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Morphological characters have a long history of use in the estimation of

phylogenetic trees. Datasets consisting of morphological characters are most often

analyzed using the maximum parsimony criterion, which seeks to minimize the

amount of character change across a phylogenetic tree. When combined with

molecular data, characters are often analyzed using model-based methods, such

as maximum likelihood or, more commonly, Bayesian estimation. The e�cacy of

likelihood and Bayesian methods using a common model for estimating topology

from discrete morphological characters, the Mk model, is poorly-explored.

In Chapter One, I explore the e�cacy of Bayesian estimation of phylogeny,

using the Mk model, under conditions that are commonly encountered in paleon-

tological studies. Using simulated data, I describe the relative performances of

parsimony and the Mk model under a range of realistic conditions that include

common scenarios of missing data and rate heterogeneity.
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I further examine the use of the Mk model in Chapter Two. Like any model,

the Mk model makes a number of assumptions. One is that transition between

character states are symmetric (i.e., there is an equal probability of changing from

state 0 to state 1 and from state 1 to state 0). Many characters, including alleged

Dollo characters and extremely labile characters, may not �t this assumption. I

tested methods for relaxing this assumption in a Bayesian context. Using empir-

ical datasets, I performed model �tting to demonstrate cases in which modelling

asymmetric transitions among characters is preferred. I used simulated datasets

to demonstrate that choosing the best-�t model of transition state symmetry can

improve model �t and phylogenetic estimation.

In my �nal chapter, I looked at the use of partitions to model datasets more

appropriately. Common in molecular studies, partitioning breaks up the dataset

into pieces that evolve according to similar mechanisms. These pieces, called par-

titions, are then modeled separately. This practice has not been widely adopted

in morphological studies. I extended the PartitionFinder software, which is used

in molecular studies to score di�erent possible partition schemes to �nd the one

which best models the dataset. I used empirical datasets to demonstrate the ef-

fects of partitioning datasets on model likelihoods and on the phylogenetic trees

estimated from those datasets.
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Chapter 1

Introduction

For this dissertation, I have performed experiments that presuppose the

importance of morphological data, and require some understanding of this data

type to fully comprehend. Here I present a brief overview of morphological data,

why this type of data is still relevant in the genomic era, and some of the speci�c

challenges of modeling morphology.

1.1 Neontologists and morphological data

For neontologists, morphological data has largely been replaced with DNA

sequence data in phylogenetic analysis. There are many reasons for this. Firstly,

molecular sequencing has fallen substantially in cost. At the time of writing, I am

involved with a project to obtain genome-scaled phylogenetic information using

double-digest Restriction-Enzyme Associated DNA elements. The cost for about

40,000 markers for 300 specimens? About $8000, not including collection expenses

or data processing labor. For reference, the National Science Foundation Doctoral

Dissertation grant I earned was for $6600. A graduate researcher could fund a

substantial amount of data collection o� of one single grant. Comparatively, the

cost of doing a paleontological dig, or traveling to multiple museums for data col-
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lection can be quite high, particularly given the small amount of data that can be

collected.

Second, the assembly of a DNA matrix from raw data is also highly re-

peatable and often quick. Most researchers use one of several software packages.

Provided the commands for what exact steps were taken by the researcher in the

assembly of the data matrix, another researcher should be able to reproduce the

matrix exactly or nearly exactly. Software for assembling data matrices can often

be run in a single day.

Lastly, managing data availability for sequence data is often simpler for

molecular data. Once collected, molecular sequence data are often uploaded to

GenBank, a government-funded repository for sequence data. While several web-

sites for the archival of morphological data exist, notably Cladestore (Paleobiology

Research Group, 2011) and Morphobank (O’Leary and Kaufman, 2012), many oth-

ers have been plagued by a lack of permanent commitment from funders and a

need to rely on the e�orts of single individuals or lab groups to remain viable

(such as the now-defunct digital archive of Peter Wagner (2000)).

Likewise, maintenance of the raw materials for DNA data is easier. A small

amount of tissue can be maintained in a laboratory freezer and revisited when nec-

essary. For morphological data, a limited number of specimens may be available,

and housed within collections, necessitating travel whenever more data are needed

or the interpretation of the data need to be revised.

In short, it is hard to compete with the convenience of using molecular
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sequence data. However, not all questions can be answered with molecular data.

Preserved morphological data is the only way to directly observe organisms from

the past. Thus, for paleontologists and neontologists addressing questions about

historical biology, morphology continues to be the predominant source of infor-

mation for understanding the ecology and evolution of past organisms.

I will now consider morphological data, how they compare to molecular

data, and how we can use the toolkit of modern likelihood based phylogenetics

with this data source.

1.2 Morphological Data
1.2.1 What are morphological data?

In a molecular study, a single column in a data matrix corresponds to a sin-

gle site that occurs at a position within a sequenced read of DNA. Through the use

of multiple sequence alignment, homology is assigned such that all nucleotides

in a column are the descendants of a common ancestor. While the researcher

is, by attempting to align DNA sequences, assuming that the DNA sequences in

question are from the same gene or gene fragment, the assignment of a particular

nucleotide to a column of homologous bases is often handled entirely computa-

tionally (though exceptions exist, such as in the case of rRNAs).

In a morphological matrix, each column corresponds to a morphological

character, a representation of one aspect of the individual’s form. Each unique

form in the column is referred to as a character state. In the case of morphological

data, whether a character state possessed by a taxon is homologous to a character
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state possessed by another taxon is decided before adding it to a matrix, and is

generally done by a researcher. Homology assignment itself is a subject of exten-

sive literature discussion. Panchen (1992) argued that authors working in various

�elds of biology have used 9 general de�nitions of homology. I will restrict this

discussion to one of the most common de�nitions (Janies and DeSalle, 1999) for

researchers assembling phylogenetic data matrices. This is phrased succinctly by

Ernst Mayr (1946): two structures are homologous if they are "derived from an

equivalent characteristic of the common ancestor". This is a phylogenetic de�-

nition, putting at the fore descent with modi�cation. Under this de�nition, the

character states possessed by each taxon in the data matrix for a speci�c charac-

ter would be considered to be homologous if they were derived from that same

character in the common ancestor of all taxa in the matrix. If a taxon has indepen-

dently gained the character from a di�erent structure, this is not a homologous

character per Mayr’s de�nition, but an analogous character.

In practice, we may not have access to the common ancestor of all the

species in our data matrix in order to check for the character in question. Assign-

ment of homology per this de�nition is often performed by mapping the character

in question to a phylogeny built from independent data. If the character supports

natural groupings of organisms, such as monophyletic clades, then it is homolo-

gous. If not, it may have been independently-derived multiple times. Supporting

evidence, such as evidence from developmental biology, may be considered but is

unavailable for many taxa, particularly extinct taxa.

In the assembly of a morphological data matrix, using phylogenetic criteria,
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homology is a hypothesis to be tested. The researcher is a crucial part of this

process, being needed not solely to collect the raw data, but to make and test the

hypothesis of homology. This is a critical di�erence between the assembly of a

morphological data matrix and a DNA matrix.

At any given site in a DNA sequence alignment, there are four possible

states of nucleotides, corresponding to the four bases. Morphological characters

are generally collapsed into discrete states. The most commonly used are binary

characters; coded as 0 and 1. For phylogenetic estimation, multistate characters

can also be used. Most software can accommodate in excess of 10 character states

per character.

The codings used for these characters are, to some extent, arbitrary. Whereas,

for example, zero may mean the absence of a character across all characters, the

magnitude of change between character states is unlikely to be equal for all char-

acters. For example, going from absence to presence of an additional duplicate

in a segmented form (which may be a simple replication of a genetic element)

might be less developmentally challenging than going from absence to presence

of an additional joint in a non-segmented form. This quality of arbitrary labeling

has implications for how we label and de�ne a transition matrix for phylogentic

inference, and will be discussed further in Chapter Two.

The state space of morphological data is unde�ned. For nucleotide data,

the size of the state space is four, since there are four nucleotides. When we use a

transition matrix for nucleotide data, we can de�ne a probability of change from

one nucleotide to each of the other three nucleotides. For example, we know that
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a transition is more likely than a transversion based on biochemical evidence. If

a given nucleotide is not observed at a particular site, that non-observance event

can be taken into account when scoring the site likelihood given a model. Mor-

phological characters occupy a state space of unknown dimensions. If character

states 0 and 1 are the only observed states for a given character, we don’t know if

this is because 0 and 1 are the only possible states observable, or if this is because

we simply haven’t found any specimens which have another state. An unde�ned

state space limits the model assumptions that can be made about the data.

Lastly, morphological data are often subject to acquisition bias. The esti-

mation of phylogenetic trees from morphological data is dominated by parsimony.

Under parsimony, only characters which favor one subset of trees over another are

recorded in data matrices. When we build trees with non-parsimony methods, ex-

clusion of certain classes of state-to-state changes a priori falsely decreases the

probability of observing those changes. This bias must be corrected for, or else it

tends to in�ate branch lengths and lead to topological error (Lewis, 2001).

1.2.2 Why do we continue to need morphological data?

I posit that the most important reason to continue collecting morphological

data is to resolve the relationships of fossil organisms. Despite advances in ancient

DNA technology, fossils will continue to be the only way to obtain phylogenetic

data from long-extinct organisms. Considering that some estimates place 99.9% of

Earth’s biodiversity as extinct (Novacek and Wheeler, 1992), there is a wide range

of organisms for which we will never have genetic material. If we want trees for
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these organisms, or we want to incorporate them on trees with extant organisms,

we will need to incorporate morphological data.

Fossil data will also continue to be important for time calibration of phy-

logenetic trees. Traditionally, they have been used as simple calibration points,

but some recent methods allow fossils to be fully integrated into a dating analysis

(Pyron, 2011; Ronquist et al., 2012; Heath et al., 2014). These methods are still very

new, but empirical examples indicate that these methods may be more e�ective

than the traditional node-based calibration paradigm (Heath et al., 2014).

Likewise, in the realm of comparative methods, incorporation of fossil data

has been shown to be very important for estimating macroevolutionary models,

particularly for taxa with roots in the deep past (Slater et al., 2012). As open-

source and highly accessible tools for inference of long-term evolutionary patterns

continue to grow in popularity, estimating phylogenetic trees from combined data

will continue to be important for their use.

1.3 Applying methods from molecular biology to morpho-
logical data

In this dissertation, I address three components of phylogenetic analysis.

Each of these components represents an application of an analytical method from

molecular phylogenetics to morphological data. Broadly, I will address the use

of likelihood-based models with morphological data, the modeling of heteroge-

neous rates of character change, and the partitioning of morphological characters.

Each of these three topics presents its own challenges in adapting the molecular
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methodology to morphological data.

1.3.1 Likelihood-Based Modeling

Phylogenetic trees in molecular systematics today are often estimated us-

ing either pure likelihood estimation or Bayesian estimation. These methods both

rely on a likelihood function - a mathematical model. The mathematical model is

used to calculate the likelihood score of the data given that particular model. In

a maximum likelihood context, di�erent trees and model parameters are sampled

for a given model, and the set of parameters that maximizes the likelihood score

(the maximum likelihood estimate) is accepted as the best solution. In a Bayesian

context, this estimation also takes into account any priors (distributions constrain-

ing the values a model parameter can take) the researcher has speci�ed based on

existing knowledge about their clade of interest. In Bayesian estimation, rather

than a single point estimate of topology, a sample of trees is returned. This sample

is often summarized in a consensus tree by the researcher. We can think of these

two methods as di�ering in terms of input information, with Bayesian analysis

incorporating more of the researcher’s knowledge and prior belief about the data,

and in terms of goal, with Bayesian methods producing a sample of trees rather

than a single estimate.

Trees estimated from morphological data have typically been estimated

under the parsimony optimality criterion, under which the number of character

changes along a algorithmically-proposed tree is counted. The proposed tree is

then perturbed by moving branches and re-scored for number of character changes.
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The goal of this analysis is to �nd the tree that has the lowest number of charac-

ter changes. Some datasets may have one most optimal tree under parsimony,

whereas others may have many trees that have the same parsimony score. In the

latter case, much like summarizing a sample of Bayesian trees, the researcher will

often build a consensus tree.

Why one would choose to use a likelihood-based method over parsimony

estimation has been covered extensively in the literature, and I will present only

a brief summary here. There are both positive and negative arguments for using

likelihood. Likelihood-based inference have desirable properties. The �rst is that

the speci�c model that applies to morphological data, the Mk model, is statistically

consistent. This means that as the amount of data approaches in�nity, the analysis

will converge to the correct answer as long as the assumptions of the model are

met. Parsimony does not have this property and can support an incorrect answer

more strongly with the addition of more data. Second, likelihood-based methods

estimate a rate-based branch length in changes per site. Parsimony branch lengths

are commonly expressed in the number of character changes along a branch. A

rate-based branch length is required in most divergence dating methods (meth-

ods for calculating the absolute time since divergence of two or more taxa) and

comparative methods (methods by which historical evolutionary dynamics can be

inferred). The ability to perform these types of analyses should be a powerful

attractant to researchers who work with morphological data.

The negative argument is that parsimony, in many conditions, can be demon-

strated to be misleading in a number of ways (Felsenstein, 1978). In particular, par-
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simony is unable to account for superimposed changes. The method is, therefore,

misleading for characters that demonstrate a high rate of change since parsimony

cannot separate homoplasy from similarity due to inheritance. This inability is of-

ten the cause of long branch attraction (Felsenstein, 1978), or branches with more

character change being falsely grouped together on a phylogeny. Characters in a

dataset evolving at di�erent rates also lead to elevated error for parsimony esti-

mation (Kuhner and Felsenstein, 1994).

Still, doubts have lingered about the ability of likelihood methods, particu-

larly based on the Mk model, the only model currently implemented for estimation

of phylogenetic trees from morphological characters. In Chapter One, I use simula-

tions to address model e�cacy, ultimately �nding that a Bayesian implementation

of the Mk model outperforms parsimony for topology estimation under realistic

conditions of missing data.

