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The multistage testing (MST) has drawn increasing attention as a

balanced format of adaptive testing that takes advantages of both

fully-adaptive computerized adaptive testing (CAT) and paper-and-pencil

(P&P) tests. Most previous studies on MST have focused on purely

dichotomous or polytomous item formats although the mixture of two item

types (i.e., mixed-format) provides desirable psychometric properties by

combining the strength of both item types. Given the dearth of studies

investigating the characteristics of mixed-format MST, the current study

conducted a simulation to identify important design factors impacting the

measurement precision of mixed-format MST.

The study considered several factors-namely, total points (40 and 60),

MST structures (1-2-2 and 1-3-3), the proportion of polytomous items (10%,
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30%, 50% and 70%), and the routing module design (purely dichotomous

and a mixture of dichotomous and polytomous items) resulting in 32 total

conditions. A total of 100 replications were performed, and 1,000 normally

distributed examinees were generated in each replication. The performance

of MST was evaluated in terms of the precision of ability estimation across

the wide range of the scale.

The study found that the longer test produced greater measurement

precision while the 1-3-3 structure performed better than 1-2-2 structure. In

addition, a larger proportion of polytomous items resulted in lower

measurement precision through the reduced test information during the test

construction. The interaction between the large proportion of polytomous

items and the purely dichotomous routing module design was identified.

Overall, the two factors of test length and the MST structure impacted the

ability estimation, whereas the impact of the proportion of polytomous items

and routing module design mirrored the item pool characteristic.

viii



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiii

Chapter 1. INTRODUCTION 1

Chapter 2. LITERATURE REVIEW 4

Item Response Theory . . . . . . . . . . . . . . . . . . . . . . . . . 4

IRT Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 5

Dichotomous IRT Models . . . . . . . . . . . . . . . . . . . . . 7

Item and Test Information for the Dichotomous IRT Models . 11

Polytomous IRT Models . . . . . . . . . . . . . . . . . . . . . 13

Graded Response Model . . . . . . . . . . . . . . . . . . 14

Partial Credit Model . . . . . . . . . . . . . . . . . . . . 16

Generalized Partial Credit Model . . . . . . . . . . . . . 17

Item Information for Polytomous IRT Models . . . . . . 18

Multistage Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

MST Components . . . . . . . . . . . . . . . . . . . . . . . . . 21

MST Panel Structure . . . . . . . . . . . . . . . . . . . . . . . 22

MST Ability Estimation . . . . . . . . . . . . . . . . . . . . . 24

MST Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

MST Construction . . . . . . . . . . . . . . . . . . . . . . . . 29

Mixed Format Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Test Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



MST Panel Structure . . . . . . . . . . . . . . . . . . . . . . . 35

Item Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

MST Construction Method . . . . . . . . . . . . . . . . . . . . 37

Statement of Problem . . . . . . . . . . . . . . . . . . . . . . . . . 38

Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 3. METHODOLOGY 40

Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Test Unit Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Test Unit Type Proportions . . . . . . . . . . . . . . . . . . . . . . 42

Routing Module Design . . . . . . . . . . . . . . . . . . . . . . . . 43

MST Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Target TIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

MST simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Accuracy of Ability Estimation . . . . . . . . . . . . . . . . . . 57

MST Test Information . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 4. RESULTS 64

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

MST Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Test unit pool information . . . . . . . . . . . . . . . . . . . . 65

MST test information function . . . . . . . . . . . . . . . . . . 66

MST Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 75

Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . 75

Conditional bias . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Grand mean conditional standard errors . . . . . . . . . 82

Conditional standard errors for proportion condition . . . . . . 83

Conditional standard errors for total points and MST structure
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Conditional standard errors across routing module design . . . 92

x



Chapter 5. DISCUSSION 94

Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Conclusions and practical applications . . . . . . . . . . . . . . . . 101

Limitations and future research directions . . . . . . . . . . . . . . 105

REFERENCES 107

xi



List of Tables

Table 4.1 Descriptive Statistics of the Estimated θs Averaged across
100 Replications . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 4.2 Mean RMSE and Mean Bias of the Estimated θ Averaged
across 1,000 Replications . . . . . . . . . . . . . . . . . . . . . 78

Table 4.3 Average Frequency of Pathways . . . . . . . . . . . . . . 79

xii



List of Figures

Figure 2.1 Item Characteristic Curve for the Three-Parameter Logistic
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 Item Information Function for the Three-Parameter Logistic
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.3 Category Response Probability for the Graded Response Model 16

Figure 2.4 The 1-3-3 Panel Structure for MST . . . . . . . . . . . . . . 23

Figure 3.1 Module structures for the 10% proportion of polytomous test
units and the mixed routing module method condition. . . . . 45

Figure 3.2 Module structures for the 30% proportion of polytomous test
units and the mixed routing module method condition. . . . . 46

Figure 3.3 Module structures for the 50% proportion of polytomous test
units and the mixed routing module method condition. . . . . 47

Figure 3.4 Module structures for the 70% proportion of polytomous test
units and the mixed routing module method condition. . . . . 48

Figure 3.5 Module structures for the 10% proportion of polytomous test
units and the dichotomous routing module method condition. . 49

Figure 3.6 Module structures for the 30% proportion of polytomous test
units and the dichotomous routing module method condition . 50

Figure 3.7 Module structures for the 50% proportion of polytomous test
units and the dichotomous routing module method condition . 51

Figure 3.8 Module structures for the 70% proportion of polytomous test
units and the dichotomous routing module method condition . 52

Figure 3.9 MST test information derived from major path information
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.1 Information function of test unit pool. . . . . . . . . . . . . 65

Figure 4.2 MST test information for 10% proportion of polytomous test
units and dichotomous routing module condition. . . . . . . . . 67

Figure 4.3 MST test information for 10% proportion of polytomous test
units and mixed routing module condition. . . . . . . . . . . . 67

xiii



Figure 4.4 MST test information for 30% proportion of polytomous test
units and dichotomous routing module condition. . . . . . . . . 68

Figure 4.5 MST test information for 30% proportion of polytomous test
units and mixed routing module condition. . . . . . . . . . . . 69

Figure 4.6 MST test information for 50% proportion of polytomous test
units and dichotomous routing module condition. . . . . . . . . 70

Figure 4.7 MST test information for 50% proportion of polytomous test
units and mixed routing module condition. . . . . . . . . . . . 70

Figure 4.8 MST test information for 70% proportion of polytomous test
units and dichotomous routing module condition. . . . . . . . . 71

Figure 4.9 MST test information for 70% proportion of polytomous test
units and mixed routing module condition. . . . . . . . . . . . 72

Figure 4.10 Target test information and actual MST test information
functions for 70% proportion of polytomous test units, 133 struc-
ture and dichotomous routing module condition. . . . . . . . . 74

Figure 4.11 Conditional mean biases for four levels of proportion of
polytomous test units . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.12 Conditional mean biases for two levels of routing module
design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.13 Conditional mean biases for 133 and 122 MST structure . 81

Figure 4.14 Conditional mean biases for two levels of total points . . . 82

Figure 4.15 Conditional grand mean standard error averaged across all
32 study conditions. . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.16 Conditional grand mean standard errors of MST with 40
total points for four levels of proportions . . . . . . . . . . . . 84

Figure 4.17 Conditional grand mean standard errors of MST with 60
total points for four levels of proportions . . . . . . . . . . . . 84

Figure 4.18 Conditional grand mean standard errors for 10% propor-
tion of polytomous test units and dichotomous routing module
condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.19 Conditional grand mean standard errors for 10% proportion
of polytomous test units and mixed routing module condition . 87

Figure 4.20 Conditional grand mean standard errors for 30% propor-
tion of polytomous test units and dichotomous routing module
condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.21 Conditional grand mean standard errors for 30% proportion
of polytomous test units and mixed routing module condition . 88

xiv



Figure 4.22 Conditional grand mean standard Errors for 50% propor-
tion of polytomous test units and dichotomous routing module
condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.23 Conditional grand mean standard Errors for 50% proportion
of polytomous test units and mixed routing module condition . 90

Figure 4.24 Conditional grand mean standard Errors for 70% propor-
tion of polytomous test units and dichotomous routing module
condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.25 Conditional grand mean standard Errors for 70% proportion
of polytomous test units and mixed routing module condition . 91

Figure 4.26 Conditional grand mean standard errors for 70 percent, 60
total points, and 133 MST structure . . . . . . . . . . . . . . . 92

xv



Chapter 1

INTRODUCTION

Item Response Theory (IRT) is the basis for item analysis, test

construction, administration, and scoring of many operational tests. With

IRT, advancements in computer technology have allowed further the effective

administration of adaptive testing. Computerized Adaptive Testing (CAT)

administers items tailored to the estimated ability of the examinee. The item

level adaptation in CAT provides high measurement precision, while the

computerized administration makes the tests more cost-effective (Weiss,

1982). Under CAT, each examinee takes a different set of items according to

his or her ability. Since test developers cannot obtain in advance information

regarding which items will be administered, CAT may lack quality control

known as content balancing (Luecht & Nungester, 1998). The multistage

test (MST) has drawn much attention and has succeeded in overcoming this

issue.

Even in the early 1960s, the concept of MST emerged within the

context of paper-and-pencil (P&P) format (Cronbach & Gleser, 1965; Linn,

Rock, & Cleary, 1969; Lord, 1971). While the full CAT selects individual

items for each examinee at a given moment, MST performs a group-of-items
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(i.e., modules) level adaptation. Modules are pre-assembled before test

administration to satisfy both content balancing and the quality of the test

structure. Panel, an independent unit of the test form in MST, is built in

stages and there are two or three modules within each stage.

Compared to linear tests, MST produces a shorter test while still

maintaining measurement accuracy (Betz & Weiss, 1974; Linn et al., 1969;

Wainer, 1995) and also achieves a higher efficiency when a wide range of

abilities needs to be measured (Lord, 1971, 1980; Patsula & Hambleton,

1999). In addition, since the tests are designed before their administration,

MSTs can achieve strong control over the quality of the test and content

balancing while maintaining a comparable measurement precision when

compared to the results for CAT (Patsula & Hambleton, 1999). Unlike CAT,

where examinees cannot modify answers for previous questions, MST allows

test-takers to change responses to items within an individual module, because

adaptivity of responses occurs at the module level, not at the item level.

MSTs have been researched and applied to purely dichotomously (e.g.,

true/false and multiple-choice) or polytomously (e.g., constructed-response,

open-ended, performance-based, and essay) scored items. However,

mixed-format tests are more frequently used. Mixed-format tests administer

both dichotomously scored and polytomously scored items. Multiple-choice

(MC) items are known to measure a broad range of domains, and scoring is

easy and objective. On the other hand, constructed -response (CR) items

tend to measure a relatively narrow range of domains while scoring is costly,
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time consuming and susceptible to more subjectivity than for MC items.

Therefore, it might be beneficial to combine different types of items to

strengthen the full psychometric properties of a test (Bennett, Morley, &

Quardt, 2000; Breithaupt, Mills, & Melican, 2006; Hagge & Kolen, 2011;

Zenisky & Sireci, 2002).

Even though the advantages of MST and mixed-format tests have been

recently emphasized, there is as yet little empirical research on the benefits

of using MST for mixed-format items. In addition, the application of MST to

mixed-format tests raises other various issues that are worthwhile to

consider. Researchers need to determine all the design aspects of MST

within the context of a mixed-format item pool. For example, the test

designer is required to determine the optimal test length, given measurement

precision, the ratio between the different item types, the arrangement of

chosen items in individual modules, and the method of scoring. This study

seeks to evaluate the performance of mixed-format MST and answer

important questions regarding the impact of the length of the test, module

construction, and the impact of different proportions for the different item

types on the measurement precision of the test.
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Chapter 2

LITERATURE REVIEW

This literature review provides background information relevant to the

current study. The first section explores the assumptions and characteristics

of item response theory. The second section discusses the details of the

multistage test (MST) and this includes the structural components of the

MST, methods for its construction, and the algorithms used for for the MST

administration. The third section summarizes the previous research

pertaining to the mixed-format test, which is the target test for MST

application in this study. The final section provides the statement of the

research problem.

Item Response Theory

Item response theory (IRT) describes the probabilities of response

outcomes through examining a set of item parameters and the examinee’s

trait level (Lord, 1952). Thus, IRT relates examinees and test items through

mathematical models (Wainer & Mislevy, 1990). Item parameters may

include difficulty and discrimination parameters, where item difficulty

parameter describes the relative difficulty or easiness of the item, and an
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item discrimination parameter which indicates how well an item distinguishes

between examinees with different levels of proficiency. The trait level, in an

educational setting, is realized as a latent variable that represents an

individual’s ability level within a specified domain of knowledge For a medical

measurement, on the other hand, the latent variable may indicate the level of

physical or psychological traits of examines, such as pain or anxiety.

