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The debilitating effects of spinal cord injury can be attributed to a lack of 

regeneration in the central nervous system.  Identification of growth-promoting pathways, 

particularly ones that can be controlled by small molecules, could provide significant 

advancements in regenerative science and lead to potential treatments for spinal cord 

injury.  The biological investigations of neuroregenerative small molecules, specifically 

the natural products clovanemagnolol and vinaxanthone, have been expanded to a whole 

organism context using the nematode Caenorhabditis elegans (C. elegans) as a tool for 

these studies.  A straightforward assay using C. elegans was developed to screen for 

compounds that promote neuronal outgrowth in vivo.  This outgrowth assay was then used 

to guide the design of chemically edited analogs of clovanemagnolol that maintained 

biological activity while possessing structures amenable to further modification for 

mechanism of action studies.  Pull-down experiments using affinity reagents synthesized 

from a neuroactive structural derivative, clovanebisphenol, and the C. elegans proteome 

combined with mass spectrometry-based protein identification and genetic recapitulation 

using mutant C. elegans identified the putative protein target of the small molecule as a 

kinesin light chain, KLC-1.  Furthermore, the small molecule-promoted regeneration of 
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injured neurons in vivo was studied using laser microsurgery to cut specific axons in C. 

elegans followed by treatment with a library of analogs of the growth-promoting natural 

product vinaxanthone.  Enhanced axonal regeneration was observed following small 

molecule treatment and the results were used to determine the structure-activity 

relationship of vinaxanthone, which may guide future development of potential drug 

candidates for the treatment of spinal cord injury. 
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Chapter 1 – Introduction 

 

Spinal Cord Injury 

Spinal cord injury (SCI) is the second leading cause of paralysis, affects 

approximately 1.3 million people in the United States1, and totals an annual associated cost 

of over $7.7 billion2.  There is currently no cure.  The lack of regeneration in the adult 

mammalian central nervous system (CNS) presents a significant obstacle in overcoming 

spinal cord injury.  This lack of CNS regeneration has been attributed to the inhibitory 

extrinsic environment formed after injury as well as the absence of intrinsic growth signals.  

It has been shown that successful axonal regrowth in the mammalian CNS depends not 

only on mitigation of the inhibitory environment but also requires activation of growth 

pathways for recovery following SCI.3  The ability to enhance these regenerative pathways, 

or suppress the biological pathways inhibiting regeneration, could promote the 

development of therapeutic treatments for SCI.   

Nerve cells are composed primarily of a soma (cell body), dendrites, and an axon.  

Damage to neurons that results in debilitating injury most often occurs to the axons, which 

are the neuronal projections that allow communication between nerve cells as well as with 

other cells such as muscles.  Injury disrupts and prevents the transmission of information 

in the form of electrical pulses along the axon.  Functional recovery and restoration of the 

ability to convey neuronal signals depend upon the axon regrowing and re-establishing 

contact with its target.  This regeneration of damaged neurons requires the severed axon to 
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surmount its inhibitory surroundings via growth cone formation and neurite extension 

emanating in response to signals from the injured environment (Figure 1.1). 

 

 

Figure 1.1.  Neuronal injury creates a break in the axon (A).  The regeneration process 

requires the initiation of a growth cone followed by axonal regrowth and 

reconnection to its target (B). 

 

Most current treatments for SCI focus on reducing the secondary effects 

immediately following injury, subsequent rehabilitation, and long-term palliative care.  

Methylprednisolone (1), if given within the first eight hours after SCI, can ameliorate the 

secondary effects of injury by reducing inflammation and further damage to nerve cells 

(Figure 1.2).4  Pregabalin (Lyrica) (2) is often prescribed for the management of 

neuropathic pain resulting from SCI but does not provide any functionally remedial gain.  

The development of approaches for inducing regeneration has largely focused on the use 
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of gene therapy, growth factors, and stem cells while small molecules and natural products 

have traditionally received less attention.5  Although various clinical trials for SCI 

treatments have been initiated in recent years, only a few have advanced to the final phase.6  

The North American Clinical Trials Network (NACTN) has initiated Phase I clinical trials 

of the neuroprotective drug riluzole (3), currently used in the treatment of amyotrophic 

lateral sclerosis (ALS).7  The antibiotic minocycline (4) was investigated in Phase II 

clinical trials and found to enhance motor recovery8; Phase III trials are currently ongoing.  

These drugs provide hope for the use of small molecules as favorable SCI treatments, but 

given the high failure rates of medicinal agents in clinical trials the need for novel 

compounds still exists.9 

 

 

Figure 1.2.  Current drugs used in the treatment of SCI. 

 

Growth-Promoting Small Molecules 

The identification of growth-promoting pathways, particularly ones that can be 

controlled by small molecules, could provide significant advancements in regenerative 

medicine.  Numerous growth-promoting small molecules have already been discovered 
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(Figure 1.3).  The vitamin A metabolite retinoic acid (5) is a well-known signaling 

molecule involved in the differentiation and patterning of neurons, axon outgrowth, and 

the maintenance of established neurons.10  Increased retinoic acid and upregulation of the 

retinoic acid receptor have been shown to improve regeneration in the peripheral nervous 

system (PNS) both in vitro11 and in vivo12-14.  Paclitaxel (Taxol) (6), originally isolated 

from the bark of the Pacific Yew tree15, has been shown to have a dramatic effect on 

regenerating PNS axons16 and has recently been reported useful in axon regeneration 

therapy17.  Paclitaxel is thought to function through microtubule stabilization, thereby 

resulting in enhanced axon sprouting and regeneration after spinal cord injury in rodent 

models.17  Additional studies have suggested that the regenerative ability displayed by 

axons of injured nerves exposed to paclitaxel applies to the CNS as well.18-20  The 

antifungal compound amphotericin B (7) has been shown to promote CNS axon growth by 

overcoming the inhibitory injured environment through serine/threonine-specific protein 

kinase (Akt pathway) activation.21  Garcinol (8) promotes neurogenesis of rat cortical 

progenitor cells through extracellular signal-regulated kinase (ERK) activation.22  The 

natural product was also shown to induce neurite outgrowth in the developing nerve cells 

and enhance neuronal survival via ERK pathway regulation. 
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Figure 1.3.  Structures of several small molecules found to have growth-promoting 

activity. 

 

Several neurotrophic natural products have been isolated from the bark of magnolia 

trees used in traditional Chinese medicine, including Magnolia obovata and Magnolia 

officinalis (Figure 1.4).23  The biphenyl neolignan honokiol (9) and its structural isomer 

magnolol (10) were identified as two of the active components contributing to the growth-

promoting effects of these magnolia sources.  Honokiol has been shown to induce neurite 

outgrowth in rat cortical neurons at a concentration of 0.1 μM.24  Magnolol has induced 

outgrowth of cortical neurons at 1 µM, exhibiting a weaker effect on neurite extension.24  

Additionally, the structurally related sesquiterpene-neolignan natural products 
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clovanemagnolol (11) and caryolanemagnolol (12) have been isolated from these magnolia 

species and shown to enhance neurite outgrowth in primary neuronal cultures, with 

clovanemagnolol exhibiting effects at 10 nM concentration.25-28  One-step syntheses of 

these natural products have been reported by Siegel et al. (Scheme 1.1).29 

 

 

Figure 1.4.  Neuroactive natural products isolated from magnolia sources. 
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Scheme 1.1.  Syntheses of caryolanemagnolol and clovanemagnolol. 

 

Reported in 2003 by Saji and coworkers from fungal extracts of Penicillium sp. 

SPF-3059, xanthofulvin (SM-216289) (15) was shown to have 0.9-1.1 μg/mL activity 

towards blocking semaphorin 3A (Sema3A), an inhibitor of axonal regeneration, with no 

cytotoxicity observed at over 1,000 times the effective concentration (Figure 1.5).30  

Sema3A, a chemorepulsive agent secreted as a guidance cue to inhibit axonal outgrowth, 

binds to the plexin receptor in complex with neuropilin-1 and mediates growth cone 

collapse, which leads to failed regeneration of injured neurons.31  Xanthofulvin is believed 
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to act by disrupting Sema3A/plexin interactions, thereby preventing Sema3A-mediated 

growth cone collapse.  The structurally related natural product vinaxanthone (SM-345431) 

(16) was co-isolated from these fungal extracts and possesses similar growth-promoting 

activity.32  Murine models treated with xanthofulvin or vinaxanthone following complete 

spinal cord transection exhibited dramatic axonal regeneration, remyelination, and 

functional recovery compared to control animals.33-35  Vinaxanthone has also been shown 

to promote corneal nerve growth following transplant.  Mice that received post-transplant 

treatment with vinaxanthone showed significantly higher peripheral nerve regeneration as 

well as improved functional recovery of corneal sensitivity compared to control mice.36  

Interestingly, mice deficient in the plexin receptors for semaphorin do not show enhanced 

regeneration in complete spinal cord transection models, indicating that removal of 

semaphorin-mediated inhibition is insufficient to promote axon growth.37  Although their 

mechanisms of action have been thought to result from Sema3A inhibition, xanthofulvin 

and vinaxanthone possibly possess polypharmacological activity since functional removal 

of Sema3A alone does not enhance regeneration following SCI.   

 

 

Figure 1.5.  The natural products xanthofulvin and vinaxanthone. 
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While most screens for novel compounds that promote neuronal growth employ in 

vitro cell cultures, these methods have limitations.  The isolated neuronal conditions of in 

vitro cultures disregard drug metabolism, target tissue availability, and toxicity.  

Consequently, lead molecules identified through in vitro screens often present issues with 

absorption, distribution, and stability in subsequent animal studies, resulting in their 

ultimate abandonment and a deficit of time and money.38  An effective in vivo model for 

examining growth-promoting small molecules in a whole-organism context would 

therefore be advantageous in screening endeavors.  Furthermore, assays employing whole 

animals allow for monitoring of any behavioral responses and increase the chances of 

identifying off-target effects.   

