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Future wireless networks are evolving to become ever more hetero-

geneous, including small cells such as picocells and femtocells, and direct

device-to-device (D2D) communication that bypasses base stations (BSs) alto-

gether to share stored and personalized content. Conventional user association

schemes are unsuitable for heterogeneous networks (HetNets), due to the mas-

sive disparities in transmit power and capabilities of different BSs. To make

the most of the new low-power infrastructure and D2D communication, it is

desirable to facilitate and encourage users to be offloaded from the macro BSs.

This dissertation characterizes the gain in network performance (e.g., the rate

distribution) from offloading users to small cells and the D2D network, and

develops efficient user association, resource allocation, and interference man-

agement schemes aiming to achieve the performance gain.

First, we optimize the load-aware user association in HetNets with

single-antenna BSs, which bridges the gap between the optimal solution and
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a simple small cell biasing approach. We then develop a low-complexity dis-

tributed algorithm that converges to a near-optimal solution with a theoreti-

cal performance guarantee. Simulation results show that the biasing approach

loses surprisingly little with appropriate bias factors, and there is a large rate

gain for cell-edge users.

This framework is then extended to a joint optimization of user as-

sociation and resource blanking at the macro BSs – similar to the enhanced

intercell interference coordination (eICIC) proposed in the global cellular stan-

dards, 3rd Generation Partnership Project (3GPP). Though the joint problem

is nominally combinatorial, by allowing users to associate to multiple BSs, the

problem becomes convex. We show both theoretically and through simulation

that the optimal solution of the relaxed problem still results in a mostly unique

association. Simulation shows that resource blanking can further improve the

network performance.

Next, the above framework with single-antenna transmission is ex-

tended to HetNets with BSs equipped with large-antenna arrays and oper-

ating in the massive MIMO regime. MIMO techniques enable the option

of another interference management: serving users simultaneously by multi-

ple BSs – termed joint transmission (JT). This chapter formulates a unified

utility maximization problem to optimize user association with JT and re-

source blanking, exploring which an efficient dual subgradient based algorithm

approaching optimal solutions is developed. Moreover, a simple scheduling

scheme is developed to implement near-optimal solutions.
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We then change direction slightly to develop a flexible and tractable

framework for D2D communication in the context of a cellular network. The

model is applied to study both shared and orthogonal resource allocation be-

tween D2D and cellular networks. Analytical SINR distributions and average

rates are derived and applied to maximize the total throughput, under an as-

sumption of interference randomization via time and/or frequency hopping,

which can be viewed as an optimized lower bound to other more sophisticated

scheduling schemes.

Finally, motivated by the benefits of cochannel D2D links, this dis-

sertation investigates interference management for D2D links sharing cellular

uplink resources. Showing that the problem of maximizing network through-

put while guaranteeing the service of cellular users is non-convex and hence

intractable, a distributed approach that is computationally efficient with min-

imal coordination is proposed instead. The key algorithmic idea is a pricing

mechanism, whereby BSs optimize and transmit a signal depending on the

interference to D2D links, who then play a best response (i.e., selfishly) to this

signal. Numerical results show that our algorithms converge quickly, have low

overhead, and achieve a significant throughput gain, while maintaining the

quality of cellular links at a predefined service level.
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Chapter 1

Introduction

Explosive mobile data traffic growth has caused cellular networks to

evolve into dense and irregular heterogeneous cellular networks, especially

through the proliferation of small base stations (BSs) underlaid in a conven-

tional (macrocell) network. These small BSs include microcells, picocells and

femtocells, which differ primarily in maximum transmit power, physical size,

and ease-of-deployment [2]. Besides small cells, device-to-device (D2D) com-

munication – which allows devices to directly communicate with each other

– is also emerging as an important technology component for future wireless

communication networks [3]. Such a paradigm shift poses many new chal-

lenges in the network design, and necessitates a significant rethinking of user

association, resource allocation and interference management approaches [4] .

We start this introductory chapter with a description of heterogeneous

networks (HetNets) that consist of macro BSs, small cells and D2D communi-

cation. We then discuss the necessarity and importance of load balancing and

interference management in Section 1.2. Finally, Section 1.3 summarizes the

main contributions of this dissertation along with its organization.
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1.1 Ongoing Evolution to HetNets

Drivers of small BS deployment. The wireless traffic pattern is

dramatically changing with the proliferation of ubiquitous mobile devices such

as smartphones, tablets, and new “wearable” devices (e.g., smart watches),

along with the invention of various data-hungry applications and services. It

is expected to have a 10-fold mobile traffic growth by 2019 [5, 6], on the top

of a 10-fold increase in last 5 years. Such stunning traffic growth leads to an

urgent need of data rate improvement.

In current wireless systems with fixed or nearly fixed spectral resources,

improvement in spectrum utilization efficiency is quite saturated, since the

spectrum efficiency of a point-to-point link is very close to the theoretical

limit with mature physical layer techniques [7, 8]. On the other hand, releas-

ing more spectrum is a costly solution, and the scarcity of current ultra high

frequency (UHF) bands (i.e., frequencies between 300MHz and 3GHz) results

in a shortfall in boosting capacity. Though recently there is considerable in-

terest in millimeter wave (spectrum above 30GHz) with gigahertz of spectrum

available, it is likely to take more than ten years before the wide commer-

cialization of such a novel technique [4]. Thus, one of the most promising

solutions for the current capacity crunch is to deploy small cells such as pic-

ocells and femtocells to increase the cell density. In this dissertation, we let

each tier model a particular type of BSs. For example, tier 1 refers to the

tower-mounted macro BSs which have the largest transmit power, and tier 2

and tier 3 could be interpreted as pico and femto BSs, respectively. In gen-
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eral, pico BSs transmit at a much lower power with a higher deployed density

than macro BSs, while femto BSs may be deployed very densely but have the

smallest transmit power.

Drivers of D2D communication. The mobile revolution through

increasing mobile devices has also propelled various proximity-based services,

such as content sharing, multiplayer gaming, social networking services and

mobile advertising [3,9]. The existing techniques enabling such services can be

broadly categorized into peer-to-peer (P2P) communication and over-the-top

(OTT) solution (with a server located in the cloud) [10], with the disadvantages

of uncontrolled interference in unlicensed band (e.g., WiFi Direct [11] as a

P2P example) and/or low energy efficiency (e.g., Highlight App as an OTT

example). Unlike the aforementioned techniques or general ad-hoc networks,

D2D communication is proposed as a promising technique to meet the surging

proximity-based service demand, which can operate on licensed bands and

benefit from cellular infrastructure (e.g., network coordinated device discovery,

synchronization and enhanced security) [3, 12–15]. Taking the advantage of

physical proximity of communicating devices, D2D communication increases

area spectrum efficiency, reduces energy consumption, and more importantly,

it can be adopted as an offloading approach for cellular networks, leading to

better resource utilization.

In summary, the exploding wireless traffic demand has led to a net-

work evolution towards integration of small BSs and D2D communication into

conventional macrocellular networks – termed HetNets in this dissertation, as
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Figure 1.1: Illustration of a HetNet including macro BSs, picocells, femtocells
and D2D communication.

illustrated in Fig. 1.1. HetNets introduce fundamental changes in network de-

sign and analysis. In this dissertation, we focus on the offloading and resource

allocation aspects as discussed in the following section.

1.2 Load Balancing and Interference Management

1.2.1 The Need for Load-aware Association

Conventional macrocellular networks consist of homogeneous macro

BSs with almost the same transmit power and regular deployment. In such

macrocellular networks, a natural association scheme that decides which users

should associate to which BSs is to let users connect to the BSs providing

the largest signal-to-interference-plus-noise ratio (SINR) – called max-SINR
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association, using which the number of users per macro BS is about the same

if users are uniformly distributed. Hence, the need for further load balancing

is usually not significant.

However, in a network with small BSs, there are massive disparities in

transmit power and capability of different BSs, and thus the conventional user

association schemes are no longer suitable. As an example, Fig. 1.2a shows

the user association based on the max-SINR rule, which associates most users

to high-power macro BSs and thus leads to a major load imbalance. Such load

imbalance would exist even in HetNets with a targeted deployment, where

small BSs are deployed in hotspots (i.e., high-traffic zone). Though the SINR

is maximized in this case, users have to share resources with others in the same

cell, and the limited resources per user in congested macro cells would result in

a small overall throughput, while the resources at small BSs are significantly

underutilized. Moreover, the irregular deployment of small BSs and the non-

uniform user distribution further demand the rethinking of user association

schemes. The critical missing piece in conventional user association schemes

is the load of BSs, which provides a view of available resource over time. To

make the most of the new low-power infrastructure, it is desirable to design an

association scheme not only depending on the SINR, but also the load of BSs.

The load may be considerably more balanced with load-aware association, as

illustrated in Fig. 1.2b (which uses a max-sum-log-rate wise association).

Integration of D2D communication further complicates the network.

Potential D2D data can either be transmitted directly (D2D), or via a BS
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– termed mode selection. Offloading D2D traffic from cellular network to

D2D communication may provide a higher spectral efficiency which profits

from the short-range transmission, and help alleviate the network congestion,

but it either introduces more interference if resources are shared among D2D

and cellular links, or consumes some resources that are otherwise available

for cellular communication if orthogonal resources are assigned to D2D and

cellular links. It is not a prior clear when a potential D2D link should transmit

directly or be relayed by the BS.

1.2.2 Interference Management

For HetNets with small cells, offloading users from congested macro

BSs to lightly-loaded small cells via load-aware association balances the load,

but leads to not only weaker signal but also stronger interference at these

offloaded users. This implies the importance of joint investigation of interfer-

ence management along with the load-aware user association. The existing

interference management techniques can be broadly classified into two types:

uncoordinated and coordinated interference management [16,17].

Uncoordinated interference management. Fractional frequency

reuse (FFR) [18,19], distributed power control [20,21], and static resource al-

location are three most popular uncoordinated interference management tech-

niques. As the name implies, the techniques in this category do not require

coordination among cells, and thus may reduce the overhead and lighten the

backhaul burden. On the other hand, the main shortcoming of such simple

6



0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

BS1

BS2

BS3 BS4
BS5

BS6 BS7

BS8

BS9

BS10

BS11

BS12

BS13

BS14

BS15

BS16

BS17

BS18

BS19

BS20

Tier1

Tier2

Tier2
Tier2

Tier2

Tier2 Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

Tier3

(a) Max-SINR association

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

BS13 Tier3

Tier2

BS3

Tier3

BS9

BS14 Tier3

BS20

Tier3

BS10 Tier3

Tier2

BS5
BS17

Tier3

BS16 Tier3

Tier3BS19

BS8Tier3

BS18

Tier3

BS6 Tier2

BS1Tier1

BS7 Tier3

Tier2

BS4

Tier3BS15

BS2

Tier2

Tier3BS12

Tier3BS11

(b) Load-aware association

Figure 1.2: Max-SINR association versus load-aware association. Lines in-
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policies.
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techniques is the limited performance gain versus more intelligent coordinated

techniques [22]. Moreover, techniques like FFR and static resource alloca-

tion may require prior careful resource planning, which becomes increasingly

difficult as the network with small BSs becomes denser and more irregular.

Coordinated interference management. Different coordinated in-

terference management techniques require coordination of different levels, and

thus introduce different amounts of additional overhead. For example, coor-

dinated multi-point transmission (CoMP) as an extension of the multi-user

multiple-input and multiple-output (MU-MIMO) technique is proposed as

one of the core features for coordinated interference management in LTE-

Advanced, which includes different categories of transmission schemes such as

dynamic point selection (DPS), dynamic point blanking (DPB), joint trans-

mission (JT) and coordinated scheduling/beamforming (CS/CB) [23–25]. The

schemes such as JT with joint precoding and CS/CB introduce excessive over-

head and require tight time/frequency synchronization among collaborating

cells, while the simpler eICIC technique [26] requires limited overhead and

less accuracy in time/frequency synchronization. By choosing low-overhead

techniques or minimizing the required overhead, the coordinated interference

management is expected to bring greater performance gain than the uncoor-

dinated techniques.

For HetNets with D2D communication, the interference environment

depends on how the resources are allocated among the D2D and cellular links.

When the D2D and cellular transmissions share the resources, though the
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resource utilization is efficient, there is mutual interference among D2D and

cellular links. Without interference management, the interference may kill the

performance gain by allowing D2D communication.

To summarize, the urgent need for redesigning association schemes and

mode selection rules along with interference management motivates the fol-

lowing fundamental questions. For HetNets with small cells: (i) Which users

should associate to which BSs? (ii) What is the gap between such optimized

user association and a simple association scheme based on biased received sig-

nal – referred to as cell range expansion (CRE) in 3GPP? (iii) How should

the interference be managed and what is the corresponding optimal user as-

sociation? (iv) What is the performance gain from joint consideration of load

balancing and interference management? For HetNets with D2D communica-

tion: (i) How should the resource be allocated between D2D and cellular links?

(ii) When should a potential D2D link transmit directly versus relaying via the

BS? (iii) How should the interference be managed in the case where resources

are shared among D2D and cellular links? The goal of this dissertation is to

address these questions by developing tractable frameworks for optimization

and analysis.

1.3 Contributions and Organization

As indicated above, the emerging wireless networks with the integra-

tion of small cells and D2D communication demand the rethinking and re-

designing of resource allocation, particularly the user association (mode selec-
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tion for D2D communication) and interference management schemes. A major

challenge regarding such resource allocation problems is that user association

problem is in general a massive combinatorial problem requiring extreme high

complexity to solve (e.g., via brute force scheme) for large networks. More-

over, the user association and user scheduling problems are coupled with each

other, where the user association determines which users would be scheduled

together, while the user scheduling determines the achievable resources per

user that further impact the user association. Introducing interference man-

agement further complicates the joint problem. This dissertation tackles these

key technical challenges, with the main contributions summarized as follows.

User association in HetNets with small cells. In Chapter 2, we

propose a utility maximization problem to optimize the user association in

a HetNet with small cells, where we adopt the logarithmic utility of users’

long-term rate, which is similar to the proportional fairness and achieves a

desirable tradeoff between opportunism and fair allocation across users, by

saturating the return for providing more rate to users with a high rate. Gen-

erally, optimization of user association is combinatorial and thus difficult to

solve. On the other hand, implementation in practice may resort to the simple

CRE scheme. This paper bridges the gap between these approaches through

several physical relaxations of the network-wide optimization problem. Chap-

ter 2 also provides a low-complexity distributed algorithm that converges to

a near-optimal solution with a theoretical performance guarantee. The simu-

lation results show that CRE loses little versus the optimal utility, if the bias
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factors are chosen carefully. Cell-edge users achieve a large (3x) rate gain by

offloading from macro BSs versus the max-SINR association.

User association and resource blanking in HetNets with small

cells. The rate distribution greatly benefits from load balancing, by which

users are offloaded from congested macro BSs to lightly-loaded small cells, de-

spite the resulting loss in SINR. To further improve the network performance,

particularly the rate of cell-edge users, Chapter 3 explores the joint optimiza-

tion of user association and resource blanking at macro BSs, which manages

the inter-tier interference by blanking a fraction of time/frequency resources

at macro BSs. By relaxing the constraint of unique association where each

user associates to at most one BS, the joint problem becomes a convex op-

timization, and provides an upper bound on the network utility. Chapter 3

shows both theoretically and through simulation that the optimal solution of

the relaxed still results in an association that is mostly unique. The optimal

association differs significantly when the macro BSs are on or off; in particular

the offloading can be much more aggressive when the resource is left blank by

macro BSs. Results show that joint optimization of offloading with blanking

is important. The rate gain for cell edge users (the worst 5%) is very large

(5x) versus max-SINR association without blanking.

Joint optimization of user association and interference man-

agement in massive MIMO HetNets. HetNets with BSs equipped with

large-antenna arrays that are able to operate in “massive MIMO” regime are

envisioned to play a key role in meeting the exploding wireless traffic demands
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[27]. Chapter 4 extends the framework proposed in Chapters 2 and 3 with

single-antenna transmission to massive MIMO HetNets, where MIMO tech-

niques not only yield large spectral efficiencies but also provide the option of

CoMP for interference management. Chapter 4 studies two interference man-

agement techniques: resource blanking and JT with local precoding, which

allows multiple BSs to transmit the same signal to users simultaneously with

precoding based only on local channel state information (CSI). Since mas-

sive MIMO instantaneous rates can be predicted a priori due to the fact that

fast fading is averaged out via the large number of signal paths from the

large-antenna arrays at BSs, the user association and scheduling problems are

decoupled, allowing us to propose a unified convex utility maximization prob-

lem for the joint optimization of user association and resource allocation with

both resource blanking and JT. An efficient algorithm providing near-optimal

solutions is proposed. Chapter 4 further proposes a simple scheduling scheme

to get approximate but implementable results. Simulations reveal that the

proposed methods can significantly outperform the optimal user association

without interference management, especially at the cell edge (2x rate gain).

D2D-enabled cellular networks using time-frequency hopping.

Besides small cells, the D2D communication is also an emerging offloading ap-

proach for cellular networks. Chapter 5 develops a flexible and accurate frame-

work for HetNets consisted of D2D communication and conventional cellular

networks. As a fundamental issue in the D2D design, the following two spec-

trum sharing methods are studied in the downlink (DL) system: dedicated
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resource allocation where D2D and cellular links use orthogonal resources,

and shared resource allocation where D2D links reuse cellular resources. A

time-frequency hopping scheme is proposed to schedule D2D links, which ran-

domizes the interference and provides an Aloha-type mode selection. Chapter

5 provides analytical expressions for several important metrics including the

coverage probability and the throughput, which are in closed or simple forms,

allowing us to easily explore the impact of key parameters (e.g., the load and

hopping probabilities) on the network throughput without extensive simula-

tions. The results show that with an optimal spectrum partition between D2D

and cellular links, the dedicated network provides larger throughput in the DL

than the shared network where BSs cause strong interference to D2D trans-

missions. The optimal D2D frequency hopping probability to maximize the

throughput depends on users’ service demands (i.e. the traffic arrival rate):

D2D links with more traffic to transmit should be more aggressive in their

spectrum access, despite the interference that this generates to the rest of the

network. As for the optimal time hopping in considered interference limited

heavily loaded networks, all potential D2D links should operate in D2D mode

to maximize the total rate. The obtained throughput can be viewed as an

optimized lower bound to other more sophisticated scheduling schemes.

Distributed resource allocation for D2D in cellular networks.

As a parallel work to Chapter 5, [28] investigates D2D communication in the

context of uplink (UL) cellular networks, which shows that the dedicated and

shared resource allocation have comparable throughput. As the UL resources
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are often under-utilized compared to DL [29], Chapter 6 studies the case where

D2D links reuse cellular UL resources, in the effort to improve the resource

utilization. In such cases, the success of co-existence of D2D and cellular

transmissions depends heavily on the interference management. Chapter 6

proposes to manage the side-effect of introducing D2D communication via

dynamic D2D resource allocation, with the objective to maximize the total

throughput. Showing such a maximization problem is non-convex and hence

intractable, Chapter 6 proposes a distributed approach based on the pricing

mechanism, where the BS adapt a signal to the interference from D2D links

that is then transmitted to D2D users, who then play a best response (i.e.,

selfishly) to this signal. The proposed algorithm is computationally extremely

efficient, and requires minimal coordination and cooperation among the nodes.

Simulation results show that the proposed algorithm converges quickly with

low overhead, and achieves a significant throughput gain (about 5x with 10

D2D links per cell and average D2D link length 80m in our simulation setup)

versus the cellular networks without D2D links, while maintaining the quality

of cellular links at a predefined service level.

Finally, Chapter 7 concludes this dissertation with a summary of key

contributions and a discussion of future research directions.
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Chapter 2

Load Balancing in HetNets with Small BSs1

As indicated in the previous chapter, in HetNets with different types

of BSs, even with a targeted deployment where these small BSs are placed in

hotspots, most users still receive the strongest signal from the tower-mounted

macro BSs. By actively “pushing” some users onto small BSs that are often

lightly loaded, not only these offloaded users but also the remaining macro

users can get more resources and thus may improve the rate distribution, de-

spite the decreasing SINR at the offloaded users. This chapter investigates

optimal and near-optimal solutions of load-aware user association problem,

particularly those with simple requirements for coordination and side infor-

mation. In the remainder of this chapter, HetNets particularly refer to the

networks consisted of conventional macrocellular networks and small cells,

and we leave the investigation of networks integrating D2D communication

to Chapters 5 and 6.

1This chapter has been published in [30]. Coauthors Dr. Beiyu Rong, Dr. Yudong Chen
and Dr. Mazin Al-Shalash have provided technical suggestions and insights to this work.
Dr. Constantine Caramanis and Dr. Jeffrey G. Andrews are my supervisors.
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2.1 Related Work

Most prior work on load balancing schemes applies to macrocell-only

networks. Networks with small cells are much more sensitive to the cell as-

sociation policy because of the massive disparities in transmit power and cell

sizes, which result in very unequal loads in max-SINR association. That is, if

users simply associate with the strongest BS, the difference in load in macro-

cell networks is constrained since the cells all have roughly the same coverage

area. But in HetNets, the opposite is true, making the problem considerably

more complex, and the potential gains from load-aware associations larger.

The existing work on cell association can be broadly classified into two

groups: (i) Strategies based on channel borrowing from lightly-loaded cells,

such as hybrid channel assignment (HCA) [31], channel borrowing without

locking (CBWL) [32], load balancing with selective borrowing (LBSB) [33,34],

etc; (ii) Strategies based on traffic transfer to lightly-loaded cells, such as

directed retry [35], mobile-assisted call admission algorithms (MACA) [36],

hierarchical macrocell overlay systems [37, 38], cell breathing techniques [39,

40], and biasing methods in HetNets [24]. The approach in this chapter is based

on traffic transfer. There have been many efforts in the literature towards

traffic transfer strategies in macro-only cellular networks. The so-called “cell

breathing” technique [39, 40] dynamically changes (contracts or expands) the

coverage area depending on the load situation (over-loaded or under-loaded)

of the cells by adjusting the transmit power. Sang et al. [41] proposed an

integrated framework consisting of MAC-layer cell breathing and load-aware
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handover/cell-site selection. Cell breathing aims to balance the load among

neighboring macrocells, while in HetNets we additionally need to balance the

load among different tiers.

A popular approach in conventional networks, related to the direction

we propose, is to achieve load balancing by changing the problem to be a

convex optimization. Indeed, there is considerable work investigating differ-

ent utility functions, such as network-wide proportional fairness (PF) [42],

network-wide max-min fairness [43], maximization of network-wide aggregate

utility by partial frequency reuse and load balancing [44], and α-optimal user

association [45]. We adopt the logarithmic function as the utility function,

which is similar to proportional fairness, and achieves a desirable tradeoff be-

tween opportunism and fair allocation across users, by saturating the reward

for providing more resources to users which already have a high rate.

In HetNets, there are a few recent investigations of the cell association

problem. A joint optimization of channel selection, user association and power

control in HetNets is considered in [46], aiming to minimize the potential delay,

which is related to the sum of the inverse of the per-user SINRs, where the

SINR takes into account the load when computing the interference. Corroy

et al. [47] propose a dynamic cell association to maximize sum rate as well

as a heuristic CRE algorithm for load balancing. CRE is an effective method

to balance the load among high and low power BSs, which is enabled through

cell biasing [24, 48]. It is achieved by performing user association based on

the biased measured signal, which leads to better load balancing, but the
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improvement of load balancing may not overwhelm the degradation in SINR

that certain users suffer. Therefore, how to design the biasing factor is an

important open problem.

2.2 Contributions and Organization

In this chapter, we present a load-aware cell association method in DL

HetNets, that results in the following main contributions.

First, in Sec. 2.4, we undertake an optimization theoretic approach to

the load-balancing problem, where we consider cell association and resource

allocation jointly. We decouple the joint optimization problem with a general

utility function by relaxing the unique association and allowing users to as-

sociate with more than one BS – called fractional association. This approach

provides an upper bound on achievable network utility which can serve as a

benchmark. However, in real system, it is much more difficult to implement

multi-BS association than unique association. Therefore, we focus on a log-

arithmic utility maximization problem for unique association, and show that

equal resource allocation is actually optimal when channels are static over

a sufficiently large time window. This observation allows the coupled prob-

lem to reduce to the cell association problem with equal resource allocation,

which along with the fractional association relaxation converts the previously

intractable combinatorial problem into a convex optimization problem.

In Sec. 2.5, we exploit the convexity of the problem to develop a dis-

tributed algorithm via dual decomposition that converges towards the optimal
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solution with a guarantee on the maximum gap from optimality. This provides

an efficient and low-overhead algorithm for implementation in HetNets.

In Sec. 2.6, we leverage our provably optimal solutions to ask a basic

question: how much of the performance gain can a simple policy based on a

priori bias factors achieve? Our results show that this simple approach gets

surprisingly close to the gains of the load-aware utility maximization. The

gains from this approach are shown to be very large for most users in the

system, with rate gains ranging from 2-3.5x for the bottom half of users. To

put this in context, this is a gain on par with what would otherwise be achieved

by a doubling or tripling the amount of spectrum for a given service provider.

Cell interior users experience little to no rate gain (or a small loss), but this

has little relevance in practice since such users are already well-served.

2.3 System Model

In DL cellular networks, the default association scheme is max-SINR,

which indeed maximizes the probability of coverage, i.e., P(SINR > β), where

β is a target SINR (or equivalently minimizes the probability of outage, i.e.,

P(SINR ≤ β)).

The key performance metric is the service rate, not SINR. The instan-

taneous rate is of course directly related to SINR (e.g., log2(1 + SINR)), but

the overall served rate is then multiplied by the fraction of resources that user

gets. Hence, heavily-loaded cells provide lower rate over time, even if they

provide a higher SINR. Load balancing problem is very important in HetNets.
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In this chapter, we focus on the DL cell association. UL could likely be con-

sidered through a similar approach, but is complicated by the use of UL power

control, which changes the interference depending on the association. Here,

we assume that all BSs have full buffers and slowly changing (or constant)

transmit power, which means that transmit power of BSs is fixed over the

association time scale and thus is independent of the specific association.

We consider a DL K-tier HetNet, with each tier models a type of BSs.

We denote by B the set of all BSs, and by U the set of all users. During the

connection period, we denote by rij the achievable spectral efficiency which is

generally a logarithmic function of SINR.

rij = f(SINRij) = f(
Pjgij∑

k∈B,k 6=j
Pkgik + σ2

),

where Pj is the transmit power of BS j, gij denotes the channel gain between

user i and BS j, which in general includes path loss, shadowing and antenna

gain, and σ2 denotes the noise power level. The association is assumed to be

carried out in a large time scale compared to the change of channels. The

SINR for association is averaged over the association time and thus it is a

constant regardless of the dynamics of channels (i.e., fast fading is averaged

out). As for resource allocation (user scheduling), we assume that resource

allocation is carried out well during the channel coherence time, and thus

channel can be regarded as static during each resource allocation period. This

model is applicable for low mobility environment. We leave the stochastic

channel analysis for future work. Note that though this chapter is focus on
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single-carrier system, our model can be extended to multi-carrier system in

a straightforward manner (i.e., let rij be the average spectral efficiency over

different bands).

Since each BS generally serves more than one user, users in the same

cell need to share time and/of frequency resources. The long-term service rate

experienced by a user thus depends on the load of the BS and will therefore be

only a fraction of the value rij multiplied by the total available bandwidth in

the network (unless BS j exclusively serves user i). We consider a fully loaded

system, where the load on a BS is directly proportional to the number of users

associated with it.

Moreover, the overall service rate also depends on the resource allo-

cation method of the BSs. In principle, any allocation method or service

discipline with which the resource allocation is related to both the load of BSs

and the rate of each user can be used. Therefore, the achievable overall rate

of user i associated with BS j depends on rij, rqj, and how BS j distributes its

resources among its associated users. We focus on finding an optimal resource

allocation and optimal cell associations which maximize the utility. During

the connection between the BS j and user i, denoting the fraction of resources

BS serves user i by yij, we can define the overall long term rate as follows.

Definition 2.1. If user i is associated with BS j, the overall long term rate is

Rij = yijrij, (2.1)
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where
∑

i yij = 1, ∀j. We denote the total overall rate of user i by Ri, where

Ri =
∑

j Rij.

In the following, we investigate a utility maximization problem for the

overall rate Ri to find the optimal association and resource allocation.

2.4 Problem Formulation

Taking a utility function perspective, we assume user i obtains utility

Ui(Ri) when receiving rate is Ri, where the function Ui(·) is a continuously dif-

ferentiable, monotonically increasing, and strictly concave utility function [49].

2.4.1 General Utility Maximization: Unique Association

We formulate an optimization problem which involves finding the in-

dicators {xij} corresponding to the association (i.e., xij = 1 when user i is

associated with BS j, xij = 0 otherwise) and {yij} corresponding to the re-

source allocation that maximize the aggregate utility function:

max
x,y

∑

i∈U

Ui(Ri) =
∑

i∈U

Ui(
∑

j∈B

yijrij)

s.t.
∑

j∈B

xij = 1, ∀i ∈ U

∑

i∈U

yij ≤ 1, ∀j ∈ B

0 ≤ yij ≤ xij, xij ∈ {0, 1} ∀i ∈ U,∀j ∈ B.

(2.2)
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2.4.2 General Utility Maximization: Allowing Joint Association

The indicator variable xij enforces unique association, which is com-

binatorial. Moreover, the cell association has to be considered jointly with

resource allocation, because resource allocation depends on the association

and user association depends on the achievable resource for each user. There-

fore, the resulting problem is difficult to solve. While allowing a user to be

served by multiple BSs may require more overhead to implement, and hence

perhaps may not be viable in practice, it makes the problem more tractable

and provides an upper bound on the network performance. In this section, we

make the following assumption:

Assumption 2.1. We assume that users can be associated with more than

one BS at the same time.

Under this assumption, the constraint
∑

j xij = 1 can be eliminated,

and hence there is no need for xij as additional indicators for cell association.

The resource allocation variable yij ∈ [0, 1] indicates the association, i.e., user

i is associated with BS j when yij > 0, otherwise they are not connected.

Therefore, we focus only on the investigation of how resources should

be allocated to different users with different rate rij so as to maximize the

utility, instead of considering in conjunction with cell association.
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We formulate the joint association problem as follows:

max
y

∑

i∈U

Ui(
∑

j

yijrij)

s.t.
∑

i∈U

yij ≤ 1, ∀j ∈ B

0 ≤ yij ≤ 1,∀i ∈ U,∀j ∈ B.

(2.3)

Note that this joint association scheme focuses on how to allocate resources

for each BS, rather than how to associate users. In the following sections, we

show that with some specific utility functions (e.g., logarithmic utility) and

channel conditions (e.g., static channel over an association period), yij can be

directly found without Assumption 2.1 and thus there is no need to decouple xij

and yij as in this optimization. However, problem (2.3) provides an ultimate

limit on achievable network performance for general utility maximizations.

Interestingly, our simulation results show that the bound is quite tight in

logarithmic utility maximization.

2.4.3 Logarithmic Utility Formulation

Using linear utility functions for throughput maximization results in a

trivial solution, where each BS serves only its strongest user. While throughput-

optimal, this is not a satisfactory solution for many reasons. Instead, we seek

a utility that naturally achieves load balancing, and some level of fairness

among the users. To accomplish this, we use a logarithmic utility function.

