between nanocrystals and therefore very high device short 

circuit current. Peak external quantum efficiencies of just over 125% were observed in 

devices, which is indicative of multiexciton generation and extraction from the 

nanocrystal film under typical solar illumination conditions. Under low light conditions, 

however, the quantum efficiency drops significantly, indicating that photonic curing-

induced ligand desorption creates a significant amount of traps in the film that limits the 

device open circuit voltage and overall power conversion efficiency.5 
 

8.1.3 Transient Absorption Spectroscopy 

Transient absorption spectroscopy (TAS) was used to confirm the presence of 

multiexciton generation (MEG) in films of CuInSe2 nanocrystals with desorbed ligands 

treated with photonic curing. TAS was also used to study MEG in solvent-dispersed 

colloidal CuInSe2 nanocrystals. Size-dependent carrier cooling rates, absorption cross 
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sections, and Auger lifetimes were also determined.  The energy threshold for MEG in 

the CuInSe2 nanocrystals was found to be 2.4 ± 0.2 times the nanocrystal optical gap and 

the MEG efficiency was 36 ± 6%.  These parameters are similar to other types of 

nanocrystal quantum dot materials. However, CuInSe2 has much longer Auger lifetimes 

for nanocrystals near the optimum band gap energy compared to any other quantum dot 

materials, making CuInSe2 an attractive material for harnessing MEG in a working solar 

cell.6 
 

8.2 FUTURE DIRECTIONS 

Despite the advances in CuInSe2 nanocrystal photovoltaics reported here, there 

are many unsolved technical and fundamental challenges that need to be solved before 

this technology has an impact on the photovoltaics market. One possible area for 

improvement is the synthesis of luminescent CuInSe2 nanocrystals. Current synthesis 

techniques for CuInSe2 nanocrystals used in photovoltaic devices produce very weakly 

luminescent nanocrystals.2,7 This weak luminescence results from fast charge trapping on 

the nanocrystal surfaces due to poor surface passivation. Removing these surface traps 

could greatly improve device performance, so long as the passivation scheme doesn’t 

greatly hinder interparticle charge transport. 

Another interesting path forward involves using solid-state ligand exchange 

procedures to replace the long insultating organic ligands used during synthesis with 

much shorter ligands once the nanocrystal film has already been deposited. These 

procedures take advantage of the excellent solution stability and easy film deposition that 

long ligands provide as well as the superior electronic properties of shorter ligands. Solid-

state ligand exchanges have been used to greatly improve the efficiency of PbS quantum 
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dot solar cells from 5%8 up to 8.6%9 without adding any significant cost or processing 

steps. However, these techniques have not been thoroughly explored for CuInSe2 

nanocrystal solar cells. 

Photonic curing perhaps has the greatest potential to make very high efficiency 

devices at low cost. For high-intensity photonic curing, performing some type of ligand 

exchange procedure prior to curing appears to be important to obtaining uniform films 

without exposed back contact. Some more fundamental understanding is required, 

though, to prevent the formation of wurtzite CuInSe2 and achieve high-efficiency 

devices. For lower-intensity photonic curing, the device open circuit voltage and fill 

factor need to be improved while maintaining the very high short circuit current. This 

may be possible through an optimal solid-state repassivation technique, but new creative 

solutions may be required.  

Apart from solving these challenges with CuInSe2, photonic curing of other 

semiconductor nanocrystals could be interesting. Successful sintering of Cu2(Zn,Sn)S4 

could be important for attaining high efficiency devices, particularly if the phase can be 

controlled during the process. Photonic curing of CdTe nanocrystals could be highly 

successful since CdTe nanocrystals are known to sinter under less harsh conditions than 

CuInSe2 (350 °C in air is sufficient). Finally, studying MEG in PbS or PbSe nanocrystals 

treated with low-intensity photonic curing could be interesting, since PbS and PbSe have 

overall higher device efficiencies compared with CuInSe2. 

Understanding MEG in a variety of nanocrystal materials is important for 

achieving the highest possible device currents in nanocrystal solar cells. In order for 

MEG to have a large impact on the overall device performance, materials must have an 

MEG threshold close to 2*Eg and an MEG efficiency close to 100%. Thus far, CuInSe2 

nanocrystals show promise for use in multiexciton solar cells, but their MEG properties 
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could possibly be improved by altering their size, shape, or surface passivation. 

Furthermore, alternative materials not yet studied may have superior MEG properties and 

should be investigated. 
 

8.3 REFERENCES 
1. Akhavan, V. A. et al. Colloidal CIGS and CZTS nanocrystals: A precursor route 

to printed photovoltaics. J. Solid State Chem. 189, 2–12 (2012). 
2. Panthani, M. G. et al. CuInSe2 Quantum Dot Solar Cells with High Open-Circuit 

Voltage. J. Phys. Chem. Lett. 4, 2030–2034 (2013). 
3. Stolle, C. J., Panthani, M. G., Harvey, T. B., Akhavan, V. A. & Korgel, B. A. 

Comparison of the Photovoltaic Response of Oleylamine and Inorganic Ligand-
Capped CuInSe2 Nanocrystals. ACS Appl. Mater. Interfaces 4, 2757–2761 
(2012). 

4. Stolle, C. J., Harvey, T. B. & Korgel, B. A. Photonic curing of ligand-capped 
CuInSe2 nanocrystal films. in Photovoltaic Specialist Conference (PVSC), 2014 
IEEE 40th 0270–0274 (2014). doi:10.1109/PVSC.2014.6924897 

5. Stolle, C. J. et al. Multiexciton Solar Cells of CuInSe2 Nanocrystals. J. Phys. 
Chem. Lett. 5, 304–309 (2014). 

6. Stolle, C. J., Schaller, R. D. & Korgel, B. A. Efficient Carrier Multiplication in 
Colloidal CuInSe2 Nanocrystals. J. Phys. Chem. Lett. 3169–3174 (2014). 
doi:10.1021/jz501640f 

7. Panthani, M. G. et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 
(CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics. J. Am. Chem. Soc. 130, 
16770–16777 (2008). 

8. Pattantyus-Abraham, A. G. et al. Depleted-Heterojunction Colloidal Quantum 
Dot Solar Cells. ACS Nano 4, 3374–3380 (2010). 

9. Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Improved 
performance and stability in quantum dot solar cells through band alignment 
engineering. Nat. Mater. 13, 796–801 (2014). 

 
 
 
 



 167 

Appendix A: Nanocrystal Synthesis Recipes 

 

A.1 CU(IN,GA)SE2 AND RELATED NANOCRYSTAL SYNTHESIS RECIPES 

A.1.1 Elemental:Se Reaction 

This reaction was the most common reaction used for Vahid and Taylor’s 

selenization work. 

1. Determine the desired nanocrystal composition based on: CuIn1-xGaxSe2 

2. Clean one 100 ml three neck round bottom flask, stir bar, and thermocouple 

three times with DI water. Rinse with acetone and dry over heat gun. 

3. Seal two necks with rubber septa and wire shut. Pierce one septa with a needle 

and insert the thermocouple. Place stir bar in the flask. Leave the third neck 

uncapped. 

4. Measure 8 mmol of selenium powder and place in the flask (for a 4 mmol 

reaction). Place a septa over the final neck. Close septa, but do not wire shut. 

Pierce a needle through the septa and leave in place. This will allow air to 

exchange between the flask and glovebox antechamber without letting the 

selenium escape the flask. 

5. Cycle flask, three pieces of weight paper, a 10 ml syringe, and a needle into 

the glovebox. 

6. Measure 4 mmol of anhydrous CuCl beads, 4*(1-x) mmol of anhydrous InCl3 

powder, and 4x mmol of anhydrous GaCl3 powder and place into the flask. 

7. Add 20 ml of oleylamine to the flask (previously degassed at 110 °C 

overnight and stored in the glovebox). Seal the flask with a septa and remove 

from glovebox. 
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8. Wire down the last septa and attach to the Schlenk line. 

9. Degas reaction at 110 °C for 30 minutes under vacuum. 

10. Close vacuum line and open flask to nitrogen. Ramp reaction temperature to 

200 °C. 

11. Hold reaction at 200 °C for 30 minutes, then ramp temperature to 260 °C and 

hold for 10 minutes. 

12. Turn off the heat and remove the heating mantle. Allow the flask to reach 50-

100 °C before removing from Schlenk line. 

13. Poor the reaction mixture equally between two glass 50 ml centrifuge tubes. 

Precipitate by adding excess ethanol (~20 ml to each tube). Centrifuge at 4000 

rpm for 2 minutes. Note that the amount of ethanol added during this step has 

an impact on the overall organic content of the film. For films sprayed using 

the automatic sprayer, less ethanol should be added. 

14. Discard the clear supernatant and redisperse the precipitated nanocrystals in 

toluene. Centrifuge the nanocrystals without adding any antisolvent at 4000 

rpm for 2 min. Keep the supernatant and discard any precipitated particles 

(called the separation step). 

15. Slowly add ethanol to the nanocrystal solution until the solution becomes 

turbid. Centrifuge at 4000 rpm for 2 min. Discard the supernatant (which may 

still be somewhat dark, but not completely opaque) and redisperse the 

precipitated nanocrystals in toluene. 

16. Transfer the nanocrystals to a vial and cycle the nanocrystals into the 

glovebox for storage. 
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Figure A.1 TEM image of CuInSe2 nanocrystals synthesized using recipe A.1.1. 

 

A.1.2 TBP:Se and DPP:Se Reactions 

The TBP:Se reaction has been shown to give the best results for nanocrystal 

devices with no further treatment step. The DPP:Se reaction give the best reaction yields 

and is used to make size-controlled nanocrystals (by varying the injection and reaction 

temperature). It is also the reaction used for all of the MEG experiments (photonic curing 

and TAS). 

1. Determine the desired nanocrystal composition based on: CuIn1-xGaxSe2 

2. Clean one 100 ml three neck round bottom flask, two stir bars, and one 

thermocouple three times with DI water. Rinse with acetone and dry over heat 

gun. 
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3. Seal two necks with rubber septa and wire shut. Pierce one septa with a needle 

and insert the thermocouple. Place stir bar in the flask. Leave the third neck 

uncapped. 