The Model Organism Caenorhabditis elegans 

The nematode Caenorhabditis elegans (C. elegans) has become a well-established 

model organism since its introduction to the scientific community by Sydney Brenner in 

1974.39  This free-living roundworm has many advantages over other, higher level model 

organisms.  Its short generation time to adulthood (~3 days at 20 °C) and total lifespan (2-

3 weeks) combined with the low cost and ease of maintenance make it particularly useful 

for high-throughput screens, compared to mice which require a considerably longer 

generation time (9-10 weeks) and significant maintenance resources.  In the lab, these 

nematodes can easily be cultured on solid agar or in liquid media with a diet of Escherichia 

coli (E. coli) and develop through four larval stages (L1-L4) before becoming 1 mm-long 
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adults.  C. elegans are primarily hermaphrodites, with males arising spontaneously in 

approximately 0.1% of the population.40  Hermaphroditic reproduction via self-fertilization 

allows for genetically identical offspring, yet the presence of males maintains the ability to 

generate genetic crosses through mating.  The nematodes are comprised of an invariant cell 

number with their complete lineages and developmental processes mapped.41-42  These 

multicellular animals feature various organs and tissue types including intestines, muscles, 

hypodermis, reproductive systems, and nervous systems, giving them physiological 

complexity while maintaining the simplicity of easily scored phenotypes ideal for chemical 

biology studies.43  They also exhibit behavioral complexity and have been shown to display 

learning44, memory44, and sleep patterns45.  Their transparent nature and facile 

incorporation of green fluorescent protein (GFP) allow for the visualization of biological 

structures and processes occurring in living organisms at the single cell level.46  

Additionally, the worms produce a large number of progeny (>300 offspring) and can be 

frozen at cryogenic temperatures for indefinite storage with viable recovery.47   

With the entire genome of C. elegans sequenced in 1998, the worm rose to the 

forefront of genetic biology.48  Numerous fundamental biological and medically relevant 

discoveries were made possible using C. elegans.  Genes regulating aging49 and apoptosis50 

were originally discovered using the worm and subsequently linked to their corresponding 

human phenomena.  Significantly, C. elegans possess between 60-80% of genes 

homologous to human genes.51-52  Gene expression can be controlled through the use of 

RNA interference (RNAi), also discovered using the worm, and the facile construct of 

mutants, which are then made available to the scientific community and can readily be 
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obtained from the Caenorhabditis Genetics Center (CGC).53-54  This conservation of genes 

and fundamental cellular processes coupled with the ability to control their expression 

further established the worm as a relevant model organism.  Several Nobel Prizes awarded 

for discoveries made using C. elegans, including the 2002 and 2006 Nobel Prizes in 

Physiology or Medicine and the 2008 Nobel Prize in Chemistry, attest to their validity as 

an invaluable resource for discovery in biomedical research.   

Invertebrate model organisms like C. elegans provide an advantage in early 

research by delivering rapid discoveries.  Revealing physiologically relevant information 

in a high-throughput manner, they bridge the gap between in vitro assays and higher level 

in vivo models.55  C. elegans have been used for numerous models of human diseases and 

hold potential as a tool for drug discovery.56  Worm models have been established for 

neurodegenerative diseases57-58, mental illnesses such as depression59, bacterial 

infections60, and cancer61.  Over 40% of genes implicated in human diseases possess a C. 

elegans homolog, spanning a wide array of ailments from Alzheimer’s to breast cancer, 

diabetes, and even deafness.62  Despite the fact that most work with the worm has 

traditionally had a genetic focus, many drug candidates have been studied in these disease 

models and shown effective.55   

Drug Discovery in C. elegans 

The identification and development of biologically active small molecules are key 

components of drug discovery.  Before a candidate drug can elicit the desired response, 

however, it must enter the body and reach the target tissues.  In the case of C. elegans, it 
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has been reported that drugs enter the worm through ingestion as well as uptake through 

the hypodermis or through exposed sensory neuronal endings.63-65  Once inside, the normal 

biological function of the target must be altered by the drug to evoke a physiological 

response.  Organismal-based drug screens are therefore superior to cell-based methods 

since only bioavailable compounds exhibiting in vivo activity will result in measurable 

effects.  Numerous bioactive compounds have been shown to elicit responses in the 

worm.66  For example, the steroid prednisone was identified in a blind compound screen 

as reducing muscle degeneration in dystrophin-deficient C. elegans.67  This compound, 

already in use as a treatment for muscular dystrophy, validated chemical screening in 

worms for drug discovery by showcasing the conservation between worms and humans.   

Many small molecules exhibit useful biological activity, but their mechanisms of 

action are often unknown.  Notably, the use of a whole organism allows for screening of 

small molecules without prior identification of targets.68  Target identification, however, 

provides a better understanding of the molecule’s mechanism of action as well as enables 

optimization of lead compounds for increased activity and reduced negative side effects.  

Many drug, chemical, and biotechnology companies employ C. elegans in their research 

endeavors.69  Researchers from Bristol-Myers Squibb Pharmaceuticals and Exelixis have 

used the worm to better understand the mechanism of action and identify targets of 

farnesyltransferase inhibitors (FTIs) used in cancer therapy.70  The 1,4-dihydropyridine 

(DHP) nemadipine A was discovered in a bioactivity screen using C. elegans to identify 

compounds that elicit phenotypic responses.71  DHPs act as antagonists of the α1 subunit 

of L-type calcium channels.  A subsequent genetic suppressor screen was conducted in C. 
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elegans and the target gene of nemadipine A was identified as egl-19, the sole L-type 

calcium channel α1 subunit in C. elegans, thus confirming the worm as a viable platform 

for target validation.71 

C. elegans Neurobiology 

Many compounds that exhibit neuroactivity in humans, such as nicotine72, 

ethanol73, anesthetics74, selective serotonin reuptake inhibitors (SSRIs)75, and 

acetylcholinesterase inhibitors (AChEIs)76, also elicit responses in the worm.  Of the 959 

cells in the adult hermaphrodite, roughly one third are neurons.  C. elegans possess multiple 

neuronal types and employ many of the same neurotransmitters as humans, including 

acetylcholine, dopamine, γ-aminobutyric acid (GABA), glutamate, and serotonin.77  C. 

elegans is currently the only organism with its full connectome, or wiring diagram of its 

entire neuronal connectivity, mapped.78-79  The various neurons come together in the head 

region of the worm to form a brain-like structure known as the nerve ring.  As a genetic 

system, C. elegans have been widely used to identify cellular and molecular mechanisms 

of neuronal growth, uncovering determinants of growth cone formation80, axonal 

guidance81, and regeneration82.   

Many factors that affect axon regeneration in vertebrate neurons have similar 

counterparts in C. elegans, supporting its use as a biologically relevant model organism.83  

C. elegans have been developed as a model for studying axon regeneration following 

injury.84-85  Axonal injury is induced by severing individual GFP-labeled neurons in live 

worms using highly precise laser microsurgery; neurons have been shown to functionally 
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regrow following these laser axotomy procedures (Figure 1.6).84  The laser causes plasma 

formation and generates cavitation bubbles at the site of contact which damage the nerve 

cell and create a break in the axon.86  The intrinsic regeneration ability following laser 

axotomy depends on many factors including the type of neuron, transgenic background, 

developmental stage of the worm, method of axotomy, and location of the neuronal 

injury.82, 85, 87   

 

 

Figure 1.6.  Laser axotomy in C. elegans results in an induced axonal injury followed by 

observation for neuronal regeneration. 

 

The genetic determinants of axon regeneration have been extensively screened 

using laser axotomy in C. elegans, investigating over 650 conserved genes to identify both 

promoters and repressors of growth.88  These positive and negative effectors have been 

identified for elements ranging from second messengers to kinases and axon guidance 

molecules such as ephrin, netrin, and semaphorin.  Laser axotomy in C. elegans has aided 

in the identification of both genetic and molecular pathways controlling regeneration89, 

including the DLK-1 mitogen-activated protein (MAP) kinase pathway90 and calcium or 
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cyclic adenosine monophosphate (cAMP) signaling91.  While most of the axonal 

regeneration studies in C. elegans have primarily focused on genetically manipulated 

models, small molecules hold great potential for affecting regeneration pathways.  Previous 

small molecule screens, although limited in number, have identified compounds able to 

enhance regeneration following laser axotomy.92  The protein kinase C (PKC) activator 

prostratin was found to enhance regeneration in the nematode through the first large-scale 

in vivo screen for compounds that affect neurite growth, establishing C. elegans as an 

instrument for neuroregenerative drug discovery.92 

Conclusion 

 The combination of biologically active small molecules with the amenable model 

organism C. elegans uniquely establishes a position for chemical biology studies.  The 

neurobiology of the nematode provides a further advantage for investigations regarding 

regeneration pathways.  Enhanced methods for the discovery of novel neuroactive 

compounds via in vivo screening followed by the ability to conduct target identification 

studies utilizing the same organism make an ideal platform for studying growth-promoting 

compounds. 
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Chapter 2 – Clovanemagnolol and C. elegans 

 

Small Molecules in C. elegans 

Organism-based screening hinges on the identification of small molecules that 

modulate biological function through in vivo phenotypic assays.  A recent small molecule 

screen in C. elegans by Kwok et al. investigated members of the 1,4-dihydropyridine 

(DHP) family of compounds.71  DHPs are commonly used in the treatment of hypertension 

due to their L-type calcium channel antagonistic activity.  Of the 12 molecules from the 

DHP family that were screened, it was found that one third of those tested accumulated.  

The authors stated that this was a similar hit rate to those obtained in other whole-organism 

screens, thus demonstrating that the worm was a suitable model for the identification of 

new bioactive compounds.71 

Comparatively, a following study by Burns et al. presented a model for predicting 

drug accumulation in C. elegans based on the functional groups present on the molecule, 

using a high-throughput high-performance liquid chromatography (HPLC) method to 

measure the accumulation of 21 structurally related DHPs as proof of principle.93  Only 

five of these DHPs were found to accumulate.  Subsequent large-scale analysis of a 

chemical library of over 1,000 compounds placed the accumulation in C. elegans below 

10%, suggesting that most molecules do not accumulate inside C. elegans likely due to 

difficulty entering the worms through their outer physical barrier, the cuticle.93 
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Structural comparison of the DHPs 17 - 37 shows a high degree of similarity, with 

minor differences between the compounds found to accumulate and those that did not such 

as a methyl ester in place of an ethyl ester (19 vs 22), addition of a single fluorine to the 

aromatic ring (20 vs 23, 24, and 25), and substitution of the halogen present (chlorine in 

21 vs fluorine in 26) (Figure 2.1).  Although the absorption of small molecules by C. 

elegans might be low, accumulation, which is influenced by the overall size, shape, and 

polarity of molecules, unlikely selects between the minor structural differences of these 

DHPs.94 

 

 

Figure 2.1.  Dihydropyridines assessed for accumulation in C. elegans.  DHPs in green 

were found to accumulate by Burns et al. while those in blue were 

previously not found to accumulate but were detected in C. elegans lysates 

with reassessment by HPLC.  Ortho-nitro DHPs (black) are light sensitive 

and are found to accumulate when experiments are conducted in the dark.  

DHPs in red were not detected in the accumulation assessments. 
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Neuroactive small molecules, as well as many other drugs, have been shown to 

elicit phenotypic responses in C. elegans, indicating that a large number of compounds do 

in fact enter the worm.  The widespread claim that compounds do not easily cross the 

nematode cuticle was therefore investigated by reassessing the accumulation of the same 

21 DHPs according to the HPLC method of worm lysates presented by Burns et al.  In 

addition to the five DHPs reported to accumulate by Burns et al., it was discovered that ten 

of the DHPs not previously found to accumulate were detectable after 6 hour incubation.  

This suggested that there was a potentially large number of false negatives in the previous 

report, underestimating the accumulation of compounds in C. elegans.   