IRT models are commonly categorized into two classes based on the

way that item responses are scored. Dichotomous IRT models have only two

response options. Multiple-choice (MC) items and true-false items are

modeled as dichotomous IRT models. Items with more than two response

categories are modeled as polytomous IRT models. Polytomous IRT models

are appropriate when responses are allowed to receive partial credit for

partially correct solutions. Therefore, the response categories are ordered so

as to represent the amount of the latent trait being measured.

IRT Assumptions

In order for an IRT model to be applicable for valid inferences, three

assumptions should be satisfied: dimensionality, local independence, and

functional form assumption (Embretson & Reise, 2000).

The first assumption, namely that of dimensionality, states that the

IRT model contains the correct number of latent traits per examinee. When

a single latent trait explain the examinee’ response to items, the model is

called unidimensional IRT model (Embretson & Reise, 2000). Very few tests
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contain items that are strictly unidimensional, but these tests are a fairly

good approximation to unidimensionality (Lord, 1963). Factor analytic

techniques are often used to test this assumption.

The second assumption is local independence (Hambleton &

Swaminathan, 1984). It posits that the statistical dependence among items

is explained away by the parameters of the model parameters conditional on

the trait level (Lord & Novick, 1968). Under the local independence

assumption, the probability of responding to one item is statistically

independent of the probability of responding to any other item for a given

ability level. Therefore, the probability of an examinee’s response pattern

equals the product of the probability of a given response to each item

(Hambleton & Swaminathan, 1984). Through local dependence, any subset

of items that measure the same trait can be used to estimate examinees’

ability levels. This is one of the key IRT properties that enables the adaptive

nature of CAT or MST. Local independence is violated when the content

provided in one item gives a cue or information to the answer of another item

in the same set of items.

The third assumption, functional form, is concerned with the item

characteristic curve (ICC). The ICC is the mathematical function relating

the probability of success for an item to the ability it measures (Hambleton

& Cook, 1977). Different IRT models produce different ICCs based on their

model parameters and the mathematical forms (Embretson & Reise, 2000).
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Dichotomous IRT Models

In educational assessments, dichotomously scored test items (e.g.,

correct/incorrect, or true/false) are commonly used. As the dominant form

of these scored items, MC items offer numerous merits, such as wide content

coverage, high reliability achieved through a sufficient number of high-quality

test items, and an ease of administration and scoring (Haladyna, 2004).

Dichotomous IRT models are commonly applied to items whose responses

are classified into binary categories, such as a MC item. The three most

common dichotomous IRT models are: 1) the one-parameter logistic (Rasch,

1960); 2) the two-parameter logistic (Birnbaum, 1968); and 3) the

three-parameter logistic (Birnbaum, 1968).

The one-parameter logistic model (Rasch, 1960) is the most

parsimonious of the IRT models. This model assumes there is the unit

discrimination for all items and guessing does not exist. The probability of

passing item i by examinee j using the one-parameter logistic model is

Pij(xij = 1|θj) =
1

1 + exp(−(θj − bi))
, (2.1)

where bi is the item difficulty parameter and θj is the latent variable for the

person’s ability. The probability of passing the item increases as the value of

θj increases for a given bi, thus forming an S-shaped function along the latent

trait scale. The one-parameter logistic model is also known as the Rasch

model (Rasch, 1960).

The two-parameter logistic IRT model has difficulty (b) and

7



discrimination (a) parameters. The probability of success (x=1) for a person

j with a given ability (θj) on item i for the two-parameter logistic model is

Pij(xij = 1|θj) =
1

1 + exp(−ai(θj − bi))
, (2.2)

where ai is the discrimination parameter, bi is the item difficulty parameter

for item i respectively, and θj is the variable for the person j’s ability. The

two-parameter logistic model assumes that guessing does not contribute to

the item response.

The three-parameter logistic IRT model is the most general form of the

dichotomous IRT models, and it has three parameters: difficulty (b),

discrimination (a), and the pseudo-guessing parameter (c). The probability

of success (x=1) for a person j with a given ability (θj) on item i in the

three-parameter logistic model is

Pij(xij = 1|θj) = ci + (1− ci)
1

1 + exp(−ai(θj − bi))
, (2.3)

where ai is the discrimination parameter, bi is the item difficulty parameter,

ci is the pseudo-guessing parameter for item i respectively, and θj is the

variable for the person j’s ability.

For dichotomous IRT models, the probability of passing an item

increases monotonically as the value of θ increases for given item parameters.

This S-shaped function along the θ is known as the item characteristic curve

(ICC). The ICC offers a graphical representation of the probability of a

correct response for each item along the latent trait scale (Embretson &
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Reise, 2000). Figure 2.1 shows the ICC for the three-parameter logistic

model where a=1.5, b=0.5 and c=0.1.

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

P
ro

b
ab

ili
ty

Ability Level

a

b

c

Figure 2.1: Item Characteristic Curve for the Three-Parameter Logistic Model

The difficulty parameter b indicates the relative easiness of an item,

typically ranging from -3 to +3 on the ability scale. Positively large difficulty

parameter values indicates that the items are relatively difficult. The point

at which the slope of the ICC is maximal is known as the point of inflection,

and the difficulty parameter for the one-, two-, and three-parameter logistic

IRT models is defined as the θ value that corresponds to the point of
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inflection. The probability of answering the item correctly at the point of

inflection is 1+c
2

for the three-parameter logistic model.

The discrimination parameter a indicates how well an item

distinguishes examinees with high proficiency from examinees with low

proficiency. The discrimination parameter is proportional to the slope of ICC

at its point of inflection. Therefore, a large discrimination parameter value

indicates a steep slope for ICC. A steep slope for ICC implies that the item

is able to distinguish between ability levels in the vicinity of the difficulty

parameter (Hambleton & Swaminathan, 1984). Typical a values range

between 0 and around +2, even though theoretically these values can be

infinitely large.

Since examinees are asked to choose one of the options presented in

MC items, low ability examinees may guess. Under the three-parameter

logistic model, the c parameter reflects item-dependent pseudo-guessing. A

high c value indicates a high probability of getting an item correct for

individuals with low ability. One interpretation of the three-parameter

logistic model is that item responses are composed of two processes: a

p-process and a g-process (Hutchinson, 1991). The p-process is an

item-solving process whereas the g-process is a guessing process. One

possible arrangement for executing the two processes is that the g-process is

followed by the p-process: As subject attempts to solve an item and resorts

to guessing, only if a correct response is not identified. With ICC, c is the

lower asymptote as shown in Figure 2.1.
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Item and Test Information for the Dichotomous IRT Models

IRT provides a precision of measurement for individual items across the

latent trait levels through the use of an item information function. The

information function of dichotomously scored items under IRT is expressed

as:

I(θ) =
P ′(θ)2

P (θ)(1− P (θ))
(2.4)

, where P (θ) is the probability of passing the item given θ, and P ′(θ) is its

first derivative. For the three-parameter logistic model, Equation 2.4 can be

expressed as:

I3PL(θ) = a2
Q(θ)

P (θ)

P (θ)− c
1− c

2

, (2.5)

where Q(θ) = 1− P (θ). From the Equation (2.5), the 2PL information

function can be calculated by setting c=0 while the 1PL information function

is obtained by setting c=0 and a=1 simultaneously. The information function

for the dichotomous IRT models is typically bell-shaped curve with positive

values. For 2PL, the information is largest at the item difficulty while the

amount of information decreases as the θ moves toward either extreme.

The information function for a test (i.e., called test information

function) can be expressed as the sum of the individual information function

of each item conditional on θ.

TI(θ) =
I∑
i

Ii(θ), (2.6)
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where Ii(θ) is the information function for item i and I is the item number.

The standard error of measurement for a test conditional on θ is expressed

thus using the test information function, TI(θ), as:

SE(θ) =
1√
TI(θ)

. (2.7)

Large information at θ indicates that the item is able to measure the

examinee’s ability (θ) with high precision. For the one-parameter logistic

IRT model, the items have the same amount of item information (i.e., 0.25)

at the ”peak” of the information function (i.e., where θ = b). However, for

the two-parameter logistic IRT models, the information function is the

function of the item discrimination parameter. The item information

functions for dichotomous logistic IRT models are smooth and continuous

along the ability scale, while the peaks of one- and two-parameter logistic

IRT models form around the difficulty parameter values (van ver Linden &

Boekkooi-Timminga, 1989). For three-parameter logistic IRT model, the

location of the peak shifts above item difficulty as the value of the

pseudo-guessing parameter increases (Lord & Novick, 1968). Figure 2.2

illustrates the information function for the three-parameter logistic model

where a=1.5, b=0.5 and c=0.1.
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Figure 2.2: Item Information Function for the Three-Parameter Logistic
Model

Polytomous IRT Models

While dichotomous IRT models are used for binary response categories,

polytomous IRT models allow multiple ordered response categories. In this

way, polytomous IRT models can distinguish between examinees who have

complete knowledge and those who have incomplete, but a certain amount of

knowledge. For example, an item with partial credit can award points for an

answer that is not eligible for the full credit and an essay can grant more

points for better answers according to a scoring rubric. Since polytomous
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items have a larger number of response categories, they offer more

information along a broader range of ability scale (Ostini & Nering, 2006).

According to Thissen and Steinberg (1986), polytomous IRT models

can be classified as two types: difference models and divide-by-total models.

Applying this categorization, the graded response model and its variations

are examples of the difference models, and the probability of answering a

category score is then determined by calculating the difference between two

adjacent probability curves called category characteristic curves (Dodd,

1984) . The partial credit model and the generalized partial credit model are

categorized as divide-by-total models, because the probability of obtaining a

category score is divided by the sum of the probabilities for all possible

category scores for that item (Dodd, De Ayala, & Koch, 1995; Thissen &

Steinberg, 1986). A few representative models that are commonly used are

described in the following sections.

Graded Response Model

The graded response model (GRM; Samejima, 1969) is used for items

when two or more response categories are so ordered to indicate the

examinee’s level of proficiency. Responses x to item i in this model are

scored from 0 to mi, resulting in mi + 1 score categories. Lower score values

reflect less of an examinee’s proficiency and higher values reflect more

proficiency in the domain that under the item is measuring. Development of

the GRM model is expressed as two steps: boundary response probabilities
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and category response probabilities. The boundary response probability is

defined as the probability of an examinee with a given ability to respond

with a category score x or higher for an item. The boundary response

probability for a response of x or higher for item i is expressed as :

P ∗ix(θ) =
1

1 + exp(−ai(θ − bix)
, (2.8)

where ai is the discrimination parameter for item i and bix is the category

boundary for category score x for item i on the θ scale.

In the second step, the category response probabilities are formed to

determine the probability of an examinee responding with a category score x

for an item. Mathematically, the category probability for the category x is

the difference between two adjacent boundary response probabilities at x and

x+ 1. The category probability for response x for item i is

Pix(θ) = P ∗ix(θ)− P ∗i(x+1)(θ), (2.9)

where P ∗ix(θ) is the probability of responding in x or higher for item i. The

boundary probability of responding to the lowest category or higher (i.e., the

entire category) is 1.0 by definition, while the probability of responding

above the highest category is 0.0. Figure 2.3 shows the category response

probabilities for an example item with four ordered responses (i.e., three

category boundaries, b1=-1.0, b2=0.0, and b3=1.0) with a=1.5.

15



0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

In
fo

rm
a

ti
o

n

Ability Level(ϴ)

0

1

3

2

b1 b2 b3

Figure 2.3: Category Response Probability for the Graded Response Model

Partial Credit Model

The partial credit model (PCM; Masters, 1982) was developed to

analyze the item types in which examinees are required to complete multiple

steps during the solution process. Those steps are called step difficulties. In

an item with four steps, for instance, there are three step difficulties. Step

difficulties indicate how difficult it is to transition from one response category
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to the next and can also be referred to as category intersections (Embretson

& Reise, 2000). The partial credit model assumes that examinees must

complete these steps in a sequential order. For example, an examinee cannot

achieve the credit for step 3 without successfully completing steps 1 and 2.

While category boundaries in GRM are required to be in order on the θ

scale, step difficulties in the partial credit model do not have to be so

ordered. For instance, step 2 may be more difficult to complete than step 3.

A ”reversal” occurs when the difficulty levels of the steps are not in order

(Dodd & Koch, 1987).

As an extension of the Rasch model to the polytomous case, the PCM

assumes all items have equal discrimination. The probability of an examinee

obtaining a category score x on item i is thus defined as:

Pix(θ) =

exp(
x∑

k=0

(θ − bik))

mi∑
r=0

(exp(
r∑

k=0

(θ − bik)))

, (2.10)

where bik is the step difficulty of score category k for item i, and mi is the

number of score categories minus one for item i.

Generalized Partial Credit Model

The generalized partial credit model (GPCM; Muraki, 1992)

generalizes PCM by allowing items to have different discrimination power.

The probability of an examinee with a given ability responding with a
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category score x for item i is defined as :

Pix(θ) =

exp(
x∑

k=0

ai(θ − bik))

mi∑
r=0

(exp(
r∑

k=0

ai(θ − bik)))

, (2.11)

where bik is the step difficulty of score category k for item i, mi is the

number of score categories minus one for item i, and ai is the discrimination

parameter for item i. Similar to GRM, the GPCM has a single

discrimination power for an item. As PCM is an extension of the Rasch

model, GPCM is an extension of the two-parameter logistic model. When

there are two response categories, GPMC is reduced to the two-parameter

logistic model (Muraki, 1992).

