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In this dissertation, I present three essays which examine questions in

the �eld of public economics using a game theoretic approach, and I derive

hopeful results and helpful rules for international negotiation.

In my �rst chapter, I examine minimum participation constraints. In

the presence of heterogeneity, a minimum participation (MP) clause in a public

goods arrangement can serve as a device to create a more homogeneous group.

When coalitions are restricted in what they can bargain over, exclusion of

some agents from the bargaining process can be Pareto improving. This paper

gives a general set of su�cient conditions for such an exclusion result to hold,

and presents examples of when exclusion does, and does not, improve upon

unanimity.

In the second chapter, I discuss the problem of determining which exter-

nality situations merit international cooperation. I create a general framework

vi



of linearized parameters to examine a general externality problem, and then

I provide the su�cient conditions for a parameter to move non-cooperative

and cooperative solutions in opposite directions under certain circumstances.

I argue that situations which behave in this manner and which have a higher

parameter value have more bene�t to cooperation through the increased range

in actions to bargain over.

The third chapter extends upon the second chapter and applies the

framework developed to an externality problem. I present a particular story

of correlation in �sh growth and a corresponding model which gives an example

of an increasing action gap. I describe the method of use of the framework, and

using the linearized parameters developed in the second chapter, I attempt to

show the divergence of non-cooperative and cooperative actions in this setting,

demonstrating the need for negotiation among sovereign entities.
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Chapter 1

Minimum Participation Clauses and Exclusion

in Public Good Agreements

1.1 Introduction

An agreement for the abatement of a public bad or the supply of a

public good requires determination of the exact action to be taken and the set

of agents to be involved. Internationally, a typical multilateral environmental

agreement (MEA) may be negotiated to reduce transboundary pollution, in-

crease �shing stocks, or control regional radioactive waste. A Home Owners'

Association, on the other hand, has a goal to reduce annoying actions amongst

the community and may involve a single apartment complex or a whole block

of houses. Though the agreements operate on di�erent levels of agents, the

goal to reduce a negative externality is the same.1 Other examples of coali-

tions reducing a negative externality are the European Union, which originally

had the aim of ending �frequent and bloody wars between neighbors,� and the

1It is true that agents most often encounter previously established Home Owners' Associ-
ations, while just-forming Associations usually have a very clear set of agents to draw from
when a new development is built. Agents joining MEAs, on the other hand, are usually
directly involved in determining the provisions during negotiation. However, the parallel
stands, because there are Home Owners' Associations which encompass residential homes,
as opposed to buildings, and the lines of membership must be drawn, and there is accession
to existing treaties.
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euro currency zone, which was partly intended to limit the impact of currency

exchange on trade deals and tourist experiences [4, 5].

Sovereignty implies that agents cannot be forced to do something by

another party's will alone. In an environment with sovereign agents, lack

of external enforcement means that only mutually bene�cial agreements can

correct an externality. Countries are fully sovereign, since a country cannot

force its will on another without making war and since there is no ruling

third party. Citizens do not have quite the same degree of sovereignty, since

they need to follow a government's laws, but laws rarely extend to cosmetic

issues, such as curtain lining color, or establish less stringent guidelines than a

community would impose, as in the case of noise controls.2 For either country

or citizen, there must be a signi�cant bene�t to joining a coalition and binding

oneself to the group's chosen action. The formation of government operates

along similar lines: the government provides a positive externality, and the

founding agents must determine how to establish and provide for it [37].

If sovereign agents take a hand in designing their own agreement, then

agents would endogenously determine the actions taken, as well as the self-

enforcement mechanisms implemented. First, agents must choose the method

and amount of contribution to the public good, and they must do so in a way

that is in every participant's best interests. Di�erent situations may specify for

2Another di�erence to note is that in a Home Owner's Association, individuals fully
commit, while in a multilateral environmental agreement, citizens and �rms may violate an
alloted share of some sort. This paper will therefore treat countries as the individual, and
assume perfect enforcement for them upon their commitment.
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agents varying ability to commit to certain types of group action. In the Home

Owners' Association, agents can commit to a monthly dues system easily, but

keeping communal areas clean may be more di�cult. In the MEA, agents

may agree on the necessity of cooperation and sharing of research, but may be

hard-pressed to give speci�c details of policy.

Second, the mechanisms which will make the agreement stick and in-

crease its value must be determined. Some possible provisions that enhance

participation in agreements are minimum participation clauses, direct trans-

fers, and issue linkages. Of particular interest are minimum participation

(MP) clauses, mechanisms with low transaction costs and powerful bene�ts.

MP clauses raise the value of an agreement by guaranteeing at least a certain

number of compliers or a certain level of provision if the treaty is implemented.

In a historical example, an MP clause of nine applied to the Constitution of the

United States: nine of the original thirteen colonies had to ratify the Consti-

tution before it would take e�ect. Though widespread in modern agreements,

MPs are especially prevalent in MEAs, such as the Montreal Protocol, the

Rotterdam Convention, and the Kyoto Protocol.

In a public-good contribution game, the optimal binding treaty would

specify an action for each agent, even if the agents di�er in their contribution

costs. If the set of possible contracts is limited, though � principally, if con-

tracts must specify the same increase in contributions for all agents � then the

optimal contract may exclude agents with a high cost of contributing. This

is signi�cant because important examples of such asymmetry are present in
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over�shing and nuclear armament: in the former, countries are limited in types

of �shing by geography, while costs may vary widely because of technology;

in the latter, countries have di�erent historical starting positions, needs for

nuclear power, and perceived intentions. Therefore, though all agents may

have interest in the overarching topic and bene�t from the public good, re-

strictions in what the agents bargain over a�ects the optimal MP constraint

in the presence of heterogeneous players.

This paper examines how restricted action sets a�ect the MP constraint

that should be chosen for a treaty in the presence of heterogeneous players.

In particular, it evaluates how agreement actions which are restricted to egal-

itarianism, either in the form of equal changes or proportional changes from

the pre-treaty state, lead to the desirability of using the MP constraint as an

exclusion device. I �nd that under restricted actions, when a MP constraint

can reduce the heterogeneity of the potential signatories, the mechanism can

deliver treaties with higher total welfare.

In Section 1.2, I present a brief development of this topic in others'

work, as well as a summary of how this paper �ts into the existing literature.

In Section 1.3, I present a motivating example, while in Section 1.4, I set up

my general model, de�ne two types of restricted action set, present results, and

describe the intuition behind them. In Section 1.5, I compare the two types

of restricted action sets and place them in a real-world context. In Section

1.6, I present conclusions and possible extensions. Finally, I have included

an Appendix that contains the major and minor proofs, as well as one with
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alternative proof approaches.

1.2 Literature

Barrett [10] presents two approaches to modeling self-enforcing agree-

ments, one which is a one-shot game, while the other is in�nitely repeated.

Through numerical analysis, Barrett shows that in the one-shot game, the

self-enforcement strategy of punishment and reward may not sustain a larger

group, even when the bene�t of the agreement would be high. In the repeated

game, credible tit-for-tat and trigger strategies can increase the number of

participants, but a treaty relying on these strategies may not be renegotiation-

proof. While a repeated game may be more e�ective in capturing the long-

standing interactions of nations, businesses, or home owners, the one-shot

game can accurately represent the incentives present in the process of writing

and signing a treaty, while preserving the endogeneity of decisions.

Black, Levi, and de Meza [15] examine the introduction of an exogenous

MP constraint into a one-shot game. They �nd that inclusion of any constraint

larger than the resulting number of members under open participation outper-

forms a standard agreement. In their model, the new constraint increases the

number of participants and lowers the total stock of the negative action. The

constraint can be constructed so as to maximize aggregate surplus, resulting

in an optimal participation level. Black et al. also discuss the issue of model

timing, observing that in a single round of negotiation, agents will choose to

implement the optimal participation level, but multiple rounds of negotiation
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lead to a decreased incentive to quickly ratify, since pivotal signers wish to

gain further bene�ts.

Carraro, Marchiori, and Ore�ce [20] endogenize the MP constraint in a

three-stage game of public good provision in which all agents are identical. The

�rst stage is the minimum participation stage, in which all agents unanimously

vote on the fraction required to sign the treaty in order for it to go into

force. The second stage is the coalition stage, when each agent weighs the

utility of being a member versus that of being a free-rider in deciding whether

or not to join. The �nal stage is the policy stage, in which the coalition

chooses its allocations cooperatively while non-members choose their actions

non-cooperatively. Carraro et al. show that it is possible for agents to agree

to an endogenously chosen MP clause which increases the overall number of

signatories from the coalition formed under open membership. Here, already,

there is some notion of exclusion; an MP constraint requiring the coalition of

the whole may not be chosen due to the incentive to be a free-rider. Because

each agent wants a chance to free-ride, he supports an MP constraint which

gives him some chance of joining the agreement and some chance to strictly

bene�t. However, the analysis is sensitive to the assumption of homogeneity

of agents: the MP stage can be solved with unanimous voting since what is

optimal in the eyes of one agent is optimal for all of them.

While arguments using models with identical agents capture the impor-

tant aspects of many situations, in others, heterogeneity of costs and bene�ts

is of central importance in the analysis of the actions to which signatories will
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bind themselves. Agents can vary in terms of the bene�t they receive from

their individual action and e�ects caused by others' actions, while treaties can

vary in type of committed action. For environmental considerations, any num-

ber of factors such as population, area, topology, GDP, and political relations

have been shown to a�ect a country's decision to sign an MEA [13, 28, 43].

A source of heterogeneity among countries for the issue of pollution is that of

technology, since a country on the cutting edge of technology likely has lower

costs of reduction compared to a country with little research and development.

Meanwhile, in the case of nuclear disarmament, the largest source of hetero-

geneity is preference for security and perceived threat level. On a smaller level,

when establishing an Home Owners' Association, families may value di�erent

restrictions, such as noise control or cleanliness of public areas, than do single

households. A Home Owners' Association formed among similar family-size

homes may �nd it easier to enact certain restrictions than a community of

apartments of varied occupancy.3

Weikard, Wangler, and Freytag [59] extend Carraro et al.'s model to

heterogeneous agents. They use the same coalition formation timing as Car-

raro et al., but change the minimum participation constraint from number of

signatories to minimum abatement, which has some precedence. Weikard et

al. designate a sharing rule proportional to outside options to determine the

actions of any coalition. A random agent is chosen to propose which agents

3This, of course, is a moot point if the Association's rules are established by a developer
prior to construction as part of a marketing plan to select for a homogeneous group of
homeowners.
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should enter a coalition under this sharing rule, capturing the idea that some-

one's proposal will win, but it is hard to predict whose. In this set-up, they

�nd that free-riding always occurs, at least by one agent � the agenda setter.

In addition, they �nd that a larger number of countries leads to a smaller

abatement outcome which is ine�cient.

Using a coalition formation model to represent a treaty negotiation

process separates the MP and allocation decisions. The MP is chosen in a �rst

stage through the statement of a minimal coalition, ahead of the allocation

decision, which is set in a following stage by the formed coalition. This may be

the proper timing for certain applications such as the home owners' association

or even the euro zone, when membership is established before rules. However,

in most multilateral international negotiations, countries write agreements over

a period of time and then vote on all �nal provisions in one shot. Initially, one

might suppose that using incorrect timing may limit the theoretical predictions

and outside relevance of the model. Despite that, the coalition formation

model can be regarded as robust to both timing scenarios because of backwards

induction: forward-looking agents will only suggest or sign agreements which

bene�t them in some way and which will gain acceptance from other agents.

In this context of coalition formation, I study the equilibria of a one-

shot negative externality game and the set of agreements that improve upon

the no-coalition Nash equilibrium. This can be understood as an equilibrium

in a repeated game with Nash reversion, though I do not develop that idea

or pursue the enforcement of agreements. In the MEA context, the one-shot
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game would be a single treaty negotiation, which must be adhered to or no

other one-shot games can be played in the nebulous future. Thus, it is as if

agents were embedded in a larger game of international politics and respect

for negotiations, where cheating on the outcome of a one-shot treaty coalition

game leads to collapse of the system.

Like Weikard et al. [59], I consider a speci�c type of treaty action. Un-

like their sharing rule, I develop a solution concept under the limited commit-

ment power of an equal treatment assumption, where coalition members can

only commit to one-dimensional decreases from the ex ante no-coalition Nash

equilibrium. Under this exogenous constraint of egalitarianism, I examine the

MP choices that give the most improvement over no-coalition equilibrium.

When the possible agreement sets for a coalition are unrestricted, par-

ticipants can always bene�t from the reduction of the amount of free-riders,

since each can contribute a bit more of the public good and improve the util-

ity of all participants. Even though it adds a restriction, egalitarianism can

be a desirable treaty trait. Requiring all coalition members to take the same

action allows for simplicity in negotiation, since the choice variable can be

one-dimensional instead of multi-dimensional.

Furthermore, egalitarianism may result from environments with uncer-

tainty. In a dynamic externality reduction game with private cost shocks,

Harrison and Laguno� [44] �nd that truth-telling and coalition participation

require fully compressed quotas, i.e. amount allowances which cannot depend

on private information, but must the same for all players. Agents are ini-
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tially identical, even if later they develop heterogeneously. Regardless of later

shocks, all agents in the agreement have the same per-period production quota

as other agents. Bagwell [9] develops a bilateral tari� negotiation game with

uncertainty in types, solving both a one-shot static and dynamic version. He

�nds pooling equilibria in which countries with one type of public opinion will

imitate the other type, both negotiating the same levels of tari�s. The results

of both of these papers add to the motivation of understanding the use of

egalitarian treaties.

The equal treatment assumption changes the structure and participa-

tion of an enacted treaty in comparison to unrestricted actions. The main

result of this paper is that under egalitarianism and given su�cient hetero-

geneity, the optimal MP constraint is strictly smaller than the whole. The

constraint � which may declare the number of players, the exact set of players,

or the total action required � removes agents who are limited by lack of ability

to greatly a�ect the public good by rendering them non-pivotal. The remain-

ing agents, whose actions have the largest e�ects on public goods, create a

more e�ective agreement.

Ludema and Mayda [48] �nd a similar exclusion result in their paper on

tari� negotiations within the World Trade Organization. The WTO's most-

favored nation status must apply to all members. If a large exporter with

most-favored nation status negotiates a lower tari� with an importer, then

the lower tari� applies to all members and results in a positive externality for

other exporters. Exporters may band together to o�er equal transfers to the
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importer to incentivize negotiation. Ludema and Mayda �nd that only large

exporters will participate in negotiations and o�er equal-sized transfers to an

importer in return for a lower tari� on a good. Small exporters of the good

who are unable to pay the transfer will free-ride on the eventual negotiation.

In another environmental setting, Ricke, Moreno-Cruz, and Caldeira [55] also

found exclusion to be optimal for coalitions deploying climate geoengineering.

In their �global thermostat setting game," regional preferences lead to an in-

centive for more homogeneous groups to band together to enact an optimal

action for the region. I con�rm both of these �exclusion results� in a broader

setting of negative externality reduction by coalitions with restricted actions.

1.3 Motivational Examples

In this section, I motivate the research question anecdotally and nu-

merically. First, I portray a few real-world situations and discuss their appli-

cability to this model. I describe this paper's notion of what a �large� actor is

and what a �small� actor is. Second, I examine a simple, three-person game

which previews the general result of the paper, developed more fully in the

section following.

1.3.1 Anecdotal Motivation

Here, I present a few examples of negative externalities in an interna-

tional context. I break down the actors of each example into �large� players

and �small� players. In the context of this paper, a large player is one who
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takes a large action. By taking a large action, this player is the source of a

large portion of the total externality. A small player, on the other hand, is

one who takes a small action, possibly zero, but is still a�ected by the exter-

nality. This is a bit of a simpli�ed notion of heterogeneity, which lends itself

to the introductory examples I present. I expand upon this idea in favor of

more nuanced heterogeneity in Section 1.5. I review the following real-world

situations and label which players are large and which are small. For each, I

discuss my model's applicability to the situation.

1. Carbon Dioxide Emissions : Consider the emission of carbon dioxide

(CO2) into the atmosphere.4 The industry and energy provisions which

release CO2 are the action within the model, and the emissions are the

negative externality.

According to data from the European Commission Joint Research Cen-

tre, the Netherlands Environmental Assessment Agency, and the World

Bank [3, 51, 61], from 2008 to 2010 China and the United States were the

largest kiloton (kt) producers of CO2 emissions, while Kiribati, Lesotho,

Tuvalu, Nauru, and the U.S. Virgin Islands were the smallest produc-

ers.5 Therefore, in terms of kiloton CO2 emissions, China and the U.S.

4From the World Bank [61]: �Carbon dioxide emissions are those stemming from the
burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced
during consumption of solid, liquid, and gas fuels and gas �aring.�

5Both datasets indicate China and the U.S. as the largest producers but di�er on the
matter of the smallest. The World Bank's Development Indicators have missing values
for a number of small countries, including Tuvalu and the U.S. Virgin Islands, while some
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are large players, while Kiribati, Lesotho, Tuvalu, Nauru, and the U.S.

Virgin Islands are small players.

In this case, China and the U.S. have large industrial sectors which

manufacture goods necessary to the economy, as well as large energy

demands which consume tremendous amounts of fossil fuels. The small

players listed have little industry compared to the large players and in

some cases no industry at all. However, since emissions a�ect the global

stock of CO2, the externality is felt by all players. In fact, the small island

nations may be in greater danger of calamities like �ooding, thereby

experiencing higher expected damages from the externality [2, 40]. This

example �ts the model well: there is a clear distinction between large

and small players, and all players bene�t from reduction of the negative

externality. This situation will particularly �t the type of egalitarian

reduction discussed in Section 1.4.1, which prescribes the same decrease

for each player.

A modi�cation to this example is to measure the negative externality in

terms of metric tons per capita, instead of kilotons of CO2. Under this

new de�nition of the action and according to the same data in the same

time period, Qatar, Trinidad and Tobago, and the Netherlands are now

the large players, since they are the top metric ton per capita producers

countries are missing entirely, like Nauru. The EDGAR database lists estimates of 1 kiloton
of CO2 for Tuvalu, Nauru, and the U.S. Virgin Islands, while the World bank estimates 18.3
kt for Lesotho and 62.3 kt for Kiribati.
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of CO2. The small players are then Burundi, Lesotho, Afghanistan, and

Chad, since they have the lowest emissions of CO2 in metric ton per

capita. By this metric, China drops down to about 70th place because

of its large population, despite its rank in kiloton production.

This method of measurement, however, creates a situation more di�cult

to describe. In a sense, the externality would result from industry and

energy provision per capita, though these are odd metrics on a global

scale, especially since energy use is disproportionate even within a coun-

try. Therefore, it is better to imagine the �rst metric (kt of CO2) in

the context of this model. If a weighted measure of CO2 emissions is

desired, then perhaps it would be more intuitive to consider emissions

per industrial worker or divided by industrialized area or stock of fossil

fuels, instead of emissions per capita.

2. Albacore Tuna: The albacore tuna (Thunnus alalunga) is a highly migra-

tory species found in most of the world's oceans. The species has value

as the preferred canned �white meat� tuna [7]. According to data from

the United Nations' Food and Agriculture Organization [6], the highest

albacore producers in 2012 were Japan, Taiwan, and China.6 The small-

est non-zero producers in 2012 were Saint Helena, Niue, Bermuda and

Morocco.

With some exception, the large albacore producers generally have large

6All �shing regions for a country aggregated.
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�eets and advanced technology, long coasts and access to multiple �shing

regions, or cooperation with other large producers. These characteristics

allow for �shing multiple species, so the albacore catch is just a fraction

of the total �shing business. Furthermore, the �shing industry is just a

fraction of the overall economy, since these characteristics overlap with

those of a rich country. The small producers generally have smaller �eets,

less advanced technology for catching and processing, and small coasts.

For many of the small producers, food production � and particularly for

island nations, �shing � makes up a large part of the economy, and the

albacore tuna is a large percentage of the industry.

�The four species of tuna that underpin oceanic �sheries in

the tropical Paci�c (skipjack, yellow�n, bigeye and albacore

tuna) deliver great economic and social bene�ts to Paci�c Is-

land countries and territories (PICTs). Domestic tuna �eets

and local �sh processing operations contribute 3-20% to gross

domestic product in four PICTs and licence fees from foreign

�eets provide an average of 3-40% of government revenue for

seven PICTs. More than 12,000 people are employed in tuna

processing facilities and on tuna �shing vessels. Fish is a cor-

nerstone of food security for many PICTs and provides 50-90%

of dietary animal protein in rural areas.� [11]

Any voluntary reduction by the small producers greatly impacts the

economy, since the �sh has high marginal bene�t. Any involuntary re-

duction, in the form of a lower catch caused by over�shing or climate
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change, could be ruinous. All the countries bene�t from reducing over-

�shing caring for the health and size of the stock of albacore tuna, but

perhaps the small producers perhaps bene�t even more. Therefore, the

global production of albacore �ts the model described in this paper, be-

cause despite the heterogeneity of players, the e�ects of over�shing are

felt by all who partake in catching this species.7 In particular, this sit-

uation �ts the type of egalitarian reduction discussed in Section 1.4.3,

which respects the quickly diminishing marginal bene�t of reduction by

the small producers.

3. Downstream and Downwind Pollution: Consider two types of trans-

boundary pollution, downstream and downwind. In each of these cir-

cumstances, there is a discrepancy in the impact of the externality on

neighboring countries. Both water and air pollution can occur as by-

products of electricity production from coal, though other industrial ac-

tions can create the situation as well. An example of this case would

be two countries that share access to the same river, where one coun-

try is upstream, while the other is downstream. The upstream country

has waste that is released into the river to a certain extent, while the

downstream country experiences the e�ects of this waste. In an empiri-

cal estimation testing for the presence of free-riding on water quality of

international rivers, Sigman [57] �nds signi�cance for pollution by coun-

7There are countries who produce nil.
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tries upstream of borders outside the European Union. Similarly, for an

airborne pollutant, one country which is downwind of others experiences

more of the externality.8 Such conditions describe the �Black Triangle�

in the Izera Mountains of the Western Sudetes [16]. In the 1980s, the

forests of the Izera Mountains were decimated through the damaging

combination of logging and pollutants contained in wind sediment and

precipitation.

In this case, the emphasis is not on the identities of the large and small

producers. Though it is likely that the upstream/upwind country is the

larger producer, any heterogeneity of production could be due to di�erent

resource distributions, industrialization levels, or energy demands. What

matters more in this situation is that only one agent bears the brunt of

the externality, since the pollutant is quickly washed or blown away from

the other. The downstream/downwind country has more to gain from

reduction of the externality, and may need to compensate its neighbor.

The model in this paper allows for heterogeneity in the bene�ts of the

action with the externality and the costs of the externality. However,

this example does not �t the model as well as the previous two. The

main di�erence is not that the externality is experienced more keenly

by one party than by the others. The model allows for this, as does

the �rst example. The real issue is that the downstream/downwind

8In fact, this latter situation can cause the former situation, as clouds absorb the airborne
pollutant and deposit it through precipitation.

17



country has less of an e�ect on itself than the upstream country has on

it. By cutting its own production, the downstream country may not

meaningfully decrease the externality, nor does it a�ect the stock of the

pollutant in the upstream country. The situation violates some of the

model assumptions listed in Section 1.4.9

As demonstrated in these examples, the type of public-good problem

described in this paper is one where all agents are a�ected by a negative

externality, the reduction of any agent constitutes a public good for the others,

and certain agents produce less of the negative externality than others. In this

context, the descriptors �large� and �small� pertain to the size of an agent's

action.

1.3.2 Numerical Example

In this section, I provide a numerical example with three agents. I

hold one agent's utility function �xed, and then I calculate the Nash equilib-

rium actions as the values of the parameters of the other two agents vary. I

then calculate the utility of lump-sum reduction treaties and determine which

improve upon the no-coalition equilibrium. I present this example as a moti-

vation for the exclusion of the �odd man out,� showing that a treaty may be

more successful when participants are more homogeneous.

9Most notably, submodularity, since the upstream country is not hurt by the actions of
the downstream country.
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A treaty's purpose is to bring the equilibrium closer to the Pareto

optimal solution through players' joint reductions. As in any public good

agreement, there is concern that agents will prefer to free-ride, lowering the

value of cooperation and collapsing the agreement. A minimum participation

constraint can add initial value to a treaty and gain commitment from players.

An MP constraint could specify the exact minimum set players who

must join the treaty in order for it to go into e�ect. The constraint could

also be the required cardinality of the �nal set of participants, which is more

akin to real treaty MP constraints, or the total sum of participants' actions, so

that the treaty is not in force until the required level of action is committed.

By agreeing on the set of agents J (or the number of agents or amount of

reduction) as a measure of minimum participation, players can then infer the

vector of commitments, which follow from the type of action restriction and J

itself.

This constraint can also serve as a way of selecting a homogeneous

group out of a set of heterogeneous agents. To examine this idea, I consider a

speci�c parameterized example in a simple world of three agents, I = {1, 2, 3},

to better understand the selection of J . For this toy model, the chosen utility

function is:

ui(a) = θiai − ai
3∑
j=1

wjaj, (1.1)

where ai is in Ai = [0, 1], θi ∈ [0, 1], and the weights sum to one, i.e.
∑

j∈I wj =

1. This utility function is twice-continuously di�erentiable, concave in ai, and

exhibits a negative externality from aj, j 6= i. The function has areas in which
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it is increasing in ai and areas in which it is decreasing in ai. It has a unique

equilibrium on A for each parameter set {θ1, θ2, θ3}.

I solve �rst for the no-coalition Nash equilibrium, compare this to a

social planner's prescriptions, and then determine how actions would change

under each possible minimum participation constraint. Afterward, I consider

which MP constraint de�nes the optimal coalition for a range of parameters.

In the absence of a treaty, each agent solves the following problem:

max
ai

θiai − ai
3∑
j=1

wjaj,

s.t. ai ∈ [0, 1].

(1.2)

The best response function for agent i is:

BRi(θi, aj, ak
)
≡


1 if θi ≥ 2wi + wjaj + wkak
θi−wjaj−wkak

2wi
if wjaj + wkak < θi < 2wi + wjaj + wkak

0 if θi ≤ wjaj + wkak.

The Nash equilibrium, a∗(θ), consists of the simultaneous best re-

sponses, i.e. for each i, a∗i (θ) = BRi(θi, a
∗
j(θ), a

∗
k(θ). Counting corner solu-

tions, there are nine types of equilibria.10 The interior Nash equilibrium has

each agent i playing according to the function:

a∗i (θ) = −
wi
(
−4θi + θiw

2
jw

2
k + 2θjw

2
j − θjw2

jw
2
k + 2θkw

2
k − θkw2

jw
2
k

)
2
(
4− w2

iw
2
j − w2

iw
2
k − w2

jw
2
k + w2

iw
2
jw

2
k

) .

10All play zero; two play zero, one plays interior; two play zero, one plays one; one plays
zero, two play interior; one plays zero, one plays interior, one plays one; one plays zero, two
play one; all play interior; two play interior, one plays one; all play one.
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The other equilibria involving corner solutions can be calculated. For

any θ, there is only one possible equilibrium. In general, for agents with

relatively large values of θ, the solution is greater than zero; I call these agents

�positive producers.� Meanwhile, agents with rather small values of θ take

action of zero; I call these agents �non-producers.� These labels are related to

the concept of large and small actors, as discussed earlier.

Unless all agents are non-producers, the no-coalition Nash equilibrium

is not optimal because of the negative externality. The social planner's problem

is:

max
a1,a2,a3

3∑
i=1

{
θiai − ai

3∑
j=1

wjaj

}
,

s.t. ai ∈ [0, 1] ∀i ∈ I.

(1.3)

The equal-weighted Pareto optimal solution for the economy results

in prescribing reduced actions for each positive producer, as expected. The

threshold of producing more is now higher, meaning that an agent's bene�t

parameter must be very large, giving a large individual bene�t, in order for

an agent to be allowed to in�ict a high level of externality on the others.

Having examined the no-coalition problem, I now consider a lump-sum

reduction treaty for the motivating example, wherein each participant of the

treaty reduces from his no-coalition equilibrium action by the same amount.

Notationally, the lump-sum restricted treaty consists of (J, aLS(J)), where the

minimum participation constraint is J , the minimum set of agents that must
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participate in the treaty, and aLS(J) are the agreed-upon actions.

Consider a negotiation scenario as follows: agents �rst determine J

through some voting process, or J is somehow provided exogenously, then

agents joining J choose aLS(u, J), while agents outside of J best respond to

the actions of the coalition.11 The outcome of the negotiation is either the sin-

gleton Nash equilibrium or a vector of commitments and singleton responses.

I examine incentives for agents to cooperate with a lump-sum reduction treaty

under each possible cardinality MP constraint size, #J ∈ {0, 1, 2, 3}.

First, it is important to establish that, regardless of J , a non-producer

cannot commit to a lump-sum reduction because it is impossible for him to

reduce beyond zero. This distinct pattern of heterogeneity demonstrates how

a smaller group can improve upon the results of the whole coalition: with even

one non-producer, the coalition of the whole can do nothing under this form of

the equal treatment assumption. This pattern extends beyond the trivial case

of excluding agents with corner solutions of zero and holds even for strictly

interior equilibria.

In contrast, consider a di�erent type of treaty, one of proportional re-

duction, where each agent participating would reduce from no-coalition equi-

librium by the same percentage. It is possible for a non-producer to commit to

an egalitarian proportional reduction treaty, as any factor multiplying zero is

11The simultaneous timing could be altered to a Stackleberg model, where the coalition
moves �rst in choosing their actions and the free-riders move second. The direction and
exclusion results are largely generalizable, though the exact actions may di�er.
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still zero, albeit such an action is largely symbolic. Two or three agents could

easily enter an ine�ective proportional treaty, either by choosing a reduction

of zero percent or, if all are non-producers, choosing any reduction level at all.

Since such a treaty does not actually require positive reduction, there is no

improvement over the no-coalition equilibrium. E�ective treaties of this type

are possible, but are not examined in this section; the toy model's focus will

remain on lump-sum reduction treaties for now.

It is necessary to discuss the possible distribution of agents from the

two types, positive producers and non-producers. Clearly, in a world of solely

non-producers, there is no negative externality, no need for improvement, and

hence, no need for a treaty. Thus, in the following discussion, I assume there is

at least one agent who is a positive producer. Since there are only four mean-

ingful cardinality MP constraints in a world of three, each can be examined in

detail for optimal actions and implications.

Under the open membership rule, reductions can be negotiated, but

there is no minimum number of members for the treaty to go into e�ect.

Without repeated interaction providing a chance for punishment or some sort

of side transfers that provide reward, open membership removes the initial

value that the MP constraint could provide. Thus, no positive producer will

join such a treaty in this game, unable to count on the participation of others,

and the solutions are the same as under no treaty.

Under a singleton MP constraint, if one agent considers committing to

reduction on his own, he does not have to negotiate the amount � he would
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simply choose it. A non-producer could individually commit to an ine�ective

proportional reduction treaty of any level; even though this is an equilibrium

in which an �agreement� arises, the total externality is not reduced from the

no-coalition equilibrium level in any sense. Such an agent could not commit to

a unilateral lump-sum reduction. A positive producer could reduce his action

for the bene�t of the whole, but such an action would run counter to the

no-coalition equilibrium. Unilateral deviation gives no outside bene�t to the

agent in question and allows all the other players to free-ride on the reduced

action. Therefore a Pareto-improving treaty will not occur for the singleton

MP clause.

For an MP constraint greater than one, there are Pareto-improving

lump-sum reduction treaties possible. The question which sparks the most

interest is when a treaty with an MP clause of two producers is preferred to

one with a clause specifying all three must participate.

Without loss of generality, look at the situation where agents i = 1, 2

are positive producers who consider the treaty:(
J, aLS(J)

)
=
(
{1, 2} ,

{
a∗1 − r∗ ({1, 2}) , a∗2 − r∗ ({1, 2})

})
,

while agent three best responds with BR3 (θ3, a
∗
1 − r∗({1, 2}), a∗2 − r∗({1, 2})),

for now suppressed as abr3 . The reduction r
∗({1, 2}) solves the following coali-

tion problem:

max
r∈R

2∑
i=1

{
θi(a

∗
i − r)− (a∗i − r)

[
2∑
j=1

(
wj(a

∗
j − r)

)
+ w3a

br
3

]}
,

s.t. 0 ≤ r ≤ min{a∗1, a∗2}.

(1.4)
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With the MP commitment device, the coalition only goes into e�ect

if the two required agents sign. Thus, agents one and two know that each

of them must sign in order for the other to uphold the agreement. Such an

agreement would only be signed if the agents' individual utilities are improved.

The comparative statics of the individual utility from this treaty can

demonstrate when signing is bene�cial. De�ne uLSi for i = 1, 2 as the utility of

entering into the treaty described, where 1 and 2 reduce and 3 best responds.

Moving from zero, the marginal utility of increasing the reduction is:

∂uLSi
∂r

∣∣∣
r=0

= −θi + (2wi + wj)a
∗
i + wja

∗
j + w3a

∗
3. (1.5)

This statement is positive when the bene�ts of reduction outweigh the foregone

bene�ts of action, i.e. when (2wi + wj)a
∗
i + wja

∗
j + w3a

∗
3 > θi. If no-coalition

actions are large or θi is small, then this statement likely holds.

So when would the marginal utility of increasing the reduction be pos-

itive moving from zero?

1. Looking at the corner solution where all agents play an action of one,

the statement clearly holds. We can rearrange it to be:

(wi + wj + wk) + (wi + wj) > θi

The weights add up to one, so we have:

1 + (wi + wj) > θi
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The parameter θi ≤ 1, and the weights are strictly positive, so this

statement holds. Thus when all the agents are such that they play the

maximum action, reduction by two members has positive bene�t. This is

because the third agent, being at the maximum already, cannot free-ride

upon the reduction. A treaty would be more bene�cial to include him as

well, but if need be, a two-person treaty is enough. This case is alluded

to in Section 1.5.

2. In the case of the interior no-coalition Nash equilibrium, this condition

would be:

(wi(2wi + wj)− 2) ·
(
4− w2

jw
2
k − w2

i

(
w2
j (1− w2

k) + w2
k

))
·(

2w2
kθk − (4− w2

jw
2
k)θi − w2

j

(
w2
kθk − (2− w2

k)θj
))
< 0

With weights of one-third for all the players, this statement becomes

17θj + 17θk > 323θi. We see that this is unlikely to hold for both players

i = 1, 2 when weights on all players are equal and θ is large enough for

an interior equilibrium.

Intuitively, this makes sense, because if the equilibrium is interior, then

agent three is a positive producer and has an incentive to increase his ac-

tion when he is a free-rider, negating the possible bene�t from reduction

by the other two agents.

3. Consider the case where the third agent's no-coalition action is zero while

the other two agents have interior actions a∗i = 3
323

(18θi− θj). Then, the
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condition becomes:

wj(323 + 54θi − 3θj)− 2(163− 54wi)θi + 6(9− wi)θj > 0

With weights of one-third for all the players, this statement becomes

19 + 9θj > 48θi. It holds for many combinations of low values of θj and

θi.

Furthermore, the second derivative of uLSi is negative always, so the

utility of reduction is concave. Thus, if the marginal bene�t of reduction is

positive at zero, then the agent desires a reduction that is strictly positive.

