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Musical Expertise as a Scaffold for Novice Programming 

 

Thomas Jonathan Benton, Ph.D. 

The University of Texas at Austin, 2015 

 

Supervisor:  Joan E. Hughes 

 

This study addresses the role of musical expertise on novice computer 

programming. Engaging novices with computer programming is one of the great 

challenges of computer science education. Although there is extensive research focusing 

on constructionist approaches to programming education and creative entry points to 

programming, little research addresses the topic of how musical expertise informs an 

unstructured programming activity. To answer this question I focused on the role of 

participant talk during programming, patterns in participant programming, and evidence 

of computational thinking in participants’ final Scratch projects. 

For this interpretivist study, I worked with a dozen novice programmers from a 

variety of musical backgrounds: classical musicians, jazz musicians, composers, and non-

musicians. Each participant worked on a free-form musical project in the Scratch 

programming environment. I collected data including participant talk, screen recordings 

of participant programming, and participants’ final Scratch projects.  

Overall, musical participants more readily took to the numeracy involved in 

programming music in Scratch. Also, musical participants were able to use musical 

concepts and techniques as jumping-off points for programming challenges. Considering 

my results by participant group, composers stood out in a number of ways: working the 

longest, testing their programs the most often, adding Scratch objects the slowest, 
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removing the most Scratch objects, creating projects of the greatest nested depth, and 

unanimous use of operators and random numbers. Non-musicians, on the other hand, 

worked for the shortest amount of time, added the fewest Scratch objects, and created 

projects of the lowest nested depth. 

In addition to adding to the body of research around chunking and tinkering, this 

study reinforces the importance of context and comfort in an introduction to computer 

programming. Composition may be an especially rich area to leverage, given the design-

like programming activity of the composers here. Future research projects could resemble 

this one while focusing on younger learners, explicit musical concepts like those invoked 

by participants, or alternative performing arts framings such as theater or dance. 
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Chapter 1: Introduction 

This study focuses on how musical experience and expertise may impact the 

experiences of novice programmers. This study is motivated by a longstanding personal 

interest in music as well as by my experience in research focusing on how students learn 

about programming. I will begin with a personal story that depicts these two worlds 

intersecting for me and out of which this study grew. 

Several years ago I took a course offered by the College of Music’s electronic 

music studio called Experimental Music Performance Interfaces. In the course, we 

explored an array of approaches to controlling a computer music application, ranging 

from audio and motion sensors to video game controllers. These approaches had little in 

common aside from being dramatic departures from the musical keyboard or even the 

computer keyboard and mouse. For instance, our final course project was done in 

collaboration with students from the department of dance; we developed an application 

that generated live audio and video based on data from real-time motion generated by Wii 

controllers in the hands and strapped on the ankles of dancers. 

The software tool with which we explored these ideas was MAX/MSP, a visual 

programming environment designed for the development of interactive musical and 

visual applications. The application we created in MAX/MSP parsed and smoothed the 

copious motion data we received from the Wii controllers (in the form of four streams of 

integers) and then fed these more manageable data streams into mathematical 

transformers that would turn them into something suitable for manipulating audio 

samples and driving several synthesizer modules. Similar processes generated abstract 

visual animations and controller playback of prerecorded video elements. The process of 

learning MAX/MSP nearly perfectly engaged me in terms of balancing meaningful 
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challenges with rewarding, enjoyable payoffs, and I continue to create projects with it to 

this day.  

This dissertation is motivated in particular by two observations that came in the 

wake of the class and have never been far from my mind. First, after the course I realized 

that not only had I learned my way around MAX/MSP, but I had also begun to intuit 

some important programming fundamentals as well. Prior to that course, I had never 

learned anything more about programming than was necessary to write occasional bits of 

oafishly effective but inelegant and inefficient code, and while our MAX/MSP instruction 

had been practical and application-focused, I had nevertheless developed a sense of why 

it was called “object-oriented programming” and of how to take advantage of this in 

writing code. In a Java course I took several semesters later, it was a very pleasant 

surprise to realize that working in the context of an extremely specialized, niche language 

(that certainly looked nothing like Java or any other “serious” textual programming 

language) had developed my intuitions sufficiently as to shed light on some of these 

larger concepts. The question this left me with was whether or not I had simply been very 

engaged because I enjoy music or if my experience as a musician had somehow informed 

my learning in the domain of computer programming. 

A possible connection between music and programming leads into something I 

observed as we batted ideas around with our partners in the dance department. At the 

beginning of the collaboration I spent a great deal of time figuring out how to articulate 

musical ideas in code, but as the semester (and my proficiency) progressed I would 

sometimes find myself starting with the code rather than the music; that is, fiddling with 

some MAX/MSP object (a random number generator or mathematical transform, for 

instance) and experimenting with what kind of music I could wring out of it. The results, 
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pleasant listening or not, were certainly sounds that I could never have conceptualized on 

my own and in some cases presented appealing new musical ideas to explore.  

Using ruthlessly relentless machines to drive musical experimentation certainly 

predates accessible computer technology as we know it – in 1965 the American composer 

Steve Reich created a musical piece by running two copies of an identical tape loop at 

two slightly different speeds, such that the short audio loop (from a recording of a San 

Francisco street preacher) slowly drifted in and out of sync with itself over the course of 

seventeen minutes. While not traditionally musical, the result is a powerful and even 

mind-bending listening experience. Almost fifty years later, Reich has composed 

numerous acclaimed pieces for soloists and ensembles that use similar time-shifting 

techniques, the import of which might have never been realized had he not devoted some 

hours to playing with a pair of reel-to-reel machines (Reich, 2002). 

The ready accessibility of computers, and of novice-friendly programming 

platforms in particular, open wide the doors to this kind of experimentation. The 

tinkering and discovery and surprise of this computationally-aided creativity could surely 

fill many dissertations; the corner I will explore in this study examines how musical 

proficiency may usefully inform programming learning and practice. This dissertation is 

guided by an overarching research question: Do different kinds of musical backgrounds 

play a role in novice programming? 

PURPOSE AND SIGNIFICANCE OF THE STUDY 

First, this study attempts to expand the body of research around novice computer 

programming. There is a large body of research focusing on programming in fun and 

creative contexts, including storytelling, game design, robotics, and crafting. While music 

serves as a valuable entry point to developing a variety of digital literacy skills, research 
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around music and learning programming (particularly in the open-ended fashion of this 

study) is somewhat limited. This research could inform future work on introductory 

programming instruction as well as provide insight into the design of more interesting 

and powerful digital tools for musicians and other artists. 

In addition to contributing to research around novice programming, this study 

may point towards another entry point to the discipline of computer programming. The 

ability to program a computer has become a valuable commodity in countless 

professional fields (Guzdial, 2008), to say nothing of the search for compelling pathways 

into computer and information technology (Knobelsdorf & Schulte, 2008). However, 

while introductory programming courses are widely available in secondary (and some 

primary) schools, participation continues to be dampened by perceptions of programming 

as formidably difficult, boring, and/or the province of a limited demographic of students 

(Margolis, Estrella, Goode, Holme, & Nao, 2008). Fortunately, the current state of 

programming education offers many points of entry with the potential to dispel these 

objections. Engaging visual programming environments allow novices to sidestep the 

arcane and potentially intimidating syntax associated with traditional programming 

languages (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008) and many of these same 

environments are optimized for creative expression in a variety of media (Peppler & 

Kafai, 2005). 

Much of the research on engaging and creative entry points to programming 

focuses on game development or media-rich storytelling; while both of these areas often 

involve music, relatively little research has specifically addressed music as a context for 

learning programming or computational concepts. Young people have the opportunity to 

engage with music from a variety of perspectives, from school ensembles to Garageband, 

and this experience could potentially be leveraged to provide novices exciting, engaging, 
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and scaffolded introductions to programming. In addition to its potential for engagement, 

music is rich with information and information-processing in its own right (Edwards, 

2011), and this capacity has great potential for interaction with programming. The merit 

of approaching a traditionally technical field from a creative or artistic perspective is 

supported by calls for the expansion of STEM (Science, Technology, Engineering, and 

Math) education to STEAM with the addition of arts and design; furthermore, of the 

seven overarching computing ideas that drive the College Board and National Science 

Foundation’s Computer Science (CS) Principles course (Astrachan, Barnes, Garcia, Paul, 

Simon, & Snyder, 2011), three implicitly or explicitly make the case for creativity and 

the arts as fundamental to computing, boldfaced below: 

1. Computing is a creative human activity. 

2. Abstraction reduces information and detail to focus on concepts relevant to 

understanding and solving problems. 

3. Data and information facilitate the creation of knowledge. 

4. Algorithms are tools for developing and expressing solutions to computational 

problems. 

5. Programming is a creative process that produces computational artifacts. 

6. Digital devices, systems, and the networks that interconnect them enable and 

foster computational approaches to solving problems. 

7. Computing enables innovation in other fields, including science, social 

science, humanities, arts, medicine, engineering, and business. (Astrachan 

et al., p. 398) 
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The appeal and value of programming in accessible contexts combined with the 

recognition of art and creativity’s place in programming education motivate this study of 

the intersection of music and programming.  

OVERVIEW OF THE DISSERTATION 

The literature review that follows examines the research threads that contribute to 

this study. First I discuss my two foundations, constructionism and computer 

programming. This is followed by an overview of research on novice programmers and 

then a discussion of computational thinking, an important framework for content 

knowledge in this study. Finally, I will review a myriad of approaches to computer 

programming instruction. This includes lecture-based models and a variety of 

constructionist approaches, including music-focused ones. 

The methods section begins by explaining the constructivist epistemology and 

interpretivist theoretical perspective that guide this qualitative study. These justify my 

choice of a descriptive methodology, and then I outline the study in detail, which 

involved participants working on musical projects in the Scratch programming language. 

Primary data sources were think-aloud interviews, recordings of participant 

programming, and final Scratch projects. A constant comparative analysis approach was 

used to compare the themes that emerged from analysis of these data sources. Finally, I 

explain my positionality in this project as a researcher. 

Next, I present the findings of the study, for individuals and groups, and discuss 

these findings. The dissertation will conclude with a summary and final remarks.  
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Chapter 2: Review of Literature 

The review of the literature begins with discussions of constructionism and 

computer programming, two foundational concepts in this study. Following this I will 

present research on novice programmers. Next I will discuss computational thinking, a 

framework for content knowledge that I am using in this study. Finally, I will review 

several approaches to programming instruction. These include lecture-based instruction 

and a number of constructionist approaches to programming instruction. 

CONSTRUCTIONISM 

This study is grounded in constructionist learning theory. Constructionism builds 

on the constructivist theory that knowledge is constructed rather than simply received and 

constructionist pedagogies are related to problem-based learning, inquiry learning, and 

other constructivist approaches in the sense of using authentic and (ideally) meaningful 

tasks as entry points to content and concepts. Constructionism builds on constructivism in 

connecting learning with the creation of physical or digital artifacts (Harel & Papert, 

1991). Though constructionism is often summarized as “learning by making,” this 

description neglects the sense of play and exploration to which constructionism lends 

itself and which is a vital element of this study. 

Most research around constructionism focuses on the mental-model-making 

prevalent in mathematics and science learning. Papert’s  (1980) research and writings on 

the LOGO programming language provide an early exemplar of constructionist learning 

in action. In LOGO, users control a small icon called the “turtle” using a series of basic 

terminal commands. For instance, a command as simple as FORWARD 100 RT 90 

FORWARD 100 would move the turtle as follows: 
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Illustration 1: LOGO Example 1 

Used as a drawing program, LOGO puts early mathematics to work; for instance, 

learning about angles is no longer a matter of identifying obtuse versus acute and 

memorizing factoids about triangles. Instead, angles become an observable concept with 

which a learner can experiment and interact through drawing on screen. With 

understanding, a learner can create a limitless range of shapes or images. LOGO’s 

affordances extend far beyond instantiating concepts from geometry and arithmetic. An 

ambitious user might compose a command such as REPEAT 20 [FORWARD 100 RT 

70] and create: 

 

 

 

 

 

 

 

Illustration 2: LOGO Example 2 
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or even try out REPEAT 20 [REPEAT 20 [FORWARD 100 RT 70] LT 70] to 

produce: 

 

 

 

 

 

 

 

 

 

 

Illustration 3: LOGO Example 3 

While certainly provoking some challenging geometrical thinking, these digital 

artifacts also challenge and encourage learners to begin developing mental models around 

processes, procedures, and concepts that undergird the practice of computer 

programming.  

It is no surprise that constructionist learning approaches have arisen in parallel 

with computers and other digital tools. Computers’ capacities for simulation are a 

powerful tool in science and complex systems learning, allowing learners to create, test, 

and interact with digital artifacts that model phenomena from the observable world 

(Resnick, 1997; Wilensky & Resnick, 1999). 
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Scratch, the programming language used in this study, is a constructionist 

descendant of LOGO and fosters understanding through playful trial and error (Maloney, 

Resnick, Rusk, Silverman, & Eastmond, 2010). Constructionism will be further discussed 

in specific contexts as the review continues. 

COMPUTER PROGRAMMING 

Computer programming could be succinctly described as creating instructions 

with which a computer might solve a problem or execute a task. Larry Wall, creator of 

the Perl programming language, expands upon this definition with an elegant analogy: 

Computer programming is really a lot like writing a recipe. If you’ve read a recipe 
you know what the structure of a recipe is. It’s got some things up at the top that 
are your ingredients, and below there are directions for how to deal with those 
ingredients. A very similar thing happens in a computer program. You list the 
things that you’re going to be dealing with and then you have some instructions 
that say what to do with those ingredients. (Big Think, 2011) 

While this explanation provides an excellent bird’s eye view of programming, questions 

may still remain: How does a programmer write such a recipe? What goes into writing 

one? 

Programs are written in a programming language. For our purposes, a 

programming language is simply a language that a computer understands. More 

accurately, programs written in a programming language are first translated into a special 

machine language that computers understand, though this step is beyond the scope of this 

discussion. 

Like any language, programming languages have syntax and grammar. Some 

have overarching rules governing structure and composition (ingredients at the top, as 

Wall says), while some do not. In the former category are languages like Java or C, 

designed for writing entire recipes. On the other extreme is a language like LOGO, which 
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simply executes directions as the programmer gives them. Type FORWARD 100 RT 90 

FORWARD 100 – the turtle moves, turns, moves, and waits for its next instruction.  

While the programming languages mentioned thus far are “written” in a literal 

sense, some adopt entirely different paradigms. In Illustration 4, the left example is 

written in Java. The example on the right is in the Scratch programming language, a 

visual programming environment optimized for simple animations, graphics, and sound 

(Maloney, Resnick, Rusk, Silverman, and Eastmond, 2010). Their outputs are essentially 

identical. The Java example uses that language’s prescribed conventions to describe a 

task (displaying “Hello!” ten times). Alternately, Scratch provides the programmer a 

library of blocks instantiating various computational concepts; the act of programming is 

not so much literally writing code as it is arranging these blocks in an appropriate way to 

obtain the desired output.  