Dihydropyridines, also known as Hantzsch esters, are susceptible to mild oxidative 

aromatization, so the compounds were carefully analyzed for purity.95-96  The number of 

worms used in each trial was doubled from the amount reported by Burns et al. to ensure 

that the samples would be above the HPLC limits of detection and the HPLC solvent 

gradient was slightly altered from the one originally used in their paper.  Using a slower 

gradient with a longer run time ensured that the DHP peaks were visible against the 

changing background absorbance of the solvents throughout the HPLC run.  In addition, 

pyridine derivatives corresponding to each of the DHPs as well as other known or possible 

metabolites were synthesized for comparison.  The new solvent gradient also allowed for 

the separation of the DHPs, pyridines, and other metabolites, enabling the identification of 

any DHP metabolites at detectable levels in the worm lysates. 

Following the improved assessment it was found that 81% of the DHPs (17 - 33) 

accumulated, compared to the 24% previously reported.  Interestingly, DHPs 32 and 33 are 
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light sensitive and rapidly degraded in the incubation buffer, which accounted for their 

initial apparent lack of accumulation.97  While they were not detected if the accumulation 

was evaluated in the presence of light, the ortho-nitro compounds were found to 

accumulate in C. elegans when the incubation and subsequent preparation of samples for 

HPLC analysis were conducted in the dark.  The four compounds that were not detected, 

34, 35, 36, and 37, may also accumulate but undergo metabolic degradation as the 

ethylethoxy esters, accessible methyl esters, and aryl methyl ethers are metabolically labile.  

In addition, when dihydropyridines undergo oxidative aromatization through metabolism 

the resulting penta-substituted pyridines possess a new, distinct UV chromophore that was 

not detected by analogy to the parent compound absorbance.98  In light of these findings 

regarding the bioaccumulation of DHPs it was concluded that small molecules do in fact 

readily enter C. elegans and thus it is both a useful and justifiable organism for small 

molecule studies. 

Development of an in vivo Outgrowth Assay 

Neuronal networks form through highly regulated axonal branching, a dynamic 

process that involves both extension and retraction.99-101  Formation of new branches 

through a net extension of neuronal outgrowth results in the establishment of functional 

neuronal circuits.  An assay was desired that would detect the branching and outgrowth of 

networked neurons promoted by bioactive compounds.  In the development of an assay for 

screening neurotrophic small molecules in vivo, the natural product clovanemagnolol was 

selected as a positive control due to its previously established potent neurotrophic activity.   
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The effects of clovanemagnolol were observed in various neuronal classes in C. 

elegans through the use of GFP-labeled nerve cells.  Nematodes with fluorescent 

cholinergic neurons, GABAergic neurons, dopaminergic neurons, or mechanosensory 

(glutamatergic) neurons were treated with clovanemagnolol and observed for aberrant 

growth 48 hours later.  No significant additional or abnormal growth was observable in the 

GABAergic, dopaminergic, or mechanosensory neurons of treated worms.  Significant 

additional growth deviations from untreated control worms, including increased sprouting 

and branching, were observed in GFP-labeled cholinergic neurons of nematodes treated 

with clovanemagnolol.  The cholinergic strain was therefore carried forward in the 

outgrowth assay development due to easily observed abnormal deviations from control 

worms.   

C. elegans expressing GFP in cholinergic motor neurons (LX929 (vsIs48[unc-

17::GFP])) exhibit fluorescence in the nerve ring, laterally along the worm in the dorsal 

and ventral nerve cords, and in commissures that run ventrodorsally across the body 

(Figure 2.2).  Due to complex fluorescence in the nerve ring, investigations for 

abnormalities of cholinergic neurons were focused on regions posterior to the pharynx.   
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Figure 2.2.  Cholinergic neurons expressing GFP in C. elegans strain LX929. 

 

Increased sprouting, branching, and abnormal neuronal growth morphologies were 

observed in the small molecule treated nematodes compared to controls (Figure 2.3).  

Sprouting, both single process and occasionally Y-shaped growths, was observed from 

both the ventral and dorsal nerve cords as well as sublateral nerve cords.  Commissural 

branching and aberrant growth were observed as well.  These neuronal outgrowth effects 

were observed in nematodes exposed to clovanemagnolol at concentrations as low as 0.02 

µM.  Worms exposed to 0.02 µM clovanemagnolol showed a slight increase in abnormal 

growths compared to controls, while those exposed to 2 µM showed a distinctive increase 

in the frequency of outgrowth.  Exposure to clovanemagnolol as well as the isomeric 

natural product caryolanemagnolol at 2 μM concentrations caused outgrowth in 35% and 

38% of C. elegans, respectively, compared to a background rate of branching of 18% in 

untreated control worms. 
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Figure 2.3.  Outgrowth of cholinergic neurons in C. elegans exposed to clovanemagnolol 

(A,B) or caryolanemagnolol (C-F). 

 

The method of exposure of the worms to small molecules affects the required 

dosage.  For these experiments, C. elegans were allowed to crawl on an agar plate treated 

with the neurotrophic compound.  The tough outer cuticle of C. elegans presents a difficult 

barrier for small molecules to cross into the worm.93, 102  For this reason, compounds often 
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have to be administered at concentrations orders of magnitude higher than those for in vitro 

cell cultures.  As the concentrations of the compounds were increased orders of magnitude 

above 2 µM solubility became an issue and significant increases in the extent of resultant 

outgrowth effects were not observed, so this was used as the standard concentration.   

To ensure that the observed branching was not caused by experimental factors other 

than small molecule exposure, several control experiments were performed.  Branching 

was not increased by physical stress to the worms, nor was there evidence of severed or 

injured axons caused by changes in conditioning of the worms.  Branching was 

independent of worm age up to one week old adults.  Past this point, background branching 

increased, so experiments were limited to late larval and early adult stages.  The exposure 

time was optimized to 48 hours to allow for a sufficient exposure period without 

introducing the likelihood of age-related branching.  Experiments were performed with 

both living and dead E. coli as a food source to examine the possibility of drug metabolism 

by the bacteria.  Branching of C. elegans was found to be similar under both conditions, 

indicating that the presence of live E. coli was not detrimental to the experimental 

conditions. 

In developing the in vivo screening protocol for detecting small molecule-induced 

neuronal outgrowth in cholinergic neurons of C. elegans several previously reported, 

commercially available neuroactive compounds were investigated (Figure 2.4).  C. elegans 

were treated with a compound via environmental exposure by adding them to an agar plate 

containing the drug.  Their fluorescent neurons were subsequently observed for evidence 

of outgrowth.  The presence of growth abnormalities in a significantly higher frequency of 
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nematodes compared to untreated control worms was characterized as indicative of small 

molecule-induced effects.  In order to account for the variable nature of using living 

organisms, individual experiments were repeated in triplicate and the results averaged as 

percentages of worms showing abnormal morphologies.  Several compounds were found 

to induce higher levels of neuronal outgrowth in cholinergic neurons. 

 

 

Figure 2.4.  Small molecules screened for outgrowth in C. elegans, shown as differences 

from control (set at zero). 

 

Observed abnormalities following exposure to the growth-promoting small 

molecules included sprouting, branching, and aberrant growth (Figure 2.5).  Most 

significantly, new sprouts were observed to originate from the dorsal nerve cord, the ventral 
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nerve cord, and sublateral nerve cords.  Wandering commissural growth and branching 

from commissures were also observed, although less frequently.  Untreated control worms 

rarely exhibited these complex morphologies, with similar background abnormalities 

arising only occasionally in approximately 18% of control worms.  The highest frequency 

of outgrowth was observed in nematodes treated with garcinol, with 39% exhibiting 

branching or sprouting.   

 

 

Figure 2.5.  Outgrowth of C. elegans treated with 2 µM small molecules, with the 

frequency compared to controls (A).  Branching and sprouting of 

cholinergic neurons observed following exposure to dibutyryl-cAMP (B1), 

carnosic acid (B2), garcinol (B3), trigonelline (B4), and amphotericin B 

(B5).   
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Design of Clovanemagnolol Analogs 

The observed in vivo neuronal outgrowth of both clovanemagnolol and 

caryolanemagnolol as well as other growth-promoting compounds was promising 

considering the reported difficulty of many small molecules passing through the C. elegans 

cuticle.  Previously developed synthetic routes to access these natural products and 

derivatives on multi-gram scales favorably positioned the preparation of structural 

analogs.28-29  To develop additional analogs for biological testing and target identification 

studies, the synthesis of a structural derivative of clovanemagnolol amenable to 

modification was designed from the readily available starting materials (–)-caryophyllene 

(38) and 2,2’-bisphenol (39) based on the previously reported synthesis by the Siegel group 

(Scheme 2.1).29  This derivative possessed the same structural core derived from 

caryophyllene, but lacked the allyl appendages on the aryl rings.  It was reasoned that these 

positions could be used later as a handle for chemical modification and would provide the 

ideal location for designing further analogs for mechanism of action studies. 

 

 

Scheme 2.1.  Synthesis of clovanebisphenol, a clovanemagnolol derivative. 
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Oxidation of (–)-caryophyllene (38) produced diastereomeric epoxides 

caryophyllene α-oxide (13) and caryophyllene β-oxide (14).  First proposed by Barton and 

coworkers, the caryophyllene epoxides rearrange to generate the clovane and caryolane 

core structures as a result of Brønsted acid activation followed by intramolecular attack of 

the alkene (Scheme 2.2).103-104  Reaction of the tricyclic carbocation intermediates with 

2,2’-bisphenol (39) generated the derivative compounds.  The intermediate bridgehead 

carbocation derived from caryophyllene α-oxide was trapped directly by bisphenol to form 

the caryolanebisphenol (41) diastereomer with 48% yield.  The carbocation intermediate 

resulting from caryophyllene β-oxide possessed favorable orbital overlap to undergo 

rearrangement, whereby the cyclobutane ring expanded to relieve ring strain, generating 

the clovane core.  This rearranged cation was then trapped by bisphenol to generate the 

clovanebisphenol (40) analog in 16% yield.105 
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Scheme 2.2.  Mechanism of caryolanebisphenol and clovanebisphenol formation. 

 

These newly synthesized derivatives combined with the cholinergic neuronal 

outgrowth assay in C. elegans allowed for investigations into the biological activity of 

chemically edited analogs possessing the clovane or caryolane core.  It was found that the 

derivatives clovanebisphenol and caryolanebisphenol caused sprouting from multiple 
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nerve cords and commissural branching morphologies at concentrations as low as 0.02 μM 

in cholinergic neurons.  Caryolanebisphenol showed outgrowth in 39% of nematodes, 

while clovanebisphenol showed outgrowth in 30% at 2 μM concentrations (Figure 2.6).  

These levels of branching were similar to those found after exposure to the parent natural 

products.  When the concentration of clovanebisphenol was increased to 20 μM, 43% of 

the worms showed outgrowth morphologies.  The modified derivatives clovanebisphenol 

and caryolanebisphenol retained biological activity, and established a position for making 

further derivatives of the natural products. 

 

 

Figure 2.6.  Outgrowth of C. elegans exposed to clovanebisphenol (A-C) or 

caryolanebisphenol (D-F). 

