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This dissertation examines the development of coarse-grained models of

atomistic systems for the purpose of predicting target quantities of interest in the

presence of uncertainties. It addresses fundamental questions in computational sci-

ence and engineering concerning model selection, calibration, and validation pro-

cesses that are used to construct predictive reduced order models through a unified

Bayesian framework. This framework, enhanced with the concepts of information

theory, sensitivity analysis, and Occam’s Razor, provides a systematic means of

constructing coarse-grained models suitable for use in a prediction scenario.

The novel application of a general framework of statistical calibration and

validation to molecular systems is presented. Atomistic models, which themselves

contain uncertainties, are treated as the ground truth and provide data for the

Bayesian updating of model parameters. The open problem of the selection of appro-

priate coarse-grained models is addressed through the powerful notion of Bayesian

model plausibility.
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A new, adaptive algorithm for model validation is presented. The Occam-

Plausibility ALgorithm (OPAL), so named for its adherence to Occam’s Razor and

the use of Bayesian model plausibilities, identifies, among a large set of models,

the simplest model that passes the Bayesian validation tests, and may therefore be

used to predict chosen quantities of interest. By discarding or ignoring unnecessar-

ily complex models, this algorithm contains the potential to reduce computational

expense with the systematic process of considering subsets of models, as well as the

implementation of the prediction scenario with the simplest valid model.

An application to the construction of a coarse-grained system of polyethy-

lene is given to demonstrate the implementation of molecular modeling techniques;

the process of Bayesian selection, calibration, and validation of reduced-order mod-

els; and OPAL. The potential of the Bayesian framework for the process of coarse

graining and of OPAL as a means of determining a computationally conservative

valid model is illustrated on the polyethylene example.
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Chapter 1

Introduction

1.1 Introductory Remarks

This document contains a study of basic questions in computational science

and engineering concerned with the use of coarse-grained (CG) molecular models

to predict the behavior of atomistic systems. It addresses several long-standing is-

sues in computer modeling and simulation of atomistic systems, including model

selection, calibration, validation, and error estimation, all in the presence of uncer-

tainties, and it also addresses the quantification of uncertainties in observables and

quantities of interest, all associated with reduced-order models obtained by aggre-

gating atoms into beads or super atoms or molecules. A general Bayesian setting is

developed to address these questions, which, when augmented with concepts from

information theory, such as information entropy, provides a unified framework for

model selection, validation, and prediction under uncertainty. Throughout this in-

vestigation, for simplicity and specificity, attention is restricted to configurational

energies of systems in thermodynamic equilibrium, with the understanding that the

theory and methods developed are applicable to much more general systems.

The following developments are presented in this study:

1. Validation of CG Models. A general framework and processes for statisti-

cal calibration and validation of complex molecular models in the presence of
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uncertainties are presented. Data is provided by the so-called ground-truth

models of the all-atom (AA) system provided by hardened and calibrated

molecular dynamics (MD) codes. These observational data are not determin-

istic and possess uncertainties themselves since they are generally drawn from

distribution functions defined for the AA system. Also, examples and ap-

plications involve polymer systems as these have been the primary focus of

our earlier work on molecular modeling. In many cases, an important com-

ponent of the calibration and validation processes for such materials is the

identification of Representation Polymer Chains (RPCs), which provide the

basic subunits of more complex structures and which are, themselves, made

up of smaller molecular units that constitute building blocks in what are used

in so-called calibration scenarios. This systematic calibration of basic units

and then validation of more complex sub-systems that depict in some sense

key quantities of interest, constitutes the principal ideas underpinning the

Bayesian-based model validation process.

2. Model Selection. A major open problem in the construction of CG molecular

models has been the selection of appropriate force potentials and choosing

model parameters for each such choice - a particularly challenging proposition

when there are uncertainties in both the observational data and the model

parameters themselves. A general approach to this problem is developed based

on Bayesian methods of model selection, particularly using the concept of

posterior model plausibilities. This idea, advanced in the recent paper [31],

builds on extensions of the idea of Bayes’ factors and the work of Beck and
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Yuen [10]. A general adaptive algorithm that addresses and provides a means

for resolving the elusive problem of model inadequacy (or “model form error”

or “model bias”) that has been a central issue in model validation for many

years [1, 57, 58, 85, 86] is also developed.

3. Parameter Sensitivities. It is shown that the relative sensitivity of model

outputs to variations in model parameters can be estimated using variance-

based methods of sensitivity analysis, advocated, for example, by Saltelli et

al. [103, 104]. By eliminating parameters that are judged to have little effect

on key model outputs, dramatic reductions in model complexity and in the

cost of assessing model plausibility and validity, and in computing quantities of

interest can be achieved. It is also proposed that an added benefit of computing

model sensitivities is their use in the checking the effectiveness of validation

scenarios and tests. In particular, parameters that are judged to influence

output values through sensitivity measures computed for the full prediction

scenario should also influence results in validation scenarios, else the validation

test is ill-designed.

4. Adaptive Algorithms for Model Validation. All of the methodologies described

for statistical model calibration, validation, plausibility, parameter sensitiv-

ity, and uncertainty quantification are implemented in a general algorithm

referred to as OPAL (Occam-Plausibility ALgorithm). The prefix “Occam”

is in deference to Occam’s Razor, the principle that states that among com-

peting hypotheses, the simplest (the one with the fewest assumptions) should

be selected. In OPAL, the simplest model is defined as the model with the
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fewest parameters that also satisfies model validation criteria laid down by the

modeler.

1.2 Coarse-Grained Models of Atomic Systems

Important advances in material science, biology, nanomanufacturing, drug

design, and in many other fields, brought about by developments in computational

modeling and simulation, high-performance computing, and experimental science,

have dramatically expanded interest in the use of atomistic models to study a wide

variety of physical phenomena and to analyze the behavior of many engineering,

physical, biological, and medical systems. Although the universally accepted ap-

proach for modeling atomistic systems is to employ molecular mechanics simulations

in the form of either molecular dynamics or Monte Carlo sampling, implemented

using any of several well-documented and well-tested codes, the enormous size and

complexity of systems of interest far exceed the capabilities of today’s largest super-

computers or even those envisioned decades into the future. Coarse-grained (CG)

models of atomistic systems, in which groups of atoms are aggregated into larger

units to reduce the number of degrees of freedom, have been used for decades in

significant technological and scientific applications. The development of a rigorous

mathematical, physical, and statistical foundation for the process of coarse graining,

including calibration, validation, and assessment of predictability of CG models, is,

hence, a goal of great importance in computational science.

Advances in computer technologies inspired the development of numerical

methods for molecular simulation, providing a tractable alternative to analytical
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pursuits. Efforts to exploit the statistical nature of particular systems led to the

first computer simulations of fluids in 1952 by Metropolis et al. [76], who developed

a process for sampling the Boltzmann distribution, which, in turn, led to the ad-

vancement of the Monte Carlo method. Continuous potentials, used in molecular

dynamics (MD) methods, recognize that the forces on each particle change as the

positions of the particles and its neighbors change and were introduced by Rahman

in 1964 [98]. These two contributions are among the most notable and influen-

tial in early molecular modeling and apply to both atomistic and coarse-grained

implementations.

An extensive literature on coarse-grained methodologies exists, spanning

over a half-century. Early versions of CG approximations appeared in the 1940s in

the works of Paul J. Flory [34] and Maurice L. Huggins [43]. The united atom (UA)

model, another predecessor to CG models, in which hydrogen atoms are ignored,

has been used since the 1960s [38, 67]. Most MD codes include UA implementations

due to the pervasiveness of these reduced order models.

In 1988, Robert L. McGreevy proposed the Reverse Monte Carlo (RMC)

method for determining the potentials of CG models for condensed matter prob-

lems [74]. The method is a variation of the Metropolis-Hastings algorithm in which

parameters are adjusted until those that yield the highest consistency with exper-

imental data are obtained. However, it has been shown [12] that multiple models

may agree with the data equally well while differing qualitatively in their predic-

tions of key properties of interest. Furthermore, there are, for these methods in

general, more parameters than observational data samples. Both of these issues
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are common to many model problems in a wide variety of applications and may be

addressed in the RMC framework by including additional constraints on the system

in question [12]. In the present work, the Bayesian framework confronts the diffi-

culty of model selection with the notion of model plausibility, and the presence of

uncertainties, such as those introduced by lack of data, with the use of stochastic

parameters, as discussed in Chapter 3. The RMC method continues to be further

developed and used for a variety of model applications from crystalline materials to

DNA [56, 70–72].

Furio Ercolessi and James B. Adams suggested the Force Matching (FM)

method in 1994 [29], in which parameters are determined so that, as the name

indicates, forces on the CG system match those in the AA system. The method

was extended and applied to an assortment of applications, including condensed

phase systems [45, 46, 48, 49] and biochemical applications [44, 47, 107, 120] by

Sergei Izvekov, Gregory A. Voth, and their collaborators, who refer to the method

as “multi-scale coarse-graining” (MS-CG) methods. As discussed in Chapter 2,

CG particles are defined by groups of atoms. In MS-CG methods, coarse-grained

parameters are chosen so that the sum of forces on each group of atoms is matched

via least-squares minimization to the total force on the corresponding CG bead,

θCG = argmin
θ
‖FAA − FCG (θ)‖ .

The details of the implementation and numerical specifics of the method are given

in [69] and its accuracy is assessed in [45]. It is argued [79, 81, 82] that MS-

CG methods yield CG models that are “physically consistent” with underlying AA
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models. In place of the notion of physical consistency defined in [81], the Bayesian

setting for model construction includes the concept of model validation, in which

a calibrated model is tested against experimental data. See Chapter 3 for details.

Bayes’ Rule has also been used in conjunction with MS-CG [68], but not for the

purpose of stochastic model calibration or validation, such as that considered in this

work. Instead, Bayes’ Rule was used as a regularization tool for deterministic model

calibration.

Dirk Reith and Florian Müller-Plathe have advocated the Iterative Boltz-

mann Method (IBM). Initially referred to as simply “a simplex method,” IBM de-

velops CG potentials by attempting to reproduce the radial distribution function, a

function which characterizes the structure of an atomistic system [77]. This is done

through iteration akin to a fixed-point algorithm, details of which can be found in

[100]. IBM has successfully been applied to liquids, where only non-bonded terms

need to be considered [77], and later to polymer systems in which bonded interac-

tions must also be considered [99]. Other proponents of IBM are Wataru Shinoda,

Russell DeVane, and Michael Klein, who have used the method to derive CG po-

tentials for layer assembly, such as those for surfactants [108, 109] and zwitterionic

lipids [110].

The relative entropy approach proposed by M. Scott Shell in 2008 is similar

to IBM. However, instead of comparing radial distribution functions, Shell’s method

compares ensemble distribution functions [106], such as those described in Chapter

2. This information-theoretic approach was used by Di Wu and David Kofke [119] to

compare molecular systems before being applied to coarse-graining by Shell and his
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collaborators [18, 19]. The present work also uses information theory to compare CG

models to their AA counterparts. However, Shell’s framework uses relative entropy

for the purpose of calibration only, while the present work uses the relative entropy

as a measure for assessing validation of CG models.

What is often referred to as model validation in much of contemporary liter-

ature on CG methods amounts to qualitative and sometimes heuristic comparisons

of deterministic predictions with data. Furthermore, few available approaches con-

front the issues of model selection and the presence of uncertainties, both in the data

(i.e. in the AA model) and in the CG model. The Bayesian framework presented

in this study provides a unified approach that includes model calibration, model

selection, and model validation, all in the presence of uncertainties, for the purpose

of building a predictive model of key quantities of interest.

1.3 The Bayesian Framework for Constructing Predictive Models

This study may be regarded as one on basic issues in predictive science which

aims at extending existing approaches to the complex, discrete models encountered

in predicting the behavior of atomic and molecular systems. The great majority of

existing literature on determining parameters for CG models focuses on calibration

processes, generally deterministic, and ignores the fundamental problem of model

validation. Predictive science embodies the theory and methodology of predicting

the behavior of physical systems or of predicting features of physical events in the

presence of uncertainties. It entails the subjects of model calibration, model selec-

tion, model validation and verification, and uncertainty quantification.
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At the heart of predictive science is the scientific method, whereby hypothe-

ses are formulated, tested, and modified through comparison to observations or

experimental measurements. Many attribute to the ancient work of Aristotle, col-

lected in his Organon [3], the development of deductive logic, which provides the

foundations for mathematics and inductive logic, and which forms a basis for sci-

entific theory and discovery. In 1946, Richard Trelked Cox published a theorem

and proof stating that under reasonable conditions on properties and measures of

the plausibility of propositions, every natural extension of Aristotelian logic in the

presence of uncertainties is Bayesian [22]. Many regard this work as laying the foun-

dation of logical probability theory. Further discussion and examples were published

in 1961 [23]. Debate on the validity of the theorem ensued with the publication of

Joseph Halpern’s counterexample to Cox’s theorem [39, 40], later refuted by Stefan

Arnborg and Gunnar Sjödin with the addition of “common sense” postulates to

those presented by Cox [4, 5] and by Michael Hardy [41], who presented another

approach to amending Cox’s Theorem. A comprehensive overview of Cox’s Theorem

was published by Kevin van Horn in 2003 [113] and a self-proclaimed “trivial proof”

was presented by Maurice Dupré and Frank Tipler in 2009 [28].

The debate over Bayes’ Rule, however, began long before Cox’s Theorem.

Sharon Bertsch McGrayne details the long history of debate between Bayesian and

frequentist probability theorists from its advent in 1763 when the rule was posthu-

mously published by Richard Price [9], the executor of Bayes’ estate. Some believe

that the Reverend Thomas Bayes thought the cause-and-effect nature of the rule

may unlock the proof (or disproof) of the existence of God [73] and, hence, delayed

9



its publication for decades. The use of Bayesian methods remains controversial,

with recent publications highlighting its paradoxes (or “brittleness”), such as those

by Houman Owhadi, Clint Scovel, and Tim Sullivan [94]. Recently, sufficient condi-

tions for the convergence of Bayesian methods in the context of the Bernstein-von

Mises Theorem (also called the “Bayesian Central Limit Theorem”) for so-called

misspecified parametric and nonparametric models were developed by B.J.K. Kleijn

and A.W. van der Vaart [63, 64].

The powerful work, Probability Theory: The Logic of Science by Edwin

T. Jaynes [53] provides exhaustive arguments and many examples that support the

notion that “all science is inductive” and that the Bayesian setting provides a unified

way to deal with scientific thought while naturally taking into full account inherent

uncertainties. The present work subscribes fully to this philosophy.

1.4 Organization and Scope of this Study

As noted earlier, the physical systems of interest here are atomic systems

in thermodynamic equilibrium, the behaviors of which are defined by contemporary

MD simulations. The general goal is to develop theory and supporting numerical

experiments underlying the selection, calibration, and validation of CG models of

such systems in the presence of uncertainties. Following this Introduction, a review

of theory governing the behavior of molecular models is given which includes the

description of the statistical mechanics of the AA and the CG models. The con-

struction of the AA-to-CG map, the choices that must be made in doing so, and

the types of uncertainties that therefore arise are detailed. The technicalities of the
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simulation of and the collection of data from the AA and CG systems are also given.

Chapter 3 is devoted to the broad problem of developing a Bayesian frame-

work for predictive CG models. These general approaches for statistical model

calibration and use of information theory are discussed together with the descrip-

tion of a powerful method for model selection, based on the idea of Bayesian model

plausibilities, and an accompanying statistical validation method. The AA models

are used to generate subsystem observational data that represents non-observable

quantities of interest–the target goals of the prediction. Demonstrations of the the-

oretical results are given in the form of applications to typical molecular systems,

particularly polyethylene. These concepts bring into the realm of molecular models

the idea of the prediction pyramid, in which calibration scenarios involving basic

model units are first used to get preliminary distributions of model parameters,

then progressing up the pyramid to validation scenarios to update parameters and,

finally, the full prediction is implemented by solving the forward problem to evaluate

the quantity of interest.

In Chapter 4, a general adaptive algorithm for constructing valid CG models

is presented: the Occam-Plausibility ALgorithm (OPAL). The idea is to implement

Occam’s Razor by finding the “simplest” valid model through sensitivity analysis,

model ranking, and an iteration of calibration and validation tests. The results of

numerical experiments are given to demonstrate the method with specific molecular

structures, including polyethylene under axial extension. Once a CG model sat-

isfying validation criteria is identified, macroscale models of materials can further

be obtained through various homogenization techniques, which must be subjected

11



to calibration and validation, as well. These ideas are also discussed in Chapter 4.