Expanding the treaty to include full participation requires that all three

agents agree on the action vector. A Pareto-improving lump-sum reduction

treaty for the coalition of the whole could only occur if all agents are positive

producers. Similarly as with two, three positive producers have an incentive

to join a lump-sum reduction treaty.

To summarize, in a world of three agents, there are two possibilities for

lump-sum reductions:

1. Agents could sign an ine�ective treaty, one where the chosen reduction

is zero. Any MP constraint is possible for this.

2. Agents can sign a Pareto-improving lump-sum reduction treaties with

with r > 0. The MP constraint must be greater than two for this case.
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The category of Pareto-improving agreements deserves further exami-

nation, particularly with regard to which MP constraint and vector of actions

will result.

Equilibrium selection is an issue which may be resolved through game

timing or bargaining protocol. A timing common to most models of the liter-

ature, such as that of Carraro et al. [20], is one where the treaty participants

determine their action as a coalition in a separate stage from all agents' deci-

sion of the MP constraint. This timing re�ects the idea that it would be unfair

or perhaps even infeasible to bind participants to the decisions of the whole

group. In this timing, equilibrium selection proceeds according to the coali-

tion's maximization function � the coalition that results from a �rst stage will

choose its actions. The reduction can be chosen by maximizing the summed

utility of the coalition members or some other function of member utility.

On the other hand, in many real-world agreements, all persons in at-

tendance at the start of the negotiation have a say in the provisions of the

agreement; only once these are agreed upon do agents declare their partic-

ipation. However, the results of this timing are not so di�erent: there are

more possible equilibria without the coalition utility function to act as an

equilibrium selector, but the equilibria are bound by the preferences of the

expected participants. An agent who will not participate cannot suggest an

unreasonable reduction and expect the other agents to join the treaty.

For instance, without a negotiation process more detailed than a unan-

imous vote, the possible equilibria lie on a continuum. Any of the valid values
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could be chosen in equilibrium through unanimous vote and adhered to in

the policy stage of either timing, so the question of equilibrium selection for

non-coalition timing persists. Most real-world agreements undergo rounds of

discussion, as is the case in many bargaining protocols. A bargaining pro-

cess which is strictly increasing and always e�cient, such as Nash or Kalai-

Smorodinsky, would result in an e�cient selection. Furthermore, in some pro-

cesses, as the bargaining set gets larger, everyone is better o�. Thus, agents

with a larger initial action give more room for the bargaining process, are able

to reduce more, and can improve social welfare more.

Apart from heterogeneity in utility, agents may also have heterogeneity

of bargaining power. A measure of bargaining power in multi-state agreements

could be calibrated to various instruments of power, such as overall pollution

rank, number of trade agreements, GDP, or United Nations Security Council

membership, to name a few. Coalition negotiation captures the weakened

position of an agent who has little to bring to the table, while other decision

protocols such as unanimous voting may allow a small player to derail an

agreement. These ideas present areas for further research and tie-ins to other

strands of bargaining literature, such as delay in negotiation and capture of

bargaining position.

Using the utility function speci�ed by Equation 1.1, if selection proceeds

according to highest total utility, then the �gure below gives a graph of which

outcome will occur under which realization of parameters. In this �gure, agent

one's parameter θ1 is normalized to one. The externality weights wi are equal
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to one third for each agent. For each pair of parameters θ2 and θ3, I examine

which coalitions, if any, improve the most upon the no-coalition equilibrium.

Figure 1.1: Exclusion in a linear utility function.

(a) The parameter θ1 is normalized to one, while parameters θ2 and θ3 take values

from zero to one. Each area depicts which coalition meets individual rationality

constraint and most improves upon the no-coalition equilibrium.

For small values of the parameter, there is an area in the upper right-

hand corner where the coalition of the whole is restriction Pareto optimal.

However, when the parameter value decreases below some threshold, that agent

drops production to zero, rendering the coalition of the whole no longer optimal

under the equal treatment assumption. There is an intermediate value for the

parameter where the no-coalition Nash equilibrium persists, since a coalition

by the two remaining producers would be sabotaged by an increase in action
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from the excluded player. However, once the parameter of one agent is small

enough, the remaining two form the exclusive treaty. Along the x-axis, when

player two's value of θ2 is small, there is a region where the optimal lump-

sum restricted coalition is between players one and three, represented in the

upper left corner. Symmetrically, along the y-axis, there is a region where

the optimal coalition is between players one and two, represented in the lower

right corner. The remaining region, where player one takes much larger action

than player two or three, has no lump-sum treaties which improve upon the

no-coalition outcome for all players.

This example gives a clear view of how more homogeneous agents can

band together to improve total utility. When all three players are similar, they

form the coalition of the whole; when one agent is less similar, he is excluded

from treaty negotiation. In Section 1.5, I present another optimality map for a

di�erent utility function, which exhibits its own distinct pattern of exclusion.

While this toy model presented a simpli�ed view of things, it does serve

as motivation for a more generalized understanding of exclusion. In particular,

it prompts the next section's result on existence of exclusion.

1.4 Model and Analysis

This section describes a set of negative externality games played by

coalitions with di�erent restrictions on their actions. I �rst specify the con-

stituent elements, then the classes of games.
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I study equilibria of games in which coalitions have commitment power

of di�erent sorts. In all of the games, there is a set of agents I, with cardinality

n at least equal to three. Each agent's action set is Ai = [0, 1], with A ≡

×i∈IAi, and the utility functions belong to the class U satisfying the following

conditions:

a. twice continuous di�erentiability, each ui is in C2(A),

b. negative externalities, (∀i ∈ I)(∀j 6= i)(∀a ∈ A)
[
∂ui(a)
∂aj

< 0
]
,

c. submodularity, (∀i ∈ I)(∀j 6= i)(∀a ∈ A)
[
∂2ui(a)
∂ai∂aj

< 0
]
,

d. strict own concavity, (∀i ∈ I)
[
∂2ui(a)

∂a2i
< 0
]
, and

e. unique Nash equilibrium, the Kuhn-Tucker conditions for equilibrium of

u have a unique solution on A.

These elements describe a fairly general class of negative externality

games. The main limiting assumption is that of strict submodularity. While

many externality situations such as natural resource extraction �t this assump-

tion, there are a few situations in which submodularity may be questionable,

such as a �rm-level analysis of emissions. A reasonable model may have that

the cross-partial for a �rm does not depend on the production of another �rm,

or that it is even enhanced by production of a complementary product. How-

ever, a strict inequality is required for the technical reason of openness and

ease of proving existence; if the assumption is relaxed to no submodularity or
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even reversed to supermodularity, there are likely games in which the exclusion

result of this holds, but this is an extension to be tackled at another point.

In this environment, I examine the possible coalitions. In a game with-

out any cooperation, the Nash equilibria involve only the singleton coalitions.

De�nition. [Nash Equilibrium.] For utility function u ∈ U, the vector a∗

is a Nash equilibrium at u, denoted a∗(u) ∈ Eq(u), if for all players the

individual vector entry a∗i (u) maximizes agent i's utility given that each other

player j chose a∗j(u). Formally:

∀ i ∈ I, a∗i (u) = arg max
bi∈Ai

ui(bi, a
∗
−i).

The negative externalities condition guarantees that any no-coalition

Nash equilibrium is ine�cient and reductions strictly improve everyone's wel-

fare.

Lemma 1.1. For any utility function u ∈ U, if a∗(u) ∈ Eq(u), then any small

vector decrease in a∗(u) is Pareto improving.

This result relies on demonstrating that each agent's small decrease

in action has a �rst order e�ect on others' utility, but only a second order

e�ect on own utility. Anderson and Zame [8] use a method similar in �avor in

Section 4 of their paper on shyness in the proof that non-vertex pure-strategy

equilibria are ine�cient.

Lemma 1.1 establishes that a group of agents may form to act together.

As alluded to earlier, group formation is typically modeled via coalition games.
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Multilateral treaties are agreements to cooperate in the interests of group

welfare, so I will examine games played by coalitions to gain insights on treaty

formation. Though I discussed a few possibilities for bargaining and timing

in Section 1.3.2, for the general analysis I ignore the details of the bargaining

process in favor of �nding agreements that make everyone party to them better

o�.

Prior to taking action, agents are invited to negotiate a single agree-

ment; there are no side agreements or alternate provisions possible. Coalitions

can vary in commitment power, and I study two types of commitment: �rst,

agents in a coalition can agree to a speci�c vector of commitments which lists

the action taken by each member of the �nal agreement; second, agents in a

coalition can agree to a one-dimensional reduction from the no-coalition Nash

equilibrium. However, the externality in this class of games gives rise to a

free-rider problem. If a coalition J forms and commits to reductions, the play-

ers not in the coalition will increase their outputs in response, because of the

higher marginal utility resulting from the strict submodularity of the utility

function and the decreased actions of the coalition members.

Joining a coalition must give some bene�t to the participants. There-

fore, a coalition's actions are certainly not even conceivable if the members

do not perform as well utility-wise as in the no-coalition equilibrium; such a

coalition simply would not form.

De�nition. [Conceivability.] A vector of actions a(u, J) is conceivable for
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coalition J if each agent within J experiences a weak improvement in utility

over the no-coalition Nash equilibrium and at least one agent experiences a

strict improvement. Formally,

(∀j ∈ J) [uj (a(u, J)) ≥ uj (a∗(u))] (1.6)

and

(∃k ∈ J) [uk (a(u, J)) > uk (a∗(u))] . (1.7)

The notion of conceivability is akin to individual rationality constraints

in mechanism design. Without an improvement upon her no-coalition out-

come, an agent will simply not join a proposed coalition. This is also related

to the unpursued issue of coalition stability: if a coalition is conceivable, then

it is internally stable, since no agent within the coalition wishes to abandon it.

However, I do not address external stability; I am examining coalition candi-

dates and evaluating them in comparison to the no-coalition Nash equilibrium

under di�erent types of restricted action.

At issue is how much reduction will be achieved by various coalitions

when they have di�erent kinds of commitment power. I begin by studying

unlimited commitment power, then turn to the ability to commit to a one-

dimensional reduction from the no-coalition Nash equilibrium.

Unrestricted commitment power games for a coalition J , where J is

non-empty, non-singleton, and a subset of I, are the games in which the agents

in J act as a single player with the summed group utility function
∑

j∈J uj
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while every player i not in J acts as a single player with his original utility

function ui.

De�nition. [Unrestricted Coalition Power.] For J ⊆ I, the J-coalition

game with unrestricted coalition commitment power, denoted ΓUnJ (u),

has [#(I \ J) + 1] agents, with the coalition labeled as agent J and having the

action set ×j∈JAj and utility function uJ(a) =
∑

j∈J uj(a), and agents i 6∈ J

having action sets Ai with utility functions ui(a). The simultaneous-move

Nash equilibrium of this game is denoted aUn(u, J) =
(
aUnJ (u), aUn−J(u)

)
.

As earlier discussed, Lemma 1.1 establishes that a reduction from no-

coalition Nash equilibrium by all players will improve utility for each player.

A coalition of the whole could most easily achieve such an outcome in a game

with unrestricted commitment power. By maximizing group utility, such a

coalition is not only conceivable but e�cient as well. No other coalition in

unrestricted commitment power can improve upon it.

Lemma 1.2. For u ∈ U, when coalitional commitment power is unrestricted,

the unrestricted equilibrium of the coalition of the whole, aUn(u, I), is conceiv-

able for all u ∈ U, and no other coalition J strictly smaller than I can improve

upon the actions in summed utility.

The best possible coalition under unrestricted actions is the coalition

of the whole. This is because the coalition can always request that a member

plays his no-coalition action, while leaving that player out may give him leave
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to free-ride. If there are players with a no-coalition Nash action of zero, then

coalitions excluding these players may �tie� the outcome of the coalition of the

whole if the excluded players still have a best response of zero to the decreased

actions of the coalition.

Apart from the unrestricted ability of assigning an individual target

to each agent, the vector of coalition commitments can be constructed in a

few manners. The equal treatment assumption is a broad concept, re�ected

in the structure of many multilateral agreements and motivated earlier in

the paper. As described in the toy model, one possibility is to establish a

one-dimensional decrease from no-coalition actions, for instance each by some

equal lump-sum reduction or by some equal percentage reduction. Requiring

all members to follow the same reduction rule has a sense of egalitarianism

and is often observed in real world agreements, like the proportional reduction

in the Montreal Protocol [13]. This type of reduction could be particularly

useful in a repeated game, where the historical equilibrium is observed and

can be improved upon or reverted to.

Lemma 1.2 illustrated that the coalition of the whole is the best possible

option in terms of group utility in the case of unrestricted commitment power.

However, the grand coalition may be thwarted if the gains to free-riding are

especially high, in the presence of uncertainty, or in a dynamic game with-

out su�cient patience. Furthermore, under the restriction of lump-sum or

proportional commitment power, the coalition of the whole may not be ideal.

Su�cient heterogeneity in the costs and bene�ts of agents guarantees that,
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with restricted commitment power, coalitions strictly smaller than I are con-

ceivable and and also improve upon a coalition of the whole, giving a sort of

exclusion result. One can go even further, for some vectors of payo� functions

(ui)i∈I , and �nd the set (or sets) J that are Pareto superior to the coalition

of the whole amongst all subsets of I. In this section, I de�ne two types of

one-dimensional decrease from no-coalition Nash equilibrium: lump-sum com-

mitment power and proportional commitment power.12 I show the existence

of exclusion for both.

1.4.1 Lump-sum Restricted Commitment Power

Consider the game where a coalition can commit to lump-sum reduc-

tions. By this I mean that each agent in J reduces from their no-coalition

Nash action, a∗i , by an amount r.

De�nition. [Lump-sum Commitment Power.] For J ⊆ I, the J-coalition

game with lump-sum commitment power, denoted ΓLSJ (u), has #(I \

J) + 1 agents, with the coalition named agent J and having the action set

{aJ ∈ ×j∈JAj : (∀j ∈ J)[aj = a∗j(u) − r], r ∈ [0,minj a
∗
j(u)]} and utility

function uJ(a) =
∑

j∈J uj(a), and agents i 6∈ J having action sets Ai with

12Another possible restriction is an upper limit X̄ on the stock of negative actions which
is then split according to some sharing rule. A carbon cap program contains stock limits,
though such a program is not so much a treaty as an implemented policy. In a smaller
example, home owners' association members must restrict all noise to a lower decibel level
at nighttime. This type of restriction is used in Weikard, Wangler, and Freytag [59], as well
as Ludema and Mayda [48].
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utility functions ui(a). The simultaneous-move Nash equilibrium of this game

is denoted aLS(u, J) =
(
aLSJ (u), aLS−J(u)

)
.

This solution concept is subtle because the equilibrium de�nitions have

Nash equilibria within them. This is why uniqueness of the no-coalition Nash

equilibrium is so important. The solution concept could be weakened to non-

unique Nash games, perhaps by choosing the �largest� equilibrium, or by ig-

noring relabeled equilibria. Despite this being a static game, the negotiations

could be thought of as if the players are agreeing to a per-period action, with

the no-coalition equilibrium as a fall-back.

The following result demonstrates that there are coalitions J , strictly

smaller than the full set of agents, with lump-sum commitment power which

improve upon the no-coalition equilibrium and upon the result of the whole

coalition. Together, these give the result that coalitions strictly smaller than I

are conceivable and Pareto-improving under the equal treatment assumption

when there is enough heterogeneity.

Theorem 1.1. For any J ( I, #J ≥ 2, there is a set of u ∈ U having

non-empty interior, for which the vector of actions aLS(u, J) is conceivable,

formally denoted as:

(∀j ∈ J)[uj(a
LS(u, J)) > uj(a

∗(u))]. (1.8)

Further, there is a subset of u ∈ U having non-empty interior which ful�ll the

above and for which, under the lump-sum restriction, the coalition J improves
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upon the outcome of the coalition of the whole, formally written as:

(∀i ∈ I)[ui(a
LS(u, J)) > ui(a

LS(u, I))]. (1.9)

The proof relies on demonstration of a particular utility function u ∈ U

for which their is exclusion, as well as openness of the conditions describing

U. The proof can be found in Appendix A. The next section elaborates on

the intuition of this result using a class of models with parameterized utility

functions.

1.4.2 Intuition for Exclusion under Lump-sum Restricted Commit-
ment Power

To clarify the exclusion result given in Theorem 1.1, I discuss a utility

function similar to those common in the literature on coalitions as environmen-

tal agreements. The functional form can be separated into a bene�t function

and a damage function.

As initially presented in Section 1.4, the agents I = {1, 2, ..., n} take

action ai ∈ Ai = [0, 1]. These players are heterogeneous in the following

fashion: each player i ∈ I has a positive bene�ts coe�cient, θi ∈ Θi = [0, 1],

which multiplies the bene�t gained from the action taken. Thus, the class

of utility functions examined here consists of those which have the following

form:

ui(ai, a−i) = θiB(ai)− ai c
(∑

j∈I aj

)
Here, B(ai) represents the bene�ts of the individual action, with mul-

tiplicative coe�cient θi. The function is increasing and weakly concave, i.e.
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B′ > 0, B′′ ≤ 0. The cost of individual action is aj c (
∑

k ak), where the

marginal cost depends on the weighted summed total action.13 The marginal

cost function is increasing and convex, i.e. c′ > 0, c′′ > 0. Observe that since B

is increasing, we have that B′(0) > 0, and that the cost function at zero action

is zero, because 0 · c(·), so no marginal cost is incurred. These assumptions

guarantee that the whole utility function is concave in all actions.

The bene�t and damage functions are shared among players, and to-

gether they must ful�ll the characteristics de�ned earlier on U, which were

negative externalities, strict submodularity, strict own concavity, and unique

Nash equilibrium. The [resented structure of separable bene�t and cost func-

tions can easily ful�ll all of these requirements, and each of the characteristics

can be checked when functional forms and number of agents are assigned.

To further describe the heterogeneity and make use of the distinction

between large and small actors, I establish two groups of players:

1. The �rst is group J with cardinality m.14 The agents in group J all have

θi = 1. Hence, the utility function for players i ∈ J is:

ui(ai, a−i) = B(ai)− aic
(∑

j∈I aj

)
(1.10)

13For simplicity's sake, the damages depend on the sum of the players' actions. The
components of the action vector could be enter as individual arguments of the function,
instead of as a sum. In a setting of incomplete information, the sum could be a discounted
expectation [29].

14Naming this group J is an abuse of notation. It is used to suggest that this will be the
group eventually forming an exclusive treaty.
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2. The second group of players I \ J consists of the remaining (n − m)

players. These agents all have θi = θ. The utility function for a player

i ∈ I \ J is:

ui(ai, a−i) = θB(ai)− aic
(∑

j∈I aj

)
(1.11)

In this examination, the parameter θ increases the marginal bene�t of

the action as it increases from zero to one. As θ increases, the two groups

grow less disparate. In equilibrium, the players in J should be taking the

same action, as should all the players not in J .

Suppressing the u from the notation in the previous sections, the no-

coalition Nash equilibrium of this game a∗(θ) consists of the equilibrium actions

of the players not in J , denoted a∗I\J(θ), and the equilibrium actions of the

players in J , denoted a∗J(θ):

a∗I\J(θ) ≡ arg max
ai∈Ai

θB(ai)− aic
(
ai + (n−m− 1) a∗I\J(θ) +ma∗J(θ)

)
, (1.12)

a∗J(θ) ≡ arg max
aj∈Aj

B(aj)− ajc
(
aj + (n−m)a∗I\J(θ) + (m− 1)a∗J(θ)

)
(1.13)

At the highest value of the group parameter, θ = 1, both groups of

players have the same maximization problem. Since the players are identical

in this case, they would play the same action: a∗I\J(1) = a∗J(1). At lower

values of the group parameter, θ < 1, the two groups of agents have di�erent

maximization problems and di�erent actions.
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Lemma 1.3. When the group parameter is strictly smaller than one, θ < 1,

then the equilibrium action of the players not in J , a∗I\J(θ), is smaller than the

equilibrium action taken by players in J , a∗J(θ).

The proof shows that a smaller θ decreases the marginal bene�t of

action of the players not in J compared to that of the players in J .

According to Lemma 1.1 from Section 1.4, this no-coalition Nash equi-

librium is ine�cient. Therefore, the agents may form a coalition in which they

agree to reduce the action and total negative externality. Under a coalition

with unrestricted power, the agents could easily achieve a �rst-best solution,

assigning a speci�ed action to each agent. Under a coalition with lump-sum re-

stricted power, each agent participating must subtract the same amount from

his no-coalition action. Examining restricted power coalitions in this class of

utility functions will help illustrate the exclusion result in Theorem 1.1.

The agents consider two possible lump-sum reduction treaties: one

which forms a coalition of the whole (all I players), and one which contains

only the players in J (excluding those not in J).

First, consider the coalition of all I players. The coalition maximization

problem under lump-sum commitment power is:

max
r∈

[
0,a∗

I\J (θ)
]
{∑

j∈J

[
B
(
a∗J(θ)− r

)
−
(
a∗J(θ)− r

)
c
(

(n−m)
(
a∗I\J(θ)− r

)
+m

(
a∗J(θ)− r

))]
+
∑
i∈I\J

[
θB
(
a∗I\J(θ)− r

)
−
(
a∗I\J(θ)− r

)
c
(

(n−m)
(
a∗I\J(θ)− r

)
+m

(
a∗J(θ)− r

))]}
(1.14)
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For every θ and equilibrium a∗(θ), there is some utility-maximizing

lump-sum reduction for the coalition of the whole denoted r∗I (θ). This reduc-

tion solves the �rst order condition listed in Appendix A. The choice of r∗I (θ)

is limited by the smaller action, a∗I\J(θ). The action space is bounded from

below by 0, so the coalition's reduction can only be as large as the smallest

action of a participant, meaning that r∗I (θ) ≤ a∗I\J(θ).

For large values of θ, this condition does not pose a problem. If the

optimal reduction for the coalition of the whole is strictly smaller than the

no-coalition action chosen by the players not in J , then the optimal reduction

is implemented and all players participate. However, consider what happens

as θ approaches zero. Then, the equilibrium action of the players not in J

approaches zero as well, which limits the reduction that a coalition of the

whole could implement.

The agents in J still take a strictly positive action. Though the agents

not in J have negligible actions, the players in J continue to exert a negative

externality on each other and could agree to reduce by themselves. In the

limiting circumstances of θ close to zero, a separate treaty for the players in J

would bene�t all players.

Thus, consider the coalition of only the players in J . For any value of

θ, the coalition maximization problem under lump-sum commitment power is:
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max
r∈[0,a∗J (θ)]

∑
j∈J B

(
a∗J(θ)− r

)
−
(
a∗J(θ)− r

)
c
(

(n−m)aJI\J(θ) +m
(
a∗J(θ)− r

)) (1.15)

while agents not in J best respond as singletons with:

aJI\J(θ) ≡ arg max
ai∈Ai

(1− θ)B(ai)

− ai c
(
ai + (n−m− 1)aJI\J(θ) +m

(
a∗J(θ)− r∗J(θ)

)) (1.16)

For every θ and equilibrium a∗(θ), there is some utility-maximizing

lump-sum reduction for the coalition of the whole denoted r∗J(θ). This reduc-

tion solves the �rst order condition listed in the Appendix.

At any θ, the J-coalition's marginal utility to increasing reduction from

zero is strictly positive, i.e. ∂uJ
∂r
|r=0 > 0 (shown in Appendix A.1), given that

the players not in J were initially best responding. Even if the free-riding

players increase actions from no-coalition equilibrium by a tiny amount, the

J-coalition will still be Pareto improving for the agents in J . This hints at the

fact that, when the agents not in J have minimal response, the J coalition has

r∗J(θ) strictly greater than zero and that the exclusion result holds for small

values of θ.

In the coalition of the whole, total utility is increasing in the reduction

r for some time, and then begins to decrease. The �rst order condition for

the I-coalition gives weight to the marginal bene�t to action of each group

according to the size of that group, choosing a reduction between what would

be optimal for those not in J and those in J . When the marginal bene�t of
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action is zero for agents not in J , attempting to include them restricts the

possibilities of reduction, particularly since the marginal utility of those not

in J turns negative more quickly than the marginal utility of those in J .

Lemma 1.4. There exists a threshold value θ̄ > 0 for the group parameter

such that for all values of the parameter higher than the threshold, θ ∈ (0, θ̄),

the equilibrium action of players not in J , a∗I\J(θ), is a binding constraint on

problem (1.14).

Lemma 1.4 demonstrates that the exclusion result from Theorem 1.1

holds for this class of parameterized utility functions. Furthermore, it elu-

cidates the mechanics of the exclusion result: for zero actions, players are

excluded because they simply cannot take smaller actions; for non-zero but

small actions, players are excluded because they will not take smaller actions,

since their marginal utility would run negative. Either way, the smallest ac-

tions bind the egalitarian action space of any coalition which would include

them.

The �rst rationale, in particular, spurs the desire for equal treatment

which still allows for small-action takers and zero-action takers to participate.

This leads to the development of proportional commitment power: because

a fraction of zero is still zero, even the smallest players can participate. In

the next section, I examine the exclusion result under proportional restricted

commitment power. General existence is once again shown, this time with the

driving rationale is the disparity between the marginal bene�t of reduction of

heterogeneous players.
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1.4.3 Proportional Restricted Commitment Power

Consider the game where a coalition can only commit to proportional

reductions. A coalition J commits to a proportional reduction of s: each agent

in J plays s times his no-coalition action, a proportion of what would have

been played.

De�nition. [Proportional Commitment Power.] For J ⊆ I, the J-

coalition game with lump-sum commitment power, denoted ΓLSJ (u),

has #(I \ J) + 1 agents, with the coalition named as agent J and having the

action set {aJ ∈ ×j∈JAj : (∀j ∈ J)[aj = sa∗j(u)], s ∈ [0, 1]} and utility function

uJ(a) =
∑

j∈J uj(a), and agents i 6∈ J having action sets Ai with utility func-

tions ui(a). The simultaneous-move Nash equilibrium of this game is denoted

aPr(u, J) =
(
aPrJ (u), aPr−J(u)

)
.

The following theorem extends the exclusion result from earlier to lump-

sum commitment power. Under proportional commitment power, there are

coalitions J strictly smaller than I which are conceivable and Pareto-improving

in the presence of heterogeneity.

Theorem 1.2. For any J ( I, #J ≥ 2, there is a set of u ∈ U having

non-empty interior, for which the vector of actions aPr(u, J) is conceivable,

formally denoted as:

(∀j ∈ J)[uj(a
Pr(u, J)) > uj(a

∗(u))]. (1.17)

47



Further, there is a subset of u ∈ U having non-empty interior which ful�ll

the above and for which, under the proportional restriction, the coalition J

improves upon the outcome of the coalition of the whole, formally written as:

(∀i ∈ I)[ui(a
Pr(u, J)) > ui(a

Pr(u, I))]. (1.18)

The proof can be found in the Appendix. The next section gives some

intuition for this result using the same class of models as in Section 1.4.2.

1.4.4 Intuition for Exclusion under Proportional Restricted Com-
mitment Power

Recall the earlier set-up with two types of agents and separated bene�t

and cost functions:

1. Agents in J , or �large� agents: These agents have utility de�ned by

Equation (1.10) and take action a∗J(θ) in equilibrium.

2. Agents not in J , or �small� agents: These agents have utility de�ned by

Equation (1.11), with an extra bene�ts parameter θ ∈ (0, 1), and take

action a∗I\J(θ) in equilibrium. From Lemma 1.3, this action is smaller

than the action of members in the group J .

As with the lump-sum reduction, the agents consider two possible pro-

portional reduction treaties: one which forms a coalition of the whole, and one

which contains only players in J .
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For the proportional reduction coalition of all I players, the maximiza-

tion problem is:

max
s∈[0,1]

∑
i∈J

B(sa∗J(θ))− sa∗J(θ)c
(∑

j∈J sa
∗
J(θ) +

∑
k/∈J sa

∗
I\J(θ)

)
+
∑
i/∈J

θB(sa∗I\J(θ))− sa∗I\J(θ)c
(∑

j∈J sa
∗
J(θ) +

∑
k/∈J sa

∗
I\J(θ)

) (1.19)

For every θ and equilibrium a∗(θ), this will have some solution, s∗I(θ),

which lies in [0, 1]. This fraction solves the Kuhn-Tucker conditions in the

Appendix. A choice of s∗I(θ) = 1 means that no reduction is implemented and

that, in essence, the coalition agrees to play the no-coalition Nash equilibrium.

On the other hand, a choice of s∗I(θ) = 0 means that the coalition implements

full reduction and eliminates the negative externality and the action. Any

fraction in between indicates some reduction, with lower numbers indicating

more reduction than higher numbers.

As with the lump-sum reduction, the coalition of the whole works well

for small values of θ. If the reduced vector, s∗I(θ) · a∗(θ), weakly improves

upon the no-coalition equilibrium, a∗(θ), for all players, then all players will

participate and the coalition will implement the reduction. With this type of

egalitarian treaty, there is no �physical� limit on the one-dimensional reduction

choice, as with the lump-sum reduction. The lump-sum reduction was clearly

limited by the smallest players' actions; if it were larger, those players could

not participate, since they could not play a negative action outside of the space

Ai = [0, 1]. All players can physically participate, since the reduction is by a

multiplied factor.
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However, in revealed Section 1.4.2, there is a secondary reason why the

exclusion e�ect holds for lump-sum restricted power. The marginal bene�t

of coalition reduction for a player is positive and increasing at �rst, then

decreasing, and then negative. At some point, the reduction is too high to

be optimal for that player. In fact, the reduction could go so far as to cause

the players to drop out of the coalition, preferring to play the no-coalition

equilibrium and then free-riding.

Furthermore, the next result shows that the grand coalition will never

choose full reduction:15

Lemma 1.5. For any θ, the proportional reduction taken by the grand coalition

is never full-reduction, i.e. s∗I(θ) > 0.

At �rst, this may seem a strong result from the problem. However,

proportional reductions approaching full reduction may still occur, so the result

does not limit the application in any realistic sense. In many agreements some

small amount of the action is still permitted. For instance, nuclear weapons

treaties allowed much of the armory already in existence to remain so, which

is not a reduction to zero. For other agreements, banned behaviors may have

some substitute, if imperfect: whaling provides meat and oil, which can be

obtained from other animals and energy sources. The question addressed in

this paper is not whether coalitions can or will reduce to zero; the question is

15So long as there are players with positive action � this is discussed in the Appendix.
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whether a smaller coalition can improve upon the outcome of the coalition of

the whole.

Consider what happens as θ approaches zero. The action of the smaller

players approaches zero. At these small actions, players not in J could still

participate in a coalition of the whole: whatever positive percentage is chosen,

they can play s ·a∗I\J without issue. The problem lies with whether they would

want to reduce any further. If θ is very small, then the marginal bene�t at

that action increases quickly upon reduction due to concavity. Thus, agents

playing a small positive action would appreciate reduction by other players,

but would cling to their own last production. At some level of θ, the coalition

of the whole cannot reduce at all.

Lemma 1.6. There exists a threshold value θ̄ > 0 for the group parameter

such that for all values of the parameter lower than the threshold, θ ∈ (0, θ̄),

the reduction chosen by the coalition of the whole, s∗I(θ), is equal to one.

The players not in J have such small actions that any further reduction

causes them great pain. Thus, consider a proportional reduction coalition just

for the players in J . The maximization problem of the J-coalition is:

max
ŝ∈[0,1]

m
[
B(ŝa∗J(θ))− ŝa∗J(θ)c

(
mŝa∗J(θ) + (n−m)aJI\J(θ)

)]
The best response of those not in J is de�ned as:

aJI\J(θ) ≡ arg max
ai∈Ai

θB(ai)− aic
(
ai +

∑
j∈J ŝa

∗
J(θ) +

∑
k/∈J∪{i} a

J
I\J(θ)

)
51



This will have some solution, de�ned sJ(θ), which solves the Kuhn-

Tucker condition listed in the Appendix. At any θ, the J-coalition's marginal

utility of reduction from the no-coalition equilibrium is strictly positive. What

this means is that, given that the players not in J were best responding by

playing the no-coalition action, the bene�t to decreasing from s = 1 is positive,

i.e. −
(
∂uJ
∂s
|s=1

)
> 0 (shown in Appendix A.3.2). Therefore, if the coalition

of the whole is unable to reduce because the agents not in J have very small

actions, agents in J will prefer the J-coalition to form, provided that the

remaining players have limited free-riding increases.

Thus, Lemma 1.6 establishes the rationale behind Theorem 1.2. Since

the members of J would like to establish their own coalition, they will do so �

and since the other players' actions are minuscule, their free-riding will also be

negligible. Thus, the exclusion result holds for another type of one-dimensional

decrease from no-coalition equilibrium.

1.5 Robustness to Policy

I have already described some reasons why restricted action sets caused

by the equal treatment assumption are interesting and relevant. Here, I discuss

the two chosen types in particular, placing them in context of each other and

applications. I also address two alternative treaty structures related to the

egalitarian restriction, the possibilities of multi-level coalitions and central

commissions. Before those topics, however, I present a second optimal treaty

map. While it indicates a similar pattern to the example in Section 1.3.2, it
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has a completely new optimal area to describe and explain.

1.5.1 Exclusion of Large Agents

So far, I have placed exclusion in the context of large actors forming

coalitions without small actors. In the toy model, the only coalitions that

formed included agent one, the player who always had θ1 = 1. In the proof, I

present a parameterized case that splits two groups. However, Theorems 1.1

and 1.2 are more general than this. The result is general existence of exclusion,

not existence hinged on this particular bifurcated heterogeneity.

Using a utility function from the set U, I perform the same three-

agent analysis as in Section 1.3.2. The utility function for agents I = {1, 2, 3},

presented below, is the one used in the Appendix in the proofs of the Theorems:

ui(a) = θi (10 + ai)− a2i

(
3 +

n∑
j=1

aj

)
.

Every set of parameters for this function has a unique interior no-

coalition Nash equilibrium. For each set of parameters, I calculate the lump-

sum reduction for each possible coalition and then examine which has the

highest total welfare. The following image presents which coalition is optimal

under the equal treatment of lump-sum reduction in this game.
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Figure 1.2: Exclusion in a parabolic utility function.

(a) As in Figure 1, the parameter θ1 is normalized to one, while parameters θ2 and

θ3 take values from zero to one.

The �gure has a similar pattern to that of Figure 1, in that the corners

match up between the two images. However, there is a whole new area where

the coalition of agents two and three is optimal. This is despite the fact that

agent one is normalized to be the �largest� agent (the agent with the highest

marginal bene�t and action). However, with this utility function, there is a

low elasticity of response, and even though agent one is excluded, his action

does not shift very much when he is permitted to free-ride. This creates an

area where the smaller agents have the optimal coalition.

This example demonstrates the need for further examination of exclu-

sion in treaties. While the general result has been established, there is room
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for more characterization regarding how and when exclusion appears. Apart

from the economic models, the way exclusion applies in the context of policy

must also understood, which leads to the discussion in the next section.