 

Illustration 4: Simple Programming Examples, Java on left, Scratch on right 

The mention of computational concepts brings us to a second important point. 

Returning to our recipe analogy, it would not be entirely fair to say that recipes are 

written in “plain English.” In addition to physical building blocks such as ingredients and 

kitchen tools, recipes include a host of culinary processes and procedures that may 

confound the beginning cook with a single word. How does one sweat an onion? What in 

the world is a chiffonade? Computer programming includes its own library of similarly 
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contextually-rich processes and concepts. These processes and concepts are expressed 

differently in different programming languages; for instance, in the above examples we 

see looping in action. In Java, a loop is set up using the first line of code in the example 

above. Scratch uses a repeat block. In this study and review, these processes and concepts 

are referred to as computational thinking concepts and are discussed in much greater 

detail later in this chapter. For a preview and short explanation of the computational 

thinking concepts under consideration in this study, please visit Appendix F.  

NOVICE PROGRAMMERS 

As this study focuses on novice computer programmers, this next section will 

review research on this particular population of learners. I will discuss general 

characteristics of novice programmers as well as differences between novice and expert 

programmers.  

Characteristics of Novice Programmers 

A wide breadth of research has examined characteristics potentially impacting the 

experience of the novice programmer, most considering factors correlated with 

performance in introductory programming courses and/or programming self-efficacy. 

Factors influencing programming success, typically based on performance in an 

introductory programming course, lean towards experience in specific content areas. 

Numerous studies have links between programming performance and standardized 

mathematics scores (Barfield, LeBold, Salvendy, and Shodja, 1983; Bergin and Reilly, 

2005; Byrne and Lyons, 2001; Pillay and Jugoo, 2005; Wilson and Shrock, 2001) as well 

as chemistry (Barfield, LeBold, Salvendy, and Shodja, 1983), physics and biology 

(Bergin and Reilly, 2005), and science courses generally (Byrne and Lyons, 2001). While 

aptitude in mathematics is often interpreted as a proxy for a suite of abstract problem-
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solving skills vital to programming, other studies have refuted the importance of 

abstraction (Bennedsen and Caspersen, 2006) and general cognitive skills (Barfield, 

LeBold, Salvendy, and Shodja, 1983). 

Research about the impact of content areas outside of science and mathematics is 

primarily focused on language. While proficiency in the language of classroom 

programming instruction understandably has some bearing on course performance 

(Pillay, 2005), this may be a general artifact of classroom instruction, as Wong, Ceung, 

and Chen (1998) show that English fluency plays little role in the competency of 

professional programmers working in an English-based syntax.  

While areas within the arts and humanities have been successfully leveraged for 

topic-specific programming interventions (as will be discussed later), the impact of 

experience in (rather than enthusiasm for) the arts and humanities on novice 

programming in general is unexplored.  

Learner characteristics associated with programming self-efficacy are most often 

those associated with personal history and experience. Based on a survey of students in 

an introductory Java course, Askar and Davenport (2009) found programming self-

efficacy strongly connected with computing experience as well as family computer usage 

(primarily the usage by siblings and mothers, with computer usage among fathers having 

virtually no impact). The choice of student major (computer programming versus 

electronics or industrial engineering) played a small role, though all students were 

comparably qualified in mathematics and other prior coursework. Other studies (Hasan, 

2003; Wiedenbeck, 2005) support the importance of learners’ perceptions of their own 

computer experience. Interestingly, specific aptitudes and domain expertise appear to 

play little role in novice programmers’ self-efficacy beliefs, despite their importance in 

predicting programming success. Looking at computing and programming self-efficacy 
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in specific contexts, Ortiz and Webster (2011) showed a positive correlation between 

task-specific self-efficacy and computing self-efficacy, with the strength of this 

correlation increasing with the novelty of the task. This is a promising notion in 

considering computing and programming activities based around the relatively novel arts 

and humanities as this study does; while these fields are not traditionally associated with 

programming aptitude, self-efficacy in these context domains may positively influence 

learners’ self-efficacy around programming.  

Novice & Expert Programmers 

Across many fields, key differences between novices and experts are closely 

linked to the organization of information: how situations are mined for patterns, how 

knowledge is stored for retrieval, and how information is evaluated on the basis of 

context (Bransford, Brown, and Cocking, 2000). This theme holds true for novice and 

expert programmers; much of the research in this area discusses chunking, the practice by 

which programmers organize knowledge in a meaningful fashion (Graci, 1992). For 

instance, a more novice programmer comfortable with loops might spend time 

implementing various multiple loop approaches to a problem until the correct nested loop 

solution is discovered. Meanwhile, for the expert programmer the nested loop could be a 

freestanding chunk all on its own, promptly recognized as the problem solution and 

executed.  

Novice programmers do not simply organize information into meaningful chunks 

less often than experts. They organize chunks more often around natural language as 

opposed to programming concepts (McKeithen, Reitman, Reuter, & Hirtle, 1981) and 

face difficulty in transitioning from conceptual understanding to practical implementation 

of most programming concepts (Butler & Morgan, 2007). 
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Learning to usefully organize information like an expert is beset by its own set of 

questions. In comparing learners working with procedural and object-oriented 

programming languages, Wiedenbeck, Ramalingam, Sarasamma, and Corritoe (1999) did 

not find either group consistently evincing superior programming understanding. 

(Procedural programming is fundamentally based on stepwise instructions while object-

oriented programming focuses on combining data and functions into modular objects.) 

On assessments using shorter programs, object-oriented programming learners performed 

better on questions about program function, while procedural programming learners 

performed better on questions about control and data flow; the two groups performed 

similarly on questions about specific operations within the programs. On assessments 

using longer and more advanced programs, procedural programming learners performed 

better across all types of question. Pirolli and Recker (1994) highlight the formidable 

metacognitive demands of successful programming learning, including self-monitoring of 

knowledge and self-motivated generation of concrete explanations of abstract concepts. 

Research on the novice-expert divide in programming does not stop at chunking. 

It touches heavily on comfort with abstraction (Ye, 1996) and correctness of mental 

models (Ma, Ferguson, Roper, & Wood, 2011; Ramalingam, LaBella, & Wiedenbeck, 

2004) as well. All three of these topics are inexorably connected; comfort with degrees of 

abstraction is a prerequisite for larger and more concept-intensive chunks and correctly 

organized chunks are integral to an effective mental model.  

The challenges of novice information organization are an important aspect of this 

study. No strangers to chunking, experts in musical domains may organize and internalize 

enormous amounts of information. Jazz improvisers carry libraries of melodic approaches 

to a myriad of harmonic situations, to be deployed on the fly (Brown, 1991), and expert 

instrumentalists utilize combinations of cognitive and motor chunking to quickly learn or 
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even memorize highly complex musical passages (Chaffin & Imreh, 2002). The question 

of how musical knowledge scaffolds programming learning views music not only as an 

engaging context for learning programming, but as a context in which learners and/or 

performers often organize information. 

Musicians as Novice Programmers 

In part, this study focuses on what sets musicians apart from other novice 

programmers. A large body of research has focused on the cognitive impacts of musical 

trains. Multiple reviews of the literature highlight consistent short-term increases in 

spatial, verbal, and memory abilities during the first two years of musical training in 

children (Costa-Giomi, 2014; Miendlarzewska & Trost, 2014). However, these results 

tend to dissipate by the third year of musical training and the authors point out that the 

web of factors related to both inclination to pursue musical training and cognitive 

abilities becomes too complex to unravel by this point. Research from neurology echoes 

these findings around early musical training, identifying increased brain activity in 

certain cognitive centers in child and, in some cases, adult musicians (Steele, Bailey, 

Zatorre, & Penhune, 2013; Zuk, Benjamin, Kenyon, & Gaab, 2014).  

While the impact of unrelated and uncontrollable factors makes studying the 

cognitive impact of musical training in adults a formidable challenge, this question has 

been approached from other angles. Johnson-Laird (2002) presents a model of jazz 

improvisation as a mentally algorithmic process and Amitani and Hori (2002) have 

developed tools to support the computational foundations of musical composition.  

COMPUTATIONAL THINKING 

This study utilizes computational thinking concepts to address the challenge of 

describing knowledge or understanding about programming in a way that is not wedded 
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to the conventions of a particular programming language; rather, these concepts are 

typically integral to computer science and recur in language after language. The route 

towards situating abstract computational knowledge like this begins with the 

computational literacy and computational thinking frameworks.  

Computational literacy, as introduced by DiSessa (2000), uses print literacy as a 

jumping-off analogy with which to expand computational know-how from a grab bag of 

skills to something larger and more abstract. For instance, most of us would likely agree 

that literacy does not stop at reading and writing; a literate person should be able to 

organize an effective argument and read text critically, for instance. The contemporary 

print literate individual can not only decode symbols into words and sentences, but can 

use text as a medium in which to share and evaluate ideas and to ask and answer 

questions about the world.  

diSessa defines computational literacy as a similarly broad set of skills, focused 

around taking advantage of computer technology’s affordances to articulate ideas and 

engage with the world in a variety of ways. He describes general literacy as built upon 

three pillars: material, cognitive, and social. This framework may also be applied to 

thinking about computational literacy. The material aspect of computational literacy 

describes the ability to use programming languages and navigate digital environments. A 

learner that understands the structure and syntax of the Java loop in Illustration 4 is 

demonstrating material computational literacy. The cognitive aspect of computational 

literacy describes the ability to wield the computer as a thinking tool and to frame 

problems in ways that take advantage of its computational capabilities. Planning the 

overall structure and flow of a program (before coding it in a particular language) 

requires cognitive computational literacy. Finally, the social aspect of computational 

literacy describes the ability to communicate about computation in a way that is 
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comprehensible to other practitioners and learners. For instance, two programmers 

discussing the efficiency (or inefficiency) of the program planned in the previous 

cognitive literacy example would be demonstrating social computational literacy.  

All three elements of computational literacy are of interest in this study. Creating 

a functional program in Scratch will demand a certain level of material computational 

fluency. The cognitive aspect of computational literacy is of particular interest in terms of 

how participants’ musical projects are impacted by Scratch’s computational affordances. 

Finally, how students narrate and explain the process of creating their projects may 

involve social aspects of computational literacy.  

More recently, computational thinking has become a framework for discussing 

computational knowledge and understanding in even more abstract terms, moving us 

much closer to identifiable computational fluencies in the process. Wing (2006) asserts 

that computational thinking “involves solving problems, designing systems, and 

understanding human behavior, by drawing on concepts fundamental to computer 

science.” Computational literacy is fundamentally about programming, whereas 

computational thinking explicitly does not involve a material component. It emphasizes 

conceptualizing computational solutions to problems, though not necessarily turning 

those solutions into executable code. With this in mind, some educational initiatives have 

focused on developing learners’ computational thinking independent of computers (Taub, 

Ben-Ari, & Armoni, 2009). Wing goes so far as to identify a variety of everyday 

activities, from choosing a line at the supermarket to packing a school backpack, where 

smart practitioners are in fact exhibiting computational concepts whether they know it or 

not. It is in explaining these everyday activities that more discrete and definable 

computational concepts come to light. Sitting under the fundamental umbrellas of 

abstraction and automation, these concepts ranging from topics closely tied to computer 
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programming (parallel processing, recursion) to more abstractly applicable practices 

(modeling or decomposition). 

Computational thinking has been concretized in a variety of ways beyond the 

above. For instance, Basawapatna, Koh, Repenning, Webb, and Marshall (2011) 

described how novice programmers could describe how agent interaction algorithms 

(referred to as Computational Thinking Patterns) that they had learned developing games 

might be put to work in a science simulation. That is, the student recognized a 

fundamental programming pattern underneath the gaming context in which they were 

working.  

The computational thinking concepts considered in this study are derived from 

prior Scratch research. A study focusing on the use of Scratch blocks explicitly related to 

programming (as opposed to graphics or other media manipulation) in over 500 Scratch 

projects identified the following concepts, in order of frequency of use: user interaction, 

loops, conditional statements, communications and synchronization, boolean logic, 

variables, and random numbers (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). A 

more recent framing of student Scratch work includes computational concepts, practices, 

and perspectives, in ascending order of abstraction. Concepts in this case included 

sequences, loops, parallelism, events, conditionals, operators, variables, and lists 

(Brennan & Resnick, 2012).  

As this study also utilizes Scratch, the prior two studies (Brennan & Resnick, 

2012; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008) will provide the basis for the 

computational concepts under consideration here. 
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APPROACHES TO PROGRAMMING LEARNING AND INSTRUCTION 

This study focuses on the experience of learning programming in the context of 

creating a relatively free-form musical project. The sections that follow will present an 

overview of existing approaches to programming instruction, from lecture-based models 

to constructionist approaches. I will discuss tinkering, a guiding idea in this study, as well 

as several specific content contexts for constructionist programming learning (music 

included).  

Lecture-Based Programming Instruction 

Traditional models of beginning programming instruction are typically based 

around lectures and relatively small-scale programming assignments (Linn & Dalbey, 

1985). Some courses may begin with a focus on the programming language itself, 

beginning with syntax and expanding from there, while others might organize around 

programming concepts and let students come to understand the important details of the 

language as they go (Kranch, 2012). In all these cases, students face at least three 

potential challenges: a demanding emphasis on syntax (Jenkins, 2001), a lack of engaging 

context for programming assignments (Linn, 1985), and the rush to cover a prescribed 

amount of material (Sleeman, Putnam, Baxter, & Kuspa, 1987). As such, these courses 

can leave students with relatively poor understandings of programming (Linn & Dabley, 

1985; Soloway, Erlich, Bonar, & Greenspan, 1982) while providing them little or no 

opportunity to think deeply about design or problem-solving (Pea & Kurland, 1984).  

Constructionist Programming Instruction and Learning 

The affinity between computer programming and constructionist learning is well 

articulated by Knuth: 

It has often been said that a person does not really understand something until he 
teaches it to someone else. Actually a person does not really understand 
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something until after teaching it to a computer, i.e., express it as an algorithm. 
(Knuth, 1975) 

While this study is not explicitly focused on algorithmic thinking, Knuth’s statement 

nevertheless echoes the lessons of LOGO. To “teach” a computer to draw a square or 

triangle or hexagon, the learner must understand the geometry of the shape in question. 

This certainly does not apply only to situations in which the computer is a tool with 

which to explore content outside of programming. The same could be said for the nested 

loop in Illustration 3, the final LOGO example. Suffice it to say that there are no better 

routes to understanding computing concepts than to execute them on a computer, and in 

both cases the computer does not simply give feedback in terms of success or failure, but 

provides endless opportunities for theory-testing. Perhaps a learner will stumble on a 

pleasantly surprising “failure” along the way and then attempt to unravel where it came 

from! 