An illustrative example application to polyethylene is given in Chapter 5. Results

relating frequentist and Bayesian ideas of model calibration under misspecification

are presented in Chapter 6. Major conclusions of the work are collected in Chapter

7 together with recommendations for future work.
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Chapter 2

Molecular Models

A universally-accepted approach to the study of the behavior of matter at

atomistic scales is to employ the ideas of molecular dynamics (MD) in which the

motion of systems of atoms is described by Newtonian mechanics and Hamiltonian

dynamics. In parallel, Monte Carlo methods for modeling such systems, inspired

by statistical thermodynamics provide, through the ergodic hypothesis, the basic

tools that underpin much of modern materials science, chemistry, and engineering

based on atomistic models. A number of hardened, verified, and well-documented

MD codes have been in wide-spread use by the chemistry and materials science

communities for decades and provide powerful machinery for studying atomistic

systems.

However, in many significant applications, the atomic systems are of such an

enormous size and complexity that it is impossible to solve the governing equations

using the most advanced computers and computational tools available today. Thus,

reduced models obtained by coarse graining must be used in the vast majority of

investigations. The atomistic model, referred to here as the all-atom (AA) model

is used as the “ground truth,” the source of synthetic observational data to which

results generated by the coarse-grained (CG) model are compared. This is the

setting in which this study is done. The present chapter surveys the theory and

13



basic assumptions underlying a general class of AA models and the structures of

various CG approximations.

2.1 All-Atom Models

Consider a system of n particles, the atoms in an atomistic model of a

physical system. Invoking the Born-Oppenheimer approximation [14, 66, 87] allows

an atom’s position to be defined by a point mass at its center. Let the positions

of the particles be given by coordinate vectors r1, r2, . . . , rn, and the correspond-

ing momenta be given by the vectors p1,p2, . . . ,pn. A configuration is given by

the collection rn = {r1, r2, . . . , rn}, with pn = {p1,p2, . . . ,pn}. The set of possi-

ble configurations rn and momenta pn define a 6n−dimensional phase space HAA.

Classical mechanics in the form of Hamiltonian dynamics [36, 66, 116] are employed

to describe the equations of motion of each atom,

ṙi =
∂H

∂pi
, ṗi = −∂H

∂ri
, 1 ≤ i ≤ n, (2.1)

where H is the Hamiltonian of the system, defined to be the sum of the kinetic

energy K and potential energy V ,

H(rn,pn) = K(pn) + V (rn) (2.2)

=
n∑
i=1

pi · pi
2mi

+ V (rn), (2.3)

mi being the mass of the ith atom. The Hamiltonian describes the total energy of

the n-body system.

The potential energy function, V , also referred to as simply a “potential”

or a “force field,” is at the heart of atomistic (and molecular) simulations. There
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exist numerous commonly-used force fields, which are generally accepted as accurate

in the MD literature. Of particular note are Assisted Model Building with Energy

Refinement (AMBER) [20, 117], Chemistry at HARvard Macromolecular Mechanics

(CHARMM) [16], and Optimized Potentials for Liquid Simulations (OPLS) [54, 55].

Here it will be assumed that the AA potential is described by the OPLS functional

form,

V (rn) = Vbond(rn) + Vangle(rn) + Vdihedral(rn) + Vnb(rn), (2.4)

where

Vbond (rn) =
nb∑
i=1

kr,i (r − r0,i) , (2.5)

Vangle (rn) =
na∑
i=1

kθ,i (θ − θ0) , (2.6)

Vdihedral (rn) =
nd∑
i=1

V1,i

2
(1 + cos (ϕ)) +

V2,i

2
(1− cos (2ϕ))

+
V3,i

2
(1 + cos (3ϕ)) +

V4,i

2
(1− cos (4ϕ)) , (2.7)

Vnb (rn) =
n−1∑
i=1

n∑
j=i+1

qiqj
4πε0r

+ 4εij

[(σij
r

)12
−
(σij
r

)6
]
fij , (2.8)

nb, na and nd are the number of bonds, angles, and dihedral interactions, respec-

tively, in the AA system, it being understood that the arguments on the right hand

sides of (2.5)-(2.8) are implicitly functions of the coordinates rn. Note that the

non-bonded interactions, characterized by (2.8), are summed over all pairs of atoms

in the system separated by three or more bonds, with fij = 0.5 if atoms i and j are

separated by exactly three bonds and fij = 1 otherwise. While typical of most MD

codes, many other functional forms of the force potentials may be used. The set
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of parameters for the OPLS functional form of the AA model can be identified as

θAA = {kr,i, r0,i, kθ,i, θ0,i, V1,i, V2,i, V3,i, V4,i, qi, εij , σij}; see Appendix A for a more

detailed discussion.

The parameters of the AA model are deterministic and have known values,

considered to represent reality. Virtual experiments may be performed on the AA

system and measurements taken to produce data that are treated as ground truth.

Details of how observational quantities are measured are given in Section 2.3. These

quantities are used to determine prior information about the coarse-grained param-

eters, to inform and update our knowledge of CG parameter values in scenarios of

varying complexity, and to confirm the validity of the CG model; these topics are

discussed in detail in Chapter 3.

In subsequent applications, the number of particles n is fixed, the volume v

in which the particles move is fixed, and the temperature T of the system is fixed,

thus providing the basis for a canonical ensemble. In this case, the probability

density of states is given by the Boltzmann distribution [66, 116],

ρ(rn,pn) =
1
Z

exp (−βH (rn,pn)) , (2.9)

where Z is the partition function, which acts as a normalizing constant,

Z =
∫

HAA

exp (−βH (rn,pn)) drndpn, (2.10)

and is related to the Helmholtz free energy, A, according to

A = −β−1 lnZ. (2.11)
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Here, β = 1/kBT , kB being Boltzmann’s constant and T being the temperature

[75, 116].

In general, the goal of constructing such an AA model is to compute certain

thermodynamic properties of the system. These quantities of interest (or “QoIs”)

are defined by functions that map the phase space HAA into the set of real numbers

R, called phase functions,

q : HAA → R, q : (rn,pn) 7→ q(rn,pn). (2.12)

However, the value of this function at a single configuration is not of interest, as the

probability of seeing any particular configuration is zero; instead, the average value

is desired. This average may be a time average,

q̄ = lim
τ→∞

1
τ

∫ τ

0
q (rn (t) ,pn (t)) dt, (2.13)

or an ensemble average,

〈q〉 =
∫

HAA

q (rn,pn) ρ (rn,pn) drn dpn, (2.14)

ρ being the ensemble distribution function, such as that defined in (2.9). Thus the

QoI, Q, may be defined as either

Q = q̄ or Q = 〈q〉 . (2.15)

Alternatively, due to the statistical behavior of atomistic systems in the ensemble

setting, the QoI may actually be a distribution of values,

Q = π (q) , (2.16)
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π(·) being a probability density.

Note that since the kinetic energy K is a quadratic function of the momenta,

computation of (2.14) may be carried out analytically for phase functions that de-

pend only on pn. Difficulty arises when the coordinates play a role. It is most often

the case that phase functions of interest depend only on rn. Then averages of the

form (2.14) in the canonical ensemble become

〈q〉 =
∫

HAA

q (rn)
1
Z

exp (−β (K (pn) + V (rn))) drndpn

=

∫
HAA

q (rn) exp (−βV (rn)) drn exp (−βK (pn)) dpn∫
HAA

exp (−βV (rn)) drn exp (−βK (pn)) dpn

=

∫
HAA

q (rn) exp (−βV (rn)) drn∫
HAA

exp (−βV (rn)) drn
. (2.17)

Although momenta no longer play a role, the computation of this ensemble average

remains challenging since, in general, analytical evaluation is not possible. A discus-

sion of various numerical methods can be found in [36, 66], and details concerning

their use in this work can be found in Section 2.3.

2.2 Coarse-Grained Models

The same atomistic system described above may be recast on a coarser scale

using a so-called coarse-grained (CG) model. The system of n atoms described

above may now be represented by N CG particles or “beads,” where, in general,

N � n. The theory behind simulating a physical system using a CG model is the

same as that of the AA system. The positions of the coarse-grained particles are

given by the coordinate vectors R1,R2, . . . ,RN , and the momenta are given by the

vectors P1,P2, . . . ,PN , with RN = {R1,R2, . . . ,RN} and PN = {P1,P2, . . . ,PN}.
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The set of possible configurations and momenta of this mesoscale system defines a

6N−dimensional phase space HCG of the CG system. The particles move according

to Hamilton’s equations of motion,

ṘI =
∂HCG

∂PI
, ṖI = −∂HCG

∂RI
, 1 ≤ I ≤ N, (2.18)

where HCG is the Hamiltonian of the coarse-grained system, defined to be

HCG

(
RN ,PN ; θ

)
= KCG

(
PN
)

+ VCG
(
RN ; θ

)
(2.19)

=
N∑
I=1

PI ·PI

2MI
+ VCG

(
RN ; θ

)
, (2.20)

with KCG the kinetic energy of the system, depending only on the momentum PI

and mass MI of each particle, and VCG the potential energy of the system, depending

only on the particle coordinates RN and the parameters of the CG model, θ.

The potential, VCG, dictates the behavior and motion of the coarse model.

Not only is the functional form unknown, the parameters θ are unknown, and they

must be chosen to make the CG model deliver QoIs as close as possible to those

of the AA model. That is, the difference between specific quantities measured in

the CG system and those measured in the AA system must fall within a given

tolerance. Measures of “closeness” are given in Section 3.5. Determining VCG so

that the coarse-grained model accurately represents, and therefore may be used as a

surrogate of, the full atomistic model is a main goal of this work.

Phase functions analogous to those defined in the AA system may be defined

in the CG system such that

qCG : HCG → R, qCG :
(
RN ,PN

)
7→ qCG

(
RN ,PN

)
, (2.21)
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where qCG represents the same observable quantity or property as q, but constrained

to the CG system. Note that since the motion of the system, and therefore RN ,

depends on CG model parameters θ, qCG implicitly depends on θ. To recognize this

dependence, the time average is written

q̄CG (θ) = lim
τ→∞

∫ τ

0
qCG

(
RN (t) ,PN (t) ; θ

)
dt, (2.22)

and the ensemble average is likewise denoted

〈q (θ)〉CG =
∫

HCG

qCG
(
RN ,PN ; θ

)
ρCG

(
RN ,PN ; θ

)
dRNdPN . (2.23)

The representation of the probability distribution of states for the coarse-grained

system in a canonical ensemble is, again, given by the Boltzmann distribution,

ρCG
(
RN ,PN ; θ

)
=

1
ZCG (θ)

exp
(
−βHCG

(
RN ,PN ; θ

))
, (2.24)

where the partition function ZCG is given for each parameter vector θ by

ZCG (θ) =
∫

HCG

exp
(
−βHCG

(
RN ,PN ; θ

))
dRNdPN , (2.25)

with β defined as before.

Thus, the calculation of the quantity of interest in the CG system, analogous

to (2.15), is

QCG = q̄CG (θ) or QCG = 〈q (θ)〉CG . (2.26)

As previously mentioned, the statistical nature of the behavior of particulate systems

may give rise instead to a distribution of possible values of the QoI,

QCG = πCG (qCG (θ)) , (2.27)
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with πCG(·) a probability distribution.

It should be noted that the quantity of interest (2.26) depends on the chosen

definition of VCG, which has its own parameters θ, and which depends on the choice

of coarse-grained representation G of the all-atom system, as discussed in Section

2.2.1. That is,

QCG = QCG (G,θ) . (2.28)

2.2.1 Mapping the All-Atom System into the Coarse-Grained System

A fundamental question, at this point, is what are the relationships between

the rn and the RN? Noid et al., point out that “each CG coordinate can be assigned

a well-defined physical meaning in terms of the coordinates of the atomistic model”

[81]. It is therefore convenient to regard the coordinates of each CG particle or

bead, RI , as the image of a surjective map G of the AA coordinates rn to the CG

coordinates RN [81, 82],

RI = G(rn), I = 1, 2, . . . , N. (2.29)

Coarse-grained beads are idealizations of spheres (or ellipsoids) that envelop groups

of atoms, and one can imagine that atoms “belong” to certain CG particles. Thus,

for CG bead I, an index set II may be identified that contains indices of all atoms

belonging to that bead. Then, the map G may be defined, for example, such that

RI is the center of mass of the atoms in the set I,

RI =

∑
i∈II

miri∑
i∈II

mi
, (2.30)
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or as the mean vector,

RI =
1
|II |

∑
i∈II

ri, (2.31)

where mi is the mass of atom i and |II | is the cardinality of the index set II .

Clearly, the definition of the map G is largely heuristic and non-unique. The

atom groups II may be defined based on “chemical intuition” about the structural,

interactive, or reactive behavior of the all-atom system or according to a specifica-

tion, e.g. such that every coarse-grained bead is charge-neutral. Some applications

or scenarios may allow coarser mappings than others. Very large systems may man-

date coarser mappings due to computational cost or limitations. Thus for each

atomistic system, there are many appropriate representations G, as illustrated in

Figure 2.1. A methodology for determining the best map G is presented in Chapter

4. Using this method, the optimal map G and the most favorable representation

of CG potential VCG, along with its accompanying parameters θ, are determined

simultaneously.

2.3 Calculation of Observables Using Molecular Dynamics

The calculation of key observables and quantities of interest is the primary

purpose of any model. This calculation is not just performed for the purposes of

prediction; it is used for producing data for model calibration and validation in the

Bayesian framework, discussed in Chapter 3, upon which the research presented here

is based. In the case of virtual experimentation, as is the case here, observables and

data need to be collected in both the ground truth or high-fidelity model (the AA

model) and the surrogate or reduced-order model (the CG model) for the purposes
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Figure 2.1: Illustration of various choices for coarse-grained mappings of an atomistic
system. For each Gi, a set of possible parametric model classes may be defined, as
discussed in Section 2.4.

of calibration and comparison. In this section, the methods used in this work for

calculating observables in molecular systems are discussed. The details given use

the notation from the AA system where convenient; application to the CG system

is trivial.

Observables and quantities of interest are defined by phase functions q and

qCG in the AA and CG systems, respectively, and can take the form of a time

average, an ensemble average, or a probability distribution, as previously noted in
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(2.15)−(2.16) and (2.26)−(2.27). In any of these cases, the system is simulated

using an MD code. In the present study, the AA and CG systems are simulated

using a software package developed and maintained by Sandia National Laboratory,

called Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [96].

A data file describing the atomistic or molecular system of interest is created; it

contains the initial positions of the atoms as well as topological information, such

as which atoms are bonded together and a tabulation of all angular and dihedral

interactions. This file is read by an input script, in which the functional form of

the potential energy function, V , and its parameter values are specified. This input

script also contains information about the simulation itself: the ensemble, including

the temperature or pressure specifications; equilibration steps according to specified

time lengths; and external body forces, such as strain rate, applied force, and so on.

Finally, the functional form of the phase function, q, is specified in the input script.

The initial positions and topological information included in the data file

are read into the LAMMPS input file. Then an equilibration process is performed

to ensure that the system is in thermodynamic equilibrium. A short period of

Brownian dynamics is performed at a temperature, TB, much higher than the desired

value. This introduces a sufficient amount of randomness to the system to break

any symmetries that may be falsely imposed by the specified initial configuration.

This purpose is further served by simulating the system in an isobaric-isothermal

ensemble, also called an NPT ensemble, in which the number of particles is fixed

and a constant pressure P and temperature TB are maintained. Periodic boundary

conditions are used, allowing for the movement of molecules through the material.
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The temperature is slowly lowered from elevated TB to the desired tem-

perature, T . This step, called quenching or annealing, preserves the randomness

introduced by the NPT simulation, and brings the system to an approximate equi-

librium configuration [59]. The criteria for what constitutes an equilibrium state

vary depending on the imposed macroscopic conditions, e.g. the number of parti-

cles, volume, pressure, temperature, etc., that define the ensemble. In the canonical

ensemble, the Boltzmann distribution (2.9) describes a system in which the most

likely states are those for which the total energy, given by the Hamiltonian, is min-

imized. Thus, simulations should also seek configurations that yield low potential

energy.

Once the temperature of the system is quenched to the preferred temper-

ature, T , simulation in a canonical ensemble is performed. Note that the volume,

V , may have changed from that specified by the initial configuration contained in

the datafile during the NPT simulation, but is now held at the volume produced

by quenching. The duration of the canonical ensemble simulation may vary due to

many factors, such as the size of the system, but should continue until the modeler

is confident that residual effects from the quenching step are negligible. This can be

thought of as a “burn-in” period for the simulation of a canonical ensemble.

Steps following equilibration depend on the modeling scenario. For simplic-

ity, applications considered here are restricted to scenarios in which simulation in

the canonical ensemble is continued following equilibration and in which the observ-

able or quantity of interest is one that is measured in equilibrium. Recalling the

intractability of analytically calculating (2.13) or (2.14), numerical calculation is re-
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quired. Though many techniques have been developed for this purpose, an overview

of which is given in [36, 66], Monte Carlo approximation is used here. Given M

independent and identically distributed (i.i.d) samples {xi}Mi=1,∫
f(x) dx ≈ 1

M

M∑
i=1

f(xi). (2.32)

In particular, given i.i.d samples of the phase function q at times {ti},

q̄ ≈ 1
M

M∑
i=1

q (rn (ti) ,pn (ti)) , (2.33)

or given i.i.d samples at points of the phase space {(rni ,pni )},

〈q〉 ≈ 1
M

M∑
i=1

q (rni ,p
n
i ) ρ (rni ,p

n
i ) . (2.34)

Thus, by sampling the value of the phase function of the observable or quantity

of interest throughout the MD simulation, the time and ensemble average may be

approximated.