Item Information for Polytomous IRT Models

The polytomous IRT models deliver greater precision of estimated

ability by taking advantage of the information in each response category of

an item (Hambleton & Swaminathan, 1984). Since polytomously scored

items involve multiple category responses, each score category contributes to

the item information function (Dodd et al., 1995). According to Samejima

(1969), the item information function of a polytomous IRT model is the sum

of the category information functions, defined as the information contributed

by a category to an item. This category information function for item i
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category x is expressed as:

Iix(θ) =
P ′ix(θ)2

Pix(θ)2
− P ′′ix(θ)

Pix(θ)
, (2.12)

where Pix(θ) is the probability of responding with a score category x for item

i at θ, and P ′ix(θ) and P ′′ix(θ) are the first and second derivatives of Pix(θ)

respectively. Item information, then is obtained by adding the category

information functions weighted based on the probability of each score

category (Dodd et al., 1995; Samejima, 1969), written as:

Ii(θ) =

mi∑
x=0

[P ′ix(θ)]2

Pix(θ)
, (2.13)

where mi is the number of category scores for item i.

For polytomous IRT models, the locations of the step difficulty or

category boundaries determine how far the information function spreads

across θ. A large distance between biks results in the information function

spanning a wider range on the θ scale (Dodd & Koch, 1987; Koch, 1983).

In addition, compared to the dichotomous items, polytomous items in

general provide more information along the θ continuum (Embretson &

Reise, 2000; Jodoin, 2003a; Muraki, 1993; Ostini & Nering, 2006).

The test information function, as was the case with the dichotomous

IRT models, is defined as the sum of the item information conditional on θ

(see Equation 2.6). Similarly, the measurement precision of a test is

evaluated using the standard error of measurement, which is expressed as the

square root of the reciprocal of the test information (see Equation 2.7).
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Multistage Testing

One of the main challenges for mass-administered testing is that

examinees will exhibit a broad range of ability. A set of items within a linear

test may be too easy for highly proficient examinees or too difficult for

examinees of lower ability. One way to overcome this mismatch between test

and examinees’ abilities is to administer items that are the most informative

for individual examinees abilities. Computerized adaptive testing (CAT)

tailors a test for each examinee by estimating that examinee’s ability based

on responses to previous items and then choosing an item that will increase

measurement accuracy for the test. Since each examinee answers only items

highly relevant to his or her ability level, CAT can achieve test length

reduction without sacrificing measurement precision (Bergstrom & Lunz,

1999).

Unlike CAT, multistage testing (MST) administers a set of items (i.e.,

a module) to the examinees at each adaptation point. Thus, adaptation

occurs at a module level, not at the level of individual items. One of the

advantages of MST over CAT is that it offers the possibility of a strong

quality control for items on the test form. While the test form for CAT is

generated during the test administration, MST test forms are constructed

before such administration. Therefore, a strong quality control for items on

the test forms can be achieved through evaluation by test experts and

content committee experts (Hendrickson, 2007; Luecht & Nungester, 1998;

Patsula, 1999). The following sections describe the details of MST including
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its components and panel structure, followed by a discussion of the ability

estimation and routing methods. In addition, MST construction technique

relevant to the current study is presented.

MST Components

Panels, stages, modules, and pathways are often considered as building

blocks of MST (Luecht, 2000). Panels are top level components, which are

essentially a test form to which an examinee is assigned. Each panel should

be equivalent in terms of its information and content characteristics, so that

tests are fairly administered to all examinees. Within panels, there are

commonly two or three stages. A stage is a collection of modules, and an

examinee must finish a module in one stage in order to advance to a

subsequent module in the next stage. Modules within a stage are constructed

to represent distinct difficulty levels so the adaptive administration of a set

of items can be accomplished. Modules can be specified as easy, medium and

hard modules based on their overall difficulties, which is determined from the

average item difficulty within the individual module. The first stage

commonly has a single medium difficulty module, while the second and third

stage consists of two or three modules.

Examinees are administered one of the panels in MST. After finishing a

module in each stage, each examinee follows a pathway to continue onto the

next stage. Pathways are the allowed sequences of modules in a test.

Pathways allow modules to be administered to different examinees according
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to their ability and the routing rules. Figure 2.4 illustrates a MST panel with

seven pathways and each examinee is assigned to these pathways during

administration of test. For example, high ability examinees are more likely to

be routed to pathways that sequence through hard modules (e.g., Pathways 6

or 7), which will provide more information for examinees of high abilities. A

routing method refers to a systematic method for choosing pathways for each

examinee. It is this routing method through which the adaptation of MST is

implemented.

MST Panel Structure

Figure 2.4 illustrates an example of MST panel structure in which there

are a total of seven modules and seven pathways. It has one module at the

first stage (i.e., routing module) and three modules each at the second and

third stages, while modules at the second and third stages represent easy,

medium and hard difficulty. This panel structure is known as 1-3-3 MST and

is widely employed in both research and practice (Davis & Dodd, 2003;

Hambleton & Xing, 2006; Jodoin, Zenisky, & Hambleton, 2006; Luecht,

Brumfield, & Breithaupt, 2006; Luecht & Nungester, 1998).
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Module A
(Routing module)

Module B1 Module B2 Module B3

Module C1 Module C2 Module C3

Path 1 & 2 Path 3, 4 & 5 Path 6 & 7

Path 1 Path 2

Path 3 Path 4

Path 5

Path 6 Path 7

Stage 1

Stage 2

Stage 3

Figure 2.4: The 1-3-3 Panel Structure for MST

Pathways, the potential sequences of modules that an examinee may

take across different stages, is another element of MST panel structure. The

first stage is commonly known as a routing test, and it typically contains one

module. All examinees assigned to a panel will receive this module. There

are often two or three modules for the second and third stages to cover

necessary difficulties and meet the purpose of the test. A test developed for
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ability estimation often has three modules for the second and third stages

(i.e., 1-3-3) and covers a wide range on the θ scale.

MST Ability Estimation

After all the items in a module are administered, interim or provisional

estimates of θ are needed to choose the next module. In the context of an

IRT-based ability estimation, two types of ability estimation methods are

commonly used–maximum likelihood estimation (MLE) and Bayesian

estimation, such as expected a posteriori (EAP) or maximum a posteriori

(MAP).

Maximum likelihood estimation (MLE) searches for a point estimation

of the ability that maximizes the likelihood of the response pattern. Given

the known item parameters, the ability estimate that maximizes the

likelihood of the response pattern for each examinee is calculated. A

fundamental assumption for this approach is conditional independence,

which states that the probability of responding to an item correctly is

independent of responding to another item, thus holding the ability (θ)

constant. When this assumption is violated, MLE tends to overestimates the

accuracy of such estimation (Thissen, Steinberg, & Mooney, 1989).

Maximum a posterior (MAP; Samejima, 1969) and expected a

posterior (EAP; Bock & Mislevy, 1982) are two popular methods that

belong to the Bayesian ability estimations. The Bayes theorem states that

the posterior distribution of ability is proportional to the product of the
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likelihood function and the prior. The posterior distribution of ability

according to Bayes’ theorem is:

P (θ|Yj) =
P (Yj|θ)g(θ)∫
P (Yj|θ)g(θ)dθ

=
P (Yj|θ)g(θ)

P (Yj)
, (2.14)

where Yj is the response string for the jth examinee for items in the test and

g(θ) is the prior distribution for θ.

MAP calculates the mode of the posterior through a numerical method,

such as the Newton-Raphson method. The measurement precision of the

MAP ability estimate generally exceeds that of MLE because the prior

augments the information on the ability parameter (Wainer & Mislevy,

1990). Since the posterior is the product of likelihood and prior, MLE can be

considered a special case of MAP with a uniform prior. Mathematically, the

MAP estimates can be obtained by solving the derivative of the log-posterior

distribution with respect to θ, which is expressed as:

∂log[P (θ|Yj)]
∂θ

=
∂log[P (Yj|θ)]

∂θ
+
∂log[g(θ)]

∂θ
(2.15)

where Yj is the response string for the jth examinee for items in the test and

g(θ) is the prior distribution for θ.

EAP is another Bayesian estimation method that calculates the mean

for the posterior distribution of ability (Bock & Mislevy, 1982). The

measurement precision for the ability estimate is calculated from the

standard deviation of the posterior distribution of θ. The mean and standard

deviation are approximated through numerical methods (i.e., the weighted
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summation for the values of the function on quadrature points). A numerical

approximation is performed by taking the n quadrature points along the

ability scale. The weights are typically drawn from the approximation of a

known distribution, such as the standard normal distribution (Embretson &

Reise, 2000). Unlike MLE or MAP, EAP a is non-iterative method, and the

accuracy of the estimation can be improved by increasing the number of

quadrature points. An EAP estimate can be obtained from the following

formula:

θ̂ =

q∑
r=1

[Qr × L(Qr)×W (Qr)]

q∑
r=1

[L(Qr)×W (Qr)]

(2.16)

where Qr is rth quadrature node, W (Qr) is the weights at quadrature node

Qr serving as a discrete prior distribution, and L(Qr) is the likelihood

function evaluated at Qr.

Unlike MLE, which cannot find a solution for θ when an examinee

answers all items correctly or incorrectly, MAP and EAP always find a

solution. In addition, MAP and EAP are more stable for short tests

(Kingsbury & Weiss, 1983). However, the Bayesian methods tend to

underestimate high abilities and overestimate low abilities (Parshall, Spray,

Kalohn, & Davey, 2002). In addition, a correct prior specification is

important, and a wrong prior may result in biased estimates (Wainer &

Thissen, 1987).
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MST Routing

The routing method governs which module in the next stage will be

administered for an examinee. Through routing, test designers may succeed

in achieve administering the most informative modules delivery to for each

examinee.

A defined population interval (DPI) method (Luecht et al., 2006)

routes an examinee according to the predefined population proportions using

an estimate of his or her provisional ability. Assuming that equal proportions

of examinees are expected to be routed to three major pathways for 1-3-3

MST, then two estimated true-scores (i.e., X1 and X2) are obtained from the

following equations:

X1 =
∑
i∈1M

P (θ1; ξi) (2.17)

X2 =
∑
i∈1M

P (θ2; ξi), (2.18)

where 1M is the set of items in the routing module, ξi is the item parameters

for item i. For the normally distributed population ability, -0.44 and 0.44

may be used for θ1 and θ2 respectively. Finally, an examinee’s

number-correct score is compared to the estimated true-scores (i.e., X1 and

X2) to determine which routing path that individual examinee takes. This

method has been widely implemented in previous studies (Jodoin, 2003b;

Xing, 2001; Zenisky, 2004). The main advantagee of DPI are the control

available for item exposure and MST path utilization.
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The approximate maximum information (AMI) method (Luecht et al.,

2006) performs the routing based on the intersections of cumulative test

information functions (TIFs) between neighboring modules within a stage.

For examinees who finished the first stage of the 1-2-2 MST design, the

intersection between the accumulated information function of the

medium-medium pathway (i.e., medium modules at the first and the second

stage) and the medium-hard pathway (i.e., a medium module at the first

stage and a hard module at the second stage) is calculated. The intersections

on the ability scale are translated to an estimated true-score, which will

eventually be compared to the examinee’s number-correct score for the

routing decision.

The item selection method under CAT can also be used for MST

routing; the module providing the largest amount of information at the

current ability estimate is then chosen (Davis & Dodd, 2003). This method,

called a modified AMI (M-AMI), is optimal in terms of the IRT information

function, but may suffer from disproportional exposure rates for different

modules (Kim, Chung, Park, & Dodd, 2013). For example, if examinee

abilities are normally distributed, then the exposure rate for

medium-difficulty modules will likely be greater than for the easy- or

hard-difficulty modules.

28



MST Construction

Multiple panels are often required to meet content specifications and

control item exposure rates for test security. Manual construction of multiple

panels often takes a prohibitively long time even with a small number of

panels, and it is almost impossible for any panels of practical numbers

(Luecht et al., 2006; Luecht & Nungester, 1998). Thus, MST multiple

panel constructions are usually performed using computer algorithms

commonly referred as automated test assembly (ATA) techniques.

ATA selects a set of items for the modules to build panels according to

panel structure and according to various constraints, including test length,

test information, content constraints and exposure rate controls. Content

specification distributes item content area in the panel and provides content

validity evidence according to a test blueprint. Exposure rate control is

needed because items should not be administered above a predefined

frequency of utilization. Over-exposed items threaten item security and

compromise the validity of the test (Revuelta & Ponsoda, 1998). Target TIF

is the main method used to specify the amount of test information in a MST

design, which is directly related to the measurement accuracy of the test. For

high measurement precision, a large TIF for a panel is desirable. However,

simultaneous construction of multiple panels requires test developers to

consider methods that can deliver a fair allocation of item information

among the panels. In order to assess a practical TIF that can be supported

by the item pool, test developers often perform preliminary panel
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constructions before actual test construction (Luecht & Burgin, 2003;

Zenisky, 2004). Two of the most popular ATA algorithms are linear

programming (LP) and heuristics. LP relies on a mixed-integer linear

programming solver that searches for a set of items that meet the constraints

while an objective function is optimized. Heuristics, on the other hand,

iteratively choose items to form a test that satisfies the statistical and other

constraints of the test. The current study will assemble MST based on the

LP, and so the details of the LP method are presented.