 The following sections review several specific areas under the heading of 

constructionist programming instruction and learning. Tinkering is not explicitly a style 

of instruction, but rather a style of programming practice marked by learning through 

exploration. I will contrast this with a discussion around design-focused learning and will 

also discuss approaches to programming instruction in several important contexts: game 

design, arts, and music. 

Tinkering 

In the context of programming, tinkering can be described as a tightly coupled 

cycle of learning and making. Tinkering is preceded in the literature by bricolage, a term 

coined by Levi-Strauss (1968) to describe a “science of the concrete” in primitive 

societies, in which objects at hand are rearranged and renegotiated until a suitable theory 

of the moment is reached. Turkle and Papert (1990) use bricolage to frame a discussion 
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of the styles of young programmers. They discovered that many programmers did not 

adhere to the methodical planner approach that might be presented in a programming 

course. Rather, the bricoleurs rarely planned more than a step or two ahead and it was 

typically through a cycle of corrections and intuition that they reached their goal or 

destination. 

Common themes in research on tinkering in programming are testing (Brandt, 

Guo, Lewenstein, Dontcheva, & Klemmer, 2009), trial and error (Dorn & Guzdial, 2010), 

and a lack of specific goals (Petre & Blackwell, 2007). Hancock (2003) offers that 

tinkering often involves making something work without directly understanding how. 

Petre and Blackwell (2007) describe children who identify their tinkering programming 

simply as play, not as programming at all. While most studies of tinkering have been 

observational and interpretive, data-mining and learning analytics have been used to 

identify tinkering as a particular phase of a student programming activity, bookended by 

defined phases of exploration and refinement (Berland, Martin, Benton, Smith, & Davis, 

2013).  

This picture of tinkering functions as a framework for my discussion of 

programming practice; themes such as testing and goal focus will be used to derive 

metrics with which to compare the programming of different participants. 

Design 

Design, meanwhile, could be considered the apotheosis of the planner described 

by Turkle and Papert above. While the bricoleur rambles around, testing ideas, 

backtracking as necessary, all with perhaps no particular goal in mind, the designer is 

generating problem definition statements and evaluating design concepts (Dym et al., 

2007). Instruction based around design, such as Problem-Based Learning (Savery & 
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Duffy, 1995) and Challenge-Based Instruction (Martin, Rivale,  & Diller, 2007), has 

found great utility in training engineering and other design professionals. Tolerance for 

uncertainty and ambiguity are often elements of these instructional approaches and are 

important to the contemporary designer (Dym et al., 2007); however, this embrace of 

uncertainty is frequently guided by heuristics and a history of best practices and, as such, 

is very different than the exploration and experimentation associated with tinkering as 

Turkle and Papert discuss it.  

Games 

Game design has been an especially fruitful area for both encouraging 

programming and observing programming learning in action. Gaming as an engaging 

motivator has been the foundation of many interventions around programming education 

and conceptual reframing of computer science education (Bayliss & Strout, 2006; 

Coleman, Krembs, Labouseur, & Weir, 2005; Leutenegger & Edgington, 2004; Roden & 

LaGrande, 2013; Xu, Blank, & Kumar, 2008). 

Most research focusing specifically on computational thinking involves game 

development. As discussed earlier in this review, gaming was used as a forum for looking 

at computational concepts in the form of Computational Thinking Patterns (Basawapatna, 

Koh, Repenning, Webb, & Marshall, 2011). Scratch readily lends itself to game design 

and many of the student programs discussed in the papers from which this study derives 

its computational thinking concepts were in fact games (Brennan & Resnick, 2012; 

Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). Recent initiatives have even gone 

beyond simply using gaming as an engaging entry point to programming and have 

proposed game design curriculums explicitly guided by computational thinking concepts 

(Repenning, Webb, & Ioannidou, 2010).  
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Arts and Crafts 

Similarly, mediums related to art and craft have primarily been leveraged to 

engage learners with programming. The Lilypad Arduino combines a small 

programmable microcontroller with conductive thread to allow relatively novice 

programmers to integrate sensors, LEDs, and other electronic elements into clothing and 

textile products (Beuchley, Eisenberg, Catchen, & Crockett, 2008). This is representative 

of a larger movement in bringing the fruits of accessible programming into the physical 

world (House, Malloy, & Buckley, 2010). 

The development of computational proficiencies and computer science concepts 

has been studied in a small number of tightly focused artistic contexts. The Storytelling 

Alice programming environment supports the creation of animated stories by providing 

users pre-created characters, scenery, and animations as well as by basing tutorials 

around storyboard examples, acquainting learners with concepts such as objects and 

methods in the process (Kelleher & Pausch, 2007). 

Music 

Music provides a number of entry points and approaches towards learning 

computer programming. While composers have experimented with algorithm-based 

music since computer programming has been a possibility (Jacob, 1996; McCormack, 

1996), algorithmic music has more recently been used as an introduction to programming 

and computing (Peterson & Hickman, 2008) and has been highlighted as a context for 

identifying computational thinking concepts in music itself rather than only in its 

production (Edwards, 2011). The relatively recent practice of live coding has provided a 

novel new approach towards exploring computer programming through music (Blackwell 

& Collins, 2005; Bown, Eldrige, & McCormack, 2009; Brown, 2007; Brown & 

Sorensen, 2009; Sorensen & Gardner, 2010). In a live coding performance, music is 
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created in the moment by editing code in real time, rather than executing an existing 

program. 

Reaching into the physical world, Sawyer et al. (2013) showed students 

successfully creating novel musical instruments using sensors, interface devices, and a 

visual programming environment. Ensembles such as the Princeton Laptop Orchestra, 

which brings together students of all musical and technical skill levels, similarly 

encourage programming learning in the pursuit of a creative musical goal (Wang, 

Trueman, Smallwood, & Cook, 2008). Utilizing an approach called “computational 

music remixing,” EarSketch challenges learners to make music in a hip-hop vein by 

manipulating loops and samples using specific computational approaches in Python 

(Sawyer et. al, 2013).  

In spite of all this, research that specifically focuses on leveraging musical 

knowledge for programming learning is somewhat more limited. Working with high 

school musicians, Meyers, Cole, Korth, and Pluta (2009) used structural concepts from 

contemporary music as successful entry points to programming concepts in a short 

introductory programming course. Similarly, Ruthman et al. (2010) demonstrate a wide 

variety of computational concepts in action such as loops, initialization, variables, and 

modularization in a hybrid computer science and music course. Both of these studies 

demonstrate that musical concepts can be successfully used as a foothold in acquainting 

students with programming concepts. However, both of these examples depend upon 

instructors’ guiding student in making these musical-programming connections. The 

literature does not address the impact of this same musical know-how on a less defined 

programming task. 



 26 

OPEN QUESTIONS 

While the review of the literature has converged on several examples of music as 

a context for learning programming, these studies provide learners explicit connections 

between musical concepts and programming concepts. The literature does not address 

what musicians of different backgrounds potentially bring to a less structured experience 

of learning to program. I believe that investigating this is worthwhile in light of the many 

accessible programming languages and opportunities available to musical and non-

musical learners. This leads to my overarching research question:  

Do different kinds of musical backgrounds of learners play a role in novice 

programming? 

I will address this larger question through three actionable research questions:  

1. How do musical concepts emerge as a scaffold for novice programmers? 

2. What kind of patterns do learners from a variety of musical backgrounds 

exhibit in their programming processes? 

3. How did the final projects of learners from a variety of musical backgrounds 

differ? 

While research has explicitly connected musical concepts with computational 

concepts (Meyers, Cole, Korth, & Pluta, 2009), I am interested in what role an 

understanding of musical concepts may play without that explicit connection. How 

expertise in a separate domain may deal with the challenge of organizing programming 

knowledge and structuring programming tasks is one specific perspective guiding this 

question. I will answer this by analyzing participant talk while they work on an open-

ended musical programming project in Scratch.  

The umbrella of “musician” encompasses an enormous range of musical study 

and practice. I will compare the programming processes of musicians from a variety of 
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backgrounds by analyzing participants’ Scratch projects using metrics based on a 

“programming learning by tinkering” perspective.  

Finally, I will look at the impact of different participant backgrounds by analyzing 

participants’ completed Scratch projects, this time based on their usage of computational 

thinking concepts.   
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Chapter 3: Methods 

This section will explain the epistemological and theoretical perspectives guiding 

this qualitative research study, justify the use of an interpretive methodology, and 

describe the study's participants, materials, data sources, and analysis. It will also present 

the steps taken to ensure qualitative rigor and my perspective on the study’s 

generalizability. Finally, I will explain my own positionality as a researcher and the role 

of my personal experiences and perspectives in shaping this study. 

EPISTEMOLOGY AND THEORETICAL PERSPECTIVE 

Epistemologies describe theories of knowledge and, especially important in the 

practice of research, ways of knowing, informing the theoretical perspective and 

methodology that follow (Crotty, 1998). In particular they communicate important 

assumptions that inform how claims and conclusions are drawn from data and analysis 

(Koro-Ljungberg, Yendol-Hoppey, Smith & Hayes, 2009).  

As this study focused on the experiences of the participants in learning and 

creating, I took a constructivist epistemological perspective. Broadly, this perspective 

asserts that reality is socially constructed (Lincoln & Guba, 1995); in a more practical 

research context, constructivism places the participants' own constructions of meaning at 

the forefront and attempts to reach understanding through interpretation of those 

meanings (Charmaz, 2000). Implicit in constructivism's participant focus is an 

acknowledgement of the reality in which the study exists. From the experiences and 

beliefs of the researchers and participants to the dynamic relationships between those 

same parties to the qualities of the research site, these factors all inform the research at 

every level, and the researcher's conclusions must be qualified with this context in mind 

(Charmaz, 2000). 
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An important element of this study is its focus on the experience of novice 

programmers of different backgrounds while they are actually programming, not 

grappling with programming concepts delivered in a lecture or book format; furthermore, 

the programming activity focused on the creation of a musical project in Scratch. As 

such, this study was heavily informed by the learning theory of constructionism, which 

posits that learning can often be effectively transmitted when it is embedded in the 

creation of physical or digital artifacts (Papert, 1991). 

METHODOLOGY 

This study adhered to an interpretivist descriptive framework. This is because my 

most substantive questions revolved around describing what role different musical 

backgrounds may play in novice programming. In short, my emphasis will be on 

describing rather than explaining the experiences of the participants (Charmaz, 2006). 

The study focuses closely on context and a search for patterns within that context, and 

utilizes complex data requiring careful interpretation. These are all hallmarks of an 

interpretivist research paradigm (Glesne, 2011).  

 The interpretation and discussion of my results are literally descriptive. This 

includes description of the projects that participants have created along with selected 

stories of the participants’ programming experiences. I will also describe and attempt to 

explain any meaningful patterns I observe in participant programming or projects.  

Finally, while formulating theory was not a goal of this study, my constructivist 

epistemology demands that I acknowledge that any conclusions I draw are as much (or 

more) constructed than emergent (Charmaz, 2006). 
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PARTICIPANTS 

Participants were 12 adults with no programming experience. Three participants 

were drawn from each of four different groups: non-musicians, classical musicians, jazz 

musicians, and composers. To establish a baseline of expertise, participants in the 

classical, jazz, and composer groups either had a college degree in the subject or were 

currently professionally active in that area. Participants were recruited directly, based on 

my knowledge of their expertise and their availability.  

Along with the consent form that appears in Appendix C, prospective participants 

were also given the pre-survey that appears in Appendix D. Placement in one of the 

groups described above was based on a simple rubric. Selecting a college major from the 

options for Question 5 placed students in the Classical (‘Instrumental Performance’), Jazz 

(‘Jazz’), or Composition (‘Composition’) groups. If the participant did not select a 

college major, I looked toward their personal description of their current musical 

activities in Question 6. Professional classical musicians, jazz musicians, and composers 

were placed in the corresponding group. These groups are not meant to be uniform 

representations of background and knowledge in a particular area, but to represent a 

reasonable diversity of musical experience. The survey’s other questions provided 

additional data for potential discussion and further reinforced the participant groups.  

MATERIALS 

Participants worked with Scratch, a constructionist programming language from 

the MIT Media Lab that is freely available and very popular as an introduction to 

programming. It is often used for creating animations and games and includes a number 

of musical elements that can be used to create static pieces of music, virtual instruments, 

or more sophisticated generative music. Scratch is a visual environment in which discrete 

programming elements are literally dragged and snapped together; it also encourages 
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rapid development and execution of projects in progress (Maloney, Resnick, Rusk, 

Silverman, and Eastmond, 2010). Affordances such as these support accessibility for 

novice programmers. 

PROCEDURE 

I worked with participants at a quiet location of their convenience, primarily their 

homes. We worked with Scratch on a laptop computer provided by me. The session 

began with a short (~20 min) introduction to the Scratch environment, featuring succinct 

example programs utilizing Scratch objects from the Sound, Control, Sensing, Operators, 

and Variables panels, as well as keyboard and mouse input. All example programs 

introduced during this introduction appear in a handout provided to participants (see 

Appendix E). After giving participants the handout, I created each simple program in 

Scratch, executed it, and reiterated the short description appearing on the sheet. In 

addition to providing participants with information about Scratch’s capabilities, this 

handout acquainted them with the simple method by which a Scratch program is 

assembled. Participants had access to the handout for the remainder of the session.  

Participants had the remainder of the two hours or 90 minutes (whichever was 

shorter) to work on a project of their choosing, guided by the requirement that their final 

project make sound and offer some degree of interaction with the user (that is, a “virtual 

musical instrument”). I gently encouraged each participant to work for at least 45 

minutes, though some pronounced their project completed or simply that they were 

finished sooner than that point. QuickTime Player’s screen recording feature was used to 

capture participants’ programming as well as audible discussion between the participant 

and me. 
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DATA 

The data collected in this dissertation includes: a pre-survey, audio recording of 

participant talk, video recording of their programming, and participants’ final Scratch 

projects. 

The aforementioned pre-survey (Appendix D) collected information about 

participants’ musical proficiencies and experiences. This data was used to generate 

groupings for later analysis. The survey concluded with a final question about 

programing experience to officially record participants’ experience levels.  

Participants’ thought processes were obtained using a think-aloud protocol during 

the programming session. Participants were continually encouraged to explain their 

actions and to articulate their thoughts and ideas, using prompts along the lines of: 

“What is this piece you’re working on right now?” 

“Is this what you were hoping it would do? How is it different from what you had 

in mind?” 

This process of having participants constantly report what they are thinking, doing 

and feeling is often used in social science to capture processes rather than simply 

beginning and end points (Ericsson & Simon, 1980). 