 

A simplified method for determining the biological effects of small molecules on 

neuronal outgrowth was desired, and the use of C. elegans as a model system allowed for 
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examining in vivo activity as well as overcoming many of the problems associated with 

primary neuronal cultures.  A strain of GFP-fluorescing nematodes was discovered where 

neuronal outgrowth could easily be examined in cholinergic neurons.  The exposure of 

nematodes to potentially neuroactive compounds was accomplished with minimal effort, 

and within 48 hours the results of outgrowth assays were obtained.  Various compounds 

were found to cause outgrowth in the C. elegans model, including the clovane scaffold, 

providing a simple technique for assessing the neurotrophic activity of small molecules 

and facilitating the design and screening of biologically optimized analogs in the 

development of potential therapeutics. 

Mechanism of Action Studies 

The ability to transition from early screening stages to mechanism of action studies 

within the same model organism provides significant advantages in target identification.  

The use of a protein set from an entire organism surpasses the use of individual cell lines 

as protein targets that exist in only one type of cell might be missed.  C. elegans are well 

suited for generating organismal lysates since they can be cultivated easily on a large scale, 

allowing for the production of sizable protein samples.106-107  The hermaphroditic nature of 

the worms generates a uniform pool of proteins.  Furthermore, upon discovery of a putative 

protein target RNAi coupled with C. elegans’ well-studied genetics could be used for target 

validation.  The use of C. elegans lysates in target identification allows for organismal 

mechanism of action studies, providing a link between small molecule screening and 

genetic manipulations. 



 31 

Generation of Organismal Lysate 

The nematodes’ tough outer cuticles have presented a challenge in generating 

organismal lysates.  C. elegans possess a resilient exoskeleton, known as the cuticle, made 

up of cross-linked collagens, cuticlins, glycoproteins, and lipids.102  The cuticle is 

synthesized five times throughout the development of the worm and, among other 

functions, provides environmental protection.102  This tough extracellular matrix has 

proven to be a barrier to methods of lysis, especially under non-denaturing conditions.  

Several methods for lysing C. elegans have been reported, including proteinase K 

digestion, sonication, boiling, freezing and pulverizing, and homogenization techniques.108  

After investigating these, continuous sonication at low power using a microtip probe was 

found to be the best method for easily and sufficiently fragmenting cuticles and extracting 

worm innards under non-denaturing conditions.108 

C. elegans were grown in large-scale liquid cultures to provide substantial whole-

organism protein lysates for mode of action studies.  Lysates were generated from wild-

type C. elegans (N2) after incubation in buffer for 30 minutes to allow for complete 

digestion of their E. coli food source, thereby avoiding bacterial contamination.  Worms 

were collected by washing with a cold buffer solution, and the samples were subsequently 

maintained at ~5 °C to ensure protein integrity.  After centrifugation at low speed, the 

supernatant was discarded and the worms were washed with a series of buffers.  Cold lysis 

buffer containing protease inhibitors was added to the worm pellet following the final 

wash/centrifugation cycle.  The worms were then sonicated using a microtip probe until 

“ghost cuticles” were observed microscopically as evidence of lysis.  The organismal lysate 
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was then cleared by a final centrifugation and the supernatant was collected for target 

identification. 

Preparation of Reagents for Target Identification 

Various strategies for direct target identification exist, including methods involving 

affinity matrices, biotinylation, radiolabeling/imaging, and photoaffinity probes.109  

Previous target identification studies using C. elegans have employed chemistry-to-gene 

screens69, 110 and affinity chromatography111.  Affinity purification, or “pull-down”, 

methods employ a molecule of interest conjugated to a solid support which is then 

incubated with a cellular lysate.  Affinity purification pull-down methods have been 

successful in identifying protein targets of bioactive molecules.111  The use of solid support 

resins for pull-down experiments is advantageous due to the low cost, simple procedures 

(combine, wash, and elute), and environmental benignity.  Recently, small molecules 

containing primary alcohols have been linked successfully to beaded agarose containing 

terminal amines via carbamate formation following activation with carbonyldiimidazole 

(CDI).112 

Affinity purification was chosen from among small molecule target identification 

strategies due to synthetic advantages following structure-activity relationship (SAR) 

determination.109  The validity of using C. elegans proteome for mode of action studies 

was first established through identifying the known protein targets of a synthetic small 

molecule derivative of the macrolide lactone FK506 (45)113, pipecolyl α-ketoamide (46)114, 

which is recognized by the human immunophilin FKBP12115 (Figure 2.7).  Isolated from 
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the soil bacterium Streptomyces tsukubaensis, FK506 exhibits potent immunosuppressive 

activity.  The natural product FK506, the structurally related macrolide rapamycin (47), 

and small molecule derivatives possessing the binding domain such as pipecolyl α-

ketoamide bind with high affinity to the immunophilin FKBP12 (FK506 binding protein 

12) as well as several other members of the FKBP family of proteins which possess 

peptidyl-prolyl cis-trans isomerase activity, thereby generating a small molecule/protein 

complex that inhibits T-cell functions.116-117, 118  The simplified ligand allows for 

exploitation of this strong binding along with manipulation of the small molecule structure 

to generate affinity reagents.  The well-known FKBP binding targets of the small molecule 

FK506 and derivative ligands like pipecolyl α-ketoamide allow for validation of novel 

target identification methods, such as the desired use of the C. elegans proteome for pull-

down experiments.   

 

 

Figure 2.7.  Representative molecules that have been shown to bind FKBPs. 
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The synthesis of the pipecolyl α-ketoamide 46 was achieved by a minor 

modification of the existing route (Scheme 2.3).114-115  Following amide bond formation 

with 3-aminopropanol, the primary alcohol-containing pipecolyl α-ketoamide 59 was 

conjugated to immobilized diaminodipropylamine on beaded agarose through carbamate 

bond formation according to previously established procedures.112  Capping of unreacted 

amines as an acetoxy group was achieved by the use of N-acetoxysuccinimide.117  The 

affinity reagent (60) was then combined with the prepared C. elegans crude proteome 

generated by sonication of the worms.  Proteins that bound to the beads were denatured, 

separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and 

bands were excised from the gel for mass spectrometry (MS)-based protein identification.  

Mass spectrometry data compared to a database of C. elegans protein sequences (CAEEL) 

revealed that proteins corresponding to the fkb-3, fkb-4, and fkb-5 genes were isolated in 

the gel bands (Figure 2.8).  These genes encode a peptidyl-prolyl cis-trans isomerase 

homologous to a mammalian FK506 immunosuppressant binding protein.   
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Scheme 2.3.  Synthesis of pipecolyl α-ketoamide and the FKBP affinity matrix. 
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Figure 2.8.  Representative section of proteins identified as binding to pipecolyl α-

ketoamide following pull-down experiments. 

 

Soluble Competition 

Another application of the pull-down method combined the small molecule-bound 

beads with free, soluble small molecule ligand able to engage in competitive binding.117, 

119  Protein lysates were combined with either the small molecule-bound beads alone or the 

small molecule beads plus a high concentration of unbound ligand in solution.  The free 

ligand competes for target binding with the immobilized compound, and should 

preferentially bind to the target due to the concentration disparity.  Soluble competition 

experiments were performed using affinity resin-bound pipecolyl α-ketoamide (60) 

combined with the free, soluble ligand 46 in C. elegans lysate.  Following the soluble 

competition experiment, SDS-PAGE and mass spectrometry-based protein identification 
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were used to identify proteins in each sample and the two sets of data were compared 

(Figure 2.9).  Proteins that were absent from the sample containing free ligand but bound 

to the sample of small molecule-immobilized beads alone were noted, while proteins that 

bound to both samples were discarded.   

 

 

Figure 2.9.  Soluble competition pull-down methods using C. elegans lysate and 

pipecolyl α-ketoamide free in solution as well as attached to beaded agarose. 

 

Mass spectrometry protein identification revealed three FKBPs that were present 

in the bead only sample but absent from the bead plus free ligand sample, corresponding 

to C. elegans genes fkb-1, fkb-2, and fkb-5, all of which are homologs of human FKBPs.120  

Additionally, proteins corresponding to fkb-6 were enriched in the bead only sample, but 

found in both likely due to incomplete soluble competition in the control.  Successful 

identification of the expected FKBPs using these soluble competition methods provided a 
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foundation for the discovery of unknown protein targets of small molecules utilizing C. 

elegans proteome. 

Identification of an Unknown Protein Target of Clovanemagnolol 

These soluble competition pull-down and identification techniques were then 

applied to clovanebisphenol, which possessed unknown targets.  This analog of the natural 

product clovanemagnolol was identified as a promoter of nerve growth using the 

previously described phenotypic cholinergic outgrowth assay.121  It was determined 

through SAR investigations that the allyl appendages were not required for activity, 

establishing a structural position for attachment to a solid support.  To apply the affinity 

purification pull-down methods to this molecule, a derivative containing a primary alcohol, 

clovanetriol (61), was synthesized for coupling to beaded agarose (Scheme 2.4).  After 

acid-catalyzed rearrangement of caryophyllene β-oxide and trapping of the cationic 

intermediate with 2,2’-bisphenol, the resultant clovanebisphenol underwent selective 

iodination with sodium hydroxide and iodine, generating aryl iodide 62 para to the phenol 

in 88% yield.  The mono-allyl clovanemagnolol derivative 63 was then formed by Stille 

reaction with allyl tributylstannane.  After hydroboration and oxidation, clovanetriol (61) 

was obtained in 77% yield.  The clovane-based affinity reagent (65) could then be accessed 

by CDI coupling to amino-beaded agarose.112 
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Scheme 2.4.  Synthesis of clovanetriol and the clovane-based affinity matrix. 

 

The clovanetriol analog 61, which retained its neuroactive properties according to 

assessment with the outgrowth assay by inducing branching in 29% of worms, possessed 

improved aqueous solubility.  Clovanetriol was conjugated to amine-bound agarose beads 

and mixed with C. elegans lysate alone as well as lysate combined with free clovanetriol 

for soluble competition experiments.  Following SDS-PAGE and mass spectrometry-based 

protein identification, several proteins were identified as present in the bead-alone sample 

but not the sample containing free molecule, providing putative targets (Figure 2.10).105   
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Figure 2.10.  Proteins identified as putative targets following clovane affinity matrix 

pull-down and soluble competition. 

 

From these identified proteins, KLC-1 proved to be the most reproducibly isolated 

target relevant to axonal regeneration and was therefore selected for further investigation.  
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The klc-1 gene codes for a kinesin light chain, which together with kinesin heavy chain 

forms part of the kinesin complex, a motor protein involved in cellular transport (Figure 

2.11).  Kinesin facilitates anterograde transport, meaning it migrates unidirectionally 

toward the plus end of microtubules and carries axonal cargo toward the periphery of the 

cell.  Generally, the light chain of kinesin is involved in cargo binding.   

 

 

Figure 2.11.  The structure of the kinesin motor protein moving along a microtubule. 