LP is the optimization problem of an objective function under multiple

constraints. The unique characteristic of LP problems is that objective and

constraints are expressed in linear equalities or inequalities of the decision

variables (DVs). The goal of the LP solver is to find the values of decision

variables (DVs) that optimize the objective function while yet satisfying all

constraints. For example, an LP problem may express the profit that needs

to be maximized under the resource constraints. DVs are real values if they

represent the unit of resources for which fractions are allowed (e.g., the

amount of dollars, the weight of fuel), while integer DVs are used when they

represent objects where their fractions do not have any physical meaning

(e.g., the number of workers, the number of items on the test). LP is called

feasible if optimization is achievable while satisfying all constraints. The test

assembly problem can be expressed as an LP problem in which DVs

represent binary variables that indicate whether the corresponding items are

selected or not selected (Theunissen, 1986). A DV of one indicates the item
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is chosen for the test form.

Under the LP framework, TIF provides a reference point for the test

information along the ability scale (Boekkooi-Timminga, 1990). The

objective function in the LP model often involves specifying optimality

requirements for tests in terms of the TIFs. Two types of a target TIF are

commonly programmed; a relative target TIF and an absolute target TIF

(van der Linden, 2005). A relative target TIF does not provide absolute

information values for the assembled test. Instead, it defines a set of numbers

that represent the amount of information relative to other points. One of the

benefits of using the relative target TIF method is that the test designer does

not have to be familiar with the scale of the information function. Instead,

the overall shape of the test information function becomes the statistical

constraint for the test construction. Therefore, the relative target TIF is

preferred when the test designer wants to construct a test with a specific

shape and maximum information for high measurement precision. The shape

can be uniform for a norm-referenced test or peaked for a criterion-referenced

test. An absolute target TIF, on the other hand, specifies the exact height of

information across the latent trait scale. When parallelism among tests is

required, the absolute target TIF is often used to control the amount of

information among tests. This LP model minimizes the maximum absolute

deviation between an absolute target TIF and the assembled test.

In addition, LP models are known to provide a flexible presentation of

numerous constraints (van der Linden, 1998, 2005). For instance, the
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number of items on the test can be expressed as an equality:

∑
i

xi = n, (2.19)

where xi denotes the DV for item i, and n is the number of items in the test.

Since xi is only one if item i is chosen for the test, then the the summation of

xi signifies the number of items on the test.

Similarly, if nc items should be chosen from the content c, and then the

following constraint can be added :

∑
i∈Vc

xi = nc, (2.20)

where Vc is the item set for content c, and nc indicates the target number of

items of content c in the test.

If Ve denotes the set of items required to be excluded from the test

construction, then the following constraint is added :

∑
i∈Ve

xi = 0. (2.21)

The mutual exclusive rule implies that if one item is chosen, then the

other should not be included. The corresponding LP model that prevents

item i and j from being included on the test simultaneously is:

xi + xj < 2. (2.22)

The absolute target TIF specifies the exact height of information across

the latent trait scale. Because the content areas and the TIFs determine the
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parallelism among tests (Lord, 1977; Samejima, 1977) in the IRT

environment, the absolute target TIF is used when parallel tests are

assembled. This modeling minimizes the maximum absolute deviation

between an absolute target TIF and the assembled test. The current study

will perform MST construction using absolute target TIFs.

Mixed Format Tests

Many assessments in practice include both MC items and

constructed-response (CR) items and thus, they are called mixed-format

tests. Examples of the relatively well-known mixed-format tests are

Advanced Placement (AP) subject examinations, National Assessment of

Educational Progress (NAEP) exams, and assessment tests in a few states,

such as North Carolina and Wisconsin (Reshetar & Melican, 2010; Rosa,

Swygert, Nelson, & Thissen, 2001). Mixed-format tests benefit from

advantages of both MC items and CR items. Tests that consist of MC items

are known to cover a broad range of content while being relatively

inexpensive to score. On the other hand, tests with CR items tend to focus

on a relatively narrow range of content while they are able to measure

complex skills and a higher level of performance (Hogan & Murphy, 2007).

A more balanced test can be achieved by combining two different item

formats (Bennett et al., 2000; Breithaupt et al., 2006; Ercikan et al.,

1998; Wainer & Thissen, 1993; Zenisky & Sireci, 2002).
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Previous Studies

A large volume of research studies have been conducted for various

design aspects of MST. This section presents previous research studies and

research questions of the current study. Previous research is organized by the

factors impacting the measurement precision of MST, such as test length,

MST panel structures, item pool, and MST construction methods.

Test Length

Among others, test length is one of the important factors that impact

MST test performance. Many studies based on dichotomously-scored items

have investigated the test length issue such as the number of items within

the module and the interaction between total test length and the number of

stages (e.g., Jodoin, 2003b; Jodoin et al., 2006; Luecht & Nungester,

1998; Patsula, 1999; Xing & Hambleton, 2004)). Results from these

studies correspond to a well-known characteristic of testing: longer test

lengths lead to an increase in the decision consistency or accuracy (Crocker

& Algina, 1986). In terms of studies based on polytomously-scored items,

Macken-Ruiz (2008) investigated the same, decreasing, or increasing number

of items per stage in MST using items calibrated according to GPCM.

Chen′s (2010) study, which is based on GPCM, investigated test lengths on

the first stage (i.e., long routing and short routing) and reported that shorter

routing test length tended to result in slightly better measurement precision.

For studies using mixed-format items, Kim (2010) studied three test length
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variations. Specifically, the test length calculation of mixed-format tests on

this study considered the percentage of each test unit type (i.e.,

dichotomous, three-category, and four-category test units) in the pool. As

expected, the research showed a longer test length produced better results in

terms of classification accuracy.

MST Panel Structure

As one of the crucial design aspects of MST, panel design arrangement

is related to how stages and modules are constructed for the panel. Often,

the number of stages and modules included in each panel depends on the test

developers decision considering the testing purposes and policies. Zenisky,

Hambleton, and Luecht (2010) argued that module/stage arrangements are

influenced by the item pool capacity and features, the range of adaptivity

based on estimating the examinees ability, and the precision of measurement

ultimately desired from the test length and information function, among

other factors. In addition, Hendrickson (2007) pointed out that the panel

structure with more stages and modules provides better flexible adaption to

each examinee. Using dichotomously-scored items calibrated according to the

3PL IRT model, Patsula (1999) compared various MST test designs and

reported that the increasing the number of stages introduced higher accuracy

in estimating ability. Furthermore, increasing the number of modules within

the stage produced better ability estimates and efficiency. Zenisky (2004)

studied variations on module arrangements, but different module
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arrangements did not produce significant differences in terms of the

classification decision. Regarding studies based on polytomously-scored

items, Chen (2010) examined the effects of eight MST test structures on

ability estimation using the GPCM, and reported that all designs produced

similar results in their ability estimation. In the mixed format tests, however,

only the 1-3-3 (Kim, 2010; Kim & Dodd, 2010) and 1-3 (Oranje, Mazzeo,

Xu, & Kulick, 2014) panel design have been investigated to date, and various

panel designs have not yet been implemented in many MST research studies.

Item Pool

MST test performance has been reported to be impacted by the item

pool design, because the item pool capabilities and capacities affect MST

design elements such as test length; stage/module designs; shapes, heights,

and locations of target test information functions. Jodoin’s (2003b) studied

the impact of item pool quality to the MST performance and found that

enhanced item pool quality resulted in better measurement precision and

classification accuracy. Others conducted studies manipulating the item pool

by increasing the pool sizes or changing the characteristics of the item pool

based on dichotomously-scored items (e.g., Jodoin, 2003b; Xing &

Hambleton, 2004).
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MST Construction Method

ATA procedures utilize the computer algorithms to construct MST

panels. Common approaches for ATA include heuristic methods (Luecht,

2000), linear programming (van der Linden, 2005), and a network-flow

procedure (van der Linden, 1998). Several recent studies have utilized

heuristic-based procedure and linear programming for the MST designs using

polytomously-scored or mixed-format items. Kim (2010) and Kim, Chung,

Dodd, and Park (2012) implemented Luecht’s (2000) normalized weighted

absolute deviations heuristic (NWADH) and made a few modifications to

meet the requirements of the research. In addition, Park, Kim, Chung, and

Dodd (2011) used the LP solver to construct MST using the mixed-format

test based on GPCM. A sequence for constructing modules was undertaken,

and a fair distribution of items among panels was achieved by controlling the

upper bounds in the branch-and-bound method (Land & Doig, 1960).

Studies by Park, Kim, Chung, and Dodd (2011) and also Park, Kim, Chung,

and Dodd (2012) used an ATA program called JPLEX (Park, Kim, Dodd, &

Chung, 2011) to implement the actual MST construction using a

mixed-format pool. As a part of the efforts to increase mixed-format item

pool utilization, Park et al. (2012) proposed a new LP model. Multiple MST

assemblies (i.e., MST reassembly) were performed by replacing a portion of

the used items with unused items from the pool, thus increasing overall pool

utilization. These results showed that the new method increased the overall

pool utilization rates, while still meeting the expected statistical and
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non-statistical constraints.

Statement of Problem

A mixed-format MST test requires giving full consideration to various

design components including test length, administration procedure,

construction and scoring (Kinsey, 2003). In addition to those specific

components, test administrators need to consider various proportional

combinations of different item types based on the different purposes of each

test for the mixed-format MST design. Accordingly, these different

combinations of item types will impact test administration time, item

utilization from the pool, and the scoring processes. To date, no study has

investigated the impact of different proportions of item types on MST design.

These different proportions of item types in MST need investigation in

terms of panel structure. The allocation of items can determine how these

panel structures are constructed and also the influences that are apparent on

the different aspects of MST design, such as measurement precision, test

administration, and item pool utilization. To date, no study has investigated

the various panel structures and the interaction between different

proportions of item types and panel structures for a mixed-format MST.

Further, the interaction between the proportions of item types and test

lengths has never been studied. Finally, item type distributions at the

routing module have not been considered in previous mixed-format MST

studies. As these previous researchers (Jodoin et al., 2006; Kim et al.,
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2012; Zenisky, 2004) have pointed out, the routing test design may affect

MST performance significantly. To fully utilize and better understand the

nature of a mixed-format MST, various item type distributions at the

routing module should be investigated further. Thus, there is a major need

to evaluate and analyze the impacts of different proportions of item types for

the mixed-format MST and also their interactions with other design

elements, such as test length, panel structure, and item type distribution at

the routing module to achieve better practicality and further psychometric

enhancement of overall test administration.

Research Questions

The following research questions will be answered in this research study:

1. How does test length (total points) impact measurement accuracy

for mixed-format MST?

2. What are the important design features when creating modules,

stages, and panels for mixed-format MST?

3. How do the various MST structures under the mixed-format context

differ in terms of measurement precision?

4. How do the varied proportions for item types in the mixed-format

MST differ in the accuracy of ability estimation?

5. How does item type distribution at the routing module impact the

measurement precision of mixed-format MST?
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Chapter 3

METHODOLOGY

Design Overview

The term ”test unit” was used to describe both dichotomously scored

and polytomously scored items. Test length, a common design factor for the

previous MST research efforts (e.g. Jodoin et al., 2006; Kim, 2010;

Zenisky, 2004), was indirectly controlled in this study through the condition

of the total points. The current test unit pool contains test units with one-,

two-, or three-step difficulties. These three test unit types contribute three

maximum points (i.e., one, two, and three points) respectively to the total

points of MST.

This study considered two levels of total points (i.e., 40 and 60). A test

length of 60 dichotomous test units has often been recommended for the

diagnostic and licensure tests (Jiao, 2003). The condition of 40 total points

is included herein to approximately correspond to the test length used in Ho

and Dodd’s (2008) study, that was based on the high-stake mixed-format

test.

Further, four different proportions of polytomous test unit scores in the

MST were considered in this study. This condition includes MST with 10,
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30, 50, and 70 percent of total points accounted for by polytomous test units

to control the degree of contribution of these test units to the total points. In

the current study, the dichotomous test units are scored either as 0 or 1,

while the polytomous test units are scored from 0 to mi (i.e., mi+1 score

categories).

In terms of MST panel structure, two conditions (i.e., 1-2-2 and 1-3-3)

were considered for this study. The 1-2-2 MST structure is popular for

classification testings, while 1-3-3 MST forms are most commonly researched

for ability estimation testings (Jodoin et al., 2006; Zenisky, 2004).