In LAMMPS, the Nosé-Hoover thermostat is used to enforce the temperature

constraint [42, 84, 96]. Instead of integrating the equations of motion (2.1) forward

in time, the Nosé-Hoover thermostat is enforced by sampling positions and velocities

(momenta) from the canonical distribution function (2.9). This implementation is

acceptable under the validity of the ergodic hypothesis, which states that given a

sufficient length of time, the AA system will access all points in HAA, and may

therefore be represented by statistical sampling, so that

q̄ = 〈q〉 . (2.35)
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It can be shown [83] that if the samples (rni ,p
n
i ) are drawn according to a non-

uniform distribution, in this case the Boltzmann distribution (2.9), the approxima-

tion (2.34) becomes

〈q〉 ≈ 1
M

M∑
i=1

q (rni ,p
n
i ) (2.36)

through a change of variables. Thus, for i.i.d samples {(rni ,pni )} taken from a

LAMMPS simulation using the Nosé-Hoover thermostat, the calculation of the en-

semble average of a phase function amounts to the arithmetic mean (2.36).

2.4 Uncertainties in the Coarse-Grained Model

The significant problems with coarse-grained approximations of atomistic

systems are clear:

1. The choice of map G, and therefore the number of CG particles N , is not

well-defined. If a given atomistic system may be represented by k different

maps, the set

M = {M1,M2, . . . ,Mk} (2.37)

defines a collection of sets Mi of model classes that may be used to model the

CG system yielded by the map Gi.

2. Once G is specified, the choice and structure of VCG remains to be determined.

For each map Gi, a set Mi of possible representations of VCG can be identified.

Each representation of VCG, denoted Pij , has its own set of parameters θij and

therefore is an infinite class of possible models. Thus, each Mi, is the set of
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possible models that may be used with map Gi,

Mi = {Pi1 (θi1) ,Pi2 (θi2) , . . . ,Pim (θim)} , i = 1, 2, . . . , k. (2.38)

3. The parameters θij for each model Pij , corresponding to map Gi and represen-

tation j of VCG, are unknown and posses uncertain (random) vectors. These

parameters must be calibrated to agree with data provided by the AA system,

which is, itself, stochastic.

Each step in the coarse graining process is met with choice and uncertainty.

The methodology chosen here for the calibration and validation of models under

uncertainty is the use of Bayes’ Rule, discussed in the next chapter.
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Chapter 3

Bayesian Framework for Predictive Models

The accuracy with which scientific theories depict observed phenomena, or

more importantly, predict events not yet observed, is critical to the success of the

scientific method. Exactly how reliable are the models of natural phenomena that

are used to make critical predictions on the behavior of physical or engineered sys-

tems? This question is at the heart of all scientific discovery; implicitly it embraces

the notion that observational data are to be obtained and that models, the mathe-

matical transcriptions of theories, will be used to explain with sufficient accuracy the

observational data and then be used to extrapolate to the prediction of unobserved

events. As has been stressed repeatedly, the confounding difficulty in applying this

fundamental scientific strategy is to cope with inevitable uncertainties in data, in the

selection of appropriate models, in model parameters, and in assessing the adequacy

K. Farrell and J. T. Oden. Calibration and validation of coarse-grained models of atomic sys-
tems: Application to semiconductor manufacturing. Computational Mechanics, 54(1):3-19,2014. K.
Farrell implemented Bayesian methods computationally. J. T. Oden supervised the work. Bayesian
theories introduced for application to coarse-grained models were developed by both authors.

K. Farrell, J. T. Oden, and D. Faghihi. A Bayesian framework for adaptive selection, cali-
bration, and validation of coarse-grained models of atomistic systems. Journal of Computational
Physics, 295:189-208, 2015. K. Farrell implemented Bayesian methods computationally. J. T. Oden
supervised the work. D. Faghihi implemented the analysis of parameter sensitivities.
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of the model itself.

The path to scientific discovery must include the acquisition of experimental

or observational data and the interpretation of the causes of the observations through

inductive hypotheses that take the form here of parametric mathematical models

based on physical principles. To illustrate, consider as a starting point the abstract

mathematical model,

A (θ, S;u (S,θ)) = 0, (3.1)

where A is a collection of mathematical operations, arising from a mathematical

characterization of scientific theories, θ is a vector of model parameters, S is the

scenario under which the model is implemented, and u is the solution of this so-called

forward problem, which depends on S and θ. The scenario is generally understood

to be the domain and initial and boundary conditions for which the model is imple-

mented. For simplicity, and without loss of generality, it will be assumed that the

scenarios are deterministically defined and are independent of θ. It is assumed that

the solution u exists for each choice of scenario S and parameter vector θ belonging

to a parameter space Θ.

The fundamental questions arising in all such modeling processes are: 1)

How can the parameters be chosen to represent our best knowledge of the physics

in the presence of uncertainties? 2) How accurately does the model depict physical

reality, particularly the QoI? and 3) How can the inevitable uncertainties in the

simulation be quantified, particularly the uncertainty in the QoI? Answering these

questions is the aim of this chapter.
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3.1 Bayes’ Rule

Throughout this investigation, uncertainties are dealt with in the context of

probability theory. But which probability theory is most appropriate for the tasks

at hand? This work subscribes to the logical theory of probability laid down by

Richard T. Cox [22], expanded and implemented in the treatise of Edwin T. Jaynes

[53], and debated extensively in statistics literature [4, 5, 28, 39, 40, 113]. There,

the foundational conclusion is that, under reasonable “desiderata,” every extension

of Aristotelian logic in the presence of uncertainties is Bayesian. More specifically,

according to Cox’s Theorem, the product rule of logical plausibilities p(·) ∈ R+ of

propositions (or events) A and B conditioned on prior knowledge X is given by

p(A ∧B|X) = p(A|X)p(B|AX), (3.2)

where A∧B is the conjunction of A and B (the proposition that both A and B are

true), and p(A|X) is the proposition that A is true, given that (or on condition that)

X is true. The rule (3.2) is precisely Bayes’ Rule. Owing to the commutativity of

the operator ∧, it is written more familiarly as

p(A|BX) =
p(B|AX)p(A|X)

p(B|X)
. (3.3)

Traditionally, p(A|X) describes prior information on A conditioned on X,

p(B|AX) is the likelihood of A conditioned on the premise that both B and X

are true and are given, and p(B|X), called the evidence, is a normalization factor.

Hereafter, with proper scaling and with the sum rule (p(A|X)+p(Ā|X) = 1, Ā being

the negation of A) in force, the propositions in (3.3) can be replaced by probability
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densities. Interpreted in the more common context of Kolmogorov probability theory

[65], which is to be called upon when convenient, probability measures are assumed

to be absolutely continuous with respect to the Lebesgue measure and, therefore,

representable by probability densities.

Returning to the abstract model (3.1), the goal now is to use the model

to match as best as possible observational data y for given θ, and, denoting the

corresponding probability densities by p ∼ π, an analogy to (3.3) is the equation

π(θ|y) =
π(y|θ)π(θ)

π(y)
, (3.4)

where π(θ) is the prior probability density function (pdf) for parameters θ, π(y|θ)

is the likelihood, the conditional probability of y given θ, π(y) is the evidence, and

π(θ|y) the posterior probability density.

Bayes’ Rule, (3.4), is the point-of-departure for statistical calibration and

validation of models given a scenario S. It represents a recipe for updating model

parameters: starting with prior information π(θ), the likelihood measures the prob-

ability of the data for given θ, the posterior being the Bayesian update for the model

parameters.

3.2 The Prediction Pyramid

The processes leading to the prediction of a QoI are conceptualized as

traversing a hypothetical pyramid, the prediction pyramid, shown in Figure 3.1.

As discussed in [1, 6, 90–92], a sequence of calibration and then validation scenarios

are designed to inform the mathematical model and build the modeler’s confidence
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Figure 3.1: The prediction pyramid that illustrates the construction of predictive
models [89–92]. An overview of this process is given in Section 3.2 and discussed in
detail throughout this chapter.

in its ability to accurately predict the QoI. At the base of the pyramid is the calibra-

tion step, where the simplest, informative calibration scenario, Sc, yields calibration

data yc. This data is used to update any prior information that may be known

about the parameters. Progressing up the pyramid to more complicated valida-

tion scenarios, Sv, closer to the prediction scenario, the calibrated model is tested

against validation data, yv. The implication is that as higher levels of the pyra-

mid are reached, new information is used to update the model parameters, building

upon knowledge gained in previous levels. In general, the accessibility of data at

higher levels decreases, though this may not always be the case. After passing the

validation tests, the model may be used to predict the unobservable QoI in the full

prediction scenario at the top of the pyramid.

To illustrate, the prediction scenario shown in Figure 3.2 consists of a com-

plex structure made up of polymeric material. This structure may be modeled
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through the use of a representative volume element [7, 8], which therefore serves as

a prediction scenario. Within this cube of material are long, interlocking polymer

chains, which are thus deemed validation scenarios. Longer chains may be broken

down into smaller chains that become the calibration scenarios.

It is imperative that all of the parameters θ are used in the calibration sce-

narios so that they may be updated by observational measurements. If necessary,

multiple calibration scenarios may be used to ensure that all parameters are in-

cluded, as discussed in detail in [31]. Ideally, the validation stage should consist of

multiple validation scenarios, each of increasing size and complexity, while simulta-

(a)
�� �

��

��
�
��

��
�
��

��
�
��

��
�
��

�
��

��

�
��

��

�
��

��

Sc

Molecular Unit

(d)

(b)

Sp

Q =total energy per unit
volume

Sv

��
��

��
��

��
��

��
��

-

Polymer chains and
crosslinks = RPCs

(c)

Figure 3.2: Illustration of the prediction, validation, and calibration scenarios for
predictive models of polymer materials used in semiconductor manufacturing (see
[31] for details): a) the desired pattern of material; b) one realization of a cube
representing the representative volume element [7, 8]; c) validation chains and d)
molecular units used in the calibration scenario
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neously providing as much new information about the parameters as possible (see

Section 3.5). Furthermore, the calibration and validation data against which the

model will be compared should be related to the QoI. A fundamental tenant in the

art and science of model validation is the notion that the validity of a model is

only meaningful in connection with specific QoIs; a model may be deemed valid for

predicting one QoI but invalid for another [92]. Heuristic arguments may be made

for choosing yc and yv, but a less arbitrary method is discussed in Section 4.2.

The calibration and validation scenarios are chosen as subsystems of the pre-

diction scenario in an attempt to capture as many of the characteristics and behavior

of Sp as possible. The data yc and yv are chosen to inform the parameters about

the QoI. In this setting, traversing up the prediction pyramid through increasingly

complex trials builds the modeler’s confidence in the ability of the model to predict

QoIs based on the accuracy with which the model can predict specific observables

in validation scenarios.

3.3 Model Calibration

The outset of predictive modeling begins with calibration. As discussed

previously, the calibration scenario, Sc, is the simplest possible scenario that is a

subsystem of the prediction scenario and it is where data, yc, related to the QoI,

are collected. In this scenario, the model parameters θ are updated via Bayes’ Rule,

(3.4), with observational data y = yc such that

π (θ|yc) =
π (yc|θ)π (θ)

π (yc)
. (3.5)

35



The likelihood distribution, π (yc|θ), characterizes how well the model, given the

parameter choice θ, is able to reproduce the observed data. That is, according to

Ronald A. Fisher [33] (who was, ironically, a staunch anti-Bayesian), “[t]he likelihood

that any parameter should have any assigned value is proportional to the probability

that if this were so, the totality of all observations should be that observed.” The

likelihood distribution is discussed in detail in Section 3.3.1.

The prior distribution, π (θ), captures all prior information that may be

known about the parameters before calibration begins. To capture all prior infor-

mation while simultaneously accounting for all possible uncertainties in this data,

the maximum entropy approach of Claude E. Shannon [105] is used. Details are

discussed in Section 3.3.2.

The evidence, π (yc), is usually regarded as a constant whose purpose is

merely to normalize the posterior distribution, π (θ|yc). However, the evidence can

be used to calculate the plausibility of a model and can be used to select, from a

group of models, the model that best fits the given data. This criteria for model

selection is the basis of the present work. The evidence and its relationship to model

selection are discussed in Sections 3.3.3 and 3.4.

3.3.1 The Likelihood Distribution

Observational data belong to a data set Y, which can be endowed with math-

ematical structure, such as a metric topology. The observations y ∈ Y are regarded

as vectors of samples: y = {y1, y2, . . . , yn} ∈ Rn. The sample yi is acquired in an

attempt to measure a physical reality Ωi at some point in the physical universe (e.g.
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temperature or displacement or energy), but reality is seldom measurable exactly

due to experimental noise εi, here assumed to be additive. Thus,

Ωi + εi = yi, 1 ≤ i ≤ n. (3.6)

The observational error εi itself is uncertain; it is, in general, a random variable.

The data Y are collected for a specific scenario S of the physical events of interest.

The adequacy with which the model can predict reality depends upon the

closeness of the model predictions di (u (S,θ)) to the physical reality Ωi for scenario

S, and are assumed to satisfy the relations,

Ωi = di (θ) + ηi, 1 ≤ i ≤ n, (3.7)

where di (θ) ≡ di (u (S,θ)) is the parameter-to-observation map produced by the

model and ηi represents the modeling error, also referred to as the model inadequacy

or model form error. Eliminating Ωi from (3.6) and (3.7) yields

yi − di (θ) = εi + ηi, 1 ≤ i ≤ n. (3.8)

In much of the literature on statistical calibration of models in the presence of

uncertainty, the model inadequacy ηi is ignored and the total discrepancy between

the data and the model is attributed to experimental noise, the modeling error being

treated separately or ignored completely.

The effects of the model are manifested in the likelihood probability π(y|θ):

if p is the probability density of the error εi + ηi in (3.8), then

p (εi + ηi) = p (yi − di (θ)) = π (yi|θ) , (3.9)
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and

π(y|θ) =
n∏
i=1

π (yi|θ) . (3.10)

Note that is it often convenient to use the log-likelihood,

log π (y|θ) =
n∑
i=1

log π (yi|θ) , (3.11)

which has the same maximum as (3.10) due to the monotonicity of the logarithmic

function.

Unless other information is known about the form of the error εi, it is com-

mon to assume that it is normally distributed about zero with variance σ2. That

is,

π(yi|θ) ∼ N
(
0, σ2

)
. (3.12)

In general, the variance σ2 is unknown, but it may be added to the list of parameters

θ. In this way, no unintentional bias is being added to the calibration process.

3.3.2 The Prior Distribution

Any and all prior information that is known about the parameters is charac-

terized in the prior probability distribution, π (θ). It must, however, be noted that

this prior information contains its own uncertainties regarding the extrapolation of

this information to new scenarios (i.e. the calibration scenarios) as well as the usual

uncertainties introduced by experimental or measurement error.

Claude E. Shannon published a theorem in 1948 [105] proving that the only

consistent measure, H, of the uncertainty content of a probability distribution, p

satisfying four logical desiderata [53],
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1. H (p) ∈ R: the amount of uncertainty is a real number,

2. H ∈ C0: H is a continuous function,

3. H is monotonic: the more possibilities from which there are to choose, the

more uncertainty there is in the choice,

4. H is consistent: if there is more than one appropriate functional form, they

all yield the same answer,

is the information entropy,

H (p) = −
m∑
i=1

p (θi) log p (θi) . (3.13)

In the case that p is continuous,

H (p) = −
∫
p (θ) log p (θ) dθ. (3.14)

This function is also called the Shannon or information entropy.