 

C. elegans contain two genes that code for kinesin light chains, klc-1 and klc-2.  

Kinesin-1, a complex of C. elegans proteins UNC-116/KHC and KLC-2, has been 

identified as playing a role in axonal transport and outgrowth in yeast two-hybrid assays.122  

Although limited, previous reports have identified klc-1 as a gene affecting axonal 

regeneration in C. elegans following laser microsurgery.88  Additionally, inhibition of a 
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kinesin protein, kinesin-5, in adult mouse dorsal root ganglion neurons has been shown to 

enhance axonal regeneration.123 

To lend support to the role of klc-1 in neuronal outgrowth and branching, genetic 

validation of the identified target through the use of either mutants or RNAi can be 

investigated to reproduce the phenotypic effects observed with small molecule treatment.  

C. elegans’ well-studied genome along with efforts by the C. elegans Gene Knockout 

Consortium to generate a large number of readily available genetic knockouts make this 

organism ideal for these studies.  When coupled with the previously developed in vivo 

outgrowth assay, any altered branching phenotypes caused by the functional absence of 

this gene can be observed.121  Mutant klc-1 worms (RB1975 (klc-1(ok2609)) were crossed 

with worms containing GFP-labeling in cholinergic neurons (LX929 (vsIs48[unc-

17::GFP])) and observed for outgrowth.  While control worms possessed only 18% of 

background branching, 43% of the fluorescent cholinergic klc-1 mutant worms exhibited a 

branching phenotype (Figure 2.12).105  This branching emanated from both the nerve cords 

and commissures that extend across the worm, with many commissures containing several 

branches.  Treatment with clovanebisphenol had little effect on the rate of branching of 

klc-1 mutant worms.  As previously reported, control worms treated with clovanebisphenol 

exhibited 30% branching while klc-1 mutant worms treated with clovanebisphenol 

exhibited 36% outgrowth.  Genetic validation via RNAi was also attempted but failed to 

produce either positive or negative results.  The difficulty of RNAi with nerve cells has 

been reported and was possibly the reason behind a lack of observed effects.54, 124 
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Figure 2.12.  Outgrowth of C. elegans exposed to clovane-based small molecules and 

klc-1 genetic mutants compared to control worms (* P≤ 0.03, ** P≤ 0.005) 

(A).  Control cholinergic neurons (B1) and outgrowth observed in worms 

treated with clovanemagnolol (B2,B3) and klc-1 mutants (B4,B5). 

 

Conclusion 

C .elegans allow for chemical biology investigations of small molecules from initial 

phenotypic screening in vivo to synthetic design of analogs, mechanism of action studies 
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for the identification of unknown protein targets, and genetic validation.  Pull-down 

experiments combined with genetic methods using C. elegans exhibited the versatility of 

this model organism for identifying and validating biological targets of small molecules 

and provided a powerful basis for mode of action studies.  The worm provided a useful 

vehicle for connecting high-throughput screening, mode of action studies, and genetic 

recapitulation within the same organism. 

Experimental Section 

Bioaccumulation of DHPs.  C. elegans were grown at 23 °C in liquid culture 

according to established procedures from synchronized first larval stage worms using OP50 

Escherichia coli as a food source.47  The worms were harvested at the fourth larval stage, 

washed at least twice, and resuspended in M9 buffer to give a concentration of about 10 

worms per µL.  The worm suspension was divided into wells of a 48-well microplate (1 

mL each, about 10,000 worms per trial) and DHPs were added to a final concentration of 

40 µM (0.4% DMSO, v/v).  Worms were incubated in the solutions at 23 °C for 6 hours.  

The worm solutions were then transferred to microcentrifugation tubes, pelleted by 

centrifugation, and the incubation solution removed.  The worms were washed three times 

with M9 buffer (1 mL), centrifuged, and the liquid above the pellet removed following the 

final washing.  The worms were then stored frozen at -20 °C until ready for HPLC 

processing.  The samples were lysed by adding lysis buffer (50 µL of 100 mM KCl, 20 

mM Tris pH 8.3, 0.4% SDS), proteinase K (10 µL of 3 mg/mL), and heating at 60 °C for 

1 hour.  After lysis the worm solutions were diluted with acetonitrile (150 µL), briefly 
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sonicated, and filtered using a syringe filter (0.2 µm reconstituted cellulose membrane).  

The samples were then processed the same day by HPLC.  Samples (100 µL) were injected 

onto a 150x4.6 mm C18 (5 µm) analytical column and analyzed at 230 nm using an Agilent 

1260 Infinity Quaternary LC system equipped with an autosampler and diode array 

detector.  A solvent gradient (0% to 100% B, increasing by 10% every 2 minutes) was used 

to elute the samples over 24 minutes at a flow rate of 1.5 mL/minute (Solvent A: 4.9% 

ACN, 95% H2O, 0.1% TFA; Solvent B: 95% ACN, 4.9% H2O, 0.1% TFA).  Experiments 

were repeated in triplicate.  To account for the possibility of false positives, several control 

experiments were conducted.  The accumulation procedure was repeated with an additional 

washing using 0.1% SDS after incubation, without worms, or using heat-killed worms 

(overnight incubation at 37 °C).  Worms washed with SDS still showed accumulation of 

DHPs.  No DHP was observed in HPLC traces of experiments without worms.  Dead worm 

trials did show DHP accumulation, which could be due to diffusion of compounds into the 

worm body. 

Nematode Cultures and Microscopy.  General maintenance of C. elegans was 

performed using an Olympus SZX16 stereomicroscope.  GFP-labeled nematodes from 

outgrowth assays were visualized using an Olympus IX73 inverted microscope with a Prior 

Lumen 200 fluorescence illumination system.  Images were captured using a Hamamatsu 

Orca-flash2.8 digital camera.  C. elegans cultures were maintained on nematode growth 

medium (NGM) agar plates seeded with Escherichia coli OP50 bacteria at 23 °C according 

to established procedures.39  Wild-type Bristol N2 strain was used for generating lysates.  

Other strains used include LX929 (vsIs48[unc-17::GFP]), EG1285 (oxIs12[Punc-47::GFP; 
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lin-15(+)]), BZ555 (egIs1[Pdat-1::GFP]), SK4005 (zdIs5[Pmec-4::GFP; lin-15(+)]), 

LX959 (vsIs13[lin-11::pes-10::GFP; lin-15(+)]), and RB1975 (klc-1(ok2609)), which can 

be obtained from the Caenorhabditis Genetics Center. 

Outgrowth Assay.  Stock solutions (20 mM) of various chemicals were prepared in 

DMSO and subsequently diluted in M9 buffer to a final concentration of 0.04 mM (0.2% 

DMSO, v/v).  Diluted solutions (200 μL) were spread over seeded NGM plates (35x10 

mm, containing 4 mL of agar) and allowed to absorb to a final concentration of 2 μM.  

Approximately thirty fourth-larval-stage nematodes were picked from age-synchronized 

populations to prepared chemical plates.  Worms were allowed to grow at 23°C on the 

chemical plates for approximately 48 hours, after which time the Day 2 Adults (n≥20) were 

mounted in M9 buffer (10 μL) on 2% agarose pads containing sodium azide (5 mM) and 

observed for neuronal outgrowth compared to untreated control worms. 

Generating C. elegans Lysates.  Worms were transferred from starved plates to 

fifteen 60x15 mm NGM agar plates seeded with E. coli OP50 and allowed to grow until a 

large number of adults were present and the plates were freshly starved (about 3 days).  The 

plates were washed with cold M9 buffer to collect the worms.  Everything was kept cold 

from this point forward.  The collected worm suspension was centrifuged at 300 rpm for 5 

minutes to pellet the worms.  The supernatant was discarded and the worms were washed 

with cold M9 three times, 0.1 M NaCl once, and TBS once, centrifuging between cycles.  

After the final washing the supernatant was discarded and 2 mL cold lysis buffer (TBS pH 

7.5 containing 1 mM EDTA, 1.5% n-octyl glucoside, 1 mM PMSF, 1 mM NaF, and 

protease inhibitors (Amresco Protease Inhibitor Cocktail, General Use)) was added to the 
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worm pellet.  The worms were sonicated using a microtip probe for 3 minute continuous 

cycles at 7-8 W power until “ghost cuticles” were observed microscopically as evidence of 

lysis.  Organismal lysates were incubated on ice for 10 minutes then cleared by 

centrifugation at 15000 rpm for 10 minutes and the supernatant collected. 

Soluble Competition and Pull-Down Experiments.  The soluble competitor was 

dissolved in TBS to create a 5 mM stock ligand solution.  Prepared affinity beads (10 µL) 

were combined with either C. elegans lysate (500 µL) and TBS buffer (200 µL) or C. 

elegans lysate (500 µL) premixed with 5 mM ligand solution (200 µL).  The suspensions 

were mixed with gentle shaking at 4 °C for 18 hours.  The lysate mixtures were then 

centrifuged at 15000 rpm for 2 minutes to pellet the beads.  The supernatant was removed 

and the beads were washed with 1 mL TBS four times and 1 mL water once.  After the 

final washing the liquid was removed and 20 µL SDS loading buffer was added to the 

beads.  The solutions were heated at 100 °C for 5 minutes and SDS-PAGE was performed 

(12% gel run at 150 V for 10 minutes).  The entire lanes were excised and submitted for 

mass spectrometry analysis and protein identification.  Mass spectrometry and protein 

identification were performed by the Protein and Metabolite Analysis Facility at the 

University of Texas at Austin. Probability scores were analyzed by Scaffold Proteome 

Software. 

General Chemistry.  All reactions were performed in flame dried round bottom 

flasks under a positive pressure of nitrogen unless otherwise indicated. Pipecolyl α-

ketoamide 46 and the corresponding pipecolyl ketoamide-based solid phase reagent 60 

were prepared as previously described.112, 114  Dichloromethane (CH2Cl2) and 
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tetrahydrofuran (THF) were purified using a Pure-Solv MD-5 Solvent Purification System 

(Innovative Technology).  All commercial reagents were used directly without further 

purification unless otherwise noted.  Analytical thin-layer chromatography (TLC) was 

carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD Chemical).  

TLC plates were visualized by exposure to ultraviolet light and/or stained with ceric 

ammonium molybdate or potassium permanganate.  Flash chromatography was performed 

using Silicycle SiliaFlash P60 (230-400 mesh) silica gel.  Organic solutions were 

concentrated by rotary evaporation at ~20 Torr.  Nuclear magnetic resonance spectra (1H 

NMR and 13C NMR) were recorded with a Varian Mercury 400 MHz or Varian 

DirectDrive 400 MHz spectrometer.  Chemical shifts are reported as parts per million 

(ppm) downfield of tetramethylsilane and referenced relative to residual protium in NMR 

solvents or carbon resonances of the solvent (CDCl3 
1H δ 7.26 ppm and CDCl3 

13C δ 77.0 

ppm).  Coupling constants are reported in Hertz (Hz).  Data for 1H NMR spectra are 

reported as follows:  chemical shift (ppm, referenced to protium; s = singlet, d = doublet, t 

= triplet, q = quartet, m = multiplet, bs = broad singlet, coupling constant (Hz), and 

integration).  Infrared spectra (IR) were recorded on a Thermo Scientific Nicolet 380 FTIR 

using neat thin film technique.  High-resolution mass spectra (HRMS) were performed at 

The University of Texas at Austin Mass Spectrometry Center on an Agilent 6530 QTOF 

system and reported as m/z (relative intensity). 