Finally, two approaches for test unit type allocation for the routing

module (i.e., module at the first stage) were considered in this study. The

routing module was constructed by using either the mixture of dichotomous

and polytomous test units or purely dichotomous test units.

Summarily, this study examined a 4 (proportion of polytomous test

units) by 2 (total points) by 2 (MST structures) by 2 (routing module

designs), resulting in a total of 32 conditions. The outcome measures for this

research included several indices of measurement precision for each individual

examinee for mixed-format MST. For each of the 32 conditions, 100

replications that include 1,000 simulated examinees were performed.
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Test Unit Pool

A mixed-format test unit pool, the science for the 1996 National

Assessment of Educational Progress (NAEP), was used for this study. A

total of 424 test units contain 244 dichotomous test units, 113 test units

having two-step difficulties, and 67 test units having three-step difficulties.

The test unit pool also contains three content areas: physical science test

(29.72%); earth science test units (34.90%); and 150 life science test units

(35.38%). Test units are calibrated according to GPCM. Since the NAEP

assessment is a low-stake test, the discrimination parameters for all test units

are added by a constant 0.40 (Burt, Kim, Davis, & Dodd, 2003; Grady &

Dodd, 2009). Each pathway in MST mirrored the three content area and

their proportions in the current pool.

Test Unit Type Proportions

Unlike previous studies that varied the amount of information of the

routing modules (e.g., Jodoin et al., 2006; Kim et al., 2012; Zenisky,

2004), the current study systematically varied the test unit type distribution

in the routing module.

According to the design condition, each pathway in MST should

provide total points of either 40 or 60, while satisfying the proportions of the

test unit types. Therefore, the construction must consider the distribution of

test unit types within a specific pathway. For instance, under the condition
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of 60 total points and 30 percent for polytomous test units, 42 points (i.e., 70

percent of the total points of 60) should come from test units having a

one-step difficulty and 18 points should come from test units having two- or

three-step difficulties. The distribution of points for test units having two-

and three-step difficulties was performed by considering the proportion

between these two test unit types within the pool. That is, more test units

with two-step difficulties were included in the form since this pool provides

approximately twice as many test units of two-step difficulties (i.e., 113 test

units) than test units of three-step difficulties (i.e., 67 test units). Therefore,

a possible point distribution for the test is 42, 12, and 6 for the one-, two-

and three-step difficulties respectively. Thus far, the test unit points within a

pathway are determined. To fully specify a MST, the test unit points within

the modules still need to be determined.

Routing Module Design

Two methods for test unit type distribution within the routing module

are presented here. The first method constructs the routing module by using

the mixture of dichotomous and polytomous test units, conveniently called

the mixed routing module method. For instance, 19 points for the routing

module can be distributed at 10, 6, and 3 for test units with a one-, two- and

three-step difficulties respectively, rather than distributed at 19 test units of

a one-step difficulty. The second approach constructs the routing module by

using purely dichotomous test units, conveniently named the dichotomous

43



routing module method. For the same example mentioned above, 19 points

for the routing module were distributed at 19 dichotomous test units.

Figures 3.1 through 3.4 present the potential pathway structures for the

mixed routing module method in terms of various proportions and total

point conditions. Figures 3.5 through 3.8 show the potential pathway designs

for the dichotomous routing module method for the same proportion and

total point conditions.

MST Assembly

In operational testing, test designers rely on automated test assembly

(ATA) techniques to build MST forms. ATA enables test constructors to

build a large number of panels from the pool while satisfying various

requirements from the test blueprints. For MST, there are bottom-up,

top-down, and mixed methods used to build forms (Luecht & Nungester,

2000). Bottom-up begins with module construction, and the pathways are

constructed by assigning modules. Top-down methods begin with pathway

construction, and the modules are constructed by allocating test units to

modules within the pathway. Mixed method is a combination of both

bottom-up and top-down methods. For the current study, pathway level

constructions were performed. For instance, the pathway of medium

difficulties (i.e., medium-medium-medium pathway) could be assembled first,

followed by the easy and hard difficulty pathways for 1-3-3 design. After the

construction of a medium-difficulty pathway, however, the test units for the
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Figure 3.1: Module structures for the 10% proportion of polytomous test
units and the mixed routing module method condition.

Note. T1,T2, and T3 indicate test unit types for one-, two-, and three-step
difficulties.
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Figure 3.2: Module structures for the 30% proportion of polytomous test
units and the mixed routing module method condition.

Note. T1,T2, and T3 indicate test unit types for one-, two-, and three-step
difficulties.
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Figure 3.3: Module structures for the 50% proportion of polytomous test
units and the mixed routing module method condition.

Note. T1,T2, and T3 indicate test unit types for one-, two-, and three-step
difficulties.
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difficulties.
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Note. T1,T2, and T3 indicate test unit types for one-, two-, and three-step
difficulties.
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difficulties.
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first module needed to be determined so that the subsequent pathways can

include them during their constructions.

MST constructions were performed in R (Ihaka & Gentleman, 1996)

using the lpSolveAPI package (Konis, 2011). To control the peak of test

information, minimax LP models (van der Linden, 1987) were specified

based on the target TIFs for each condition. The LP model specifying

statistical constraints is written as:

minimize y, (3.1)

N∑
i=1

Ii(θk)xi − T (θk) ≤ y, for all k, (3.2)

T (θk)−
N∑
i=1

Ii(θk)xi ≤ y, for all k, (3.3)

N∑
i=1

S(xi) = n, (3.4)

y ≥ 0, (3.5)

and (3.6)

xi ∈ {0, 1}, i = 1, ..., N, (3.7)

where xi is the decision variable for test unit i; y is the real-valued absolute

deviation from target TIF; N is the number of test units; Ii(θk) is the

information for test unit i at θk; T (θk) is the target TIF at θk; k is the

number of theta points at the latent trait scale; S(xi) is the points of test

unit i; and n is the target points in the pathway. Two panels for each

condition were constructed.
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Once the pathway is constructed to meet the target TIF, the test units

that occupy the routing module (i.e., the module at the first stage) are then

determined. Since test units within the routing module are shared among

three major pathways in the 1-3-3 design, the construction of the other two

pathways was performed with test units in the routing module already

included. This task is easily accomplished by adding one constraint to LP

model. After the construction of the first module, the test units in the

routing module were included for the second and third pathway

constructions utilizing the following constraint:∑
i∈Rj

xi = nj, (3.8)

where Rj is the set of routing test units for panel j that is determined from

the construction of the first pathway, and nj is the number of routing test

units. Under each condition, content balancing for the three content areas

was applied to a pathway level.

Target TIF

Determining reasonable targets for MST forms is one of the essential

steps in MST construction. Since MST is one form of measurement tool, a

test needs to be constructed to meet the purported goals of that instrument.

Test assembly, as introduced by Birnbaum (1968), achieves measurement

accuracy through the target TIF. For example, if a test needs to assess

ability across a wide range of the theta scale, a relatively flat target TIF is

preferable. On the other hand, a licensure test for making a pass/fail
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decision may require a target TIF that peaks around the cutoff theta score in

order to increase accuracy at the cutoff point. In addition, test developers

need to consider the statistical characteristics of a test unit in a given pool to

determine the target TIFs that can actually be constructed (Luecht &

Burgin, 2003).

In order to construct reasonable target TIFs in this study, multiple

constructions were performed using 50 percent of the polytomously scored

test units without the test unit replacements, while following the content

balancing requirements. Target TIFs were determined for each pathway

difficulty and the total points, resulting in a total of 10 targets; five pathway

difficulties (i.e., 3 pathway difficulties located at -1.2, 0.0, and 1.2 on a theta

scale for 1-3-3 design + 2 pathway difficulties located at -0.5 and 0.5 for the

1-2-2 design) across two total points (i.e., 40 and 60).

Data Generation

Under GPCM, the probability of responding in each category is

obtained given the test unit parameters and an examinee’s ability.

Examinees’ abilities were randomly drawn from standard normal distribution.

Given the true ability, the probability of a response in each category is then

computed. The cumulative probability of a response is then calculated by

summing the category response probabilities. A random number drawn from

a uniform distribution is then compared to the cumulative probability. The

response is assigned to the smallest score for which the cumulative
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probability is larger than the random number. This procedure was repeated

to generate 1,000 response strings for all 424 test units. In each replication,

MST simulation was performed using one of the 100 data sets. Data

generations were performed using R (Ihaka & Gentleman, 1996).

MST simulation

Given the response data sets and the MST designs constructed from

ATA, a MST simulation was performed. One of two panels in MST form was

randomly chosen and the routing module then was administered to an

examinee. After the examinee finishes the routing module, the ability

estimation was performed using EAP. At each stage, ability estimation was

performed from all the previous test units in the MST and their respective

response patterns. The relative standing of an examinee’s ability estimates

relative to the pathway difficulties determined the routing decision. In other

words, an examinee was routed to a pathway where the distance between the

current ability estimate and the pathway difficulty is the smallest. MST

simulation then was performed using R (Ihaka & Gentleman, 1996).

56



Data Analysis

The results of MST simulation were analyzed with regard to the quality

of ability estimation measured from the comparison between true θs and

their estimates from MST simulation.

Accuracy of Ability Estimation

The accuracy of ability estimates is also of interest for any

measurement procedure. First, descriptive statistics (e.g., mean, minimum,

and maximum) of the estimated θs and the Pearson correlation between

known and the estimated θs are presented for each study condition. These

values were averaged across 100 replications and each replication includes

1,000 simulated examinees. Secondly, Root Mean Square Error (RMSE) and

bias were calculated to evaluate the recovery of known θs. RMSE and bias

are calculated as:

RMSE =

√√√√√√√√


N∑
j

(
θj − θ̂j

)2
N

, (3.9)

Bias =

N∑
j

(
θj − θ̂j

)
N

, (3.10)

where N is the number of examinees, θ̂j is the ability estimate of examinee j,

and θj is the true ability of examinee j. Average RMSE and bias were

calculated across 100 replications for each of the study conditions.
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Conditional plots (i.e., conditional on θ) for RMSE, bias and standard

error (SE) averaged across 100 replications were also presented to highlight

the measurement precision in various parts of the θ scale. RMSE, bias and

SE were plotted on 13 data points of θ from -3.0 to 3.0 in increments of 0.5.

The actual θ ranges were from -3.25 to 3.25 in order to achieve midpoints

that range from -3.0 to 3.0 (e.g., a midpoint of -3.0 represents θ between

-3.25 to -2.75).

For each replication, average RMSE, bias and SE were calculated for

each bin (i.e., RMSEb, biasb and SEb, where b=1,2,...,13). RMSEb, biasb

and SEb were averaged across 100 replications to produce the grand means

of RMSE, bias and SE for the conditional plots.

MST Test Information

Equation 2.7 provides a useful tool for calculating standard errors of

measurement once the test information function is known. For adaptive

testing, however, deriving the test information function has not been

attempted by previous researchers. One of the main reasons for this is that

the number of test forms is exceedingly large due to their adaptive nature.

Therefore, simulation studies have been conducted to assess various aspects

of performances, such as standard errors, bias, and item utilization. Unlike

CAT, MST has unique characteristics. Test forms are constructed before the

administration using test construction techniques, while the adaptive points

during the administration occur at the end of stage. Thus, MST could be
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considered to have characteristics of both the linear test and fully adaptive

CAT. Unlike previous researchers who have relied exclusively on simulation

results for the performance of test forms, the current study attempts to

derive standard error analytically by forming test information (conveniently

called MST test information) while considering aspects of both the linear

and adaptive nature of MST.

The benefits of comparison between empirical and analytic standard

errors are twofold. First, analytic standard errors might provide additional

reference points for the simulation results. MST simulation results rely on

largely three factors: the statistical quality of the pool, MST constructions,

and MST administration methods. Simulation can produce different results

by changing the factors necessary for simulation, such as target test

information, population sampling, and replication number. These factors can

interact with the study condition (e.g., proportion in the current study),

meaning the interpretation of the outcome might not be straightforward.

Researchers can acquire extra confidence in their results by matching

simulation outcomes to analytically driven ones. Second, analytic standard

errors can provide a theoretical upper limit on the MST performance. As

analytic standard errors are derived directly from the test information, they

represent the highest measurement accuracy one can achieve from the MST

design. Simulation results that fall below this level of performance should

raise questions regarding the design factors within the MST administration.

Two observations that lead to the MST test information were
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introduced. First, current MST practices were used to construct MST

modules targeting specific difficulties. For example, modules for the second

and third stages of 133 MST were constructed to cover easy, medium, and

hard difficulties. As a result, major pathways were formed to represent

specific difficulties, and each major pathway could be considered a linear test

form sharing a common routing module. Second, following previous research

(Kim et al., 2013; Zenisky, 2004), a large portion of examinees were routed

through major pathways. Zenisky considered MST performance in the

context of certification and licensure assessment using four routing methods:

DPI, proximity, routing based on number-correct scores (NC), and random

routing. The study results showed that the average proportion of examinees

routed through major pathways for the three routing methods (i.e., DPI,

proximity, and NC) were 81.74%, 81.6%, and 71.15% for the 133 MST design

and 90.13%, 79.8%, and 81.34% for the 122 MST design. Kim et al.

compared panel designs with a routing method using the partial credit model

and reported that 73% and 78% of examinees were routed through major

pathways for the AMI and DPI routing methods, respectively. Thus, once

examinees abilities are estimated at the routing module, a predominant

portion of them do not change the difficulty level of the module in the

subsequent stages. In other words, the most important adaptivity in MST

design occurs at the routing module.