In a prior distribution, one seeks a distribution that captures any prior in-

formation that may be known about the model parameters, θ, while simultaneously

acknowledging the fact that this information may also be uncertain, i.e. in its shape,

range, etc. Thus, the proper choice for the prior distribution is the one that maxi-

mizes the information entropy (the uncertainty content) subject to constraints im-

posed by prior knowledge. This choice of prior is aptly named a “maximum entropy

prior,” and the method of deriving such priors was introduced by Edwin T. Jaynes

in the 1950s [50–52].
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To maximize the information entropy subject to constraints, Lagrange mul-

tipliers are used. Without loss of generality, let the prior probability distribution, p,

be a discrete distribution, and for notational simplicity, let pi = p (θi). At the very

least, it must be that p is normalized such that,

m∑
i=1

pi = 1. (3.15)

Relevant to this work are the additional constraints that the mean,

m∑
i=1

piθi = 〈θ〉 , (3.16)

and possibly also the variance,

m∑
i=1

pi (θi − 〈θ〉)2 = σ2
θ , (3.17)

are known. In the case that only the mean of a parameter θ is known, the Lagrangian

has the form,

L = H (p)− (λ0 − 1)

(
m∑
i=1

pi − 1

)
+ λ1

(
m∑
i=1

piθi − 〈θ〉

)
. (3.18)

If, in addition, the variance is known,

L = H (p)− (λ0 − 1)

(
m∑
i=1

pi − 1

)
+ λ1

(
m∑
i=1

piθi − 〈θ〉

)

−λ2

(
m∑
i=1

pi (θi − 〈θ〉)2 − σ2
θ

)
. (3.19)

The Lagrangian L is then maximized with respect to pi such that

∂L

∂pi
= 0 (3.20)
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for each i = 1, . . . ,m. This equation, coupled with the constraints (3.15), (3.16),

and, if applicable, (3.17) leads to a prior distribution whose information entropy is

maximized. In the case that only the mean is known, the maximum entropy prior

is an exponential distribution,

pi =
1
〈θ〉

exp
(
−θi
〈θ〉

)
, (3.21)

and if the variance is also known, p is a Gaussian distribution,

pi =
1

σθ
√

2π
exp

(
− (θi − 〈θ〉)2

2σ2
θ

)
. (3.22)

These derivations and expressions extend trivially to the continuous case.

Unless prior information suggests otherwise, parameters are treated as inde-

pendent random variables. Thus, maximum entropy prior distributions are derived

for each parameter independently, and the prior distribution, π (θ), used in Bayes’

Rule (3.5) is a concatenation of the prior distributions of all of the parameters.

3.3.3 The Evidence

The denominator of Bayes’ Rule (3.5) is called the evidence. It is a marginal-

ization of the likelihood distribution over the parameters θ,

π (yc) =
∫
π (yc|θ)π (θ) dθ, (3.23)

and serves as a normalizing factor for the posterior parameter distribution. Given

a single model, the parameters θ may be calibrated to observational data via (3.5).

In this setting, the evidence, π (yc), is often overlooked, and one frequently sees the

rule written as,

π (θ|yc) ∝ π (yc|θ)π (θ) . (3.24)
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However, when given a choice of many possible models, the evidence plays a crucial

role in model selection, discussed in the next section.

3.4 Model Plausibility and Model Selection

It is often the case that the abstract mathematical model A of (3.1) may be

represented by more than one possible functional form. This situation was briefly

discussed in Section 2.4 in the context of modeling the coarse-grained approximation

of an atomistic system. Thus, consider a set of model classes,

M = {P1,P2, . . . ,Pm} , (3.25)

each of which has its own parameters θj , j = 1, . . .m and may possibly be used to

represent the behavior of the system of interest. For each model pair, (Pj ,θj), the

Bayesian rule may be written,

π (θj |y,Pj ,M) =
π (y|θj ,Pj ,M)π (θj |Pj ,M)

π (y|Pj ,M) ,
(3.26)

to update the parameters θj with observational data y. As before, π (y|θj ,Pj ,M)

is the likelihood distribution, π (θj |Pj ,M) characterizes prior information regarding

the model parameters θj , and the denominator, π (y|Pj ,M), is the evidence of the

model Pj .

The model evidence, π (y|Pj ,M), may be regarded as the likelihood in a

higher form of Bayes’ Rule,

π (Pj |y,M) =
π (y|Pj ,M)π (Pj |M)

π (y|M)
, (3.27)
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that defines the posterior model plausibility of model Pj in the set M for given

observational data y. Here, π (Pj |M) is the prior plausibility that model Pj is true

among those in the set M, and the denominator π (y|M) is a normalization constant

such that
m∑
i=1

π (Pj |y,M) = 1. (3.28)

The posterior model plausibility is often referred to simply as the “plausibility of

Pj” and denoted

ρj = π (Pj |y,M) . (3.29)

The plausibility (3.27) provides an immediate means to determine which

model in the set M best fits the observed data . The model(s) in M with plausibilities

ρj closest to unity are deemed the most plausible. In particular, if

ρj > ρk, (3.30)

the model Pj is more plausible than model Pk for the given data y. There is not

necessarily a unique most plausible model within M. The use of model plausibilities

as a basis for model selection has been advocated in [10, 92, 93] and used successfully

in selecting CG models in [31, 32].

It should be noted that the model plausibility balances model fitness to given

data and model complexity. By defining the function

l (θ) = l (θj) = ln (π (y|θj ,Pj ,M)π (θj |Pj ,M)) , (3.31)

where the index j has been dropped for notational simplicity, the marginalization
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(3.23) may be rewritten as,

π (y|P,M) =
∫

exp (l (θ)) dθ. (3.32)

Following [95], l (θ) may be expanded in a Taylor series about its maximum, θ∗,

l (θ) = l (θ∗)+
n∑
i=1

Li (θ∗) (θi − θ∗i )−
n∑
i=1

n∑
j=1

Hij (θ∗) (θi − θ∗i )
(
θj − θ∗j

)
+. . . , (3.33)

where Li (θ) is the ith component of the gradient of l (θ),

Li (θ) =
∂l (θ)
∂θi

, (3.34)

and Hij (θ) is the (i, j)th component of the negative Hessian, H (θ),

Hij (θ) = −∂
2l (θ)
∂θi∂θj

, (3.35)

and n is the dimension of θ.

Note that since θ∗ maximizes the likelihood, Li (θ∗) = 0. Neglecting higher

order terms,

π (y|P,M) ≈
∫

exp

l (θ∗)− 1
2

n∑
i=1

n∑
j=1

Hij (θ∗) (θi − θ∗i )
(
θj − θ∗j

) dθ (3.36)

= exp (θ∗)
∫

exp

−1
2

n∑
i=1

n∑
j=1

Hij (θ∗) (θi − θ∗i )
(
θj − θ∗j

) dθ.(3.37)

Recalling that l (θ∗) = ln (π (y|θ∗,P,M)π (θ∗|P,M)) and approximating the inte-

gral by Laplace’s method of asymptotic expansion [13, 95],

π (y|P,M) = π (y|θ∗,P,M)π (θ∗|P,M)
(2π)n/2√
det |H (θ∗|)

. (3.38)

The term π (y|θ∗,P,M) is the likelihood and thus quantifies model fitness by defi-

nition. Together, the remaining terms comprise the so-called Occam factor, which
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penalizes larger numbers of parameters and models that are highly sensitive to

changes in parameters, as discussed in [13, 95]. Should two models fit the obser-

vational data equally well, the “simpler” model will have higher plausibility. Thus

the principle of Occam’s Razor, discussed in detail in Chapter 4, is upheld in the

computation of model plausibilities.

Model plausibilities are calculated at the calibration stage of the prediction

pyramid, i.e. y = yc. The model that is deemed the most plausible moves into

the validation stage, discussed in the next section, where the model is tested for

accuracy with respect to a new set of data, yv. In general, the validation scenario is

far more complicated and computationally expensive than the calibration scenario,

making the validation update of every model in the set M impractical; the validation

update should be performed as few times as possible. If the calibration scenario is

designed to be informative and relevant to the validation scenario and the prediction

scenario, as discussed in Sections 3.2 and 4.2, it is reasonable to argue that the most

plausible model has the best chance of passing the validation tests.

3.5 Model Validation

After Bayesian calibration is complete and the most plausible model is iden-

tified, the model is moved up the prediction pyramid into the validation stage. The

validation scenario(s), Sv, correspond to more complex scenarios and are designed

to test the model, based on the accuracy with which it is able to reproduce valida-

tion observables, which are chosen to reflect the QoI in the prediction scenario, as

discussed in Section 3.2.
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The calibration posterior from the model judged to be the most plausible,

π (θ|yc) = π (θ|yc,Pj ,M), becomes the prior parameter distribution in the valida-

tion scenario. With validation data, yv, produced in the validation scenario, the

validation update is again given by Bayes’ Rule,

π (θ|yv,yc) =
π (yv|θ,yc)π (θ|yc)

π (yv|yc)
, (3.39)

where π (yv|θ,yc) is the validation likelihood and is commonly assumed to be Gaus-

sian for the same reasons discussed in Section 3.3.1, and π (yv|yc) is the validation

evidence and acts purely as a normalization constant. Note that although π (yv|yc)

may theoretically be used to calculate plausibility instead of π (yc), this is not gen-

erally practical, as the validation scenario is far more complex and computationally

expensive than the calibration scenario.

It is possible at this point to compute the information gain, which measures

how much the parameters change with the addition of the validation data yv,

I (π (θ|yv,yc) , π (θ|yc)) = DKL (π (θ|yv,yc) ‖π (θ|yc)) . (3.40)

Here, DKL (·‖·) is the Kullback-Leibler divergence between two distributions, p and

q, also called the relative entropy, defined to be

DKL(p‖q) =
∫
p(ω) log

p(ω)
q(ω)

dω. (3.41)

Clearly,

DKL(p‖q) = −H (p) +H (p, q) , (3.42)

where

H (p, q) = −
∫
p (ω) log q (ω) dω (3.43)
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is called the cross entropy. To prevent overfitting, the validation scenarios and

experiments should be designed to produce the largest information gain, subject to

the usual constraints of cost, complexity, and general feasibility.

The updated parameters π (θ|yv,yc) determined by (3.39) are used to solve

the forward problem for the validation observable so that the accuracy with which

the model is able to predict the observable (which is related to the QoI in the

prediction scenario) may be assessed. It is important to note that the parameters θ

are random variables distributed according to the validation posterior. Therefore,

the observables produced by the model are also random variables. To solve the

forward problem, the validation posterior, π (θ|yv,yc), is stochastically sampled

and a probability density function of the observable, π (Q|θ) = π (Q|θ,yv,yc) is

produced.

If the target observable is a probability distribution, π (q), a natural measure

of the similarity between the target and predicted distributions is the Kullback-

Leibler divergence,

γ = DKL (π (q) ‖π (Q|θ)) =
∫
π (q (ω)) log

π (q (ω))
π (Q (ω) |θ)

dω. (3.44)

If, instead, the target observable is a scalar, q, the corresponding prediction may be

found by taking the expected value,

Q = Eπv [π (Q|θ)] =
∫

Θ
π (Q|θ)π (θ|yv,yc) dθ. (3.45)

Then the results may be compared in a Euclidean metric,

γ = |q −Q| . (3.46)
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At this point, an often subjective decision must be made as to whether or

not the accuracy of the model, γ, measured by the DKL pseudo-distance defined

in (3.44) or the Euclidean metric (3.46), is sufficiently small to declare the model

“valid” (or, more accurately, “not invalid,” as all models are technically wrong). For

a preset tolerance, γtol, the model is declared valid if

γ ≤ γtol. (3.47)

Many other metrics could be chosen. The major point is that the modeler is obliged

to choose a metric (or pseudo-metric) and a tolerance to give meaning to the valida-

tion process. The choice of an appropriate metric and tolerance may be purely based

on the subjective judgment and experience of the modeler, or it may result from

more elaborate considerations based, e.g. on information theory. If this condition

is not satisfied, the model is declared invalid.

One of several ensuing steps may be taken at the modeler’s discretion. For

example, a new set of possible model classes,

M∗ = {P∗1,P∗2, . . . ,P∗l } , (3.48)

may be defined, the calibration of each performed, and the plausibilities calculated,

yielding a new most-plausible model subject to validation tests. Another highly

debated option may be to move the model from M with the next-highest plausibility

into the validation stage. Although the calibration scenario should be designed such

that the most plausible model has the highest chance of passing the validation test,

this is not guaranteed, and it may be that one of the discarded models is valid while

the most plausible is not. The present work proposes an algorithm, discussed and
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outlined in Chapter 4, through which the next step in the case of model invalidity

is defined.

It should be noted that it is possible to define a sequence of validation

experiments, with respective scenarios Sv,1, Sv,2, . . ., each of which is more complex

and closer to the prediction scenario than the last. In each scenario, the parameter

distributions are updated via Bayes’ Rule,

π
(
θ|yv,k,yv,k−1, . . . ,yv,1,yc

)
= π

(
yv,k|θ,yv,k−1, . . . ,yv,1,yc

)
×

π
(
θ|yv,k−1, . . . ,yv,1,yc

)
π
(
yv,k|yv,k−1, . . . ,yv,1,yc

) (3.49)

and the forward problem may be solved, yielding the stochastic predicted observable

π (Qk|θk) = π
(
Qk|θ,yv,k,yv,k−1, . . . ,yv,1,yc

)
. This may then be compared to the

target observable, either of the form π (qk) or qk, which may change for each level

of validation. As before, if the target observable is characterized by a probability

distribution, (3.44) is used to calculate γk, whereas if the target observable is a

scalar, (3.45) and (3.46) are employed.

As the sequence of validation scenarios is carried out, with γk ≤ γtol, the

modeler should become more confident in the model’s ability to accurately predict

the QoI in the prediction scenario. Once a sufficient level of confidence is attained,

the “valid” model may be used in the prediction scenario. The stochastic nature

of the validation posterior distribution of the parameters should be exploited in the

calculation of the QoI. For example, a Monte Carlo method may be used to draw

samples of the parameters, each of which is used in an implementation of the forward

problem to calculate the QoI in the prediction scenario Sp.
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3.6 Implementation

In this work, Bayes’ Rule is implemented in the software package QUESO

[30], which uses a variety of Monte Carlo sampling techniques. Sample parameter

vectors are taken from the prior distribution, and, for each sample, the forward

problem is run to obtain di (θ). This value is compared to the observational data

according to (3.9). If the computed likelihood value is higher than that of the last

sample, the parameter is accepted, otherwise it is rejected and a new sample is

drawn. This continues until a set of parameter vectors of pre-determined size is

obtained.

The main question that arises at this point is: how can one determine the

number of samples necessary to obtain the correct posterior distribution? The

truth is that this cannot be determined; however, there are steps that may be

taken to increase the confidence the modeler has that the posterior produced by

QUESO is a good approximation to the true posterior distribution. It bodes well

if, when the number of Monte Carlo samples is increased, the posterior does not

change appreciably. One challenge is to choose a rigorous measure of closeness of

probability densities to judge convergence. Again, the Kullback-Leibler divergence

(3.41) is called upon to measure the similarity between the posteriors yielded when

different numbers of Monte Carlo samples are used.

The posterior distributions produced by QUESO are clearly discrete, while

the Kullback-Leibler divergence (3.41) is defined for continuous probability distri-

bution functions. The method used in this work for calculating the discrete DKL-

distance was proposed in [115], in which k-th nearest-neighbor distances are com-
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pared between the two distributions being analyzed. Here, the posterior distribu-

tions are considered sufficiently “converged” if the discrete DKL-distance, D̄KL, is

less than a tolerance. In particular, let πi be the posterior parameter distribution

produced by using i Monte Carlo samples, and πj is that corresponding to j sam-

ples, where j > i. Then, if the gain in information, measured by D̄KL, satisfies a

tolerance related to the dimension of the parameter space Θ,

D̄KL (πi+1‖πi) ≤ γpost = 0.5 dim (Θ) , (3.50)

the posterior, πi, is considered converged. Past explorations of this topic have

determined this to be an appropriate tolerance.

In general, a relatively small number of Monte Carlo samples, i.e. 5000

samples, is specified in the initial implementation of Bayes’ Rule in QUESO. In the

next implementation, this number is increased to, for example, 10000 samples. If

D̄KL(π10000‖π5000) ≤ γpost, (3.51)

the posterior is considered to be converged. Otherwise, the number of Monte Carlo

samples is increased incrementally by, for example, 5000 samples, until the condition

(3.50) is met.

The converged posterior is used to calculate the plausibility and is used as the

prior in the validation update, if applicable. In this work, the evidence is calculated

by QUESO during the Bayesian update, from which normalized plausibilities may

be calculated.
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Chapter 4

The Occam-Plausibility Algorithm

The previous chapter addressed the process by which the reliability of a

model may be assessed in the presence of inevitable uncertainties. Incomplete knowl-

edge of the physical world may be compensated for through the use of probability

distributions, Bayes’ Rule, and information theory. The present chapter addresses

a more specific goal: finding the simplest valid model. As the thirteenth century

Franciscan monk, William of Occam, stated, “Entities must not be multiplied be-

yond necessity” [17]. The balance of necessity and simplicity has come to be known

as Occam’s Razor. In this chapter, the framework developed in previous chapters

is used to construct a systematic, adaptive paradigm to identify the simplest model

that is valid for the purpose of predicting quantities of interest. This process is

referred to as the Occam-Plausibility ALgorithm (OPAL). An illustrative flowchart

of the algorithm is shown in Figure 4.1, and an example application to constructing

a coarse-grained model of polyethylene is detailed in the next chapter.