Synthesis of Clovanebisphenol (40).  To a solution of caryophyllene oxide (14) (1.1 

g, 4.5 mmol, 1.0 equiv.) and 2,2’-bisphenol (39) (4.2 g, 22 mmol, 5 equiv.) in CH2Cl2 (30 

mL) was added a solution of diphenyl phosphate (0.57 g, 2.3 mmol, 0.5 equiv.) in CH2Cl2 
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(20 mL) over 10 minutes.  The reaction was stirred at 38 °C for 2 hours then allowed to 

cool to 23 °C.  The solvent was removed and the residue diluted with hexane (250 mL).  

The organic solution was washed with aqueous phosphate buffer (pH 7, 3 x 150 mL), 1 N 

NaOH (5 x 150 mL), brine (1 x 150 mL), dried over Na2SO4, and concentrated. The 

material was purified by silica gel chromatography (hexanes/EtOAc 80:20 as eluent) 

followed by another round of silica gel chromatography (100% CH2Cl2 as eluent), 

providing clovanebisphenol 40 (292 mg, 0.42 mmol) as a white foam. Rf = 0.22 (100% 

CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 0.84 (s, 3H), 0.87 (bs, 1H), 0.90 (s, 3H), 0.94 (s, 

3H), 1.02-1.2 (m, 2H), 1.20-1.47 (m, 6H), 1.48-1.72 (m, 4H), 1.79 (dd, J = 5.4 and 12.1 

Hz, 1H), 1.86-2.02 (m, 1H), 3.25 (bs, 1H), 4.22 (dd, J = 5.8 and 9.3 Hz), 6.33 (s, 1H), 7.00 

(t, J = 8.2, 2H), 7.04-7.16(m, 2H), 7.2-7.4 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 20.5, 

25.3, 25.9, 26.4, 28.3, 31.1, 32.8, 34.5, 35.4, 37.5, 44.2, 44.7, 49.8, 74.7, 89.4, 115.8, 116.9, 

120.6, 122.2, 126.7, 128.6, 128.9, 129.0, 131.1, 132.2, 153.5, 155.5; IR (film, ν cm-1) 3378, 

2947, 1478, 752; HRMS calc. for C27H34O3+Na+([M+Na+]) 429.2508, obs. 429.2406. 

Synthesis of Iodo-Clovanebisphenol (62).  A solution of clovanebisphenol (40) (990 

mg, 2.43 mmol, 1.0 equiv.) and NaOH (177 mg, 4.43 mmol, 2.0 equiv.) in MeOH (250 

mL) was cooled to –78 °C. Once cooled, a solution of iodine (617 mg, 2.44 mmol, 1.0 

equiv.) in MeOH (250 mL) was added over 5 minutes and stirred at –78 °C for 30 minutes. 

The reaction was allowed to warm to 23 °C over 1 hour. The reaction mixture was 

concentrated under reduced pressure to form a viscous oil, diluted with EtOAc (300 mL), 

aqueous phosphate buffer (pH 3, 200 mL), and saturated Na2SO3 (300 mL). The organic 

layer was separated and washed with saturated Na2SO3 (100 mL) and brine (100 mL). The 
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organic solution was dried over Na2SO4, filtered, and concentrated.  The resulting 

iodophenol was purified by silica gel chromatography (90% CH2Cl2/hexanes  100% 

CH2Cl2  5% MeOH/CH2Cl2) to afford 62 as a white foam (1.14 g, 2.14 mmol).  Rf = 0.2 

(100% CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 0.87 (s, 3H), 0.93 (s, 3H), 0.95 (s, 3H), 

1.02-1.2 (m, 2H), 1.21-1.69 (m, 9H), 1.80 (dd, J = 5.8 and 12.5, 1H), 1.86-2.02 (m,1H), 

3.28 (bs, 1H), 4.25 (dd, J = 5.4 and 9, 1H), 6.52 (d, J = 8 Hz), 6.77 (d, J = 8.2 Hz, 1H), 

7.03 (d, J = 8.2, 1H), 7.07 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 1.9, 1H), 7.29 (dd, J = 1.5 and 

7.52, 1H), 7.33-7.42 (m, 1H), 7.53 (dd, J = 2.3 and 10.5, 1H), 7.54 (d, J = 2.0 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 20.5, 25.3, 25.9, 26.5, 28.2, 31.0, 32.7, 34.3, 35.4, 37.6, 43.8, 

44.7, 49.8, 74.8, 82.2, 88.6, 115.1, 119.0, 121.8, 126.7, 129.0, 129.4, 131.8, 137.3, 139.3, 

153.5, 155.2; IR (film, ν cm-1) 3400, 2949, 1478, 753; HRMS calc. for C27H33O3I
+ ([M+]) 

532.1474, obs. 532.1475. 

Synthesis of Des-Allyl-Clovanemagnolol (63).  Triphenyl phosphine (2.21 g, 8.42 

mmol, 6 equiv.), lithium chloride (960 mg, 22.6 mmol, 16 equiv.), 

bis(triphenylphosphine)palladium(II) dichloride (98 mg, 0.14 mmol, 0.1 equiv.), 2,6-di-

tertbutyl-4-methyl phenol (BHT) (2 mg, 0.01 mmol, 0.007 equiv.), and iodophenol 62 (747 

mg, 1.4 mmol, 1 equiv.) were combined and placed under N2.  To the reaction vessel was 

added N,N’-dimethylformamide (14 mL) followed by allyltributylstannane (1.39 g, 1.28 

mL, 4.21 mmol, 3 equiv.).  The reaction was heated at 120 °C for 15 minutes then allowed 

to cool to 23 °C. Once cool, the reaction was diluted with EtOAc (50 mL) and washed with 

3 N LiCl (5 x 15 mL) and brine (15 mL). The organic layer was dried over Na2SO4, filtered, 

and concentrated.  The resulting allylphenol was purified by silica gel chromatography 
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(50% CH2Cl2/hexanes  100% CH2Cl2  10% EtOAc/CH2Cl2) to afford 63 as a white 

foam (488 mg, 1.09 mmol).  Rf = 0.47 (35% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) 

δ 0.84 (s, 3H), 0.91 (s, 3H), 0.95 (s, 3H), 1.02-1.20 (m, 2H), 1.20-1.47 (m, 6H), 1.48-1.67 

(m, 4H), 1.79 (dd, J = 5.4 and 12.1 Hz, 1H), 1.86-2.02 (m, 1H), 3.24 (bs, 1H), 3.36 (d, J = 

6.6 Hz, 2H), 4.21 (dd, J = 5.4 and 9.3 Hz, 1H), 4.88-5.1 (m, 2H), 4.97-5.1 (m, 2H), 6.31 

(s, 1H), 6.94 (d, J = 8.2 Hz, 1H), 7.03-7.16 (m, 4H), 7.29-7.39 (m, 1H); 13C NMR (100 

MHz, CDCl3) δ 20.5, 25.3, 26.0, 26.4, 28.2, 31.1, 32.8, 34.4, 35.3, 37.5, 39.2, 44.1, 44.7, 

49.8, 74.7, 89.4, 115.2, 115.8, 116.9, 122.1, 126.6, 128.7, 128.9, 129.0, 131.1, 131.8, 132.0, 

137.8, 151.8, 155.4; IR (film, ν cm-1) 3421, 2948, 1497, 732; HRMS calc. for 

C38H38O3
+([M+]) 446.2821, obs. 446.2822. 

Synthesis of Clovanetriol (61).  To a solution of 63 (488 mg, 1.09 mmol, 1.0 equiv.) 

in dry THF (10.9 mL) was added 1M BH3·SMe2 (7.1 mL, 7.1 mmol, 6.5 equiv.) via syringe.  

After 10 minutes at 23 °C, the reaction was placed in a 0 °C ice bath and H2O (1 mL) was 

slowly added.  Once gas evolution had subsided, 30% H2O2 (5 mL) and 4 N LiOH (5 mL) 

were added, the ice bath removed, and the reaction allowed to stir for 10 minutes.  The 

reaction was then diluted with phosphate buffer (pH 3, 30 mL) and brine (30 mL). The 

organic layer was separated and the aqueous layer was extracted with EtOAc (4 x 50 mL). 

The combined extracts were dried over Na2SO4, filtered, and concentrated.  The resulting 

compound was purified by silica gel chromatography (30% EtOAc/hexanes  60% 

EtOAc/hexanes) to afford clovanetriol (61) as a white foam (399 mg, 0.839 mmol).  Rf = 

0.13 (35% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 0.86 (s, 3H), 0.88 (s, 3H), 0.96 

(s, 3H), 1.01-1.14 (m, 2H), 1.16-1.58 (m, 7H), 1.61 (t,  J = 10.6 Hz, 1H), 1.76-1.98 (m, 
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3H), 2.35 (s, 1H), 2.68 (t, J = 7 Hz, 2H), 3.2 (bs, 1H), 3.64 (t, J = 6.5 Hz, 2H), 4.23 (dd, J 

= 5 Hz and 9 Hz, 1H), 6.9 (bs, 1H), 6.92 (d, J = 7.8 Hz, 1H), 7.02-7.12 (m, 3H), 7.14-7.22 

(m, 1H), 7.30-7.40 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 20.5, 25.2, 25.2, 25.8, 26.4, 

28.2, 31.0, 32.8, 34.0, 34.4, 35.4, 37.5, 44.1, 44.6, 49.7, 61.7, 74.6, 88.9, 115.3, 116.6, 

125.1, 126.5, 128.0, 128.5, 128.8, 130.9, 131.9, 133.6, 151.6, 155.5; IR (film, ν cm-1) 3383, 

2946, 1036, 736; HRMS calc. for C30H40O4
+ ([M+]) 464.2927, obs. 464.2924. 

Synthesis of Clovane-Based Affinity Reagent (65).  The primary alcohol 61 (1.3 mg, 

2.0 μmol, 1.0 equiv.) was combined with carbonyldiimidazole (CDI) (8.1 mg, 50 μmol, 25 

equiv.) in CH2Cl2 (200 μL) and shaken on a vortex mixer at 23 °C for 1 hour.  The excess 

CDI was then quenched by the addition of a 1:1 acetonitrile/water solution (100 μL) and 

shaken for 30 minutes.  The liquids were removed under reduced pressure and the resulting 

residue dissolved in DMF (400 μL).  ThermoScientific CarboxyLink Coupling Gel 

(immobilized diaminodipropylamine on 4% cross-linked beaded agarose) (1 mL) was 

washed with DMF (3 x 1 mL), centrifuged, and the solvent removed.  The solution of 

activated carbamate in DMF was added to the agarose beads and shaken at 50 °C overnight.  

