
Copyright

by

Nathan David Wetzler

2015

The Dissertation Committee for Nathan David Wetzler
certifies that this is the approved version of the following dissertation:

Efficient, Mechanically-Verified Validation of Satisfiability

Solvers

Committee:

Warren A. Hunt, Jr., Supervisor

Marijn J. H. Heule, Co-Supervisor

Armin Biere

Vladimir Lifschitz

J Strother Moore

Vijaya Ramachandran

Efficient, Mechanically-Verified Validation of Satisfiability

Solvers

by

Nathan David Wetzler, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2015

Dedicated to my parents.

Acknowledgments

This dissertation would not have been possible without the support of my

advisors, colleagues, friends, and family. First and foremost, I would like to thank

my supervisors Warren Hunt, Jr. and Marijn Heule. Much of the work in this

dissertation was done in collaboration with Marijn Heule, and it was his ideas and

encouragement that spurred this research. He also explained the benefit of this work

to the SAT community and helped ensure its widespread adoption. Warren Hunt,

Jr. has served as my advisor for six years, and during this time he has been a source

of moral and technical support (not to mention financial support). I cannot imagine

completing this dissertation under different tutelage.

I want to thank my colleagues for their time and support over the years. I

will forever be in debt to Shilpi Goel, Matt Kaufmann, and David Rager for their

sage advice when working with ACL2. They always “had a minute” to listen to

my ideas and help solve my technical problems. Their wisdom is spread throughout

this work. I would also like to thank my dissertation committe members Armin

Biere, Vladimir Lifschitz, J Strother Moore, and Vijaya Ramachandran for their

time and expertise in this area. I would like to acknowledge my undergraduate

research advisors Chaim Goodman-Strauss and Francine Blanchet-Sadri; I believe

they are primarily responsible for my acceptance into such a prestigious university

and computer science program.

v

I could not have completed this degree without my friends Travis Crone, Jeff

Dorman, and Jay Gergen. They were always there to help me readjust after a long

day of working on mechanical proofs. Finally, I want to acknowledge my loving

parents, David and Debbie Wetzler, and my sister, Kristen Wetzler. They have been

my emotional support structure throughout this entire process, and there are no

words that can describe how grateful I am to them.

The work presented in this dissertation was supported largely by the Defense

Advanced Research Projects Agency (DARPA) grant N66001-10-2-4087 on “Code

Verification for Practical Machine Architectures” and was also supported by National

Science Foundation (NSF) grants CNS-0916772 on “Producing Certifiable Hardware

from Behavioral Synthesis” and CNS-0910913 on “A Formal Platform for Analyzing

Internet Routing”.

vi

Efficient, Mechanically-Verified Validation of Satisfiability

Solvers

Publication No.

Nathan David Wetzler, Ph.D.

The University of Texas at Austin, 2015

Supervisors: Warren A. Hunt, Jr.
Marijn J. H. Heule

Satisfiability (SAT) solvers are commonly used for a variety of applications,

including hardware verification, software verification, theorem proving, debugging,

and hard combinatorial problems. These applications rely on the efficiency and cor-

rectness of SAT solvers. When a problem is determined to be unsatisfiable, how can

one be confident that a SAT solver has fully exhausted the search space? Tradi-

tionally, unsatisfiability results have been expressed using resolution or clausal proof

systems. Resolution-based proofs contain perfect reconstruction information, but

these proofs are extremely large and difficult to emit from a solver. Clausal proofs

rely on rediscovery of inferences using a limited number of techniques, which typically

takes several orders of magnitude longer than the solving time. Moreover, neither of

these proof systems has been able to express contemporary solving techniques such

as bounded variable addition. This combination of issues has left SAT solver authors

unmotivated to produce proofs of unsatisfiability.

vii

The work from this dissertation focuses on validating satisfiability solver out-

put in the unsatisfiability case. We developed a new clausal proof format called

DRAT that facilitates compact proofs that are easier to emit and capable of ex-

pressing all contemporary solving and preprocessing techniques. Furthermore, we

implemented a validation utility called DRAT-trim that is able to validate proofs in

a time similar to that of the discovery time. The DRAT format has seen widespread

adoption in the SAT community and the DRAT-trim utility was used to validate the

results of the 2014 SAT Competition.

DRAT-trim uses many advanced techniques to realize its performance gains,

so why should the results of DRAT-trim be trusted? Mechanical verification enables

users to model programs and algorithms and then prove their correctness with a

proof assistant, such as ACL2. We designed a new modeling technique for ACL2

that combines efficient model execution with an agile and convenient theory. Finally,

we used this new technique to construct a fast, mechanically-verified validation tool

for proofs of unsatisfiability. This research allows SAT solver authors and users to

have greater confidence in their results and applications by ensuring the validity of

unsatisfiability results.

viii

Contents

Acknowledgments v

Abstract vii

Contents ix

Chapter 1. Introduction 1

1.1 Motivation . 3

1.1.1 Applications in Science . 3

1.1.2 Applications in Industry . 6

1.1.3 Bugs in SAT Solvers . 7

1.2 Contributions . 9

Chapter 2. State-of-the-Art 13

2.1 The Satisfiability Problem . 13

2.1.1 Preliminaries . 14

2.1.2 DIMACS . 15

2.2 Redundancy . 17

ix

2.2.1 Resolution, Tautologies, and Subsumption 18

2.2.2 Blocked Clauses and Extended Resolution 19

2.2.3 Unit Propagation and Resolution Asymmetric Tautology 20

2.3 SAT Solving . 23

2.3.1 Paradigms . 24

2.3.2 Preprocessing/Inprocessing . 24

2.4 Proof Systems . 26

2.4.1 Resolution Proofs . 27

2.4.2 Clausal Proofs . 31

2.5 Mechanical Verification . 34

2.5.1 ACL2 . 35

2.6 Verified SAT Solving . 38

2.7 Validating Unsatisfiability Proofs . 40

Chapter 3. Expressive Proofs and Efficient Validation 43

3.1 Adding Deletion Information . 44

3.1.1 IORUP Proof Format . 45

3.1.2 DRUP Proof Format . 47

3.2 Extended Resolution in Proofs . 50

3.2.1 RAT Proof Format . 50

x

3.2.2 Complexity . 53

3.2.3 DRAT Proof Format . 57

3.3 Efficient Validation . 59

3.3.1 Input and Output . 59

3.3.2 Optimiziations . 62

3.3.2.1 Backward Checking . 62

3.3.2.2 Deletion Information 67

3.3.2.3 Core-first Unit Propagation 68

3.3.2.4 RAT Checks . 72

3.3.3 Applications . 72

3.3.4 Evaluation . 73

Chapter 4. Unsatisfiability Specification 83

4.1 Unsatisfiability . 83

4.2 Assignments and Evaluation . 84

4.3 Formulas and Clauses . 87

4.4 Variables and Literals . 88

Chapter 5. RAT Algorithm 90

5.1 Validation . 90

5.2 Redundancy Properties . 92

xi

5.3 Resolution . 94

5.4 Unit Propagation . 95

Chapter 6. RAT Checker Proof of Correctness 100

6.1 Specification . 100

6.2 Proof Overview . 101

6.3 RUPp . 104

6.4 RATp . 106

Chapter 7. Implementation 109

7.1 Field-addressable Arrays . 110

7.1.1 Motivation . 110

7.1.1.1 Example List-based Model 110

7.1.1.2 Example STOBJ-based Model 112

7.1.1.3 Proof Efficiency and Proof Convenience 113

7.1.2 farray Definition . 115

7.2 Literal Encodings . 120

7.3 Array-based Assignments . 126

7.3.1 Definition . 126

7.3.2 Operations . 129

7.3.3 Maintaining Invariants . 133

xii

Chapter 8. Equivalence 137

Chapter 9. Future Work 145

Chapter 10. Conclusions 150

Bibliography 153

xiii

Chapter 1

Introduction

Satisfiability (SAT) solvers [11] are commonly used for a variety of applica-

tions, including hardware verification [10, 70, 34, 59, 5, 47, 25], software verifica-

tion [17, 28], theorem proving [24], debugging [16], and hard combinatorial prob-

lems [52, 51, 18]. These applications rely on the efficiency of SAT solvers to decide

large Boolean problems and to provide the correct results, but solvers are treated as

black-box utilities. Solvers are often used not only to find a solution for a Boolean

formula, but also to make a claim that no solution exists. In most applications of

SAT, a solution represents an error in a system; and, more importantly, the absence

of a solution represents the absence of errors. If a solution is reported for a given

formula, one can check the solution linearly in the size of the formula. But when no

solution is reported to exist, how can one be confident that a SAT solver has fully

exhausted the search space? This is complicated by the fact that state-of-the-art

solvers employ a large array of complex techniques [12, 55, 46, 45] that are used to

maximize efficiency. Errors may be introduced at a conceptual level [46] as well as

an implementation level. Formal verification is an approach to detect errors and to

assure that the results produced by SAT solvers are correct.

One method of assurance is to apply formal verification to the SAT solver

1

itself. This involves modeling a SAT solver, specifying the desired behavior, and using

a tool—such as a theorem prover—to show that the model meets its specification [54,

56, 57, 69, 65]. The benefit of such a direct approach is that no post-processing is

needed after the solver halts. While the formal verification of a SAT solver is a noble

endeavor, there are many problems with this approach. SAT solvers are constantly

evolving, and each new feature requires a modification to the verification effort. This

leads to a delicate balance between efficiency and verification.

Another approach is to validate the output of a SAT solver [33, 81, 75, 9].

A proof trace is a sequence of clauses that are claimed to be redundant with respect

to a given formula. If a SAT solver reports that a given formula is unsatisfiable, it

can provide a proof trace that can be checked by a smaller, trusted/verified program

called a proof checker. If the empty clause is shown to be redundant for a given for-

mula, the formula is unsatisfiable and the proof trace is called a refutation. Ideally,

a proof format should facilitate proofs that are: compact, easy to obtain, efficient

to validate, expressive enough to capture techniques used in state-of-the-art solvers,

and validated by a simple proof checker implementation. In this way, one can fo-

cus mechanical verification efforts on a simple proof checker that employs a limited

number of techniques. This avoids the need to verify a variety of solving techniques,

and a single proof checker can validate the results of multiple solvers, making the

approach modular with respect to the choice of solver.

Modeling a SAT proof checker and developing a proof of correctness for the

model provides assurance that proof traces can be validated, but if the model is non-

executable or inefficient, then it is of little use for applications in science and industry.

2

Instead, it is possible to create an efficient model that is also mechanically verified.

The verification task is much more difficult, however, when design decisions favor

efficiency over clarity. Proper abstractions can help ease the burden of verification

and pave the way for efficient, mechanically-verified software.

In the remainder of this chapter, there is a description of the importance of this

problem to researchers in mathematical science, industry, and the SAT community

(Section 1.1). Then the contributions of this work (Section 1.2) in SAT proof formats,

efficient proof validation, efficient formal modeling, and verified proof validation are

presented.

1.1 Motivation

Satisfiability solvers have numerous applications in science (Section 1.1.1) and

industry (Section 1.1.2). The SAT research community pushes for efficient and varied

solving techniques, but errors are sometimes introduced in the development process

(Section 1.1.3).

1.1.1 Applications in Science

The correctness of SAT solvers is important for new developments in combi-

natorial science where SAT solvers are often used to tighten theoretical bounds. For

example, the Erdős Discrepancy Conjecture (EDC) [31] has been an open problem

in mathematics for over eighty years. It states that for all positive integers C and

infinite sequences (xn) with values in the set {+1,−1}, there exists a subsequence

xd, x2d, . . . , xkd for positive integers k and d such that the absolute value of the sum

3

of all elements of the subsequence is greater than C. The EDC holds for the case

where C = 1, but the problem was still open (and widely studied) for any value of C

greater than 1. Konev and Lisitsa [51] recently (2014) were able develop a proof for

the EDC where C = 2 using an encoding to satisfiability. Their proof relied on an

unsatisfiability result that was emitted by a state-of-the-art SAT solvers Lingeling

and Glucose. In order to provide confidence in their result, they chose to validate

the unsatisfiability result with the methods described in this dissertation.

SAT solvers have been used to compute van der Waerden numbers from Ram-

sey theory [35]. The van der Waerden theorem states that given natural numbers k

and l, there exists a smallest natural number n = W (k, l) such that every k-coloring

of the numbers {1, 2, . . . , n} contains an arithmetic progression (an equi-spaced se-

quence) of length l in one of the colors. For a triple (k, l,m), Dransfield et al. [29]

described an encoding to a propositional formula in conjunctive normal form (CNF)

which is satisfiable if and only if W (k, l) > m. This procedure can be used to improve

lower bounds for van der Waerden numbers by progressively checking satisfiability

of CNF formulas. However, upper bounds are established by showing unsatisfiabil-

ity of a formula. If the SAT solver contains an error, part of the search space may

be skipped leading to an incorrect upper bound. In 2004, only five van der Waer-

den numbers had been claimed correct. Since then, many lower bounds have been

improved with SAT, and a few new numbers are claimed to exist (e.g., W (2, 6) is

claimed to be 1132 [52]).

One application of satisfiability technology to theoretical computer science is

minimal sorting networks [14, 50, 4]. A sorting network is an algorithm that can

4

sort n values using k fixed comparisons. One can visualize the problem as a series

of wires that transfer data values with “crossbars” connecting the wires, performing

comparisons, and swapping wire values based on the result of the comparison. A

sorting network of size n is considered minimal with respect to either the number

of comparisons k, called “minimal size,” or the number of layers d, called “minimal

depth.” The k values for minimal size sorting networks for n ≥ 9 have been open

problems for over sixty years. In 2014, Codish et al. [18] proved that the minimal

size sorting network is k = 25 for n = 9 and k = 29 for n = 10 using a satisfiability

encoding and SAT solver CryptoMiniSAT. Again, their construction depended on

the correctness of an unsatisfiability result. To substantiate the solver’s claims, they

developed their own proof format and used Prolog to validate the proof.

SAT solvers have also been applied to problems in the celluar automaton

known as Conway’s Game of Life [19]. In this automaton, cells are designated “alive”

or “dead”, and four rules decide the state of each cell in the next generation based

on the neighboring population. One problem in the Game of Life is discovering a

Garden of Eden—a pattern that can never exist outside of an initial configuration.

Hartman et al. [38] described a procedure for encoding the existence of a preceding

state as a CNF formula. Unsatisfiability of the formula implies that the configuration

is a Garden of Eden. Using this procedure, they broke the Garden of Eden records

for the smallest bounding box, fewest defined cells, and lowest density of alive cells.

Again, the validity of their results depends on the correctness of their unsatisfiability

claims.

These are just a few of the scientific areas seeing new developments that

5

were made possible with state-of-the-art SAT solvers. Satisfiability has also been

applied to many other combinatorial problems including discovery of new Ramsey

numbers [32, 42] and Schur numbers [29]. In all of these cases, the unsatisfiability

results are critical; an error in the computation of an unsatisfiability result would

unsubstantiate claims. In Section 1.1.3, some alarming data is presented on the

correctness of contemporary SAT solvers.

1.1.2 Applications in Industry

The presence of an error in a SAT solver can have a large impact on industrial

applications. In hardware model checking, a satisfiable result often represents a

logical error in some refinement of a circuit, but an unsatisfiable result represents

the absence of errors in a design. The latter is far more important to industrial

applications, and it is much harder to show the correctness of an unsatisfiable result.

For example, the formal verification group at Centaur Technology uses sym-

bolic execution in the ACL2 theorem proving system to verify x86 microprocessor

execution units [72]. Symbolic execution is performed by “bit-blasting” finite ACL2

theorems to Boolean formulas [24]. In the past, these formulas have been repre-

sented as binary decision diagrams (BDDs), but verification groups found that a

CNF based-representation with state-of-the-art SAT solvers can outperform a BDD-

based approach. The difference between these two methods, however, is trust. The

BDD-based approach has been mechanically verified in ACL2, while the SAT-based

approach needs a “trust tag” in ACL2. This adds a caveat to their verification ef-

forts: the x86 execution unit is correct provided that the SAT solver did not make a

6

mistake when making an unsatisfiability claim. In their most recent work, Davis and

Swords [25] developed a SATlink mode for symbolic execution where they proved

that the bit-blasting encoding to Boolean formula and the interpretation of the SAT

solver result is correct. The only piece missing in this mode is the trust associated

with unsatisfiability results.

In software verification, a bounded model checker for C and C++ programs

called CBMC [17] is able to detect array bounds exceptions, buffer overflows, unsafe

pointers, general exceptions, and also validate user-provided assertions. It can also

check consistency of C/C++ programs with other languages such as Verilog. This

tool is built on top of satisfiability modulo theories (SMT) solvers like Boolector

and Z3 and SAT solvers like MiniSAT. For example, users can ask the tool if a

given program contains a potential buffer overflow exception. This property is then

encoded as a Boolean formula and passed to a SMT/SAT solver. An unsatisfiability

result indicates that the program is devoid of this type of exception. If a SAT solver

erroneously arrived at this result, then the assurance from CBMC could be incorrect.

1.1.3 Bugs in SAT Solvers

The goal of a SAT solver is to decide a complex problem, which can poten-

tially require exponential running time, efficiently and correctly. The SAT solving

community presses for faster solvers with more efficient execution; however, like all

software, errors can be introduced during development. Some SAT solving tech-

niques are complicated and require a great deal of expertise to understand why they

are conceptually correct and how to efficiently implement them while maintaining

7

this correctness.

Järvisalo et al. [46] described a subtle error in the blocked clause addition

routine of a version of Lingeling, arguably the best solver currently available. In

the initial implementation of this routine, clauses were deemed to be redundant with

respect to the original input formula (i.e., irredundant clauses) and were added to a

list of redundant clauses so that they might be used to generate further redundant

clauses. The author of Lingeling failed to account for the fact that these added

clauses, while redundant with respect to the input formula, were not shown to be

redundant with respect to the previously added redundant clauses. To make matters

worse, Lingeling was “experimentally correct” on millions of instances and used in

industry for over a year and a half before a bug related to blocked clause addition

was demonstrated with a small hand-coded formula. During this one and a half

year period, Lingeling won several awards in SAT competitions. These types of

bugs can be hard to detect and can persist through many versions before they are

identified.

Lingeling is not alone, though. All solvers are susceptible to bugs, even

winners of SAT solving competitions. Brummayer et. al. [15] describes the appli-

cation of an automated negative testing technique, known as fuzzing, to a subset

of the solvers submitted to the 2007 and 2009 SAT solving competitions. In their

testing, they discovered defects in six solvers submitted to the 2007 competition and

three solvers submitted to the 2009 competition. Most of these defects led to incor-

rect results. Moreover, the defective solvers included winners from several tracks of

the competitions. Furthermore, one track of SAT competitions has been focused on

8

“portfolio” solvers which employ many different SAT solvers in their execution. If

a faulty solver can produce a result faster than other solvers, that makes it a likely

candidate for a portfolio solver to select during runtime.

While the efficiency of solvers is evaluated by industry and yearly compe-

titions, the correctness of solvers is more difficult to evaluate. Developers can use

fuzzing techniques to try to discover errors in implementation; however, fuzzing tech-

niques alone are insufficient to detect all errors (as illustrated by the bug described

above). Satisfiability problems often have millions of solutions or zero solutions. Sup-

pose an unsound technique is developed that discards some small percentage (say

10%) of the solutions in order to narrow the search space and decrease solving time.

If a problem has exactly one solution, there is only a small percentage chance (10%)

that this solution will be discarded and an error is detected.

1.2 Contributions

The work discussed in this dissertation focuses on validating satisfiability

solver output in the unsatisfiability case. The four major contributions of this work

involve the development of a suitable proof format for satisfiability solvers, the ef-

ficient verification of proofs of unsatisfiability for SAT instances, the development

of an new data structure used for efficient formal modeling, and the mechanical

verification of an efficient satisfiability proof checker.

We developed a new unsatisfiability proof format called DRAT (short for

Deletion Resolution Asymmetric Tautology) that is extremely compact when com-

pared to even the smallest resolution proof format. This format is easy to emit

9

from state-of-the-art solvers, and it can express all contemporary solving and pre-

processing techniques. The DRAT proof format has been widely adopted by the SAT

community. In the 2014 SAT Competition, solvers submitted to the UNSAT tracks

of the competition were required to emit proofs of unsatisfiability so that the results

could be validated. Thus, the track was changed from traditional UNSAT tracks

to certified UNSAT tracks. In each certified UNSAT track, 15 participating solvers

used the DRAT proof format, or a derivative such as RUP or DRUP, including all

top-tier solvers. The certified UNSAT track only occurred once before the 2013 SAT

Competition, in 2005.1

We implemented an unsatisfiability proof checking tool called DRAT-trim to

validate proof of unsatisfiability in the DRAT format. This tool is able to validate

proofs in a time similar to that of the discovery time and with much less memory

than resolution proof checkers. This is quite remarkable in that DRAT-trim does

not contain the advanced algorithms and techniques used by state-of-the-art solvers.

DRAT-trim was used to verify all results in the certified UNSAT track of the 2014

SAT Competition. Furthermore, DRAT-trim is able to emit trimmed formulas, op-

timized proofs, and resolution/dependency graphs. Researchers have already begun

to integrate the output of DRAT-trim into MUS extraction tools [62, 7] and inter-

polation utilities [76, 36].

We designed a new ACL2 data structure called farray that combines the

execution efficiency of ACL2 arrays with an efficient and convenient theory. This new

1Several voluntary certified UNSAT tracks were organized in 2005, 2007, 2009, and 2011, but
they had little participation.

10

abstraction is able to provide linear-time access and updates to multiple “fields” that

are located within a single array, similar to C structs on a heap. This allows an ACL2

user to perform convenient state-based modeling without sacrificing performance.

The development of this data structure was invaluable to our work and we believe it

will be adopted by other ACL2 users wishing to construct efficient models.

Finally, we mechanically verified a RAT proof checking algorithm using ACL2,

and then showed that an array-based implementation of that algorithm is equivalent

to the algorithm. The array-based implementation utilizes the farray data structure

to represent assignments almost exactly as they are represented in DRAT-trim. This

reduces the complexity of operations on assignments from linear time to constant

time while maintaining a proof of correctness. The end result is a fast, mechanically-

verified RAT proof checker.

Organization The remainder of this dissertation is divided into chapters. In Chap-

ter 2, background material is reviewed and the state-of-the-art is discussed as it

applies to satisfiability solvers, unsatisfiability proof formats, theorem proving, and

mechanical-verification of SAT solvers and proof checkers. Related work appears in

this chapter. In Chapter 3, the contributions of this work towards an expressive

proof format and efficient proof validation utility are described in detail. In Chap-

ter 4, a formal specification for unsatisfiability in the ACL2 theorem proving system

is presented. In Chapter 5, an algorithm is developed for validating proofs in a new,

expressive proof format. In Chapter 6, the soundness proof is constructed showing

that the algorithm meets the unsatisfiability specification. In Chapter 7, a more effi-

11

cient implementation of a proof checker is presented, including a new data structure

designed to facilitate efficient models with convenient theories. In Chapter 8, the

new implementation is proven to be equivalent to the original proof-checking algo-

rithm. Finally, future work is proposed in Chapter 9 and conclusions are drawn in

Chapter 10.

12

Chapter 2

State-of-the-Art

In this chapter, the state-of-the-art is presented as it relates to the satisfiabil-

ity problem, SAT solvers, and mechanical verification. The satisfiability problem is

defined in Section 2.1 along with notation used in the rest of this dissertation. The

standard input format for satisfiablility instances is also described. Proofs of unsatis-

fiability are constructed of clauses that have been deemed redundant with respect to

a Boolean formula. Various methods of establishing redundancy are detailed in Sec-

tion 2.2. Contemporary SAT search, simplification, and inference techniques should

be supported by any proof system. These techniques are explained in Section 2.3

and existing proof systems are depicted in in Section 2.4. The concept of mechanical

verification is introduced in Section 2.5, and the related work of mechanically-verified

SAT solvers and SAT proof checkers are chronicled in Sections 2.6 and 2.7.

2.1 The Satisfiability Problem

An introduction to the satisfiability problem and basic satisfiability terminol-

ogy are presented in in Section 2.1.1 and the concrete representation of satisfiability

instances is described in Section 2.1.2.

13

2.1.1 Preliminaries

The satisfiability (SAT) problem [11] asks if there is a truth assignment of

Boolean values to Boolean variables for a formula such that the formula evaluates to

true. A Boolean variable x is associated with two literals, the positive literal x and

the negative literal x̄. A clause is a finite disjunction of literals and a conjunctive

normal form (CNF) formula is a finite conjunction of clauses. For the purposes of

this work, all formulas are assumed to be in CNF.

A tautology is a clause that contains the conflicting literals l and l̄. The

notation x ∈ F denotes that variable x appears as either a positive literal or negative

literal in formula F . Similarly, the notation l ∈ F denotes that literal l appears in

some clause in formula F . A truth assignment (hereafter called an assignment) for a

formula F is a partial function that maps the literals of F to the Boolean values true

and false. Assignments may be represented as a conjunction of (non-conflicting)

literals or even a set of (non-conflicting) literals.

Example 1. The CNF formula F1 = ((a∨ b∨ c)∧ (a∨ b̄)∧ (c∨ c̄)) consists of three

clauses. The last clause is a tautology containing the conflicting literals c and c̄. The

assignment τ = (ā ∧ b) asserts that the literals ā and b are true.