In addition to collecting participants’ final Scratch programs, I also captured 

video of their programming in progress. This allowed me to access to participants’ 

projects at any point in development. 

DATA ANALYSIS 

Analysis is described for my four main data sources.  
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Participant Pre-Surveys 

Pre-survey results were used to create groupings for use in later analysis. All 

participants fulfilled my criteria for inclusion in a participant group, described in detail as 

follows. 

None of the non-musician participants read music or played an instrument. That 

said, all three were theater and/or dance artists and described music as playing a 

significant role in their art. I chose participants who fit this description such that while 

they did not have musical backgrounds (around which most of my research questions are 

based), they did have precedent for creatively engaging with music.  

All musical participants read music and played at least one instrument. Most 

improvised on an instrument (all participants in the jazz group, two in the composer 

group, and one in the classical group) and most also composed music (all participants in 

the composer group, two in the jazz group, and one in the classical group).  

Most musical participants had studied their area of expertise at the college level. 

All members of the classical group had undergraduate degrees in instrumental 

performance. Two of the three participants in the jazz group had degrees in that area (one 

undergraduate and one doctorate). Two of the three composers had degrees in 

composition (one undergraduate and one masters level). Various participants also held 

additional or advanced degrees in music theory, music education, and ethnomusicology. 

Most musical participants divided their professional time between some 

combination of performing (or composing) and teaching. Two participants (one in the 

jazz group and one in the composer group) had unrelated full-time jobs and did no 

teaching, but continued to perform and/or compose. 
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Think Aloud Interviews 

Interviews were transcribed and analyzed using an approach described by Burnard 

(1991) for analyzing semi-structured interviews. First, the text was organized into distinct 

utterances. Utterances are defined by Walker and Whitaker (1990) as assertions, 

commands, questions, or prompts. I followed Burnard’s prescription that utterances be 

related to the task at hand; that is, the programming activity. This excluded some 

incidental and uncodeable talk as well as overarching discussion about the task as a 

whole (both unsolicited and in response to questions from me). Some of the talk about the 

programming task explicitly addressed my research questions and, as such, appears in my 

own discussion of the study. 

I used an open coding approach (Berg, 1989) to freely code individual utterances, 

generating succinct descriptions of the content of each utterance without any final coding 

scheme in mind. The next step in Burnard’s approach involves creating overarching 

themes by grouping together related or similar codes. In doing this I arrived at nine 

themes, each a combination of two elements: type (Question, Assertion, and Intention) 

and subject (Operation, Programming, Scratch, Musical, and Aesthetic). Because all 

utterances are related to the task at hand and relatively direct, this simple and direct 

scheme describes them appropriately.  

In this scheme, Questions are relatively straightforward. Assertions include self-

narration as well as statements of immediate action (“I am going to change this value to 

do x”), whereas Intentions are more abstract and less discrete (“I would like to try using a 

Scratch repeat object somehow.”) and reflected a possible intended action in the future. 

More extensive description of subjects and examples of subject/type combinations 

follow: 
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Operation: Related to what a program should do in “plain language” (not musical or 

programming talk). 

Operational Intention: “I want to do something based on holding down the mouse.” 

Programming: Related to programming concepts and Scratch objects that are not 

Scratch-specific. 

Programming Question: “Does repeat mean indefinitely? Is it going to stop?”  

Scratch: Related specifically to the Scratch programming environment. 

Scratch Question: “So everything here [in the programming window] can just be floating 

wherever?” 

Musical: Related to musical concepts or utilizing musical language. 

Musical Question: “So what does 0.2 beats mean?” 

Aesthetic: A creative but not technical or musical description. 

Aesthetic Assertion: “Now it sounds like some kind of animal. I love it.” 

These themes were used to examine how musical knowledge and talk informed this 

novice programming experience.  

Screen-Captured Scratch Programming 

To look at how projects evolved over time, I logged how Scratch objects were 

added to or removed from participants’ programs. While I am interested in programming 

processes in terms of working steadily towards a goal versus wandering and 

experimenting with Scratch’s features, I do not attempt to clearly define “planners” and 

“tinkerers.” Rather, I sought any patterns that emerged on the continuum between those 

two extremes. From the logs of participant programming, I chose metrics that utilized the 

available data to describe participant programming from several different perspectives: 

Scratch objects added and removed, program tests, and use of Scratch objects by type. 
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Final Scratch Projects 

Final Scratch projects were coded for the use of a variety of computational 

thinking concepts. These concepts were among those identified in a study of 500 student 

Scratch projects and include user interaction, loops, conditional statements, Boolean 

logic, variables, and random numbers (Maloney, Peppler, Kafai, Resnick, & Rusk, 

2008), and sequences, parallelism, operators, and lists (Brennan & Resnick, 2012). 

Descriptions of each of these concepts appear in Appendix F, alongside an example 

Scratch program illustrating the concept in implementation.  

In addition to simply counting the occurrence of computational thinking concepts, 

I considered where these concepts occurred in projects; this is represented by my 

“average depth” metric, which looks at the nestedness of various CT concepts in a given 

project. For a given project, I simply add the depths for all instances of a particular 

concept and divide by the number of instances of that concept. For instance, in the 

example of a computational thinking diagram that follows in Figure 1, there are three CT 

concepts in action: two instances of user interaction and a single instance each of 

conditional statement and loop. User interaction appears twice; once at depth level one 

and once at level three, for an average of two ((3+1)/2). Conditional statement and loop 

each appear once, receiving average depths of two (2/1) and three (3/1), respectively. 

Figure 1: Computational Thinking Diagram Example to Illustrate Calculating Average 
Depth Metric 
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This section of analysis also examined the number of discrete programs in a 

particular project as well as maximum and average depth of participant projects. I define 

a “discrete program” as an independent, operable piece of Scratch code. Figure 2 below 

shows an example of a Scratch project containing three individual programs. While 

contained in the same project, each chunk of Scratch code is complete and fully operable 

on its own.  

Figure 2: Sample Scratch Project with Three Operable Programs 

Project depth refers to computational thinking diagrams and uses the same 

definition of depth as above. Each program in a given project will have a depth value; the 

maximum project depth is simply the maximum of these and the average is the average. 

For instance, the three distinct programs (or chunks) that appear in the project in Figure 2 

are represented by the computational thinking diagrams that follow (Figures 3-5). The 

program on the top left (Figure 3) is represented by a single instance of user interaction 

and has a depth of one. The program on the bottom left (Figure 4) incorporates several 

CT elements and has a depth of four. The program on the right (Figure 5) has a depth of 
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two. Maximum depth for this particular project is four and the average is 2.3 ([4 + 2 + 1] 

/3). 

 

Figure 3: Computational Thinking diagram for top left sample program. 

Figure 4: Computational Thinking diagram for bottom left sample program. 

Figure 5: Computational Thinking diagram for right sample program. 
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Comparative Analysis 

The answers to my research questions are based on an interpretive analysis of 

themes derived from the data. In discussing chunking, tinkering, constructionism, and 

computational thinking, I have described the theoretical frames that guide the study 

design and data analysis (Hewitt-Taylor, 2001). Data, analysis, and sample answers to 

each question, which served as a guide for me during the dissertation, are consolidated in 

the Research Matrix in Appendix A.  

My research questions deal with the processes and products of participants from a 

variety of musical backgrounds and utilize a constant comparative analytic approach.  

In inductive analysis, patterns “emerge from the data rather than being imposed on them 

prior to data collection and analysis” (Patton, 1990, p 360). I used an inductive approach 

to look for patterns across all the data.  

TRUSTWORTHINESS 

I worked to ensure trustworthiness and qualitative rigor in a number of ways. The 

use of multiple data sources (interviews and Scratch projects) triangulated emerging 

findings from these sources. While the coding process was entered into with a number of 

broad codes in mind, I allowed the coding process to be fundamentally guided by the data 

and arrived at a final coding scheme that I had not expected in the beginning. I have 

carefully considered my own biases and experiences, which appear below; these were 

kept carefully in mind during data collection as well as analysis. Consultation with my 

chair and other committee members has helped address specific issues that arose during 

the course of the study. 
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ASSUMPTIONS AND LIMITATIONS 

Like any other study, this one includes assumptions in place from the very 

beginning. Grouping participants as I have may be reasonably descriptive in the broadest 

sense but does not begin to capture the diversity of musical backgrounds and experiences 

with which such a system of categorization would potentially have to contend. For 

instance, a “classical” musician specializing in 20th century music may regularly deal 

with mental musical challenges that an instrumentalist specializing in Renaissance music 

would not even begin to understand. This holds true for the jazz and composer groups as 

well, with some active practitioners working within well-established traditions while 

others explore the outer limits of novelty and complexity. 

I also assume that all participants entered this study as similar programming 

novices. I chose Scratch for this study specifically to accommodate participants’ lack of 

concrete programming experience and to dispel the unease with syntax and semicolons 

that may accompany this lack of experience. That said, this study does not deeply 

examine participants’ levels of digital literacy and general (if unconscious) engagement 

with computational thinking concepts. For instance, while I would not consider using 

Wordpress to be programming experience, it is a content management system and 

engagement with it may foster elements of systems and computational thinking. 

Providing all participants with careful explanations of Scratch objects in concept as well 

as implementation was integral here. I also carefully considered this aspect of participant 

comfort and confidence in my discussion. 

An important limitation to note regarding this study’s generalizability is the 

participant population and study environment. All musical participants were skilled adult 

musicians electing to take part in a potentially enjoyable programming experience of their 
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own volition. Insights from these participants may not be easily applicable to young 

learners with far less musical experience in a classroom environment. 

I worked to be very present and aware of my role during data collection to 

provide each participant a comparable experience. While some participant questions were 

self-directed or simply rhetorical, others were very much directed at me, and I did my 

best to address them consistently. Generally, when a participant had reached an impasse 

in articulating an idea in Scratch, I would suggest a particular object to try. Several 

participants rescaled mouse x and y values and in some cases I helped them with the 

appropriate arithmetic. The only instances in which I offered any creative input was in 

cases where participants reached an “I’m not sure what to do next” point relatively early 

in the process (less than 30 minutes); I would suggest a family of Scratch objects they 

hadn’t explored, with some context relating to what the participant had already worked 

on.  

RESEARCHER POSITIONALITY 

One of the primary assumptions of my constructivist epistemology is that the 

research is impacted by the beliefs, experiences, and values of the researcher. As 

mentioned in the introduction, this study is entirely inspired by a meaningful personal 

experience. As such, it was vitally important that I assess the lens through which my 

interpretations and conclusions emerged. Here I present the elements of my background 

and beliefs that most clearly informed this study. 

My backgrounds in the core elements of this study (programming and music) 

contain similar blends of formal and informal education. Prior to the course described in 

the introduction, I had taken two programming courses, a semester of Pascal in high 

school and a semester of Fortran while working on my undergraduate degree in 
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mechanical engineering. In a job following college I used Fortran a great deal but 

exclusively for coding numerical calculations. Following the electronic music course, I 

did not slow down in working on recreational projects in MAX/MSP and, perhaps as a 

result of that, was very pleasantly surprised at how easily I took to JAVA in a course I 

took several semesters later. During graduate school I worked on projects using a wide 

variety of programming languages and environments and in all cases have had reasonable 

success with diving into projects and learning as needed. In short, my own programming 

experience certainly biases me towards the merit of tightly coupled learning and practice. 

My experience in music follows a similar path, though beginning with 

substantially more formal school experience. I played in the school band through junior 

high and high school, learning an instrument and to read music, and studied music theory 

with a private instructor during high school. While I put music on a relative hiatus during 

my undergraduate years, upon graduating I dove into a rich, informal musical education 

as a semi-professional musician in Austin. This was an extremely valuable but very 

holistic education. I'm hard pressed to isolate and identify specific things that I learned 

during this time; rather, I can only say that my voice as an improviser, composer, and 

instrumentalist became more sophisticated as well as more personal over time. 
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Chapter 4: Individual Results 

This chapter shares Scratch projects, computational thinking diagrams, and time-

based visualizations of programming for each participant. Computational thinking 

diagrams are explained in Chapter 3; the time-based visualizations of participant 

programming track the addition and removal of Scratch objects by type as well as the 

creation of sounds and additional sprites. They also show program tests (vertical lines) 

and continuous tests during which projects were edited (horizontal bars above the graph). 

NON-MUSICIANS 

Participant A 

Seen in Figure 6, this project primarily relies on key presses and mouse clicks to 

create a variety of sounds. Element include a repeated single note (1), a short melody 

played once (2), a repeated drum hit (program 4), and a repeated recording of crumpling 

paper (5). The main stage also includes a set of objects that repeats a single note based on 

the position of the mouse (6) as well as an abort key (3). The participant created a second 

sprite to allow for a second instrument sample (since each sprite accommodates one 

instrument at a time, a discovery made in the course of data collection). Code associated 

with the second sprite repeats two notes (programs 7 & 8). 
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Figure 6: Participant A’s Final Scratch Project 

A computational thinking diagram of Participant A’s project, seen in Figure 7, 

primarily shows user interactions triggering single or looped instrumental sounds. The 

two programs associated with the second sprite (programs 7 and 8) are both activated by 

the same trigger, introducing parallelism. Program 6 uses a conditional statement, 
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operator, and additional instance of user interaction to play a note depending on the 

position of the mouse.  

Figure 7: CT Diagram of Participant A’s Final Scratch Project 

Participant A’s programing process, seen in Figure 8, begins with the addition of 

a series of primarily sound and control objects. This is followed by a period of addition 

and removal and then another of addition alone. Participant A is one of several 

participants to create a second sprite; this is followed by the relatively quick addition of 

two identical chunks. Participant A created three sounds, though only used one in her 

final project. 
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Figure 8: Timeline of Participant A’s addition and removal of Scratch objects 

Participant B 

While several participants explored Scratch’s motion objects, Participant B based 

her project in Figure 9 around them (perhaps unsurprisingly, this was one of the non-

musician choreographer participants). Key presses were used to turn the sprite 90° 

instantaneously (1) or 100° in 10° increments (2, 3). These actions could effectively 

interfere with one another; activating programs 2 and 3 would cause the sprite to rapidly 

oscillate back and forth, for instance. The sprite could also be instantly oriented towards 

the mouse (4). All of these programs could also work in conjunction with a larger one 

that marched the sprite forward when the mouse was pressed and turned the sprite around 

if it reached the edge of the stage (5). The final program smoothly moved the sprite from 
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its current position to each corner of the screen (6). Each program punctuated the sprite’s 

motion with a percussion accent.   