MST test information was derived from two observations: the linearity

of major pathways and the adaptivity at the routing module. As adaptivity
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occurs depending on the ability estimates, MST test information is formed

by adaptively choosing major pathway information functions. A logical

method was to select the range of pathways to which examinees of abilities

are most likely routed.
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Figure 3.9: MST test information derived from major path information func-
tions.
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Formally, the MST test information for 133 MST is expressed as:

Figure 3.9 shows an example of the 133 MST test information function

constructed from three pathway information functions. Easy, medium, and

hard difficulty pathways were constructed so that their difficulties were

located at -1.2, 0.0, and 1.2 on a theta scale, while the easy and medium

difficulty pathways intersected at theta = -0.6 and the medium and hard

difficulty pathways intersected at theta = 0.6. Therefore, the MST test

information function was constructed from the easy pathway, where theta is

less than -0.6; the medium pathway, where theta is between -0.6 and 0.6; and

the hard pathway, where theta is larger than 0.6.

Formally, the MST test information for 133 MST is expressed as:

TImst(θ) =1(θ < C1)PIeasy+

1(C1 <= θ <= C2)PImedium+

1(θ > C2)PIhard (3.11)

, while the MST test information for 122 MST is expressed as:

TImst(θ) = 1(θ < C1)PIeasy + 1(θ >= C1)PIhard (3.12)

where 1(condition) is 1 if the condition is true and zero otherwise; PI is the

pathway information function for each difficulty; and C1 and C2 are

midpoints of two adjacent major pathway difficulties.

Equations 3.11 and 3.12 were used to calculate the MST test

information for a panel in MST. When multiple panels were constructed, the
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overall MST test information was the average of the MST test information

functions calculated using Equations 3.11 or 3.12 for each panel. The MST

test information functions were then smoothed using a moving average to

achieve realistic test information and the standard error functions. The

moving average of 5 points for TImst(θ), for example, is expressed as:

TImst(θ) =

∑5
i=1 TImst(θ + i− 3))

5
(3.13)

The standard error of measurement was then calculated using Equation

3.14, which is the inversed squared root of the MST test information

function.

SEmst(θ) =
1√

TImst(θ)
(3.14)
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Chapter 4

RESULTS

Overview

This chapter consists of two sections detailing (1) MST constructions

and (2) MST simulation results. The first section presents the outcome of

the MST test constructions by focusing on the MST test information

functions for 32 study conditions - namely, four proportions of the

polytomous test units, two total points, two MST panel structures, and two

routing module designs. The second section provides details on the MST

simulation results. For each condition, the mean Pearson correlation between

the known and estimated thetas, the descriptive statistics of the estimated

thetas, and the frequency of the use of each pathway are presented. The

averages of RMSE and bias are also presented, and the conditional grand

mean standard errors and mean bias plots for each condition are plotted.

MST Constructions

This section presents the test unit pool information and the actual

construction of MST through the MST test information functions. Test unit

pool information provides overall distribution of information that the pool
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can provide. The analysis of the test unit pool information is crucial in

setting a realistic goal of measurement precision that a test can achieve

across ability levels.

Test unit pool information

The test unit pool information function (i.e., the accumulation of test

unit information in the pool) is presented in Figure 4.1. The pool

information was slightly negatively skewed, and there was relatively little

information at the easy difficulty levels. In addition, the location of the peak

is at the boundary of hard and medium difficulty levels, indicating that a

large amount of information is focused at thetas between zero and 2.0.
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Figure 4.1: Information function of test unit pool.

65



MST test information function

MST test information was derived from concatenating major pathway

information to approximate the test information of MST forms. As all MST

forms contain two panels for a given condition, the two MST test information

functions were averaged. For ease of illustration, the theta scale was divided

into easy, medium, and hard levels. The boundary between easy and medium

was located around theta = -1.0, and the medium and hard levels were

separated by theta = 1.0.

Figures 4.2 and 4.3 present the MST test information for the 10%

proportion of polytomous test units for both the dichotomous and mixed

routing module conditions. The peak information values of MST test

information for 60 and 40 total point conditions were 20 and 15 respectively,

which correspond to the values specified in target test information functions.

In terms of MST structure, MST with the 133 structure maintained high

information for a wide range of difficulty levels compared to MST with the

122 structure. The difference between the 133 and 122 structures was large

in the hard difficulty levels, while the difference in information functions was

minimal between the two MST structures for easy and medium difficulty

levels.
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Figure 4.2: MST test information for 10% proportion of polytomous test units
and dichotomous routing module condition.
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Figure 4.3: MST test information for 10% proportion of polytomous test units
and mixed routing module condition.
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Figures 4.4 and 4.5 present the MST test information for the 30%

proportion of polytomous test units for the dichotomous and mixed routing

module conditions, respectively. MST constructions performed well according

to the targets in terms of the peak values and locations. The condition of 60

total points resulted in overall larger information than the 40 total points

condition. In addition, the 133 structure possessed larger information than

122 in the hard difficulty levels for both total point conditions.
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Figure 4.4: MST test information for 30% proportion of polytomous test units
and dichotomous routing module condition.
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Figure 4.5: MST test information for 30% proportion of polytomous test units
and mixed routing module condition.

Figures 4.6 and 4.7 present the MST test information for the 50%

proportion of polytomous test units for the dichotomous and mixed routing

module conditions, respectively. Similar bell-shaped information functions

were observed, while peak values, peak locations, and the pattern of spread

were constructed according to the specifications in targets. The information

difference between the 122 and 133 structures were more pronounced in hard

difficulty levels than easy difficulty levels.
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Figure 4.6: MST test information for 50% proportion of polytomous test units
and dichotomous routing module condition.
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Figure 4.7: MST test information for 50% proportion of polytomous test units
and mixed routing module condition.
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Figures 4.8 and 4.9 present the MST test information for the 70%

proportion of polytomous test units for the dichotomous and mixed routing

module conditions, respectively. Compared to the other proportion

conditions, the amount of information for the easy and hard levels was

somewhat low, resulting in narrow MST test information functions. The

information functions in the easy difficulty levels were relatively low

compared to those in the hard difficulty levels. However, the MST with a

mixed routing module condition provided slightly more information for easy

difficulty levels than the MST with the dichotomous routing module design.
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Figure 4.8: MST test information for 70% proportion of polytomous test units
and dichotomous routing module condition.
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Figure 4.9: MST test information for 70% proportion of polytomous test units
and mixed routing module condition.

In summary, MST constructions for all conditions followed the targets

in general but reflected the characteristics of the test unit pool. The MST

test information functions resulted in a bell-shaped curve showing large

information in the medium range and low information as theta moves toward

to either extreme. MST with 60 total points resulted in larger information

than the 40 total points condition, as specified in the target test information.

In terms of the MST structure, MST test information functions from the 133

condition provided larger information for a wide range of difficulty levels

compared to MST with the 122 structure condition.

The routing module design and the proportion of polytomous test units

also affected test construction. For example, in the 70% of proportion of
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polytomous test units and dichotomous routing module design, 44 of the 60

total points and 29 of the 40 total points within a pathway had to be drawn

from polytomous test units (see Figure 3.8). As the routing module was

composed of purely dichotomous test units, the test points drawn from

polytomously scored test units were multiplied by the number of pathways

and the number of panels in a MST form. For example, in the 133 MST form,

polytomous items should account for 264 (i.e., 44(points) by 3(pathways) by

2(panels)) and 174 (i.e., 29(points) by 3(pathways) by 2(panels)) points for

60 and 40 total point conditions, respectively. This is the most stringent

design condition requiring a large number of polytomous test units within the

MST design. The actual construction demonstrated that the information for

both easy and hard pathways did not meet the specified target information.

In addition, the characteristics of the test unit pool were reflected in

the MST test information. For easy difficulty pathways, the amount of

information at the peak was lower than the target (i.e., between 75 and 80%

of the target value), forming unsymmetrical MST test information functions

for all 32 study conditions. This relatively low information in the easy level

was more pronounced for the 133 design because the easy pathways in the

133 MST structure was located at further negative theta points (i.e., theta =

-1.2) than in the 122 MST designs (i.e., theta = -0.6).

Figure 4.10 shows the actual construction of MST test information of

MST with the 70% of proportion of polytomous test units, 133 structure and

dichotomous routing module design compared to the target test information
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functions. For each pathways, the actual construction could not provide

enough information to match the target information functions. The peak

values were around 11.6 (the target information value of 20) and 10.9 (the

target information value of 15) for MST with the 60 and 40 total point

conditions respectively, preventing the formation of unique peaks.
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mous routing module condition.
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MST Simulation Results

Descriptive statistics

Table 4.1 provides the averaged descriptive statistics of estimated θs

and the mean Pearson correlation between known and estimated θ averaged

across 100 replications. The descriptive statistics include the grand means of

θ estimates, which are the mean estimated θs averaged across the 100

replications. The grand means of θ estimates were ranged from -0.051 and

-0.004 and the mean Pearson correlations between the known and estimated

thetas for all conditions were equal to or above 0.96. There were not

noticeable differences in mean Pearson correlation values across study

conditions.
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Table 4.1:
Descriptive Statistics of the Estimated θs Averaged across 100 Replications

Points Structure Proportion Routing Grand Mean (min max) Mean Correlation

40

122

10
dich 0.002 (-0.095 0.091) 0.963

mixed -0.005 (-0.119 0.083) 0.971

30
dich 0.002 (-0.102 0.090) 0.965

mixed -0.007 (-0.118 0.071) 0.970

50
dich -0.001 (-0.093 0.096) 0.974

mixed -0.006 (-0.108 0.083) 0.977

70
dich -0.001 (-0.097 0.086) 0.974

mixed -0.009 (-0.106 0.087) 0.977

133

10
dich 0.004 (-0.096 0.093) 0.965

mixed -0.005 (-0.109 0.089) 0.969

30
dich 0.003 (-0.101 0.092) 0.965

mixed -0.009 (-0.117 0.071) 0.969

50
dich 0.000 (-0.100 0.084) 0.973

mixed -0.005 (-0.114 0.086) 0.978

70
dich -0.001 (-0.094 0.091) 0.973

mixed -0.008 (-0.117 0.077) 0.978

60

122

10
dich -0.008 (-0.106 0.088) 0.963

mixed -0.012 (-0.117 0.077) 0.968

30
dich 0.000 (-0.096 0.105) 0.963

mixed -0.015 (-0.115 0.076) 0.968

50
dich -0.006 (-0.117 0.087) 0.973

mixed -0.007 (-0.123 0.074) 0.978

70
dich -0.002 (-0.118 0.092) 0.973

mixed -0.006 (-0.114 0.084) 0.977

133

10
dich -0.038 (-0.123 0.056) 0.960

mixed -0.031 (-0.136 0.055) 0.966

30
dich -0.051 (-0.150 0.047) 0.960

mixed -0.036 (-0.142 0.058) 0.967

50
dich -0.012 (-0.120 0.084) 0.971

mixed -0.018 (-0.124 0.074) 0.974

70
dich -0.008 (-0.118 0.101) 0.973

mixed -0.010 (-0.116 0.083) 0.977
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Table 4.2 shows the mean RMSE and mean bias (along with their

minimum and maximum values) for all 32 study conditions. The mean

RMSEs ranged from 0.330 to 0.473. There were a noticeable impact of total

points and MST structure conditions to the mean RMSEs; the mean RMSE

was smaller for MST with the 60 total points over MST with the 40 total

points and the MST with the 133 structure over the MST with the 122

structure. The results showed that the mean RMSEs for 40 and 60 total

point conditions were 0.427 and 0.369, respectively, while those for the 122

and 133 MST structures were 0.429 and 0.368, respectively. The mean

RMSEs for the proportion of polytomous test units and routing design

conditions were identical to two decimal places.