A clause C is satisfied by an assignment τ if l ∈ τ for some literal l ∈ C. A

clause C is falsified by an assignment τ if l̄ ∈ τ for all literals l ∈ C. A formula F is

satisfied by an assignment τ if C is satisfied by τ for all clauses C ∈ F . A formula

F is falsified by an assignment τ if C is falsified by τ for some clause C ∈ F . A

formula F is satisfiable if there exists a satisfying assignment for F . This assignment

14

is called a solution. A formula F is unsatisfiable if there does not exist a satisfying

assignment for F . Two formulas are logically equivalent if they are satisfied by the

same set of assignments. If F is logically equivalent to F ∧ F ′, then F ′ is logically

implied by F . Two formulas are satisfiability equivalent if they are both satisfiable

or both unsatisfiable. Note that two formulas that are logically equivalent are also

satisfiability equivalent.

Example 2. The CNF formula F2 = ((a∨b∨c)∧(a∨b̄)) is satisfied by the assignment

τ1 = (a ∧ b) because all clauses in F2 are satisfied. F2 is falsified by the assignment

τ2 = (ā∧ b) because the second clause in F2 is falsified. In this case, F2 is satisfiable

because there exists a solution for F2 (e.g., τ1). The formula F ′2 = F2 ∧ (a ∨ c) is

logically and satisfiability equivalent to F2 (because F2 and F ′2 have the same set of

satisfying assignments) while the formula F ′′2 = F2 ∧ (a) is satisfiability equivalent

to F2 but not logically equivalent (because there are fewer satisfying assignments for

F ′′2).

2.1.2 DIMACS

Satisfiability (SAT) instances are typically stored in a format called the DI-

MACS SAT/CNF format. The name DIMACS comes from the Rutgers University

research group Center for Discrete Mathematics and Theoretical Computer Science

(DIMACS). The DIMACS group hosted several challenges in the 1990s on algo-

rithms and implementations related to graphs and other NP hard problems. In

1992, the Second DIMACS Implementation Challenge included problems on graph

cliques, graph coloring, and satisfiability. The original DIMACS format for satisfi-

15

ablity problems comes from this challenge, although it is hard to find evidence of

this today.1

The SAT community has since taken ownership of this format and uses ver-

sions of it for SAT competitions. The format seems to change at times, but is always

based around the DIMACS CNF format. Recent competitions use the definition

from the 2009 SAT Competition. This specification is far from complete, however,

and it is unfortunate there is no document that defines and evaluates a SAT problem

specification.

An example formula in the DIMACS format is depicted in Figure 2.1. The

instance begins with the preamble which consists of comment lines and a problem

line. Comment lines begin with the character “c” followed by a space. The problem

line begins with the character “p” followed by the string “cnf” indicating that this is

a problem in conjunctive normal form. Then, the number of variables n and number

of clauses c that will appear in the problem are reported. After the preamble, the

formula is described. Positive integers 1, 2, . . . , n represent literals x1, x2, . . . , xn

and negative integers −1, −2, . . . , −n represent literals x̄1, x̄2, . . . , x̄n. The value

0 indicates the end of a clause. Specifications differ on several points: if comments

can be included in the formula, if clauses are limited to one per line, if all literals

less than or equal to n must be used, etc.

The DIMACS format is relevant to this dissertation in that new proof formats

1In fact, there used to be a document online describing the format used in this challenge, but
that has since been removed. It’s quite difficult to find any mention of the format or challenge in
the literature either. This makes the reason behind the “DIMACS” part of the satisfiability format
somewhat mysterious.

16

CNF formula

c A comment.
p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0

Figure 2.1: An example CNF formula in DIMACS format.

developed during this work are based on the DIMACS representation.

2.2 Redundancy

Given a formula F , the addition of clause C to F may remove solutions from

F , potentially changing a formula from satisfiable to unsatisfiable. The removal of

a clause C from F may add solutions, potentially making an unsatisfiable formula

satisfiable. A clause C is redundant with respect to a formula F if and only if F ∧C is

satisfiability equivalent to F . For an unsatisfiable formula, all clauses are considered

to be redundant because there are no solutions to remove. The justification for

the redundancy of a clause can be classified according to certain properties [46].

All SAT solving techniques and unsatisfiability proof systems can be expressed as a

sequence of adding and removing redundant clauses. If a solver emits a sequence of

additions and deletions, then validation of unsatisfiability claims can be accomplished

by checking that each clause added or removed is redundant. In this section, various

17

methods of establishing redundancy are presented.

2.2.1 Resolution, Tautologies, and Subsumption

The addition or removal of clauses with basic forms of redundancy preserve

logical equivalence, which means that their addition/deletion of the clause does not

alter the number of solutions for a formula.

Given two clauses C1 and C2 with l ∈ C1 and l̄ ∈ C2, the resolution rule [67]

states that the clause CR = C1 ./ C2 = (C1\{l})∨(C2\{l̄}) is logically implied by and

redundant with respect to C1 ∧C2. The clause CR is the resolvent of C1 and C2 and

C1 and C2 are the antecedents of CR. More explicitly, the notation CR = C1 ./l C2

states that resolution was performed with resolution literal l. Note that resolution is

not associative. Any assignment that satisfies antecedents C1 and C2 will also satisfy

resolvent CR because either the resolution literal l ∈ C1 is satisfied, which indicates

that C2 \ {l̄} ⊂ CR is satisfied, or its negation l̄ ∈ C2 is satisfied, which indicates

that C1 \ {l} ⊂ CR is satisfied. Thus, the addition of a resolvent preserves logical

equivalence for any formula F that contains its antecedents. For a formula F , the

set of clauses that contain a literal l is denoted by Fl. Resolution can be performed

on sets of clauses where Fl ./l Fl̄ = {C ./l C
′ | C ∈ Fl, C

′ ∈ Fl̄}. Tautologies may be

removed from the resulting formula as the set of clauses is an implied conjunction.

Example 3. Given the clause C1 = (a ∨ b ∨ c) and the clause C2 = (ā ∨ c ∨ d), the

resolvent is C1 ./a C2 = (b ∨ c ∨ d).

A clause C has redundancy property Tautology (T) if and only if l ∈ C and

l̄ ∈ C for some literal l. Tautologies evaluate to true for any assignment, and their

18

addition for a formula F has no impact on the number of solutions, preserving logical

equivalence of F .

A clause C has redundancy property Subsumption (S) with respect to a for-

mula F if and only if there exists a clause C ′ ∈ F \ {C} such that C ′ ⊆ C. Any

solution that satisfies C′ will also satisfy C, so the addition of C to F preserves

logical equivalence of F .

2.2.2 Blocked Clauses and Extended Resolution

The addition or deletion of clauses with stronger forms of redundancy preserve

satisfiability equivalence for a formula but not logical equivalence (i.e., a formula with

zero solutions will continue to have zero solutions, and a formula with more than

zero solutions will continue to have more than zero solutions).

Given a formula F , the literal l in clause C blocks C with respect to F if l̄ ∈ C

(i.e., C is a tautology) or if for all clauses C ′ ∈ F such that l̄ ∈ C ′, the resolvent

C ./l C
′ is a tautology. The clause C is blocked with respect to formula F if there

exists a literal that blocks C. Furthermore, if C is blocked with respect to F , then

C is also redundant with respect to F .

Example 4. Given the formula F4 = ((a∨b)∧(b∨c)∧(b̄∨ c̄)), the clause C = (ā∨ b̄)

is blocked with respect to F4 because literal ā blocks C with respect to F4 (although

the literal b̄ does not block C because only one of the resolvents is tautology).

Given a formula F , two variables a ∈ F and b ∈ F , and a variable x 6∈ F , the

extension rule [74] states that the formula F∧(x∨ā∨b̄)∧(x̄∨a)∧(x̄∨b) is satisfiability

19

equivalent to F . In other words, the extension rule adds the definition x := a∧b to F

and preserves satisfiability. Extended resolution is the procedure defined by repeated

applications of the extension rule followed by repeated applications of the resolution

rule. Extended resolution can polynomially simulate extended Frege systems [21],

one of the most powerful known proof systems. Note that the clauses introduced by

extended resolution are trivially blocked with respect to the new variable.

One can observe the satisfiability equivalence of the addition and deletion of

blocked clauses with the solution reconstruction method. Given a formula F and

clause C that is blocked on literal l with respect to F , consider some assignment

τ that satisfies F but falsifies C. The assignment τ ′ = τ \ {l̄} ∪ {l} satisfies C by

construction and satisfies F because every clause C ′ ∈ F that was satisfied by l̄ is

also satisfied by another literal l′ ∈ C ′.

2.2.3 Unit Propagation and Resolution Asymmetric Tautology

A clause C is unit for an assignment τ if both (1) there exists exactly one

literal l ∈ C such that l 6∈ τ and l̄ 6∈ τ , and (2) for all l′ ∈ C such that l′ 6= l,

l̄′ ∈ τ . The literal l is the unit literal for a unit clause C. Given a formula F and

an assignment τ , unit propagation, also known as Boolean constraint propagation

(BCP), repeatedly extends τ with a unit literal (for a unit clause C ∈ F) until a

fixed point is achieved. Unit propagation results in a conflict if a clause becomes

falsified by unit propagation or if a conflicting literal is added to the assignment.

Example 5. Given the formula F5 = ((a ∨ b ∨ c) ∧ (a ∨ b̄)) and the assignment

τ = (ā), unit propagation returns the assignment τ ′ = (ā ∧ b̄ ∧ c).

20

Given a formula F and a clause C, reverse unit propagation (RUP) assigns all

literals in C to false, and then performs unit propagation. If a conflict is generated,

then C is a RUP clause (C has the RUP property) and is redundant for F . This

process is called “reverse” unit propagation because an assignment is extended in

“reverse” order of unit clause discovery in a SAT solver.

Given a clause C and a formula F , asymmetric literal addition (ALA) com-

putes the unique clause obtained from repeatedly adding a literal l to C if there

exists a clause C ′ ∈ F \ {C} such that C ′ = C ′′ ∨ l̄ where C ′′ ⊆ C.

Given a redundancy property P , a clause C has property AP with respect

to formula F if and only if C has property P or ALA(F,C) has property P . Given

a redundancy property P , a clause C has property RP on literal l with respect to

a formula F if and only if C has property P or C ./l C
′ has property P for all

C ′ ∈ Fl̄. Figure 2.2 shows a hierarchy of redundancy properties and their relation to

contemporary SAT techniques [46].

Example 6. Given the formula F6 = ((a ∨ b) ∧ (b ∨ c) ∧ (b̄ ∨ c̄))

– The clause (a ∨ ā) has property T with respect to F6.

– The clause (a ∨ b ∨ c) has the property S with respect to F6.

– The clause (a ∨ c̄) has the property AT with respect to F6.

– The clause (a ∨ c̄) also has the property RT on a with respect to F6.

– The clause (ā ∨ c) has the property RAT on ā with respect to F6.

21

T

AT/RUP

CDCL learning

DP resolution

subsumption

RAT

extended learning

bounded variable addition

RT

extended resolution

blocked clauses
preserve

logical equivalence
preserve

satisfiability

1

Figure 2.2: Relationships between clause redundancy properties (large text) that can
be computed in polynomial time. Techniques (small text) shown in an area denote
the most efficient check one can apply to verify a proof trace from a SAT solver that
uses that technique. All of the techniques used in contemporary SAT solvers can
expressed as a sequence of RAT clauses [46]. The dashed line separates techniques
that preserve logical equivalence and those that preserve satisfiability.

22

It is important to note that the RUP property is equivalent to the AT redun-

dancy property. The RUP property converts a clause to an assignment by negating

each literal and then performing unit propagation until a conflict is achieved. The

AT property extends a clause by ALA and then checks that the resulting clause is a

tautology. Futhermore, RUP clauses also have the RAT redundancy property. In the

remainder of this document, the RUP property will be preferred over AT because of

its relation to unit propagation.

The most general property in the hierachy above is resolution asymmetric

tautology or RAT. The addition (and removal) of RAT clauses to (or from) a for-

mula results in a satisfiability equivalent formula [46] and is a generalization of unit

propagation, blocked clauses, and extended resolution. One can repeatedly apply

the solution reconstruction method in reverse to reconstruct a satisfying assignment

for a formula that has been extended with RAT clauses. Notice that RAT clauses

encompass all other forms of redundancy (tautologies, resolvents, blocked clauses,

extended resolution, reverse unit propagation, etc.) described in this section. This

observation will be key to the proposed proof systems and formats described in the

next chapter.

2.3 SAT Solving

Satisfiability (SAT) solving has enabled countless technologies by efficiently

deciding Boolean formulas. State-of-the-art SAT solvers employ complex techniques

to achieve such efficiency.

23

2.3.1 Paradigms

The conflict-driven, clause-learning (CDCL) approach [58] is the most preva-

lent solving paradigm among contemporary SAT solvers. CDCL solvers (like their

Davis Putnam Logemann Loveland (DPLL) [27, 26] predecessors) explore the search

space by assigning variables until a conflict occurs. Conflict analysis produces a

learned clause (sometimes called a conflict clause) that represents a section of the

search space that does not contain a solution and should not be explored again. The

learned clause is added to a learned-clause database and incorporated into inference

steps like unit propagation. This process is repeated until a satisfying assignment

is found or the empty clause is learned. The addition of too many learned clauses

can inhibit a CDCL solver’s performance, so clauses are frequently purged from

the learned-clause database. The CDCL paradigm is most effective on application

benchmarks where the problems contain some internal structure, which is introduced

during the encoding process. CDCL solvers will be the primary focus of the proof

techniques presented in this document.

Another leading solving paradigm is the lookahead approach [44]. Lookahead

solvers focus on choosing the “best” literal to assign by analyzing the impact of the

assignment. These solvers perform well on random benchmarks and hard combina-

torial benchmarks where there is a distinct lack of internal structure to the problem.

2.3.2 Preprocessing/Inprocessing

CDCL solvers appeal to suites of preprocessing techniques to simplify input

formulas before search, strengthening the ability of solvers on hard benchmarks.

24

Bounded variable elmination (BVE) [30], blocked clause elimination (BCE) [45], hid-

den tautology elimination (HTE) [43], blocked clause addition (BCA) [46], bounded

variable addition (BVA) [55], and subsumption (S) are a few of the many prepro-

cessing techniques used in state-of-the-art solvers. Some SAT solvers even use a

method called inprocessing where search is frequently interrupted and preprocess-

ing techniques are applied [46]. Preprocessing and inprocessing techniques can be

very complicated and are often underspecified. While many techniques can be ex-

pressed as a short series of resolution steps, some techniques cannot be expressed

using resolution alone and must appeal to extended resolution or a generalization.

Bounded Variable Elimination (BVE) [30] is one of the most effective pre-

processing and inprocessing techniques. This technique uses a heuristic that prefers

smaller numbers of variables and clauses in a formula: BVE removes a variable x ∈ F

by replacing all clauses with positive Fx and negative Fx̄ occurrences of the variable

by the pointwise resolvents Fx ./x Fx̄ if the number of resolvents is smaller than the

number of clauses in Fx and Fx̄. This technique is is defined by resolution and can

be expressed as a series of resolution steps.

The counterpart to BVE is Bounded Variable Addition (BVA) [55]; this tech-

nique uses the same heuristic as BVE but will add a new variable in order to reduce

the number of variables and the number of clauses. BVA constructs two sets of

clauses for a new variable x, a set Gx containing the literal x and a set Gx̄ containing

the literal x̄, whose resolvents Gx ./x Gx̄ appear in a formula F . BVA replaces the

resolvents by the two sets of clauses containing the variable x if the number of clauses

in the two sets is less than the number of resolvents. Expressing BVA as a series

25

of resolution steps, or even extended resolution steps, is difficult [49]; however, BVA

can be easily expressed using a generalization of extended resolution, namely RAT

clauses.

As a final example, Blocked Clause Addition (BCA) [46] is the preprocess-

ing/inprocessing technique by which a clause C may be added to a formula F if C

is blocked with respect to F . This is the technique that contained an error in the

solver Lingeling [46] (Section 1.1.3). This technique can only be expressed using

extended resolution or a generalization.

These state-of-the-art techniques enable solvers to efficiently decide satisfia-

bility instances. A proof system for unsatisfiability claims should be able to express

all of these tecniques—not just some of them. Existing proof systems are described in

the next section, but none are able to capture all of the techniques presented above.

A new proof system that is capable of expressing these techniques is presented in the

next chapter.

2.4 Proof Systems

A proof trace (sometimes simply called a proof) for a formula F is a sequence

of clauses called lemmas where each lemma is redundant with respect to F conjoined

with all lemmas preceeding it in the sequence. A refutation is a proof trace that

contains the (unsatisfiable) empty clause. From this point forward, the term “clause”

will refer to a clause in a formula and the term “lemma” will refer to a clause in a

proof trace. Unsatisfiability proofs have traditionally been expressed in a resolution

or clausal proof system. These proof systems have appeared in different formats, but

26

no format has experienced widespread adoption among the SAT community.

2.4.1 Resolution Proofs

Resolution proofs consist of a sequence of lemmas that can be constructed by

resolution chains. A resolution chain is a sequence of resolutions where the result

of each resolution is an antecedent to the next resolution in the sequence. The

most commonly-used resolution proof format is TraceCheck [9]. Every clause in the

formula and proof is given a clause identifier, and resolution chains are expressed as

a sequence of clause identifiers. Figure 2.3 shows an example formula in DIMACS

CNF format and a TraceCheck proof.

The benefit of resolution proofs is that every lemma can be derived from

resolution information contained in the proof trace, making the proofs easy and

efficient to validate. There is no guesswork or rediscovery required by a validation

tool. Once a lemma has been validated by checking the resolution chain, it is added

to the formula. Resolution is such an elementary operation that simple and fast

checking algorithms exist [81, 75].

It is easy to emit proofs in this format for CDCL solvers using “simple” SAT

techniques [6], but more advanced techniques and optimizations can be extremely

difficult to express. Minimization of learned clauses [12] and bounded variable ad-

dition [55] are examples. Variables that do not appear in the formula may be used

in resolution proofs (creating a form of extended resolution proofs), but expressing

techniques like BVA even in extended resolution is hard [49]. Again, one cannot

stress the expressibility problem enough. As the SAT community develops new tech-

27

CNF formula

p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0

TraceCheck proof

1 1 2 -3 0 0
2 -1 -2 3 0 0
3 2 3 -4 0 0
4 -2 -3 4 0 0
5 -1 -3 -4 0 0
6 1 3 4 0 0
7 -1 2 4 0 0
8 1 -2 -4 0 0
9 -1 2 0 5 3 7 0
10 -1 0 5 4 2 9 0
11 2 0 3 6 1 10 0
12 0 4 6 8 11 10 0

Figure 2.3: An example CNF formula in DIMACS format (left) and a TraceCheck
proof (right) are shown in this figure. Each line of the TraceCheck proof begins
with a clause identifier (displayed in bold print). Then, the literals in the clause are
listed, followed by a zero. Finally, the clause identifiers of any antecedents used to
justify the addition clause are listed, followed by a zero. Note that clauses from the
formula have an empty list of antecedents. The proof ends with the addition of the
empty clause.

28

niques for use in preprocessing, inprocessing, and search, the need for a proof system

that can support a generalization of extended resolution only grows.

Another key problem with resolution proofs is that the memory cost can be ex-

tremely large (for standard benchmarks). A resolution proof records antecedents for

all resolutions necessary to reconstruct each lemma, but the number of antecedents

in a resolution proof is often 300 to 400 times larger than the number of lemmas [39].

Figure 2.4 shows a scatter plot where the number of antecedents (or “core arcs”) is

compared to the number of (“core”) lemmas and the number of literals in lemmas.

The number of antecedents is 10 times larger than the number of literals in lemmas.

Even in a compact resolution format like TraceCheck where literals and antecedents

are both expressed as integers, resolution proofs are too large to be practical. Ta-

ble 3.1 (in the next chapter) shows resolution proof sizes in megabytes for selected

benchmarks.

Finally, some resolution proof formats, like TraceCheck, modify the input

formula by adding clause identifiers and include the modified formula in the proof

trace. While this may not seem like a significant problem, it has a huge impact

on the trust associated with proof validation. A solver may incorrectly reproduce

the original formula in the resolution proof, causing an inconsistency. This is large

concern for applications of proof validation (e.g., satisfiability competitions). How-

ever, there are resolution proof formats that avoid this problem by adding clause

identifiers implicitly to the original formula [60, 81, 77].

29

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

10
6

n
u

m
b

e
r

o
f

c
o

re
 a

rc
s

number of core lemmas (green) / number of literals in core lemmas (red)

diagonal
core arcs vs core lemmas

core arcs vs literals in core lemmas

Figure 2.4: A scatter plot comparing the antecedents (called “core arcs”) on the
y-axis to the “core” lemmas (green x’s) and literals in “core lemmas” (red stars) on
the x-axis is shown in this figure. The data for this graph was produced by solving
the application benchmarks of the 2009 SAT Competition with PicoSAT.

30

2.4.2 Clausal Proofs

Goldberg and Novikov [33] proposed an alternative to resolution-based proofs.

They observed that each clause added by a CDCL solver during conflict analysis can

be validated using unit propagation. Clausal proofs are composed of clauses, which

are called lemmas in this context. Each lemma must be validated by a process known

as reverse unit propagation [75]. Once a lemma is validated, it is deemed redundant

and may be added to the proof. A RUP validation algorithm will repeatedly check

that lemmas of a proof trace are RUP clauses and then extend the formula with each

lemma until the empty clause is deemed redundant. Figure 2.5 shows an example

RUP proof for a formula in DIMACS CNF format.

CNF formula

p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0

RUP proof

-1 2 0
-1 0
2 0

0

Figure 2.5: An example CNF formula in DIMACS format (left) and a RUP proof
(right) are shown in this figure. Each line in the RUP proof contains a clause termi-
nated with a zero. The proof ends with the addition of the empty clause.

Figure 2.6 shows the pseudocode for a simple RUP proof checking algorithm.

The function RUPchecker (top) accepts a CNF formula F and a RUP proof repre-

sented here as a queue of lemmas Q (line 1). If the empty clause is not a member

31

of the proof, then the refutation is ill-formed (lines 2-3). For every lemma L in the

queue (lines 4-5), check that L has the RUP property (line 6). If it does not, return

that the validation has failed (line 7). Otherwise, extend the formula with L and

continue (line 8). If the queue is empty, then the validation succeeded (line 9).

The RUP function (bottom) accepts a formula F and a lemma L that will be

tested for the RUP property with respect to F (line 1). Create an assignment τ from

L by negating each literal in L (line 2). If there exists a clause in F that evaluates

to false under the assignment τ , then L has the RUP property (lines 4-5). If there

exists a unit clause in F with respect to assignment τ , then extend τ with the unit

literal (lines 6-7) and continue. If a unit clause cannot be found, then the lemma L

does not have the RUP property (line 8).

RUP proofs are quite elegant as they can be expresed purely in conjunctive

normal form (although the order of the lemmas is important). Each learned clause

from a CDCL solver is a RUP clause. One strength of RUP proofs is that they

are much more compact than resolution proofs: the redundancy of each lemma

can be determined without additional antecedent information. This strength is also

a weakness, however, as the antecedents for each lemma must be rediscovered at

validation time. Throughout a RUP proof, lemmas that have been deemed redundant

via RUP are repeatedly added to the formula, futher increasing the cost of unit

propagation. This can be expensive and more complicated to implement efficiently,

thereby reducing the trust that the validation utility is correct.

Another strength of RUP proofs is that they are relatively easy to emit for

many SAT solving and preprocessing techniques. Modifying a CDCL solver to emit

32

1 RUPchecker (Formula F , Queue Q)
2 if (∅ 6∈ Q)
3 return "invalid refutation";
4 while (Q 6= ∅)
5 L = Q.pop();
6 if (RUP(F , L) == false)
7 return "validation failed";
8 F = F ∪ L;
9 return "refutation validated";

1 RUP (Formula F , Lemma L)

2 τ = L;
3 while (true)
4 if (∃ C ∈ F : eval(C, τ) == false)
5 return true;
6 if (∃ C ∈ F : unit(C, τ))
7 τ = τ ∪ unit(C, τ);
8 else return false;

Figure 2.6: Psuedocode for a RUP validation algorithm (top) and RUP property
(bottom).

33

RUP proofs can be as easy as adding a line of code that writes each learned clause to

a RUP proof file. There is no need to store clause identifiers (as in resolution proofs)

in order to emit RUP proofs and there is no memory overhead.

Resolution and clausal proofs systems have changed very little in the past

decade and have not adapted to new techniques, such as those described in the

previous section. In the next chapter, these proof systems will be revisted.

2.5 Mechanical Verification

Mechanical verification is the process by which an automated or interactive

theorem prover (also called a proof assistant) is used to validate the provability of

mathematical theorems. These validations may be much larger than those that

can be completed by hand as a machine assists in the organization and determines

provability. Interactive theorem provers may be based on first-order logic [48] or a

higher-order logic [63, 8].

Mechanical verification begins with a formal model of a problem, system, or

algorithm in the logic of the theorem prover. A specification is then constructed that

describes the mathematical properties one wishes to exhibit of the model. Finally,

the theorem prover is employed to determine that the model satisfies those prop-

erties. The theorem prover is often treated as a trusted source, although there are

mechanically-verified or self-verifying theorem provers [23, 61].

34

2.5.1 ACL2

The ACL2 system [48] was used to develop the formalization, specification,

and proofs presented in this dissertation. ACL2 is a freely-available system that

provides a programming language and a theorem prover, both of which are based on

a first-order logic of recursive functions. The programming language and logic are

compatible with Common Lisp (“ACL2”, or “ACL2”, is an acronym for “A Com-

putational Logic for Applicative Common Lisp”), and an executable ACL2 system

can be built on a number of Common Lisp implementations. ACL2 provides efficient

execution by way of contemporary Common Lisp compilers. Users of ACL2 often

contribute “community books” which may include definitions and theorems certified

by ACL2, or even utilities that extend the ACL2 system.