Figure 9: Participant B’s Final Scratch Project 

Participant B’s computational thinking diagram primarily shows user interaction 

elements triggering single and looped sounds and movement actions (similar to 

Participant A’s triggering single and looped sounds). Also similar to Participant A, we 

see one chunk using a conditional statement to base output on the state of the mouse. 
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Figure 10: CT Diagram of Participant B’s Final Scratch Project 

Seen in Figure 11, Participant B steadily added control, sound, and motion objects 

with few removals. 
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Figure 11: Timeline of Participant B’s addition and removal of Scratch objects 

Participant C 

Seen in Figure 12, this project uses four key pressed to trigger different audio 

recordings (finger snaps, paper crunches, and throat clearing). The first three repeat 

forever and use wait objects to create rhythmic interplay between the samples. The 

fourth simply plays a humming recording a single time. 
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Figure 12: Participant C’s Final Scratch Project 

Participant C’s project is relatively straightforward from the perspective of its 

computational thinking elements, seen in Figure 13. In all four programs, user interaction 

triggers an audio sample; three of the four programs use Scratch wait objects to 

introduce sequences to their outputs.  
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Figure 13: CT Diagram of Participant C’s Final Scratch Project 

Seen in Figure 14, Participant C worked the longest of the non-musician 

participants. She removed more objects than the other non-musician participants, while 

still ending up with roughly as many (or more) Scratch objects. She created multiple 

sounds early in the programming process and used all of them as well as experimenting 

with (and discarding) a series of blue sensing objects. She utilized four extended program 

tests while adding Scratch objects and editing her project’s timing parameters. 
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Figure 14: Timeline of Participant C’s addition and removal of Scratch objects 

JAZZ MUSICIANS 

Participant D 

Seen in Figure 15, this project creates many effects with little activation from the 

user. Each of its three programs are triggered by a flag click. One continually rescales 

mouse x and y positions from 0-127 and sets the tempo to the rescaled y variable (2). 

Another executes a lengthy series of commands: rotating the sprite a random amount and 

playing a sequence of notes, all modified by the new x variable and many for random 

durations (1); this program is identical to the final one (3), though the two different 

thanks to their random elements.  
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Figure 15: Participant D’s Final Scratch Project 

Participant D’s computational thinking diagram, seen in Figure 16, is almost 

entirely buried within user interaction and parallelism elements; it is activated by a 

single key press. The project utilizes many operator, random number, and variable 

elements, many nested within each other. User interaction (in the form of mouse 

position) is nested within operators to change two of the variables. 
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Figure 16: CT Diagram of Participant D’s Final Scratch Project 

 



 55 

Seen in Figure 17, Participant D added many Scratch objects of many types. In 

some cases the participant copied large chunks of code; in others he added many variable 

or operator objects extremely quickly. Participant D removed very few objects relative to 

additions. He experimented with adding several motion objects near the end of his 

programming time. 

Figure 17: Timeline of Participant D’s addition and removal of Scratch objects 

Participant E 

This project, seen in Figure 18, performs a number of different tasks. The first 

program is triggered by the space bar and plays three different audio recordings in 

sequence (1). This repeats three times and then all sounds are stopped. The space key also 

triggers a fourth audio recording after a 5-second pause (2). Another key is used to stop 
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all program operations (3). Programs 4 and 5 each repeat drum sequences forever, 

triggered by the q and w keys, respectively (5 is stopped by the e key, though the key 

must be held during the program’s return to its beginning). The final five programs 

operate like a musical keyboard, each using a letter key to set an instrument and play a 

single note (6-10). 

Figure 18: Participant E’s Final Scratch Project 

Participant E’s computational thinking diagram, seen in Figure 19, primarily 

involves user interaction elements triggering an action or series of actions. Participant E 

also employs a pair of sequences triggered in parallel and a loop controlled by user 

interaction. 
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Figure 19: CT Diagram of Participant E’s Final Scratch Project 

In Figure 20, Participant E steadily adds sound and control objects with relatively 

few removals. 
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Figure 20: Timeline of Participant E’s addition and removal of Scratch objects 

Participant F 

This project, seen in Figure 21, uses three discrete programs spread across three 

sprites. All programs are triggered by clicking their associated sprites. One plays three 

notes from a list and rotates its sprite 15 degrees (1). Another plays a single note twice 

(2). (The if on edge, bounce object is basically redundant as the sprite does not 

otherwise move). The last sets the sprite’s instrument, plays a note, and smoothly moves 

the sprite to a particular point on the screen in 1 second (3). This sequence repeats, 

though only the note does so meaningfully. 
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Figure 21: Participant F’s Final Scratch Project 

The computational thinking diagram for Participant F, seen in Figure 22, shows a 

pattern of loops activated by user interaction. Nested within each loop is a list, 

conditional statement, or sequence element.  
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Figure 22: CT Diagram of Participant F’s Final Scratch Project 

As Figure 23 illustrates, despite adding the fewest overall objects Participant F 

added as wide a variety of Scratch objects as any participant. Participant F took a lengthy 

break to consider his work before adding motion objects near the very end of his 

programming.  
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Figure 23: Timeline of Participant F’s addition and removal of Scratch objects 

CLASSICAL MUSICIANS 

Participant G 

This project’s 11 programs are spread across two sprites, though the second sprite 

is not used for any interactivity purposes. Three use key presses to trigger audio 

recordings (1-3). Another three use key pressed to play particular drum sounds (4-7). One 

is activated by the green flag and continually sets a variable: if mouse y is within the 

Scratch window, the new variable is rescaled from 0-125, otherwise zero (10). Another, 

also activated by the green flag, plays a note equal to the variable when the mouse is 

pressed (8). The prior two programs are replicated for a second sprite, using a new 

variable (11, 12). Clicking Sprite 1 triggers a series of notes (9).  
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Figure 24: Participant G’s Final Scratch Project 

In Participant G’s computational thinking diagram, seen in Figure 25, we see 

many user interaction elements triggering single actions (and one loop). Meanwhile, a 
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single case of user interaction also activates two pairs of connected code; this utilizes 

conditional statements, variables, and operators, all based on more user interaction.  

Figure 25: CT Diagram of Participant G’s Final Scratch Project 

Seen in Figure 26, Participant G adds a wide variety of Scratch objects, primarily 

focusing on control and sound objects. He tests his program relatively seldom and 

removes the final 7-8 minutes of work before concluding his program. 
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Figure 26: Timeline of Participant G’s addition and removal of Scratch objects 

Participant H 

This project performs a number of different functions. Program 1 creates a 

musical keyboard using the computer keyboard’s numerical keys. The project uses a list 

to index the notes of a major scale. Clicking the sprite plays a major scale and series of 

drum hits 10 times (4, 5). Pressing the mouse sets the tempo to the mouse’s y value (2) 

and the instrument selection to a random number (3), these changes dramatically 

impacting programs 1, 4, and 5. Pressing the a key triggers an audio recording (6) and 

pressing the d key and mouse simultaneously plays a drum sound equal to the mouse’s y 

value (7). Based on discussion and observation, these final two programs seemed largely 

extraneous to the participant’s final project.   
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Figure 27: Participant H’s Final Scratch Project 

Participant H’s computational thinking diagram, seen in Figure 28, shows four 

user interaction elements controlling seven discrete programs. The participant uses a 

combination of conditional statements, lists, and user interaction elements to create a 

musical keyboard.  
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Figure 28: CT Diagram of Participant H’s Final Scratch Project 
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In Figure 29 we see Participant H steadily adding objects to his Scratch project.  

Between 30 and 40 minutes, he takes an extended break from testing to add several 

sensing and sound objects. He introduces several operator objects before removing them 

all with the exception of a single random number objects. 

Figure 29: Timeline of Participant H’s addition and removal of Scratch objects 

Participant I 

This program uses seven discrete programs spread across four sprites. Program 1 

uses the a key to play an audio recording; program 2, triggered by the green flag, sets an 

instrument and plays a note whenever the mouse and sprite are touching; program 3, 

triggered by the space bar, plays a drum whenever the mouse is held down. Program 4 

plays a drum sequence 10 times when its sprite is clicked. Program 5, triggered by the 

 



 68 

green flag, repeats a drum sequence 10 times when the mouse is touching its sprite. 

Program 6 sets its instrument and play a note, repeated 10 times, when its sprite is 

clicked. Program 7, like chunks 2 and 5, is triggered by the green flag and repeats a note 

when the mouse and sprite are touching.  

Figure 30: Participant I’s Final Scratch Project 
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Participant I’s computational thinking diagram, seen in Figure 31, shows a series 

of user interaction elements triggering conditional statements and loops. The conditional 

statements contain additional user interaction and loop elements.  

Figure 31: CT Diagram of Participant I’s Final Scratch Project 

Seen in Figure 32, Participant I worked for a relatively short period of time and 

added relatively few elements. Most notably, several chunks contain relatively large 

numbers of sound objects, included many added at the end of the programming time. 
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Figure 32: Timeline of Participant I’s addition and removal of Scratch objects 

COMPOSERS 

Participant J 

This project, seen in Figure 33, contains six (non-unique) discrete programs. The 

three on the right (4, 5, 6) are all triggered by the green flag. Each one updates a variable 

on the basic of the mouse position, sets an instrument this variable, and plays a note. Two 

add random values to the note value. The multiple instances of variable updating and 

instrument setting are largely redundant. The three programs on the left (1, 2, 3) behave 

similarly. Each repeats a random number of times, setting a new variable by subtracting a 

random number from the variable in the right programs. Each then plays a drum 

corresponding to this second (left) variable. Two introduce random wait times.  
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Figure 33: Participant J’s Final Scratch Project 

Participant J’s computational thinking diagram, seen in Figure 34, uses user 

interaction and parallelism elements to control six programs with two buttons. What 

follows are a deep combination of loops, operators, variables, and random numbers. The 

variables are all based on user interaction in the form of mouse position. 
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Figure 34: CT Diagram of Participant J’s Final Scratch Project 

Seen in Figure 35, Participant J spends 50 minutes working on a large project, 

involving many original sounds, before deleting the entire thing. For the next almost 10 

minutes he carefully adds objects of all kinds without testing the program at all. He 

continues adding objects while testing the project, including letting it run continuously 

for more than 10 minutes at the conclusion of his work. 
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Figure 35: Timeline of Participant J’s addition and removal of Scratch objects 

Participant K 

This project divides the screen into a 3x4 grid. Program 1 divides the screen 

horizontally and program 4 divides it vertically. When the mouse is pressed, both chunks 

play a single note (expressed in octaves) depending on the position of the mouse, creating 

a changing series of harmonies as the mouse moves around the screen. Programs 2 and 3 

play related and unchanging notes in uneven rhythms while the mouse is pressed.  
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Figure 36: Participant K’s Final Scratch Project 

Participant K’s computational thinking diagram, seen in Figure 37, reveals a 

project of much greater depth than most prior projects. The entire project is triggered by a 

single user interaction element. Two series of nested conditional statements, using user 

interaction and operator elements to track the position of the mouse, divide the screen 
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into a grid upon which pitches are based. Another pair of conditional and user interaction 

statements use random numbers to introduce other sounds into the mix. 

Figure 37: CT Diagram of Participant K’s Final Scratch Project 

In Figure 38, Participant K initially set up a series of control, sensing, and 

operator objects. She then primarily added sound objects, with extended breaks from 

adding Scratch objects to adjust not parameters while testing. At the end of the 

programming, she adds another series of control, sensing, and operator objects to create 

her two chunks based on random numbers. She also briefly introduces lists and variables 

before rejecting them. 
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Figure 38: Timeline of Participant K’s addition and removal of Scratch objects 

Participant L 

This program uses audio recordings and notes to create a tapestry of sound. 

Programs 1 and 5 use key presses to play a pair of audio recordings (of smartphone 

ringtones). Programs 2-4, 6, and 7 use key pressed to repeat sequences of notes in 

harmony with the audio recordings. Programs 2 and 3 simply repeat 2-note sequences. 

Programs 4 repeats a single note, its value changing based on whether or not the mouse is 

pressed. Program 6 repeats a single note for a random duration, the note’s value changing 

based on the mouse’s x position. Program 7 repeats a single note for a random duration.  
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Figure 39: Participant L’s Final Scratch Project 

In Participant L’s computational thinking diagram, seen in Figure 40, we find user 

interaction elements primarily triggering loops. More than half utilize conditional 

statements depending upon and/or triggering user interaction, operators, and random 

numbers. 
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Figure 40: CT Diagram of Participant L’s Final Scratch Project 

In Figure 41, we see Participant L add a series of control and sound objects before 

deleting her entire project. She takes a break to create two sounds before beginning again. 

At this point she adds and removes control and sound objects in tandem with each other, 

as well as operator and sensor objects. 
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Figure 41: Timeline of Participant L’s addition and removal of Scratch objects 
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Chapter 5: Group Results  

My overarching research question explores if different kinds of musical 

backgrounds play a role in novice programing. I will answer this by first addressing my 

three smaller research questions, which examine how musical concepts emerge as 

scaffolds for novice programmers as well as the programming patterns and final projects 

of learners from a variety of musical backgrounds. 

MUSICAL CONCEPTS AS SCAFFOLDS 

I used transcripts of participant talk to learn how musical concepts emerged as 

scaffolds during the programming activity. Across the twelve participants, I identified 

402 utterances that were coded using the Subject and Type scheme described in Chapter 

3; 62 of these were double-coded, resulting in 464 individual codes. The distribution of 

codes is found in Table 1 (all percentages are out of 464 total codes). Most utterances 

were categorized as Assertions (51.9%). Questions and Intentions were nearly equal, each 

representing about 25% of utterances. Utterances coded with the Musical subject 

represented 18.3% of the utterances, the third-highest out of the subjects. Since my 

research examines musical concepts as scaffolds, I will next discuss the talk that 

intersected between Utterance types and Musical subject.  
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Table 1: Subject and Type Distribution of Participant Utterances  

  Subject  

  Operational Programming Scratch Musical Aesthetic Total 

Ty
pe

 

Question 13 

(2.8%) 

19 

(4.1%) 

65 

(14%) 

16 

(3.4%) 

0 113 

(24.4%) 

Assertion 60 

(12.9%) 

52 

(11.2%) 

63 

(13.6%) 

43 

(9.3%) 

23 

(5%) 

241 

(51.9%) 

Intention 40 

(8.6%) 

9 

(1.9%) 

4 

(1%) 

26 

(5.6%) 

31 

(6.7%) 

110 

(23.7%) 

Total 113 

(24.4%) 

80 

(17.2%) 

132 

(28.4%) 

85 

(18.3%) 

54 

(11.6%) 

 

Musical Questions 

Musical-Questions represented the smallest fraction of participant musical talk. 

Some example questions from Participant E were purely musical, such as, “So I need to 

work out a clave somehow so I can do a clave beat. Maybe in 5. Is that possible?”or “I 

should put Row Row Row Your Boat in here. Is that diatonic?” 