K. Farrell, J. T. Oden, and D. Faghihi. A Bayesian framework for adaptive selection, cali-
bration, and validation of coarse-grained models of atomistic systems. Journal of Computational
Physics, 295:189-208, 2015. K. Farrell developed OPAL and introduced the new interpretation and
use of parameter sensitivity analysis as a method of confirming scenario-observable pairs. J. T.
Oden supervised the work. D. Faghihi implemented the analysis of parameter sensitivities.
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4.1 Step 1: Initialization

As discussed in the previous chapter, it is often the case that the modeler has

several choices of possible mathematical models representing the physical system of

interest. OPAL begins by identifying a set M of possible model classes, each with

its own set of parameters,

M = {P1 (θ1) ,P2 (θ2) , . . .Pm (θm)} . (4.1)

In general, it is possible (even desirable) that the models within M are closely related

such that two or more models have some of the same parameters. For example, one

choice of model may consider a molecular system represented only by harmonic

bonds, while another may include both harmonic bonds and angular interactions.

4.2 Step 2: Sensitivity Analysis

It is often the case that one or more model parameters do not affect the spec-

ified QoI. Changes in the parameter values do not appreciably change the observable

to be measured; that is, the QoI is not sensitive to these parameters. The technol-

ogy associated with quantifying the sensitivity of the model output to changes in

model parameters is referred to as sensitivity analysis. One common approach to

sensitivity analysis is to use scatterplots. In this approach, the parameter space of

the model is sampled using, for example, Monte Carlo sampling. For each sampled

parameter vector, the desired observable or output is computed. After many sam-

ples have been taken, a scatterplot for each parameter, with the parameter value

on one axis and the model output on the other, may be produced. While it is often
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easy to see which parameters are influential (see, e.g. Figure 5.6), for models with

many parameters, checking tens or hundreds of scatterplots may be impractical.

Another approach, employed in the present work and developed in the work

of Saltelli, et al. [101, 102, 104], is to compute variance-based sensitivity indices. In

this approach, the variance of the “output,” i.e. the observable in the calibration or

validation scenarios or the QoI in the prediction scenario, is decomposed into the

contributions of the variance from each of the parameters. As discussed in Appendix

B, by taking Monte Carlo samples of the parameter space, the total sensitivity index,

STi , for parameter θi may be computed,

STi =
E (V (Y |θ∼i))

V (Y )
, (4.2)

where Y = Y (θ1, θ2, . . . , θk) is the output, θ∼i is the vector of all parameters except

θi, V (Y ) is the variance of Y , and E (V (Y |θ∼i)) is the expected value with respect to

the joint distribution π (θ∼i) of the variance that remains in Y when the parameters

θ∼i are fixed. This quantity measures the total contribution from parameter θi to

the variance in the output Y . Smaller values of STi indicate that θi can be fixed at

any value within its range of variability without appreciably affecting the output,

while higher values of STi imply that parameter θi is important to the model.

It is asserted in this work that sensitivity analysis should be performed in

each of the calibration, validation, and prediction scenarios. Sensitivity analysis

not only indicates which parameters the observable or QoI are sensitive to, they

indicate which parameters are informed by the observables chosen for the calibration

and validation scenarios. Parameters insensitive to observables will not be updated
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effectively during calibration or validation. Thus sensitivity analysis may also be

used to determine and justify the choice of observational quantity in the calibration

and validation scenarios.

Furthermore, if the models in the set M are closely related such that similar

interactions are included, sensitivity analysis may reveal redundant mathematical

representations or correlations, and, subsequently, the set of model classes may be

reduced. Consider the example briefly discussed in Section 4.1. Should sensitivity

analysis show that the QoI and other observables are insensitive to the parameters

for the angular interactions, the model including both bonded and angular inter-

actions may be removed from the set of model classes. The set of model classes

resulting from sensitivity analysis is denoted,

M̄ =
{
P̄1

(
θ̄1

)
, P̄2

(
θ̄2

)
, . . . P̄l

(
θ̄l
)}
, l ≤ m, (4.3)

where it may be the case that no parameters, and, therefore, no models, can be

eliminated and M̄ = M.

4.3 Step 3: The Occam Step

The models in the set M̄ resulting from sensitivity analysis may be separated

into categories based on their complexity. One may interpret Occam’s Razor in an

alternative statement: among competing theories that lead to the same prediction,

the one that relies on the fewest assumptions is the best. In the context of choosing

a single model among a set of models, the simplest valid model is the best choice.

The notion of the “simplicity” of a model is largely heuristic and exactly how to
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quantify simplicity has been debated for centuries. Because the computational effort

in calibrating most models is strongly dependent on the number of parameters in

the model (e.g. the larger the number of parameters, the more computing time

generally needed to generate posteriors), the number of parameters in a model is

chosen as a measure of its “simplicity.”

With this convention in mind, a partition and re-ordering of the models in

the set M̄ of (4.3) into subsets of C∗k , k = 1, 2, . . . , N∗, is introduced, where each

model in C∗k has the same number, n∗k, of parameters, with n∗1 < n∗2 < . . . , n∗N∗ .

That is, M̄ is partitioned into subsets ordered according to simplicity, beginning

with the set of simplest models, C∗1 and progressing consecutively to models of less

simplicity (more “complexity”):

M̄ = {C∗1 , C∗2 , . . . , C∗N∗} . (4.4)

The labels on these subsets are referred to as Occam categories. Thus, models in

C∗1 are models of Occam category 1, those in C∗2 are of Occam category 2, etc.

Two overriding questions emerge at this point. Firstly, which model(s)

within each category are the most plausible, given the calibration data yc? Sec-

ondly, are any of the models valid for predicting the Sv observables? One or more

models will be the most plausible within each category, but it may be that none are

valid relative to the designated tests and tolerances for model validation.
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4.4 Step 4: The Calibration Step

Beginning with k = 1, the set

M∗ = C∗k = {P∗1(θ∗1), . . . ,P∗lk(θ∗lk)} (4.5)

is defined, all of the models in M∗ are calibrated via Bayes’ Rule (3.5), and the

plausibility (3.27) of each model is calculated, following the processes detailed in

Sections 3.3 and 3.4. The model plausible model P∗j is identified such that

ρ∗i ≤ ρ∗j , i = 1, . . . , k, i 6= j, (4.6)

and is moved into the next step of OPAL, where it will be subjected to validation

test(s).

4.5 Step 5: The Validation Step

According to the philosophy and methodology laid down in Chapter 3, cali-

brated models are tested in a validation scenario or a series of validation scenarios.

The parameters θ∗j of the most plausible model P∗j are updated with Bayes’ rule

(3.39). As detailed in Section 3.5, the updated parameters are used in a forward

problem, and the accuracy with which the model is able to predict the validation

observable may be assessed via (3.44) and (3.46), with validity determined by the

relation (3.47). If the model P∗j is deemed valid, it is suitable for use in the prediction

scenario, and the algorithm moves into the prediction stage; otherwise, the model

is invalid, and the algorithm proceeds to the Iterative Occam Step. The process is

thus terminated when the simplest valid model is identified, while many other valid

models may exist in higher Occam categories.
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4.6 Step 6: Iteration

4.6.1 The Iterative Occam Step

In the case that model P∗j is shown to be invalid, M∗ is redefined so as to

contain models of the next category, and Steps 4 and 5 (and possibly Step 6) are

repeated. At the modeler’s discretion, an additional constraint may be imposed

mandating that the models within the new M∗ contain all of the parameters present

in the current most plausible model P∗j . With this specification, model improve-

ments are more akin to hierarchical model inadequacy approaches in which the most

plausible model is built upon and improved instead of discarded when invalidated.

4.6.2 Redefining M

Once the highest Occam category is reached, iteration of OPAL entails re-

defining the set of models chosen in Step 1. This may be done by identifying new

possible functional forms to represent the system being studied or by refining the

reduced-order representation. For example, when applied to coarse graining, the

CG map itself may be redefined to contain fewer atoms per bead and the set of

possible model classes, M, may then be redefined. After the new set M has been

identified, Step 2 through Step 5 and, if applicable, Step 6, are repeated.
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Figure 4.1: Flowchart illustrating the Occam-Plausibility Algorithm. Beginning
with the identification of a set of possible model classes M, iteration through this
algorithm yields the simplest model that passes a Bayesian validation test. A sen-
sitivity analysis study may reveal that one or more models may be eliminated as
possible representations of the system being studied. The remaining models are
divided into categories based on the number of parameters they contain, and the
calibration and plausibility calculations begin in the category with the simplest mod-
els. Should the most plausible model be rendered invalid, the algorithm moves into
the next category of models until the simplest valid model is identified.
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Chapter 5

An Example Application

This chapter discusses the construction of a coarse-grained model of polyethy-

lene using the Bayesian framework of model calibration, selection, and validation,

and the Occam-Plausibility Algorithm. Consider, as a prediction scenario, a cube of

polyethylene, containing 25 chains of C80H162 and constrained by periodic bound-

ary conditions. The cube is simulated in a canonical ensemble with temperature

T = 300K, and the QoI is taken to be the distribution of the potential energy. The

all-atom system of Sp is shown in Figure 5.1.

5.1 OPAL Step 1: Initialization

5.1.1 The Coarse-Grained Map

In Chapter 2, the choices and uncertainties that arise from defining the

coarse-grained (CG) mapping of an atomistic system were discussed. In particular,

the number of beads or, equivalently, the number of atoms per bead, must be defined.

K. Farrell, J. T. Oden, and D. Faghihi. A Bayesian framework for adaptive selection, cali-
bration, and validation of coarse-grained models of atomistic systems. Journal of Computational
Physics, 295:189-208, 2015. K. Farrell developed OPAL, introduced the new interpretation and
use of parameter sensitivity analysis as a method of confirming scenario-observable pairs, and
implemented Bayesian methods computationally. J. T. Oden supervised the work. D. Faghihi
implemented the analysis of parameter sensitivities.
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Figure 5.1: Prediction scenario of polyethylene, a cube containing 25 chains of
C80H162 and constrained by periodic boundary conditions, with each color corre-
sponding to a different chain within the cube.

When considering polyethylene, if each CG bead is defined to contain a single carbon

atom and accompanying hydrogen atoms, the CG system is called the “united atom”

representation and is a very common choice of mapping. One may also define the

CG map, G, such that CG particles contain two or three carbon atoms and their

bonded hydrogen atoms. The carbon atoms in polyethylene are serially bonded,

as shown in Figure 5.2. Thus, in coarser mappings for which four or more carbon

atoms are assigned to each bead, CG beads are ellipsoids rather than spheres, and

additional degrees of freedom are introduced to account for the asymmetry of the
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particles. Illustrations of possible CG mappings for polyethylene are given in Figure

5.3. In the present work, each CG bead is defined to represent two carbon atoms and

their accompanying hydrogen atoms. The map G is defined to map the coordinates

of the atoms in each bead to the center of mass of the aggregation. Thus RI is

defined by (2.30).

5.1.2 The Model Classes

Once the CG map, G, has been specified, the set M of possible model classes

is the set of possible representations of the CG potential VCG (see Section 2.2). In

the present work, it is assumed that VCG takes on the same functional form as the

AA system defined in (2.4)-(2.8). Note that with the current map G, each CG bead

is charge-neutral, so VCG has no Coulomb term. In addition, the Lennard-Jones 9-6

potential,

Vnb
(
RN

)
=

N−1∑
i=1

N∑
j=i+1

4εij

[(
σij
Rij

)9

−
(
σij
Rij

)6
]
fij , (5.1)

may be considered as an alternative to the Lennard-Jones 12-6 potential in (5.6).

The Lennard-Jones 9-6 potential is a softer potential to account for the empty space

that results from grouping atoms into a single spherical CG bead.

The QoI in this example will be the potential energy, so an additive constant

parameter, A, should be added to VCG such that

V (RN ) = Vbond(RN ) + Vangle(RN ) + Vdihedral(RN ) + Vnb(RN ) +A, (5.2)
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Figure 5.2: Short segment of an all-atom representation of polyethylene. Carbon
atoms are shown in grey and are serially bonded, while hydrogen atoms are shown
in white.

Figure 5.3: Examples of possible coarse-grained mappings of polyethylene. Reason-
able mappings may contain as many as three serially bonded carbon atoms and their
accompanying hydrogen atoms (top). In this example, G maps two carbon atoms
and their hydrogen atoms into a single CG bead, which is shown in the middle
figure. The united atom mapping (bottom) is also commonly used.
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where

Vbond
(
RN

)
=

Nb∑
i=1

KR,i (Ri −R0,i) , (5.3)

Vangle
(
RN

)
=

Na∑
i=1

Kθ,i (θi − θ0,i) , (5.4)

Vdihedral
(
RN

)
=

Nd∑
i=1

V1,i

2
(1 + cos (ϕi)) +

V2,i

2
(1− cos (2ϕi))

+
V3,i

2
(1 + cos (3ϕi)) +

V4,i

2
(1− cos (4ϕi)) , (5.5)

and Vnb
(
RN

)
is a Lennard-Jones 12-6 potential,

Vnb
(
RN

)
=

N−1∑
i=1

N∑
j=i+1

4εij

[(
σij
Rij

)12

−
(
σij
Rij

)6
]
fij , (5.6)

or the Lennard-Jones 9-6 given in Equation (5.1). The number of bonds, angles,

and dihedral interactions in the CG system, are respectively, Nb, Na and Nd. See

Appendix A for details. Within a single CG bead, the minimum energy configuration

of the contained atoms yields a nonzero potential energy. Thus the parameter A

represents the potential energy lost due to the coarse graining process and can be

thought of as the internal bead energy.

The set M is created by tabulating possible combinations of types of interac-

tions. It therefore has 23 possible model classes, each with its own parameter vector

that depends on the interactions included, and all of which include the parameter

A. With the current map G, all of the coarse-grained particles are of the same type.

Therefore, there is only one type of bonded interaction, yielding two parameters,

KR and R0; one type of angular interaction, also yielding two parameters, Kθ and

θ0; one type of dihedral interaction, which requires four parameters, V1, V2, V3, and
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V4; and one type of non-bonded interaction with parameters ε and σ. Table 5.1

contains a complete list of the possible models.

5.2 OPAL Step 2: Sensitivity Analysis

It has been discussed previously that sensitivity analysis may be used to

eliminate parameters to which the target quantity of interest is insensitive. In Sec-

tion 4.2, it was argued that sensitivity analysis may also be used to support the

choice of (Sc,yc) and (Svi,yvi) pairs. The calibration and validation scenarios are

considered acceptable for use in the Bayesian framework if the sensitivity analysis

results in the calibration and validation scenarios are similar to those in the predic-

tion scenario, since this indicates which parameters will be informed by the chosen

observable data. The observable Y in the prediction scenario is necessarily the QoI,

while in the calibration and validation scenarios, Y is defined to be the same func-

tion that is used to calculate di(θ) in the likelihood (3.9). However, in general, Y is

taken to be an average value, e.g. the ensemble average in molecular systems, while

di (θ) are individual samples of the function value.

Recall from Section 3.2 that the validation and calibration scenarios are

subsets of the prediction scenario, designed to capture as many of its characteristics

and behavior as possible, and that the data collected in these scenarios are chosen

to inform the parameters about the quantity of interest. As the prediction scenario

is a cube of polyethylene, containing 25 chains of length 80 carbon atoms each, two

validation scenarios are identified: a smaller cube, consisting of four polyethylene

chains of C80H162, which is denoted Sv2, and a system of two polyethylene chains

65



Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Cat.
P1 X 3 1
P2 X 3
P3 X 3
P4 X 3
P5 X X 5 2
P6 X X 5
P7 X X 5
P8 X X 5
P9 X X 5
P10 X 5
P11 X X X 7 3
P12 X X X 7
P13 X X 7
P14 X X 7
P15 X X 7
P16 X X 7
P17 X X X 9 4
P18 X X X 9
P19 X X X 9
P20 X X X 9
P21 X X X 9
P22 X X X X 11 5
P23 X X X X 11

Table 5.1: Table of possible CG models created by all combinations of interaction
potentials that may be included in the representation of the potential energy. The
listed Occam categories are determined by the number of parameters in the model.
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of C80H162, denoted Sv1. Decomposing the system further yields a single chain of

C80H162 as the calibration scenario. These scenarios are shown in Figure 5.4. In this

example, the QoI and, hence, the output Y for the sensitivity analysis are taken to

be the potential energy of the atomistic-molecular system defined by Sp; therefore, in

the calibration and validation scenarios, the observables to be used in the Bayesian

updates and the output to be used in the sensitivity analysis are chosen to be the

potential energy as well.

To perform the sensitivity analysis, the CG systems in each scenario are sim-

ulated using (5.2). The parameter vector, θ = {KR, R0,Kθ, θ0, V1, V2, V3, V4, ε, σ}

captures all of the parameters from the models in the set M, described above and

tabulated in Table 5.1. A random sample of this parameter vector is drawn from

the ranges,
r0 ∼ U(0.1, 5); Kr ∼ U(0.1, 90);
θ0 ∼ U(80, 180); Kθ ∼ U(0, 15);
V1 ∼ U(−1, 1); V2 ∼ U(−1, 1);
V2 ∼ U(−1, 1); V4 ∼ U(−1, 1);
σ ∼ U(0.05, 7); ε ∼ U(0.01, 5).

