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Brain Computer Interfaces (BCI) are devices that translate acquired

neural signals to command and control signals. Applications of BCI include

neural rehabilitation and neural prosthesis (thought controlled wheelchair,

thought controlled speller etc.) to aid patients with disabilities and to augment

human computer interaction. A successful practical BCI requires a faithful

acquisition modality to record high quality neural signals; a signal processing

system to construct appropriate features from these signals; and an algorithm

to translate these features to appropriate outputs. Intracortical recordings like

local field potentials provide reliable high SNR signals over long periods and

suit BCI applications well. However, the non-stationarity of neural signals

poses a challenge in robust decoding of subject behavior. Most BCI research

focuses either on developing daily re-calibrated decoders that require exhaus-

tive training sessions; or on providing cross-validation results. Such results
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ignore the variation of signal characteristics over different sessions and pro-

vide an optimistic estimate of BCI performance. Specifically, traditional BCI

algorithms fail to perform at the same level on chronological data recordings.

Neural signals are susceptible to variations in signal characteristics due to

changes in subject behavior and learning, and variability in electrode charac-

teristics due to tissue interactions. While training day-specific BCI overcomes

signal variability, BCI re-training causes user frustration and exhaustion.

This dissertation presents contributions to solve these challenges in BCI

research. Specifically, we developed decoders trained on a single recording

session and applied them on subsequently recorded sessions. This strategy

evaluates BCI in a practical scenario with a potential to alleviate BCI user

frustration without compromising performance. The initial part of the disser-

tation investigates extracting features that remain robust to changes in neural

signal over several days of recordings. It presents a qualitative feature extrac-

tion technique based on ranking the instantaneous power of multichannel data.

These qualitative features remain robust to outliers and changes in the base-

line of neural recordings, while extracting discriminative information. These

features form the foundation in developing robust decoders.

Next, this dissertation presents a novel algorithm based on the hypoth-

esis that multiple neural spatial patterns describe the variation in behavior.

The presented algorithm outperforms the traditional methods in decoding over

chronological recordings. Adapting such a decoder over multiple recording

sessions (over 6 weeks) provided > 90% accuracy in decoding eight movement
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directions. In comparison, performance of traditional algorithms like Com-

mon Spatial Patterns deteriorates to 16% over the same time. Over time,

adaptation reinforces some spatial patterns while diminishing others. Charac-

terizing these spatial patterns reduces model complexity without user input,

while retaining the same accuracy levels.

Lastly, this dissertation provides an algorithm that overcomes the vari-

ation in recording quality. Chronic electrode implantation causes changes in

signal-to-noise ratio (SNR) of neural signals. Thus, some signals and their

corresponding features available during training become unavailable during

testing and vice-versa. The proposed algorithm uses prior knowledge on spa-

tial pattern evolution to estimate unknown neural features. This algorithm

overcomes SNR variations and provides up to 93% decoding of eight move-

ment directions over 6 weeks. Since model training requires only one session,

this strategy reduces user frustration. In a practical closed-loop BCI, the user

learns to produce stable spatial patterns, which improves performance of the

proposed algorithms.
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Chapter 1

Motivation

Tetraplegia or quadriplegia is a paralysis that results in ones inability to

use their limbs due to the injury to brain or high-level spinal cord. In this con-

dition, the patient loses both control and sensation of limbs. Brain Computer

Interface (BCI) offers a solution to these patients by providing independent

control and ability to move their limbs by imagining movement of those limbs.

BCIs are devices that translate neural signals to control and communication

signals to enable people with disabilities to control an external device such

as a wheelchair or robotic arm [1, 213, 212, 98, 175, 18, 43, 36]. BCIs assist,

augment, or repair human cognitive and motor functions. Practical BCI ap-

plications include neural prosthetic devices in patients with a loss of arm or

limb, devices to control arm or leg in patients suffering from paralysis, brain

controlled external devices like wheel chair [18, 159], and as aids in rehabili-

tation of people who suffered a stroke. They also augment the sensory system

in applications like rapid sorting of images or interesting scenes [68], control

in gaming and virtual environments [18, 149, 134, 52]. Finally, they provide a

great analysis tool to understand the physiological and functional aspects of

the brain. Applications of BCI are many; however, the above highlight some

possibilities.
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While the non-invasive nature of electroencephalography (EEG) makes

it a lucrative recording modality, its spatial resolution and signal-to-noise-

ratio (SNR) yield an inefficient practical BCI. As such, these characteristics

restricts its use to binary decisions and provide poor information rates. On the

other end of the recording spectrum, Single Unit Activity (SUA) provides high

spatial resolution but is susceptible to recording losses over long time. Dickey

et al. showed that during chronic recordings of single units only a fraction of

them provided stable recordings over multiple days [40]. Electrocorticography

(ECoG) and Local Field Potentials (LFP) are subdural recordings from the

surface of the brain and offer better SNR than EEG [108, 8]. These recordings

are composed of sustained currents in the brain avoiding domination by a single

neuron. Due to this, ECoG and LFP offer stable recordings and suit long-term

robust practical decoding applications [7]. Recent neural engineering advances

show recording capabilities of sub-dural electrodes over multiple months [183,

40, 57, 56]. For example, Simeral et al. recorded LFP over 1000 days and

Slutzky et al. recorded LFP for BMI over a 7 month period [183, 56]. These

studies establish the long-term recording capability of LFP; however, its use

in long-term decoding applications has not received much attention.

One of the main challenges in using LFP for long-term decoding is their

day-to-day signal variability. Causes for the variations include:

1. Subject dependent variability in behavior, motivation, skill, and learning

[190]
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2. Experiment dependent variability due to micro motion of recording elec-

trode [198]

3. Neuronal variability in the excitation of neuronal components, variability

of the electrode’s electrical characteristics like impedance due to accu-

mulation of brain tissue, and scarring effects of the implantation [153]

Due to the multitude of causes, the task to characterize the variability be-

comes very difficult. These inconsistencies manifest in various forms including

variations in signal power and change in spatial patterns resulting in variabil-

ity of derived features. Figure 1.1 and 1.2 present an example of the signal

variability over a week. The figures present the spatial patterns of LFP power

(dB) averaged over multiple reaches in the δ-band of the pre-motor grid area

during a hand movement task. The location of each sub-figure corresponds to

the movement direction on the 2-D hand movement space. The LFP signal

was sampled from 57 electrodes arranged in a 10 × 10 grid on the pre-motor

area. This power is spatially filtered using an interpolation operator to provide

a easily viewable pre-motor cortex.

One way to tackle these variations is to have a retraining session to

calibrate the BCI to new characteristics before every application session [22,

45, 46, 91, 107, 111, 128, 138, 157, 161, 171, 204, 205]. However, these pauses

to calibrate BCI increase user frustration and fatigue in using BCI [135]. Most

studies use cross-validation to measure and report BCI performance [21, 20,

45, 46, 174]. Such measures provide an optimistic view of their performance as

3



135◦ 90◦ 45◦

180◦ 0◦

225◦ 270◦ 315◦

Figure 1.1: Average Neural Pattern for different directions of movement on
day 0. The spatial patterns represent the activity of average Premotor LFP
power (0-15dB as indicated in the color scale) for different direction reaches.
The LFP is extracted from a 4mm×4mm grid placed in the Premotor area of
the monkey brain. The different directions are indicated by their placement
and also by the number under it.
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135◦ 90◦ 45◦

180◦ 0◦

225◦ 270◦ 315◦

Figure 1.2: Average Neural Pattern for different directions of movement on
day 8. The spatial patterns represent the activity of average Premotor LFP
power (0-15dB as indicated in the color scale) for different direction reaches.
The LFP is extracted from a 4mm×4mm grid placed in the Premotor area of
the monkey brain. The different directions are indicated by their placement
and also by the number under it.
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cross-validation resamples training and testing data sets from the same data

and ignore any variability or changes in the feature characteristics from the

training to test data. However, these studies establish the feasibility of using

the modalities for decoding applications.

Another solution to overcome variability is to derive invariant patterns

from the training data [22]. Such a model would provide a general solution

across all the variations of the feature space. However, this requires that all

variations of the neural data be captured during training and is practically not

possible due to limited data sets available during training. Therefore, it is not

feasible to present all variations in behavior and changes in environments in a

single training session. Even if such behavioral variations were possible, they

do not account for the variability in signal characteristics over multiple days.

Some studies have focused on developing robust features that overcome the

signal non-stationarity [195] or look for features lying on recurring subspaces

[74]. However, these approaches fail to capture the long-term variability of

the signals and as such do not adapt to the day-to-day variations or variations

imposed by changing environments.

A closed-loop BCI is a suitable solution as it provides reliable decoding

over a long period. In closed-loop BCI, feedback about the decoders’ perfor-

mance is provided to the user in real time and the user incorporates this feed-

back by modulating the neural features [25, 141, 30, 64, 69, 95, 81, 110, 183].

Recent research shows that BCI user learns to produce a fixed neural pattern

in about six to ten training sessions and daily practice improves BCI efficiency

6



[64]. These strategies, while useful in rehabilitation efforts, fail to adapt to

changes in neural patterns due to subject-induced modulation of neural pat-

terns. These modulations are especially noticeable when the subject learns

new behavior and adapts to changing environments. Since any practical ap-

plication of the BCI would eventually work in a closed-loop fashion, research

suggests the use of closed-loop calibration to learn the closed-loop dynamics

of the system [95]. Further, some decoders also internalize the uncertainty in

the estimated behavior parameters by assuming that the BCI user corrects for

any uncertainty of the estimate [69]. In this framework the burden of learning

is placed on the BCI user who learns to adapt and modulate the neural signals

to suit the model [203]. It is estimated that 20-25% of users fail to achieve

such adaptation and control the BCI [203]. Hence, there is a need for a model

that learns the users’ mental state in an open-loop fashion. Such a model will

also advance the understanding of learning without constraining the user to

comply with a fixed pattern [132].

This thesis presents my contributions to developing a neural decoder

performing in an open loop, where the user gets no feedback about the de-

coder’s estimates. Our proposed decoder relieves the learning burden on the

BCI user by mimicking a practical BCI environment. The contributions are

summarized in the following thesis statements:

1. Developing novel and time-robust neural features overcomes signal vari-

ability and improves decoding of hand movement over multiple days

7



2. Encapsulating the variability of subject behavior in multiple spatio-temporal

patterns and capturing the changes in subject behavior by adapting de-

coding model to novel features improves long-term decoding

3. Estimating unobservable feature parameters by capturing prior model in-

formation overcomes day-to-day variation in channel SNR

I developed several algorithms based on the above statements and ap-

plied these on data collected from two monkeys over multiple weeks. Specif-

ically, I monitored the performance of these algorithms in a practical BCI

framework. In such a setting, I trained decoding models on a single recording

session and applied it over subsequent recordings. The algorithms presented

in this thesis predicted the correct target in 90% of trials over a period of 4-6

weeks in two monkeys. The decoding performance remained stable through

changes in environmental conditions and external perturbations on the hand

during movement. These results indicate the applicability of LFP in a practical

BCI setting with a decoder that requires minimal training.
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Chapter 2

Background

2.1 Introduction

Brain Computer Interfaces (BCIs) translate neural signals acquired

from the brain to command and/or control signals [1, 213, 212, 198]. BCIs

offer hope of restoring functionality to patients suffering from paralysis or

spinal cord injury. A Brain Computer Interface has three major components

as shown in the figure 2.1.

1. A signal acquisition system to faithfully record neural signals

2. A signal processing system to convert the acquired signal to control data

3. An algorithm to interpret these signals to behavioral control or command

signals for a BCI application

Generally, the BCI operates in a feedback loop providing its user with visual,

audio, or perceptual feedback on its performance. This feedback enables the

user to modulate the neural signals and obtain a desired effect. Signals from

the brain are acquired either in the form of electrical potentials (EEG, ECoG,

LFP, Spike Trains) or in magnetic fields (MEG, fMRI) from functionally active

portions of the brain. This thesis focuses on the signal processing aspects of

9



Figure 2.1: A schematic of Neural Prosthetic

the BCI i.e. preprocessing, feature extraction, and translation of these features

to behavioral commands or controls. Understanding of feature extraction and

signal processing decisions requires the understanding of signal acquisition

modalities. The next few sections will provide a brief background to the various

acquisition modalities including their relative advantages and disadvantages.

10



2.2 Neural Acquisition Modalities

There are various neural signal acquisition modalities ranging from non-

invasive recordings like Electroencephalogram (EEG) to the invasive recordings

of single neural units. Due to its non-invasive nature, EEG is the most pursued

modality along with magneto-encephalogram (MEG). Since neural magnetic

fields are not distorted by the skull, MEG has better spatial resolution and a

temporal resolution of 10 ms (or less) [35]. However, MEG equipment requires

rigorous magnetic shielding and as such cannot analyze freely moving subject

behavior. EEG records neural activation in the form of electrical pulses using

a skullcap wore tightly along the scalp by the subject. The activity of a single

neuron is too small to be picked by an EEG electrode but the summation of all

the synchronous neural activity of the brain gets recorded [114]. In addition,

as the neural activity attenuates rapidly with distance, it becomes difficult to

pick up neural activity in deep brain.

Most EEG based BCI applications deal with simple binary classification

tasks such as Motor Imagery (MI) [98, 122, 146]. In these tasks, subjects

imagine the motor tasks instead of actually performing them. Imagination of

movements causes certain neural locations to oscillate with specific frequencies;

generally µ-rhythms (8 − 12 Hz), β-rhythms (13 − 40 Hz) and γ-rhythms

(40 − 100 Hz) [132, 146]. This phenomenon is also termed as Event Related

Potentials (ERPs) —simultaneous oscillation of multiple EEG locations in

response to a cognitive event [117]. Identifying such a spectral and spatial

response of EEG allows classification of motor imagery, different motor tasks,

11



and motor vs. other cognitive tasks [21, 90, 89, 132, 146, 157, 172, 205]. This

recording technique has several advantages including high temporal resolution

(∼ 1 ms), low hardware costs, subject tolerance, and is non-invasive. However,

its low spatial resolution, poor signal-to-noise ratio, and inability to detect

neural activity below the upper layers of the scalp limit the information rates

of EEG based BCI.

Electrocorticography (ECoG) and subdural EEG use electrodes placed

under the exposed surface of brain to record neural activations. ECoG is an

invasive procedure requiring surgical incisions to place electrodes. The ECoG

recordings are composed of synchronized postsynaptic potentials recorded di-

rectly from the surface of the cortex [207]. These potentials conduct through

several layers of the cerebral cortex and cerebrospinal fluid before reaching the

subdural electrodes. While EEG signal must pass though the skull, which has

severe low pass filtering effects, ECoG does not conduct through it. Hence,

they do not suffer from the rapid attenuation plaguing EEG signals. This

allows a better spatial resolution (∼ 1 cm) and a temporal resolution (∼ 5

ms) for the ECoG [114]. Typical ECoG recordings use electrode arrays in var-

ious dimensions and configurations having anywhere from 4 to 256 electrodes

[8, 16, 61, 81, 110, 129, 151, 169, 181, 207]. Due to the placement flexibility and

greater proximity to neural activity, ECoG offers greater precision, a higher

spatial resolution, and a superior signal-to-noise ratio than EEG. However,

ECoG suffers from limited field of view and is dependent on the successful

implant and surgery.
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On the other end of the recording spectrum, single unit recordings mea-

sure the electrical responses of individual neurons by measuring and identifying

their characteristic action potentials. A single-unit is defined as a single, firing

neuron whose spike potentials are distinctly isolated [24]. Fine-tipped, high-

impedance electrodes placed very close to a neuron record the rate of change in

voltage with respect to time. A microelectrode placed close to the cell surface,

measures extracellular recordings in the form of spike information. Intracellu-

lar recordings (tracing the membrane resting potentials) are possible through

an intracellular electrode. Since they record at a single neuron level, Single

Unit Activity (SUA) has the best signal to noise ratio and spatial resolution

of all the modalities. However, it is very difficult to obtain a chronic recording

of single unit activity due to tissue damage and effects of the electrode on

the extracellular space [153, 198, 175, 6, 24]. In general, obtaining recordings

from the same location over multiple days is extremely difficult. However, one

of the important contributions of the research on SUA is that they provide a

benchmark for the decoding power that can be achieved when analyzing the

most detailed level of neuronal signal [28, 101, 208, 176, 196, 25]. Results

from [196] showed that the decoding accuracy increases with the number of

SUAs analyzed and that it can reach reasonable levels with relatively few neu-

rons. The discussion below details the advantages of analyzing Local Field

Potentials over Single Unit Activity analysis.

Local Field Potentials (LFPs) are recorded in the extracellular space of

the brain typically using microelectrodes. LFP recorded from subdural elec-
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trodes differs from ECoG, as they record signals from deep within the cortical

tissue. Due to the invasive nature of their recordings they sample relatively

localized populations of neurons (within a few hundred µm) [100]. Since they

record from relatively close to the source, the signal suffers from less propaga-

tion attenuation in extracellular media like cerebrospinal fluid, dura matter,

muscle, skull, and skin. However, LFP signals undergo filtering of high fre-

quency spectrum due to the separation from the sources by portions of cortical

tissues. It is hypothesized that LFP activity reflects the sum of action poten-

tials from cells within 50− 350 micrometers [108, 185]. The signal is recorded

using an extracellular microelectrode usually placed far from a single local

neuron to prevent its domination. This signal is then low-pass filtered around

200-300 Hz to obtain the LFP data. The low-pass filtering effect partly occurs

due to the complex electrical conductivity properties of the inhomogeneous ex-

tracellular space. LFP power-spectrum exhibits a characteristic 1
f

frequency

scaling at low frequencies explained by the filtering properties of the currents

through extracellular media [17, 13, 137, 155]. Other theories including the

morphology of the neuron [145] and self-organized critical phenomenon [96]

might also explain the frequency scaling. It is important to note that the

low-pass filtering effect of the medium also explains the non-dominance of

individual single units away from the electrodes.

Interpreting LFP signals remains a difficult task, even if its neuronal

genesis is well understood. A simple model hypothesizes LFP sources as elec-

tric dipoles generated by transmembrane currents that are embedded in per-
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fectly resistive medium [14, 126]. Using such a model I obtained a extracellular

potentials V (r) at a position r due to a current element Io located at position

ro in a medium with electrical conductivity σ as:

V (r) =
1

4πσ

Io
|r − r0|

(2.1)

There is still some debate over the exact nature of the sources regard-

ing modeling them as dipoles or monopoles [14]. Many researchers studied

the dipole excitation model to explain LFP recordings. Since the LFP is

a synaptic activity over multiple neurons, it proves to be a stable modality

providing chronic recording ability, unlike multi-unit activity, while providing

higher signal to noise ratio and spatial resolution than ECoG. Recently, LFP

recorded for chronic experiments like BCIs proved a good supplement to SUA

in decoding behavior [128, 7, 161, 171, 43, 11, 121].