1.3.2 Variation Among Characters

Models in molecular biology have a wide range of available parameters

from which users can choose. Researchers will generally �t a model of evolution

to their data using a statistical criterion that tries to balance goodness of �t with

parameter richness. This is commonly accomplished through programmatic com-

parison of model likelihood scores. The end result of this process is the choice of

a set of parameters, chosen by use of such a criterion together with the data, that

give a âĂĲbest estimateâĂİ model to use for phylogenetic inference. The data are

then used additionally to give estimates for these parameters, which may be used
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as seed values or as �xed values in the subsequent analysis.

Estimation of model parameters in a molecular context relies on the known

properties of nucleotides. Di�erent models have di�erent transition matrices, which

assume di�erent probabilities of change between nucleotide states. Variation in

the rate of evolution is typically modeled via the use of a gamma distribution (Yang,

1996). Accounting for variation in evolutionary rate among sites has long been un-

derstood to be critical for branch-length estimation. In a likelihood model, branch

lengths are co-estimated with tree topology, so branch length error can lead to

topological error. Generally, when modeling rate heterogeneity across characters

in a matrix in a likelihood model, the researcher speci�es that they would like to

allow heterogeneity. The researcher does not usually specify which sites should

have which rates. Typically, this binning is performed computationally during tree

estimation.

Under parsimony, di�erent probabilities of character change are often not

accounted for. Terminology can be hazy when discussing parsimony, but broadly,

most parsimony performed is unweighted: no individual characters count more

towards the parsimony score than others, nor do any speci�c character changes.

"Weighted" parsimony is used to refer to multiple methods. The �rst is the method

of weighting certain characters more than other characters. Researchers may do

this if they have reason to believe that a certain character is less faithful to the

true tree and want that character to have less of an e�ect on the parsimony score.

The second method is weighting di�erent kinds of changes di�erently. This may

be useful to a researcher who has reason to believe that certain changes, across
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characters, are less likely than others. The downside of these methods is that

the researcher must often assign weights a priori with the exception of implied

weighting methods.

In my second chapter, I look at the issue of among-character variation in

the symmetry of character change (i.e. if the probability of changing from 0 to 1

is the same as 1 to 0). This chapter borrows heavily from statistical phylogenetics

in a molecular context, seeking to apply a technique that has not been previously-

discussed in the morphological literature: the equilibrium character frequency, or

how often we expect to see each character at a site. Using a mixture of simulation

and empirical datasets, I conclude that appropriately modeling among-character

variation in symmetry improves the �t of models and the quality of topological

estimation from morphological data.

1.3.3 Partitioning

Partitioning refers to breaking up a dataset into smaller subsets that can be

modeled separately. The bene�ts of doing this have been expounded by numerous

empirical (examples include Li et al. (2008); Castoe et al. (2004); ?) and simulation

studies (Brown and Lemmon, 2007). However, most molecular studies use much

larger datasets than do morphological studies (see Chapter 3, Figure 1).

Only one study, to my knowledge, has done rigorous model �tting and

hypothesis testing to use partitions with their morphological data (Clarke and

Middleton, 2008). Other analyses have managed the issue of di�erential modes

of evolution through parsimony weighting, as described in the previous section.
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In my �nal chapter, I introduce an extension to an existing software pack-

age, PartitionFinder, to apply automated partitioning to morphological data. The

algorithm in PartitionFinder uses per-site evolutionary rates to assign sites to

partitions. Using empirical data, I �nd evidence of improved model �t for some

datasets. However, when using a dataset to which partitioning has been applied in

the past, I �nd that the previous author’s biologically-based partitioning scheme

is a better �t to the data than any of those chosen by PartitionFinder.

1.4 The future of likelihood-based morphological phyloge-
netics

The three chapters I have written represent �rst forays into expanding

our capacity to model morphological data. Although they suggest strongly that

likelihood-based methods are a viable analytical tool for the morphologist, more

work is needed to increase the �delity of likelihood-based methods to biological

reality. I consider some avenues for future research on this point ahead.

1.4.1 Understanding the performance of currently-used models

Compared to their adoption for molecular phylogenetics, likelihood-based

analyses are seldom used in morphological phylogenetics, and are most commonly

used in conjunction with molecular data (sometimes called "combined analyses").

It is my hope that my work in Chapter One has addressed some of the concerns

of morphological researchers and empowered them to test these methods on their

own data. Increased application of these methods to empirical datasets will high-
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light the situations and datasets in which likelihood-based estimation can be ex-

pected to perform well, and can be expected to perform poorly with morphological

data. These applications will be a boon to methods developers.

1.4.2 Model Development

Currently, there is one model, Lewis’ Mk model (Lewis, 2001), widely-

implemented for use with morphological data. This model uses a generalization of

the Jukes-Cantor transition matrix, in which all state changes are held to be equally

likely. Undoubtedly, di�erent transition matrices could be used by researchers.

Implementing user-speci�ed transition matrices is hard in the traditional soft-

ware paradigm in which transition matrices are embedded in the software itself.

But newer software, such as RevBayes, is written to allow users to propose their

own models. Careful model selection among model modi�cations proposed by

researchers may yield dataset-speci�c best-�t models. Such explorations will be

useful for locating promising new modi�cations for standard assumptions.

1.4.3 Partitioning

My third chapter presents an initial exploration of data matrix partitioning

for morphological data. It was a mixed success: our results indicate that partition-

ing in the way we performed it (clustering sites by their evolutionary rate) is an

improvement over not partitioning the data at all. However, previously-proposed

methods of partitioning based on anatomical subregion strongly outperform my

method of partitioning. This suggests that biologically and mechanistically-inspired
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methods of partitioning should be explored further. In Chapter Two, I explore

using a beta distribution to model among-site variation in character change het-

erogeneity. In the subsection above, I propose that newer software may allow

researchers to use di�erent transition matrices than have been available. It may

be that using these di�erences in evolutionary models provides a better basis upon

which to partition.

1.5 Conclusion

Morphological data will continue to play an important role in evolution-

ary and phylogenetic inference. But to realize this, analytical methods need to

become fully developed, and more faithful to the evolutionary processes under-

scoring morphological data. There is a clear need for communication between the

methods developers and the researchers who employ the methods. As use of mor-

phological data continues to grow, phylogeneticists will be presented with more

and more empirical examples of likelihood-based methods applied to morphology.

It is crucial that methods developers integrate the lessons learned from empirical

case studies for more robust likelihood-based methods.
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Chapter 2

Bayesian Analysis Using a Simple Likelihood
Model Outperforms Parsimony for Estimation of
Phylogeny from Discrete Morphological Data

2.1 Abstract

Despite the introduction of likelihood-based methods for estimating phylogenetic

trees from phenotypic data, parsimony remains the most widely-used optimal-

ity criterion for building trees from discrete morphological data. However, it has

been known for decades that there are regions of solution space in which parsi-

mony is a poor estimator of tree topology. Numerous software implementations

of likelihood-based models for the estimation of phylogeny from discrete morpho-

logical data exist, especially for the Mk model of discrete character evolution. Here

we explore the e�cacy of Bayesian estimation of phylogeny, using the Mk model,

under conditions that are commonly encountered in paleontological studies. Us-

ing simulated data, we describe the relative performances of parsimony and the

Mk model under a range of realistic conditions that include common scenarios of

missing data and rate heterogeneity.1

1This chapter was published as Wright and Hillis 2014, PLoS ONE 9(10): e109210.
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2.2 Introduction

For many decades, parsimony methods have been the most widely used ap-

proaches for estimation of phylogeny from discrete phenotypic data, despite the

availability of likelihood-based methods for phylogenetic analysis. Maximum like-

lihood and Bayesian methods are commonly used in data sets combining molecules

and morphology (Nylander et al., 2004; Fenwick et al., 2009; Wiens et al., 2010;

Asher and Hofreiter, 2006; O’Leary et al., 2013), but are used less frequently in

morphology-only data sets (Lee and Worthy, 2012). As such, the e�cacy of these

methods under a range of conditions is not well-explored. In particular, the condi-

tions that are investigated in most paleontological studies (many characters miss-

ing across sampled taxa, and rate heterogeneity among di�erent sampled charac-

ters) lead some investigators to raise questions about the applicability of model-

based approaches under these conditions (Lee and Worthy, 2012; Golobo� and Pol,

2004; Wagner, 2012; Livezey and Zusi, 2007).

At the present, the most widely implemented (in both pure likelihood and

Bayesian contexts) model for estimating phylogenetic trees from discrete pheno-

typic data is the Mk model proposed by Lewis in 2001. This model is a generaliza-

tion of the 1969 Jukes-Cantor model of nucleotide sequence evolution (Jukes and

Cantor, 1969). The Mk model assumes a Markov process for character change,

allowing for multiple character-state changes along a single branch. The prob-

ability of change in this model is symmetrical; in other words, the probability

of changing from one state to another is the same as change in the reverse direc-

tion. This assumption can be relaxed in Bayesian implementations through the use
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of a hyperprior allowing variable change probabilities among states (Ronquist F.

and M., 2011; Ronquist and Huelsenbeck, 2003; Huelsenbeck and Ronquist, 2001).

As many morphologists collect only variable or parsimony-informative characters

(i.e., characters that can be used to discriminate among di�erent tree topologies

under the parsimony criterion), the distribution of characters collected does not

re�ect the distribution of all observable characters. This sampling bias can lead

to poor estimation of the rate of character evolution within a data set, as well as

in�ated estimates of character change along branches of the estimated tree. To

counteract this bias, Lewis (Lewis, 2001) introduced versions of the Mk model that

correct for biases in character collection. These versions were subsequently shown

to have the desirable quality of statistical consistency (Allman et al., 2010).

Sampled characters within data sets typically evolve under di�erent rates,

developmental processes, and modes of evolution (Wagner, 2012; Clarke and Mid-

dleton, 2008; de Beer, 1954). Although heterogeneity in the underlying evolution-

ary processes can present challenges to the application of evolutionary models

(Kolaczkowski and Thornton, 2004), a distribution of di�erent evolutionary rates

of characters can be helpful for resolving branches at di�erent levels in the tree.

Extremely labile characters, for example, are useful for resolving recently diverged

lineages, whereas slowly evolving characters may be more useful for resolving

deep divergences in the tree. Likelihood-based methods can bene�t from this het-

erogeneity by accounting for di�erent rates of character evolution and the amount

of time available for change (based on the estimated branch lengths in the tree;

(Paradis et al., 2004)). In contrast, high levels of rate heterogeneity among char-
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acters can be more problematic for parsimony methods, especially if all character

changes are weighted equally [20].

The ability to estimate branch lengths in numbers of changes per site or

character is also useful for estimating divergence times. The Mk model, for exam-

ple, is implemented in the software packages BEAST (Bouckaert et al., 2014) and

MrBayes (Ronquist and Huelsenbeck, 2003; Huelsenbeck and Ronquist, 2001; Ron-

quist et al., 2012) for use in divergence dating. Trees with explicit divergence dates

are useful for a variety of comparative methods for answering evolutionary ques-

tions at a large scale. Methods for time-scaling parsimony trees and quantifying

the uncertainty of these scaling methods exist (Pol and Norell, 2006; Bapst, 2013,

2014) although at present, there is no thorough comparison of the performance of

maximum likelihood, Bayesian, and parsimony-based approaches for morpholog-

ical data.

Though there are many positive aspects of the Mk model (statistical con-

sistency, ability to accept superimposed changes, explicit modeling of rate het-

erogeneity with a gamma distribution), paleontologists have been slow to adopt

model-based approaches. Comparisons between the Mk model and parsimony

analyses have provided interesting and illuminating results. For example, Xu et

al. (2011) found a controversial result when they added a new fossil taxon to an

existing theropod data set and reanalyzed this expanded data set using parsimony.

The reanalysis by Xu et al. supported a grouping of Archeoptyeryx with deiny-

chosaurians - a change that has broad implications for the evolution of �ight. In

contrast, a further reanalysis of this data set with the Mk model by Lee and Wor-
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thy (2012) yielded trees in which Archeopteryx was grouped in a more traditional

placement with birds. An analysis of the characters supporting each topology

demonstrated that the parsimony tree tended to be supported by characters with

low consistency indices (Lee and Worthy, 2012). The Mk model has also been ap-

plied in co-estimation of phylogeny and divergence dates using fossils as terminal

taxa in combined molecular-morphological data sets by several authors (Ronquist

et al., 2012; Pyron, 2011; Wood et al., 2012) Here, we investigate the relative perfor-

mance of parsimony and Bayesian analyses using the Mk model, under a variety of

conditions applicable to paleontological investigations. We based simulations on

empirically estimated trees so that we could sample realistic branch lengths and

tree topologies. We then designed the simulations to investigate a range of factors

associated with accuracy of phylogenetic estimation, including missing data, rate

heterogeneity, and overall character change rate.

2.3 Methods
2.3.1 Simulations

To investigate the e�cacy of the Mk model for phylogenetic estimation,

we simulated data sets in the R package GEIGER (Harmon et al., 2008). We sim-

ulated characters under the discrete model of evolution - a modi�cation of the

Juke-Cantor model (Jukes and Cantor, 1969) for binary characters. Under this

continuous-time Markov process, characters are simulated under a user-speci�ed

rate of change per character. For the single-rate data sets, one rate was drawn from

a gamma distribution, and all characters were simulated according to this rate. For
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Figure 2.1: This tree was obtained from a combined molecular-phenotypic data set
analyzed by Pyron (2011)
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data sets with rate heterogeneity, each character had a rate of change drawn in-

dependently from the same gamma distribution. This approximates a condition

under which each character has an independent evolutionary rate, which can be

binned into discrete rates during phylogenetic analyses.

We simulated data sets of two sizes. The �rst data set size was 350 charac-

ters. This number of characters is representative for data sets of phenotypic data,

as many published data sets are this size or smaller. We also simulated compar-

atively larger data sets of 1000 characters to investigate the e�ects of character

sample sizes. The empirical tree along which data were simulated was based on

the tree presented by Pyron (2011) and was chosen for its complexity. This tree

(Figure 1) contains many short branches, which is representative of many analyses

that include fossil specimens.