The resulting objective function with logarithmic utility is

Ui(Ri) = log

(∑

j

yijrij

)
.
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The log utility function is concave, and hence has diminishing returns. This

property encourages load balancing. This is consistent with the resource al-

location philosophy in real systems, where allocating more resources for a

well-served user is considered low priority, whereas providing more resources

to users with low rates (e.g., in the linear region of the logarithmic function)

is desirable. Thus, logarithmic function as a very common choice of utility

function is well known as a objective function striking good balance between

network throughput and user fairness [50]. Therefore, in the remainder of this

chapter, we use a logarithmic utility function.

2.4.4 Analysis of Optimized Resource Allocation

For general utility functions, we proposed one possible tractable model

for the joint cell association and resource allocation problem in Sec. 2.4.2,

which allows users to be served by multiple BSs. In practice, this is much

more difficult to implement than unique association. Therefore, we consider

it as a benchmark in this chapter, providing an upper bound on the network

utility. With log utility function and the unique association, the objective

function of (2.2) becomes

∑

j∈B

∑

i∈{k:xkj=1}

Ui(yijrij).

Then, we conduct the resource allocation analysis on a typical BS j

and the users associated with that BS. The utility maximization problem for
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the users associated with BS j is

max
y

∑

i∈{k:xkj=1}

log(yijrij)

s.t.
∑

i∈U

yij ≤ 1,

0 ≤ yij ≤ 1 ∀i ∈ U.

(2.4)

Definition 2.2. We define the effective load of BS, denoted by Kj, as the num-

ber of users associated with it, i.e., Kj =
∑
k∈U

xkj, where xij is the association

indicator.

The optimization (2.4) suggests the following proposition.

Proposition 2.1. The optimal resource allocation is equal allocation for the

cases with static channel over a sufficient large time window (e.g., the associ-

ation period), i.e., yij = 1/Kj .

Proof. For the cases with static channel over a sufficient large time window,

the objective function of (2.3) is

max
y

∑

i∈{k:xkj=1}

log(yijrij)

=
∑

i∈{k:xkj=1}

log(rij) + log(yij),
(2.5)

where
∑

i log(rij) is constant relative to SINRij. This resource allocation prob-

lem is essentially the proportional fair scheduling (i.e., to maximize the log

utility in terms of long-term average throughput). Paper [51] shows that the

optimal resource allocation is to equally allocate resources to users. For com-

pleteness, we give the proof as follows.
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The objective function is equivalent to maximize the geometric mean:

max
y

∑

i∈{k:xkj=1}

log(yij)⇔ max
y

1

Nu

log

(
Nu∏

i

yij

)
⇔ max

y

n
√
y1jy2j · · · yNuj,

where NU denotes the number of users associated with BS j. As the geometric

mean is no greater than the arithmetic mean, we have

n
√
y1jy2j · · · yNuj ≤

y1j + y2j + · · ·+ yNuj
Nu

, (2.6)

where the equality holds if and only if y1j = y2j = · · · = yNuj.

Note that in more dynamic settings which take into account time-

varying channels over association period, the equal resource allocation may

not be optimal. In such cases, we use equal resource allocation (e.g., the re-

sult of round-robin scheduling) as the suboptimal scheme and leave the joint

optimization of user association and scheduling for future work. The joint

optimization of user association and scheduling in massive MIMO scenarios is

studied in Chapter 4.

Given the equal resource allocation, the long-term rate for user i is

Rij =
rij
Kj

, (2.7)

so we can rewrite the optimization problem (2.2) to

max
x

∑

i∈U

∑

j∈B

xij log

(
rij∑
k xkj

)

s.t.
∑

j∈B

xij = 1, ∀i ∈ U,

xij ∈ {0, 1}, ∀i ∈ U, and ∀j ∈ B.

(2.8)
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When the network is small, the optimal user association can be found

through a brute force search. As illustrated in Fig. 1.2 in Chapter 2, the load-

aware association that maximizes (2.8) moves traffic from congested macrocells

to more lightly loaded small cells. Note that admission control carries out a

similar task, where new arrival users will be blocked or forced to other lightly

loaded BSs when the potential BS is heavily loaded. However, admission

control is performed before a connection is established (i.e., only for new users

rather than existing users), and thus cannot achieve an optimal association in

terms of load balancing.

2.4.5 Relaxation to Fractional User Association

The above problem is combinatorial due to the binary variable xij. The

complexity of the brute force method is O(NNU
B ), where NB and NU denote

the number of BSs and of users, respectively. The computation is essentially

impossible for even a modest-sized cellular network. To overcome this, we

again invoke Assumption 2.1 to allow users to be associated to more than one

BS, i.e., fractional association. This physical relaxation reduces the complexity

which is no longer combinatorial, and upper bounds the special case where each

user is associated with just one BS. It is more difficult to implement fractional

association than unique association in a practical system, and thus we adopt a

rounding method to revert solutions to unique association. Numerical results

in Sec. 2.7 show that there is almost no loss after rounding, and thus the

upper bound provided by fractional association is quite tight.
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With fractional association, the indicators xij can take on any real value

in [0, 1]. The following relaxation of (2.8) is convex:

max
x

∑

i∈U

∑

j∈B

xij log

(
rij∑
k∈U xkj

)

s.t.
∑

j∈B

xij = 1, ∀i ∈ U,

0 ≤ xij ≤ 1, ∀i ∈ U, and ∀j ∈ B.

(2.9)

To directly solve the convex optimization (2.9), global network infor-

mation is necessary, which requires a centralized controller. In the following

section, we propose a distributed algorithm that only needs local network in-

formation and relaxes the coordination requirement among BSs.

2.5 The Distributed Algorithm Based on the Dual Sub-
gradient Method

The centralized functionality for solving the convex optimization prob-

lem is usually implemented by a server in the core network for macrocells (e.g.,

Radio Network Controller (RNC) which carries out resource management in

UMTS), which only allows slow adaptation at relatively long timescales and

requires coordination among different tiers. Additional issues with centralized

mechanisms include excessive computational complexity and low reliability, as

any crash on the centralized controller operation will disrupt load balancing.

In HetNets, it is usually difficult to coordinate macrocellls and femtocells which

are deployed by operators and users respectively. Therefore, a low complexity

distributed algorithm without coordination is desirable.
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In this section, we propose a distributed algorithm via dual decomposi-

tion [52]. The dual problem of (2.9) is decoupled into two sub-problems, which

can be solved separately on users’ side and BSs’ side respectively.

2.5.1 Dual Decomposition

The primal formulation in (2.9) can be expressed in an equivalent form

by introducing a new set of variables, the load metric Kj =
∑
i

xij.

max
x

∑

i

∑

j

xij log (rij)−
∑

j

Kj log (Kj)

s.t.
∑

j

xij = 1, ∀i ∈ U

∑

i

xij = Kj, ∀j ∈ B

Kj ≤ NU

xij, Kj ≥ 0, ∀i ∈ U, and ∀j ∈ B,

(2.10)

where the redundant constraint Kj ≤ NU is added for the convergence analysis

of of the distributed algorithm (see Theorem 2.1).

The only coupling constraint is
∑

i xij = Kj in problem (2.10). This

motivates us to turn to the Lagrangian dual decomposition method whereby a

Lagrange multiplier µ is introduced to relax the coupled constraint. The dual

problem is thus:

D: min
µ

D(µ) = fx(µ) + gK(µ), (2.11)
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where

f(µ) =





max
x

∑

i

∑

j

xij (log(rij)− µj)

s.t.
∑

j

xij = 1

0 ≤ xij ≤ 1

(2.12)

g(µ) = max
K≤NU

∑

j

Kj (µj − log(Kj)) . (2.13)

When the optimal value of (2.10) and (2.11) is the same, we say that

strong duality holds. Slater’s condition is one of the simple constraint qual-

ifications under which strong duality holds. The constraints in (2.10) are all

linear equalities and inequalities, and thus the Slater condition reduces to fea-

sibility [53]. Therefore, the primal problem (2.10) can be equivalently solved

by the dual problem (2.11). Denoting xij(µ) as the maximizer of the first sub-

problem (2.12) and Kj(µ) as the maximizer of the second sub-problem (2.13).

There exits a dual optimal µ∗ such that x(µ∗) and K(µ∗) are the primal opti-

mal. Therefore, given the dual optimal µ∗, we can get the primal optimal solu-

tion by solving the decoupled inner maximization problems (2.12) and (2.13)

separately without coordination among the users and BSs.

2.5.2 The Distributed Algorithm

The outer problem is solved by the gradient projection method [54],

where the Lagrange multiplier µ is updated in the opposite direction to the

gradient ∇D(µ). Evaluating the gradient of the dual objective function re-

quires us to solve the inner maximization problem, which has been decom-
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posed into two sub-problems f and g. These two sub-problems can be solved

in a distributed manner. The tth iteration of gradient projection algorithm is

given as follows:

Users’ Algorithm:

i) Each user measures SINRs from all BSs, and receives the value of µj

broadcast by each BS at the beginning of the iteration.

ii) User i connects to BS j∗ which satisfies

j∗ = arg max
j

(log(rij)− µj(t)) . (2.14)

If there are multiple maximizers, user i chooses any one of them.

BSs’ Algorithm:

Each BS updates Kj and µj, and announces the new multiplier µj to

the system.

i) The solution to (2.13) is

Kj(t+ 1) = min{NU , e
(µj(t)−1)}. (2.15)

ii) The Lagrange multiplier µj is updated by

µj(t+ 1) = µj(t)− δ(t)

(
Kj(t)−

∑

i

xij(t)

)
, (2.16)

where δ(t) > 0 is a dynamically chosen stepsize that is discussed in

Sec. 2.5.3.
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There is a nice interpretation of µj. The multiplier µ works as a message

between users and BSs in the system. In fact, it can be interpreted as the price

of the BSs determined by the load situation, which can be either positive or

negative. If we interpret
∑
i

xij as the serving demand for BS j and Kj as

the service the BS j can provide, then µj is the bridge between demand and

supply, and Eq. (2.16) is indeed consistent with the law of supply and demand :

if the demand
∑
i

xij for BS j exceeds the supply Kj, the price µj will go up;

otherwise, the price µj will decrease. Thus, when the BS j is over-loaded, it will

increase its price µj and fewer users will associate with it, while other under-

loaded BSs will decrease the price so as to attract more users. Moreover, the

function of µj (2.16) in the distributed algorithm motivates a rate bias scheme,

which is discussed in Sec. 2.6.

Given xij(µ) and Kj(µ), the adjustment (2.16) can be made completely

distributed among BSs based on only local information. At each iteration, the

complexity of the distributed algorithm is O(NBNU). As for the exchanged

information, at each iteration each BS broadcasts its µj which is a relatively

small real number, and each user reports its association request to only one

BS which it wants to connect to. The amount of information to be exchanged

in the distributed algorithm is M(NB + NU), where M is the number of iter-

ations, while in the centralized method it is proportional to (NB ×NU). The

gradient method converges fast generally, especially with the dynamic stepsize

proposed in Sec. 2.5.3, and thus M is a small number (less than 20 in the

simulation). Therefore, even with the requirement of multiple message ex-
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changes, the distributed algorithm can still be superior for some cases, such as

large scale problems. It is applicable as long as the convergence of distributed

algorithm is faster than the association period. After iteratively performing

the above steps, the algorithm is guaranteed to converge to a near-optimal

solution. This is proved in the next subsection.

2.5.3 Step Size and Convergence

Suppose the stepsize dynamically updates according to the rule

δ(t) = γ(t)
D(µ(t))−D(t)

‖∂D(µ(t))‖2
, 0 < γ ≤ γ(t) ≤ γ̄ < 2, (2.17)

where D(t) is an estimate of the optimal value D∗ of problem (2.11), γ and

γ̄ are some scalars [55]. We consider a procedure for updating D(t), whereby

D(t) is given by

D(t) = min
0≤τ≤t

D(µ(τ))− ε(t), (2.18)

and ε(t) is updated according to

ε(t+ 1) =




ρε(t), if D(µ(t+ 1)) ≤ D(µ(t)),

max{βε(t), ε}, otherwise,
(2.19)

where ε, β and ρ are fixed positive constants with β < 1 and ρ > 1 [55].

Thus in this procedure, we want to reach to a target level D(t) that

is smaller by ε(t) over the best value achieved. Whenever the target level is

achieved, we increase ε(t) (i.e., ρ > 1) or we keep it at the same value (i.e.,

ρ = 1). If the target level is not attained at a given iteration, ε(t) is reduced

34



up to a threshold ε, which guarantees that the stepsize δ(t) (2.17) is bounded

away from zero. As a result, we have the following theorem.

Theorem 2.1. Assume that the stepsize δ(t) is updated by the dynamic step-

size rule (2.17) with the adjustments (2.18) and (2.19). If D∗ > −∞ where

D∗ denotes the optimal value, then

inf
t
D(µ(t)) ≤ D∗ + ε. (2.20)

Proof. The derivative of function D(µ) (2.11) is given by

∂D

∂µj
(µ) = Kj(µ)−

∑

i

xij(µ). (2.21)

In our primal problem, Kj =
∑

i xij ≤ NU where NU is the total number of

users. According to (2.21), when Kj and
∑

i xij are bounded, the subgradient

of dual objective function ∂D is also bounded:

sup
t
{‖∂D(µ(t))‖} ≤ c, (2.22)

where c is some scalar. Thus, our problem satisfies the necessary conditions

of Proposition 6.3.6 in [55], which completes the proof.

2.6 Cell Range Expansion (Biasing)

The proposed approaches above is sensitive to the deployment of users

and BSs, i.e., the algorithms have to run again and again in order to keep

tracking of changes in networks. In this section, we investigate a simple CRE
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which less sensitive to the change of deployments. CRE is proposed a practical

way to balance loads in HetNets, since it allows for a simple uncoordinated

decision based only on the received power from a given BS [24,56]. It is imple-

mented by assigning a multiplicative SINR bias to each tier of BSs (depending

primarily on their transmit power). For example, if a picocell has a 10 dB

SINR bias vs. the macrocell BS, a user would associate with it until the SINR

delivered by the macro BS is a full 10 dB higher than the picocell. This

can be performed by measuring the pilot signals from the BSs within radio

range and then simply associating with the one that has the highest biased

received power. In this section, we investigate whether this simple approach

is compatible with optimal performance by solving (2.9).

There are some recent studies on the SINR bias [48, 57], but have not

given any theoretical guidance on the “best” biasing factors in the sense of

load balancing and/or achieving some optimization criteria. In this section,

we evaluate the CRE with SINR bias provided by our optimal user association

scheme. Moreover, the distributed algorithm inspires a rate bias scheme where

the biasing factor is multiplied with the rate instead of SINR. The best SINR

biasing factor is obtained by a brute force search based on the optimal FUA,

and the best rate biasing factor is derived directly from the optimal µ∗j in

the dual distributed algorithm. The network-wide performance with either

biasing factor gets pretty close to the optimal FUA, among which the rate

bias performs better than the SINR bias. A more interesting observation is

that the biasing factors are insensitive to the location of BSs and users, which
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makes the bias schemes simple and robust to implement in practice.

2.6.1 SINR Bias

We first consider the SINR bias, where users are associated with the

BS which provides the highest biased SINR.

Definition 2.3. Given the biasing factor Aj for BS j, we define the biased

SINR received by user i from BS j as

SINR′ij = Aj · SINRij =
Aj · Pjgij∑

k∈B,k 6=j
Pkgik +N0

. (2.23)

We adopt an identical biasing factor for all BSs in the same tier [24,

48, 57]. Note that setting the biasing factors at all tiers to 1 reduces to the

conventional max-SINR cell association, and setting them to Aj = 1/Pj asso-

ciates users to the BS with the lowest path loss. Biasing under-loaded small

BSs, the cells extend the coverage and attract more users, thus resulting in a

more fair distribution of traffic. From the simulation results given in Sec. 2.7,

we observe that the biasing factors are quite stable as the BS densities change,

and the performance of the SINR bias is very close to the optimal FUA.

2.6.2 Rate Bias

According to our load aware association schemes, the best SINR biasing

factors are obtained by a brute force search with high complexity. The solution

(2.14) of the dual distributed algorithm motivates the more tractable idea

of rate bias. According to (2.14), user i is associated with BS j∗, where
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j∗ = arg max
j

(rije
−µ∗j ). Therefore, by setting the rate biasing factor to Bj =

e−µ
∗
j , the association would be exactly same as the association obtained by the

distributed algorithm.

Definition 2.4. We define the biased rate of user i from BS j as

r′ij = rij ·Bj. (2.24)

Through CRE, users are associated with the BS that serves the maximum

biased rate r′ij. In rate bias, the biasing factor is in the exponential term of

SINR (i.e., (1+SINRij)
Bj), which is different from SINR bias where the biasing

factor is multiplied directly to SINR (i.e., AjSINRij).

In the distributed algorithm, the price variables are different from BS

to BS, even for those belonging to the same tier. However, in the investigation

of range expansion, just as for SINR bias, we use the same biasing factor

for all BSs in a given tier, which is the mean of the optimal multiplier, i.e.,

Bj = E[e−µ
∗
l ], where l ∈ jth tier. The results of rate bias shown in the next

section is very close to the optimal solution of (2.9).

2.7 Performance Evaluation

We consider a three-tier HetNet with transmit power {P1, P2, P3} =

{46, 35, 20}dBm. The theoretical analysis throughout this chapter is inde-

pendent of the spatial distribution of BSs. For the simulation, we model the

locations of the macro BSs to be fixed, and the locations of the small BSs to
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be uniformly and independently distributed in space. This corresponds to op-

erator deployed macros/picocells, and customer-placed femtocells. We assume

the location processes across different tiers are independent, with deployed

densities {λ2, λ3} = {5, 20} per macrocell. In modelling the propagation envi-

ronment, we use a path loss exponent 3 and 4 for macros/picocells and femto-

cells respectively. We assume lognormal shadowing with a standard deviation

σs = 8dB. At room temperature and bandwidth 10MHz, the thermal noise

power is σ2 = kTB = −104dBm. We then assume that during the connection

period between user i and BS j, the user achieves the Shannon capacity rate,

i.e., rij = log2(1 + SINRij).

2.7.1 Loads among different BSs

Fig. 2.1 compares the load distribution with different association schemes.

The max-SINR association results in very unbalanced loads: the macro BSs

are over-loaded, while small BSs serve far fewer users, with some even being

idle. In the fractional association scheme, the load is shifted to the less con-

gested small BSs, which suggests that our objective alleviates the asymmetric

load problem. The results after rounding are almost the same as the global

optimum obtained by fractional association, showing the effectiveness of the

rounding scheme. This occurs because there are few users associated with

more than one BSs: most users are not fractional (i.e., associated to more

than one BSs). Moreover, the fractional users usually have a strong preference

towards one of the BSs. The proposed distributed algorithm and the CRE
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scheme also provide near-optimal load distributions.
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Figure 2.1: Comparisons of average number of users per tier in a three-tier
HetNet.

2.7.2 Rate CDF

As another performance measure, Figs. 2.2 and 2.3 show the cumulative

distribution function (CDF) of long-term rate in HetNets and conventional

networks with different association schemes, respectively. In HetNets, the

rate CDFs of joint association, fraction-rounding, the distributed algorithm

and CRE all improve significantly (2-3.5x rate gain) at low rate vs. max-

SINR association, in both static setting and stochastic setting. The CDFs

of fractional-rounding and the distributed algorithm almost overlap, which

verifies that the distributed algorithm converges to a near-optimal solution.

The result of joint association is very close to the result of fraction-rounding,
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Figure 2.2: The CDFs of overall rate in a three-tier HetNets, in both static
setting and stochastic setting. The biasing factors of macro BSs, picos and
femtos are {A1, A2, A3} = {1.00, 4.00, 11.9} in SINR bias, and {B1, B2, B3} =
{1.00, 1.59, 1.88} in rate bias, respectively.

which verifies the conclusions in Prop. 2.1. Note that in stochastic setting,

we adopt PF as the scheduling scheme. The static channel equals the average

of stochastic channel. From Fig. 2.2, we can see that the rate in stochastic

setting with PF is larger than the rate in static setting, although by PF, the

resource allocation will eventually converge to almost equal allocation for each

user. This is because the channel distribution would be changed by PF (users

are more possible to be served in good channel status, i.e., the rij would be

larger than the average rate defined in this chapter). Fig. 2.3 shows that the

rate gain is unique for HetNets as long as the users are uniformly distributed.

The ratios of rate α vs. probability P(R < α) of various approaches
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Figure 2.3: The CDFs of overall rate in macro-only networks.

to the max-SINR association are represented in Fig. 2.4. The rate gain is

quite large (e.g., 3.5x vs. max-SINR association at the 10% rate point). The

results for simple CRE are very close to the optimum associations, where

the empirically observed biasing factors of macrocells, picocells and femto-

cells are {A1, A2, A3} = {0, 6, 10.8} dB in the SINR bias, and {B1, B2, B3} =

{1.00, 1.59, 1.88} (linear units) in the rate bias, respectively.

2.7.3 Biasing Factor

The effect of BS density and transmit power on biasing factors is con-

sidered in Figs. 2.5 and 2.6, respectively. The biasing factors have been

normalized, which means that biasing factors at macro BSs are 1.

When the deployed density of small BSs changes, it is interesting to

observe in Fig. 2.5 that deploying more small BSs has very little effect on

42



the biasing factor. Intuitively, though the density of BSs increases, within

a reasonable change range of density, there are more users associated with

that type of BSs in the optimal association, which makes the needed range

expansion almost the same as that in the original scenario. Therefore, the

optimal biasing factors will be almost the same as the network infrastructure

deployment evolves.

However, the story is quite different when the transmit power changes.

As the power of 2nd-tier BSs increase in Fig 2.6a, the biasing factor of 2nd-tier

BSs steadily decreases, while the biasing factor of 3rd-tier BSs almost stays

the same. A similar conclusion can be observed in Fig. 2.6b, where the biasing

factor of 3rd-tier BSs decreases gradually and the biasing factor of 2nd-tier BSs

is almost static. The biasing factor is smaller as the transmit power increases
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Figure 2.4: Rate gain in a three-tier HetNet. The rate ratio of joint association
scheme, fractional-rounding scheme, dual distributed algorithm, and CRE to
max-SINR association is represented.
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having biasing factor 1.

44



because users are more likely to be associated to these BSs using max-biased

SINR even without a strong bias.

2.8 Summary

In this chapter, we propose a class of novel user association schemes

that achieve load balancing in HetNets through a network utility maximization

problem. We first consider the cell association and resource allocation jointly,

and propose an upper bound on performance. Then we formulate a logarithmic

utility maximization problem where the equal resource allocation is optimal

for cases with static channels, and design a distributed algorithm via dual

decomposition, from the relaxation of physical constraints. The distributed

algorithm is proved to converge to a near-optimal solution, with low complexity

that is linear to the number of users and the number of BSs. Finally, our

scheme is extended to the CRE, which requires limited changes to the existing

system architecture by introducing biasing factors to small BSs. We consider

two types of biasing factors (SINR and rate), and evaluate the effects of BSs’

density and transmit power on the biasing factors in the simulation.

A key observation is that the optimal biasing factors are nearly inde-

pendent of BS densities for the various tiers, but highly dependent on the

per-tier transmit powers. With these optimal biasing factors, the network

nearly achieves the optimal load-aware performance. The numerical results

demonstrate that a load-aware association significantly improves resource uti-

lization and mitigates the congestion of macro BSs, resulting in a multi-fold
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with tier 1 having biasing factor 1.
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gain to the overall rate for most users, particularly those with previously low

rates. The network utility maximization problem studied in this chapter will

be generalized to address the joint optimization of user association and inter-

ference management (e.g., resource blanking) in the following chapters.
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Chapter 3

Joint Optimization of User Association and

Resource Blanking1

As demonstrated in Chapter 2, load-aware user association provides

a significant improvement on rate distribution versus max-SINR association.

However, load balancing results in the offloaded users experiencing not only

a weaker received signal, but also stronger interference. This motivates the

straightforward idea of leaving certain time/frequency resources of the macro-

cells blank (i.e., similar to eICIC, except that eICIC only considers blanking in

time domain), during which the offloaded users can receive much higher SINR

from the small cells. Although RB blanking decreases the time-frequency

resources available to the remaining macrocell users, if there is enough par-

allelism in the shorter range small cell transmissions (which now have higher

SINR and thus rate), this loss can be overcome, and indeed the net gain can

be fairly significant [26]. In this chapter, we formulate a joint optimization

of user association and RB blanking to address the following questions. How

much fraction of resources should the BSs leave blank? How should users as-

1This chapter has been published in [58]. Coauthor Dr. Mazin Al-Shalash has provided
technical suggestions and many insights to this work, and Dr. Constantine Caramanis and
Dr. Jeffrey G. Andrews are my supervisors.
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sociate during each of the “on” and “off” periods as a function of the small

cell density and other system parameters? What is the best-case gain of such

an approach? Similar to Chapter 2, HetNets in this chapter refer to networks

with different kinds of BSs (i.e., no D2D communication in this chapter).

3.1 Related Work

There has been increasing effort to study RB blanking in HetNets re-

cently. Paper [59] presents system simulations to compare the performance

of RB blanking and CoMP techniques. Some heuristic algorithms for user

association and resource partitioning are proposed in [60–62], which improve

the cell-edge performance. Papers [63, 64] study the muting ratio leveraging

techniques from game theory. Stochastic geometry is also a viable approach

to study CRE and RB blanking by providing analytical spatial average re-

sults [48, 65, 66]. Besides, a dynamic scheme to update bias factors and RB

blanking duty cycle based on reinforcement learning technique is proposed

in [67]. The approach related to what we propose is to leverage techniques

from optimization theory [30, 68–71]. Paper [68] studies the optimal muting

ratio in a simplified scenario with one macro BS and one femto BS, while [69]

investigates the optimal RB blanking for dynamic scenarios (e.g., with load

variation). Despite so many existing works on RB blanking, the network-wide

joint optimization of user association and RB blanking is still far from being

fully understood. There are two recent papers [70, 71] focusing on such joint

optimization problems which are similar to the problem considered in this
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chapter. Different from [70], we further analyze the performance gap between

the case where users can associate to multiple BSs – termed fractional asso-

ciation, and the case where each user associates to at most one BS – termed

unique association. Paper [71] considers the joint optimization of RB blank-

ing and user association, where each user either connects to the best macro

or best pico BS, which is different from this chapter that considers the user

association over any user-BS pairs.

3.2 Contributions

The joint optimization of load-aware user association and RB blanking

is a very challenging problem, due to the coupled relationship between user

association, scheduling, and RB blanking. This chapter extends the framework

proposed in Chapter 2 to the RB blanking case, where all macro BSs are off

for the same RBs. The joint optimization is combinatorial if users can only

associate with one BS (i.e., unique association), but if this constraint is relaxed

to allow users to associate to different BSs (i.e., fractional association), the

resulting problem turns out to be convex. It upper bounds the network utility

with the unique association. We prove that the number of users associated with

multiple BSs is quite limited, and is in fact smaller than the number of BSs.

Therefore, a unique association approximated from the fractional association

is expected to have comparable performance.

We then turn our attention to the optimal user association during the

two different phases – the blank (Off) RBs and normal (On) RBs. We demon-
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strate that the optimal associations for blank and normal RBs are very differ-

ent, with much more aggressive offloading during the Off periods. The fraction

of blank RBs is found to increase with the number of picocells in the network.

For example, if there are 6-10 picocells per macro, the macrocell should be

off about half the time. The gains from joint optimization of load balanc-

ing and RB blanking is quite large, while without an appropriately modified

association, the gain from RB blanking is limited.

3.3 System Model

Similar to Chapter 2, we consider a downlink HetNet with K tiers of

BSs. We consider a synchronous configuration, where each macro BS has the

same blank RBs. We jointly optimize the duty cycle of muting at macro BSs

and the corresponding user association. The sets of all BSs and users are

denoted by B and U with size NB and NU , respectively. Let B1 ∈ B be the

set of marcocell BSs, with size NB1 . The SINR of user i from BS j in normal

(On) RBs is

SINR
(n)
ij =

Pjhij∑
n∈B/j Pnhin + σ2

, ∀i ∈ U, j ∈ B, (3.1)

while the SINR of user i from BS j in blank (Off) RBs is

SINR
(b)
ij =





Pjhij∑
n∈B/(B1∪j) Pnhin + σ2

, ∀j ∈ B/B1,

0, ∀i ∈ U, j ∈ B1,

(3.2)

where Pj denotes the transmit power of BS j, hij is the channel gain of the

link from BS j to user i, and σ2 is the noise power level. The channel gain
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includes path loss, shadowing and antenna gain. In this chapter, we assume a

static channel during each resource allocation period, which is applicable for

low mobility environments. Stochastic channel analysis is left as future work.

We denote by r
(n)
ij and r

(b)
ij the spectral efficiency of user i from BS

j in normal and blank RBs, respectively. Generally, spectral efficiency is a

logarithmic function of SINR (e.g., r
(n)
ij = log

(
1 + SINR

(n)
ij

)
). We denote the

fraction of resources allocated from BS j to user i in normal and blank RBs

by s
(n)
ij and s

(b)
ij , respectively, where

∑
i∈U s

(m)
ij ≤ 1,∀m ∈ {b, n}. We define the

long-term rate as follows.

Definition 3.1. The long-term rate of user i from BS j is

Rij = (1− z)s
(n)
ij r

(n)
ij + zs

(b)
ij r

(b)
ij , (3.3)

where z is the fraction of blank RBs. The overall rate of user i, denoted by

Ri, can be calculated according to Ri =
∑

j∈BRij.

In the following section, we investigate a utility maximization problem

in terms of the long-term rate Ri to find the optimal muting ratio, and the

corresponding optimal user association.

3.4 Problem Formulation

The resource allocation variables s
(n)
ij and s

(b)
ij also indicate the asso-

ciation (i.e., user i is associated with BS j in normal RBs when s
(n)
ij > 0).

Typically, each user will be served by at most one BS, i.e.,
∑

j 1{s(n)
ij >0} ≤ 1
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and
∑

j 1{s(b)ij >0} ≤ 1. The unique association constraint makes the problem

combinatorial, and thus difficult to solve. Though it may not be viable in

practice to allow users to be served by multiple BSs at the same time, we relax

the unique association constraint and thus make the problem convex, which

can serve as an upper bound to benchmark the performance. In the rest of

this chapter, we make the following assumption.

Assumption 3.1. Users can be jointly served by more than one BS at the

same time.

We call users associated with multiple BSs “fractional users”. Under

the above assumption, the unique association constraint is relaxed, and the

resulting optimization problem is:

max
s(n),s(b),z

∑

i∈U

Ui(Ri)

s.t.
∑

i

s
(n)
ij ≤ 1, ∀j,

∑

i

s
(b)
ij ≤ 1, ∀j,

s
(n)
ij , s

(b)
ij ∈ [0, 1], ∀i, j

z ∈ [0, 1], ∀j,

(3.4)

where Ui(·) is a continuously differentiable, and strictly concave utility func-

tion [49]. As revealed in Chapter 2, we adopt a logarithmic utility function,

which naturally achieves load balancing. Changing xij = (1 − z)s
(n)
ij and
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yij = zs
(b)
ij , the optimization problem (3.4) is equivalent to

max
x,y,z

∑

i∈U

log

(∑

j∈B

(
xijr

(n)
ij + yijr

(b)
ij

))

s.t.
∑

i∈U

xij ≤ 1− z, ∀j,

∑

i∈U

yij ≤ z, ∀j,

xij, yij, z ∈ [0, 1], ∀i, j.