2.3 Neural Analysis Techniques

Many decoding and analysis techniques were proposed to decode and

analyze neural signals. Based on the neural signal (EEG, ECoG, LFP or sin-

gle units) under consideration, the analysis techniques differ to accommodate

their different characteristics. Each technique was developed on observations

made on the neural signal characteristics and catered well to their analysis.

This section discusses some of the existing strategies to analyze neural signals

and their applicability to the analysis of LFPs. Until recently, LFP was con-

sidered a supplementary signal and generally filtered out as the low frequency
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component during single unit analysis [128, 7, 161, 171, 57, 56]. Researchers

assumed that higher frequency bands contained most of the useful neural in-

formation to decode behavior. Hence, they either discarded or used the lower

spectrum (primarily LFP signal) sparingly.

2.3.1 Analysis of Single Unit Activity

Analysis of SUA relies on different properties of its spike activity. A

spike is recorded as the electrical deactivation of a neural cell in response

to a particular behavior. Each recording site detects spikes from multiple

neurons and each neuron has a characteristic signal that identifies it from the

other activity. This knowledge is valuable in achieving spike separation. To

correlate behavior and activity of the most fundamental element of the brain,

researchers identified binned spike rate (also called firing rate) - calculated as

the number of spikes in a time-window bin - as a reliable feature for SUA

analysis. Typically a window bin of 100ms is used to calculate the number

of spikes. Georgopolous et al. showed that neurons tune to their preferred

directions and described them with a simple cosine tuning function of spike

rate [67]. In general, researchers found that neurons fire more frequently during

certain behaviors. Since the temporal resolution of firing rate is in the order

of 5ms [208], they deliver precise timing information. This led towards using

spike rate as a characteristic feature in SUA analysis. Time to first spike after

stimulus onset and higher moments of inter spike interval distributions also

encode stimulus [103, 59]. Analysis on the firing rate assumes that the firing
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rate follows a Poisson distribution [9]. Thus, calculating the mean firing rate

determines the relation to the stimulus.

Population coding is a popular method to encode stimuli using the

activities of multiple neurons [67, 29, 75, 97, 120, 77]. It weighs the activities

of several neurons by monitoring their multivariate distributions to obtain a

tuning function for the stimulus. Sparse coding of the population identifies a

subset of neurons that remains active during a given time window and their

corresponding weights to encode the stimulus. This technique is especially

useful when the dimensionality of the stimulus is very small compared to the

number of sampled neurons. Recently, analysis of spike rate from a population

of neurons using linear or non-linear dynamic functions has been used to detect

kinematics of hand movements. In these papers, a Kalman filter relates the

firing rate of a population of neurons to the state defined by the different

kinematic state of the hand [179, 180, 36, 183, 63, 69]. These studies also laid

foundation to the use of BCI and direct neural control of prosthetic limbs and

joysticks.

LFP was used as a supplementary activity to the neural signal until

recently [128, 138, 81, 113, 121, 161, 9]. The addition of LFP to the existing

spike information boosts performance of the BCI, although in most cases the

improvement was marginal. Most of the LFP research focused on using fea-

tures similar to spike rate and inter-spike interval [9, 11, 113]. These studies

used power calculated in specific bands of LFP activity as a surrogate to the

spike rates. While such analysis introduced LFP and its information content,
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the analysis tools were not adapted to the task. In the context of movement

decoding from intra-cortical modalities, preferred direction for both LFP and

SUA were used to decode direction. The distribution of preferred directions of

SUAs is known to be uniformly or close to uniformly distributed [164], while

the distributions of LFP’s preferred directions tended to form clusters [9, 138].

Due to this fundamental dissimilarity between SUA and LFP signals, the latter

cannot reliably decode movement directions using methods like cosine tuning.

2.3.2 Analysis of EEG and ECoG

Other inspirations for LFP analysis come from the EEG and ECoG

analysis, where a plethora of techniques exists. These techniques have var-

ied from using temporal features using multi-channel neural data, analysis of

band-filtered signals, and identifying discriminative spatio-temporal patterns.

These techniques also seem suitable for analysis as EEG, ECoG, and LFPs

have similar temporal structure and their analysis usually involves data from

multiple channels. Analysis of EEG and ECoG mainly focused on detecting

Event Related Potentials (ERP) - a deviation of the signal from its baseline

due to the onset of a stimulus [111, 132, 21, 44]. When such a deviation is

below the baseline due to a stimulus it is called an event related desynchroniza-

tion (ERD) and if above is called event related synchronization (ERS). ERD

or ERS emerges as an important characteristic of the stimulus and extensively

used in the P300 based odd ball detection [18, 149]. In several applications,

interesting meaningful stimulus produce a positive going wave with a typical
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latency of 300−1000ms on one of the Pz, Fz, and Cz scalp sites of the EEG cap

in the parietal lobe [68, 52, 18]. To detect these ERPs several morphological

features of the electrode recordings have been proposed including temporal fea-

tures (latency and amplitude of the maximum signal, slope of the deviation,

peak-to-peak value of the deviation, zero crossings etc.), frequency features

(frequency with the maximum energy component), and wavelet features [3].

Features that provide the best detection are identified based on their perfor-

mance accuracy and the latency of detection. While the neural substrates of

P300 are not fully understood, their reproducibility makes them a good choice

for clinical and lab evaluations. Applications of P300 include:

1. rapid image sorting —to detect interesting images of helipads from a

random collection of images [68]

2. lie detection —to detect if a presented real-life situation occurred with

a subject [52]

3. speller —to spell a word or a sentence by using letters without the need

of neuro-muscular movement [18]

While such initial analysis provided evidence of information in EEG,

researchers postulated that analysis of multiple channels improves information

content. Initial studies applied techniques described for single channel analy-

sis and showed that band powers could be easily controlled by the subjects;

achieving 2-3 times the random classification in choosing one of four targets
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[45, 172, 17, 122]. These studies showed evidence that subjects could control

the two channels of neural information at least in a specific frequency band - the

µ rhythms - and produce consistent waveforms. In analysis of multiple chan-

nel recordings, it is advantageous to use techniques that cater to multi-channel

analysis. In early analysis of EEG, most researchers analyzed if a specific fre-

quency provided important information on the classification. The underlying

principle is nevertheless, based on the detection of event related potentials in a

specific frequency band of interest. The band power was calculated from fixed

windows and multiple pattern recognition and machine learning techniques like

artificial neural networks process the band power features to classify behav-

ioral tasks [154]. Another set of methods developed auto-regressive models to

deal with the non-stationarity of the EEG signals [172]. The model describes

EEG as a stochastic process and the model parameters are estimated adap-

tively. This method requires no prior knowledge of the reactive frequency band

and models the spectral component of the signal with updated auto regressive

parameters. To maintain a satisfactory performance the model parameters

need adaptation. Assuming that model parameters change slowly over time,

a continuous visual feedback by the BCI user achieves adaptation. The choice

of the update coefficient determines the rate of update and balances between

accuracy and speed of feedback. Schlogl et al. proposed such a method in

combination with a linear classifier that provided 90% accuracy in classifying

right vs. left hand imagination [172].
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2.3.3 Feature Extraction for Multi-Channel Neural Analysis

The methods mentioned above consider a single frequency band of inter-

est and consider only features from this band. Such analysis requires efforts to

determine the relevant frequency band and ignore any inter-frequency interac-

tions that might characterize the behavior better. With this focus, researchers

developed simultaneous temporal and spectral features [71, 90, 89]. The main

idea behind such research is to develop a redundant dictionary with temporal

and spectral features using either wavelet decomposition or frequency analy-

sis. Wavelet decomposition of time and frequency components builds a wavelet

feature dictionary. Altering the scale of decomposition changes the analyzed

time-frequency components [71, 90, 89, 92]. Using a block Fourier transform,

also accomplishes the same task with similar accuracy [88]. This transform

substitutes wavelet decomposition with FFT frequency decomposition in a

pre-determined time window. This method retains normalized energy in each

time-frequency block as an analysis feature. Although using all the features

would provide high accuracy in the training set due to the curse of dimension-

ality, they provide poor classification in the testing set. Identifying a subset of

the features that generalize the accuracy is essential for neural decoders and

analysis tools. Hence, the burden of classification lies in identifying a subset

of features that are useful to classify the activity. Several methods of feature

selection suggested in [71, 90, 89, 92] include:

1. Thresholding - Using a predetermined threshold, only features above it

can be considered in the analysis. This is akin to the threshold in the
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wavelet decomposition based noise removal used in the image processing

and image compression literature. This process reduces the number of

features drastically and quickly reduces the analysis computation time.

The choice of threshold determines the tradeoff between computation

time and model accuracy.

2. Greedy Subset selection - Selecting a subset of features that have high

wavelet components gathers only the top features based on their wavelet

coefficients. As high-energy components retain most information con-

tent, such analysis resulted in good performance. Choosing such a sub-

set of features allows the determination of feature interaction in terms of

time and frequency components. This subset of features while providing

the maximum energy components do not consider any information pro-

vided by lower energy components and as such provides locally optimal

solutions.

3. Subset Selection using Wrapper methods - In these methods, subsets of

features are determined by the amount of information content offered by

their combination. These methods are initialized with either the max-

imal energy component or the maximal information component. The

information from a feature can be determined with the use of many mea-

sures including Area Under the Receiver Operator Curve (AUC), Genie

Impurity (GI) or Fisher Discrimination criteria (FDC) [88]. The theme

of these quantities is to provide a good measure of their discrimination
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capabilities. In the wrapper methods, any new feature is selected by

choosing the best available feature that in combination with the existing

features improves discrimination.

Further analysis of multi-channel EEG revealed the existence of inter-channel

interaction during brain activity. Some of the early work focused on developing

features similar to the ones described above by creating time-frequency features

for each recorded channel [71, 90, 89, 92]. This method results in an increased

number of features and combinations with the addition of new channels. Hence

new feature selection methods focused on pruning techniques that considered

the spatial, spectral, and temporal origins of the features. Using one such

method, all features related to that selected feature can be pruned out of

further analysis. This strategy prunes features that share the same spatial,

temporal, and spectral locations. It results in a quick training algorithm that

uses only a fraction of the original number of features that provided similar

performance; for example, subset selection wrapper methods that used 20%

of the original features and provided the same performance in analyzing EEG

and ECoG data sets [71]. The method required no knowledge of the spatial

arrangement of channels and their neighborhoods. In fact, the spatial locations

identified by the algorithm corresponded with contralateral location to the

hand behavior.
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2.3.4 Feature Extraction via Discriminative Spatial Patterns

Another popular technique in the BCI analysis literature is Common

Spatial Patterns (CSPs) [157, 22, 34]. The motivation for this algorithm arises

from the spatial filtering affected by the skull on the EEG signals. Blankertz

et. al. observed that spatial filtering of signals with predefined filters such

as bipolar and common average reference improves accuracy of a right vs.

left imagery task [157, 22]. Further, they found that Laplace filtering of the

channels provided even better accuracy. While these filters provided good

accuracy, they concluded that optimizing the spatial filters to the acquired

EEG data might provide subject-specific task-oriented spatial filters.

CSP is a technique used to analyze multi-channel recordings from two

classes. This data driven approach maximizes the variance of spatially filtered

data from one class while simultaneously minimizing the variance of the same

spatial filter for the other class. Such filtering results in linearly discriminant

features. This can be interpreted as maximizing the band (spatial filtering)

power (variance) features from one class, while minimizing the same for the

other. Thus, CSP provides an ERD/ ERS components of spatial filtering

between the two conditions. Consider x(t) ∈ RC and y(t) ∈ RC be the multi-

channel recordings from C channels at each time t and Σx and Σy be their

average covariance of the signals estimated empirically from the data. The

spatial filters that optimize the discrimination between these classes is given

as follows:
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w : wΣxw ≷ wΣyw (2.2)

CSP filters can be easily estimated with the use of a generalized Eigen vector

formulation based on empirical covariance estimates derived from the training

samples. Mathematically, they can be formulated as below:

ΣD = Σx − Σy (2.3)

ΣC = Σx + Σy (2.4)

wmax = max
w

wTΣDw

wTΣCw
(2.5)

wmin = min
w

wTΣDw

wTΣCw
(2.6)

Here ΣD and ΣC represent the discriminate and the common spatial com-

ponents. Spatial weights w are identified using the generalized eigen vector

formulation:

w : ΣDw = λΣCw (2.7)

A large value of λ provides a spatial filter w that solves the maximization (2.5)

and lower value of λ solves the minimization (2.6). In general, more than one

spatial filter is designed to suit either end of the spectrum, i.e., one spatial

filter has high variance for class x and the other for class y. The spatial filters

project the raw multi-channel signals z(t) onto a pseudo-channel or feature

space as follows:

zf (t) = wzT zwT (2.8)
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Figure 2.2: A representative Feature projection on two CSP filters. The two
axis represent the normalized feature space when multiple trials are projected
on the discriminative spatial filters. The different colors represent the features
extracted for two different classes - here different directions.

Figure 2.2 represents the CSP feature space for two representative

classes and easily classified with the use of a linear classifier. The ease and

low complexity of estimating features makes CSP very popular. While some

researchers use non-linear classifiers to classify the CSP features, I found that

linear separability of the features achieves discrimination.

These filters provide excellent classification on various data sets with
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not only binary conditions but also multiple classes via the use of multi-class

classification [22, 20, 45, 205, 217, 34]. Apart from the accuracy of classifi-

cation, the main advantage of CSP is its interpretability and visualization.

The inverse of spatial filters can be viewed on the spatial maps as spatial

patterns that discriminate the two classes. However, several parameters still

need to be estimated before CSP can be applied including band-pass filtering,

the time window of the data, and removal of any physiological artifact [22].

A longer time window of operation usually results in better accuracy because

better estimates of channel covariance are estimated. However, longer window

time results in latency of the BCI. Researchers evaluated different frequency

bands for different tasks to arrive at the best functional frequency band. Some

researchers focused on estimating the spectral as well as spatial components si-

multaneously using a similar framework. These filters, also called the Common

Spectral Spatial Patterns (CSSP), are estimated by allowing delayed replicates

of the channels [109, 46]. Using such a framework builds an optimal FIR filter

at each electrode that provides both the spatial and spectral filtering. The

number of latencies determines the order of the spectral filtering in the frame-

work of an FIR filter.

The disadvantages of CSP include their sensitivity to outliers, artifact

noise, balance of samples in the classes, and poor generalization due to over-

fitting to training data [160]. Artifacts such as blinking or muscle noise need to

be removed before the analysis [22]. Since these artifacts result in high-energy

components, they result in high eigen values and cause spurious results. The
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intermittent noise that might occur only during a few trials may also affect

the CSP estimation adversely. An equal or comparable number of trials per

class is highly recommended to obtain a faithful result. In cases where there is

an imbalance in the number of per class trials, the CSP tends to bias towards

the class with higher number of samples.

Other variants of CSP filters have also been published in the litera-

ture including invariance CSP, regularized CSP , spatially regularized CSP,

Tikhonov regularized CSP, weighted Tikhonov regularized CSP, and spatially

regularized CSP [109, 205, 217, 115]. The underlying principle of all these

regularization techniques is to embed the prior knowledge and obtain a better

generalization of CSP. In general, regularization helps improve performance;

while one of the regularizations provides better accuracy than the regular

CSP, it is not clear which one improves performance apriori. Some researchers

remarked that using a sparse CSP would aid in its generalization and per-

formance [217, 70]. The motivation of such studies is to extract only those

channels that aid in the classification of binary task by favoring sparse so-

lutions. Further, the success of sparse solutions in other fields has favored

researchers in this direction. While some studies used the `1 norm constraint,

others have pursued a greedy approach to building sparse CSP.

Finally, CSP was developed as an analysis tool for a binary classifica-

tion and provides channel weights that optimally classify training data. In

applications that need classification of more than two classes, multiple clas-

sifiers are prescribed [91]. They offer poor performance in applications that
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need tracking of continuous behavior. As such, every addition of new behavior

requires retraining the entire model results in degraded performance. While

initial studies with CSP filters were used with a cross-validation approach, the

issue of poor generalization on chronologically recorded data has been well

documented. The poor generalization of CSP is due to their data dependence

in obtaining optimal filters [160]. Hence, advanced signal processing tools need

to be developed to obtain better generalization.

2.3.5 Subspace Identification

Advanced signal processing algorithms extract recording subspaces from

neural data. Independent Component Analysis (ICA) in BCI detects eye move-

ment and muscle artifacts and removes noise [72, 182, 218]. Since the noise

components are considered independent of the behavior related components,

ICA provides a natural platform in applications like eye movement artifact

removal, identifying single unit activity [149, 166]. The main principle of

these approaches is to identify low-dimensional subspaces that model the non-

stationarity of neural data. However, behavior relevant component identity

poses a challenge in ICA. The methods build subspaces such that the sig-

nals from multiple repetitions of the behavior lie on these subspaces. Unlike

Principal Component Analysis (PCA), which identifies only the highest energy

component from the signal, these algorithms aim to identify the most recurrent

and informative subspaces for neural data. The Iterative Subspace Identifi-

cation (ISI) algorithm attempts to identify lower subspace representation of
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intrinsic patterns from the new data [73]. The primary difference between ISI

and Singular Valued Decomposition (SVD) is that while ISI identifies multi-

ple subspaces of lower dimensions from the neural data, SVD tends to bundle

them into a single subspace. ISI starts with an initial vector from the training

set and identifies a sparse subspace from the remaining training vectors to

represent the initial vector. Using this method provides a representation with

minimal vectors used to represent any of the other vectors in the data set.

After removing all the vectors that have been identified by the subspace, the

same procedure is repeated to identify further representative subspaces. In

the work done by Gowreesunker et al., ISI applied on neural data collected on

a single day provided good lower dimensional subspaces [73]. However, these

subspaces do not recur for multiple days and fail to provide the same level of

representation in future data. In fact, the paper suggests that frequent update

of the subspaces is necessary to obtain marginal improvements over existing

traditional feature extraction techniques.