4. Measure 8 mmol of selenium powder and place into a clean vial (for a 4 mmol 

reaction) along with a stir bar. Loosely cap the vial. 

5. Cycle flask, vial, three pieces of weight paper, two 10 ml syringes, and two 

needles into the glovebox. 

6. Dissolve the Se in either 8 ml of tributylphosphine (TBP reaction) or 3 ml of 

diphenylphosphine and 4 ml of oleylamine (DPP reaction). Draw the 

dissolved TBP:Se or DPP:Se solutions into a syringe and cap the needle. 

7. Measure 4 mmol of anhydrous CuCl beads, 4*(1-x) mmol of anhydrous InCl3 

powder, and 4x mmol of anhydrous GaCl3 powder and place into the flask. 

8. Add 20 ml of oleylamine to the flask (previously degassed at 110 °C 

overnight and stored in the glovebox). Seal the flask with a septa and remove 

the flask and Se precursor syringe from glovebox. 

9. Wire down the last septa and attach to the Schlenk line. 

10. Degas reaction at 110 °C for 30 minutes under vacuum. 

11. Close vacuum line and open flask to nitrogen. Ramp reaction temperature to 

240 °C. 

12. When the reaction temperature reaches 180 °C, inject the TBP:Se or DPP:Se 

precursor into the flask and continue ramping to 240°C. Hold the reaction at 

240 °C for 30 minutes. 

13. DPP:Se Synthesis only: The size of the nanocrystals can be varying by 

changing the injection and reaction temperature. For smaller nanocrystals, 

inject and hold the reaction at any temperature between 100 °C and 180°C. 



 171 

14. Turn off the heat and remove the heating mantle. Allow the flask to reach 50-

100 °C before removing from Schlenk line. 

15. Wash the nanocrystals according to steps 13-16 of the Elem:Se reaction recipe 

in A.1.1. 

 

 

Figure A.2 (left) TEM image of CuInSe2 nanocrystals synthesized using recipe A.1.2 
(TBP method). (right) TEM image of CuInSe2 nanocrystals synthesized 
using recipe A.1.2 (DPP method). 

 

A.1.3 Hydrated Precursors Recipe 

This reaction has the advantage of not needing a glovebox; however, this is only 

true for making CuInSe2, since GaCl3 is not sold in hydrated form.  

1. Clean one 100 ml three neck round bottom flask, one stir bar, and one 

thermocouple three times with DI water. Rinse with acetone and dry over heat 

gun. 
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2. Seal two necks with rubber septa and wire shut. Pierce one septa with a needle 

and insert the thermocouple. Place stir bar in the flask. Leave the third neck 

uncapped. 

3. Measure 8 mmol of selenium powder, 4 mmol of CuCl2∙2H2O, and 4 mmol of 

InCl3∙4H2O and place in the flask (for a 4 mmol reaction). Add 20 ml of non-

degassed oleylamine. Place a septa over the final neck, wire shut, and attach to 

the Schlenk line. 

4. Degas reaction at 110 °C for 2 hours under vacuum. 

5. Follow steps 10-16 for the Elemental:Se reaction in A.1.1. 

 

 

Figure A.3 TEM image of CuInSe2 nanocrystals synthesized using recipe A.1.3. 

 

A.1.4 Cu(In,Ga)S2 Recipe 

1. Determine the desired nanocrystal composition based on: CuIn1-xGaxS2 
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2. Clean one 100 ml three neck round bottom flask, one 50 ml three neck round 

bottom flask, two stir bars, and one thermocouple three times with DI water. 

Rinse with acetone and dry over heat gun. 

3. Seal two necks of each flask with rubber septa and wire shut. Pierce one septa 

for the 100 ml flask with a needle and insert the thermocouple. Leave the third 

neck uncapped for each flask. 

4. For a 5 mmol reaction: In the 100 ml flask, add 5 mmol of Cu(II)ACAC 

(Copper II acetylacetonate), 5*(1-x) mmol of In(III)ACAC, 5x mmol of 

Ga(III)ACAC, and 35 ml of dichlorobenzene. 

5. In the 50 ml flask, add 10 mmol of sulfur powder and 15 ml of 

dichlorobenzene. 

6. Seal both flasks with wired septa and attach to the Schlenk line. 

7. Degas flasks while stirring by pulling vacuum at room temperature for 15 

minutes followed by 15 minutes of nitrogen purging. Repeat this step three 

times. 

8. During the degas step, cycle a 10 ml syringe and needle into the glovebox. 

Take out 10 ml of already-degassed oleylamine. 

9. After degas step, inject oleylamine into the 100 ml flask. 

10. Take 50 ml flask off the Schlenk line, but leave sealed under nitrogen. 

Withdraw DCB:Se solution into a syringe. 

11. Heat the 100 ml flask to 180 °C. When the reaction reaches 110 °C, inject the 

DCB:Se solution. 

12. React at 180 °C for 1 hour. 

13. Turn off the heat and remove the heating mantle. Allow the flask to reach 50-

100 °C before removing from Schlenk line. 
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14. To wash the nanocrystals, follow steps 13-16 for Elemental:Se reaction in 

A.1.1. 

 

 

Figure A.4 TEM image of CuInS2 nanocrystals synthesized using recipe A.1.4. 

 

A.1.5 In2Se3 recipe 

This recipe is adapted from Son, et al.1 

1. Clean one 100 ml three neck round bottom flask, stir bar, and thermocouple 

three times with DI water. Rinse with acetone and dry over heat gun. 

2. Seal two necks with rubber septa and wire shut. Pierce one septa with a needle 

and insert the thermocouple. Place stir bar in the flask. Leave the third neck 

uncapped. 

3. Measure 0.11 g of selenium powder and place in the flask. Place a septa over 

the final neck. Close septa, but do not wire shut. Pierce a needle through the 
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septa and leave in place. This will allow air to exchange between the flask and 

glovebox antechamber without letting the selenium escape the flask. 

4. Cycle flask, one piece of weight paper, a 10 ml syringe, and a needle into the 

glovebox. 

5. Measure 0.2 g of anhydrous InCl3 powder and place into the flask. 

6. Add 18 ml of oleylamine to the flask (previously degassed at 110 °C 

overnight and stored in the glovebox). Seal the flask with a septa and remove 

from glovebox. 

7. Wire down the last septa and attach to the Schlenk line. 

8. Degas reaction at 110 °C for 30 minutes under vacuum. 

9. Close vacuum line and open flask to nitrogen. Ramp reaction temperature to 

215 °C and hold for 2 hours. 

10. Turn off the heat and remove the heating mantle. Allow the flask to reach 50-

100 °C before removing from Schlenk line. 

11. Follow steps 13-16 from Elemental:Se reaction in section A.1.1 for 

nanocrystal washing. 
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Figure A.5 TEM image of In2Se3 nanocrystals synthesized using recipe A.1.5. 

 

A.1.6 Cu2-xSe /Recipe 

This recipe is adapted from Deka et al.2 

1. Clean one 100 ml three neck round bottom flask, one 50 ml three neck round 

bottom flask, two stir bars, and two thermocouples three times with DI water. 

Rinse with acetone and dry over heat gun. 

2. Seal two necks of each flask with rubber septa and wire shut. Pierce one septa 

for each flask with a needle and insert a thermocouple. Leave the third neck 

uncapped for each flask. 

3. In the 50 ml flask, add 0.079 g of selenium powder. Seal the neck and pierce 

with a needle for air-exchange in the glovebox. 

4. Cycle both flasks into the glovebox along with 1 piece of weight paper, two 

10 ml syringes, and two needles. 
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5. In the 50 ml flask, add 4 ml octadecene. 

6. In the 100 ml flask, add 0.2 g anhydrous CuCl beads, 10 ml degassed 

oleylamine, and 10 ml octadecene. 

7. Seal both flasks with wired septa, remove from glovebox, and attach to the 

Schlenk line. 

8. Degas the 100 ml flask under vacuum while stirring for 1 hour at 80 °C. 

9. For the 50 ml flask, pull vacuum briefly at room temperature, then purge with 

nitrogen and heat to 200 °C while stirring. Hold at 200 °C until the selenium 

is dissolved, then cool flask to room temperature. 

10. Draw the Se:ODE solution into a syringe. 

11. Heat the 100 ml flask to 310 °C under nitrogen. At 310 °C, inject the cold 

Se:ODE solution. React at 310 °C for 15 minutes (starting immediately after 

the injection). 

12. Turn off the variac and remove the heating mantle. Let cool to 50-100 °C 

before removing from the Schlenk line. 

13. To wash the nanocrystals, follow steps 13-16 for Elemental:Se reaction in 

A.1.1. 
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Figure A.6 TEM image of In2Se3 nanocrystals synthesized using recipe A.1.6. 

 

A.2 OTHER NANOCRYSTAL SYNTHESIS RECIPES 

A.2.1 PbS Recipe 

This recipe is adapted from Tang, et al.3 

1. Before starting the reaction, make a stock solution of bis(trimethylsilyl)sulfide 

(TMS) diluted to 0.28M in octadecene. Make and store the stock solution in 

the glovebox. 

2. Clean one 100 ml three neck round bottom flask, stir bar, and thermocouple 

three times with DI water. Rinse with acetone and dry over heat gun. 

3. Seal two necks with rubber septa and wire shut. Pierce one septa with a needle 

and insert the thermocouple. Place stir bar in the flask. Leave the third neck 

uncapped. 
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4. Add 4 mmol PbO, 3 ml oleic acid, and 36 ml octadecene to the flask. Seal the 

flask with the third septa, wire down, and attach to the Schlenk line. 

5. To degas, heat flask to 100 °C under vacuum while stirring for until the 

solution turns clear (~2 hours). 

6. During the degas step, Cycle a 10 ml syringe and needle into the glovebox and 

retrieve 7.2 ml of (0.28 M) TMS solution. 

7. Heat the flask to 120 °C under nitrogen and then inject the TMS solution. 

8. Immediately turn off the variac, but do not lower the heating mantle. Instead, 

allow the reaction to cool slowly down to 40 °C before removing. 

9. Wash the nanocrystals following steps 13-16 of the Elemental:Se reaction in 

A.1.1; however, use acetone instead of ethanol as the antisolvent. 