(3.5)

Proposition 3.1. The optimization problem (3.5) is convex.

Proof. Denote the objective function in (3.5) by g(x, y). We will use Hessian

matrix to check its convexity. The Hessian has the form

∇2g = −




B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 0 BNU


 . (3.6)

The matrix Bi can be expressed as

Bi =
rT r

(
∑

k (xikr1ik + yikr2ik))
2 , (3.7)

where r =
[
r1i1 , r1i2 , · · · , r1iNB

, r2i1 , r2i2 , · · · , r2iNB

]
.

Therefore, the matrix Bi is positive semi-definite (PSD) for all i, and

thus −∇2g is also PSD. The problem (3.5) has a concave objective function

with linear constraints, which implies that (3.5) is a convex optimization.

Though the objective function in (3.5) is strictly concave with respect

to Ri, it is not strictly concave with respect to x and y. We have the following

proposition which discusses the uniqueness of the optimal solution.
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Proposition 3.2. The optimization problem (3.5) has a unique optimal re-

source allocation (i.e., unique x∗ij and y∗ij) almost surely. If
∑

i

(
x∗ij + y∗ij

)
= 1,

then the optimal solution of problem (3.5) is unique (i.e., z∗ is also unique).

Proof. The proof includes two basic steps. In the first step, U(Ri) is strictly

concave in Ri and thus we have unique solution R∗i . The users with unique

association can be obtained uniquely. The second step is to show that the as-

sociations of fractional users can also be uniquely generated from R∗i . This

can be proved by bipartite graphs. Details can be found in [72]. When
∑

i

(
x∗ij + y∗ij

)
= 1, we have

∑
i∈U x

∗
ij = 1− z∗ and thus z∗ is also unique.

Returning to Assumption 3.1, what is the impact of the relaxation on

the optimal solution? To answer this question, we first use a graph to represent

the association, and then by applying Karush-Kuhn-Tucker (KKT) conditions,

we show that the impact is limited.

In the graph representation of association, the nodes correspond to the

users in HetNets, while the edges correspond to the BSs shared between the

connected users, illustrated in Fig. 3.1. Each node has a unique ID from 1 to

NU , which is the user index, and each edge has a color from 1 to NB for BS

identification. For example, in Fig. 3.1a, user i is associated with both BSs j

and n, and user m is jointly served by BSs j and k. Note that the graph is

not necessarily connected. The number of isolated subfigures depends on the

number of fractional users. Another important property of the representation

graph is that it is comprised of several connected/isolated complete graphs.

55



(a) Example of three users. (b) Example of four users.

Figure 3.1: Examples of graph representation which illustrates the fractional
user association.

The convex optimization (3.5) has differentiable objective and con-

straint functions, and satisfies Slater’s condition. Therefore, the KKT con-

ditions provide necessary and sufficient conditions for the optimality [53]. Ap-

plying the KKT conditions to problem (3.5), we have the following proposition.

Proposition 3.3. In the optimal solution, the number of users which are

served by multiple BSs in normal RBs is at most NB − 1. In blank RBs, the

number of users associated with multiple BSs is at most NB −NB1 − 1.

Proof. We adopt similar techniques in [72]. For completeness, we provide the

proof as follows. We define the Lagrangian associated with problem (3.5) as

L(x, y, z, λ, ν) = −
∑

i∈U

log

(∑

j∈B

(
xijr

(n)
ij + yijr

(b)
ij

))

+
∑

j∈B

λj

(∑

i∈U

xij − z

)
+
∑

j∈B

νj

(∑

i∈U

yij − (1− z)

)
,

(3.8)

where λj and νj are the Lagrange multipliers associated with the jth inequality

constraint in normal and blank RBs in (3.5), respectively. The KKT conditions
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are: 



r
(n)
ij

Ri

= λj, if xij > 0,

r
(b)
ij

Ri

= νj, if yij > 0,

∑

j

λj =
∑

j

νj, if z ∈ (0, 1),

∑

i

xij ≤ z, λj

(∑

i

xij − z

)
= 0,

∑

i

yij ≤ 1− z, νj

(∑

i

yij − (1− z)

)
= 0,

xij, yij, z ∈ [0, 1], λj, νj ≥ 0

(3.9)

We conduct analysis on normal RBs, and the same conclusion can be

extended to the blank RBs. From KKT conditions (3.9), for xij > 0, xin >

0, xmj > 0 and xmn > 0, we have

r
(n)
ij

r
(n)
in

=
λj
λn

=
r

(n)
mj

r
(n)
mn

, (3.10)

which is true with probability 0. Therefore, it is almost sure that any two

users can share at most one same BS (i.e., the number of edges between any

two nodes in graph is at most 1). Similarly, we consider an example of three

users, illustrated in Fig. 3.1a. There are three possible cases:

1. BSs j, n, k are three different BSs: We have

r
(n)
mj

r
(n)
mk

=
λj
λn

λn
λk

=
r

(n)
ij

r
(n)
in

r
(n)
ln

r
(n)
lk

, (3.11)

which is true with probability 0.
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2. n = k 6= j:

The user m is associated with BS j and n, and the user i is also associated

with j and n, which contradicts the result in the two-user example.

3. j = n = k: It is possible that these three users are all associated with the

same BS, where the representation graph becomes a complete graph.

Therefore, a graph representation of three users contains either a loop

with the same color or no loop. We can get a similar result for a graph with

more than three users (e.g., Fig. 3.1b). In conclusion, the users associated with

the same BS constitute a complete graph with edges having the same color.

We can generate a new graph, where each complete graph can be considered

as a new node. The new graph has no loops and thus it has the maximal

number of edges when it is a tree. The number of edges in a tree is one less

than the number of nodes in the tree. Therefore, the maximal number of

edges connecting different complete graphs is NB − 1. The number of users

associated with more than one BSs equals the number of edges in the new

graph, which is no more than NB − 1. We can get similar conclusions for the

blank RBs.

Although we relax the unique association constraint, Proposition 3.3

indicates that the relaxed solution would be close to a unique association.

This implies the possibility to get a well-approximated near-optimal unique

association solution via rounding. From KKT conditions, we also have the

58



following conclusion about the difference between associations in normal and

blank RBs.

Proposition 3.4. The number of users which get resources from the same BS

in normal and blank RBs is at most NB −NB1.

Proof. According to KKT conditions (3.9), if user i and m are associated with

BS j at both normal and blank RBs, we have

r
(n)
ij

r
(b)
ij

=
λj
νj

=
r

(n)
mj

r
(b)
mj

,

which is true with probability 0. Therefore, it is almost surely true that no

more than two users can connect to a BS both in normal and blank RBs.

Remark 3.1. Proposition 3.4 implies that the resource allocation in normal

RBs is very different from the blank RBs. Only a small fraction of users keep

the same association in both normal and blank RBs.

3.5 Performance Evaluation

In this section, we provide simulation results to validate the analytical

results and show the rate gain by adopting RB blanking. The main simulation

parameters used are summarized in Table 3.1 unless otherwise specified.

Fig. 3.2 shows examples of associations with different schemes. In the

conventional user association scheme shown in Fig. 3.2a, the load is very un-

balanced. Most users are associated with the macrocell, but may get small

rates even with strong SINRs. The load-aware user association in Fig. 3.2b
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Figure 3.2: Examples of associations in HetNets with different association
schemes. The dashed lines indicate the association in blank RBs, while the
solid lines indicate the association in normal RBs.
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Table 3.1: Simulation parameters for user association and RB blanking opti-
mization

Macrocell layout Hexagonal grid
Pico/femtocell/UE distribution PPP
Density of macros 1/5002 m−2

Density of picos 4/5002 m−2

Density of femtos 12/5002 m−2

Density of cellular users 80/5002 m−2

Transmit power of macros 40 W
Transmit power of picos 1 W
Transmit power of femtos 0.1 W
Noise power −104 dBm
Path loss exponent 3.5
Fading Rayleigh

achieves more balanced load, and thus leads to a more efficient resource uti-

lization. Adopting RB blanking, users can be served in either the normal

or/and blank RBs. The associations in blank and normal RBs are illustrated

by dashed lines and solid lines in Fig. 3.2c, respectively. We can verify Props.

3.3 and 3.4 that the number of fractional users is very small, and the associ-

ations in blank and normal RBs are very different. More users are served by

small cells in blank RBs, where there is no strong macrocell interference.

The performance of a three-tier network using different association

schemes is compared in Fig. 3.3. We compare five different association ap-

proaches, among which the “max-SINR in normal RBs with RB blanking”

is a scheme where the association is based on the signal received in normal

RBs and the association in blank RBs is kept the same, even though some
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Figure 3.3: The rate distribution of users with different association schemes.

BSs are turned off. By jointly adopting RB blanking, the load-aware associ-

ation further improves the network performance (e.g., 5x gain for worst 5%

users compared to max-SINR without RB blanking). Fig. 3.3 also indicates

the importance of appropriate association in networks with RB blanking. By

adopting RB blanking with inappropriate association (e.g., max-SINR associa-

tion based on the received SINR in normal RBs), the network performance may

even be degraded. On the other hand, with appropriate association (need not

be optimal), the gain can be significant (e.g., 3x gain for worst 5% users using

max-SINR with RB blanking compared to max-SINR without RB blanking).

To investigate the impact of different densities of small cells in HetNets,

we consider a two-tier network consisting of macrocells and picocells. The

fraction of blank RBs in different network settings is shown in Fig. 3.4, where
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Figure 3.4: The average of optimal fraction of blank RBs (i.e., z) vs. density
of small cells.

we average the optimal fraction of blank RBs over different realizations. In

Fig. 3.4, the fraction of blank RBs increases as the small cells become denser.

We compare the load in optimal resource allocation with RB blanking

to the optimal association without RB blanking in Fig. 3.5, where the load in

blank and normal RBs are shown in Figs. 3.5a and 3.5b, respectively. With the

increase of picocells, the load at macrocells keeps decreasing and more users

are pushed off to small cells, as shown in both figures. Note that adopting RB

blanking, a user can be served in blank RBs by picocells and/or in normal RBs

by both macrocells and small cells. We have shown that the associations in

blank and normal RBs are very different. While more users are pushed off to

small cells in both approaches (optimal resource allocation with and without

RB blanking) as the density of picocells increases, Fig. 3.5a shows that the

picocells serve more users and then fewer users in the blank RBs as the density
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Figure 3.5: Load versus small cell density in a two-tier HetNet.
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increases, compared to the scenario without RB blanking. On the other hand,

Fig. 3.5b shows that RB blanking always decreases the load in normal RBs.

One possible reason is that as the density of picocells increases, many users

served by small cells in normal RBs already have a good enough rate, so the

gain from turning off macro BSs decreases, which decreases the motivation to

push off users to picocells in blank RBs. The diminishing gain can also be

observed in Fig. 3.6 as the density of picocell increases.

In Fig. 3.6, we show the throughput gain of cell-edge users in different

network deployments. The gain is compared to the optimal association with-

out RB blanking (i.e., Ta−Tn
Tn

, where Ta and Tn are the throughput of worst

10% users using optimal resource allocation with and without RB blanking,

respectively). Different from the gain compared to the max-SINR association,

the gain here implies the potential impact of RB blanking on the performance

improvement. When picocells become denser, it is more necessary to turn off

the macrocells, but the gain from RB blanking decreases. In a sparse net-

work, the main interference is from macrocells, and thus the potential gain by

turning off macro BSs is large. When the network is increasingly dense, the ag-

gregate interference from small cells keeps increasing and may even overwhelm

the interference from macrocells. In this case, though there still exists gain

from RB blanking, the SINR improvement of users in small cells decreases due

to the large interference from other small cells. Therefore, the gain depends

on the aggregate interference from small cells, and thus depends mainly on

the transmit power of small cells. Since femtocells have much lower power,
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Figure 3.6: The throughput gain of worst 10% users in networks with different
deployments of small cells.

the gain keeps increasing as the density of femtocells increases, which is quite

different from picocells.

3.6 Summary

In this chapter, we propose a novel framework for the joint optimiza-

tion of user association and RB blanking in HetNets, which provides a large

gain in network performance, in particular “cell-edge” rate. We formulated

a network-wide utility maximization problem, which is converted to a convex

optimization by unique association relaxation. Although we allow users to be

jointly served by multiple BSs, we proved that the number of fractional users

is very small (at most NB − 1), and the simulations show that most users

have unique association. We also show that associations are very different
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when adopting RB blanking. Overall, we show that the load balancing and

interference management are key sources of gain in HetNets in Chapters 2 and

3. The developed framework is extended to multiple-antenna transmissions in

the following chapter.
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Chapter 4

User Association and Interference

Management in Massive MIMO HetNets1

Two key trends in cellular network evolution are the increasing den-

sification and heterogeneity in BS deployments [74] and the introduction of

ever-larger and more densely packed antenna arrays. When the number of an-

tennas is significantly larger than the number of simultaneous users we call this

massive MIMO [27, 75, 76]. Smart ultra-densification and massive MIMO are

considered as two of the most important technologies for 5G cellular systems

[77, 78]. This chapter’s contribution is to look carefully at this combination2,

particularly in terms of user association, resource allocation, and interference

management.

1A part of this chapter has been submitted to [73]. Coauthors Dr. Bursalioglu and Dr.
Papadopoulos have provided technical suggestions and insights to this work.

2As higher-frequency spectrum being available, large arrays become practical even for
small cells. For example, at 3.5GHz band, a 36-antenna (arranged on a square grid at
half-wavelength separation) can be implemented on a 26cm × 26cm surface. The required
implementation area would be much smaller as the carrier frequency becomes higher.
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4.1 Related Work

As discussed in Chapter 1, the max-SINR association results in heavily

congested macrocell BSs and lightly loaded low power BSs in HetNets. This

results in a very inefficient use of the available time-frequency resources, and

strongly motivates load balancing, which in effect means pushing UEs onto

lightly loaded small cells even it requires reducing their SINR by many dB [4].

Load Balancing. Several approaches have been used to study load

balancing in HetNets, including stochastic geometry [48,79], game theory [80],

and system-level simulations [2, 24]. Chapter 2 formulated an network utility

maximization (NUM) problem for user association in HetNets with single-

antenna BSs, where the resources are equally allocated among users in the same

cell [30]. Meanwhile, in industry, proactive load balancing is accomplished by

biasing UEs by some factor (e.g. 10 dB) towards the small cells [2, 24]. We

also showed in Chapter 2 that this simple suboptimal CRE approach can

perform surprisingly close to an optimal association if the right bias values are

used. One shortcoming of the work in Chapter 2 is that this equal resource

allocation among UEs can be suboptimal if the user associations happen on

a much slower time scale than the channel variations. In general, the user

association and resource allocation (i.e. scheduling) problems are coupled: the

user association determines which users a BS should schedule, while scheduling

determines how many resources are available per user, which is a key factor

in the user association. Thus, it is very difficult to jointly optimize the user

association and resource allocation in general cases.
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Interference Management. As the macrocells that the users are

offloaded from now become strong interferers, the offloaded users suffer in-

creased interference, which eats into the gains offered by load balancing. This

motivates us to jointly consider user association and interference management,

to improve the performance of these low-SINR (i.e. “cell edge”) users. One

popular approach is the resource blanking approach discussed in Chapter 3.

Several works have considered the joint problem of user association and RB

blanking, for example [69] proposes a dynamic approach adapting the muting

duty cycle to load variations while [58,66,70,71,81,82] consider a more static

approach.

Massive MIMO. A key benefit of massive MIMO is that the extra

diversity afforded by the large antenna array averages out the fast fading, and

so the instantaneous rate stabilizes to the longer-term mean. This rate is of

course still subject to changes in path loss and shadowing, but these happen on

much slower time scales, allowing the user association and resource allocation

to be decoupled [83]. MIMO techniques also provide the option of serving a

user at high rates from multiple BSs – referred to as CoMP, which is proposed

as one of the core features in LTE-Advanced [23–25, 84]. The set of BSs that

cooperatively serve the same user is called a BS cluster. Papers [85,86] study

how to determine the BS clusters, while papers [87–90] investigate the joint

design involving either BS cluster selection, beamforming, user scheduling or

power allocation.

Cross-layer Optimization. Overall, the joint optimization of user as-
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sociation and interference management is still an open issue in massive MIMO

HetNets. In this chapter, we jointly consider the user association and both

RB blanking and joint transmission (JT) as the interference management ap-

proaches. The JT is a distributed-MIMO form of CoMP, where each BS’s

precoding vector depends only on the CSI of its own users and thus does

not require CSI exchanges among BSs. Other interference management ap-

proaches can also be adopted, but at the cost of overhead, complexity or/and

intractability (e.g., JT with joint precoding [25]), and we leave the study of

more general interference management approaches (see e.g., [91]) for future

work.

To study the joint user association and interference management prob-

lem, we propose to use the cross-layer optimization approach, aiming to im-

prove the rate distribution, particularly, the cell-edge performance. Cross-layer

optimization is a very popular approach to study the resource allocation prob-

lems in wireless networks (see e.g. [92–96] and references therein). Most of the

existing literature working on the resource allocation (user scheduling) prob-

lems leverage the conclusion given by [1]. That is, the general maximization

problem in terms of long-term metric can be decoupled to maximization prob-

lems at each slot based on the gradient algorithm [1] – called the slot-based

gradient algorithm in this chapter. For example, the slot-based gradient al-

gorithm has been used in the cross-layer design of multihop networks [97,98],

CDMA networks [41,99] and OFDM networks [44,70,90,100–105].

Most existing work studies the cellular transmission, where each user
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can be served by at most one BS at any RB. Most existing work studies

the cellular transmission, where each user can be served by at most one BS

at any RB. Different from the cellular transmission, we aim to design BS

clusters in addition to the resource allocation, in order to maximize the network

utility, particularly, the rate of cell-edge users. There is one recent related

work investigating the BS clustering and user scheduling problems [90], which

considers disjoint clusters (i.e., each BS belongs to at most one cluster on any

RB) with pre-defined user association. Different from [90], our framework can

be applied to not only the cases with disjoint clusters, but also more flexible

cases where a BS may belong to different clusters on the same RB, and different

users can be served by different clusters (i.e., user-specific clusters). Note

that the solution of our formulated problem is always realizable via suitably

designed schedulers in the disjoint-cluster cases, but there are two main types

of price that have to be paid for this design choice. The first is the potential

decrease in the network utility by only allowing disjoint clusters. The second

is the complexity of cluster design with the requirement of a careful study on

the network topology and shadowing conditions, which becomes increasingly

difficult as the network becomes denser and more irregular. Thus, in this

chapter, we focus on the user-specific cluster case where BSs can belong to

different clusters on the same RBs. To the best of our knowledge, this is the

first work proposing a framework to jointly design user-specific clusters and

resource allocation to maximize the utility in massive MIMO HetNets.

Leveraging the slot-based gradient algorithm [1], we can transform the
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utility maximization problem in terms of long-term metrics to a sequence of

maximization problems, with each problem per slot. However, due to that

BSs can belong to different clusters and resource constraints cross over dif-

ferent clusters, it is difficult to transform our problem to some typical types

of problems that are polynomial-time solvable (e.g., the max weight matching

problem [106–111]). Also, note that it is quite difficult to efficiently obtain the

achievable optimal utility in [90], let alone characterizing the optimal utility of

our more flexible but complicated problems based on the slot-based gradient

algorithm. Alternatively, in this chapter, we first investigate the desired aver-

age resource allocations by solving a convex maximization problem. Though

the obtained resource allocation may not be realizable via a scheduler, it up-

per bounds the network performance and can serve as a benchmark. We then

propose a scheduling scheme that provides approximate but implementable re-

sults. The numerical results show that the gap between the performance of the

proposed algorithm and the upper bound utility is quite small, which implies

that the proposed scheduling scheme can approach near-optimal performance.

The theoretical guarantee on the performance gap between the proposed algo-

rithm and the optimal result is beyond the scope of this chapter, and we leave

it for future work. The main contributions are summarized in the following

section.
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4.2 Contributions and Organization

In this chapter, we present a novel framework for the joint optimization

of user association and interference management in massive MIMO HetNets,

resulting in the following main contributions.

Spectral efficiency analysis. In Sec. 4.4, we derive the instanta-

neous rate with JT, and the instantaneous rate during normal and blank RBs

with RB blanking, for both linear zero-forcing beamforming (LZFBF) and

maximum ratio transmission (MRT, also known as conjugate beamforming)

in the massive MIMO regime. The fast fading is averaged out, and thus the

instantaneous rate is predictable regardless of the scheduling, which is the key

difference versus the case without massive MIMO.

A unified network utility maximization (NUM) problem. By

exploiting the predictable instantaneous rate, user association and resource

allocation problems can be decoupled, allowing us in Sec. 4.5 to formulate a

unified convex optimization problem for user association and resource alloca-

tion problems with both JT and RB blanking. Note that in the considered

JT, the clusters are user-specific (i.e., different users can be served by different

clusters). The formulated problem can also be applied to the case where macro

and small BSs use orthogonal resources. With blanking but without JT, the

optimal solutions can always be realized by a suitably designed scheduler. On

the other hand, with JT, we show that there exist some solutions that are

not implementable. Naturally, the solution of the NUM problem – called the

NUM solution – upper bounds the network performance and can serve as a
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useful benchmark.

Dual subgradient based algorithm. Sec. 4.6 presents an efficient

algorithm based on the dual subgradient method, which converges to near

optimal dual variables. Since the objective function is not strictly convex,

it is difficult to obtain optimal primal variables given optimal dual variables.

Exploring the solution structure, we formulate a small-size linear programming

(LP) to get the optimal primal variables. The proposed algorithm can be

implemented in a partially distributed manner with low overhead.

Simple scheduling scheme to approach the NUM solution. In

Sec. 4.7, we develop a scheduling scheme to yield the resource allocations

closely matching the NUM solution, by approximating the NUM solution to

the results with unique association (i.e., users are served by at most one cluster

on each RB). Showing the limited number of users connecting to multiple

clusters per RB in heavily loaded networks, it is expected that the approximate

resource allocations with unique association are near the NUM solution.

Simulation results in Sec. 4.9 show a significant gain by jointly opti-

mizing user association with interference management. For example, the rate

of bottom (the 10th percentile) users in our setup is about 2.2x with respect

to the optimal user association in cellular transmission, which itself is much

larger than the max-SINR association. The dual subgradient based algorithm

approaches the NUM solutions. Also, the proposed scheduling scheme has

near optimal performance, within 90% of the NUM solution.
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4.3 System Model

In this chapter, we focus on delay-tolerant best-effort traffic. We con-

sider a DL HetNet with J BSs and K single-antenna users. We let j ∈ B =

{1, 2, . . . , J} and k ∈ U = {1, 2, . . . , K} be the index of BSs and users, respec-

tively. We denote by Mj the number of antennas at BS j with Mj � 1. We

assume time division duplex (TDD) operation with reciprocity-based CSI ac-

quisition [75,112]. Hence, each user sends a single UL pilot to train all nearby

BS antennas. This enables the training of large antenna arrays with overhead

proportional to the number of simultaneously served users. In contrast to

feedback-based CSI acquisition, it also allows a user to train multiple nearby

BSs, which enables CoMP without additional training overhead.

4.3.1 Channel Model

We denote the transpose, conjugate and conjugate transpose of matrices

by (·)T , (·)∗ and (·)H , respectively. We denote the set of BSs and of users by

B and U, respectively. The transmit power of BS j is denoted by Pj. We

assume a block-fading channel model where the channel coefficients remain

constant within each RB [75, 76, 112, 113]. On a generic RB, we denote the

channel matrix between BS j and users by Gj, with the kth column being

gkj = [gkj,1, · · · gkj,Mj
]T , where gkj,i =

√
βkjhkj,i is the channel between the

ith transmit antenna of BS j and user k, which includes both slow fading

βkj and fast fading hkj,i. The slow fading βkj characterizes the combined

effect of distance-based path loss and location-based shadowing. Vectors hkj =
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[hkj,1, · · · , hkj,Mj
]T capture the fast fading. We assume each link experiences

independent Rayleigh fading, i.e., hkj are complex Gaussian i.i.d. random

variables. We let Fj denote the precoding matrix at BS j, whose kth column

fkj is the beam (i.e., the precoding vector) for user k. The signal symbol of

user k is denoted by sk, where sk has unit energy. The thermal noise at user

k is denoted by wk, which is assumed to be additive white Gaussian noise

(AWGN) with variance σ2.

4.3.2 Admissible Joint Transmission

With massive MIMO, a subset of users are scheduled for transmission

on each RB. In particular, the coded data for any given user can be transmitted

either from a single BS – called cellular transmission, or from multiple BSs via

a CoMP scheme – referred to as JT. The JT poses many challenges making

the extension of cellular transmission to JT nontrivial, where key challenges

and issues include additional overhead for CSI exchanges among cooperating

BSs, users’ various preferences to different clusters, and the dependence of a

user’s spectral efficiency on the other users served by the same BS. To address

these challenges, we consider the following particular form of JT that allows

harvesting performance gains at the cell edge with low operational overhead,

where we denote by Sj the number of users that can be simultaneously served

by BS j in cellular transmission.

Definition 4.1. Admissible Transmission Schemes (ATSs): An ATS

schedules users for transmission on a sequence of RBs, and satisfies the fol-
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lowing on each RB:

(1) All users served by a given BS j are served in clusters of the same size L

for some L ≥ 1;

(2) BS j in clusters of size L serves at most Sj(L) users with Sj ≤ Sj(L) ≤

LSj and Mj � Sj(L);

(3) The user beams (i.e., precoding vectors) at BS j are designed as if BS j

was in cellular multi-user (MU)-MIMO transmission over all the users it

serves;

(4) Each BS serving a user transmits the same coded user stream on a beam

that is (independently and locally) designed for users at that BS.

We assume each BS equally allocates its power to the set of scheduled

users. The corresponding spectral efficiency can be viewed as a lower bound for

cases with power optimization. Table 4.1 provides an ATS example complying

with Defn. 4.1, involving clusters of size 1 (cellular transmission) and 2. Four

BSs are considered with Pj = 1, Sj(1) = Sj = 2 and Sj(2) = 3. As the

table reveals, each BS on RB #1 engages in cellular transmission. On RB #2,

pairs of BSs perform JT with each BS pair serving a triplet of users. RBs

#3 and #4 provide additional more interesting modes. On RB #3, no user is

served by the same cluster on RB #3. On RB #4, BSs 1 and 2 serve users in

clusters of size 2 while BSs 3-4 serve users in cellular transmission. Note that

if orthogonal pilots are used, (at least) 8, 6, 6 and 7 uplink pilot dimensions
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Table 4.1: Example of RBs enabled by admissible transmission schemes over
4 BSs.

RB BS 1 BS 2 BS 3 BS 4

Cluster Size 1 1 1 1
#1 User Power 1/2 1/2 1/2 1/2

Served Users 1,2 3,4 5,6 7,8

Cluster Size 2 2 2 2
#2 User Power 1/3 1/3 1/3 1/3

Served Users 1,2,3 1,2,3 4,5,6 4,5,6

Cluster Size 2 2 2 2
#3 User Power 1/3 1/3 1/3 1/3

Served Users 1,2,3 1,4,5 2,4,6 3,5,6

Cluster Size 2 2 1 1
#4 User Power 1/3 1/3 1/2 1/2

Served Users 1,2,3 1,2,3 4,5 6,7

(one dimension per user) are needed to enable RBs #1, #2, #3 and #4,

respectively. Evidently, the choice of scheduled user sizes Sj(L) signifies how

aggressively pilot dimensions are reused across the network (e.g., Sj for fully

reused pilots and LSj for orthogonal pilots).

It is worth making a few remarks regarding the choice of ATSs in

Defn. 4.1. First, the schemes of Defn. 4.1 provide the following CoMP benefits:

(1) Performance gains at the cell edge: The beamforming (BF) gain

becomes intra-cluster BF gain in JT, as the same coded data is transmitted

from all BSs serving the user. Similarly, the intra-cell interference mitigation

is extended across the cluster of BSs by which the user is served. As a result,

79



performance gains can be realized at the cell edge.

(2) Low training overhead: An UL pilot from a user can be received at

all nearby BS antennas, whether these are in the same or different locations.

Thus, the CSI acquisition between a user and nearby BSs need not incur

additional overhead with respect to cellular transmission in TDD systems.

(3) BSs in JT may serve more users simultaneously than in cellular

transmission: Recall that the service capability (i.e., the number of simulta-

neously served users) of BS j in clusters of size L, Sj(L), essentially depends

on the number of available UL pilot resources. Thus, BSs in clusters may serve

more users than in cellular transmission if UL pilots are not fully reused. For

example, in Table 4.1 with orthogonal pilots, each BS can serve 2 UEs on RB

#1 requiring 8 UL pilots, while each BS can serve 3 UEs on RB #2 requiring

only 6 UL pilots. This implies that BSs may serve more users at each RB in

JT versus the cellular transmission, but the power allocated from each BS to

each user is reduced.

In addition, ATSs possess several important properties that are not

present in general CoMP schemes:

(a) Local precoding at each BS: This is due to (iii) in Defn. 4.1. For

instance, the beam with LZFBF for each user served by BS j is chosen within

the null space of the channels of all the other users served by BS j, no matter

whether there are additional BSs serving the user on the same RB or not.

(b) No need for CSI exchanges among BSs: Due to local precoding, BS
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j only needs CSI between the users it serves and the antennas of BS j in order

to generate the user beams at BS j. In contrast to general JTs [25, 114, 115]

that design beams depending on CSI between other users and all BSs in the

cluster and thus require global CSI, the proposed JT only requires local CSI

and does not introduce additional overhead.

(c) Flexible scheduling allowing user-specific clusters: Revoking the

local precoding again,each BS only needs to know which subset of users to

serve on each RB. This allows users to be served by overlapping but different

BS clusters on the same RBs (see, e.g., RB #3 in Table 4.1).

(d) Predictable instantaneous rates: As shown in [115], the instantaneous

user rates can also be predicted a priori with CoMP. However, unlike the

general CoMP schemes, where a user’s instantaneous rate depends on the

other users scheduled on the same RB [115], the instantaneous rate in ATSs

is independent of the other users in the scheduling set.

4.3.3 Admissible Transmission with blanking

We call the set of clusters that can transmit on the same RB an admis-

sible transmission mode (ATM). Thus, the ATSs given by Defn. 4.1 refer to

schemes with orthogonal RBs allocated to different ATMs. To incorporate the

resource blanking into ATSs given by Defn. 4.1, we define normal and blank

RBs as different ATMs. Thus, the set of interfering BSs may be different in

different ATMs. We consider a synchronous configuration as in [58], where all

macro BSs mute at the same RBs. For example, defining BSs 1 and 2 in Table
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4.1 as macro BSs and BSs 3 and 4 as small BSs, there exists an additional RB

type corresponding to blank RBs, that only includes BSs 3 and 4.

4.4 Instantaneous Rate and Long-term Rate

Before formulating the NUM problem, we first develop proxy expres-

sions for the instantaneous rates and for the long-term rates (throughputs)

with either LZFBF or MRT.

Without loss of generality, we assume that the BS cluster C serves

user k in an ATM A. We consider a scheduling policy on RBs {1, 2 · · · , T}

and assume that all the large-scale coefficients stay fixed within this period.