The above algorithms prove the existence of behavior specific spatio-

temporal-spectral neural features that can be developed to accurately detect

behavior. These algorithms provide benchmark decoding solutions and per-

formance. However, these algorithms have been tested in a cross-validation

environment where trials from the same data are resampled into training and

testing session. Moreover, these features ignore any adaptation that might

occur due to learning and other physiological reasons.
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2.4 Conclusion

This chapter provided a brief background on the state-of-the-art in BCI

research. This literature survey leads to following conclusions:

1. Most BCI are subject specific and need extensive training to build the

decoding model and obtain satisfactory performance.

2. Feature extraction often determines the accuracy of the system. A robust

feature space allows different classification tools to provide consistent

performance over chronologically spaced sessions

3. Typically, spectral components of neural signals characterize specific sub-

ject behavior. Hence, neural signals are often band pass filtered to pre-

process and obtain specific information

4. Spatial interaction between multiple neural locations varies with subject

behavior. Identifying and modeling this interaction helps in decoding

subject behavior

5. Signal Processing advances in analyzing multi-channel neural data leads

to high performance in BCI
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Chapter 3

Data

3.1 Introduction

This chapter provides an overview of data recording paradigm and de-

tails on experimental set up. It will first introduce the behavioral set up of the

experiment including details on changes in external perturbations on monkey

behavior. A practical Brain Computer Interface (BCI) should be capable of

working in different environments and analyzing changes in neural patterns

over different environments provide insights. The chapter also introduces neu-

ral extraction techniques and provides a brief overview on the initial analysis

performed on decoding movement directions from Local Field Potential (LFP)

recordings.

3.2 Behavioral Data

We (Dr. James Ashe, Dr. Giuseppe Pellizzer, Dr. Rahul Gupta, Dr.

Firat Ince) trained two left-handed male rhesus monkey subjects (Macaca

mulatta), H564 and H464, weighing 6.1Kg and 4.5Kg respectively to perform

an instructed-delay center-out task to perform a point-to-point movement to

visually displayed targets using a manipulandum (Interaction Motion Tech-
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Figure 3.1: Schematic of the eight targets presented to the monkey. Each
target is placed 10cm away from the center hold target. The monkey initially
places the cursor in the center target and waits for one of the targets to appear,
thus providing a visual cue. It then proceeds to move the the cursor in the
highlighted target by moving the joystick in the appropriate direction.

nologies, Cambridge, MA). This two-joint manipulandum is commonly used

in force-field studies in both human and non-human primates. The monkeys

sat in front of a monitor that displayed the center and target location. When

instructed by an experiment with the aid of visual cues, the monkeys were

trained to reach one of the eight equally spaced targets located around a cir-

cle of around 9cm. The monitor was also a source of visual feedback to the

monkey. A schematic display is shown in figure 3.1.

Each trial began when the monkey placed the cursor inside a circular

window of radius around 1cm, at the center of the display. The monkey was

trained to hold the cursor for at least 800ms to ensure a control period. Any
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minor perturbations in this circular target were acceptable, but deviations over

this circular window resulted in an error and the monkey had to restart the

trial. The control period is sometimes referred to as the center-hold period.

After ensuring that the cursor was held in this location, a random generator

chooses one of the eight targets, highlighted, and displayed for about 500 −

700ms on the display. This served as the visual cue for the monkey. We

instructed the monkeys to hold their cursors in the center of the display during

this cue and memorize the location of reach. An early start of the reach during

this cue resulted in an error. We switch off the target location for a memory

delay time of about 800 − 1000ms during which the monkey memorizes the

target location.

Following the memory delay, the targets reappeared on the screen and

the monkeys reached the target during this cue in 800−1000ms. Both monkeys

completed all successful reaches to the peripheral circular targets (∼ 1cm.)

under 1000ms to avoid error. Upon reaching the target, the monkeys held the

cursor in that position for about 800ms. The successful completion of each

reach to the target and in the appropriate periods resulted in a correct trial.

The monkey obtained a juice reward for its success. A time line for each trial

with the median times spent in each period is shown in figure 3.2. The next

trial began after an inter-trial interval of 500ms.

Since monkeys learn the timing of these experiments very well, all the

experiment times were pseudo-randomized to ensure attention during the en-

tire trial. In addition, the targets were presented in a pseudo-random fashion
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Figure 3.2: Time-line of each trial performed by the monkey. The number
during each epoch indicates the median time spent during that period.

in sets of eight. To move to the next set, the monkey needed to reach all eight

presented targets without any timing errors. Behavioral data in the form of

position and velocity of the cursor, forces and torques applied by the monkey

at the handle of the manipulandum were sampled at 200Hz and stored for

analysis. These forces are different from the forces applied by the manipu-

landum and will be discussed later. All timing information regarding each of

the single trials like the visual cues - ON and OFF, Target Go cue, Movement

Onset time, and Target Reach time were also stored (see Figure 3.2). Only

correctly performed trials (determined online at the time of recording) were

stored for further analysis. During all the sessions, the monkeys accurately

reached more than 70% of all presented targets in a timely manner.

Depending on the motivation of the monkey and its skill at reaching the

targets, the number of accurate trials performed during each recording session

varied from 88 to 520. Initially, we recorded only one session per day and later

progressed to multiple sessions based on the monkey’s motivation. We recorded

over a period of 4 weeks (H564) and 6 weeks (H464). Once the monkeys grew
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accustomed to the above behavior and performed target reaches with fewer

errors, external forces were applied to the manipulandum to study the forces’

effects on learning and behavior of the monkey. These forces diverted the

cursor away from the target. To obtain the juice reward, the monkey had

to work against these external field forces and reach the target. We applied

the force fields only during the reach period and applied no force when the

manipulandum was in the center or at the targets. Forces depended on the

velocity (viscous fields) or the position (stiffness fields) of the manipulandum

and acted in a direction perpendicular to the direction of motion (curl fields).

Mathematically they can be expressed as

Fx = −bvy; Fy = bvx (3.1)

Fx = −ky; Fy = kx (3.2)

, where Fx and Fy are the x, y components of the forces corresponding to the

vx and vy components of the velocity of the manipulandum, b is the viscosity

coefficient, x, y are the horizontal and vertical components of the position

of the manipulandum, and k is the stiffness coefficient. The stiffness and

viscosity coefficients were chosen to be non-zero, and have enough effect to

cause diversions in the natural movements while ensuring that the monkey

could still perform the task. Depending on their direction and type, the forces

were Stiff Clockwise (SCW), Viscous Clockwise (VCW), and Viscous Counter

Clockwise (VCCW). However, the nature of forces against each direction in a

particular session remained unchanged.

36



3.3 Neural Recordings

To record neural signals two silicon based Utah electrode arrays (Black-

rock Microsystem, formerly Cyberkinetics, Foxboro, MA) were implanted in

the contralateral arm areas of primary motor (M1) and dorsal premotor (PMd)

cortices respectively. Electrodes on the array were arranged in 4mm x 4mm

square with an electrode depth of 1.5mm and an inter electrode spacing of

0.4mm. Although each array was capable of acquiring up to 96 channels,

the available amplifiers reduced the total capability to 64 channels per grid.

Signals from the arrays were initially sampled at 44KHz. Spike sorting was

performed using the Plexon Offline Sorter (Plexon Inc. Dallas, TX). Spikes

were simultaneously recorded from a varying number of cells in the M1 and

PMd areas of both monkeys. Offline analysis of the spike rate was used to

predict behavioral data, position and velocity of the cursor, and the forces

applied by the monkey on the manipulandum [77]. This analysis established

that prediction of these parameters requires only a linear analysis tool in the

form of linear regression and shorter neural stream of data (∼ 420ms) to make

accurate predictions. The analysis involved a 10-fold cross validation to obtain

decoding accuracy and correlation coefficient between the estimated and ac-

tual variables. However, since the number of single units varied over different

recording sessions, it is difficult to comment on the long-term applicability of

such analysis.

The analysis of single units ignored the lower frequency component

of the signals. However, their long-term stability is an attractive trait that
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becomes very useful for practical BCI applications [135, 212, 211, 198]. In

this study, the Local Field Potentials (LFPs) related to these recordings were

filtered at 0.3− 500 Hz and then stored at 1 KHz sampling rate. We visually

inspected channels to determine channels free of artifacts and any power line

noise. We removed such channels from the analysis and retained 75 (H464)

and 88 (H564) channels for further analysis. Figure 3.3 shows the channel

locations in the M1 and PMd of the two monkeys.

This data was then filtered between 0.3 − 220 Hz and down sampled

at 500 Hz. Although the signal was filtered at 0.3Hz at the hardware level

some baseline wander was observed in channels for many trials. To eliminate

such wanders, we sub-band filtered and removed the DC trend by linearly

de-trending the recordings. This minimized outliers due to DC shifts. After

the de-trending step, we proceeded to identify the most reactive sub-band of

LFP activity. During the time-frequency analysis of the waveforms, it was

observed that distinct patterns existed in 0− 4Hz, 4− 10Hz, 14− 30Hz, and

48−200Hz bands. Of these frequency bands, the 0−4Hz band was modulated

differently across all directions while other frequency bands provided similar

modulations across all directions. We obtained close to 1
f

frequency response

of the LFP activity similar to other reports in the literature [158, 81, 13, 155].

This indicates a high-energy content in the lower frequency band that might

aid in discrimination of directions. Other studies have also indicated that this

frequency band is particularly active in direction decoding. Hence, our feature

extraction was based on this frequency band component [91].
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Figure 3.3: Spatial Arrangement of the electrode grids in the Primary (M1)
area and Pre Motor (PMd) Area. The first row represents the spatial ar-
rangement of channels. The second and third rows represent the locations of
non-noise channels in monkeys H464 and H564 respectively. The electrodes
are placed on a 4 mm × 4 mm grid with an inter-electrode separation of 400
µm. For ease of reading they are indicated with units in the figure.
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3.4 Initial Analysis

Ince et al. performed the initial analysis on the data and proposed to

use a regularized Common Spatial Pattern (CSP) to analyze the data [91].

The choice of using correlation based spatial patterns is motivated by slow

baseline shifts observed for different directions. Using a centered covariance

matrix approach removes such wanders from the signal and results in the loss

of information content. Hence, using a correlation between multiple chan-

nels might result in better accuracy. Such approaches also provided better

decoding in classifying slow-moving cortical event related synchronization or

desynchronization in EEG [44].

For purposes of establishing use of LFP for target decoding, they pro-

posed to decode the movement direction from features derived using multi-

channel LFP recordings. Focus of the analysis was on analyzing 1s of data

after movement onset; LFP activity in this 1s was used to extract CSP filters

and features. They observed that the correlation between channels varied with

different directions and incorporated this observation to derive CSP features

from the correlation of multi-channel data. The proposed CSP model follows

the below feature extraction algorithm:

CSP is inherently designed for binary classification. Since the direction

decoding is a multi-class (8 directions) discrimination, they proposed the use

of redundant classifiers in the form of

1. multiple pair-wise classifiers that classified each direction from the other
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2. multiple hierarchical classifiers that classified a group of directions against

a diametrically opposite set of directions

A schematic of such hierarchical classifiers is presented in figure 3.4. This

choice of hierarchical classifiers was motivated by the observation that neigh-

boring directions, e.g. 0◦and 45◦, produced spatially similar neural patterns

during their reaches. Hence, trials from neighboring directions can be grouped

to obtain a stable neural pattern. To decode K directions they proposed to

use K(K − 1)/2 pairwise classifiers and 12 hierarchical classifiers. During the

training of these classifiers, trials belonging to the directions are collected and

a spatial pattern capable of classifying them is constructed. For the hierarchi-

cal classifier this means that trials from neighboring directions were lumped

into a single class. Applying these spatial filters on the band-filtered LFP data,

results in a CSP feature space, where the classes can be easily separated using

a Linear Discriminant Analysis (LDA) classifier. The CSP training model in-

cludes spatial filters for each classifier and the resultant weights from the LDA

classifier.

To decode the direction of a new trial, all the spatial filters from the

classifiers are applied. This provides class labels for each of the classifier.

Using Error Correcting Output Codes (ECOCs) provides the scores for all

eight directional classes. For the given hierarchical classifiers, the class could

define more than one direction. Hence, combining the scores of both —pairwise

and hierarchical classifiers —provides a better estimate of the direction. The

estimated direction is the one with the maximum score.
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Figure 3.4: Grouping of directions using the error correction output codes.
Each group represents a super class representing all the direction in the group.

To evaluate the performance of this method and to test the feasibility

of using LFP for movement decoding, [91] used a 10 x 10 cross-validation over

data collected from multiple days spanning over one week. Sessions 1, 2, and

3 from each monkey are used in the analysis and resulted in 508 (H564) and

1107 (H464) trials. Such a cross-validation approach allows capturing variabil-

ity of spatial patterns over these days and the spatial patterns can be modeled

efficiently. This analysis was carried out at multiple time instants after move-

ment onset - each time sampling 1s of data prior to the snapshot and modeling

spatial patterns for each time instant separately. The overall accuracy of the

model was defined in terms of decoding power (decoding accuracy) as the frac-

tion of accurate estimates of the direction to the total number of testing trials.
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As there are eight possible directions of movement, the decoding power for a

random classification is 12.5%.

The analysis obtained the best decoding results with regularized CSP

for the two monkeys reaching 80% (H564) and 92% (H464). They found that

the regularized CSP based on correlation of channels provided better decoding

results. This shows that signals in these bands have some useful information

that helps in discriminating the movement directions. Results from this anal-

ysis also proved that slowly varying signals under 4Hz. contain direction de-

coding information. The use of ECOC based hierarchical patterns also added

an average of 10% to the pairwise classification results. We also implemented

the one-vs-rest classification method and it failed to provide decoding levels

close to the other methods. This shows that the use of multiple redundant

classifiers produces better performance.

These analyses prove feasibility of LFP to decode movement directions

under assumptions of having knowledge of entire variability of data in the form

of trials from multiple sessions. Practical BCIs do not have that advantage;

they generally have to be modeled on data from a single session when the BCI

user provides calibration data. While daily calibration of BCI systems is an

option, it increases the burden on the user to provide a training session that is

not an elegant solution. Cross-validation results and analysis provide a good

tool to test the feasibility of an algorithm along with providing a generously

optimistic estimate of the algorithm’s performance in a practical scenario.

Hence, we extended the decoding analysis with just trials from session 1 for
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Table 3.1: Decoding Accuracy of CSP filters over multiple days of testing. To
mimic a practical BCI, I trained the decoder on Session 1 (Day 0). These
results and the method provide as baseline comparisons to the proposed algo-
rithm.

Day after Training 8 9 13 14
H464

Number of Trials 263 325 348 88
CSP 38% 41% 16% 13%
H564

Number of Trials 206 103
CSP 41% 40%

training and the rest for testing. This allowed us to evaluate the performance

of different BCI algorithms in a similar setting.

Table 3.1 presents the decoding power over two weeks for monkeys H464

and H564. Decoding models used redundant CSP based feature extraction

and LDA classifiers; combining their results using ECOC to obtain the final

estimated direction for a test trial. Since the model was trained on a single

session, it only provides a good illustration of that session. The inherent data

variability of LFP recordings result in poor performance of the algorithm over

multiple days.

To overcome the daily variability of LFP signals, I conducted another

analysis focused on obtaining low dimensional subspaces that explain training

data [73]. The motivation behind this analysis is to estimate subspaces that

recur during the reaches to each direction. The model uses an iterative sub-

space identification approach to build multiple representative subspaces per
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direction. During training, subspaces are extracted to faithfully represent the

data from each direction. Projection of a trial on to these subspaces produces

direction related components, and I hypothesized that accurate directions can

be estimated from such information.

For a test trial, channel data is projected onto a subspace to measure its

correlation with that subspace. It is assumed that the subspaces can extract

direction component from the data and can be used in classification. This

analysis used models based on CSP to identify if the projected component of

the signal belonged to a particular class. Finally, the decision from the CSP

classifiers is matched with the directionality of the subspaces. The decision is

accepted only if the match is exact. Ideally, the projection onto a direction

subspace would be enough to classify the direction of a trial and directionality

of the subspace remains consistent over all recording sessions. The subspace

extracted from directions in the training session represents same direction even

in the testing session. However, in practice due to day-to-day variability of

the signal, it is unclear if projection onto a given subspace could represent

the same direction. In fact, I observed that the subspace fitting one direction

in training session provided better representations of other directions during

testing. Hence, I built a classifier that assumes knowledge of supplementary

information on the directionality of the subspace.

To compare the efficiency of this approach I used the same training and

testing sessions as used for the CSP algorithm in the previous analysis [91].

This algorithm uses the traditional covariance based CSP as a feature extractor
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Table 3.2: Decoding Accuracy of using Low Dimensional Subspace projection
with CSP filters over multiple days of testing. To provide a fair comparison, I
used the same parameters for the CSP filters.

Day after Training 8 9 13 14
H464

Number of Trials 263 325 348 88
CSP 38% 41% 16% 13%

Low Dimensional Subspaces 58% 54% 27% 24%
H564

Number of Trials 206 103
CSP 41% 40%

Low Dimensional Subspaces 44% 42%

on data projected on a subspace. The subspaces contribute by extracting only

direction related component from band-filtered channels. When this approach

was applied in a cross validation setting, decoding powers improved slightly

from 75% to 88% (H564) and 89% to 90% (H464). In scenarios with different

training and testing sessions, this method provides a marginal improvement on

the CSP results. Table 3.2 provides a comparison of decoding powers over the

two-week period with the two algorithms. Finally, to obtain the best decoding

the algorithm required trials from multiple sessions to capture data variability

over days.

3.5 Conclusion

This chapter provided an overview on the data-recording paradigm and

experimental setup used to collect neural data. The main objective of my thesis

46



is to develop a robust LFP decoder with minimal training. Initial analysis on

the data provided a performance benchmark. The findings from this analysis

and published work in [91, 73] lead to interesting conclusions:

1. Unlike Single Unit Activity, LFP provides consistent signals over multi-

ple days

2. Spatial Patterns that define each behavior over a period of a week could

be estimated and observed to provide good decoding of eight directions.