2.3.2 Ascertainment bias in morphological characters

Phenotypic data are often �ltered by an observer-de�ned scheme. Charac-

ters that do not vary or vary in a parsimony uninformative way (such as autapo-

morphies) are usually excluded from analysis. In contrast to molecular sequence

data, this means that there are rarely invariant sites in paleontological data sets.

This bias can result in in�ation of the estimated rate of evolutionary change in the

data set, increasing the estimated branch lengths on the tree (Lewis, 2001). Under

likelihood-based methods, branch lengths are estimated alongside tree structure,

and unrealistically-in�ated branch lengths can lead to topological error. MrBayes

incorporates three versions of the Mk model. The uncorrected model (Mk) does
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not account for any form of sampling bias. Two corrected models account for the

bias of collecting only variable characters (Mkv) and the bias of collecting only

parsimony-informative characters (Mk-pars). To examine the e�ects of charac-

ter acquisition bias, we �ltered data sets according to di�erent data acquisition

schemes. The un�ltered data sets contained invariant characters, variable char-

acters that were not parsimony-informative (e.g., autapomorphies), and variable

characters that were parsimony-informative. Intermediate data sets excluded in-

variant sites, but retained variable sites that were not parsimony-informative. The

least inclusive data sets contained only parsimony-informative characters.

Each character �ltration scheme was parameterized appropriately in Mr-

Bayes. We did not explore the e�ects of model misspeci�cation or incorrectly

accounting for acquisition bias in this study. Data �les can be found in the online

supporting material, along with scripts for assembling MrBayes and PAUP blocks.

2.3.3 Missing Data

To assess the e�ects of missing data on phylogenetic estimation, we used

several schemes for character deletion. We sorted the characters by rate of change,

and divided them into three categories: fast-, intermediate-, and slow-evolving

sites. Within each class of sites, we created data sets in which we removed between

10% and 100% of sites to investigate the e�ects of underrepresentation of certain

classes of characters. Missing data were concentrated in fossil taxa, as seen in

Figure 2.
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Figure 2.2: Columns represent characters. In the taxon-names column, an asterisk
represents fossil taxa. Characters with the slowest rate of change are represented
in light grey; intermediate-rate characters are represented in medium grey; char-
acters with highest rate of change are represented in dark grey. In the top matrix,
all characters are present for all taxa. The bottom matrices illustrate the missing
data conditions that we simulated in this paper.

2.3.4 Estimating Phylogenetic trees

We estimated Bayesian phylogenetic trees in MrBayes 3.2.2 (Ronquist and

Huelsenbeck, 2003; Huelsenbeck and Ronquist, 2001) on the Lonestar server of the

TACC computing facility at the University of Texas - Austin. We used the majority-

rule consensus tree returned by MrBayes in all calculations and comparisons.

We used PAUP* for parsimony analyses. In PAUP* (Swo�ord, 2002), we

estimated phylogenetic trees using the TBR swapping algorithm with random

branch addition and one thousand replicates. Estimation was performed on a

ROCKS v4.1 computing cluster.
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2.3.5 Analysis of Estimated Trees

There are many ways to categorize how well a tree has been estimated.

Given that these data were simulated under a tree, we can compare the estimated

phylogenetic trees to the true phylogenetic tree. We used a script written in

Python, making use of the Dendropy library (Sukumaran and Holder, 2010), to cal-

culate the symmetric distance (the unweighted Robinson-Foulds distance (Robin-

son and Foulds, 1981)) between the estimated trees and the phylogenetic tree under

which the data were generated. For unrooted trees of N taxa, there are N-3 biparti-

tions of the taxa (excluding bipartitions involving single taxa, which are the same

for all trees). The Robinson-Foulds distance considers both the presence of in-

correct bipartitions as well as the absence of correct bipartitions, so the maximum

symmetric distance between two trees is 2(N-3). Therefore, for a 75-taxon tree, the

maximum Robinson-Foulds distance is 144 symmetric distance units. For ease of

interpreting graphs, we rescaled these values so that the total error is 100% (which

would indicate all bipartitions in the tree are estimated incorrectly).

In a Bayesian analysis, the posterior sample of trees is not comprised of

equally optimal solutions. Instead, each tree in the sample typically has a di�er-

ent likelihood score. A majority-rule consensus tree can be used to summarize

the variation across the posterior sample, and this consensus tree is often taken

as a summary estimate of the phylogeny. Therefore, we used the symmetric dis-

tance from the majority-rule consensus tree of the posterior sample to the model

tree to evaluate the performance of the Bayesian analyses. In contrast, under the

parsimony criterion, equally parsimonious trees are each considered optimal alter-
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native solutions. Therefore, in parsimony analyses, we calculated the symmetric

distance from each equally parsimonious solution to the model tree, and then av-

eraged these scores within each data set to obtain an average symmetric distance

score. We also used a majority-rule consensus tree to evaluate the parsimony anal-

yses, and found the results were almost identical with the two measures (Fig. 1.8).

All code to replicate results can be found in the online Supplemental Information.

2.4 Results
2.4.1 Character Filtration

Sampling bias does not a�ect Bayesian estimation when appropriate cor-

rections are implemented. Correcting for ascertainment bias in MrBayes (Huelsen-

beck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003) is described by Lewis

(2001) based on the unobserved character counting method of Felsenstein (1992).

In this approach, a likelihood for the data set is calculated conditional on only

variable or parsimony informative characters present in the data. This conditional

likelihood is then combined with the likelihood of a hypothetical constant char-

acter to arrive at a correction for acquisition bias. As shown in Fig. 1.7, all param-

eterizations of the Mk model in MrBayes returned the same distributions of error.

This demonstrates that corrections for sampling schemes are e�ective.

2.4.2 Single-Rate Simulations

As seen in Figure 3, at the lowest evolutionary rates, the amount of error in

phylogenetic trees estimated compared to the true tree is fairly high, with nearly
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Figure 2.3: Bayesian-Mk outperforms parsimony most strongly when the rate of
character evolution (and hence homoplasy) is high.
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one in �ve branches being incorrectly estimated for both Bayesian and parsimony

estimation. We would expect this to be true, as in this region of the graph, there are

few character changes in the matrix. As evolutionary rate is increased, topological

error reaches a minimum in error for both types of estimation. This minimum

occurs at about one expected change per character. As more changes per character

occur, there is an increase in topological error. This increase in error is seen more

sharply in parsimony than Bayesian estimation, as Bayesian methods account for

superimposed and parallel changes. Among di�erent corrections of the Mk model

for acquisition bias, performance is very similar (Figure 1.7).

As the amount of missing data increases in these data sets, the amount of

error also increases. With 75% of data missing, as seen on Figure 3, parsimony and

the Bayesian implementation of the Mk model perform very similarly at low rates

of character change. However, at high rates of character change, the Bayesian Mk

method outperforms parsimony strongly. In these regions of sample space, the

characters show a poorer �t to the tree, with many characters exhibiting paral-

lelisms and reversals.

2.4.3 Rate Heterogeneity

In data sets with rate heterogeneity among the characters, the Mk model

continues to outperform parsimony, as shown in Figure 4. We also examined the

e�ects of structured missing data in these data sets. Figure 5 compares the e�ects

of removing various classes of characters (of di�erent evolutionary rates) in the

Bayesian Mk and parsimony analyses.
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Figure 2.4: In data sets with character rate heterogeneity and with no missing data,
Bayesian-Mk results in lower error compared to parsimony analyses. Note that,
unlike Figure 3, the X-axis is the average rate of change across all characters in
the data set, as opposed to one single rate applied uniformly to all characters.
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Both Bayesian Mk analyses and parsimony show degraded performance

when characters of di�erent rate classes are removed from the analysis, although

the negative e�ects of missing data are much greater for parsimony than for the

Bayesian analyses (especially for deletion of the slowest-evolving characters). Part

of this e�ect is related to reduction in the overall number of characters available for

analysis. Increasing the total number of characters in the analysis improves the

performance for both Bayesian and parsimony analyses, although the Bayesian

analyses continue to exhibit higher accuracy compared to parsimony in the 1000-

character analyses (Figure 6).

2.5 Discussion

Our results suggest that Bayesian methods of analysis are likely to exhibit

lower error rates compared to parsimony analyses in phylogenetic analyses of

morphological and paleontological data sets. Moreover, researchers should care-

fully consider character-sampling design, as error rates can increase if characters

are evolving too rapidly (Figure 3). As seen in Figure 3, before missing data or

rate heterogeneity are introduced, phylogenetic estimation is most accurate for

characters with relatively slow rates of change, as long as they are evolving fast

enough to produce some phylogenetic signal. In these regions of the sample space,

parsimony and Bayesian methods perform very similarly.
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Figure 2.5: This �gure compares the e�ect of deleting one-third of the characters
from three di�erent rate classes. (A) Comparisons of Bayesian-Mk analyses. (B)
Comparisons of parsimony analyses.



Figure 2.6: Comparison of 350- and 1000-character datasets.
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2.6 Discussion

However, it is unlikely that empirical data sets will have only one rate of

evolution across the whole data set. Rather, they are likely to be made up of char-

acters that have been subjected to di�erent selective pressures, di�erent develop-

mental constraints, and di�erent evolutionary processes (Clarke and Middleton,

2008; de Beer, 1954). Rate heterogeneity in morphological data sets is well doc-

umented (Wagner, 2012). Therefore, the relationship between topological error

and the location of missing data within a data set is of interest to researchers who

build trees, as systematically under-representing certain classes of characters may

produce di�erent e�ects. Slowly-evolving characters include some characters that

have too little change to be parsimony-informative; the fastest-evolving charac-

ters in these data sets include some characters with reversals and parallelism. In

likelihood-based analyses, both parsimony-noninformative and parsimony-misin-

formative characters are still useful, as they provide information about the av-

erage rate of evolution in a data set. Rapidly-evolving characters can mislead

parsimony analyses, which are unable to account for superimposed changes on

a given branch. It would be expected that removing slowly-evolving characters

(even those that are not parsimony-informative) would in�ate the estimated av-

erage evolutionary rate, potentially leading to branch-length overestimation, and

removing characters that change many times on the tree would result in under-

estimation of the average evolutionary rate. Figure 5 supports this conclusion,

demonstrating that removing either of these classes of characters does result in

higher topological error. Removing any class of characters (but especially the

33



slowest-evolving characters) also results in lower performance of the parsimony

analyses (Figure 5), presumably due to loss of information in an already small data

set. Concerns about missing data have been cited as a reason to choose parsimony

over likelihood-based methods (Livezey and Zusi, 2007). Our results suggest that

incomplete matrices do not necessitate the use of parsimony.

ncreasing the size of the data set improves estimation for both parsimony

and Bayesian methods. However, even in large data sets with no missing data,

the Bayesian analyses using a simple likelihood model of character change typi-

cally outperform parsimony analyses (Figure 4). Paleontologists may be strongly

constrained in how many characters or taxa they can add to a data set, due to

a lack of specimens, a lack of observed homologous characters across a clade of

interest, or poor specimen quality. Our results suggest that the use of Bayesian

methods is even more important when relatively few characters are analyzed, and

that even a simple probabilistic model can considerably improve the accuracy of

tree estimation.

The bene�ts of adding fossil taxa to a data set are numerous. Earlier re-

search has argued that fossil taxa can alleviate the issue of long-branch attraction

(LBA), particularly when additional extant taxa cannot be added to break up long

branches (Gauthier et al., 1988; Huelsenbeck, 1991). Previous simulations have

also suggested that, in combined analysis, even highly incomplete fossils can help

alleviate the a�ects of LBA (Wiens, 2005). Empirical studies have con�rmed these

results, indicating that fossils with up to 75% missing data can help improve reso-

lution in parsimony analysis (Santini and Tyler, 2004) and result in vastly di�erent
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topologies compared to molecular-only analyses (Rothwell and Nixon, 2006). Our

results indicate that a model-based analysis is an even more e�ective way to gain

performance improvements from such additions of fossil taxa.

In addition to exhibiting lower error rates, model-based methods o�er an-

other important advantage over parsimony: the ability to estimate time based on

branch lengths of the phylogenetic tree. The Mk model, for example, is imple-

mented in the software packages BEAST (Bouckaert et al., 2014) and MrBayes

(Ronquist et al., 2012) for use in divergence dating (although in BEAST, charac-

ters that are not variable or parsimony-informative must be explicitly listed by

the author; see (Rothwell and Nixon, 2006) for a discussion of counting unob-

served site patterns). In turn, trees with explicit divergence dates are useful with a

variety of comparative methods (Slater et al., 2012). Methods for time-scaling par-

simony trees exist (Bapst, 2013; Smith, 1994; Sanderson, 1997, 2002) although at

the present, there is no thorough investigation of the performance of model-based

versus parsimony-based approaches for estimating time with morphological data.

Our results demonstrate that Bayesian methods are more accurate than

parsimony for estimating trees from discrete morphological data under a wide set

of realistic conditions. Even when there are large amounts of missing data (as is

common in paleontological studies), a simple likelihood model consistently pro-

duces less error in tree estimation compared to parsimony. Although there is con-

siderable room for models of morphological character evolution to be improved,

even simple model-based methods can result in considerable improvement of phy-

logenetic analyses of morphological data sets.
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Figure 2.7: MrBayes has three parameterizations of the Mk model, which account
for sampling bias. As seen above, these methods estimate trees with the same
degree of accuracy under the conditions we examined.
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Figure 2.8: A symmetric di�erence score to the true (model) tree can be calculated
either by creating a consensus tree and using this tree to calculate the symmetric
di�erence, or by calculating the symmetric di�erence for every tree in the solution
set and averaging this score. In our study, these two methods produce very similar
results.
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Chapter 3

Modeling character change heterogeneity through
the use of priors

3.1 Abstract

The Mk model for estimating phylogenetic trees from discrete morpho-

logical data is used in phylogenetic analyses that incoporate morphological data,

whether for living or fossil taxa. Like any model, the Mk model makes a number

of assumptions. One assumption is that transitions between character states are

symmetric (i.e. the probability of changing from 0 to 1 is the same as 1 to 0). How-

ever, some characters in a data matrix may not satisfy this assumption. Here, we

test methods for relaxing this assumption in a Bayesian context. Using empirical

datasets, we perform model �tting to illustrate cases in which modeling asymmet-

ric transition rates among characters is preferable to the standard Mk model. We

use simulated datasets to demonstrate that choosing the best-�t model of transi-

tion state symmetry can improve model �t and phylogenetic estimation.