1.5.2 Egalitarian Restrictions as Policy

An egalitarian restriction upon actions might be an attractive idea to

policymakers. First, the framing e�ect of �Everyone is contributing the same

amount� could have a psychological impact and ease negative responses. Sim-

ilarly, equal treatment serves as an easy anchoring point in negations. The

restriction could result from a transaction cost to the dimension of the bar-

gaining space. If there is some sort of cost or di�culty to bargaining over

the J-dimensional action vector, then it might be easier to bargain over a

one-dimensional number. Finally, the restriction guarantees a high rate of

reward from the minimum participation constraint. Under the lump-sum re-

striction, a participant's contribution is multiplied many times over, while the

proportional restriction ensures that the participants' total stock is decreased

by some percentage.

The lump-sum reduction may seem too simplistic when �rst described,

particularly for an international context of pollution or �shing reduction.16

However, it is not so outlandish for similar entities to immediately agree to

contribute the same amount, perhaps by splitting some desired total, instead

16A Total Allowable Catch (TAC) seems to be a reverse of the lump-sum reduction � it's
a lump-sum limit. The reduction would be the di�erence between the original �shing level
and the TAC.
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of spending time haggling over exact contributions. Therein lies the exclusion:

since everyone needs to contribute the same amount, the whole operation is

limited by the smallest ability.

The proportional reduction, in contrast, has more real-world traction.

For instance, it is easy to imagine its presence in pollution reduction treaties,

where each participant has to cut emissions to, say, 80 percent of previous

levels. Though the actual number which is negotiated does not depend on

heterogeneity, the �nal contribution does. Participants who have larger actions

then have a larger prescribed reduction, while participants with smaller actions

still contribute some. A proportional reduction agreement has the potential

to include more players, but even here, the contributions of the small actors

are negligible. These players have small actions because they have a lower

marginal utility of action; thus, when permitted to free-ride, they will hardly

increase actions in a noticeable way.

1.5.3 Alternative Treaty Structures

What if the coalition of the whole optimized among multiple levels of

one-dimensional action? Agents may be open to the possibility of multi-level

coalitions, meaning that all participants belong to the same coalition but that

di�erent actions are prescribed for segmented levels of actors. For instance,

large actors may be given one lump-sum reduction, while small actors are given

another. In the case of the parameterized class examined in the toy model,

where much of the heterogeneity stems from a group parameter, a multi-level
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coalition could be a way to include the players not in J in a coalition of the

whole even when θ is close to zero.

However, with only two types of players, specifying two levels of re-

duction is akin to having unrestricted commitment power. One can see how

multi-level coalitions converge to unrestricted commitment power. As more

and more levels are introduced, the coalition can tailor action to each mem-

ber, in the same way that unrestricted actions would be constructed. This

eliminates the very object of interest, which is the response of players to a sin-

gle, egalitarian action. Furthermore, in a game with uncertainty, a multi-level

coalition may still end up having only one level, if agents wish to obscure type.

Another possible structure for a treaty is to establish a central body,

a commission, a third party which investigates the situation and provides

recommendations. For instance, one such commission is the Inter-American

Tropical Tuna Commission, which includes largest and smallest tuna produc-

ers described in Section 1.3.1 on the same committee. Such a provision can

allow for some type of treaty, even if the original negotiation game is played

under incomplete information and ensure longevity of an agreement. Each

coalition participant then agrees to an equal treatment of sorts � supporting

the establishment of such a commission � and then agrees to further action

recommendations in the future. The agreement can then allow for more in-

clusion, perhaps overriding the bene�t of treaty exclusion presented in this

paper. This treaty structure merits further investigation, particularly under

heterogeneity.

57



1.6 Conclusions

Under the restriction of egalitarian action sets, heterogeneity plays a

great role in the MP constraint chosen. If agents are more homogeneous, then

an increase in the size of the MP constraint will unambiguously bene�t the

treaty. With more heterogeneous agents in the world, agents on the interior

follow the intuition of excluding the �odd man out� and creating a Pareto-

improving treaty, as opposed to signing an inclusive but less e�ective treaty.

In a fairly general class of negative externality games, there are groups of agents

strictly smaller than the coalition of the whole which perform strictly better

under a lump-sum reduction constraint. This translates to a MP constraint

strictly smaller than n, rendering the most disparate agents non-pivotal. In an

application to environmental treaties, large polluters could use MP constraints

to exclude smaller polluters and form a better performing MEA. This result is

also evidenced by the use of smaller negotiation spaces: a negotiation at an ex-

clusive summit, as opposed to the United Nations' headquarters, immediately

excludes uninvited countries.

The equal treatment assumption leaves open an interesting paradox

where agents most damaged by the externality or with least bene�t from taking

the action are most eager to limit the total stock but cannot join an e�ective

egalitarian treaty. Furthermore, there is some residual ine�ciency to this

egalitarian approach, as can be seen throughout the examples of this paper.

In the numerical example of Section 1.3.2, the agents are unable to form a

three-person coalition when the third agent produces zero, but the remaining
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agents cannot form a two-person coalition either and must play no-coalition

Nash equilibrium in order to keep the third agent from free-riding on the

public good. A coalition with unrestricted commitment power could prescribe

an action of zero for the third agent, and an e�ective treaty would be adopted.

This example illustrates the very tension between Lemma 1.2 and Theorems

1.1 and 1.2 � the lemma speci�es that a coalition strictly smaller than the

coalition of the whole cannot improve upon everyone, while the theorems give

exactly the opposite. The restricted actions and di�ering marginal bene�ts of

reduction drive the exclusion result. For the extreme two type set-up, exclusion

gives a coalition arbitrarily close to e�ciency, though this may not extend to

less drastic heterogeneity.

In this model, agents are indi�erent between ine�ective treaties and no

treaty at all, allowing symbolic agreements as equilibrium behavior. Agents

could choose a lump-sum reduction of zero or a proportional reduction of one

and enact an �agreement� to play Nash equilibrium. To avoid symbolic equilib-

ria, these could be discouraged with a minor tie-breaking rule or minimal cost

to entering negotiations, or encouraged with some sort of utility boost from

the appearance of concern. However, it is rather intriguing that those with the

most to gain from e�ective treaties are the ones that can join only symbolic

treaties when actions are restricted, since they have the least to contribute.

The fact remains that greater treaty membership does not automat-

ically mean greater treaty bene�t. This is clearly illustrated in over�shing

control: the promise of landlocked countries to limit their �shing has little
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meaning when their access to the �shing stock is already limited by geogra-

phy.

The exclusion result is hopeful, not stark; after all, the large and small

producers alike prefer e�ective, exclusive treaties to symbolic, inclusive ones.

The MP mechanism is somewhat successful in internalizing the common dam-

ages faced by agents and attracts participants by increasing the bene�t of the

treaty itself, even in a one-shot game. Moreover, the increase in initial value

o�ered by the MP constraint can be combined with other self-enforcement

mechanisms to enhance not just treaty participation, but treaty e�ectiveness

as well.
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Chapter 2

When is Bad �Bad Enough�? A Framework for

Analyzing Bene�ts of Coordination under

Externalities

2.1 Introduction

As with other resources studied in economics, international cooperation

may be limited. There is only so much national e�ort to expend in the pursuit

of negotiation with other countries, whether measured in diplomats' man-

hours, dollars spent on transfers, or implementation costs. Scarcity limits the

situations for which coordination can occur.

In an analogue to this idea, a person's time to haggle prices is limited.

As a society, well-established super-markets do not allow for negotiation, but in

the markets for cars and houses,1 negotiation is generally expected. Produce is

generally a low-stakes purchase � at least in the short term, it hardly matters

if a red pepper costs $0.99 or $1.29 � while cars and houses are long-term

�nanced purchases for which each dollar of price may yield much more interest

over time.

1And even then, some people do not wish to haggle over those either, as seen in the rising
popularity of car dealerships with no-haggle policies, like CarMax.
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This, however, is not a paper on attrition in haggling or optimal bar-

gaining over multiple sets. Rather, in considering international cooperation as

a limited resource, a framework is desired for determining which situations are

best, most important, or most bene�cial to entertain for negotiation. There is

an abundance of global externality situations that could bene�t from an inter-

national treaty, but if there is a cost to cooperation � perhaps the opportunity

cost of other things that cannot be negotiated over � then it is vital to know

when a situation is more valuable cooperatively. The greatest international

bene�t would come from �xing the worst externality problems.

What does it mean to say an externality is �worse� in one situation

than in another? This may be an easy question if social cost is measurable:

producing chemical A has a social marginal cost of 5, while chemical B has

one of 10. On the other hand, the question may be more di�cult to answer

if the externality is a�ected by some other parameter or construction of the

situation. What happens when part of the story cannot be classi�ed so easily?

When the reason behind the severity of the externality is characterized best as

something not a�ecting utility directly, but only through the actions chosen?

For instance, if the only externality lies in a decreased chance of returning to

a good state, how can that be quanti�ed?

This paper presents a framework for the analysis of these questions, as

well as su�cient conditions for a situation in which externalities are worse,

based on an increasing disparity in actions between coordination and lack

thereof. As a preview, this paper �nds that an acceleration in the externality
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caused by an opponent's action, or having a large positive opposite derivative,

will increase the likelihood of coordination.

Section 2.2 describes the literature surrounding this problem. In Sec-

tion 2.3, I examine how to simplify a severity parameter in a one-stage game.

I �rst discuss a symmetric game in Section 2.3.1 and then an non-symmetric

game in Section 2.3.2. Chapter 3 extends the result from the previous sections

to a dynamic setting by applying the framework to �shery growth models and

presents conclusions.

2.2 Literature

The environmental literature has long examined international coordi-

nation on reducing negative externalities. Many externality problems, includ-

ing most environmental situations, have a dynamic component to the story,

beyond a one-stage �xed or marginal cost, or a tragedy of the commons. Anal-

ysis often predicates upon modeling particular situations wit some detail, such

as location and travel hindering resource extraction [32], the development of

technology with complementarities driving economics growth [19], or positive

spillover e�ects increasing e�ciency after increases in environmental regulation

[35].

There is great interest in understanding environmental policy. Bernard

and Vielle [12] use a general equilibrium model to examine dynamic climate

change policy. They use the General Equilibrium Model of International Na-

tional Interaction for Economy/Energy/Environment (GEMINI-E3). They

63



attempt to calculate the closeness of a carbon tax to marginal abatement cost.

They describe how with a representative consumer, this is relatively easy, but

with multiple types of consumers, some su�er a welfare loss as opposed to gain.

Overall, they try to examine the claim that cost of implementation of carbon

tax or such may be negative and therefore there would be a �double-dividend.�

They �nd that long-term estimation works well, but that short-term analysis

may be o�.

Beyond these examples, there are general rules to be characterized in

that the mismanagement of a shared resource with dynamic growth causes

an externality to others partaking in the stock. Thus, understanding man-

agement of resource stocks aids not only the choice of an optimal time path,

but also international relations. Clemhout and Wan [24] analyze two-player

equilibria of harvesting continuous-time dynamic resource stocks. Under the

assumptions of an exact dynamic guiding function, particular formation of per-

formance indices, strategy spaces that are nonnegative, bounded, and locally

Lipschitz, and assumed structure of coe�cients, the authors prove existence

of equilibrium strategy harvest plans. They then examine comparative statics

for two examples: single species with stochastic evolution and two species with

deterministic evolution. In particular, they examine the e�ects of crowding,

impatience, and predator-prey relationships, looking for cases in which more

is harvested. They �nd extra harvesting when crowding is more inhibitive to

growth, when players are more impatient, and when players prefer a higher

ratio of harvest to resource. In these three situations, communication and
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management are potentially more important for the agents.

A number of authors examine the optimal development of �sh stocks,

using both traditional methods of stock assessment [52, 56] and more inno-

vative approaches [14]. A few develop structural models of dynamics caused

by �sh characteristics, ecological variables, and market behavior made worse

by repetition, like Fischer and Mirman [32] who examine the sources of ex-

ternalities in �sheries. They model and discuss the tragedy of the commons,

a biological externality, a dynamic externality, and a market externality. To

do so, they establish a game with two agents and two species of �sh with

possibly interdependent biological growth rates. Both players consume both

types of �sh, but only catch one species. The authors calculate the closed

non-cooperative and cooperative equilibria, look at the comparative statics

for both, and then compare the two to capture the market externality. In the

non-cooperative equilibrium, they �nd that an increase in the reproductive

capacity of a country's own �sh species leads to a lower catch ratio due to

investment value. Meanwhile, the e�ect of an increase in reproductive capac-

ity of the other country's species depends on the species cross-e�ects. If the

species have a symbiotic or negative interaction (i.e. both prey upon each

other), then this causes a lower catch ratio as well, but if the species have a

predator-prey relationship, then the increase in reproductive capacity of the

other country's �sh results in a higher catch ratio. Furthermore, making the

species more symbiotic by increasing a positive cross-e�ect leads to a lower

catch ratio; decreasing a negative cross-e�ect leads to a higher catch ratio;
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and if there is a predator-prey relationship, it results in a lower catch ratio for

the predator, a higher ratio for the prey. Clearly, understanding the relation-

ship of the two species of �sh gives insight into how the negative externality

works and how to coordinate to reduce it. Compared to the market equilib-

rium, the cooperative catch ratio is lower under positive interactions, higher

under negative interactions, and higher for a predator while lower for prey.

Thus, depending on the biological parameters of the story, the bene�t to co-

ordination can change. They also �nd that the noncooperative equilibrium is

e�cient under no common access when there are no biological externalities or

when the preferences are the same across countries, caused by the countries

managing their own stocks separately and then selling at the fair market price.

Following along the lines of �sh stocks under markets, Datta and Mir-

man [27] examine the interdependence between market clearing prices and

harvesting decisions. They look at the entire dynamic equilibrium trajectory

of each market approach and compare sources of the externality from a com-

mons e�ect versus a market power e�ect. They �nd that ine�ciency from

overexhaustion caused by common access dominates the general restriction of

market power. Their model echoes that of Fischer and Mirman in the set-up

of two types of players and two types of �sh. In a Cournot-Nash equilibrium,

the planner in each country decides the amount of �sh to be caught, tak-

ing the other countries' catch functions as given. The trading decisions and

market clearing prices depend on the catches of all the countries. If there is

only one country of each type, the result on e�ciency of markets from Fischer
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and Mirman is con�rmed. With more than one country for at least one type,

there is dynamic overexhaustion. The authors then compare Cournot-Nash

equilibrium to cooperation and to a price-taking equilibrium. They �nd that

price-taking still causes overharvest, but performs better than Cournot-Nash

under certain conditions.

In addition to the question of resource-stock management, Farzin [31]

examines environmental stock externalities with threshold e�ects. He de�nes

two main categories of externalities: �ow externalities and two types of stock

externalities. Flow externalities refer to direct damage from resource use.

Resource stock externalities push up extraction cost at future dates, while

environmental stock externalities cause damage from adding to accumulated

stock and passing a certain threshold. First, Farzin establishes that existence

of a steady-state policy requires separability of arguments in the environmental

damage function and the resource extraction cost function and linearity in one

of the arguments. Then using model simulation with calibration of parame-

ters, he calculates an optimal carbon dioxide control strategy as a benchmark,

�nding that optimal policy postpones climate change for 122 years. The opti-

mal policy involves no delay in implementation, as �even if for an initial period

there is going to be no pollution stock damage, the optimal policy still requires

that abatement begins immediately and at increasing rates�; for instance, a

delay in implementation of 10 years results in over 1.2 percent loss of welfare.

Since the main application is fossil fuels, when Farzin examines alternative

policies, he �nds that a carbon tax on its own is more e�ective than a sole fuel
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tax.

With many of these situations, parameters that change the story cause

a drastic e�ect on the externality. Apart from Farzin's discussion of the thresh-

old e�ect, a common concern in the literature is catastrophe. A catastrophe

is often modeled as an uncertain, and unlikely, event which has an extremely

negative impact on utility. Weitzman [60] explores the use of fat-tailed dis-

tributions to analyze a climate-change model. He �nds that, in contrast to

a thin-tailed model, the fat tails �can dominate the social-discounting aspect,

the pure-risk aspect, and the consumption-smoothing aspect.� The fat tail

distribution, however, renders problems more di�cult to solve.

Motoh [49] analyzes a standard resource management problem with un-

certainty with the added interest of catastrophic risk. His main application is

forest management with some probability of a forest �re, though the model

could extend to health shocks in animal populations and pollution spillovers.

Catastrophe is modeled as a Poisson value shock. Motoh �nds that an increase

in the risk of catastrophe, through an increase in the intensity of the Poisson

process, increases a manager's optimal use rate. Because the manager is risk-

averse, he prefers to use the resource more quickly than to wait for disaster to

strike. Motoh's conclusions give a bit of a grim view of unpreventable catas-

trophe, in that the strengthening of one issue � the possibility of catastrophe

� increases the problem of overharvesting in a rational way.

With regard to management of catastrophes across disparate areas,

Charpentier and Le Maux [21] examine a model of the insurance market which
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allows for more generality applicable to a world with natural catastrophes.

Breaking traditional insurance market rules, they allow for an insurer to be-

come insolvent, as well as for correlated claims possibilities, more accurately

re�ecting the nature of catastrophes. They also examine whether government

intervention is optimal in a single region model and in a multiple region model,

each with representative consumers. In the single region, they �nd that the

government can o�er an unlimited guarantee of payment, even if the insurer

falls insolvent, which increases customers' willingness to pay over the limited

liability scheme o�ered by an insurer. With multiple regions, the authors �nd

again that the unlimited guarantee of payment is preferred, but that there

could be an issue in getting the safer region to participate in pooling of risk.

The authors note that perhaps a lower premium for the safer area would help.

Allowing for sovereignty of regions parallels countries in a treaty and empha-

sizes the need for examining such accommodations.

Accounting for quirks in the externalities proves quite important. Lange,

McDade, and Oliva [45] use a catastrophe model to model technology adoption

under network externalities and �nd that the catastrophe structure accounts

much better for the adoption of PCs and PC software from 1988 to 1994.

In their model, when a certain parameter is low, then small changes in an

independent variable lead to small changes in the dependent variable; when

the parameter value is high, then small changes in the independent variable

can lead to large jump discontinuities in the dependent variable. One could

model a stock externality for an environmental problem in a similar manner
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and search for general lessons in accounting for such parameters.

Another way of thinking of catastrophe is that prevention severely in-

creases the bene�t of coordination. In this paper, I discuss a related notion,

which is the speed of increase of marginal bene�t of coordination. I discuss

the importance of the second derivative of an agent's utility function with re-

spect to the opponent's action, and how it a�ects room for coordination. In a

way, this has the feeling of Farzin's threshold e�ect and the catastrophe mod-

els. However, this notion di�ers from the literature in that it is a curvature

assumption, not a probabilistic event.

The next section presents a one-stage model with an externality. I allow

for �worsening� of an externality through a parameter, θ, and then discuss how

changes in this parameter a�ect the di�erence between non-coordination and

coordination.

2.3 Model

The �rst setting to examine is the simplest, and it will give basic in-

tuition for further sections of this paper. Here is a one-shot, two player game

in which players take an action which exerts an externality. For now, this

is a negative externality, though Chapter 3 gives an example with a positive

externality. Future work includes full extension to positive externalities. I

leave the exact story, timing, and utility outcomes vague at the moment, since

the goal is to describe the most general setting �rst and investigate individual

examples afterward. I formally de�ne the game Γ = {I, {Ai}i∈I , {wi}i∈I} with
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the following:

1. agents I = {1, 2};

2. actions ai ∈ Ai;

3. utility functions wi(ai, aj; θ) ∈ W , which have the properties of

(a) twice-di�erentiable continuity, wi ∈ C2,

(b) concavity with respect to own action, ∂
2wi

∂a2i
< 0,

(c) negative externality, ∂wi

∂aj
< 0,

(d) submodularity, ∂2wi

∂ai∂aj
< 0, and

(e) unique Nash equilibrium; and

4. a �worsening parameter� θ ∈ Θ.

Submodularity is for convenience of the analysis at the moment, though

this can be relaxed in the future. Unique Nash equilibrium allows for ease of

examination. Finally, some example of functions and worsening parameters

are:

1. Fishing Boat 1. Consider a model of a �shing boat, where ai is e�ort

that yields a marginal bene�t depending on total actions exerted and

which has a constant marginal cost:

wi = ai(1 + θ)v(ai + aj)− c · ai.
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In this example, θ multiplies the value of the action. In particular, v(a)

is decreasing, while ai and aj are perfect substitutes, so they enter cer-

tain functions as a sum; increasing either action decreases the marginal

bene�t of all action. A larger θ means that action is more valuable,

and so intuitively, both players would increase actions and thus further

diminish v(·).

2. Fishing Boat 2. Another possibility is:

wi = aiv(ai, (1 + θ)aj)− c · ai.

This is example is similar to the one above in set up, other than the fact

that θ now directly magni�es the e�ect of the opponent's action, decreas-

ing v(·, ·). However, unlike the example above, there is no compensating

bene�t from θ, and it appears that both players will lower their actions,

which then gives room for compensation.

3. Variance Spread 1. Now consider a dynamic utility function where θ

determines the entrance and e�ect of shocks:

wi = (1− β)ai[v(ai + aj)− c] + βV ((s− ai − aj)((1− θ)r + θht)).

In this example, there is a dynamic stock which a�ects value next period,

as well as a parameter ht carried around which a�ects the variability of

next period's input. As θ gets larger, there is less weight on the static

growth rate r and more weight on the series of ht.
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4. Variance Spread 2. Another possibility is:

wi = (1−β)ai[v(ai+aj)−c]+βE [V ((s− ai − aj)((1− θ)r + θht+1))|ht] .

where ht+1 ∼ f(ht). This example is similar to the one above, except

that ht is not a known sequence. Agents can no longer perfectly prepare

for what will happen, and as θ gets larger, there is more uncertainty.

5. Time Correlation 1. A �nal example is:

wi = (1− β)ui(ai, aj, s) + βE [V (ai, aj, s, ht+1)|ht, θ] .

where ht+1 ∼ f(ht, θ). In this �nal example, which is a further extension

of the ones above, θ is not even in the utility function directly, but rather

governs the distribution of some shock. If this is a correlation parameter,

as in Chapter 3, then this could enhance a dynamic externality.

For now, the problem will remain general. An individual player's Nash

optimization problem, which has the unique solution aNi (θ), can be written as

follows:

max
ai∈Ai

wi
(
ai, a

N
j (θ); θ

)
(2.1)

Because of the negative externality, the Nash equilibrium is not optimal.

A social planner putting equal weight on each player would choose aP (θ) =(
aPi (θ), aPj (θ)

)
, which is the unique solution to the following problem:

max
ai∈Ai,aj∈Aj

wi(ai, aj; θ) + wj(aj, ai; θ) (2.2)
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For both of these problems,2 there needs to be a baseline of what occurs

when the parameter is zero. Only with an understanding of a baseline can a

change be measured.

De�nition. The baseline utility function of a game Γ is evaluated at θ = 0,

and is formally written as:

wi(ai, aj; 0) = ui(ai, aj) (2.3)

The baseline optima are as follows:

1. The non-cooperative Nash equilibrium is denoted as aN(0), abbreviated

as aN, with components
(
aNi (0), aNj (0)

)
, which may also be abbreviated

to
(
aN
i , a

N
j

)
. This is the unique solution to the simultaneous maximiza-

tion problems for all i in I:

max
ai∈Ai

ui
(
ai, a

N
j

)
2. The cooperative Nash equilibrium, or Social Planner's solution, is de-

noted as aP (0), or shortened to aP, with components
(
aPi (0), aPj (0)

)
,

2Observe that the �rst order conditions to both of these problems could be summarized
as the following set of equations, where the Nash condition is at t = 0, while the social
planner's condition is at t = 1:

∂wi

∂ai
+ t

∂wj

∂aj
= 0, t

∂wi

∂ai
+
∂wj

∂aj
= 0.
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which may also be abbreviated to
(
aP
i , a

P
j

)
. This is the unique solution

to the social planner's maximization problem:

max
ai∈Ai,aj∈Aj

ui(ai, aj) + uj(aj, ai)

The existence of negative externalities means that coordination, if pos-

sible, would be Pareto-improving. One of the main interests is when coordina-

tion will happen and its resulting value. It is possible that when value is higher,

coordination is more likely. However, what does it mean for value to be higher?

To answer this question, I examine the di�erence between non-coordination

and coordination, taking into account gaps in utility and in action. The pos-

sible objects of interest to pursue are:

1. Direct value to coordination: This seems to be the clear measure of

bene�t: how much extra total surplus can be created by moving from

non-coordination to coordination in situations with varying degrees of

externality? If θ characterizes the externality, then of interest is how

increases in θ, which make the externality worse, will a�ect the gap

between coordinated and uncoordinated action:

d

dθ

[
wP (θ)−

(
wN1 (θ) + wN2 (θ)

)]
where the wP (θ) is the total utility evaluated at aP (θ), wN1 (θ) is the

utility to agent one evaluated at aN(θ), while wN2 (θ) is the utility to

agent two evaluated at aN(θ).
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The di�erence should always be weakly positive, because of the de�nition

of the two problems. However, the gap could stay the same as θ increases,

or could even shrink. Therefore, it is of non-trivial interest to characterize

when this gap is strictly increasing.

Unfortunately without careful attention to the structure of the problem,

this object could capture changes purely in levels. It appears this �value

to coordination� can be arbitrarily manipulated via magnitude of the

gap. This leads to another object of interest.

2. Increase in range of coordination: In the presence of a negative

externality, a social planner's actions are generally smaller than the Nash

actions. Rather than pursuing changes in utility, one way to think of an

externality getting worse would be if the social planner's recommended

actions are decreasing as the worsening parameter increases, while agents

acting on their own are inclined to do the opposite. An increasing gap

between actions taken under coordination and non-coordination can be

another sign that an externality is getting worse. Therefore, of interest is

how the di�erence between the Nash equilibrium and the Pareto optimal

actions change with respect to the parameter:

d

dθ

[
aNi (θ)− aPi (θ)

]
.

If the actions are moving further apart from one another, there may

be more bene�t to coordination. Furthermore, the scope of possible
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agreements is increased, and there are more reductions that can be made,

so this may be another notion of when a treaty is more likely.

The above can also be written as:

∆aNi (θ)−∆aPi (θ)

∆θ

Moving from an original utility function, the change in the parameter

is simply the value assigned, that is

∆θ = θ − 0 = θ.

The changes in the Nash and Pareto optimal actions can be written as:

∆aNi (θ) = aNi (θ)− aNi (0)

∆aPi (θ) = aPi (θ)− aPi (0)

Observe that were one to multiply these by θ, these would look like

pieces of a �rst order Taylor expansion around the Nash equilibrium and the

social optimum.

For certain problems, even if it is possible to determine how the pa-

rameter θ a�ects actions, the relative changes between coordination and non-

coordination may be di�cult to characterize. Furthermore, if θ is a di�cult

nature to derive, simpli�cation through linearization may assist in answering

the questions of interest.

In the following section, I describe a symmetric game within the basic

assumptions described earlier in order to gain some intuition in a simple case.
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I modify the original utility functions with three di�erent linearized worsening

parameters � an �own e�ect,� an �opponent e�ect,� and a �submodular e�ect� �

in order to represent more complicated utility functions. I then derive general

conclusions for such parameters in a one-stage symmetric game.

2.3.1 Symmetric Game

There are many ways to model the severity of an externality, depending

on the type of in�uence the action has upon it. For instance, the simplest

notion of worsening could consist of �pure hurt,� a multiplying factor on the

opponent's action which does not a�ect marginal utility of own action but

which lowers utility unambiguously. A more complicated version of worsening

could involve a story of correlation in time shocks of a resource stock, and as

more information is available, the resource stock is exploited even more and

the tragedy of the commons worsens.

As mentioned earlier, this section models the worsening of externalities

using three paths: changing how the opponent's action a�ects utility, changing

how the agent's own action a�ects utility, and changing how the cross-e�ect

of actions a�ects utility. These three paths o�er representation of more com-

plicated stories on their own or through combinations.

With regard to the earlier discussion of utility gaps versus action gaps,

there are a few ways to go about adding a linearized term to the utility func-

tion. One possibility is to simply add a linear term multiplied by θ. This

will change the derivative with respect to that variable in a linear manner.
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The �pure hurt� term would be represented as subtracting o� θ · aj from the

baseline utility function. This approach will give the correct intuition for the

action gaps, but will necessarily a�ect utility as well. There is some worry that

an increase in the utility gaps between non-coordination and coordination is

somehow �built in� through this term.

Another approach is to model the parameter e�ects as if they were

Taylor expansions around the Nash equilibrium or the Pareto optimal solution,

so these changes in externalities can be thought of as a�ecting the derivatives

of a symmetric utility function. These would not a�ect utility through the

additive term unless actions changed. However, while taking a derivative at

two di�erent points is a mathematically sound idea, the economic intuition is

somewhat murkier. This exercise also captures the correct directional changes

in actions, but may cause concern that the utility function under coordination

is di�erent than that under non-coordination.

Because of these concerns, I use the simple linearization to study only

the action gaps. I ignore the direct value to coordination, because of the

limitations mentioned earlier. I do present the alternative Taylor expansion

structures in the Appendix, and initial analysis for them appears to be similar.

The opponent e�ect is the most intuitive of the three linearizations.

This is where the worsening of the externality rotates the �rst derivative with

respect to the opponent's action. The linearization for the individual problem

is:
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wNi (θJ) = ui(ai, aj)− θJaj,

wNj (θJ) = uj(aj, ai)− θJai.
(2.4)

The own e�ect linearization for the Social Planner's problem is:

wP (θJ) = ui(ai, aj) + uj(aj, ai)− θJ (ai + aj) . (2.5)

As θ increases there is more room for an increase in the opponent's

action to harm the player. Thus, as θ increases, the externality is worsening,

particularly compared to level of θ = 0.

The own e�ect improves the value of one's own action, incentivizing

agents to take larger actions. With a submodular utility function, this en-

hanced activity decreases the marginal bene�t of the opponent, thereby in-

creasing the negative externality. Here, the worsening of the externality is the

rotation of the �rst derivative with respect to own action. The linearization

for the individual problem is:

wNi (θI) = ui(ai, aj) + θIai,

wNj (θI) = uj(aj, ai) + θIaj.
(2.6)

The own e�ect linearization for the Social Planner's problem is:

wP (θI) = ui(ai, aj) + uj(aj, ai) + θI (ai + aj) . (2.7)

This equation is very similar to Equation (2.5); the main di�erence is

that the sign on the worsening parameter is opposite. When linearizing the
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parameter, the determination of own or opponent e�ect in the social planner's

problem is reduced to the sign on the coe�cient. The increase of the parameter

θI increases the value of acting, which may in fact override the externality at

some point, when individual bene�t outweighs social cost. Thus it can be

expected that changes of this kind eliminate the need for coordination at high

levels, though at low parameter values there might still be bene�t.

The submodular e�ect changes the cross-partial of both actions, making

the utility function more submodular than before and enhancing the negative

externality in this manner. The linearization for the individual problem is:

wNi (θIJ) = ui(ai, aj)− θIJaiaj,

wNj (θIJ) = uj(aj, ai)− θIJaiaj.
(2.8)

The submodular e�ect linearization for the Social Planner's problem is:

wPi (θIJ) = ui(ai, aj) + uj(aj, ai)− 2θIJaiaj. (2.9)

The e�ect of each separate modi�cation can be found by comparing

the �rst order conditions of the altered coordination and non-coordination

problems. The following theorem gives the direction of the action gap for each

e�ect in a symmetric game.

Theorem 2.1. For a symmetric game Γ, an increase in the parameter multi-

plying the added linearizations has the following e�ect for each:
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1. Increasing the opponent e�ect increases the distance in the actions under

non-coordination and coordination, that is, for all i:

d

dθJ
[aNi (θJ)− aPi (θJ)] > 0;

2. Increasing the own e�ect has ambiguous results on the distance in actions

under non-coordination and coordination; and

3. Increasing the submodular e�ect also has ambiguous results on the dis-

tance in actions under non-coordination and coordination.

The proof of Theorem 2.1 is the Appendix, though its intuition is dis-

cussed brie�y here. As mentioned earlier, the opponent e�ect is perhaps the

most intuitive, and it is easy to see why its e�ect is unambiguous. Adding

the linearized term to the problem of non-coordination does not change the

player's own incentives, so the Nash actions are unchanged. However, this

term changes the incentives facing a social planner, and coordinated actions

decrease. The opponent e�ect could model a story where there is simply a

larger harm from the opponent's action, or a more complicated story where

harm from the opponent's action prevails.

The own e�ect is ambiguous, at least in attempting to describe it for

the whole range. At small increases, it can result in a positive gap, due to

the submodularity in the problem. However, the enhanced bene�t from an

increase in one's action at some point outweighs the increased negative ex-

ternality caused by the other player doing the same. A social planner would
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also increase actions, but more slowly because of the negative externality and

submodularity. An example of this would be an improved technology that

increases the marginal bene�t of own action.

The submodular linearization is also ambiguous unless curvature is ex-

amined, but for another reason. While the own e�ect caused increases in

actions under both coordination and non-coordination, the submodular e�ect

causes decreases in both. The direction of change in the distance of action

gaps depends on the comparative speeds of reduction.

For this symmetric analysis, the three e�ects were examined separately,

in order to distinctly characterize each. In translating an externality situation

into this linearized parameter, the three e�ects may need to be combined to

correctly capture the circumstances. This idea is further explored in the next

chapter of this dissertation.

2.3.2 Non-symmetric Game

The symmetric game places assumptions on the direction that the re-

sponses to θ can take. For instance, cases where the same change in θ a�ects

the players di�erently are not permitted. Thus, in examining the many ways an

externality could be worse, non-symmetric games are important as well. Mov-

ing to a non-symmetric game opens up more possible outcomes with regard to

direction of the players' reactions, and the directions derived in Theorem 2.1

may no longer hold.

Because there are fewer restrictions, this section will ignore the sub-
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modular e�ect in order to keep the analysis tractable. Using both the own

e�ect and the opponent e�ect allows for the agents to a�ect each other asym-

metrically. The parameter θxy represents a deepening of player x's e�ect on

player y. With this adjusted linearization, the agent's utility functions are

now:

wNi (θ) = ui(ai, aj) + θiiai − θjiaj,

wNj (θ) = uj(aj, ai)− θijai + θjjaj.
(2.10)

The non-symmetric linearization for the social planner is:

wP (θ) = ui(ai, aj) + uj(aj, ai) + (θii − θij)ai + (θjj − θji)aj. (2.11)

As brie�y alluded to earlier, the expansions of interest have a linear

combination of coe�cients in front of them. However, while the symmetric

game assured that both coe�cients collapsed into only one, here there are two

distinct coe�cient. Therefore, two composite coe�cients can be de�ned as

allows:
γi = θii − θij

γj = θjj − θji
(2.12)

With these coe�cients, the social planner's problem can be rewritten

as:

max
ai,aj

ui(ai, aj) + uj(aj, ai) + γiai + γjaj (2.13)

Because the two e�ects linearly combine, whether there is an own e�ect

or an opponent e�ect for each agent is given by the signs of γi and γj. There
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are �ve main regions of interest: both γi and γj are positive, both are negative,

they are of opposite signs, one is zero while the other is positive, and one is

zero while the other is negative.

If both coe�cients are negative, then there is an opponent e�ect only.