The construction of these spatial patterns requires that most of the data

variability be captured in training set

3. When such data variability is not captured by training only on a single

session, the performance degrades and reaches a random classification in

2 weeks

4. Developing multiple redundant classifiers provided better performance

than using pair-wise classifiers

5. Low dimensional subspaces of the data exist in a linear space, but only

a few subspaces are recurrent. Specifically, apriori knowledge of the

subspace clustering and labeling is needed to obtain any decoding

6. It is not clear if even the subspaces learned from the same day can provide

any better decoding than those learned from the training day
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7. High success in the cross-validation studies leads to the conclusion that

certain spatial patterns are recurrent over multiple days, but no method

to extract them exists

After studying different features for their robustness over multiple days,

I hypothesized that developing robust features helps in building a robust clas-

sifier that provides consistent results over multiple days and over varying en-

vironmental conditions. To this end, I proposed to use qualitative features in

the form of instantaneous inter-channel power ranks instead of raw channel

data. Chapter 4 discusses motivation of using these features and analysis of

using such features on the data.

CSP approach assumes Gaussian distributed spatial patterns that can

discriminate a binary task. In specific, estimating mean covariances for each of

the behaviors estimates the mean neural pattern for that behavior. Since this

is a data dependent algorithm, variance of such a Gaussian is large enough to

fit the entire data. To overcome the shortcomings of this method I theorized

that more than one spatial pattern is required to describe a behavior (see

Chapter 5). I propose to describe the neural spatial patterns with multiple

Gaussian distributions to build such a model. The goal of model training is

to accurately estimate mean and variance of the spatial pattern.

Model adaptation is essential to build a robust BCI. I propose a strategy

for model adaptation that is un-intrusive and requires minimal calibration

from the user. Such an approach results in improved and consistent decoding
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performance over multiple days including during changes in the environments.

In conjunction with a multiple spatial pattern model, I characterized model

learning and spatial changes that occur during the learning process (Chapter

6). I observed that in the multi-spatial pattern model some of the spatial

patterns recur over time and aid in robust classification, while some other

patterns represent perturbations in the data due to day-to-day variations.

Characterizing them enables efficient modeling of recurrent spatial patterns.
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Chapter 4

Robust Feature Extraction

4.1 Introduction

Chapter 3 discussed the data collection paradigm and experimental set

up. During the initial analysis, Common Spatial Patterns (CSP) were used to

extract neural spatial patterns from Local Field Potentials (LFP) and decode

eight hand movement directions. Due to changes in the spatial patterns over

multiple recording sessions, these discriminating spatial patterns developed on

a single session were ineffective. I hypothesized that investigating the invari-

ance characteristics of extracted features boosts decoding performance. This

chapter presents my motivation and contributions in extracting features that

remain robust to variations in LFP recorded over multiple days.

4.2 Extracting Qualitative Spatial Patterns

The initial analysis of LFP data used CSP patterns to decode the eight

directions of movement [91]. These results indicate existence of a direction

specific spatial pattern in LFP data. This implies that when a particular

directional target is reached, the neural channels are arranged in a unique

manner that enables the decoder to classify these directions. To investigate
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these spatial patterns, I analyzed power patterns calculated in fixed time win-

dows in each channel. I used rectangular moving time-windows to evaluate

temporal evolution of such patterns. Visualization of such patterns on the

electrode grid revealed existence of patterns unique to a direction [195]. I

observed that while the spatial and temporal evolutions of direction reaches

were consistent over multiple trials, power level across trials was inconsistent.

Such inconsistencies in power levels lead to variability in extracted features.

Current state-of-the-art machine learning techniques require that features ex-

tracted from the testing session closely resemble those in the training session

[80, 156]. Pattern recognition techniques depend heavily on stationarity of

extracted features. While variability of power in a single session could be

modeled, modeling changes in power levels across multiple days is very diffi-

cult.

Normalization techniques could be used to overcome such baseline shifts

in power levels. However, normalization techniques require explicit knowledge

of entire test data. In particular, normalization requires knowledge of dynamic

range parameters - minimum and maximum signal deviations - over the entire

training session. These kinds of techniques work well for cross-validation anal-

ysis that has such parameters readily available. Analyzing model consistency

over subsequent recordings requires knowledge of parameters from the testing

sessions. Hence, normalization techniques are difficult to implement and do

not provide a solution to the problem [195].

In statistical analysis, variables that cannot be parametrized by a nor-
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mal distribution are analyzed using non-parametric solutions [39]. Ranking

is one such technique that preserves the order of the variables, while ignoring

the dynamic range and actual values. They have the following advantages over

normal parametrization methods:

1. Rank ordering is preferred over standard parametric methods when the

assumptions of normality are grossly violated.

2. Presence of outliers affects the parametric methods, while rank-based

methods ignore such outliers as they provide them with the same value

as any big (or extremely small) original value.

3. Rank ordering also handles missing data better than parametric meth-

ods, by giving the missing data a zero rank or a very large rank. Ranked

variables are generally uniformly distributed and offer a better power of

the test in those cases where normality assumptions are violated. The

relatively poorer performance of ranking occurs due to loss of details

from the original variable and only when parametric assumptions are

satisfied. It is generally accepted that in such scenarios power of the

rank test is about 0.95 times power of the parametric test.

Ranking has been suggested to overcome variable dynamic range of multiple

photographic plates [210]. Using such an approach resulted in obtaining ro-

bust features to classify objects in astronomical images. Ranking of the ”raw”

features in this study eliminated dependence on their probability distribution.
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Finally, even if parametric ranges are normalized, the ranking of features pre-

serves the order and allows use of parameters like maximum and minimum

intensities.

I performed similar analysis to observe changes in power levels over

multiple days. The distribution of raw features varies significantly across mul-

tiple days. However, I observed that the locations of high and low power

ranks on electrode grid remained consistent. I analyzed the rank of channels

instead of their original values. In the proposed approach, I ranked channels

of each trial according to their power. At each time sample, channel power

is calculated using a 250 ms rectangular time-window preceding the sample.

The channel with highest power is assigned rank 1, the next channel rank

2 and so on in descending order. Ordering could also be done in ascending

manner of rank powers. In this manner, the total number of channels in the

analysis is the upper bound value of the rank feature. This feature extraction

bypasses the dynamic range of channels, while retaining the relative informa-

tion between channels. Figure 4.1 shows a typical trial and evolution of its

corresponding rank features. The figure also shows that change in cognitive

states (around 0.6s after movement onset) that could be inferred by analyzing

the organization of ranks.

I analyzed only the top ranking channels using different ranking schemes

like regular ranking and standard competition ranking. In standard competi-

tion ranking, competitors with the same score get the same rank enabling a

fairer ranking. In the context of multi-channel LFP, this reduces to aggregat-
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Figure 4.1: A representative trial and its rank power features calculated over
its duration. The first plot shows the power modulation of the channels when
a particular target is reached. The second plot shows the changes in the rank
patters for the same trial.

ing channels that have similar powers and ranking them with a similar value.

While this scenario often occurs in competitions, it is highly unlikely that two

channels have the same power (unless they are zero). I adapt this ranking

system by using a fractional threshold that measures similar channel powers.

The process is described in algorithm 1.

The analysis consists of training and test phase. During the training

phase, rank pattern features are extracted from single trials. To test efficacy

of the proposed feature extraction methods using rank patterns, I tested its

performance using Common Spatial Patterns (CSPs). This provides us a good
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Algorithm 1 Calculate Ranks in Standard Competition Rank Scheme

Obtain Standard Competition Ranks R from N channel raw data X
Calculate Channel Power: P =

∑t
t−τ X2(t)

Initialize: r = 1,Ψ = {1 : N},R = 0
while Ψ! = ∅ do

Find the highest powered channel in the pool

c∗ = arg max
c∈Ψ

Pc

Select Channels in the range:

Sc = argc Pc∗(1− fth) ≤ Pc ≤ Pc∗

Assign selected channels rank:

R(Sc) = r,

Ψ = Ψ− Sc,

r = r + |Sc|

end while

benchmark performance. I extract CSP filters on data transformed to rank

space. Thus, this method provides an estimate of qualitative measurements

rather than quantitative measurements. Figure 4.2 presents the flowchart to

compute the discriminant spatial filters from the neural signals. As an exam-

ple, I present one of the CSP filters on the pre-motor area of monkey H464

in figure 4.4. As a reference, figure 4.3 presents the electrode arrangement on

the pre-motor grid. The spatial filtering operation shown in the flowchart is

only used for visualizing the spatial filters.

Figure 4.4 also illustrates the consistency of the spatial patterns over
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Acquired Neural Signals from a session

Calculate Band Filtered
Power: P =

∑
x[n]2

Sort Channels to com-
pute their relative

ranks: R = sort(P )

Compute CSP from
Raw signals using (2.3)
- w : wΣxw ≷ wΣyw

Compute CSP from Rank
features using (2.3) -
w : wΣxw ≷ wΣyw

Spatial FilteringSpatial Filtering

Figure 4.2: Flowchart to calculate the spatial discriminating patterns. The
figures shows the spatial weights obtained from CSP on the Premotor spatial
grid. The electrodes are placed on a 4mm× 4mm grid. The location of each
electrode is represented by a single pixel before spatial filtering. For the ease
of visualization a spatially filtered version of the filter is also shown.
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Figure 4.3: Spatial arrangement of electrodes on Primary and Pre-motor area
of H464. The grids are each placed on a 4mm × 4mm grid, with an inter-
electrode spacing of 400µm.

different sessions. I employed pairwise and hierarchical classifiers from an

earlier analysis in chapter 3 to ensure fair comparison of methods. Linear Dis-

criminant Analysis (LDA) classifiers are built on the Rank Features obtained

from training session. During the testing session, spatial filters and their cor-

responding LDA classifiers are applied on each single trial. Decoding matrices

similar to the ones presented in previous chapter are used here.

To evaluate the performance same training (session 1) and testing ses-

sions (the rest) are used for both CSP and Rank CSP. While non-linear classi-

fiers might provide better decoding, initial analysis focused on comparing the

feature performance. I initially performed cross-validation tests and observed

that both CSP and Rank CSP perform at the same level providing high decod-

ing accuracies. This result is expected in a cross-validation setting courtesy of

the CSP framework. Further, I tested feature performance to overcome long-
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(a) Raw CSP on Day 1 (b) Rank CSP on Day 1

(c) Raw CSP on Day 8 (d) Rank CSP on Day 8

Figure 4.4: Spatial Patterns extracted on raw and rank features over two days.
The spatial patterns represent the average LFP signal on the same Pre Motor
grid area (4mm × 4mm) when monkey H464 reached direction 0. Each pixel
represents the location of each electrode on the LFP grid. (a) represents the
spatial pattern derived from raw LFP on session 1. (b) represents the spatial
pattern derived from rank LFP features on session 1. (c) and (d) represent
the same for session 2 (collected on day 8) respectively.

term variations of LFP signal. Results of this analysis are presented in table

4.1. I find that the rank features provide robust decoding compared to the

raw features (p < 0.01). These results suggest that feature extraction method

plays an important role in the performance of CSP filters. This conclusion

also holds true when training and testing sessions are selected from sessions

where external field forces were applied. In this scenario, VCCW field force

was applied during hand reaches of the training session and field forces varied

during test sessions. I also studied performance of the algorithm with varying
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(a) Raw CSP on Day 1 (b) Rank CSP on Day 1

(c) Raw CSP on Day 8 (d) Rank CSP on Day 8

Figure 4.5: Spatial Patterns extracted on raw and rank features over two
days. These patterns are the filters shown in figure 4.4 but spatially filtered
over the premotor cortex using an interpolation operator. The spatial patterns
represent the average LFP signal on the Pre Motor grid area of 4mm× 4mm
when monkey H464 reached direction 0. (a) represents the spatial pattern
derived from raw LFP on session 1. (b) represents the spatial pattern derived
from rank LFP features on session 1. (c) and (d) represent the same for session
2 (collected on day 8) respectively.

fractional thresholds and concluded that the ranking approach provides only

marginal improvements over the traditional ranking system. Further, it is very

difficult to know apriori which fractional threshold provides best decoding per-

formance.
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Table 4.1: Decoding Accuracy of the time evolving spatial pattern model.
Both Rank CSP and the Time Evolution Models perform better than the
state-of-the-art CSP model (p < 0.01).

Day after Training 8 9 13 14
H464

Number of Trials 263 325 348 88
CSP 38% 41% 16% 13%

Rank CSP 62% 61% 55% 47%
Time Evolving Spatial Pattern 71% 69% 58% 62%

H564
Number of Trials 206 103

CSP 41% 40%
Rank CSP 53% 52%

Time Evolving Spatial Pattern 66% 60%

4.3 Temporal Evolution of Spatial Patterns

CSP algorithm assumes that the correlation of electrodes that deter-

mine the spatial weights remains constant over entire reach to the directional

target. I investigated the evolution of inter-electrode correlation over the entire

reach by analyzing the changes in spatial patterns over time using small time-

windows [193]. Each trial is divided into non-overlapping time-windows of a

small size, say Tms, determined by cross-validation. For each of these time-

windows spatial patterns are computed using CSP method to discriminate the

directions. During testing stage, each time-window of a trial is evaluated with

the spatial pattern of its corresponding window. I compute and store the LDA

distance for each time-window and obtain the final decision based on the en-

tire trial length. The proposed algorithm presented in Algorithm 2 assumes
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Figure 4.6: An example of time evolving spatial pattern obtained using the
Algorithm 2. Each grid represents the 4mm×4mm spatial grid sampled on the
primary and pre-motor area of the monkey cortex. For ease of visualization,
the grid is also spatially filtered using an interpolation operator.

a binary classification problem and can be extended to multiple classes using

redundant hierarchical classifiers. Figure 4.6 shows an example of a spatio

temporal pattern obtained using this algorithm.

Table 4.1 shows the decoding performance of the proposed model for

H464 and H564. For both these monkeys, the training was performed on the

first session. I observed that all the methods perform poorly when field forces

in testing session are different from those of training session. Performance

returned to a stable level when the original field force was reintroduced. These

results highlight the need of using evolving spatial patterns of electrode ranks

in the context of robust movement decoding in LFPs.
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Algorithm 2 Algorithm to identify Temporally varying Spatial Patterns

Training Stage: Learn M from Data:{Xi(t),Di}Ni=1

for t = 0→end of trial do

Obtain Spatial Pattern using CSP:

wt = max
w

wTΣDw

wTΣCw

, where ΣD and ΣC are calculated using eq ((2.3))

end for
Compute LDA classifiers for each CSP filter: {wL, bL}
M← {wt, wL, bL}

Testing Stage: Estimate D̂∗i from Data:{X∗i }Ni=1, M∗

for t = 0→end of trial do

Calculate CSP feature: f = wTXTXw

Calculate classification score: αt = fwL + bL

end for
Estimate D̂∗ = modet αt > 0
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Figure 4.7: A schematic of the clustering methodology to identify locations
with high probability of top ranked channels. The circle represents the channel
selection operator using the topographical clustering method.

4.4 Topographical Clustering of Qualitative Patterns

The previous analysis establishes that certain spatial locations typically

have relatively high power when reaching a particular direction. To understand

the spatial configuration of high ranked channels, I analyzed their spatial be-

havior and hypothesized that the location of high ranked channels predicts

movement direction [193]. To analyze this hypothesis, each temporal snapshot
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of the trial is characterized by the probability of observing a high-powered spa-

tial location. I estimate the posterior probability of spatial locations having

a top ranked channel for a given direction. I tested if the spatial closeness of

electrodes provides robust decoding and if the probability could be extended

to spatial grouping of electrodes rather than a single electrode. I proposed two

methods to cluster electrodes based on their topography. One method consid-

ered comparing a cluster of neighboring channels for their direction sensitivity.

The other method considered clusters formed in a greedy fashion. For both

these methods, I used a maximum likelihood prediction algorithm to estimate

the directionality of a trial assuming its independence in temporal patterns.

The training and testing phases are described in Algorithm 3 and a schematic

is presented in figure 4.7.

The two monkeys were implanted with two electrode arrays in the pre-

motor and primary motor areas. I analyzed spatial configuration of top-ranked

channels in these two grids independently. For the initial analysis, I evalu-

ated all possible combinations of channels by selecting a 2-electrode and a

3-electrode cluster neighborhood, modeling each direction with a probability

distribution of top ranked channels. The distribution of top 10 channels in each

grid is considered to determine the decoding. I observed that each electrode

grid provided directional information and characterizing such spatial informa-

tion would be critical [191]. I found that combining the spatial information

from both the grids provided the best decoding ability. Figure 4.8 shows the

spatial location of top ranked channels for different direction reaches. I that to
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Algorithm 3 Algorithm to identify Clusters of Top Ranked Channels

Training Stage: Learn M from Data:{Xi(t),Di}Ni=1

Calculate Channel Power: Pi =
∑t

t−τ X(t)
Rank the Channels using channel power: Ri = sort(P(t))

Identify top ranked channels: T(t) =

{
1, if R(t) < T

0, otherwise

for each column time instant t do
for each cluster k do

Enumerate P (cluster k has c Top Ranks/D = d):

P d
t (k, c) =

∑
D(i)=d Ti(t)

|D(i) = d|

end for
end for
M← {P, T}

Testing Stage: Estimate D̂∗i from Data:{X∗i }Ni=1, M∗

Calculate Channel Power: P∗i =
∑t

t−τ X∗(t)
Rank the Channels using channel power: R∗i = sort(P∗(t))

Identify top ranked channels: T∗(t) =

{
1, if R(t)∗ < T

0, otherwise

for each cluster k do

c∗k =
∑
T ∗(t)

end for
for each possible target d do

pi(D∗ = d/cluster k has c Top Ranks) =
∏

t,k P
d
t (k, c∗k)

end for
Estimate target direction: D̂∗i = max pi
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Figure 4.8: Spatial Location of Discriminative Patterns in the Primary Motor
Area of monkey H464. The eight grids are placed at the location of their
respective targets. Each grid represents the 4mm × 4mm grid area of the
primary motor area of the brain. The colors represent the

obtain consistent results, at least the top 10 channels from each grid need to

be analyzed because analysis of fewer channels resulted in poorer performance.

This implies that high spatial variation exists even in top ranked channels and

including more channels reduces the variation.

I extended this analysis to the use of a nonlinear classifier. I built a

Support Vector Machine (SVM) classifier on this feature set because they are
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Table 4.2: Decoding Accuracy of the Support Vector Machine model trained
only on the locations of the top ranked channels. The proposed Rank CSP
and the Time Evolution models performed significantly better (p < 0.01) than
the CSP method.