Any such scheduling policy can be described in terms of the scheduling sets

{U(A)
C (t); ∀C, ∀t ∈ {1, 2 · · · , T}}, where U

(A)
C (t) denotes the set of active

users served by cluster C on RB t. Thus, the received signal at an active user

k ∈ U
(A)
C (t) in A on RB t can be expressed by

y
(A)
kC (t) =

∑

j∈C

√
Pj

Sj(|C|)
gkj(t)

Hfkj(t)sk

︸ ︷︷ ︸
desired

+
∑

j∈C

∑

u∈U(A)
C

(t)
u6=k

√
Pj

Sj(|C|)
gkj(t)

Hfuj(t)su

︸ ︷︷ ︸
intra-cluster interference

+
∑

l /∈C

∑

u∈∪(C′∈A:l∈C′)U
(A)

C′ (t)

√
Pl

Sl(|C′|)
gkl(t)

Hful(t)su

︸ ︷︷ ︸
inter-cluster interference

+ wk︸︷︷︸
noise

.

(4.1)

Note that the set of interfering BSs depends on the ATM A. For clusters that

are not in A, we have y
(A)
kC (t) = 0, and thus the instantaneous rate is zero.
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4.4.1 Instantaneous rate

We assume that each BS has perfect CSI. With massive MIMO, the

instantaneous rate of user k from BS j on RB t, denoted by rkj(t), can be

predicted a priori. In particular, there exist deterministic quantities {rkj} such

that rkj(t)
a.s.→ rkj, ∀k ∈ U and ∀j ∈ B as Mj, Sj → ∞ with fixed Sj/Mj ≥ 0

[75, 76, 115, 116]. Moreover, this convergence is very fast with respect to the

Mj’s. We use the deterministic {rkj} as proxies for instantaneous rates.

Adopting LZFBF, Fj = Gj

(
GH
j Gj

)−1
A

1/2
j is the precoding matrix

at BS j, where Aj is the normalizing coefficients matrix. In this case, the

intra-cluster interference is 0.

Proposition 4.1. The instantaneous rate of user k from cluster C in ATM A

using LZFBF can be approximated by

r
(A)
kC ≈ log2

(
1 +

∑
j∈C
∑

l∈C
√
PjPlβkjβklbj(|C|)bl(|C|)

σ2 +
∑

l /∈C,l∈C′∈A Plβkl

)
, (4.2)

where bj(|C|) =
Mj−Sj(|C|)+1

Sj(|C|) .

Proof. Please see Appendix 4.11.1.

With MRT, the precoding matrix at BS j is Fj with the kth column

being fkj =
gkj
‖gkj‖

.

Proposition 4.2. The approximate instantaneous rate of user k from cluster

C in ATM A using MRT is

r
(A)
kC ≈ log2


1 +

∑
j∈C
∑

l∈C

√
PjPlMjMlβkjβkl
Sj(|C|)Sl(|C|)

σ2 + IkC +
∑

l /∈C,l∈C′∈A Plβkl


 , (4.3)
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where IkC =
∑

j∈C
(Sj(|C|)−1)

Sj(|C|) Pjβkj is the non-zero intra-cluster interference.

Proof. Please see Appendix 4.11.2,.

Eqs. (4.2) and (4.3) assume that ∀j ∈ C, BS j serves Sj(|C|) users

and allocates Pj/Sj(|C|) fraction of its power to each user. In the case that

fewer users are served by one of the BSs, (4.2) and (4.3) represent achievable

lower-bound instantaneous rates.

Recalling that macro BSs do not belong to the ATM on blank RBs, the

instantaneous rate of macro users on blank RBs is therefore 0, while there is

no interference from macro BSs to users in small cells. Obviously, the users

associated to small BSs would benefit from larger SINR on blank RBs. On

the other hand, for JT we give an illustration example in Fig. 4.1 showing the

change of instantaneous rate versus user locations. When the user is close to

the origin, which is the cell edge area of BSs 1 and 2, the instantaneous rate

from cluster {1, 2} is about 3x compared to the case where users are served by

an individual BS. This implies the potential benefits of JT for cell-edge users.

4.4.2 Long-term Rate

As discussed in Sec. 4.1, the user association and resource allocation

(scheduling) problems is generally coupled with each other. On the other

hand, as shown in (4.2) and (4.3), the instantaneous rate in the massive MIMO

regime does not depend on the fast fading and user scheduling. Moreover, the

UL pilots can be received at all nearby BSs, and thus users can be served by
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Figure 4.1: Illustration of instantaneous rate versus user locations, when
Sj(|C|) = |C|Sj. The location in Fig. 4.1b indicates the x-axis coordinate
of the path in Fig. 4.1a.
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different BSs on different RBs [83]. Therefore, there is indeed no conventional

“association” concept in massive MIMO HetNets, and users can be fractionally

associated with (essentially scheduled by) different BS clusters in the long

term. This simplifies the coupled relationship between user association and

resource allocation problems, exploiting which we can relax the requirement

of a priori knowledge of available resources per user given the association

(e.g., the equal resource allocation in [30, 79]), and jointly optimize the user

association and its corresponding resource allocation as studied in [83].

Let x
(A)
kC = limT→∞

|{t:1≤t≤T, k∈U(A)
C

(t), t is allocated to A}|
T

be the fraction of

resources allocated by cluster C to user k in A – called activity fraction. For

the ATSs of interest, we can obtain the long-term rate similar to cellular

transmission in [83], which depends on the instantaneous rates and activity

fractions from the scheduling policy. In the limit T → ∞, the long-term rate

of user k can be expressed as3

Rk =
∑

A

∑

C:C∈A

x
(A)
kC r

(A)
kC . (4.4)

4.5 Unified NUM Problem Formulation

4.5.1 Restricting Options of ATMs

Before formulating the problem, it is worth restricting the options of

ATMs to obtain solutions that are of practical interest. We focus on clus-

3Convergence to the limiting expressions of interest is very quick [83].
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ter sizes L ∈ {1, 2, · · · , Lmax} for some appropriately chosen maximum4 size,

Lmax. Motivated by the example in Table 4.1, we consider the following ATSs.

Definition 4.2. Uniform Cluster-Size Scheme (UCS): An ATS from

Defn. 4.1 is a UCS if

(1) λA fraction of RBs is allocated to ATM A, with
∑

A λA ≤ 1;

(2) on any RB in the λA fraction, the scheduled users are served by (user-

dependent) clusters of the same size, denoted by LA;

(3) in ATM A, each BS does not serve more than Sj(LA) users.

In the UCS, users served by clusters of different sizes are scheduled on orthog-

onal RBs. For the example in Table 4.1, such a scheme enables scheduling

policies on RBs of types #1, #2 and #3, but not of type #4. The possi-

ble ATMs in the UCS are easy to find, but at the cost of the performance,

compared to more general ATSs from Defn. 4.1 (e.g., RB #4 in Table 4.1).

4.5.2 The Unified NUM Problem

The NUM problem subject to UCS is given as follows:

max
λA,x

(A)
kC

∑

k∈U

U

(∑

A

∑

C:C∈A

x
(A)
kC r

(A)
kC

)
(4.5a)

s.t.
∑

C:j∈C,C∈A

∑
k∈U x

(A)
kC

Sj(LA)
≤ λA, ∀j,A, (4.5b)

4The choice of Lmax is a design choice. It depends on not only the average number of
nearby BS arrays that users typically see but also the complexity that can be afforded.
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∑

C∈A

x
(A)
kC ≤ λA, ∀k,∀A, (4.5c)

x
(A)
kC ≥ 0, ∀k,∀C,∀A, (4.5d)

∑

A

λA ≤ 1, (4.5e)

λA ≥ 0, ∀A, (4.5f)

where the utility function U(·) is a continuously differentiable, monotonically

increasing, and strictly concave function [49]. Constraint (4.5b) signifies that

the total activity fractions allocated by BS j in clusters of size L cannot exceed

the total available resources λASj(LA). On the other hand, recalling that each

user cannot be served by multiple clusters on the same RBs, (4.5c) signifies

that the fraction of RBs over which user k is served by clusters in A cannot

exceed RBs allocated for this ATM.

Note that (4.5) can also be applied to the schemes with each ATM con-

sisted of disjoint clusters (i.e., the clusters without common BSs), by adapting

Sj(LA) in (4.5b) to Sj(|C|). In this case, each BS belongs to at most one clus-

ter on any RB. Considering the BS cluster as a new “super” BS, each ATM

becomes exactly the same as the cellular transmission (i.e., no JT), and thus

we can always find a feasible schedule to get the optimal performance as shown

in [83]. However, the complexity to find all possible transmission modes with

disjoint clusters is very high, which is the Bell number AJ with the recursion

An+1 =
∑n

k=0 ( nk )Ak and A0 = 1 in a network with J BSs [117]. Other general

ATSs (e.g., asynchronous configuration in blanking approach and ATMs in-

cluding clusters of different sizes in JT) may further improve the performance,
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at the cost of complexity or intractability, and are left for future work.

Remark 4.1. The problem formulation (4.5) is quite flexible, which can be

applied to the joint optimization of user association and JT, as well as the

joint optimization of user association and RB blanking. Note that JT and

RB blanking are not exclusive. For example, we can adopt JT in both normal

and blank RBs, and (4.5) is still applicable. Moreover, (4.5) can be applied

regardless of how the resources are allocated among macro and small BSs (e.g.,

macro and small cells can either share or orthogonally use the resources).

Remark 4.2. The BS clusters in (4.5) are user specific. In other words,

we consider the clustering of BSs from the perspective of each user, and thus

different users can be served by different clusters.

In this chapter, we specific the utility in (4.5) to the logarithmic util-

ity as [30, 71, 83]. Logarithmic function as a very common choice of utility

function, is well known as a objective function striking good balance between

network throughput and user fairness [50]. It is easy to verify that (4.5) is a

convex optimization problem [55]. General numerical solvers (e.g., CVX) can

be used to solve (4.5). Since CVX is not well-suited for large instances [118],

we alternatively propose an efficient algorithm that can be implemented in a

partially distributed manner with low overhead in the next section.
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4.6 Dual Subgradient Based Algorithm

In this section, we propose an efficient algorithm based on the dual-

subgradient method. For the convergence analysis, we add a redundant vari-

able Rk =
∑

A

∑
C:C∈A x

(A)
kC r

(A)
kC that changes the objective function in (4.5)

to
∑

k U(Rk), and redundant constraints
∑

A

∑
C x

(A)
kC ≤ 1 and Rk ≤ Rmax

to (4.5), where Rmax = maxk,A,C r
(A)
kC . We let θk, νjA and µkA be the La-

grange multipliers corresponding to Rk =
∑

A

∑
C:C∈A x

(A)
kC r

(A)
kC , (4.5b) and

(4.5c), respectively. Recalling that the number of ATMs in UCSs depends

on the considered cluster sizes, the number of ATMs is Lmax. Denoting

θ = [θ1, · · · , θK ]T , ν =
[
νTA1

, · · · ,νTALmax

]T
with νAi = [ν1Ai , · · · , νNBAi ]

T ,

and µ =
[
µT

A1
, · · · ,µT

ALmax

]T
with µAi

= [µ1Ai , · · · , µKAi ]
T , the dual problem

of (4.5) is

min
θ,ν,µ≥0

∑

k∈U

fk(θ,ν,µ) + g(ν,µ), (4.6)

where

fk(θ,ν,µ) = max
Rk∈[0,Rmax],∑

A

∑
C x

(A)
kC ≤1,xkC≥0

log (Rk)− θkRk + θk
∑

A

∑

C∈A

x
(A)
kC r

(A)
kC

+
∑

A

∑

j∈B

νjA
∑

C:j∈C,C∈A

x
(A)
kC

Sj(|C|)
−
∑

A

µkA
∑

C∈A

x
(A)
kC ,

(4.7)

and

g(ν,µ) = max∑
A λA≤1,
λA≥0

∑

A

∑

j:j∈C,C∈A

νjAλA +
∑

A

∑

k∈U

µkAλA. (4.8)

The constraints of (4.5) satisfy the Slater condition [55], and thus the strong

duality holds (i.e., the dual problem (4.6) and the original problem (4.5) have

the same optimal value).
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4.6.1 The Dual Subgradient Method

The optimization problem (4.7) can be viewed from the user’s perspec-

tive, whose optimal solutions have closed-form: R∗k = min{1/θk, Rmax} and5

x
(A)
kC =

{
1, if {C,A} = arg maxC,A

(
θkr

(A)
kC +

∑
j:j∈C

νjA
Sj(|C|) − µkA

)
,

0, otherwise.
(4.9)

The problem (4.8) is a linear programming and one optimal solution is

λ∗A =





1, if A = A∗

0, otherwise,
(4.10)

where A∗ = arg maxA

∑
j:j∈C,C∈A νjA +

∑
k∈U µkA

6.

The tth iteration of the dual subgradient algorithm is given as follows.

1. Associate user k to cluster C with x
(A)
kC (t) = 1, where x

(A)
kC (t) are obtained

by (4.9) with θk = θk(t), νjA = νjA(t) and µkA = µkA(t).

2. Update the fraction of resources allocated to different ATMs by (4.10),

where νjA = νjA(t) and µkA = µkA(t).

3. Update the Lagrangian multipliers by

θk(t+1) = θk(t)−δ(t)

(∑

A

∑

C∈A

x
(A)
kC (t)r

(A)
kC −min{1/θk(t), Rmax}

)
, (4.11)

5If we have multiple pairs of {C,A} that maximize
(
θkr

(A)
kC +

∑
j:j∈C

νjA
Sj(|C|) − µkA

)
, we

just randomly pick one pair.
6If we have multiple A that maximize the

∑
j:j∈C,C∈A νjA+

∑
k∈U µkA, we just randomly

pick one of them and let it be A∗.
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νjA(t+ 1) =

[
νjA(t)− δ(t)

(
λA(t)−

∑

C:j∈C,C∈A

∑
k∈U x

(A)
kC (t)

Sj(|C|)

)]+

, (4.12)

and µkA(t + 1) =
[
µkA(t)− δ(t)

(
λA(t)−

∑
C∈A x

(A)
kC (t)

)]+

, where [z]+ =

max{z, 0} and δ(t) is the stepsize at tth iteration.

Proposition 4.3. The dual subgradient algorithm converges to the optimal

Lagrangian multipliers, if the stepsize δ(t) is chosen appropriately (e.g., the

diminishing stepsize δ(t) = a/(t+ b), where a and b are some positive scalars).

Proof. Based on Prop. 6.3.4. in [55], we complete the proof by showing

that subgradients λA−
∑

C∈A x
(A)
kC ,

∑
A

∑
C∈A x

(A)
kC (t)r

(A)
kC −min{ 1

θk(t)
, Rmax} and

λA −
∑

C:j∈C,C∈A

∑
k∈U x

(A)
kC

Sj(|C|) are bounded.

4.6.2 Finding the Optimal Primal Solutions Given Optimal La-
grangian Multipliers

Note that the objective function of (4.5) is not strictly convex and

we may have multiple optimal solutions. In general, given the optimal dual

variables, it is difficult to find the optimal primal solutions that satisfy the

KKT conditions. However, by exploring the structure of (4.5) as follows, we

propose to obtain the optimal primal solutions by solving a small-size LP.

The optimal long-term rate R∗k in (4.5) is unique, since the function

log(Rk) is strictly concave with respect to Rk. Thus, given the optimal dual

variables, we can easily get the unique optimal rate

R∗k = max
C,A

{
r

(A)
kC∑

j∈C νjA/Sj(LA) + µkA

}
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by exploring the KKT conditions of problem (4.5), which imply

Rk ≥
r

(A)
kC∑

j∈C νjA/Sj(LA) + µkA
. (4.13)

We can observe from (4.13) that in the optimal solutions, each user only has

positive activity fractions to clusters providing the maximum
r
(A)
kC∑

j∈C νjA/Sj(LA)+µkA
.

Leveraging this conclusion, we propose the following LP, whose size is reduced

by only focusing on the positive x
(A)
kC obtained from (4.13).

max
η,x,λ

η

s.t. η ≤
∑

A

∑

C∈A

x
(A)
kC r

(A)
kC

R∗k
, ∀k ∈ U,

∑

C:j∈C,C∈A

∑
k∈U x

(A)
kC

Sj(LA)
≤ λA, ∀j,∀A,

∑

C∈A

x
(A)
kC ≤ λA, ∀k,∀A,

∑

A

λA ≤ 1,

x
(A)
kC , λA ≥ 0, ∀k, ∀C,∀A.

(4.14)

Proposition 4.4. Given that R∗k is the exact optimal rate of (4.5), the solu-

tions of (4.14) are the same as the optimal solutions of problem (4.5).

Proof. Similar techniques in the proof of Lemma 1 in [83] can be used to

complete this proof.

Prop. 4.4 implies that we can obtain the optimal primal variables as

long as ν∗jA and µ∗kA from the dual subgradient algorithm are optimal. Though

Prop. 4.3 shows the convergence of the dual subgradient algorithm, there
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may exist a small gap between the obtained dual variables and the optimal

solutions, due to the numerical precision or the limited number of iterations.

Exploiting the well-behaved structure of LP (4.14), i.e., finite coefficients and

a bounded feasible set [83], it is expected that the solution of (4.14) is still

near optimal in the presence of a small gap from optimal dual variables.

4.6.3 Implementation Discussion

The above algorithm can be implemented in either a centralized or a

partially distributed manner, where the first part of the algorithm (i.e., steps

(4.9)-(4.12)) to get optimal dual variables can be implemented distributively.

To discuss the complexity and overhead, we first explore the properties of

optimal solutions. Empirical evidence reveals that in a heavily loaded network,

where the constraints (4.5c) are inactive (i.e.,
∑

C∈A x
(A)
kC < λA), most users are

uniquely served by a cluster per ATM. Insight regarding this observation can

be obtained by examining KKT conditions of (4.5).

Proposition 4.5. For a given A, if (4.5c) are inactive ∀k ∈ U, the number

of users that are served by multiple BS clusters in A is at most NCA−1, where

NCA is the number of clusters in A.

Proof. See Appendix 4.11.4.

Prop. 4.5 implies that the user association in NUM solutions are mostly

unique (i.e., users are served by a single cluster per ATM). Note that NCA

provides an upper bound, and the number of fractional users is much smaller
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than NCA in simulations (e.g., less than 3.5% in Sec. 4.9). Thus, given the

optimal dual variables, there are limited number of users have multiple optimal

solutions to (4.9). The activity fractions of users with unique association can

be solved by (4.13) with equality directly. The unknown activity fractions that

needs to be solve via (4.14) are only the ones of fractional users in the active

ATMs (i.e., the A with λA > 0, that maximize
∑

j:j∈C,C∈A νjA +
∑

k∈U µkA).

As shown below, this observation enables the efficiency and the significantly

reduced overhead of the above proposed algorithm.

Complexity discussion. Let La and NCm be the number of active

ATMs and the number of clusters in the active ATM that has the most

clusters (i.e., NCm = maxA:λA>0NCA), respectively. The size of LP (4.14) is

O(NCmLa min{NCm − 1, K}), which is smaller than the size of the original

nonlinear NUM problem (4.5) that is O(NCmLmaxK). As shown in Sec. 4.9,

the number of fractional users is very small (less than 3.5%K), and thus the

size of (4.14) is much smaller (less than 3.5%) than (4.5). The size of LP can

be further reduced when La/Lmax is small (e.g., only 2 ATMs are active among

4 ATMs in Fig. 4.9). Note that we can either use (4.14) or (4.5) with the re-

duced size to get these positive activity fractions. Thus, the complexity of the

second part (i.e., the LP) of the algorithm can be correspondingly reduced by

reducing the problem size (to less than 3.5% of the original size), at the cost of

additional computation in steps (4.9)-(4.12), whose complexity is O(LmaxNCm)

per user at each iteration, which is much smaller than O(LmaxNCmK). Recall-

ing that each user can conduct computation in parallel if the algorithm runs
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in a partially distributed manner, the low complexity per user in the first part

(i.e., steps (4.9)-(4.12)) of the algorithm and the reduced problem size in the

second part of the algorithm imply the efficiency of the proposed algorithm.

Overhead discussion. When the algorithm is implemented in a

partially distributed manner, denoting by N the number of required itera-

tions for the dual subgradient method that is quite small as shown in the

simulation (about 60), the overhead required by the proposed algorithm is

O ((K+JLmax)N+LaNCm min{NCm−1, K}), where the first term (K+JLmax)N

corresponds to the first part of the proposed algorithm (i.e., dual subgradi-

ent method) and the second term LaNCm min{NCm−1, K} corresponds to the

overhead required for LP (4.14). Compared to the overhead in centralized

manners that is O(KNCmLmax), the overhead is significantly reduced. Taking

our simulation for example, there are 840 users, 255 potential clusters serving

each user, and 34 users with multiple {C∗,A∗} where the number of multiple

{C∗,A∗} is less than 50 per user. Thus, the overhead is reduced from about

4.3× 105 to 6.2× 104 (reduced more than 85%).

As a result, we propose an efficient low-overhead algorithm that can

be implemented in a partially distributed manner. Note that though the op-

timal activity fractions x
∗(A)
kC are obtained, it is not a prior known whether

the optimal solutions can be implemented via any schedulers or not. The

implementation of the optimal solutions is discussed in the following section.
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4.7 Virtual Queue Based Scheduling Scheme

In this section we aim to propose scheduling policies that yield activity

fractions
{
x

(A)
kC

}
closely matching the solution of (4.5). We first introduce the

definition of scheduling policies as follows.

Definition 4.3. Feasible Schedule: A scheduling policy
{
U

(A)
C (t); ∀A,∀C, ∀t ∈ {1, 2 · · · , T}

}

is feasible with respect to the ATSs based on Defn. 4.2 if it satisfies the follow-

ing:

(i) For each t, the policy associates with RB t one ATM A with clusters of

size LA; that is, for each cluster C with U
(A)
C (t) being non-empty, we have

|C| = LA(t).

(ii) For each t, each user is served by at most one cluster; that is, |
∑

C 1{k ∈

U
(A)
C (t)}| ≤ 1.

(iii) For each t allocated to A and for each BS j, BS j serves at most Sj(LA(t))

users; that is, | ∪C: j∈C U
(A)
C (t)| ≤ Sj(LA(t)).

4.7.1 The Feasibility of the NUM Solution in Implementation

It is easy to verify that
{
x

(A)
kC

}
and {λA} yielded by any feasible sched-

ules defined by Defn. 4.3 satisfy (4.5b)-(4.5d). However, there exist
{
x

(A)
kC

}

and {λA} satisfying (4.5b)-(4.5d), for which no feasible schedule in the sense

of Defn. 4.3 exists.

Theorem 4.1. In UCSs with Lmax > 1, there exist some activity fractions

satisfying (4.5b)-(4.5d) that cannot be implemented by any feasible schedule in
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Defn. 4.3. If Lmax = 1, then there exists at least one feasible schedule that can

provide long-term activity fractions approaching the optimal solution of (4.5).

Proof. See Appendix 4.11.3.

Finding the constraints to make any activity fractions satisfying these con-

straints be realizable by a feasible schedule is essentially finding an integral

hull explicitly in the convex hull characterized by (4.5b)-(4.5d), which is very

difficult if not impossible. Though some solutions of (4.5) cannot be realized

by feasible schedules, they provide upper bounds on the network performance,

which can serve as benchmarks. The infeasibility of NUM solutions motivates

us to develop a scheduling scheme that can provide approximate but imple-

mentable activity fractions.

4.7.2 The Greedy Virtual Queue Scheduling Scheme

We consider scheduling policies for the UCS comprised of Lmax parallel

schedulers, one per ATM A. We describe a method for scheduling users over

the RBs in the λA > 0 fraction that are dedicated to clusters C ∈ A.

Observing that most users have unique association (implied by Prop.

4.5), we approximate the NUM solution to the unique association per ATM

(e.g., let the cluster providing the largest activity fraction be the only cluster

serving the user on each RB), where the approximate activity fraction, denoted

98



by x̃
(A)
kC , is given by

x̃
(A)
kC =

{
x

(A)
kC if C = arg maxC: C∈A x

(A)
kC

0 otherwise
. (4.15)

Let U
(A)
C denote the set of users for which x̃

(A)
kC > 0. In the unique

association, we have U
(A)
C ∩ U

(A)
C′ = ∅,∀C 6= C′,C ∈ A,C′ ∈ A. To assign user

k a fraction of RBs close to the desired fraction α
∗(A)
k =

x̃
(A)
kC

λA
, we consider

the max-min scheduling, whose objective function is max mink
∑

t α
(A)
k (t)R̃

(A)
k ,

where R̃
(A)
k = 1/α

∗(A)
k . We ignore the cluster index C in R̃

(A)
k given the unique

association. The metric R̃
(A)
k can be considered as the hypothetical peak-rate

of user k from cluster C in A.

If x̃
(A)
kC can be implemented by a feasible schedule, any scheduling schemes

for max-min fairness can be adopted to get the average fraction of resources

ᾱ
(A)
k = limT→∞

∑T
t=1 α

(A)
k (t)

T
= 1

R̃
(A)
k

= α
∗(A)
k . Thus, we change the implementa-

tion of activity fractions to the max-min fairness scheduling problem. In this

chapter, we propose to solve the scheduling problem based on the virtual queue

(VQ) method [119], where the scheduler performs the following weighted sum

rate maximization at t [120]:

max{
α

(A)
k (t)

} ∑
C∈A

∑

k∈U(A)
C

α
(A)
k (t)Q

(A)
k (t)R̃

(A)
k , (4.16a)

s.t.
∑

C:j∈C

∑

k∈U(A)
C

α
(A)
k (t)

Sj(LA)
≤ 1, (4.16b)

α
(A)
k (t) ∈ {0, 1}. (4.16c)
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Parameter Q
(A)
k (t) is the length of the VQ at user k in A at time t, which is

updated by

Q
(A)
k (t+ 1) = max{0, Q(A)

k (t)− R̃(A)
k (t)}+ Λ

(A)
k (t), (4.17)

where

R̃
(A)
k (t) =

{
R̃

(A)
k , if user k is scheduled at time t,

0, otherwise,
, (4.18)

with Λmax and V chosen sufficiently large [119, 120]. Similar to Theorems 1

and 2 in [119], if x̃
(A)
kC is realizable by some schedulers, we can show that the

obtained time averaged activity fractions ᾱ
(A)
k can be arbitrarily close to the

optimal solution α
∗(A)
k by letting V be as large as desired. On the other hand,

for x̃
(A)
kC that cannot be realized via any feasible schedule, though there is no

guarantee on the maximum gap between ᾱ
(A)
k and x̃

(A)
kC , ᾱ(A) can be very close to

the feasible activity fractions whose element-wise gap from x̃
(A)
kC is minimized.

Scheduling via (4.16) is impractical, as it needs to solve an integer

optimization (4.16) at each t. Alternatively, a number of heuristic algorithms

can be used to provide feasible (though generally suboptimal) solutions. In this

chapter, we consider a rudimentary greedy algorithm. Letting KA = |∪C∈AUC|,

the greedy algorithm operates at time t as follows:

1. Determine a user order π(k), for which Q
(A)
π(k)(t)R̃

(A)
π(k) ≥ Q

(A)
π(k+1)(t)R̃

(A)
π(k+1)

for all k.

2. Initialization: k = 1 and Ũ = ∅.
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3. If the user set Ũ ∪ {π(k)} satisfies all the constraints in (4.16), set Ũ =

Ũ ∪ {π(k)} and correspondingly update α
(A)
π(k)C(t).

4. If k < KA and there exists at lease one BS with (4.16b) being a strict

inequality, set k = k + 1 and go to step 3.

5. Output Ũ as the scheduling user set at time t.

4.8 Possible Alterantive Method – the Slot-based Gra-
dient Algorithm [1]

As introduced in Section 4.1, an alternative method to solve the joint

clustering and resource allocation problem is to leverage the slot-based gradient

algorithm proposed in [1]. Recalling that the NUM solutions of the UCS

scheme in Defn. 4.2 may not be realizable by any feasible schedulers, the

proposed greedy VQ scheduling scheme can be considered as an algorithm

to approximate the outer-bound solution (i.e., the NUM solution that may be

outside of the realizable region) to a sub-optimal inner-bound solution (i.e., the

solutions in the realizable region). In contrast, the slot-based framework tackle

this problem from the inner bound, as the solution at each slot is realizable.

In this section, we give a first-cut investigation in applying the slot-based

framework to the considered problem.

Let R̄k be the long-term rate of user k. At time slot t, the system

chooses the scheduling decision x
(A)
kC (t) and λA(t) by solving the following max-
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imization problem

max
λA(t),x

(A)
kC (t)

∑

k∈U

∂U(R̄k)

∂R̄k

∣∣∣∣
R̄k(t)

Rk(t) (4.19a)

s.t.
∑

C:j∈C,C∈A

∑
k∈U x

(A)
kC (t)

Sj(|C|)
≤ λA(t), ∀j,A, (4.19b)

∑

C∈A

x
(A)
kC (t) ≤ λA(t), ∀k,A, (4.19c)

∑

A

λA(t) ≤ 1, (4.19d)

x
(A)
kC (t), λA(t) ∈ {0, 1}, ∀k,C,A, (4.19e)

where R̄k(t+ 1) = (1− β)R̄k(t) + βRk(t), and Rk(t) =
∑

A

∑
C:C∈A x

(A)
kC (t)r

(A)
kC .

According to the conclusion in [1], we have that as β → 0, both the estimate

rate limt→∞ R̄k(t) and the long-term rate R̄k obtained by solving (4.19) at each

slot, converge to the optimal long-term rate R̄∗k.

The complexity to solve (4.19) is very high (e.g., exponential complexity

using the brute force search). Low-complexity efficient (though generally sub-

optimal) algorithms that can be applied to each slot are needed. We propose

a greedy algorithm, which operates at time t as follows:

1. Initialization: k = 1, Ũ(A) = ∅ and lA = 1,∀A;

2. For each A, denote by πA(l) the decreasing order in terms of r
(A)
kC /R̄k(t), for

which

r
(A)
kπA(l)CπA(l)

/R̄kπA(l)
(t) ≥ r

(A)
kπA(l)CπA(l+1)

/R̄kπA(l+1)
(t);
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3. For each A, if user kπA(lA) has not been scheduled, and all BSs in CπA(lA)

have available resources (i.e., the activity fractions of set Ũ(A) ∪ {kπA(lA)}

satisfies all constraints in (4.19)), let Ũ(A) = Ũ(A) ∪ {kπA(lA)}, and update

x
(A)
kπA(lA)CπA(lA)

(t) correspondingly;

4. If there exists a ATM A that Ũ(A) 6= U and lA < KNCA, set lA = lA + 1 and

go to step 3;

5. Choose the ATM A with the largest
(∑

k

∑
C∈A x

(A)
kC (t)r

(A)
kC

)
/R̄k(t), denoted

by A∗, and output Ũ(A∗) as the set of scheduled users at time t.

Though the complexity of the above slot-based greedy algorithm (which

is O(NANCmK log(K)) at each slot) and the complexity of the greedy VQ

scheme (which is O(K log(K)) at each slot) are comparable, the utility ob-

tained using the slot-based greedy algorithm is much less than the utility

obtained in the outer-bound approach proposed in this chapter, as shown in

Fig. 4.5 in Section 4.9. We leave the investigation of other algorithms in the

slot-based framework for future work.

4.9 Performance Evaluation

In this section, we present a simulation-based evaluation based on the

“wrap-around” layout in Fig. 4.2. The parameters used are given as follows

unless otherwise specified. There are 4 macros with Mj = 100 and Sj(|C|) =

10ρ|C|, and 32 pico BSs with Mj = 40 and Sj(|C|) = 4ρ|C|, with ρ being a

tunable parameter in [0, 1]. One pico BS is at the center of each white square,
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while 3 pico BSs are dropped uniformly within each shaded square (hotspot).