 

 

Figure A.7 TEM image of PbS nanocrystals synthesized using recipe A.2.1. 
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A.2.2 CdTe Recipe 

This recipe is adapted from Jasieniak, et al.4 

1. Clean one 100 ml three neck round bottom flask, stir bar, and thermocouple 

three times with DI water. Rinse with acetone and dry over heat gun. 

2. Seal two necks with rubber septa and wire shut. Pierce one septa with a needle 

and insert the thermocouple. Place stir bar in the flask. Leave the third neck 

uncapped. 

3. Add 0.96 g CdO, 0.48 g Te powder, 9 ml oleic acid, and 40 ml octadecene to 

the flask. Seal the flask with the third septa, wire down, and attach to the 

Schlenk line. 

4. Cycle a 10 ml syringe and needle into the glovebox and retrieve 10 ml of 

trioctylphosphine (TOP). 

5. Stir the reaction flask under vacuum and heat to 80 °C to degas. 

6. Once the flask reaches 80 °C, close the vacuum and open the nitrogen. Inject 

the 10 ml of TOP. 

7. Heat to 260 °C and react for 30 minutes. 

8. Turn off the heat and remove the heating mantle. Allow the flask to reach 50-

100 °C before removing from Schlenk line. 

9. Follow steps 13-16 for the Elemental:Se reaction in A.1.1 for nanocrystal 

washing. 

 



 181 

 

Figure A.8 TEM image of CdTe nanocrystals synthesized using recipe A.2.2. 

 

A.3 REFERENCES 
1. Park, K. H., Jang, K., Kim, S., Kim, H. J. & Son, S. U. Phase-Controlled One-

Dimensional Shape Evolution of InSe Nanocrystals. J. Am. Chem. Soc. 128, 
14780–14781 (2006). 

2. Deka, S. et al. Phosphine-Free Synthesis of p-Type Copper(I) Selenide 
Nanocrystals in Hot Coordinating Solvents. J. Am. Chem. Soc. 132, 8912–8914 
(2010). 

3. Tang, J. et al. Quantum Dot Photovoltaics in the Extreme Quantum Confinement 
Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability. 
ACS Nano 4, 869–878 (2010). 

4. Jasieniak, J., MacDonald, B. I., Watkins, S. E. & Mulvaney, P. Solution-
Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly. Nano 
Lett. 11, 2856–2864 (2011). 

 
 
 
 



 182 

References 

Abou-Ras, D. et al. Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based 
solar cells. Thin Solid Films 480–481, 433–438 (2005). 

Akhavan, V. A. et al. Colloidal CIGS and CZTS nanocrystals: A precursor route to 
printed photovoltaics. J. Solid State Chem. 189, 2–12 (2012). 

Akhavan, V. A. et al. Influence of Composition on the Performance of Sintered 
Cu(In,Ga)Se2 Nanocrystal Thin-Film Photovoltaic Devices. ChemSusChem 6, 
481–486 (2013). 

Akhavan, V. A. et al. Spray-deposited CuInSe2 nanocrystal photovoltaics. Energy 
Environ. Sci. 3, 1600 (2010). 

Akhavan, V. A., Panthani, M. G., Goodfellow, B. W., Reid, D. K. & Korgel, B. A. 
Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices. Opt. 
Express 18, A411–A420 (2010). 

Allan, G. & Delerue, C. Influence of electronic structure and multiexciton spectral 
density on multiple-exciton generation in semiconductor nanocrystals: Tight-
binding calculations. Phys. Rev. B 77, 125340 (2008). 

Allen, P. M. & Bawendi, M. G. Ternary I−III−VI Quantum Dots Luminescent in the Red 
to Near-Infrared. J. Am. Chem. Soc. 130, 9240–9241 (2008). 

An, J. M., Franceschetti, A. & Zunger, A. The Excitonic Exchange Splitting and 
Radiative Lifetime in PbSe Quantum Dots. Nano Lett. 7, 2129–2135 (2007). 

Arango, A. C., Oertel, D. C., Xu, Y., Bawendi, M. G. & Bulović, V. Heterojunction 
Photovoltaics Using Printed Colloidal Quantum Dots as a Photosensitive Layer. 
Nano Lett. 9, 860–863 (2009). 

Barkhouse, D. A. R., Pattantyus-Abraham, A. G., Levina, L. & Sargent, E. H. Thiols 
Passivate Recombination Centers in Colloidal Quantum Dots Leading to 
Enhanced Photovoltaic Device Efficiency. ACS Nano 2, 2356–2362 (2008). 

Baumgardner, W. J., Whitham, K. & Hanrath, T. Confined-but-Connected Quantum 
Solids via Controlled Ligand Displacement. Nano Lett. 13, 3225–3231 (2013). 

Beard, M. C. & Ellingson, R. j. Multiple exciton generation in semiconductor 
nanocrystals: Toward efficient solar energy conversion. Laser Photonics Rev. 2, 
377–399 (2008). 

Beard, M. C. et al. Comparing Multiple Exciton Generation in Quantum Dots To Impact 
Ionization in Bulk Semiconductors: Implications for Enhancement of Solar 
Energy Conversion. Nano Lett. 10, 3019–3027 (2010). 

Beard, M. C. et al. Multiple Exciton Generation in Colloidal Silicon Nanocrystals. Nano 
Lett. 7, 2506–2512 (2007). 



 183 

Beard, M. C. Multiple Exciton Generation in Semiconductor Quantum Dots. J. Phys. 
Chem. Lett. 2, 1282–1288 (2011). 

Binks, D. J. Multiple exciton generation in nanocrystal quantum dots – controversy, 
current status and future prospects. Phys. Chem. Chem. Phys. 13, 12693–12704 
(2011). 

Blackburn, J. L., Ellingson, R. J., Mićić, O. I. & Nozik, A. J. Electron Relaxation in 
Colloidal InP Quantum Dots with Photogenerated Excitons or Chemically 
Injected Electrons. J. Phys. Chem. B 107, 102–109 (2003). 

Brown, P. R. et al. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films 
through Ligand Exchange. ACS Nano 8, 5863–5872 (2014). 

Califano, M. Direct and Inverse Auger Processes in InAs Nanocrystals: Can the Decay 
Signature of a Trion Be Mistaken for Carrier Multiplication? ACS Nano 3, 2706–
2714 (2009). 

Castro, S. L., Bailey, S. G., Raffaelle, R. P., Banger, K. K. & Hepp, A. F. Nanocrystalline 
Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of 
Molecular Single-Source Precursors. Chem. Mater. 15, 3142–3147 (2003). 

Cao, Y. et al. High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar 
Cells Prepared from Binary and Ternary Nanoparticles. J. Am. Chem. Soc. 134, 
15644–15647 (2012). 

Cassette, E. et al. Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS 
Core/Shell Quantum Dots for In vivo Imaging. Chem. Mater. 22, 6117–6124 
(2010). 

Chapin, D. M., Fuller, C. S. & Pearson, G. L. A New Silicon p‐n Junction Photocell for 
Converting Solar Radiation into Electrical Power. J. Appl. Phys. 25, 676–677 
(1954). 

Chirilă, A. et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer 
films. Nat. Mater. 10, 857–861 (2011). 

Choi, J.-H. et al. Bandlike Transport in Strongly Coupled and Doped Quantum Dot 
Solids: A Route to High-Performance Thin-Film Electronics. Nano Lett. 12, 
2631–2638 (2012). 

Choi, J. J. et al. PbSe Nanocrystal Excitonic Solar Cells. Nano Lett. 9, 3749–3755 (2009). 
Choi, J. J. et al. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells. Adv. 

Mater. 23, 3144–3148 (2011). 
Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Improved performance 

and stability in quantum dot solar cells through band alignment engineering. Nat. 
Mater. 13, 796–801 (2014). 



 184 

Congreve, D. N. et al. External Quantum Efficiency Above 100% in a Singlet-Exciton-
Fission–Based Organic Photovoltaic Cell. Science 340, 334–337 (2013) 

Demtsu, S., Albin, D. & Sites, J. Role of Copper in the Performance of CdS/CdTe Solar 
Cells. in Conference Record of the 2006 IEEE 4th World Conference on 
Photovoltaic Energy Conversion 1, 523–526 (2006). 

Deka, S. et al. Phosphine-Free Synthesis of p-Type Copper(I) Selenide Nanocrystals in 
Hot Coordinating Solvents. J. Am. Chem. Soc. 132, 8912–8914 (2010). 

Dhage, S. R. & Thomas Hahn, H. Rapid treatment of CIGS particles by intense pulsed 
light. J. Phys. Chem. Solids 71, 1480–1483 (2010). 

Dhage, S. R., Kim, H.-S. & Hahn, H. T. Cu(In,Ga)Se2 Thin Film Preparation from a 
Cu(In,Ga) Metallic Alloy and Se Nanoparticles by an Intense Pulsed Light 
Technique. J. Electron. Mater. 40, 122–126 (2011). 

Dovrat, M., Goshen, Y., Jedrzejewski, J., Balberg, I. & Sa’ar, A. Radiative versus 
nonradiative decay processes in silicon nanocrystals probed by time-resolved 
photoluminescence spectroscopy. Phys. Rev. B 69, 155311 (2004). 

Ellingson, R. J. et al. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and 
PbS Quantum Dots. Nano Lett. 5, 865–871 (2005). 

Evans, C. M., Evans, M. E. & Krauss, T. D. Mysteries of TOPSe Revealed: Insights into 
Quantum Dot Nucleation. J. Am. Chem. Soc. 132, 10973–10975 (2010). 

First Solar Sets World Record for CdTe Solar PV Efficiency. (First Solar, Inc., 2011). at 
<http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=593,994> 

Franceschetti, A., An, J. M. & Zunger, A. Impact Ionization Can Explain Carrier 
Multiplication in PbSe Quantum Dots. Nano Lett. 6, 2191–2195 (2006). 

Franzl, T. et al. Fast energy transfer in layer-by-layer assembled CdTe nanocrystal 
bilayers. Appl. Phys. Lett. 84, 2904–2906 (2004). 

Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report. (2014). at 
<http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-
englisch/photovoltaics-report-slides.pdf> 

Fraunhofer ISE. Fraunhofer Institiute For Solar Energy Systems ISE: Photovoltaics 
Report. (2014). at <http://www.ise.fraunhofer.de/de/downloads/pdf-
files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf> 

Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely Efficient 
Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes. 
Science 325, 1367–1371 (2009). 