Day after Training 8 9 13 14
H464

Number of Trials 263 325 348 88
CSP 38% 41% 16% 13%

Rank CSP 62% 61% 55% 47%
Time Evolving Spatial Pattern 71% 69% 58% 62%
Using Location of Top Ranks 76% 81% 70% 70%

H564
Number of Trials 206 103

CSP 41% 40%
Rank CSP 53% 52%

Time Evolving Spatial Pattern 66% 60%
Using Location of Top Ranks 61% 49%

known to provide better classification than simple linear classifiers, especially

on a high dimensional feature set [21]. The basic idea in using SVM is to

project the feature set onto a higher dimensional vector space using a kernel

and classifying this projected feature space using a hyperplane. I chose Radial-

Basis kernel to project features and extract the non-linear trend. Since these

classifiers are mainly used for binary classification, I have incorporated an

Error Correction Output Code (ECOC) to tackle our multiple class scenarios

similar to previous analysis.

A comparison of results for various algorithms is provided in table 4.2. I

compare our results with those from CSP and ECOC, which uses the raw data
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to construct CSP; and Rank CSP and ECOC, which use the rank patterns,

time-evolving spatial patterns, and top ranked channels. As I can see, this

method provides better decoding across the two weeks of testing in H464 (p <

0.01 calculated using McNemar’s Test). Further, the error remains consistent

as shown in the figure 4.9. On an average, only 20% of trials were more than

45◦away from the original target. I observed that the location of the top rank

carried most information regarding directionality. While it requires a non-

linear classifier like SVM, the method provides consistent decoding over the

evaluated sessions. In monkey H564, however, analyzing just the top ranked

channels resulted in decreased performance. This shows that for H564, the

top rank location is insufficient to obtain robustness over multiple days. In

this monkey, analysis of all the channels might provide a better decoding

performance.

4.5 Conclusion

This chapter discussed the use of robust feature extraction techniques

for long-term BCI. Specifically, I evaluated the use of qualitative spatial pat-

terns based on relative inter-channel powers and the analysis provided follow-

ing conclusions:

1. Using ranking method improves the decoding performance (p < 0.01)

of a static decoder from 36% to 56%, on an average, over two weeks of

recording.
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Figure 4.9: Error Distribution using the Spatio Temporal Pattern Algorithm
on multiple testing sessions indicated by the recording day.

2. This method also provides a consistent decoder when there are changes

in the external field forces, establishing their robustness to environmental

variances.

3. Ranking the raw signals provides a robust way to capture behavior spe-

cific invariant spatial patterns.

4. Since ranking ignores the details of the raw signal, I can conclude that

the spatial patterns over multiple days have similar structures. While

changes in the actual values might vary during different sessions, the

relative power of the channels remains consistent.

5. Evolution of the rank patterns provides a better model and robust per-

formance (p < 0.01) of the direction decoder.
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6. Most of the directionality information could be inferred from top ranked

channels.

7. Similar to the evolution of spatial patterns, evolution of the top-ranked

channels provides robust performance.

Although these features show promise of good performance, the decoder

still carries disadvantages of the CSP method and fails to provide consistent

decoding over a long period. This requires advanced classification techniques

either linear or non-linear that provide robust decoding.
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Chapter 5

Movement Direction Decoding

5.1 Introduction

Traditional feature extraction techniques like Common Spatial Patterns

(CSP) assume that the neural behavior is captured by a single spatial pat-

tern. However, these techniques fail to capture the variability particularly

over chronological recordings. I hypothesized that human behavior is inher-

ently variable and multiple neural patterns describe this variability better than

a single pattern. This chapter presents an algorithm, based on the above

hypothesis, that overcomes signal variability over time and due to different

environmental conditions. I show that such a strategy improved decoding ca-

pability and accurately predicts 90% of hand reaches to eight directions over

4-6 weeks.

5.2 Background

The previous chapter discussed the use of qualitative patterns in the

form of instantaneous inter-channel ranks. These features were tested with

comparable algorithms like Common Spatial Patterns (CSPs) to establish their

superior performance. The results show evidence that using non-linear classi-
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fiers provide better decoding. The assumption behind CSP is that two classes

could each be defined by a single gaussian distribution of their inter-channel

covariance. The two classes are assumed to have the same feature variance.

However, these variances are wide enough to cover all the training data. Based

on this assumption, CSP proceeds to find a mean spatial pattern that could

sufficiently describe a behavior. Since the mean spatial pattern is learned from

the training data set, it provides excellent discrimination for the training set

and in studies where characteristics of the data do not change from training to

test. While it proves as a useful analysis tool, it overfits the training data and

generalizes poorly over the entire range of testing data [160]. This is a major

drawback of using CSP on testing data that differs from training data. Many

versions of regularization of CSP have been proposed to add prior knowledge

of data to the CSP [115, 70, 217]. However, it is not clear when any of the

proposed regularization provides better classification.

Human behavior, including movement, is inherently variable and non-

repetitive [188]. Each repetitive movement of the arm involves a unique set

of motor patterns. As multiple ways of performing a same task exist, I hy-

pothesize that arm position is encoded effectively by multiple neural patterns

that generate multiple motor patterns. In a given set of neural data and cor-

responding behavioral tasks, I intend to identify prototypical neural patterns.

This chapter discusses the use of such templates and their use in decoding arm

direction.

Consider x(t) ∈ RC and y(t) ∈ RC be the multi-channel recordings from
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C channels at each time t and Xi ∈ RC×T and Yi ∈ RC×T be their correspond-

ing spatio-temporal patterns. The decision on a new spatio-temporal pattern

Z for a recording z(t) is obtained using multiple spatial patterns modeled using

the following equation (5.1)

∑
i∈x

wiΦ(Z,X∗i ) ≷
∑
i∈y

wiΦ(Z,Y∗i ) (5.1)

where Φ() represents a suitable kernel, either linear or non-linear, to project

the spatial patterns on decision space. The weights wi are optimally estimated

to provide the least training error. Using a maximum likelihood estimate to

obtain estimates of w provides a good fit on training data but suffers from

poor generalization [200]. Constraints on the nature of w ensure a better

generalization. For model optimality all parameters of the model w, X∗i , and

Y∗i should be estimated [104]. That is a tedious task and therefore in this

proposed model spatial patterns from the training set were used to build the

model. Using a single spatial pattern similar to the sample average spatial

patterns results in a CSP formulation.

The proposed model decodes intended target direction by estimating

hand position in terms of its horizontal and vertical components from LFP

data. Regression is well suited for such analysis since it provides continuous

control and generalizes to novel targets and environments [124]. This model

uses a kernel based regression method called Relevance Vector Machine (RVM)

that approximates the target by measuring similarity between acquired neural

features and a feature basis. RVMs are trained in a Bayesian framework and
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provide a generalized sparse solution on training data [200]. They work on

the premise that a few relevant vectors describe training feature space accu-

rately and can generalize beyond the training set. However, these methods

need the input space to be relatively stationary and fail to perform when

trained relevant vectors partially (or cannot) describe the new features [136].

This situation arises in BCI where feature non-stationarity is typical. While

retraining the entire model to suit the necessities of a new feature set is an

option, this frustrates the user and diminishes usability of BCI. This model

offers a novel solution that updates the model online in an unsupervised learn-

ing framework without needing to collect calibration data. This model update

is a step closer to practical BCI and provides robust long-term performance

even during different behavioral environments.

To decode the intended path, proposed decoder estimates multiple hand

kinetic parameters at each instant. Most regression techniques, including

RVM, assume a single target vector and prescribe a separate regression to

estimate each dimension. Such estimates are spurious and fail to provide good

estimation in all dimensions simultaneously, especially when these dimensions

are correlated [10]. Further, good estimates of one dimension do not translate

to other dimensions. To avoid this I propose the use of a Kernel Dependency

Estimation (KDE) framework. This framework employs kernel functions to

measure the correlations in target dimensions and encodes prior information

about the target in an elegant way [209]. The kernel can be decomposed

into its singular vectors, resulting in multiple redundant regression models to
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estimate the multi-dimensional target vector.

The proposed model decodes intended arm target direction by tracking

the hand position continuously. In BCI, faithful decoding of hand movement

requires the model to estimate multiple kinetic parameters - horizontal (x-)

and vertical (y-) components. The main innovations of the proposed solution

are:

1. Use of abstraction levels to estimate multiple kinematic parameters (5.4).

2. Semi-supervised adaptation to address short-term non-stationarities (5.5).

3. Unsupervised model-pruning to improve computational complexity while

maintaining robustness against long-term variability (6.2).

I estimate multiple parameters simultaneously using multiple kernel regres-

sion in a Kernel Dependency Estimation (KDE) framework. Hence, I choose

a RVM regression framework as it provides superior generalization through

sparse formulation. The next sections discuss these methods.

5.3 Relevance Vector Machines

RVM is a set of general models in the form of equation (5.2)

y(X) =
∑

wiΦ(X,Yi) + w0 (5.2)

where Yi are the different feature basis vectors and Φ() is the kernel function

that measures similarity between input neural feature vector X and basis vec-

tors. The task in RVM is to estimate w when training input and target data
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are provided. Maximum likelihood estimation of w without any constraints

leads to over-fitting on the training set [200]. The RVM framework obtains

generalization via sparse formulation under the assumption that w is derived

from a zero mean Gaussian distribution. The search for ’relevant’ vectors leads

to the best subset of input feature vectors that can represent a given input

space. RVM introduces a new set of hyper-parameters α to set a Gaussian

prior of the form:

p(w/α) =
∏

N(wi/0, α
−1
i ) (5.3)

w is estimated in an iterative fashion to optimize the marginal likelihood

over α [199]. Usually, the chosen basis vectors Yi are a set of prototypical

examples from the input training vector set. The relevant vectors (support

vectors) chosen by RVM are significantly different from SVM. SVM gathers

vectors closer to the decision boundary and causes the number of support

vectors to grow linearly with the training set [200]. In contrast, RVM gathers

prototypical examples from training data that lie at the center of it and retains

sparsity even in a growing data set.

I chose a Gaussian radial basis function, shown in (5.4), since an RBF-

SVM technique provided successful decoding in a similar setting [192]:

Φ(X,Y) = exp(−||X−Y||22
σ2

) (5.4)

where σ is the basis width that determines the spread of each basis vector

Y. A smaller value of σ indicates that the vector has a smaller coverage of

the feature space and by allowing a larger σ a single vector can cover a larger
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feature space. Thus, a kernel with a larger σ will provide a sparser solution

than a kernel with a smaller σ. In their original form all the basis vectors

have the same spread; however, variations of kernels can be formulated with

multiple basis width [51].

5.4 Multi-output Regression

The RVM framework is formulated to provide a sparse solution for a

single target. This model extends it to estimate multiple target components.

One approach to estimate a multi-dimensional target is to use an indepen-

dent model for each dimension. Such models provide a good correlation of

individual dimensions when independent and provide spurious results when

dependence exists [10]. I observed that the estimated absolute position cor-

related well with the actual value (>0.92) than the independent estimates of

x- and y-positions (0.82). I would want to leverage this high correlation in

one parameter to others and achieve better estimates of all parameters. The

technique proposed here is based on Kernel Dependence Estimation (KDE) to

take advantage of such dependence and obtain a better overall performance

[209]. KDE uses kernel technique to encapsulate the multi-dimensional output

in a similar fashion as the input kernel.

A suitable target kernel function reflects the non-linear dependence of

target dimensions and chosen target basis vectors. Each target basis vector of

this function represents a unique point in the hand movement space as shown
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by (5.5) below:

Ψ(y,yi) = exp(−(y − yi)Σ
−1
y (y − yi)

T ) (5.5)

The above equation is a gaussian kernel evaluated at each point on the target

space, where yi denotes hand movement space in the form of its horizontal,

vertical, and absolute positions: {yx, yy, yr}, and yr =
√

(y2
x + y2

y). This kernel

assesses the similarity between actual hand position and any location on the

grid as a function of their euclidean distance. Building this target kernel basis

allows decomposing the obtained basis into its independent singular vectors,

and approximating them individually in an RVM framework. By formulating

a regression model for the left singular vectors of Ψ, an equivalent regression

model is obtained as follows:

Ψ = USV T (5.6)

Ub =
∑

wbiΦ(X) + wb0

where Ub is the bth column of U and (.)T is the transpose operator. This results

in multiple redundant approximations and provides high correlation in all the

target dimensions. Choosing only top K singular vectors that represent more

than 90% of the basis energy reduces the number of regression models. Dur-

ing the training phase, I learn regression parameters for each component. In

the testing phase neural features are projected on the input basis Φ and each

abstract component of the output basis is estimated using independent regres-

sion models. Output basis, Ψ̂, is estimated by combining all the calculated
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output bases. The model can be described by the kernel function parameters,

basis vectors and the corresponding w as M := {Φ(.),X,w}.

To obtain the estimates for new test samples Xnew, model M can be

applied as

ŷnew =
∑

wT
b Φ(Xnew,Xb) + wb0 (5.7)

One of the challenges for KDE during testing stage is pre-image identification

that refers to identifying the correct basis when value of the target kernel is

given [209]. In the current setting, this refers to identifying hand position

from the estimates of the output kernel. Generally, finding the pre-image of

a Gaussian kernel is difficult and pre-images might not necessarily exist [173].

I chose a maximum likelihood approach by identifying the target basis that

provides the maximum kernel value.

5.5 Adaptation

The above-described model provides good approximation and general-

ization, if the feature basis vectors can represent the entire input feature space.

However, when there are changes in the feature characteristics in noisy and

non-stationary time-series environments, RVM fails to capture the dynamics

and provides unstable approximations [136]. It has been well documented that

neural recordings and their features change due to learning and other environ-

mental conditions. In a typical BCI, the new neural feature vectors acquired

on a different day (or session) tend to align poorly with previously collected
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Figure 5.1: Actual (t, dashed blue), and the used intended movement (t̃, solid
red) of example trials overlaid on a 10cm × 10cm workspace.

feature basis vectors Xb. Hence, updates are required to adapt the model to

the new data.

If the target ydesired corresponding to Xnew was available, adaptation

only requires a correction that provides a good estimate for the residual tra-

jectory:

e = ydesired − ŷdesired

wu : min ||e−wT
uΦ(Xnew,Xnew)||+ λ||Φ(Xb,Xnew)|| (5.8)

Mu := {Φ(.),Xnew,wu}

The first part of equation (5.8) can be estimated using RVM learning algorithm

with similar constraints shown above in section 5.3. The constraint on the
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included basis ensures that the baseline model remains unaffected with the

update (wb needs no update). In the absence of such a constraint, the fit on

the training data would suffer due to the addition of new feature bases.

While it is desirable for BCI to build the model update on actual hand

kinetics, they are unavailable in practice. Our key innovation is to mimic a

practical BCI even when no prior knowledge of the actual hand trajectories

ydesired exists. For this, I incorporate general principles of natural movements

by assuming that the monkey reaches intended target direction in a straight

line from the center to the target. I propose to use estimated target direction

from baseline model to obtain the intended path. Thus, I construct the in-

tended linear trajectory from the center to the target as ỹ = F(θ̂) shown in

figure 5.1.

The overall model used for succeeding trials will be M∗ = M0 ⊕Mu,

where ⊕ is a suitable appending function and M0 = {Φ(.),X0,w0} is model

before this update. Since the current model structure is linear in the kernel

function space, updated model is obtained as follows:

M∗ = {w0 ∪wu,Φ(.),X0 ∪Xu} (5.9)

ŷ∗(X∗) =
∑

wT
0 Φ(X∗,X0) +

∑
wT
uΦ(X∗,Xu) (5.10)

Since the model update involves only a few sample correction, it takes less

time for the update and can be performed online as soon as a successful trial

has finished. The algorithm for the model training, testing, and adaptation is

presented in Algorithm 4.
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Algorithm 4 Algorithm to model multiple spatial patterns to decode move-
ment direction

Training Stage: Learn M from Data:{Xi, ti}Ni=1

Build Input Kernel : Φ(Xi,Xi) using eq ((5.4))
Build Output Kernel : Ψ(ti,yj) using eq ((5.5))
Ψ = USV T

for each column k of U do

Estimate wk : Uk =
∑N

i=1 wkiΦ(X) + wk0

end for
Basis Vectors : D← X
Store Model: M0 ← {S, V,D,w}

Initialize M∗ ←M0

Testing Stage: Estimate t̂i from Data:{X∗i }Ni=1, M∗

Build Input Kernel : Φ(X∗i ,Dj) using eq ((5.4))
for each column k of U do

Calculate Ûk =
∑K

j=1 wkjΦj(X) + wk0

end for
Ψ̂ = ÛSV T

t̂i = max
i

Ψ̂i, θ̂i = arctan ty
tx

Adaptation Stage: Update Model M∗ after L trials using {X∗i , θ̂∗i }Li=1

t̃ = F(θ̂i)
Ψ̃ = Ψ(̂ti,yj) using eq ((5.5))
Ũ = Ψ̃V S−1

for each column k of U do

Update wu
k : Ũk − Ûk =

∑N
i=1w

u
kiΦ(X∗i ) + wuk0 using eq ((5.8))

end for
Basis Vectors : Du ← X∗

M∗ ← {S, V,D|Du,w|wu}
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5.6 Results

The regression model learned from data collected on a single day and

this static decoder is applied on future sessions. I observed that the basis-width

plays a significant role as it modulates the error in the prediction. Although a

narrow target basis width implies less variable output estimation, representa-

tion of such a kernel requires considerably high number of singular vectors. On

the other hand, a wide target basis width allows the decomposition of the out-

put kernel Ψ with lesser number of components. In the current analysis, choice

of a wide basis width obtains a computationally efficient algorithm. A narrow

width kernel boosts decoding by sacrificing computational complexity. Table

5.1 presents the results obtained using the suggested model without adapta-

tion. To obtain decoding accuracy, angle made by the trajectory is measured

as Θ = tan−1(y/x). The target closest to the decoded angle is assigned to the

trial.

Next, I present the performance of a continuously adapting model. The

model is adapted to account for varying signal characteristics after decoding 25

trials and selecting only successfully predicted trials. Updating the model after

each successful trial, results in an oversensitive update. While such an update

presents a new model at every trial, it also requires an additional processing

time (to update the model) at the end of every trial. Conversely, update after

a large number of trials - passive model - might not track the fluctuations fast

enough and will be ineffective in the short term. Thus, the update process

must choose an optimal number of trials to update the model. In the current
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Table 5.1: Correlation coefficients of hand position predictions and the actual
hand positions measured while the monkey performed the tasks. These cor-
relations represent the average value over multiple trials conducted during a
particular session (as indicated in the Table).