A 1 M N-acetoxysuccinimide solution in DMF (400 μL) was added to the beads and shaken 

at room temperature for 2 hours.  The beads were washed with DMF (3 x 1 mL), PBS 

(phosphate buffered saline) buffer (3 x 1 mL), and water (3 x 1 mL) then suspended in 

0.05% sodium azide in water (1 mL). 
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Chapter 3 – Vinaxanthone and Laser Axotomy 

 

Synthesis of Vinaxanthone and Analogs 

Due to previously reported dramatic CNS regenerative properties and high stability, 

the natural product vinaxanthone was selected for regeneration studies utilizing laser 

axotomy in C. elegans.  Vinaxanthone and a library of synthetic analogs were tested for 

the potential to promote regeneration following laser axotomy in C. elegans in order to 

analyze the structure-activity relationship (SAR) of the molecule.  This enabled the 

determination of structural moieties leading to enhanced biological activity so that more 

potent promoters of neuronal growth could be designed, optimized, and developed.  

Structure-activity relationship studies in C. elegans provide many advantages over other 

model organisms, particularly the capability for rapid, large scale screenings made possible 

by their small size, short life cycle, and procedural simplicity.   

Vinaxanthone was synthesized by Siegel et al. through a biologically-inspired 

dimerization of 5,6-dehydropolivione (66), a putative derivative of the known natural 

product polivione (Scheme 3.1).125  This reaction is proposed to occur in nature via Michael 

addition of one molecule of 5,6-dehydropolivione to another, followed by β-elimination 

and chromone condensation.  After tautomerization, a 6π-electrocyclization reaction yields 

the final core and subsequent β-elimination with loss of water gives the natural product 

vinaxanthone.  Simply heating 5,6-dehydropolivione to 55 °C in aqueous solution under 

neutral laboratory conditions generates vinaxanthone in 61% yield (Scheme 3.2).125   
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Scheme 3.1.  Mechanism of 5,6-dehydropolivione dimerization to form vinaxanthone. 
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Scheme 3.2.  One-step laboratory synthesis of vinaxanthone from 5,6-dehydropolivione. 

 

Analogs of vinaxanthone were synthesized through an ynone coupling reaction 

(Scheme 3.3).126  This allowed for the effective production of derivatives with distinct 

xanthone and chromone cores, utilizing ynones with modified aryl ring functionality.  For 

this reaction, a parent ynone undergoes hydration and conjugate addition to form a diene 

which then reacts with another ynone through a cycloaddition/dehydrative elimination 

process to generate the xanthone core.  Starting from n ynones, the generation of n2 analogs 

is possible.  Five different 3-ynone chromones (Figure 3.1) were systematically coupled to 

generate vinaxanthone and 24 analogs (Figure 3.2). 
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Scheme 3.3.  Mechanism for synthesizing vinaxanthone analogs through an ynone 

coupling reaction (A).  Reversing the order of the ynone addition 

generates the analog with opposite core functionality (B). 
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Figure 3.1.  The five parent ynones used to generate vinaxanthone analogs. 

 

 

Figure 3.2.  Vinaxanthone and the 24 analogs generated through ynone coupling 

reactions.  Xanthone and chromone cores with identical aryl functionality 

are coded the same color. 
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Outgrowth Promoted by Vinaxanthone 

Prior to the laser axotomy regeneration studies, the growth-promoting properties of 

vinaxanthone were evaluated using the in vivo outgrowth assay of cholinergic neurons.  

Vinaxanthone was found to enhance neuronal outgrowth in C. elegans, with 31% of treated 

worms exhibiting branching morphologies at 2 µM concentration (Figure 3.3).125  These 

results were similar to the levels of cholinergic branching induced by other neurotrophic 

compounds such as amphotericin B, which promoted outgrowth in 36% of nematodes at 2 

µM.121   

 

 

Figure 3.3.  Commissures of control cholinergic neurons in C. elegans (A).  Outgrowth 

caused by treatment with vinaxanthone includes commissural branching (B) 

as well as sprouting from nerve cords (C,D). 

 

Laser Axotomy in C. elegans 

 Laser axotomy provides a method for further investigations into the 

neuroregenerative properties of small molecules in vivo following a simulated axonal 

injury.  The mechanosensory neurons, which are responsible for the worm’s reaction to 
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light touch, have been used extensively in laser axotomy experiments due to their relatively 

large size and distinctive axonal morphology.127  Furthermore, these neurons have been 

employed in human disease investigations involving neurodegeneration, establishing a 

relevant connection for the model system.128-129  The axon of one of the two posterior lateral 

microtubule (PLM) cells, the mechanosensory neurons located along the left and right sides 

of the tail of C. elegans, was severed during laser axotomy.  These neurons extend 

processes longitudinally from the tail toward the midbody, and each of the PLM neurites 

forms a single synaptic branch with the ventral nerve cord (Figure 3.4).130-131   

 

 

Figure 3.4.  Morphology of the mechanosensory neurons in C. elegans. 

 

 Previous studies have indicated that the mechanosensory synaptic branch may serve 

in regulating neuronal growth as PLM neurons are able to regrow when severed proximal 

to their synaptic branch but not when severed distal to the branch site, thus marking a 

transition point in innate regenerative ability.127  As many spinal cord neurons possess 

collateral branches that have been shown to influence regrowth potential, this inhibitory 
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branching environment would be a particularly useful model.132-133  Therefore, 

mechanosensory neurons severed beyond their branch point provided an experimental 

starting point which would result in a standard with limited intrinsic regrowth following 

axonal injury.   

 Late L4-stage C. elegans expressing GFP in mechanosensory neurons (zdIs5) were 

anesthetized using levamisole (1 mM) and their PLM was severed via laser axotomy at a 

point approximately 15 µm distal to the synaptic branch (Figure 3.5A).  The distance of 

the synaptic branch point from the cell body in the zdIs5 nematodes was not consistent 

between worms.  It has been found that the greater the distance of injury from the cell body, 

the less likely regeneration is to occur from the severed axon.127  Thus, in order to 

standardize the location of axotomy and to maintain the potential for regrowth, 

experimental nematodes were selected as having the desired PLM morphology only if they 

possessed a synaptic branch within a maximum distance of 100 µm from the cell body.   
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Figure 3.5.  Laser axotomy of the PLM neuron in C. elegans was performed ~15 µm 

after the synaptic branch when the branch point was ≤ 100 µm from the cell 

body (A), leaving behind a small break in the axon (B).  No regrowth from 

the severed axon at 24 hours post-surgery resulted in a proximal stump and 

distal fragment degeneration (C).  Regrowth of the severed proximal axon 

was observed on occasion 24 hours post-axotomy (D).  Arrows indicate the 

site of axotomy and arrowheads indicate the synaptic branch. 

 

 Axotomy is accompanied by a characteristic series of events.  The laser injures the 

neuron by creating a small break in the axon (Figure 3.5B), leaving a gap which expands 

over the next few hours as the ends of the severed fragments retract.  The distal fragment 
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begins to undergo degeneration, characterized by the beading and disappearance of GFP, 

when the proximal end does not reconnect within 24 hours after axotomy and, if no 

proximal fragment regrowth occurs, an axonal stump remains (Figure 3.5C).  The distal 

fragment degeneration can be likened to Wallerian degeneration described in other 

organisms and once onset of degeneration occurs the process is irreversible.89  Alternately, 

formation of a growth cone on the proximal fragment can initiate the regeneration process, 

causing the axon to extend (Figure 3.5D).  Sometimes the regrowing axonal process is able 

to find its distal fragment and fusion occurs, with this reconnection consequently 

preventing distal degeneration.134 

Regeneration Following Small Molecule Exposure 

 Axons severed distal to the synaptic branch point were found to be able to regrow 

in a small number of control worms (average 27%), and this potential for regrowth could 

be enhanced by small molecule treatment.  After laser microsurgery nematodes (n ≥ 20 per 

compound) were exposed to a small molecule library of vinaxanthone analogs at 2 µM 

concentrations.  Regrowth of the severed proximal axon was quantified 24 hours after 

axotomy by measuring from the beginning of new growth at the axonal injury site to the 

tip of the longest regrowing process.  Initial experiments indicated that if regrowth was to 

occur, it was observable within 24 hours.  Although axonal regeneration involves both 

exploratory outgrowth and pruning, observation at 48 hours indicated that any difference 

in regrowth length was not substantial enough to warrant the increased experimental time.  

If no growth was observed from the proximal portion of the cut axon at 24 hours post-
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axotomy it was therefore regarded as negative for regrowth.  Growth of the synaptic branch 

was sometimes observed but was not included in the regeneration measurements; only 

regeneration from the severed axon was recorded as positive for regrowth.  Regrowth 

usually occurred without connection to the distal fragment, but when, on occasion, 

reconnection to the distal portion was observed it was counted as positive for regrowth 

with its length being measured to the point of reconnection.   

 Varying degrees of regeneration, including both the lengths of the regrowing 

processes and the overall number of worms exhibiting regrowth compared to controls, were 

observed in worms treated with vinaxanthone analogs.  Analog 98, which possesses a 

monohydroxylated xanthone core and lacks functionality on its chromone core, had the 

highest rate of regrowth, with a 130% increase in the number of worms exhibiting regrowth 

morphologies from controls (Figure 3.6).126  Comparatively, vinaxanthone showed a 21% 

increase in regrowth rate.  While most of the analogs promoted the level of regeneration, 

analog 95 interestingly had no significant change in regrowth potential and analog 96 had 

a 15% decrease in regrowth rate compared to controls.   
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Figure 3.6.  Following laser axotomy, worms exposed to vinaxanthone analogs displayed 

varying neuronal regrowth rates relative to controls.  Colors correspond to 

structures in Figure 3.2 for SAR comparison. 

 

 The regrowing processes exhibited a variety of morphologies from virtually linear 

extension across the site of injury to arching growths around the axotomy scar as well as 

branching in search of their distal fragments (Figure 3.7).  Occasionally the regrowing axon 

reconnected to its distal fragment or grew to the ventral cord in a manner similar to its 

synaptic branch.  In examining the data for SAR correlations, it was found that analogs 87, 

88, 98, 103, and 108 exhibited over 90% increase in regrowth from controls.  The chromone 

cores of four of these molecules are identical, lacking any functionality on the aryl rings.  

This indicated that the chromone core, and specifically the bare structural motif, was 

significant in inducing the observed drug-promoted regeneration process.  The structure of 

the xanthone core did not seem to have a strong relationship to the regeneration potential 

of PLM neurons post-axotomy. 
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Figure 3.7.  Branching regrowth of PLM neuron 24 hours following laser axotomy and 

treatment with 2 µM vinaxanthone (A).  Regeneration morphologies 

promoted by post-axotomy treatment with 2 µM analog 98 included 

branching regrowth (B), arching regrowth (C), linear regrowth (D), 

regrowth with branching to the ventral nerve cord (E), and regrowth with 

reconnection to the distal fragment (F).  Arrows indicate beginning of new 

growth and arrowheads indicate the synaptic branch. 