The initial theory for ACL2 has axioms for primitives such as cons (an ordered

pair constructor), car (the first component of a pair), and cdr (the second component

of a pair). Axioms for Common Lisp functions, such as member, are also included,

and each user-defined function definition introduces a definitional axiom equating

the body of the function with the call of the function on its formal parameters.

ACL2 provides interactive use by a top-level read-eval-print loop where arbitrary

expressions may be evaluated. ACL2 events include definitions and theorems, both

of which modify the the theorem prover’s logical database for subsequent proof and

evaluation. Theorems are typically expressed using a defthm event and function

definitions using a defun event. An ACL2 function is a predicate if it can only return

a strictly Boolean value. In ACL2, the constants t and nil correspond to Boolean

values true and false and are designated as special symbols. For the purposes of

35

the logic, however, any term that is non-nil is considered to be true.

The syntax of ACL2 is generally case-insensitive (as it is built on Lisp which

upcases all input) and uses prefix notation: (function argument1 ... argumentk).

As an example, the term denoting the sum of x and y is (+ x y). A semicolon “;”

starts a comment that extends to the rest of the line. The functions let and let*

support parallel and sequential bindings, respectively.

In ACL2, functions may return mulitple values by invoking the constructor

mv, which stands for “multiple value”. Elements returned by a mv expression may be

accessed with the function mv-nth which retrieves the nth value of an mv (using zero-

based numbering). The function mv-let accepts three arguments: a list of distint

variables, a function that returns an mv (with the same number of values as the

variables list), and a body. For example, suppose that a function f returns two

values by using an mv. One can compute the sum of these values with the following

term:

(mv-let (x y) ; let x and y be the two values returned by
(f a b c) ; the function f on arguments a, b, and c
(+ x y)) ; which are used in the computation of x + y

One example of an ACL2 community book is bstar. This book introduces

a macro called b* which is an alternative, more powerful way of creating sequential

bindings that can include multiple value returns, control statements, and even side

effects in a state. Of particular note are the constructs when, if, and unless. Consider

the following code that sums a series of values and reports if the sum is negative or

non-negative.

36

(b* ((base 0) ; let base be bound to 0,
((mv x y) (f a b c)) ; let x and y be values returned by f,
(sum (+ x y base)) ; let sum by x + y + base,
((if (<= 0 sum)) ; if sum is greater than or equal to 0,
’non-negative)) ; then return the symbol non-negative,

’negative) ; else return the symbol negative

ACL2 has no native support for quantification in the logic; however, ACL2

allows a user to define quantified notions using Skolem functions via the defun-sk

event. This event will introduce a witness function that returns a witness object, if

such an object exists. If one wants to express the mathematical statement, “there

exists an x such that x < y”, then one could submit the defun-sk event:

(defun-sk exists-x-<-y (y) ; define a function on y
(exists x (< x y))) ; that behaves like ∃ x : x < y

This event introduces a non-executable function with one formal parameter, y, called

exists-x-<-y-witness that is axiomatized to return an x satisfying the the expres-

sion (< x y), if one exists. The non-executable function exists-x-<-y returns t if

exists-x-<-y-witness is able to find such an object.

The functions nth and update-nth are the accessor and updater functions for

ACL2 lists, and run in linear-time. When faster execution is needed, one can use

ACL2 STOBJs. STOBJs (Single-Threaded OBJects) allow users to benefit from the

execution efficiency of Lisp arrays from within ACL2. Arrays enable constant-time

lookup and updates for STOBJ fields and arrays, but the cost of this approach is

that STOBJs are syntactically limited so that updates to the STOBJ data structure

are serialized (hence ”single-threaded”). STOBJs are supported in the logic and may

logically be treated as lists whose values are accessed and updated with the list-based

37

functions nth and update-nth.

Links to papers that apply ACL2, as well as detailed hypertext documentation

and installation instructions, may be found on the ACL2 home page.2

2.6 Verified SAT Solving

One method of assurance for SAT solvers is to develop a mechanically-verified

SAT solver. This approach avoids the need for any post-processing, but this does

not provide assurance for state-of-the-art solvers that have not been mechanically

verified. There is a delicate balance between efficiency and verification in this ap-

proach; some techniques may improve the performance of the SAT solver model but

each technique must be properly specified and proven correct.

The Davis-Putnam-Logemann-Loveland (DPLL) [27, 26] algorithm is one of

the most basic SAT solving algorithms where unit propagation is combined with

backtracking. Lescuyer and Conchon [54] formalized and mechanically verified a

DPLL algorithm with the Coq [8] proof assistant using a process called reflection. A

certified Ocaml implementation was extracted but the efficiency was not evaluated on

larger, industrial-scale problems, and the perofrmance was poor for small examples

(ranging from 50 variables and 80 clauses to 72 variables and 297 clauses).

Shankar and Vaucher [69] also mechanicallly-verified a DPLL solver using the

Prototype Verification System (PVS) [66]. The model they constructed contained a

non-executable function for variable selection, so the performance was never evalu-

2http://cs.utexas.edu/users/moore/acl2/

38

ated. This work served as a “preliminary and exploratory attempt” at fully specifying

a SAT solver based on the DPLL algorithm.

Modern SAT solvers are built around the conflict-driven, clause-learning (or

CDCL) [58] paradigm. In CDCL-based solvers, learned clauses are added to a for-

mula during solving to reduce the search space. Marić first verified pseudocode

fragments of a CDCL solver in 2009 [56] using the Isabell/HOL proof assistant [63].

This work was completed with an iterative modeling approach where features were

gradually introduced to the solver. A large number of CDCL solving techniques

were implemented including backtracking, restarts, conflict analysis, and learned-

clause minimization, including the the first formalization of the two-watched literal

data structure [60]. In 2010, Marić completed the work to finish the mechanical-

verification of a full CDCL solver [57]. While the author spent years on the veri-

fication process, the performance was never clearly evaluated because the variable

selection heuristic was non-executable. Given a proper definition, the author could

have extracted an executuable model.

Oe et al. [65] developed a mechanically-verified CDCL solver called VerSAT

using the Guru proof assistant [73]. Their implementation featured array-based

clauses and conflict analysis. An executable model was extracted to C, and the

performance of VerSAT was compared to PicoSAT (which is no longer a state-of-

the-art solver) with RUP and TraceCheck proof generation enabled followed by proof

validation using checker3 (including RUPtoRES proof conversion). VerSAT

solved signicantly fewer benchmarks within the timeout of 3600 seconds (6 of 16

chosen benchmarks). On the benchmarks VerSAT completed, it was often an order

39

or two of magnitude slower than PicoSAT with proof emission and validation.

On the benchmarks of the SAT Race 2008, VerSAT solved 19 of the 50 selected

benchmarks, while the top-tier solver MiniSAT solved 47 of the 50. Still, this is

an incredible result as no other mechanically-verified solver has provided an efficient

executable model.

The mechanical-verification of SAT solvers is an excellent goal and has re-

ceived significant attention from experts in the theorem proving community. How-

ever, the performance of a mechanically-verified solver has never reached the level

of state-of-the-art SAT solvers. Preprocessing and inprocessing continue to play a

larger role in the performance of SAT solvers, and none of these appraoches account

for these techniques.

2.7 Validating Unsatisfiability Proofs

Instead of applying mechanical verification to a SAT solver, one can ver-

ify a SAT proof checker based on resolution (Section 2.4.1) or clausal proofs (Sec-

tion 2.4.2). This focuses the verification effort on a small set of techniques designed

to validate a proof rather than decide a Boolean formula. The verified proof checker

will continue to be relevant, even as solving techniques change. This approach also

provides a means to validate the results of preprocessing techniques.

Weber [77, 78] and Bohme [13] demonstrated the first mechanically-verified

resolution proof checker using the Isabelle/HOL proof assistant [63] and evaluated

the verified proof checker with resolution proofs produced by zChaff. The verified

checker was compared to the built-in zChaff proof checker using CPU times (not

40

wall clock times) and was one to two orders of magnitude slower than the zChaff

built-in checker and took about 50% longer than the zChaff solver. Memory prob-

lems were described during evaluation as MiniSAT failed to produce resolution

proofs for all but one of the selected benchmarks. It should be noted that the au-

thor’s main focus was developing a verified proof checker in order to integrate SAT

solving technology into the Isabelle/HOL theorem prover, and this effort was con-

sidered a success.

Darbari et al. [22] verified a resolution-based proof checker using the Coq

proof assistant [8], which is able to execute models outside of the theorem-prover

environment. The performance was better than that of Weber’s, but memory issues

were still a concern. The authors found that up to 60% of the total time was spent

in garbage collection. Armand et al. [1, 2] extended a SAT resolution-based proof

checker to include SMT proofs using Coq.

Oe and Stump [64] implemented a non-verified RUP proof checker in C++

and proposed a verified RUP proof checker (VerCheck in Guru [73]), but it is

unknown if an implementation for the verified checker exists.

All of these approaches are based on either resolution or clausal proofs and

are limited by those proof systems. More advanced techniques such as bounded

variable addition or blocked clause addition are difficult (if not impossible) to express.

Futhermore, the mechanically-verified proof checkers are unable to to compete with

their unverified counterparts. In the next chapter, a new proof format and validation

tool are presented that allow more complex techniques. In the chapters that follow,

a construction of mechanically-verified proof checker is described for proofs in this

41

new format.

42

Chapter 3

Expressive Proofs and Efficient Validation

One of the contributions of this work is a new way of expressing unsatisfi-

ability. There are downsides associated with existing proof systems (Section 2.4).

Resolution proofs (Section 2.4.1) are large and hard to emit because they contain

perfect information about the solving process in terms of low-level resolution opera-

tions. Clausal proofs (Section 2.4.2) are inefficient to validate because it is necessary

to rediscover all resolution operations used during solving. Neither of these formats

allow for advanced preprocessing techniques such as bounded variable addition [55]

or blocked clause addition [46]. Solvers often remove learned clauses from their clause

database for efficiency, and neither of these proof systems provide a way to represent

this important operation.

To solve these problems, a new clausal proof format, called DRAT [80], builds

on clausal proofs by employing a generalization of extended resolution, which is a

stronger form of redundancy [46]. This extension allows all contemporary solving and

preprocessing techniques to be expressed in the proof format [40]. The new proof

format benefits from the compactness and easy emission of clausal proof formats.

Deletion information ensures that the number of “active” clauses remains small and

enables a more efficient validation process [39, 41].

43

The viability of the DRAT proof format as a standard depends on the ex-

istence of a fast validation algorithm. A new validation tool called DRAT-trim is

able to efficiently check proofs in this format and serves other functions: DRAT-

trim can produce a reduced version of the original formula, an optimized version of

the original DRAT proof, and a dependency graph for all clauses involved in the

validation [39, 80].

The state-of-the-art in terms of SAT solving and SAT proof validation was

presented in Chapter 2. This chapter will describe improvements to the state-of-the-

art and begins by discussing the benefits of extending clausal proofs with deletion

information and presents two experimental proof formats (IORUP and DRUP) that

are based on this extension (Section 3.1). Next, the expressiveness of clausal proofs

is addressed by adding support for RAT clauses, and an intermediate proof format

called RAT is described. A specification is given for the new DRAT proof format—

one of the contributions of this work (Section 3.2). Finally, the input and output,

optimizations/techniques, applications, and evaluation of the new proof validation

tool constructed for this work are detailed (Section 3.3).

3.1 Adding Deletion Information

RUP proofs [33, 75] are compact and easy to emit, but they can be expen-

sive to validate because the RUP property (Section 2.4.2) requires rediscovery of

antecedents to validate each clause. In CDCL-style learning [58], learned clauses are

added to a list of redundant clauses as they are discovered. If the addition of clauses

was the only operation on a learned-clause database, CDCL solvers would encounter

44

performance problems on large benchmarks. Every learned clause in the database

can potentially provide new inferences via unit propagation, and some clauses are

even subsumed by newer learned clauses. Thus, learned clauses are removed peri-

odically to improve performance. If a redundant clause is removed during search, it

cannot contribute to the discovery of new redundant clauses. The RUP format does

not allow for the removal of clauses during validation. As proof validation progresses,

each clause may become increasingly more difficult to validate.

One can substantially lower validation costs by including deletion information

in the proof trace [39, 41]. Deletion information is just as easy to emit as emitting a

learned clause for clausal proofs. Whenever a solver removes a learned clause from

the database, the deletion information is written to a proof file. This information

may be encoded as “active times” for each clause and lemma in the proof, or it may

be stored as deletion instructions that inform the validation tool when a clause is to

be removed.

3.1.1 IORUP Proof Format

One experiemental proof format based on deletion information is the IORUP

proof format (short for In/Out RUP) [41]. In this format, deletion information is

incorporated into each clause in the formula and each lemma in the proof. This

is done by prepending timestamps to clauses and lemmas. A timestamp represents

an index in the sequence of clauses and lemmas that appear in the proof. An “in”

timestamp indicates the time a clause or lemma becomes active and is available to

the validation tool for unit propagation. An “out” timestamp indicates that the

45

clause or lemma is no longer necessary (because it was removed during solving) and

should not be considered for unit propagation. Figure 3.1 shows an example. This

format in inherently flawed, however, as it shares the same problem that resolution

proof formats have (described in Section 2.4.1): the original input formula must be

modified. In this case, the modification is that clause in the original formula should

include timestamps. This reduces the trust that the proof checker validated a proof

for the “original” formula.

CNF formula

p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0

IORUP proof

iorup 4 8
1 11 1 2 -3 0
2 10 -1 -2 3 0
3 11 2 3 -4 0
4 12 -2 -3 4 0
5 10 -1 -3 -4 0
6 12 1 3 4 0
7 9 -1 2 4 0
8 12 1 -2 -4 0
9 10 -1 2 0
10 12 -1 0
11 12 2 0
12 12 0

Figure 3.1: An example CNF formula in DIMACS format (left) and an IORUP
proof (right) are shown in this figure. Each line in the IORUP proof contains an
“in” timestamp (italics), followed by an “out” timestamp (italics), a clause, and
finally a terminating zero. The proof ends with the addition of the empty clause.

IORUP proofs are more difficult to generate during solving than RUP proofs

because the “out” timestamp is not known until a clause is removed; however,

IORUP proofs can be generated from another experiemental format called DRUP

(Section 3.1.2).

46

The IORUP format increases the size of RUP proofs by adding timestamps.

In the worst case, every clause and lemma is binary, and the number of integers for

each clause/lemma increases from three (two literals and a terminating zero) to five

(two timestamps, two literals, and a terminating zero). This is far from the average

case, however, as an average learned clause contains 40 literals (for applications

benchmarks). Regardless, IORUP proofs are still more compact than resolution

proofs.

3.1.2 DRUP Proof Format

Another transitional proof format called DRUP (short for Deletion RUP) in-

tegrates deletion information by interleaving deletion instructions into the proof [41,

39]. In this format, a clause that is preceded by the “d” flag is considered to be

a deletion instruction, which indicates the clause’s removal from the set of active

clauses. The benefit of this approach is that it is just as easy for a CDCL solver

to emit deletion instructions as it is to emit learned clauses. Whenever a learned

clause is removed from the learned-clause database, the “d” flag is prepended to the

literals in the learned clause and followed by a terminating zero. Figure 3.2 shows

an example of a DRUP proof.

One challenge with a format that includes deletion instructions is that the

literals of the clause in the deletion instruction may not be in the same order that the

literals appear when the clause/lemma is added. It would be impractical to enforce

the same order on literals in corresponding clause/lemma addition and deletion steps

because solvers frequently reorder literals during unit propagation (as a part of the

47

CNF formula

p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0

DRUP proof

-1 2 0
d -1 2 4 0

-1 0
d -1 -2 3 0
d -1 -3 -4 0
d -1 2 0

2 0
d 1 2 -3 0
d 2 3 -4 0

0

Figure 3.2: An example CNF formula in DIMACS format (left) and a DRUP proof
(right) are shown in this figure. Each line in the DRUP proof contains a clause
terminated with a zero. A “d” prefix indicates that the clause should be deleted
from the database. The proof ends with the addition of the empty clause.

two-watched literal data structure [60]). There are a few solutions to this problem.

One could sort literals in clauses and lemmas, but this can be expensive and does

not help if deletion instructions are processed during validation. Another solution is

to use a hash table to associate corresponding clauses. The hashing function can be

selected to include properties that are independent of the literal order like the sum,

product, and exclusive-or of literals. Collisions may be addressed by adding linked

lists to each entry (e.g., separate-chaining collision resolution).

Deletion instructions may be processed as they are encountered in the proof

with a matching procedure like the one described above. An alternative approach to

removing clauses from a clause database is to generate timestamps from deletion in-

structions before validation begins. Then, the unit propagation routine can compare

each clause’s “out” timestamp to a “global time” before checking to see if it is unit.

48

The DRUP format can greatly increase the size of a RUP proof. In the worst

case, every clause in a formula F and lemma in a RUP proof P is deleted before the

validation ends, increasing the proof size from
∑

L∈P |L| to
∑

C∈F |C|+2×
∑

L∈P |L|.

However, this is still more compact than resolution proofs that store all antecedents

(roughly ten times the number of literals [39]) in addition to lemmas. Table 3.1

shows a comparison of the size of proofs in RES, RUP, DRUP, and IORUP formats.

benchmark RES RUP DRUP IORUP

aes-bottom12 9,831.71 70.99 141.04 78.46
aes-bottom13 65,703.17 521.54 1,044.81 573.04
AProVE07-08 51,386.24 238.61 479.19 259.47
eq.atree.09 4,531.55 31.27 61.94 36.67
eq.atree.10 16,549.82 113.76 227.87 132.47
maxor064 62,010.42 246.32 478.61 260.53
maxxor032 46,831.80 289.96 574.58 302.83
q query 3 l44 3,949.44 121.79 243.14 137.55
q query 3 l45 3,807.54 118.51 237.99 134.20
q query 3 l46 3,554.44 117.81 236.91 133.35
rbcl xits 07 3,747.44 79.17 158.56 95.46

Table 3.1: A comparison of the proof sizes (in Mb) on selected benchmarks when
solved by Glucose 2.1. The solver emits proofs in DRUP format, which are then
converted to RUP (by removing lines that begin with “d”) and IORUP formats (using
a special-purpose conversion tool). RES proofs are produced by the RUPtoRES
tool [75].

An efficient proof validation utility called DRUP-trim was provided with the

definition of the DRUP format. More information on the techniques used in this

utility is found in Section 3.3. The DRUP proof format was made available before

the 2013 SAT Competition, and solvers submitted to the UNSAT tracks were required

to produce proofs to support claims of unsatisfiability. All top-tier solvers (including

49

competition winners) that were submitted to these tracks chose to use the DRUP

proof format and the DRUP-trim utility was able to verify all of these proofs.

3.2 Extended Resolution in Proofs

Resolution and (D)RUP proof formats lack the expressivity to capture a grow-

ing number of techniques used in state-of-the-art SAT solvers. SAT solvers often use

preprocessing and inprocessing in addition to (CDCL-style) learning (Section 2.3.2),

and some of these techniques cannot be expressed by resolution-style inference such

as bounded-variable addition [55], blocked-clause addition [53, 46], and extended

learning [3]. These techniques can be expressed by extended resolution (ER) [74]

or a generalization of ER [53]. Järvisalo et al. [46] demonstrated a hierarchy of re-

dundancy properties (Figure 2.2), the most expressive of which is Resolution Asym-

metric Tautology (RAT), which is a generalization of RUP and extended resolution.

All current preprocessing, inprocessing, and learning techniques used in contempo-

rary solvers can be expressed by the addition and removal of RAT clauses. One key

difference, however, between RAT and resolution is that RAT checks satisfiability

equivalence instead of logical equivalence.

3.2.1 RAT Proof Format

A proof format based on the RAT property [40] was developed to address the

growing number of techniques that go beyond the bounds of resolution. RAT proofs

are not only more expressive than previously-defined SAT proof techniques, but they

also have the potential to admit stronger redundant clauses which can significantly

50

decrease checking time. Syntactically, RAT proofs are identical to RUP proofs; a

RAT proof is a sequence of lemmas expressed as clauses. The only difference is

that the RAT property may be used in addition to the RUP property to validate

each lemma. In this case, the resolution literal should be first literal of the lemma.

Figure 3.3 shows an example RAT proof.

CNF formula

p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0

RAT proof

-1 0
2 0

0

Figure 3.3: An example CNF formula in DIMACS format (left) and a RAT proof
(right) are shown in this figure. Each line in the RAT proof contains a clause termi-
nated with a zero. The proof ends with the addition of the empty clause.

A lemma with the RUP property also has the RAT property, and it is more

efficient to check clauses for the RUP property than the RAT property as the latter

requires that all clauses/lemmas with the negation of the resolution literal, called

resolution candidates, to be checked by RUP. In practice, most lemmas are expected

to be RUP clauses. Therefore, a lemma is first checked for RUP property. If this

fails, then the lemma is checked for the RAT property.

Figure 3.4 shows the pseudocode for a RAT proof checking algorithm including

checking the RAT property. The function RATchecker (left) accepts a CNF formula

51

F and a RAT proof represented here as a queue of lemmas Q (line 1). If the empty

clause is not a member of the proof, then the refutation is ill-formed (lines 2-3). For

every lemma L in the queue (lines 4-5), check if L has the RAT property (line 6). If

it does not, return that the validation failed (line 7). Otherwise, extend the formula

with L and continue (line 8). If the queue is empty, then the validation succeeded

(line 9).

The RAT function (right) accepts a formula F and a lemma L (line 1). First,

the lemma is checked to see if it has the RUP property (from Figure 2.6) (line 2). If

it does not, begin the check for the RAT property on the first literal in the lemma

(line 3). Construct a set of resolution candidates (line 4); and, for each candidate

(lines 5-6), compute the resolvent with the lemma (line 7). If the resolvent does

not have the RUP property (line 8), return that the clause does not have the RAT

property (line 9). After all resolvents have been checked for RUP, return that the

clause has the RAT property (line 10).

1 RATchecker (Formula F , Queue Q)
2 if (∅ 6∈ Q)
3 return "invalid refutation";
4 while (Q 6= ∅)
5 L = Q.pop();
6 if (RAT(F , L) == false)
7 return "validation failed";
8 F = F ∪ L;
9 return "refutation validated";

1 RAT (Formula F , Lemma L)
2 if (RUP(F , L) == false)
3 l = first(L);
4 Fl̄ = {C | C ∈ F ∧ l̄ ∈ C};
5 while (Fl̄ 6= ∅)
6 C = Fl̄.pop();
7 R = L ./l C;
8 if (RUP(F , R) == false)
9 return false;

10 return true;

Figure 3.4: Psuedocode for a RAT validation algorithm (left) and the RAT property
(right).

52

Preprocessing techniques like Bounded Variable Addition (BVA) cannot be

expressed in proof systems based on resolution or reverse unit propagation but dras-

tically enhance a solver’s ability to decide certain benchmarks. Table 3.2 shows the

improvement in solving time with BVA preprocessing as well as the validation time

with a simple RAT checker based on the algorithm from Figure 3.4. It also demon-

strates the distribution of lemmas that can be validated by RUP (AT) and lemmas

that can only be validated by RAT.

original BVA preprocessed RAT proof checking
benchmark #vars #cls time #vars #cls time #AT #RAT time
PH10 90 330 7.71 117 226 1.25 42,853 198 4.19
PH11 110 440 84.42 151 281 12.34 225,959 295 152.82
PH12 132 572 494.29 187 342 8.45 181,603 402 69.01
rbcl 07 1,128 57,446 52.92 1,784 7,598 2.88 72,073 19,681 6.76
rbcl 08 1,278 67,720 1,763.36 1,980 9,004 10.72 151,894 22,830 37.58
rbcl 09 1,430 79,118 — 2,190 10,492 129.20 882,213 26,639 2,631.28

Table 3.2: Evaluation of RAT proof validation with Bounded Variable Addition
(BVA) preprocessing on pigeonhole and bioinformatics benchmarks. The first column
(set) indicates the benchmark name. The second set of columns shows the number of
variables, number of clauses, and solving time with Glucose 2.1. The third set of
columns displays the number of variables, number of clauses, and solving time with
Glucose 2.1 after BVA preprocessing with Coprocessor. The fourth column set
shows the number of lemmas with AT (RUP), number of lemmas with RAT but not
RUP, and the validation time with a RAT proof checker.

3.2.2 Complexity

The RAT proof system is strictly stronger than the resolution and reverse

unit propagation proof systems presented in Section 2.4; there exist formulas for

which there are no sub-exponential-sized resolution proofs, but polynomial-sized

RAT proofs exist. Furthermore, RAT proofs can be checked in polynomial time

53

in the size of the proof. Each of these ideas are formally explored in this subsection.

Recall that resolution proofs (such as those in the TraceCheck format) often

assign each clause and lemma with an identifier. A resolution chain A for a lemma L

and formula F can be expressed as a sequence of identifiers. Let the function CID

map identifiers to clauses in F .

Theorem 3.2.1. Given a formula F and a lemma L with resolution chain A, L

can be checked for redundancy with respect to F by the resolution chain A in time∑
0≤i<|A| |CID(A[i])| multiplied by a small constant c.

Proof. Let the sequence A be a zero-indexed sequence and let i be in index into A,

initially 0. Let R be initialized to CID(A[i]) and increment i. While i < |A|, let

C = CID(A[i]) and check that there exists a literal l ∈ C such that l̄ ∈ R. If so,

copy the literals of C into R and increment i. If not, then the redundancy check has

failed. When i = |A|, test that R ⊆ L.