García-Santamaría, F. et al. Suppressed Auger Recombination in ‘Giant’ Nanocrystals 
Boosts Optical Gain Performance. Nano Lett. 9, 3482–3488 (2009). 



 185 

Ghosh, B., Chakraborty, D. P. & Carter, M. J. A novel back-contacting technology for 
thin films. Semicond. Sci. Technol. 11, 1358 (1996). 

Gloeckler, M. & Sites, J. R. Apparent quantum efficiency effects in CdTe solar cells. J. 
Appl. Phys. 95, 4438–4445 (2004). 

Goushi, Y., Hakuma, H., Tabuchi, K., Kijima, S. & Kushiya, K. Fabrication of pentanary 
Cu(InGa)(SeS)2 absorbers by selenization and sulfurization. Sol. Energy Mater. 
Sol. Cells 93, 1318–1320 (2009). 

Green, M. The nature of quantum dot capping ligands. J. Mater. Chem. 20, 5797–5809 
(2010). 

Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency 
tables (version 44). Prog. Photovolt. Res. Appl. 22, 701–710 (2014). 

Guillot, M. J., McCool, S. C. & Schroder, K. A. Simulating the Thermal Response of 
Thin Films During Photonic Curing. 19–27 (2012). doi:10.1115/IMECE2012-
87674 

Guo, Q. et al. Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost 
Solar Cells. Nano Lett. 8, 2982–2987 (2008). 

Guo, Q. et al. Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS 
Nanocrystals. J. Am. Chem. Soc. 132, 17384–17386 (2010). 

Guo, Q., Ford, G. M., Agrawal, R. & Hillhouse, H. W. Ink formulation and low-
temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 
solar cells from sulfide nanocrystal inks. Prog. Photovolt. Res. Appl. 21, 64–71 
(2013). 

Guo, Q., Ford, G. M., Hillhouse, H. W. & Agrawal, R. Sulfide Nanocrystal Inks for 
Dense Cu(In1−xGax)(S1−ySey)2 Absorber Films and Their Photovoltaic 
Performance. Nano Lett. 9, 3060–3065 (2009). 

Guo, Q., Hillhouse, H. W. & Agrawal, R. Synthesis of Cu2ZnSnS4 Nanocrystal Ink and 
Its Use for Solar Cells. J. Am. Chem. Soc. 131, 11672–11673 (2009). 

Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-Stable All-Inorganic 
Nanocrystal Solar Cells Processed from Solution. Science 310, 462–465 (2005). 

Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-Sensitized Solar 
Cells. Chem. Rev. 110, 6595–6663 (2010). 

Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and 
photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 
074510 (2006). 

Harvey, T. B. et al. Copper Indium Gallium Selenide (CIGS) Photovoltaic Devices Made 
Using Multistep Selenization of Nanocrystal Films. ACS Appl. Mater. Interfaces 
5, 9134–9140 (2013). 



 186 

Hegedus, S., Ryan, D., Dobson, K., McCandless, B. & Desai, D. Photoconductive CdS: 
how does it Affect CdTe/CdS Solar Cell Performance? MRS Online Proc. Libr. 
763, B9.5.1–B9.5.6 (2003). 

Hegedus, S. S. The photoresponse of CdS/CuInSe2thin-film heterojunction solar cells. 
IEEE Trans. Electron Devices 31, 629–633 (1984). 

Henry, C. H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar 
cells. J. Appl. Phys. 51, 4494–4500 (1980). 

Hillhouse, H. W. & Beard, M. C. Solar cells from colloidal nanocrystals: Fundamentals, 
materials, devices, and economics. Curr. Opin. Colloid Interface Sci. 14, 245–259 
(2009). 

Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7, 577–
582 (2012). 

Jackson, P. et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells 
beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011). 

Jang, S., Lee, D. J., Lee, D. & Oh, J. H. Electrical sintering characteristics of inkjet-
printed conductive Ag lines on a paper substrate. Thin Solid Films 546, 157–161 
(2013). 

Janssen, R. A. J. & Nelson, J. Factors Limiting Device Efficiency in Organic 
Photovoltaics. Adv. Mater. 25, 1847–1858 (2013). 

Jasieniak, J., MacDonald, B. I., Watkins, S. E. & Mulvaney, P. Solution-Processed 
Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly. Nano Lett. 11, 
2856–2864 (2011). 

Jiang, C., Lee, J.-S. & Talapin, D. V. Soluble Precursors for CuInSe2, CuIn1–xGaxSe2, 
and Cu2ZnSn(S,Se)4 Based on Colloidal Nanocrystals and Molecular Metal 
Chalcogenide Surface Ligands. J. Am. Chem. Soc. 134, 5010–5013 (2012). 

Joo, S.-J., Hwang, H.-J. & Kim, H.-S. Highly conductive copper nano/microparticles ink 
via flash light sintering for printed electronics. Nanotechnology 25, 265601 
(2014). 

Kamat, P. V. Emergence of New Materials for Light–Energy Conversion: Perovskites, 
Metal Clusters, and 2-D Hybrids. J. Phys. Chem. Lett. 5, 4167–4168 (2014). 

Kessler, F., Herrmann, D. & Powalla, M. Approaches to flexible CIGS thin-film solar 
cells. Thin Solid Films 480–481, 491–498 (2005). 

Khare, A., Wills, A. W., Ammerman, L. M., Norris, D. J. & Aydil, E. S. Size control and 
quantum confinement in Cu2ZnSnS4 nanocrystals. Chem. Commun. 47, 11721–
11723 (2011). 



 187 

Kim, S. J., Kim, W. J., Cartwright, A. N. & Prasad, P. N. Carrier multiplication in a PbSe 
nanocrystal and P3HT/PCBM tandem cell. Appl. Phys. Lett. 92, 191107–191107–
3 (2008). 

Kim, S. J., Kim, W. J., Sahoo, Y., Cartwright, A. N. & Prasad, P. N. Multiple exciton 
generation and electrical extraction from a PbSe quantum dot photoconductor. 
Appl. Phys. Lett. 92, 031107–031107–3 (2008). 

Kippelen, B. & Brédas, J.-L. Organic photovoltaics. Energy Environ. Sci. 2, 251–261 
(2009). 

Klimov, V. I. Detailed-balance power conversion limits of nanocrystal-quantum-dot solar 
cells in the presence of carrier multiplication. Appl. Phys. Lett. 89, 123118 (2006). 

Kobayashi, Y., Nishimura, T., Yamaguchi, H. & Tamai, N. Effect of Surface Defects on 
Auger Recombination in Colloidal CdS Quantum Dots. J. Phys. Chem. Lett. 2, 
1051–1055 (2011). 

Kohara, N., Nishiwaki, S., Hashimoto, Y., Negami, T. & Wada, T. Electrical properties 
of the Cu(In,Ga)Se2/ MoSe2/Mo structure. Sol. Energy Mater. Sol. Cells 67, 209–
215 (2001). 

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as 
Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050–
6051 (2009). 

Koleilat, G. I., Wang, X. & Sargent, E. H. Graded Recombination Layers for 
Multijunction Photovoltaics. Nano Lett. 12, 3043–3049 (2012). 

Konstantatos, G., Levina, L., Fischer, A. & Sargent, E. H. Engineering the Temporal 
Response of Photoconductive Photodetectors via Selective Introduction of 
Surface Trap States. Nano Lett. 8, 1446–1450 (2008). 

Koo, B., Patel, R. N. & Korgel, B. A. Synthesis of CuInSe2 Nanocrystals with Trigonal 
Pyramidal Shape. J. Am. Chem. Soc. 131, 3134–3135 (2009). 

Koo, B., Patel, R. N. & Korgel, B. A. Wurtzite−Chalcopyrite Polytypism in CuInS2 
Nanodisks. Chem. Mater. 21, 1962–1966 (2009). 

Kovalenko, M. V., Bodnarchuk, M. I. & Talapin, D. V. Nanocrystal Superlattices with 
Thermally Degradable Hybrid Inorganic−Organic Capping Ligands. J. Am. Chem. 
Soc. 132, 15124–15126 (2010). 

Kovalenko, M. V., Bodnarchuk, M. I., Zaumseil, J., Lee, J.-S. & Talapin, D. V. 
Expanding the Chemical Versatility of Colloidal Nanocrystals Capped with 
Molecular Metal Chalcogenide Ligands. J. Am. Chem. Soc. 132, 10085–10092 
(2010). 

Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal Nanocrystals with Molecular 
Metal Chalcogenide Surface Ligands. Science 324, 1417–1420 (2009). 



 188 

Kramer, I. J. et al. Efficient Spray-Coated Colloidal Quantum Dot Solar Cells. Adv. 
Mater. 27, 116–121 (2015). 

Kramer, I. J. & Sargent, E. H. Colloidal Quantum Dot Photovoltaics: A Path Forward. 
ACS Nano 5, 8506–8514 (2011). 

Lazarenkova, O. L. & Balandin, A. A. Miniband formation in a quantum dot crystal. J. 
Appl. Phys. 89, 5509–5515 (2001). 

Law, M. et al. Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar 
Cells with the Aid of an Optical Model. Nano Lett. 8, 3904–3910 (2008). 

Lee, D. J. et al. Pulsed light sintering characteristics of inkjet-printed nanosilver films on 
a polymer substrate. J. Micromechanics Microengineering 21, 125023 (2011). 

Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like 
transport, high electron mobility and high photoconductivity in all-inorganic 
nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011). 

Li, L., Coates, N. & Moses, D. Solution-Processed Inorganic Solar Cell Based on in Situ 
Synthesis and Film Deposition of CuInS2 Nanocrystals. J. Am. Chem. Soc. 132, 
22–23 (2010). 

Li, L. et al. Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based 
Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. J. Am. Chem. 
Soc. 133, 1176–1179 (2011). 

Lin, Z., Franceschetti, A. & Lusk, M. T. Size Dependence of the Multiple Exciton 
Generation Rate in CdSe Quantum Dots. ACS Nano 5, 2503–2511 (2011). 

Luther, J. M. et al. Multiple Exciton Generation in Films of Electronically Coupled PbSe 
Quantum Dots. Nano Lett. 7, 1779–1784 (2007). 