From the previous section, it is safe to say that coordination will reduce actions,

while the non-coordination actions are constant or increasing. If they are of

opposite signs, or one is negative while the other is zero, then it is likely that

the agent causing an opponent e�ect will have his action reduced, while the

other agent's action may be increased. Also from the previous section came

the result that the own e�ect is ambiguous and depending on curvature. This

is of great interest and will now be somewhat resolved for the non-symmetric

case. The following analysis will characterize su�cient conditions for diverging

actions under own e�ect, or in areas where θii > θij and θjj > θji.

The Nash equilibrium, aN , uniquely solves the following simultaneous

best response problems:

max
ai

ui(ai, aj) + θiiai − θjiaj

max
aj

uj(aj, ai)− θijai + θjjaj

The Nash �rst order conditions are:

∂ui(ai, aj)

∂ai
+ θii ≡ 0,

∂uj(aj, ai)

∂aj
+ θjj ≡ 0.

In the symmetric case, the direction of movement of actions could be

determined because of the extra assumptions symmetricity imposed. Now,
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however, the actions could be moving in separate directions, as the parameters

θii and θjj can also move around separately. One similarity to the symmetric

case is that the opponent e�ect coe�cients wash out, no longer appearing in

the �rst order conditions. Any e�ect from the opponent will come from their

own adjustment of action. The directions of changes can be analyzed with

a second order expansion. This process can be found in the Appendix. The

comparative statics that result can be summarized as follows:

UN =

 ∂2ui(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j


Dθiia

N =

[
∂aNi
∂θii
∂aNj
∂θii

]
, Dθjja

N =

∂aNi∂θjj
∂aNj
∂θjj

 , DaN =
[
Dθiia

N Dθjja
N
]

U ·DaN =

[
−1 0
0 −1

]
All of the entries in U are negative due to concavity and submodular-

ity. This means that the entries in Dθiia
N need to be opposite signs, as do

the entries in Dθjja
N , in order to obtain the negative identity matrix when

multiplied with UN .

Since θii is not in player j's �rst order conditions, the e�ect of θii on

j's action can be described as follows:

∂aNj
∂θii

=
∂aNj
∂ai
· ∂a

N
i

∂θii

Because of the submodularity,
∂aNj
∂ai

< 0, and because of the own e�ect,

∂aNi
∂θii

> 0. Hence,
∂aNj
∂θii

< 0, so the two are of opposite signs and the story
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can hold under proper curvature assumptions. This idea is similar to Huang

and Smith's discussion of congestion versus agglomeration and determining

the direction of externalities in shrimp �shing [38].

For the cooperative problem a social planner chooses unique aP (θ) to

solve:

max
a

ui(ai, aj) + uj(aj, ai) + γiai + γjaj

The �rst order conditions are:

∂ui(ai, aj)

∂ai
+
∂uj(aj, ai)

∂ai
+ γi ≡ 0,

∂ui(ai, aj)

∂aj
+
∂uj(aj, ai)

∂aj
+ γj ≡ 0.

Once again, the second order expansions are in the Appendix. The

summary of the comparative statics is:

UP =

∂2ui(ai,aj)∂a2i
+

∂2uj(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
+

∂2uj(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj
+

∂2ui(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j
+

∂2ui(ai,aj)

∂a2j


UP = UN + V, V ≡

∂2uj(ai,aj)∂a2i

∂2uj(ai,aj)

∂ai∂aj
∂2ui(ai,aj)

∂ai∂aj

∂2ui(ai,aj)

∂a2j


Dγia

P =

[
∂aPi
∂γi
∂aPj
∂γi

]
, Dγja

P =

∂aPi∂γj
∂aPj
∂γj

 , DaP =
[
Dγia

P Dγja
P
]

UP ·DaP = (UN + V ) ·DaP =

[
−1 0
0 −1

]

Because of submodularity and concavity, all the entries in UN are nega-

tive, and the o�-diagonal entries in V are negative as well. As of yet, however,
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this paper has placed no assumptions on the diagonal entries in V . The diag-

onals are second derivative with respect to opponent's action, an aspect which

is not commonly modeled.

In many common utility functions, the opponent-directed second deriva-

tive is zero. Once the opponent's initial e�ect is known, externality or not,

rarely is the speed of that e�ect explicitly described as being central to the

problem. If the second derivative is zero, ∂2ui
∂a2j

= 0, this means that the op-

ponent's e�ect is constant, and that regardless of the opponent's action, their

marginal externality will be the same. For a negative externality, if the sec-

ond derivative is negative, ∂2ui
∂a2j

< 0, then the opponent's e�ect on utility is

`accelerating' � as the opponent's action is increasing, the marginal external-

ity is becoming more negative. If the second derivative is positive, ∂2ui
∂a2j

> 0,

this means a negative externality is `decelerating.' As the opponent's action

is increasing, the marginal negative e�ect on the player is becoming less nega-

tive.3 Borrowing the term from physics, the second derivative of distance with

respect to time is acceleration; this concept gives an idea to the incentives

of reduction of a negative externality or promotion of a positive externality.

When the bene�ts to coordination are not only increasing but accelerating,

negotiation is warranted.

In order to determine the worsening parameter e�ect on the gap be-

tween actions, the D matrices need to be understood. It can be shown that

3For a positive externality, a negative second derivative is decelerating the e�ect of the
externality, while a positive second derivative is accelerating.
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DaN = −U−1 and DaP = −(U + V )−1. The main questions are how these

behave and where DaN −DaP has a de�nite positive sign.

First, some standardization is called for. The derivatives in DaN are

in fact with respect to θii and θjj, while those in DaP are with respect to

γi and γj, which are the composite coe�cients de�ned earlier. In order to

compare the two, it needs to be shown that the hypothetical derivative of aN

with respect to γi and γj is the same as already taken for θii and θjj.

Lemma 2.1. The derivative of aN with respect to θii and θjj is equal to the

derivative of aN with respect to γi and γj, i.e.∂aNi∂θii

∂aNi
∂θjj

∂aNj
∂θii

∂aNj
∂θjj

 =

[
∂aNi
∂γi

∂aNi
∂γi

∂aNj
∂γj

∂aNj
∂γj

]

Proof. Recall the de�nition of the composite coe�cients:

γi = θii − θij

γj = θjj − θji

When taking the total derivative of ai with respect to γi, the following

is obtained:
∂aNi
∂γi

=
∂aNi
∂θii
− ∂aNi
∂θij

It has already been obtained that ∂aNi
∂θij

= 0, hence we have ∂aNi
∂γi

=
∂aNi
∂θii

.

This can be repeated for γj, and then for aNj . Thus, the two matrices are

equivalent.
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In such a general setting, it is di�cult to say where the derivatives are

positive or negative. Therefore, instead of looking for necessity, one possible

approach is to look for su�cient cases of possible direction. The action gap is

certainly increasing if aPi decreases while aNi grows or remains constant, or if

aPi remains constant while aNi grows. More di�cult situations would involve

relative speeds of the two and will remain unaddressed in this paper. Thus,

this means it is of interest to �gure out when DaN is positive in both entries

while DaP is negative in both entries when both parameters are changed in

the same direction, if not by the same magnitude.

First, I examine the Nash actions to �nd when DaN is positive. Then, I

examine the social planner's actions to �nd when DaP is negative. The matrix

UP is a bit more complicated than UN , so I will use two di�erent approaches.

To �nd the responses of the Nash actions when the non-symmetric own

e�ects are both increasing, I look for su�cient conditions for the following to

be positive in both entries:

U ·DaN =

[
−1 0
0 −1

]
DaN = U−1

[
−1 0
0 −1

]
= −U−1 · I = −U−1

= −

 ∂2ui(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j

−1

When DaN is written as
[
Dθiia

N Dθjja
N
]
, if both entries are posi-

tive, then DaN is positive as well. This method of writing DaN will be a
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linearization and can be found by the following procedure:

[
Dθiia

N Dθjja
N
]

= −
[
1 1

]
·

 ∂2ui(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j

−1

If the linearized inverse is negative, then the whole expression will be

positive. Recall that the inverse of a 2× 2 matrix is:[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
.

Using the de�nition of an inverse and applying the linearization, observe

that:

−
[
1 1

]
·
[
a b
c d

]−1
> 0 iff

1

ad− bc
[
d− c a− b

]
< 0

Lemma 2.2. For DaN to be positive and for the Nash actions to be increasing

in response to an increase in θ, it is su�cient for the own second derivatives

to be the same direction in comparison to the cross-partials for both agents.

That is, the own second derivative can be more negative than the cross partial

for both agents:

∂2ui(ai, aj)

∂a2i
<
∂2ui(ai, aj)

∂ai∂aj
and

∂2uj(ai, aj)

∂a2j
<
∂2uj(ai, aj)

∂ai∂aj

or, the own second derivative can be less negative than the cross partial for

both agents:

∂2ui(ai, aj)

∂a2i
>
∂2ui(ai, aj)

∂ai∂aj
and

∂2uj(ai, aj)

∂a2j
>
∂2uj(ai, aj)

∂ai∂aj
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The proof of Lemma 2.2 is in the Appendix. Having found su�cient

conditions for DaN to be increasing, I now examine the movement of DaP ,

the actions under coordination. As before, observe that:

DaP = −(U + V )−1

= −

 ∂2ui
∂a2i

+
∂2uj
∂a2i

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

∂2ui
∂a2j

+
∂2uj
∂a2j

−1

Since (U+V ) is symmetric, its inverse is also symmetric. Furthermore,

a symmetric matrix is diagonalizable, so the eigenvalues of the inverse matrix

can be used to �gure out the sign of its determinant. Since the matrix is

diagonalizable, there is some Q such that:

(U + V )−1 = QTΛQ

Since Q is repeated, the sign of the expression is determined by Λ,

the matrix of eigenvalues. If the eigenvalues of (U + V ) are positive, then

the eigenvalues of its inverse will be as well. When multiplied by the outside

negative, DaP will be negative, providing the decreasing e�ect desired.

Lemma 2.3. For UP to have only positive eigenvalues, it is su�cient that:

∂2ui
∂a2j

> 0 (2.14)

∂2uj
∂a2j

> 0 (2.15)

(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
>

(
∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

(2.16)
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Lemma 2.3 is proven in the Appendix. Combining it with Lemma 2.2,

the following theorem is obtained.

Theorem 2.2. For a symmetric or non-symmetric game Γ, it is su�cient for

a utility function to satisfy Lemmas 2.2 and 2.3 in order for an increase in

the parameters multiplying the added linearizations to increase the distance in

actions under non-coordination and coordination.

Proof. If Γ satis�es Lemma 2.2, then DaN is positive, so aN is increasing in θii

and θjj and unresponsive to θij and θji. If Γ satis�es 2.3, then DaP is negative,

so aP is decreasing in γi and γj, while γi is increasing in θii and decreasing in

θij and γj is increasing in θjj and decreasing in θji.

With Theorems 2.1 and 2.2, this chapter has established two interesting

cases of su�ciency of increasing action gap: the opponent e�ect only in a

symmetric game, and the own e�ect in a possibly non-symmetric game under

certain curvature assumptions. The next chapter describes how the framework

can be applied and attempts to do so in the context of a �shery.
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Chapter 3

Applying the Framework to Fishery Models

3.1 Introduction

As the previous chapter demonstrated, an indirect externality param-

eter can drive whether a situation merits international cooperation. A frame-

work was developed for approximating complicated externalities with a lin-

earized parameter or combination of parameters. The current chapter now

applies the framework to �sheries and a dynamic externality caused by growth

correlation.

There is much concern regarding the state of the world's �sheries today.

Current harvesting strategies have caused great depletion in ocean stocks. Un-

like land animals, the actual stock of a species of �sh can be extremely di�cult

to assess. Estimating the population of a �sh stock requires understanding of

three dynamic rates: recruitment, or the rate at which a juvenile �sh is consider

mature enough to be caught; individual growth, the rate at which members of

the species grow in length; and mortality, the rate at which �sh die from both

�shing and natural causes. Hence, �[u]nless the rate of harvesting can be con-

trolled somehow, the �sh population may eventually be reduced (at a pro�t)

to a low level. This in turn may a�ect the productivity of the resource and
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greatly reduce future catches� [23]. There is evidence that humans are ��shing

down the food web,� seen in a declining average trophic level of worldwide

catches [53], which indicates unsustainable �shing strategies.

By their very nature, ocean �sh are an international commodity, and

so any meaningful coordination among producers must come through an in-

ternational agreement. There are 112 accords, agreements, conventions, pro-

tocols, and amendments under the keyword ��sheries� in the Environmental

Treaties and Resource Indicators database, part of the Socioeconomic Data

and Applications Center hosted by the Center for International Earth Science

Information Network at Columbia University [33]. About 10 of these have

�tuna� in the title. There are number of species of tuna which are �among

the most valuable commercial species,� valued for their taste and sportiveness

[41]. None of the 112 agreements, however, have �shrimp� in the title. Yet both

species are especially valuable; �[i]n the United States, the annual landings of

tuna are usually surpassed in monetary value only by the shrimp catch� [41].

Tuna and shrimp have very di�erent reproductive patterns. Tuna are

classi�ed as highly migratory species, with some like the albacore tuna mak-

ing trips from California to Japan. Spawning females release �100,000 eggs

per kilogram� of their body weight, and some mega-spawners can weigh 65

kilograms. Larva and juvenile mortality rates are high, but �[t]o keep the tuna

population constant, only two o�spring from the millions of eggs produced

by each female would have to survive to maturity� [41]. This pattern sug-

gests high time dependence, where the amount of tuna greatly depends on the
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number of �sh of recruitment age.

Shrimp, on the other hand, hug the coastline. �Juvenile shrimp migrate

inshore in the spring, grow in estuaries during the summer and fall, and then

swim back to the open ocean to spawn in the winter and spring. This behavior

results in a major harvest season from early summer to early winter that

concentrates in the estuaries and nearshore in the open ocean� [38]. Compared

to tuna, this pattern suggests a model where recruitment is less vital year-to-

year.

While externalities in �shing will arise from multiple sources, including

crowding and commons problems, this chapter applies the framework devel-

oped in the previous to the dynamic externality resulting from changes to the

good growth periods of �sh. Section 3.2 presents some of the biological and

economic literature of �sh growth. Section 3.3 presents a simpli�ed model of a

dynamic �shery and describes a parameter which causes an increasing action

gap, while Section 3.4 develops a more realistic �shing model and demonstrates

how the framework would be applied. Section 3.5 gives conclusions for these

two related chapters.

3.2 Literature

Individual �sheries and governments rely on stock assessment tech-

niques, particularly those using biomass approximation, to estimate the num-
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ber of �sh in the oceans.1 By monitoring data on catches, abundances, and bio-

logical relationships, it is possible to estimate the size of a �sh stock [1], as well

as important variables including recruitment growth [56], individual growth,

seasonal growth [25], and additional environmental interactions [17, 36, 50].

Biologists and economists also analyze human impact of harvesting

strategies and market behavior on �sh populations [46]. Cabral, Geronimo,

Lim, and Aliño [18] examine how a two-species community responds to dif-

ferent �shing exploitation strategies, particularly: �boats following high-yield

boats (Cartesian); boats �shing at random sites (stochast-random); and boats

�shing at least exploited sites (stochast-pressure).� They �nd that the stochast-

random strategy is optimal at low �shing pressure, while the Cartesian strategy

is more e�ective at high �shing pressure, in both yield per catch and future

biomass growth. Huang and Smith [38] solve a dynamic structural model with

strategic interactions for �shing shrimp with two types of externalities. They

model a cost due to a stock externality, which has an overall negative impact

on utility, as well as a cost due to congestion externality, which turns out to

have a positive e�ect on utility.

Management of international �shing stocks can be challenging because

of the di�culty of de�ning and assigning �shing rights [39, 47]. There are nu-

merous controversies, including �disagreements over the meaning and intent of

1�A biological �sh stock is a group of �sh of the same species that live in the same
geographic area and mix enough to breed with each other when mature. A management
stock may refer to a biological stock, or a multispecies complex that is managed as a single
unit� [1].
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�shing rights, disputes over the distribution of rights and associated economic

gain, and concern for disruptions imposed� [39] on those operating under the

previous system. Many countries use quota systems to manage national �sh-

eries [30, 54], and economists have described methods for envy-free allocation

of such quotas [42]. Froese [34] notes that ��shing quotas are decided on the

basis of political considerations, largely ignoring the scienti�c advice, and typ-

ically legalizing catches beyond safe levels.� Echoing the reasoning for simple

treaty forms in Chapter 1, he proposes three simple indicators of �sh stock

health and justi�es each of them as a measure for whether there is over�shing

happening. The �rst indicator is �percentage of mature �sh in catch, with

100% as target.� Attaining this target allows all �sh to spawn at least once

and maintain healthy stocks. The second indicator is �percent of specimens

with optimum length in catch, with 100% as target.� Following this rule pre-

vents growth over�shing, and over time increases the size and value of the �sh.

The third and �nal indicator is �percentage of `mega-spawners' in catch, with

0% as the target,� which allows large females to lay more eggs and prevents

�subsequent recruitment failure.�

The link missing in the literature is between which �sh are most in

danger of extinction and which �sh are under current protection, a connection

of biology and economics. Using the idea of increasing action gaps developed in

the previous chapter, I attempt to provide an explanation for why international

coordination occurs for certain species of �sh and not others.

98



3.3 A Simple Fishery

Many of the most di�cult-to-analyze externalities are dynamic in na-

ture. If a dynamic game is Markovian in nature, then inheritability in value

functions [58] applies to many of the curvature requirements derived in Chap-

ter 2. Therefore, if an externality only enters in the stage game, and does

not a�ect the dynamics in an opposing manner, the earlier results are clearly

extendable. The question remains: what of a purely dynamic externality?

Consider a simple stochastic �shing zone model with two agents. The

�shing zone can be in one of two states: damaged, with s = 0, or productive,

with s = 1. When the �shing zone is productive, agents take no strategic

action and receive a deterministic payo� of u1. With probability (1 − r), the

zone remains productive, while with probability r, the �shing zone becomes

damaged.

When the �shing zone is damaged, each agent i has a choice variable

pi ∈
[
¯
p, p̄
]
. This pi is part of the transition probability back to the productive

state, so a higher choice gives a higher chance of getting out of the damaged

state. However, this action is costly in terms of yield. The reward in the bad

state is u0(pi), a function that is decreasing in pi and dominated by the good

state's utility, i.e. u1 > u0(
¯
p) > u0(p̄) > 0 and u′0(pi) < 0. The agent's utility

is only a function of his own choice, pi, so there are no static externalities. The

transition probability, on the other hand is a function of both agents' choices:

P0,1 = pi + pj
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To keep P0,1 in the range of probability, it must be that 2p̄ ≤ 1. Because it is

a function of both agents actions, the transition probability displays a positive

externality.

The transition matrix is:

st

st+1

0 1

0 1− pi − pj pi + pj

1 r 1− r

Consider a stationary strategy as a candidate for a Markov perfect

equilibrium. The strategy would be to play pMi whenever the state is damaged,

or bad, satisfying the following value functions:

Πi
g(pi, p

M
j ) = u1 + β

[
(1− r)Πi

g(pi, p
M
j ) + rΠi

b(pi, p
M
j )
]

Πi
b(pi, p

M
j ) = u0(pi) + β

[
(pi + pMj )Πi

g(pi, p
M
j )

+ (1− pi − pMj )Πi
b(pi, p

M
j )
] (3.1)

Since this is stationary, the good-state value function, Πi
g(pi, p

M
j ), can

be solved for directly as a function of the other variables. The derivation is in

the Appendix, and it is equal to:

Πi
g(pi, p

M
j ) =

u1 + βrΠi
b(pi, p

M
j )

(1− β(1− r))

This can be substituted back into the bad-state value function, solving

for Πi
b(pi, p

M
j ). This is completed in the Appendix, and the resulting function
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is:

Πi
b(pi, p

M
j ) =

(1− β(1− r))u0(pi) + β(pi + pMj )u1

(1− β)
[
1− β + βr + β

(
pi + pMj

)]
Therefore, agent i's maximization problem is as follows, given player

j's Markov perfect stationary action:

max
pi

(1− β(1− r))u0(pi) + β(pi + pMj )u1

(1− β)
[
1− β + βr + β

(
pi + pMj

)]
s.t. pi ≥

¯
p

pi ≤ p̄

Lemma 3.1. There exists a unique interior Markov perfect equilibrium de-

scribed by:

βu0(p
M
i )−

[
1− β + βr + β

(
pMi + pMj

)]
u′0(p

M
i )− βu1 = 0

βu0(p
M
j )−

[
1− β + βr + β

(
pMi + pMj

)]
u′0(p

M
j )− βu1 = 0

The proof is in the Appendix. If the agents are symmetric, then this

becomes:

βu0(p
M)−

[
1− β + βr + 2βpM

]
u′0(p

M)− βu1 = 0,

which can be rearranged to form:

β
(
u0(p

M)− u1
)

=
[
1− β + βr + 2βpM

]
u′0(p

M),

a statement which has the usual interpretation of equating marginal cost and

marginal bene�t and where both sides are negative.
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Now consider a cooperative version of the stationary Markov equilib-

rium.2 The value functions are as follows:

ΠP
g (pi, pj) = 2u1 + β

[
(1− r)ΠP

g (pi, pj) + rΠP
b (pi, pj)

]
ΠP
b (pi, pj) = u0(pi) + u0(pj) + β

[
(pi + pj)Π

P
g (pi, pj)

+ (1− pi − pj)ΠP
b (pi, pj)

] (3.2)

Similarly as for the non-cooperative case, the good-state value function,

ΠP
g (pi, pj), can be solved for explicitly, then substituted into the bad-state

function, which is also obtained. The derivations are in the Appendix and

give the social planner's maximization problem:

max
pi,pj

(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1
(1− β) [1− β + βr + β (pi + pj)]

s.t. pi ≥
¯
p

pi ≤ p̄

pj ≥
¯
p

pj ≤ p̄

Lemma 3.2. There exists a unique interior Markov perfect cooperative equi-

librium given by:

β [u0(pi) + u0(pj)]− [1− β + βr + β (pi + pj)]u
′
0(pi)− 2βu1 = 0

β [u0(pi) + u0(pj)]− [1− β + βr + β (pi + pj)]u
′
0(pj)− 2βu1 = 0

2There are two ways to de�ne the social planner's corresponding restrictions on actions:
he could keep each pi within [

¯
p, p̄], or could keep the sum pi +pj within [2

¯
p, 2p̄]. The second

method gives the social planner some extra transferability the players themselves do not
have, so the �rst method corresponds more naturally to the problem.
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This is proven in the Appendix. With symmetric agents, have one

condition for pP :

2βu0(p
P )−

[
1− β + βr + 2βpP

]
u′0(p

P )− 2βu1 = 0

which can be rearranged as:

2β
(
u0(p

P )− u1
)

=
[
1− β + βr + 2βpP

]
u′0(p

P )

The simpli�ed symmetric case will be used. A comparison of the sym-

metric non-cooperative and cooperative �rst order conditions is below:

β
(
u0(p

M)− u1
)

=
[
1− β + βr + 2βpM

]
u′0(p

M)

2β
(
u0(p

P )− u1
)

=
[
1− β + βr + 2βpP

]
u′0(p

P )

For continuation purposes, the following assumptions are imposed:

1. Dominance of the good state, i.e.

u1 > 2u0(
¯
p) (3.3)

With this assumption, the utility in the good state is su�ciently large,

larger than twice the maximum possible utility in the bad state. This is

to ensure that the good state is tempting enough.

2. Weak concavity, i.e.

0 ≥ u′′0(p) (3.4)

With this assumption, the utility in the bad state is weakly concave in

p.

103



3. Su�ciently high discount factor β, i.e.

[1− β + βr + 2βpP ] > 0 (3.5)

This assumption will guarantee a few non-zero denominators. What it

basically means is that the r given and pP chosen are su�ciently large

together that their discounted sum is larger than 1−β. With exogenous

parameters only, the following is su�cient for the condition above:

[1− β + βr] > 0 (3.6)

The �rst matter is to demonstrate that there is an externality situation,

in that the social planner recommends a higher probability and promotes the

positive externality.

Lemma 3.3. Under the assumptions listed, the social planner's symmetric

action pP is larger than the non-cooperative action pM .

The proof is in the Appendix. Having established the externality, the

next question is whether any of the parameters in the problem cause an increas-

ing action gap. Hence, the comparative statics of the problem are addressed

next.

Lemma 3.4. Under the assumptions listed, the following are the comparative

statics of the problem:

• With respect to the discount factor, β, the non-cooperative action is in-

creasing:

∂pM

∂β
> 0,
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as is the cooperative action:

∂pP

∂β
> 0.

• With respect to the static good-state reward, u1, the non-cooperative ac-

tion is increasing:

∂pM

∂u1
> 0,

as is the cooperative action:

∂pP

∂u1
> 0.

• With respect to the transition from the good state to the bad state, r, the

non-cooperative action is decreasing:

∂pM

∂r
< 0,

while the cooperative action is constant:

∂pP

∂r
= 0.

The proof deriving these comparative statics is in the Appendix. The

last two derivatives, those with respect to r, point the direction of investigation

of a parameter making the externality worse.

The variable r is the probability of transitioning to the bad state if in

the good state. This number is technically not part of the externality story at

all, since it is una�ected by the players' actions and is simply a �fact of life.�
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The social planner pays it no mind in determining the optimal action for the

players; as can be seen, if r increases, i.e. the likelihood of staying in the good

state decreases, the social planner does not change the action taken, ∂p
P

∂r
= 0.

If βu′0(p
M) >

(
1− β + βr + 2βpM

)
u′′0(pM), then the non-cooperative

action is shrinking because less of the costly action is taken to get back to

good state. With higher probability of leaving the good state for the bad, the

good state is less valuable than before, so sacri�cing utility to return to it is

not desirable. This reaction, however, creates a pattern which worsens the

dynamic externality and provides an example of an increasing action gap.

3.4 A Realistic Fishery

The previous �shery model simpli�ed reality, with a focus on under-

standing how a transition probability can cause a dynamic externality, even

when a one-stage game does not contain a commons problem. This section

presents a �shery model which is slightly more realistic. The primitives of this

model are:

1. agents, I = {1, 2},

2. actions, Ai = [0, 1],

3. utility ui(xi), where xi is a function of a ∈ A ≡ ×i∈IAi, and

4. discount factor, δ.
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Agents come into period knowing residual stock, yt−1, and last period's

shock, zt−1. There is some growth shock, zt, which is applied to the residual

stock, but this shock is not revealed to the players. There is perhaps some

knowledge about the expectation of zt from zt−1, depending the distribution

of the growth shocks and any knowledge contained therein. When the growth

function is applied, ŷt is the new starting stock.

Agent i takes action ait, while agent j takes action ajt, each to maxi-

mize his own expected value. This action results in the individual catch, xit,

according to deterministic harvest function. The individual catches are ob-

served by both players, who can then calculate the total summed catch. From

this information, players can then back out the grown stock, as well as the

period's growth shock. Players then know the new residual stock, which is the

grown stock less the catches.

The particular functional forms are now described. First, the period

utility, u(xit), should be something relatively simple, given that the growth

process will be more complicated. The utility function should be increasing in

own catch and possibly weakly concave, depending on desired risk preferences.

Notably, the function does not take any other arguments, so the agent is not

harmed by the fact that the other agent may have caught something as well,

nor does the agent receive any direct bene�t from the stock's existence. The
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simplest possible function to use here is a linear one:3

u(xit) = xit. (3.7)

The catch xit is determined by the harvest function, h(ait, ajt, ŷt). This

is a deterministic function, though the grown stock, ŷt, is unknown to the play-

ers at the time of their decisions. The harvest function should be increasing

and concave in own action, ait, as more e�ort increases catch but with dimin-

ishing marginal returns. On the other hand, the function should be decreasing

in the other player's action, ajt, as more e�ort on an opponent's part decreases

a player's own catch. This aspect captures a direct negative externality in the

stage game, a characteristic which was not present in the example in Section

3.3. Furthermore, the harvest function should be submodular, so more e�ort

on an opponent's part decreases the marginal catch as well. Finally, the har-

vest function should be increasing in stock. A possible function to use here

is:

h(ait, ajt, ŷt) = ŷt (1− exp (−ait (s− ajt))) . (3.8)

It is assumed that s is greater than one, to make sure that s− ajt is a positive

amount.

Working backwards, the next function to characterize is the growth

function. This function needs to correspond to the biological principles of �sh

populations. The growth function should be increasing in the residual stock

3A logarithmic utility function would also be a good choice.
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and in the shock. There is also a natural growth rate, r, which is generally

somewhere between (0, 1), which enters the growth function in an increasing

manner. A possible function to serve as the growth function is:

g(yt−1, zt) = yt exp(r(1 + zt)). (3.9)

The growth shock, zt, is modeled in a manner that allows for possible

correlation over time. One possibility is an AR1 process with some idiosyn-

cratic shock. The growth shock can be written in the following manner:

zt = ρzt−1 + εt, (3.10)

where ρ is the coe�cient of correlation and εt is distributed according to a

standard normal. If ρ is zero, then there is no time correlation, and zt is

identical to the idiosyncratic shock. As ρ increases, the time correlation of

growth shocks increases.

Using these functions and the set-up, the maximization problem of

agent i, given ajt, can then be written as:

Vi(yt−1, zt−1) = max
ai∈[0,1]

E

[
yt−1 exp(r(1 + ρzt−1 + εt))

· (1− exp(−ait(s− ajt)))

+ δVi

(
yt−1 exp(r(1 + zt))(−1 + exp(−ait(s− ajt)

+ exp(−ajt(s− ait))), 1 + ρzt−1 + εt

)∣∣∣∣εt]
s.t. εt ∼ N(0, 1), f(εt) =

1√
2π

exp

(
−ε2t

2

)
(3.11)
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The exact bounds are not addressed here, though there must be some

knowledge of what occurs if the stock goes extinct. This is an extension to be

covered when estimation is attempted.

In order to apply the parameterization framework in a negative exter-

nality, the �rst step is to characterize the nature of the externality and pa-

rameters that may a�ect it. There were three possible linear e�ects describe:

the opponent e�ect, the own e�ect, and the submodular e�ect.

Recall that the opponent e�ect involved directly increasing the nega-

tive externality caused by the opponent's action, the own e�ect increases the

marginal bene�t of a player's own action, and the submodular e�ect decreases

an already-negative cross-partial. Therefore, in order to determine which pa-

rameterization to use, the following derivatives should be taken:

1. If a parameter θ causes an own e�ect, then it should increase the marginal

utility of own action. Therefore, the following derivative should be taken

and checked:
∂

∂θ

[
∂ui
∂ai

]
> 0

and/or
∂

∂θ

[
∂Vi
∂ai

]
> 0.

2. If a parameter θ causes an opponent e�ect, then it should make the

negative externality stronger. Therefore, the following derivative should

be taken and checked:
∂

∂θ

[
∂ui
∂aj

]
< 0
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and/or
∂

∂θ

[
∂Vi
∂aj

]
< 0.

3. If a parameter θ causes a submodular e�ect, then it should make a nega-

tive cross-partial even more negative. Therefore, the following derivative

should be taken and checked:

∂

∂θ

[
∂2ui
∂ai∂aj

]
< 0

and/or
∂

∂θ

[
∂2Vi
∂ai∂aj

]
< 0.

For a set-up with a positive externality or supermodularity, the signs of

interest would be opposite.

The second step is to determine if the necessary curvatures for The-

orems 2.1 and 2.2 to hold are met. For the derivatives that hold true, the

corresponding linearized parameters can be added to the baseline utility func-

tion, and with the proper curvature, they give the directions described in the

previous chapter. From the results derived, two su�cient situations are the

most clear: if the opponent e�ect is the only e�ect, then the action gap holds

by Theorem 2.1; if the own e�ect is the only e�ect, then the requirements for

Theorem 2.2 must be checked.

Checking the derivatives of a dynamic function can be a di�cult task,

particularly with a nuanced problem like Equation (3.11). Though the full

derivative should be checked, the following analysis will focus on just the �rst
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stage. The linearization framework could be extended to two parameters, one

which describes the e�ect of the parameter on the �rst stage, and one which

describes the e�ect on continuation value. This is an extension which may

prove interesting, but at this moment, only the stage parameter is investigated.

If just examining the �rst stage, then the maximization problem be-

comes:

U ≡ max
ait

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))[1− exp(−ait(s− ajt))]

· 1√
2π

exp

(
−ε2t

2

)
dεt

(3.12)

The parameter of interest is ρ, the coe�cient of correlation on the

growth shock. With zero correlation, there is no information gained from

knowing the previous period's shock. With positive correlation, the previous

period's growth shock gives some information, however, and may a�ect the

strategies used and the negative externality.

To check if there is an own e�ect, the �rst step is to take the derivative

of U with respect to ai:

∂U

∂ai
=

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))[− exp(−ait(s− ajt))(−1)(s− ajt)]

· 1√
2π

exp

(
−ε2t

2

)
dεt

=

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt)) exp(−ait(s− ajt))(s− ajt)

· 1√
2π

exp

(
−ε2t

2

)
dεt

(3.13)
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This derivative is positive, as the larger action increases one-stage util-

ity. However, since today's action lowers tomorrow's stock, this would enter

negatively into continuation value, making the derivative with respect to the

full value function have an ambiguous sign.

The next step is to look at the e�ect of ρ on this derivative:

∂

∂ρ

[
∂U

∂ai

]
=

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))rzt−1

· exp(−ait(s− ajt))(s− ajt)
1√
2π

exp

(
−ε2t

2

)
dεt

= yt−1zt−1 exp(−ait(s− ajt))(s− ajt)

·
∫ ∞
−∞

r exp(r(1 + ρzt−1 + εt))
1√
2π

exp

(
−ε2t

2

)
dεt

= yt−1zt−1 exp(−ait(s− ajt))(s− ajt)

·
∫ ∞
−∞

r exp(r(1 + ρzt−1)) exp(rεt)
1√
2π

exp

(
−ε2t

2

)
dεt

= yt−1zt−1 exp(r(1 + ρzt−1)) exp(−ait(s− ajt))(s− ajt)

·
∫ ∞
−∞

r√
2π

exp(rεt) exp

(
−ε2t

2

)
dεt

(3.14)

To determine the sign of this expression, each piece must be examined.

With proper bounds on extinction, then yt−1 is positive, as is s− ajt and each

of the exponential functions, including the integrated term. However, the sign

of zt−1 is unknown. Because this growth shock is hit by an idiosyncratic shock

distributed according to a standard normal, it is possible for the growth shock

to be positive or negative. The entirety of the expression is positive when
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previous period's growth shock, zt−1 is positive, but it is negative if that shock

is negative. Since this value could foreseeably switch every period, not much

information is gained here as to whether an own e�ect is present.

To check if there is an opponent e�ect, the �rst step is to take the

derivative of U with respect to aj:

∂U

∂aj
=

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))

· [− exp(−ait(s− ajt))(−ait)(−1)]
1√
2π

exp

(
−ε2t

2

)
dεt

= −
∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))

· exp(−ait(s− ajt))ait
1√
2π

exp

(
−ε2t

2

)
dεt

(3.15)

This derivative is negative, as a larger action taken by the opponent de-

creases one-stage utility. The opponent's action also lowers tomorrow's stock,

so this enters negatively into the continuation value. Unlike the own action,

the opponent action enters into both parts in the same manner, and so the

derivative with respect to the full value function should be negative.