(5.7)

Then the CG system in the scenario currently being studied (Sc, Svi, or Sp) is

simulated, and the desired observable is calculated, following details given in Section

2.3. The total sensitivity indices for each of the ten parameters in each of the defined

scenarios are computed according to (4.2), using the methods described in Appendix

B.

In the prediction scenario, 20000 samples of the parameter space (5.7) were

drawn. For each sample, θj , the CG system of 25 chains of length 80 carbon atoms

contained within the cube defining Sp is simulated according to the details con-
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Figure 5.4: Illustrations of scenarios to be used in the calibration and validation
of polyethylene, both in the AA (left) and CG (right) systems. A subsystem of
the prediction scenario is a small cube (top), contains four chains of C80H162, each
colored differently, and comprises Sv2. Further decomposition of the system yields
two chains, creating Sv1 (middle), and the calibration scenario, consisting of a single
chain of C80H162, is shown in the bottom row.
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(a) (b)

(c) (d)

Figure 5.5: Sensitivity indices for each of the scenarios considered in this example.
The calibration scenario (a), which contains a single chain of C80H162, the first
validation scenario (b), consisting of two chains of C80H162, the second validation
scenario (c), in which four chains of C80H162 are considered, and the prediction
scenario (d), consisting of 25 chains of C80H162 restrained to a cube with periodic
boundary conditions. All sensitivity results illustrate that dihedral interactions are
not influential on the value of the output function, indicating not only that the
scenario-observable pairs are appropriate, but that the parameters will be informed
by the observables.
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tained in Section 2.3. The ensemble average of the potential energy in the canonical

ensemble,

Yj =
〈
VCG

(
θj
)〉
Sp
, (5.8)

is calculated by (2.23). The sensitivity indices for the prediction scenario are shown

in Figure 5.5. It can be seen that the dihedral parameters, V1, V2, V3, and V4 do

not strongly influence the potential energy.

In a similar way, for each sample θj of the parameter space (5.7), the val-

idation scenario, Sv, and the calibration scenario, Sc, are simulated in a canonical

ensemble, again according to the steps outlined in Section 2.3. The ensemble average

of the potential energies,

Yj =
〈
VCG

(
θj
)〉
Sv
, Yj =

〈
VCG

(
θj
)〉
Sc

(5.9)

in the validation and calibration scenarios, respectively, are calculated. The sen-

sitivity indices for the validation scenarios are shown in Figure 5.5, and those for

the calibration scenario are given in Figure 5.5. In each case, as in the prediction

scenario, it can be seen that the potential energy is not sensitive to the dihedral

parameters, V1, V2, V3, and V4.

Comparing the sensitivity indices from each of the scenarios in question, it

can be seen that the dihedral parameters do not strongly influence the potential

energy. Therefore, the models Pi in the set M that contain dihedral parameters

may be eliminated from the set of possible model classes. The resulting set, M̄,

is given in Table 5.2. Furthermore, it can be argued that the chosen observable,

i.e. the potential energy, will inform the remaining parameters, R0, KR, θ0, Kθ, σ,
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and ε in the Bayesian updates during calibration and validation. The qualitative

agreement between the results yielded in the three scenarios supports the choice of

scenario-observable pairs.

Note that for each sampled parameter vector θj , an ordered pair,
(
θji , Yj

)
,

may be defined for each parameter, θi, in the parameter vector. After many sample

parameter vectors have been selected and the corresponding output is calculated, a

scatterplot for each parameter is produced. Figures 5.6 and 5.7 show the scatterplots

produced in the calibration scenario. A strong correlation between the output and

the bonded parameters, for example, can be seen, while it is clear the the dihedral

parameters do not strongly influence the value of the potential energy. These scat-

terplots, therefore, agree with the sensitivity indices that the dihedral parameters

may be eliminated as parameters.

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Cat.
P̄1 X 3 1
P̄2 X 3
P̄3 X 3
P̄4 X 3
P̄5 X X 5 2
P̄6 X X 5
P̄7 X X 5
P̄8 X X 5
P̄9 X X 5
P̄10 X X X 7 3
P̄11 X X X 7

Table 5.2: Table of models that remain after the sensitivity analysis is performed.
Bonded, angular, and Lennard-Jones interactions were shown to affect the potential
energy in each of the calibration, validation, and prediction scenarios.
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Figure 5.6: Scatterplots produced in the calibration scenario for the bonded, angular,
and Lennard-Jones parameters. Each point in the scatterplot corresponds to a
sample of the parameter space and the resulting calculation of the output function.
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Figure 5.7: Scatterplots produced in the calibration scenario for the dihedral pa-
rameters. Each point in the scatterplot corresponds to a sample of the parameter
space and the resulting calculation of the output function.

To support the claim that dihedral parameters are not influential to the

potential energy, a polyethylene chain is simulated for three cases: with all ten

parameters, with dihedrals excluded, and with angular interactions excluded. The

results are shown in Figure 5.8. The graphs in the two former cases are nearly

identical while the graph produced by the latter case is markedly different, further

justifying the exclusion of dihedral interactions.
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Figure 5.8: Kernel density estimates produced by a deformation of a polyethylene
chain with three different combinations of intramolecular interactions. In one case,
all four types of interactions are included: bonded, angular, dihedral, and non-
bonded. In the case where dihedral interactions are excluded, almost no change in
the kernel density estimate can be seen, while in the case where angular interactions
are excluded, a drastic difference in kernel density estimates is clear, confirming that
dihedral interactions do not strongly influence the potential energy of polyethylene.

5.3 OPAL Step 3: The Occam Step

The model classes in the set M̄ shown in Table 5.2 may be separated into

categories according to the number of parameters in each model. Category 1 models

each depend on three parameters, and the set of these may be written,

C∗1 =
{
P∗1 = P̄1,P

∗
2 = P̄2,P

∗
3 = P̄3,P

∗
4 = P̄4

}
. (5.10)

Model classes in Category 2 each contain five parameters, yielding,

C∗2 =
{
P∗1 = P̄5,P

∗
2 = P̄6,P

∗
3 = P̄7,P

∗
4 = P̄8,P

∗
5 = P̄9

}
, (5.11)

and Category 3 model classes have seven parameters each, so that

C∗3 =
{
P∗1 = P̄10,P

∗
2 = P̄11

}
. (5.12)
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The steps of Bayesian model calibration and validation begin with Category 1.

5.4 OPAL Step 4: Calibration

In this step of OPAL, the models in a single Occam Category C∗k are cal-

ibrated according to the process outlined in Section 3.3. The Bayesian update

requires the definition of two probability distributions: the likelihood and the prior.

The product of these two not only results in the posterior distribution to be used,

if applicable, in the validation scenario, but is also used to calculate the evidence,

which is then used to calculate posterior model plausibilities.

5.4.1 The Likelihood Distribution

It is assumed here that the likelihood is a normal distribution, centered at

zero with unknown variance σ2,

π (yi|θ) = p (yi − di (θ)) ∼ N
(
0, σ2

)
, (5.13)

where yi are the observed data from the AA system in the calibration scenario,

and di(θ) are the data observed in the CG system as it is being simulated with

parameters θ. As the variance is unknown, σ2 is added to the list of calibration

parameters. The total likelihood is given by (3.10).

In general, calibration data is collected from experiments or high-fidelity vir-

tual experiments simulated in the calibration scenario. In this example, a molecule

of C80H162 is simulated in a canonical ensemble. Every 100 timesteps, the atomistic

configuration and the potential energy are recorded. Note that there should be a

number of timesteps between samples to ensure that they are independent. Thus
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the calibration data is the vector of potential energies at sample configurations ωi,

yc = {yi} = {V (ωi)} , (5.14)

where V (ωi) is calculated by (2.4).

The corresponding CG data is determined, for parameter vector θ, by placing

the CG molecule into configuration ωi and calculating the potential energy. That

is,

di (θ) = VCG (G (ωi) ; θ) , (5.15)

where G is the coarse-grained map. The potential energy VCG is calculated by (5.2),

where only the interactions included in the model are computed.

5.4.2 The Prior Distributions

The methodology of deriving maximum entropy prior distributions was de-

scribed in Section 3.3.2. In the present example, parameters are derived indepen-

dently of one another, taking the form (3.21) in the case that only the mean of the

parameter, 〈θ〉, is known, and (3.22) in the case that the variance of the parameter,

σ2
θ is additionally known. In the case of molecular systems, the mean and, occasion-

ally, the variance of the parameters may be gleaned from the atomistic system by

considering a simplified scenario, for example, the calibration scenario.

The AA system is simulated in a canonical ensemble and samples of the

configuration, ωi, are recorded periodically. For each ωi, the distance between two

bonded CG sites, j and k, having coordinates Rj and Rk, respectively, can be
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measured,

R (ωi) = ‖Rj −Rk‖. (5.16)

The average of these distances, taken over all bonds and all sampled configurations,

yields an average bond length,

〈R0〉 =
1

n ·Nb

n∑
i=1

Nb∑
l=1

Rl (ωi) , (5.17)

n being the number of configuration samples and Nb being the total number of

bonds in the system. Furthermore, the variances in the observed bond lengths can

be computed,

σ2
R0

=
1

n ·Nb

n∑
i=1

Nb∑
l=1

(Rl (ωi)− 〈R0〉)2 . (5.18)

The mean, 〈R0〉, and variance, σ2
R0

, may be used as prior information regarding the

parameter R0, making the prior distribution for R0 a Gaussian distribution.

Similarly, for each ωi, the angle between any three CG sites can be measured.

The average angle value can therefore be taken over all configurations and all angles

in the system,

〈θ0〉 =
1

n ·Na

n∑
i=1

Na∑
l=1

θl (ωi) , (5.19)

where Na is the total number of angles in the system and θl (ωi) is the measure of

the l-th angle of configuration ωi. The variance in the observed angle measures may

then be calculated,

σ2
θ0 =

1
n ·Na

n∑
i=1

Na∑
l=1

(θl (ωi)− 〈θ〉)2 . (5.20)

With the mean and variance known, the maximum entropy prior distribution for θ0

is a Gaussian distribution.
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The Equipartition Theorem states that each independent quadratic term in

the energy has a mean value of kBT/2, where kB is Boltzmann’s constant and T

is the temperature [116]. In the present example, both the bonded and angular

potential energies are quadratic, leading to, as mentioned in [118],

〈
KR (R−R0)2

〉
=
kBT

2
(5.21)

and 〈
Kθ (θ − θ0)2

〉
=
kBT

2
. (5.22)

Due to the assumed independence of KR and R0,

〈KR〉 =
kBT

2
〈

(R−R0)2
〉 =

kBT

2σ2
R0

(5.23)

and, similarly,

〈Kθ〉 =
kBT

2
〈

(θ − θ0)2
〉 =

kBT

2σ2
θ0

. (5.24)

Thus, the mean value of the spring coefficients KR and Kθ are inversely related

to the variance in the equilibrium values R0 and θ0, respectively. Since no further

information can be extracted, the prior distributions for KR and Kθ are exponential

distributions.

To derive the Lennard-Jones parameters, the distance (5.16) is computed

for all pairs of like-particles in the CG system, which, in this example, is all of the

particles. With n sampled configurations and Nnb total non-bonded interactions,

this creates a set of n ·Nnb distances which are sorted into bins, as in a histogram.

This information can be used to approximate the radial distribution function, g(R),

which describes the probability of finding a particle a distance, R, from a given
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particle, as compared to the ideal gas distribution [66]. The algorithm used to

approximate g(R) in this work can be found in [36].

It can be shown that the radial distribution function is related to the poten-

tial of mean force,

U(R) = −kBT ln g(R), (5.25)

which characterizes how the energy of the system changes as a function of the

distance between two particles [60, 66]. Since the radial distribution function has a

single maximum [66], the potential of mean force has a single, well-defined minimum,

say R∗. Furthermore, this minimum is locally Gaussian. Therefore, we can take R∗

to be the mean of the Lennard-Jones radius parameter σ, and the local variance

about this minimum to be the variance in its prior Gaussian distribution. The

depth of the well in the potential of mean force, U(R∗), is taken as the mean for the

Lennard-Jones well-depth parameter ε, to be used in a prior given by (3.21).

The average distance between CG beads is measured to be 2.5781 Angstroms,

with a variance of 6.4042 × 10−3 and the average angle measure between groups

of three CG sites is 135.7104 degrees with variance 524.6647. A list of distances

between any two pairs of CG beads may be compiled and used to approximate the

potential of mean force (5.25). The minimum occurs at 2.5007 Angstroms, has a

depth of 1.3871 units, and the approximate width of this well yields a variance of

4.505× 10−3. The resulting prior distributions are shown in Figure 5.9.
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Figure 5.9: Maximum entropy prior distributions for polyethylene, yielded by sim-
ulating a simplified scenario and deriving means and variances using methodologies
described in this section. These priors capture all known prior information and will
be updated in the calibration scenario via Bayes’ Rule.

5.4.3 C∗1 : Category 1

In the first iteration of OPAL, only the models in C∗1 are calibrated using

QUESO, as described in Section 3.6. For each model, an initial amount of 5000

Monte Carlo samples is used, and then a second QUESO implementation is run with

10000 samples. The discrete Kullback-Leibler distance between these two posterior

distributions, D̄KL (π10000‖π5000), is calculated according to the method described in

[115]. If this value is less than the preset tolerance (3.50) the posterior is considered
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Model Bonds Angles LJ 12-6 LJ 9-6 Params Plausibility
P∗1 X 3 1
P∗2 X 3 0
P∗3 X 3 0
P∗4 X 3 0

Table 5.3: Table of plausibilities calculated for the models in the lowest Occam
category, produced during model calibration against data from a single chain of
C80H162. Values shown as zero are approximate.

Figure 5.10: Kernel density estimates of the posterior distribution functions for the
parameters of model P∗1 produced by the calibration Bayesian update, in which a
chain of C80H162 is simulated in a canonical ensemble. These distributions are the
prior distributions in the validation update.

to be converged. Otherwise, the number of Monte Carlo samples is increased in

increments of 5000 until the tolerance is met. The converged posteriors for P∗1 are

shown in Figure 5.10. The plausibilities, calculated by QUESO, as mentioned in

Section 3.6, are given in Table 5.3. It is clear that model class P∗1, which includes

only bonded interactions and the internal bead energy A, is the most plausible, but

is it valid?

81



5.5 OPAL Step 5: The Validation Step

The model found to be the most plausible in Step 4 of OPAL is submitted

to a validation test, or a series of validation tests, in accordance with the framework

laid down in Chapter 3. The prior in the Bayesian validation update is the poste-

rior from the calibration update, as discussed in Section 3.5. The Bayesian update

is performed with a Gaussian likelihood (5.13), where in this step of OPAL, the

observational data, yi, and model data, di(θ), are taken in the validation scenario.

As a validation scenario, two chains of C80H162 are simulated in a canonical ensem-

ble, and the atomistic configuration and potential energy are recorded every 100

timesteps. The validation data is therefore a vector of potential energies at sample

configurations ωi,

yv = {yi} = {V (ωi)} , (5.26)

where V (ωi) is calculated by (2.4). As in the calibration scenario, the CG data is

determined, for each parameter vector θ, by placing the CG molecule into configu-

ration ωi and calculating the potential energy. That is,

di (θ) = VCG (G (ωi) ; θ) , (5.27)

where G is the CG map, and potential energy VCG is calculated via (5.2), where

only the interactions included in the model contribute to the computation.

Meaning is given to the validation scenario when a tolerance on the difference

between the target and predicted observables is defined. Adhering to the process laid

down in Chapter 3, if the target observable is the distribution of the potential energy,

the similarity between between the target (AA) and predicted (CG) distributions
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may be measured by the Kullback-Leibler divergence (3.44). If, instead, the target

observable is the ensemble average of the potential energy, the accuracy of the CG

model is measured by the Euclidean distance (3.46) between the ensemble averages

(2.14) and (2.23). In this work, the tolerance for the DKL-distance is defined to be

γtol,DKL
= 0.15σ2

V O (E[π (V )]) , (5.28)

where σ2
V is the variance of the target observable and O (E [π (V )]) is the order of

magnitude of the expected value of the target observable. This definition captures

the intuitive comparison of the location and spread of the distributions in question.

The tolerance for the Euclidean metric is defined be

γtol,Euc = 0.1 〈V 〉AA , (5.29)

so that the predicted ensemble average must be within 10% of the target ensemble

average.

5.5.1 C∗1 : Category 1

Model P∗1 was shown to be the most plausible model in Section 5.4.3 and is

therefore subjected to validation tests. The validation update is again performed

using QUESO, with an initial amount of 5000 Monte Carlo samples, followed by

an implementation using 10000 samples. As before, if the discrete Kullback-Leibler

divergence, D̄KL (π10000‖π5000), satisfies the tolerance (3.50), the posterior is con-

sidered to be converged, otherwise the number of Monte Carlo samples is increased.