Also, 15 and 90 single-antenna users are dropped uniformly in each white and

each shaded square, respectively. The macro and pico BS transmit powers

are 46dBm and 35dBm, respectively. The path-loss for macro-user links and

pico-user links are 128.1 + 37.6 log10 d and 140.7 + 36.7 log10 d, respectively,

with the distance d in km. The noise power spectral density is −174 dBm/Hz.

The largest cluster size considered is Lmax = 4.

We consider two distinct macro-pico operation scenarios: (i) macros

and picos operate on the same band; (ii) macros and picos operate on different

bands, where we provide macros a fraction of 20% RBs as an illustrative ex-

ample, and macros can only engage in cellular transmission. Note that though

we can jointly optimize the resource partition and user association using (4.5),

we consider predefined RB partition for (ii), which provides a lower bound and

serves as a benchmark. This is due to that resource partition among macro

and small BSs is most likely static (or semi-static) in practice. Also, the macro

and small BSs may operate on different frequency bands (e.g., the macro BSs

may transmit on lower-frequency bands, while the small BSs may transmit

on higher-frequency bands), where the amount of spectrum depends on the

available bands and thus is not a variable to be optimized.

There exists a one-one mapping between the log utility and the geo-

metric mean of rates as
(∏K

k=1 Rk

)1/K

= exp
(

1
K

∑K
k=1 logRk

)
, thus we use

the geometric mean of rates as the metric for performance evaluation. Figs.

4.3 and 4.4 show the geometric mean of rates using different approaches. The
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Figure 4.2: The illustration of network deployment. The white grids are the
regular areas, while the shadowed grids are hotspots.

NUM solution refers to the solution of (4.5) solved by CVX. In Fig. 4.3, we can

observe that JT significantly improves the geometric mean of rates versus the

case with optimal user association but without interference management (i.e.,

the cellular transmission) and with the max-SINR association, in both macro-

pico shared and orthogonal operation scenarios (about 1.6x in the shared case

and 1.35x in the orthogonal case). The algorithm based on dual subgradi-

ent method has almost the same performance as the NUM solution, which

validates our analysis. The algorithm based on dual subgradient method has

almost the same performance as the NUM solution, which validates our anal-

ysis. The proposed greedy VQ scheduling scheme provides performance close

the NUM solution, within 90% of the utility provided by NUM solutions in

both the shared and orthogonal operation scenarios. Though in our setup, the
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Figure 4.3: The geometric mean of rates using different approaches, when
ρ = 1.

orthogonal operation scenario in cellular transmission outperforms the shared

operation scenario, which one performs better depends heavily on the param-

eters such as transmit power and BS densities and it is not a prior known in

general cases. Similar observations exist in Fig. 4.4, where the dual subgra-

dient based algorithm and greedy VQ scheduling scheme approach the NUM

solution with RB blanking. Note that we only adopt RB blanking in the cases

where macro and pico BSs share the resources. We observe that RB blanking

further improves the network utility. The gap between the NUM solution and

the results of greedy VQ scheduling scheme is much smaller in cellular trans-

mission than the cases with multiple-BS clusters (i.e., JT with Lmax > 1).

Fig. 4.5 compares the performance of the proposed greedy VQ scheme
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Figure 4.4: The geometric mean of rates with RB blanking, when ρ = 1
and macro and pico BSs share the resources. Blanking further improves the
network performance.

to the result of the greedy algorithm in the slot-based framework. We observe

that the greedy VQ scheme provides solutions that are quite close to the NUM

solution, while the greedy slot-based algorithm has much less utility than the

greedy VQ scheme. We leave the investigation of other algorithms that may

have potential better performance in the slot-based framework for future work.

We observe similar conclusions in Fig. 4.6, which shows the rate cumu-

lative distribution function (CDF) with different approaches. Note that the

rate here refers to long-term rate, which incorporating the resource sharing

among users served by the same BS. The rate of bottom (the 10th percentile)

users with JT is about 2.2x of the case with optimal user association but

without interference management (i.e., load balanced cellular transmission).
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Figure 4.5: The comparison between the geometric mean of long-term rates
using the slot-based framework with greedy algorithm and the greedy VQ
scheme, when ρ = 1 in cases where macro and pico BSs share resources. The
utility obtained from the greedy algorithm in the slot-based framework is much
less the utility obtained from the greedy VQ scheme.

To further validate the performance of the greedy VQ scheduling scheme,

we present the rate differences between the greedy VQ scheduling scheme and

the NUM solution in Fig. 4.7. We can observe that there are 82.62% users

whose rate differences between the greedy VQ scheduling scheme and the NUM

solution are within 10% of the NUM solution. This implies that the greedy

VQ scheduling scheme performs quite well.

The number of users served by different clusters with JT is illustrated

in Fig. 4.8. In the max-SINR association, most users connect to the macro

BSs, since macro BSs have larger transmit power. By load balancing, many

users are offloaded to small BSs in the cellular transmission case with opti-

mal user association. In our proposed framework, all users are served by BS
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Figure 4.6: The long-term rate CDF using different approaches, when ρ = 1.
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Figure 4.7: The rate differences between the greedy VQ scheduling scheme and
the NUM solution, when ρ = 1 and macro and pico BSs share resources. There
are 82.62% users whose rate differences between the greedy VQ scheduling
scheme and the NUM solution are within 10% of the NUM solution.

clusters with multiple BSs, which implies the potential gain using JT. In the

orthogonal resource allocation, more users connect to small BSs in the max-

SINR association, since there are no cross-tier interference and more users may

get larger SINR from small BSs than macro BSs. Due to the limited resources

(20% RBs) available in macro BSs, more users are offloaded to small BSs us-

ing the load balancing approach in orthogonal cellular transmission case. The

percentage of fractional users (i.e., users served by multiple clusters) is about

3.3% using JT, and 1.2% in the case without JT. For blanking, the percentage

of fractional users in the case using JT with RB blanking is about 2.5%, while

the percentage of fractional users in the case with blanking but without JT is

less than 1%. Thus, we can conclude that the number of fractional users in all
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Figure 4.8: The number of users served by different clusters, when ρ = 1. The
“Cluster UEs” refer to the users served by clusters of size larger than 1. Most
users have unique association.

cases is very small, which validates our analysis.

We illustrate the fraction of resources allocated to clusters of different

sizes at macro and pico BSs in Fig. 4.9. In the case where macro and pico

BSs share the resources, we allow clusters to include macro BSs. We observe

that most of the BSs transmit in clusters of size 4. On the other hand, in the

case where macro and pico BSs use orthogonal resources, only the small BSs

are allowd to become a cluster. Most of the small BSs transmit in clusters of

sizes 3 and 4, which again implies the potential gain using JT. The resource

allocation at BSs with blanking is discussed in the last paragraph when we

discuss about Fig. 4.11.
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Figure 4.9: The fraction of resources allocated by BSs to different clusters,
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Figure 4.11: The fraction of resources allocated to clusters of different sizes
with blanking. As ρ decreases, more resources are allocated to clusters of
smaller size.

In Fig. 4.10, we show the geometric mean of rates versus different ρ.

We observe that the performance gain using JT decreases as ρ decreases, since

the number of users that can be served by clusters decreases. When ρ ≥ 0.5,

the JT can perform better than the cellular transmission. When ρ becomes

smaller (e.g., ρ = 0.25, where all the clusters we considered can serve the same

number of users as in the cellular transmission), the utility using JT is almost

the same as the cellular transmission. This implies that the gain from JT

increases as more UL pilot resources are available in the system. With limited

UL pilot resources, the gain from JT would be quite small.

Fig. 4.11 illustrates the resource allocation for clusters of different sizes

versus ρ using RB blanking. The macro BSs are off for about 65% RBs in the
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cellular transmission. In the case using JT with RB blanking, as ρ decreases,

the clusters serve less users, and more resources are allocated to the clusters of

smaller sizes. When ρ = 0.25, all resources are allocated to single-BS clusters

in normal RBs, and most of the resources are allocated to single-BS clusters

in blank RBs. This again suggests that when the available pilot resources are

strictly constrained, the gain from JT would be limited.

4.10 Summary

In this chapter, we investigate the joint optimization problem of user

association and interference management in massive MIMO HetNets. We con-

sider both the JT and RB blanking approaches for interference management.

We first derive the instantaneous rate by exploiting massive MIMO proper-

ties, namely the hardening of fast fading to the mean and the independence of

peak rate from the user scheduling. We then formulate the joint problem to a

convex NUM problem to obtain the desirable user-specific BS clusters and the

corresponding resource allocations. The unified formulation can be applied to

both JT and blanking approaches, as well as the case where macro and small

BSs use orthogonal resources. We further propose an efficient dual subgra-

dient based algorithm, which can be implemented in a partially distributed

manner with low overhead. We show this algorithm converges towards the

NUM solution. We further show that the NUM solution with the JT approach

may not be implementable by a feasible schedule, and thus it provides an up-

per bound on the performance and can serve as a benchmark. Showing that
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most users connect to at most one cluster per RB in heavily loaded networks,

we propose to approximate the NUM solution to a unique association, given

which we propose a greedy VQ scheduling scheme to provide approximate but

implementable results. Simulation results show that the greedy VQ scheduling

scheme yields resource allocations that match NUM solutions quite well. More

dynamic settings (e.g., users with high mobility) and the study of slot-based

algorithm are left for future work. It is also of interest to theoretically bound

the gap between the NUM solution and the results of the proposed greedy VQ

scheduling scheme.

4.11 Appendix

4.11.1 Proof of Spectral Efficiency Using ZF Precoding

We use E
[

S
I+N

]
≈ E[S]

E[I+N ]
to approximate the SINR for the calculation

of ergodic spectral efficiency in the massive MIMO regime, which is shown

to be quite close to the exact asymptotic spectral efficiency [116]. Denoting

the kth diagonal element of Aj by akj and plugging the precoding matrix

Fj = Gj

(
GH
j Gj

)−1
A

1/2
j into received signal, the SINR at user k from cluster

C in A is

SINR
(A)
kC =

∑
j∈C
∑

l∈C

√
PjPlakjakl
Sj(|C|)Sl(|C|)

σ2 +
∥∥∥
∑

l /∈C
∑

u∈∪(C′∈A:l∈C′)U
(A)

C′ (t)

√
Pl

Sl(|C′|)
gHklfulsu

∥∥∥
2 . (4.20)

Using similar techniques in the proof of Theorem III-1 in [121], we can show

akj
Sj(|C|) → βkj

(Mj−Sj(|C|)+1)

Sj(|C|) , as Mj → ∞ with fixed ratio Sj(|C|)/Mj ≤ 1. Then
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we have

∑

j∈C

∑

l∈C

√
PjPlakjakl

Sj(|C|)Sl(|C|)
→
∑

j∈C

∑

l∈C

√
PjPlβkjβklbj(|C|)bl(|C|), (4.21)

where bj(|C|) =
Mj−Sj(|C|)+1

Sj(|C|) . As for the interference, we have

∥∥∥∥∥∥∥

∑

l /∈C

∑

u∈∪(C′∈A:l∈C′)U
(A)

C′ (t)

√
Pl

Sl(|C′|)
gHklfulsu

∥∥∥∥∥∥∥

2

=
∑

l /∈C

∑

u∈∪(C′∈A:l∈C′)U
(A)

C′ (t)

∥∥∥∥∥

√
Pl

Sl(|C′|)
gHklful

∥∥∥∥∥

2

→
∑

l /∈C

Plβkl,

(4.22)

where the last step follows from that channels and precoders of different users

are independent. Based on the approximation E
[

S
I+N

]
≈ E[S]

E[I+N ]
, we complete

the proof by plugging the above results into (4.20).

4.11.2 Proof of Spectral Efficiency Using MRT Precoding

We first give the following properties of MRT with massive MIMO.

1) We have ‖gkj‖2 = gHjkgkj = βkj
∑Mj

i=1 h
∗
kj,ihkj,i. Recalling that hkj,i are

i.i.d. Gaussian, we have 1
Mj
‖gkj‖2 → βkjE[h∗kj,1hjk,1] = βkj, as Mj and Sj(|C|)

become large with a fixed ratio Sj(|C|)/Mj ≤ 1.

2) Plugging fkj, we have
∣∣gHkjfnj

∣∣2 =
∣∣∣gHkj gnj

‖gnj‖

∣∣∣
2

=

∣∣∣∣
√
βkjβnj

‖gnj‖
∑Mj

i=1 h
∗
kj,ihjn,i

∣∣∣∣
2

,

which converges to
βkjβnj
1
Mj
‖gnj‖2

E
[
|h∗kj,1hjn,1|2

]
+Mj(Mj−1)E

[
h∗kj,1hnj,1h

∗
kj,2hnj,2

]
=

βkj as Mj →∞, since hkj,i and hnj,i are i.i.d. Gaussian for n 6= k.

Using the above two properties and similar techniques as in Appendix
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4.11.1, we have

SINR
(A)
kC ≈

∑
j∈C
∑

l∈C

√
Pj

Sj(|C|)
Pl

Sl(|C|)
‖gkj‖‖gkl‖

σ2 +
∑

j∈C(Sj(|C|)− 1)
Pj

Sj(|C|)βkj +
∑

l /∈C Plβkl

=

∑
j∈C
∑

l∈C

√
PjPlMjMlβkjβkl
Sj(|C|)Sl(|C|)

σ2 +
∑

j∈C(Sj(|C|)− 1)
Pj

Sj(|C|)βkj +
∑

l /∈C Plβkl
.

(4.23)

4.11.3 Proof of Theorem 4.1

If all considered ATSs include clusters with at most one BS, the clusters

per ATM can be considered as a new BS. According to Theorem 1 in [83], we

can show that there exists at least one feasible schedule that can provide

long-term activity fractions approaching the solution of (4.5). For the case

where some ATSs including clusters with size larger than 1, we adopt similar

techniques in the proof of Theorem 1 in [83]. Details are given as follows.

We denote the set of feasible schedules by F. Let e
(A)
kC ∈ {0, 1} indicate

the instance that user k is served by cluster C, where e
(A)
kC = 1 if user k connects

to cluster C in A and e
(A)
kC = 0 otherwise. According to Defn. 4.3, the element

in F is a set {e(A)
kC } satisfying that user k connects to at most one cluster and

BS j serves at most Sj(LA) distinct users in ATM A.

By time sharing among the feasible schedules in F, any fractional as-

sociation in the convex hull of F can be achieved in the long term. We denote

the convex hull of F by X ′ = conv(F) and the set of feasible activity fractions

117



by X, i.e.,

X =

{
x

(A)
kC :

∑

C:j∈C,C∈A

∑

k∈U

x
(A)
kC

Sj(LA)
≤ 1,

∑

C∈A

x
(A)
kC ≤ 1,

x
(A)
kC ≥ 0,∀k ∈ U,∀j ∈ B,C ∈ A and ∀A

}
.

It is easy to show that any feasible schedule in F satisfies the constraints

(4.5b)-(4.5d), and thus F ⊆ X. Note that X is convex. Thus, we have

X ′ = conv(F) ⊆ X.

As for the opposite direction (i.e., X 6⊆ X ′), we first define the totally

unimodular (TU) matrix: every square submatrix of a TU matrix has de-

terminant +1, −1, or 0. The Hoffman & Kruskal’s (1956) Theorem claims

that a matrix A is TU if and only if for each integral vector b, the ex-

treme points of the polyhedron {z : Az ≤ b, z ≥ 0} are integral [122]. Let

b =
[
ST1 , · · · ,STJ , 1, · · · , 1

]T
with Sj being a J × 1 vector with the same ele-

ment Sj(L), and A = [ BC ] with B being a diagonal block matrix, whose ith

diagonal submatrix is Bi =
[
B

(i)
1 , · · · ,B

(i)
K

]
with the jth row mth column

element of B
(i)
k being 1 if j ∈ Cm and |Cm| = i, and 0 otherwise. The sub-

matrix C is a diagonal block matrix with the ith diagonal submatrix Ci has

elements 1 at lth row and kth column if k ∈ [|Ai| ∗ (l − 1) + 1, |Ai| ∗ l] and

0 otherwise, where Ai is the ATM consisted of clusters with size i. The set

X can be written in the matrix form as X = {x : Ax ≤ b,x ≥ 0}, where

x =
[
x

(1)T
1 , · · · ,x(1)T

K , · · · ,x(n)T
1 , · · · ,x(n)T

K

]T
with x

(i)
k being a vector with the

lth element x
(i)
kCl

. We can show that when there is an ATM consisted of clusters

with size larger than 1, the integral matrix A is not TU, since A with |C| ≥ 2
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always includes the submatrix
[

1 1 0
1 0 1
0 1 1

]
whose determinant is -2. According to

the Hoffman & Kruskal’s (1956) Theorem, there are some non-integer extreme

points v ∈ X that cannot be characterized by a convex combination of any

elements in F. Thus, we have v 6∈ conv(F) = X ′ and X 6⊆ X ′.

4.11.4 Proof of Proposition 4.5

We use the techniques similar to the proof of Prop. 3 in [58], where a

graph is used to represent the association, and KKT conditions (4.13) restrict

the structure of the graph. For a given ATM A, we denote the graph by

G1, whose nodes represent users, and edge between two nodes represents the

BS cluster that serves the two users. Each node has an ID indicating the user

index, while each edge has a color that identifies the BS cluster. If there are two

users k and m being served by clusters C1 and C2 in A (i.e., x
(A)
kC1

> 0, x
(A)
kC2

> 0,

x
(A)
mC1

> 0, x
(A)
mC2

> 0), we have Rk =
r
(A)
kC1∑

j∈C1
νjA/Sj(|C1|) =

r
(A)
kC2∑

j∈C2
νjA/Sj(|C2|) and

Rm =
r
(A)
mC1∑

j∈C1
νjA/Sj(|C1|) =

r
(A)
mC2∑

j∈C2
νjA/Sj(|C2|) from KKT condition (4.13), where

Rk =
∑

A′
∑

C′∈A′ x
(A′)
kC′ r

(A)
kC′ . Thus, we have

r
(A)
kC1

r
(A)
kC2

=
r

(A)
mC1

r
(A)
mC2

, (4.24)

which is true with probability 0. Therefore, it is almost sure that any two

users can share at most one same cluster in A. Similarly, we consider an

example of three users k,m, i and clusters C1,C2,C3. We consider the follow-

ing three cases: 1) If clusters C1, C2 and C3 are different, we have
r
(A)
kC1

r
(A)
kC2

=

∑
j∈C1

νjA/Sj(|C1|)∑
j∈C3

νjA/Sj(|C3|)

∑
j∈C3

νjA/Sj(|C3|)∑
j∈C2

νjA/Sj(|C2|) =
r
(A)
mC1

r
(A)
mC3

r
(A)
iC3

r
(A)
iC2

, which is true with probability 0.
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2) If C1 = C2 6= C3, we have that users m and i are served both by clusters C1

and C3, which is true with probability 0 from (4.24).

3) If C1 = C2 = C3, we have that users k, m and i are served by the same

cluster, which is possible. In this case, the graph becomes a complete graph.

Therefore, the graph G1 with three users either contains a loop with

the same color edges or no loop. We can get a similar result for graph G1

with more than three users, where the users served by the same BS cluster

constitute a complete graph. Thus, we generate a new graph, denoted by G2,

where the node represents a cluster. There is an edge between two nodes in

G2, if these two nodes (i.e., clusters) have a common vertex in G1 (i.e., there

is at least one user served by both these two clusters). Thus the number of

users who are served by more than one cluster is limited by the edge of G2.

Note that there are NCA nodes and no loop in G2. Thus, G2 is a tree, which

has the maximal number of edges being one less than the number of nodes

(i.e., NCA − 1).
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Chapter 5

Analysis and Optimization of D2D Enhanced

Cellular Networks Using Time-Frequency

Hopping1

Besides small cells, D2D communication is also an emerging offloading

approach in HetNets, which reduces energy consumption, efficiently utilizes

the network resources, reduces end-to-end latency, and increases the network

capacity and flexibility [12–15]. As discussed in Chapter 1, D2D links can

either use orthogonal resources or share resources with the cellular network.

In a network with orthogonal allocation – called a dedicated network – the

interference management is simplified, but the resource utilization may be less

efficient. On the other hand, if D2D transmissions reuse cellular resources –

called a shared network – network resources can be used more efficiently, at

the cost of a denser interference environment, which complicates the interfer-

ence management. Which is preferable? Potential D2D data can either be

transmitted directly (D2D), or via a base station (BS) – termed mode selec-

tion. When should a potential D2D link transmit directly, versus relaying via

1This chapter has been published in [123]. Coauthor Dr. Mazin Al-Shalash has provided
technical suggestions and many insights to this work, and Dr. Constantine Caramanis and
Dr. Jeffrey G. Andrews are my supervisors.
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the BS? This chapter develops a flexible model to answer these fundamental

questions by providing accurate analytical results and simple semi-closed form

expressions for performance bounds, which in turn are amenable to efficient

optimization. Note that in this dissertation, we focus on the use cases where

the D2D traffic is generated by UEs themselves (e.g., sharing a just-taken

video), and thus only consider one hop D2D transmission, which is different

from the case where D2D works as a relay [124].

5.1 Related Work

Paper [125] investigates both the dedicated and shared approaches for

uplink resources and shows that in general, the dedicated approach is more effi-

cient in terms of transmission capacity, i.e., it allows more successful transmis-

sions per unit area. On the other hand, in terms of total rate, [126] shows that

the shared approach is better in a single cell scenario with a maximal rate cap,

taking into account both uplink and downlink transmissions. For a shared net-

work, careful resource allocation is a popular approach to control the mutual

interference between cellular and D2D transmissions. For example, an intel-

ligent frequency allocation where orthogonal resources are assigned to nearby

cellular and D2D links [127], exclusive D2D transmission zones [128], mixed

integer optimization problems [129,130], auction based mechanisms [131,132],

a Stackelberg game framework [133], and interference randomization through

time hopping [134] are viable approaches for controlling interference. Besides,

performance analysis considering interference among D2D links is conducted
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in [135]. For mode selection, simple distance-based and received signal-based

mode selections are proposed in [136] and [137], respectively. More sophisti-

cated mode selection involving other UEs are proposed in [138–140]. Neverthe-

less, the majority of earlier studies consider a single cell scenario and propose

heuristic algorithms to improve network performance. In this chapter, we

leverage tools from stochastic geometry to study a more general D2D-enabled

cellular network.

In a pure ad hoc network, there has been significant success over the

past decade in proposing tractable models for performance analysis and system

design via stochastic geometry [141]. For example, [142] investigates an Aloha-

type access mechanism for a large ad hoc network, while [143] analyzes a carrier

sense multiple access (CSMA)-type mechanism. The transmission capacity

of ad hoc networks are studied and summarized in [144, 145]. There have

been some analogous more recent results for cellular networks [146,147], where

the BSs are modeled as a Poisson point process (PPP). D2D-enabled cellular

networks are essentially a combination of cellular and ad hoc networks, but

combining these models into a more general framework is nontrivial. D2D

communication can either utilize uplink or downlink resources, and it is not

a priori clear which resource utilization is better. There has been at least

one very recent (parallel) work attempting this for the uplink system [28].

For comparison and the completeness of study, we instead investigate a D2D-

enabled cellular network, where downlink resources are either partitioned or

shared between D2D and downlink cellular transmissions.
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5.2 Contributions

The objective of this chapter is to propose a general framework for

the analysis of system performance (e.g., the signal-to-interference-plus-noise

ratio (SINR) distribution and total rate) in D2D-enabled cellular networks.

We apply this framework to both dedicated and shared downlink networks,

which are easy to analyze and optimize, and can be adopted as flexible baseline

models for further study. Our key contributions are enabled by simultaneously

leveraging techniques from stochastic geometry and optimization theory.

Tractable model for both dedicated and shared cellular net-

works. We propose a tractable model for a large D2D-enabled cellular net-

work, where the locations of BSs and UEs are modeled as spatial point pro-

cesses, particularly PPPs. We propose to adopt a time-frequency hopping

scheme for potential D2D links to randomize the interference, where each po-

tential D2D link chooses its operation mode (i.e., D2D or cellular mode) at

each time slot independently according to a predefined time hopping proba-

bility, and accesses each subband independently with a predefined frequency

hopping probability. In this model, the derived SINR distributions have re-

markably simple forms, which provide an efficient system performance eval-

uation without time-consuming simulations. It is not always possible to get

the expected rate in closed form. We provide a general expression for the av-

erage rate and then derive its lower bound, which is in a semi-closed form in

interference-limited networks.

Performance optimization and design insights. Based on the
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derived SINR distributions and the lower bounds on average rates, we inves-

tigate the optimal D2D hopping probabilities (i.e., how often potential D2D

links should request a time or frequency slot) using optimization theory. The

optimal network performance can serve as a lower bound for D2D-enable cellu-

lar networks with more sophisticated scheduling scheme. We find that in many

cases, we can either derive the optimal solution in a simple closed-form, or re-

duce the problem to lower dimension (e.g., one of the hopping probabilities is

found in closed-form). The observed design principles are now summarized.

Dedicated vs. shared. Unsurprisingly, the dedicated network has better

SINRs since resources allocated to D2D and cellular links are orthogonal. With

an optimal spectrum partition between D2D and cellular users, the dedicated

network also provides larger average rate, but should be interpreted cautiously.

For example, the optimal spectrum partition may be very hard to determine,

or it may vary significantly in time or space over a non-homogeneous network

(recall we model all BSs and UEs as homogenous PPPs). In such cases, the

shared approach may be able to perform significantly better, as it is more

flexible. For cases with less local traffic, the shared approach may also have

better performance.

Optimal hopping scheme. In the dedicated network with any general

non-decreasing utility function, the optimal D2D frequency hopping depends

on the service demands of D2D users. D2D links with more traffic to transmit

should be more aggressive in their spectrum access, despite the interference

that this generates to the rest of the network. The same observation can be
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seen from simulation results of the shared network.

As for time hopping, in most considered interference limited cases with

heavy load, all potential D2D links should operate in D2D mode (bypassing

the BS), assuming the objective is to maximize the total average rate. This

result is independent of the average distance between a D2D transmitter and

its receiver, which is perhaps surprising, and largely due to the use of total

average rate as the utility function. We demonstrate this by giving an example

in Section V-A, showing that the optimal mode selection for different utility

functions may be very different. In principle, any utility function can be

investigated based on the proposed framework, but we use total average rate

and leave other utility functions to future work.

5.3 System Model

We focus on a downlink model, where D2D communication uses down-

link cellular resources. The key aspects of the model are described in the

following subsections.

5.3.1 Deployment of D2D and Cellular Networks

We consider a large D2D-enabled downlink cellular network, illustrated

in Fig. 5.1. We classify the potential D2D transmitters into M types which

may differ in terms of their service demands and/or the MAC protocol. Note

that similar to current wireless traffic growth driven by smartphones prolifer-

ating around the world, more local traffic will possibly be generated once the
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D2D features are available in future. Therefore, at this stage, the D2D traffic

demand as well as its growth is not clear. Though any general distributions

can be used to model the location of D2D users, random (uniform) drop-

ping is one of the most popular models in both academia and industry (e.g.,

[28, 143, 148, 149]). In this chapter, we propose to use the following random

dropping model as a first-cut study, and leave other models (e.g., clustered

UEs in hotspot) to future work. We assume that the D2D transmitters of the

ith type are randomly distributed according to a homogeneous PPP ΦDi with

density λDi . The M PPPs are assumed to be independent of each other. Note

that the performance of the PPP model can serve as a benchmark for more

general settings. Each receiver is assumed to be randomly located around

its transmitter according to a two-dimensional Gaussian distribution N(0, δ2)

with the phase uniformly distributed in [0, 2π], so δ parameterizes the distance

between the receiver and its transmitter, which is Rayleigh distributed with

mean δ
√

π
2

[143]. Other distance distributions can be easily incorporated into

the considered framework.

We model the BSs and cellular users as two further independent homo-

geneous PPPs, denoted by ΦB and ΦU with densities λB and λU , respectively.

The model can be easily extended to the case where cellular users have hetero-

geneous service demands. By tuning the BS, D2D and cellular user densities,

along with δ, a very large class of plausible network topologies can be consid-

ered with this framework.
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D2D Tx

D2D Rx

Active D2D link

Potential D2D link

Cell boundary

Figure 5.1: Illustration of the network model. The red points are BSs which
are deployed according to a PPP. The D2D links include both silent potential
D2D links (with dashed lines) and active D2D links (with solid lines).

5.3.2 Scheduling Scheme

We propose to adopt a time-frequency hopping scheme for D2D schedul-

ing, to randomize the occurrence of access collisions with nearby interfering

UEs, and thus randomize the strong interference [134]. As illustrated in Fig.

5.2, the time axis is divided into consecutive operation slots. At each slot,

the potential D2D links can either be active (i.e., in D2D mode, where traffic

is transmitted directly between UEs) or silent (i.e., in cellular mode, where

traffic is relayed via the BS), and each potential D2D link selects its operation

mode independently. For example, a potential D2D link of type i would either

be active with probability pti ∈ [0, 1] or operate in cellular mode with prob-

ability 1 − pti . As pti increases, more potential D2D links would be in D2D

128



mode. Thus time hopping is a tool for implementing mode selection, where pti

results in a tradeoff between spatial reuse and additional interference. In the

frequency domain, the ith type D2D links access each subband independently

with probability pfi ∈ [0, 1]. As pfi increases, more frequency resources are uti-

lized by D2D links at the cost of increasing interference, since more D2D links

access the same subbands. Therefore, the frequency hopping probability pfi

results in a tradeoff between frequency efficiency and additional interference.

Using the time-frequency hopping scheme, D2D links are scheduled

independently of one another in an Aloha-type fashion in both time and fre-

quency [150]. The outage probability, defined as the probability that the SINR

is less than or equal to a given threshold (i.e., P (SINR ≤ β) with β being a

predefined threshold), increases almost linearly with the hopping probabili-

ties in the low outage regime, while the spatial reuse increases linearly with

the hopping probabilities [144]. So we can adjust the outage probability by

changing the hopping probabilities, so as to meet a target outage constraint

(i.e., P(SINR ≤ β) ≤ ε, where ε is a predefined parameter). Other scheduling

schemes such as centralized approaches or CSMA can be adopted, but with

drawbacks in practice (e.g. high overhead) and in terms of tractability (the

resulting transmitters are correlated and thus no longer a PPP).

Further, we introduce a penalty assessed to potential D2D links oper-

ating in cellular mode, denoted by w, to account for using both uplink and

downlink resources. A nominal value for w might be 2, because the local traf-

fic transmitted via a BS requires to establish both the uplink and downlink
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Figure 5.2: Illustration of the time-frequency hopping scheme. The shadowed
squares are the RBs occupied by some active D2D links. A potential D2D
link accesses each time slot uniformly with probability pt and accesses each
subband uniformly with probability pf .

transmissions, while the D2D transmission only needs to establish one link.

The parameter w can be considered as the price for D2D traffic using cellular

mode, which can help adjust the load between D2D and cellular networks.

5.3.3 Load Modeling

We assume that there are B frequency slots (subbands) in the network.