The next step is to determine the e�ect of ρ on this derivative:
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∂

∂ρ

[
∂U

∂aj

]
=

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))rzt−1

· exp(−ait(s− ajt))(−ait)
1√
2π

exp

(
−ε2t

2

)
dεt

= yt−1zt−1 exp(−ait(s− ajt))(−ait)

·
∫ ∞
−∞

r exp(r(1 + ρzt−1 + εt))
1√
2π

exp

(
−ε2t

2

)
dεt

= − yt−1zt−1 exp(r(1 + ρzt−1)) exp(−ait(s− ajt))ait

·
∫ ∞
−∞

r√
2π

exp(rεt)) exp

(
−ε2t

2

)
dεt

(3.16)

Again, most of the pieces of this function are positive, but there is a

negative sign out front. Like with the own e�ect, the sign is determined by the

previous period's growth shock, zt−1. If that is positive, then the expression

is negative, while if that growth shock is negative, then the whole expression

is positive.

To check if there is a submodular e�ect, the �rst step is to take the

derivative of U with respect to ai and aj:
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∂2U

∂ai∂aj
=

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))[exp(−ait(s− ajt))(−1)

+ exp(−ait(s− ajt))(−1)(s− ajt)(−ait)]
1√
2π

exp

(
−ε2t

2

)
dεt

=

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))[− exp(−ait(s− ajt))

− exp(−ait(s− ajt))(−ait(s− ajt))]
1√
2π

exp

(
−ε2t

2

)
dεt

= −
∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt)) exp(−ait(s− ajt))

· (1− ait(s− ajt))
1√
2π

exp

(
−ε2t

2

)
dεt

(3.17)

This derivative is weakly negative, since s − ajt > 0, while ait ≤ 1 be-

cause of bounds on the domain. Hence there is weak submodularity displayed

in the problem.

The next step is to determine the e�ect of ρ on this cross-partial:

∂

∂ρ

[
∂2U

∂ai∂aj

]
= −

∫ ∞
−∞

yt−1 exp(r(1 + ρzt−1 + εt))rzt−1 exp(−ait(s− ajt))

· (1− ait(s− ajt))
1√
2π

exp

(
−ε2t

2

)
dεt

= − yt−1zt−1 exp(−ait(s− ajt))(1− ait(s− ajt))

·
∫ ∞
−∞

r exp(r(1 + ρzt−1)) exp(rεt))
1√
2π

exp

(
−ε2t

2

)
dεt

= − yt−1zt−1 exp(r(1 + ρzt−1)) exp(−ait(s− ajt))

· (1− ait(s− ajt))
∫ ∞
−∞

r√
2π

exp(rεt)) exp

(
−ε2t

2

)
dεt

(3.18)

As with the opponent e�ect, most pieces of this expression are positive,

there is a negative sign out front, and the actual sign of the expression depends
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on the previous period's growth shock, zt−1. If that shock is positive, then the

whole expression is negative, while if that shock is negative, then the expression

is positive.

3.5 Conclusions

These two chapters work together to provide the very beginning of

insight into a complicated problem of externalities. With the number of possi-

bilities for coordination to reduce an externality problem, there must be some

method to determine which situations merit that coordination. I put forth the

framework examining externalities based on some parameter which causes in-

creasing action gaps between coordination and non-coordination. Since many

externality stories can be di�cult to analyze, I proposed a method of lin-

earization based on three possible e�ects and analyzed two notable cases of

increasing action gaps. The �rst was a sole opponent e�ect in a symmetric

game, where the optimal action under coordination unambiguously diverges

from the non-coordination action. The second was an own e�ect in a poten-

tially non-symmetric game, where su�cient conditions for divergence include

accelerating bene�ts to reduction of the action that causes the negative exter-

nality.

The main extension to pursue is that of centered parameterizations.

Unlike the simple linear parameterization, a centered term can give better in-

sight into the utility gap as well. However, there must be careful understanding

of how the separate centerings a�ect economic intuition. In early analysis, the
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centered Taylor expansion form suggests that the submodular e�ect is null.

In comparison to the ambiguous decreases under the linear parameterization,

this departure suggests that the framework should be checked for robustness

to parameterization.

The di�culties in applying the framework in this chapter suggest an

even more complicated problem is at hand than originally thought. Further

work requires more conclusive examples than the �shery models presented

here. For instance, a modi�cation of the full �shery model which guarantees

that growth shocks are between zero and two would be less realistic, perhaps,

but would guarantee the necessary sign for each of the three e�ects to be

included. However, the initial analysis presented here does suggest that per-

sistence in growth shocks of �sh gives some sort of increase in action gap, and

thereby a motivation for coordination under high time correlation.
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Appendix A

Proofs and Derivations for Chapter 1

A.1 General Set-up and Unrestricted Commitment Power

Proof of Lemma 1.1.

Restatement of Lemma 1.1. For any u ∈ U, if a∗(u) ∈ Eq(u), then any

small vector decrease in a∗(u) is Pareto improving.

Proof. For each i, evaluated at a∗(u), an agent i's marginal utility of his own

action ∂ui(·)
∂ai

= 0, so an ε-decrease from a∗i will reduce i's utility by something

on the order of ε2. However, for all agents j 6= i, the marginal utility for j of

i's action is strictly negative ∂uj(·)
∂ai

< 0, so the ε-decrease from a∗i will increase

j's utility on the order of ε. For small positive ε, ε2 < ε.

Proof of Lemma 1.2.

Restatement of Lemma 1.2. For u ∈ U, when coalitional commitment

power is unrestricted, the unrestricted equilibrium of the coalition of the whole,

aUn(u, I), is conceivable for all u ∈ U, and no other coalition J strictly smaller

than I can improve upon the actions in summed utility.
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Proof. By Lemma 1.1, aUn(u, I) is conceivable. By de�nition, the unrestricted

coalitional commitment power solves the problem, maxa∈A
∑

i∈I ui(a), where

each member can be assigned any action in the space, so no other vector of

actions, equilibrium or not, gives a higher sum.

A.2 Lump-sum Commitment Power

A.2.1 Proofs for Section 1.4.1

Proof of Theorem 1.1.

Restatement of Theorem 1.1. For any J ( I, #J ≥ 2, there is a set of

u ∈ U having non-empty interior, for which the vector of actions aLS(u, J) is

conceivable, formally denoted as:

(∀j ∈ J)[uj(a
LS(u, J)) > uj(a

∗(u))].

Further, there is a subset of u ∈ U having non-empty interior which ful�ll the

above and for which, under the lump-sum restriction, the coalition J improves

upon the outcome of the coalition of the whole, formally written as:

(∀i ∈ I)[ui(a
LS(u, J)) > ui(a

LS(u, I))].

Proof. For some I, pick some J with cardinality greater than one. Pick a

function u ful�lling all of the desired characteristics and where exclusion is

optimal under the lump-sum restriction. This proof will use a particular func-

tion for which exclusion is optimal and all the assumptions on U hold, and

then demonstrate that those assumptions are open conditions.
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The particular function considered is

ui(a) = θi (10 + ai)− a2i

(
n+

n∑
j=1

aj

)
. (A.1)

The parameter θ is as described in Section 1.4.2, where the group J consists

of agents who have θi = 1, while the remaining agents not in J have θi = θ ∈

Θ = (0, 1).

Exclusion Result

An example of the optimality of exclusion under su�cient heterogene-

ity for this chosen function comes from Lemma 1.4, which is itself proven in

Appendix A.2.2.

Ful�llment of Assumptions

• Twice continuous di�erentiability: This assumption clearly holds for this

utility function, as the �rst and second total and partial derivatives can

be easily taken.

� First derivatives

dui(a)
da

= ∂ui(a)
∂ai

+
∑

j 6=i
∂ui(a)
∂aj

∂ui(a)
∂ai

= (1− θi)−
[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
∀ j 6= i ∂ui(a)

∂aj
= −a2i

� Second derivatives
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d2ui(a)
da2

= ∂2ui(a)

∂a2i
+ 2

∑
j 6=i

∂2ui(a)
∂ai∂aj

+
∑

j 6=i

{
∂2ui(a)

∂a2j
+
∑

k 6=i or j
∂ui(a)
∂aj∂ak

}
∂2ui(a)

∂a2i
= −

[
2
(
n+

∑n
j=1 aj

)
+ 4ai

]
∀ j 6= i ∂2ui(a)

∂ai∂aj
= −2ai

∀ j 6= i ∂ui(a)

∂a2j
= 0

∀ k 6= i or j ∂ui(a)
∂aj∂ak

= 0

• Negative externalities: Using the derivatives above, I can con�rm nega-

tive externalities on the domain. The �rst derivative of i's utility function

with respect to any j's action is:

∀ j 6= i
∂ui(a)

∂aj
= −a2i

For every action in the set Ai = [0, 1], this derivative is less than or equal

to zero. It is strictly negative for actions in (0, 1] and only zero when no

action is taken, i.e. ai = 0.

• Submodularity: Again, using the derivatives above, I can con�rm sub-

modularity on the domain. The cross-partial of i's utility function with

respect to his own action and another agent j's action is:

∀ j 6= i
∂2ui(a)

∂ai∂aj
= −2ai

For every action in the set Ai = [0, 1], this derivative is less than or equal

to zero. It is strictly negative for actions in (0, 1] and only zero when no

action is taken, i.e. ai = 0.
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• Strict own concavity: Once again, using the derivatives above, I can

con�rm strict concavity on the domain. The second derivative of i's

utility function with respect to his own action is:

∂2ui(a)

∂a2i
= −

[
2

(
n+

n∑
j=1

aj

)
+ 4ai

]

For any a ∈ A, this derivative is strictly negative.

• Unique Nash equilibrium: The maximization problem for an agent, given

other's Nash actions a∗j , is the following:

max
ai∈[0,1]

(1− θi) (10 + ai)− a2i

(
n+

n∑
j=1

aj

)
s.t. ai ≥ 0

ai ≤ 1

The Lagrangian is:

L(ai, λ1i, λ2i) = (1− θi) (10 + ai)− a2i
(
n+

∑n
j=1 aj

)
+λ1iai + λ2i(1− ai)

The Kuhn-Tucker conditions are:

∂L

∂ai
=(1− θi)−

[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
+ λ1i − λ2i = 0

λ1iai = 0, λ1i ≥ 0, ai ≥ 0

λ2i(1− ai) = 0, λ2i ≥ 0, ai ≤ 1

There are three cases to examine: interior solution, corner solution of

zero, and corner solution of one.
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Case i. Interior action: ai ∈ (0, 1)⇒ λ1i = λ2i = 0

The �rst derivative of the Lagrangian becomes:[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
= (1− θi)[

2ai

(
n+

∑
j 6=i a

∗
j

)
+ 3a2i

]
= (1− θi)

3a2i + 2ai

(
n+

∑
j 6=i a

∗
j

)
− (1− θi) = 0

Using the quadratic formula to solve for the optimal action:

a∗i =
−2
(
n+

∑
j 6=i a

∗
j

)
±
√

4
(
n+

∑
j 6=i a

∗
j

)2
+ 12(1− θi)

6

=
−
(
n+

∑
j 6=i a

∗
j

)
±
√(

n+
∑

j 6=i a
∗
j

)2
+ 3(1− θi)

3

Check if these answers are interior. First, check a∗−i (which uses

the minus from ±):

a∗−i =
1

3

[
−
(
n+

∑
j 6=i a

∗
j

)
−
√(

n+
∑

j 6=i a
∗
j

)2
+ 3(1− θi)

]
Know

(
n+

∑
j 6=i a

∗
j

)2
+ 3(1− θi) > 0

⇒
√(

n+
∑

j 6=i a
∗
j

)2
+ 3(1− θi) > 0

⇒ 1

3

[
−
(
n+

∑
j 6=i a

∗
j

)
−
√(

n+
∑

j 6=i a
∗
j

)2
+ 3(1− θi)

]
< 0

This means that a∗−i is not within the domain, and so it cannot be

an equilibrium action. Now check a∗+i (which uses the plus from
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±):

a∗+i =
1

3

[
−
(
n+

∑
j 6=i a

∗
j

)
+

√(
n+

∑
j 6=i a

∗
j

)2
+ 3(1− θi)

]

Know

√(
n+

∑
j 6=i a

∗
j

)2
+ 3(1− θi) >

(
n+

∑
j 6=i a

∗
j

)
⇒ 1

3

[
−
(
n+

∑
j 6=i a

∗
j

)
+

√(
n+

∑
j 6=i a

∗
j

)2
+ 3(1− θi)

]
> 0

This means that a∗+i is greater than zero; now check if it is less than
one.

1

3
−
(
n+

∑
j 6=i a

∗
j

)
+

√(
n+

∑
j 6=i a

∗
j

)2
+ 3(1− θi)

?
< 1

−
(
n+

∑
j 6=i a

∗
j

)
+

√(
n+

∑
j 6=i a

∗
j

)2
+ 3(1− θi)

?
< 3

√(
n+

∑
j 6=i a

∗
j

)2
+ 3(1− θi)

?
<
(
n+

∑
j 6=i a

∗
j

)
+ 3(

n+
∑

j 6=i a
∗
j

)2
+ 3(1− θi)

?
<
((
n+

∑
j 6=i a

∗
j

)
+ 3
)2

(
n+

∑
j 6=i a

∗
j

)2
+ 3(1− θi)

?
<
(
n+

∑
j 6=i a

∗
j

)2
+ 6

(
n+

∑
j 6=i a

∗
j

)
+ 9

3(1− θi) < 6
(
n+

∑
j 6=i a

∗
j

)
+ 9

Since (1−θi) < 1, this certainly holds. Thus, we know that a∗+i < 1.

Case ii. Corner solution of zero: a∗i = 0⇒ λ2i = 0

The �rst derivative of the Lagrangian becomes:

(1− θi) + λ1i = 0

⇒ (1− θi) ≤ 0

⇒ θi = 1

This is outside the range of Θi = (0, 1), so this case will not occur.
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Case iii. Corner solution of one: a∗i = 1⇒ λ1i = 0

The �rst derivative of the Lagrangian becomes:

(1− θi)−
[
2
(
n+

∑
j 6=i aj

)
+ 3
]
− λ2i = 0

(1− θi) =
[
2
(
n+

∑
j 6=i aj

)
+ 3
]

+ λ2i

⇒ (1− θi) ≥ 2
(
n+

∑
j 6=i aj

)
+ 3

However, since 1− θi ≤ 1 and 2
(

1 +
∑

j 6=i a
∗
j

)
>> 1, this case can

never occur.

Thus the interior case is the only one which will be chosen. Now I show

that the equilibrium is unique through proof by contradiction. Suppose

there exists a∗ and a∗∗ s.t. that the interior Kuhn-Tucker conditions are

ful�lled, i.e. for all i both of the following hold:

2a∗i

(
n+

∑n
j=1 a

∗
j

)
+ a∗i

2 = (1− θi)

2a∗∗i

(
n+

∑n
j=1 a

∗∗
j

)
+ a∗∗i

2 = (1− θi)

Summing these conditions over i, the following two conditions must hold:

2 (n+
∑n

i=1 a
∗
i )
∑n

i=1 a
∗
i +

∑n
i=1 a

∗
i
2 =

∑n
i=1(1− θi)

2 (n+
∑n

i=1 a
∗∗
i )
∑n

i=1 a
∗∗
i +

∑n
i=1 a

∗∗
i

2 =
∑n

i=1(1− θi)
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Subtract the bottom condition from the top one:[
2 (n+

∑n
i=1 a

∗
i )
∑n

i=1 a
∗
i +

∑n
i=1 a

∗
i
2
]

−
[
2 (n+

∑n
i=1 a

∗∗
i )
∑n

i=1 a
∗∗
i −

∑n
i=1 a

∗∗
i

2
]

= 0

2 [(n+
∑n

i=1 a
∗
i )
∑n

i=1 a
∗
i − (n+

∑n
i=1 a

∗∗
i )
∑n

i=1 a
∗∗
i ]

+
[∑n

i=1 a
∗
i
2 −

∑n
i=1 a

∗∗
i

2
]

= 0

2n [
∑n

i=1 a
∗
i −

∑n
i=1 a

∗∗
i ] + 2

[
(
∑n

i=1 a
∗
i )

2 − (
∑n

i=1 a
∗∗
i )

2
]

+
[∑n

i=1 a
∗
i
2 −

∑n
i=1 a

∗∗
i

2
]

= 0

This can only be solved if
∑n

i=1 a
∗
i =

∑n
i=1 a

∗∗
i and

∑n
i=1 a

∗
i
2 =

∑n
i=1 a

∗∗
i

2.

However, this condition does not yet imply that the two equilibria are

equal, i.e. that a∗i = a∗∗i for all i.

In order for a∗ and a∗∗ to not be the same, there must be at least one

person for whom the actions are di�erent. Without loss of generality,

suppose a∗i 6= a∗∗i . Check the conditions for i to see whether this is

possible.

2a∗i

(
n+

∑n
j=1 a

∗
j

)
+ a∗i

2 = (1− θi)

2a∗∗i

(
n+

∑n
j=1 a

∗∗
j

)
+ a∗∗i

2 = (1− θi)

Recall that the total agent sums must be the same, i.e.
∑n

i=1 a
∗
i =∑n

i=1 a
∗∗
i . Subtract the bottom condition from the top one:

2(a∗i − a∗∗i )
(
n+

∑n
j=1 a

∗
j

)
+ (a∗i

2 − a∗∗i 2) = 0

Substitute the factorization for the di�erence of squares:

2(a∗i − a∗∗i )
(
n+

∑n
j=1 a

∗
j

)
+ (a∗i + a∗∗i )(a∗i − a∗∗i ) = 0
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If a∗i 6= a∗∗i , this means we can divide through by (a∗i − a∗∗i ), since it is

not equal to zero. This gives:

2
(
n+

∑n
j=1 a

∗
j

)
+ (a∗i + a∗∗i ) = 0

2
(
n+

∑n
j=1 a

∗
j

)
= −(a∗i + a∗∗i )

This leads to a contradiction: n > 0 and for all j, a∗j ≥ 0, meaning that

the left-hand side is strictly positive, while the right-hand side must be

weakly negative. Therefore it must be that a∗i = a∗∗i for all i, meaning

that a∗ and a∗∗ are the same and that the equilibrium is unique.

Openness of Conditions

The C2-norm on the utility functions for i ∈ I is:

||ui||i ≡ max
a∈A
|ui(a)|+

∑
j

max
a∈A

∣∣∣∣∂ui(a)

∂aj

∣∣∣∣+
∑

k,j∈I,k≥j

max
a∈A

∣∣∣∣∂2ui(a)

∂ak∂aj

∣∣∣∣
The product space of the individual utility function is u ∈ C2(A;RI),

with the norm:

||u|| ≡ max
i∈I
||ui||i

The distance between two utility outcomes is d(u, v) ≡ ||u − v||. To show

openness, I will show that for a u ∈ U there exists ε > 0 such that ||u−v|| < ε

implies that v ∈ U also.

• Negative externality: The problem

max
i,j

max
a

∂ui(a)

∂aj
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has a solution {i∗, j∗, a∗}. Since u ∈ U, ∂ui∗ (a
∗)

∂aj∗
< 0. De�ne

εa ≡
1

2

∣∣∣∣∂ui∗(a∗)∂aj∗

∣∣∣∣ .
If ||u− v|| < εa, then ∀ i,∀ j,∀ a ∂vi(a)

∂aj
< −εa < 0. Thus, v has negative

externalities.

• Submodularity and concavity: Similarly as above, the problem maxi,j

maxa
∂2ui(a)
∂ai∂aj

has a solution {i∗, j∗, a∗}. Since u ∈ U, ∂
2ui∗ (a

∗)
∂ai∗∂aj∗

< 0. De�ne

εb ≡
1

2

∣∣∣∣∂2ui∗(a∗)∂ai∗∂aj∗

∣∣∣∣ .
If ||u − v|| < εb, then ∀ i, ∀ j ∈ I (including i), ∀ a ∂2vi(a)

∂ai∂aj
< −εb < 0.

Thus, v is submodular and concave.

• Unique Nash equilibrium: For the purposes of Theorem 1.1, it is su�cient

for the property of unique Nash equilibrium to be open conditional upon

the previous properties.

Let Uconc denote the C2(A) utility functions which are strictly concave

in own actions. Observe that our functions of interest are within this

set, u ∈ U ⊂ Uconc. Let Eq(u) denote the set of equilibria for the game

Γ = (ui, Ai)i∈I . The vector of �rst order conditions can then be denoted

F (u, a) ∈ RI and is written as:

F (u, a) =


∂u1(a)
∂a1

∂u2(a)
∂a2
...

∂un(a)
∂an


130



Let Ao denote the interior of A. By strict own concavity, we know that

for an action pro�le in the interior, a∗ ∈ Ao, we have that it is an

equilibrium, a∗ ∈ Eq(u), if and only if the FOC vector is equal to zero

at that pro�le, F (u, a∗) = 0.

Thinking of openness of the condition of unique Nash equilibrium, we

need that for any small vector movement in others' actions, agent i

has one unique best action close to his previous action. Running into

boundaries and corner solutions might initially be of concern, so we will

carefully consider the implicit function theorem and the determinant of

the FOC.

For a non-empty J ⊂ I, let DFJ(u, a) denote the determinant of the

FOCs for J . Let the cardinality of J be equal to m, so DFJ(u, a) is an

m×m matrix which can be written as:

DJF (u, a) =


∂2u1(a)

∂u21

∂2u1(a)
∂a1∂a2

. . . ∂2u1(a)
∂a1∂am

∂2u2(a)
∂a1∂a2

∂2u2(a)

∂a22
. . . ∂2u2(a)

∂a2∂am
...

...
. . .

...
∂2um(a)
∂a1∂am

∂2um(a)
∂a2∂am

. . . ∂2um(a)
∂a2m


The next result gives the invertibility of the FOC at the equilbrium,

DFI(u, a
∗), for these concave functions.

Lemma A.1. The set of u ∈ Uconc such that the J-determinant is in-

vertible at any equilibrium, i.e. DFJ(u, a∗) 6= 0 for all a∗ ∈ Eq(u) and

all non-empty J ⊂ I, is a non-empty open subset of U.
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Proof. Non-emptiness can be shown by example.

Denote two sets of interest in Uconc. Let B1 be the set of utility func-

tions and their equilibria in the concave functions, denoted formally as

B1 = {(u, a) ∈ Uconc × A : a ∈ Eq(u)}. Let B2,J be the set of utility

function and actions for which the J-determinant is equal to zero, for-

mally denoted as B2,J = {(u, a) ∈ Uconc × A : DFJ(u, a) = 0}. Finally,

let B denote the projection of of B1 ∩ (∪J⊂IB2,J) onto Uconc.

Both B1 and ∪J⊂IB2,J are closed, so their intersection is as well. Because

A is compact, the projection of a closed subset of Uconc × A onto Uconc

is closed.The complement of the closed set B is the requisite set, with

invertible J-determinants at equilibrium, and it is open.

Let Uinv denote the set of invertible u from Lemma A.1. For u ∈ Uinv

and a∗ ∈ Eq(u), we say that (u, a∗) is not �at at the boundary if

either the equilibrium is in the interior of A, i.e. a∗ ∈ Ao, or if for each

i ∈ I with equilibrium action a∗i in the boundary of Ai, the gradient of

ui points outwards. For instance, if a∗i = 0, then ∂ui(a
∗)

∂ai
< 0, so the agent

would want to decrease more if he could, or if a∗i = 1, then ∂ui(a
∗)

∂ai
> 0,

so the agent would want to increase more if they could. This notion sets

us up for the next lemma and the invertibility result.

Lemma A.2. There exists a non-empty, open set of u ∈ Uconc for which

there is a unique equilibrium, #Eq(u) = 1, and for which a∗(u) is a

smooth function of u.
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Proof. Let C denote the set of u ∈ Uinv for which there is an a∗ ∈ Eq(u)

that is �at at the boundary, which means that every a∗ ∈ Eq(u) has the

property that for all i ∈ I, a∗i is in the boundary of Ai. The set C is

closed.

Let U′inv denote the complement of C in Uinv. Suppose that u ∈ U′inv has

one equilibrium and that J ⊂ I is the non-empty subset of I for which

a∗j is not in the boundary of Aj. Since u ∈ Uinv, then DFJ(u, a∗) 6= 0.

All of this means that a∗(·) is a locally unique, di�erentiable function

on a neighborhood of u when we hold a∗i �xed, i 6∈ J . Since (u, a∗) is

not �at on the boundary, for small enough changes in u, leaving a∗i �xed

is still optimal for i 6∈ J . Since each u with one equilibrium has such a

neighborhood, the set of u with one equilibrium is open.

This shows that the property of unique Nash equilibrium is open.

Each of the conditions has been shown to be open individually, either

unconditionally or conditionally upon the remaining conditions. Take ε∗ ≡

min{εa, εb, εc, εd}. Pick v such that ||u− v|| < ε∗. Then all the conditions are

satis�ed by v. Hence, the set of utility functions in U is open. This means the

exclusion result holds on an open set.

A.2.2 Proofs for Section 1.4.2

Proof of Lemma 1.3.
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Restatement of Lemma 1.3. When the group parameter is strictly smaller

than one, θ < 1, then the equilibrium action of the players not in J , a∗I\J(θ),

is smaller than the equilibrium action of the players in J , a∗J(θ).

Proof. Subtract FOC of J from FOC of I \ J .

[
θB′

(
a∗I\J(θ)

)
−B′ (a∗J(θ))

]
=
[
a∗I\J(θ)− a∗θ(θ)

]
c′

∑
k∈I\J

a∗I\J(θ) +
∑
j∈J

a∗J(θ)


Suppose not.

Case i. Suppose that when θ < 1, a∗I\J(θ) = a∗J(θ). Then RHS = 0 ⇒ LHS

should be zero as well. However, LHS < 0. Contradiction shown.

Case ii. Suppose that when θ < 1, a∗I\J(θ) > a∗J(θ). Then RHS > 0 ⇒ LHS

should be greater than zero as well. However,

B′′(·) < 0⇒
[(
a∗I\J(θ) > a∗J(θ)

)
⇒
(
B′
(
a∗I\J(θ)

)
< B′ (a∗J(θ))

)]
.

Since 0 < θ < 1, then θB′
(
a∗I\J(θ)

)
< B′ (a∗J(θ)), which gives LHS < 0.

Contradiction shown.

Hence, it must be the case that a∗I\J(θ) < a∗J(θ) when θ < 1.

Kuhn-Tucker conditions for lump-sum reduction by coalition of the whole
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Using the cardinalities de�ned earlier, the maximization problem can

be rewritten as:

max
r∈[0,a∗

I\J (θ)]
m
[
B(a∗J(θ)− r)− (a∗J(θ)− r)

· c
(
m(a∗J(θ)− r) + (n−m)(a∗I\J(θ)− r)

)]
+(n−m)

[
θB(a∗I\J(θ)− r)− (a∗I\J(θ)− r)

· c
(
m(a∗J(θ)− r) + (n−m)(a∗I\J(θ)− r)

)]
The Lagrangian is:

L(r, λ1, λ2) = m
[
B(a∗J(θ)− r)− (a∗J(θ)− r)

· c
(
m(a∗J(θ)− r) + (n−m)(a∗I\J(θ)− r)

)]
+(n−m)

[
θB(a∗I\J(θ)− r)− (a∗I\J(θ)− r)

· c
(
m(a∗J(θ)− r) + (n−m)(a∗I\J(θ)− r)

)]
+λ1r + λ2(a

∗
I\J(θ)− r)
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The Kuhn-Tucker conditions are:

∂L

∂r
=−m

[
B′(a∗J(θ)− r)

−
[
c
(
m(a∗J(θ)− r) + (n−m)(a∗I\J(θ)− r)

)
+n(a∗J(θ)− r)c′

(
m(a∗J(θ)− r) + (n−m)(a∗I\J(θ)− r)

)]]
−(n−m)

[
θB′(a∗I\J(θ)− r)

−
[
c
(
m(a∗J(θ)− r) + (n−m)(a∗I\J(θ)− r)

)
+n(a∗I\J(θ)− r)c′

(
m(a∗J(θ)− r) + (n−m)(a∗I\J(θ)− r)

)]]
+λ1 − λ2 = 0

λ1r =0, λ1 ≥ 0, r ≥ 0

λ2(a
∗
I\J(θ)− r) =0, λ2 ≥ 0, r ≤ a∗I\J(θ)

Kuhn-Tucker conditions for lump-sum reduction by J-coalition

max
r̂∈[0,a∗J (θ)]

m
[
B(a∗J(θ)− r̂)− (a∗J(θ)− r̂)c

(
m(a∗J(θ)− r̂) + (n−m)aJI\J(θ)

)]
The Lagrangian is:

L(r, λ1, λ2) = m
[
B(a∗J(θ)− r̂)− (a∗J(θ)− r̂)

· c
(
m(a∗J(θ)− r̂) + (n−m)aJI\J(θ)

)]
+ λ1r̂ + λ2(a

∗
J(θ)− r̂)
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The Kuhn-Tucker conditions are:

∂L

∂r̂
=−m

[
B′(a∗J(θ)− r̂)−

[
c
(
m(a∗J(θ)− r̂) + (n−m)aJI\J(θ)

)
+m(a∗J(θ)− r̂)c′

(
m(a∗J(θ)− r̂) + (n−m)aJI\J(θ)

)]]
+λ1 − λ2 = 0

λ1r̂ =0, λ1 ≥ 0, r̂ ≥ 0

λ2(a
∗
J(θ)− r̂) =0, λ2 ≥ 0, r̂ ≤ a∗J(θ)

Incentive for J-coalition to Reduce.

Let the utility of coalition J taking a lump-sum reduction of r be de-

noted as

uLSJ (r, θ) = m
[
B(a∗J(θ)− r)− (a∗J(θ)− r) c

(
m(a∗J(θ)− r) + (n−m)aJI\J(θ)

)]
.

Lemma A.3. When moving from zero, the players in J in the game in Section

1.4.2 have a strict incentive to increase r and reduce. Formally, this means

that
∂uLS

J (r,θ)

∂r

∣∣∣∣
r=0

, derived below, is positive:

∂uLSJ (r, θ)

∂r

∣∣∣∣
r=0

=−m
[
B′ (a∗J(θ))− c

(
ma∗J(θ) + (n−m)aJI\J(θ)

)
−ma∗J(θ)c′

(
ma∗J(θ) + (n−m)aJI\J(θ)

) ]
Proof. From the Nash �rst order conditions, a∗J(θ) solves:

B′ (a∗J(θ))− c
(
(n−m)a∗I\J(θ) +ma∗J(θ)

)
− a∗J(θ)c′

(
(n−m)a∗I\J(θ) +ma∗J(θ)

)
= 0
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At r = 0, those in J are agreeing to play the no-coalition Nash equilib-

rium, meaning that the best responses of those not in J are also the coalition

actions, giving a∗I\J(θ) = aJI\J(θ). The �rst order condition and the derivative

of uLSJ with respect to r evaluated at zero are then nearly identical, apart from

the extra weight on the cost derivative. Comparing the two, then it must be

that:

B′ (a∗J(θ))− c
(
(n−m)aJI\J(θ) +ma∗J(θ)

)
−ma∗J(θ)c′

(
(n−m)aJI\J(θ) +ma∗J(θ)

)
< 0

Combined with the negative sign on the outside of the parentheses,

∂uLS
J (r,θ)

∂r

∣∣∣∣
r=0

> 0.

Proof of Lemma 1.4.

Restatement of Lemma 1.4. There exists a threshold value θ̄ > 0 for

the group parameter such that for all values of the parameter higher than the

threshold, θ ∈ (0, θ̄), the equilibrium action of players not in J , a∗I\J(θ), is a

binding constraint on problem (1.14).

Proof. I show that there exists an open set around 1 in the parameter range Θ

for which r∗J(θ) is strictly positive and large compared to r∗I (θ), which is close

to zero.

1. Continuity: The �rst step is to show that the Nash equilibrium a∗(θ)

is continuous. I use the result that if and only if some function Φ :
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X → K(Y ) has a closed graph and Y is compact, then Φ is upper hemi-

continuous (Corollary 6.1.33 in [26]).

Here, Φ is our equilibrium correspondence, de�ned below as f . The X is

the game Γ, which is de�ned below. The Y is the paramter θ ∈ Θ = [0, 1]

(which is immediately observed to be compact), and K(Y ) is the set of

strategy pro�les σ ∈ ∆(A).

1.1 Establishing closed graph:

• Each player has a utility function, ui : A×Θ→ R.

• The game is de�ned as follows: Γ(θ) ≡ {(ui(·; θ), Ai)i∈I : θ ∈

Θ}.

• A set of strategies, σ∗ is a Nash equilibrium of the game Γ

if σ∗i performs at least as well as any other strategy aoi for

player i given that the other agents are playing σ∗−i. Formally,

σ∗ ∈ Eq(Γ(θ)) if and only if for all agents i in all possible sets

of agents I and for all alternate strategies aoi ∈ Ai, then:

f(σ, θ; aoi ) ≡
∫
A

ui(a; θ)dσ∗(a)−
∫
A

ui(a \ aoi )dσ∗(a) ≥ 0 (A.2)

Then the graph is de�ned Gr(f) ≡ {(σ, θ) : f(σ, θ; aoi ) ≥ 0},

and it is closed.

Thus, the equilibrium correspondence of the game Γ(θ) is upper hemi-

continuous. Furthermore, a function that is upper hemi-continuous and
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single-valued at a point is continuous at that point. Since the equilibrium

correspondence is upper hemi-continuous, and the optimal actions a∗J(θ)

and a∗I\J(θ) of Equations (1.10) and (1.11) are single-valued for each θ,

then the equilibrium correspondence is single-valued for each θ. Thus,

the equilibrium correspondence of the game is continuous.

2. Close to zero: The next step is to assert that equilibria for values of

the parameter strictly inside the parameter space may be close to zero.

By continuity, since at the boundary parameter value of zero and the

equilibrium action a∗I\J(1) = 0, then a∗I\J(θ) for θ arbitarily close to zero

is also arbitrarily close to zero.

3. Binding: The third step is to show that when solving the coalition I

problem for θ close to zero, a∗I\J(θ) is a binding constraint on choosing

r∗I (θ). Looking at Equation 1.14, it balances the utility of both groups of

players. The players not in J can only decrease to zero, meaning that the

entire problem is constrained by the size of a∗I\J(θ). However, the players

in J have a strictly positive bene�t from group reduction, as shown in

Proposition A.3. Thus, the action of the players not in J is a binding

constraint on the coalition of the whole's reduction problem.

Since the reduction that can be implemented by the coalition of the

whole is constrained to be very small because the actions of the agents not in

J is very small, the players in J will prefer to form the J coalition (positive
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incentive to reduction, very low free-riding by non-members). This improves

the utility of those in J and those not in J , giving a Pareto improvement upon

the coalition of the whole for some values of the parameter.

A.3 Proportional Commitment Power

A.3.1 Proofs for Section 1.4.3

Proof of Theorem 1.2

Restatement of Theorem 1.2. For any J ( I, #J ≥ 2, there is a set of

u ∈ U having non-empty interior, for which the vector of actions aPr(u, J) is

conceivable, formally denoted as:

(∀j ∈ J)[uj(a
Pr(u, J)) > uj(a

∗(u))].

Further, there is a subset of u ∈ U having non-empty interior which ful�ll

the above and for which, under the proportional restriction, the coalition J

improves upon the outcome of the coalition of the whole, formally written as:

(∀i ∈ I)[ui(a
Pr(u, J)) > ui(a

Pr(u, I))].