Luther, J. M. et al. Schottky Solar Cells Based on Colloidal Nanocrystal Films. Nano 
Lett. 8, 3488–3492 (2008). 

MacDonald, B. I. et al. Layer-by-Layer Assembly of Sintered CdSexTe1–x Nanocrystal 
Solar Cells. ACS Nano 6, 5995–6004 (2012). 

McCandless, B. E. & Shafarman, W. N. Chemical surface deposition of ultra-thin 
semiconductors. (2003). at <http://www.google.com/patents/US6537845> 

McDaniel, H., Fuke, N., Makarov, N. S., Pietryga, J. M. & Klimov, V. I. An integrated 
approach to realizing high-performance liquid-junction quantum dot sensitized 
solar cells. Nat. Commun. 4, (2013). 

McDaniel, H., Fuke, N., Pietryga, J. M. & Klimov, V. I. Engineered CuInSexS2–x 
Quantum Dots for Sensitized Solar Cells. J. Phys. Chem. Lett. 355–361 (2013). 
doi:10.1021/jz302067r 



 189 

McGuire, J. A., Sykora, M., Joo, J., Pietryga, J. M. & Klimov, V. I. Apparent Versus 
True Carrier Multiplication Yields in Semiconductor Nanocrystals. Nano Lett. 10, 
2049–2057 (2010). 

Midgett, A. G. et al. Size and Composition Dependent Multiple Exciton Generation 
Efficiency in PbS, PbSe, and PbSxSe1–x Alloyed Quantum Dots. Nano Lett. 13, 
3078–3085 (2013). 

Midgett, A. G., Hillhouse, H. W., Hughes, B. K., Nozik, A. J. & Beard, M. C. Flowing 
versus Static Conditions for Measuring Multiple Exciton Generation in PbSe 
Quantum Dots. J. Phys. Chem. C 114, 17486–17500 (2010). 

Milliron, D. J., Mitzi, D. B., Copel, M. & Murray, C. E. Solution-Processed Metal 
Chalcogenide Films for p-Type Transistors. Chem. Mater. 18, 587–590 (2006). 

Miskin, C. K. et al. 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized 
nanoparticle inks. Prog. Photovolt. Res. Appl. n/a–n/a (2014). 
doi:10.1002/pip.2472 

Mitzi, D. B., Gunawan, O., Todorov, T. K., Wang, K. & Guha, S. The path towards a 
high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. 
Cells 95, 1421–1436 (2011). 

Mitzi, D. B., Kosbar, L. L., Murray, C. E., Copel, M. & Afzali, A. High-mobility 
ultrathin semiconducting films prepared by spin coating. Nature 428, 299–303 
(2004). 

Mitzi, D. B. N4H9Cu7S4:  A Hydrazinium-Based Salt with a Layered Cu7S4- 
Framework. Inorg. Chem. 46, 926–931 (2007). 

Mitzi, D. B. Synthesis, Structure, and Thermal Properties of Soluble Hydrazinium 
Germanium(IV) and Tin(IV) Selenide Salts. Inorg. Chem. 44, 3755–3761 (2005). 

Moreels, I. et al. Composition and Size-Dependent Extinction Coefficient of Colloidal 
PbSe Quantum Dots. Chem. Mater. 19, 6101–6106 (2007). 

Moreels, I. et al. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. 
ACS Nano 3, 3023–3030 (2009). 

Murphy, J. E. et al. PbTe Colloidal Nanocrystals:  Synthesis, Characterization, and 
Multiple Exciton Generation. J. Am. Chem. Soc. 128, 3241–3247 (2006). 

Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly 
monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor 
nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993). 

Nag, A. et al. Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS–, Se2–, 
HSe–, Te2–, HTe–, TeS32–, OH–, and NH2– as Surface Ligands. J. Am. Chem. 
Soc. 133, 10612–10620 (2011). 



 190 

Nagpal, P. & Klimov, V. I. Role of mid-gap states in charge transport and 
photoconductivity in semiconductor nanocrystal films. Nat. Commun. 2, 486 
(2011). 

Nelson, J. The Physics of Solar Cells: Photons In, Electrons Out. (Imperial College Press, 
2003). 

Nootz, G. et al. Size dependence of carrier dynamics and carrier multiplication in PbS 
quantum dots. Phys. Rev. B 83, 155302 (2011). 

Norako, M. E. & Brutchey, R. L. Synthesis of Metastable Wurtzite CuInSe2 
Nanocrystals. Chem. Mater. 22, 1613–1615 (2010). 

Olson, J. D., Rodriguez, Y. W., Yang, L. D., Alers, G. B. & Carter, S. A. CdTe Schottky 
diodes from colloidal nanocrystals. Appl. Phys. Lett. 96, 242103 (2010). 

Padilha, L. A. et al. Aspect Ratio Dependence of Auger Recombination and Carrier 
Multiplication in PbSe Nanorods. Nano Lett. 13, 1092–1099 (2013). 

Panthani, M. G. et al. CuInSe2 Quantum Dot Solar Cells with High Open-Circuit 
Voltage. J. Phys. Chem. Lett. 4, 2030–2034 (2013). 

Panthani, M. G. et al. High Efficiency Solution Processed Sintered CdTe Nanocrystal 
Solar Cells: The Role of Interfaces. Nano Lett. (2013). doi:10.1021/nl403912w 

Panthani, M. G. et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) 
Nanocrystal ‘Inks’ for Printable Photovoltaics. J. Am. Chem. Soc. 130, 16770–
16777 (2008). 

Panthani, M. G. & Korgel, B. A. Nanocrystals for Electronics. Annu. Rev. Chem. Biomol. 
Eng. 3, 287–311 (2012). 

Park, K. H., Jang, K., Kim, S., Kim, H. J. & Son, S. U. Phase-Controlled One-
Dimensional Shape Evolution of InSe Nanocrystals. J. Am. Chem. Soc. 128, 
14780–14781 (2006). 

Pattantyus-Abraham, A. G. et al. Depleted-Heterojunction Colloidal Quantum Dot Solar 
Cells. ACS Nano 4, 3374–3380 (2010). 

Pons, T. et al. Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node 
Imaging with Reduced Toxicity. ACS Nano 4, 2531–2538 (2010). 

Ren, S. et al. Inorganic–Organic Hybrid Solar Cell: Bridging Quantum Dots to 
Conjugated Polymer Nanowires. Nano Lett. 11, 3998–4002 (2011). 

Repins, I. et al. 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. 
Prog. Photovolt. Res. Appl. 16, 235–239 (2008). 

Romeo, A. et al. High-efficiency flexible CdTe solar cells on polymer substrates. Sol. 
Energy Mater. Sol. Cells 90, 3407–3415 (2006). 



 191 

Ryu, J., Kim, H.-S. & Hahn, H. T. Reactive Sintering of Copper Nanoparticles Using 
Intense Pulsed Light for Printed Electronics. J. Electron. Mater. 40, 42–50 
(2011). 

Sambur, J. B., Novet, T. & Parkinson, B. A. Multiple Exciton Collection in a Sensitized 
Photovoltaic System. Science 330, 63–66 (2010). 

Sandeep, C. S. S. et al. High charge-carrier mobility enables exploitation of carrier 
multiplication in quantum-dot films. Nat. Commun. 4, (2013). 

Schaller, R. D., Agranovich, V. M. & Klimov, V. I. High-efficiency carrier multiplication 
through direct photogeneration of multi-excitons via virtual single-exciton states. 
Nat. Phys. 1, 189–194 (2005). 

Schaller, R. D. & Klimov, V. I. High Efficiency Carrier Multiplication in PbSe 
Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 92, 
186601 (2004). 

Schaller, R. D., Petruska, M. A. & Klimov, V. I. Effect of electronic structure on carrier 
multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. 
Appl. Phys. Lett. 87, 253102 (2005). 

Schroder, K. A., McCool, S. C. & Furlan, W. F. Broadcast photonic curing of metallic 
nanoparticle films. in (2006). 

   <http://www.novacentrix.com/images/downloads/NSTI%202006%20Boston.pdf> 
Schroder, K., A. Mechanisms of photonic curing: processing high temperatures on low 

temperature substrates. Nanotech Conf. Expo 2011 Interdiscip. Integr. Forum 
Nanotechnol. Biotechnol. Microtechnology 2, 

Semonin, O. E. et al. Peak External Photocurrent Quantum Efficiency Exceeding 100% 
via MEG in a Quantum Dot Solar Cell. Science 334, 1530–1533 (2011). 

Shabaev, A., Efros, A. L. & Nozik, A. J. Multiexciton Generation by a Single Photon in 
Nanocrystals. Nano Lett. 6, 2856–2863 (2006). 

Sharp Develops Concentrator Solar Cell with World’s Highest Conversion Efficiency of 
43.5% | Press Releases | Sharp Global. at <http://sharp-
world.com/corporate/news/120531.html> 

Singh, M., Jiu, J., Sugahara, T. & Suganuma, K. Photonic Sintering of Thin Film 
Prepared by Dodecylamine Capped CuInxGa1 -xSe2 Nanoparticles for Printed 
Photovoltaics. Thin Solid Films doi:10.1016/j.tsf.2014.06.036 

Sites, J. R., Tavakolian, H. & Sasala, R. A. Analysis of apparent quantum efficiency. Sol. 
Cells 29, 39–48 (1990). 

Stolle, C. J. et al. Multiexciton Solar Cells of CuInSe2 Nanocrystals. J. Phys. Chem. Lett. 
5, 304–309 (2014). 



 192 

Steinhagen, C. et al. Solution−Liquid−Solid Synthesis of CuInSe2 Nanowires and Their 
Implementation in Photovoltaic Devices. ACS Appl. Mater. Interfaces 3, 1781–
1785 (2011). 

Steinhagen, C. et al. Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost 
Photovoltaics. J. Am. Chem. Soc. 131, 12554–12555 (2009). 

Stevens, G. Thin film CIGS report card - Progress in CIGS achieving scale. in 2012 38th 
IEEE Photovoltaic Specialists Conference (PVSC) 002487–002489 (2012). 
doi:10.1109/PVSC.2012.6318099 

Stewart, J. T. et al. Comparison of Carrier Multiplication Yields in PbS and PbSe 
Nanocrystals: The Role of Competing Energy-Loss Processes. Nano Lett. 12, 
622–628 (2012). 