 The majority of musical questions were utterances double-coded as operational or 

Scratch questions, such as Participant J using musical language in asking a question about 

a project’s operation,“If the bpm is changing by 10 each time, that’s going to be less and 

less perceptible as it goes?” or Participant D doing the same to ask about the Scratch 

environment, “Does this program have a metronome?” 

Musical Assertions 

The majority of musical utterances were assertions, which narrate something the 

participant was doing or creating. The vast majority of musical assertions involved pitch 
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or tempo (or duration). For example: Participant G said, “46, 44 … I’m trying to add two 

octaves below. And then 34 and 32.” Participant K said “Plus three, plus three, this is all 

minor thirds, obviously.” (Participants were referring to pitches as integers here.) 

Participant I said “I need to figure out this timing. I’m changing this from 0.2 to 0.8 

beats. We’ll hold that one longer.” Participant E said “I’m going to turn this to 0.25 

beats and it’ll give me a quarter note,” before announcing “I’d like to do a sixteenth note 

here, but you can’t do decimals. That sucks.” (Scratch timing does do decimals, though 

only with one-tenth resolution which forbids the aforementioned quarter and sixteenth 

notes.) 

Five of the 43 musical assertions were double-coded with other themes. 

Participant G said, “Can I access other octaves in Scratch or I can just add or subtract 

12 from all of these,” combining a musical assertion with a Scratch question. Participant 

E said, “I want to press different keys that will play short drums things, like 0.2 beats,” 

combining a musical assertion with an operational intention. 

These Musical-Assertion examples points towards one main way in which 

musical concepts emerged as scaffolds for these novice programmers. Participants’ 

musical talk demonstrated an understanding of the numeracy involved in programming 

music in the Scratch environment. In discussing pitch, some participants readily 

articulated ideas in terms of semitones between traditionally notated pitches and/or 

explained pitches using Scratch’s integer notation. For instance, above Participant K 

mentions minor thirds (“Plus three, plus three, this is all minor thirds, obviously”); a 

minor third is an interval of three semitones between two pitches (a semitone is the 

smallest interval in traditional western music and the distance between any two keys on 

the piano). For instance, C and D# are separated by a minor third (C to C# to D to D#). 

As Participant K explains, he simply adds three to successive pitch values to create a 
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cascade of minor thirds, resulting in the “wave of ominous minorness” he desired. 

Participants articulated ideas about tempo and note durations similarly, both in familiar 

musical terms as well as in Scratch’s particular duration formulation. These two 

approaches are highlighted in the examples from Participant E, “I’m going to turn this to 

0.25 beats and it’ll give me a quarter note,” and “I’d like to do a sixteenth note here, but 

you can’t do decimals. That sucks.” The traditional language of quarter and sixteenth 

notes is built around fractions of a musical bar, whereas Scratch works in the language of 

pure duration (in beats) at a particular number of beats per minute. As Participant E’s 

disappointment illustrates, these two approaches do not easily translate back and forth, 

but participants nevertheless learned to achieve the results they desired in the language of 

Scratch.  

Musical Intentions 

Musical intentions primarily related to desires for specific instrumental sounds or 

used technical musical terminology to describe musical effects. Participant D said, “What 

I want it to be able to do is modulate.” Participant K said, “I want a wave of ominous 

minorness.” Participant E said, “I want to make a round sort of thing, where I press a 

button and something starts and then something else starts a bit later,” (double-coded as 

an operational intention). Participant G said, “We’ll make this very small for a glissando 

effect.” In some cases, these intentions based around music ideas pointed directly towards 

programming challenges. For instance, Participant G stated a desire for a glissando effect. 

A glissando is a slide between pitches. Like a piano or guitar, Scratch plays discrete 

pitches and, as such, a pure glissando in the manner of a trombone or violin is impossible. 

However, beginning with this simple idea, the participant formulated an approach to 

approximating it, beginning from a high-level operational perspective and eventually 
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articulating his idea in Scratch. More broadly, while none of the musical terminology 

used by participants was especially complex or esoteric, these terms, familiar to 

musicians, may have provided a rich bank of ideas about what a project might actually 

do. Participant G articulated this approach, focusing specifically on the construction of a 

piece of music, in explaining: 

Well, what do you need to make music? You need melody, maybe you need a 
pad, the different elements that could make up a piece of music. Let’s make up a 
couple of those and see how we want to put them together. Just making elements. 
Being able to control and deploy them as necessary.  

Musical Talk by Participant Group 

The discussion thus far has focused on describing the musical talk that occurred 

and its roles, independent of participant groups. Table 2 breaks down the 85 musical 

utterances by participant group (all percentages are out of 85 total utterances). The non-

musician group accounts for less than 10% of musical utterances; the remaining musical 

utterances are close to evenly distributed between the three musician groups. Musical-

questions account for less than one-fifth of all musical utterances. Most are distributed 

near evenly between the jazz and classical groups, with a small number from the non-

musician group. Musical-assertions account for half of all musical utterances and 

composers account for half of those. The remaining musical-assertion utterances are 

distributed near evenly between the jazz and classical groups. Musical-intentions were 

just under one-third of all musical utterances. The jazz group had the most musical-

intention utterances, just under half of the total. 

In addition to their smaller numbers, musical utterances from the non-musician 

participants were qualitatively different from the musician groups. All musical intentions 

and questions except one were focused on instrumental sounds (“I’d like to have a string 
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sound here”). The other question (“What does 0.2 beats mean?”) was similar to 

questions asked by musician participants, but not leveraged any further than that. 

Table 2: Musical Utterances by Participant Group 

  Participant Group 

  Non-

Musician 

Jazz Classical Composer Total 

Ty
pe

 

Musical-

Question 

3 

(3.5%) 

7 

(8.2%) 

6 

(7.1%) 

0 16 

(18.8%) 

Musical-

Assertion 

0 

 

10 

(11.8%) 

12 

(14.1%) 

21 

(24.7%) 

43 

(50.6%) 

Musical-

Intention 

3 

(3.5%) 

11 

(13.0%) 

6 

(7.1%) 

6 

(7.1%) 

26 

(30.6%) 

Total 6 

(7.1%) 

28 

(32.9%) 

24 

(28.2%) 

27 

(31.8%) 

 

Summary 

 Musical concepts emerged as scaffolds in the form of musical descriptors that 

provided a structural framework for programming challenges. This kind of talk, 

exemplified in musical-intention utterances, was most common in the jazz group of 

participants. Musical talk also helped participants navigate Scratch’s musical numeracy. 

This kind of talk, exemplified in musical-assertion utterances, was most common in the 

composer group of participants. Musical talk was far more prevalent in musicians than 

non-musicians. 
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PATTERNS IN PROGRAMMING PROCESS BY PARTICIPANTS’ MUSICAL BACKGROUNDS 

My second question asks what kind of patterns learners from a variety of musical 

backgrounds exhibit in their programming processes. I address this question by 

examining programming duration, program testing, and the addition and removal of 

Scratch objects. 

Figure 42 shows the duration of each session alongside averages from each 

participant group. Non-musician sessions, on average, are shorter than any other group of 

participants. Composer sessions are, on average, longer than any other group of 

participants.  

Figure 42: Programming Duration 

Figure 43 summarizes program tests per minute. A program test involves simply 

executing a piece of Scratch code. Once a program was tested I did not record subsequent 
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tests until the participant had changed something in the project. In many cases an early 

chunk of Scratch code might generate a single tone and a participant might activate it 

over and over again; this would be recorded as a single test. Averages across groups 

range from 0.6-0.8 tests per minute, or 1 test every 75-100 seconds. Program tests were 

not evenly distributed for any participant. Perusing programming diagrams in the 

appendices (G-R) will show relatively tight clusters of testing and gaps of many time 

durations during programming or discussion. While the composer group has the highest 

average tests per minute, there is too much variance within groups to make any group-

based inferences. 

Figure 43: Program Tests Per Minute 

Figure 44 shows the net Scratch objects added by each participant. Participant D’s 

many objects are contained in a pair of lengthy chunks of code dense with operators, 
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variables, and random numbers. While the non-musician group’s low numbers are in line 

with the group’s shorter programming time, the same does not hold true for the composer 

group and its overall longer programming duration. Figure 45 shows the composer group 

adding relatively few objects per minute. 

Figure 44: Net Scratch Objects Added 
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Figure 45: Net Scratch Objects Added Per Minute 

Figure 46 breaks net objects added into Scratch object types, and Figure 47 

displays object types as a percentage of net objects; Figure 47 more easily allows 

comparison of the makeup of individual projects between participants and groups. All 

projects contained Sound and Control objects by definition. Putting aside Motion objects, 

non-musician projects are dominated by Sound and Control objects and include no 

Variable objects at all. Operators appear in all composer projects – two of three composer 

participants took advantage of the screen area in various ways and all used random 

numbers; Sensor objects appear in all composer and classical projects – the relatively 

high proportion in the classical group may be related to an impulse to create buttons and 

an instrument. 
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Figure 46: Types of Net Scratch Objects Added 
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Figure 47: Types of Net Scratch Objects Added as a Percentage of All Net Scratch 
Objects Added 

Figure 48 shows the number of Scratch objects removed by object type. Figure 49 

presents these values as percentages of total objects added (that is, net objects added plus 

objects added but later removed). The preponderance of Sound and Control objects being 

removed may be related to participants removing entire chunks of code coupled with 

those objects’ prominence overall in the projects.  

Participant J deleted his entire project, but created a new project with nearly as 

many objects, as seen in Figure 49. Participant C, on the other hand, continually added 

and deleted objects in the eventual creation of a rather simple and straightforward project. 

While there was a great deal of variance in the non-musician, jazz, and classical groups, 

the composer group overall removed far more objects, which accounted for a similarly 

larger fraction of total objects added.  
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Figure 48: Total Objects Removed Across All Programming Time 
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Figure 49: Objects Removed as a Percentage of All Objects Added 

Summary 

 These results show several patterns in programing process across participant 

groups. Participants in the composer group, on average, worked for the longest periods of 

time, tested their projects the most frequently, added items the slowest, and removed 

more objects (by number and percentage of all objects added) than all but one other 

participant, Participant C. All participants in the composer group used sensor, operator, 

and random number objects. Participants in the classical group, on average, tested their 

projects the least often and added items the most quickly of all the groups. All 

participants in the composer group used sensor objects. Participants in the jazz group 

were, on average, in the middle of all metrics. The jazz group did include an outlier with 

respect to the “objects added” metrics, Participant D. Participant D’s project included a 

program featuring a long series of sequential instructions, each influenced by a random 
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number or operator object. He then copied this program, resulting in a very high number 

of overall objects. Participants in the non-musician group worked the least amount of 

time and added the fewest Scratch objects. 

DIFFERENCES IN FINAL PROJECTS BY MUSICAL BACKGROUND 

My final sub-question asks how the final projects differed by participants’ 

background. I answer this question by examining the final projects’ number of distinct 

programs and depth, as well as participants’ use of computational thinking concepts. 

Distinct Programs 

Figure 50 shows the number of distinct operable programs within each final 

project. There is a great deal of variance in number of programs created within most 

groups. Participants E and G are similar in their approaches; that is, they both created 

many relatively small programs, each triggering individual and often unrelated sounds.  

 



 95 

Figure 50: Distinct Programs in Final Projects 

Maximum Computational Thinking Depth 

Figure 51 shows the maximum depth of each project, based on the computational 

thinking diagrams found in the appendices (G-R). The composer group is overall greater 

in maximum depth and the non-musician group lower in depth, with the jazz and classical 

groups in between the two. 

Figure 51: Maximum Depth of Final Scratch Projects 

Computational Thinking Concepts 

The use of specific computational thinking concepts in participant projects is 

examined using the Instances and Average Depth metrics explained in Chapter 3. In this 

section, I will describe the use of each of the 10 computational thinking concepts across 

the participants’ projects.  
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User Interaction 

Instances of user interaction by participant appear in Figure 52. A degree of user 

interaction was one of the two project requirements and, as such, appeared in all 

participant projects. Classical participants used the greatest number of user interaction 

elements, on average.  

Figure 52: Number of Instances of User Interaction, by participant 

In Figure 53, I report the average depth for user interaction is close to one for five 

of the 12 participants (all non-musicians and two of three jazz musicians); in these cases 

user interaction is primarily limited mouse clicks or key presses that trigger Scratch 

actions. That these depth of one triggers are a virtual necessity effectively pulls down the 

average depth of user interaction; the five participants with average user interaction 

depths greater than two all utilize user interaction in constructive ways. Three 

participants based various actions on the mouse button (following an initial activation). 

Four tracked the mouse’s x and/or y position, rescaling the values for the creation of new 

variables or triggering different actions based on the mouse position on the screen. One 
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used a series of key presses inside conditional statements to create a simple piano 

keyboard.  

Figure 53: Average Depth of User Interaction, by participant 

Classical participants stand out for having more instances of user interaction on 

average while also being one of the two groups with higher user interaction depth. 

Loops 

Loops appeared in a majority, but not all, of the participant projects, as seen in 

Figure 54. This includes all participants in the classical group. I considered finite repeats 

in this section, such as “repeat x times” or “repeat until…” rather than inclusion of repeat 

infinitely. This excludes the Scratch forever object, which was presented as a 

fundamental part of the Scratch tutorial.  
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Figure 54: Number of Instances of Loops, by participant 

From Figure 55, loops appeared relatively early, depth-wise, in most projects, 

immediately following a user interaction trigger or following a parallelism or conditional 

statement. 

Figure 55: Average Depth of Loops, by participant 

 

 



 99 

Conditional Statements 

As seen in Figure 56, eight of the twelve participants, including all participants in 

the classical group, used conditional statements in their projects. Most used conditional 

statements to check for mouse presses, key presses, or sprite touches to trigger audio. 

Two that employed moving sprites used Scratch’s if on edge, bounce object. Four used 

conditional statements to check the position of the mouse: one rescaled mouse position to 

create new variables when the mouse was within a certain ranges, while three used if-else 

statements to play different notes based on mouse position.  

Figure 56: Number of Instances of Conditional Statements, by participant 

Participant K, with the highest average conditional statement depth as seen in 

Figure 57, uses two series of nested conditional statements to demarcate the computer 

screen into a grid. 

 

 



 100 

Figure 57: Average Depth of Conditional Statements, by participant 

Parallelism 

As seen in Figure 58, parallelism appeared in just over half of the participant 

projects. Participants used parallelism to activate between 2 and 4 different distinct 

programs with a single trigger. Two participants had a pair of user interaction elements 

that each activated multiple programs. 
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Figure 58: Number of Instances of Parallelism, by participant 

From Figure 59, all were at a depth of 2 – that is, following a user interaction 

element.  

Figure 59: Average Depth of Parallelism, by participant 

Sequences 

Sequences do not correspond to any Scratch object in particular – rather, I define 

sequences as actions triggered in a certain order by means other than simply being coded 

sequentially. Seen in Figure 60, five participants included sequences of this kind in their 

final projects. Three projects used Scratch’s wait object to create particular audio outputs. 