Proof. For this proof, I use the same approach as for Theorem 1.1, as well as

the same function, Equation (A.1). A reminder:

ui(a) = θi (10 + ai)− a2i

(
n+

n∑
j=1

aj

)
.
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The properties of U have already been shown to be ful�lled, as has

their openness. The only thing to prove is that the exclusion result holds

for proportional reduction, which is shown through Lemma 1.6, which is itself

proven in Appendix A.3.2. The exclusion example in that lemma requires that

B′(0) > 0 and that the total cost of zero action is also zero. The function used

has B′(a) = θ for any action and has cost of zero when ai = 0.

A.3.2 Proofs for Section 1.4.4

Kuhn-Tucker conditions for proportional reduction by coalition of the whole

Using the cardinalities de�ned earlier, the maximization problem can

be rewritten as:

max
s∈[0,1]

m
[
B(sa∗J(θ))− sa∗J(θ)c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)]
+(n−m)

[
θB(sa∗I\J(θ))− sa∗I\J(θ)c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)]
The Lagrangian is:

L(s, λ1, λ2) = m
[
B(sa∗J(θ))− sa∗J(θ)c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)]
+(n−m)

[
θB(sa∗I\J(θ))− sa∗I\J(θ)2

· c
(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)]
+λ1s+ λ2(1− s)
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The Kuhn-Tucker conditions are:

∂L

∂s
=m

[
B′(sa∗J(θ))a∗J(θ)−

[
a∗J(θ)c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
+ sa∗J(θ)c′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
·
(
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]]
+ (n−m)

[
θB′(sa∗I\J(θ))a∗I\J(θ)

−
[
a∗I\J(θ)c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
+ sa∗I\J(θ)c′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
·
(
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]]
+ λ1 − λ2 = 0

λ1s =0, λ1 ≥ 0, s ≥ 0

λ2(1− s) =0, λ2 ≥ 0, s ≤ 1

Kuhn-Tucker conditions for proportional reduction by J-coalition

max
ŝ∈[0,1]

m
[
B(sa∗J(θ))− sa∗J(θ)c

(
msa∗J(θ) + (n−m)aJI\J(θ)

)]
Maximize the Lagrangian

L(ŝ, λ1, λ2) = m
[
B(ŝa∗J(θ))− ŝa∗J(θ)c

(
mŝa∗J(θ) + (n−m)aJI\J(θ)

)]
+ λ1ŝ+ λ2(1− ŝ)

and solving the Kuhn-Tucker conditions:

∂L

∂ŝ
=m

[
B′(ŝa∗J(θ))a∗J(θ)−

[
a∗J(θ)c

(
mŝa∗J(θ) + (n−m)aJI\J(θ)

)
+ŝa∗J(θ)c′

(
mŝa∗J(θ) + (n−m)aJI\J(θ)

)
(ma∗J(θ))

]]
λ1ŝ =0, λ1 ≥ 0, ŝ ≥ 0

λ2(1− ŝ) =0, λ2 ≥ 0, ŝ ≤ 1
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Proof of Lemma 1.5.

Restatement of Lemma 1.5. For any θ, the proportional reduction taken

by the grand coalition is never full-reduction, i.e. s∗I(θ) > 0.

Proof. Suppose not. Suppose that the coalition of the whole took action of

zero. This would mean that the corner solution Kuhn-Tucker condition would

have to hold. This would mean that the zero corner slackness multiplier λ1 ≥ 0,

while the one corner slackness multiplier λ2 = 0.

The Kuhn-Tucker conditions are:

m

[
B′((0)a∗J(θ))a∗J(θ)−

[
a∗J(θ)2c

(
m(0)a∗J(θ) + (n−m)(0)a∗I\J(θ)

)
+(0)a∗J(θ)2c′

(
m(0)a∗J(θ) + (n−m)(0)a∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]]
+(n−m)

[
θB′((0)a∗I\J(θ))a∗I\J(θ)−

[
a∗I\J(θ)2c

(
m(0)a∗J(θ) + (n−m)(0)a∗I\J(θ)

)
+(0)a∗I\J(θ)2c′

(
m(0)a∗J(θ) + (n−m)(0)a∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]]
+ λ1 = 0

These can be simpli�ed as:

m

[
B′(0)a∗J(θ)−

[
a∗J(θ)2c (0) + 0

]]
+ (n−m)

[
θB′(0)a∗I\J(θ)−

[
a∗I\J(θ)2c (0) + 0

]]
+ λ1 = 0

[
ma∗J(θ) + (n−m)θa∗I\J(θ)

]
B′(0)

−
[
ma∗J(θ)2 + (n−m)a∗I\J(θ)2

]
c (0) + λ1 = 0
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Since B′(0) > 0, c(0) = 0, and λ1 ≥ 0, this equation can only be equal

to zero if all the actions are zero. However, we showed that a∗J(θ) > a∗I\J(θ)

when θ < 1, so they cannot all be zero. Hence, the grand coalition will never

take full-reduction.

Incentive for J-coalition to Reduce.

Let the utility of coalition J taking a proportional reduction of s be

denoted as

uPrJ (s, θ) = m
[
B(sa∗J(θ))− sa∗J(θ)c

(
msa∗J(θ) + (n−m)aJI\J(θ)

)]
.

Lemma A.4. When moving from one, the players in J in the game in Section

1.4.4 have a strict incentive to decrease s from 1 and reduce. Formally, this

means that
∂uPr

J (s,θ)

∂s

∣∣∣∣
s=1

, derived below, is negative:

∂uPrJ (s, θ)

∂s

∣∣∣∣
s=1

=ma∗J(θ)

[
B′ (a∗J(θ))− c

(
ma∗J(θ) + (n−m)aJI\J(θ)

)
−mc′

(
ma∗J(θ) + (n−m)aJI\J(θ)

) ]
Proof. This proof is very similar to the proof of Lemma A.3. From the �rst

order conditions, a∗J(θ) solves:

B′ (a∗J(θ))− c
(
(n−m)a∗I\J(θ) +ma∗J(θ)

)
− a∗J(θ)c′

(
(n−m)a∗I\J(θ) +ma∗J(θ)

)
= 0
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At s = 1, those in J are agreeing to play the no-coalition equilib-

rium, meaning that the best responses of those not in J are also Nash, giving

a∗I\J(θ) = aJI\J(θ). The �rst order condition and the derivative of uPrJ with

respect to s evaluated at one are then nearly identical, apart from the extra

weight on the cost derivative. Comparing the two, then it must be that:

B′ (a∗J(θ))− c
(
(n−m)aJI\J(θ) +ma∗J(θ)

)
−mc′

(
(n−m)aJI\J(θ) +ma∗J(θ)

)
< 0

Therefore, we have that ∂uPr
J (s,θ)

∂s

∣∣∣∣
s=1

< 0, which means that increasing

s will decrease utility � but that decreasing s, thereby increasing reduction,

will increase coalition utility.

Proof of Lemma 1.6.

Restatement of Lemma 1.6. There exists a threshold value θ < 1 for

the group parameter such that for all values of the parameter higher than the

threshold, θ ∈ (θ, 1), the reduction chosen by the coalition of the whole, s∗I(θ),

is equal to one.

Proof. Examine the Kuhn-Tucker conditions for sI .
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ma∗J(θ)

[
B′(sa∗J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
+(n−m)a∗I\J(θ)

[
θB′(sa∗I\J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
+ λ1 − λ2 = 0

According to Lemma 1.5, we know that s > 0, so we can ignore one

case (and consequently we know that λ1 = 0). Let's look at the remaining two

cases: interior and corner s = 1.

If s were interior, then we would have λ2 = 0 as well, and the following

would be the K-T condition:

ma∗J(θ)

[
B′(sa∗J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
+(n−m)a∗I\J(θ)

[
θB′(sa∗I\J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
= 0

Basically, this equation is balancing the marginal utility of reduction

of the two groups, somehow imagined as (−MU I
J ) + (−MU I

I\J) = 0. If both

groups were the same, then the optimal solution for the coalition would be the
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same as for each group. However, since the groups are di�erent, the marginal

utilities must take opposite signs to make the equation hold. Therefore, the

optimal reduction for the coalition of the whole will have negative marginal

utility for one group and positive marginal utility for the other. Moving the

terms belonging to I \ J , the equation becomes:

ma∗J(θ)

[
B′(sa∗J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
=

−(n−m)a∗I\J(θ)

[
θB′(sa∗I\J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
Since a∗I\J(θ) is continuous and increasing in θ ⇒ limθ→0 a

∗
I\J(θ) = 0.1

Consider an action close to zero, particularly a∗I\J(θ) = ε
n−m > 0, but very

small. Then it looks like:

ma∗J(θ)

[
B′(sa∗J(θ))− c(msa∗J(θ) + sε)− sc′(msa∗J(θ) + sε) (ma∗J(θ) + ε)

]
=

−ε
[
θB′

(
s

ε

n−m

)
− c(msa∗J(θ) + sε)− sc′(msa∗J(θ) + sε) (ma∗J(θ) + ε)

]
1If the parameter set included θ = 0, then at the action a∗I\J(1) = 0 the equation would

look like:

ma∗J(θ)

[
B′(sa∗J(θ))− c(msa∗J(θ))− sc′(msa∗J(θ))ma∗J(θ)

]
= 0

This could actually have a positive solution for s, so literal zero producers are permitted
to hang on. However, the parameter set does not include zero.
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Because of Nash equilibrium, we know that:

B′(a∗J(θ))− c(ma∗J(θ) + ε)−mc′(ma∗J(θ) + ε) = 0

If s is interior, then sa∗J(θ) < a∗J(θ). This means that B′(sa∗J(θ)) ≥

B′(a∗J(θ)), and c(msa∗J(θ) + sε) < c(ma∗J(θ) + ε). The remaining term appears

ambiguous at �rst:

mc′(ma∗J(θ) + ε)
?
> s (ma∗J(θ) + ε) c′(msa∗J(θ) + sε)

mc′(ma∗J(θ) + ε)
?
> msa∗J(θ)c′(msa∗J(θ) + sε) + sεc′(msa∗J(θ) + sε)

m [c′(ma∗J(θ) + ε)− sa∗J(θ)c′(msa∗J(θ) + sε)]
?
> sεc′(msa∗J(θ) + sε)

To make LHS > 0, choose

ε <
m [c′(ma∗J(θ) + ε)− sa∗J(θ)c′(msa∗J(θ) + sε)]

sc′(msa∗J(θ) + sε)
.

From the Nash equilibrium, we also know that:

θB′
(

ε

n−m

)
− c(ma∗J(θ) + ε)− (n−m)c′(ma∗J(θ) + ε) = 0

If the marginal bene�t of action for those not in J , i.e. θB′
(
s ε
n−m

)
, is

large enough (larger than the cost and marginal cost), then RHS is negative.

By similar logic as above, this should hold. Hence, the multiplier λ2 needs to

be included and greater than zero in order to balance out the FOC, meaning

that s = 1 is chosen when θ is small enough.
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Appendix B

Alternative Proofs for Chapter 1

B.1 Lump-Sum Reduction under Stronger Assumptions

If we consider a few stronger assumptions on the class of negative ex-

ternality games, then we can still demonstrate openness of unique Nash equi-

librium and, hence, the exclusion result. Consider U′ satisfying the following

conditions:

a. twice continuously di�erentiable, each ui is in C2(A),

b. negative externalities, (∀i ∈ I)(∀j 6= i)(∀a ∈ A)
[
∂ui(a)
∂aj

< 0
]
,

c. strict submodularity, (∀i ∈ I)(∀j 6= i)(∀a ∈ A)
[
∂2ui(a)
∂ai∂aj

< 0
]
,

d. strict own concavity, (∀i ∈ I)
[
∂2ui(a)

∂a2i
< 0
]
, and

e. strong dominant e�ect, (∀i ∈ I)(∀a ∈ A)
[∣∣∣∂2ui(a)∂a2i

∣∣∣ > ∣∣∣∑j 6=i
∂2ui(a)
∂ai∂aj

∣∣∣], and
f. unique interior Nash equilibrium, the Kuhn-Tucker conditions for equi-

librium of u have a unique solution on the interior of A.

Observe here, that the stronger assumptions are unique interior Nash

equilibrium, as well as the added assumption of strong dominant e�ect. The
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proofs in Appendix A did not require these two stronger assumptions. It is a

useful exercise to run through the details under these stronger assumptions.

Use the same utility function as before:

ui(a) = (1− θi) (10 + ai)− a2i

(
n+

n∑
j=1

aj

)
.

The function's ful�llment of twice continuous di�erentiability, negative

externalities, submodularity, and strict own concavity are shown in Appendix

A. Furthermore, while showing unique Nash, the only equilibrium was shown

to be interior as well. The only remaining property to check is strong dominant

e�ect.

To con�rm strong dominant e�ect, compare the second derivative of ui

with respect to i with the sum of the cross partials with respect to j 6= i.∣∣∣∂2ui(a)∂a2i

∣∣∣ ?
>
∣∣∣∑j 6=i

∂2ui(a)
∂ai∂aj

∣∣∣∣∣∣− [2(n+
∑n

j=1 aj

)
+ 4ai

]∣∣∣ ?
>

∣∣∣∣∣∑j 6=i−2ai

∣∣∣∣∣[
2
(
n+

∑n
j=1 aj

)
+ 4ai

]
?
> 2(n− 1)ai

2n+ 2
∑n

j=1 aj + 4ai
?
> 2(n− 1)ai

n > n− 1 and ai ≤ 1⇒ 2n > 2(n− 1)ai, and 2
∑n

j=1 aj + 4ai ≥ 0⇒

2n+ 2
n∑
j=1

aj + 4ai > 2(n− 1)ai

Hence, strong dominant e�ect holds for all i and a.

Proof of Openness of U′.
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Proof. Again, the C2-norm on the utility functions for i ∈ I is:

||ui||i ≡ max
a∈A
|ui(a)|+

∑
j

max
a∈A

∣∣∣∣∂ui(a)

∂aj

∣∣∣∣+
∑

k,j∈I,k≥j

max
a∈A

∣∣∣∣∂2ui(a)

∂ak∂aj

∣∣∣∣
The openness of the conditions of negative externalities, submodularity,

and concavity under this norm was shown in Appendix A. The remaining two

conditions are conditionally open, i.e. open when the previous three conditions

hold. To show conditional openness for the two new conditions, I will show

that for a u ∈ U′ there exists ε > 0 such that ||u− v|| < ε implies that v ∈ U′

also.

• Strong dominant e�ect: The previous three properties were uncondition-

ally open. For the uses of Theorem 1.1, it is su�cient for strong dominant

e�ect to be open conditional upon the previous three properties.

Lemma B.1. Suppose u ∈ U and v is concave and submodular for all i,

j, a. Then ||u−v|| < ε⇒ v also has the strong dominant e�ect property.

We know that u has ∀i, ∀j, ∀a
∣∣∣∂2ui(a)∂a2i

∣∣∣ > ∣∣∣∑j 6=i
∂2ui(a)
∂ai∂aj

∣∣∣. The problem

maxi maxa

(
∂2ui(a)

∂a2i
−
∑

j 6=i
∂2ui(a)
∂ai∂aj

)
has a solution {i∗, a∗}. Since both

quantities are negative, and the own second derivative is larger in ab-

solute value (therefore more negative), this maximum value is negative.

De�ne

εc ≡
1

2

(∣∣∣∣∂2ui∗(a∗)∂a2i∗

∣∣∣∣−
∣∣∣∣∣∑
j 6=i∗

∂2ui∗(a
∗)

∂ai∗∂aj

∣∣∣∣∣
)
.
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If ||u− v|| < εc, then ∀ i, ∀ j,∀ a:∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣+

∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣ < εc

By de�nition
∣∣∣∂2ui(a)∂a2i

∣∣∣− ∣∣∣∑j 6=i
∂2ui(a)
∂ai∂aj

∣∣∣ ≥ 2εc. Add and subtract
∣∣∣∂2vi(a)∂a2i

∣∣∣:
∣∣∣∣∂2ui(a)

∂a2i

∣∣∣∣+

∣∣∣∣∂2vi(a)

∂a2i

∣∣∣∣− ∣∣∣∣∂2vi(a)

∂a2i

∣∣∣∣−
∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj

∣∣∣∣∣ ≥ 2εc

Since these are all negative values, they can be combined within the

absolute value signs:∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣+

∣∣∣∣∂2vi(a)

∂a2i

∣∣∣∣−
∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj

∣∣∣∣∣ ≥ 2εc

Now add and subtract
∑

j 6=i
∂2vi(a)
∂ai∂aj

:

∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣+

∣∣∣∣∂2vi(a)

∂a2i

∣∣∣∣−
∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj

∣∣∣∣∣
+

∣∣∣∣∣∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣−
∣∣∣∣∣∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣ ≥ 2εc
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Again, these can be recombined within the absolute value signs:∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣+

∣∣∣∣∣∂2vi(a)

∂a2i
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣
−

∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj

∣∣∣∣∣+

∣∣∣∣∣∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣ ≥ 2εc

∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣+

∣∣∣∣∣∂2vi(a)

∂a2i
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣
+

∣∣∣∣∣∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣−
∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj

∣∣∣∣∣ ≥ 2εc

∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣+

∣∣∣∣∣∂2vi(a)

∂a2i
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣
+

∣∣∣∣∣∑
j 6=i

∂2vi(a)

∂ai∂aj
−
∑
j 6=i

∂2ui(a)

∂ai∂aj

∣∣∣∣∣ ≥ 2εc

∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣+

∣∣∣∣∣∂2vi(a)

∂a2i
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣
+

∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣ ≥ 2εc

Using the earlier fact that∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣+

∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣ < εc,
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we can see that:∣∣∣∣∣∂2vi(a)

∂a2i
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣ ≥ 2εc −
∣∣∣∣∂2ui(a)

∂a2i
− ∂2vi(a)

∂a2i

∣∣∣∣
−

∣∣∣∣∣∑
j 6=i

∂2ui(a)

∂ai∂aj
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣∣∣∣∣∣∂2vi(a)

∂a2i
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣ > 2εc − εc∣∣∣∣∣∂2vi(a)

∂a2i
−
∑
j 6=i

∂2vi(a)

∂ai∂aj

∣∣∣∣∣ > εc

Therefore ∀ i,∀ j,∀ a
∣∣∣∂2vi(a)∂a2i

∣∣∣ − ∣∣∣∑j 6=i
∂2vi(a)
∂ai∂aj

∣∣∣ > 0, and strong dominant

e�ect holds for v.

• Unique interior Nash equilibrium: For the purposes of Theorem 1.1, it

is su�cient for the property of unique interior Nash equilibrium to be

open conditional upon the previous four properties.

Lemma B.2. Suppose u ∈ U and v is concave and submodular and has

negative externalities and strong dominant e�ect for all i, j, a. Then

there exists ε such that ||u− v|| < ε⇒ v also has a unique Nash equilib-

rium.

Proceed with proof by contradiction. Let U′ be the set of C2 functions

that are concave, submodular, and have negative externalities and strong

dominant e�ect, but may have multiple interior Nash equilibria. This

new set is a superset of U. Suppose that v ∈ U′ has more than one

155



equilibrium. I will show that if it is close to u, then this means that u

should also have multiple equilibria.

I use the General Implicit Function Theorem (Theorem 3) from

Ward [22]: Let X, Y , and Z be normed linear spaces, Y being assumed

complete. Let Ω be an open set in X×Y . Let F : Ω→ Z. Let (x0, y0) ∈

Ω. Assume that F is continuous at (x0, y0), that F (x0, y0) = 0, that D2F

exists in Ω, that D2F is continuous at (x0, y0), and that D2F (x0, y0) is

invertible. Then there is a function f de�ned on a neighborhood of x0

such that F (x, f(x)) = 0, f(x0) = y0, f is continuous at x0, and f is

unique in the sense that any other such functions must agree with f on

some neighborhood of x0.

Denote the following:

� X = U′

� Y = [0, 1]n

� Z = Rn

� Ω ⊆ (0, 1)n

� F =


∂v1(a)
∂a1
∂v2(a)
∂a2
...

∂vn(a)
∂an


� (x0, y0) are the interior Nash equilibria (v, a∗(v)) and (v, a∗∗(v))

Since F represents the interior Kuhn-Tucker conditions (or �rst order
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conditions), we have that:

F (v, a∗(v)) =


∂v1(a∗(v))

∂a1
∂v2(a∗(v))

∂a2
...

∂vn(a∗(v))
∂an

 =


0
0
...
0


Each �rst derivative is continuous, so F is continuous at all points. Since

U′ ∈ C2, D2F exists and can be written as:

D2F =


∂2v1(a)

∂a21

∂2v1(a)
∂a1∂a2

. . . ∂2v1(a)
∂a1∂an

∂2v2(a)
∂a1∂a2

∂2v2(a)

∂a22
. . . ∂2v2(a)

∂a2∂an
...

...
. . .

...
∂2vn(a)
∂a1∂an

∂2vn(a)
∂a2∂an

. . . ∂2vn(a)
∂a2n


This matrix exists throughout [0, 1]n and is continuous at all points.

Finally, because of the property of strong dominant e�ect, D2F is a

diagonally dominant matrix, ensuring that it is invertible throughout

the domain.

The conditions for the General Implicit Function Theorem are ful�lled.

Therefore, there is some function f which assigns Nash equilibria on a

neighborhood of v which are close to a∗(v), and some function f ′ which

assigns equilibra which are close to a∗∗(v). Thus, for u ∈ U which is also

within some εe-neighborhood of v, there must be a∗(u) and a∗∗(u) which

are respectively close to a∗(v) and a∗∗(v) which are also Nash equilibria,

i.e. satisfy F (u, a∗(u)) = F (u, a∗∗(u)) = 0. This is a contradiction that

u has a unique interior Nash equilibrium. Hence, v has only one interior

equilibrium.
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Each of the conditions has been shown to be open individually, either

unconditionally or conditionally upon the remaining conditions. Take ε∗ ≡

min{εa, εb, εc, εd}. Pick v such that ||u− v|| < ε∗. Then all the conditions are

satis�ed by v. Hence, the set of utility functions in U is open. This means the

exclusion result holds on an open set.

B.2 Proportional Reduction under Stronger Assumptions

To establish the exclusion result under proportional commitment power,

I add two conditions on the utility functions in U′, creating a subset U′′. In

addition to the previous six conditions for U′, the utility functions belong to

the class U′′ must satisfy the following conditions:

g. in�nite marginal bene�t at zero, limai→0
∂ui(a)
∂ai

=∞, and

h. �nite damages, lima→1

∣∣∣∂ui(a)∂a

∣∣∣ <∞.

These additional conditions strengthen the reasoning of disparate marginal

utilities and give su�ciency for the exclusion result under proportional reduc-

tion. The conditions are possibly reasonable in the context of a negative ex-

ternality situation. The �rst condition stipulates that the action which causes

the negative externality is necessary in some manner. It may be unthinkable

for a country to completely terminate an industry that releases pollutants or a

�shery that provides much of a region's food. Unique interior Nash equilibrium
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was already one of the assumptions on U; now the reason for non-zero action

is the in�nite marginal bene�t at zero. Meanwhile, the second new condition

simply means that costs from action are not in�nite at the maximum possible

stock level, where every agent plays one. This emphasizes the power of the

negative externality as the reason the Nash equilibrium is interior from the

other side.

Alternative Proof of Existence of Exclusion under Proportional Reductions.

Theorem B.1. For any J ( I, #J ≥ 2, there is a set of u ∈ U′′ having

non-empty interior, for which the vector of actions aPr(u, J) is conceivable,

formally denoted as:

(∀j ∈ J)[uj(a
Pr(u, J)) > uj(a

∗(u))].

Further, there is a subset of u ∈ U′′ having non-empty interior which ful�ll

the above and for which, under the proportional restriction, the coalition J

improves upon the outcome of the coalition of the whole, formally written as:

(∀i ∈ I)[ui(a
Pr(u, J)) > ui(a

Pr(u, I))].

Proof. Again, we use the same approach as for the other proofs, this time

showing that the two additional conditions are ful�lled and open.

The new chosen utility function is:

ui(a) = (1− θi) (10 + ln ai)− a2i

(
n+

n∑
j=1

aj

)
. (B.1)
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Again, the parameter θ is as described in Section 1.4.2, where the group J

consists of agents who have θi = 0, while the remaining agents not in J have

θi = θ ∈ Θ = (0, 1).

Exclusion Result

The optimality of exclusion comes from Lemma B.4, which is itself

proven later in this section.

Ful�llment of Assumptions

• Twice continuous di�erentiability: This assumption clearly holds for this

utility function, as the �rst and second total and partial derivatives can

be easily taken.

� First Derivatives

dui(a)
da

= ∂ui(a)
∂ai

+
∑

j 6=i
∂ui(a)
∂aj

∂ui(a)
∂ai

= (1−θi)
ai
−
[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
∀ j 6= i ∂ui(a)

∂aj
= −a2i

� Second Derivatives

d2ui(a)
da2

= ∂2ui(a)

∂a2i
+ 2

∑
j 6=i

∂2ui(a)
∂ai∂aj

+
∑

j 6=i

{
∂2ui(a)

∂a2j
+
∑

k 6=i or j
∂ui(a)
∂aj∂ak

}
∂2ui(a)

∂a2i
= −(1−θi)

a2i
−
[
2
(
n+

∑n
j=1 aj

)
+ 4ai

]
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∀ j 6= i ∂2ui(a)
∂ai∂aj

= −2ai

∀ j 6= i ∂ui(a)

∂a2j
= 0

∀ k 6= i or j ∂ui(a)
∂aj∂ak

= 0

• Negative externalities: The �rst derivative of i's utility function with

respect to any j's action is the same as in the proof of Theorem 1.1:

∀ j 6= i
∂ui(a)

∂aj
= −a2i

Once again, for every action in the set Ai = [0, 1], this derivative is less

than or equal to zero. It is strictly negative for actions in (0, 1] and only

zero when no action is taken, i.e. ai = 0.

• Submodularity: The cross-partial of i's utility function with respect to

his own action and another agent j's action is the same as in the proof

of Theorem 1.1:

∀ j 6= i
∂2ui(a)

∂ai∂aj
= −2ai

Again, for every action in the set Ai = [0, 1], this derivative is less than

or equal to zero. It is strictly negative for actions in (0, 1] and only zero

when no action is taken, i.e. ai = 0.

• Strict own concavity: The second derivative of i's utility function with

respect to his own action is:

∂2ui(a)

∂a2i
= −(1− θi)

a2i
−

[
2

(
n+

n∑
j=1

aj

)
+ 4ai

]
For any a ∈ A, this derivative is strictly negative.
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• Strong dominant e�ect: To con�rm strong dominant e�ect, compare the

second derivative of ui with respect to i with the sum of the cross partials

with respect to j 6= i. ∣∣∣∂2ui(a)∂a2i

∣∣∣ ?
>
∣∣∣∑j 6=i

∂2ui(a)
∂ai∂aj

∣∣∣∣∣∣− (1−θi)
a2i
−
[
2
(
n+

∑n
j=1 aj

)
+ 4ai

]∣∣∣ ?
>

∣∣∣∣∣∑j 6=i−2ai

∣∣∣∣∣
(1−θi)
a2i

+
[
2
(
n+

∑n
j=1 aj

)
+ 4ai

]
?
> 2(n− 1)ai

(1−θi)
a2i

+ 2n+ 2
∑n

j=1 aj + 4ai
?
> 2(n− 1)ai

As with Theorem 1.1, because n > n− 1 and ai ≤ 1⇒ 2n > 2(n− 1)ai,

and (1−θi)
a2i

+ 2
∑n

j=1 aj + 4ai ≥ 0⇒

(1− θi)
a2i

+ 2n+ 2
n∑
j=1

aj + 4ai > 2(n− 1)ai

Hence, strong dominant e�ect holds for all i and a.

• Unique interior Nash equilibrium: The maximization problem for an

agent, given other's Nash actions a∗j , is the following:

max
ai∈[0,1]

(1− θi) (10 + ln ai)− a2i

(
n+

n∑
j=1

aj

)
s.t. ai ≥ 0

ai ≤ 1

The Lagrangian is:

L(ai, λ1i, λ2i) = (1− θi) (10 + ln ai)− a2i

(
n+

n∑
j=1

aj

)
+ λ1iai + λ2i(1− ai)

162



The Kuhn-Tucker conditions are:

∂L

∂ai
=

(1− θi)
ai

−
[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
+ λ1i − λ2i = 0

λ1iai = 0, λ1i ≥ 0, ai ≥ 0

λ2i(1− ai) = 0, λ2i ≥ 0, ai ≤ 1

There are three cases to examine: interior solution, corner solution of

zero, and corner solution of one.

Case i. Interior action: ai ∈ (0, 1)⇒ λ1i = λ2i = 0

The �rst derivative of the Lagrangian becomes:[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
=

(1− θi)
ai

ai

[
2ai

(
n+

∑
j 6=i a

∗
j

)
+ 3a2i

]
= (1− θi)

3a3i + 2a2i

(
n+

∑
j 6=i a

∗
j

)
− (1− θi) = 0

This cubic equation can be easily solved as a function of
∑

j 6=i a
∗
j

when n and θi are known, but without these two parameters, the

closed form is di�cult. However, the roots can be characterized

using the polynomial discriminant and Descartes' Rule of Signs.

� Polynomial discriminant: A trinomial represented by ax3 +

bx2 + cx+ d = 0 has the discriminant:

∆ = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd

Therefore, for the polynomial in question,

3a3i + 2a2i

(
n+

∑
j 6=i

a∗j

)
− (1− θi) = 0,
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the discriminant is:

∆ =
(

2
(
n+

∑
j 6=i a

∗
j

))2
(0)2 − 4(3)(0)3

−4
(

2
(
n+

∑
j 6=i a

∗
j

))3
(−(1− θi))− 27(3)2 (−(1− θi))2

+18(3)
(

2
(
n+

∑
j 6=i a

∗
j

))
(0) (−(1− θi))

=−4
(

2
(
n+

∑
j 6=i a

∗
j

))3
(−(1− θi))− 27(3)2 (−(1− θi))2

= 4(8)
(
n+

∑
j 6=i a

∗
j

)3
(1− θi)− 27(9)(1− θi)2

= 32
(
n+

∑
j 6=i a

∗
j

)3
(1− θi)− 243(1− θi)2

A trinomial has possibly three roots. Knowing the sign of the

discriminant can aid in determining the nature of those roots.

This discriminant will be positive when:

32
(
n+

∑
j 6=i a

∗
j

)3
(1− θi)− 243(1− θi)2 > 0

32
(
n+

∑
j 6=i a

∗
j

)3
(1− θi) > 243(1− θi)2

32
(
n+

∑
j 6=i a

∗
j

)3
> 243(1− θi)

The term (1− θi) is smaller than one, so the following is su�-

cient:

32
(
n+

∑
j 6=i a

∗
j

)3
> 243(

n+
∑

j 6=i a
∗
j

)3
>

243

32

n3 + 3n2
∑

j 6=i a
∗
j + 3n

(∑
j 6=i a

∗
j

)2
+
(∑

j 6=i a
∗
j

)3
>

243

32

If a∗−i is the zero vector, then n3 > 243
32

is su�cient for the

discriminant to be positive. Two facts guarantee that this is
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true: �rst, n > 2, which means that n3 > 8, while 243
32

< 8.

If a∗−i is greater than the zero vector, then the condition on n

is even smaller. Hence, the discriminant for this polynomial

is always positive, meaning that there are three distinct real

roots.

� Descartes' Rule of Signs: Looking at the polynomial dis-

criminant gives three candidate solutions. Descartes' Rule of

Signs can characterize how many of of these are positive, nar-

rowing down the �eld of maximizers.

The polynomial derived from the interior Kuhn-Tucker condi-

tion gives the function:

f(a) = 3a3i + 2a2i

(
n+

∑
j 6=i a

∗
j

)
− (1− θi)

According to Descartes' Rule of Signs, the number of sign switches

between non-zero coe�cients gives the maximum number of positive

roots. Here, we have one sign switch, since the �rst and second

terms are positive but the third term is negative. Therefore, there

is at most one positive root out of the three real roots. We know

this root is greater than zero; we will check whether it is less than

one when checking the possibility of a corner solution at one. This

root will be the interior solution a∗i (θi, a
∗
−i).

Case ii. Corner solution of zero: a∗i = 0⇒ λ2i = 0
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The �rst derivative of the Lagrangian becomes:

(1− θi)
ai

+ λ1i = 0

Since ai is in the denominator it cannot be zero. Therefore, this

case will never occur.

Case iii. Corner solution of one: a∗i = 1⇒ λ1i = 0

The �rst derivative of the Lagrangian becomes:

(1−θi)
1
−
[
2
(
n+

∑
j 6=i aj

)
+ 3
]
− λ2i = 0

(1− θi) =
[
2
(
n+

∑
j 6=i aj

)
+ 3
]

+ λ2i

⇒ (1− θi) ≥ 2
(
n+

∑
j 6=i aj

)
+ 3

However, since 1− θi ≤ 1 and 2
(

1 +
∑

j 6=i a
∗
j

)
>> 1, this case can

never occur. Because of this, we know that the earlier interior case

is less than one.

Thus, the interior case is the only one which will be chosen. Now I show

that the equilibrium is unique through proof by contradiction. Suppose

there exists a∗ and a∗∗ s.t. that the interior Kuhn-Tucker conditions are

ful�lled, i.e. for all i both of the following hold:

2a∗i

(
n+

∑n
j=1 a

∗
j

)
+ a∗i

2 =
(1− θi)
a∗i

2a∗∗i

(
n+

∑n
j=1 a

∗∗
j

)
+ a∗∗i

2 =
(1− θi)
a∗∗i

These can be rewritten as:

2a∗i
2
(
n+

∑n
j=1 a

∗
j

)
+ a∗i

3 = (1− θi)

2a∗∗i
2
(
n+

∑n
j=1 a

∗∗
j

)
+ a∗∗i

3 = (1− θi)
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Summing these conditions over i, the following two conditions must hold:

2 (n+
∑n

i=1 a
∗
i )
∑n

i=1 a
∗
i
2 +

∑n
i=1 a

∗
i
3 =

∑n
i=1(1− θi)

2 (n+
∑n

i=1 a
∗∗
i )
∑n

i=1 a
∗∗
i

2 +
∑n

i=1 a
∗∗
i

3 =
∑n

i=1(1− θi)

Subtract the bottom condition from the top one:[
2 (n+

∑n
i=1 a

∗
i )
∑n

i=1 a
∗
i
2 +

∑n
i=1 a

∗
i
3
]

−
[
2 (n+

∑n
i=1 a

∗∗
i )
∑n

i=1 a
∗∗
i

2 +
∑n

i=1 a
∗∗
i

3
]

= 0

2
[
(n+

∑n
i=1 a

∗
i )
∑n

i=1 a
∗
i
2 − (n+

∑n
i=1 a

∗∗
i )
∑n

i=1 a
∗∗
i

2
]

+
[∑n

i=1 a
∗
i
3 −

∑n
i=1 a

∗∗
i

3
]

= 0

2n
[∑n

i=1 a
∗
i
2 −

∑n
i=1 a

∗∗
i

2
]

+ 2
[
(
∑n

i=1 a
∗
i )
∑n

i=1 a
∗
i
2 − (

∑n
i=1 a

∗∗
i )
∑n

i=1 a
∗∗
i

2
]

+
[∑n

i=1 a
∗
i
3 −

∑n
i=1 a

∗∗
i

3
]

= 0

All three of these terms will have the same sign, since in between zero

and one

a∗i > a∗i
2 > a∗i

3.