For all 32 conditions, mean biases were similarly small. The range of

biases was also similar across conditions while minimum and maximum mean

biases were -0.144 and 0.130, respectively.
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Table 4.2: Mean RMSE and Mean Bias of the Estimated θ Averaged across
1,000 Replications

Points Structure Proportion Routing Mean RMSE (min,max) Mean Bias (min,max)

40

122

10
dich 0.473 (0.270, 0.829) -0.001 (-0.093, 0.099)

mixed 0.453 (0.267, 0.827) -0.005 (-0.107, 0.099)

30
dich 0.451 (0.270, 0.778) -0.009 (-0.124, 0.096)

mixed 0.440 (0.270, 0.741) -0.004 (-0.106, 0.101)

50
dich 0.453 (0.270, 0.714) 0.006 (-0.071, 0.115)

mixed 0.468 (0.270, 0.796) -0.007 (-0.144, 0.092)

70
dich 0.472 (0.269, 0.708) 0.013 (-0.073, 0.130)

mixed 0.471 (0.272, 0.774) 0.020 (-0.051, 0.114)

133

10
dich 0.381 (0.265, 0.632) 0.004 (-0.057, 0.075)

mixed 0.387 (0.268, 0.613) 0.006 (-0.060, 0.076)

30
dich 0.387 (0.269, 0.608) 0.007 (-0.032, 0.073)

mixed 0.406 (0.269, 0.663) 0.002 (-0.081, 0.081)

50
dich 0.401 (0.266, 0.619) 0.010 (-0.055, 0.106)

mixed 0.407 (0.266, 0.630) 0.010 (-0.055, 0.096)

70
dich 0.391 (0.268, 0.593) 0.019 (-0.023, 0.103)

mixed 0.391 (0.264, 0.614) 0.024 (-0.016, 0.121)

60

122

10
dich 0.388 (0.235, 0.682) -0.005 (-0.087, 0.078)

mixed 0.389 (0.232, 0.698) -0.006 (-0.100, 0.077)

30
dich 0.413 (0.234, 0.802) -0.011 (-0.122, 0.057)

mixed 0.415 (0.235, 0.791) -0.011 (-0.131, 0.061)

50
dich 0.384 (0.232, 0.559) 0.002 (-0.072, 0.099)

mixed 0.388 (0.234, 0.652) 0.000 (-0.064, 0.076)

70
dich 0.405 (0.232, 0.617) 0.006 (-0.079, 0.099)

mixed 0.389 (0.233, 0.627) 0.003 (-0.048, 0.074)

133

10
dich 0.340 (0.232, 0.564) 0.003 (-0.051, 0.062)

mixed 0.341 (0.232, 0.539) 0.006 (-0.039, 0.065)

30
dich 0.330 (0.232, 0.514) 0.003 (-0.037, 0.055)

mixed 0.329 (0.235, 0.497) 0.006 (-0.032, 0.057)

50
dich 0.335 (0.232, 0.500) 0.003 (-0.034, 0.052)

mixed 0.339 (0.234, 0.537) 0.002 (-0.053, 0.060)

70
dich 0.365 (0.232, 0.591) 0.014 (-0.031, 0.089)

mixed 0.345 (0.234, 0.552) 0.006 (-0.047, 0.072)

Note. Proportion of polytomous test units.

Table 4.3 is the summary of the average pathway frequencies for

structure and total points conditions. The average frequency of major

pathways, where examinees do not change difficulties for the second and third
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stages, was as large as 92.93% for 60 total points and 87.66% for the 40 total

points condition. This indicates that once the difficulty is determined at the

end of the routing module, it does not change at the third stage in the MST.

Table 4.3: Average Frequency of Pathways

Structure total points mee mem mme mmm mmh mhm mhh major pathways

122
40 46.23% 3.91% 3.66% 46.20% na na na 92.43%
60 46.49% 3.66% 3.41% 46.44% na na na 92.93%

133
40 28.61% 3.46% 2.99% 29.99% 2.92% 3.48% 28.55% 87.15%
60 28.70% 3.35% 2.81% 30.45% 2.86% 3.31% 28.51% 87.66%.

Note. m, e and h indicate medium, easy and hard difficulty modules
respectively.

Conditional bias

Figures 4.11, 4.12, 4.13 and 4.14 show the mean conditional bias for four

factors in the study (i.e., proportion of polytomous test units, total points,

MST structures, and routing designs) on θ. For all conditions, conditional

mean bias plots are a monotonic decreasing function crossing zero in the

center of the theta continuum. Small bias values at the center of the ability

scale imply that known thetas were recovered accurately. On the other hand,

bias values at both extremes indicate that thetas were slightly overestimated

at the high ability levels and underestimated at the low ability levels.

Figure 4.11 shows the mean conditional biases for the four levels of the

proportion of polytomous test units in the study. The four conditional bias

plots follow the overall trend of monotonic decreasing functions, and the

differences among them are small.
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Figure 4.11: Conditional mean biases for four levels of proportion of polyto-
mous test units

Figure 4.12 shows the mean conditional biases from two routing module

variations. The two conditions produced almost identical results, and the

curves appear to be on top of each other. Figure 4.13 compares the mean

biases for two MST structures. The results show that the MST with the 122

structure had larger biases than the MST with the 133 structure in both

extremes (i.e., overestimation at the high ability levels and underestimation

at the low ability levels). Finally, Figure 4.14 shows that the MST with the

40 total points resulted in slightly larger absolute biases compared to the

MST with the 60 total points condition.
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Figure 4.12: Conditional mean biases for two levels of routing module design
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Figure 4.13: Conditional mean biases for 133 and 122 MST structure
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Figure 4.14: Conditional mean biases for two levels of total points

Grand mean conditional standard errors

Figure 4.15 provides the grand mean conditional standard error, which

is averaged across all 32 design conditions. A typical U-shaped curve

appeared, in which measurement precision is greater in the medium difficulty

levels. The minimum average standard error was 0.251 around theta value of

0.5.
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Figure 4.15: Conditional grand mean standard error averaged across all 32
study conditions.

Conditional standard errors for proportion condition

Grand mean conditional standard errors in terms of proportions are

calculated to highlight the impact of the proportion of polytomous test units.

Figure 4.16 presents the grand mean standard errors of MST with 40 total

points for four levels of proportion of polytomous test units averaged across

two routing module designs and two MST structures. Virtually no differences

of measurement precision occurred in the medium and hard difficulty levels.

In the easy difficulty levels, however, the MST with the 70% proportion of

polytomous test units condition resulted in the largest standard errors,

followed by the MST with the 50% condition.

Figure 4.17 shows the grand mean standard errors of MST with the 60
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Figure 4.16: Conditional grand mean standard errors of MST with 40 total
points for four levels of proportions
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Figure 4.17: Conditional grand mean standard errors of MST with 60 total
points for four levels of proportions
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total points for four levels of proportion of polytomous test units averaged

across two routing module designs and two MST structures. All proportion

conditions showed similar performance across the theta scale, while MST

with the 70% proportion of polytomous test units showed the largest

standard errors in low ability levels. In the hard difficulty levels, however,

MST with the 30% proportion of polytomous test units showed the largest

standard errors.

Conditional standard errors for total points and MST structure con-
ditions

Figure 4.18 shows the grand mean conditional standard errors for MST

with the 10% proportion of polytomous test units and dichotomous routing

module design. MST with 60 total points resulted in smaller standard errors

than with 40 total points, although the difference was smaller in the medium

difficulty levels compared to the easy and hard difficulty levels. Compared to

MST with the 122 structure, MST with the 133 structure tended to produce

smaller standard errors; no differences emerged in the medium difficulty

levels. When the total points and structure were considered together, an

interaction between the two conditions was observed. While MST with the

60 total points condition produced smaller standard errors, MST with the 60

total points and 122 structure resulted in larger standard errors in hard

difficulty levels than MST with the 40 total points and 133 structure.

85



● ●

●

●

●

●
●

● ●
●

●

●

●

●

●

0.0

0.5

1.0

−3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5
theta (θ)

Gr
an

d M
ea

n S
tan

da
rd 

Err
or

●●●● 40−122

40−133

60−122

60−133

Figure 4.18: Conditional grand mean standard errors for 10% proportion of
polytomous test units and dichotomous routing module condition

Figure 4.19 presents the grand mean conditional standard errors of

MST with the 10% proportion of polytomous test units and mixed routing

module. Similar patterns of U-shaped conditional standard error curves were

observed. In addition, a similar interaction between total points and the

MST structure in hard difficulty levels was observed (i.e., the higher

measurement precision of MST with the 40 total points and 133 MST

structure than MST with the 60 total points and 122 MST structure

condition).
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Figure 4.19: Conditional grand mean standard errors for 10% proportion of
polytomous test units and mixed routing module condition

Figures 4.20 and 4.21 present the conditional grand mean standard

errors of the 30% proportion of polytomous test units condition for the

dichotomous and mixed routing modules, respectively. For both plots, MST

with the 60 total points and 133 structure resulted in the highest

measurement precision, where standard errors were kept below 0.5 across the

wide range of ability scale. For both the 40 and 60 total point conditions, the

MST with the 122 structure resulted in somewhat elevated standard errors in

the hard difficulty levels.
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Figure 4.20: Conditional grand mean standard errors for 30% proportion of
polytomous test units and dichotomous routing module condition
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Figure 4.21: Conditional grand mean standard errors for 30% proportion of
polytomous test units and mixed routing module condition
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Figures 4.22 and 4.23 show the conditional grand mean standard errors

of MST with the 50% proportion of polytomous test units for the

dichotomous and mixed routing modules, respectively. MST with the 60 total

points and 133 structure resulted in the highest measurement precision across

ability levels, while MST with the 40 total points and 122 structure showed

the largest conditional standard errors for wide range of ability levels. For

the mixed routing module condition, the performance of MST with the 40

total points and 122 structure degraded rapidly as theta moved beyond 1.0.
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Figure 4.22: Conditional grand mean standard Errors for 50% proportion of
polytomous test units and dichotomous routing module condition
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Figure 4.23: Conditional grand mean standard Errors for 50% proportion of
polytomous test units and mixed routing module condition

Figures 4.24 and 4.25 present conditional grand mean standard errors

of the MST with the 70% proportion of polytomous test units for the

dichotomous and mixed routing module conditions, respectively. Standard

errors in easy difficulty levels were larger than the 10%, 30%, and 50%

proportion of polytomous test units conditions. MST with the 122 structure

conditions, in particular, showed a rapid decline in measurement precision as

theta moved away from the medium difficulty levels. For both routing

module designs, MST with the 60 total points and 133 structure resulted in

the smallest standard errors across all difficulty levels, while MST with the

40 total points and 122 structure produced the largest standard errors.
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Figure 4.24: Conditional grand mean standard Errors for 70% proportion of
polytomous test units and dichotomous routing module condition
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Figure 4.25: Conditional grand mean standard Errors for 70% proportion of
polytomous test units and mixed routing module condition
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Conditional standard errors across routing module design

Figure 4.26 depicts the conditional grand mean standard errors of MST

of two routing module designs given the condition of 70% proportion of

polytomous test units, 60 total points, and 133 MST structure. This is the

only condition to show a difference between the two routing module designs

considered in this study. The result shows that standard errors were larger

for MST with the dichotomous routing module design for low ability levels

than the mixed routing module design.

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

0.0

0.2

0.4

0.6

−3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5
theta (θ)

Gr
an

d M
ea

n S
tan

da
rd 

Err
or

●● dicho

mixed

Figure 4.26: Conditional grand mean standard errors for 70 percent, 60 total
points, and 133 MST structure

In summary, MST with 60 total points resulted in higher precision than

MST with 40 total points condition (i.e., average 0.062 smaller standard

error). However the performance advantage of the former over the latter is
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minimal in the medium difficulty levels (i.e., where theta is between -1.0 and

1.0). Compared to MST with the 122 structure, MST with the 133 structure

resulted in smaller mean standard errors across a wide range of difficulty

levels. The improved precision was more pronounced as the theta deviated

away from the medium difficulty levels. In addition, an interaction between

total points and MST structure was observed, in which MST with larger

total points did not necessarily produce higher precision across difficulty

levels. For example, MST with 40 total points and the 133 MST structure

produced smaller standard errors than MST with 60 total points and the 122

MST structure in hard difficulty levels. In terms of proportion, MST with

the 70% condition showed elevated standard errors in the easy difficulty

levels compared to other proportion conditions. This result corresponds to

the low MST test information presented in Figures 4.9 and 4.8.

The routing module design produced different results for MST with the

70% proportion of polytomous test units, 60 total points, and 133 structure.

Standard errors of MST with the dichotomous routing module design were

larger than MST with the mixed routing module design in easy difficulty

levels.
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Chapter 5

DISCUSSION

This study investigated the impacts of design variations of

mixed-format MST on measurement precision. Four variables were

manipulated in the study: the four levels of proportions of polytomous test

units, two levels of total points, two levels of MST structures, and two levels

of routing module designs, resulting in a total of 32 conditions. The

simulation results included the descriptive statistics of estimated thetas and

the correlation between known and estimated thetas. The measurement

precision of MST on a wide range of ability levels was evaluated from grand

mean standard errors conditional on θs, and MST test information functions

were used to investigate the quality of MST constructions.

This chapter contains three sections discussing the study results. The

first section discusses the research questions, study results, and findings. The

second section focuses on the implications of findings for practical

applications. Finally, the third section discusses the limitation of the study

and future research directions.
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Research questions

The following research questions are answered in this study:

1. How does test length (total points) impact measurement accuracy for

mixed-format MST? The current study considered two total points

conditions: 40 total points recommended for the diagnostic and licensure

tests (Ho & Dodd, 2008) and 60 total points for high-stakes mixed-format

tests (Jiao, 2003). The study results revealed that the MST with 60 total

points produced smaller measurement errors and biases in terms of mean

statistics; for the 40 and 60 total point conditions, the mean RMSEs

averaged over other design conditions were 0.427 and 0.369 and the mean

biases averaged over other study conditions were 0.006 and 0.001,

respectively. The simulation results in this study are consistent with previous

findings from studies varying the test length in MST (Chen, 2010; Jodoin et

al., 2006; Kim et al., 2012).