Theorem 3.2.2. Given a formula F and a resolution proof P , P can be validated

in time
∑

(L,A)∈P (
∑

0≤i<|A| |CID(A[i])|) multiplied by a small constant c.

Proof. Every lemma (L,A) ∈ P is checked for redundancy with respect to F using

the procedure from the proof of Theorem 3.2.1.

Theorem 3.2.3. Given a formula F , a lemma L can be checked for redundancy

with respect to F by reverse unit propagation in time
∑

C∈F |C| multiplied by a small

constant c.

54

Proof. Construct the sets Fl = {C | l ∈ C ∧ C ∈ F} for all literals l in F . Let the

function toInt(l) map positive literals x1, . . . , xn to integers 1, . . . , n and negative

literals x̄1, . . . , x̄n to −1, . . . ,−n. Annotate each clause C ∈ F with the following

information: NC = |C| and SC =
∑

l∈C toInt(l). Construct a zero-indexed propaga-

tion queue Q = {l̄ | l ∈ L} and let i be an index into Q, initially 0. While i < |Q|, let

l = Q[i] and for each clause C ∈ Fl̄, decrement NC and subtract toInt(l̄) from SC .

After each decrement operation, if NC = 1 for some clause C, add l = toInt−1(SC)

to Q if l 6∈ Q ∧ l̄ 6∈ Q. This process will be repeated at most n times where n is the

number of variables. In the worst case, each clause C ∈ F will be visited once for

every literal l ∈ C.

Note that a resolution lemma can be checked linearly in the size of the formula

if the antecedents do not form a resolution chain by using the same technique.

Theorem 3.2.4. Given a formula F and a reverse unit propagation proof P , P can

be validated in time |P | × (
∑

C∈F |C|+
∑

L∈P |L|) multiplied by a small constant c.

Proof. Every L ∈ P is checked for redundancy with respect to F using the procedure

from the proof of Theorem 3.2.3. In the maximal case, all (but one) of the lemmas

in P have been deteremined to be redundant and added to F and this process is

iterated |P | times.

Theorem 3.2.5. Given a formula F and a lemma L with resolution literal l ∈ L,

L can be checked for redundancy with respect to F by RAT in time (
∑

C∈F |C|)2

multiplied by a small constant c.

55

Proof. In the worst case, the literal l̄ is a member of every clause C ∈ F and all

resolvents of L and C are not tautologies. Each resolvent must be validated by

reverse unit propagation in time
∑

C∈F |C|.

Theorem 3.2.6. Given a formula F and a RAT proof P , P can be validated in time

|P | × (
∑

C∈F |C|+
∑

L∈P |L|)2 multiplied by a small constant c.

Proof. Every lemma L ∈ P is checked for redundancy with respect to F using the

procedure from the proof of Theorem 3.2.5. In the maximal case, all (but one) of

the lemmas in P have been deteremined to be redundant and added to F and this

process is iterated |P | times.

Satisfiability is an NP-complete problem, and a key characteristic of NP-

complete problems is that solutions can be checked very quickly with respect to the

size of the problem. However, the search for these solutions may be exponential

(super-polynomial). While unsatisfiability proofs can be validated in polynomial

time (with respect to the size of the proofs), the size of unsatisfiability proofs may

be exponential with respect to the size of the formula. Consider the pigeonhole

problems. A pigeonhole problem of size n (denoted PHn) asks if n pigeons can be

assigned to n−1 holes such that each hole contains at most one pigeon. The problem

can be formalized as a satisfiability problem in CNF by letting each Boolean variable

xi,j denote that pigeon i is in hole j where i ranges from 1 to n and j ranges from 1

to n− 1. A translation of PHn to a CNF formula is given by:

∧
i∈{1..n}

(xi,1 ∨ xi,2 ∨ · · · ∨ xi,n−1) ∧
∧

i,j∈{1..n−1}

∧
k∈{i+1..n}

(x̄i,j ∨ x̄k,j)

56

The first set of clauses state that pigeon i must be in some hole. The second set of

clauses state that if pigeon i is in hole j, then pigeon k > i cannot be in hole j. This

problem requires an exponential number of lemmas for resolution-based proofs [37]

and takes an exponential amount of time, with respect to the size of the formula, to

solve and validate.

Proof systems based on extended resolution (or a generalization such as

RAT) can produce polynomial-sized proofs of the pigeonhole problems [20, 74]. A

quadratic-sized RAT proof of PHn can be constructed by introducing extended reso-

lution definitions that reduce the problem PHn to the problem PHn−1 [40]. While the

RAT proof system is strictly stronger than resolution and reverse unit propagation

proof systems, there may be formulas with exponential-sized RAT proofs. However,

the RAT proof system can polynomially simulate extended Frege systems [21], which

is the strongest known proof system and no exponential lower bound is known.

3.2.3 DRAT Proof Format

Finally, the DRAT (Deletion Resolution Asymmetric Tautology) proof for-

mat improves upon each of these clausal (RUP, IORUP, DRUP, and RAT) proof

formats by using a stronger method of checking redundancy and/or adding deletion

information to the proof.

DRAT proofs are expressed as sequence of lemmas and deletion instructions.

Lemmas are written in the same way as clausal proofs (the literals of the clause

followed by a zero) and may be redundant based on the RUP property or RAT

property with respect to the first literal. Deletion instructions are preceded by the

57

“d” flag, the literals of the clause to be deleted, and a terminating zero. The literals

of the deletion instruction may appear in a different order than the clause or lemma

to which the instruction refers. Figure 3.5 shows an example DRAT proof for a CNF

formula in DIMACS format.

CNF formula

p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0

DRAT proof

-1 0
d -1 -2 3 0
d -1 -3 -4 0
d -1 2 4 0

2 0
d 1 2 -3 0
d 2 3 -4 0

0

Figure 3.5: An example CNF formula in DIMACS format (left) and a DRAT proof
(right) are shown in this figure. Each line in the DRAT proof contains a clause
terminated with a zero. A “d” prefix indicates that the clause should be deleted
from the database. The proof ends with the addition of the empty clause.

The DRAT proof format allows the expression of RAT clauses, which includes

RUP clauses. A validation utility will attempt to validate each clause by the RUP

property. If this fails, the RAT property is checked with respect to the first literal in

the clause. DRAT proofs are identical to DRUP proofs; only the method of checking

redundancy is changed.

Like the DRUP proof format, an efficient proof validation utility called DRAT-

trim was provided with the definition of the DRAT format. More information on the

techniques that are used in this utility is located in the following section. The DRAT

proof format was made publicly-available before the 2014 SAT Competition, and

58

solvers submitted to the UNSAT tracks were required to produce proofs to support

claims of unsatisfiability. All top-tier solvers (including competition winners) that

were submitted to these tracks chose to use the DRAT proof format, and the DRAT-

trim utility was used to verify these proofs.

3.3 Efficient Validation

The viability of the DRAT proof format as a standard depends on the exis-

tence of a fast checking algorithm. A new validation tool called DRAT-trim [80] is

able to efficiently check proofs in this format and serves three additional functions:

DRAT-trim can produce a trimmed version of the original formula, an optimized

version of the original DRAT proof, and a dependency graph for all clauses involved

in the validation.

In this section, the input and output of the DRAT-trim utility are defined

(Section 3.3.1). Then, the optimizations that allow efficient validation are described:

backward proof validation, clause marking, core-first unit propagation, and deletion

information (Section 3.3.2). Finally, the applications of DRAT-trim are presented

(Section 3.3.3) and the performance of DRAT-trim is evaluated (Section 3.3.4).

3.3.1 Input and Output

DRAT-trim requires two input files: a formula and a proof. Formulas must

be expressed in DIMACS CNF format (Section 2.1.2). Proofs must be supplied in

the DRAT format [80] (Section 3.2.3), which includes the DRUP [39] (Section 3.1.2)

and RUP formats [75] (Section 2.4.2).

59

The default output of DRAT-trim is a message indicating the validity of

a proof with respect to an input formula. This information is very useful when

developing SAT solvers, especially since the DRAT format supports checking all

existing techniques used in state-of-the-art SAT solvers [40].

Aside from checking the validity of proofs, DRAT-trim can optionally produce

three outputs: a trimmed formula, an optimized proof, and a dependency graph in

the new TraceCheck+ format. Example input and output files are illustrated in

Figure 3.6.

The trimmed formula produced by DRAT-trim is a subset of the input formula

in DIMACS format, and the remaining clauses appear in the same order as the input

file. The order of the literals in each clause may change.

The optimized proof contains lemmas and deletion information in the DRAT

format. Lemmas in the optimized proof will be an ordered subset of the lemmas in

the input proof. The first literal of each lemma is the same as the first literal of

that lemma in the input proof, however the order of all other literals for the lemma

may be permuted. Each line of deletion information will be preceded by a “d” tag.

This proof is called “optimized” because it contains extra deletion information that

is obtained during the backward checking process, described in Section 3.3.2. The

optimized proof may be larger than the input proof in size; however, additional

deletion information helps reduce validation time because fewer clauses are active

during each check.

DRAT-trim is powerful enough to validate techniques that cannot be checked

60

CNF formula

p cnf 4 10
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0
-1 -2 -3 0
-1 2 -4 0

DRAT proof

-1 0
d -1 2 4 0

2 0
0

trimmed formula

p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
-1 -3 -4 0
1 3 4 0
-1 2 4 0
1 -2 -4 0

optimized DRAT proof

-1 0
d -1 -2 3 0
d -1 -3 -4 0
d -1 2 4 0

2 0
d 1 2 -3 0
d 2 3 -4 0

0

TraceCheck+ file

1 1 2 -3 0 0
2 -1 -2 3 0 0
4 2 3 -4 0 0
5 -2 -3 4 0 0
6 -1 -3 -4 0 0
7 1 3 4 0 0
8 -1 2 4 0 0
9 1 -2 -4 0 0
11 -1 0 2 6 8 0
12 2 0 1 4 7 11 0
13 0 5 7 9 11 12 0

Figure 3.6: DRAT-trim accepts a CNF formula in DIMACS format (top left) and a
DRAT proof (top middle) as input. Optional DRAT-trim output includes a trimmed
formula (top right), optimized DRAT proof (bottom left), and TraceCheck+ depen-
dency graph (bottom right) with clause identifiers displayed in bold print.

61

with resolution, and a new proof format was designed to be backward-compatible

with TraceCheck [9] (Section 2.4.1), but allowing expression of all presently-known

solving techniques. Resolution chains in the TraceCheck format begin each line

with a clause identifier, followed by the literals of the clause, a zero, the identifiers

of antecedents, followed by another zero. The new TraceCheck+ format uses this

syntax as well. The formats only differ in the expressing the reasons for a lemma’s

redundancy. If the RUP check succeeds, the reasons are the antecedents as in the

TraceCheck format. If a RAT check is necessary, the reasons are the clauses required

to let the RAT check succeed.

3.3.2 Optimiziations

Lemmas in a DRAT proof may be checked for redundancy by the RUP or

RAT property, but both require an efficient implementation of unit propagation.

There are several optimizations that can improve performance when checking DRAT

proofs. Backward checking of lemmas combined with core-first unit propagation and

deletion information enables clausal proofs to be efficiently validated. Furthermore,

RAT checks may optimized by accounting for blocked clauses. These techniques are

defined in this section.

3.3.2.1 Backward Checking

Traditionally, proofs of unsatisfiability are validated by checking each lemma

in the order that it appears in the proof. This process is intuitive because each lemma

must be shown to be redundant with respect to the formula and lemmas that are

62

known to be redundant. As the validation process continues, the formula is extended

with more and more lemmas from the proof. Deletion information (Section 3.1) is

one way of reducing the number of active clauses; however, some clauses are never

used in practice, and some clauses may be used but are unnecessary.

Goldberg and Novikov [33] proposed backward checking as a solution to this

problem, but no known implementation of this process exists. In backward checking,

lemmas are validated in reverse of the order they appear in the input proof file,

allowing one to track and limit dependencies between clauses and lemmas. When

each lemma is validated, clauses or lemmas that were crucial to the validation are

marked as core clauses/lemmas. All clauses are initially unmarked with the exception

of the empty clause. When an unmarked lemma is encountered during backward

checking, it may be skipped because no lemma that precedes it or follows it will use

it in the proof. The marking process can reducee the number of lemmas that need

to be validated, lowering the checking time of the validation tool.

This process is more complex than forward checking because the validation

tool needs to keep track of which clauses and lemmas are marked. Backward checking

can also be more expensive than forward checking if the number of skipped lemmas

is small.

The RATChecker algorithm from Figure 3.4 is redesigned to use backward

checking in Figure 3.7. The BackwardRATChecker function accepts a formula F

and a stack of lemmas S, as opposed to a queue in previous algorithms (line 1). The

algorithm begins by checking for the empty clause in the proof and terminating if it

is not present (lines 2-3). Next, all clauses and lemmas are initialized to be unmarked

63

as core (lines 4-5), except for the empty clause which is marked as part of the core

(line 6). For every lemma L in the stack (lines 7-8) that is also marked as part of

the core (line 9), check if L has the RAT property and mark any clauses or lemmas

used to establish this (line 10). If it does not, return that the validation failed (line

11). If the queue is empty, then the validation succeeded (line 12).

1 BackwardRATchecker (Formula F , Stack S)
2 if (∅ 6∈ S)
3 return "invalid refutation";
4 for (C ∈ F ∪ S)
5 core[C] = 0;
6 core[∅] = 1;
7 while (S 6= ∅)
8 L = S.pop();
9 if (core[L])

10 if (RATmark(F ∪ S, L) == false)
11 return "validation failed";
12 return "refutation validated";

Figure 3.7: Psuedocode for a RAT validation algorithm with backward checking and
clause marking.

The RATmark function in Figure 3.8 accepts a formula F and a lemma L

(line 1). First, check if the clause for the RUP property and mark any clauses or

lemmas used if it does (line 2). If it does not, begin the check for the RAT property

on the first literal in the lemma (line 3). Construct a set of resolution candidates (line

4); and, for each candidate (lines 5-6), compute the resolvent with the lemma (line

7). If the resolvent does not have the RUP property (line 8), return that the clause

does not have the RAT property (line 9). If the resolvent has the RUP property,

mark the resolution candidate (line 10) and any clauses or lemmas used to establish

64

the RUP property of the resolvent. After all resolvents have been checked for RUP,

return that the clause has the RAT property (line 11).

1 RATmark (Formula F , Lemma L)
2 if (RUPmark(F , L) == false)
3 l = first(L);
4 Fl̄ = {C | C ∈ F ∧ l̄ ∈ C};
5 while (Fl̄ 6= ∅)
6 C = Fl̄.pop();
7 R = L ./l C;
8 if (RUPmark(F , R) == false)
9 return false;

10 core[C] = 1;
11 return true;

Figure 3.8: Psuedocode for checking the RAT property with clause marking.

The RUPmark function (Figure 3.9, top) accepts a formula F and a lemma

L that will be tested for the RUP property with respect to F (line 1). Create an

assignment τ from L by negating each literal in L (line 2). A set U of clauses that

were unit at one point during the procedure is initialized (line 3). If there exists

a clause in F that evaluates to false under the assignment τ (line 5), then mark

the clauses and lemmas that were used to reach this point (line 6) and return that

L has the RUP property (line 7). If there exists a unit clause in F with respect to

assignment τ (line 8), then add the clause to the set U (line 9), extend τ with the

unit literal (line 10), and continue. If a unit clause cannot be found, then the lemma

L does not have the RUP property (line 8). No clauses will be marked.

The MarkCore function (Figure 3.9, bottom) accepts a stack U of clauses that

were unit during a RUP check and a resolvent R that was falsified during a RUP

65

check (line 1). Mark the resolvent R (line 2). For all clauses C in the stack U (lines

3-4), check to see if C resolves with R (line 5). If it does, mark C (line 6), replace

R with the resolvent of R and C (line 7), and continue. After the stack is empty,

return (line 8).

1 RUPmark (Formula F , Lemma L)

2 τ = L;
3 U = ∅;
4 while (true)
5 if (∃ C ∈ F : eval(C, τ) == false)
6 MarkCore(U , C);
7 return true;
8 if (∃ C ∈ F : unit(C, τ))
9 U .push(C);

10 τ = τ ∪ unit(C, τ);
11 else return false;

1 MarkCore (Unit Stack U , Resolvent R)
2 core[R] = 1;
3 while (U 6= ∅)
4 C = U .pop();
5 if (∃ l ∈ R : l̄ ∈ C)
6 core[C] = 1;
7 R = R ./l C;
8 return true;

Figure 3.9: Psuedocode for checking the RUP property with clause marking (top)
and marking clauses used during unit propagation (bottom).

Again, one benefit of this approach is that some lemmas may be skipped

during the validation process, potentially improving performance. Another benefit

is that the state of the validation algorithm upon completion indicates which clauses

in the formula and lemmas in the proof were necessary to derive the empty clause.

66

This information can be extracted, producing a formula that contains a subset of

the original clauses and a proof that contains a subset of the original lemmas. This

information can be useful if the proof is to be replayed again.

The backward checking approach on its own is inefficient and impractical,

however. There are two additions that can vastly improve the performance. First,

deletion information can be combined with the backward checking approach to re-

duce the number of active clauses during validation. Second, marked clauses can be

preferred over unmarked clauses during unit propagation.

3.3.2.2 Deletion Information

The benefits of adding deletion information to proofs have already been de-

scribed in Section 3.1. This information behaves differently during backward checking

of lemmas, however. During forward checking, a deletion instruction indicates that a

clause or lemma is no longer active and will not be used in the remainder of a proof.

During backward checking, a deletion instruction indicates that a clause or lemma

is becoming active. This addresses one of the problems with backward checking in

that the initial set of active clauses and lemmas is large when starting at the end

of the proof. If deletion instructions are liberally used, then the initial set of active

clauses is much smaller.

The BackwardDRATChecker function is shown in Figure 3.10 and it accepts

a formula F and a stack of flag and lemma pairs S (line 1). First, the set of added

lemmas A is calculated by taking the lemma from all pairs that do not have a delete

flag “d” (line 2). Similarly, the set of deleted clauses/lemmas D is calculated by

67

taking the clause/lemma from all pairs that have a delete flag “d” (line 3). The

empty clause should be in the set of added lemmas; terminate if it is not present

(lines 4-5). Next, all clauses in the formula and added lemmas are initialized to be

unmarked as core (lines 6-7), except for the empty clause which is marked as part

of the core (line 8). For every pair (flag, L) in the stack (lines 9-10), if flag is set

to indicate a deletion instruction, then remove L from the set D and continue (lines

11-12). Else, remove L from the set A (line 13-14) and if L is marked as part of

the core (line 15), check that L has the RAT property with respect to the clauses in

the formula (F), the lemmas that have been added (A), but not the clauses/lemmas

that have been deleted (D) (line 16). If it does not, return that the validation failed

(line 17). If the queue is empty, then the validation succeeded (line 18).

One can exploit the marking procedure to generate optimal deletion informa-

tion during validation. When a clause becomes marked, the timestamp and location

of the clause are stored as deletion information. The first time a clause is marked and

is determined to be necessary to the proof during backward checking is the last time

a clause will be used during forward checking or optimized proof emission. Thus,

as each clause is marked, optimized deletion information is stored in internal data

structures. During post-processing, marked lemmas are printed in order and deletion

information with the same timestamp is printed afterwards.

3.3.2.3 Core-first Unit Propagation

The other optimization that greatly improves the performance of backward

checking is a core-first unit propagation algorithm. Inferences from unit propagation

68

1 BackwardDRATchecker (Formula F , Stack S)
2 A = {L | (flag, L) ∈ S ∧ flag 6= “d”};
3 D = {C | (flag, C) ∈ S ∧ flag = “d”};
4 if (∅ 6∈ A)
5 return "invalid refutation";
6 for (C ∈ F ∪A)
7 core[C] = 0;
8 core[∅] = 1;
9 while (S 6= ∅)

10 (flag, L) = S.pop();
11 if (flag = “d”)
12 D = D \ {L};
13 else
14 A = A \ {L};
15 if (core[L])
16 if (RATmark(F ∪A \D, L) == false)
17 return "validation failed";
18 return "refutation validated";

Figure 3.10: Psuedocode for a DRAT validation algorithm with backward checking.

69

can often be obtained from different clauses. For example, suppose two clauses are

both considered unit with the same unit literal, but one clause is marked as core

and one clause is not. Choosing the latter will increase the size of the marked core

unnecessarily. A basic unit propagation routine, such as the one in Figure 3.9, that

does not account for this case will increase the size of the core, which in turn creates

more lemmas that need to be checked. To avoid this problem, one can create a

unit propagation algorithm that prefers marked clauses to unmarked clauses, called

core-first unit propagation.

The RUPCoreFirst function, shown in Figure 3.11, accepts a formula F and a

lemma L that will be tested for the RUP property with respect to F (line 1). Create

an assignment τ from L by negating each literal in L (line 2). A set U of clauses

that were unit at one point during the procedure is initialized (line 3). If there exists

a clause in F that evaluates to false under the assignment τ and is marked as core

(line 5), then mark the clauses and lemmas that were used to reach this point (line

6) and return that L has the RUP property (line 7). If there exists a unit clause in

F with respect to assignment τ and it is marked as core (line 8), then add the clause

to the set U (line 9), extend τ with the unit literal (line 10), and continue. Else,

if there exists a clause in F that evaluates to false under the assignment τ (line

11), then mark the clauses and lemmas that were used to reach this point (line 12)

and return that L has the RUP property (line 13). Else, if there exists a unit clause

in F with respect to assignment τ (line 14), then add the clause to the set U (line

15), extend τ with the unit literal (line 16), and continue. If a unit clause cannot be

found, then the lemma L does not have the RUP property (line 17). No clauses will

70

be marked.

1 RUPCoreFirst (Formula F , Lemma L)

2 τ = L;
3 U = ∅;
4 while (true)
5 if (∃ C ∈ F : eval(C, τ) == false ∧ core[C])
6 MarkCore(U , C);
7 return true;
8 if (∃ C ∈ F : unit(C, τ) ∧ core[C])
9 U .push(C);

10 τ = τ ∪ unit(C, τ);
11 else if (∃ C ∈ F : eval(C, τ) == false)
12 MarkCore(U , C);
13 return true;
14 else if (∃ C ∈ F : unit(C, τ))
15 U .push(C);
16 τ = τ ∪ unit(C, τ);
17 else return false;

Figure 3.11: Psuedocode for checking the RUP property with core-first unit propa-
gation.

It has previously been proposed that one should postpone unit propagation

on interesting constraints [68]. This algorithm is one instance where the interesting

constraints are clauses and lemmas that are not yet in the core. Furthermore, it has

been demonstrated that roughly 90% of the work in a CDCL solver is “useless” [71].

In other words, a solver with perfect heuristics would be rougly ten times faster.

A core-first approach to unit propagation tries to remove some of this unnecessary

work.

71

3.3.2.4 RAT Checks

During a RAT check, the validation process needs access to all clauses contain-

ing the negation of the resolution literal. One solution is to build a literal-to-clause

lookup table of the original formula and modify it after each lemma addition and

deletion step. These updates can be expensive and the lookup table potentially

doubles the memory usage of the validation tool. Most lemmas emitted by state-

of-the-art SAT solvers can be validated using the RUP check. A lookup table has

been omitted in favor of a naive, brute-force approach. When a RUP check fails, the

currently active formula is scanned to find all clauses containing the complement of

the resolution literal.

A worthwhile optimization for RAT checks, however, is to see if resolution

candidates are blocked before adding them to the resolution candidate list. If the

candidate is blocked, it will trivially satisfy the RUP check and may be skipped.

3.3.3 Applications

Recall that DRAT-trim can optionally produce trimmed formulas, optimized

proofs, and dependency graphs. Each of these has applications that go beyond the

validation of unsatisfiability proofs.

– Trimming a formula can be a useful preprocessing step in extracting a Minimal

Unsatisfiable Subset (MUS) [62, 7] or computing Craig interpolants [36].

– An optimized proof is very useful for mechanically-verified solvers. After one

round of validation, the optimized proof is often much smaller than the original,

72

but it is still far from minimal. One can repeatedly apply the validation process

to further optimize a proof by submitting the reduced output proof of one round

of checking to the tool for another round of checking and trimming.

– A dependency graph may be provided to a MUS extractor as input, avoiding

the need to rediscover clause dependencies [62, 7].

– Another important use is for solver debugging: a dependency graph gives a

step-by-step account of the modifications to a clause database.

3.3.4 Evaluation

DRAT-trim outperforms its RAT checker [40] (because of the addition of

deletion information) and DRUP-trim [39] (because of various implementation opti-

mizations) predecessors . Consider the rbcl xits 09 unknown benchmark, one of the

harder benchmarks in the 2009 application suite [40]. The solving time with Copro-

cessor and Glucose 3.0 is 95 seconds and the validation time with DRAT-trim

is 91 seconds, compared to 1096 seconds for a previous RAT validation tool. This

particular benchmark can only be solved with bounded variable addition, making a

DRAT proof necessary. On the application suite of 2009 SAT Competition, DRAT-

trim is 2% faster than its predecessor DRUP-trim on average (within a range of 85%

faster to 13% slower). The addition of RAT checking in DRAT-trim does not have

a noticeable impact on DRUP proof checking.

DRAT-trim was used to validate the unsatisfiability results of the 2014 SAT

73

Competition 1. The competition is divided into various “tracks” that test solvers

on different sets of benchmarks. In the 2014 competition, there were two “Certified

UNSAT” tracks of the competition: one for a set of benchmarks based on industrial

applications and one for a set of benchmarks based on hard combinatorial problems.