Adding these up, we know that:

∑n
i=1 a

∗
i >

∑n
i=1 a

∗
i
2 >

∑n
i=1 a

∗
i
3.

Furthermore, since on (0, 1), f(x) = x2 is strictly increasing, we have

that:

a∗i > a∗∗i ⇒ a∗i
2 > a∗∗i

2.

Adding these up, we know that:

∑n
i=1 a

∗
i >

∑n
i=1 a

∗∗
i ⇒

∑n
i=1 a

∗
i
2 >

∑n
i=1 a

∗∗
i

2.
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Suppose that
∑n

i=1 a
∗
i >

∑n
i=1 a

∗∗
i . This means that the �rst and third

terms are positive. The middle term is x · y− x′ · y′ where we know that

x > x′ and y > y′, so we know that it is positive as well. Adding three

positive terms cannot give zero.

Now suppose that
∑n

i=1 a
∗
i <

∑n
i=1 a

∗∗
i . This means that all three terms

are negative. Adding three negative terms cannot give zero either.

Therefore, this equation can only be solved if each of the three terms

is zero, and we have that
∑n

i=1 a
∗
i =

∑n
i=1 a

∗∗
i , which also gives that∑n

i=1 a
∗
i
2 =

∑n
i=1 a

∗∗
i

2 and
∑n

i=1 a
∗
i
3 =

∑n
i=1 a

∗∗
i

3. However, this con-

dition does not yet imply that the two equilibria are equal, i.e. that

a∗i = a∗∗i for all i.

In order for a∗ and a∗∗ to not be the same, there must be at least one

person for whom the actions are di�erent. Without loss of generality,

suppose a∗i 6= a∗∗i . Check the conditions for i to see whether this is

possible.

2a∗i
2
(
n+

∑n
j=1 a

∗
j

)
+ a∗i

3 = (1− θi)

2a∗∗i
2
(
n+

∑n
j=1 a

∗∗
j

)
+ a∗∗i

3 = (1− θi)

Recall that the total agent sums must be the same, i.e.
∑n

i=1 a
∗
i =∑n

i=1 a
∗∗
i . Subtract the bottom condition from the top one:

2(a∗i
2 − a∗∗i 2)

(
n+

∑n
j=1 a

∗
j

)
+ (a∗i

3 − a∗∗i 3) = 0
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Substitute the factorizations for the di�erence of squares and di�erence

of cubes:

2(a∗i − a∗∗i )(a∗i + a∗∗i )
(
n+

∑n
j=1 a

∗
j

)
+ (a∗i − a∗∗i )(a∗i

2 + a∗i a
∗∗
i + a∗∗i

2) = 0

If a∗i 6= a∗∗i , this means we can divide through by (a∗i − a∗∗i ), since it is

not equal to zero. This gives:

2(a∗i + a∗∗i )
(
n+

∑n
j=1 a

∗
j

)
+ (a∗i

2 + a∗i a
∗∗
i + a∗∗i

2) = 0

2(a∗i + a∗∗i )
(
n+

∑n
j=1 a

∗
j

)
= −(a∗i

2 + a∗i a
∗∗
i + a∗∗i

2)

This leads to a contradiction: n > 0 and for all j, a∗j ≥ 0, meaning that

the left-hand side is strictly positive, while the right-hand side must be

weakly negative. Therefore it must be that a∗i = a∗∗i for all i, meaning

that a∗ and a∗∗ are the same and that the equilibrium is unique.

• In�nite marginal bene�t at zero: The �rst derivative of i's utility with

respect to ai is:

∂ui(a)
∂ai

= (1−θi)
ai
−
[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
.

The limit as ai approaches zero is:

lim
ai→0

∂ui(a)

∂ai
= lim

ai→0

{
(1−θi)
ai
−
[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]}
= lim

ai→0

(1−θi)
ai
− lim

ai→0

[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
=∞+ 0

=∞

Therefore, the utility function has in�nite marginal bene�t at zero.
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• Finite damages: The total derivative of i's utility with respect to the

vector a is:

dui(a)
da

= ∂ui(a)
∂ai

+
∑

j 6=i
∂ui(a)
∂aj

= (1−θi)
ai
−
[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
−
∑
j 6=i

a2i

The limit of the absolute value as a approaches 1 (each element of the

vector a approaches 1) is:

lim
a→1

∣∣∣∣∂ui(a)

∂a

∣∣∣∣ = lim
a→1

∣∣∣∣∣ (1−θi)ai
−
[
2ai

(
n+

∑n
j=1 aj

)
+ a2i

]
−
∑
j 6=i

a2i

∣∣∣∣∣
= lim

a→1

∣∣∣ (1−θi)ai

∣∣∣+ lim
a→1

∣∣∣[2ai (n+
∑n

j=1 aj

)
+ a2i

]∣∣∣
+ lim

a→1

∣∣∣∑j 6=i a
2
i

∣∣∣
= (1− θi) + [4n+ 1] + (n− 1)2

This limit is a �nite number, therefore �nite damages holds.

Openness of Conditions

In Appendix B.1, I have already shown that the properties of negative

externality, submodularity, and concavity are unconditionally open, that the

property of strong dominant e�ect is open conditional upon the previous three,

and that the property of unique interior Nash equilibrium is open conditional

upon the presence of all four preceding properties. Now I will show openness

of the additional properties of U′′.

• In�nite marginal bene�t at zero: De�ne εe = 1
2
. If ||u − v|| < εe, then

for any i, for any a,
∣∣∣∂ui(a)∂ai

− ∂vi(a)
∂ai

∣∣∣ < εe. At each a, even when ai is
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very small and getting, the distance between these derivatives is at most

εe. This means that limai→0

∣∣∣∂ui(a)∂ai
− ∂vi(a)

∂ai

∣∣∣ < εe. Since u ∈ U, we know

that limai→0
∂ui(a)
∂ai

= ∞, so it must be the case that limai→0
∂vi(a)
∂ai

= ∞

as well. Hence, v has in�nite marginal bene�t at zero.

• Finite damages: The problem mini

∣∣∣∂ui(a)∂a

∣∣∣
a=1

has a solution {i∗}. Since

u ∈ U′, u ful�lls �nite damages, so we know that
∣∣∣∂ui(a)∂a

∣∣∣ <∞. This value

is either the smallest positive total derivative or the largest negative total

derivative. De�ne

εf ≡
1

2

∣∣∣∣∂ui∗(1)

∂a

∣∣∣∣ .
If ||u − v|| < εf , then ∀ i ∂vi(1)

∂a
∈
(
∂ui(1)
∂a
− εf , ∂ui(1)∂a

+ εf

)
. These are

two �nite values, and since ∂vi(1)
∂a

is between them, it too is �nite. Hence,

lima→1

∣∣∣∂vi(a)∂a

∣∣∣ <∞, and v has �nite damages.

Each of the original and additional conditions has been shown to be

open. Take

ε∗ ≡ min{εa, εb, εc, εd, εe, εf}.

Pick v such that ||u − v|| < ε∗. Then all the conditions are satis�ed by v.

Hence, the set of utility functions in U′ is open. This means the exclusion

result holds on an open set.

Proportional Reduction Lemmas in U′′.
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Lemma B.3. For any θ, the proportional reduction taken by the grand coali-

tion is never full-reduction, i.e. s∗I(θ) > 0.

Proof. Suppose not. Suppose that the coalition of the whole took action of

zero. This would mean that the corner solution Kuhn-Tucker condition would

have to hold. This would mean that the zero corner slackness multiplier λ1 ≥ 0,

while the one corner slackness multiplier λ2 = 0.

The Kuhn-Tucker conditions are:

m

[
B′((0)a∗J(θ))a∗J(θ)−

[
a∗J(θ)2c

(
m(0)a∗J(θ) + (n−m)(0)a∗I\J(θ)

)
+ (0)a∗J(θ)2c′

(
m(0)a∗J(θ) + (n−m)(0)a∗I\J(θ)

)
·
(
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]]
+ (n−m)

[
(1− θ)B′((0)a∗I\J(θ))a∗I\J(θ)

−
[
a∗I\J(θ)2c

(
m(0)a∗J(θ) + (n−m)(0)a∗I\J(θ)

)
+ (0)a∗I\J(θ)2c′

(
m(0)a∗J(θ) + (n−m)(0)a∗I\J(θ)

)
·
(
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]]
+ λ1 = 0

However, since limai→0B
′(ai) =∞, this equation is adding two positive

in�nite terms, which cannot sum to zero. Therefore, because of the condition

of in�nite marginal bene�t at zero, the grand coalition will never take full-

reduction.

Lemma B.4. There exists a threshold value θ < 1 for the group parameter

such that for all values of the parameter higher than the threshold, θ ∈ (θ, 1),

the reduction chosen by the coalition of the whole, s∗I(θ), is equal to one.
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Proof. Examine the Kuhn-Tucker conditions for sI .

ma∗J(θ)

[
B′(sa∗J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
+(n−m)a∗I\J(θ)

[
(1− θ)B′(sa∗I\J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
+λ1 − λ2 = 0

According to Lemma B.3, we know that s > 0, so we can ignore one

case (and consequently we know that λ1 = 0). Let's look at the remaining two

cases: interior and corner s = 1.

If s were interior, then we would have λ2 = 0 as well, and the following

would be the K-T condition:

ma∗J(θ)

[
B′(sa∗J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
+(n−m)a∗I\J(θ)

[
(1− θ)B′(sa∗I\J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
= 0

Basically, this equation is balancing the marginal utility of reduction

of the two groups, somehow imagined as (−MU I
J ) + (−MU I

I\J) = 0. If both
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groups were the same, then the optimal solution for the coalition would be the

same as for each group. However, since the groups are di�erent, the marginal

utilities must take opposite signs to make the equation hold. Therefore, the

optimal reduction for the coalition of the whole will have negative marginal

utility for one group and positive marginal utility for the other. Moving the

terms belonging to I \ J , the equation becomes:

ma∗J(θ)

[
B′(sa∗J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
=

−(n−m)a∗I\J(θ)

[
(1− θ)B′(sa∗I\J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
Since a∗I\J(θ) is continuous and decreasing in θ ⇒ limθ→1 a

∗
I\J(θ) = 0.

Since u ∈ U′, it must be that limai→0
∂ui(a)
∂ai

= ∞, so for this utility function

that means that limθ→1,ai→0(1− θ)B′(ai) =∞, i.e. B′(·) goes to in�nity faster

than θ goes to one. Therefore, as θ approaches one, RHS is going to negative

in�nity quickly. In fact, with a small, tiny s close to zero multiplying the

action, then RHS would go to in�nity even faster. In order for the equation to

hold, LHS must to go to negative in�nity as well. The bene�t function, B′(·),

is strictly increasing throughout the action space, so it cannot make RHS go

to negative in�nity. The cost function is subtracted and has the potential to

make RHS negative. However, by the assumption made that the cost function
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does not asymptote to in�nity within the action space of [0, 1], this means that

neither c(·) nor c′(·) goes to in�nity. Therefore, RHS cannot go to negative

in�nity, so the two cannot be equal and an interior s is not possible when θ is

really, really tiny.

Instead, look at the K-T condition for the corner of s = 1, where λ2 ≥ 0:

ma∗J(θ)

[
B′(sa∗J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
+(n−m)a∗I\J(θ)

[
(1− θ)B′(sa∗I\J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
− λ2 = 0

This can be rewritten as:

ma∗J(θ)

[
B′(sa∗J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
− λ2 =

−(n−m)a∗I\J(θ)

[
(1− θ)B′(sa∗I\J(θ))− c

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

)
−sc′

(
msa∗J(θ) + (n−m)sa∗I\J(θ)

) (
ma∗J(θ) + (n−m)a∗I\J(θ)

) ]
Since λ2 ≥ 0, subtracting it helps balance things, and it is permissible

that λ2 → ∞ as a∗I\J → 0. This means that s∗I(θ) = 1 will occur when θ is

large enough.
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Appendix C

Proofs and Derivations for Chapter 2

C.1 Alternative Parametrization with Centered Taylor

Expansions

In this paper, simple linear parameters are used. However, an alterna-

tive similar to Taylor expansions was suggested. Here are the respective set

ups for the three di�erent e�ects.

1. Opponent e�ect:

(a) Non-coordination:

wNi (θJ) = ui(ai, aj)− θJ(aj − aNj (0))

wNj (θJ) = uj(aj, ai)− θJ(ai − aNi (0))

(b) Coordination:

wP (θJ) = ui(ai, aj) + uj(aj, ai)− θJ
[
(ai − aPi (0)) + (aj − aPj (0))

]
2. Own e�ect:

(a) Non-coordination:

wNi (θI) = ui(ai, aj) + θI(ai − aNi (0))

wNj (θI) = uj(aj, ai) + θI(aj − aNj (0))
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(b) Coordination:

wP (θI) = ui(ai, aj) + uj(aj, ai) + θI
[
(ai − aPi (0)) + (aj − aPj (0))

]
3. Submodular e�ect:

(a) Non-coordination:

wNi (θIJ) = ui(ai, aj)− θIJ
(
ai − aNi (0)

) (
aj − aNj (0)

)
wNj (θIJ) = uj(aj, ai)− θIJ

(
ai − aNi (0)

) (
aj − aNj (0)

)
(b) Coordination:

wPi (θIJ) = ui(ai, aj) + uj(aj, ai)− 2θIJ
(
ai − aPi (0)

) (
aj − aPj (0)

)

C.2 Expanded Results from Section 2.3.1

Proof of Theorem 2.1

Restatement of Theorem 2.1 from Section 2.3.1. For a symmetric game

Γ, an increase in the parameter multiplying the added linearizations has the

following e�ect for each:

1. Increasing the opponent e�ect increases the distance in the actions under

non-coordination and coordination, that is, for all i:

d

dθJ
[aNi (θJ)− aPi (θJ)] > 0;
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2. Increasing the own e�ect has ambiguous results on the distance in actions

under non-coordination and coordination; and

3. Increasing the submodular e�ect also has ambiguous results on the dis-

tance in actions under non-coordination and coordination.

Proof. For each type of e�ect, this proof examines the �rst order conditions to

determine the directions of change in the action gaps. Each e�ect has separate

analysis.

1. Opponent E�ect

The opponent e�ect is set-up in the paper in Equations (2.4) and (2.5).

First, I examine the Nash �rst order conditions, and then I examine the

social planner's �rst order conditions.

(a) Non-coordination: The maximization problem for agent i, given the

Nash equilibrium action of agent j, is:

max
ai∈Ai

ui(ai, a
N
j (θJ))− θJaNj (θJ)

aN(0) solves the following:

∂wi
∂ai

=
∂ui(·, aNj (0))

∂ai
≡ 0

∂wj
∂aj

=
∂uj(·, aNi (0))

∂aj
≡ 0

aN(θJ) solves the following:
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∂wi
∂ai

=
∂ui(·, aNj (θJ))

∂ai
≡ 0

∂wj
∂aj

=
∂uj(·, aNi (θJ))

∂aj
≡ 0

Observe that aN(θJ) = aN(θ′J) = aN(0) for all θJ and θ′J in θJ .

Hence,
∂aNi (·)
∂θJ

= 0.

(b) Coordination: The maximization problem for the social planner is:

max
(ai,aj)∈Ai×Aj

ui(ai, aj) + uj(aj, ai)− θJ (ai + aj)

For θJ = 0, aP (0) solves the following:

∂(wi + wj)

∂ai
=
∂ui(·, aPj (θJ))

∂ai
+
∂uj(a

P
j (θJ), ·)
∂ai

≡ 0

∂(wi + wj)

∂aj
=
∂uj(·, aPi (θJ))

∂aj
+
∂ui(a

P
i (θJ), ·)
∂aj

≡ 0

For θJ > 0, aP (θJ) solves the following:

∂(wi + wj)

∂ai
=
∂ui(·, aPj (θJ))

∂ai
+
∂uj(a

P
j (θJ), ·)
∂ai

− θJ ≡ 0

∂(wi + wj)

∂aj
=
∂uj(·, aPi (θJ))

∂aj
+
∂ui(a

P
i (θJ), ·)
∂aj

− θJ ≡ 0

Since the game is symmetric, if the Social Planner changes any

agent's action, he will change the other's action in the same manner

(i.e same direction and likely magnitude). The next lemma looks

at the comparative statics of the whole vector.
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Lemma C.1. aP (θJ) is decreasing in θJ .

Proof. Suppose not. Suppose that for θ′J > θJ , aP (θ′J) 6< aP (θJ).

i. Case i. aP (θ′J) > aP (θJ)

Look at the FOC for ∂(wi+wj)

∂ai
(the FOC for ∂(wi+wj)

∂aj
are sym-

metric):

∂ui(a
P
i (θJ), aPj (θJ))

∂ai
+
∂uj(a

P
j (θJ), aPi (θJ))

∂ai
= θJ

∂ui(a
P
i (θ′J), aPj (θ′J))

∂ai
+
∂uj(a

P
j (θ′J), aPi (θ′J))

∂ai
= θ′J

Subtract the �rst from the second:

[
∂ui(a

P
i (θ′J), aPj (θ′J))

∂ai
−
∂ui(a

P
i (θJ), aPj (θJ))

∂ai

]

+

[
∂uj(a

P
j (θ′J), aPi (θ′J))

∂ai
−
∂uj(a

P
j (θJ), aPi (θJ))

∂ai

]
= θ′J − θJ

Because θ′J > θJ , RHS is greater than zero. Now look at LHS.

Take the �rst bracketed term:

∂ui(a
P
i (θ′J), aPj (θ′J))

∂ai
−
∂ui(a

P
i (θJ), aPj (θJ))

∂ai(
∂ui(a

P
i (θ′J), aPj (θ′J))

∂ai
−
∂ui(a

P
i (θJ), aPj (θ′J))

∂ai

)

+

(
∂ui(a

P
i (θJ), aPj (θ′J))

∂ai
−
∂ui(a

P
i (θJ), aPj (θJ))

∂ai

)
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Since u is concave in own action, if aPi (θ′J) > aPi (θJ), then it

must be the case that for any aj:

∂ui(a
P
i (θ′J), ·)
∂ai

<
∂ui(a

P
i (θJ), ·)
∂ai

Furthermore, since u is submodular in opponent action, if

aPj (θ′J) > aPj (θJ),

then it must be the case that for any ai:

∂ui(·, aPj (θ′J))

∂ai
<
∂ui(·, aPj (θJ))

∂ai

This means that the LHS is negative, so it cannot equal the

positive RHS. This is a contradiction, so this case will not occur.

ii. Case ii. aP (θ′J) = aP (θJ)

Look at the FOC for ∂(wi+wj)

∂ai
(the FOC for ∂(wi+wj)

∂aj
are sym-

metric):

∂ui(a
P
i (θJ), aPj (θJ))

∂ai
+
∂uj(a

P
j (θJ), aPi (θJ))

∂ai
= θJ

∂ui(a
P
i (θ′J), aPj (θ′J))

∂ai
+
∂uj(a

P
j (θ′J), aPi (θ′J))

∂ai
= θ′J

If aP (θ′J) = aP (θJ), that means that the two LHS are equal

as well. This implies that the two RHS should be equal, so

θJ = θ′J . This is a contradiction of θJ < θ′J , so this case cannot

occur.
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Since both cases are contradictions, it must be that for θ′J > θJ , then

aPi (θ′J) < aPi (θJ), so the social planner's chosen action is decreasing

in θJ .

By Lemma C.1, it is seen that:

∂aPi (·)
∂θJ

< 0.

Combining this result with that of non-coordination, it has been obtained

that for all agents i:

d

dθJ

[
aNi (θJ)− aPi (θJ)

]
> 0.

2. Own E�ect

The own e�ect is set-up in the paper in Equations (2.6) and (2.7). First,

I examine the Nash �rst order conditions, and then I examine the social

planner's �rst order conditions.

(a) Non-coordination: The maximization problem for agent i, given the

Nash equilibrium action of agent j, is:

max
ai∈Ai

ui(ai, a
N
j (θI)) + θIai

aN(θI) solves the following:

∂wi
∂ai

=
∂ui(·, aNj (θI))

∂ai
+ θI ≡ 0

∂wj
∂aj

=
∂uj(·, aNi (θI))

∂aj
+ θI ≡ 0
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The intuition is that this action is increasing, due to the increased

own bene�t.1

Lemma C.2. aNi (θI) is increasing in θI .

Proof. Suppose not. Suppose that for θ′I > θI , aNi (θ′I) 6> aNi (θI).

i. Case i. aNi (θ′I) < aNi (θI)

Look at the FOC for ∂wi

∂ai
:

∂ui(a
N
i (θI), a

N
j (θI))

∂ai
= −θI

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
= −θ′I

Subtract the �rst from the second:

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
−
∂ui(a

N
i (θI), a

N
j (θI))

∂ai
= −θ′I + θI

The RHS is negative. Look at the LHS and add/subtract some

terms:

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
−
∂ui(a

N
i (θI), a

N
j (θI))

∂ai

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
−
∂ui(a

N
i (θI), a

N
j (θ′I))

∂ai

+
∂ui(a

N
i (θI), a

N
j (θ′I))

∂ai
−
∂ui(a

N
i (θI), a

N
j (θI))

∂ai

1In the non-symmetric game, there are cross-partials to check to determine the direction
of change, but the symmetric game imposes additional assumptions that assist in making
this straightforward.
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If aNi (θ′I) < aNi (θI), then because of concavity in own action,

the �rst subtraction pair is positive. Since the agents are

symmetric, agent j's action must follow the same pattern. If

aNj (θ′I) < aNj (θI), then because of submodularity, the second

subtraction pair is also positive. Thus the LHS is positive,

which contradicts the RHS being negative. Thus, this case

cannot occur.

ii. Case ii. aNi (θ′I) = aNi (θI)

Look at the FOC for ∂wi

∂ai
:

∂ui(a
N
i (θI), a

N
j (θI))

∂ai
= −θI

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
= −θ′I

If aNi (θ′I) = aNi (θI) and aNj (θ′I) = aNj (θI), then the LHS of

both of these are equal. This means the RHS should be equal

too. This is a contradiction of the assumption that θ′I > θI .

Therefore, this case cannot occur.

Since both cases cannot occur, it must be the case that aNi (θ) is

increasing in θ. This holds symmetrically for aNJ (θ).

By Lemma C.2, it is obtained that:

∂aNi (·)
∂θI

> 0.

(b) Coordination: The maximization problem for the social planner is:
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max
(ai,aj)∈Ai×Aj

ui(ai, aj) + uj(aj, ai) + θI (ai + aj)

For θI ≥ 0, aP (θI) solves the following:

∂(wi + wj)

∂ai
=
∂ui(·, aPj (θI))

∂ai
+
∂uj(a

P
j (θI), ·)
∂ai

+ θI ≡ 0

∂(wi + wj)

∂aj
=
∂uj(·, aPi (θI))

∂aj
+
∂ui(a

P
i (θI), ·)
∂aj

+ θI ≡ 0

The Social Planner may also want to increase actions, because of

the increased bene�t, but will be wary of the submodularity's e�ect

as well. Recall here, because this is a symmetric game, the action

changes will go in the same direction for both agents. The next

lemma posits that the SP's actions are also increasing.

Lemma C.3. aP (θI) is increasing in θI .

Proof. Suppose not. Suppose that for θ′I > θI , aP (θ′I) 6> aP (θI).

i. Case i. aP (θ′I) < aP (θI)

Look at the FOC for ∂(wi+wj)

∂ai
(the FOC for ∂(wi+wj)

∂aj
are sym-

metric):

∂ui(a
P
i (θI), a

P
j (θI))

∂ai
+
∂uj(a

P
j (θI), a

P
i (θI))

∂ai
= −θI

∂ui(a
P
i (θ′I), a

P
j (θ′I))

∂ai
+
∂uj(a

P
j (θ′I), a

P
i (θ′I))

∂ai
= −θ′I
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Subtract the second from the �rst:

∂ui(a
P
i (θ′I), a

P
j (θ′I))

∂ai
−
∂ui(a

P
i (θI), a

P
j (θI))

∂ai
+
∂uj(a

P
j (θ′I), a

P
i (θ′I))

∂ai

−
∂uj(a

P
j (θI), a

P
i (θI))

∂ai
= −θ′I + θI

The RHS is negative. Examine the �rst subtraction pair of the

LHS:

∂ui(a
P
i (θ′I), a

P
j (θ′I))

∂ai
−
∂ui(a

P
i (θI), a

P
j (θI))

∂ai(
∂ui(a

P
i (θ′I), a

P
j (θ′I))

∂ai
−
∂ui(a

P
i (θI), a

P
j (θ′I))

∂ai

)

+

(
∂ui(a

P
i (θI), a

P
j (θ′I))

∂ai
−
∂ui(a

P
i (θI), a

P
j (θI))

∂ai

)
If aP (θ′I) < aP (θI), then by concavity wrt own action, the �rst

subtraction pair is positive, and by submodularity, the second

pair is positive. This holds for agent j's �rst derivatives as

well, so the LHS of the previous statement is positive. This

contradicts the negative LHS, so this case cannot occur.

ii. Case ii. aP (θ′I) = aP (θI)

Look at the FOC for ∂(wi+wj)

∂ai
(the FOC for ∂(wi+wj)

∂aj
are sym-

metric):

∂ui(a
P
i (θI), a

P
j (θI))

∂ai
+
∂uj(a

P
j (θI), a

P
i (θI))

∂ai
= −θI

∂ui(a
P
i (θ′I), a

P
j (θ′I))

∂ai
+
∂uj(a

P
j (θ′I), a

P
i (θ′I))

∂ai
= −θ′I
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If aP (θ′I) = aP (θI), then the LHS of both functions must be the

same. This means the RHS must be the same, i.e. θ′I = θI , but

this is a contradiction. Therefore, this case cannot occur.

Since both of these cases cannot occur, it must be that aPi is in-

creasing in θI .

By Lemma C.3, it is obtained that:

∂aPi (·)
∂θI

> 0.

Both the Nash actions and the e�cient actions are increasing in θI .

At each θI , it should be that the e�cient actions are smaller than the

Nash actions because of the negative externality. Intuition says that the

Nash increases are larger, because the agents ignore the externality, but

this really depends on the curvature of the utility function. Therefore,

though the directions actions take are known, as is the increase in utility

for social planner problem, the ambiguity in utility for the Nash problem

makes it di�cult to say whether the Nash increases are larger or smaller

than the e�cient increases, rendering the comparison ambiguous.

Thus, the own e�ect is the confusing type of externality. One the one

hand, the direct bene�t increases utility, but on the other hand, the

agents then exert more of the externality on each other.

3. Submodular E�ect
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The submodular e�ect is set-up in the paper in Equations (2.8) and (2.9).

First, I examine the Nash �rst order conditions, and then I examine the

social planner's �rst order conditions.

(a) Non-coordination: The maximization problem for agent i, given the

Nash equilibrium action of agent j, is:

max
ai∈Ai

ui(ai, a
N
j (θIJ)) + θIJaia

N
j (θIJ)

aN(0) solves:

∂wi
∂ai

=
∂ui
(
·, aNj (0)

)
∂ai

≡ 0

∂wj
∂aj

=
∂uj

(
·, aNi (0)

)
∂aj

≡ 0

aN(θIJ) solves:

∂wi
∂ai

=
∂ui
(
·, aNj (θIJ)

)
∂ai

− θIJaNj (θIJ) ≡ 0

∂wj
∂aj

=
∂uj

(
·, aNi (θIJ)

)
∂aj

− θIJaNi (θIJ) ≡ 0

Going o� of the structure above, the next lemma posits that the

submodular e�ect is rendered Null for the Nash equilibrium.

Lemma C.4. For θ′IJ > θIJ , a
N
i (θ′IJ) < aNi (θIJ).

Proof. Suppose not. Suppose that for θ′IJ > θIJ , aNi (θIJ) ≥ aNi (θ′IJ).

Because of symmetric utility functions, agents actions go in the

same direction.
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i. Case i. aNi (θ′IJ) > aNi (θIJ)∀i. Look at the FOC for ∂wi

∂ai
:

∂ui
(
aNi (θIJ), aNj (θIJ)

)
∂ai

= θIJa
N
j (θIJ)

∂ui
(
aNi (θ′IJ), aNj (θ′IJ)

)
∂ai

= θ′IJa
N
j (θ′IJ)

Subtract the second from the �rst:

∂ui
(
aNi (θ′IJ), aNj (θ′IJ)

)
∂ai

−
∂ui
(
aNi (θIJ), aNj (θIJ)

)
∂ai

= θ′IJa
N
j (θ′IJ)− θIJaNj (θIJ)

RHS is positive. If both Nash actions are larger, then by con-

cavity and submodularity, LHS is negative. This case cannot

occur.

ii. Case ii. aNi (θ′IJ) = aNi (θIJ)∀i.

∂ui
(
aNi (θ′IJ), aNj (θ′IJ)

)
∂ai

−
∂ui
(
aNi (θIJ), aNj (θIJ)

)
∂ai

= θ′IJa
N
j (θ′IJ)− θIJaNj (θIJ)

If actions are equal, then LHS is equal to zero. The statement

can be rewritten as:

0 = (θ′IJ − θIJ) aNj (θIJ)

In order for RHS to be zero, need θ′IJ = θIJ . This is a contra-

diction.

Therefore the only possibility is that aNi (θIJ) to be decreasing in

θIJ .
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By Lemma C.4, it is obtained that:

∂aNi (·)
∂θIJ

< 0.

(b) Coordination: The maximization problem for the social planner is:

max
(ai,aj)∈Ai×Aj

ui(ai, aj) + uj(aj, ai) + 2θIJaiaj

For θIJ ≥ 0, aP (θJ) solves the following:

∂(wi + wj)

∂ai
=
∂ui(·, aPj (θIJ))

∂ai
+
∂uj(a

P
j (θIJ), ·)
∂ai

− 2θIJa
P
j (θIJ) ≡ 0

∂(wi + wj)

∂aj
=
∂uj(·, aPi (θIJ))

∂aj
+
∂ui(a

P
i (θIJ), ·)
∂aj

− 2θIJa
P
i (θIJ) ≡ 0

Lemma C.5. For θ′IJ > θIJ , a
P
i (θ′IJ) < aPi (θIJ).

Proof. Suppose not. Suppose aP (θ′IJ) ≥ aP (θIJ).

i. Case i. aPi (θ′IJ) > aPi (θIJ)∀i. Look at the FOC for ∂wi

∂ai
:

∂ui
(
aPi (θIJ), aPj (θIJ)

)
∂ai

+
∂uj

(
aPj (θIJ), aPi (θIJ)

)
∂ai

= 2θIJa
P
j (θIJ)

∂ui
(
aPi (θ′IJ), aPj (θ′IJ)

)
∂ai

+
∂uj

(
aPj (θ′IJ), aPi (θ′IJ)

)
∂ai

= 2θ′IJa
P
j (θ′IJ)

Subtract the second from the �rst:
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∂ui
(
aPi (θ′IJ), aPj (θ′IJ)

)
∂ai

+
∂uj

(
aPj (θ′IJ), aPi (θ′IJ)

)
∂ai

−
∂ui
(
aPi (θIJ), aPj (θIJ)

)
∂ai

−
∂uj

(
aPj (θIJ), aPi (θIJ)

)
∂ai

=2θ′IJa
P
j (θ′IJ)− 2θIJa

P
j (θIJ)

If aPi (θIJ) > aPi (θ′IJ), then RHS is positive.

Because of concavity and submodularity, when both aPi (θ′IJ) >

aPi (θIJ) and aPj (θ′IJ) > aPj (θIJ), we have that:

∂ui(a
P
i (θ′IJ), aPj (θ′IJ))

∂ai
<
∂ui(a

P
j (θIJ), aPj (θIJ))

∂ai

and that:

∂uj(a
P
i (θ′IJ), aPj (θ′IJ))

∂ai
<
∂uj(a

P
j (θIJ), aPj (θIJ))

∂ai

This means that LHS is negative, which is a contradiction. This

case cannot occur.

ii. Case ii. aPi (θ′IJ) = aPi (θIJ)

If the actions are equal for both agents, then LHS is zero, and

the subtracted FOC can be written as:

0 = 2 (θ′IJ − θIJ) aPj (θIJ)

The only way for RHS to equal LHS is for θ′IJ = θIJ . This is a

contradiction, so this case cannot occur.
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By Lemma C.5, it is obtained that:

∂aPi (·)
∂θIJ

< 0.

Both the Nash actions and the e�cient actions are decreasing in

θIJ . Similar as with the own e�ect, the e�cient actions should

be smaller. From the extra two in the social planner's �rst order

conditions, it is suspected that the e�cient actions are decreasing

more quickly than the non-coordination actions, but this depends

on the curvature of the utility function. Thus, the submodular

e�ect is ambiguous as well.2

Combined, these three results give Theorem 2.1.

C.3 Expanded Results from Section 2.3.2

Derivation of Second-Order Expansions

1. Non-coordination �rst order conditions:

Recall the FOC are:
∂ui(ai, aj)

∂ai
+ θii ≡ 0

∂uj(aj, ai)

∂aj
+ θjj ≡ 0

2For a centered Taylor expansion version of this problem, the submodular e�ect would
be null, as opposed to ambiguous.
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The derivatives of these with respect to agent i's own e�ect, θii, are:

∂2ui(ai, aj)

∂a2i
· ∂a

N
i (θ)

∂θii
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aNj (θ)

∂θii
+ 1 = 0

∂2uj(aj, ai)

∂aj∂ai
· ∂a

N
i (θ)

∂θii
+
∂2uj(aj, ai)

∂a2j
·
∂aNj (θ)

∂θii
= 0

and with respect to agent i's opponent e�ect, θij, are:

∂2ui(ai, aj)

∂a2i
· ∂a

N
i (θ)

∂θij
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aNj (θ)

∂θij
= 0

∂2uj(aj, ai)

∂aj∂ai
· ∂a

N
i (θ)

∂θij
+
∂2uj(aj, ai)

∂a2j
·
∂aNj (θ)

∂θij
= 0

In the second set of expansions, those with respect to θij, since the

function is concave and submodular, then in both top and bottom two

negative numbers multiplied by the derivatives. In order for any set of

numbers other than zero to solve this set of equations, this would require

the own second derivatives to equal the cross-partials, which is possible,

but a small set of functions. Furthermore, since the parameter θij does

not appear in the �rst order conditions, this proof will proceed with the

case of:
∂aNi (θ)

∂θij
=
∂aNj (θ)

∂θij
= 0.

The derivatives of the FOC with respect to agent j's opponent e�ect on

i, θji, are:

∂2ui(ai, aj)

∂a2i
· ∂a

N
i (θ)

∂θji
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aNj (θ)

∂θji
= 0

∂2uj(aj, ai)

∂aj∂ai
· ∂a

N
i (θ)

∂θji
+
∂2uj(aj, ai)

∂a2j
·
∂aNj (θ)

∂θji
= 0
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and with respect to agent j's own e�ect , θjj, are:

∂2ui(ai, aj)

∂a2i
· ∂a

N
i (θ)

∂θjj
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aNj (θ)

∂θjj
= 0

∂2uj(aj, ai)

∂aj∂ai
· ∂a

N
i (θ)

∂θjj
+
∂2uj(aj, ai)

∂a2j
·
∂aNj (θ)

∂θjj
+ 1 = 0

The parameter θji displays a similar pattern as did θij, and so the proof

will proceed under the following:

∂aNi (θ)

∂θji
=
∂aNj (θ)

∂θji
= 0.