One of these projects did so across three distinct programs that were triggered 

simultaneously. Two projects used Scratch’s glide object – this object moves the sprite a 

given distance or to a particular location over a prescribed amount of time. Use of the 

sprite was not something I anticipated, but several participants did exactly that, including 

creating new sprites, for a variety of reasons to be discussed later. While using glide 

rather than instantaneously relocating a sprite may have been as much or more for visual 
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aesthetics than to introduce time into a programmatic sequence, this accomplished it 

nevertheless. 

Figure 60: Number of Instances of Sequences, by participant 

Sequences were employed at a variety of depths across participant projects, as 

seen in Figure 61. 

Figure 61: Average Depth of Sequences, by participant 
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Operators 

Seen in Figure 62, six participants used operators in their projects. This includes 

all participants in the composer group as well as one dramatic outlier (Participant D). 

Two participants used greater- or less-than objects to check mouse position. Five used 

mathematical operators: three divided random integers into fractional values for the 

purpose of beat duration, two added random numbers or variables to prescribed note 

values (Participant D did so 20 times), and three used addition and division to rescale 

mouse positions into new variables.  

Figure 62: Number of Instances of Operators, by participant 

The concepts preceding this one are what I refer to as “container” concepts. They 

encapsulate program outputs (like a loop) or control the activation of program outputs 

(like a conditional statement). Operators, and the concepts that follow, tend to interact 

with these “container” concepts (controlling the number of repeats in a loop, for instance) 

or interact with output directly (controlling a particular integer pitch, for instance). As 
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such, these latter concepts tend to appear more deeply in programs. As seen in Figure 63, 

no project employs operators with an average depth lower then three.  

Figure 63: Average Depth of Operators, by participant 

Boolean Logic 

Boolean logic was the least occurring CT concept in participants’ programs. Seen 

in Figure 64, it appeared twice in Participant G’s project, both times inside a conditional 

statement and utilizing AND so as to define the left and right (or upper and lower) 

bounds of the Scratch sprite window, before values within the window were rescaled. 
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Figure 64: Number of Instances of Boolean Logic, by participant 

Figure 65: Average Depth of Boolean Logic, by participant 

Random Numbers 

Seen in Figure 66, five participants used random numbers in their final projects, 

including all participants in the composer group. One project used 20 random number 

elements, to turn the sprite a random number of degrees and to play notes for a random 

number of beats (by dividing a random integer by 10 or more). Others used this random 
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beat tactic as well as random instrument choice. While only using five random number 

elements, Participant D’s project was far and away the most randomly determined, using 

random waits, repeats, adjustments to rescaled variables, and adjustments to prescribed 

note choices.  

Figure 66: Number of Instances of Random Numbers, by participant 

As similar to the depth of operators above, average depth for random numbers 

shown in Figure 67 is relatively high compared with other concepts.  
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Figure 67: Average Depth of Random Numbers, by participant 

Variables 

Three participants included variables in their final projects, shown in Figure 68 

below. In all cases, variables were used in rescaling mouse position into a variable more 

useful for Scratch (often from 0-127, the range of available pitches and instruments in 

Scratch). In two cases, participants created new x and y variables (one using the range of 

the entire screen, the other the Scratch sprite window). The third worked with x only, 

using the full screen. These new variables were used to choose notes or instruments. 

Participant G used variables based on the bounds of the Scratch window to modulate 

prescribed note values.  
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Figure 68: Number of Instances of Variables, by participant 

Variable depth values, seen in Figure 69, are relatively high and very close for all 

three participants. 

Figure 69: Average Depth of Variables, by participant 
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Lists  

Lists appeared in two participant projects, as seen in Figure 70. Despite lists 

arguably being a subcategory of variables, use of the two turned out to be mutually 

exclusive. Participant F’s project played three notes from a list, one after the other; 

Participant H played various notes from a list depending on key presses. As the list values 

do not change and are only referenced once, these uses of lists may be somewhat 

redundant. That is, participants coded “play note #4 of list A” [with note #4 of list A = 

74] in lieu of simply “play 74”. 

Figure 70: Number of Instances of Lists, by participant 

 



 110 

Figure 71: Average Depth of Lists, by participant 

Overall Use of Computational Thinking Concepts 

Figure 72 displays the aggregate frequency of use of CT concepts across all final 

projects.  

 

 



 111 

Figure 72: CT Concepts Used, Instance Across All Participants 

Given that user interaction was one of the two requirements of the programming 

task, it is no surprise that user interaction dominates here. Virtually every distinct 

program commences with user interaction elements and in many cases this initial 

interaction simply starts a program to listen for further user interaction. For instance, the 

program that follows in Figure 73 is activated using a user interaction element; later in 

the program a conditional statement checks the mouse position, an additional user 

interaction element.  

 

 

 

 

 

Figure 73: User Interaction Program 

The next two highest computational thinking concepts used in programs are operators 

and variables, which are often used in similar ways. Participants frequently used 

operators in rescaling mouse x and y values to create variables as well as to add or 

subtract variable or random values from prescribed ones. As discussed earlier, these non-

container concepts can be more easily inserted deeply into programs in greater numbers. 

This is reflected in Figure 74 that follows, as the large number of computational thinking 

elements in Participant D’s project is dominated by variables, operators, and random 

numbers. With the exception of Participant D, projects by the classical and composer 
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groups show more instances of computational thinking concepts than the jazz and non-

musician groups.  

Figure 74: Number of Instances and Type of CT Concepts Used, by participant 

Summary 

While final projects exhibited a great deal of diversity between and within groups, 

several results stand out in differentiating the final projects of participants of different 

backgrounds. On average, participants from the composer group produced projects with 

the lowest number of distinct programs and the greatest overall maximum depth. All 

composers also used operators and random numbers. On average, participants from the 

non-musician group produced projects with the lowest maximum nested depth. 

Participants from the classical group used higher numbers of user interaction (at high 

depth) and all classic musicians used conditional statements.  
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MUSICAL BACKGROUND AND NOVICE PROGRAMMING 

Different kinds of musical backgrounds did play a role in novice programming. 

Musical talk demonstrated how musical backgrounds in general provided learners an 

entry point to the numeracy involved in programming musical projects and a repertoire of 

musical ideas that could inspire project ideas as well as programming challenges. 

Participants included musicians trained as jazz and classical musicians and composers. 

Comparing participants by background in terms of how they produced their projects, the 

most pronounced differences were apparent among the composer group; their projects 

could be considered the most carefully crafted, as these participants worked the longest, 

on average, added Scratch objects relatively slowly, removed the most objects in the 

course of their work, and produced final projects of the greatest depth.  

There were also trends based on musical background in how participants used 

various Scratch objects and computational thinking concepts, involving the composer and 

classical groups. All members of the composer group used sensor and operator Scratch 

objects and employed operator and random number computational thinking concepts. The 

use of high-depth concepts such as these is in line with the programming process of 

participants in the composer group. All members of the classical group used sensor 

Scratch objects and conditional statement computational thinking concepts, both of 

which lend themselves towards interactivity. Participants from the classical group also 

used user interaction computational thinking concepts in greater numbers and at higher 

depth than most other groups.  
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Chapter 6: Discussion 

In this chapter, I will discuss my findings in relation to chunking, tinkering, and 

the importance of context. I will also discuss connections between my composer 

participants and design, and implications for practice and provide suggestions for further 

research.  

CHUNKING 

Research has shown how organizing knowledge into meaningful chunks divides 

novice and expert programmers. This study was motivated in part by curiosity about how 

musical content knowledge and the organization thereof might influence programming 

practice. Something as relatively elementary as a D minor 7th chord contains multiple 

harmonic and intervallic relationships; meanwhile, a jazz musician discussing blues or 

rhythm changes is referencing a time-based sequence of interrelated chords. A myriad of 

compositional approaches delve into even deeper layers of complexity. 

Participants’ use of musical talk demonstrates one potential connection between 

the chunking of musical knowledge and chunking in the context of programming. In 

some cases, musical terminology used by the participants could, with some work, be 

musically expressed in Scratch. For instance, at one point a participant opts to create a 

glissando – that is, a slide from one pitch to another. On an instrument without clearly 

separated pitches, such as a violin or trombone, this would be a literal slide from one note 

to another. On a piano, meanwhile, a glissando would involve playing intermediate notes 

as fast as possible.  The participant took this latter tact, though given Scratch’s capacity 

for notes of incredibly short duration, the net effect was closer to the trombone’s literal 

glissando. By moving the mouse, the participant could slide from one note to another 
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relatively smoothly. In short, implementing this second-nature musical technique became 

a non-trivial but solvable Scratch task. 

This observation matches with prior research on computer science instruction 

aimed at trained musicians (Meyers, Cole, Korth, & Pluta, 2009). In that case, instruction 

was developed to connect specific programming concepts with musical and 

compositional concepts. These examples were of much greater complexity that this 

glissando example; for instance, one activity involved using arrays to simulate the 

interconnected rhythms of Steve Reich’s Clapping Music.  

This dissertation was motivated in part by a curiosity about how programming-

friendly musical concepts might come to the fore in the context of a free-form 

programming activity. While the musical concepts that did appear were less sophisticated 

than those that might be employed in a more premeditated context, they did appear to 

play some role in helping learners program. 

TINKERING 

Much of the participants’ programming activity aligns with tinkering, a cycle of 

learning and making frequently involving trial and error (Dorn & Guzdial, 2010), play 

(Petre & Blackwell, 2007), and a lack of well-defined goals (Petre & Blackwell, 2007). 

Trial and error was a virtual constant and despite occasional periods of sustained coding, 

participants tested their projects quite frequently. Many participants did not appear to 

have larger project goals in mind at any point in the entire session, producing many 

somewhat disconnected discrete programs; only one began with a concrete plan (make a 

piano) and executed it. Others made various decisions about directions in which to 

proceed, but this simply led to a deeper layer of tinkering. One participant summed this 

approach up in declaring, “I just want to press a button and have it do a bunch of stuff.” 
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Participants would settle on and perhaps refine some mode of interaction, button-pressing 

or mouse-moving for instance, and then explore the wild possibilities that could be 

coaxed out of this interaction. Even the participant who threw out an entire project 

midway through and began again had essentially reached this point, going on to produce 

a new interface without a succinct plan for the program’s output. Many produced ecstatic, 

often random, waves of sound that veered in delightful and sometimes comical directions 

with each mouse movement or button press. This is surely encouraged by Scratch’s 

impenetrability to errors. If a program can be assembled, it can be executed. This 

strength, along with Scratch’s ability to execute while editing, are powerful features 

encouraging tinkering and engaged programming learning.  

CONTEXT & COMFORT 

The role of musical talk highlights the value of context in a novice programming 

experience. Musical backgrounds were useful in approaching the numerical work of 

programming music in Scratch as well as providing a library of musical concepts around 

which participants could build programming goals and organize programming tasks. 

However, the issue of comfort with programming touches on context from the 

angle of computer experience. Both of the oldest participants advised me (somewhat 

humorously) to temper my expectations, in light of a self-reported unease with computers 

in general. Both had no trouble overall, with one taking to the Scratch environment as 

quickly or more so than any other participants. The other had many thoughts as he 

became comfortable with the environment: 

If someone put a musical instrument in front of me that I’d never seen before and 
said ‘you blow here or you pluck this or you press this,’ and you learn it through 
muscle memory as well as creating a brain picture and using your short term 
memory. So now you’ve showed me all of these lists and menu items, but it’s not 
tactile so I’m trying to remember a mental picture of what you did. Since it’s this 
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computer 2-dimensional screen thing it’s completely floating around. It has 
nothing I can touch.  So I’m trying to recreate it step by step and it’s completely 
trial and error. Like walking through a room and then they turn out the lights and I 
walk through it again and then I bang into everything. (Participant F) 

While other participant created new sprites essentially as a novelty, doing so was a 

turning point for this participant: chunks of Scratch code seemed to take on more 

substance as they became associated with clickable and moveable Scratch icons. As he 

proceeded, his metaphor or working model moved from music in the abstract to theater, 

with each sprite essentially become a stage performer with a particular role to play: 

This is a stage, so I can actually see the performers and think of leitmotifs and 
characters associated with sound – that’s where I’m going to with it. Since this 
isn’t a musical instrument per se, it’s more like a stage and I’m organizing stuff 
on it. That draws me in. This gives me a visual and then I can make these icons 
interact with sounds and that stimulates my imagination. This list of things – ugh. 
My imagination shuts down and my desire to do anything shuts down. 
(Participant F). 

This observation offers a new perspective on the importance and potential of context. 

Rather than using music as a conceptual framework around which to structure 

programming tasks, as some participants did, this participant literally used the Scratch 

stage as a proxy for a real-world performance space. This use of a very concrete mental 

model is an area I’ll consider in my discussions of future research.  

COMPOSERS AND DESIGN 

 Based on analysis of the programming processes and final programming projects 

of the participants, participants in the composer group stood out in a number of ways. 

They worked longer while adding Scratch objects more slowly, and removed more 

objects that participants from the other groups. The projects they produced were of 

greater depth and utilized more numerical computational thinking concepts. An 

explanation for the differences may be found in the nature of the professional musician’s 
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work. While expertise in jazz or classical music is primarily focused on performance, a 

composer creates pieces of music, either in a final recorded form or notated in a way that 

serves as instructions for performance by other musicians. The work of a composer may 

be viewed as potentially analogous to the work of a designer in certain ways. A designer 

“translates an idea into a blueprint for something useful” (Design Council, 2014). A 

designer deals with “a huge number of considerations coming to bear on the design 

process” (Design Council, 2014). Meanwhile, a composer translates an idea into 

something listenable or compelling; he or she also deals with all manner of constraining 

considerations, from available instrumentation to the composition’s intended destination 

and purpose (is this an evening-length piece for the symphony hall or a 30-second jingle 

for a television commercial?). Furthermore, many design models integrate phases of 

evaluation and redesign; composer participants demonstrated the most removal of objects 

of any participant group.  

All of the composer participants were at least familiar with various 

mathematically or structurally rigorous compositional approaches of the 20th century, 

such as 12-tone serialism (in which all 12 chromatic tones are used equally in a piece of 

music) or aleatoric music (in which random elements are included in the details of a 

composition). Whether the composer participants’ use of numerical Scratch objects and 

computational thinking concepts was out of familiarity with these ideas or simply higher 

mathematical aptitude is an area for further research. 

PRACTICAL IMPLICATIONS 

The primary practical takeaway of this research is the potential importance of 

context in programming learning. Presented with a tutorial focused on musical and audio 

elements of Scratch, non-musicians participants not only worked the least amount of 
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time, but produced arguably less sophisticated projects of lower depth, primarily using 

Sound and Control objects. (One non-musician participant departed from the musical task 

and created a project largely focused on moving the sprite around the stage.) In addition 

to their experience with musical numeracy, many musical participants arrived with 

musical concepts in hand that could be translated into programming challenges. This is 

encouraging in the sense of leveraging concepts from other domains with which adults 

learners might be familiar as frameworks for programming tasks.  