In these tracks, solvers are only given benchmarks known to be unsatisfiable and

the solver must produce a proof of unsatisfiability. In the 2013 SAT Competition,

solvers were allowed to produce proofs in a format of their choosing, but all partic-

ipants chose to emit proofs in the DRUP format. In 2014, solvers were limited to

proofs in the DRAT format, and proofs would only be checked using the DRAT-

trim validation utility. The adoption of the DRAT format was staggering: dozens of

solvers supported the format, including most of the competition winners.

The data from the 2014 SAT Competition has been used to evaluate the

performance of DRAT-trim. Solver submissions and the DRAT-trim utility were

run on the Lonestar cluster at the Texas Advanced Computing Center (TACC) in

Austin, Texas. Each cluster node has 2 hex-core Xeon 5680 processors, 24GB of

DDR3-1333MHz RAM, 256KB L2 cache per core, 12MB L3 cache per node, and

runs Linux Centos 5.5 OS with a 2.6 x86 64 kernel. Solvers were given 5,000 seconds

for each benchmark and the DRAT-trim utility was given 20,000 seconds for each

proof validation. The winners of each track of the competition are chosen based on

the number of solved (and validated) benchmarks within the timeout.

Results from these competitions are usually displayed as “cactus plots”. In

1http://www.satcompetition.org/2014/

74

a cactus plot, the x-axis values correspond to individual benchmarks and the y-axis

corresponds to time; however, the x-axis is sorted based on the y-axis values. This

produces a monotonically-increasing plot for each series and is designed to show

the overall performance of the series. A cactus plot does not show how each solver

compares on individual benchmarks, but instead shows how each solver performed

over all benchmarks.

In Figure 3.12, the medalists for the Certified UNSAT Application track of

the competition are compared to the validation times of DRAT-trim on the un-

satisfiability proofs emitted by each medalist. The top solver, Lingeling, solved

and produced proofs for 130 benchmarks in the 5,000 second (per problem) time-

out. DRAT-trim was able to validate all unsatisfiability proofs within the individual

20,000 second timeout (although the graph is limited to 5,000 seconds). The impor-

tant part is that the validation times for DRAT-trim are very similar to the solving

times for each of the medalists. In Figure 3.13, the silver and bronze medalists are

removed from the graph to show a comparison between Lingeling solving times

and DRAT-trim validation times.

In Figure 3.14, the medalists for the Certified UNSAT Hard Combinatorial

track of the competition are compared to the validation times of DRAT-trim on the

unsatisfiability proofs emitted by each medalist. Similar to the Application track,

DRAT-trim was able to validate all proofs within the timeout and validated proofs in

a time similar to solving. In Figure 3.15, the silver and bronze medalists are removed

from the graph to show a comparison between Riss Blackbox solving times and

DRAT-trim validation times.

75

One feature of DRAT-trim is that it is able to output a trimmed formula that

contains an unsatisfiable subset of the original clauses, called the core clauses. A

smaller formula may reduce solving time because it eliminates unnecessary clauses

(although this is not always the case). Figure 3.16 shows the size of unsatisfiable

formulas (in the number of clauses) before and after trimming with DRAT-trim.

This data is from the Certified UNSAT Application track and is displayed for the

track medalists. The y-axis is displayed with a logarithmic scale. DRAT-trim is able

to reduce the size of the input formula, often by an order of magnitude. Similarly,

DRAT-trim is able to emit optimized proofs where unnecessary lemmas have been

removed and extra deletion information is added. In Figure 3.17, the size of proofs (in

number of lemmas) emitted by the medalists for the Certified UNSAT Application

track and the size of proofs emitted by DRAT-trim are compared. Similar to trimmed

formulas, lemmas deemed necessary by DRAT-trim are called core lemmas.

76

F
ig

u
re

3.
12

:
A

ca
ct

u
s

p
lo

t
sh

ow
in

g
th

e
so

lv
in

g
ti

m
e

(i
n

se
co

n
d
s)

fo
r

th
e

m
ed

al
is

ts
(i

n
go

ld
,

si
lv

er
,

an
d

b
ro

n
ze

)
in

th
e

C
er

ti
fi
ed

U
N

S
A

T
A

p
p
li
ca

ti
on

tr
ac

k
of

th
e

20
14

S
A

T
C

om
p

et
it

io
n

an
d

va
li
d
at

io
n

ti
m

es
of

D
R

A
T

-t
ri

m
(i

n
sh

ad
es

of
b
lu

e)
.

77

F
ig

u
re

3.
13

:
A

ca
ct

u
s

p
lo

t
sh

ow
in

g
th

e
so

lv
in

g
ti

m
e

(i
n

se
co

n
d
s)

fo
r

th
e

go
ld

m
ed

al
is

t,
L
in
g
e
l
in
g

(i
n

go
ld

)
in

th
e

C
er

ti
fi
ed

U
N

S
A

T
A

p
p
li
ca

ti
on

tr
ac

k
of

th
e

20
14

S
A

T
C

om
p

et
it

io
n

an
d

va
li
d
at

io
n

ti
m

es
of

D
R

A
T

-t
ri

m
(i

n
b
lu

e)
.

78

F
ig

u
re

3.
14

:
A

ca
ct

u
s

p
lo

t
sh

ow
in

g
th

e
so

lv
in

g
ti

m
e

(i
n

se
co

n
d
s)

fo
r

th
e

m
ed

al
is

ts
(i

n
go

ld
,

si
lv

er
,

an
d

b
ro

n
ze

)
in

th
e

C
er

ti
fi
ed

U
N

S
A

T
H

ar
d

C
om

b
in

at
or

ia
l

tr
ac

k
of

th
e

20
14

S
A

T
C

om
p

et
it

io
n

an
d

va
li
d
at

io
n

ti
m

es
of

D
R

A
T

-t
ri

m
(i

n
sh

ad
es

of
b
lu

e)
.

79

F
ig

u
re

3.
15

:
A

ca
ct

u
s

p
lo

t
sh

ow
in

g
th

e
so

lv
in

g
ti

m
e

(i
n

se
co

n
d
s)

fo
r

th
e

go
ld

m
ed

al
is

t,
R
is
s
B
l
a
c
k
b
o
x

(i
n

go
ld

)
in

th
e

C
er

ti
fi
ed

U
N

S
A

T
H

ar
d

C
om

b
in

at
or

ia
l

tr
ac

k
of

th
e

20
14

S
A

T
C

om
p

et
it

io
n

an
d

va
li
d
at

io
n

ti
m

es
of

D
R

A
T

-t
ri

m
(i

n
b
lu

e)
.

80

F
ig

u
re

3.
16

:
A

ca
ct

u
s

p
lo

t
sh

ow
in

g
th

e
fo

rm
u
la

si
ze

(i
n

n
u
m

b
er

of
cl

au
se

s)
fo

r
th

e
m

ed
al

is
ts

(i
n

go
ld

,
si

lv
er

,
an

d
b
ro

n
ze

)
in

th
e

C
er

ti
fi
ed

U
N

S
A

T
A

p
p
li
ca

ti
on

tr
ac

k
of

th
e

20
14

S
A

T
C

om
p

et
it

io
n

an
d

tr
im

m
ed

fo
rm

u
la

si
ze

of
D

R
A

T
-t

ri
m

(i
n

sh
ad

es
of

b
lu

e)
.

81

F
ig

u
re

3.
17

:
A

ca
ct

u
s

p
lo

t
sh

ow
in

g
th

e
p
ro

of
si

ze
(i

n
n
u
m

b
er

of
le

m
m

as
)

fo
r

th
e

m
ed

al
is

ts
(i

n
go

ld
,

si
lv

er
,

an
d

b
ro

n
ze

)
in

th
e

C
er

ti
fi
ed

U
N

S
A

T
A

p
p
li
ca

ti
on

tr
ac

k
of

th
e

20
14

S
A

T
C

om
p

et
it

io
n

an
d

op
ti

m
iz

ed
p
ro

of
si

ze
of

D
R

A
T

-t
ri

m
(i

n
sh

ad
es

of
b
lu

e)
.

82

Chapter 4

Unsatisfiability Specification

In order to reason about the soundness of a (proof checking) algorithm, one

must first specify what it means for that algorithm to be correct. This necessitates

formally describing literals, clauses, formulas, truth assignments, and the evaluation

of formulas over those assignments in the logic of the theorem proving system, ACL2.

It is important for the reader to acknowledge these descriptions and compare them

to their mathematical counterparts from Section 2.1: a proof of correctness for an

algorithm is useless if the specification is incorrect. The specification of unsatisfia-

bility used in this work is presented here in a top-down style to be consistent with

the top-down approach of later chapters. That is, the definition of unsatisfiability is

presented first and then supporting concepts like evaluation are presented later.

4.1 Unsatisfiability

A formula is satisfiable if there exists a satisfying assignment, or solution,

for the formula and unsatisfiable if there does not exist a satisfying assignment. To

construct this statement, one can use the defun-sk event in ACL2 combined with a

predicate to test if an assignment is a solution.

83

(defun-sk exists-solution (f) ; quantified expression (f)ormula
(exists s (solutionp s f))) ; ∃ s : s is solution for f

Thus, a formula f is satisfiable if (exists-solution f) is true, and unsatisfiable

if (not (exists-solution f)) is true. Note that if one wants to prove satisfiabil-

ity (i.e., (exists-solution f) is in the conclusion of a defthm event), a solution

must be exhibited as a witness. If one wants to prove unsatisfiability (i.e., (not

(exists-solution f)) is in the conclusion of a defthm event), one must refute that

a generic solution is obtained from the rule exists-solution.

A solution is an assignment that satisfies a formula—the formula evaluates

to true with respect to the assignment. A predicate solutionp takes a solution s

and a formula f and tests the solution for the assignmentp predicate and tests the

evaluation of the formula on the solution for the value true.

(defun solutionp (s f) ; (s)olution, (f)ormula
(declare (xargs :guard (formulap f)))
(and (assignmentp s) ; s is an assignment and

(truep (evaluate-formula f s)))) ; f evaluates true wrt s

4.2 Assignments and Evaluation

An assignment is a partial function that maps the literals of a formula to

truth values. There are many representions for an assignment, but perhaps the

simplest one for an ACL2 specification is a set-based representation stored as a list.

Membership of a literal in the list implies that the literal is mappped to true and

membership of the negation of a literal implies that the literal is mapped to false.

84

If neither the literal or its negation is a member of the assignment, then the literal

is unassigned and it is mapped to undef.

Thus, assignments are specified as finite lists of unique and non-conflicting

literals and are recognized by the predicate assignmentp.

(defun assignmentp (a) ; (a)ssignment
(declare (xargs :guard t))
(and (literal-listp a) ; a proper list of literals

(unique-literalsp a) ; each literal appears once

(no-conflicting-literalsp a))) ; cannot contain l and l̄

Evaluation with respect to an assignment can result in three possible values:

true, false, and undefined. Many of the theorems and function definitions related

to satisfiability are concerned with which of these three values has been encountered.

Because the evaluation is ternary, and not binary, a system for recognizing and

reasoning about these results must be developed.

This specification defines nullary functions true, false, and undef returning

values t, nil, and 0, respectively. The predicates truep, falsep, and undefp recognize

the concrete values t, nil, and 0, respectively. Several theorems are estbalished to

implement the exclusiveness of ternary values (and then all functions are disabled to

maintain the abstraction).

Aside. This approach has been somewhat unreliable. The main benefit of the

approach is that checkpoints and subgoals are easier to read because the predicates

are clearly visible. However, at multiple points, a loss of proof efficiency (the time

it takes a proof to complete) was experienced. An alternative approach is to remove

85

the functions described above and rely on ACL2 type-set reasoning or equality-based

reasoning. These approaches are very efficient from a theorem proving perspective

but lack readability during proof debugging.

A formula is evaluated with respect to an assignment by the ACL2 function

evaluate-formula and returns true if all clauses in the formula evaluate to true,

false if some clause in the formula evaluate to false, and undef otherwise.

(defun evaluate-formula (f a) ; (f)ormula, (a)ssignment
(declare (xargs :guard (and (formulap f)

(assignmentp a))))
(if (atom f) ; if f is empty

(true) ; return true
(let* ((c (car f)) ; let c be the first clause

(cv (evaluate-clause c a))) ; and cv be the eval of c
(if (falsep cv) ; if c evals false

(false) ; then f is false
(let* ((rf (cdr f)) ; let rf be f without c

(rfv (evaluate-formula ; and rfv be eval of rf
rf a)))

(cond
((falsep rfv) (false)) ; if rfv false, false
((undefp cv) (undef)) ; if cv undef, undef
(t rfv))))))) ; else, return rfv

A clause is evaluated with respect to an assignment by the ACL2 function

evaluate-clause and returns true if some literal in the clause evaluates to true,

false if all literals in the clause evaluate to false, and undef otherwise.

86

(defun evaluate-clause (c a) ; (c)lause, (a)ssignment
(declare (xargs :guard (and (clausep c)

(assignmentp a))))
(if (atom c) ; if c is empty

(false) ; return false
(let* ((l (car c)) ; let l be first literal

(lv (evaluate-literal l a))) ; and lv eval of l
(if (truep lv) ; if l evals true

(true) ; then c is true
(let* ((rc (cdr c)) ; let rc be c without l

(rcv (evaluate-clause ; and rcv be eval of rc
rc a)))

(cond
((truep rcv) (true)) ; if rcv true, true
((undefp lv) (undef)) ; if lv undef, undef
(t rcv))))))) ; else, return rcv

Finally, a literal l is evaluated with respect to assignment a by the function

evaluate-literal and returns true if (member l a), false if (member (negate l)

a), and undef otherwise.

(defun evaluate-literal (l a) ; (l)iteral, (a)ssignment
(declare (xargs :guard (and (literalp l)

(assignmentp a))))
(cond
((member l a) (true)) ; if l ∈ a, true

((member (negate l) a) (false)) ; if l̄ ∈ a, false
(t (undef)))) ; else, undef

4.3 Formulas and Clauses

A formula is a conjuction of clauses. In this specification, formulas are finite

lists (an implied conjunction) of clauses and are recognized by the predicate formulap.

87

(defun formulap (f) ; (f)ormula
(declare (xargs :guard t))
(if (atom f) ; if f is not a pair

(null f) ; then f must be nil
(and (clausep (car c)) ; else the first elem is a clause

(formulap (cdr f))))) ; and the rest are a formula

Clauses may not be unique in this representation of a formula; detecting the unique-

ness of clauses could be supported by implementing a canonical form or hashing

routine. The set of all literals occuring in a formula is computed by the function

all-literals.

Clauses are specified as finite lists (an implied disjuntion) of unique and non-

conflicting literals and are recognized by the predicate clausep. This definition

disallows tautologies.

(defun clausep (c) ; (c)lause
(declare (xargs :guard t))
(and (literal-listp c) ; a proper list of literals

(unique-literalsp c) ; each literal appears once

(no-conflicting-literalsp c))) ; cannot contain l and l̄

Note that the definition of clausep is actually the same as that of assignmentp, but

the interpretations are different.

4.4 Variables and Literals

There are many different approaches to representing variables and literals,

and the specification changed many times throughout this work. A full description

of the benefits and detriments of literal encoding schemes is presented in Section 7.3.

Variables are specified as positive integers less than 258−1 and are recognized

88

by the predicate variablep. The integer n corresponds to a variable xn.

(defun variablep (v) ; object (x)
(declare (xargs :guard t))
(and (integerp v) ; v is an integer,

(< 0 v) ; greater than 0,

(< v (1- *2^58*)))) ; and less than 258 − 1

Literals are positive and negative representations of a variable. In some solvers

and literature, literals are expressed as positive and negative integers where the

integer n corresponds to the literal xn and the integer −n corresponds to the literal

x̄n. The function abs then converts literals to variables and the function unary--

negates literals. This specification was used for the majority of the early work in this

disseratation.

Currently, literals are specified as integers greater than 1 and less than 259

and are recognized by the predicate literalp. The integers 2, 3, 4, 5, ... correspond

to the literals x1, x̄1, x2, x̄2,

(defun literalp (l) ; (l)iteral
(declare (xargs :guard t))
(and (integerp l) ; l is an integer,

(< 1 l) ; greater than 1,

(< l *2^59*))) ; and less than 259

(defun negate (l) ; (l)iteral
(declare (xargs :guard (literalp l)))
(logxor l 1)) ; l ⊕ 1

The arithmetic shift function (ash l -1) converts literals to variables and the logical

exclusive or function (logxor l 1) negates literals.

89

Chapter 5

RAT Algorithm

In this chapter, an executable algorithm for RAT validation is presented in a

top-down fashion. This algorithm is designed to be as simple as possible while still

being capable of checking any RAT proof.

Note that many of the lower-level functions employ evaluation functions from

the specification. It would have been possible to create separate functions for the

specification and implementation (e.g. evaluate-literal-spec for the specification

and evaluate-literal-impl for the implementation) and then prove corresponding

functions equivalent, but there was no real benefit to doing so in such a high-level

algorithm.

5.1 Validation

The purpose of the algorithm is to validate an unsatisfiability proof for a given

formula. A proof is a series of lemmas (or clauses) that have the RAT redundancy

property with respect to an extended formula that contains the original formula and

all preceding lemmas.

At the highest level, a verify-proof function should accept a formula (sat-

isfied by the formulap predicate from the specification) and a proof stored as a list

90

of clauses, defined as a clause-listp object. This function will return t when the

clause list has been validated as a proof and nil if the clause list contains some

lemma that is not redundant (according to the RAT property).

(defun verify-proof (cl f) ; (cl) clause list, (f)ormula
(declare (xargs :guard (and (formulap f)

(clause-listp cl))))
(if (atom cl) ; if cl empty,

t ; success
(let ((c (car cl))) ; let c be first clause
(if (verify-clause (car cl) f) ; if c is redundant,

(verify-proof (cdr cl) ; verify rest of cl
(cons (car cl) f)) ; with c added to f

nil)))) ; else, failure

At every step, one clause of the clause-list is validated with respect to the (extended)

formula. If the clause can be validated, then it is removed from the proof and the

formula is extended with the validated clause.

Clauses are individually validated by the verify-clause function. This func-

tion first checks if the clause has the RUP property, and if this fails, the function

checks for the RAT property with respect to the first literal in the clause.

(defun verify-clause (c f) ; (c)lause, (f)ormula
(declare (xargs :guard (and (clausep c)

(formulap f))))
(or (RUPp f c) ; c has RUP wrt f

(and (not (atom c)) ; c is not empty, and
(RATp f c (car c))))) ; c has RAT on first lit wrt f

If the clause c above does not have the RUP property with respect to the formula

f, then there must be at least one literal in the clause in order to check the RAT

property. Thus, the test for atom is included in the definition. This also is necessary

91

to relieve the guard of consp on the call to car.

5.2 Redundancy Properties

The verify-clause function checks for both the RUP property and the RAT

property, so both of these redundancy properties must be modeled in ACL2. The

definition of RUP from Section 2.2 uses a process called reverse unit propagation

where a clause is negated, unit propagation is performed, and tested for a conflict.

Note that this is an operation on a clause and a formula and the result is a Boolean.

The RUP property is modeled by the predicate RUPp in ACL2.

(defun RUPp (f c) ; (f)ormula, (c)lause
(declare (xargs :guard (and (formulap f)

(clausep c))))
(falsep (evaluate-formula ; false evaluation of

f ; f after
(unit-propagation ; performing unit propagation
f ; wrt f on the assignment
(negate-clause c))))) ; obtained from negating c

The tested clause c is first negated to create an assignment with the negate-clause

function, which simply negates every literal in c. This assignment is extended by

unit propagation with respect to the formula f using the unit-propagation function.

Then, a conflict is detected by checking if evaluation of the formula f on the extended

assignment is false.1

The negate-clause function above is a simple recursive function that takes a

1Note that one could model the ALA function and the tautology predicate in ACL2 and prove
the equivalence of the AT property with the RUP property, but this is left to the reader as it does
not enhance the execution of this algorithm.

92

list, representing a clause, and applies the negate function to every element of the

list, producing a new list that represents an assignment.

(defun negate-clause (c) ; (c)lause
(declare (xargs :guard (clausep c)))
(if (atom c) ; if c empty

nil ; then return nil
(cons ; return the pair of
(negate (car c)) ; negation of first of c
(negate-clause (cdr c))))) ; with recursion on rest of c

If the tested clause does satisfy the RUPp predicate, then the clause is checked

for the RAT property with respect to the first literal in the clause. This follows the

convention of the RAT [40] and DRAT [80] proof formats. The RAT property is

modeled by the predicate RATp which uses a helper function RATp1.

(defun RATp (f c l) ; (f)ormula, (c)lause, (l)iteral
(declare (xargs :guard (and (formulap f)

(clausep c)
(literalp l))))

(RATp1 f f c l)) ; call the helper function with duplicate f

The RATp function saves a reference to the formula by adding it as an additional

argument. This allows the first argument of the RATp1 helper function to be used

in the recursion over the clauses in the formula, and the second argument remains

untouched so that the RUP property can be checked on each non-tautological resol-

vent.

93

(defun RATp1 (cl f c l) ; (cl) clause list, (f)ormula,
; (c)lause, (l)iteral

(declare (xargs :guard (and (clause-listp cl)
(formulap f)
(clausep c)
(literalp l))))

(if (atom cl) ; if cl is empty,
t ; then success (all checked)

(if (not (member (negate l) ; else if l̄ 6∈ first clause
(car cl))) ; of cl,

(RATp1 (cdr cl) f c l) ; then check rest of cl
(let ((r ; else, let r be

(resolution l ; resolution on l
c ; between c
(car cl)))) ; and first in cl

(if (tautologyp r) ; if r is tautology,
(RATp1 (cdr cl) f c l) ; then check rest of cl

(and (RUPp f r) ; else, r has RUP wrt f
(RATp1 ; and check RAT on
(cdr cl) f c l))))))) ; rest of cl

The RATp1 predicate first checks if the current clause in the clause-list contains the

resolution variable. If it does, then the resolvent is computed and tested to see if it

is a tautology. If not, then the RUP property is tested on the resolvent and the rest

of the clauses in the clause-list are validated.

5.3 Resolution

Resolution is computed by the resolution function that takes a literal and

two clauses as input and returns a new pseudo-clause as output. The literal must

be a member of the first clause. The literal and its negation are removed from the

clauses and then a union is performed to merge two clauses and remove duplicates.

The result is a pseudo-clause because the union operation only guarantees that the

94

result will be a unique list of literals. It does not guarantee that the result is non-

tautological.

(defun resolution (l A B) ; (l)iteral, (A) (B) clauses
(declare (xargs :guard (and (literalp l)

(clausep A)
(clausep B))))

(union ; union the results
(remove-literal l A) ; of l removed from A

(remove-literal (negate l) B))) ; and l̄ removed from B

5.4 Unit Propagation

Unit propagation is the core component of the RAT proof checking algorithm

and is perhaps the most difficult to reason about. The version of unit propagation

presented here is näıve and does not make use of watched-literal data structures [60]

to improve efficiency. The function unit-propagation takes a formula and an assign-

ment as input and returns a (new) assignment.

(defun unit-propagation (f a) ; (f)ormula, (a)ssignment
(declare (xargs :guard (and (formulap f)

(assignmentp a))
:measure (num-undef f a))) ; termination measure

(mv-let (ul ; let ul be unit literal and
uc) ; uc be unit clause returned by
(find-unit-clause f a) ; find-unit-clause on f and a
(declare (ignorable uc)) ; ignore uc below
(if (not ul) ; if no unit literal,

a ; then return a
(unit-propagation ; else, recur
f ; with formula and
(cons ul a))))) ; a extended with ul

The unit-propagation function is recursive and uses the number of clauses that eval-

95

uate to undefined in the formula, computed by num-undef, as a termination measure.

Each recursive call attempts to find a unit clause with the find-unit-clause func-

tion and extend the formula with the unit literal, removing a unit clause from the

formula in the process. Thus, while the size of the assignment increases at each step,

the number of clauses evaluating to undefined decreases because the addition of the

unit literal to the assignment will cause the unit clause to evaluate to true.

Aside. In some of the initial work on the verification of SAT solvers, the number

of unassigned variables was used as a measure. This measure is a little simpler

conceptually but seemed to necessitate reasoning about canonical assignments, and

much of the canonical assignment reasoning used quantification to represent the

weakening and strengthening of assignments. This complicated induction schemes

for unit propagation and was abandoned. The num-undef approach supports a cleaner

induction scheme.

The num-undef function is a basic function that recurs over a formula and

counts the number of clauses that evaluate to undefined with respect to a given

assignment.

(defun num-undef (f a) ; (f)ormula, (a)ssignment
(declare (xargs :guard (and (formulap f)

(assignmentp a))))
(if (atom f) ; if f empty,

0 ; then return 0
(if (undefp (evaluate-clause ; else, if first of f evals to

(car f) a)) ; undef wrt a
(1+ (num-undef (cdr f) a)) ; increment the recursive result

(num-undef (cdr f) a)))) ; else, recur on rest of f

96

The find-unit-clause function recurs over the formula and tests each clause

with the is-unit-clause function. If a unit clause is found, a multiple-value (mv)

pair is returned containing the unit literal and unit clause. If a unit clause is not

found, then the pair (mv nil nil) is returned indicating that no unit literal and unit

clause could be found.

(defun find-unit-clause (f a) ; (f)ormula, (a)ssignment
(declare (xargs :guard (and (formulap f)

(assignmentp a))))
(b* (((if (atom f)) ; if f empty,

(mv nil nil)) ; return nil (no unit clause)
(c (car f)) ; let c be first of f
(rf (cdr f)) ; let rf be rest of f
(ul (is-unit-clause c a)) ; is-unit-clause on c returns ul
((if ul) (mv ul c))) ; if ul exists, return ul and c
(find-unit-clause rf a))) ; else, recur with rf

Note that in the unit-propagation function, the second return value uc (short for

unit clause) of find-unit-clause is ignored, which might indicate that only the unit

literal should be returned. However, returning the unit clause greatly simplifies

reasoning about find-unit-clause. Namely, the unit literal is a member of the unit

clause, and the unit clause is a member of the formula. Without this return value,

an existential might be needed.