Stolle, C. J. et al. Multiexciton Solar Cells of CuInSe2 Nanocrystals. J. Phys. Chem. Lett. 
5, 304–309 (2014). 

Stolle, C. J., Harvey, T. B. & Korgel, B. A. Nanocrystal photovoltaics: a review of recent 
progress. Curr. Opin. Chem. Eng. 2, 160–167 (2013). 

Stolle, C. J., Panthani, M. G., Harvey, T. B., Akhavan, V. A. & Korgel, B. A. 
Comparison of the Photovoltaic Response of Oleylamine and Inorganic Ligand-
Capped CuInSe2 Nanocrystals. ACS Appl. Mater. Interfaces 4, 2757–2761 
(2012). 

Stolle, C. J., Schaller, R. D. & Korgel, B. A. Efficient Carrier Multiplication in Colloidal 
CuInSe2 Nanocrystals. J. Phys. Chem. Lett. 3169–3174 (2014). 
doi:10.1021/jz501640f 

Stubbs, S. K. et al. Efficient carrier multiplication in InP nanoparticles. Phys. Rev. B 81, 
081303 (2010). 

Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal Quantum-Dot 
Photodetectors Exploiting Multiexciton Generation. Science 324, 1542–1544 
(2009). 

Sun, J. et al. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-
Energy versus Multiple-Photon Excitation. J. Phys. Chem. Lett. 5, 659–665 
(2014). 

Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of Colloidal 
Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 110, 
389–458 (2009). 

Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. 
Mater. 10, 765–771 (2011). 



 193 

Tang, J. et al. Quantum Dot Photovoltaics in the Extreme Quantum Confinement 
Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability. 
ACS Nano 4, 869–878 (2010). 

Tang, J. et al. Quantum Junction Solar Cells. Nano Lett. 12, 4889–4894 (2012). 
Tisdale, W. A. et al. Hot-Electron Transfer from Semiconductor Nanocrystals. Science 

328, 1543–1547 (2010). 
Trinh, M. T. et al. Direct generation of multiple excitons in adjacent silicon nanocrystals 

revealed by induced absorption. Nat. Photonics 6, 316–321 (2012). 
U.S.Department of Energy. SunShot Vision Study. (2012). 
Velizhanin, K. A. & Piryatinski, A. Numerical Study of Carrier Multiplication Pathways 

in Photoexcited Nanocrystal and Bulk Forms of PbSe. Phys. Rev. Lett. 106, 
207401 (2011). 

Wang, F., Wu, Y., Hybertsen, M. S. & Heinz, T. F. Auger recombination of excitons in 
one-dimensional systems. Phys. Rev. B 73, 245424 (2006). 

Wang, J.-J., Wang, Y.-Q., Cao, F.-F., Guo, Y.-G. & Wan, L.-J. Synthesis of 
Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application 
in High-Performance Organic−Inorganic Hybrid Photodetectors. J. Am. Chem. 
Soc. 132, 12218–12221 (2010). 

Wang, L.-W., Califano, M., Zunger, A. & Franceschetti, A. Pseudopotential Theory of 
Auger Processes in CdSe Quantum Dots. Phys. Rev. Lett. 91, 056404 (2003). 

Wang, X. et al. Tandem colloidal quantum dot solar cells employing a graded 
recombination layer. Nat. Photonics 5, 480–484 (2011). 

Wu, Y., Wadia, C., Ma, W., Sadtler, B. & Alivisatos, A. P. Synthesis and Photovoltaic 
Application of Copper(I) Sulfide Nanocrystals. Nano Lett. 8, 2551–2555 (2008). 

Yu, P., Nedeljkovic, J. M., Ahrenkiel, P. A., Ellingson, R. J. & Nozik, A. J. Size 
Dependent Femtosecond Electron Cooling Dynamics in CdSe Quantum Rods. 
Nano Lett. 4, 1089–1092 (2004). 

Yuan, M. et al. Controlled Assembly of Zero-, One-, Two-, and Three-Dimensional 
Metal Chalcogenide Structures. Inorg. Chem. 46, 7238–7240 (2007). 

Zhang, J. et al. PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated 
in Ambient Atmosphere. Nano Lett. 14, 6010–6015 (2014). 

Zhao, J. et al. 20 000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car 
race. Prog. Photovolt. Res. Appl. 5, 269–276 (1997). 

Zhong, H. et al. Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: 
Synthesis, Optical Properties, and Electroluminescence. J. Phys. Chem. C 115, 
12396–12402 (2011). 



 194 

Zhu, J. et al. Optical Absorption Enhancement in Amorphous Silicon Nanowire and 
Nanocone Arrays. Nano Lett. 9, 279–282 (2008). 

 



 195 

Vita 

 

Carl Jackson Stolle was born in Sunnyvale, California and has lived in Austin, 

Texas since 1997. He graduated from Westlake High School in 2007. He went on to 

attend The University of Texas at Austin, where he graduated in 2010 with high honors 

with a Bachelor of Science in Physics. In the fall of 2010, he began his graduate studies 

in chemical engineering under the supervision of Dr. Brian Korgel. He earned a Master of 

Science in Engineering in 2014 and completed his Ph.D. in the spring of 2015. 

 

 

 

The author can be reached at cjstolle@utexas.edu 

This dissertation was typed by the author 

 

 
 
 


	List of Tables
	List of Figures
	Chapter 1: Introduction0F
	1.1 Introduction to Photovoltaics
	Figure 1.1 Department of Energy SunShot models of the amount of installed solar power depending on the average installed price of solar by the year 2020. The SunShot reference line is for power generated at $1/Wp. Source: DOE SunShot Vision Study.1
	Figure 1.2 Department of Energy SunShot Vision Study analysis of the total cost of installed solar energy in the United States in 2012. Source: DOE SunShot Vision Study.1

	1.2 Solar Cell Technologies
	Figure 1.3 Chart of record solar cell efficiencies categorized by technology and tracked over time. Source: NREL National Center for Photovoltaics.
	1.2.1 Silicon Solar Cells
	1.2.2 Multijunction Solar Cells
	1.2.3 Thin Film Solar Cells
	1.2 4 Organic and Dye Sensitized Solar Cells
	1.2.5 Perovskite Solar Cells
	1.2.6 Nanocrystal Solar Cells

	1.3 Device Physics
	Figure 1.4 (A) An illustration of a nanocrystal solar cell with an opaque metal contact, a p-n junction made with semiconductor nanocrystals, and a transparent contact. (B) A band diagram illustration of photogenerated carriers in a p-n junction solar...

	1.4 Overview of Nanocrystal Photovoltaics
	Figure 1.5 (A) Photograph of a dispersion of CuInSe2 nanocrystals in toluene forming a “solar ink.” (B) TEM image of CuInSe2 nanocrystals. (C) Photograph of ambient spray deposition of semiconductor nanocrystals into thin film photovoltaic absorber la...
	Figure 1.6 An illustration showing the change in band gap and energy level splitting from a bulk semiconductor to a quantum confined nanocrystal based on nanocrystal size.
	Figure 1.7 (A) An illustration and SEM images demonstrating high-temperature nanocrystal sintering. (B) An illustration of a ligand exchange procedure. The procedure can be done either through a solution-based method or a solid-state method.
	Table 1.1 PV performance for all-inorganic nanocrystal photovoltaics. The device structures are shown including the contact layers and the absorber layer in bold.  Power conversion efficiency (η), short circuit current density (Jsc), open circuit volt...

	1.5 Multiexciton Generation
	Figure 1.8 (A) A schematic illustration of the thermalization process. High energy photons are absorbed and produce a hot electron and a hot hole. These hot carriers rapidly cool to the band edge in bulk semiconductors where they can then recombine. (...
	Figure 1.9 The maximum theoretical efficiency of a single junction solar cell utilizing MEG (red) and without MEG (black) as a function of the band gap energy. Adapted from ref. [64], copyright 2008 Wiley-VCH.
	Figure 1.10 (A) Schematic illustration of a typical pump-probe transient absorption spectroscopy setup. (B) Schematic illustrating the sample measurement. First, the sample is probed and the absorbance is measured. Then, after a long time delay (1ms),...

	1.7 CuInSe2 Nanocrystal Photovoltaics
	1.8 Conclusions and Dissertation Overview
	1.9 References

	Chapter 2: Synthesis and Device Performance of Size-Controlled CuInSe2 Nanocrystal Quantum Dots1F
	2.1 Introduction
	2.2 Experimental Methods
	2.2.1 Materials
	2.2.2 CuInSe2 Quantum Dot Synthesis
	2.2.3 Device Fabrication
	2.2.4 Characterization Techniques

	2.3 Results and Discussion
	2.3.1 Nanocrystal Characterization
	Figure 2.1 TEM images of CISe QDs synthesized at (A) 130 C, (B) 160 C, (C) 180 C, and (D) 240 C.  The average QD diameters are 2.2, 3.3, 4.7, and 6.6 nm, respectively.  (E) Absorbance spectra and (F) XRD (λ=1.54 Å) of nanocrystals synthesized at tempe...
	Figure 2.2 Absorbance and photoluminescence spectra of CIS QDs synthesized at 100 C (< 1 nm diameter) and 115oC (1.1 nm diameter).  The PL maxima (< 1 nm:1.68,  1.1 nm: 1.55 eV) match well with that determined by Tauc analysis (1.65 and 1.54 eV, respe...

	2.3.2 Photovoltaic Device Analysis
	Figure 2.3 (A) Illustration of the cross section and top-view of a CISe QD solar cell. (B) J-V characteristics and (C) summary of device parameters (PCE, Jsc, FF, and Voc) of solar cells versus the optical gap of the CISe QDs under AM1.5 illumination ...
	Figure 2.4 Fraction of maximum theoretical open circuit voltage (top) and reported open circuit voltages (bottom) in this work and other works demonstrating high open circuit voltages.5,22,37 Theoretical maximum open circuit voltage is determined by f...

	2.3.3 Comparison of Electronic and Optical Band Gaps
	Figure 2.5 (a) EQE measurements of solar cells of solar cell made from CISe QDs.  The average QD diameter in each device is shown in the inset.  (b) Comparison of the absorbance spectra of dispersed nanocrystals in toluene (dashed) and the PV EQE (sol...
	Table 2.1 Absorption onsets of CISe QDs determined by absorbance spectroscopy of dispersions in toluene and from EQE measurements of PVs.  The nanocrystal diameter was determined by TEM.