Decoder Age # of trials ρx ρy Decoding Accuracy
H464

8 263 0.94 0.91 93%
9 325 0.93 0.91 89%
13 348 0.88 0.87 82%
14 88 0.76 0.75 66%

H564
8 206 0.89 0.85 80%
9 103 0.79 0.75 66%

analysis, decoding performance varied little (<2%) with different number of

adaptation trials. The model stores only accurately predicted trials for the

next update. Thus, updated performance depends on the quality of the initial

model. If the initial model decodes poorly, there will be lesser number of trials

for update and this results in an inefficient update. Figure 5.2 shows stable

performance of the adaptation algorithm over multiple blocks and over days.

The vertical axis shows decoding accuracy measured as the fraction of all cor-

rect predictions up to the current instant over successive adaptation blocks (25

trials). The adaptation algorithm maintains the decoding consistently across

multiple blocks and multiple days, while the performance baseline algorithm

slowly decays over the adapting blocks.

The update process involves obtaining new basis vectors that fit the er-
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Figure 5.2: Cumulative decoding accuracy with and without adaptation across
multiple adaptation blocks of 25 trials each. The gaps in the curves represent
the end of day.

rors from original model, increasing the number of basis vectors in the updated

model. Here, I present a model pruning strategy that eliminates redundant

feature basis. This process includes all estimates despite their proximity to the

intended trajectory. However, I can improve the computational performance

(reduce number of basis vectors) by selecting only those trajectories, where

estimated value (t̂) deviates more than a threshold from the expected trajec-

tory (t̃). By allowing a deviation of 1 cm between the expected and intended

trajectories, I observed that the number of basis vectors drastically reduces

without affecting the decoding accuracy.

Table 5.2 compares the results of adaptation to the decoding perfor-
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Figure 5.3: Decoding Accuracy in sessions with varying field forces. The filled
icons represent accuracy with adapting model and unfilled icons represent the
accuracy of the baseline model. For ease of reading, different field forces are
represented with different shapes.
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Table 5.2: Decoding Accuracy (in %) across decoder age. We observe that the
accuracy of the static decoder falls to 66% over two weeks, while an evolving
decoder performs significantly better (p < 0.01) at 97% over the same period.

Decoder Age 8 9 13 14
H464

Number of Trials 263 325 348 88
No update 93 89 82 66

Daily model Reset 98 96 92 82
Continuous Update 98 97 96 97

H564
Number of Trials 206 103

No Update 80 66
Daily model Reset 81 70
Continuous Update 81 80

mance over the decoder age. To observe long-term effects of adaptation, I

adapted one model continuously over the two weeks of test data. Another

model adapted only to current test session and ignored any previous adapta-

tion by resetting the model to M0 at the beginning of each day. I observed that

adaptation improves target decoding accuracy over the two weeks (p < 0.01

using McNemar’s Test). When the model was not adapted, accuracy drasti-

cally reduced around day 14 but adaptation results in an accuracy over 95%.

While model adaptation only on the current day improves decoding accuracy,

its performance gradually decreases with the decoder age due to evolution of

new neural patterns. These results show that learning modulates neural activ-

ity continuously (rather than daily) and decoders benefit from the adaptation

to variations introduced by this learning.
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Figure 5.4: Decoding Accuracy in all recorded sessions from monkey H464.
The filled icons represent accuracy of adapting model and the unfilled icons
represent the accuracy of the baseline model. For ease of reading, different
field forces have been represented with different shapes. The adaptive decoder
performs significantly better (p < 0.01) than the static decoder over the entire
evaluation period.
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Table 5.3: Comparison of Decoding algorithms for H464. The proposed
method performs better than the state-of-the-art CSP algorithm. Further,
even when the CSP method is adapted to the changes in the neural pattern,
the adaptive method presented here performs stably over 95%.

Decoder Age 8 9 13 14
CSP 50% 46% 22% 14%

Rank CSP 64% 56% 43% 26%
Proposed Method 93% 89% 80% 66%

Adaptive CSP 50% 70% 26% 16%
Adaptive Rank CSP 78% 85% 76% 69%

Proposed Method with Adaptation 98% 98% 97% 97%

To investigate the effect of adaptation on changing environments, I

applied a similar strategy on sessions where external field forces against move-

ment were applied. Even for this experiment, I trained the model on a session

where a field force VCCW was applied and updated on successive sessions.

The model here needs to tackle both variations due to learning over time and

due to varying external field forces. These results presented in figure 5.3 show

that the model is robust to both and achieves an average decoding of 85% on

sessions even with different external field forces. I observe interesting results

when a) latency is present between sessions (between days 4 and 7), and b)

new field force VCW is introduced (on day 12). In these sessions, adaptation

boosts decoding (especially on day 12). These results motivate the use of LFP

for practical BCI even under varying environment conditions.

In a final simulation, I trained a model on day 1 of all recordings and

allowed it to learn variations of the neural data over time and external field
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forces without interruption. Figures 5.4 and 5.5 show the decoding perfor-

mance of such an adaptation over all the sessions in comparison to the same

algorithm without adaptation. I observed that decoding performance reduced

when there is a delay between two successive sessions or when a novel field

force is introduced to the subject. I observe this during the first VCCW ses-

sion in both monkeys. This drop in performance is anticipated because field

forces were introduced to the monkeys for the first time. In fact, the mon-

keys were unable to cope with this abrupt introduction of force applied to

the manipulandum and needed two sessions to adjust to the change. In these

early sessions, the monkeys were still adjusting to behavioral change. I can

infer that once they became accustomed to these forces, they generated stable

neural patterns and hence the decoding accuracy stabilized.

Table 5.3 compares the proposed method with state-of-the-art Com-

mon Spatial Patterns (CSPs) method and its variant [20, 192]. To provide a

fair comparison, decoding model uses multiple redundant linear classifiers and

the final output obtained through an Error Correcting Output Code (ECOC)

[41]. I also applied a similar adaptation strategy to CSP decoders and adapted

them after every 25 trials. CSP fails to incorporate the signal variability over

time and thus reports lower performance, while CSP applied on rank features

provides a stable performance by virtue of using stable features. However, the

proposed method outperforms both the versions of CSP and provides robust

performance over time and external forces (p < 0.01). Table 5.3 also shows

the performance of algorithms when they are adapted using techniques de-
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Table 5.4: Decoding Power (DP) of other literature in comparison with the
proposed method. Note that while the other studies used cross-validation
for their analysis, the proposed algorithm provides higher accuracy than the
existing algorithms. (These algorithms need to be evaluated on the same data
to provide comparative significance).

Algorithm Decoding Accuracy
Bayesian Decoding, SVM [128] 40%

Directional Tuning [138] 50%
Bayesian Classification [171] 81%

Directional Tuning [9] 75%
Proposed Method 95%

scribed in 5.5. I see that even when the traditional decoding algorithms are

adapted to new data they fail to capture novel patterns. These results show

that robust performance needs a robust baseline model for adaptation. The

algorithm presented here decodes the intended movement successfully without

adaptation and its performance is enhanced with adaptation.

Table 5.4 compares the decoding power of proposed method with those

of other studies using LFP. A direct comparison between these studies is dif-

ficult as they use different modalities, behavior and learning paradigm. In

addition, these studies used cross-validation to obtain the decoding power and

ignore any non-stationarity between training and testing samples. Recent pub-

lications show long-term decoding in an online setting, where the user adjusts

to the decoder and stabilizes neural patterns, to perform tasks consistently

with a target reach accuracy under 80% [58]. Results from this model suggest

that a similar adaptive decoder may perform well in a closed-loop setting, as
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Figure 5.5: Decoding Accuracy in all recorded sessions from monkey H564.
The filled icons represent accuracy with adapting model and the unfilled icons
represent the accuracy of the baseline model similar to Figure 5.4. The adap-
tive decoder performs significantly better (p < 0.01) than the static decoder
over the entire evaluation period.
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both the user and the model co-adapt continuously. Such a decoder alleviates

user fatigue and ’illiteracy’ associated with using BCIs.

5.7 Conclusion

This chapter highlights our analysis of the use of multiple spatial pat-

terns to interpret neural data. The main hypothesis for this analysis is that

subject behavior is defined by multiple spatial patterns. To test this hypothesis

I trained a model to identify prototypical spatial patterns defining a behav-

ior. I extended this model from decoding discrete targets to tracking hand

movements. Adapting the model to changes in neural data provided further

improvement and achieved a stable decoding level. I draw the following con-

clusions:

1. The model provides a robust and accurate decoding of multiple targets

over a two week period.

2. Adapting the model over new recording sessions with minimal feedback,

improves the decoding to over 95% on the two week period.

3. The model also remained robust to external perturbations and required

1 session to reach a consistent decoding performance (>85%).

4. I observed that adapting the model continuously over all sessions pro-

vided better decoding (p < 0.01 over all sessions) than just adapting the

model on a particular day (Table 5.2).
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5. Since there is no requirement of a separate calibration session, this de-

coder provides results similar to practical BCI.

6. Allowing deviations in the hand estimates provides a model with lesser

complexity (number of added spatial patterns), without losing decoding

accuracy.

7. The adaptive component of the model is only as good as the baseline

model. This is evident from the studies of adapting traditional decoding

models (Table 5.3). Although adaptation improves over their original

decoding level, they do not reach the decoding ability of the model with

multiple spatial patterns.

The evolution of these spatial patterns over multiple days provides further

insights to the learning behavior of both the monkey and the model. The next

chapter discusses our analysis on characterizing the added spatial patterns.
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Chapter 6

Characterizing Spatial Patterns

6.1 Introduction

Chapter 5 presented a model that provides robust decoding using an

adaptive model. During the adaptation, I observed certain key components on

the spatial patterns of the decoding and hand-tracking model. This chapter

discusses characterization of the model and, then applies the characteriza-

tion to model learning. I introduce a pruning algorithm to remove redundant

spatial patterns and reduce model complexity. Further, I provide model char-

acterization in terms of changes in spatial patterns and a strategy to improve

decoding using such characterization.

6.2 Model Pruning

The model update suggested in Chapter 5 adds new, relevant feature

vectors at each update stage, thereby increasing the model size. The addition

of these new bases helps the model to adapt to changes in spatial patterns and

provides robust decoding over multiple days, including those under different

external field forces. While the accuracy of the model improves with the

number of bases, it will result in higher computational and memory cost to
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store and process the model. If the number of bases is not limited, the model

grows over time and results in the collection of redundant spatial patterns. I

observed that the number of new bases added to the model is a factor of

1. Number of accurate decisions (see Section 5.5)

2. Number of redundant output kernels used (see Section 5.4)

3. Error allowed during the pruning stage

The number of new basis added to the model increase with the accurate

decisions and output kernels. The more the error allowed, the lesser the new

patterns in the model. Thus, the number of total bases could be limited by

adjusting the number of output kernels and error parameters. However, such

adjustments also affect the accuracy of the model and in general, the decoding

accuracy decreases. Hence, I need other methods that could limit the newly

added basis.

Further, I observed that as the basis feature vectors evolve over time,

older basis vectors have lesser impact on newer sessions. Thus, I can remove

some of them and compress the model while retaining performance. For such

compression to be useful in a practical BCI setting, it needs to be done without

interrupting its user - without any new training, or calibration data. The

objective of this compression algorithm is to reduce the number of feature

vectors without loss of its functionality. One strategy to reduce relevant bases

is to remove those with a smaller weight like a wavelet denoising strategy.
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However, this method is blind to the quality of the basis and results in loss

of performance. To tackle this, I propose an unsupervised model-pruning

algorithm.

Consider a model M := {Φ(.),X,w}, where X are the neural feature

basis vectors and w their corresponding weights. Output corresponding to

these basis vectors could be calculated as

ŷX = wTΦ(X,X) + w0

The pruned model can be estimated as

w∗ : min ||ŷX −wT
∗Φ(X,X)||+ λ||w∗||1 (6.1)

and ensures that the model retains only relevant feature vectors via the `1-norm

constraint in equation (6.1). The updated pruned model contains only those

basis vectors with non-zero weights. This model-pruning algorithm can be

used after every session for effective use. As this pruning removes redundant

basis vectors, it results in a computationally efficient model. This strategy

ensures that the updated algorithm captures short-term (within session) non-

stationarities and long-term variability by revising the model.

The model-pruning algorithm effectively reduces model complexity with-

out losing any performance. Since this algorithm does not involve any user

input, it can be practically implemented at a) certain pre-determined update

interval - after the number of bases exceeds a limit; or b) at the end of a

recording session. The first solution allows a control on the memory of the
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model by interrupting user during model update. If no user interruption is

intended, then the second option presents a good solution with more memory

requirements to store the model parameters. Figure 6.1 presents the results of

the model compression at the end of every recording session. The left part of

the figure shows the number of spatial patterns accumulated during in-session

update of the model. After each session a new set of bases (indicated by a

new color) are added to the model. Using the compression technique total

number of basis used in the model is managed within a limit. Since this is a

continuous update, memory requirements to store the model parameters are

also alleviated. In our analysis there was no statistical difference between the

results from model without update, model updated after K basis, and model

updated after a session.

6.3 Characterization

The methods mentioned in chapter 5 allow us to model neural data

using multiple prototypical trials. These trials define the behavior of the mon-

key in that session. During the analysis, I observe that adapting these spatial

patterns to new trials improves decoding performance. This means that the

new model includes elements that are prototypes of both the training session

and the unobserved testing session. Characterizing spatial patterns allows us

to preempt the need of adaptation. If the observed spatial patterns are very

close to the previously existing patterns, then the need for adaptation could

be avoided as the model already provides good decoding.
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Figure 6.1: The number of spatial patterns in the model before and after
compression. This figure shows that by using this pruning strategy the number
of spatial patterns in the model is limited. Each color in this figure represents
the number of spatial patterns from a new session. This figure shows that
using the pruning model limits the number of spatial patterns to around 130.

Neuronal plasticity is the ability of the neural system to adapt to

changes in environment, behavior and neural processes, and those resulting

after an injury [43, 47, 48, 163, 62, 86, 97, 102, 143, 120, 166]. Neural plastic-

ity is fundamental to the development of novel neuronal pathways in response

to demands from the external environments. While the flexibility of the neural

pathways allows learning new behaviors, they also need to be rigid enough not

to change all at once [94]. During the slow changes in neural patterns, brain

reaches an equilibrium state defined by the new set of habits. Some habits are

easily acquired while others need training on part of the subject. Characteriz-

ing changes in the neural activity and the level of neural activity may provide

bio-markers for neuropyschiatric disease [143]. Rehabilitating by conditioning
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µ-rhythms in patients suffering from autistic symptoms could induce changes

with positive implications on electrophysiology and behavior.

Adaptation to newly learned behavior - reaching a target under external

perturbations - alters the underlying topology of primary motor neurons [219].

However, the average strength of their interactions is conserved. Zhu et al.,

validated the applicability of multi-variate autoregressive modeling to spike

trains and found that during adaptation (1 week after introducing the per-

turbations) the firing rates of primary motor neurons varied [219]. Some had

increased firing rates and returned to normal, while others had decreased firing

rates. They use the interaction (defined by the coupling matrix) between eight

representative neurons to identify the changes in behavior. Similarly [62, 186]

measure the causal interactions of multiple neurons in the Granger causality

framework and track changes in the neuronal firing rates during adaptation

In this thesis, I propose that multiple prototypical spatial patterns rep-

resent a neural behavior. During adaptation, some of the spatial patterns

are strengthened while other patterns are lost. I propose to characterize the

learning of spatial patterns in terms of

(a) Changes in behavior due to adaptation - in terms of changes in the hand

positions defined by the x-,y- positions.

(b) Changes in the spatial patterns - in terms of the Kullback Leibler diver-

gence of the original and new spatial patterns.
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6.3.1 Characterizing Changes in Behavior

To characterize spatial patterns, I cluster the hand workspace to multi-

ple areas based on target direction and proximity to target as shown in Figure

6.2. This division of the workspace leads to 17 clusters. I designed multiple

prototypical spatial patterns to represent each of these clusters. To identify

such spatial pattern I use a one-vs-rest classification algorithm using the for-

mulation below: ∑
i∈x

wiΦ(Z,X∗i ) ≷
∑
i∈y

wiΦ(Z,Y∗i ) (6.2)

,where Xi and Yi are neural spatial patterns describing two different clusters.

For our analysis, I choose ten prototypes for each cluster. For a new hand reach

and its spatial pattern, comparing this pattern with that of the cluster could

identify the physical location of the hand. Each of these 17 clusters represents

a physical location of the monkey hand defined by its x- and y- positions.

One location estimate for the new trial is defined by its cluster. Similarly

I estimate hand position from the model discussed in Chapter 5. These ap-

proaches provide two measures in terms of the projections of neural data on

the workspace. Changes in the neural spatial patterns can be characterized

by measuring these differences between the two representative models.

To characterize the variability of spatial patterns, I modeled cluster

prototypes on data from session 1. Since the clustering model does not up-

date over the new sessions, it provides a static benchmark comparison to the

adapting models. The adapting model evolves, learning new spatial patterns
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Figure 6.2: Clustering the workspace to multiple areas in order to charac-
terize the changes in spatial location during learning. The spatial workspace
represents a 10cm× 10cm area for moving the cursor.

continuously and provides a better estimate on location of the hand position.

Measuring the distance between these two projections provides a good esti-

mate of the adaptation. The difference between these estimates shows the

changes in spatial patterns over time. One can observe the migration of spa-

tial patterns that represented a particular target in the original session. Figure

6.3 shows the changes in the location of spatial patterns over five recording

sessions. Each row of the figure represents clusters corresponding to the center

and different targets. I can infer that spatial patterns belonging to the tar-

gets in training session tend to move away from it during the testing sessions,

and spatial patterns representing one direction during day 0 represent another
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direction during other days.

The analysis also allows us to estimate changes in neural patterns dur-

ing the learning phase of monkey and model. Figure 6.4 shows the histogram

and the changes in the spatial patterns over testing sessions. Similar to the

above analysis, I modeled clusters on data from session 1, while the adaptive

model evolves continuously. From this figure, I can infer that during initial

sessions (when new field forces were not introduced) the histograms had a

similar structure. While these histograms change when new field forces are

introduced, once the new field force is learned, distributions remain consistent

with the field force.