The current study, however, revealed that the performance advantage

of the MST with 60 total points is not constant over the wide range of θs

compared to the MST with 40 total points. The simulation results produced

the grand mean standard error difference of 0.036 between MST with the 40

and 60 total points at medium difficulty levels (i.e., thetas ranging between

-1.0 and 1.0). The difference in standard errors between MST with 40 and 60

total points in the medium difficulty levels could be predicted from Equation

3.14. Using peak information of 15 and 20 for MST with 40 total points and

60 total points, respectively, the expected standard error difference is 1/
√

15
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- 1/
√

20, which is 0.035.

From this small difference of grand mean standard error, the impact of

total points to the measurement precision seems trivial in the medium

difficulty levels, or where the peaks of information functions are located.

However, an interaction between total points and the MST structure was

observed. In the hard difficulty levels, MST with the 60 total points resulted

in less accuracy than the 40 total points when MST with 60 total points was

built in 122 structure and MST with 40 total points was constructed in 133

MST structure. This indicates that the 122 MST structure might not be able

to provide the desired precision for a wide range of ability levels even with an

increased total points (e.g., 60). On the other hand, the 133 MST structure

maintained measurement accuracy in both extremes of the ability levels.

Among others, MST with the 60 total points and 133 structure resulted in

the highest measurement accuracy and MST with the 40 total points and 122

structure produced the lowest measurement precision.

2. What are the important design features when creating modules,

stages, and panels for mixed-format MST?

The findings from the current study suggest that the correct

specification of target test information functions and accurate construction

are essential for the desired measurement precision, as has been reported in

previous studies (Luecht, 2000; Luecht & Burgin, 2003; Luecht &

Nungester, 1998). The specification of target test information functions

largely depends on the purpose of the test and test unit pool characteristics
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(Zenisky et al., 2010). The height of the peaks and locations should be

determined based on the purpose of test and whether the precision is desired

in a narrow range of ability levels (i.e., classification) or wide range of ability

levels (i.e., ability estimation). In addition, the target test information needs

to be determined such that test forms can be constructed using the pool.

The carefully constructed MST with the 122 MST structure could

achieve equivalent precision as MST with the 133 structure in focused ability

levels. As MST with the 122 structure requires a fewer number of modules

within a panel, it increases the number of panels that can be constructed in a

given test unit pool. This results in a higher level of test security and

exposure control. On the other hand, MST with the 122 structure could not

provide the desired precision in low and high ability levels, even with the

increased total points of 60. Thus, the 133 structure should be recommended

if the test goal is measuring the ability for a wide range of ability levels.

The evidence suggests the importance of the routing module design.

Previous studies have focused on the impact of the various routing module

lengths of MST designs (Chen, 2010; Macken-Ruiz, 2008), whereas the

current study varied the proportion of test unit types while holding the

routing module length conditions constant. The studys findings showed that

a purely dichotomous routing module design had a negative impact on

measurement precision given the large proportion of polytomous test units in

MST panels. Therefore, the routing module design warrants extra caution

when the proportion of polytomous test units is large in a mixed-format
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MST test design. In addition, the high usage of major pathways may suggest

that the second and the third stages could be merged to form 12 or 13

structures on behalf of 122 and 133 structures. The two stage designs are

expected to reduce the burden of building extra modules and stages while

maintaining equal or similar measurement precision compared to three stage

structures. In terms of pathway frequency, nearly 90% of examinees stayed

on the major pathways, indicating that once the difficulties are determined

for each examinee after they finish the routing module, their difficulties did

not change.

3. How do the various MST structures under the mixed-format context

differ in terms of measurement precision

Overall, MST with the 133 structure performed better than MST with

the 122 structure, producing smaller standard errors over a wider range of

difficulty levels. MST with the 122 structure performed equally as well as

MST with the 133 structure in the medium ability levels. As modules in the

133 structure can cover easy, medium, and hard difficulties, they can achieve

greater precision in low and high ability levels as well as medium difficulty

levels. Three modules in the 133 structure could maintain relatively sufficient

information for a wide range of levels compared to the two modules in the

MST with the 122 structure. As the 122 structure focused the precision in a

small range of levels while utilizing fewer resources compared to the 133

structure, it has an advantage over the 133 structure for licensure tests or

classification tests as reported by Zenisky (2004). On the other hand, when
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the goal of the test is measuring ability for a wide range of levels, the 122

structure might not provide the necessary measurement precision. The

improved precision of MST with the 133 structure indicates that the

accuracy of a test for a wide range can be achieved from modules constructed

to function for a wide range of difficulties. This finding is consistent with

previous research suggesting three modules per stage for the desirable

measurement precision (Armstrong, Jones, Koppel, & Pashley, 2004).

4. Are there performance differences among the varied proportions for

test unit types in the mixed-format MST?

The simulation results revealed no noticeable difference among 10%,

30%, and 50% proportion of polytomous test units conditions in terms of

measurement precision. However, MST with the 70% proportion of

polytomous test units showed somewhat elevated standard errors for low

ability levels, while performance remained similar for medium and high

ability levels. Furthermore, MST with the 70% proportion of polytomous

test units condition produced a narrow MST test information function,

resulting in larger standard errors in low ability levels. Three issues might

have cause this result. First, when a large proportion of the test units in

MST is polytomous test units, the actual number of test units in the MST is

reduced because a small number of test units can account for the required

total scores. This reduced number of test units might impose a difficulty in

constructing MST panels to the specified target information. Second, the

test unit pool contains a small proportion of polytomous test units. Thus, a
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small number of polytomous test units should be distributed to multiple

MST panels. When the proportion of polytomous test units is large, it is

difficult to form the desired target information with limited resources. Third,

the test unit pool is positively skewed and there is relatively small

information in low ability levels. This is directly related to the small MST

test information and increased standard errors in low ability levels.

5. How does item type distribution at the routing module impact the

measurement precision of mixed-format MST?

The routing module should include sufficient information to determine

pathways for each of the examinees. The decision at the routing module

seems more important than routing decisions in the rest of the stage based

on the observation of pathway frequency in Table 4.3 Therefore, a large

amount of information in the routing module is desirable for assigning highly

informative modules to individual test takers. Kim et al. (2012) also reported

on the importance of the routing module design for classification accuracy in

the context of mixed-format MST. Their study results showed that higher

classification accuracy is achieved by increasing the information of the

routing module.

Overall, the routing module design did not produce a noticeable impact

on the measurement precision for the mixed-format MST. However, the

simulation results found an interaction between the routing module design

and proportion conditions. When the proportion of polytomous test units is

large and the routing module is purely dichotomously scored, the constructed
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MST showed smaller test information and large standard errors. Under this

condition, modules in the second and third stages in the MST panels should

be constructed using an even larger proportion or (or completely)

polytomous test units. In addition, the number of modules in the second and

third stages (e.g., 6 in 133 design) grows rapidly as the number of panels

increases. An automated test assembly tool could not find a set of test units

to accurately represent the shapes of target test information functions (e.g.,

the peak values and locations) from the test unit pool. In other word, the

issue of large proportion of polytomous test unit tended to be aggravated

with purely dichotomous routing module condition.

Conclusions and practical applications

The current study investigated the impact of a mixed-format test unit

pool for the measurement performance of MST. Four factors were varied in

the study (i.e., four proportions of polytomous test units, two total scores,

two MST structures, and two routing module designs), forming 32 total

conditions. The target test information functions were specified for each

total score and MST structure condition, and linear programming was used

to construct MST panels to meet the specified target test information

functions. For the MST simulation, 100 replications were performed and

1,000 normally distributed examinees were generated in each replication.

MST with small and medium proportions of polytomous test units (i.e.,

10%, 30%, and 50%) performed in similar way. Holding the structure
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condition constant, MST with a larger total score produced greater precision

due to the additional information within the test form. The greater precision

of ability estimates could be achieved when large information exists (i.e.,

medium difficulty levels), and the standard errors could be as low as 0.25 for

MST with 60 total scores. MST with the 133 MST structure showed smaller

standard errors for a wide range of ability levels. However, the differences

between the 122 and 133 structures were trivial for the medium ability levels.

Thus, the advantage of MST with the 122 structure is that it can provide

high performance in focused ranges of ability while utilizing fewer test units.

When the goal of the test is measuring examinees’ abilities on a wide range

of θ scales, the 133 structure is more appropriate for performing well in a

wide range of ability levels. In addition, the routing module design did not

affect MST performance for the 10%, 30%, and 50% proportions of the

polytomous test units.

When a large proportion of the polytomous test units (i.e., 70%) was

used, MST produced larger standard errors in low ability levels for two

possible reasons. First, a large proportion of polytomous test units actually

requires fewer test units as the total scores can be satisfied using a small

number of test units. From the perspective of optimal test construction, it

might be more difficult for a small number of test units to form a test that

satisfies the specified target information. Second, a limited number of

polytomous test units are included in the item pool. By utilizing a large

number of polytomous test units, MST construction quickly exhausts the
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limited resources in the test unit pool. Often the solutions for the optimal

test construction were not feasible during the test construction, and MST

panels did not meet the target test information functions. In addition, when

the test construction needed to be constructed using limited test unit types,

the characteristics of the pool itself directly affected the test, regardless of

the target information test the developer specified. In low ability levels, the

limited information available in the test unit pool resulted in limited MST

test information because the test forms had to utilize almost all polytomous

test units within the pool.

The impact of the routing module design was observed when MST was

constructed using a large proportion of polytomous test units. MST with

purely dichotomous test units resulted in larger standard errors compared to

MST with the mixed routing module design in the low ability levels. Using

the purely dichotomous routing module design and a 70% proportion of

polytomous test units, modules in the second and third stages of MST

needed to be constructed almost purely with polytomous test units. As the

number of polytomous test units in the final MST forms needs to be

multiplied by the number of panels, the dichotomous routing module design

condition quickly exhausts the polytomous test units in the pool, resulting in

less information in the low ability levels. The findings in the study should

help test developers and administrators make better decisions when the

design factor includes the proportion of test unit types. The lower

measurement precision caused by the use of a large proportion of polytomous
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test units was noted and possible explanations have been provided.

The mixed-format MST is an attractive test format that renders a

balanced measurement using different test unit types; as a result, it has

received great attention (Kim & Dodd, 2014). For example, the National

Center for Education Statistics (NCES) recently considered implementing

the mixed-format MST in the NAEP test design (Oranje et al., 2014). The

findings in this study offer practical recommendations for test developers.

First, the importance of the test unit pool should be emphasized. A

high-quality mixed-format test unit pool will allow the test developers to

construct MST with high precision for a wide range of ability levels while

satisfying various requirements (e.g., content, test taking time, test scoring

effort). Second, design factors considered in this study will provide test

developers with the necessary information to develop tests. For example, the

interaction between the routing module design and the proportion of the

polytomous test unit indicates that each design factor should not be

considered separately, but rather warrants a more holistic approach. In

addition, test developers should consider the potential impacts of factors that

are not included in this study. For instance, the routing module design could

be forced by the availability of automated scoring engines. Without

automated scoring engines for constructed-response test units, the routing

modules are often designed using purely dichotomous test units so that the

ability estimation can be done on-the-fly.
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Limitations and future research directions

As with all studies, this study has certain limitations. First, the MST

construction outcomes might have been affected by the test unit pool

characteristics. For example, relatively fewer test units functioned around

the theta point of -1.0 than for the medium and hard difficulty levels.

Therefore, easy modules were more challenging to construct than medium

and hard modules. The lack of easy test units in the test unit pool was more

severe for polytomous test units, and the constructions of MST with a large

proportion of polytomous test units were even more challenging. Future

studies could replicate the current study using a different test unit pool.

The current study results revealed that the large proportion of

polytomous test units created the most stringent condition for MST

construction when combined with a purely dichotomous routing module

design. Other important design elements are test-taking time and economy

of scoring. Polytomous test units (e.g., constructed-responses) require more

time to administer and the scoring is more expensive and time-consuming

compared to dichotomous test units. The added administration and scoring

costs might not justify the utilization of large proportion of polytomous tests

unit in mixed-format MST. The current study only focused on the

measurement accuracy of mixed-format MST. The practical implementation

of this test administration requires the consideration of other design

elements, such as content balancing, test taking time and the effort involved

in scoring. Finally, it is desirable to be able to score constructed-response
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test units automatically, so that the routing decisions can be made without

interventions from human graders. To date, there is no universal solution for

the automatic scoring engines for all test unit formats and test developers

need to rely on either ad hoc approaches or the third-party solutions, if they

are available. A full-fledged mixed-format MST, therefore, requires further

studies on flexible automatic scoring methods for test unit types in the

mixed-format MST.
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