3.2 Introduction

Most estimation of phylogenetic trees from morphological character data

has used parsimony analysis. However, recent work suggests that a Bayesian im-
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plementation of a simple likelihood model outperforms parsimony (Wright and

Hillis, 2014). This model, the Mk model introduced by Lewis (2001), is a general-

ization of the Jukes-Cantor model of DNA sequence evolution (Jukes and Cantor,

1969). The Mk model has one free parameter, the rate of transition between char-

acter states.

The Mk model makes standard Markovian assumptions about the data: that

characters are always in one of k states, that character change from one state

to another is instantaneous along a branch, that changes are independent of one

another (therefore, there may be change in every instant along a branch) and that

no state is a priori ancestral or derived (though ordering can be speci�ed). The Mk

model is a symmetrical model, in which the rate of change from one character state

to another is assumed to be equal to the rate of change in the opposite direction

(i.e. the probability of changing from 0 to 1 is the same as 1 to 0). This assumption

is similar to that which is made when using an unweighted transition matrix for

ordered or unordered characters under the parsimony optimality criterion.

However, not all traits �t this assumption. For example, a Dollo character

(a character assumed to be unlikely to re-evolve once lost due to its complexity

(Dollo 1893) has strongly asymmetrical transitions. A growing number of studies

have used the Mk model for morphological data (examples include Clarke and

Middleton (2008); O’Leary et al. (2013); Ronquist et al. (2012)) but there is little

discussion on the implications of the equal rates assumption. Here, we investigate

the e�ects of relaxing the assumption of symmetry and allowing heterogeneity in

character change symmetry.
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Allowing asymmetrical rates of character change is challenging, as mor-

phological character states do not carry common meaning across characters in a

matrix. In molecular studies, characters have the same properties from site to site:

the nucleotide base "A" at a site in an alignment is generally expected to have the

same properties as the nucleotide base "A" at a di�erent site in the same align-

ment. Each nucleotide has exchangeabilities (probabilities of changing from one

state to another) that can be de�ned with respect to other nucleotides (for exam-

ple, transitions and transversions) across datasets as a function of the constancy

of nucleotide-speci�c properties. Because labeling morphological characters is ar-

bitrary, this property does not hold for morphology. In a morphological matrix, a

state 1 at one site has no similar properties to a state 1 at another site. Transitions

can also not be relied upon to be of equal magnitude across sites. A transition to

the state 1 could be the gain of a complex trait in one character, but a minor change

in a labile character at another. Under parsimony, this inequality can be managed

through weighting characters. The Mk model has no methodology comparable to

parsimony weighting.

Parametric models that allow �exible transition rates have been proposed.

Bayesian methods, speci�cally, can allow character change asymmetry through

the use of priors on the equilibrium state frequencies of characters. Unequal state

frequencies permit asymmetrical transition rates: the rate of change from 0 to 1

in a Markovian model depends not simply on the exchange probability between 0

and 1, but on the availability of the state 1 to be changed into from state 0. If the

stationary state frequency of state 1 is very low for some characters, changes from
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Figure 3.1: An illustration of various shapes of the Beta distribution when con-
trolled by a single parameter (α = β). α =∞ corresponds to the Mk model as pro-
posed by Lewis (2001). On the opposite extreme, α = 0.05 corresponds to strongly
asymmetrical transitions between binary character states.
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state 0 to state 1 will be expected to occur infrequently at those sites, even if the

probability of change is high.

In a model of nucleotide sequence evolution, there are many combinations

of assumptions that can be made about both the rate of change between nucleotide

states and the equilibrium frequency of each state. Most models of sequence evo-

lution allow some degree of variability in equilibrium state frequencies as a model

parameter. The Mk model has one parameter (transition rate). Rather than de-

veloping a new model with equilibrium state frequencies as a free parameter, the

relationship between equilibrium state frequencies and exchangeabilities has been

exploited in the software package MrBayes (Huelsenbeck and Ronquist, 2001; Ron-

quist and Huelsenbeck, 2003) using the symmetric Dirichlet prior. The prior spec-

i�es a distribution from which state frequencies are drawn, thus allowing di�er-

ent characters to have di�erent state frequencies, but within the constraint of the

speci�ed prior. The symmetry of transitions can vary among sites as a function of

character state availability. In the case of binary characters, the symmetric Dirich-

let distribution collapses to a symmetric Beta distribution.

Various symmetric Beta distributions can be seen in Fig. 1. The general

Beta distribution has two parameters, α and β; symmetric Beta distributions are

generated by settingα = β. Thus, the family of symmetric beta distributions can be

generated by varying a single shape parameter (α). Use of the prior allows di�er-

ent characters to have di�erent transition probabilities. This process is similar to

allowing rate heterogeneity among sites (generally parameterized with a Gamma

distribution), with sites being binned into categories that share a common fre-
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quency for each character in that bin. However, the symmetry of the prior ensures

that if some characters have lower transition probabilities, then others have higher

transition probabilities. For example, if some characters have a bias towards 0 to 1

transitions, this distribution assumes that there are also characters in the dataset

displaying a bias of equal magnitude towards 1 to 0 transitions. Larger values of

the parameter α correspond to less transition rate asymmetry among characters

and smaller values correspond to more asymmetry. The α =∞ value for the Beta

distribution conforms to Lewis’ 2001 formulation of the Mk model, in which for-

ward and reverse transitions are considered to be equally likely, and deviations

from this assumption are not allowed. Technically, α =∞ as implemented in Mr-

Bayes is a real, but very large number; MrBayes allows the use of the qualitative

term "in�nity" to denote this as a limiting distribution to continuously-varying

sequence of distributions. In contrast, low values for α, such as α = 0.05 in Fig. 1,

gives a U-shaped distribution, would be indicated if very few characters conform

to the assumption of symmetrical transitions. The distribution varies continuously

between an extreme U-shaped distribution and the single symmetric rate distribu-

tion as α is set between 0 and∞ and values may be chosen to re�ect a user’s prior

belief about their data.

MrBayes also allows users to specify a second distribution (such as an ex-

ponential distribution or a uniform distribution), to be used as a source for possi-

ble values of the shape parameter of the symmetric Beta distribution to be drawn

from a distribution (possible distributions include the exponential distribution and

a uniform distribution) — this is called a hyperprior. Note that in the user manual,
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both setting a �xed value for α and specifying a distribution from which the value

of αwill be sampled are referred to as "hyperpriors". We will focus here on explor-

ing a few speci�c values of the parameter α. Such basic exploration is warranted

before considering the more complex case of using the hyperprior.

In this study, we assess the �t of models corresponding to speci�c di�erent

values for the symmetric Dirichlet prior. We then use the results of this exploration

to guide simulations to assess if altering this prior improves topology estimation.

We conclude with practical recommendations for use of the symmetric Dirichlet

prior with morphological data.

3.3 Methods
3.3.1 Empirical Dataset Collection and Modeling

Morphological data matrices were taken from http://www.graemetlloyd.com

/matr.html. This compilation is drawn from multiple sources, including: (1) other

online matrix databases (Paleobiology Research Group, 2011; O’Leary and Kauf-

man, 2012; National Evolutionary Synthesis Center, 2015; Mounce, 2014), (2) source

tree lists from published supertrees (Pisani et al., 2002; Ruta et al., 2007; Lloyd et al.,

2008; Bronzati et al., 2012; Brocklehurst et al., 2013) (3) the former Field Museum

site of Peter Wagner (Wagner, 2000), (4) the 1000 cladogram list from (Benton et al.,

2000), and 5) the primary literature. All data sets were vetted to ensure all ordering

and outgroup speci�cations were correct. Parsimony character weights were not

used as they con�ict with the likelihood models implemented in MrBayes.

Because many of these matrices are modi�ed versions of older data sets,
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or identical data sets used for di�erent analyses, we parsed the XML metadata

associated with them to pare down the list to a set of approximately independent

matrices, to avoid issues of replication. This was done by �rst identifying clusters

of data sets that are mutually non-independent. These relationships can come in

two forms: (1) parent-child relationships: the parent being the older data set that

forms the main or sole basis for the child data set; and (2) sibling relationships:

where either two or more children share a parent or have some other equal claim to

novelty, e.g., the alternative codings seen in Farke et al. (2011). From these clusters

we took the single data set that had (in priority order): (1) the most characters, (2)

the most taxa, (3) the most recent publication date, or (4) if two or more data sets

tie on all three criteria then the �rst data set was arbitrarily chosen. One �nal data

set was pruned due to small size (6 taxa and 4 characters). 206 total data sets were

retained, ranging from 5 to 279 taxa and 11 to 364 characters.

Each dataset was modeled in six ways, with priors corresponding to the

six parameter values shown in Fig. 1. The only setting altered was the symmetric

Dirichlet prior.

We refer to each prior by the value of its shape parameter (α). MrBayes

uses as default an α =∞ for the symmetric Dirichelet prior. As mentioned above,

this forces state transition probabilities to be equal, corresponding to the original

formulation of the Mk model (Lewis, 2001). As shown in Fig. 1, α = 1 represents a

uniform distribution of character-state transitions. This prior assumes that char-

acters in the dataset are expected to be sampled from all possible values of asym-

metry, then binned into categories. The values of α = 2 and α = 10 were chosen

46



Figure 3.2: (A) The 8-taxon tree used for dataset simulation. (B) The second tree
used for dataset simulation. This tree was estimated from the Zheng et al. (2009)
dataset using the best-�t prior discovered by the procedure outlined in section
Empirical Dataset Collection and Parameterization.
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to allow some degree of asymmetry in character-state transition, while expecting

most characters to exhibit relative symmetry. We examined two settings, α = 0.2

and α = 0.05, which assume that most characters are more likely to assume asym-

metrical transitions between states. These priors allow symmetry, but expect most

characters to have some degree of state change asymmetry.

Ordering of characters as speci�ed in the original datasets was maintained

in all parameterizations of the data. Characters in the datasets were not pruned or

manipulated. In MrBayes, multistate characters have transition rate-asymmetry

values �t to them via MCMC sampling. They are not a�ected by choice of the

symmetric Dirichlet prior, which a�ects only binary characters.

3.3.2 Phylogenetic Analysis

We estimated phylogenetic trees for each dataset in MrBayes 3.2.2 using

the Mk model for estimation of phylogeny from discrete morphological characters.

Estimation was performed on the Texas Advanced Computing Center Stampede

cluster. We ran the Markov chain for each dataset for 10 million generations. To

assess the �t of each model to the data, we used stepping stone sampling, which

shows greatly improved accuracy over harmonic mean methods for estimating

marginal likelihoods (Xie et al., 2010).

Marginal likelihoods can be used to assess model �t, allowing us to reject a

poorer �t in favor of a better �t model. They cannot tell us, however, if improved

�t of the model to the data will result in di�erent topological estimates. Therefore,

we compared the trees resulting from the preferred model, as determined by Bayes
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Factors calculated from marginal likelihood scores, to trees estimated from the

default parameter settings. We used the Robinson-Foulds score (Robinson and

Foulds, 1981), scaled by the number of tips in the tree to arrive at a proportion

of nodes estimated di�erently between the α =∞ and the preferred-model tree.

On this scale, a score of 0 indicates topologically identical trees were estimated

under both models, and 1 indicates the maximum possible topological di�erence

between the estimated trees.

3.3.3 Simulated Dataset Collection and Modeling

Empirical datasets do not allow researchers to assess if an estimated tree is

more or less "correct" than another estimated tree. Simulating data along a known

phylogeny and estimating a tree from the simulated data, however, provides a

straightforward comparison by which accuracy of the inference process can be

assessed. Empirical trees capture the complexity of the fossil record and the evo-

lutionary process that morphologists are attempting to model. However, we are

also unable to know all of these processes or the true underlying evolutionary his-

tory exactly. Therefore, in addition to the analyses of empirical datasets, we also

simulated data matrices along two trees. The �rst was a simple 8-taxon tree with

equal branch lengths throughout the tree. The second was the tree we estimated

from the dataset of Zheng et al. (2009). This tree was chosen because it was rep-

resentative of the among datasets we examined, both in terms of number of taxa

and characters. The two trees can be seen in Fig. 2.

We simulated 4 sets of 100 matrices each of the same size as the original
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Figure 3.3: Results from �tting value of α to empirical datasets. The numbers
underneath the value of α indicate the average strength of Bayes Factor support
for that prior among datasets in which it was the best-�t prior.
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dataset for the Zheng tree (221 characters) and of 200 characters for the 8-taxon

tree. Matrices were simulated using the R package GEIGER (Pennell et al., 2014;

Harmon et al., 2008) The four sets corresponded to four prior settings for α. The

four distributions chosen were α =∞ (the original formulation of the Mk model

with symmetric transitions), α = 1 (a uniform prior), α = 2 (transition rate asymme-

try is biased towards symmetric transitions) andα = 0.2 (transition rate asymmetry

is biased away from symmetric transitions). For example, when we simulated ac-

cording to α = ∞, transition rates were constrained to have equal forward and

backward rates. In this way, for each of the 4 sets of matrices, there is a true value

of the shape parameter α. We investigated the frequency that the true value is

selected in model selection, and the e�ect of correct versus misspeci�ed values of

α on the accuracy of topological estimation.