The is-unit-clause function checks if all but one literal in the clause eval-

uates to false and no literal evaluates to true. If the clause is unit, then the unit

literal is returned. Else, nil is returned indicating that the clause is not unit.

97

(defun is-unit-clause (c a) ; (c)lause, (a)ssignment
(declare (xargs :guard (and (clausep c)

(assignmentp a))))
(cond
((atom c) nil) ; if c is empty, then return nil
((truep (evaluate-literal ; if first of c evals to

(car c) a)) ; true wrt a,
nil) ; then return nil
((undefp (evaluate-literal ; if first of c evals to

(car c) a)) ; undef wrt a,
(if (falsep (evaluate-clause ; then if rest of c evals to

(cdr c) a)) ; false wrt a,
(car c) ; then return first of c

nil)) ; else, return nil
((falsep (evaluate-literal ; if first of c evals to

(car c) a)) ; false wrt a
(is-unit-clause (cdr c) a)) ; recur on rest of c
(t nil))) ; otherwise nil, should not reach

The function is Boolean, but the return value has meaning in the non-nil case (simi-

lar to the built-in member function). This function is designed to detect the existence

of exactly one undefined literal where the rest of the literals evaluate to false. Recur-

sive calls of is-unit-clause happen only when the current literal evaluates to false.

Once a literal evaluates to undef, the evaluate-clause function finishes testing the

rest of the clause, guaranteeing only false literals.

Note that unit-propagation will continue to search for unit clauses until

none remain and a maximal assignment is obtained. This makes it relatively easy

to reason about the resulting assignment and makes no assumptions about the use

of the unit-propagation function. However, in proof validation, there is no reason

to futher extend an assignment if it falsifies a clause and thereby falsifies a formula.

This implementation could be improved by adding an additional return value from

98

is-unit-clause that also detects if the clause is falsified. Then find-unit-clause

and unit-propagation could stop early with an incomplete, but falsifying assignment,

which is all that is necessary for RUPp and RATp.

99

Chapter 6

RAT Checker Proof of Correctness

The RAT validation algorithm described in Chapter 5 has been mechanically

verified using ACL2 [79] by proving a soundness theorem detailed in this section.

First, a specification for the algorithm is presented (that makes use of the unsat-

isfiability specification from Chapter 4), and then the mechanical proof process is

described.

6.1 Specification

A proof of correctness for a proof-validation algorithm can be expressed as

a soundness theorem; the theorem states that if a refutation can be validated with

respect to a formula by the algorithm, then the formula is unsatisfiable. Before

a soundness statement can be constructed, however, one must first define what it

means for an object to be a refutation. A predicate proofp recognizes a list of clauses

that is validated by the verify-proof function.

(defun proofp (p f) ; (p)roof, (f)ormula
(declare (xargs :guard (formulap f)))
(and (clause-listp p) ; p is a list of clauses and

(verify-proof p f))) ; is verified wrt f

A refutation is a proofp object and contains the empty clause. Refutations are

100

recognized by the refutationp predicate.

(defconst *ec* nil) ; (e)mpty (c)lause is nil

(defun refutationp (r f) ; (r)efutation, (f)ormula
(declare (xargs :guard (formulap f)))
(and (proofp r f) ; r is a verified proof and

(member *ec* r))) ; contains the empty clause

The soundness theorem that represents the proof of correctness for the al-

gorithm is constructed from the definition of a refutation and the specification for

unsatisfiability (Chapter 4). The algorithm is sound if a valid refutation for a formula

implies that the formula is unsatisfiable. This statement is labeled main-theorem.

(defthm main-theorem
(implies (and (formulap f) ; given a formula and

(refutationp r f)) ; a valid refutation
(not (exists-solution f)))) ; then f is UNSAT

6.2 Proof Overview

An overview for the proof of main-theorem is described here in a top-down

fashion. The goal is to prove that a refutation r for a formula f implies that f is

unsatisfiable. The proof is constructed as follows:

1. Prove the contrapositive—if there exists a solution s for f, then r is not a valid

refutation.

2. Prove that the empty clause is not redundant with respect to f if f is satisfiable

and has a solution s.

3. Show that every clause c in r is redundant: this is a contradiction with (2)

101

because the empty clause is a member of r. Proof by structural induction on

r.

(a) Clauses satisfying RUPp are redundant.

(b) Clauses satisfying RATp are redundant. Case split based on the return

value of (evaluate-clause c s), and show that a solution exists for both

f and c.

i. If (evaluate-clause c s) is true, then s is a solution for c.

ii. If (evaluate-clause c s) is undef, then construct a new solution s+

that consists of s with an undef literal in c.

iii. If (evaluate-clause c s) is false, then construct a new solution s*

that is s with the exception that one literal in s has been negated.

An expansion of the predicate refutationp and then the predicate proofp in

main-theorem allows the term containing verify-proof to be contraposed with the

exists-solution term. Now that the refutation r is in the conclusion, the theorem

is a candidate for structural induction on r.

(defthm verify-proof-induction
(implies (and (clause-listp r) ; given a clause list r,

(formulap f) ; formula f,
(exists-solution f) ; f is satisfiable,
(member *ec* r)) ; and empty clause in r,

(not (verify-proof r f)))) ; then, r cannot be validated

For the conclusion (not (verify-proof r f)) to be true, some step of the recursion

must fail. Each step of verify-proof calls verify-clause on the next clause in the

102

refutation. Each successful step of the verify-proof function shrinks the refutation

by one clause and adds the redundant clause from the refutation to the formula.

If each clause added is redundant, then there exists a solution for the ex-

tended formula in the next step. The empty clause is guaranteed to be a member

of the refutation (from the hypotheses of verify-proof-induction) and cannot be

redundant if a solution exists for the (extended) formula.

(defthm *ec*-lemma
(implies (solutionp s f) ; if s is a solution for f, then

(not (RUPp f *ec*)))) ; empty clause does not have RUP

The proof of this lemma is constructed with set reasoning. If an assignment falsifies

a given formula, then a superset of that assignment will also falsify the formula.

Any solution must be a superset of the assignment constructed by performing unit

propagation on the empty clause. Furthermore, the empty clause does not have RATp

because there is no literal with which to perform resolution. This case is excluded

by performing a (not (atom c)) check in verify-clause.

Return to the induction step of verify-proof-induction. This is a rather

odd induction step because it needs to be expressed in terms of existentials. One can

prove that if there exists a solution for the formula, then there exists a solution for

the formula extended with a clause from the refutation. In other words, show that

the extended formula is satisfiability equivalent to the original formula.

Here the proof diverges based on whether a proof clause has RUPp or RATp.

The RUPp case is considered in Section 6.3 and the RATp case in Section 6.4.

103

6.3 RUPp

If a clause c has the property RUPp with respect to a formula f, then the

addition of c to f, written as (cons c f), is logically equivalent to f and has a

solution.

(defthm RUPp-lemma
(implies (and (RUPp f c) ; if c has RUP wrt f,

(exists-solution f) ; f has solution,
(formulap f) ; formula f,
(clausep c)) ; and clause c, then

(exists-solution (cons c f)))) ; c ∧ f has solution

To prove this, first expand (exists-solution f) to obtain a witness solution. This

solution can serve as a witness for the existential (exists-solution (cons c f)) in

the conclusion. The witness solution satisfies every clause in the original formula by

definition, so it is sufficient to show that the witness satisfies the clause c.

Recall the definition of RUPp. The clause c can be replaced with an abstraction,

namely the clause obtained by negating an assignment a, written (negate-assignment

a). The function negate-assignment is the complement of the negate-clause func-

tion presented in Section 5.2, so (negate-clause (negate-assignment a)) simplifies

to a. This gives a proper target for induction on a.

104

(defthm RUPp-lemma-induction
(implies (and (falsep ; f is falsified

(evaluate-formula ; when evaluating
f ; f wrt result of
(unit-propagation f a))) ; unit prop on a

(truep (evaluate-formula f s)) ; s satisfies f
(formulap f) ; formula f
(assignmentp a) ; assignment a
(assignmentp s)) ; assignment s

(truep (evaluate-clause ; clause from
(negate-assignment a) ; negating a
s)))) ; satisfied by s

One must prove that there is a literal l such that l is a member of solution s

and (negate l) is a member of a. Let assignment up-a = (unit-propagation f a).

Because up-a falsifies f, there must be a clause c* that is falsified by up-a. Because

s satisfies f, s also satisfies c*. Let l* be the literal that is a member of both c* and

s. Notice that (negate l*) is a member of up-a.

Induct on the extended assignment up-a. In the base case, up-a is equal to a.

Therefore, (negate l*) is a member of a and l* is a member of s. In the induction

step, up-a is (cons ul a) for some unit clause uc with unit literal ul. Again, there

is a clause c* that is falsified by up-a but satisfied by s. Let l* be the literal that

is a member of c* and s. Either (negate l*) is equal to ul or (negate l*) is in a.

If (negate l*) is in a, then the proof is finished. Otherwise, ul is equal to (negate

l*), i.e. (negate ul) is in s. Consequently, uc was not satisfied by ul. All literals

in uc not equal to ul are falsified by a from the definition of unit clause. Let l** be

the literal in s that satisfies uc. Since l** cannot be ul, (negate l**) is in a and

l** is in s, which completes the proof.

105

Aside. The induction for RUPp-lemma-induction is the most difficult part of the

proof of RUPp-lemma. First, the induction variable would be blocked by the term

(negate-clause c). Several abstractions were considered, all of which negatively

affected the goal (truep (evaluate-clause c s)). The negate-assignment abstrac-

tion lets one perform the correct induction without significantly changing the goal.

Second, the induction itself is rather subtle because of the custom measure provided

to unit-propagation (Section 5.4). The assignment grows during every recursive call

of unit-propagation, but the number of undef clauses decreases.

6.4 RATp

One must prove that if there exists a solution s for formula f and a clause c

has the RATp property with respect to f and a literal l in c, then there is a solution

for the formula (cons c f).

(defthm RATp-lemma
(implies (and (formulap f) ; for formula f

(clausep c) ; and clause c,
(member l c) ; if l ∈ c,
(exists-solution f) ; f has solution,
(RATp f c l)) ; and c has RAT on l,

(exists-solution (cons c f)))) ; c ∧ f has solution

Let assignment s satisfy f. Case split on (evaluate-clause c s).

– true: There exists a solution for (cons c f), namely s.

– undef: Choose a literal l+ in c such that (evaluate-literal l+ s) evalu-

ates to undef. Let the assignment s+ be (cons l+ s). The evaluation of

(evaluate-clause c s+) will return true because (evaluate-literal l+ s+)

106

returns true. Consider some clause c1 in f. One can show (evaluate-clause

c1 s+) returns true, because (evaluate-clause c1 s) returns true. There-

fore, f is satisfied by s+ and there exists a solution for (cons c f), namely

s+.

– false: Create a new assignment s* such that (evaluate-literal l s*) is true

by removing the literal (negate l) from s and adding l to s. By construc-

tion, the term (evaluate-clause c s*) is true. One must then prove that

(evaluate-clause c1 s*) is true for all c1 in f. This follows from the solution

reconstruction method (Section 2.2.2).

Consider a clause c1 in f. If literal (negate l) is not a member of c1, then

one can show that (evaluate-clause c1 s*) is still true (because l is the only literal

that changed in s). Recall c has RATp so the resolvent r computed by (resolution l

c c1) has the property RUPp with respect to f. By the lemma RUPp-lemma, r is also

satisfied by s. Therfore, there exists a literal lr in r such that (evaluate-literal

lr s) is true. Now, lr cannot be in c because (evaluate-clause c s) is false.

Since lr is in r and not in c, then lr is in c1. Furthermore, lr cannot be equal to

(negate l) because (negate l) is not in r by the definition of resolution. Therefore,

(evaluate-clause c1 s*) is true, and there exists a solution for (cons c f), namely

s*.

Aside. One key observation during the development of the proof for RATp-lemma

was the need for a case split on (evaluate-clause c s). Previous attempts tried to

use an induction on the clause list from RATp1 with (not (truep (evaluate-clause

107

c s))) as a hypothesis. This was insufficient. Feedback from ACL2 indicated that

a full three-way case split should be performed. This strengthened the condition to

(falsep (evaluate-clause c s)).

Another subtle part of the proof is the case of tautologyp for the resolvent

during an induction of the clause list in RATp1. In this proof, one must find a

conflicting literal in the resolvent and then show that the existence of a conflicting

literal implies that a clause from the formula is satisfied by the modified solution.

108

Chapter 7

Implementation

When viewed as an executable model, the algorithm described in Chapter 5

performs very poorly. Values (such as literals) are unbounded and “bignum” arith-

metic (for values not known to fit in 64 bits) is performed during execution; all

accesses and updates to the list-based data structures require linear time to traverse

and reconstruct the list structures; the unit propagation routine searches all clauses

in the database; and unit clauses in the original formula are rediscovered on every

redundancy check. If the goal is to achieve execution times similar to DRAT-trim

(Chapter 3), then all of these problems need to be addressed. Every time a mod-

ification is made to the algorithm, a new proof of correctness must be established.

Alternatively, a proof of equivalence to the original algorithm is sufficient. In this

chapter, a first step towards a more efficient implementation is described. In the

next chapter, a proof of equivalence relating the new implementation to the old is

presented.

The development of a new implementation is completed in two parts. First,

a new ACL2 data structure called farray is designed to combine efficient execution

and a convenient theory. Second, the assignmentp structure from the previously

defined RAT validation algorithm is modeled using farray.

109

7.1 Field-addressable Arrays

Much of the reasoning that is done in ACL2 is constructive. That is, a model

is defined by predicates that recognize an instance of the model. The instance of

the model is called the “state” and operations describe valid modifications to the

state. ACL2 has many different built-in and user-defined systems for representing a

state-based model. Each of these systems have strengths and weaknesses in relation

to the execution efficiency and ease of use of the supporting theory, but none are

scalable enough to represent a problem of this magnitude. A new data structure,

called farray, was designed to accomplish this task. This section provides motivation

for the farray data structure by examining existing list and STOBJ models of state,

and it details the farray model and supporting theory.

7.1.1 Motivation

An example of state-based modeling using cons-lists and single-threaded ob-

jects with arrays is detailed below. Then, the execution efficiency and reasoning

support for both of these methods is explored.

7.1.1.1 Example List-based Model

Consider an example state-based model constructed with lists (note that the

functions nth and update-nth use zero-based numbering while the fields use one-

based numbering):

110

(defun foo-model-listp (x) ; (x) object
(declare (xargs :guard t))
(and (true-listp x) ; true-list to represent state

(equal (len x) 3) ; 3 fields total
(integer-listp (nth 0 x)) ; field 1 is list of integers,
(equal (len (nth 0 x)) 10) ; and has length 10
(integerp (nth 1 x)) ; field 2 is scalar integer
(integer-listp (nth 2 x)) ; field 3 is list of integers,
(equal (len (nth 2 x)) 5))) ; and has length 5

The function foo-model-listp recognizes an object that contains one sub-list of

length 10, a scalar, and a sub-list of length 5. In other words, given an object,

foo-model-listp will verify that the object is a valid representation of state. This

model chooses to unify the various fields into one state object, as opposed to the

model of the RAT validation algorithm which separates assignments, formulas, and

proofs.

Basic operations on a state object should be well-defined, namely reading

values from and writing values to a state. An example write operation for the model

above might be defined as:

111

(defun field3-write-list (i v foo) ; (i)ndex, (v)alue,
; (foo) object

(declare (xargs :guard
(and (foo-model-listp foo)

(integerp i)
(<= 0 i)
(< i 5)
(integerp v))))

(let* ((field3 ; let field3 be
(nth 2 foo)) ; foo[2]
(new-field3 ; let new-field3 be
(update-nth i v field3)) ; (field3[i] = v)
(new-foo ; let new-foo
(update-nth 2 new-field3 foo))) ; foo[2] = new-field3

new-foo)) ; return new-foo

Note that the nth and update-nth functions used in the definition of the function

field3-write-list each require a linear amount of time: they recur until an index

i is reduced to zero. In the case of update-nth, the list is reconstructed once the

appropriate modification has been made. Thus, a write to a list-based model will

need to rebuild the field and the state. This is an extremely expensive operation to

simply change one value in a field.

7.1.1.2 Example STOBJ-based Model

ACL2 STOBJs (Single-Threaded OBJects) have the ability to interface with

Lisp arrays from ACL2, which improves the execution efficiency of ACL2 programs

using this data structure. This provides constant-time lookup for STOBJ fields and

arrays, as opposed to lists which require linear-time lookup for nth and update-nth

operations.

Reasoning about STOBJs is relatively straightforward because the logical

112

model is constructed of lists. The cost of the this approach is that STOBJs are

syntactically limited so that updates to the STOBJ data structure are serialized

(hence ”single-threaded”).

Consider this STOBJ definition designed to represent the same model de-

scribed by foo-model-listp:

(defstobj foo-model-stobj
(field1 :type (array integer (10)) ; field1 is 10 integer array,

:initially 0) ; values initialized to 0
(field2 :type integer ; field2 is scalar integer,

:initially 0) ; initialized to 0
(field3 :type (array integer (5)) ; field3 is 5 integer array,

:initially 0)) ; values initialized to 0

This STOBJ definition introduces a recognizer and creator for the STOBJ and in-

troduces a recognizer, an accessor, an updater, a length operator, and optionally a

resizer for each field in the STOBJ (13 function definitions in total). During exe-

cution, these functions interact with the underlying LISP representation, providing

constant-time reads from and writes to the state. For reasoning, however, the def-

initions are equal to those of a list-based model. In fact, the logical definition of

foo-model-stobjp is equal to the definition of foo-model-listp above. ACL2 guar-

antees this abstraction is sound.

7.1.1.3 Proof Efficiency and Proof Convenience

A theory needs to be constructed in both the list-based and STOBJ-based

models describing how each of these functions interacts with each other function.

This effort grows quadratically in the number of fields. If the model is known ahead

113

of time and will remain static, perhaps this is a reasonable approach.

Suppose that foo-model-stobj is under active development and a new field,

called field4, is added to the STOBJ. This small change adds 4 new functions asso-

ciated with field4, but it also creates a need for theorems relating field4 operations

to every other field and theorems relating every other field to field4. This approach

is not feasible when a state-based model is under active development. This should

be a relatively simple modification to the data structure, but the developer has to

manage a quadratic increase in both the amount of theorems that need to be written

and the certification time of the book containing this data structure.

In other words, these list-based and STOBJ-based approaches lead to poor

“proof convenience”, i.e. the ease of expressing, maintaining, and using the theorems

in a mechanical proof; and poor “proof efficiency”, i.e. the time it takes the theorem

prover to replay a proof or certify a book.

In the list-based example, an ACL2 user-contributed library (called a “book”)

introduces a data structure called defaggregate that defines state-based models con-

taining various fields. The defaggregate event defines creators, accessors, updaters,

etc. and automatically proves some theorems about the data structure. Execution

efficiency is still limited by the list-based implementation, however.

A macro-based approach is also possible to automatically generate theorems

associated with list or STOBJ fields. This method can benefit from the execution

efficiency of STOBJs and improves proof conveniences of the theory; but the proof

efficiency is still limited, especially for larger, more complicated models.

114

7.1.2 farray Definition

Instead of the previously mentioned approaches, a STOBJ can be defined

with just one field: an array for memory. This field can be subdivided further into

other arrays and scalars. In this way, a single array in a STOBJ can simulate a

STOBJ with multiple fields. This approach mimics C-style programs where there is

no notion of memory other than as a single, flat array. Pointers may indicate the

start of a particular structure (like a C struct or array), but the underlying memory

is still flat. This approach is transparent and relies on the user to perform memory

management.1

Furthermore, the notion of a field can be abstracted during proof. By creating

parameterized functions that read and write to any field (called “uniform access”),

proofs can be completed just once for all combinations of reads and writes to different

fields, thereby improving proof convenience and proof efficiency.2 The addition of a

field to the structure does not create any extra proof effort. This solves the problem

of quadratic increase of theorems for STOBJ data structures.

A new data structure called farray was developed for this purpose. A STOBJ

named st (short for “state”) contains one array field of 60-bit signed integers named

mem (short for “memory”). The farray is also defined by a start index into the

array where the data structure begins, so that there can be multiple farray data

structures in the same STOBJ. The number of fields in the farray is stored at the

1The single-array STOBJ approach was suggested by Warren A. Hunt, Jr. in order to create
ACL2 programs that more closely resemble C programs.

2The “uniform access” approach is a generalization of an abstraction J S. Moore used in the M1
model.

115

n f1 fn e

s s+1 s+n s+n+1 f1

f1[0]f2

s+2 f2

f2[0]

fn

fn[0] 0

e

Figure 7.1: This diagram represents a generic farray object residing in a section of
the mem array. The value above a box represents an address of the mem array and the
value inside a box represents the value stored at a mem array address. The farray

begins at address s which contains the number of fields n. The field table occupies the
next n+1 locations which store the addresses f1 through fn where each field begins.
The last field table address is s+n+1 and contains the address e indicating the end
of the farray structure. The data for each field is stored at the address f1 through
fn. The length of each field is defined to be the difference between the low address
of the field and the low address of the subsequent field.

start location and is accessible with a function num-fields. The next n+1 locations

are monotonic offsets into the array where each field 1, ..., n begins. The last location

is where the farray structure ends. This part of the structure is called the field table.

Fields are referenced by integer values, but constants may be defined to create field

identifiers (e.g., a *field1* constant in place of the integer 1). Each field begins

at the offset in the field table and spans the indices up to the subsequent entry

in the field table; the field length can be retrieved with the flength function. A

scalar field has length 1. Fields and offsets within fields are recognized by fieldp

and field-offsetp predicates, and the number of fields can be retrieved with the

num-fields function. A diagram of a generic farray is displayed in Figure 7.1.

A field table for an farray of n fields starting at address s is recognized by

the recursive predicate field-tablep which enforces the following invariants for an

address i from addresses s+1 to s+n+1:

116

1. the value at i is an integer,

2. the value at i is greater than or equal to 0,

3. the value at i is less than the length of array mem,

4. the value at i is greater than the value at address s+n+1, and

5. the value at i is less than the value at address i+1.

With the definition of field-tablep, one can define the predicate farrayp

that recognizes an farray in a state st. The start s of the farray is also required as

input, as multiple farray objects can exist within st.

(defun farrayp (s st) ; (s)tart, (st)ate
(declare (xargs :guard t

:stobjs (st)))
(and (stp st) ; valid STOBJ st

(integerp s) ; s is integer
(<= 0 s) ; s >= 0
(< s (mem-len st)) ; s in range of mem
(integerp (memi s st)) ; num fields is int
(<= 0 (memi s st)) ; num fields s >= 0
(< (+ s (memi s st) 1) ; end in range

(mem-len st)) ; of mem
(< (memi (+ s (memi s st) 1) st) ; value at end

(mem-len st)) ; in range of mem
(sb60p (mem-len st)) ; length of mem < 2^59
(field-tablep (+ s 1) ; field table from s+1

(+ s (memi s st) 1) ; to end position
st))) ; in st

The functions fread and fwrite are (at the time of this publication) the only

method of accessing and updating values in the farray. The fread function takes a

field, a field offset, the start of the farray, and the state as input and returns the

value at that offset within the field.

117

(defun fread (f o s st) ; (f)ield, (o)ffset, (s)tart, (st)ate
(declare (xargs :guard (and (farrayp s st)

(fieldp f s st)
(field-op o f s st))

:stobjs (st)))
(memi (+ (memi (+ s f) st) ; read field table entry for f,

o) ; add offset o for new address,
st)) ; and read the address

Note that this function is parameterized on the field in order to provide uniform

access. The downside of this process is that each fread operation from the state

now requires two reads from the array (the memi calls) and two additions. When

compared to a multiple-field STOBJ-based approach, this may seem excessive, but

it is still much more efficient than the list-based approach.

The fwrite function accepts a field, a field offset, a value, the start of the

farray, and the state as input and returns a new state.

(defun fwrite (f o v s st) ; (f)ield, (o)ffset, (v)alue,
; (s)tart, (st)ate

(declare (xargs :guard (and (farrayp s st)
(fieldp f s st)
(field-offsetp o f s st)
(sb60p v))

:stobjs (st)))
(!memi (+ (memi (+ s f) st) ; read field table entry for f,

o) ; add offset o for new address,
v st)) ; and write value v to address

To provide this abstraction, fwrite pays the extra cost of an array read and two

additions on top of the cost of the write.

Proper theorems establish (rewrite) rules in ACL2 that help automate rea-

soning about implementations using farray. The collection of rules is often called a

118

theory. The major points of the farray theory are listed here:

1. fread always returns a signed-byte 60-bit integer,

2. fwrite always returns an farrayp,

3. fwrite does not affect flength,

4. an fwrite followed by an fread results in the value written if the fields and

offsets are equal,

5. two fwrite operations to the same field and offset are the same as the last

write,

6. an fwrite of the value already at the field and offset is the same as no fwrite,

7. two fwrite operations to distinct fields can be ordered,

8. two fwrite operations to the same field with distinct offsets can be ordered,

9. the number of fields is not affected by fwrite,

10. fieldp is not affected by fwrite, and

11. field-offsetp is not affected by fwrite.

One of the notable theorems is that an fwrite followed by an fread results in

the value written only if the fields and offsets are equal (number 4 in the list above).