We either use the dedicated or the shared spectrum approaches. In a dedicated

network, a fraction of resources is allocated to D2D links, denoted by θ, while

the rest is allocated to the cellular network. In contrast, in the shared network,

the active D2D links share the resources with the cellular network. We assume

that the UEs are associated with the nearest BSs, and each BS randomly

allocates RBs to its cellular UEs according to their service demands. The
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performance using random allocation is a lower bound on more sophisticated

scheduling schemes (e.g., ones which are channel or SINR dependent), and the

consideration of such schemes is left to future work.

The cellular users are assumed to have the same resource requirement,

denoted by bC . The resource requirement for the ith type D2D links is denoted

by bDi . In this chapter, we consider the resource requirement in terms of the

number of subbands for tractability [151]. The ratio of total subbands B to

the resource requirement of UEs represents different service demand scenarios

(e.g., bC = bDi = B for a heavily loaded network). Let NC and NDi be the

number of original cellular users and of type i potential D2D links in cellular

mode, respectively. Let BC denote the number of available subbands for the

cellular network, where BC = (1−θ)B in the dedicated network and BC = B in

the shared network. The cell is lightly loaded if BC/(bCNC+
∑M

i=1 bDiNDi) > 1,

and fully loaded otherwise. In the former case, the BS only transmits on a

subset of the subbands, which are called normal RBs, while the other RBs are

left blank (i.e., the BS is not transmitting on these RBs). In the latter case,

some users have to be blocked (or all UEs are admitted by a cell but can only

obtain a fraction of time slots). The admission probability (or fraction of time

slots can be obtained) is BC/(bCNC +
∑M

i=1 bDiNDi) [151], which is essentially

the ratio of the number of available subbands in the cell to the number of

subbands needed by cellular users.
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5.3.4 Channel Model

In this chapter, we assume that the transmission powers are fixed at PD

for D2D transmitters and PB for BSs. General attenuation functions can be

adopted, but we focus on the standard power law attenuation function l(d) =

d−α, where d is the distance from the transmitter to a receiver, and α is the

path loss exponent. We assume all links experience independent Rayleigh

fading. Shadowing is not explicitly modeled, but is already captured by the

randomness of PPP in some sense, e.g., [152] showed that a grid BS model with

fairly strong (standard deviation greater than 10dB) log-normal shadowing is

nearly equivalent to a PPP model without shadowing.

The notations are summarized in Table 5.1.

5.4 Analysis of the Dedicated Network

In this section, we investigate the key performance metrics in the ded-

icated network.

5.4.1 SINR Distribution

Due to the stationarity of ΦD, we conduct analysis on a typical D2D

receiver located at the origin, whose transmitter is active. The location of

the typical transmitter is denoted by X0. For simplicity, we denote D2D links

by the location of their transmitters (e.g., the typical link is called link X0).

According to the load model described in Section 5.3.3, the network has blank

RBs when it is under-loaded. To get the average fraction of blank RBs, we
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Table 5.1: Notation summary for D2D-cellular networks with time-frequency
hopping

Notation Description

ΦDi PPP of type i D2D links

ΦB,ΦU PPP of BSs, cellular UEs

λDi Density of type i D2D links

λB, λU Density of BSs, cellular UEs

M Number of D2D types

δ
Parameter of distance between

D2D transmitter and its receiver

pfi Frequency hopping probability

pti Time hopping probability

w Penalty for potential D2D links in cellular mode

θ Fraction of resource allocated to D2D

B Total frequency subbands

bDi Service demand of type i D2D links

bC Service demand of cellular users

PB Transmit power of BSs

PD Transmit power of D2D transmitters

σ2 Noise power

α Path loss exponent

ρ(O), ρ(S) Fraction of normal RBs in the dedicated
and shared network, respectively

p
(O)
a , p

(S)
a

Admission probability in the dedicated
and shared network, respectively

P
(O)
D , P

(S)
D

Coverage probability of D2D links in the
dedicated and shared network, respectively

P
(O)
C , P

(S)
C

Coverage probability of cellular UEs in the
dedicated and shared network, respectively

R
(O)
D , R

(S)
D

Rate of D2D links in the dedicated
and shared network, respectively

R
(O)
C , R

(S)
C

Rate of cellular UEs in the dedicated
and shared network, respectively
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first find the average load per cell. The average coverage area of a BS is 1
λB

[153]. Thus, the average numbers of cellular users and of ith-type D2D links in

cellular mode in a cell are λU/λB and (1− pti)λDi/λB, respectively. Recalling

the available fraction of subbands for the cellular network is (1 − θ)B, the

average fraction of normal RBs sent by a BS is approximated by

ρ(O) ≈ min{bCλU +
∑M

i=1(1− pti)bDiλDi
λB(1− θ)B

, 1}. (5.1)

Assuming that BSs randomly allocate RBs to cellular UEs, the set of active

interfering BSs at a typical RB in the dedicated network, denoted by Φ̃B, can

be considered as a thinning process from the baseline BS process ΦB, which is

approximated by a PPP with density ρ(O)λB. This approximation is validated

in Section 5.7, where we observe that analysis and simulation results are in

good agreement.

Adopting time-frequency hopping, the interfering D2D transmitters are

those which access the same time-frequency RBs. We denote the set of type

i interfering D2D transmitters by Φ̃Di , which is a thinning process from ΦDi .

Based on the Thinning Theorem of PPP [153], the thinning process Φ̃Di is a

PPP with density ptipfiλDi . Applying the superposition of PPPs [153], the set

of interfering transmitters can be considered as a single PPP Φ̃D with density

λ̃D =
∑M

i=1 ptipfiλDi .

The SINR of the typical D2D link is

SINR =
PDh0|X0|−α

IΦ̃D
+ σ2

,
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where IΦ̃D
=
∑

Xi∈Φ̃D\X0
PDhi|Xi|−α is the interference from other D2D users,

and σ2 is the noise power. The SINR complementary cumulative distribution

function (CCDF) of the D2D links, also known as the coverage probability, is

given by Proposition 5.1.

Proposition 5.1. The SINR CCDF of D2D links in the dedicated network is

P(O)
D (β)

4
= P (SINR > β)

=

∫ ∞

0

e−βP
−1
D σ2vαLIΦ̃D

(βP−1
D vα)

ve−
v2

2δ2

δ2
dv.

(5.2)

where the Laplace transform of interference from D2D links is

LIΦ̃D
(s) = exp

(
−λ̃D

2π2/α

sin (2π/α)
(sPD)

2
α

)
, (5.3)

Proof. See Appendix 5.9.1.

The above SINR CCDF indicates that the time and frequency hopping

impact the SINR of D2D links in a product term ptipfi in λ̃D. That is, as long

as the product ptipfi is a constant, the network performance will stay the same.

There is a tradeoff between the density and the performance of D2D links: as

more and more potential D2D transmitters attempt to transmit, though the

density of active links increases, the interference increases and thus the SINR

decreases.

Assuming the nearest-BS association, the probability density function

of the distance between a user and its associated BS is fr(r) = e−λBπr
2
2λBπr

[154]. In the dedicated network, there is no D2D-cellular interference. There-

fore, we can leverage the analytical results of the cellular network in [146] to
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evaluate the cellular network performance, where the SINR CCDF of cellular

users is given by Proposition 5.2.

Proposition 5.2. The SINR CCDF of a typical cellular user in the dedicated

network is

P(O)
C (β)

4
= P(SINR > β) =

∫ ∞

0

e−sσ
2

LIΦ̃B
(s)fr(r)dr. (5.4)

where s = βP−1
B rα, and the Laplace transform of interference from cellular

UEs is

LIΦ̃B
(βP−1

B rα) = exp
(
−2πρ(O)λBr

2H1(β, α)
)
, (5.5)

with H1(β, α) =
∫∞

1
x

1+β−1xα
dx.

Proof. Proof is given by Appendix B in [146], where we simplify the result by

letting x = v/r in (21) of [146].

When the network is interference-limited (i.e., the thermal noise is ig-

nored), the above results can be further simplified:

Corollary 5.1. When σ2 → 0, the SINR CCDFs of D2D links and cellular

users, respectively, are

P(O)
D (β) =

1

1 + 2δ2λ̃D
2π2/α

sin(2π/α)
β

2
α

, (5.6)

P(O)
C (β) =

1

2ρ(O)H1(β, α) + 1
. (5.7)

136



5.4.2 Rate Analysis in the Dedicated Network

In this section, we analyze the average rates of cellular and D2D links in

the dedicated network. By treating the interference as noise, we use Shannon’s

capacity formula to approximate the rate, i.e., W log2(1 + SINR), where W is

the available bandwidth. Assuming the fraction of time slots is T , the long-

term rate becomes R = TW log2(1 + SINR), where TW can be considered as

the total available fraction of RBs.

Recall that the admission probability (i.e. available fraction of time

slots) of cellular UEs is

p(O)
a = min

{
(1− θ)B

bCN̄C +
∑M

i=1 bDiN̄Di

, 1

}
,

where N̄C and N̄Di are the expected number of cellular UEs and of type i

potential D2D links in cellular mode in the typical user associated cell, respec-

tively. Note that a random UE is more likely to connect to a cell with larger

coverage area. Denoting the BS serving the typical UE by B0, the expected

coverage area of BS B0 is larger than 1/λB, known as Feller’s paradox [155].

The average coverage area of BS B0 is instead given by 9/(7λB) [79, 156].

Therefore, similar to [151], the admission probability can be approximated to

p(O)
a ≈ min





7(1− θ)BλB
9
(
bCλU +

∑M
i=1 bDi(1− pti)λDi

) , 1



 . (5.8)

Recalling that w is the price for a D2D link operating in cellular mode,

the average rates of cellular users and D2D links are given by Theorem 5.1.
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Theorem 5.1. The average achievable rates of a typical cellular user and a

D2D link of the ith type, respectively, are

R
(O)
C = bCp

(O)
a

∫ ∞

0

log2(e)

(β + 1)
P(O)
C (β) dβ, (5.9)

R
(O)
Di

= min{pfiθB, bDi}pti
∫ ∞

0

log2(e)

(β + 1)
P(O)
D (β) dβ

+
bDi
w

(1− pti)p(O)
a

∫ ∞

0

log2(e)

(β + 1)
P(O)
C (β) dβ,

(5.10)

where P(O)
C (β) and P(O)

D (β) are given by (5.4) and (5.2), respectively. Further,

we can get the average rate of a typical D2D link by R
(O)
D =

∑M
i=1(λDi/λD)R

(O)
Di

.

Proof. The long term rate of a typical cellular user is

R
(O)
C =bCp

(O)
a E [log2 (1 + SINR)]

=bCp
(O)
a

∫ ∞

0

P
(
SINR > 2t − 1

)
dt

=bCp
(O)
a

∫ ∞

0

log2(e)

(β + 1)
P(SINR > β)dβ

(5.11)

where we let 2t− 1 = β in the last equality. A D2D link can be either in D2D

mode or cellular mode, and thus the average rate of a type i D2D link is

R
(O)
Di

= P(D2D mode)E
[
R

(O)
D2D mode

]
+ P(cellular mode)

1

w
E
[
R

(O)
cellular mode

]
,

where the rate obtained in D2D mode is

E
[
R

(O)
D2D mode

]
= min{pfiθB, bDi}

∫ ∞

0

log2(e)

(β + 1)
P(O)
D (β) dβ, (5.12)
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and the rate obtained in cellular mode is approximated to the rate in the

downlink system for tractability:

E
[
R

(O)
cellular mode

]

= min
{
E
[
R

(O)
cellular mode in DL

]
,E
[
R

(O)
cellular mode in UL

]}

≈E
[
R

(O)
cellular mode in DL

]
=
bDi
bC
R

(O)
C .

Note that in the rate derivation in this chapter, we assume that the number of

users associated with the BS serving the typical link and the SINR distribution

of the typical link are independent, and thus plugging (5.2) and (5.4) into (5.12)

and (5.11), respectively, the proof is complete.

5.5 Analysis of the Shared Network

In this section, we turn our attention to the shared network, where the

resources are reused between D2D and cellular networks, and thus there is

D2D-cellular interference.

5.5.1 SINR Distribution of D2D links

As in Section 5.4, let Φ̃D be the set of interfering D2D links, which is

a PPP with density λ̃D. The average fraction of normal RBs in the shared

network is approximated by

ρ(S) ≈ min{bCλU +
∑M

i=1 bDi(1− pti)λDi
λBB

, 1}.

We again consider a typical active D2D receiver located at the origin.

Taking into account now the interference from both cellular and D2D networks,
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the D2D SINR is

SINRD =
PDh0|X0|−α

IΦ̃D
+ IΦ̃B

+ σ2
,

where X0 is the location of the typical D2D transmitter, the interference from

other D2D transmitters is IΦ̃D
=
∑

Xi∈Φ̃D\X0
PDhi|Xi|−α, and the interference

from BSs is IΦ̃B
=
∑

Bi∈Φ̃B
PBhi|Bi|−α.

Theorem 5.2. The SINR distribution of an active D2D link in the shared

network is
P(S)
D (β)

4
= P (SINRD > β)

=

∫ ∞

0

e−sσ
2

LIΦ̃D
(s)LIΦ̃B

(s)
v

δ2
exp (− v2

2δ2
)dv,

(5.13)

where s = βP−1
D vα, LIΦ̃D

(s) can be calculated according to (5.3), and the

Laplace transform of interference from BSs is

LIΦ̃B
(s) = exp

(
−2πρ(S)λBv

2H0(β, α)
)
, (5.14)

with H0(β, α) =
∫∞

0
x

1+β−1PD/PBxα
dx.

Proof. Given the distance from D2D transmitter to its receiver, denoted by v,

the conditional coverage probability is

P(SINR(v) > β | v) = exp(−sσ2)LIΦ̃D
(s)LIΦ̃B

(s),

due to that h0 is Rayleigh fading and IΦ̃D
is independent of IΦ̃B

. The LIΦ̃D
(s)
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is given by (5.3). Similarly, we have

LIΦ̃B
(s) =E


 ∏

Zi∈Φ̃B

1

1 + sPB|Bi|−α




= exp

(∫ ∞

0

−2πρ(S)λBr

1 + β−1PD/PB(r/v)α
dr

)

= exp

(∫ ∞

0

−2πρ(S)λBv
2x

1 + β−1PD/PBxα
dx

)
,

where the last equality is obtained by letting x = r/v. Letting H0(β, α) =
∫∞

0
x

1+β−1PD/PBxα
dx, the proof is complete.

Theorem 5.2 shows that for any given SINR threshold, the coverage

probability of D2D links is monotonically decreasing as the access probabili-

ties pti and/or pfi increase, due to the increasing interference from the D2D

network. On the other hand, the relationship between the MAC protocol and

average rate is more subtle, and is discussed in Section 5.5.3.

5.5.2 SINR Distribution of Cellular Users

In this section, we conduct an analysis on a typical cellular UE, which

is assumed to be located at the origin.

Theorem 5.3. The SINR distribution of a typical cellular user in the shared

network is
P(S)
C (β)

4
= P (SINR > β)

=

∫ ∞

0

e−sσ
2

LIΦ̃D
(s)LIΦ̃B

(s)e−λBπr
2

2λBπrdr,
(5.15)
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where s = βP−1
B rα, and the Laplace transform of interference from D2D links

LIΦ̃D
(s) is given by (5.3). The Laplace transform of cellular interference

LIΦ̃B
(s) can be obtained by (5.5), where ρ(O) should be replaced by ρ(S).

Proof. We omit the proof as it is similar to the proof of Theorem 5.2.

Corollary 5.2. When σ2 → 0, the SINR CCDF of D2D links and of cellular

users are, respectively,

P(S)
D (β) =

1

2δ2λ̃Dκπβ
2
α + 4δ2πρ(S)λBH0(β, α) + 1

, (5.16)

P(S)
C (β) =

1
λ̃D
λB
κ(β PD

PB
)

2
α + 2ρ(S)H1(β, α) + 1

, (5.17)

where κ = 2π/α
sin(2π/α)

.

Proof. See Appendix 5.9.2.

From the above analysis, we can see that the coverage probabilities of

D2D links and of cellular UEs are both decreasing functions of pti and pfi , due

to the increasing interference as more D2D links access the same RBs.

5.5.3 Rate Analysis in the Shared Network

Similar to the dedicated system, the admission probability of cellular

users is

p(S)
a ≈ min





7BλB

9
(
bCλU +

∑M
i=1 bDi(1− pti)λDi

) , 1



 . (5.18)

The average rates of cellular users and D2D links in the shared network are

given by Proposition 5.3.
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Proposition 5.3. The average achievable rates of a cellular user and of a type

i D2D link, respectively, are

R
(S)
C = bCp

(S)
a

∫ ∞

0

log2(e)

(β + 1)
P(S)
C (β) dβ, (5.19)

R
(S)
Di

= pti min{pfiB, bDi}
∫ ∞

0

log2(e)

(β + 1)
P(S)
D (β) dβ

+
bDi
bCw

(1− pti)R
(S)
C ,

(5.20)

where P(S)
C (β) is given by (5.15) and P(S)

D (β) is given by (5.13).

Then we can get the average rate of a typical D2D link as R
(S)
D =

∑M
i=1

λDi
λD
R

(S)
Di

.

Corollary 5.3. We further have lower bounds on the rates as

R
(S)
C ≥ R

(S)
Cl = sup

β
bCp

(S)
a log2(1 + β)P(S)

C (β) , (5.21)

and R
(S)
Di
≥ R

(S)
Dli

, where

R
(S)
Dli

= sup
β

(
pti min{pfiB, bDi} log2(β + 1)P(S)

D (β)
)

+
bDj
bCw

(1− pti)R
(S)
Cl .

(5.22)

Proof. Denoting Γ = SINR, for any β, we have

E [log2(1 + Γ)] =P(Γ > β)E [log2(1 + Γ) | Γ > β]

+ P(Γ ≤ β)E [log2(1 + Γ) | Γ ≤ β]

≥P(Γ > β)E [log2(1 + Γ) | Γ > β]

≥P(Γ > β) log2(1 + β),

and thus E [log2(1 + Γ)] ≥ supβ P(Γ > β) log2(1 + β).
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The above lower bounds can also be extended to the dedicated network.

According to the above analysis, when the frequency hopping proba-

bility pfi increases, the average rate of cellular users decreases, because the

interference from D2D links increases. Thus the cellular rate is a monotonic

function of pfi . As for the time hopping, when pti increases, more potential

D2D links would operate in D2D mode. On the one hand, the interference from

D2D links increases as pti increases, leading to a lower SINR of the cellular

links; on the other hand, the cellular links benefit from D2D offloading, since

more resources would be available for the remaining cellular links. Therefore,

it is difficult to determine the impact of time hopping on the rate of cellular

users. As for the rate of D2D links, it is even more difficult to explore the

impact of time-frequency hopping, because both time and frequency hopping

result in the tradeoff between resource efficiency and additional interference.

It is not a priori clear whether larger time and frequency hopping probabilities

would be beneficial or not. However, by changing variables, we can get the

optimal solution of at least one variable and thus reduce the dimensions of the

optimization problem. We explore these issues in detail in the next section.

5.6 Optimization of the D2D-Cellular Network

Based on the above analytical results, we now turn our attention to the

optimization of network performance. As in [125,144,153], we study the utility

maximization in the interference limited network (i.e., σ2 → 0) for simplicity.
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5.6.1 Optimization of the Dedicated Network

The utility functions of a cellular user and of a type i D2D link are

denoted by UC(RC) and UD(RDi), respectively, where UD(·) and UC(·) are

continuously differentiable, non-decreasing, and concave functions [49]. The

optimization problem can be formulated as

max
pt,pf

M∑

i=1

λDiUD(R
(O)
Di

) + λUUC(R
(O)
C )

s.t. 0 ≤ pti ≤ 1, 0 ≤ pfi ≤ 1,

(5.23)

where R
(O)
Di

and R
(O)
C are given by Theorem 5.1.

For the optimal frequency hopping probability, we obtain closed-form

solution that is independent of the choice of utility functions.

Proposition 5.4. For any non-decreasing utility function, the optimal fre-

quency hopping probability in the dedicated network is p∗fi = min{1, bDi/(θB)}.

Proof. The objective function is a non-decreasing function of pfi when pfiθB ≤

bDi , and becomes monotonically decreasing when pfiθB > bDi . Therefore, the

optimal frequency hopping probability is p∗fi = min{1, bDi/(θB)}.

The above proposition shows that the D2D network is resource limited.

The larger the service demand is, the more aggressive the D2D link should be

to access the frequency bands.

Though sum rate maximization may not be a good performance metric

in the sense that it has not considered fairness among UEs, it is a reason-

able objective function for a first-cut investigation of the complicated hybrid
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network. Therefore, in the following, we focus on the linear utility function

U(x) = x. A single tier cellular network is heavily loaded in most cases (e.g.,

in a typical LTE network with BC = 10MHz, bC ≈ 1MHz, and λU
λB

> 10,

we have BCλB < bCλU). Therefore, we consider a congested network where

7BCλB < 9bCλU , and thus ρ(O) = 1 (i.e., BSs always send normal RBs) and

p
(O)
a = 7BCλB

9(bCλU+
∑M
i=1 bDi (1−pti )λDi)

.

Definition 5.1. The rate density is defined as the expected total rate of D2D

links and cellular users per surface unit.

For tractability, we investigate the hopping scheme to maximize the

rate lower bounds given by Corollary 5.3. We compare the results of exact

rates and their lower bounds by simulations in Section 5.7. Note that the

following results can be easily extended to the cases where the Modulation

and Coding Scheme (MCS) is not adaptive by setting a fixed β. Using the

rate lower bounds, the rate density of dedicated and shared networks can be

respectively calculated by

d
(O)
rate

4
=

M∑

j=1

λDjR
(O)
Dlj

+ λUR
(O)
Cl , (5.24)

and

d
(S)
rate =

M∑

j=1

λDjR
(S)
Dlj

+ λUR
(S)
Cl , (5.25)

where R
(O)
Dlj

, R
(O)
Cl , R

(S)
Dlj

and R
(S)
Cl are given by Corollary 5.3.

Proposition 5.5. To maximize the rate density in the dedicated network with

w ≥ 1, we have p∗ti = 1,∀i = {1, · · · ,M}. On the other hand, when w → 0,

we have p∗ti → 0.
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Proof. See Appendix 5.9.3.

Propositions 5.4 and 5.5 imply that both D2D and cellular networks are

resource limited when the network is fully loaded. In order to utilize resources

efficiently, all potential D2D links should be in D2D mode when w ≥ 1. On

the other hand, by setting w small enough, the potential D2D links can be

pushed to cellular mode (i.e., p∗ti → 0).

Note that analytically it is true that all potential D2D links are in

D2D mode to maximize the total average rate. However, traffic channels in

real cellular systems are typically not designed to operate at very low SINR

(e.g., SINR < −6dB) [157]. If the average distance is very large such that the

SINRs of many D2D links are smaller than −6dB, the optimal mode selection

would be different. Also, maximization of different utility functions would

lead to different optimal mode selections. For example, when we consider

the max-min utility, the optimal time hopping would depend on the average

D2D link length, which is characterized by δ. As δ increases, the rates of

potential D2D links obtained in D2D mode decrease, and may be smaller than

the rate obtained in cellular mode. Thus with an increasing probability, the

potential D2D links in D2D mode would have the minimal rates in the system.

Therefore, we would push some potential D2D links to cellular mode in this

example, in order to increase their rates and maximize the minimal rate (i.e.,

optimal time hopping probability p∗t < 1).

Given the optimal time hopping and frequency hopping, we investi-
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gate the optimal resource partition between D2D and cellular networks (i.e.,

θ). Plugging p∗fi = min{1, bDi
θB
} and p∗ti = 1 to (5.24), the objective func-

tion is a non-differentiable function of θ. We denote b̃i = bDi/B for i =

1, · · · ,M and b̃0 = 0 for simplicity. Without loss of generality, we assume

the sequence {b̃i}Mi=0 is in ascending order (i.e., b̃0 is the smallest and b̃M is

the largest). Let b̃L be the largest b̃i that is smaller than 1. We partition

the domain of θ into
[
b̃i,min

{
b̃i+1, 1

}]
, i = 0, · · · , L. On the ith region

[
b̃i,min

{
b̃i+1, 1

}]
, the types of D2D links can be separated into two sets,

where Si = {0, · · · , i} and Gi = {i + 1, · · · ,M}. We have p∗fj =
b̃j
θ

for j ∈ Si,

and p∗fj = 1 for j ∈ Gi. Thus, the objective function becomes a differen-

tiable function on each partition. Denote Ai = B log2(βD + 1)
∑

j∈Si λDj b̃j,

Ci = 2δ2 2π2/α
sin(2π/α)

β
2
α

∑
j∈Si λDj b̃j, D = 7BλB

9
log2(βC+1)

2H1(βC ,α)+1
, Ei = B log2(βD +

1)
∑

j∈Gi λDj , and Fi = 2δ2
∑

j∈Gi λDj
2π2/α

sin(2π/α)
β

2
α + 1. Letting

b̃′i =





1, if Ei > DFi,√
Ci(AiFi − EiCi)
F 2
i (DFi − Ei

)− Ci
Fi
, otherwise,

(5.26)

we can express the optimal solution θ∗ in terms of b̃′i as follows.

Proposition 5.6. The optimal θ to maximize (5.24) belongs to the following

set:

O =

{[
b̃′i

]min{1,b̃i+1}

b̃i
: i = 0, · · · , L

}
, (5.27)

where b̃′i is defined as (5.26) and [x]ba denotes min{max{x, a}, b}. In other

words, θ∗ = arg maxθ∈O d
(O)
rate.
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Proof. See Appendix 5.9.4.

Parameters Ai, Ci, Ei and Fi can be calculated through partial sum,

which leads to a computational complexity of O(M) to get the set O. Recalling

that L is the number of D2D types with b̃i < 1, the cardinality of O, denoted

by |O|, is at most L + 1, where L ≤ M . Note that M is generally a small

number, which implies that L+ 1 is small. Thus, Proposition 5.6 significantly

reduces the complexity compared to the brute force search. Note that Ei−FiD

decreases as θ increases. We have shown in Appendix 5.9.4 that the objective

function is non-decreasing when Ei − FiD ≥ 0. Therefore, we only need to

search over the domains where Ei < FiD, and thus |O| can be further reduced.

5.6.2 Optimization of the Shared Network

In this section, we turn our attention to the optimization of the perfor-

mance in the shared network. Similarly to the dedicated network, the objective

is to maximize the utility function in terms of the rate lower bounds given by

Corollary 5.3. We again consider a heavily loaded network with ρ(S) = 1

and p
(S)
a = 7BλB

9(bCλU+
∑M
i=1 bDi (1−pti )λDi)

. Under these assumptions, we have the

following conclusion.

Proposition 5.7. Given w ≥ 1, the optimal time hopping to maximize the

rate density (5.25) is p∗ti = 1, ∀i ∈ {1, · · · ,M}. In contrast, when w → 0, we

have p∗ti → 0.

Proof. See Appendix 5.9.5.
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Similarly to the dedicated network, w can be adopted as a parameter

to balance load between cellular and D2D networks, by decreasing which we

can push D2D links to cellular mode. Though it is difficult to obtain the

optimal frequency hopping in closed form in a general shared network, the

maximization has been reduced to a lower-dimensional problem by finding the

optimal time hopping probability, and the complexity to search the optimal

scheme becomes much less. Denoting the number of possible values of pti and

pfi by |pt| and |pf |, respectively, the complexity of brute force can be reduced

from O((|pt| × |pf |)M) to O(|pf |M) (e.g., for the case with |pt| = |pf | = 100

and M = 2, the complexity is reduced from O(108) to O(104)).

5.7 Performance Evaluation

In this section, we provide simulation results to validate the proposed

model and analytical results. The main simulation parameters used in this

chapter are summarized in Table 5.2, unless otherwise specified. The total

bandwidth, noise power, path loss exponent, transmit power, and density of

BSs are chosen based on 3GPP documents (see, e.g., [158, 159]). As for the

other parameters, since the D2D traffic demand and its growth is not clear at

this stage, the values are chosen given the best information available to us.

5.7.1 Validation of the System Model

We validate our analysis in Figs. 5.3 and 5.4. In Fig. 5.3, we compare

the analytical SINR CDFs of D2D and cellular links in dedicated networks
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Table 5.2: Simulation parameters for D2D-cellular networks with time-
frequency hopping

Total bandwidth 10MHz

Number of sub-bands B 50

Number of D2D types M 2

Service demand of type i
D2D links bDi

5, 15 subbands

Service demand of cellular users bC 5 subbands

Density of BSs λB 1/5002 m−2

Density of cellular users λU 60/5002 m−2

Density of type i D2D links λDi
(same density for different types)

15/5002 m−2

Average distance between a D2D
transmitter and receiver δ

√
π
2

50 m

Transmit power of BSs PB 46 dBm

Transmit power of D2D transmitters PD 20 dBm

Noise power σ2 −104 dBm

Path loss exponent α 3.5
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Figure 5.3: The SINR CDFs of active D2D links and cellular users in the
dedicated network, with hopping probabilities pt1 = pt2 = 1, pf1 = 0.2 and
pf2 = 0.6.

(given in Props. 5.1 and 5.2) to their corresponding simulations. The SINR

CDFs of D2D and cellular links in shared networks (given in Theorems 5.2 and

5.3) are shown in Fig. 5.4. Recall that we approximate the set of interfering

BSs by a PPP with density ρλB. This approximation leads to gaps between the

analysis and simulations (e.g., the gap between analytical and simulated SINR

CDFs of cellular links in the dedicated network). However, the gaps are very

small, which implies that the approximation is reasonable. From the fact that

analytical results and their corresponding simulation results are in quite good

agreement, we conclude that stochastic geometry allows us to efficiently find

the approximate coverage probabilities for the D2D-enabled cellular network.

We validate the anaytical results of rates in Figs. 5.5 and 5.6. We fix

the ratio of D2D density to cellular user density (e.g., 1/2), and increase these
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Figure 5.4: The SINR CDFs of D2D links and cellular users in the shared
network. The hopping probabilities are pt1 = pt2 = 1, pf1 = 0.1 and pf2 = 0.3.

two densities proportionally. The analytical results are almost the same as the

simulation results. The average rates of both cellular and potential D2D links

decrease as the density increases, due to the decreasing available resources

per link, as well as the increasing interference. Comparing the dedicated and

shared networks, the D2D links have much higher average rate in the dedicated

network. This implies that in a hybrid network sharing downlink resources, the

interference from BSs may significantly degrade the network performance. We

can observe that the D2D rates in the shared network first decrease very fast,

and then much more slowly when the BSs become fully loaded. Indeed, when

BSs are lightly loaded, the interference from BSs increases as the user density

increases, which makes the D2D SINR decrease. In the fully loaded case, the

interference from BSs stays almost the same. Though the interference from

other D2D links increases, the decrease of D2D rate slows down, which implies
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Figure 5.5: The average rates vs. the density of users in the dedicated network
(θ = 0.5). The hopping probabilities are pt1 = pt2 = 1, pf1 = 0.2 and pf2 = 0.6.
The density of potential D2D links increases proportionally to the density of
cellular users. The dashed lines are the simulation results while the solid lines
are the corresponding analytical results.

that the interference from BSs is dominant in the performance of D2D links.

Though the lower bound of rates are not very tight, the shapes are almost the

same as the exact simulated rates, providing possibilities for optimization in

terms of simple closed-form lower bounds. We compare the performance of

exact rates and their lower bounds in the following subsection.