The results with respect to θii and θjj can be condensed into matrix

form:  ∂2ui(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j

 ·
∂aNi∂θii

∂aNi
∂θjj

∂aNj
∂θii

∂aNj
∂θjj

 =

[
−1 0
0 −1

]
2. Coordination �rst order conditions:

Recall the FOC are:

∂ui(ai, aj)

∂ai
+
∂ui(ai, aj)

∂aj
+
∂uj(aj, ai)

∂ai
+
∂uj(aj, ai)

∂aj
+ γi + γj ≡ 0

The derivatives of these with respect to agent i's total e�ect, γi, are:

∂2ui(ai, aj)

∂a2i
· ∂a

P
i

∂γi
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aPj
∂γi

+
∂2uj(aj, ai)

∂a2i
· ∂a

P
i

∂γi
+
∂2uj(aj, ai)

∂ai∂aj
·
∂aPj
∂γi

+ 1 = 0

∂2ui(ai, aj)

∂aj∂ai
· ∂a

P
i

∂γi
+
∂2ui(ai, aj)

∂a2j
·
∂aPj
∂γi

+
∂2uj(aj, ai)

∂aj∂ai
· ∂a

P
i

∂γi
+
∂2uj(aj, ai)

∂a2j
·
∂aPj
∂γi

= 0
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and the derivatives with respect to agent j's total e�ect, γj, are:

∂2ui(ai, aj)

∂a2i
· ∂a

P
i

∂γj
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aPj
∂γj

+
∂2uj(aj, ai)

∂a2i
· ∂a

P
i

∂γj
+
∂2uj(aj, ai)

∂ai∂aj
·
∂aPj
∂γj

= 0

∂2ui(ai, aj)

∂aj∂ai
· ∂a

P
i

∂γj
+
∂2ui(ai, aj)

∂a2j
·
∂aPj
∂γj

+
∂2uj(aj, ai)

∂aj∂aj
· ∂a

P
i

∂γj
+
∂2uj(aj, ai)

∂a2j
·
∂aPj
∂γj

+ 1 = 0

The results with respect to γi and γj can be condensed into matrix form:∂2ui(ai,aj)∂a2i
+

∂2uj(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
+

∂2uj(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj
+

∂2ui(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j
+

∂2ui(ai,aj)

∂a2j

 ·
∂aPi∂γi

∂aPi
∂γj

∂aPj
∂γi

∂aPj
∂γj

 =

[
−1 0
0 −1

]

Proof of Lemma 2.2

Restatement of Lemma 2.2. For DaN to be positive and for the Nash ac-

tions to be increasing in response to an increase in θ, it is su�cient for the own

second derivatives to be the same direction in comparison to the cross-partials

for both agents. That is, the own second derivative can be more negative than

the cross partial for both agents:

∂2ui(ai, aj)

∂a2i
<
∂2ui(ai, aj)

∂ai∂aj
and

∂2uj(ai, aj)

∂a2j
<
∂2uj(ai, aj)

∂ai∂aj

or, the own second derivative can be less negative than the cross partial for

both agents:

∂2ui(ai, aj)

∂a2i
>
∂2ui(ai, aj)

∂ai∂aj
and

∂2uj(ai, aj)

∂a2j
>
∂2uj(ai, aj)

∂ai∂aj
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Proof. Recall the set-up of the linearization:

[
a b
c d

]
=

 ∂2ui(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j


ad− bc =

∂2ui(ai, aj)

∂a2i
· ∂

2uj(ai, aj)

∂a2j
− ∂2ui(ai, aj)

∂ai∂aj
· ∂

2uj(ai, aj)

∂ai∂aj[
d− c a− b

]
=
[
∂2uj(ai,aj)

∂a2j
− ∂2uj(ai,aj)

∂ai∂aj

∂2ui(ai,aj)

∂a2i
− ∂2ui(ai,aj)

∂ai∂aj

]
There are two cases to consider:

1. ad− bc > 0 while d− c < 0, a− b < 0

ad− bc =
∂2ui(ai, aj)

∂a2i
· ∂

2uj(ai, aj)

∂a2j

− ∂2ui(ai, aj)

∂ai∂aj
· ∂

2uj(ai, aj)

∂ai∂aj

ad− bc > 0⇒
∂2ui(ai, aj)

∂a2i
· ∂

2uj(ai, aj)

∂a2j
>
∂2ui(ai, aj)

∂ai∂aj
· ∂

2uj(ai, aj)

∂ai∂aj

By concavity and submodularity, these are individually negative. So,

the above statement could hold under some sort of dominant e�ect idea,

where the own second derivative is more negative (�larger�) than the

cross partial. Then d − c and a − b would be negative, because both d

and a would be smaller (more negative) than c and b.

2. ad− bc < 0 and d− c > 0, a− b > 0

On the other hand, with the opposite of dominant e�ect, or some second

order opponent e�ect, then ad would be smaller than bc, but c would

196



be smaller from d (as well as b from a, which would be positive). This

would give the same required sign.

Proof of Lemma 2.3

Restatement of Lemma 2.3. For UP to have only positive eigenvalues, it

is su�cient that:

∂2ui
∂a2j

> 0

∂2uj
∂a2j

> 0

(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
>

(
∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

Proof. Recall the method for calculating eigenvalues:

∂2ui∂a2i
+

∂2uj
∂a2i
− λ ∂2ui

∂ai∂aj
+

∂2uj
∂ai∂aj

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

∂2ui
∂a2j

+
∂2uj
∂a2j
− λ


The characteristic function is:(
∂2ui
∂a2i

+
∂2uj
∂a2i

− λ
)(

∂2ui
∂a2j

+
∂2uj
∂a2j

− λ
)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

= 0

Expanding:
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λ2 − λ
(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
+

(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

= 0

Using quadratic function, we know that the values for λ are as follows:

λ =
1

2

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
±

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]]

When are both λ positive? First, check under the square root.

(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2
?
>

4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

It is known that the eigenvectors of symmetric matrices are real, so the

above equation must hold. Therefore, what is under the square root must be

positive. Hence, the following condition that must be also true:

(
∂2ui
∂a2i

+
∂2uj
∂a2i

)2

+

(
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

+

(
∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

> 2

(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
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The two eigenvalues can be denoted as:

λ1 =
1

2

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
+

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]]

λ2 =
1

2

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]]

From this, it is is clear that if λ2 > 0 ⇒ λ1 > 0 (adding a positive
amount vs. subtracting it). Hence, for both to be positive, the minimum is to
check when λ2 is positive.

0 <
1

2

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]]

0 <

(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
>

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

The square root must be positive, so that means(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
> 0
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as well, and since the utility function is concave, need ∂2ui
∂a2j

> 0 and ∂2uj
∂a2j

> 0.

With those added assumptions, square both sides:(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

>

(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

This then becomes:

0 > −4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

0 <

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

Hence, convex opponent derivative and the above condition are su�-

cient for positive eigenvalues.
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Appendix D

Proofs and Derivations for Chapter 3

D.1 Proofs for Fallow Fisheries from Section 3.3

D.1.1 Derivations and Proofs under Non-coordination

Finding Πi
g(pi, p

M
j )

Πi
g(pi, p

M
j ) = u1 + β

[
(1− r)Πi

g(pi, p
M
j ) + rΠi

b(pi, p
M
j )
]

(1− β(1− r)) Πi
g(pi, p

M
j ) = u1 + βrΠi

b(pi, p
M
j )

Πi
g(pi, p

M
j ) =

u1 + βrΠi
b(pi, p

M
j )

(1− β(1− r))

Finding Πi
b(pi, p

M
j )

Πi
b(pi, p

M
j ) = u0(pi) + β

[
(pi + pMj )

(
u1 + βrΠi

b(pi, p
M
j )

(1− β(1− r))

)
+ (1− pi − pMj )Πi

b(pi, p
M
j )

]
(
1− β(1− pi − pMj )

)
Πi
b(pi, p

M
j ) = u0(pi) + β(pi + pMj )

(
u1 + βrΠi

b(pi, p
M
j )

(1− β(1− r))

)

Multiply through by (1− β(1− r)):(
1− β(1− pi − pMj )

)
(1− β(1− r)) Πi

b(pi, p
M
j )

= (1− β(1− r))u0(pi) + β(pi + pMj )
(
u1 + βrΠi

b(pi, p
M
j )
)[ (

1− β(1− pi − pMj )
)

(1− β(1− r))− β2r
(
pi + pMj

) ]
Πi
b(pi, p

M
j )

= (1− β(1− r))u0(pi) + β(pi + pMj )u1
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Simplifying the coe�cient on Πi
b on the LHS:(

1− β(1− pi − pMj )
)

(1− β(1− r))− β2r
(
pi + pMj

)
= 1− β(1− r)− β(1− pi − pMj ) + β2(1− r)(1− pi − pMj )− β2r

(
pi + pMj

)
= 1− β(1− r)− β(1− pi − pMj ) + β2(1− r)(1−

(
pi + pMj )

)
− β2r

(
pi + pMj

)
= 1− β(1− r)− β(1− pi − pMj ) + β2(1−

(
pi + pMj

)
− r + r

(
pi + pMj

)
)

− β2r
(
pi + pMj

)
= 1− β(1− r)− β(1− pi − pMj ) + β2 − β2

(
pi + pMj

)
− β2r

= 1− β(1− r)− β(1− pi − pMj ) + β2
(
1− r − pi − pMj

)
Continuing to simplify:

1− β(1− r)− β(1− pi − pMj ) + β2
(
1− r − pi − pMj

)
= 1− 2β + β2 + (β − β2)r + (β − β2)

(
pi + pMj

)
= (1− β)2 + β(1− β)r + β(1− β)

(
pi + pMj

)
= (1− β)

[
1− β + βr + β

(
pi + pMj

)]
(1− β)

[
1− β + βr + β

(
pi + pMj

)]
Πi
b(pi, p

M
j ) = (1− β(1− r))u0(pi) + β(pi + pMj )u1

Πi
b(pi, p

M
j ) =

(1− β(1− r))u0(pi) + β(pi + pMj )u1

(1− β)
[
1− β + βr + β

(
pi + pMj

)]

Proof of Lemma 3.1

Restatement of Lemma 3.1. There exists a unique interior Markov perfect

equilibrium described by:

βu0(p
M
i )−

[
1− β + βr + β

(
pMi + pMj

)]
u′0(p

M
i )− βu1 = 0

βu0(p
M
j )−

[
1− β + βr + β

(
pMi + pMj

)]
u′0(p

M
j )− βu1 = 0

202



Proof. Uniqueness is given by Kuhn-Tucker su�ciency. The function to be

maximized is concave in p, and the constraints are linear, so they are convex.

Recall, the maximization problem is:

max
pi

(1− β(1− r))u0(pi) + β(pi + pMj )u1

(1− β)
[
1− β + βr + β

(
pi + pMj

)]
s.t. pi ≥

¯
p

pi ≤ p̄

Assign +λ1i to the inequality pi −
¯
p ≥ 0 and +λ2i to the inequality

p̄− pi ≥ 0. Then the Lagrangian is:

L (p, λ1i, λ2i) =
(1− β(1− r))u0(pi) + β(pi + pMj )u1

(1− β)
[
1− β + βr + β

(
pi + pMj

)] +λ1i
(
pi −

¯
p
)
+λ2i (p̄− pi)

FOC:

∂L

∂pi
=

1

(1− β)2
[
1− β + βr + β

(
pi + pMj

)]2 · { [(1− β(1− r))u′0(pi) + βu1
]

· (1− β)
[
1− β + βr + β

(
pi + pMj

)]
− β(1− β)

[
(1− β(1− r))u0(pi)

+ β(pi + pMj )u1
]}

+ λ1i − λ2i = 0

λ1i
(
pi −

¯
p
)

=0, λ1i ≥ 0
(
pi −

¯
p
)
≥ 0

λ2i (p̄− pi) =0, λ2i ≥ 0 (p̄− pi) ≥ 0

The function ∂L
∂pi

can be simpli�ed a little bit, since the denominator

can cancel with some parts of the numerator. Rewritten as:
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∂L

∂pi
=

[(1− β(1− r))u′0(pi) + βu1]

(1− β)
[
1− β + βr + β

(
pi + pMj

)]
−
β
[
(1− β(1− r))u0(pi) + β(pi + pMj )u1

]
(1− β)

[
1− β + βr + β

(
pi + pMj

)]2 + λ1i − λ2i = 0

The conditions all together are:

∂L

∂pi
=

[(1− β(1− r))u′0(pi) + βu1]

(1− β)
[
1− β + βr + β

(
pi + pMj

)]
−
β
[
(1− β(1− r))u0(pi) + β(pi + pMj )u1

]
(1− β)

[
1− β + βr + β

(
pi + pMj

)]2
+ λ1i − λ2i = 0

λ1i
(
pi −

¯
p
)

= 0, λ1i ≥ 0
(
pi −

¯
p
)
≥ 0

λ2i (p̄− pi) = 0, λ2i ≥ 0 (p̄− pi) ≥ 0

Solving, there are three cases to consider:

Case i. pi =
¯
p⇒ λ2i = 0, λ1i ≥ 0

[
(1− β(1− r))u′0(

¯
p) + βu1

]
(1− β)

[
1− β + βr + β

(
¯
p+ pMj

)] + λ1i

=
β
[
(1− β(1− r))u0(

¯
p) + β(

¯
p+ pMj )u1

]
(1− β)

[
1− β + βr + β

(
¯
p+ pMj

)]2
[
(1− β(1− r))u′0(

¯
p) + βu1

]
(1− β)

[
1− β + βr + β

(
¯
p+ pMj

)] ≤ β
[
(1− β(1− r))u0(

¯
p) + β(

¯
p+ pMj )u1

]
(1− β)

[
1− β + βr + β

(
¯
p+ pMj

)]2

Case ii. pi = p̄⇒ λ1i = 0, λ2i ≥ 0
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[(1− β(1− r))u′0(p̄) + βu1]

(1− β)
[
1− β + βr + β

(
p̄+ pMj

)] =
β
[
(1− β(1− r))u0(p̄) + β(p̄+ pMj )u1

]
(1− β)

[
1− β + βr + β

(
p̄+ pMj

)]2
+ λ2i

[(1− β(1− r))u′0(p̄) + βu1]

(1− β)
[
1− β + βr + β

(
p̄+ pMj

)] ≥ β
[
(1− β(1− r))u0(p̄) + β(p̄+ pMj )u1

]
(1− β)

[
1− β + βr + β

(
p̄+ pMj

)]2

Case iii.
¯
p < pi < p̄⇒ λ1i = 0, λ2i = 0

[(1− β(1− r))u′0(pi) + βu1]

(1− β)
[
1− β + βr + β

(
pi + pMj

)] =
β
[
(1− β(1− r))u0(pi) + β(pi + pMj )u1

]
(1− β)

[
1− β + βr + β

(
pi + pMj

)]2
[
(1− β(1− r))u′0(pi) + βu1

]
=
β
[
(1− β(1− r))u0(pi) + β(pi + pMj )u1

]
[
1− β + βr + β

(
pi + pMj

)]

[
1− β + βr + β

(
pi + pMj

)]
[(1− β(1− r))u′0(pi) + βu1]

= β
[
(1− β(1− r))u0(pi) + β(pi + pMj )u1

]
[
1− β + βr + β

(
pi + pMj

)]
(1− β(1− r))u′0(pi)

+ β
[
1− β + βr + β

(
pi + pMj

)]
u1

= β (1− β(1− r))u0(pi) + β2(pi + pMj )u1

(1− β(1− r))
[
βu0(pi)−

[
1− β + βr + β

(
pi + pMj

)]
u′0(pi)

]
=
[
β
[
1− β + βr + β

(
pi + pMj

)]
− β2(pi + pMj )

]
u1
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Simplifying the coe�cient on u1:

β
[
1− β + βr + β

(
pi + pMj

)]
− β2(pi + pMj )

=β − β2 + β2r + β2
(
pi + pMj

)
− β2(pi + pMj )

=β − β2 + β2r

=β(1− β(1− r))

(1− β(1− r))
[
βu0(pi)−

[
1− β + βr + β

(
pi + pMj

)]
u′0(pi)

]
= β(1− β(1− r))u1

(1− β(1− r))
[
βu0(pi)−

[
1− β + βr + β

(
pi + pMj

)]
u′0(pi)

]
− β(1− β(1− r))u1 = 0

Divide through by (1− β(1− r)) 6= 0:

βu0(pi)−
[
1− β + βr + β

(
pi + pMj

)]
u′0(pi)− βu1 = 0

D.1.2 Derivations and Proofs under Coordination

Finding ΠP
g (pi, pj)

ΠP
g (pi, pj) = 2u1 + β

[
(1− r)ΠP

g (pi, pj) + rΠP
b (pi, pj)

]
(1− β(1− r)) ΠP

g (pi, pj) = 2u1 + βrΠP
b (pi, pj)

ΠP
g (pi, pj) =

2u1 + βrΠP
b (pi, pj)

(1− β(1− r))

Finding ΠP
b (pi, pj)
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ΠP
b (pi, pj) =u0(pi) + u0(pj)

+ β

[
(pi + pj)

(
2u1 + βrΠP

b (pi, pj)

(1− β(1− r))

)
+ (1− pi − pj)ΠP

b (pi, pj)

]

[1− β(1− pi − pj)] ΠP
b (pi, pj) = u0(pi) + u0(pj) + β(pi + pj)

(
2u1 + βrΠP

b (pi, pj)

(1− β(1− r))

)

Multiply through by (1− β(1− r)):

(1− β(1− r)) [1− β(1− pi − pj)] ΠP
b (pi, pj)

= (1− β(1− r)) (u0(pi) + u0(pj)) + β(pi + pj)

·
(
2u1 + βrΠP

b (pi, pj)
)

[
(1− β(1− r)) [1− β(1− pi − pj)]− β2r(pi + pj)

]
ΠP
b (pi, pj)

= (1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1

Using the coe�cient simpli�cations derived for the non-coordination

case, this can be rewritten as:

(1− β) [1− β + βr + β (pi + pj)] ΠP
b (pi, pj) = (1− β(1− r)) (u0(pi) + u0(pj))

+ 2β(pi + pj)u1

ΠP
b (pi, pj) =

(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1
(1− β) [1− β + βr + β (pi + pj)]

Proof of Lemma 3.2
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Restatement of Lemma 3.2. There exists a unique interior Markov perfect

cooperative equilibrium given by:

β [u0(pi) + u0(pj)]− [1− β + βr + β (pi + pj)]u
′
0(pi)− 2βu1 = 0

β [u0(pi) + u0(pj)]− [1− β + βr + β (pi + pj)]u
′
0(pj)− 2βu1 = 0

Proof. Uniqueness is the same as for Lemma 3.1. The �rst order conditions

are:

max
pi,pj

(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1
(1− β) [1− β + βr + β (pi + pj)]

s.t. pi ≥
¯
p

pi ≤ p̄

pj ≥
¯
p

pj ≤ p̄

Assign +µ1i to the inequality pi −
¯
p ≥ 0 and +µ2i to the inequality

p̄− pi ≥ 0. Then the Lagrangian is:

L (p, µ1i, µ2i, µ1j , µ2j) =
(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1

(1− β) [1− β + βr + β (pi + pj)]

+ µ1i
(
pi −

¯
p
)

+ µ2i (p̄− pi) + µ1j
(
pj −

¯
p
)

+ µ2j (p̄− pj)

FOC:
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∂L

∂pi
=

[(1− β(1− r))u′0(pi) + 2βu1]

(1− β) [1− β + βr + β (pi + pj)]

− β [(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1]

(1− β) [1− β + βr + β (pi + pj)]
2

+ µ1i − µ2i = 0

∂L

∂pj
=

[(1− β(1− r))u′0(pj) + 2βu1]

(1− β) [1− β + βr + β (pi + pj)]

− β [(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1]

(1− β) [1− β + βr + β (pi + pj)]
2

+ µ1j − µ2j = 0

µ1i

(
pi −

¯
p
)

= 0, µ1i ≥ 0
(
pi −

¯
p
)
≥ 0

µ2i (p̄− pi) = 0, µ2i ≥ 0 (p̄− pi) ≥ 0

µ1j

(
pj −

¯
p
)

= 0, µ1j ≥ 0
(
pj −

¯
p
)
≥ 0

µ2j (p̄− pj) = 0, µ2j ≥ 0 (p̄− pj) ≥ 0

There are multiple cases to consider, basically every possible combina-

tion of how the multipliers could be.1 I will list them, but I will only investigate

the fully interior one for now:

Case i. pi =
¯
p⇒ µ2i = 0, µ1i ≥ 0

Case i.a. pj =
¯
p⇒ µ2j = 0, µ1j ≥ 0

Case i.b. pj = p̄⇒ µ1j = 0, µ2j ≥ 0

Case i.c.
¯
p < pj < p̄⇒ µ1j = µ2j = 0

1Only if the agents are somehow non-symmetric, of course.
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Case ii. pi = p̄⇒ µ1i = 0, µ2i ≥ 0

Case ii.a. pj =
¯
p⇒ µ2j = 0, µ1j ≥ 0

Case ii.b. pj = p̄⇒ µ1j = 0, µ2j ≥ 0

Case ii.c.
¯
p < pj < p̄⇒ µ1j = µ2j = 0

Case iii.
¯
p < pi < p̄⇒ µ1i = µ2i = 0

Case iii.a. pj =
¯
p⇒ µ2j = 0, µ1j ≥ 0

Case iii.b. pj = p̄⇒ µ1j = 0, µ2j ≥ 0

Case iii.c.
¯
p < pj < p̄⇒ µ1j = µ2j = 0

This is the purely interior case, and it is the one under consideration.

Observe that once the multipliers are gone, it is very clear that these

agents are symmetric, so their FOC are quite similar:

[(1− β(1− r))u′0(pi) + 2βu1]

(1− β) [1− β + βr + β (pi + pj)]
=
β [(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1]

(1− β) [1− β + βr + β (pi + pj)]
2

[(1− β(1− r))u′0(pj) + 2βu1]

(1− β) [1− β + βr + β (pi + pj)]
=
β [(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1]

(1− β) [1− β + βr + β (pi + pj)]
2

Multiplying both sides by the LHS denominator:

[
(1− β(1− r))u′0(pi) + 2βu1

]
=
β [(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1]

[1− β + βr + β (pi + pj)][
(1− β(1− r))u′0(pj) + 2βu1

]
=
β [(1− β(1− r)) (u0(pi) + u0(pj)) + 2β(pi + pj)u1]

[1− β + βr + β (pi + pj)]
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β [u0(pi) + u0(pj)]− [1− β + βr + β (pi + pj)]u
′
0(pi)− 2βu1 = 0

β [u0(pi) + u0(pj)]− [1− β + βr + β (pi + pj)]u
′
0(pj)− 2βu1 = 0

D.1.3 Comparative Statics

Proof of Lemma 3.3

Restatement of Lemma 3.3. Under the assumptions listed, the social plan-

ner's symmetric action pP is larger than the non-cooperative action pM .

Proof. Recall the new assumptions:

u1 > 2u0(
¯
p)

0 ≥ u′′0(p)

[1− β + βr + 2βpP ] > 0

Recall the symmetric conditions for non-coordination and coordination:

β
(
u0(p

M)− u1
)

=
[
1− β + βr + 2βpM

]
u′0(p

M)

2β
(
u0(p

P )− u1
)

=
[
1− β + βr + 2βpP

]
u′0(p

P )

Subtracting from each other:

β
[(
u0(p

M)− u1
)
− 2

(
u0(p

P )− u1
)]

=
[
1− β + βr + 2βpM

]
u′0(p

M)

−
[
1− β + βr + 2βpP

]
u′0(p

P )

β
[
u0(p

M)− 2u0(p
P ) + u1

]
=
[
1− β + βr + 2βpM

]
u′0(p

M)

−
[
1− β + βr + 2βpP

]
u′0(p

P )
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Suppose not. Suppose pP ≤ pM .

i. Case i. pP = pM

Let the value be p.

β [u0(p)− 2u0(p) + u1] = [1− β + βr + 2βp]u′0(p)

− [1− β + βr + 2βp]u′0(p)

β [−u0(p) + u1] = 0

−u0(p) + u1 = 0

u1 = u0(p)

This is a contradiction of the set-up, because u1 > u0(p), for all values

of p in the choice set.

ii. Case ii. pP < pM

β
[
u0(p

M)− 2u0(p
P ) + u1

]
=
[
1− β + βr + 2βpM

]
u′0(p

M)

−
[
1− β + βr + 2βpP

]
u′0(p

P )

β
[
u0(p

M)− 2u0(p
P ) + u1

]
= (1− β + βr)

[
u′0(p

M)− u′0(pP )
]

+ 2β
(
pM − pP

)
]
[
u′0(p

M)− u′0(pP )
]

(
u0(p

M)− u1
) ?

≤ 2
(
u0(p

P )− u1
)

u0(p
M) + u1

?

≤ 2u0(p
P )

If pP < pM ⇒ u0(p
P ) > u0(p

M). Furthermore, u1 > u0(p
P ), so it's a bit

di�cult to say what's going on with that sign yet (opposing e�ects).
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On the other side,

pP < pM ⇒
[
1− β + βr + 2βpM

]
>
[
1− β + βr + 2βpP

]
.

So the coe�cient on u′0(p
M) is larger than the coe�cient on u′0(p

P ).

a.) No acceleration: [u′′ = 0]

Suppose u′′ = 0⇒ 0 > u′0(p
M) = u′0(p

P )⇒

β
[
u0(p

M)− 2u0(p
P ) + u1

]
= (1− β + βr) · 0

+ 2β
(
pMu′0(p

M)− pPu′0(pP )
)

[
u0(p

M)− 2u0(p
P ) + u1

]
= 2

(
pM − pP

)
u′0(p)

pM > pP and u′0 < 0⇒ RHS < 0.

This means RHS < 0, so LHS should be negative as well:

β
[
u0(p

M)− 2u0(p
P ) + u1

]
< 0

u0(p
M)− 2u0(p

P ) + u1 < 0

u0(p
M) + u1 < 2u0(p

P )

Contradiction of assumptions.

b.) Deceleration: [u′′ < 0]

Suppose u′′ < 0 (i.e. concave, the function is slowing down). If u′′ <

0, then pP < pM ⇒ 0 > u′0(p
P ) > u′0(p

M) ⇒ u′0(p
M) − u′0(pP ) < 0.

This also means that pMu′0(p
M)− pPu′0(pP ) < 0.

RHS is two negative terms added together so, RHS < 0. This means

that LHS should also be < 0. Contradiction of assumptions.
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c.) Acceleration: [u′′ > 0]

This is a contradiction of weak concavity.

Proof of Lemma 3.4

Restatement of Lemma 3.4. Under the assumptions listed, the following

are the comparative statics of the problem:

• With respect to the discount factor, β, the non-cooperative action is in-

creasing:

∂pM

∂β
> 0,

as is the cooperative action:

∂pP

∂β
> 0.

• With respect to the static good-state reward, u1, the non-cooperative ac-

tion is increasing:

∂pM

∂u1
> 0,

as is the cooperative action:

∂pP

∂u1
> 0.

• With respect to the transition from the good state to the bad state, r, the

non-cooperative action is decreasing:

∂pM

∂r
< 0,
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while the cooperative action is constant:

∂pP

∂r
= 0.

Proof. This proof examines the comparative statics of the respective �rst or-

der conditions using implicit function di�erentiation. First, I examine the

comparative statics of the discount factor, β.

F (pM) ≡ β
(
u0(p

M)− u1
)
−
[
1− β + βr + 2βpM

]
u′0(p

M) = 0

G(pP ) ≡ 2β
(
u0(p

P )− u1
)
−
[
1− β + βr + 2βpP

]
u′0(p

P ) = 0

For the non-coordination problem:

∂F (pM)

∂β
=
(
u0(p

M)− u1
)

+ βu′0(p
M)

∂pM

∂β
−
[
−1 + r + 2pm + 2β

∂pM

∂β

]
u′0(p

M)

−
[
1− β + βr + 2βpM

]
u′′0(pM)

∂pM

∂β
= 0

(
u0(p

M )− u1
)

+
(
1− r − 2pM

)
u′0(p

M )

=
[
1− β + βr + 2βpM

]
u′′0(pM )

∂pM

∂β
+ 2β

∂pM

∂β
u′0(p

M )− βu′0(pM )
∂pM

∂β(
u0(p

M )− u1
)

+
(
1− r − 2pM

)
u′0(p

M )

=
[(

1− β + βr + 2βpM
)
u′′0(pM ) + 2βu′0(p

M )− βu′0(pM )
] ∂pM
∂β(

u0(p
M )− u1

)
+
(
1− r − 2pM

)
u′0(p

M )

=
[(

1− β + βr + 2βpM
)
u′′0(pM ) + βu′0(p

M )
] ∂pM
∂β

∂pM

∂β
=

(
u0(p

M )− u1
)

+
(
1− r − 2pM

)
u′0(p

M )

[(1− β + βr + 2βpM )u′′0(pM ) + βu′0(p
M )]
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From the earlier assumptions, the denominator is not equal to zero.

Furthermore it is negative.

∂pM

∂β

?
< 0(

u0(p
M)− u1

)
+
(
1− r − 2pM

)
u′0(p

M)

[(1− β + βr + 2βpM)u′′0(pM) + βu′0(p
M)]

?
< 0

To �nd the sign of this expression, need to know when the numerator

is negative: (
u0(p

M)− u1
)

+
(
1− r − 2pM

)
u′0(p

M)
?
< 0

−
(
u1 − u0(pM)

)
+
(
1− r − 2pM

)
u′0(p

M)
?
< 0(

1− r − 2pM
)
u′0(p

M)
?
<
(
u1 − u0(pM)

)
The numerator is negative when 1−r−2pM is positive or if the following

holds:

0 >
(
1− r − 2pM

)
>

(
u1 − u0(pM)

)
u′0(p

M)
(D.1)

For the coordination problem:

∂G(pP )

∂β
=2
(
u0(p

P )− u1
)

+ 2βu′0(p
P )
∂pP

∂β
−
[
−1 + r + 2pP + 2β

∂pP

∂β

]
u′0(p

P )

−
[
1− β + βr + 2βpP

]
u′′0(pP )

∂pP

∂β
= 0
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2
(
u0(p

P )− u1
)

+
(
1− r − 2pP

)
u′0(p

P )

=
[
1− β + βr + 2βpP

]
u′′0(pP )

∂pP

∂β
− 2βu′0(p

P )
∂pP

∂β
+ 2β

∂pP

∂β
u′0(p

P )

2
(
u0(p

P )− u1
)

+
(
1− r − 2pP

)
u′0(p

P ) =
[
1− β + βr + 2βpP

]
u′′0(pP )

∂pP

∂β

∂pP

∂β
=

2
(
u0(p

P )− u1
)

+
(
1− r − 2pP

)
u′0(p

P )

[1− β + βr + 2βpP ]u′′0(pP )

The denominator is negative. Checking when the numerator is negative:

2
(
u0(p

P )− u1
)

+
(
1− r − 2pP

)
u′0(p

P )
?
< 0

−2
(
u1 − u0(pP )

)
+
(
1− r − 2pP

)
u′0(p

P )
?
< 0(

1− r − 2pP
)
u′0(p

P )
?
< 2

(
u1 − u0(pP )

)
If Equation (D.1) holds, then this holds more easily, since pP > pM .

Now I examine the comparative statics of the good-state reward, u1.

F (pM) ≡ β
(
u0(p

M)− u1
)
−
[
1− β + βr + 2βpM

]
u′0(p

M) = 0

G(pP ) ≡ 2β
(
u0(p

P )− u1
)
−
[
1− β + βr + 2βpP

]
u′0(p

P ) = 0

For the non-coordination problem:

∂F (pM)

∂u1
=β

(
u′0(p

M)
∂pM

∂u1
− 1

)
− 2β

∂pM

∂u1
u′0(p

M)

−
[
1− β + βr + 2βpM

]
u′′0(pM)

∂pM

∂u1
= 0

[
βu′0(p

M)− 2βu′0(p
M)−

(
1− β + βr + 2βpM

)
u′′0(pM)

] ∂pM
∂u1

= β[
−βu′0(pM)−

(
1− β + βr + 2βpM

)
u′′0(pM)

] ∂pM
∂u1

= β
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∂pM

∂u1
=

−β
[βu′0(p

M) + (1− β + βr + 2βpM)u′′0(pM)]

Given the previous assumptions, the denominator is negative, rendering

the whole thing positive.

For the coordination problem:

∂G(pP )

∂u1
= 2β

(
u′0(p

P )
∂pP

∂u1
− 1

)
− 2β

∂pP

∂u1
u′0(p

P )

−
[
1− β + βr + 2βpP

]
u′′0(pP )

∂pP

∂u1
= 0

2βu′0(p
P )
∂pP

∂u1
− 2β

∂pP

∂u1
u′0(p

P )−
[
1− β + βr + 2βpP

]
u′′0(pP )

∂pP

∂u1
= 2β

−
[
1− β + βr + 2βpP

]
u′′0(pP )

∂pP

∂u1
= 2β

∂pP

∂u1
=

−2β

[1− β + βr + 2βpP ]u′′0(pP )

This is positive. In comparing the two:

∂pM

∂u1
=

−β
[βu′0(p

M) + (1− β + βr + 2βpM)u′′0(pM)]

∂pP

∂u1
=

−2β

[1− β + βr + 2βpP ]u′′0(pP )

The denominator is smaller, the numerator is larger, so the a�ect of u1

on pP is much greater than that on pM .

Finally, I examine the comparative statics of the transition probability

from the good state to the bad state, r.
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F (pM) ≡ β
(
u0(p

M)− u1
)
−
[
1− β + βr + 2βpM

]
u′0(p

M) = 0

G(pP ) ≡ 2β
(
u0(p

P )− u1
)
−
[
1− β + βr + 2βpP

]
u′0(p

P ) = 0

For the non-coordination problem:

∂F (pM)

∂r
=βu′0(p

M)
∂pM

∂r
− βu′0(pM)

−
[
1− β + βr + 2βpM

]
u′′0(pM)

∂pM

∂r
= 0

∂pM

∂r
=

βu′0(p
M)

[βu′0(p
M)− (1− β + βr + 2βpM)u′′0(pM)]

The numerator is negative; the denominator is positive if:[
βu′0(p

M)−
(
1− β + βr + 2βpM

)
u′′0(pM)

] ?
> 0

0 > βu′0(p
M)

?
>
(
1− β + βr + 2βpM

)
u′′0(pM)

For the coordination problem:

∂G(pP )

∂r
=2βu′0(p

P )
∂pP

∂r
− 2β

∂pP

∂r
u′0(p

P )

−
[
1− β + βr + 2βpP

]
u′′0(pP )

∂pP

∂r
= 0

−
[
1− β + βr + 2βpP

]
u′′0(pP )

∂pP

∂r
= 0

∂pP

∂r
= 0
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