119

(defthm fread-fwrite
(implies ; if there is
(and (farrayp s st) ; farray at s in state st,

(fieldp f1 s st) ; field f1,
(field-offsetp o1 f1 s st) ; field offset o1,
(fieldp f2 s st) ; field f2, and
(field-offsetp o2 f2 s st)) ; field offset o2, then

(equal (fread f2 o2 s ; reading f2 at o2 after
(fwrite f1 o1 v s st)) ; writing v to o1 at f1,

(if (and (equal f1 f2) ; is equal to v if f1=f2
(equal o1 o2)) ; and o1=o2

v
(fread f2 o2 s st))))) ; and f2 at o2 otherwise

This theorem is often called a “read over write” theorem and allows the ACL2

rewriter to simplify a term where an fread surrounds an fwrite.

A predicate field-memberp is included in the definition of farray and behaves

similarly to the ACL2 built-in function member. This function checks a range of a

field for a given value. This is useful when a certain range of a field corresponds to

a list (Chapter 8).

The farray data structure is not specific to the work on mechanical verifica-

tion of SAT validation algorithms. It is designed to be useful for anyone interested

in fast, executable, mechanically-verified code or anyone that is modeling C-like pro-

grams in ACL2.

7.2 Literal Encodings

The move to an array-based implementation requires that values be bounded.

The decision was made to use signed 60-bit integers as the basis for values in the

120

new implemenation. Clozure Common Lisp (CCL) is the target LISP compiler for

this project and uses 3 bits of every 64-bit integer to record typing information. The

60-bit signed integer type is sufficient for the size of variables in a SAT solver or

proof checker and stays under the limit of what CCL can store in a 64-bit value,

eliminating the problem of “bignum” arithmetic in compiled code.

Another consideration is the encoding of literals in the array. In previous

verification efforts, a straightforward encoding of literals x̄2, x̄1, x1, x2 to integers

−2,−1, 1, 2 was acceptable because efficiency was not a priority. However, the move

to a more efficient system for assignments necessitates a change in encoding. Four

encoding methods were considered for the new array-based assignment structure; the

purpose of each encoding is to determine one of three states for a literal (usually ob-

tained from a clause) given an assignment. Encodings must maintain the uniqueness

of literals in the assignment and disallow conflicting literals. Below, each assignment

encoding is evaluated based on the access/update cost, negation cost, and invariant.

Method 1 A compact assignment encoding is shown in Figure 7.2. In this method,

the literals lit and −lit share the same location in the assignment. The values at the

location are in the set {0, 1,−1} and correspond to the cases where neither positive

nor negative literal is assigned, the positive literal is true, or the negative literal is

true, respectively. Given a literal, the absolute value of the literal is the index into

the assignment. The value at that location must then be interpreted based on the

positive/negative status of the literal. This is important because these are expensive

operations that must be performed every time a literal is accessed or updated in

121

the assignment array. The benefit of this representation is that it is compact (only

requires space equal to the number of variables) and there is no extra invariant on

the assignment other than the values are in the set {0, 1,−1}.

0 -1 0 0

0 1

-1

2

Assignment

1 2 -3

Clause

1 0 0

3 4 5 6 7

1/-1 2/-2 3/-3

Index

Value

Literal

abs(lit)	
{0, 1, -1}	
-lit	
none	
none	
none

Access/Update: !
Values: !

Negation: !
!Invariant: !

Assignment Encoding:!
Clause Encoding:

Figure 7.2: Method 1 is a compact encoding where positive and negative forms of
a literal share the same location in the assignment. The assignment (-1 -2 3) and
the clause (1 2 -3) are displayed in the figure.

Method 2 One can encode positive and negative literals separately into positive

indices by using the assignment encoding in Figure 7.3. This method doubles the

space requirements for an assignment but removes the interpretation cost associated

with Method 1. Given a literal (from a clause), the literal must be encoded to obtain

an index into the assignment. Values stored in the assignment are either 0 or 1

corresponding to the cases where the literal is assigned to true or not assigned to

true. This introduces a new invariant in that the value of the location associated

122

with the positive literal and the negative literal cannot both be equal to 1 (assigned

to true). Accesses and updates are even more expensive than in the previous method

because of the complexity of the encoding function.

0 0 0 1

0 1

0

2

Assignment

1 2 -3

Clause

1 1 0

3 4 5 6 7

1 -1 2 -2 3 -3

Index

Value

Literal

encode(lit)	
{0, 1}	
-lit	
¬(*lit=1 ⋀ *(-lit)=1)	
(0<lit)? 2*lit : 2*abs(lit)+1	
none

Access/Update: !
Values: !

Negation: !
!Invariant: !

Assignment Encoding:!
Clause Encoding:

Figure 7.3: Method2 separates the locations for positive and negative literals to
avoid the interpretation cost associated with Method 1. This comes at the cost of
(double) space and a more complicated access/update function. The assignment (-1

-2 3) and the clause (1 2 -3) are displayed in the figure.

Method 3 The need to encode a literal during runtime can be avoided if all clauses

have been encoded using the same scheme as shown in Figure 7.4. In this method,

clauses contain encoded literals, eliminating the need to encode literals into indices.

This is the most efficient method of accessing and updating the assignment, but it

comes at the cost of changing the internal representation of literals in the formula.

Negation of literals in the clause is now performed by bitwise exclusive-or with the

123

constant 1. This is the method that is used in the implementation described in

Section 7.3.

0 0 0 1

0 1

0

2

Assignment

2 4 7

Clause

1 1 0

3 4 5 6 7

1 -1 2 -2 3 -3

Index

Value

Literal

Access/Update: !
Values: !

Negation: !
!Invariant: !

Assignment Encoding:!
Clause Encoding:

lit	
{0, 1}	
lit ^ 1	
¬(*lit=1 ⋀ *(-lit)=1)	
(0<lit)? 2*lit : 2*abs(lit)+1	
(0<lit)? 2*lit : 2*abs(lit)+1

Figure 7.4: Method 3 encodes the literals in each clause to reduce the access and
update time for the assignment. This greatly improves performance at the cost of
changing the way literals are stored elsewhere in the program. The assignment (-1

-2 3) and the clause (1 2 -3) are displayed in the figure.

Method 4 Finally, given an index i in the center of the assignment, literals can be

kept unencoded with relatively little cost for accesses and updates (Figure 7.5). This

method rivals the efficiency of Method 3 and allows the internal representation of

literals in the formula to be the same as the external representation in problem files.

It requires the knowledge of a midpoint i within the array; this is easy for a language

like C that has access to pointers, but it is much harder to represent in ACL2. This

is the method used in the implementation of DRAT-trim from Chapter 3.

124

0 0 0

i-3

1

i-2

Assignment

1 2 -3

Clause

1 0 1

i-1 i i+1 i+2 i+3

-3 -2 -1 1 2 3

Index

Value

Literal

Access/Update: !
Values: !

Negation: !
!Invariant: !

Assignment Encoding:!
Clause Encoding:

i + lit	
{0, 1}	
-lit	
¬(*lit=1 ⋀ *(-lit)=1)	
none	
none

Figure 7.5: Method 4 uses a midpoint into the assignment array i to provide
efficient accesses and updates with unencoded literals. This approach is more suited
to C (where i can be a pointer) than it is to ACL2. The assignment (-1 -2 3) and
the clause (1 2 -3) are displayed in the figure.

125

7.3 Array-based Assignments

In the satisfiability specification from Chapter 4, assignments are defined to

be lists of unique, non-conflicting literals, recognized by the predicate assignmentp.

In Chapter 5, the RAT proof validation algorithm has two forms of updates to data

structures: creation/modification of assignments and moving clauses from the proof

to the formula. The former represents far more updates that the latter. As a first

step to improving the efficiency of the algorithm, assignments are transitioned to

an array-based data structure for constant-time access and update. This change is

implemented using farray.

In this section, the definition for an assignment-st structure is described.

Four basic operations on the state are then defined. Finally, an example of the proof

work necessary to maintain one of the recursive invariants is presented.

7.3.1 Definition

The array-based model of an assignment is called an assignment-st (short for

“assignment state”), and it is defined using an farray with four fields. The first field

is addressed by the field identifier *num-vars* and references a scalar that records

the number of variables. This field is used to define the maximum variable that will

be encountered during verification and is important when defining the length of the

lookup table that maps literals to truth assignments. The second and third fields

construct a stack and are addressed by the field identifiers *stack-end* and *stack*.

The *stack* field is an array of length (1+ *num-vars*) and the *stack-end* field is

a scalar that contains an offset to the next empty position in the *stack*. The fourth

126

field in assignment-st uses the field identifier *lookup* and is an array that acts as

a lookup table. All literals that are less than or equal to (+ 2 (* 2 *num-vars*))

are valid field offsets into the *lookup* field. Figure 7.6 diagrams the layout of a

assignment-st structure for 3 variables.

The assignment-st structure represents assignments as both a stack and a

lookup table. These two substructures are synchronized: any state update must

be recorded in both substructures. While the lookup table is the only structure

necessary for constant time accesses and updates, the stack adds the ability to encode

temporal information. The stack not only contains the literals that are assigned

to true, but also contains the order in which they were assigned to true. This is

important for reasoning about routines like unit propagation. The order that unit

literals are added to the assignment plays a major part in the equality of two different

unit propagation routines.

There are 19 high-level invariants maintained by the assignment-stp recog-

nizer predicate for assignment-st structures, 7 of which are recursive invariants. The

full predicate is displayed in Figure 7.7 and the recursive invariants are:

1. The values in the stack are literals.

2. The values in the stack are unique.

3. The values in the stack are non-conflicting.

4. The values in the lookup table correspond with the values in the stack.

5. The values in the stack are within the range specified by the number of vari-

ables.

127

lookup (Field 4)

0 0 0 1
0 1

0
2

1 1 0
3 4 5 6 7

 1 -1 2 -2 3 -3

Index

Value

stack (Field 3)

3 5
0 1

6
2

0
3Index

Value

3
0

num-vars (Field 1)
Index

Value

3
0

stack-end (Field 2)
Index

Value

Encoded!
Literal

Unencoded!
Literal

Figure 7.6: The assignment (-1 -2 3) (encoded as (3 5 6)) is displayed in the
assignment-st model. The underlying representation for this model is an farray of
four fields, each of which are identified by constants. The *num-vars* field contains
the largest variable that can exist in the model. The *stack-end* field contains a
valid offset into the *stack* field. This offset indicates the next open location in the
stack. In this example, the stack is full because the offset is the last position in the
stack. The *stack* field contains all (encoded) literals that have been assigned to
true. In this example, the literals 3 (the encoded literal -1), 5 (-2), and 6 (3) are
true. Finally, the *lookup* field is an array that is indexed by encoded literals. If
the value at an index is equal to one, then the literal has been assigned to true.

128

6. The values in the stack correspond with the values in the lookup table.

7. The number of literals assigned in the lookup table is the same as the number

of literals in the stack.

7.3.2 Operations

Recall the four basic operations on list-based assignments (see Section 4.2).

Given an assignment a, the operation (member l a) tests if literal l is assigned to

true with respect to a. The operation (cons l a) assigns the literal a to true. The

operation (cdr a) unassigns the most recently assigned literal. The assignment nil

unassigns all literals and starts with an empty assignment.

These four basic operations are implemented for state-based assignments as

assignedp, assign-lit, unassign-one, and unassign-all. These functions are de-

tailed below.

Reads from the assignment-st structure are performed by the assignedp pred-

icate. The function reads the value in the *lookup* field at the offset equal to the

literal. If the value is equal to 1, then the literal has been assigned to true.

(defun assignedp (l st) ; (l)iteral, (st)ate
(declare (xargs :guard (and (assignment-stp st)

(literalp l)
(lit-in-rangep l st))

:stobjs (st)))
(equal (fread *lookup* l *s* st) ; read from lookup table

1)) ; at offset l, compare to 1

Note that only one fread from the lookup table is necessary. No recusion is necessary

and this operation is perfomed in consant time.

129

(defun assignment-stp (st) ; (st)ate
(declare (xargs :guard t

:stobjs (st)))
(and
(farrayp *s* st) ; farray
(equal (num-fields *s* st) ; four fields in farray

4)
(fieldp *num-vars* *s* st) ; num-vars is field 1
(equal (flength *num-vars* *s* st) ; num-vars is length 1

1)
(let ((n (fread *num-vars* 0 *s* st))) ; let n be num-vars
(and
(<= 0 n) ; n is natural
(fieldp *stack-end* *s* st) ; stack-end is field 2
(equal (flength *stack-end* *s* st) ; stack-end is length 1

1)
(fieldp *stack* *s* st) ; stack is field 3
(equal (flength *stack* *s* st) ; stack is length n+1

(1+ n))
(fieldp *lookup* *s* st) ; lookup is field 4
(equal (flength *lookup* *s* st) ; lookup is length 2n+2

(+ 2 (* 2 n)))
(let ((se (fread *stack-end* ; let se be stack-end

0 *s* st)))
(and
(field-offsetp se *stack* *s* st) ; se is field offset
(stack-contains-literalsp ; stack values are
(1- se) st) ; literals
(stack-uniquep (1- se) st) ; stack values unique
(stack-not-conflictingp ; stack values are
(1- se) st) ; not conflicting
(lookup-corresponds-with-stackp ; lookup matches
2 st) ; stack
(stack-in-rangep (1- se) st) ; stack values bounded
(stack-corresponds-with-lookup-p ; stack matches
(1- se) st) ; lookup
(equal (count-assigned 2 st) ; number assigned in

se) ; lookup equals se
))))))

Figure 7.7: Definition of the assignment-stp predicate.

130

The assign-lit function accepts a state and a literal and returns a new state

where the lookup table entry for the literal has been set, the literal has been added

to the top of the stack, and the offset to the top of the stack has been incremented.

(defun assign-lit (l st) ; (l)iteral, (st)ate
(declare (xargs :guard ...

:stobjs (st)))
(let* ((se (fread *stack-end* 0 ; let se = first empty

s st)) ; stack location
(st (fwrite *lookup* l 1 ; write 1 at offset l

s st)) ; in lookup table
(st (fwrite *stack* se l ; write l at offset se

s st)) ; in stack
(st (fwrite *stack-end* 0 (1+ se) ; write 1+se to first

s st))) ; empty stack location
st)) ; return state

This operation requires one read from and three writes to the assignment state.

Again, each of these reads and writes take contant time. This is perhaps the most

important of the four basic operations on an assignment-st structure.

The third operation on a state-based assignment is to unassign the most

recently assigned literal. This is performed by the unassign-one function that accepts

a state and returns a new state where the literal on the top of the stack is cleared

from the lookup table and the offset to the top of the stack has been decremented.

131

(defun unassign-one (st) ; (st)ate
(declare (xargs :guard ... ; guards omitted

:stobjs (st)))
(let* ((1-se (1- (fread *stack-end* 0 ; let 1-se = one below

s st))) ; first empty stack loc
(l (fread *stack* 1-se ; let l be last lit in

s st)) ; stack
(st (fwrite *lookup* l 0 ; write 0 at offset l

s st)) ; in lookup table
(st (fwrite *stack-end* 0 1-se ; reduce stack by writing

s st))) ; 1-se to stack end,
st)) ; then return state

This operation requires two reads from and two writes to the assignment state. The

unassign-one function is never used on its own in practice; it represents one step in

the process of removing all literals from the assignment.

The unassign-all function accepts a state and an offset to the top of the stack

and returns a new state where all literals have been unassigned. This is perfomed

by recursively unassigning a single literal until the stack is empty.

132

(defun unassign-all (i st) ; (i)ndex, (st)ate
(declare (xargs :guard ... ; guards omitted

:stobjs (st)
:measure (nfix i)
))

;; all of the following (m)ust (b)e (t)rue to continue
(if (not (mbt (and (assignment-stp st)

(equal (fread *stack-end* 0
s st)

i)
(or (field-offsetp i *stack*

s st)
(equal i 0)))))

st
(if (equal i 0) ; if i=0, nothing to

st ; unassign, done
(let* ((st (unassign-one st)) ; unassign one lit

(st (unassign-all (1- i) st))) ; then unassign rest
st)))) ; and return state

This operation is linear in the number of assigned literals. Note that this operation

is less efficient than the list-based counterpart, where an assignment is replaced by

the symbol nil.

These four operations each require the same number of reads and writes to

the state as the basic operations in the C-based utility DRAT-trim.

7.3.3 Maintaining Invariants

The assignment-stp predicate describes a well-formed assignment in the new,

state-based model and includes several different invariants, some of which are defined

recursively. One of the most challenging parts of creating a more efficient implemen-

tation for assignments is proving that these invariants are maintained during the

basic operations on the state.

133

Consider the assign-lit operation that accepts a literal and a state and

returns a new state where the literal has been assigned to true. One must prove

that this operation returns a valid state that satisfies the assignment-stp predicate.

This is only true if the literal is not already assigned to true. This statement is

represented by the theorem:

(defthm assignment-stp-assign-lit
(implies ; if
(and (assignment-stp st) ; valid assignment,

(literalp l) ; literal l,
(field-offsetp l *lookup* ; l is valid offset into

s st) ; lookup table,
(not (field-memberp ; l is not a member

l ; of the stack,
(1- (fread *stack-end* 0

s st))
0 *stack* *s* st))

(not (field-memberp ; and negation of l
(negate l) ; is not a member of
(1- (fread *stack-end* 0 ; stack, then

s st))
0 *stack* *s* st)))

(assignment-stp (assign-lit l st))) ; valid assignment after
...) ; assigning l to true

In order to prove this theorem, each of the 19 high-level invariants (including 7

recursive invariants) must be true after the assign-lit operation has completed.

For the purposes of this example, consider the invariant that states that el-

ements of the stack must be literals. This invariant is checked recursively by the

predicate stack-contains-literalsp. This invariant holds after writing a literal to

the stack and increasing the offset of the next empty stack location.

134

(defthm stack-contains-literalsp-assign-lit
(implies ; if
(and (farrayp *s* st) ; farray at start,

(fieldp *stack-end* *s* st) ; stack-end is field,
(fieldp *stack* *s* st) ; stack is field,
(fieldp *lookup* *s* st) ; lookup is field,
(field-offsetp ; value at stack-end
(fread *stack-end* 0 *s* st) ; is offset into
stack *s* st) ; stack,
(field-offsetp l *lookup* *s* st) ; l offset for lookup,
(literalp l) ; l is literal
(stack-contains-literalsp ; and stack contains
(1- (fread *stack-end* 0 *s* st)) ; only literals before
st)) ; assignment, then

(stack-contains-literalsp ; stack contains only
(fread *stack-end* 0 *s* st) ; literals after
(assign-lit l st)))) ; assignment

The last literal in the stack before the assign-lit operation is at one less than the

stack-end value, and the last literal in the stack after the assign-lit operation is

at the *stack-end* value.

To prove this theorem, one must reason about how each of the three writes to

the state in the assign-lit operation affects this predicate. This is relatively easy

for this pairing of predicate and operation. The only fields that matter are *stack*

and *stack-end*; any other field is irrelevant.

135

(defthm stack-contains-literalsp-fwrite-diff-field
(implies ; if
(and (not (equal f *stack*)) ; field f is not stack,

(stack-contains-literalsp i st) ; stack has only lits,
(fieldp f *s* st) ; f is a field,
(field-offsetp o f *s* st) ; o is an offset for f,
(sb60p v)) ; and v is a value, then

(stack-contains-literalsp ; stack has only lits
i ; after writing v to
(fwrite f o v *s* st)))) ; field other than stack

If the *stack* field is modified, then the value written must a literal.

(defthm stack-contains-literalsp-fwrite-literal
(implies ; if
(and (literalp l) ; l is literal,

(stack-contains-literalsp i st) ; stack has only lits,
(field-offsetp o *stack* ; and o is offset into

s st)) ; stack, then
(stack-contains-literalsp ; stack has only lits
i ; after writing l to
(fwrite *stack* o l *s* st)))) ; stack field

These two theorems are sufficient to show that the stack contains only literals

after assigning a literal to true. There are many other combinations of invariants and

operations on the state, all of which are more complicated than this example. The

most difficult invariants to maintain are the correspondence between lookup table

and stack and vice versa because these invariants rely on all of the writes as a whole:

it is harder to case split on the field that is being written.

Once the assignment-stp predicate has been established for each basic opera-

tion, one can begin the process of relating the new array-based model for assignments

to the old list-based model.

136

Chapter 8

Equivalence

Instead of proving the soundness of an implementation that uses the new

assignment-st structure from Chapter 7, it is possible to prove that the new imple-

mentation is equivalent to the algorithm presented in Chapter 5. This is achieved by

a process called bisimulation. For each function, one can show that the result of the

new state-based function is the same as the result of the original list-based function.

This relies on the ability to project the assignment-st objects to assignments as lists.

Executing a function in the new model and then projecting the result should be the

same as projecting the initial assignment and executing the corresponding function

in the old model. Figure 8.1 depicts these relationships.

First, a projection function is defined that takes an assignment-st structure

as input and outputs a list-based assignment satisfying the assignmentp predicate.

This is accomplished by reading the stack from high to low and constructing a list

from each element. The non-recursive function project accepts a state as input and

returns a list; this function uses an auxilliary recursive function called project1.

Note that project1 is generalized to work on any field.

137

assignment-st

assignment result

Projection

Original Function

New Function assignment-st assignment-st

assignment assignment

Projection Projection

Original Function

New Function

Figure 8.1: Two forms of bisimulation used in the equivalence proof relating an
implementation using state-based assignments to an implementation using list-based
assignments. Some functions return a ternary value, literal, clause, formula, etc.
The equivalence for these functions is represented by the diagram on the left. Other
functions return an assignment and the equivalence is represented by the diagram
on the right.

(defun project1 (i f s st) ; (i)ndex, (f)ield, (s)tart,
; (st)ate

(declare (xargs :guard (and (farrayp s st)
(fieldp f s st)
(or (field-offsetp i f s st)

(equal i -1)))
:stobjs (st)
:measure (nfix (1+ i))))

;; the following (m)ust (b)e (t)rue to contine
(if (not (mbt (and (farrayp s st)

(fieldp f s st)
(or (field-offsetp i f s st)

(equal i -1)))))
nil

(if (equal i -1) ; if i = -1, then f is
nil ; empty, return empty list

(cons (fread f i s st) ; else, return value at i
(project1 (1- i) ; in f cons onto the rest

f s st))))) ; of the projection

(defun project (st) ; (st)ate
(declare (xargs :guard (assignment-stp st)

:stobjs (st)))
(project1 ; recursively project
(1- (fread *stack-end* 0 *s* st)) ; starting at end of stack
stack *s* st)) ; in stack field

138

The first part of the equivalence proof for the RAT validation utility involves

proving that a state satisfying the assignment-stp predicate implies that the projec-

tion satisfies the assignmentp predicate. In other words, the project function should

return a valid list-based assignment.

(defthm assignmentp-project
(implies ; if
(assignment-stp st) ; st is valid assignment state,
(assignmentp (project st)))) ; then project returns assignment

Theorems are then established showing the correspondence for each operation

on the state: assignedp, assign-lit, unassign-one, and unassign-all. For example,

projecting after calling assign-lit is equal to cons-ing a literal after projection.

(defthm assign-lit-cons-project
(implies ; if
(and (assignment-stp st) ; valid assignment state st,

(literalp l) ; literal l,
(lit-in-rangep l st)) ; and l fits in assignment,

(equal (project ; then, projecting after
(assign-lit l st)) ; assigning l in state is
(cons l ; the same as adding l

(project st)))) ...) ; after projecting to a list

Next, each RAT validation function defined in Chapters 4 and 5 is defined for

the assignment-st implementation. These function names are similar except they

have the -st suffix. Some functions are almost identical and the only change is

that they call state-based operations instead of list-based operations. Consider the

function evaluate-literal function from Section 4.2. This function accepts a literal

and an assignment and returns a ternary value. In the state-based implementation,

the function evaluate-literal-st accepts a literal and state and returns a ternary

139

value.

(defun evaluate-literal-st (l st) ; (l)iteral, (st)ate
(declare (xargs :guard (and (assignment-stp st)

(literalp l)
(lit-in-rangep l st))

:stobjs (st)))
(cond
((assignedp l st) (true)) ; if l assigned, true

((assignedp (negate l) st) (false)) ; if l̄ assigned, false
(t (undef)))) ; else, undef

Two of the more interesting function definitions in the state-based model

are unit-propagation-st and RUPp-st. In the case of unit-propagation-st, it is

much easier to provide a measure based on the projection rather than define the

measure based on a property of the state. Recall from Section 5.4 that the list-

based unit-propagation has a custom measure that describes a property that always

decreases on each recursive call: the number of clauses that evaluate to undef. The

same property is true of the state-based assignment and the projection of the state-

based assignment.

140

(defun unit-propagation-st (f st) ; (f)ormula, (st)ate
(declare (xargs :guard (and (assignment-stp st)

(formulap f)
(formula-in-rangep f st))

:verify-guards nil ; guard proof delayed
:stobjs (st)
:measure (num-undef ; note measure in

f ; terms of projection
(project st))))

;; the following (m)ust (b)e (t)rue to contine
(if (not (mbt (and (assignment-stp st)

(formulap f)
(formula-in-rangep f st))))

st
(mv-let ; let results of
(ul uc) ; finding unit clause be
(find-unit-clause-st f st) ; bound to ul and uc
(declare (ignorable uc)) ; not using uc below
(if (not ul) ; if no unit literal

st ; found, return state
(let ((st (assign-lit ul st))) ; else, assign ul

(unit-propagation-st f st)))))) ; and recur with new st

In the case of RUPp-st, the assignment needs to be cleared by calling unassign-all

and then recursive assigning the negation of each literal in a clause via a function

called clause-to-assignment, which is not defined here. This is perhaps the most

difficult function to reason about in the state-based implementation because it is so

different from the definition in the list-based implementation.