Missing data may a�ect one’s ability to detect the best-�t model, particu-

larly if those missing data are biased in some way. For example, if missing data

tends to be concentrated among labile characters that change symmetrically be-

tween states 0 and 1, this may inhibit the detection of this class of characters. To

capture the properties of the real datasets, we modeled missing data in the simu-

lated datasets based on the observed distributions of missing data in the empirical

datasets. For example, if a taxon was missing 90% of the characters in the Zheng

et al. matrix, we deleted 90% of the data for that taxon in the corresponding sim-

ulated datasets. For the datasets simulated under α =∞, the only heterogeneity

among characters is in evolutionary rate. For these datasets, we varied the bias

in the missing data between slowly-evolving characters and fast-evolving charac-
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ters. In the case of slow-biased missing data, missing cells for a given taxon were

concentrated preferentially in characters with slow evolutionary rates. The op-

posite would be true of missing data biased towards fast-evolving characters. For

datasets simulated under α = 1, α = 2 and α = .2, we did not model rate heterogene-

ity among sites. For these datasets, we deleted data randomly among characters

within a taxon to mimic the patterns of missing data observed in the empirical

datasets. We also estimated trees for the datasets without any missing data.

The 8-taxon tree was not modeled on an empirical dataset. For datasets

simulated using this tree, 50% of all data were missing for all taxa. For all four

priors, data were randomly deleted within each taxon. For α = ∞, missing data

were also deleted preferentially from slow- and fast-evolving character classes, as

outlined in the previous paragraph.

We modeled each dataset using each of the four α values, including the

α under which the data were simulated. We performed phylogenetic estimation

according to the methods outlined under Phylogenetic Analysis. We performed

model selection to determine the best-�t value of α using a Bayes Factor compar-

ison for each simulated dataset, according to the stepping-stone marginal likeli-

hoods. We quanti�ed the topological di�erence using the Robinson-Foulds (1981)

metric, scaled by the number of nodes in the tree.
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Table 3.1: Average Bayes Factor support for a given prior among datasets support-
ing that prior. Strength of support scale from Kass and Raftery (1995).

Prior Number of
Datasets

Average
Bayes Factor
Support

Strength of Support

α =∞ 102 2.26 Positive
α = 10 71 4.59 Positive
α = 2 13 2.63 Positive
α = 1 71 1.85 Barely worth mention-

ing
α = 0.2 5 4.244 Positive
α = 0.05 8 6.81 Strong

.

3.4 Results
3.4.1 Empirical Datasets

We retained 206 datasets after removing parent and sibling datasets. To

assess support for a given prior, we used Bayes Factor comparisons. We considered

a Bayes Factor (BF) improvement of greater than two BF over the score of next

highest-scoring model to be positive evidence for that model, per the Kass and

Raftery (1995) scale of Bayes Factor support.

We did not detect support (BF > 0) for a prior other than α = ∞ in 102

datasets. We detected support in 71 datasets for α = 10; support in 13 datasets for

α = 2; support in 7 datasets forα = 1; support in 5 datasets forα = 0.2 and support in

8 datasets for α = 0.05. Relative Bayes Factor support varied widely across priors;

datasets favoringα = 0.05 tended to favor it most strongly (an average Bayes Factor

of 6.81), whereas those favoring α = 1 favored this prior most weakly (average

Bayes Factor = 1.854). Results of selection among values of α are presented in Fig.
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3 and Table 1.

For datasets that had BF > 1 support for a prior other than the default of α

=∞ (104 datasets), we compared estimated tree topologies using the α =∞ prior

versus the preferred prior to examine the e�ects of model misspeci�cation. For

about a third of the datasets (Fig. 4) that favored a di�erent prior, fewer than 10% of

internal branches di�ered between the tree estimated under the best-�t prior and

the tree estimated under the α =∞. For about 10% of trees, over half the internal

branches in the tree were estimated di�erently. The largest di�erence observed

was 0.67 (i.e., 67% of internal branches di�ered between the two estimates); this

distance was observed for the 35-taxon athyridid brachiopod dataset of Alvarez

et al. (1998).

3.4.2 Simulated Datasets — Model Comparison

Eight-Taxon Simulations

The generating model is often highly detectable. When there was no miss-

ing data, we detected the generating model in all except for one of the 8-taxon

simulations. Model recovery performance is presented in Fig. 5. At values of α =

1 and α = 2, there was an 11-15% decrease in our ability to detect the true model

in the analyses with missing data. This decrease is 11% when α = 0.2. In the α =

∞ datasets, the degree of drop in detection of the true model depended on which

characters were missing from the dataset. When the missing data were missing

for low-rate of evolution characters, we recovered the generating model 90% of

the time. In contrast, when the missing data were missing from rapidly-evolving
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Figure 3.4: Scaled Robinson-Foulds distances between trees estimated under the
best-�t model and α =∞, the default model in MrBayes.
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characters, we recovered the generating model only 57% of the time.

Zheng-tree Simulations

In the simulations of the Zheng tree, missing data did not a�ect our ability

to discriminate among models as severely as in the datasets simulated along the

8-taxon tree (Fig. 5). The random missing data were about equally detrimental

to model detection for all values of α, but the reduced data still only resulted in

failure rate of recovering the generating model about 10%. In the α =∞ datasets,

missing data concentrated among the slow-rate characters did not a�ect model

detection, though missing data in fast-rate characters resulted in the generating

model being undetected in about 20% of datasets.

3.4.3 Simulated Datasets — Topological Comparison

We compared the topology of estimated versus simulated trees using the

scaled Robinson-Foulds metric (Robinson and Foulds, 1981). A value of 0 indicates

complete topological agreement between estimated and simulated trees, whereas

a value of 1 indicates a di�erence in all internal branches of the two trees.

Eight-Taxon Simulations

Figure 6 and Table 2 present the topological comparisons between the es-

timated and simulated trees for our analyses with complete data. Overall phy-

logenetic error was generally low, with many replicates estimating the true tree

exactly. All trees estimated exhibited the lowest error when the generating model

and analytical model were the same, and exhibited the greatest error when depar-

tures between the estimated and analytical values of α were highest. We observed
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Figure 3.5: Percentage of datasets detecting the best-�t model in simulated data.
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Table 3.2: Summary of model performance per generating model. "Error" Refers to
topological error in estimated trees. The lowest-error model is the one producing
the lowest median scaled RF score, while the highest-error model produces the
largest median RF score.

Generating
Model

Lowest-Error
Model

Highest-Error
Model

α =∞ α =∞ α = 0.2
α = 2 α = 2 α = 0.2
α = 1 α = 1 α =∞
α = 0.2 α = 0.2 α =∞

.

the greatest sensitivity to the assumed value of α when the generating value was

set at α = 0.2; under these conditions, consistently accurate phylogenetic estimates

were obtained only when we used the true (simulated) value for α. For other sim-

ulated values of α, error among the estimated trees was generally very low except

under the greatest departures between simulated and assumed values of α (e.g.,

simulated α = 1, assumed α =∞; and simulated α =∞, assumed α = 0.2). In the

simulations with missing data, overall levels of estimation error were much higher.

Results of simulations that included missing data are presented in Fig. 7.

In these simulations, we recovered the simulated tree in many fewer of the repli-

cates. Performance was best when the simulated and assumed values of α were

closest, and fell o� with increasing deviations between the simulated and assumed

values of α. We observed the worst performance in the estimated trees when the

missing data were not random with respect to the rate of character evolution (in

the simulations).

Zheng-tree Simulations
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In the Zheng-tree simulations, we observed the same general trends that

we observed in the 8-taxon tree simulations (Fig. 7), except that overall error rates

were much higher in the analyses with biased missing data (biases toward missing

high-rate or low-rate characters). Error was especially high in the biased-missing

data simulations if α was also misspeci�ed (Fig. 7). This resulted in fewer datasets

in which a majority of nodes are wrongly estimated. In all the simulated datasets

of the Zheng tree, we observed the lowest overall error in the estimated trees when

we used the simulated values of α in the analyses (Fig. 7).

In simulations with missing data, topological error is higher than in dat-

sets without missing data, with median error of datasets with missing data of-

ten exceeding the maximum error observed in datasets without missing data (Fig.

7). This was especially true in the α = ∞ datasets with biased missing data. In

all datasets, the generating model performed the best, but in these datasets, this

di�erence is especially pronounced, cutting error by more than half. In datasets

simulated under the other three models, correctly parameterizing the generating

model improves estimation more mildly.

3.5 Discussion

In almost 50% of the empirical datasets we examined, we did not reject the

default assumption of α = ∞. A further 84 datasets had statistical support for a

value of α = 10 or α = 2. The Beta distributions in which the shape parameter

α is between 2 and∞ describe characters that tend to have symmetrical change

probabilities between states with increasing deviation from symmetrical change
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Figure 3.6: Boxplots showing the error in phylogenetic estimation for datasets
without missing data. Generating model is indicated with a star.
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at lower values of α. Only 13 datasets supported a prior that is of α < 1, biased

away from symmetrical transitions. Therefore, although some datasets may ben-

e�t from a relaxation of the assumption of equal transition rates between states,

this assumption is often justi�ed.

We saw no clear relationship between the preferred value of α and the

number of characters in the study or the taxonomic focus of the study (Table 3).

There were weak associations between studies of invertebrates and preference for

the α = 1 prior (5 out of 7 datasets) and between studies of dinosaurs and the α

= 0.05 prior (4 out of 8 data sets). However, this may be the result of very small

sample size.

Our results suggest that Bayes Factor model selection (Suchard et al., 2005)

is e�ective for choosing among Beta distribution shape-parameter priors that de-

scribe the relative symmetry of changes between character states. This approach

is preferable to simply choosing the model with the highest likelihood, as Bayes

Factors penalize for increased model complexity (Baele et al., 2012). We chose to

use stepping stone marginal likelihood estimation, as this method is considerably

more accurate than previously-implemented harmonic mean estimators (Fan et al.

2011). Harmonic mean estimators tend to overestimate marginal likelihoods, espe-

cially with increasing model complexity. Stepping-stone estimation is less prone

to this type of bias, and is expected to favor the true model, even as model com-

plexity increases (Lartillot and Philippe, 2006). As shown in Fig. 2 and Table 1,

model support tended to be positive (Bayes Factors > 2) or even strong (BF > 6

for the value of α for most empirical datasets. Improved model �t does not guar-
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Table 3.3: Comparison of average number of taxa and characters in data sets of
each best-�t value of α.

Preferred Prior Average Number of Taxa Average Number of Charac-
ters

α =∞ 16.77 67.51
α = 10 25.24 90.68
α = 2 40.73 126.45
α = 1 33.51 43.57
α = 0.2 59.17 172.67
α = 0.05 14.30 62.40

antee improved phylogenetic estimation accuracy, but we did �nd that selection

of a value for α can strongly a�ect the resulting phylogenetic estimate (Fig. 4).

These results suggest that systematists who evaluate morphological data should

pay close attention to appropriate selection of this model parameter.

For the empirical datasets, the "true" tree is unknown, and we can only

conclude that selection of a value for α makes a di�erence to the tree estimated.

We cannot conclude that the topological di�erence among estimates necessarily

represents increased accuracy for appropriate value of α. However, our simula-

tions do allow us to assess the relationship between phylogenetic accuracy and an

appropriate selection of a value for α. As seen in Figures 6 and 7, we found the

highest levels of accuracy in phylogenetic estimation when the analytical values

of α matched the simulated values. This supports the conclusion that selection of

an appropriate value for α not only makes a di�erence in many analyses, but also

that it is likely to improve accuracy.

As can be seen in Fig. 5, missing data in an analysis can interfere with
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selection of an appropriate value of α, but not necessarily severely. In the case

of 8-taxon datasets, with random missing data, the ability to detect the generat-

ing model was lessened by 15-20%. These values are in accordance with previous

research; even with small datasets,there are often su�cient to detect di�erences

among alternative models, particularly when the model is simple (Posada, 2001;

Posada and Buckley, 2004).

Biases in missing data in the datasets simulated under α =∞ had variable

e�ects. Missing data concentrated in the fast-evolving characters tended to have

a more negative e�ect on model selection compared to missing data in the slow-

evolving characters. Fast-evolving characters exhibit more changes compared to

slow-evolving characters, so the loss of fast-evolving characters would be expected

to have a greater e�ect on appropriate model selection. In slow-evolving charac-

ters, any signal of character change asymmetry in any one character would be

relatively weak. On the other hand, a character that exhibits multiple changes

would be expected to have stronger signal for a particular model. In the case of α

=∞, a character that strongly supports this parameter value will exhibit 0 to 1 and

1 to 0 transitions in approximately equal numbers. If the rate of change in a given

character is higher, observing both types of transitions is more likely. Therefore,

the high-rate characters are more important for an appropriate selection of a value

for the α parameter.

In the Zheng-tree simulations, random missing data made little di�erence

in terms of our ability to select the generating model. Overall, the analyses based

on the Zheng-tree simulations were less a�ected by missing data, and generally
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Figure 3.7: Boxplots showing the error in phylogenetic estimation for datasets with
missing data. Generating model is indicated with a star.
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detected the generating model more often than in the 8-taxon analyses. However,

the e�ect of biased missing data was similar to the 8-taxon analyses; the fast-rate

characters had more detrimental e�ect than the loss of slow-rate characters, with

the latter showing very few e�ects.

The Zheng tree dataset, there are six times as many taxa as the 8-taxon tree

and so there are many more opportunities to observe changes in each character,

which leads to a greater ability to estimate an appropriate value for the α param-

eter. This conforms to previous work on model selection, in which it has been

shown that the number of taxa in an analysis has a positive relationship with the

ability to detect a model of evolution in molecular sequences (Posada, 2001).

In the 8-taxon datasets without missing data, we saw a very clear pattern

consistent with the theory underlying the use of the symmetric Dirichlet prior. For

datasets simulated under α =∞, α = 0.2 tended to perform worst, and vice versa.

This is the exact pattern expected from Fig. 1: datasets conforming to the original

Mk model assumption of equal transition rates from 0 to 1 and 1 to 0 should be

poorly modeled by a prior that punishes this assumption. For the α = 1 datasets,

the α =∞ prior performed worst. This, again, is expected: a prior that assumes

all characters in a dataset should exhibit equal 0 to 1 and 1 to 0 transition rates

would be expected to be a poor �t to data in which character asymmetry values

are expected to be drawn from all possible values of asymmetry.