6.3.2 Characterizing Changes in Spatial Patterns

Model update involves addition of spatial patterns and pruning out

patterns that are non-representative. Such evolution of the model varies over

different sessions and is reflected in the total number of spatial patterns added

to the model after each session. Figure 6.5 shows the number of spatial patterns

added over multiple sessions as a percentage of the total spatial patterns. The

figure is color-coded to represent the initial trials in blue and later trials in

red. I can infer that during initial sessions (when the field forces were absent)

spatial patterns from the first session contributed > 30% of bases. As field

forces are introduced, the number of these initial spatial patterns decreases

and new spatial patterns are added to the model. This effect is clearly visible

towards the end of the sessions where < 5% of used bases originate from the
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(a)

(b)

(c)

(d)

(e)

Figure 6.3: Changes in the spatial patterns and the behavioral descriptions
over 5 sessions recorded in monkey H464. Row (a) represents the cluster at the
center of the hand movement space. Row (b)-(e) represent a different target
placed at 0◦, 90◦, 180◦and 270◦.

104



Figure 6.4: Histogram of the difference between estimates from a constant
spatial pattern and an evolving model. The y-axis represents the distance
between estimates in cm. The x-axis shows the sessions performed on different
days and field forces.

first sessions.

I also analyzed quality of the spatial patterns and their changes over

time. Since each behavior is characterized by the distribution centered on

spatial patterns, I chose to characterize them with the differences in the dis-

tributions, in terms of Kullback Leibler divergence (KL) shown in eq (6.3).

DKL(P//Q) =

∫ inf

− inf

log(
p(x)

q(x)
)p(x)dx (6.3)

where P and Q are two distributions on x. I measured the divergence of the

models at the end of every session by adapting the above equation.

DKL(M1//M2) =
∑
X

log(
p(M1(X))

p(M2(X))
p(M1(X)) (6.4)
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Figure 6.5: Fraction of basis used at each session as a function of their age.
The figure is color coded to indicate basis from earlier sessions in blue and
those from later sessions in red.

,where p(.) measures the projection of spatial pattern X on the model M.

Such analysis provides insight on the learning rate of the model. Figure 6.6

shows evolution of this estimate over entire sessions performed by monkey

H464. From this figure, I can infer that the spatial patterns evolve over time

and remain consistent when the behavior remains consistent. This is evident

from the rate of increase in first few sessions when new spatial patterns evolve;

once the behavior is established the change in spatial patterns remains stable.

These results show that, while continuous adaptation adds new spatial pat-

terns and obtains a robust decoder, these spatial patterns appended after an

established behavior provide only an incremental change. In the absence of

new environments, the subject learns to create consistent spatial patterns.
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Figure 6.6: Characterizing spatial patterns using KL Divergence metric. The
figure shows the changes in spatial pattern models represented by the KL
Divergence metric calculated between the model trained on session 1 and the
model adapted at the end of each recording session.

6.4 Application of Model Characterization to Model
Pruning

Adapting to daily changes in spatial patterns achieves robust decoding.

The adaptation of these spatial patterns is based on the fit of the current model

on the new data and appends the model with all relevant spatial patterns. The

added bases reduce modeling error on the behavior and hence provide better

fit on the current data. I observed that such adaptation sometimes adds

redundant information to the model. New candidates (spatial patterns) that

closely resemble existing spatial patterns are added to the model in addition to

novel spatial patterns. Since the updated model adds redundant information,

it causes a) Computation overhead, and; b) Introduces noise into the model.
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In our observation, model update of spatial patterns with similar infor-

mation is unnecessary. In this chapter (see 6.2) I proposed pruning the model

after each session to effectively reduce the number of basis functions. However,

such a strategy does not benefit trials in the current session as model pruning

occurs only after all the trials in the session are completed. While the same

strategy could be applied at each model update stage during a current session,

this requires intensive computation and increases the model update delay.

To avoid such a scenario, I propose to characterize new spatial pattern

X∗ and compare it with spatial patterns in the model X0. Such a strategy

needs an effective measure that decides if an updated candidate model M∗ adds

value. The adapted model M∗ fits the new behavior better than the initial

model M by virtue of its modeling and hence, any proposed strategy needs

to be independent of such fitness measures. The proposed strategy considers

spatial characteristics of the candidate spatial patterns and measures distance

between spatial patterns of candidate X∗ ∈ M∗ and patterns in the original

model X0 ∈ M0. The model update occurs only if spatial characteristics of

candidates are different from the existing model. To characterize and measure

the changes in spatial characteristics of the models, I use Kullback-Leibler

divergence between the original model M0 and the update candidate model

M∗. The proposed strategy updates the model only if the divergence estimate

exceeds a threshold. Figure 6.7 presents the flowchart of this proposed method.

Figure 6.8 shows decoding accuracy on multiple sessions when I apply

the proposed algorithm. I observe that the decoding accuracy improves from

108



New Trial

Current Model: M0

Obtain Straight
Line Approximation

Build M∗using{ỹ, ŷ}

Was the
intended target

reached?

DKL = M0 ‖ M∗

DKL > Dth

Update Model
Mnew ← M0 ⊕ M∗

ŷ

ỹ

yes

yes

yes

Figure 6.7: Flowchart showing the model update strategy based on KL diver-
gence metric. The left branch of the flow chart requires user input to decide if
the intended target was reached. On the right branch, the new model is up-
dated based on the KL-Divergence metric (only if the candidate model adds
new information).
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85% when redundancy was tolerated, to an average of 90% over six weeks

of model testing. From these initial results, I can infer that updates of the

model often include redundant information resulting in short-term improve-

ment in performance at the cost of higher model complexity and long-term

performance. Removing redundant spatial patterns improves the decoding

performance.

6.5 Conclusion

This chapter introduced techniques to prune redundant models and

reduce model complexity. In chapter 5 I showed that allowing small errors

in the hand position estimates decreases the learning onus on the model and

reduces model complexity. The following are some conclusions:

1. A strategy to retrain the decoding model at the end of each recording ses-

sion is investigated. Such a strategy removed redundant spatial patterns

and reduced the model size to a stable level.

2. I characterized the changes in behavior, and also changes in neural pat-

terns.

3. I introduced a metric based on KL divergence to measure changes in the

model and used this metric to characterize adapted models.

4. I observed that during adaptation, redundant spatial patterns are added;

By using a threshold on the model divergence metric, I reduced model
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Figure 6.8: Decoding Accuracy of a model using non-redundant spatial pat-
terns in comparison to that of a model with redundant spatial patterns.
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complexity and obtained decoding accuracy levels of up to 90%± 6 over

six weeks of testing from 85%± 10 using a redundant model.
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Chapter 7

Estimating Unobserved neural features

7.1 Introduction

Tissue reaction to chronic implantation of electrodes causes changes in

electrode impedance and acquired signal quality. Specifically, signals recorded

from the same location might have different signal-to-noise-ratio even over

consecutive recording sessions resulting in some unreliable channels and un-

observable features. This chapter presents a novel approach that overcomes

signal variability by identifying reliable channels and features in any given

trial. This method also estimates features from the unobserved and unreliable

channels and adapts the neural classifier with no user input in real time. The

proposed decoder predicts arm movements to one of eight directions in differ-

ent environmental conditions at an unmatched accuracy of above 90% in two

monkeys over 4-6 weeks. The performance improvement is particularly pro-

nounced during sessions with varying external conditions. Since the decoder

requires only one dedicated calibration session to train the BCI, it reduces user

frustration and improves the practicality and usability of BCI.
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7.2 Background

Long-term decoding requires consistency in extracted features across

training and testing sessions. But, day-to-day fluctuation in signal character-

istics causes variability in extracted features [140, 145, 103]. This remains a

major challenge in using LFP for long-term decoding. Causes of such signal

variations include subject-induced variations like changes in behavior, moti-

vation, skill, and learning. Other subject independent causes include vari-

ability in the location of recording electrode, variability in excitation of neu-

ronal components, and variability in the electrode’s electrical characteristics

like impedance [97]. Such changes occur due to accumulation of brain tissue

around the electrode and scarring effects of the implantation [97]. These vari-

ations manifest in different forms: signal quality, power, changes in spatial

patterns, etc., and result in inconsistency in derived features [145, 195]. Re-

cent studies have indicated the use of advanced signal processing techniques

to overcome such long-term variability [194, 57, 56, 73]. These studies ignore

the variability of LFP signal-to-noise ratio (SNR) over multiple days. Specifi-

cally, these studies select a set of LFP channels during training and learn the

decoder on these channels. LFPs suffer from long-term changes in electrode

and tissue properties that affect their SNR [165, 131, 42]. Hence, a practical

Brain Computer Interface system should be capable of addressing changes in

signal SNR over multiple days. In this chapter, I present a model that filters

the neural features by tracking the local feature correlations. Since the ac-

tual ”signal” and ”noise” components of the LFP are unknown, I estimated a
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surrogate measure of signal quality, SNRs.

The main contributions of this chapter are 1) introducing an arm di-

rection decoder that automates channel selection by virtue of SNR; 2) esti-

mating unknown feature parameters by modeling prior information and; 3)

adapting the obtained decoder across multiple sessions to overcome variabil-

ity. These include channel quality and variability in subject behavior due to

model latency and changes in environmental effects. Such an adaptive de-

coder obtained above 93% decoding of eight movement directions over 6 weeks

of neural recordings. Further capturing prior information in terms of auto

regressive models estimates unobservable channel information and improves

decoding performance. Decoders capable of adapting to the above changes

reduce user frustration with BCI and increase their practicality [135].

7.3 Challenge with varying SNR

I hypothesized that a behavior is estimated by not just one spatio-

temporal pattern but by multiple patterns. The idea is that behavior could be

described more accurately by using multiple patterns than by using a single

pattern. Using multiple spatial patterns also allows us to understand and

characterize the variability in spatial patterns. The algorithm used Relevance

Vector Machines (RVM) to obtain the best neural patterns that describe a
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Figure 7.1: A schematic overview of the proposed BCI. The initial decoder is
trained using a training data. Model adaptation occurs continuously over the
testing sessions by identifying suitable spatial patterns.
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particular task, by solving (7.1) [200].

min
Xb,wb

∑
i

‖ pi −
∑
b

wbφ(Xi, Xb) ‖2 +λ|w|1

M = {Xb, wb, φ} (7.1)

The function φ() measures the similarity between the two neural spatial pat-

terns Xi, Xb and λ controls the sparsity enforced on the model. For example,

φ could be a radial basis function (used in this work), or a linear correlation

model. pi represents the two dimensional hand position vector corresponding

to the neural feature Xi. To obtain faithful decoding of arm movement, the

BCI decodes multiple arm kinematic parameters such as the horizontal (x-)

and vertical(y-) arm positions. I proposed to decode these parameters by es-

timating low level abstract parameters and translating these estimates to arm

positions via Kernel Dependency Estimation [209]. This framework employs

kernel functions to measure the correlations in hand position and encodes prior

information about the target in an elegant way [209].

While such a multi-spatial pattern model provides accurate decoding

over training sessions and over initial testing days (spread over 1 week), its

performance tapers down over time. Variability of neural patterns between

sessions (even conducted on the same day) causes most pattern-recognition

algorithms to fail across sessions. Most BCI applications rely on recalibrating

the decoder using daily calibration sessions before using it [141, 95, 183, 58].

Such delays fatigue the BCI users and lead to frustration with it. Reducing

calibration session time remains a challenge in translating BCI into a prac-
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tical application [135, 212]. Since neural adaptation changes the spatial and

temporal patterns of brain activity, I proposed that the decoding model also

needs a suitable adaptation strategy to track neural adaptation. Identifying

suitable neural patterns during BCI use and intelligently incorporating them

in the decoder accomplishes decoder adaptation (7.2) [194].

Mu = {X∗ ‖ Xu, w∗ ‖ wu, φ} (7.2)

, where ‖ is the concatenation operator applied on appropriate dimensions.

Figure 7.1 presents the evaluation scheme of the proposed decoder. The

identified noise-affected channels and removes them from analysis as discussed

in section 7.3.2. Next, I filter the recorded LFP channels in the delta-band

to extract instantaneous qualitative features (Section 7.3.1) and finally decode

them to obtain arm movements. Initial calibration of the decoder occurs on the

data collected during a training session, where the BCI user provides neural

data corresponding to calibration routines. During the evaluation sessions,

the decoder undergoes continuous adaptation, based on its performance on

the evaluated trials. Adaptation to new neural features provides previously

unknown information to the BCI. The proposed structure of the neural decoder

allows easy adaptation of the model to incorporate new features.

7.3.1 Neural Features

Neural features used for the decoder were extracted from the δ-band

(0-4Hz). Since LFPs follow a 1
f

frequency response, most of the signal power is
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retained in lower frequencies and analyzing this frequency band gives advan-

tage in decoding movement parameters like direction [9, 138]. Further, quali-

tative measurements like inter-channel ranking extract robust features against

variability in non-stationary signal characteristics, and dynamic ranges of LFP

power [195, 23, 210]. In cases where data does not follow a normal distribu-

tion, ranking methods have distinctive advantages over normal methods [23].

While the distribution of raw features varies significantly across multiple days,

I observed that the locations of high and low power ranks on electrode grid

remained consistent. I analyzed the rank of channels instead of their original

values. At each time sample, channel power was calculated using a rectangular

time-window (250 ms) preceding the sample. The channel with the highest

power is assigned rank 1, the next channel rank 2 and so on. I propose to use

these robust instantaneous rank features to decode arm position.

As a general trend, neural features from training and testing sessions are

derived from recording locations selected apriori. However, due to variations

in the electrode impedance over time, the quality of recordings is impacted

and a loss of recording locations might occur. The current analysis evaluates

impact of loss of channels on the performance of an adaptive decoder. Figure

7.2 shows the variation in the quality of three different electrodes. As shown in

this figure, some electrodes (orange) present variable signal quality that result

in unobservable features during some sessions. This paper presents a model

that estimate unobservable feature values, during sessions with poor SNRs,

and improve the decoding performance.
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Figure 7.2: Variability in the channel quality of three LFP channels measured
in terms of SNRs over multiple sessions. These electrodes are color coded to
show always high quality channel in green, always low quality channel in red
and a variable channel in orange. The box plot on each session represents the
SNRs variation in that single session.

7.3.2 Reliable channel identification

Our initial analysis of the LFP signals involved several signal pre-

processing steps like time-frequency analysis and histogram analysis to identify

noisy LFP channels. Only those channels that passed visual confirmation of

these features were deemed high quality channels and were used in further

analysis. I performed BCI training and testing on the fixed set of channels

to analyze their efficacy. They provided > 89% decoding accuracy over mul-

tiple recording days (6 weeks) including sessions with external field forces.
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While such an analysis is useful in establishing the performance of LFP based

BCI, the pre-processing step requires manual intervention in the form of vi-

sual inspection. Further, only a fixed number of LFP channels were used over

the entire recording sessions. In general, it is possible that the quality of

LFP signals varies over different experimental sessions and LFP signal having

high/poor SNR in one session might provide poor/high signal SNR in a future

session. Hence, a practical BCI decoder should estimate movement directions

regardless of the loss (or gain) of LFP channels. Recently, Sanchez et. al.,

used a reinforcement learning method to overcome lost spiking activity dur-

ing continuous BCI recording [152]. This chapter presents analysis on LFP

channels with signal degradation.

Since there is no direct way to estimate the LFP signal strength and a

noise estimate I estimate a surrogate measure for SNR, SNRs, by measuring

a channel deviation from the average LFP recording. Consider xtr be the

signal recorded on an LFP channel during a single trial. SNRs is calculated

as a function of the deviation from the signal averaged over multiple trials

conducted in a given session, 〈xtr〉, as shown in (7.3).

σtr =

√
1

T

∑
xtr − 〈xtr〉)

SNRs = 20 log(
1

σtr
) (7.3)

SNRs of different channels over the session is presented in Figure 7.3.

All channels that have an SNRs more than −50dB are deemed non-noisy sig-

nals and used to train and test the decoding models. Using this scheme, I
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Figure 7.3: SNRs of LFP channels recorded on the first session in H464. The
box plot for each channel represents the variation over the trials recorded in
this session. Using a threshold of −50dB, the channels can be classified as
high quality channels (> −50db) and low quality channels (< −50db).

122



observed that 82± 5 channels had no noise in H464 and 120± 2 in H564.

7.4 Robustness against loss of recordings

The decoding model M is trained only over a single session and its scope

is limited to the electrode locations identified in that session. The model can

be written as M = {X,w, φx}, where φx calculates the similarity only over

the channels (x) in training data X. When trials of the training session need

to be evaluated, the decoder possesses knowledge of all channels and making

the pattern similarity calculation simple. During model evaluation, the arm

position p corresponding to a neural data Y is computed as

p =
∑
i

wiφx(Xi, Y ) (7.4)

Without loss of generality, neural data extracted on the testing day Y could

be decomposed as

X =

[
Xc

Xx

]
, Y =

[
Yc
Yy

]
(7.5)

,where .c represents common recordings from the training and testing spatial

patterns. The other subscripts represent the electrode locations observed only

on that particular session. Thus the pattern similarity φX could be calculated

only over these common channels and the arm position calculated as

p =
∑
i

wiφc(X, Y ) (7.6)

,where φc(X, Y ) = φ(Xc, Yc)

Including noisy channels over the training or testing sessions adds noise

to the estimates of hand positions. By selecting channels with high SNRs, the
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proposed method ensures improved estimates of spatial similarity and results

in increased direction decoding accuracy. The features Xc and Yc need to be

re-normalized to compute φX . This normalization only requires the re-ranking

of selected channel features. Decoder adaptation follows a similar algorithm to

(7.2), by appending appropriate neural features to the existing decoder. As it

is possible that channels corresponding to Yy might be active during a future

session, all channels with high SNRs identified during a session are stored

in the model. Thus, the decoder incorporates new information on unknown

features.

Mu = {X∗ ‖∗ Y u, w∗ ‖ wu, φ} (7.7)

, where the concatenation operator appends the new spatial pattern Y u to the

updated model.

7.4.1 Estimating Partial Observations

The above method discussed in 7.4, estimates the similarity between

two neural patterns by selecting channels with high SNRs in both sessions. By

ignoring any channels with low SNRs, the model improves decoding accuracy.