5.7.2 Optimization of Network Performance

The variation of rate density with time and frequency hopping prob-

abilities in a heavily loaded network are shown in Figs. 5.7 and 5.8, respec-

tively. As we can observe, the optimal hopping probabilities to maximize
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dashed lines are the simulation results while the solid lines are the correspond-
ing analytical results.

rate lower bounds are the same as the ones to maximize the exact rates. To

maximize rate density, the active D2D links access the frequency resource

according to their service demands in both dedicated and shared networks

(i.e., p∗fi = min{1, bDi/BC}). All the potential D2D traffic is transmitted di-

rectly by D2D to alleviate the heavy load situation in the cellular network,

and thus to maximize the total rate. Note that the optimal mode selection

may be different for other objective functions. As shown in these two figures,

the overall rate with dedicated allocation is greater than shared allocation in

heavily loaded networks. One possible reason is that the rate of D2D links in

the dedicated network is much larger than in the shared network, where the

interference from BSs may limit the network performance, as it is observed
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frequency hopping probabilities be pfi = min{1, BC/bDi}.

in Figs. 5.5 and 5.6. By appropriately allocating resources between D2D and

cellular networks, the active D2D links can get a quite large rate compared

to cellular UEs. However, the shared network may overwhelm the dedicated

network without optimal resource partition, which is investigated in Fig. 5.9.

Though in the setting of this chapter, the dedicated network has a

greater rate than the shared network, the conclusion differs in different sce-

narios. For example, with an additional condition to guarantee the cellular

network performance in the dedicated network (e.g., θ ≤ 0.1), the optimal

total rate in the shared network would be greater than the total rate in the

dedicated network, as illustrated in Fig. 5.9. Another example is the network

with a small λD, which may have a better performance using the shared ap-
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the time hopping probabilities be pti = 1.

proach (e.g., with λD = 0.1λB, the total rates per cell of dedicated and shared

networks are 9.6 and 13.6 Mbps, receptively). Therefore, there is no absolute

advantage either for the dedicated or shared approaches in general settings.

Fig. 5.9 also shows that the optimal resource partition in our simulation

setup to maximize the total rate is θ∗ = 1. We can have different θ∗ if the

system parameters change. For example, Fig. 5.10 shows that θ∗ =
bD2

B
when

the average distance between the D2D transmitter and its receiver increases

to 280m. This is consistent with the conclusion made in Proposition 5.6, where

we claim that θ∗ depends on various network parameters (e.g., δ) and belongs

to the set O. Note that we get the solution θ∗ = 0 or 1, which is unfair, due

to that we consider the total rate maximization as our objective function for

157



0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

θ

R
a

te
 (

M
b

p
s
)

 

 

Total rate in dedicated network

Total rate in shared network

Rate LB in dedicated network

Rate LB in shared network

Maximal rate in

shared network
>

Maximal rate in

dedicated network

Figure 5.9: Total rate versus θ. The solid curves and dashed curves show
the performance of exact rates and their lower bounds, respectively. We let
frequency hopping probabilities be pfi = min{1, BC/bDi} and the time hopping
probabilities be pti = 1.

the first-cut study. The θ∗ would be very different if other utility functions

are considered. For example, for maximization of log-rate, we will never get

θ∗ = 0 or 1 (techniques similar to [28] can be used for this analysis). We leave

the investigation of other utility functions to future work.

Though in most cases, we have w ≥ 1, we investigate the impact of

w on the optimal mode selection to maximize the total rate in Fig. 5.11.

As w increases, which can be interpreted as the increasing price of cellular

resources, the cellular communication becomes more and more unattractive

for potential D2D traffic, and thus the load is shifted from cellular networks

to D2D networks, in order to maximize the total rate. Therefore, it is possible

to extend the current framework to a system, which can dynamically control

158



0 0.2 0.4 0.6 0.8 1
4.3

4.35

4.4

4.45

θ

T
o

ta
l 
ra

te
 L

B
 (

M
b

p
s
)

 

 

Dedicated network

Shared network

θ
∗
= bD2

/B

Figure 5.10: Rate versus θ in a network with the average distance between
a D2D transmitter and its receiver being 280m. We let frequency hopping
probabilities be pfi = min{1, BC/bDi} and the time hopping probabilities be
pti = 1.

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w

F
ra

c
ti
o
n
 o

f 
D

2
D

 l
in

k
s
 i
n
 D

2
D

 m
o
d
e

 

 

dedicated

shared

Figure 5.11: Effect of parameter w on the optimal mode selection to maximize
the total rate.

159



w so as to adjust the load in D2D and cellular systems to achieve other more

general utilities (e.g., utilities involving fairness). We leave the analysis to

future work.

5.8 Summary

This chapter has presented tractable frameworks for both dedicated

and shared networks, which provide accurate expressions for key performance

metrics (e.g., coverage probability and average rate). With an appropriate

resource partitioning, we observe that the dedicated network has a larger

overall rate than the shared network in the downlink system. In dedicated

networks, D2D links would access frequency bands as many as needed (i.e.,

p∗fi = min{1, bDi/(θB)}) to maximize any non-decreasing utility function. To

maximize the total rate, the potential D2D links are all in D2D mode in both

fully loaded dedicated and shared networks, when w ≥ 1. There are numerous

extensions of the proposed flexible model, like multiple antennas, power con-

trol, interference management, more intelligent scheduling schemes and study

of other utility functions. For example, one possible extension is to use the

SIR-based CSMA protocol [143]. Though the set of active D2D links is no

longer a homogeneous PPP, we can approximate it to a PPP with appropriate

density, at little cost of accuracy. Then we can use the proposed model in this

chapter to analyze the network performance. Another possible extension is to

model BSs as other point processes, e.g., Matern hard core process (MHC),

which characterizes the repulsiveness of BSs [160].
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Recall that the optimized network throughput in this framework can

serve as a lower bound for D2D-enable cellular networks with more sophisti-

cated scheduling scheme. More dynamic resource allocations of D2D commu-

nication is discussed in the following chapter.

5.9 Appendix

5.9.1 Proof of Proposition 5.1

Conditioning on the distance between a typical transmitter and its

receiver, we have

P (SINR > β | v) = P
(
h0 > s(IΦ̃D

+ σ2) | v
)

(a)
= EIΦ̃D

[
exp

(
−s(IΦ̃D

+ σ2)
)]

= e−sσ
2

LIΦ̃D
(s),

where s = βP−1
D vα, and LIΦ̃D

(s) is the Laplace transform of random variable

IΦ̃D
. The equality (a) follows from h0 ∼ exp(1), and the last equality follows

from the independence of noise and interference. The Laplace transform can

be further derived as follows:

LIΦ̃D
(s) = E


exp


−s

∑

Zi∈Φ̃D\0

PDhi|Zi|−α





(a)
= exp

(
−2πλ̃D

∫ ∞

0

∫ ∞

0

(
1− e−sPDh/uα

)
F (dh)udu

)

= exp

(
−2πλ̃DEh

[∫ ∞

0

(
1− e−sPDh/uα

)
udu

])

(b)
= exp

(
−πλ̃DEh

[
Γ

(
1− 2

α

)
(shPD)

2
α

])

= exp

(
−λ̃D

2π2/α

sin (2π/α)
(sPD)

2
α

)
,
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where F (dh) is the law of channel fading (e.g., F (dh) = e−hdh in Rayleigh

fading), and Γ(x) =
∫∞

0
tx−1e−tdt. The equality (a) follows from the Slivnyak’s

Theorem of a PPP and the Laplace functional of a PPP [153, 154], (b) is

obtained by changing x = shPD
rα

, and the last equality follows from the Rayleigh

fading assumption. Then we complete the proof by deconditioning on v.

5.9.2 Proof of Corollary 5.2

In this special case, for D2D links, we have

PD(β) =

∫ ∞

0

exp

(
−βP−1

D σ2vα − λ̃D
2π2/αβ

2
αv2

sin (2π/α)

−2πλBH0(β, α)v2 − v2

2δ2

)
v

δ2
dv

=
1

2δ2λ̃D
2π2/α

sin(2π/α)
β

2
α + 4δ2πλBH0(β, α) + 1

,

where the last equality is obtained by letting x = v2 and calculating the

integral over x. As for the cellular users, according to (5.15), we have

PC(β) =

∫ ∞

0

exp

(
−λ̃D

2π2/α

sin (2π/α)
(β
PD
PB

)
2
α r2

−2πλBH1(β, α)r2 − λBπr2
)

2λBπrdr

=
1

λ̃D
λB

2π/α
sin(2π/α)

(β PD
PB

)
2
α + 2H1(β, α) + 1

.

5.9.3 Proof of Proposition 5.5

Plugging p∗fi to (5.24), the average rate of active D2D links in (5.24) is

non-decreasing with respect to pti . Denoting the average rate of cellular users
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by g(pti), we have

g =
7(1− θ)BλB

9w

log2(1 + βC)

2H1(βC , α) + 1

(∑M
i=1 λDibDj(1− ptj) + wλUbC

)

(∑M
i=1 λDibDi(1− pti) + λUbC

) ,

whose first derivative with respect to ptk is

∂g

∂ptk
=

7(1− θ)BλB
9w

log2(1 + βC)

2H1(βC , α) + 1

λDkbDkλUbC(w − 1)
(∑M

i=1 λDibDi(1− pti) + λUbC

)2 ≥ 0,

where the last inequality follows from the assumption that w ≥ 1 for congested

networks. Therefore, the rate density is a non-decreasing function of pti , and

thus p∗ti = 1.

As for a lightly loaded network, with w being very small, the second

term dominates the rate density, which is non-increasing with respect to pti

when w → 0. Therefore, p∗ti = 0.

5.9.4 Proof of Proposition 5.6

Denote βC = arg maxβ R
(O)
Cl and βD = arg maxβ R

(O)
Dl . Plugging p∗ti = 1

to (5.24), the objective function becomes

max
θ

∑
i λDip

∗
fi
θB log2(βD + 1)

1 + 2δ2
∑

i λDip
∗
fi

2π2/α
sin(2π/α)

β
2
α

− 7BλB log2(βC + 1)

9 (2H1(βC , α) + 1)
θ. (5.28)

Recall Ai =
∑

j∈Si λDj b̃jB log2(βD + 1), Ci = 2δ2
∑

j∈Si λDj b̃j
2π2/α

sin(2π/α)
β

2
α , D =

7BλB
9

log2(βC+1)
2H1(βC ,α)+1

, Ei =
∑

j∈Gi λDjB log2(βD+1), and Fi = 2δ2
∑

j∈Gi
2π2λDj /α

sin(2π/α)
β

2
α+

1. On the ith region, the objective function (5.28) can be written as

max
θ

Eiθ
2 + Aiθ

Fiθ + Ci
−Dθ,
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whose first derivative is EiFiθ
2+2CiEiθ+AiCi
(Ci+Fiθ)2 − D and the second derivative is

2Ci(EiCi−AiFi)
(Ci+Fiθ)3 . Note that CiEi = Ai(Fi − 1), i.e., CiEi < AiFi. We consider

the following two cases.

(1) For partitions with Ei ≥ FiD, the first derivative of (5.28) is non-negative,

and thus the objective function is non-decreasing. In this case, we have θ∗ =

b̃i+1. Note that Ei−FiD decreases as i increases. Denoting the index of the last

domain that satisfies Ei ≥ FiD by k, the objective function keeps increasing

over the first k partitions, and thus θ∗ = b̃k+1 for the first k partitions.

(2) For the partitions with Ei < FiD, we have a positive second derivative,

implying that the objective function is concave. Thus, the optimal solution

in the latter case is

[
1
Fi

(√
Ci(AiFi−EiCi)

DFi−Ei − Ci
)]min{1,b̃i+1}

b̃i

, where [x]ba denotes

min{max{x, a}, b}.

Combining the above two cases, the proof is complete.

5.9.5 Proof of Proposition 5.7

When pfiB > bDi , the objective function is non-increasing with respect

to pfi , and thus we have p∗fi ≤ bDi/B. Observing that pfi only appears in terms

of ptipfi , we change variable to xi = ptipfi . The rate density maximization

problem becomes

max
pt,x

d
(S)
rate(xi, pti)

s.t. xi ≤ bDi/B,

xi ≤ pti ≤ 1,∀i ∈ ΦD.

(5.29)
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The objective function in (5.29) is

d
(S)
rate(xi, pti)

=

∑M
j=1 xjλDjB log2(1 + βD)

2π2/α2δ2β
2
α
D

sin(2π/α)

∑M
i=1 xiλDi + 4δ2πλBH0(βD, α) + 1

+ p(S)
a

(∑M
j=1

bDj
w

(1− ptj)λDj + bCλU

)
log2(1 + βC)∑M

i=1 xiλDi
λB

2π/α
sin(2π/α)

(βC
PD
PB

)
2
α + 2H1(βC , α) + 1

,

where the first term is independent of pti , and the second term can be written

as

A

(∑M
j=1 bDj(1− ptj)λDj + wbCλU

)

(
bCλU +

∑M
i=1 bDiλDi(1− pti)

) , (5.30)

where A =
7BλB

9w∑M
i=1

xiλDi
λB

2π/α
sin(2π/α)

(βC
PD
PB

)
2
α+2H1(βC ,α)+1

> 0. The first derivative of

(5.30) with respect to pti is

A
bCλUbDiλDi(w − 1)

(
bCλU +

∑M
i=1 bDiλDi(1− pti)

)2 ,

which is non-negative when w ≥ 1. Therefore, given w ≥ 1, the objective

function (5.25) is a non-decreasing function of pti , and we have p∗ti = 1.

In a lightly loaded network with small w, similar to the proof in Ap-

pendix 5.9.3, we have p∗ti = 0.
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Chapter 6

Distributed Resource Allocation in D2D

Enhanced Cellular Networks1

As established in Chapter 5, the strong interference from BSs to D2D

communication may kill the throughput gain when D2D links reuse the down-

link cellular resources. On the other hand, [28] as a parallel work to Chap-

ter 5 shows that the dedicated and shared resource allocation have comparable

throughput in the context of uplink cellular systems. Compared to downlink,

the uplink resources are often under-utilized [29]. Moreover, when D2D links

reuse uplink resources, the interference from D2D to cellular transmissions can

be better handled, since the BSs that are more powerful than UEs suffer from

D2D interference. Therefore, sharing uplink spectrum is preferable overall [3].

This motivates the study of D2D communication in the context of cellular

uplink systems in this chapter, where the resources are shared between D2D

and cellular links to improve the resource utilization. In such cases, the suc-

cess of co-existence of D2D and cellular transmissions depends heavily on the

interference management.

1This chapter has been published in [161]. Coauthor Dr. Mazin Al-Shalash has provided
technical suggestions and many insights to this work, and Dr. Constantine Caramanis and
Dr. Jeffrey G. Andrews are my supervisors.
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The objective of this chapter is to improve the network throughput

by allowing D2D communication to share the cellular uplink resources. At

the same time, we restrict the access of D2D links to the uplink spectrum in

order to manage the interference. Generally, centralized interference manage-

ment requires a central controller (e.g., the BS) to acquire the CSI between

each transmitter and receiver. This requires high overhead, particularly in

the scenario where channels vary rapidly (e.g., in a high-mobility environ-

ment). Therefore, a distributed algorithm requiring only local information is

preferable. We address the following design question in this chapter: how to

intelligently manage spectrum for D2D with only local information and BS as-

sistance (e.g., setting a high cost for D2D links that cause strong interference),

so as to manage the interference and improve the network throughput?

6.1 Related Work

There has been increasing interest recently in the investigation of in-

terference management in shared networks. Power control is one viable ap-

proach, e.g., consideration of a greatly simplified model with one cellular UE

and one D2D link [126], a simple power reduction method based on the de-

rived SINR [162], and study of several power control schemes including fixed

power and fixed SNR target [163] are some existing works. Another popu-

lar approach, related to the direction we propose, is to intelligently manage

spectrum for D2D links based on channel conditions and nearby interfering

UEs, e.g., maximal mutual interference minimization [164], network through-
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put maximization [129], setting exclusive D2D transmission zone to achieve

interference avoidance [127, 128], and interference randomization through fre-

quency and/or time hopping in [134] and Chapter 5 [123]. However, the key

new aspect of D2D-enabled cellular networks – BS assistance – has received

much less treatment in the literature. Possibly one reason for this is that the

computational problem itself is quite difficult, and the communication and co-

ordination alone required for a good centralized solution might be prohibitive.

As we discuss below, the key approach adopted in this chapter is a

two-stage distributed algorithm that has a game theoretic interpretation: BSs

send out a signal representing a fictional price that can be considered as the

assistance from BSs, and then D2D users optimize a local objective function

adapting to that price and to what the other users are doing. Since individual

D2D links optimize their local functions “selfishly”, this approach has a game

theoretic interpretation, which allows us to use algorithms and concepts from

game theory, even though there is no actual market, and users agree to “play”

this game using the BS’s signal, without actually exchanging currency.

Game theory has been used in various disciplines to model competi-

tion for limited resources in more general networks. For example, work has

been done considering spectrum sharing based on local bargaining [165], re-

peated game [166], auction mechanisms [132] and two-stage game [133, 167].

Paper [168] demonstrates several different game models for D2D resource al-

location, where an interesting example is to use the reverse iterative combina-

torial auction [169]. In this chapter, the game theoretic approach is used as
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an algorithmic technique to obtain efficient distributed spectrum management.

Similar to the recent work [133], we model a Stackelberg game to control the

interference from D2D to cellular network. The key difference from [133] is

in the upper-stage problem, where we take into account the D2D rate. More-

over, we investigate the convergence of the algorithms for both lower-stage

and upper-stage problems. Works in cognitive radio such as [167] are related

to the second part of our work (i.e., the investigation of optimal prices to

charge D2D links accessing the shared resources), which proposes that sec-

ondary users adapt their powers for alleviating interference to primary users.

The key techniques used in this chapter to study the optimal prices are sim-

ilar to [167], but we in addition investigate the convergence of the spectrum

management scheme for the D2D network (i.e., the lower-stage problem), as

well as the convergence of the proposed heuristic algorithm.

6.2 Contributions

In this chapter, we present a distributed, efficient and low-overhead

spectrum management method for D2D links to improve the throughput while

keeping the performance of cellular users at a guaranteed level. Specifically,

the main contributions are:

A Two-stage distributed algorithm. We propose an iterative two-

stage algorithm in Section 6.4. In the first stage, the BSs send a pricing signal

that adapts to the gap between the aggregate interference from D2D links

and a predefined interference tolerance level, where the price increases if D2D
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interference is higher than the tolerance level and decreases otherwise. In the

second stage, each D2D link independently maximizes its utility consisting of a

reward equal to its expected rate and a penalty proportional to the interference

caused by this link to the BS, as measured by the pricing signal. Note that

this two-stage model is a Stackelberg game [170], and the algorithm can be

seen as a pricing mechanism. This algorithm requires no cooperation among

D2D links, yet succeeds in discouraging strongly interfering or low-SINR D2D

links to access more RBs.

Utility-based D2D resource allocation adaptation. In Section

6.5, we consider the lower-stage problem, where we maximize the D2D rate

in terms of expected SINR for tractability, which provides a performance up-

per bound and can serve as a benchmark. Each D2D link selfishly maximizes

its utility given other D2D links’ decisions and the price broadcast from BSs,

which essentially forms a non-cooperative game. To reduce the computational

complexity and overhead, we further consider the problem of maximizing a

lower bound of the utility function for each D2D link. We then propose an

efficient iterative algorithm similar to a waterfilling algorithm, which only re-

quires local information. Our simulation results show that the result obtained

by the proposed iterative algorithm is very close to the solution to the upper

bound problem. This further lightens the computational burden on each user.

Cellular link performance protection. Given the solution of the

lower-stage problem, we study the optimal price the BSs report in Section

6.6, to maximize the network utility while protecting cellular links. We show
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that this problem can be transformed into a linear complementarity problem

(LCP). This allows us to take advantage of, and adapt for our problem, general

algorithms for LCP. We further propose a simpler heuristic algorithm based

on the bisection method, and observe that it has low overhead and converges

very quickly with almost no loss. We also propose a simple greedy algorithm

that leads to efficient computation at the cost of overall throughput, where

the throughput loss decreases as the interference tolerance level increases, e.g.,

the throughput loss compared to the algorithm for LCP are about 25% and

5% when the interference tolerance level is 5dB lower and above the cellular

signal in our setup, respectively.

Numerical results in Section 6.7 show that the cellular links can be

well protected with the average D2D throughput reduction of only 12% in our

setup, compared to the scenario where all D2D links are active. On the other

hand, compared to conventional cellular networks without D2D communica-

tion, the proposed algorithms provide significant throughput gain (about 5x

with 10 D2D links per cell and average D2D link length 80m in our simulation

setup). Note that the throughput gain highly depends on the amount of D2D

traffic and average D2D link length. We take 10 D2D links per cell and link

length 80m as an illustration example in this chapter.

6.3 System Model

We consider a uplink shared network, where cellular UEs in the same

cell get different subbands (i.e., orthogonal chunks of RBs). Any general
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scheduling scheme for cellular UEs can be used. Recall that a potential D2D

link can either transmit directly by D2D communication, or transmit to a BS

(i.e., mode selection). By intelligently conducting mode selection, we can ad-

just the aggregate interference in the network and thus optimize the achievable

network performance. However, the mode selection variables in the SINR ex-

pression result in non-convexity of objective functions that are in terms of rate,

i.e. log(1 + SINR). Moreover, the mode selection variables are binary, making

the problem combinatorial. Note that different mode selection schemes lead to

different optimal spectrum management, due to the differences in the resource

allocation of cellular users and thus the differences in the interference tolerance

level. On the other hand, spectrum management affects the achievable rate

and thus affects the mode selection of D2D links. As discussed above, it is

difficult to find the optimal mode selection, let alone the joint optimal mode

selection and spectrum management of D2D links, where mode selection and

spectrum management are coupled with each other. Despite the intractability

of the optimization problem, there are various practical (but not necessarily

optimal) mode selection approaches (e.g., distance-based mode selection [28]).

We propose the following mode selection as one viable scheme. The po-

tential D2D transmitters are treated the same as cellular UEs when scheduling,

except that we can add a weight to the scheduling metric. For example, with

proportional fair scheduling [50], the user with the largest qRi/R̄i would be

scheduled, where q is the weight, Ri and R̄i are the instantaneous rate and

average rate of link i, respectively. Without loss of generality, we assume cel-

172



lular users have q = 1. A typical value for q of potential D2D links might be

1/2, since a potential D2D link in cellular mode would occupy both uplink and

downlink resources. We can also let the weight q impose the cost on the back-

hual usage of core networks. Considering that D2D mode has more efficient

resource utilization, the potential D2D links are biased against cellular mode

using q < 1. Note that other mode selection schemes can also be applied to

our following framework easily.

We assume potential D2D links that are not scheduled by BSs would be

in D2D mode. In other words, we propose to let each BS complete the mode

selection of potential D2D links in its coverage area. Given the mode selection,

we aim to find the optimal spectrum management of D2D links to maximize

the network utility. We leave the joint optimization of mode selection and

spectrum management to future work.

Assuming that the cellular resource allocation is done by the BSs, our

focus is on the spectrum management of D2D links. In this chapter, we con-

sider resource allocation at each RB to simplify the notation and explanation,

but any general units of RBs can be considered similarly. The sets of cellular

UEs accessing the kth RB and of D2D links are denoted by Ck and D, re-

spectively, where the set of cellular UEs includes the potential D2D links in

cellular mode. We define Ik as the set of D2D links accessing RB k (i.e., the

set of interfering D2D links). Then the SINRs of D2D link i at RB k and a
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cellular UE belonging to Ck are, respectively,

SINR
(D)
ik =

1{i∈Ik}PDih
(k)
ii∑

j∈Ik,j 6=i PDjh
(k)
ji +

∑
j∈Ck PCjh

(k)
ji +Wik

,

SINR
(C)
ik =

PCig
(k)
ii∑

j∈Ik PDjg
(k)
ji +

∑
j∈Ck,j 6=i PCjg

(k)
ji +Wik

,

where 1{a∈A} is an indicator function whose value is 1 if a ∈ A and 0 otherwise,

PDi and PCi are the transmit powers of D2D and cellular links, respectively,

h
(k)
ji is the channel gain from UE j to D2D receiver i at RB k, g

(k)
ji is the

channel gain from UE j to the BS serving cellular UE i, and Wik is the noise

power of link i at RB k. We use Shannon capacity to calculate rate, i.e.,

Rik = B log2(1 + SINRik), where B is the frequency bandwidth of a RB.

6.4 Problem Formulation

In this section, we first formulate a single-stage optimization problem

to maximize the D2D throughput with a performance protection for cellular

links. The computational intractability of the single-stage optimization then

motivates us to consider a distributed setting, where each D2D link tries to

maximize its own utility based only on local information.

6.4.1 Single-stage Problem Formulation

Without loss of generality, we let xik be the probability that D2D link i

accessing RB k. The investigation of optimal access probabilities upper bounds

the channel assignment problem where D2D links either access a RB or not
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(i.e., the access probability is either 1 or 0). We consider the following utility

maximization problem, subject to a D2D interference constraint to guarantee

the cellular performance:

max
x

∑

i∈D

wi

K∑

k=1

R
(D)
ik (x)

s.t.
∑

i∈D

xikPDig
(k)
ii ≤ Qk,∀k,

xik ∈ [0, 1],

(6.1)

where wi is the weight for the ith D2D link, and K is the number of total

available RBs for D2D links. Denoting the power set of D by 2D, the rate of

D2D link i at RB k is

R
(D)
ik =

∑

Ik∈2D

∏

j∈Ik

xjk
∏

n∈D\Ik

(1− xnk) log2

(
1 + SINR

(D)
ik

)
. (6.2)

The first constraint in (6.1) is for protecting cellular transmissions, where Qk

– called the interference tolerance level – depends on the channel condition

of cellular links on RB k (e.g., Qk could be the signal strength of the cellular

link using RB k multiplied by a predefined threshold). Note that Qk can be

optimized to maximize a utility function incorporating the cellular rate. In

this chapter, we consider Qk as a predefined parameter and leave the joint op-

timization of Qk and D2D resource allocation to future work. We observe that

(6.1) is not a convex optimization problem. The computational complexity of

a brute-force approach to solve (6.1) is O(NND
x N2

D), where Nx is the number of

possible values of x to be searched and ND is the number of D2D links. Thus,

the computation is essentially impossible for even a modest-sized network.
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Instead of the centralized approach, we adopt a different strategy that

results in an efficient, distributed algorithm with low coordination, cooperation

and communication overhead. For tractability, we introduce variables – called

prices for accessing RBs – to decouple the interference constraint in (6.1) and

develop a distributed tractable framework. Particularly, BSs adjust prices to

control the total D2D interference, and each D2D link individually maximizes

its utility in terms of the expected rate and prices charged by BSs. This

leads to a two-stage optimization problem, which consists of a problem to find

optimal prices and several small-size convex optimization problems for D2D

links. Though solutions to the two-stage problem may not provide the optimal

solution to the original single-stage problem (6.1), this relaxation allows us to

efficiently allocate resources in a distributed fashion, and the numerical results

in Section 6.7 demonstrate a large rate gain without serious degradation in

cellular performance using the proposed algorithm for the two-stage problem.

6.4.2 Two-stage Problem Formulation

We propose a pricing mechanism, where a BS charges the D2D link i

in its coverage area the amount µik per unit of the interference caused by this

D2D link to the BS at RB k, i.e., the cost for a D2D link to access RB k

is µikxikPDig
(k)
ii . Assuming that each cell runs this mechanism independently,

the cost of a D2D link only depends on the interference caused by this D2D

link to its associated BS.

We assume the interference from other cells is invariant when we con-
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sider the resource allocation in a typical cell. Therefore, we can incorporate

the interference from neighboring cells into noise and the multi-cell scenario

is simplified to a single-cell scenario. Under this assumption, the interference

constraint is for the interference caused by D2D links in this cell. Note that in

this case, the updated noise (incorporating inter-cell interference) is different

from user to user, where generally cell-edge users suffer larger noise. Though

we focus on the asynchronous scheduling scenario, the proposed framework

can be easily generalized to a synchronous multi-cell scenario if the price at

each RB is unified among different cells, where the BS in the proposed model

becomes a network controller, and the interference becomes the aggregate in-

terference from D2D links to all BSs in the network.

The net utility of D2D link i is Ui = wi
∑K

k=1

(
R

(D)
ik (x)− µikxikPDig

(k)
ii

)
,

where the first and second term can be considered as the reward and penalty

functions, respectively. The problem involves a non-cooperative network,

where each D2D link aims to maximize its utility selfishly. We denote the

access probabilities of D2D link i by xi := [xi1, xi2, · · · , xiK ]T . The access

probabilities of all other D2D links are denoted by

x−i := [xT1 , · · · ,xTi−1,x
T
i+1, · · · ,xTND ]T ,

where ND is the number of D2D links. Similarly, we define the price vector

of D2D link i as µi := [µi1, µi2, · · · , µiK ]T . Given µi and x−i, the problem for

the D2D link i is
max
xi

Ui(xi; x−i,µi)

s.t. xik ∈ [0, 1], ∀k.
(6.3)
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On the other hand, the network aims to find optimal prices:

max
µ≥0

Uc (µ,x∗ (µ))

s.t.
∑

i∈D

x∗ik(µ)PDig
(k)
ii ≤ Qk, ∀k,

(6.4)

where Uc (µ,x∗ (µ)) =
∑

i∈D
∑K

k=1 µikx
∗
ik (µ)PDig

(k)
ii , and x∗ (µ) is the solution

of (6.3) for a given µ. Taking a game theoretic perspective, the above problem

is a decentralized Stackelberg game (a two-stage game), where the leader moves

first and then the followers move accordingly. In this chapter, the BS is the

leader and the D2D links are the followers.

To solve the two-stage problem, we use a backward induction technique.

We start with the problem of the D2D links – called a lower problem – and

get the D2D access probability x∗ (µ). By plugging x∗ (µ) into (6.4), we then

investigate the network utility maximization – called an upper problem.

6.5 Lower Problem: A Non-cooperative D2D Network

Given µ, D2D links try to maximize their utility selfishly. This defines

a non-cooperative game GD = [D, {xi}, {Ui}].

For tractability, we use Jensen’s inequality and consider the following

objective function that upper bounds (6.2):

max
xi

wi

K∑

k=1

R̃
(D)
ik (x)−

K∑

k=1

µikxikPDig
(k)
ii

s.t. xik ∈ [0, 1], ∀k,
(6.5)
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where

R̃
(D)
ik = log


1 +

∑

Ik∈2D

∏

j∈Ik

xjk
∏

n∈D\Ik

(1− xnk)SINR
(D)
ik


 .

The upper bound is tight if most xik are binary. We compare the gap between

the solution maximizing (6.2) and (6.5) numerically in Section 6.7 and leave

the analysis to future work.

We adopt an identical price for D2D links accessing the same RB, i.e.,

µik = µjk. The rationale for doing this is that the BS only cares about the

aggregate interference, rather than the differences between the interference

values from different D2D links. The structure of (6.5) suggests decoupling the

lower problem into K subproblems, where we consider each RB independently.

In the rest of this chapter, we consider a typical RB, and ignore the RB index

k for notation simplicity.