These patterns held for the Zheng-tree simulations, although the magni-

tude of improvement from a poorer-�t model to the best-�t model was smaller

than in the 8-taxon datasets. The overall amount of error was also smaller in these
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datasets, as would be expected from the fact that branches are shorter on this tree.

In both sets of simulations (but especially for the Zheng-tree simulations),

biases in the distribution of missing data with respect to rate of character evolu-

tion resulted in greatly increased rates of phylogenetic error. This �ts conclusions

based on previous simulations of larger datasets (350 characters and 75 taxa) that

showed that biases in patterns of missing data can result in high phylogenetic er-

ror rates, even in the absence of any model misspeci�cation (Wright and Hillis,

2014).

The Beta distribution has two parameters - α and β, but these two parame-

ters are set equal to one another in the case of the symmetric Beta distribution. Set-

ting these parameters separately would allow for asymmetric Beta distributions.

This might be appropriate for Dollo-like characters, in which we would expect to

see many losses of a trait, with rare regains of that same trait. If assignment of

states 0 and 1 is random with respect to presence or absence of a character, then

this should not be necessary. However, a two-parameter Dirichlet prior might be

useful for many morphological datasets in which 0 represents absence of a trait,

and 1 represents presence of the trait.

3.5.1 Acknowledgements

We thank John Huelsenbeck for useful discussion on the implementation

of the symmetric Dirichlet prior and Martha K. Smith for helpful comments and

discussion.

66



Chapter 4

Use of an Automated Method for Partitioning
Morphological Data

4.1 Abstract

Partitioning phylogenetic data matrices into smaller subsets is commonly

performed in molecular phylogenetics. Partitioning allows subsets of characters

to be modeled separately, which is useful when subsets of characters may have

been subjected to di�erent evolutionary forces and therefore may not accurately be

described by the same model. Data partitioning is less common in morphological

phylogenetics. Here we evaluate the utility of partitioning in empirical datasets.

We demonstrate that appropriately-conservative partitioning can improve the �t

of models to the data and a�ect estimates of trees from morphological data, but

that partitioning performed according to liberal criteria can lead to over-splitting

of characters.

4.2 Introduction

In molecular systematics, phylogenetic trees are often built using model-

based methods (maximum likelihood and Bayesian approaches). In this literature,

substantial thought has been spent on the problem of model selection, or choosing
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a model of molecular evolution that is believed to be re�ective of the process of

evolution underlying the generation of the observed data. Model selection gener-

ally involves using an information theoretic criterion to assess statistical support

for adding parameters to a model of evolution, and for the speci�c values of those

parameters. Commonly used parameters in evolutionary models include rates of

transitions between character states, equilibrium frequencies of character states,

and variation in evolutionary rate among sites.

Often included in the discussion on phylogenetic model selection is the

question of partitioning, or breaking up a dataset into subsets that each have in-

dependent models or parameter values for the same model. The justi�cation for

partitioning is simple: Not every site in a data matrix may have been subject to the

same evolutionary pressures and constraints and di�erent sites may favor di�erent

models of molecular evolution. Each partition can have independently �t parame-

ters and parameter values. The partitioned data are then used to estimate a phylo-

genetic tree. Empirical (Castoe et al., 2004; Brandley et al., 2005; Li et al., 2008) and

simulation studies (Brown and Lemmon, 2007) indicate that use of statistically-

justi�ed partitioning often improves the �t of the model to the data, and favorably

a�ects the recovered topology, support and/or branch lengths.

Partitioning has seldom been performed in likelihood context for morpho-

logical phylogenetics, which is predominantly reliant on the parsimony optimality

criterion rather than model-based methods. Considering the variety of evolution-

ary pressures and developmental constraints acting on the physical form of an

organism, we would expect that the �t of models to morphological data matrices
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should improve in the same way as molecular datasets when partitioned. Indeed,

previous research has demonstrated the utility of partitioning datasets based on

anatomical subset, such as cranial characters (Clarke and Middleton, 2008).

If partitioning is useful for morphological data, why is it not used as often

as in molecular studies? First, molecular data matrices often have clear boundaries

along which partitioning can be performed. One common strategy for partitioning

is to �t a model of evolution to each locus separately in a multi-locus phylogenetic

study. Another is to model codon positions separately, often with the �rst and

second positions in a partition and the third in a partition of its own. The mor-

phological equivalent of a gene or codon position is unclear and many characters

are in�uenced by unknown sets of genes.

Clarke and Middleton (2008) solved the question of how to break up a mor-

phological dataset a priori by using an approach to partitioning in which they

divided their morphological data matrix by anatomical subset. This approach is

very e�ective for their data, but requires extensive knowledge of the biology and

physiology of all the organisms in a matrix. This approach may also be challeng-

ing when used across broader scales in which characters are not shared across all

sampled organisms.

The second challenge in partitioning morphological data may be the larger:

morphological datasets are often quite small. Prior simulation research (Brown

and Lemmon, 2007) has focused on DNA alignments an order of magnitude larger

than the data matrices commonly used by morphologists. For some groups, adding

more characters and taxa may not be possible due to paucity of specimens or ex-
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Figure 4.1: Distribution of data matrix sizes used in this study.
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pense of collection. Fig. 1 illustrates the dataset sizes used in this study. All

datasets have fewer than 500 characters, with 234 datasets having fewer than

100 characters. For contrast, a single locus may be 500-700 base pairs long, with

next-generation methods producing matrices of thousands of loci. Model selec-

tion balances improving the adequacy of a model to capture the dynamics of the

data with avoiding overparameterization (Posada and Buckley, 2004; Sullivan and

Joyce, 2005). Partitions must have su�cient data to estimate values for all parame-

ters in the model of evolution. Small datasets simply may not have enough data to

be divided and still allow for accurate and precise estimation of independent sets

of parameters. This would result in trees with unresolved nodes or in spurious

resolutions (i.e. loss of precision and accuracy).

Recent methodological developments have allowed for the automation of

partition discovery. PartitionFinder (Lanfear et al., 2012, 2014) is software for au-

tomated comparisons of possible partitioning schemes. Original versions of the

software allowed users to specify how they would like the data split up. Model

parameters are then �t to the data as one large, single subset, and their likelihood

score calculated. Using the user-speci�ed subsets, a likelihood tree is then built

and scored. Subsets with very similar best-�t parameter values are merged. A tree

is estimated from this smaller set of subsets and scored. If there is support for fewer

subsets, the algorithm would continue merging subsets until either no improve-

ment in score was found, or the data are all in one subset. Using a user-selected

information criterion, statistical support for subsets is then assessed. In this algo-

rithm, users speci�ed the maximum number of subsets that could be present in the
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data; if fewer are warranted, fewer are reported as the best-�t partitioning scheme.

This is a useful point of comparison when the user has a partitioning scheme in

mind a priori.

Motivated by the challenges of genome-scale datasets, a new algorithm for

exploring and selecting partitioning schemes has been described in Frandsen et al.

(2015). For some types of genome-scale sequencing, such as restriction site asso-

ciated DNA markers, little information upon which partitions could be proposed

is known by the researcher a priori. The iterative k-means algorithm makes au-

tomated evaluating partitions, even in large datasets, tractable. The steps of the

algorithm are as follows:

1. Estimate a phylogenetic tree from the unpartitioned data matrix

2. Fit parameters of the evolutionary model (in the case of morphology, the Mk

Model (Lewis, 2001) to the whole dataset as a single set of sites

3. Calculate the score of the data given this model according to an information

theoretic criterion (AIC, BIC, or AICc)

4. Generate rates of evolution for each site in the dataset

5. Use k-means clustering to split the subset in two based on these rates

6. Fit parameters of the model for these new subsets

7. Calculate the score of this new partitioned data matrix according to the same

information theoretic criterion used in step 3.
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8. If smaller subsets are supported by this criterion, continue to divide them,

repeating steps 5-7. If not, terminate the search.

The end result of this algorithm is a dataset which has been divided into subsets,

each with a unique set of sites. Each site in the complete matrix will only be present

in one subset (i.e., subsets are unique and non-overlapping). In PartitionFinder-

Morphology, the program used to estimate the phylogenetic tree is RAxML (Sta-

matakis, 2014), due to computational speed. Site rates are calculated using Cum-

mins and McInerany’s (Cummins and McInerney, 2011) TIGER algorithm as im-

plemented in the software fastTiger (Frandsen et al., 2015).

Three information theoretical criteria are available in PartitionFinder: AIC

(Akaike, 1973), BIC (Schwarz, 1978), and AICc (Burnham and Anderson, 2002). All

three can be used with morphological data. AIC, de�ned as

AIC = 2k− 2ln(L)

in which k is the degrees of freedom of the model and L is the maximum likeli-

hood score of the data given the model, is the most liberal criteria of the three. AIC

quanti�es the �t of the model to the data, but includes a penalty for overparame-

terization (Sullivan and Joyce, 2005). However, this penalty is small. This criterion

is almost certainly not reasonable for most datasets with which paleontologists

will be working (Burnham and Anderson, 2002) due to their small size.

BIC, de�ned as

BIC = −2ln(L) + k ∗ ln(n)
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in which n represents sample size, more strongly penalizes overparameterization.

However, BIC’s preference against overparameterized models increases with sam-

ple size; for many paleontological data sets, the sample size is small. Therefore, we

would not expect overparameterization to be as heavily penalized in these datasets

as they would be in larger datasets.

AICc, de�ned as

AICc = −2(ln(L)) + 2k ∗ n

(n− k− 1)

behaves in an almost opposite manner: subdividing already-small sample sizes

is strongly penalized. At larger sample sizes, this penalty will lessen, and AICc

and AIC will converge (Burnham and Anderson, 2002). Because of the di�erential

penalties for small datasets, we would expect AIC to favor more partitions, while

BIC and AICc will be more conservative in splitting a dataset, favoring a smaller

number of partitions with a larger number of sites per partition. AICc is expected

to be the most conservative at the scale of data we examined in this study.

The automated approach is promising, as it requires relatively little infor-

mation from the researcher a priori. Here, we demonstrate the utility of automated

partitioning for morphological data using a variety of empirical datasets under

the likelihood and Bayesian methods for phylogenetic estimation. We compare

the performance of this algorithm to the approach used in Clarke and Middleton

(2008).
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Table 4.1: Number of subsets selected for each dataset per criterion for datasets
that supported partitioning in unlinked branch length models. “Support” refers
to the weight of evidence per information criterion for the partitioning scheme,
compared to an unpartitioned dataset.

Dataset Citerion Number of partitions Support
Currie et al 2003 AICc 2 494.66
Currie et al 2003 BIC 2 462.87
Currie et al 2003 AIC 2 429.04
Laurin 1993 AICc 2 1374.65
Laurin 1993 BIC 2 1305.81
Laurin 1993 AIC 3 1223.06
Osmolska et al 2004 AICc 2 1746.65
Osmolska et al 2004 BIC 2 1645.21
Osmolska et al 2004 AIC 3 1602.15
Schultze 1994 AICc 4 1767.99
Schultze 1994 BIC 4 1644.63
Schultze 1994 AIC 9 1571.35

4.3 Methods
4.3.1 Dataset Acquisition

Morphological data matrices were downloaded from www.graemetlloyd.com/matr.html.

This collection of matrices was compiled and formatted for use with common phy-

logenetic tree generation software by Lloyd (Wright, Lloyd and Hillis, in reveiw).

Each matrix was converted into Phylip format for use with RAxML software (Sta-

matakis, 2014) using Dendropy (Sukumaran and Holder, 2010). No further charac-

ter manipulation or pruning was performed. Datasets ranged in size from 5 to 279

taxa and 11 to 364 characters. The distribution of the number of characters can be

seen in Fig. 1. RaxML does not allow for the use of ordered characters in matrices;

therefore, ordering was ignored.
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4.3.2 Model Selection

Each dataset was partitioned using PartitionFinder Morphology. All of the

datasets contained multi-state characters, and likelihood scores and site rates were

estimated using the multi-state Mk model (Lewis, 2001). All datasets were parti-

tioned according to the k-means automatic partitioning algorithm. We used each

of the three di�erent information theoretic criteria implemented in ParitionFinder

to assess statistical support for the partitioning schemes. We searched for parti-

tions with both linked branch lengths and unlinked branch lengths. Linked branch

lengths estimate one underlying set of branch lengths for the whole dataset, but

give each subset its own rate multiplier. Unlinked branch lengths allow each subset

to have its own set of branch lengths. Unlinked branch lengths add substantially

more parameters to the analysis and would be expected to be supported for fewer

datasets.

4.3.3 Phylogenetic estimation

Parameters estimated for each subset of sites were unlinked or linked, ac-

cording to how the model selection was performed. Most paleontological datasets

do not contain invariant sites, and many do not contain characters that do not

vary in a parsimony-informative way (i.e., those that do not favor one subset of

trees over another). Lewis (2001) noted that if this character acquisition bias is not

corrected for, branch lengths will be dramatically over-estimated. RAxML imple-

ments the ascertainment bias correction proposed by Lewis (2001). This correction

has been previously shown to be e�ective (Wright and Hillis, 2014). To assess sup-
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Figure 4.2: Number of partitions supported per data set by each information the-
oretic criterion.

port for the tree, each dataset was bootstrapped 100 times.

We also performed phylogenetic estimation using MrBayes (Huelsenbeck

and Ronquist, 2001; Ronquist and Huelsenbeck, 2003). Each dataset was estimated

using the Mk model with the partitioning scheme selected by PartitionFinder un-

der each of the three criteria. To maintain comparability between RAxML results

and MrBayes results, ordered characters were treated as unordered here, as well.

Analyses were run for 10 million generations.
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4.3.4 Data Comparisons and Analysis

Estimating how well a tree has been estimated from empirical data is chal-

lenging, as there is no known correct answer. We quanti�ed the di�erences be-

tween the tree estimated from unpartitioned data and partitioned data in terms

of the symmetric di�erence, sometimes referred to as the unweighted Robinson-

Foulds metric (Robinson and Foulds, 1981). Di�erent trees have di�erent numbers

of tips; we therefore scaled this metric by the number of tips for ease of compari-

son. Robinson-Foulds only considers topology, therefore, we also extracted branch

lengths and bootstrap support for branches shared between trees estimated with

partitioned and unpartitioned data. Scripts to perform this analysis were writ-

ten using the Dendropy Python library (Sukumaran and Holder, 2010) and can be

found in the supplemental information.