	2.4 Conclusions
	2.5 References

	Chapter 3: Inorganic Ligand-Capped CuInSe2 Nanocrystal Photovoltaics2F
	3.1 Introduction
	3.2 Experimental Methods
	3.2.1 Chemicals
	3.2.2 CuInSe2 Nanocrystal Synthesis
	3.2.3 Metal Chalcogenide Complex Preparation
	3.2.4 Oleylamine/MCC Ligand Exchange
	3.2.5 Materials Characterization
	3.2.6 CIS Nanocrystal PV Device Fabrication

	3.3 Results and Discussion
	3.3.1 CuInSe2 (CIS) Nanocrystals Before and After Inorganic Ligand Exchange
	Figure 3.1 TEM images of CIS nanocrystals: (a,b) as-synthesized with oleylamine capping ligands and after ligand exchange with (c,d) Na2S and (e,f) CIS-MCC. (g) High-resolution TEM image and (h) corresponding FFT of a CIS nanocrystal after oleylamine ...
	Figure 3.2 XRD patterns from CIS nanocrystals synthesized with oleylamine capping ligands before and after exchange with Cu2S-MCC and In2Se4-MCC ligands. The red reference lines correspond to chalcopyrite CIS (PDF #97-006-892).  The absence of the (11...

	3.3.2 CIS Nanocrystal Film Deposition
	Figure 3.3 SEM images of (a) the surface of a spin-coated CIS nanocrystal film and (b) a cross-sectioned PV device with a layer of CIS-MCC ligand-capped CIS nanocrystals.  The Au, CIS-MCC nanocrystal, ZnO and ITO layers are 70 nm, 75 nm, 40 nm and 200...

	3.3.3 PV Device Performance
	Figure 3.4 Dark and light I-V characteristics for the highest performance devices fabricated using oleylamine-capped CIS nanocrystals (blue), CIS-MCC ligand-capped CIS nanocrystals (red), and Na2S-capped CIS nanocrystals (green). The dashed lines are ...
	Table 3.1 Characteristics of PV devices fabricated with CIS nanocrystals capped with various ligands.


	3.4 Conclusions
	3.5 References

	Chapter 4: CuInSe2 Nanocrystal Sintering Using Photonic Curing3F
	4.1 Introduction
	4.2 Experimental Methods
	4.2.1 Chemicals
	4.2.2 Nanocrystal Synthesis
	4.2.3 Nanocrystal Film Preparation
	4.2.4 Photonic Curing
	4.2.5 Materials Characterization
	4.2.6 PV Device Fabrication

	4.3 Results and Discussion
	4.3.1 Photonic Curing of Nanocrystal Films on Mo Back Contacts
	Figure 4.1 A schematic illustration of the photonic curing process.
	Figure 4.2 SEM images of CuInSe2 nanocrystal films on Mo-coated soda lime glass a)  before and after photonic curing with a 300 µs pulse with b) 1.0 J/cm2, c) 1.3 J/cm2, d) 1.8 J/cm2, and e) 2.2 J/cm2 energy. Cross sectional SEM images f) before and g...
	Figure 4.3 XRD of CIS deposited on Mo. XRD is shown for CuInSe2 nanocrystals on Mo-coated soda-lime glass (solid lines) before and after photonic curing.  Reference patterns are for chalcopyrite CuInSe2 (PDF # 97-006-8928) and Mo (PDF# 97-064-3959).

	4.3.2 Photonic Curing on MoSe2/Mo Bilayer Contacts
	Figure 4.4 SEM images of CuInSe2 nanocrystals films a) before and after b) 2 J/cm2, c) 2.2 J/cm2, d) 2.5 J/cm2, e) 3 J/cm2 and f) 3.5 J/cm2 on MoSe2-coated Mo back contacts. Minimal change is observed with lower energy pulses from the as-deposited nan...
	Figure 4.5 XRD data of nanocrystal films before and after 2, 2.2, 2.5, 3 and 3.5 J/cm2 pulses on MoSe2/Mo bilayer back contacts (from top to bottom). Indexed XRD references for chalcopyrite CuInSe2, Mo, and MoSe2 (pdf# 97-004-9800) are also shown. As ...
	Figure 4.6 Higher magnification SEM images of CuInSe2 on MoSe2. (a) Spatial and (b) cross sectional SEM of films with no photonic treatment. (c) Spatial SEM of film after 3 J/cm2 treatment showing some agglomeration of sintered CIS layer as well as ar...

	4.3.3 Optimization of Photonic Curing Pulse Length
	Figure 4.7 A patterned CuO nanoparticle slurry before and after photonic curing with a 380 V, 2000 µs pulse. During photonic curing, the CuO reacts with a reducing agent to form conductive copper.
	Figure 4.8 SEM images of a spray-cast CuO nanoparticle slurry (A) before photonic curing and after photonic curing pulses with durations of (B) 300 µs, (C) 1200 µs, and (D) 2000 µs.
	Figure 4.9 SEM images of a CuInSe2 nanocrystal film spray cast on a MoSe2/Mo bilayer substrate after photonic curing with varying pulse conditions of (A) 600 V, 300 µs, (B) 550 V, 600 µs, (C) 520 V, 900 µs, (D) 500 V, 1200 µs, (E) 470 V, 1500 µs, and ...

	4.3.4 Photonic Curing on Au and Other Metal Contacts
	Figure 4.10 (a) XRD of CIS (112) peak before and after photonic curing with 3 and 3.5 J/cm2 pulses of nanocrystal films deposited on Au back contacts. Cross sectional SEM images (b)before, (c)  after 3 J/cm2 and  (d) 3.5 J/cm2 treatment. (e) Spatial S...
	Figure 4.11 SEM images of CuInSe2 nanocrystal films deposited on Mo, MoSe2/Mo, Au, Ni, and ITO back contacts before photonic curing and after photonic curing at 1.6 J/cm2 and 3.1 J/cm2.

	4.3.5 Photovoltaic Device Performance
	Table 4.1 Device Characteristics of Pulsed Films deposited on MoSe2-coated Mo and Au back contacts.
	Figure 4.12 Current/Voltage characteristics of photonic cured nanocrystal films on Au (left) and MoSe2-coated Mo (right) back contacts.
	Figure 4.13 EDS maps and IV curves of sintered CIS film on MoSe2/Mo back contacts with pulse energies of 3 J/cm2. a) Cu (red), In (green), Se (dark blue), and Mo (light blue) composite response, b) green In EDS response showing absorber layer location...



	4.4 Conclusions
	4.5 References

	Chapter 5: Photonic Curing of Nanocrystals Capped with Inorganic ChaM Ligands4F
	5.1 Introduction
	5.2 Experimental Methods
	5.2.1 Nanocrystal Synthesis
	5.2.2 Ligand Exchange
	5.2.3 Film Deposition and Treatment
	5.2.4 Characterization Techniques

	5.3 Results and Discussion
	5.3.1 Film Morphology and Photonic Curing Temperature
	Figure 5.1 SEM images of a 1 µm thick oleylamine-capped CuInSe2 nanocrystal film (A) before photonic curing and after photonic curing pulses of (B) 1.6 J/cm2, (C) 2.1 J/cm2, (D) 2.6 J/cm2, (E) 3.1 J/cm2, and (F) 3.5 J/cm2.  (G) SimPulse modeling of th...
	Figure 5.2 SEM images of a 1 µm thick ChaM-capped CuInSe2 nanocrystal film (A) before photonic curing and after photonic curing pulses of (B) 1.0 J/cm2, (C) 1.4 J/cm2, (D) 1.8 J/cm2, (E) 2.3 J/cm2, and (F) 2.8 J/cm2.  Higher magnification is shown for...
	Figure 5.3 Cross-sectional SEM of ChaM-capped nanocrystals (A) before photonic curing and after photonic curing pulses of (B) 1.8 J/cm2, (C) 2.3 J/cm2, and (D) 2.8 J/cm2.

	5.3.2 XRD Peak Narrowing and Phase Transformations
	Figure 5.4 (A) XRD of both oleylamine-capped and ChaM-capped nanocrystals with and without photonic curing. The diffraction peaks for chalcopyrite CuInSe2 (red lines, PDF #01-073-6321) and Au (blue lines, PDF #01-075-6560) are shown for reference. (B)...

	5.3.3 Device Performance
	Figure 5.5 Current-voltage plots showing the dark (black curves) and light (red curves) photovoltaic response of ChaM-capped nanocrystals (A) before photonic curing and after photonic curing with pulse energies of (B) 1.0 J/cm2, (C) 1.4 J/cm2, (D) 1.8...


	5.4 Conclusions
	5.5 References

	Chapter 6: Ligand Removal with Photonic Curing: Enhanced Nanocrystal Coupling and Multiexciton Extraction5F
	6.1 Introduction
	6.2 Experimental Methods
	6.2.1 Materials
	6.2.2 CuInSe2 nanocrystal synthesis
	6.2.3 Film Deposition
	6.2.4 PV Device Fabrication
	6.2.5 Characterization
	6.2.6 PV Device Testing

	6.3 Results and Discussion
	6.3.1  Ligand Removal
	Figure 6.1 Photonic curing of nanocrystal films on Au-coated glass substrates.  (a) Photonic curing can be used to remove oleylamine capping ligands from the CuInSe2 nanocrystal film without inducing grain growth.  (b) When the capping ligands are pre...
	Figure 6.2 Thermogravimetric analysis (TGA) of CuInSe2 nanocrystals processed by photonic curing using various pulse conditions.
	Figure 6.3 FTIR analysis of CuInSe2 nanocrystals without photonic curing (black) and treated with a 2.5 J/cm2 pulse.
	Figure 6.4 Temperature of a 500 nm thick CuInSe2 (CIS) nanocrystal layer on 60 nm thick Au on soda lime glass (1.1 mm thick) induced by a single (160 µs) photonic curing pulse (calculated using SimPulse software from NovaCentrix).
	Figure 6.5 (A) X-ray diffraction (XRD) data highlighting the (112) diffraction peak of chalcopyrite CuInSe2. The crystal sizes for each pulse condition were calculated using Scherrer analysis. Prior to photonic curing, the nanocrystals are 8.3 nm in d...
	Figure 6.6 TEM image of CuInSe2 nanocrystals with average particle diameter of 8.1±2.1 nm based on the histogram shown in the inset generated from the TEM image.