141

(defun RUPp-st (f c st) ; (f)ormula, (c)lause
; (st)ate

(declare (xargs :guard (and (assignment-stp st)
(formulap f)
(formula-in-rangep f st)
(clausep c)
(clause-in-rangep c st))

:stobjs (st)))
(let* ((st (unassign-all ; unassign all lits

(fread *stack-end* 0 *s* st) ; starting at top of
st)) ; stack

(st (clause-to-assignment c st)) ; convert clause to
(st (unit-propagation-st f st))) ; assignment and prop

(mv (falsep (evaluate-formula-st f st)) ; return if eval of f
st))) ; is false and state

The list-based version of this function is defined in Section 5.2.

Once each function is defined, an equivalence proof is established that relates

state-based functions to list-based functions. Many of these theorems are easy to

prove because of the equivalence of assignment operations discussed above. For

example, the evaluate-literal-st and evaluate-literal functions share a nearly

identical body. The theorem relating these two functions is stated as:

(defthm evaluate-literal-equiv
(implies ; if
(and (assignment-stp st) ; valid assignment state st,

(literalp l) ; literal l,
(lit-in-rangep l st)) ; and l fits in assignment, then

(equal (evaluate-literal-st ; evaluating l in assignment state
l st) ; is equal to
(evaluate-literal ; evaluating literal after
l (project st))))) ; projecting state to list

Some of the theorems are much more difficult. Consider the equivalence theorem for

unit propagation.

142

(defthm unit-propagation-equiv
(implies ; if
(and (assignment-stp st) ; valid assignment state,

(formulap f) ; formula f, and
(formula-in-rangep f st)) ; all l ∈ f fit in st,

(equal (project ; then projecting state
(unit-propagation-st f st)) ; after unit prop
(unit-propagation ; is equal to unit prop
f (project st))))) ; after projecting state

This theorem is the reason a stack is necessary in the array-based assignment. By

reading the stack to a list, one can show that an array-based assignment and list-

based assignment are equal instead of set equal. An initial implementation of state-

based assignments only used a lookup table. The projection function in this im-

plemenation would scan the lookup table (in numerical order) and construct a list

from all literals with a value 1. This produced an assignment that was set equal to

the list-based assignment. The former was ordered by literal value and the latter

was ordered by the time each literal was assigned to true. This made it extremely

difficult to prove the equivalence for the unit-propagation routine, which incremen-

tally assigns literals. A (partial) proof for the equivalence of unit-propagation was

constructed, but it relied heavily on quantification.

Finally, it is possible to establish a version of the main-theorem from Sec-

tion 6.1 about the new RAT validation implementation.

143

(defthm main-theorem-st
(implies ; if
(and (assignment-stp st) ; valid assignment state,

(formulap f) ; formula f,
(formula-in-rangep f st) ; all l ∈ f fit in st,
(clause-listp cl) ; clause list cl,
(clause-list-in-rangep cl st) ; all l ∈ cl fit in st,
(mv-nth 0 (refutationp-st ; and cl is refutation for

cl f st))) ; f using state, then
(not (exists-solution f)))) ; f is unsatisfiable

This theorem states that a refutation that is checked by the state-based implemen-

tation implies that the formula is unsatisfiable.

144

Chapter 9

Future Work

The DRAT proof format is powerful enough to express all contemporary SAT

solving and preprocessing techniques, but this does not imply that all of these tech-

niques are naturally expressed in the format. Some techniques, such as Gaussian

elminiation and handling of XOR constraints, may require extra thought. Ulti-

mately, it is up to solver authors to determine how to best express the reasoning

behind their techniques in a format that is checkable.

DRAT-trim has already seen success outside of its validation capabilities.

TraceCheck+ dependency graphs, one possible output of DRAT-trim, are already

being used as input to minimal unsatisfiable subset (MUS) [62, 7] and to compute

Craig interpolants [76, 36]. There are most likely other uses for DRAT-trim that the

satisfiability community will discover.

There is still much to do with respect to the mechanically-verified implemen-

tation. While the representation of assignments is completed, there are other features

that must be implemented and shown equivalent in order to approach the efficiency

of the C-based implementation of DRAT-trim:

1. Clauses integrated into array-based data structure. In C, clauses are

stored in an array, and access to each clause can be obtained by an index into

145

the array. On its own, this does not provide much benefit, but it is necessary

when representing dynamic sets of clauses like watched-literal data structures

and more efficient RAT checks. The current array-based implementation for

assignments should be extended to contain another large field for the clauses

in the formula and refutation. A proof index field will also need to be added

to record the separation between the (extended) formula and the (remaining)

proof. Operations on formulas and clauses will need to be expressed in terms

of the new fields and these operations should be shown equivalent to list-based

counterparts. No modification to the original proof of correctness is expected.

2. Base unit propagation. Many formulas contain unit clauses, and a signifi-

cant performance improvement can be obtained by recording these unit clauses

and their implications in a “base assignment”. Right now, the mechanically-

verified algorithm (re)discovers all of the implications of the original formula

every time it checks redundancy. To avoid this, before any redundancy checks

are performed, unit propagation should be applied, resulting in a base assign-

ment that is implied by the original formula. This base assignment will be

a subset of all other assignments during validation and should be used as a

base for future redundancy checks. To implement this, the array-based data

structure needs an additional pointer into the assignment stack which records

the base assignment. After each redundancy check, instead of unassigning all

literals, the function should only unassign back to the base assignment pointer.

This will require not only a change of the data structure, but also a change

in the algorithm. A proof will need to be constructed that shows that a base

146

assignment is a subset of any assignment produced during redundancy checks.

3. Watched literal data structure. Watched literals greatly increase the per-

formance of unit propagation. This data structure and associated algorithmic

improvements still need to be integrated into the ACL2 implementation. There

are two common ways of representing watched literal lists. The first is to main-

tain a separate list clause indices for each literal that point to clauses where

the literal is watched. The second is to incorporate these lists into the clause

database by including two indices at the beginning of the clause. While the

first option may be easier to reason about simply because it is separated from

the clause database, it is harder to implement without dynamic allocation. The

total amount of space for all watched literal lists is constant, but individual

lists will shrink and grow during computation. Thus, the second option is eas-

ier to implement but requires additional invariants over the clause database.

Regardless of the data structure used, the clauses of the formula will be rear-

ranged during validation as certain literals become “watched”. From a proof

perspective, a formula at the end of validation could be quite different to the

formula before validation. Permutation of the clauses in the formula must be

shown irrelevant to evaluation of clauses and formulas.

4. Deletion information. Deletion information still needs to be included in

the mechanically-verified proof checker. This is more of a problem from an

implementation perspective than a proof perspective. Deletion instructions

must be matched with clauses in the formula. In DRAT-trim, this matching is

performed by hashing the clauses to obtain “timestamps” that describe when

147

a certain clause is active. It is not immediately clear what method should be

used to obtain these timestamps, but it may be necessary to perform this kind

of operation outside of the verification process. An algorithm for an earlier

proof format, called IORUP, included temporal information of clauses and was

mechanically verified using ACL2. In this experiment, it was not difficult to

show that it was sound to ignore clauses during the validation process. In the

main theorem that states validation implies unsatisfiability, removal of clauses

during validation can only falsify the hypothesis, making the theorem trivially

true.

5. Reading directly into STOBJ. Currently, formulas and refutations are read

and parsed into a list structure. The entire list structure is then checked by a

predicate to determine if the formula is valid. It should be possible to read the

formula and refutation directly into the array-based implementation and check

any necessary predicates during parsing.

The farray data structure is (at the time of this publication) under active

development. Some of the areas for improvement are:

1. The length of each field is constant once an farray is defined. An fresize

function can be defined that would resize a field by modifying the field table

and shifting data to new positions. This work has partially been accomplished.

The field table adjustment function has been defined and proven to maintain

the farray invariant.

148

2. The location of the farray in is constant. An farray-move could be defined

that would shift the entire farray to a new start location.

3. All fread and fwrite operations require an extra memi access and some arith-

metic. A relative-to-absolute function (and absolute-to-relative function)

can be defined that would convert a field-offsetp to an absolute index in mem

(and vice versa). Accesses and updates to mem with an absolute address should

preserve the farray structure. Users could ”drop” to absolute indices for im-

portant functions to increase performance.

4. The farray structure is limited to the STOBJ name st and the field name mem.

One should be able to define an farray in such a way that they can be used

with other STOBJ names.

149

Chapter 10

Conclusions

As a direct result of this work, all state-of-the-art satisfiability solvers can be

validated efficiently and the core part of the validation process has been mechanically

verified. These contributions fundamentally change the relationship between solver

developers and solver users in that users have a reasonable method for checking

important SAT results.

The DRAT proof format is the basis for such a radical change. With the

addition of expressibility and clause management to existing clausal proof formats,

the DRAT format allows solver developers to easily emit all steps a solver or prepro-

cesser takes including the deletion of clauses from a working database. This format

is accessible enough that it was used by all top-tier solvers in the UNSAT track of the

2014 SAT Competition. The widespread adoption of DRAT in the SAT community

is remarkable.

The DRAT format would be uninteresting if it could not be efficiently evalu-

ated. The DRAT-trim validation and trimming utility is evidence that such proofs

can be validated in a similar time to solving. All DRAT proofs emitted by solvers

in the 2014 SAT competition were validated within the competition time constraints

using DRAT-trim. Furthermore, DRAT-trim optionally produces trimmed formulas,

150

optimized DRAT proofs, and dependency graphs. These outputs are already being

used as input to MUS extraction or interpolation utilities.

The key advancement of the DRAT format is the addition of the RAT check

to traditional clausal proofs. Validation of proofs containing RAT clauses was me-

chanically verified using the ACL2 theorem proving system. This involves specifying

unsatisfiability for a formula, developing an algorithm to validate RAT proofs, and

then formally proving that validation implies unsatisfiability. This is evidence that

validated RAT proofs guarantee unsatisfiability of the original formula.

A new ACL2 data structure and associated theory enable users to model C-

style memory management by introducing multiple fields in a single array. This is an

good first step towards applying mechanical verification to fast formal models and

providing users with an efficient and convenient theory. This method of modeling is

already being adopted by other ACL2 users who want to mechanically verify code

without sacrificing performance.

Another iteration of a mechanically-verified RAT checker demonstrates that

an efficient implementation is possible within ACL2. This was accomplished by

changing the data structure of the only mutable structure in the original algorithm,

the assignment. Reads and writes were reduced from linear time operations to con-

stant time operations by means of arrays in ACL2 STOBJs. The array-based imple-

mentation is proven equivalent to the original algorithm and, thus, benefits from the

previous proof of correctness. Although this implementation does not contain all of

the features and techniques of DRAT-trim, it is a significant step towards efficient,

mechanically-verified validation of SAT solvers.

151

In a more general sense, this work points the way towards mechanical veri-

fication of C-style code. High-level, abstract algorithms (such as the one shown in

Chapter 5) can be proven equivalent to a state-based, efficient model (an example

of which is given in Chapter 8). The work presented here documents this process

for unsatisfiability proof validation but can be applied to other programs as well. In

this respect, our approach provides a starting point for transforming and verifying

low-level code.

152

Bibliography

[1] Michaël Armand, Benjamin Grégoire, Arnaud Spiwack, and Laurent Théry.

Extending Coq with imperative features and its application to SAT verification.

In Interactive Theorem Proving (ITP), volume 6172 of LNCS, pages 83–98.

Springer, 2010.

[2] Mickaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent

Théry, and Benjamin Wener. Verifying SAT and SMT in Coq for a fully auto-

mated decision procedure. In International Workshop on Proof-Search in Ax-

iomatic Theories and Type Theories (PSATTT), 2011.

[3] Gilles Audemard, George Katsirelos, and Laurent Simon. A restriction of ex-

tended resolution for clause learning SAT solvers. In Maria Fox and David

Poole, editors, Proceedings of the 24th AAAI Conference on Artificial Intelli-

gence (AAAI). AAAI Press, 2010.

[4] Ken E. Batcher. Sorting networks and their applications. In Proceedings of

the Spring Joint Computer Conference, AFIPS 1968 (Spring), pages 307–314.

ACM, 1968.

[5] Jason Baumgartner, Hari Mony, Viresh Paruthi, Robert Kanzelman, and Geert

Janssen. Scalable sequential equivalence checking across arbitrary design trans-

153

formations. In International Conference on Computer Design (ICCD), pages

259–266. IEEE, 2007.

[6] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and

harnessing the potential of clause learning. Journal of Artificial Intelligence

Research (JAIR), 22:319–351, 2004.

[7] Anton Belov, Marijn J. H. Heule, and João P. Marques-Silva. MUS extraction

using clausal proofs. In Theory and Applications of Satisfiability Testing (SAT),

volume 8561 of LNCS, pages 48–57. Springer, 2014.

[8] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development: Coq’Art: The Calculus of Inductive Constructions. Texts in The-

oretical Computer Science. Springer, 2004.

[9] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling

and Computation (JSAT), 4:75–97, 2008.

[10] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, and

Yunshan Zhu. Symbolic model checking using SAT procedures instead of BDDs.

In Design Automation Conference (DAC), pages 317–320. ACM, 1999.

[11] Armin Biere, Marijn J. H. Heule, and Hans van Maaren. Handbook of Satisfia-

bility, volume 185. IOS Press, 2009.

[12] Niklas Sörensson Armin Biere. Minimizing learned clauses. In Theory and

Applications of Satisfiability Testing (SAT), volume 5584 of LNCS, pages 237–

243. Springer, 2009.

154

[13] Sascha Böhme and Tjark Weber. Fast LCF-style proof reconstruction for z3.

In Interactive Theorem Proving (ITP), volume 6172 of LNCS, pages 179–194.

Springer, 2010.

[14] R. C. Bose and R. J. Nelson. A sorting problem. Journal of the ACM (JACM),

9(2):282–296, April 1962.

[15] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and

debugging of SAT and QBF solvers. In Theory and Applications of Satisfiability

Testing (SAT), volume 6175 of LNCS, pages 44–57. Springer, 2010.

[16] Yibin Chen, Sean Safarpour, João P. Marques-Silva, and Andreas Veneris. Au-

tomated design debugging with maximum satisfiability. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 29(11):1804–1817,

2010.

[17] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ANSI-C programs. In Tools and Algorithms for the Construction and Analysis

of Systems, volume 2988 of LNCS, pages 168–176. Springer, 2004.

[18] Michael Codish, Lúıs Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp.

Twenty-five comparators is optimal when sorting nine inputs (and twenty-nine

for ten). In International Conference on Tools with Artificial Intelligence (IC-

TAI), pages 186–193. IEEE, 2014.

[19] John Conway. The game of life. Scientific American, 223(4):4, 1970.

155

[20] Stephen A. Cook. A short proof of the pigeon hole principle using extended

resolution. SIGACT News, 8(4):28–32, 1976.

[21] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of proposi-

tional proof systems. The Journal of Symbolic Logic, 44(01):36–50, 1979.

[22] Ashish Darbari, Bernd Fischer, and João P. Marques-Silva. Industrial-strength

certified SAT solving through verified SAT proof checking. In Theoretical Aspects

of Computing (ICTAC), volume 6255 of LNCS, pages 260–274. Springer, 2010.

[23] Jared Davis. A Self-Verifying Theorem Prover. PhD thesis, The University of

Texas at Austin, December 2009.

[24] Jared Davis and Sol Swords. Bit-blasting ACL2 theorems. In International

Workshop on the ACL2 Theorem Prover and its Applications (ACL2), volume 70

of EPTCS, pages 84–102, 2011.

[25] Jared Davis and Sol Swords. Verified AIG algorithms in ACL2. In International

Workshop on the ACL2 Theorem Prover and its Applications (ACL2), volume

114 of EPTCS, pages 95–110, 2013.

[26] Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[27] Martin Davis and Hilary Putnam. A computing procedure for quantification

theory. Journal of the ACM (JACM), 7(3):201–215, 1960.

156

[28] Leonardo M. de Moura and Nikolaj Bjørner. Proofs and refutations, and Z3.

In Logic for Programming, Artificial Intelligence and Reasoning (LPAR) Work-

shops, volume 418 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[29] Michael R. Dransfield, Victor W. Marek, and Miros law Truszczyński. Satisfia-

bility and computing van der Waerden numbers. In Theory and Applications of

Satisfiability Testing (SAT), pages 1–13. Springer, 2004.

[30] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable

and clause elimination. In Theory and Applications of Satisfiability Testing

(SAT), volume 3569 of LNCS, pages 61–75. Springer, 2005.

[31] Paul Erdős. Some unsolved problems. The Michigan Mathematical Journal,

4(3):291–300, 1957.

[32] Hiroshi Fujita, Miyuki Koshimura, and Ryuzo Hasegawa. SCSat: a soft con-

straint guided SAT solver. In Theory and Applications of Satisfiability Testing

(SAT), volume 7962 of LNCS, pages 415–421. Springer, 2013.

[33] Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability

for CNF formulas. In Design, Automation and Test in Europe Conference and

Exhibition (DATE), pages 10886–10891. IEEE, 2003.

[34] Evguenii I. Goldberg, Mukul R. Prasad, and Robert K. Brayton. Using SAT for

combinational equivalence checking. In Design, Automation and Test in Europe

Conference and Exhibition (DATE), pages 114–121. IEEE, 2001.

157

[35] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey theory.

John Wiley and Sons, New York, second edition, 1990.

[36] Arie Gurfinkel and Yakir Vizel. DRUPing for interpolants. In Formal Methods

in Computer-Aided Design (FMCAD), pages 99–106. FMCAD Inc, 2014.

[37] Armin Haken. The intractability of resolution. Theoretical Computer Science,

39:297–308, 1985.

[38] Christiaan Hartman, Marijn J. H. Heule, Kees Kwekkeboom, and Alain Noels.

Symmetry in gardens of eden. Electronic Journal of Combinatorics, 20(3):16,

2013.

[39] Marijn J. H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler. Trimming

while checking clausal proofs. In Formal Methods in Computer-Aided Design

(FMCAD), pages 181–188. IEEE, 2013.

[40] Marijn J. H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler. Verifying refu-

tations with extended resolution. In International Conference on Automated

Deduction (CADE), volume 7898 of LNAI, pages 345–359. Springer, 2013.

[41] Marijn J. H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler. Bridging the

gap between easy generation and efficient verification of unsatisfiability proofs.

Software Testing, Verification, and Reliability (STVR), 24(8):593–607, 2014.

[42] Marijn J. H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler. Expressing

symmetry breaking in DRAT proofs. In International Conference on Automated

Deduction (CADE), 2015. Under submission.

158

[43] Marijn J. H. Heule, Matti Järvisalo, and Armin Biere. Clause elimination pro-

cedures for CNF formulas. In Logic for Programming, Artificial Intelligence,

and Reasoning (LPAR), volume 6937 of LNCS, pages 357–371. Springer, 2010.

[44] Marijn J. H. Heule and Hans van Maaren. Look-Ahead Based SAT Solvers,

chapter 5, pages 155–184. IOS Press, 2009.

[45] Matti Järvisalo, Armin Biere, and Marijn J. H. Heule. Simulating circuit-level

simplifications on CNF. Journal of Automated Reasoning, 49(4):583–619, 2012.

[46] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In

International Joint Conference on Automated Reasoning (IJCAR), volume 7364

of LNCS, pages 355–370. Springer, 2012.

[47] Daher Kaiss, Marcelo Skaba, Ziyad Hanna, and Zurab Khasidashvili. Industrial

strength SAT-based alignability algorithm for hardware equivalence verification.

In Formal Methods in Computer-Aided Design (FMCAD), pages 20–26. IEEE,

2007.

[48] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided

Reasoning: An Approach. Kluwer Academic Publishers, Boston, June 2000.

[49] Chantal Keller. Extended resolution as certificates for propositional logic. In

International Workshop on Proof Exchange for Theorem Proving (PxTP), vol-

ume 14 of EPiC Series, pages 96–109. EasyChair, 2013.

[50] Donald E. Knuth. The art of computer programming: sorting and searching,

volume 3. Pearson Education, 1998.

159

[51] Boris Konev and Alexei Lisitsa. A SAT attack on the Erdős Discrepancy Con-

jecture. In Theory and Applications of Satisfiability Testing (SAT), volume 8561

of LNCS, pages 219–226. Springer, 2014.

[52] Michal Kouril and Jerome L. Paul. The van der Waerden number W(2,6) is

1132. Experimental Mathematics, 17(1):53–61, 2008.

[53] Oliver Kullmann. On a generalization of extended resolution. Discrete Applied

Mathematics, 96-97:149–176, 1999.

[54] Stéphane Lescuyer and Sylvain Conchon. A reflexive formalization of a SAT

solver in Coq. In International Conference on Theorem Proving in Higher Order

Logics (TPHOLs), 2008.

[55] Norbert Manthey, Marijn J. H. Heule, and Armin Biere. Automated reencoding

of boolean formulas. In Proceedings of Haifa Verification Conference (HVC),

volume 6397 of LNCS, pages 102–117. Springer, 2012.

[56] Filip Marić. Formalization and implementation of modern SAT solvers. Journal

of Automated Reasoning, 43(1):81–119, 2009.

[57] Filip Marić. Formal verification of a modern SAT solver by shallow embedding

into Isabelle/HOL. Theoretical Computer Science, 411(50):4333–4356, 2010.

[58] João P. Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven Clause

Learning SAT Solvers, chapter 4, pages 131–153. IOS Press, 2009.

160

[59] Alan Mishchenko, Satrajit Chatterjee, Robert Brayton, and Niklas Een. Im-

provements to combinational equivalence checking. In International Conference

on Computer-Aided Design (ICCAD), pages 836–843. IEEE, 2006.

[60] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient SAT solver. In Design Automation

Conference (DAC), pages 530–535. ACM, 2001.

[61] Magnus O. Myreen and Jared Davis. The reflective Milawa theorem prover is

sound. In Interactive Theorem Proving (ITP), volume 8558 of LNCS, pages

421–436. Springer, 2014.

[62] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Efficient MUS extraction

with resolution. In Formal Methods in Computer-Aided Design (FMCAD), pages

197–200. IEEE, 2013.

[63] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[64] Duckki Oe and Aaron Stump. Combining a logical framework with an RUP

checker for SMT proofs. In Satisfiability Modulo Theories (SMT), page 40,

2011.

[65] Duckki Oe, Aaron Stump, Corey Oliver, and Kevin Clancy. versat: a verified

modern SAT solver. In Verification, Model Checking, and Abstract Interpretation

(VMCAI), pages 363–378. Springer, 2012.

161

[66] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype verifi-

cation system. In International Conference on Automated Deduction (CADE),

volume 607 of LNCS, pages 748–752. Springer, 1992.

[67] John Alan Robinson. A machine-oriented logic based on the resolution principle.

Journal of the ACM (JACM), 12(1):23–41, 1965.

[68] Vadim Ryvchin and Ofer Strichman. Faster extraction of high-level minimal

unsatisfiable cores. In Theory and Applications of Satisfiability Testing (SAT),

volume 6695 of LNCS, pages 174–187. Springer, 2011.

[69] Natarajan Shankar and Marc Vaucher. The mechanical verification of a DPLL-

based satisfiability solver. Electronic Notes in Theoretical Computer Science,

269:3–17, 2011.

[70] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety proper-

ties using induction and a SAT-solver. In Formal Methods in Computer-Aided

Design (FMCAD), pages 127–144. Springer, 2000.

[71] Laurent Simon. Post mortem analysis of SAT solver proofs. In Pragmatics

of SAT (POS) Workshop, volume 27 of EPiC Series, pages 26–40. EasyChair,

2014.

[72] Anna Slobodová, Jared Davis, Sol Swords, and Warren A. Hunt, Jr. A flexible

formal verification framework for industrial scale validation. In International

Conference on Formal Methods and Models for Codesign (MEMOCODE), pages

89–97. IEEE, 2011.

162

[73] Aaron Stump, Morgan Deters, Adam Petcher, Todd Schiller, and Timothy Simp-

son. Verified programming in Guru. In Workshop on Programming Languages

Meets Program Verification (PLPV), pages 49–58. ACM, 2009.

[74] Grigori S. Tseitin. On the complexity of derivation in propositional calculus.

In J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2, pages

466–483. Springer-Verlag, 1983.

[75] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In

International Symposium on Artificial Intelligence and Mathematics (ISAIM),

2008.

[76] Yakir Vizel, Vadim Ryvchin, and Alexander Nadel. Efficient generation of small

interpolants in CNF. In Computer Aided Verification (CAV), volume 8044 of

LNCS, pages 330–346. Springer, 2013.

[77] Tjark Weber. Efficiently checking propositional resolution proofs in Is-

abelle/HOL. In International Workshop on the Implementation of Logics

(IWIL), volume 212, pages 44–62, 2006.

[78] Tjark Weber and Hasan Amjad. Efficiently checking propositional refutations

in HOL theorem provers. Journal of Applied Logic, 7(1):26–40, 2009.

[79] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt, Jr. Mechanical

verification of SAT refutations with extended resolution. In Interactive Theorem

Proving (ITP), volume 7998 of LNCS, pages 229–244. Springer, 2013.

163

[80] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt, Jr. DRAT-trim:

Efficient checking and trimming using expressive clausal proofs. In Theory and

Applications of Satisfiability Testing (SAT), volume 8561 of LNCS, pages 422–

429. Springer, 2014.

[81] Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent

resolution-based checker: Practical implementations and other applications. In

Design, Automation and Test in Europe Conference and Exhibition (DATE),

pages 880–885. IEEE, 2003.

164