Likelihood scores for the maximum-likelihood trees were extracted from

the �nal output of RAxML for each dataset. MrBayes does not estimate an equiva-

lent maximum-likelihood tree. Therefore, we instead calculated the marginal like-

lihood of the model using stepping stone sampling. To compare the performance

of partitioned and unpartitioned data, we compared the best score found in ei-

ther MrBayes or RAxML using unpartitioned data for each data set to the score

obtained using partitioned data using either MrBayes or RAxML. We chose to use

this metric, rather than simply comparing unpartitioned to partitioned within each

method for several reasons. Firstly, if one method simply produces a tree or model

with a poor likelihood score from unpartitioned data, this will in�ate the perceived

improvement associated with partitioning. Secondly, for using a more complicated
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model to be justi�ed, it should improve upon the best topology that can be found,

not a suboptimal tree. Therefore, a more thorough tree search with multiple ana-

lytical techniques should be employed.

4.3.5 Tree Space Visualization

We used the software TreeSetViz 3.0 (Hillis et al., 2005) in the Mesquite

2.72 package (Maddison and Maddison, 2008) to compare the exploration of tree

space between partitioned and unpartitioned estimation. We randomly selected

500 trees from the post-burnin sample of partitioned and unpartitioned MrBayes

runs. The tree-to-tree comparison metric is the unweighted Robinson-Foulds dis-

tance. Two points which are close together in this visualization are close in RF

distance (are topologically similar). Points that are far apart have large RF dis-

tances (are topologically dissimilar).

4.3.6 Clarke and Middleton Dataset

We used the iterative k-means clustering algorithm to estimate the optimal

partitioning scheme using the data matrix from Clarke and Middleton (2008). We

used each of the three di�erent information theoretic criteria to derive three di�er-

ent partitioning schemes. We also performed the same model �tting exercise, but

seeded PartitionFinder with the partition scheme used by Clarke and Middleton.

When a starting partition scheme is provided, that scheme will only be changed

if an improvement is supported per the chosen information theoretic criterion.

Trees were estimated in MrBayes using per-partition distributions of rate hetero-
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geneity and using and exp(5) prior on branch lengths, which Clarke and Middleton

supported through model-testing as the best-�t branch length prior.

4.4 Results
4.4.1 Partition Size and Model Selection

Using linked branch lengths yielded far more datasets for which partition-

ing was supported. Under the AICc criterion with unlinked branch lengths, only 8

datasets supported partitioning. The same was true for 14 and 18 data sets under

the BIC and AIC. Because only four datasets favored partitioning by all three crite-

ria, the datasets of Schultze (1994); Laurin (1993); Currie et al. (2003); Weishampel

et al. (2004), making conclusions from these data is challenging. For visualization

purposes, we will be showing data from the linked branch length estimations. A

summary of the support for partitioning using unlinked branch searches can be

found in Table 1.

As expected from the theory outlined in the introduction, AIC produces the

largest number of subsets per dataset (Fig. 2). AICc favors the smallest number

of subsets with the largest average partition size. BIC falls out in between. The

total number of datasets was 333. Despite being more conservative and favoring

fewer subsets per data set, BIC �t more than two or more subsets for 319 of the

datasets examined, while AIC �t partitioned models for 296 datasets. AICc found

no support for a partitioned model in 82 datasets. The total number of datasets for

which all three criteria favored two or more subsets was 209.
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Figure 4.3: Scaled Robinson-Foulds distances between trees estimated from parti-
tioned and unpartitioned data.
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Table 4.2: Table of model performances for partitioning schemes estimated with
linked branches.

Analysis Best-Scoring Solution Pro-
duced

AICc 125
BIC 84
AIC 0
MrBayes 208
RAxML 1

4.4.2 Topological Estimation

For likelihood trees with linked branch lengths, the majority of trees esti-

mated from partitioned datasets showed modest Robinson-Foulds di�erence scores

from trees estimated from unpartitioned data. As seen on Fig. 3, most trees from

partitioned data had over 90% of the same nodes as those from unpartitioned data.

AICc was represented less often than BIC or AIC in trees with more than 10% of

nodes estimated di�erently than the unpartitioned trees. Bayesian trees showed

about the same level of Robinson-Foulds distance between trees estimated from

partitioned and unpartitioned data.

When equivalent branches (branches shared between both trees) are com-

pared between the trees estimated from partitioned data and unpartitioned data

are compared (Fig. 4), branch length di�erences are generally not large for both

Bayesian and likelihood trees. Most branches from a trees estimated from par-

titioned alignments are within 0.1 expected changes per character of the same

branch from a tree estimated from unpartitioned data.
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Figure 4.4: Branch length di�erences for branches shared between trees estimated
from unpartitioned and partitioned data. Positive scores indicate that the trees
from partitioned data are longer.

When branch lengths were unlinked, trees estimated from data varied in

terms of their di�erence from the best tree estimated from unpartitioned data. A

table of results from these estimations is shown in Table 3. These di�erences were

generally small, with less than a quarter of all nodes being estimated di�erently

between partitioned and unpartitioned data. However, some are very important.

In the Schultze (1994) dataset, for example, the topologies from unpartitioned data

produce results that are strongly contradicted by other work on vertebrate phy-

logeny, placing the Porolepiformes as sister to the Dipnoi-Diabolepis-Actinistia

clade. The partitioned analysis supports a canonical view of bony �sh relation-

ships. A schematic of the tree from unpartitioned data and partitioned can be

found in Fig. 5. Average branch lengths are shorter on trees estimated from parti-

tioned data for most datasets.

83



Ta
bl

e
4.

3:
Pe

rf
or

m
an

ce
of

pa
rt

iti
on

ss
up

po
rt

ed
w

ith
un

lin
ke

d
br

an
ch

le
ng

th
s.

A
ll

sc
or

es
ar

e
co

m
pu

te
d

be
tw

ee
n

tr
ee

se
st

im
at

ed
fr

om
un

pa
rt

iti
on

ed
da

ta
an

d
tr

ee
se

st
im

at
ed

fr
om

pa
rt

iti
on

ed
da

ta
.

D
at

as
et

In
fo

rm
at

io
n

Th
eo

re
tic

Cr
ite

rio
n

Sc
or

e
D

i�
er

en
ce

Av
er

ag
e

Su
pp

or
t

D
i�

er
en

ce
Sc

al
ed

RF
Sc

or
e

Av
er

ag
e

D
i�

er
en

ce
fo

r
Eq

ui
va

le
nt

Br
an

ch
es

Cu
rr

ie
et

al
20

03
a

A
IC

c
47

.0
3

10
.6

6
0.

2
0.

03
Cu

rr
ie

et
al

20
03

a
BI

C
47

.0
3

9.
67

0.
2

0.
02

Cu
rr

ie
et

al
20

03
a

A
IC

17
.8

1
14

0.
2

0.
02

La
ur

in
19

93
a

A
IC

c
26

3.
44

23
.3

0.
15

7
-0

.0
5

La
ur

in
19

93
a

BI
C

23
7.

56
23

0.
15

7
-0

.0
5

La
ur

in
19

93
a

A
IC

22
5.

91
21

.3
0.

15
7

-0
.0

5
O

sm
ol

sk
a

et
al

20
04

a
A

IC
c

37
2.

49
26

0.
2

-0
.0

8
O

sm
ol

sk
a

et
al

20
04

a
BI

C
37

2.
12

28
.7

5
0.

2
0.

02
O

sm
ol

sk
a

et
al

20
04

a
A

IC
37

2.
12

20
0.

16
-0

.0
4

Sc
hu

ltz
e

19
94

a
A

IC
c

28
9.

97
31

.2
5

0.
2

-0
.0

3
Sc

hu
ltz

e
19

94
a

BI
C

28
9.

97
30

.2
0.

2
-0

.0
3

Sc
hu

ltz
e

19
94

a
A

IC
28

8.
66

30
.5

0.
2

-0
.0

2

84



4.4.3 Improved Model Fit

When the tree or model with the highest likelihood score estimated from

unpartitioned data was compared with the best-scoring tree or model from parti-

tioned data, partitioned data always showed an improvement in likelihood score.

This is not surprising, as adding parameters should bring a model closer to the

generating model. For most of these datasets, the improvements seen are mild,

between 0.01 and 10 likelihood units. These data are presented in Fig. 6.

The information theoretical criterion upon which datasets are divided is

very important. AICc produces the best-scoring trees for 125 datasets. BIC pro-

duces the best scoring-tree for 84 datasets. Datasets divided with the AIC criterion

never produced the best tree for any dataset. Likewise, the analytical method is

important, with MrBayes �nding the best-scoring solution nearly universally.

Results from tree searches with unlinked branches can be found on Table 3.

Likelihood scores improved from the use of partitioned data for all of the datasets.

These improvements were quite substantial, over 200 log likelihood units for 3

of the datasets. These improvements are larger than any but the largest 1.5% of

improvements seen with linked branches.

4.4.4 Tree support

For the trees estimated in RAxML, we extracted bootstrap values for equiv-

alent bipartitions (bipartitions found on both trees) on the trees estimated from

partitioned and unpartitioned data. The results of this for models with linked

branches can be seen in Fig. 7. We also calculated Bayesian posterior proba-
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Figure 4.5: Trees estimated from the Schultze (1994) dataset with unpartitioned
(panel A) and unpartitioned data (panel B).

bilities for equivalent bipartitions on trees estimated by Bayesian analysis from

partitioned and unpartitioned data. For both Bayesian and likelihood analyses,

di�erences in support between unpartitioned and partitioned data are very close

to zero for the majority of tree comparisons. The spread seen in di�erences for

support metrics in likelihood trees is wider than the spread found in this metric

for Bayesian trees.

Bootstrap and posterior probability support for equivalent splits for models

with unlinked branches can be seen in Table 2. In all datasets, support (bootstrap

or posterior probability) for equivalent bipartitions between trees estimated form

partitioned and unpartitioned data increased. Increases in support were generally

large — over 10% of the bootstrap or posterior probability.

4.4.5 Tree Space Exploration

A visualization of one example from our tree space explorations can be

seen in Fig. 8. This plot was produced from the MCMC sample from the un-
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partioned Osmoloska et al. 2004 dataset (shown in blue) and the MCMC sample

produced with partitioned data (shown in red). On this graphic, points are col-

ored by Robinson-Foulds di�erence between the ith tree MrBayes MCMC sample

from unpartitioned data and the ith tree in the MrBayes run from partitioned data.

Inside of the green box, there are 232 samples from the partitioned data estima-

tions, nearly half the MCMC sample visualized with TreeSetViz. The tree from

this region of treespace can be seen in Panel B of Fig. 9.

4.4.6 Clarke and Middleton

Using linked branch lengths, all three information theoretic criteria sup-

ported the use of far more partitions than were used by Clarke and Middleton

(2008). AICc proposed 16 partitions, compared to the four proposed by Clarke and

Middleton. Whereas all sets of partitions were strongly supported by their respec-

tive information theoretic criteria, all subsequently produced marginal likelihoods

calculated in MrBayes were worse than those discovered by Clarke and Middleton

(2008), despite the larger number of partitions. As seen on Table 4, AICc chose the

partitioning scheme that produces the best-�t model. The best model was, how-

ever, much worse than the model chosen by Clarke and Middleton. Using unlinked

branches, only AIC supported partitioning, into two partitions

When we provided PartitionFinder with a starting scheme, the scheme

used by Clarke and Middleton, results di�ered between linked and unlinked branch

lengths. When branch lengths were linked, all three information theoretic crite-

ria supported the same 8-parition scheme. When branch lengths were unlinked,
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PartitionFinder supported the continued use of the Clarke and Middleton scheme.

The best-supported partition scheme discovered by Clarke and Middleton (2008)

was comprised of four partitions: the axial skeleteon (19 characters), cranial char-

acters (52 characters), pectoral characters (82), and pelvic characters (51). Other

than partition 5 (75 characters) under the BIC and AICc criteria, most other par-

titions were smaller than the four used by Clarke and Middleton. The character

subsets chosen by PartitionFinder bear no resemblance to those chosen by Clarke

and Middleton (2008), with characters from each of Clarke and Middleon’s four

partitions present in many of the partitions supported by PartitionFinder.

Topologically, the trees produced from data partitioned (without being seeded

with Clarke and Middleton’s partition scheme) with PartitionFinder are identical

(Fig. 7). They do show di�erences from the Clarke and Middleton (2008) tree.

As shown on Figure 7, bootstrap support is very poor on this tree, relative to the

Clarke and Middleton tree. The tree produced from PartitionFinder with Clarke

and Middleton’s scheme as a seed di�er topologically from both the other Parti-

tionFinder trees and the Clarke and Middleton tree. However, as this tree re�ects

very poor model �t (Table 4), we will not discuss it further.

4.5 Discussion
4.5.1 Which information theoretic criterion should be used for partition-

ing?

Model selection is a balance between having enough parameters to ade-

quately model the data, and too many parameters to accurately estimate values
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Table 4.4: Comparison of partition schemes chosen by PartitionFinder Morphol-
ogy and by Clarke and Middleton (2008).The range for the Clarke and Middle-
ton scheme indicates the range of values found for the most-optimal partitioning
scheme when estimated using di�erent topology and branch length priors.