However, this strategy also ignores any information from the remaining high

quality channels. I propose that prior knowledge gained from the channel

and spatial pattern interaction aids in denoising pattern similarity and adding

decoding information. I estimate the similarity measure estimated over all
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locations x as φX(X, Y ), shown in eq (7.8)

φx(X, Y ) = φ(Xc, Yc) + φ(Xx, Ŷx)

φx(X, Y ) = φ(Xc, Yc) + φ̂(Xx, Yx) (7.8)

I observed that the similarity calculated using the common channels

is a fraction of the total estimate. To estimate the unobserved portion of

the feature, I propose to gain knowledge from the feature evolutions. I track

the local correlations between spatial patterns in the form of auto-regressive

functions as:

φc(t) = Hφx(t) + ϑ (7.9)

φx(t+ 1) = Fφx(t) + η (7.10)

, where t represents the time step of analysis. F is the autoregressive parameter

that describes the evolution of spatial patterns. H is the observation parameter

that represents the observation, φc, which is modeled as a fraction of the

variable φx. ϑ and η are zero mean gaussian white noise variables representing

the noise in the measurement and observation models. These equations follow

the Kalman filtering dynamical model system that improves the observations

based on prior knowledge. Using the ”Predict” and ”Update” phases of the

Kalman filter, the observation could be corrected closer to the model estimates

[99]. The design of Kalman filter parameters, involves calculating the auto-

regressive parameters, F and the respective noise covariance on the neural

samples recorded on the training session. For this application I design the
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observation matrix, H, as a scalar under the assumption that all spatial filters

are partially observed.

7.4.2 Decoder Adaptation

As mentioned above, an important element of the decoder is the adap-

tation strategy presented in equations (7.2) and (7.7). Under this strategy,

selected neural patterns are added to the decoding model to improve perfor-

mance over future trials (from the same as well as next sessions). Since the

channels of added bases and new testing trials remain the same, no ambiguity

about the similarity measure exists. However, measures corresponding to basis

from a previous session are denoised using Kalman filtering.

Φ̂new =

[
Φ̂x

Φu

]
(7.11)

, where Φ̂x is the filtered version of the features estimated by the Kalman filter.

Adaptation by assimilation ensures the stable performance of neural

decoder during the evaluation session. Pruning of the accumulated basis by

removing redundant neural features constrains the size of the decoder. I use

the unsupervised pruning algorithm presented in Section 6.2. The next section

details the results achieved using the methods described in this section.

7.5 Results and Discussion

The objective of this project is to design long-term decoding capability

that provides stable performance, with minimal re-training sessions to miti-
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gate BCI user frustration. To evaluate this, I train the movement decoder

on a single session and evaluate its performance over the rest of the sessions.

I measure performance as decoding accuracy (DA): percentage of accurately

predicted targets in a session, and measure the correlation between actual

hand movement and the prediction estimated from neural data. During each

evaluation session, the model is adapted after every K (= 25) trials. Adapta-

tion of the model begins first by predicting the direction associated with the

trial’s neural patterns. Under the assumption that the BCI user intends to

reach the target in a straight path, I compare the prediction to an expected

signal, modeled as a straight line from the center to the predicted target [194].

The adaptation strategy uses only accurate reaches to adapt the decoder by

selecting neural patterns that can reduce the error between the prediction and

the desired straight line approximation (7.7). Feedback to the BCI system

could be delivered via multiple modes including vocal cues, error related po-

tentials, or any residual muscle activity [152, 50, 53, 60, 84]. Such a binary

feedback is enough to inform the decoder if the intended target was reached

and improves accuracy in the future sessions.

I measured and compared the decoding accuracy of different decoders.

I trained decoding models on the first session (with no field forces) and applied

over chronological sessions spread over 4-6 weeks (including sessions with novel

external field forces). I should note that the subjects were unfamiliar with

these perturbations and required multiple sessions to learn and perform the

target reaching tasks. I expect that monkeys counter the perturbations in
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the behavior by modulating neural patterns to adapt to the dynamics. Model

adaptation learns these changes in neural patterns. I performed initial analysis

on a fixed set of channels selected via visual inspection. This set of channels

remained consistent over all the training and testing sessions and did not

require the estimation of unknown features. This decoder predicts one of

eight arm directions at > 89% over the evaluation sessions. At a random

classification, the decoding would achieve only 12.5%.

I trained and tested all the decoders on the same training, testing and

adaptation scheme to ensure fair comparison. Any additional model param-

eters like F and the error covariance matrix were also trained on the same

training data, assuming no knowledge of future sessions. This parameter can

be estimated using multiple training reaches. By calculating the φ(t+ 1) and

φ(t) respectively, F can be calculated as

F = φx(t+ 1)φx(t)†

, where † is the pseudo inverse of the signal. Since, φx can be completely

determined during training, the matrix F can be characterized before the test-

ing and evaluation phase. Decoder adaptation (7.4.2) filters only observations

corresponding to previous day, and requires no update of F. After evaluat-

ing and adapting during the test session, I update F to correspond to the

auto-correlation of the new neural features Φ̂new.

Parameter H represents the relation between observation and the learned

correlation model. In this analysis, I begin by designing H as a scalar multi-
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ple of an identity matrix under the assumption that all spatial features have

similar uncertainty. A lower H assumes higher uncertainty between observa-

tions and the auto-correlation model and vice-versa. During application of

new field forces, I expect that uncertainty increases causing the observations

to drift away from the modeled values. Hence, I expect that adapting H over

different field forces sessions is advantageous. Our heuristic modifies H based

on the recent history of the sessions. H is tuned for a lower value after a

change in field forces, reflecting the lower correlation between observation and

auto-regressive modeling.

The decoding results are presented in the Figures 7.4 and 7.5 for mon-

keys H464 and H564 respectively. I introduced field forces to monkey H464

after two weeks and H564 after 10 days. Decoders must overcome not only

the neural variability due to time lag but also modulations in neural patterns

due to environmental effects. Results from the figures show the improvement

of decoding results when decoders consider only channels with high SNR. The

improved accuracy (> 10% with p < 0.01) is especially noticeable on days 15,

28 and multiple sessions after day 35 for monkey H464 (Figure 7.4) and on

days 16 and 20 for monkey H564 (Figure 7.5). Overall, the presented decoders

improved up to 3% (not significant improvement over all session at p < 0.01)

over decoders with fixed channels. Table 7.1 presents the performance of the

three decoders in different phases of the experiments. In H564, the fraction

of common channels between sessions is 98%± 1. This implies that the auto-

correlation model represents the observation accurately. Due to this, I observe
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Figure 7.4: Decoding Accuracy over multiple testing sessions recorded from
subject H464 for decoders presented in the chapter. I train the decoders on
neural data recorded on day 0. Field forces are applied on sessions after day
14 and vary on different sessions.
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Figure 7.5: Decoding Accuracy(DA) over multiple testing sessions recorded
from subject H564 for decoders presented in the chapter. Decoders trained
on day 0 are applied on sessions after day 10. I observed that DA remains
stable over 20 sessions and using high quality LFP signals improves decoding
especially on day 15,16 and 20 (by 10%).
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3% decoding accuracy improvement by estimating unknown features over a

fixed channel decoder. In H464 this fraction is only 87% ± 1, resulting in an

improvement of 1% (not significant at p < 0.05) of decoding accuracy.

I can infer that using high SNR channels from a session improves de-

coding accuracy (p < 0.01 for some sessions using McNemar’s test). Removing

low SNR channels eliminates any creep of noise in the model without affecting

the quality of the neural patterns. On an average 80%±3 of the channels were

common across the sessions in both the monkeys. Since the model training

selects a few prototypical trials to represent each behavioral task, selecting

common high SNR channels leads to improving the decoding accuracy. Fur-

ther, estimating missing unknown neural feature data by using prior knowledge

improves accuracy to the decoder by 1%. The decoder performance, in partic-

ular, improved in sessions that experience a change in the field force direction,

as shown in the last row of Table 7.1.

7.6 Analysis of BCI system

I analyzed the different sub-systems of the decoder, shown in Figure

7.1, and their effects of decoding performance. Below are some of our findings:

1. Removing the channel SNR estimation and selection module results in

using a fixed set of channels analyzed on the training session. Since the

channel SNR estimation is not performed on every session, the decoder

uses only those channels selected during the initial training session. This

132



Table 7.1: Decoder performance and comparison across different phases of the
recordings. For monkey H564, the average decoding is presented across all 20
recording sessions spread of 4 weeks. For monkey H464, the average decoding
is calculated over 37 sessions spread over 6 weeks.

Session
Using Fixed
Electrodes

Updating
Electrodes

Estimating Par-
tial Observations

H464
Average Decoding
(6 weeks)

89.8 93.5 93.5

Before Field
Forces (2 weeks)

96.6 97.6 96.7

During Field
Forces (4 weeks)

89 93
93.1 (p < 0.01 for
some sessions)

Novel Field Forces
(9 sessions)

85 89.5 89.8 (p < 0.01)

H564
Average Decoding
(4 weeks)

86.3 88.9 89.7

Before Field
Forces (1 weeks)

81.1 79.9 81.8

During Field
Forces (3 weeks)

86.9 89.9
90.6 (p < 0.01 for
some sessions)

Novel Field Forces
(4 sessions)

83.8 85.3 88.4 (p < 0.01)
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Table 7.2: Impact of Feedback Accuracy on Adaptive decoder performance.
Performance of the algorithm during different recording sessions is compared.
For this comparison, the model was trained on neural data from day 0 and its
performance evaluated on future sessions.

Session before intro-
ducing field
forces (1-2
weeks)

during vary-
ing field
forces (3-4
weeks)

All Sessions
(4-6 weeks)

H464
No update 81 31 36
Update w/o feedback 96 76 78
75% Accurate feedback 96 86 87
80% Accurate feedback 97 87 88
90% Accurate feedback 96 88 89
100% Accurate feedback 96 89 90
H564
No update 72 54 56
Update w/o feedback 70 72 72
75% Accurate feedback 77 81 81
80% Accurate feedback 78 84 83
90% Accurate feedback 79 86 85
100% Accurate feedback 81 87 86

results in the model described in section 7.4. While this model fails to

adapt to changes in channel SNR, due to the robustness of the feature

extraction and adaptation, it still provides stable decoding (at accuracy

∼ 90%).

2. I analyzed the band-features used for direction decoding. The current

analysis focused on δ-band, since prior works provided encouraging re-

sults in this band. I also noticed that the high-γ band added some sup-
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plementary decoding information. Since LFP signals have a 1
f

frequency

response, most of their power is contained in the lower frequency bands

like δ-band. Hence features based on raw power (without any band pass

filtering) inter-channel ranks aligned closely with δ-band power inter-

channel ranks. Analyzing features extracted from the raw signals pro-

vided similar neural patterns. Removing the band-pass filtering module

resulted in similar (no statistically significant change) decoding accuracy

over all sessions.

3. The strategy assumes a feedback on the accuracy of the intended target

reach. I realize that errors in the feedback mechanism might induce per-

formance degradation to the overall system. State-of-the-art EEG based

error detection techniques perform at 75% accuracy to identify human

induced errors [84, 170, 197]. I performed monte-carlo simulations vary-

ing the feedback accuracy and measuring its impact on overall decoding.

The results, presented in Figure 7.6, indicate that feedback at even 75%

accuracy reduces the decoding by 3-5%.

4. Table 7.2 presents the average decoding of 10 such simulations. I make

two interesting observations. Firstly, providing any feedback improves

the performance in comparison to without feedback. Of course the best

performance is observed with the most accurate feedback. I compare

the results with the performance of a static decoder and a decoder that

assumes its previous version is always accurate in reaching the target.
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The impact of feedback is evident in monkey H564, where the static

decoder accuracy is 70%, the feedback improves the accuracy to above

77%. Secondly, this strategy is robust to erroneous feedback and reduces

the impact of error propagation. Even when all reaches are used for

update (irrespective of errors), the strategy improves accuracy (from

36% to 78% in H464 and 56% to 72% in H564 as shown in Table 7.2). In

the presence of both accurate and inaccurate samples (due to feedback),

the decoder provides higher weight to the accurate feedback samples

and lower weights to inaccurate samples. Further, these samples from

the inaccurate feedback get pruned out during the Model pruning stage

of the algorithm. This ensures that the strategy remains robust to any

inaccuracies in the feedback.

5. The adaptation strategy uses a straight line trajectory as the desired

output. I replaced the straight line with a curved trajectory (parabolic)

from the center to the target. Our analysis shows that, as long as the

same desired trajectory is consistently used over all the recording ses-

sions, decoding accuracy remains the (significantly at p = 0.01) same

with either a linear or a non-linear trajectory.

7.7 Conclusion

In this chapter, I presented neural decoders that provide robust arm

decoding. These decoders are robust against LFP variabilities over time, en-
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Figure 7.6: Impact of Feedback Accuracy on Adaptive decoder performance.
Performance of the algorithm during different recording sessions is compared.
For this comparison, the model was trained on neural data from day 0 and its
performance evaluated on future sessions.

vironmental conditions like external field forces, and changing channel SNR.

Since multiple motor patterns accomplish the hand reach, I proposed that

multiple task-related neural patterns encode the reaching task. The decoder

identifies such task related neural patterns to predict arm-movement direction.

I presented an adaptive strategy to incorporate new neural feature patterns,

observed during evaluation, into the decoder.

1. I observed that channels exhibit different SNR over multiple recording

sessions and present a decoder that identifies channels with high SNR

and uses them for direction prediction.
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2. The decoder presents a novel way of estimating unobservable neural pat-

terns by modeling feature correlations and system dynamics. This model

provided up to 94% direction decoding accuracy in one monkey and 89%

accuracy in another over 6 and 4 weeks respectively.

3. The adaptation strategy requires only a binary feedback input on the

performance of the decoder and improves model performance.

4. I should note that recordings occurred in an open-loop fashion, where the

monkey was unable to learn the decoders. I anticipate that the decoder

performance would improve in a closed-loop setting, where the subject

learns the dynamics of the model.

In a practical setting, I anticipate that the adaptation occurs in a sym-

biotic fashion allowing both human and machine to learn from each other.

Decoders with such characteristics need very few calibration sessions and im-

prove BCI usability in practical applications.
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Chapter 8

Conclusion

This thesis focuses on designing robust neural decoders for arm move-

ment direction decoding. I trained neural decoders on a single recording ses-

sion and evaluated their performance over subsequent sessions. Through this

analysis, the following thesis statements were tested:

(a) Developing novel and time-robust neural features overcomes signal vari-

ability and improves decoding of hand movement over multiple days.

(b) Encapsulating the variability of subject behavior in multiple spatio-temporal

patterns and capturing the changes in subject behavior by adapting decoding

model to novel features improves long-term decoding

(c) Estimating unobservable feature parameters by capturing prior model in-

formation overcomes day-to-day variation in channel SNR.

Below is a summary of my contributions: I developed robust neural

features in the form of instantaneous power ranks in the sub-band filtered (0-4

Hz) local field potentials. These features were initially compared using a tra-

ditional neural analysis approach - Common Spatial Patterns. These features

provided robust decoding over multiple days, especially when there were no

139



external perturbations, and exhibited improvements over existing traditional

methods. The robust performance of features arises by overcoming daily vari-

ations of signal power level. Use of rank features instead of raw power values

provided an average improvement of 20% (36% using traditional methods to

56% using rank features) over the first two weeks of decoder testing. Com-

bining multiple evolutions of spatial patterns provided further improvement of

6% over the same two weeks (p < 0.01 using McNemar’s test). These results

prove the feasibility of ranked spatial patterns in local field potential and their

evolutions to decoding movement directions.

In Chapter 5, I introduced a new methodology to decoder training. I

hypothesized that subject behavior is described by multiple neural patterns

and their evolutions. To test this hypothesis, I developed a model that extracts

multiple spatio-temporal patterns based on rank features for each movement

direction. This model was extended to tracking hand movement during the

entire trial rather than just detecting the final target. The model provided

an average decoding of 82.5% over two weeks from a model trained on a sin-

gle session. I observed that reduced decoding was due to changes in spatial

patterns, and monitoring these variations provided further improvement. By

using a decoding model that adapted to the changes in neural patterns, there

was improved decoding performance to above 95% over two weeks of model

evaluation (p < 0.01 using McNemar’s test). Improved decoding performance

is also observed when external perturbations were applied on the hand. The

adapting model provided a robust decoding of above 85% on sessions where
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field forces were applied on the hand.

In Chapter 6 I provided multiple strategies to limit the model redun-

dancy during adaptation. I observed that model size increased after each

adaptation and resulted in redundant spatial patterns, thereby affecting the

computational complexity of the model. To limit this redundancy, firstly I

proposed to compress the model after each session in an unsupervised fashion

without the need of user interaction. Next, I proposed the detection of redun-

dant spatial patterns by evaluating their similarity to the existing model. Such

detection enabled a smart update by allowing only distinct spatial patterns to

be appended to the model. This strategy provided a decoder with 17% less

complexity in terms of new spatial patterns added to the decoder, and with 5%

improvement of average decoding over six weeks of model testing (p < 0.01).

Finally, in Chapter 7 I presented decoders that remain robust to changes

in LFP channel SNR. I observed that channels exhibit different SNR over

multiple recording sessions and present a decoder that identifies channels with

high SNR and uses them for direction prediction. The decoder presents a

novel way of estimating unobservable neural patterns by modeling feature

correlations and system dynamics. This model provided up to 94% direction

decoding accuracy in one monkey and 89% accuracy in another over 6 and 4

weeks respectively.
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8.1 Future Work

1. Application in an online BCI: The analysis in this thesis shows that

adapting a model in an open-loop environment provides robust perfor-

mance. In a closed-loop environment, BCI user has the ability to monitor

BCI performance and alter the neural patterns accordingly. Existing re-

search shows the ability of BCI users to adapt to a stable pattern and

generate spatial patterns consistently. Incorporating the adaptive nature

of the proposed decoder enables both the BCI user and the system to

co-adapt.

2. Learning New Targets: In this thesis, I have evaluated performance

of the decoder when monkeys experienced new filed forces. The analysis

showed that decoders could be built for more than one neural task of

reaching the target and compensating the perturbation. Further analy-

sis on the introduction of new targets improves our knowledge of neural

learning. Specifically, one can examine if new spatial patterns are gener-

ated for any new target or if the existing spatial patterns and decoders

identify the target. Successful models imply that only a few directions

are required during training to enable quicker and faster training ses-

sions.

3. Adaptation without feedback: In the proposed adaptation strategy,

knowledge of an accurate reach is required to decide if a neural pattern

helps in the successful adaptation of the model. This feedback could be
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received from hand movement and position of the hand. For example,

in a closed-loop BCI, since the user attempts to reach the target, a

static hand location informs the BCI system that the desired target

was achieved. This information could be used as a feedback surrogate.

Alternatively, multiple decoders and experts could generate feedback to

the BCI system. This increases the complexity of the system and is

dependent on the accuracy of all involved experts. Another suggestion

is to monitor the changes in spatial characteristics of neural patterns and

characterize these patterns during an accurate and inaccurate reach.
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