FUTURE RESEARCH 

An initial extension of this study that I would undertake would be to replicate this 

study with younger learners. My participant groups in this case would likely simply be 

musicians and non-musicians. Most of the musical concepts that participants discussed 

were not especially advanced and would not be out of reach for musicians of secondary 

school age. I would be interested to see if these new participants would leverage concepts 

in similar ways. Alternately, an extension of this study (with younger or adult learners) 

might introduce more specific musical concepts in the Scratch tutorial, such as building 

something based on the glissando example discussed earlier. Participants might be 

inspired to explore these ideas or related ideas further. 

A second study that I would propose would look very much like this one, but 

would draw on Participant F’s use of theater as a mental model for structuring his Scratch 

project (as well as other participants’ impulse to move the sprite around the stage). In the 

study described in this dissertation, I presented the Scratch sprite primarily as a button to 

be clicked or as a positional marker. I invited to the participants to make something 

musical; in this new study I would invite participants to make the sprite perform. The 

Scratch tutorial examples would be built around Motion, Looks, and Pen objects rather 



 120 

than Sound objects. My overarching research question would have less to do with the role 

of participant background (though the inclusion of theater artists or choreographers 

would be an interesting consideration), but rather on how the focus on the sprite as a 

“performer” influenced their programming experiences.  

CONCLUSION 

This study has examined how various musical backgrounds might play a role in 

novice programming. I worked with nine musicians of different backgrounds and three 

non-musicians on projects in Scratch so as to answer this question.  

This overarching research question was subdivided into three more actionable 

research questions. The first asked how musical concepts emerged as a scaffold for 

novice programmers. To answer this question I logged and coded participant talk while 

they worked on Scratch projects. My findings were that a musical background helped 

participants navigate some of the numerical work involved in their Scratch projects and 

provided them with a library of musical techniques and processes that often lent 

themselves toward realization in code. 

My second research question asked what kind of patterns participants showed in 

their programming. To answer this question I screen-recorded participants’ programming 

and logged all of their programming activity. Significant observations include musicians 

working longer than non-musicians and composers working longer overall. Composer 

deleted far more objects than other groups, both in absolute numbers and percentage.  

My final research question asked how the final projects of the participants 

differed, focusing in particular on computational thinking concepts employed. Composer 

participant produced programs overall greater programming depth; participants employed 
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a variety of computational thinking concepts in a variety of ways, particularly user 

interaction, variables, and operators.  

This qualitative study served its purpose into examining this very domain-specific 

entry point into learning computer programming. While the findings above should not be 

generalized further, they may offer some signposts towards future research. I would like 

to see future research look at how musical background may scaffold programming 

learning in a less open-ended scenario, where definite musical goals and content align 

with particular aspects of programming learning, and how alternative performance 

metaphors might influence programming learning.  
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Appendix A: Research Matrix 

Research 
Question 

Data Sources Specific data to 
answer this 
question 

Analysis 
required 

What will this 
allow me to 
say? 

Big Q. Do 
different kinds 
of musical 
backgrounds 
play a role in 
novice 
programming? 

    

1. How do 
musical 
concepts 
emerge as a 
scaffold for 
novice 
programmers? 

1. Participants’ 
think-aloud 
interviews 
2. Participant 
pre-survey 

1. Transcribed 
interviews 
2. Participant 
pre-survey 
responses 

1. Coding for 
themes 
2. Coding for 
themes 

“For many 
participants, 
harmony was 
an entry point 
to introducing 
parallelism into 
their Scratch 
programs.” 

2. What kind of 
patterns do 
participants 
from a variety 
of musical 
backgrounds 
exhibit in their 
programming 
processes? 

1. Screen video 
capture of 
participant 
programming    
2. Participant 
pre-survey 

1. Counts of 
Scratch objects 
and playbacks 
2. Participant 
pre-survey 
responses 

1. Changes in 
frequencies of 
particular 
Scratch objects 
and frequency 
of program 
playback 
2. Coding for 
themes 

“Improvising 
musicians 
exhibited less 
goal-focused 
programming, 
dramatically 
changing their 
projects as they 
discovered and 
explored new 
features.” 
 

3. How did the 
final projects of 
participants 
from a variety 
of musical 
backgrounds 
differ? 

1.Participant 
final Scratch 
projects 
2. Participant 
pre-survey 

1. Scratch 
projects 
2. Participant 
pre-survey 
responses 

1. Frequencies 
and 
arrangement of 
particular 
computational 
concepts 
2. Coding for 
themes 

“Participants 
with 
composition 
training used 
randomization 
elements far 
more often than 
any other 
group.” 
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Appendix B: Direct Recruitment Letter 

Dear [NAME], 
 
 As you may or may not know, I am currently working on my dissertation in the 
Department of Curriculum and Instruction at the University of Texas at Austin. My 
dissertation study focuses on how musical knowledge and expertise informs the 
experience of novice programmers. 
 I would like to ask you to consider being a participant in my study. The study will 
involve spending no more than two hours working on a (hopefully!) fun musical project 
in the Scratch programming environment while talking with me about what you’re 
working on.  
 If you would be interested in participating or have any questions that I could 
answer, please do not hesitate to get in touch with me.  
 
      Thanks, 
   

          Tom Benton  
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Appendix C: Consent Form 

Consent for Participation in Research 
 
Title: Musical Expertise as a Scaffold for Novice Programming 
 
Introduction 

The purpose of this form is to provide you information that may affect your decision as to 
whether or not to participate in this research study.  The person performing the research will 
answer any of your questions.  Read the information below and ask any questions you might 
have before deciding whether or not to take part. If you decide to be involved in this study, 
this form will be used to record your consent. 

 
Purpose of the Study 

You have been asked to participate in a research study about musicians and computer 
programming.  The purpose of this study is to examine how musical knowledge informs 
beginning computer programming. 

 
What will you be asked to do? 

If you agree to participate in this study, you will be asked to: 
 
- Complete a survey describing your musical background 
- Work on a musical project in the Scratch programming environment while answering 
general questions about your work. 
  
This study will take approximately 2 hours and will include 12 study participants.  
 
Your participation will be audio recorded and your programming will be screen-recorded.  

 
What are the risks involved in this study? 

There are no foreseeable risks to participating in this study. 
 
What are the possible benefits of this study? 

You will receive no direct benefit from participating in this study; however, this research may 
provide insights that benefit programming instruction in the future. You may also find it an 
engaging introduction to computer programming.  

 
Do you have to participate? 

No, your participation is voluntary. You may decide not to participate at all or, if you start the 
study, you may withdraw at any time.  Withdrawal or refusing to participate will not affect 
your relationship with The University of Texas at Austin (University) in any way.  
If you would like to participate please return this form to the researcher at the scheduled 
study meeting. You will receive a copy of this form. 

  
Will there be any compensation? 

You will not receive any type of payment for participating in this study.  
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How will your privacy and confidentiality be protected if you participate in this research 
study? 

The study is confidential. All data will be assigned a pseudonym rather than your name. Pre- 
surveys will be stored securely in a locked filing cabinet. All digital data (audio and screen 
recordings, final Scratch projects, and logged pre-survey data) will be stored on an encrypted 
external drive. Your contact information obtained during the scheduling process will be 
destroyed after the experiment is completed. Data will be kept for one year. After this time, 
pre-surveys will be shredded and digital data will be deleted. 
  
If it becomes necessary for the Institutional Review Board to review the study records, 
information that can be linked to you will be protected to the extent permitted by law. Your 
research records will not be released without your consent unless required by law or a court 
order. The data resulting from your participation may be made available to other researchers 
in the future for research purposes not detailed within this consent form. In these cases, the 
data will contain no identifying information that could associate it with you, or with your 
participation in any study. 

 
If you choose to participate in this study, you will be audio recorded. Any audio recordings 
will be stored securely and only the research team will have access to the recordings.  
Recordings will be kept for one year and then erased.   

 
Whom to contact with questions about the study?   

Prior, during or after your participation you can contact the researcher Tom Benton at 512-293-
4509 or send an email to tombenton@utexas.edu for any questions or if you feel that you 
have been harmed.   
 
This study has been reviewed and approved by The University Institutional Review Board and the 
study number is [STUDY NUMBER]. 

 
Whom to contact with questions concerning your rights as a research participant? 

For questions about your rights or any dissatisfaction with any part of this study, you can contact, 
anonymously if you wish, the Institutional Review Board by phone at (512) 471-8871 or email at 
orsc@uts.cc.utexas.edu.  

 
Participation 
 You have been informed about this study’s purpose, procedures, possible benefits and risks, 

and you have received a copy of this form. You have been given the opportunity to ask 
questions and you have been told that you can ask other questions at any time. You 
voluntarily agree to participate in this study. By verbally consenting to participate in this 
study, you are not waiving any of your legal rights. 
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Appendix D: Pre-Survey 

Name:  
 
1. Do you read music? Y / N 
 
2. Do you play an instrument or sing?  Y / N 
 
2a. If yes, please list (if more than 1, please circle a primary, if there is 1): 
 
 
 
 
3. Do you improvise on an instrument?  Y / N 
 
4. Do you compose music?  Y / N 
 
5. Please fill out the following table describing your musical study: 
 
Area of Study Did you study this area in 

college (Y / N)? 
Please check if you earned 
a degree in this area: 

Instrumental or Vocal 
Performance 

  

Music Theory   
Composition   
Jazz   
Other (please list below):   
   
   
   
   
 
6. Please briefly describe any professional and/or personal musical activities that you 
participate in currently: 
 
 
 
7. Have you done any computer programming? Y / N 
 
7a. If yes, please describe: 
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Appendix E: Scratch Sample Programs & Reference Sheet 

1. User Interaction 
 

 

This simple program uses the 
keyboard to play one audio sample 
and one drum sound. 
 
It uses objects from the CONTROL 
and SOUND tabs. 

 
2. Program Structure & Mouse Button 
 

 

Using the Flag click and ‘forever’ 
object will keep your program 
repeatedly executing your code. 
 
This program uses the mouse button to 
play a single note.  
 
It uses objects from the CONTROL, 
SOUND, and SENSING tabs. 

 
3. Mouse Position 
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This program uses the mouse 
button to play a note based on 
the mouse position.  (Mouse 
position appears at the bottom 
of the Scratch window.) 
 
It uses objects from the 
CONTROL, SOUND, and 
SENSING tabs. 

 
4. The Sprite & Operations 
 

 

This program evaluates the 
position of the mouse relative 
to the Sprite and plays notes 
based on the result. 
 
It uses objects from the 
CONTROL, SOUND, 
SENSING, and 
OPERATORS tabs. 

 
5. Lists 
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This program uses the keyboard to play notes pulled from a list of integers. It uses objects 
from the CONTROL, SOUND, SENSING, and VARIABLES tabs. 
 
6. New Sounds 
 

 

Record new sounds in the Sound tab and 
play them as in Example 1. 
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Appendix F: Computational Thinking Coding 

In analyzing participant programming project, I coded for 10 computational 

thinking concepts. The examples below both illustrate and discuss how these concepts 

might be instantiated in Scratch.  

Most of the concepts below could be considered present based on the successful 

implementation of a single Scratch object: user interaction, operators, loops, conditional 

statements, Boolean logic, and random numbers. Parallelism and sequences are relatively 

easily identified but completely undefined in their scopes. Finally, variables must be 

actively ushered through a program, and lists much be actively accessed. 

To help illustrate how these differences will be practically dealt with in coding, 

each of the examples below is a fully executable Scratch program. Some are simple and 

others are relatively complex by comparison. Many contain computational thinking 

concepts from prior examples in addition to the concept in question. 

 

1. User Interaction 

 

 

This simple program includes two instances of user interaction. A user can use 

the keyboard to play a note, while the pitch is controlled by the position of the mouse. 

 

2. Operators 
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Performing basic numerical operations is the heart of computation. Two of the 

computational concepts further down this list (random numbers, Boolean logic) are 

technically operators themselves, but for this study I will consider them independently 

and limit operators to arithmetic operations and numerical comparisons. In the program 

above, mouse position is used to control the note’s pitch, but is first scaled down to one-

third to bring it more in line with playable pitch values. 

Additional concept present: user interaction 

 

3. Loops 
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A loop simply repeats a command or series of commands a prescribed number of 

times or until some other condition has been met. In the program above, an audio clip is 

repeated until the mouse has crossed the midpoint of the Scratch window.  

Additional concepts present: user interaction, operator 

 

4. Conditional Statements 

 

 

Conditional statements control program flow by testing whether or not a given 

condition has been met. In the example above, the program continually checks to see if 

the mouse has been pressed and sets an instrument based on the result. 

Additional concept present: user interaction 

 

5. Boolean Logic 
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Boolean logic involves the use of and, or, and not, typically in the context of a 

conditional statement. The program above uses a series of and conditionals to divide the 

screen into four quadrants, with each assigning a different instrument tone.  

Additional concepts present: user interaction, operators 

 

6. Variables 
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A variable is treated like a number in Scratch but its value can be changed while 

the program executes. In the program above, a variable x is first set to an initial value and 

then used to define the pitch of an output note. Each key press increases the value of the 

variable and the pitch.  

Additional concepts present: user interaction, conditional statement 

 

7. Random Numbers 
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Scratch can generate random integers in a range defined by the user. In the 

example above, a variable is changed by a random amount and played as a musical note 

each time the space bar is pressed. 

Additional concepts present: user interaction, conditional statement, variable 

 

8. Sequences 
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Generally, a sequence is a series of operations that can be executed by a program; 

as such, any Scratch program or fragment of a Scratch program could reasonably be 

considered a sequence. However, for the sake of this study, I will define a sequence as 

code controlling the execution of a series of audio output commands beyond simply 

executing them one after another. For instance, in the program above, a sequence of 

sounds and pauses are triggered by a key press. 

Additional concepts present: user interaction, conditional statement 

 

9. Parallelism 
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Parallelism describes sets of instructions that are executed at the same time. 

Because the programming window may contain multiple discreet assemblages of objects, 

parallelism can be implemented easily in Scratch. In the program above, a single key 

press triggers three different sound operations at once. 

Additional concept present: user interaction 

 

10. Lists 
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A list is a prescribed set of values that can be accessed and manipulated by a 

program. In the program above, the variable (or “base note”) is set based on the mouse 

position. A series of conditional statements check for key presses that will adjust the 
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variable by a value from the predefined table, allowing the user to move from any base 

note through the pitches of a dominant chord.  

Additional concepts present: user interaction, conditional statement, variable 
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