The converged posterior distributions for the validation update are given in Figure

5.11.
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Figure 5.11: Kernel density estimates of the posterior distribution functions for the
parameters of model P∗1 produced by the validation Bayesian update, in which two
chains of C80H162 are simulated in a canonical ensemble.

Figure 5.12: Figures of the prior and posterior probability distribution functions of
model class P∗1 from the calibration and validation scenarios. Information about the
behavior of the system is supplied to the parameters through Bayes’ rule, and it can
be seen that the distributions change as information is updated.
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It has been discussed repeatedly in this work that information about the

behavior of the system is added to the parameters through the calibration and

validation process. This is evidenced by the evolution in the parameter distributions,

shown in Figure 5.12.

The parameters are stochastically sampled from the converged posterior dis-

tribution and used in the forward problem of the validation scenario. The potential

energy is measured every 100 timesteps throughout the simulation; the distributions

of the potential energies produced by the AA model (the “truth”) and that of the

Figure 5.13: Distributions of the potential energies yielded by the AA and CG
models, where the CG model is P∗1 from Category 1. Simulations were run in a
canonical ensemble and consisted of two chains of C80H162. It is clear from this
illustration that P∗1 should be deemed not invalid for predicting the potential energy
of polyethylene.
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CG model, denoted π(V ) and π(VCG (θ)), respectively, are given in Figure 5.13. It

is qualitatively clear that this C∗1 model should be deemed not invalid for predicting

the potential energy of a system of polyethylene. Using the full distributions,

γDKL
= DKL (π (V ) ‖π (VCG (θ))) = 0.0622σ2

V O (E[π (V )]) , (5.30)

and using the ensemble averages,

γEuc = |〈V 〉AA − 〈VCG (θ)〉CG| = 0.0118 〈V 〉AA . (5.31)

Thus, γDKL
≤ γtol,DKL

and γEuc ≤ γtol,Euc, rendering P∗1 not invalid for predicting

the potential energy of polyethylene.

As a second validation test, consider a small cube of polyethylene, consisting

of four chains of C80H162. Without updating the parameters, the system is simulated

in a canonical ensemble in both the AA and CG systems and the potential energies

are sampled, as before. The resulting distributions are shown in Figure 5.14, where

it can be seen that model class P∗1 continues to accurately predict the potential

energy. Specifically,

γDKL
= DKL (π (V ) ‖π (VCG (θ))) = 0.0826σ2

V O (E[π (V )]) , (5.32)

and,

γEuc = |〈V 〉AA − 〈VCG (θ)〉CG| = 0.0181 〈V 〉AA , (5.33)

both of which are well below the specified validity criteria. This presents further

evidence and increases one’s confidence that the model parameters produced by

the first validation update will yield an accurate approximation of the QoI in the

prediction scenario.
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Theoretically, the QoI is never observed; once it is measured and compared

to model output it becomes another validation scenario. However, for the sake

of illustration, this tenant rule will be broken. The AA and CG systems of the

prediction scenario, a cube of polyethylene consisting of 25 chains of C80H162, are

simulated in a canonical ensemble. The distributions of sampled potential energies

for each system are shown in Figure 5.15, where it is seen that model P∗1 satisfies

Figure 5.14: Distributions of the potential energies yielded by the AA and CG
models, where the CG model is P∗1 from Category 1. Simulations were run in a
canonical ensemble and consisted of four chains of C80H162 contained in a cube
enforced with periodic boundary conditions. The fact that P∗1 is able to reproduce
the potential energy accurately without further updating the parameters is evidence
that it should be accepted as a reliable estimator for the QoI in the prediction
scenario.
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Figure 5.15: Distributions of the potential energies yielded by the AA and CG
models in the prediction scenario, where the CG model is P∗1 from Category 1.
Simulations were run in a canonical ensemble and consisted of 25 chains of C80H162

contained in a cube enforced with periodic boundary conditions. It can be seen that
the CG model accurately reproduces the potential energy, validating the Bayesian
framework for model selection, calibration, and validation.

both the DKL-distance and Euclidean metric tolerances, with

γDKL
= DKL (π (V ) ‖π (VCG (θ))) = 0.1143σ2

V O (E[π (V )]) , (5.34)

and,

γEuc = |〈V 〉AA − 〈VCG (θ)〉CG| = 0.0448 〈V 〉AA . (5.35)
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Model Bonds Angles LJ 12-6 LJ 9-6 Params Plausibility
P∗1 X X 5 0
P∗2 X X 5 1
P∗3 X X 5 0
P∗4 X X 5 0
P∗5 X X 5 0

Table 5.4: Table of plausibilities calculated for the models in the Occam category
C∗2 , produced during model calibration against data from a single chain of C80H162.
Values shown as zero are approximate.

5.6 OPAL Step 6: Iteration

The validation tolerances (5.28) and (5.29) may be tightened such that the

C∗1 model, P∗1, is rendered invalid. For example, define

γtol,DKL
= 0.06σ2

V O (E[π (V )]) . (5.36)

Then, P∗1 is invalid and OPAL moves into the iteration step, where the next category

of models, C∗2 , is considered. Category 2 models each have five parameters, as

shown in Table 5.2. The prior distributions for these parameters are the same

as those previously described and shown in Figure 5.9, and the calibration data is

the same as that used for the models in the first Occam category. The Bayesian

update for each of the five models in C∗2 is again performed using QUESO. Once the

posterior distributions for each model have converged, the normalized plausibilities

may be calculated. These plausibilities are given in Table 5.4, and the converged

posterior parameter distributions for P∗2, the most plausible model, are shown in

Figure 5.16. Model class P∗2, containing bonded and Lennard-Jones interactions, is

therefore passed into the validation step of OPAL.
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The validation stage is conducted in the same way as described before. Data

is collected from the AA system, which contains two chains of C80H162, and is used

to update the parameters using Bayes’ Rule, which is implemented using QUESO.

The converged parameters, given in Figure 5.17, are stochastically sampled and

used in a simulation of Sv1, during which samples of the potential energy are taken.

The distribution of potential energy samples, taken from the AA system, as well as

the CG system, represented by the new CG model P∗2, are shown in Figure 5.18.

For comparison, the CG distribution produced by the most-plausible C∗1 model has

Figure 5.16: Kernel density estimates of the posterior distribution functions for the
parameters of model class P∗2 yielded by the calibration Bayesian update, in which a
chain of C80H162 is simulated in a canonical ensemble. These calibration posteriors
become the validation priors in the validation update.
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also been included. Although very similar, the distribution yielded by P∗2 is slightly

closer to the AA distribution, both in the DKL-distance,

γDKL
= DKL (π (V ) ‖π (VCG (θ))) = 0.044σ2

V O (E[π (V )]) , (5.37)

and the Euclidean metric,

γEuc = |〈V 〉AA − 〈VCG (θ)〉CG| = 0.0115 〈V 〉AA . (5.38)

Model P∗2 is therefore not invalid by the new validation tolerance (5.36).

As before, a second validation test is implemented, in which four chains of

Figure 5.17: Kernel density estimates of the posterior distribution functions for the
parameters of model class P∗2 yielded by the validation Bayesian update, in which
two chains of C80H162 is simulated in a canonical ensemble.
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Figure 5.18: Distributions of the potential energies yielded by the AA and CG
models in each of the two validation scenarios, where one CG model is P∗1 from
Category 1 and the other is P∗2 from Category 2. Simulations were run in a canonical
ensemble. It is clear from this illustration that P∗2 should be deemed not invalid for
predicting the potential energy of polyethylene.

C80H162 are simulated in a canonical ensemble, the model parameters being stochas-

tically sampled from the validation posterior yielded from Sv1. The resulting distri-

bution of potential energy values, as well as those from the AA model and P∗1 ∈ C∗1 ,

are shown in Figure 5.18. Again, the distributions produced by the two CG models

are nearly identical, but the results from P∗2 are slightly better,

γDKL
= DKL (π (V ) ‖π (VCG (θ))) = 0.0587σ2

V O (E[π (V )]) , (5.39)

and,

γEuc = |〈V 〉AA − 〈VCG (θ)〉CG| = 0.0178 〈V 〉AA . (5.40)

From the demonstration that P∗2 is able to meet the validation criteria, yet again,

it is evident that this model should be able to accurately predict the QoI in the
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prediction scenario. This is confirmed by a simulation of the prediction scenario

using P∗2, the results of which are shown in Figure 5.19, where the distributions of

the potential energy, sampled from the AA and CG systems are shown. As with

the first iteration of OPAL, the CG model satisfies both the DKL-distance and

Euclidean metric tolerances, with

γDKL
= DKL (π (V ) ‖π (VCG (θ))) = 0.1060σ2

V O (E[π (V )]) , (5.41)

and,

γEuc = |〈V 〉AA − 〈VCG (θ)〉CG| = 0.0445 〈V 〉AA . (5.42)

Again, the model constructed in the second iteration of OPAL is slightly closer to

the truth than the Category 1 model, P∗1.

This example application to polyethylene illustrates a successful implemen-

tation of OPAL for the purposes of constructing the simplest, valid CG model. The

computational benefits of this algorithm are two-fold. By eliminating models based

on sensitivity analysis and separating the set of possible models into smaller cate-

gories, the number of models that require calibration may be reduced, thus possibly

lowering the cost of the inverse analysis. By starting the calibration process with

the simplest models, the forward problem will be as inexpensive as possible.
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Figure 5.19: Distributions of the potential energies yielded by the AA and CG
models in the prediction scenario, where the CG model P∗1 is from Category 1 and
the CG model P∗2 is from Category 2. Simulations were run in a canonical ensemble
and consisted of 25 chains of C80H162 contained in a cube enforced with periodic
boundary conditions. It can be seen that the CG model accurately reproduces the
potential energy, validating the Bayesian framework for model selection, calibration,
and validation.
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Chapter 6

Other Theoretical Results

Throughout this work, the prevalent goal has been finding a model that is

“good enough” in some measure. The Bayesian framework advocated here is de-

signed to build predictive models in which the modeler has confidence while simul-

taneously acknowledging that the truth is never actually known. As the Bayesian

statistician George E. P. Box once wrote, “all models are wrong, but some are use-

ful” [15]. Box was, interestingly enough, the son-in-law of frequentist Ronald A.

Fisher. Much of statistics literature on parametric models addresses the concept of

model specificity. If there exists a specific parameter vector θ∗ that the model P

maps into the true observational data, the model is said to be well-specified ; if no

such parameter exists, the model is said to be misspecified.

Consider a space Y of physical observations (for example, observables samples

from the AA model) and a set M (Y) of probability measures µ on Y. As always,

a target quantity of interest Q : M → R is selected. A particular measure, µ∗, is

sought, from which the “true” value of the QoI, µ∗, may be computed. The goal is

to predict Q (µ∗) using a parametric model, P : Θ → M (Y ), where Θ is the space

of parameters. As noted, if there exists a parameter θ∗ ∈ Θ such that P (θ∗) = µ∗,

the model is well-specified; otherwise if µ∗ /∈ P (Θ), the model is misspecified [88].

Bayesian frameworks provide a general setting for the analysis of such mod-
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els, whether they are well-specified to misspecified, and their predictive capabil-

ities in the presence of uncertainties. Let the observational data y be a vec-

tor of independent and identically distributed (i.i.d) samples from µ∗ such that

yn = {y1, y2, . . . , yn} ∈ Yn ⊂ Y, and let M be a set of m parametric models, each

with its own parameter space,

M = {P1 (θ1) ,P2 (θ2) , . . . ,Pm (θm)} , θk ∈ Θk, 1 ≤ k ≤ m. (6.1)

As discussed in Chapter 3, prior information regarding parameters θi may be col-

lected and characterized by prior probability density functions, π (θi|Pi,M) and

updated via Bayes’ Rule,

π (θi|yn,Pi,M) =
π (yn|θi,Pi,M)π (θi|Pi,M)

π (yn|Pi,M)
. (6.2)

Recall that the denominator is a marginalization of the numerator over the param-

eters and becomes the likelihood in the model plausibility,

ρi = π (Pi|yn,M) =
π (yn|Pi,M)π (Pi|M)

π (yn|M)
. (6.3)

The model with plausibility closest to unity is deemed the most plausible model in

the set M.

6.1 Model Misspecification

Suppose that the model P (or Pi) is misspecified, i.e. µ∗ /∈ P(Θ). Suppose

further that µ∗ is absolutely continuous with respect to the Lebesgue measure and

that g(y) is the probability density associated with µ∗. Then the best approximation
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to g in P(Θ) is the model with the parameter

θ† = argmin
Θ

DKL(g(y)‖π(y|θ,P,M)), (6.4)

where DKL(·‖·) is the Kullback-Leibler divergence,

DKL(p(y)‖q(y)) =
∫

Y
p(y) log

p(y)
q(y)

dy. (6.5)

The parameter θ† yields a probability measure, µ† = P(θ†), that is as close as

possible to µ∗ in the DKL pseudo-measure.

It is easily shown that θ† is the maximum likelihood estimate, i.e. it maxi-

mizes the expected value of the log-likelihood relative to the true density, g. To see

this, expand (6.4) to obtain

θ† = argmin
Θ

[∫
Y
g(y) log g(y)dy−

∫
Y
g(y) log π(y|θ,P,M)dy

]
. (6.6)

It can be seen that the negative self-entropy,∫
Y
g(y) log g(y)dy, (6.7)

does not depend on θ, and therefore does not affect the optimization. Then,

θ† = argmin
Θ

[
−
∫

Y
g(y) log π(y|θ,P,M)dy

]
= argmax

Θ

∫
Y
g(y) log π(y|θ,P,M)dy

= argmax
Θ

Eg [log π(y|θ,P,M)] . (6.8)

Thus θ† maximizes the likelihood distribution function relative to the true density,

g.
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The parameter θ† is of fundamental significance in the theories of the asymp-

totic behavior of parameter estimates of both Bayesian and frequentist statistics.

Under suitable smoothness assumptions, as more data becomes available, the poste-

rior density characterized by π(θn|yn,P,M) through Bayes’s Rule converges in total

variation to a normal distribution centered at θ†,

π (θn|yn,P,M)→ N
(
θ†, V −1

(
θ†
))

, (6.9)

where the covariance matrix is given by [35, 64]

Vij(θ†) = − ∂2

∂θi∂θj
DKL (g (y) ‖π (y|θ)) . (6.10)

This result is referred to as the Bernstein-von Mises Theorem for misspecified models

(see e.g. [11, 64, 114]). Note that if P is well-specified, the Bayesian Central Limit

Theorem, under suitable conditions [61, 62, 80], asserts that the posterior instead

converges, in total variation, to a normal distribution centered at θ∗,

π (θn|yn,P,M)→ N
(
θ∗, I−1 (θ∗)

)
, (6.11)

with covariance given by the Fisher information matrix,

Iij (θ∗) = − ∂2

∂θi∂θj
lnπ (y|θ) . (6.12)

6.2 Plausibility-DKL Theory

Suppose that the modeler has a choice between two misspecified models, P1

and P2. These models may be compared in the Bayesian setting through the concept

of model plausibility: if P1 is more plausible than P2, ρ1 > ρ2, with plausibilities
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calculated using (6.3); see Section 3.4 for details. When, instead, a maximum like-

lihood approach is used, the model that yields a probability measure closer to g is

considered a “better” model, i.e. if

DKL

(
g (y) ‖π

(
y|θ†1,P1,M

))
≤ DKL

(
g (y) ‖π

(
y|θ†2,P2,M

))
. (6.13)

The theorems presented in this chapter are also given in [88] and define the rela-

tionship between these two notions of model comparison.

Bayesian and frequentist methods fundamentally differ in the way they view

the model parameters. Bayesian methods consider parameters to be stochastic,

characterized by probability density functions, while frequentist approaches seek a

single, deterministic parameter value. To bridge this gap in methodology, it may

be noted that considering a parameter vector to be deterministic is equivalent to

assigning it a delta function as a probability distribution function.

To achieve a delta function posterior, the prior must necessarily be a delta

function. Suppose, for example, the deterministic (e.g. maximum likelihood) pa-

rameter is θ†i for model Pi. Then

π
(
θ†i |y,Pi,M

)
= π

(
θ†i |Pi,M

)
= δ

(
θi − θ†i

)
, (6.14)

and the evidence (6.3) becomes

π (y|Pi,M) =
∫
π (y|θi,Pi,M) δ

(
θi − θ†i

)
dθi (6.15)

= π
(
y|θ†i ,Pi,M

)
. (6.16)
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The ratio of posterior model plausibilities then becomes

ρ1

ρ2
=

π (y|P1,M)π (P1|M)
π (y|P2,M)π (P2|M)

(6.17)

=
π
(
y|θ†1,P1,M

)
π (P1|M)

π
(
y|θ†2,P2,M

)
π (P2|M)

(6.18)

=
π
(
y|θ†1,P1,M

)
π
(
y|θ†2,P2,M

)O12, (6.19)

where O12 is the ratio of prior odds and is often assumed to be one. With these

tools in hand, the following theorems may be presented.