Analysis Number of Subsets Marginal Likelihood
Clarke and Middleton (2008) 4 -1529.7 to -1489.2
AICc - linked branches 16 -1623.5
BIC - linked branches 19 -1645.7
AIC - linked branches 55 -1734.4
AIC - unlinked branches 2 -1641.15
Seeded, all criteria -
linked branches 8 -1733.13

for each one. Model under�tting is known to produce a variety of detrimental

artifacts. Long branch attaction (Felsenstein, 1978), for example, is one such arti-

fact, in which models do not appropriately account for among-lineage rate hetero-

geneity. This e�ect is especially exacerbated by poor taxon sampling (Heath et al.,

2008). Other forms of model under�t known to create problems for phylogenetic

estimation include failing to account for base composition heterogeneity (Delsuc

et al., 2005; Foster, 2004), resulting in taxa with similar base compositions being

grouped together, and failing to account for acquistion bias, resulting in in�ated

branch lengths (Lewis, 2001). Underparameterizing has been demonstrated to be

worse than over�tting in the case of partitioned data (Brown and Lemmon, 2007),

though the datasets examined were much larger than those used here.

Over�tting the model also has dangers, though empirical and simulation

veri�cation of the e�ects of over�tting is harder to �nd. Buckley (2001) demon-

strated that, in some cases, a worse-�t model (one which AIC failed to support)
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can actually produce a better estimate than the best-�t model, possibly due to the

fact that the data collected are limited. Other concerns about over�tting are more

abstract and statistical in nature: it has been noted (Rannala, 2002) that, even in

large datasets, loss of degrees of freedom can result in statistical non-identi�ability

of parameters.

When working with morphology, researchers are strongly constrained in

the amount of data available. In these small datasets, we would expect careful

selection of models to be very important. From theory, we would expect, for small

datasets, that AICc would be the preferable criterion for model selection. AIC

seeks to minimize information loss between the process that generated the data

and the model, and so lightly penalizes choosing a more parameter-rich model.

Of the three criteria, AICc most strictly penalizes for complex models with small

sample sizes. As shown on Fig. 2, AICc prefers the smallest number of partitions

per dataset, with the largest numbers of sites per partition. For 125 datasets, the

partition scheme that resulted in the best-scoring solution from partitioned data

was estimated using the partition scheme chosen by AICc. This lends empirical

support to what we would predict from theory: that AICc is the best criterion

for model choice in paleontological datasets. However, data partitioned with the

BIC criterion also resulted in the best-scoring trees in a minority of datasets. This

suggests that these criteria should be compared by researchers in the model-�tting

process.

We explored allowing linked branch lengths and unlinked branch lengths

in this paper. Far fewer datasets supported partitioning when using unlinked
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datasets. No datasets for AICc or BIC supported partitions, and only 4 did un-

der AIC. This is not overly surprising: for a given fully bifurcating tree, there are

2N − 3

branches. If we use linked branches, each branch has a length value, and each

subset after the �rst has a scaling parameter by which all branch lengths are mul-

tiplied. By contrast, with unlinked branches, each subset has a unique set of 2N−3

branches. This rapidly increases the number of parameters required for a given

dataset. We would expect few morphological data sets to be large enough to be

able to estimate this many parameters. Which of these settings is best for any

particularly dataset is likely to depend on the biology of the taxa in question. The

Clarke and Middleton study supported use of unlinked branches; this is the case

when the whole set of branch lengths for a given partition does not simply scale

to equal the branch lengths of the �rst partition. An example would be if di�erent

branches each have their own scaling factor.

4.5.2 Partitioning and Tree Estimation

Using empirical data, we can assess whether partitioning is suggested for

morphological data, and, if doing so a�ects the trees estimated. Of 333 total datasets,

with linked branches, AIC found support for 2 or more partitions in 296 datasets,

BIC found support for 2 or more partitions in 319 data sets, and AICc found sup-

port for the same in 251 datasets. From this perspective, a majority of datasets

support the use of partitions according to a conservative criterion (AICc).
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Figure 4.6: Likelihood score improvement from unpartitioned data of optimal tree
discovered using partitioned data.

After estimating the trees from both partitioned and unpartitioned data

matrices, we made comparisons between sets of trees in terms of likelihood scores,

topology, and the lengths of equivalent branches. Comparing the absolute best tree

or model discovered from unpartitioned data to the best discovered using parti-

tioned data, we always saw a likelihood improvement (Fig. 5). However, we would

expect this from the simple fact that we are increasing the number of parameters

— and in some cases, quite substantially, as some datasets supported 20 or more

partitions.

To assess the inferential impact of using the best-�t model, we must exam-

ine the trees themselves. As demonstrated in Fig. 3, using partitioned data does

result in di�erent estimates of topology than using unpartitioned data for trees
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estimated using both likelihood and Bayesian estimation. Most of these distances

are under 0.1 scaled Robinson-Fould units, meaning less than 10% of the internal

branches in the tree are estimated di�erently between the trees estimated from

partitioned and unpartitioned data. Given that most likelihood improvements are

fairly mild, small changes to topological structure would be expected.

Trees estimated from partitioned data also di�ered from those estimated

from unpartitioned data in branch length. On Fig. 6, we compare equivalent

branches on trees estimated from partitioned data and unpartitioned data. A pos-

itive di�erence means that the branch is longer (i.e., more changes per character

are inferred) on the tree estimated from partitioned data than unpartitioned. A

negative score means that the branch is shorter (i.e., fewer changes per character

are inferred) on the tree estimated from partitioned data than unpartitioned. For

most equivalent branches, di�erences between partitioned and unpartitioned data

are close to zero. As shown on Table 3, for models with unlinked branches, the

average length of an equivalent branch is shorter for three of the data sets, and

longer for one (Currie et al., 2003)

Why there might be any di�erences between the lengths of equivalent

branches requires us to think about how variation in rate of evolution is handled

in a phylogenetic model. Di�erent characters in a matrix may evolve at di�erent

rates; normally this variation is accounted for using Gamma-distributed rate het-

erogeneity parameter. RAxML and MrBayes use a Gamma function with four bins

into which sites are placed. In our partitioned data sets, each partition receives

its own Gamma distribution, meaning characters in each partition are modeled
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Figure 4.7: Di�erences per support metric for bipartitions shared between trees
estimated from partitioned and unpartitioned data. A positive score indicates that
the partitioned data had higher support.

very �exibly. Recent work has indicated that a Gamma distribution may not be

optimal for morphological rate variation (Wagner, 2012; Harrison and Larsson,

2014). Modeling smaller groups of characters together may alleviate the e�ects of

this mis�t. Note, however, that some partitions returned with AIC and BIC using

linked branch lengths return subsets of under four characters — that is, smaller

than the number of rate categories in a normal 4-bin Gamma-distributed rates

model. Researchers should be careful not to apply Gamma-distributed rate varia-

tion to these partitions.

Bootstrap support also di�ers between trees estimated from partitionined

and unpartitioned data. Since bootstraps are a metric of the repeatability of a hy-

pothesis (in this case, the phylogenetic tree) under small perturbations of a data

matrix, we would expect this result if partitioning does, indeed, improve model �t

and result in inferences that have higher �delity to a true tree. For trees estimated
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from partitioned data, however, likelihood produce many splits for which boot-

strap support is lower for equivalent splits. We would expect this result if these

metrics are oversplitting the data, as each partition may contain little support for

a tree hypothesis.

We extracted posterior probabilities for equivalent splits between trees es-

timated from partitioned and unpartitioned data. The posterior probability is dif-

ferent in meaning and interpretation from the bootstrap. The bootstrap may be

said to be a metric of repeatability of a particular hypothesis in a dataset, in our

particular case, the support in the data for one most-optimal tree. The posterior

probability, by contrast, is calculated over a sample of trees obtained by MCMC

sampling, with a posterior probability of a clade representing the frequency of that

clade in the sample of trees. With a large enough sample of phylogenetic trees, the

posterior probability is often interpreted as the probability that a biparition is true,

given that the model of evolution is true (Huelsenbeck and Rannala, 2004). This

interpretation, therefore, is quite di�erent from the bootstrap. In MrBayes, poste-

rior probabilities are calculated by counting how many times a clade is included

in the trees found in the posterior sample and then mapped to a consensus topol-

ogy. In our investigations, posterior probability support increased or remained

the same for most nodes when partitioned using BIC and AICc. Most changes

in support were very close to zero. Results with AIC were more mixed: support

for about half of shared splits decreased. AIC also has a longer negative tail than

either AICc or BIC, suggesting that some nodes lose support quite dramatically.

This result would be expected if AIC is strongly oversplitting the data, leading to
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an inability to accurately estimate parameter values.

When we compare the best-scoring solutions for trees estimated from datasets

partitioned using unlinked branches, the results are far less ambiguous: all datasets

improved in support. Improved support, along with the improved likelihood scores

for the best-�t solutions suggest that partitioning using unlinked branches is very

important, and preferable to using linked branches.

One bene�t of Bayesian analysis is that it returns a sample of trees; this

sample can be used to assess if the same region of treespace is being explored by

partitioned and unpartitioned data. Using TreeSetViz in the Mesquite software

(Maddison and Maddison, 2008) suite, we demonstrate that partitioned datasets

are, preferring a smaller area of tree space. As shown on Fig. 9 (an example tree

set visualization from the Osmolska et al. 2004 dataset) the MCMC samples from

partitioned data sample more often in one small region of space as those from

unpartitioned data. This space contains the trees with the highest posterior prob-

ability. As solutions in the posterior sample are sampled with respect to their prob-

ability, we can infer that the solution space for partitioned datasets is more peaked.

When the search is not inside this small region, the MCMC search explores much

of the same space as that of the partitioned data. The di�erence between these

two searches appears to be less in which regions of treespace are explored, and

more in how much time is spent in which subregions. The relationship between

partitioning, dataset size, and treespace exploration is a fruitful area for future

research.

In terms of the topologies recovered from these two datasets, the unpar-
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Figure 4.8: Tree estimated from the Clarke and Middleton (2008) dataset from data
partitioned using the AIC criterion. Red branches indicate branches that are non-
equivalent between this tree and Clarke and Middleton’s 2008 tree.

titioned data (panel A) produces the same tree as the parsimony tree found by

Osmolska. The tree from partitioned data is shown in panel B and di�ers in the

placement of Ingenia yanshini.

4.5.3 Clarke and Middleton Dataset

The best-�t scheme chosen by Clarke and Middleton (2008) outperforms

any of the schemes recovered by PartitionFinder by, minimally, 94 likelihood units.
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The tree is also more well-supported than those estimated from our explorations.

Even without the ability evaluate fully the relationship di�erences due to a dearth

of previously-published trees, the scheme chosen by Clarke and Middleton is still

superior.

The Clarke and Middleton scheme breaks up the data into fewer partitions

that are larger, on average, per partition than those chosen by PartitionFinder

with linked branches. The number of partitions chosen by Clarke and Middle-

ton is larger than the number supported by AIC with unlinked branches. De-

spite these score di�erences, few topological di�erences are present on the tree:

Relationships of the Enantiornithiformes with Neuquenornis appearing sister to

Cathayornis. Unfortunately, due di�erential taxon sampling in other studies in-

cluding Neuquenornis (Wang et al., 2014), it is not possible to evaluate the plausi-

bility of this resolution. This analysis places Ichthyornis as sister to the Baptornis-

Hesperornis clade. This is an unusual position: many analyses have placed Ichthy-

ornis as more closely related to Aves than Hesperornis (Hai-Lu et al., 2005; Clarke,

2004; Clarke and Middleton, 2008), though our placement has been suggested by

other workers (Elzanowski et al., 2001).

The partitions used by Clarke and Middleton have clear biological mean-

ing, with each representing a suite of morphological characters believed to have

been generated by a similar underlying process. This is a very di�erent set of

evidence upon which to make a decision than the rate-based metric of Partition-

Finder, and the model-�t evidence would suggest that this biological criterion is

preferable.
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From our explorations with this dataset, we would advise researchers who

want to partition their data use all the available biological information. It is clear

that incorporating more information about the physiology of the organisms in-

volved produces the best-�t model for this particular dataset. We would advise

that researchers apply all possible biological information to phylogenetic estima-

tion, and to collaborate with researchers who have in-depth knowledge of the

biology and and evolution of their focal taxon.

What, then, is the role of automated partitioning? Firstly, this is an initial

exploration of the topic; more criteria upon which a dataset can be broken into

subsets exist. Tree congruence metrics (Jarvis et al., 2014) could be a promising

criterion for splitting a dataset. Secondly, not all datasets have detailed informa-

tion about evolutionary history and mode available. In these cases, a priori de-

termination of partitions may not be possible. Thirdly, applying multiple criteria

that take into account di�erent starting information will allow for more thorough

exploration of possible partitioning schemes. This ultimately may result in better

overall schemes being discovered. Lastly, many of the partitions favored when

using linked branches are quite small, sometimes only a character or two. These

characters can be pointed out as putative drivers of con�icting signal. Even if the

subsets identi�ed by PartitionFinder are not optimal for phylogenetic estimation,

these characters may be useful starting points for locating character con�ict within

a phylogenetic data matrix.
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Figure 4.9: An example visualization from Osmolaska et al. 2004. Each point is one
tree from the MCMC sample obtained from estimation performed with unparti-
tioned data, and tree-to-tree comparisons are performed with Robinson-Foulds dif-
ference. Points are colored according to Robinson-Foulds di�erence to the equiva-
lent tree in partitioned data. Panel A depicts the tree found by the original authors
(Weishampel et al., 2004) and our re-estimation with unpartitioned data. Th scale
bar displayed on Panel A comes from our estimation, not that of Osmolska et al.
Panel B shows the tree estimated with partitioned data.



4.6 Conclusions

Here we demonstrate that data matrix partitioning is useful and statisti-

cally justi�able for morphological data. Using comparisons in topology, branch

length and support, we have also demonstrated that this improvement can trans-

late into di�erences between trees estimated from partitioned data and unparti-

tioned data. We also �nd strong support for the continued use of biologically-

justi�ed partitioning criteria such as that of Clarke and Middleton (2008).

Based on our exploration of the performance of information theoretical cri-

teria for partition selection, we advise the use of AICc for partitioning if performed

in an automated context. We also recommend comparing analytical methods for

tree estimation, as MrBayes often �nds the best solution for more of the datasets

we examined. As this study is empirical, we cannot make conclusive statements

on whether these di�erences constitute improvements. Appropriate use of parti-

tioned models is an avenue for future research in morphological phylogenetics.
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