	6.3.2 Film Morphology and Device Results
	Figure 6.7 CuInSe2 nanocrystal layers before and after photonic curing and their PV device performance.  Top-down and cross-section SEM images of oleylamine-capped CuInSe2 (CIS) nanocrystal film on Au-coated glass (a, d) before and after photonic curi...

	6.3.3 Quantum Efficiency Analysis
	Figure 6.8 External quantum efficiency (EQE) enhancements resulting from photonic curing of the CuInSe2 nanocrystal layer used in PV devices.  (a) EQE measurements taken under white light bias for CuInSe2 nanocrystal devices without photonic curing (b...
	Figure 6.9 External quantum efficiency (blue), internal quantum efficiency (red), and absorptance (black) for a PV device made with CuInSe2 nanocrystals and cured with a 2.2 J/cm2 pulse.

	6.3.4 Possible Anomalous Effects
	Figure 6.10 External quantum efficiency of a PV device made with CuInSe2 nanocrystals cured at 2.2 J/cm2 taken with two separate testing setups. The setup using the Newport monochrometer had a probe beam chopped at 213 Hz and the commercial setup from...
	Figure 6.11 External quantum efficiency of a PV device made with CuInSe2 nanocrystals cured at 2.2 J/cm2.  Neutral density filters are used to cut the monochromated probe beam to 100% (no filter, black), 80% (red), 50% (blue), 25% (green), and 10% (pi...
	Table 6.1 Table showing peak EQE and calculated Jsc for each probe beam intensity from Figure 6.11.

	6.3.5 Transient Absorption Spectroscopy
	Figure 6.12 Transient absorption (TA) spectra showing the spectral peak in the bleach signal for a nanocrystal film without photonic curing (black) and a film cured with a 2.5 J/cm2 pulse (red).
	Figure 6.13 Transient absorption (TA) spectroscopy of CuInSe2 nanocrystal films after photonic curing.  (a) TA kinetics normalized to –Δα=1 at 1000 ps with an 800 nm pump wavelength  and pump fluences of 300 µJ/cm2 (dark blue), 90 µJ/cm2 (green), 60 µ...
	Figure 6.14 Transient absorption kinetics measured with and without sample translation and normalized to –Δα=1 at 1 ns for a film photonically cured at 2.5 J/cm2. Sample translation helps ensure that sample charging does not affect the TA signal.
	Figure 6.15 The ratio of exciton population (Rpop) at early-time compared to late-time TA signal for high energy (circles, 3.1Eg) and low energy (squares, 1.6Eg) pump energy with varying exciton occupancy (<N0>). The exciton population is normalized s...

	6.3.6 Surface Trap States
	Figure 6.16 Transient absorption kinetics normalized to –Δα=1 at 1 ns for a nanocrystal film cured at 2.5 J/cm2. The kinetics were taken using 9 and 18 µJ /cm2 pump fluences at 400 nm pump wavelength.
	Figure 6.17 Absorptance measurements of a CuInSe2 nanocrystal film before (black) and after photonic curing (red, 2.5 J/cm2).  Inset: Absorptance measured near the band edge; the dashed lines indicate the optical gap of each film: 0.91 and 0.79 eV for...

	6.3.7 Photonic Curing of Multi-Layer Films
	Figure 6.18 SEM images of nanocrystal films pulsed at 2.5 J/cm2 and with some additional spray deposition steps. (A) A nanocrystal film pulsed one time. (B) After the photonic curing pulse, a new layer of nanocrystals is spray deposited. (C) The secon...
	Table 6.2 Table showing the PV device PCE, Voc, Jsc, and fill factor for devices corresponding to the films shown in Figure 6.18.

	6.3.8 Surface Repassivation
	Figure 6.19 Current-voltage measurements for photovoltaic devices fabricated from nanocrystal films before photonic curing (black), after photonic curing with no further repassivation treatments (red), and after photonic curing with repassivation trea...
	Table 6.3 Table showing the PV device PCE, Voc, Jsc, fill factor, and peak quantum efficiency for the devices shown in Figure 6.19.


	6.4  Conclusions
	6.5 References

	Chapter 7: Multiexciton Generation in Colloidal CuInSe2 Nanocrystals6F
	7.1 Introduction
	7.2 Experimental Methods
	7.2.1 Nanocrystal Synthesis
	7.2.2 Characterization Techniques

	7.3 Results and Discussion
	7.3.1 Materials Characterization
	Figure 7.1 CuInSe2 nanocrystals studied by TAS. (A) optical absorbance spectra and (B-D) TEM images. (A) Absorbance spectra were measured at room temperature for nanocrystals dispersed in toluene.  Spectra are offset by 0.2 O.D. for clarity.  The temp...
	Figure 7.2 Optical absorbance spectra of CuInSe2 nanocrystals dispersed in toluene synthesized at the reaction temperatures indicated.  Higher reaction temperatures yielded larger nanocrystals, consistent with the observed shift of the exciton peak an...
	Figure 7.3 X-ray diffraction data for CuInSe2 nanocrystals synthesized at 200oC. The reference pattern corresponds to chalcopyrite CuInSe2 (PDF #01-073-6321). The ordered chalcopyrite phase is distinguished from the disordered sphalerite phase by the ...

	7.3.2 TA Spectra, Carrier Cooling, and Absorption Cross Sections
	Figure 7.4 CuInSe2 nanocrystal transient absorption spectra (TAS) acquired with 800 nm pump wavelength.  Samples with three different average diameters were measured: (A,B) 4.5 ± 0.8 nm, (C,D) 6.2 ± 1.5 nm, and (E,F) 9.2 ± 3.2 nm. (A,C,E)  show the ev...
	Figure 7.5 Carrier cooling rates. A) Early–time (<5 ps) TA kinetics for each nanocrystal sample at 800 nm pump wavelength  (black squares, 4.5 nm nanocrystals; red circles, 6.2 nm nanocrystals; blue triangles, 9.2 nm nanocrystals). The TA kinetics are...
	Figure 7.6 Absorption Cross Section. Transient absorption signal at long delay time (1000 ps) for each nanocrystal sample (4.5 nm, black squares; 6.2 nm, red circles; 9.2 nm, blue triangles) as a function of pump fluence for (A) 800 nm pump wavelength...

	7.3.3 TA Kinetics, Auger Lifetimes, and Multiexciton generation
	Figure 7.7 Transient absorption kinetics of (A,B) 4.5 ± 0.8 nm nanocrystals, (C,D) 6.2 ± 1.5 nm nanocrystals, and (E,F) 9.2 ± 3.2 nm diameter CuInSe2 nanocrystals measured using two different pump wavelengths of 400 nm and 800 nm. All curves are norma...
	Figure 7.8 Transient absorption kinetics at 800 nm pump wavelength used to determine the biexciton lifetime for CuInSe2 nanocrystals with varying diameter (9.2 nm nanocrystals, black squares; 6.2 nm nanocrystals, red circles; 4.5 nm nanocrystals, blue...
	Figure 7.9 Auger lifetimes and MEG quantum yield. A) Biexciton lifetimes plotted against particle volume for the 4.5 ± 0.8 nm, 6.2 ± 1.5 nm, and 9.2 ± 3.2 nm diameter CuInSe2 nanocrystals. The error bars for nanocrystal volume correspond to the standa...
	Figure 7.10 The ratio of the transient absorption signal at short time delay (5 ps) and long time delay (1000 ps) as a function of pump fluence for low pump fluences. The ratio is shown for (black) 800 nm, (red) 400nm, (teal) 340 nm, and (blue) 320 nm...

	7.3.4 Comparison of MEG Efficiency, MEG Threshold, and Auger Lifetimes
	Table 7.1 A table showing the MEG threshold, MEG efficiency, and Bulk band gap values for a variety of semiconductor nanocrystals. Nanocrystals marked with an * were measured without sample stirring to eliminate effects from photocharging and may not ...
	Figure 7.11 Auger lifetimes as a function of nanocrytstal volume and band gap energy for CuInSe2, PbSe19, PbS24, InAs25, Ag2S12, and Si8 nanocrystals. The green box shows the optimal band gap range for an MEG solar cell.



	7.4 Conclusions
	7.5 References

	Chapter 8: Conclusions and Future Directions
	8.1 Conclusions
	8.1.1 Nanocrystal Synthesis and Ligand Exchanges
	8.1.2 Photonic Curing
	8.1.3 Transient Absorption Spectroscopy

	8.2 Future Directions
	8.3 References

	Appendix A: Nanocrystal Synthesis Recipes
	A.1 Cu(In,Ga)Se2 and Related Nanocrystal Synthesis Recipes
	A.1.1 Elemental:Se Reaction
	Figure A.1 TEM image of CuInSe2 nanocrystals synthesized using recipe A.1.1.

	A.1.2 TBP:Se and DPP:Se Reactions
	Figure A.2 (left) TEM image of CuInSe2 nanocrystals synthesized using recipe A.1.2 (TBP method). (right) TEM image of CuInSe2 nanocrystals synthesized using recipe A.1.2 (DPP method).

	A.1.3 Hydrated Precursors Recipe
	Figure A.3 TEM image of CuInSe2 nanocrystals synthesized using recipe A.1.3.

	A.1.4 Cu(In,Ga)S2 Recipe
	Figure A.4 TEM image of CuInS2 nanocrystals synthesized using recipe A.1.4.

	A.1.5 In2Se3 recipe
	Figure A.5 TEM image of In2Se3 nanocrystals synthesized using recipe A.1.5.

	A.1.6 Cu2-xSe /Recipe
	Figure A.6 TEM image of In2Se3 nanocrystals synthesized using recipe A.1.6.


	A.2 Other Nanocrystal Synthesis Recipes
	A.2.1 PbS Recipe
	Figure A.7 TEM image of PbS nanocrystals synthesized using recipe A.2.1.

	A.2.2 CdTe Recipe
	Figure A.8 TEM image of CdTe nanocrystals synthesized using recipe A.2.2.


	A.3 References

	References
	Vita