 

 Although varied, the lengths of the regrowing axons did not appear to have any 

correlation to the analogs’ growth-promoting abilities nor was any pattern observed 

between the lengths of the regrowing processes and analogs with similar molecular 

structures (Figure 3.8).  Even though wild-type C. elegans possess a virtually identical 

genetic background and standardized axotomy procedures are typically employed the 

highly variable extent of axonal regrowth between individual worms has been noted 

previously, with the exact reasons behind this variability unknown.89   
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Figure 3.8.  Lengths of regrowing PLM neuronal processes following laser axotomy and 

treatment with the library of vinaxanthone analogs. 

 

 The dose-response relationships for vinaxanthone and analog 98, the most potent 

analog found following laser axotomy, were investigated (Figure 3.9).  Although analog 

98 induced an overall greater biological response at the standard concentration used in the 

axotomy experiments (2 µM), vinaxanthone produced a maximum biological activity at 

lower concentration (0.2 µM).  Both compounds exhibited a biphasic dose-response curve, 

with decreased activity at higher concentrations (20 µM). 
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Figure 3.9.  The dose-response relationships of C. elegans treated with vinaxanthone or 

analog 98. 

 

The regenerative potentials of the growth-promoting small molecules 

clovanemagnolol and clovanebisphenol were also explored.  C. elegans were exposed to 

the compounds following injury simulated by laser microsurgery of mechanosensory 

neurons (Figure 3.10 and Figure 3.11).  Regrowth and/or reconnection to the distal portion 

of the severed axon was classified as effective nerve regeneration.  Worms were imaged 

24 hours after axotomy, so the absence of degeneration in distal portions of the severed 

axons was taken as a positive indication of reconnection.  Both compounds were found to 

improve successful axonal regeneration compared to untreated worms, where treated 

nematodes showed significantly increased regrowth and reconnection of the severed axon 

to its distal end.  Following laser axotomy, worms treated with clovanemagnolol exhibited 

a regrowth rate of 63% (n = 16) while those treated with clovanebisphenol showed 56% 

regrowth (n = 16) compared to a regrowth rate of 40% observed in untreated control worms 
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(n = 10).  It is significant to note that in previous experiments outgrowth was not observed 

when undamaged mechanosensory neurons of C. elegans were exposed to these 

compounds. 

 

 

Figure 3.10.  Regeneration following laser axotomy and treatment with 2 µM 

clovanemagnolol (A-D).  Arrows indicate beginning of regrowth and 

arrowheads indicate the synaptic branch. 
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Figure 3.11.  Regeneration following laser axotomy and treatment with 2 µM 

clovanebisphenol (A-D).  Arrows indicate beginning of regrowth and 

arrowheads indicate the synaptic branch. 

 

Conclusion 

 Laser axotomy in C. elegans has allowed the in vivo neuroregenerative potentials 

of vinaxanthone and a library of novel small molecule analogs to be determined, the SAR 

of the molecules to be analyzed within a relatively short time span, and can be used to 

assess further chemically-edited compounds for growth-promoting activity.  The 

development of synthetic routes to vinaxanthone and altered precursors allowed for the 

systematic production of analogs.  Analysis of the analogs resulting in enhanced 

regeneration of mechanosensory neurons post-injury indicated that a chromone core 
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lacking functionality could be a significant structural design for the development of further 

small molecule drugs and provided the early stages for the design of spinal cord injury 

treatments via identification of regeneration-promoting small molecules. 

Experimental Section 

 Nematode Cultures and Microscopy.  C. elegans cultures were maintained on 

nematode growth medium (NGM) agar plates seeded with Escherichia coli OP50 bacteria 

at 23 °C according to established procedures.39  The strain used for axotomy experiments 

was SK4005 (zdIs5 [mec-4::GFP + lin-15(+) (pSK1)]), which can be obtained from the 

Caenorhabditis Genetics Center.  General maintenance of C. elegans was performed using 

an Olympus SZX16 stereomicroscope.  GFP-labeled nematodes were visualized using an 

Olympus IX73 inverted microscope with a Prior Lumen 200 fluorescence illumination 

system.  Laser axotomies were performed using the Olympus IX73 microscope (100x/1.40 

NA objective) equipped with an Andor MicroPoint nitrogen pulsed dye laser (435 nm).  

Images were captured using a Hamamatsu Orca-flash2.8 digital camera and cellSens 

Dimension imaging software. 

 Laser Axotomy.  Stock solutions of the small molecules were prepared in DMSO 

(12.5 mM) and subsequently diluted in M9 buffer to a final concentration of 0.04 mM 

(0.32% DMSO, v/v).  Diluted solutions (200 µL) were spread over seeded NGM plates 

(35x10 mm, containing 4 mL of agar) and allowed to absorb to a final concentration of 2 

µM.  The plates were set aside until nematodes were added for small molecule treatment 

post-surgery.  Surgery was performed on late L4-stage C. elegans immobilized on 5% 



 71 

agarose pads and anesthetized with levamisole (3 µL, 1 mM in M9 buffer).  Axons of the 

PLM were cut using a single laser pulse approximately 15 µm after the synaptic branch, 

but only when the branch point was ≤100 µm from the cell body.  Only nematodes whose 

synaptic branch morphology met this requirement were used in the experiments.  

Nematodes were transferred to prepared NGM plates after the surgery, washed twice with 

M9 buffer (3 µL), and allowed to recover at 23 °C overnight.  Axon regrowth was measured 

24 hours post-axotomy from the site of axotomy to the tip of the longest regrowing process 

(n≥23 worms).  No growth from the proximal portion of the cut axon was recorded as zero 

regrowth.  Growth of the synaptic branch was sometimes observed but was not included in 

regrowth measurements. 

General Chemistry.  All reactions were performed in flame dried round bottom or 

modified Schlenk (Kjeldahl shape) flasks fitted with rubber septa under a positive pressure 

of argon, unless otherwise indicated.  Air-and moisture-sensitive liquids and solutions were 

transferred via syringe or cannula.  Organic solutions were concentrated by rotary 

evaporation at 20 torr.  Methylene chloride (CH2Cl2) and tetrahydrofuran (THF) were 

purified using a Pure-Solv MD-5 Solvent Purification System (Innovative Technology).   

Acetonitrile (MeCN) was purified using a Vac 103991 Solvent Purification System 

(Vacuum Atmospheres).  Dimethoxyethane (DME) was purchased from Acros (99+%, 

stabilized with BHT), methanol (MeOH) was purchased from Sigma-Aldrich (99.8%, 

anhydrous), ethanol (EtOH) was purchased from Pharmco-Aaper (200 proof, absolute).   

All other reagents were used directly from the supplier without further purification unless 

noted.  Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm 
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commercial silica gel plates (silica gel 60, F254, EMD chemical) and visualized using a 

UV lamp and/or aqueous ceric ammonium molybdate (CAM) or aqueous potassium 

permanganate (KMnO4) stain.  Infrared spectra were recorded on a Nicolet 380 FTIR using 

neat thin film or KBr pellet technique.  High-resolution mass spectra (HRMS) were 

recorded on a Karatos MS9 and are reported as m/z (relative intensity).  Accurate masses 

are reported for the molecular ion [M+Na]+, [M+H], [M+], or [M-H].  Nuclear magnetic 

resonance spectra (1H NMR and 13C NMR) were recorded with a Varian Gemini [(400 

MHz, 1H at 400 MHz, 13C at 100 MHz), (500 MHz, 13C at 125 MHz), (600 MHz, 13C at 

150 MHz)].  For CDCl3 solutions the chemical shifts are reported as parts per million (ppm) 

referenced to residual protium or carbon of the solvent; CHCl3 δ H (7.26 ppm) and CDCl3 

δ D (77.0 ppm).  For (CD3)2SO solutions the chemical shifts are reported as parts per 

million (ppm) referenced to residual protium or carbon of the solvents; (CD3)(CHD2)SO δ 

H (2.50 ppm) or (CD3)2SO δ C (39.5 ppm).  Coupling constants are reported in Hertz (Hz).  

Data for 1H-NMR spectra are reported as follows: chemical shift (ppm, referenced to 

protium; s = singlet, d = doublet, t = triplet, q= quartet, dd = doublet of doublets, td = triplet 

of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), 

and integration). Melting points were measured on a MEL-TEMP device without 

corrections. 

General Procedure A for Ynone Dimerization.  To a stirred solution of ynone (1.0 

equiv.) (intended xanthone side of protected vinaxanthone) and H2O (1,000 equiv.) in 

MeCN (0.01 M) at 23 °C was added triethylamine (10 equiv.).  After 1 hour, the reaction 

mixture was diluted with EtOAc, dried over Na2SO4 and concentrated in vacuo to give an 
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amber oil.  The crude aldehyde was diluted to 0.1 M with MeCN before the second ynone 

(1.0 equiv.) (intended chromone side of protected vinaxanthone) and triethylamine (2 

equiv.) were added.  The reaction mixture was stirred at 23 °C for 16 hours.  The reaction 

mixture was then concentrated to give crude protected vinaxanthone.  The crude material 

was purified via silica gel column chromatography to give pure protected vinaxanthone.126 

General Procedure B for Ynone Dimerization.  To a stirred solution of ynone (1.0 

equiv.) in MeCN (0.1 M) at 23 °C was added a 1.0 M solution of H2O in MeCN (0.5 equiv.) 

and triethylamine (10 equiv.).  After 16 hours, the reaction mixture was concentrated in 

vacuo to give crude protected vinaxanthone.  The crude material was purified via silica gel 

column chromatography to give pure protected vinaxanthone.126 

General Procedure A for Protected Vinaxanthone Deprotection.  To a stirred 

solution of protected vinaxanthone (1.0 equiv.) in CH2Cl2 at 0 °C was added a 1.0 M 

solution of boron trichloride in CH2Cl2 (2.0 equiv. per protecting group).  The reaction 

mixture was stirred at 23 °C for 1 hour.  The reaction mixture was then diluted with EtOAc 

and washed with brine (5x).  The organic layer was dried over Na2SO4 and concentrated in 

vacuo to give crude vinaxanthone.  Trituration with pentane:MeOH (ratio varies depending 

on substrate solubility) gave pure vinaxanthone.126 

General Procedure B for Protected Vinaxanthone Deprotection.  A solution of 

protected vinaxanthone (1.0 equiv.) in 1.25 M methanolic HCl (10 equiv. per protecting 

group) was stirred at 65 °C for 8 hrs.  The reaction was followed by aliquot 1H NMR.  The 

reaction mixture was then purged with N2 and concentrated in vacuo to give crude 
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vinaxanthone.  Trituration with pentane:MeOH (ratio varies depending on substrate 

solubility) gave pure vinaxanthone.126 
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Appendix:  NMR Spectra and HPLC Traces 
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