Theorem 6.2.1. Under the condition that the prior distribution for P1 is a delta

function centered at the corresponding maximum likelihood parameter, θ†1, and the

prior distribution for P2 is a delta function centered at the maximum likelihood

parameter θ†2, if model P1 is more plausible than model P2 and O12 ≤ 1, then

DKL

(
g (y) ‖π

(
y|θ†1,P1,M

))
≤ DKL

(
g (y) ‖π

(
y|θ†2,P2,M

))
. (6.20)

Proof. Given that the prior distributions for P1 an P2 are defined as delta functions

centered at their respective maximum likelihood parameters, a Bayesian update with

data y yields model evidences according to (6.16) for i = 1, 2, as well as the ratio of

plausibilities (6.19). Then, if model P1 is more plausible than model P2,

1 <
ρ1

ρ2
=
π
(
y|θ†1,P1,M

)
π
(
y|θ†2,P2,M

)O12 ≤
π
(
y|θ†1,P1,M

)
π
(
y|θ†2,P2,M

) . (6.21)

Since logarithms are monotonic, this implies

0 < log
π
(
y|θ†1,P1,M

)
π
(
y|θ†2,P2,M

) , (6.22)
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and, due to the fact that the density g is non-negative for every value of y,

0 < g (y) log
π
(
y|θ†1,P1,M

)
π
(
y|θ†2,P2,M

) . (6.23)

Consequently,

0 <
∫
g (y) log

π
(
y|θ†1,P1,M

)
π
(
y|θ†2,P2,M

)dy, (6.24)

which leads to the inequality,

0 <
∫
g (y) log

g (y)

π
(
y|θ†2,P2,M

)dy− ∫ g (y) log
g (y)

π
(
y|θ†1,P1,M

)dy, (6.25)

By moving the second integral to the left-hand side of the inequality, the desired

result holds.

This theorem demonstrates that if P1, with maximum likelihood parameter

θ†1, is “better” than P2, with maximum likelihood parameter θ†2, in the Bayesian

sense, it is also a “better” deterministic model. However, the reverse implication

requires much stronger conditions.

Theorem 6.2.2. Suppose that

DKL

(
g (y) ‖π

(
y|θ†1,P1,M

))
≤ DKL

(
g (y) ‖π

(
y|θ†2,P2,M

))
. (6.26)

and the observation space, Yn, is finite. If the ratio of likelihood distributions,

π
(
y|θ†1,P1,M

)
π
(
y|θ†2,P2,M

) , (6.27)

is continuous, then there exists a ȳ ∈ Yn such that P1 is more plausible than model

P2, given that O12 ≥ 1, assuming that the prior distributions in the Bayesian updates

are delta functions centered at θ†1 and θ†2 for P1 and P2, respectively.
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Proof. Consider the equivalent form of the assertion,∫
Yn

g(y) log
π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
dy < 0. (6.28)

For this inequality to hold, the relationship

π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
< 1 (6.29)

does not necessarily need to be true for every point y ∈ Yn. However, due to the

continuity of the integrand, the Mean Value Theorem [21] guarantees the existence

of ȳ ∈ Yn such that∫
Yn

g(y) log
π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
dy = |Yn| g(ȳ) log

π(ȳ|θ†2,P2,M)

π(ȳ|θ†1,P1,M)
. (6.30)

Combining (6.28)-(6.30),

|Yn| g(ȳ) log
π(ȳ|θ†2,P2,M)

π(ȳ|θ†1,P1,M)
< 0. (6.31)

Since |Yn| > 0 and g (y) > 0,

log
π(ȳ|θ†2,P2,M)

π(ȳ|θ†1,P1,M)
< 0. (6.32)

Thus
π(ȳ|θ†2,P2,M)

π(ȳ|θ†1,P1,M)
< 1, (6.33)

or, equivalently,
π(ȳ|θ†1,P1,M)

π(ȳ|θ†2,P2,M)
> 1. (6.34)

If O12 ≥ 1,
π(ȳ|θ†1,P1,M)

π(ȳ|θ†2,P2,M)
O12 > 1. (6.35)

The left-hand side is the ratio of posterior model plausibilities (6.19). Thus model

P1 is more plausible than P2 for given data ȳ.
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These theorems characterize the relationship between the Bayesian and fre-

quentist notions of model comparison. It has been demonstrated that the most

plausible model and the deterministic (maximum likelihood) model in which pa-

rameters minimize the DKL-distance between the model output and the so-called

truth parameters are, under stated assumptions, equivalent. Whether the result-

ing “best” model is valid for the intended purpose depends on the severity of the

validation criteria, as laid down in Chapter 3.
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Chapter 7

Conclusions

This study has explored fundamental questions in computational science

and engineering, regarding the construction of coarse-grained models of atomistic

systems. The issues addressed herein have included model selection, calibration,

and validation in the presence of uncertainties in observables, model reduction, and

quantities of interest, all through the use of a unified framework with foundations

in Bayes’ Rule, information theory, and sensitivity analysis. Bayesian statistical

inverse analysis provides a powerful approach to the calibration and validation of

coarse-grained models of atomistic systems that inherently copes with uncertainties

in the data and model selection. Posterior model plausibilities, provided by Bayes’

Rule, are employed to select the model that best fits the given data. The data,

provided by the “ground truth” all-atom model, is used to inform the parameters

through increasingly complex model scenarios. As the model is tested and updated,

confidence in its ability to predict predetermined quantities of interest is increased.

Sensitivity analysis is not only used to eliminate models with parameters to

which the QoI is insensitive, thereby dramatically reducing model complexity and

the cost of assessing model plausibility, it is also used to check the effectiveness

of the scenario-data pairs in the calibration and validation scenarios. A parame-

ter’s calculated sensitivity indicates its contribution to the quantity being observed
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and, simultaneously, indicates how much it is informed by the inverse analysis. By

mandating that the sensitivity results in the calibration, validation, and prediction

scenarios agree on the relative importance of the parameters, both the contribution

of the parameters to the quantity of the interest and the ability of Bayes’ Rule to

update the parameters for given data are accounted for.

Bayes’ Rule, when coupled with sensitivity analysis and an appropriate in-

terpretation of Occam’s Razor, lends itself to a new, adaptive algorithm, OPAL, the

Occam-Plausibility ALgorithm, that provides a systematic means of constructing

the simplest model suitable for use in a prediction scenario. After a set of possible

model classes is identified, a sensitivity analysis is performed to determine which

parameters are insignificant. Eliminating these unnecessarily complex models re-

duces the computational cost of calculating model plausibilities. By separating the

remaining models into categories according to complexity, OPAL ensures that the

simplest valid model will be chosen for use in the prediction scenario. In this way,

OPAL provides a systematic approach to determining and reducing model inade-

quacy to within preset tolerances.

In future work, it is hoped that the processes developed in the present study

can be extended to multiscale applications of material science. Just as the all-atom

model was used as data in the calibration and validation of coarse-grained models,

the validated coarse-grained model may be used as calibration and validation data

of macro-scale models. By using OPAL, the simplest valid continuum model may be

identified for nanoscale materials. Properties such as average lattice deformations,

tensile strength, or elastic modulus are possible quantities of interest. Implemen-
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tation of OPAL can be computationally expensive for some choices of QoI, despite

the reduced cost, indicating that additional research on improved parallel molecular

dynamics or Monte-Carlo algorithms is needed.
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Appendix A

Empirical Force Fields

This appendix is included to provide a broad introductory overview of the

most common force field used in popular MD codes. These form the basis for

generating parametric model classes for CG systems as well as producing synthetic

data from AA systems such as those introduced in Chapter 2.

The function, V , that describes the potential energy of an atomistic or par-

ticulate system can be written as the sum of pair and multi-body interactions of

varying complexity. Given a configuration rn,

V (rn) = Vbond(rn) + Vangle(rn) + Vdihedral(rn) + Vnb(rn). (A.1)

The bonded pair potential, Vbond, is the total potential energy due to Nb bonds,

Vbond =
Nb∑
i=1

Er,i, (A.2)

where Er,i is the potential energy contained in bond i. Bonds are most often repre-

sented as harmonic springs, thus

Er =
1
2
kr(r − r0)2, (A.3)

kr being the spring constant, r0 the equilibrium bond length, and r the instantaneous

distance between the bonded atoms. The parameters in this expression are kr and

r0.
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Three sequentially bonded atoms or particles define an angle whose potential

may also be described by a harmonic spring,

Eθ =
1
2
kθ(θ − θ0)2. (A.4)

Here, as in the harmonic bond, kθ is the spring constant, θ0 is the equilibrium angle,

and θ is the instantaneous angle created by the three particles. As before, kθ and

θ0 are the parameters. The total contribution to the potential energy of Na angular

interactions is thus

Vangle =
Na∑
i=1

Eθ,i. (A.5)

Torsional interactions are defined by four atoms that are sequentially bonded.

The dihedral angle ϕ is the angle between the first and third bond, and the total

potential energy contained in Nd dihedral interactions is given by

Vdihedral =
Nd∑
i=1

Eϕ,i, (A.6)

where Eϕ,i is the contribution of torsion i, which is almost always represented as a

cosine expansion. For example, in AMBER [20, 117],

Eϕ =
∑
n

Vn
2

[1 + cos(nϕ− γ)] , (A.7)

where n is a parameter that varies depending on the atoms or particles involved,

Vn is a scalar coefficient, and γ is a phase offset that changes the location of the

extrema of the potential. By contrast, the OPLS expression of torsional interactions

always contains four terms [54, 55],

Eϕ =
V1

2
(1 + cos(ϕ)) +

V2

2
(1− cos(2ϕ)) +

V3

2
(1 + cos(3ϕ)) +

V4

2
(1− cos(4ϕ)), (A.8)
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though one or more of the coefficients Vn are often set to zero. Note that this form

can be rewritten in the form (A.7) by setting γ = 0 for n = 1, 3 and γ = 180 for

n = 2, 4.

It is not uncommon that an additional four-body potential also contributes

to the total potential V (rn). Improper torsions in, for example, the CHARMM force

field are included to maintain chirality, a property of asymmetry, of bonded atoms

about a heavy atom. This potential is harmonic [16],

Eω =
1
2
kω(ω − ω0)2, (A.9)

where kω is the spring constant and ω and ω0 are the instantaneous and equilibrium

improper angles, respectively. Neither AMBER nor OPLS include this type of

torsion in their force fields. As was the case with the previous interaction types, the

total energy from improper torsion interactions is given by a summation over all Nt

instances,

Vtorsion =
Nt∑
i=1

Eω,i. (A.10)

The non-bonded potential, Vnon−bond is the total potential energy due to

pair interactions between particles on different molecules or between particles sepa-

rated by at least three bonds, such as van der Waals and electrostatic interactions.

Electrostatics are represented by a Coulomb potential,

Eelec =
qiqj

4πε0r
. (A.11)

The parameters qi and qj are the charges on the two interacting atoms and r is the

instantaneous distance between them. The permittivity constant, ε0, has the value

ε0 = 8.85× 10−12
(
Nm2/C2

)−1
. (A.12)
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Capturing attractive and repulsive forces between atoms or particles other than

those due to bonded or electrostatic interactions, van der Waals interactions are

most often represented by a Lennard-Jones potential,

Elj = 4ε
[(σ
r

)12
−
(σ
r

)6
]
, (A.13)

where r is again the instantaneous distance between the two particles, ε is the well-

depth, and σ is the collision parameter and the distance at which the potential is

zero. At times, a softer potential, the Lennard-Jones 9-6 potential,

Elj = 4ε
[(σ
r

)9
−
(σ
r

)6
]
, (A.14)

may be desired, but this is less common than (A.13). In either representation, ε

and σ are the model parameters.

The total energy from non-bonded interactions is summed over all pairs of

n atoms separated by three or more bonds,

Vnb =
n−1∑
i=1

n∑
j=i+1

[Eelec + Elj ] f. (A.15)

In OPLS, f = 0.5 for atoms separated by exactly three bonds and 1.0 otherwise, but

it is not unusual to specify f = 1.0 for all non-bonded interactions. The combining

rules σij = (σiiσjj)1/2 and εij = (εiiεjj)1/2 are the most common.

It is important to note that the functional forms discussed above are widely

accepted. Parameter values in popular codes such as AMBER, CHARMM, and

OPLS are widely trusted and used in a variety of applications. However, other

potentials may be used if considered more appropriate. The embedded atom model

[24, 25] or the Morse potential [78], for example, are among popular alternatives.
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The values of the parameters are defined by the atoms involved in the inter-

action, and the general environment in which these atoms exist. The bond between

a carbon atom and a hydrogen atom, for example, is much weaker than the bond be-

tween two carbon atoms, which can be further distinguished based on whether these

two carbons are part of a benzene ring or t-butyl component. This is reflected in

the values of the spring coefficients kr. Values can generally be found in parameter

tables or in the literature [16, 20, 54, 55, 117]
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Appendix B

Sensitivity Analysis

Let Y = f(θ1, θ2, . . . , θk) be the output function to be observed in any given

model scenario such that f is a square-integrable function over the k-dimensional

unit hypercube,

Ωk = (θ|0 ≤ θi ≤ 1, i = 1, . . . , k) . (B.1)

Using the Hoeffding decomposition, the Russian mathematician Ilya M. Sobol’ [111,

112] illustrated that f may be expanded as

f = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + . . .+ f12...k, (B.2)

where each term is a function of the indices, for example, fi = fi(θi), fij = fij(θi, θj),

etc. In particular, each function in the decomposition is an expected value,

f0 = E(Y ), (B.3)

fi = E (Y |θi)− f0, (B.4)

fij = E (Y |θi, θj)− fi − fj − f0. (B.5)

By square integrating each term in the decomposition (B.2), the ANOVA-HDMR

decomposition may be written [104],

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + V12...k, (B.6)
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where V (Y ) is the variance of Y , Vi = V (fi(θi)) is the variance in Y due to parameter

θi, Vij = V (fij(θi, θj)) is the variance in Y due to the interaction of parameters θi

and θj , and so on.

Alternatively, the variance V (Y ) may be expressed as a function of all of the

parameters except θi,

V (Y ) = V (E (Y |θ∼i)) + E (V (Y |θ∼i)) . (B.7)

The quantity V (Y ) − V (E (Y |θ∼i)) = E (V (Y |θ∼i)) is the expected value with

respect to the joint distribution π (θ∼i) of the variance that remains in Y when the

parameters θ∼i are fixed. Dividing both sides by V (Y ) yields two expressions for a

variance-based sensitivity measure, the so-called total effect index,

STi =
E (V (Y |θ∼i))

V (Y )
= 1− V (E (Y |θ∼i))

V (Y )
. (B.8)

This quantity measures how much of the variance in Y may be attributed to the

variability of parameter θi. Parameters with small values of STi do not contribute

much to the output Y and may, therefore, be fixed at a single value.

Sensitivity indices in this work were computed following the work of Saltelli

[101, 102, 104], in which 2N Monte Carlo samples of the parameter space are taken.

These samples are used to generate two N × k matrices, A and B, where each row

is a sample point of the k-dimensional parameter space. That is,

A =


θ

(1)
1 θ

(1)
2 . . . θ

(1)
i . . . θ

(1)
k

θ
(2)
1 θ

(2)
2 . . . θ

(2)
i . . . θ

(2)
k

...
...

. . .
...

. . .
...

θ
(N)
1 θ

(N)
2 . . . θ

(N)
i . . . θ

(N)
k

 , (B.9)
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and

B =


θ

(N+1)
1 θ

(N+1)
2 . . . θ

(N+1)
i . . . θ

(N+1)
k

θ
(N+2)
1 θ

(N+2)
2 . . . θ

(N+2)
i . . . θ

(N+2)
k

...
...

. . .
...

. . .
...

θ
(2N)
1 θ

(2N)
2 . . . θ

(2N)
i . . . θ

(2N)
k

 , (B.10)

where θ(j)
i denotes the j-th Monte Carlo sample of the i-th component of the pa-

rameter vector θ. A third matrix Di may be defined such that all of the columns

come from the matrix A with the exception of the i-th column, which comes from

B,

Di =


θ

(1)
1 θ

(1)
2 . . . θ

(N+1)
i . . . θ

(1)
k

θ
(2)
1 θ

(2)
2 . . . θ

(N+2)
i . . . θ

(2)
k

...
...

. . .
...

. . .
...

θ
(N)
1 θ

(N)
2 . . . θ

(2N)
i . . . θ

(N)
k

 . (B.11)

The model output values are computed for each row of the three matrices,

creating three N × 1 vectors,

YA = f (A) , YB = f (B) , YDi = f (Di) . (B.12)

The total effect sensitivity index may then be approximated by

STi = 1−
1
N

∑N
j=1 Y(j)

A Y(j)
Di
−
(

1
N

∑N
j=1 Y(j)

A

)2

1
N

∑N
j=1 Y(j)

A Y(j)
A −

(
1
N

∑N
j=1 Y(j)

A

)2 . (B.13)

This approximation method is used in all of the sensitivity calculations in this work.
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