6.5.1 Distributed Algorithm Design

Optimization problems produce solutions with certain optimality guar-

antees. In our setting, however, the D2D links behave in a non-cooperative

fashion. Thus, understanding the behavior and performance of our algorithm

requires consideration of a different solution concept. This notion has been

well-studied in game theory, and it is known that the analog of stationary

points in an optimization solution are the so-called Nash Equilibrium (NE)

points. In our context, these are the fixed points from which no D2D link

would want to unilaterally deviate [170]. In the rest of this chapter, the NE

points always refer to the NE of the D2D non-cooperative game GD. In this
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subsection, we study what these NE points are and propose an algorithm that

converges to a NE.

We denote the feasible region of xi by Xi, where Xi = {xi ∈ [0, 1]}.

The existence of NE for the non-cooperative game is given by Lemma 6.1,

according to the Debreu-Glicksberg-Fan Theorem [171–173].

Lemma 6.1. If Xi is compact and convex, Ui is concave in xi given x−i and

continuous, then the NE exists.

It is straightforward to show that the above conditions are satisfied,

and thus we have at least one NE. Then a natural question follows: how to

attain a NE?

For fixed x−i and µ, the problem (6.5) is a convex optimization, and the

optimal solution is the point which vanishes the first derivative of the objective

function (if feasible):

x∗i =

[
wi

µPDigii ln 2
− 1
∑

I∈2D

∏
j∈I\i xj

∏
n∈D\I(1− xn)SINR

(D)
i

]1

0

, (6.6)

where [x]10 = min{1,max{0, x}}. We define the following function:

f(x1, · · · , xND ;µ) =
(
x∗1(x−1), · · · , x∗ND(x−ND)

)
,

where x∗i (x−i) is given by (6.6). Function f describes the optimal resource

access probabilities given that the access probabilities of other links are fixed,

and thus is called the best-response (BR) function. We propose a synchronous
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iterative algorithm – called the BR Algorithm, where all D2D links adjust their

access probabilities simultaneously according to

(x1(t+ 1), · · · , xND(t+ 1)) = f(x1(t), · · · , xND(t);µ).

Applying the Maximum Theorem [174], we can show that f is continuous.

Note that the BR Algorithm will never converge to a solution that is not a NE,

since each D2D link has the access probability that maximizes its utility, which

implies that no links can gain by changing only their own access probabilities

unilaterally at the convergence point.

Though procedures of the BR Algorithm are simple, the complexity

to calculate (6.6) is high, due to the expectation calculation involving ND

Bernoulli random variables, whose complexity is O(2NDN2
D). In addition, D2D

links need to exchange their current access probabilities, which causes high

overhead. The overhead and complex computation are not desirable, especially

for UEs that are power limited. Other algorithms such as gradient-projection

based algorithm [54] or algorithms in learning automata [175] can also be

applied, with the disadvantages of either slow convergence or memory space

limit. These motivate the following subsection, where we consider a lower

bound of the objective function in (6.5).

6.5.2 Joint Resource Allocation and Power Control – A Lower
Bound Problem

In problem (6.5), each D2D link maximizes the utility in terms of the

expected SINR. Approximating the rate to be calculated by expected interfer-
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ence rather than expected SINR, we have

max
xi

wi log (1 + SINR′i)− µxiPDigii

s.t. 0 ≤ xi ≤ 1,
(6.7)

where SINR′i =
xiPDihii∑

j∈D,j 6=i xjPDjhji+
∑
j∈C PCjhji+Wi

. This problem motivates a low-

complexity low-overhead algorithm, as shown below.

Variable xi in (6.7) can be considered as a joint resource allocation and

power control variable, where 1 (xi > 0) indicates whether D2D link i accesses

the RB, and the value of xi denotes the fraction of maximal transmit power

to use. The strategy with respect to (6.5) can be considered as a scheme

similar to random hopping (with different hopping probabilities at each link),

while the strategy in (6.7) is deterministic, which considers power control in

addition to resource allocation. Intuitively, the hopping scheme randomizes

strong interference, and thus may potentially provide a larger gain than the

latter case, though we consider power control jointly. We show this relationship

mathematically in Proposition 6.1.

Proposition 6.1. The optimization problem (6.7) maximizes a lower bound

of the utility function in (6.5).

Proof. Denoting the interference from other D2D links by I, the SINR can

be written as E [SINRDi ] = EI
[

PDihii
I+

∑
j∈C PCjhji+Wi

]
. It is straightforward to

verify that f(I) =
PDihii

I+
∑
j∈C PCjhji+Wi

is convex. By Jensen’s inequality, we have

f(E[I]) ≤ E [f(I)], which completes the proof.
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We call (6.7) the lower bound problem of (6.5) in this chapter. Invoking

Lemma 6.1 again, we can show that there is at least one NE for the D2D game

formulated in this subsection. Though there may exist multiple NEs in general,

our setup admits a unique NE under some specific conditions; we specify those

precisely in Section 6.5.3. Note that the NEs of the games with (6.5) and with

(6.7) are not necessarily the same, and thus Proposition 6.1 does not say that

the BR Algorithm in Section 6.5.1 always performs better than the algorithms

proposed in the following subsection.

Given x−i and µ, (6.7) is a convex optimization problem and its optimal

solution is given by Proposition 6.2.

Proposition 6.2. The solution of (6.7) has the following form

x∗i =

[
ai − si
PDihii

]1

0

, (6.8)

where ai =
wiPDihii
µPDigii

−
∑

j∈C PCjhji − Wi, si =
∑

j 6=i xjPDjhji, and [x]10 =

min{1,max{x, 0}}.

Proof. According to the KKT conditions [53], we have ∂Ui
∂xi

= 0 if xi ∈ (0, 1),

∂Ui
∂xi
≤ 0 if xi = 0, and ∂Ui

∂xi
≥ 0 otherwise, where

∂Ui
∂xi

=
wiPDihii

xiPDihii +
∑

j∈D,j 6=i xjPDjhji +
∑

j∈C PCjhji +Wi

− µiPDigii.

The above equations and inequations result in (6.8).

Eq. (6.8) is similar to the waterfilling function in power allocation

problems, except that our constraint xi ∈ [0, 1] is independent over different
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RBs and thus we obtain a closed-form solution (6.8). Leveraging existing

works on waterfilling problems, we propose an iterative algorithm similar to

the iterative waterfilling algorithm (see, e.g., [174,176,177]).

6.5.3 Algorithm Design for the Lower bound Problem

Similar to Section 6.5, we propose a synchronous iterative algorithm

based on the BR function, defined as

fL(x1, · · · , xND ;µ) =
(
x∗1(x−1), · · · , x∗ND(x−ND)

)
,

where x∗i (x−i) is given by (6.8). The algorithm – called the LB Algorithm – is

given by Algorithm 1. Similar to the BR Algorithm, we have that if the LB

Algorithm converges, then it converges to a NE.

Algorithm 1 LB Algorithm: an iterative algorithm for lower bound problem
of D2D

1: Initialization: given price µ ≥ 0, let xi(0) = 1,∀i, and t = 0;
2: while ‖x(t)− x(t− 1)‖ ≥ ε do
3: let x(t+ 1) = fL(x(t);µ);
4: let t = t+ 1;
5: end while

Implementation interpretations. Adopting the LB Algorithm, each

D2D link first acquires CSI of the link from its transmitter to the BS. This

can be either estimated based on the downlink signal (e.g., in a TDD up-

link/downlink configuration), or provided by the BS, which measures the up-

link channel and sends the information to the D2D user (e.g., in a frequency-

division duplexing (FDD) uplink/downlink configuration). Apart from uplink
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Figure 6.1: Illustration of the proposed algorithm. The arrows filled with dark
color indicate the procedures requiring message exchange, while the arrows
filled with light color indicate the procedures involving only local measure-
ments. The lower part describes the LB Algorithm for the lower problem,
while the upper part illustrates algorithms proposed for the upper problem.

CSI, each D2D link also measures the channel between the transmitter to its

paired receiver. The frequency to update CSI depends on the channel vari-

ance. For example, in a slow mobility scenario, D2D links may just update

the information once (at the beginning of each resource allocation period). At

each iteration of the LB Algorithm, every D2D link measures the interference

if accessing a RB. There is no additional message exchange in this step. Thus,

the LB Algorithm only requires local information and reduces the overhead,

as shown in Fig. 6.1.

Convergence analysis. To get the convergence criteria of the LB

Algorithm, we first investigate some basic properties of function fL. We as-
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sume that there are finite number of D2D links. We call the set of D2D

links with xi = 1 saturated D2D links, denoted by S := {i ∈ D : xi = 1},

and the set of D2D links with xi ∈ (0, 1) active D2D links, denoted by

A := {i ∈ D : xi ∈ (0, 1)}. Denoting s = [s1, · · · , sND ]T , we have s = Gx,

where G is an ND × ND matrix with zero diagonal elements and (i, j)th ele-

ment (with i 6= j) being PDjhji.

Proposition 6.3. The best-response function fL has the following properties:

1. fL is a continuous mapping from X to X.

2. fL is piecewise affine, which means that fL has the following two properties:

(a) The domain of fL can be partitioned into finitely many polyhedral re-

gions, denoted by P1, · · · ,Pd, which are determined by A and S;

(b) On the polyhedron Pn defined by A(n) and S(n), we have

fL(x) = M(n)x + b(n),

where b(n) is a constant vector, and M(n) = B(n)G with B(n) being a

diagonal matrix, which has
[
B

(n)
i

]
kl

= − 1
PDihii

if k = l, i ∈ A(n), and
[
B

(n)
i

]
kl

= 0 otherwise.

Proof. See Appendix 6.9.1.

We assume that the resource allocation is carried out well during the

channel coherence time, and thus channel can be regarded as static during
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resource allocation updates. We leave the stochastic channel analysis as future

work. Defining the matrix norm of a matrix M induced by the vector norm

‖ · ‖ as ‖M‖ := max {‖Mx‖ : ‖x‖ = 1} [174], a sufficient condition for the

convergence of the proposed algorithm with general matrix norms can be found

as follows, leveraging the techniques used in Theorem 7 in [174].

Theorem 6.1. If ‖Mn‖ < 1, we have

1. the synchronous iterative algorithm converges for any initial resource allo-

cation;

2. there is a unique fixed point x∗;

3. ‖x(t) − x∗‖ ≤ ηt‖x(0) − x∗‖, where η = maxn ‖Mn‖. The upper bound of

the convergence rate is η.

Proof. If fL is a contraction mapping, then global stability follows from the Ba-

nach Fixed Point Theorem (see, e.g.[178]). The proof of contraction mapping

is similar to the proof of Theorem 7 in [174], and thus we ignore the details.

Given that fL is a contraction mapping, we have |fL(x′)−fL(x)‖ ≤ η‖x−x′‖.

The rate of convergence for a sequence {xn} converging to L is defined as

the limn→∞
|xn+1−L|
|xn−L| . Observing the above inequality, we conclude that the

convergence rate of the BR Algorithm is upper bounded by η.

The number of polyhedral regions that partition the domain of fL is

O(3ND), which is very large, and thus it is impractical to check the conditions

187



in Theorem 6.1 directly for all regions. We further provide sufficient conditions

in Proposition 6.4 that are easy to apply.

Proposition 6.4. If the matrix G satisfies ‖G‖ ≤ mini,k PDih
(k)
ii , then the

algorithm converges to the unique fixed point regardless of the initial point.

Proof. According to Prop. 6.3, we have Mn = B(n)G. To make fL a con-

traction mapping, we have to satisfy ‖B(n)G‖ ≤ 1. By the property of ma-

trix norm that ‖AB‖ ≤ ‖A‖ · ‖B‖, we obtain a sufficient condition that

is ‖B(n)‖ · ‖G‖ ≤ 1. Matrix B(n) is a diagonal matrix, whose norm is

‖B(n)‖ ≤ maxi
1

PDihii
, ∀n. Then we can get one sufficient condition as ‖G‖ ≤

(
maxi,k

1

PDih
(k)
ii

)−1

= mini,k PDih
(k)
ii .

Design interpretations. The above result is true for any general lp

norm with p ≥ 1. As in [174], we apply it to some special matrix norms and

give the corresponding interpretations as follows.

Example 1 (l1 norm). We have ‖G‖1 = max {
∑

i=1 |si|}. This implies that a

sufficient condition for the convergence of the LB Algorithm is that no D2D

transmitter causes very strong interference to other D2D links.

Example 2 (l∞ norm). We have ‖G‖∞ = max {maxi |si|}. This implies that a

sufficient condition for the convergence is that no D2D receiver suffers excessive

interference.

We show examples of D2D access probabilities obtained by the BR Al-

gorithm versus different µ in Fig. 6.2. We can observe that the BR Algorithm
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Figure 6.2: The access probabilities of D2D links vs. µ. The areas in the dark
shade show the locations of silent D2D links with xi = 0. The light shaded
areas show the locations of active D2D links (i.e., xi ∈ (0, 1)). The remaining
parts show the locations of saturated D2D links (i.e., xi = 1).

discourages D2D links whose transmitters are near the BS from accessing the

RB. In addition, the BR Algorithm takes into account the SINR of D2D links,

and encourages a D2D link far from the BS to keep silent if there are many

D2D links nearby, to decrease the interference in D2D networks. Comparing

the two subfigures, we conclude that less D2D links would be active as µ in-

creases. This suggests the potential effectiveness of µ, which is investigated in

the following section.

6.6 Upper Problem: Network’s Pricing Mechanism

It is difficult to analyze the upper problem by plugging (6.6) directly

into (6.4), due to the complex term in the denominator. Simulations in Section

6.7 show that the performance of the LB Algorithm for (6.7) is very close to the
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performance of the BR Algorithm for the original problem (6.5). This suggests

to approximate the solution of (6.5) to the solution of the lower bound problem

(6.8). By this approximation, we propose an algorithm leveraging techniques

from LCP [179]. We further propose a bisection algorithm, which has low

overhead and can be applied to the original two-stage problem (with the lower

problem (6.5)). In addition, motivated by the results of the lower problem (see

e.g., Fig. 6.2), we propose a simple greedy heuristic algorithm, which performs

well for networks with high interference tolerance level.

6.6.1 An Equivalent Upper Problem

According to Lemma 1 in [167], the upper problem is equivalent to the

following problem:

max
µ≥0

min

{
µ
∑

i∈D

xiPDigii, µQ

}

s.t. xi = x∗i ,

(6.9)

where x∗i is given by (6.8). For simplicity, we use the notation 0 ≤ a ⊥ b ≥ 0

to represent the complementarity condition of a and b, i.e., ab = 0 and a, b ≥ 0

[179]. Letting ICi =
∑

j∈C PCjhji + Wi, and λi be the Lagrange multiplier to

relax the constraint xi ≤ 1, we have the following lemma.

Lemma 6.2. Denoting ti =
wiPDihii

uPDigii(uPDigii+λi)
, (6.8) is equivalent to the fol-

lowing parametric LCP with variables (xi, ti) and parameter µ [167, 179]:

0 ≤ xi ⊥

(
ti −

wihii
µgii

+
∑

j∈D

PDjhjixj + ICi

)
≥ 0,

0 ≤ ti ⊥ (1− xi) ≥ 0.

(6.10)
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Proof. Details can be found in [167]. Key steps are to multiply (6.8) by∑
j∈D PDjhjixj+ICi

µPDigii+λi
and change variables ti.

In the following, we explore properties of the objective function in (6.9),

which provides clues to design efficient algorithms for the upper problem.

6.6.2 Algorithm Design for the Upper Problem

In this chapter, we use the symmetric parametric principle pivoting

algorithm (SPPP) – a classical algorithm for parametric LCP [179] – to find

the optimal µ and its corresponding feasible solutions xi in (6.10). We write

(6.10) in matrix form as 0 ≤ y ⊥ Ay + q + νd ≥ 0, where

y = [x1, . . . , xND , t1, . . . , tND ]T ,

A =
[
A0 I
−I 0

]
, with A0 is a matrix with (i, j)th element PDjhji, ν = 1

µ
,

q = [IC1 . . . , ICND , 1, . . . , 1]T , and d = [−w1h11

g11
, . . . ,−wNDhNDND

gNDND
, 0, . . . , 0]T .

Note that µ ≥ 0 implies that ν ≥ 0. We set a upper limit for ν, denoted by

ν̄ <∞, which is a sufficient large real number.

The SPPP is given by Algorithm 2. Since the SPPP Algorithm requires

CSI between each transmitter and receiver (i.e., matrix A), which may cause

high overhead, the result of SPPP can be used as a performance benchmark,

and another low-overhead algorithm is desirable. To propose such algorithms,

we first explore the properties of the objective function in (6.9), which is

denoted by Uc := min{Uc1, Uc2}, where Uc1 = µ
∑

i∈D xiPDigii and Uc2 = µQ.

Function Uc2 is a linear increasing function of µ, while Uc1 is more complicated
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Algorithm 2 SPPP-based algortihm [179]

1: Initialization: τ = 0, µ∗ = 0, U∗ = 0, q(τ) = q, d(τ) = d, A(τ) = A,
ν(τ) = 0, y(τ) = 1, and

z(τ) = q + ν(τ)d + Ay(τ);
. comment: critical value

2: Determine the next critical value of µ:

ν(τ + 1) = min

{
min
i

{
− qi(τ)

di(τ)
: di(τ) < 0

}
, ν̄

}
;

3: Set (z(τ + 1),y(τ + 1)) = (q(τ) + νd(τ), 0) for all ν ∈ [ν(τ), ν(τ + 1)];
4: if ν(τ + 1) = ν̄ then
5: stop;
6: else
7: let r = arg mini

{
− qi(τ)
di(τ)

: di(τ) < 0
}

;

8: end if
9: The new critical value of ν is ν(τ+1) = −qr(τ)/dr(τ), and thus µ(τ+1) =

(ν(τ + 1))−1;
. comment: pivoting

10: if Arr(τ) > 0 then
11: pivot < zr(τ), yr(τ) >;
12: let zr(τ + 1) = yr(τ), yr(τ + 1) = zr(τ);
13: let zi(τ + 1) = zi(τ), yi(τ + 1) = yi(τ), for i 6= r;
14: let τ = τ + 1, and return to Step 2;
15: else if Arr(τ) = 0 then
16: use yr(τ) as a driving variable and determin the basic blocking variable

zs(τ);
17: pivot < zs(τ), yr(τ) >, < zr(τ), ys(τ) >;
18: let zs(τ + 1) = yr(τ), ys(τ + 1) = zr(τ), zr(τ + 1) = ys(τ), yr(τ + 1) =

zs(τ);
19: let zi(τ + 1) = zi(τ), yi(τ + 1) = yi(τ), for i 6= r, s;
20: let τ = τ + 1, and return to Step 2;
21: end if
22: get xi(τ + 1) from yi(τ + 1);
23: let U be (6.9) at µ(τ + 1) and xi(τ + 1);
24: if U > U∗ then
25: let U∗ = U , µ∗ = µ(τ + 1);
26: end if
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since it involves (6.8). The properties of function Uc1 are given by Proposition

6.5, leveraging the techniques in [167].

Proposition 6.5. The function Uc1(µ) has the following properties:

1. Uc1 is a continuous function of µ;

2. Uc1 is piecewise affine;

3. If
∑

j∈D,j 6=i
hij
hjj
gjj < gii, ∀i ∈ D, and

∑
j∈S PDj

(
hji − h1i

g11
gjj

)
≥ 0, ∀i ∈ A,

then Uc1 is a non-increasing function.

Proof. See Appendix 6.9.2.

The sufficient conditions given in Proposition 6.5 to make Uc1 non-

decreasing essentially say that the interference among D2D links and the in-

terference from saturated D2D links (i.e., xi = 1) to the BS should be weak.

Given by Proposition 6.5 that Uc1 is piecewise affine, and Uc2 is linear, the

optimal µ∗ must either be at a break point of Uc1 – the discontinuous points

in the derivative of Uc1 – or at the intersection of Uc1 and Uc2 [167]. When Uc1

is non-decreasing, the optimal µ∗ must be at the intersection of Uc1 and Uc2.

This motivates the heuristic algorithm, given by Algorithm 3, which converges

to an intersection point of Uc1 and Uc2 [167].

In the bisection algorithm, we let µmax < ∞ be a sufficient large real

number as an upper limit for µ. We consider non-trivial cases, where the

interference from D2D to BSs, when all D2D links are active, is greater than
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Algorithm 3 A bisection algorithm for finding optimal price µ∗ at monotonic
case

1: Initialization: given accuracy ε ≥ 0, let µu = µmax, and µl ≥ 0;
2: while |µu − µl| ≥ ε do
3: let µm = µu+µl

2
;

4: get xi(µm) by running the LB Algorithm;
5: if U1(µm, xi(µm)) ≤ U2(µm, xi(µm)) then
6: µu = µm;
7: else
8: µl = µm;
9: end if

10: end while
11: let µ∗ = µm.

the interference tolerance level; otherwise, we just let all D2D links access the

RB with probability one. Under this assumption, we have the following result.

Proposition 6.6. The bisection algorithm always converges. In particular,

the algorithm requires at most log2(µmax/ε) iterations to converge.

Proof. See Appendix 6.9.3.

Note that the bisection algorithm also converges when we use the BR

Algorithm instead of the LB Algorithm to solve the lower problem, due to that

function f is continuous. Under the conditions given by Proposition 6.5, i.e.,

the interference among D2D links and the interference from saturated D2D

links to BSs are weak, the bisection algorithm achieves the optimal µ∗. In

other words, the optimal strategy in this case is to let the number of active

D2D links as large as possible, until the total interference from D2D links

reaches the tolerance level.

194



Implementation interpretations. Adopting the bisection algorithm,

the BS first broadcasts a price, and then measures the aggregate interference

at this price. If the interference is greater than the tolerance level, the BS in-

creases the price; otherwise, the BS decreases the price. In fact, the behavior

is consistent with the law of supply and demand : if the demand (the interfer-

ence) exceeds the supply (the interference tolerance level), the price increases

to make the RB less attractive. The algorithm can also be implemented adap-

tively. The network locally measures the total D2D interference, and increases

(decreases) the price if the interference level is above (below) the predefined

tolerance level Q, until the interference level reaches Q. Fig. 6.1 illustrates the

structure of Algorithm 3, which shows that the signalling overhead is caused by

the price broadcast and the channel measurements. The overhead due to price

broadcast is proportional to the number of RBs, which is quite small. As for

the channel measurements, the BS requires the channel information of cellular

links, and each D2D link needs the CSI of the link between its transmitter

to the paired receiver and of the link between the transmitter and the BS.

Thus, the algorithm only requires local information and the overhead due to

the channel measurements is proportional to the total number of cellular and

D2D links, which is much lower than the overhead of centralized algorithms

(e.g., the brute force approach or the SPPP Algorithm) that require global

CSI. Note that the channel information updating frequency depends on the

channel variance over time, which is quite low in a slow mobility environment

(e.g., we may only measure channels once for each or several resource alloca-
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tion time scales). Therefore, the required overhead is not significant compared

to the potential advantages of our algorithm.

The computational complexity of Algorithm 3 is O(ND log2(µmax/ε) +

N2
DT ), where T is the number of required iterations for the LB Algorithm.

The parameters T and log2(µmax/ε) are generally much smaller than NND
x as

illustrated in Section 6.7, where T and log2(µmax/ε) are between 5 and 10,

while NND
x is 1010. Thus, the complexity of Algorithm 3 is much lower than

the complexity of the centralized scheme, which is O(NND
x N2

D).

Observing Fig. 6.2, D2D links mostly have larger access probabilities

when they are far from the BS. This motivates another greedy heuristic al-

gorithm – called the IO Algorithm (short for interference ordering), which

needs no iteration. The D2D links are sorted by the interference caused to

the BS in an ascending order, i.e., PD1g11 ≤ PD2g22 ≤ · · · ≤ PDNDgNDND . The

BS lets x1 = 1, . . . , xn = 1 and other D2D links be silent, where n satisfies
∑n

1 PDigii ≤ Q and
∑n+1

1 PDigii > Q. Adopting the IO Algorithm, the BS

measures the uplink CSI from D2D transmitters, based on which the BS deter-

mines the access probabilities. Therefore, this algorithm has lower overhead

than the bisection algorithm, and gets the solution more quickly, at the cost

of overall performance, which is shown in the following section.

6.7 Performance Evaluation

We consider an uplink system with a hexagonal BS model. The main

simulation parameters are listed as follows, unless otherwise specified. The
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BS density is 1 per π (500m)2. The cellular UEs and D2D links are deployed

according to two independent Poisson point processes with the same density 10

links per macrocell. We let the average length of D2D links be 80m. We assume

the total bandwidth is 10MHz with 1MHz per subband. The transmitters

adopt fractional power control, i.e., P = min {Pmax, d
κα}, where Pmax is the

maximum transmit power, d is the distance of the link, κ is the compensation

factor for path loss, and α is the path loss exponent. We let cellular UEs

and D2D links have the same power control factor κ = 0.75. The maximum

transmit powers of cellular UEs and D2D links over one subband are 200mW

and 20mW, respectively, due to the fact that cellular UEs only access one

subband while D2D links can access multiple subbands. Note that D2D links

may not access all subbands, and thus we set a conservative maximum transmit

power for D2D links. The noise power spectrum density is −174 dBm/Hz.

Path loss exponents of UE-UE and UE-BS links are 4.37 and 3.76, respectively.

We compare the performance of our proposed algorithms to the scenario where

all D2D links are active, as well as the scheme where D2D links become silent

when their transmitters are within a circle around their nearest BSs – called

a guard zone scheme.

6.7.1 The Lower Problem: D2D Non-cooperative Game

In this section, we consider a single cell scenario, where the interference

tolerance level is 5dB above the cellular signal. We investigate the performance

of the BR Algorithm and the LB Algorithm. Note that the BR Algorithm pro-
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vides the NE result, which may not be optimal. Due to the complexity to solve

(6.1) via brute force search (O(NND
x N2

D)), we compare the gap between the

NE and optimal results in a small network with three D2D links. The average

total D2D rates obtained by brute force search and by the BR Algorithm are

3.362 bps/Hz and 3.355 bpz/Hz, respectively. Thus, we observe that the NE

solution is near-optimal in small networks, which is mainly due to that the

D2D links are active with probability close to one in most cases in the small

network. On the other hand, the D2D links have fractional active probabili-

ties in most cases in the large network, and thus the observation may be quite

different in large networks. We leave the analysis of the gap between the NE

and optimal solution of (6.5) in more general networks to future work. To

compare the BR Algorithm and LB Algorithm, we consider a case with ten

D2D links. Fig. 6.3 shows that the rate distributions using the BR Algorithm

and the LB Algorithm are almost the same. This implies that we can use the

solution of the LB Algorithm to approximate the solution of the BR Algo-

rithm. Comparing to Figs. 6.6 and 6.7, we observe that the performance of

different algorithms in single-cell networks is similar to the multi-cell networks.

Therefore, more discussion is left to the following subsection.

6.7.2 The Upper Problem: Network Pricing Mechanism

In this section, we consider an asynchronous multi-cell network, where

each cell allocates resources independently. We let the interference tolerance

level be the same as the received signal of cellular link (i.e., the interference
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level normalized by the cellular signal is 0dB). From simulation results, the

number of iterations required for the convergence of the LB Algorithm is about

4-8, which is quite small. Fig. 6.4 shows the convergence of the SPPP and

bisection algorithms. Both algorithms converge quickly. While SPPP provides

a larger cellular rate, it converges more slowly than the bisection algorithm.

The quick convergence of LB Algorithm and bisection algorithm implies that

the complexity of the proposed scheme O(ND log2(µmax/ε) + N2
DK) is much

lower than the complexity of the centralized scheme O(NND
x N2

D), where K ∈

[4, 8] and log2(µmax/ε) ∈ [5, 10], while Nx ≥ 2 generally and thus NND
x ≥ 210

in our setup.

In Fig. 6.5, we compare the rates of D2D and cellular links using dif-

ferent algorithms. The SPPP and bisection algorithms provide larger D2D

and/or cellular rates than the guard zone schemes. If there is no interfer-
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ence management, the rate of cellular UE is very small (see “All D2D active”

in the figure). Adopting the proposed algorithms, the cellular links can get

much better performance (total cellular rate increasing from 0.61 to about 1.07

bps/Hz), at the cost of less total throughput (about 12% loss in our setup).

We observe that SPPP provides a slightly larger rate for cellular links than

the bisection algorithm. This implies that in some cases, the function Uc1 is

non-monotonic and the optimal µ is not at the intersection of Uc1 and Uc2.

However, in general, the gap between the bisection algorithm and the SPPP

algorithm is small regardless of the monotonicity of Uc1. The average total rate

in conventional networks, where potential D2D links operate only in cellular

mode, is 2.4 bps/Hz in our setup. Defining the rate gain by the increased total

rate divided by the average rate in conventional networks, we conclude that

allowing D2D links and using proposed algorithms achieves a very large rate

gain compared to conventional networks (about 5x in our simulation setup),

and meanwhile keeps the performance of cellular UEs at an acceptable level

(with average rate per cellular link being 1.07 bps/Hz). Note that the rate

gain depends on various system parameters, such as average D2D link length

and the amount of D2D traffic.

The rate distributions of cellular and D2D links are shown in Figs. 6.6

and 6.7, respectively. Fig. 6.6 shows that proposed algorithms can effectively

protect the cellular performance. Comparing to Fig. 6.3, where the average

cellular rate is about 1.5 bps/Hz with the normalized interference tolerance

level being 5dB, we can conclude that a lower normalized interference tolerance
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level (0dB) is needed in the multi-cell scenario. Also, the rate of cellular links

has a larger range than the single cell scenario (i.e., the variance is larger).

One possible reason is that there may be some nearby interfering D2D links

and cellular UEs in neighboring cells. Though the D2D links have large rates

without interference management, they hurt cellular links a lot. Adopting

the guard zone scheme, cellular links can be protected, at the cost of the

degradation of D2D throughput. Moreover, it is difficult to develop a tractable

framework to study the guard zone scheme, and thus difficult to find the

optimal distance threshold analytically. Therefore, the SPPP and bisection

schemes are more preferable.

Note that the interference tolerance level can be tunable to maximize

utility functions in terms of both the cellular and D2D links (e.g., the total rate

in the hybrid network). We show the rates of cellular and D2D links versus

the interference tolerance level numerically in Figs. 6.8 and 6.9, respectively.
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Figure 6.7: The rate distribution of D2D links using different approaches.

The analysis of optimal Q with respect to different utility functions is left to

future work. Fig. 6.8 shows that as the interference tolerance level increases,

the rate of cellular users decreases, because more D2D links are allowed to

transmit. On the other hand, as Q increases, D2D links can access the RBs

more aggressively and the total rate of D2D links increases. The IO Algo-

rithm protects the performance of cellular links well. However, in a network

with strict interference constraints, the total rate of D2D links using the IO

Algorithm is less than the SPPP and bisection algorithms, which implies the

importance to consider power control for D2D resource allocation, as well as

the interference experienced at D2D receivers. From Fig. 6.9, we can conclude

that although the IO Algorithm is very simple, it can only be applied to the

cases with high interference tolerance (e.g., cases with normalized interference

tolerance level larger than 0dB).

Figs. 6.10 and 6.11 show the rates of cellular links and D2D links versus
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Figure 6.10: The total rate of cellular links vs. different D2D densities.

the D2D density, respectively. We ignore the guard zone scheme with radius

150m in these figures, since its performance is similar to the guard zone scheme

with radius 200m. As shown in Fig. 6.11, the total rate of D2D links increases

as D2D density increases, while the rate of cellular link decreases in Fig. 6.10.

The decrease of cellular rate using the SPPP and bisection algorithms vanishes

much more quickly than the scenario with all D2D links being active, which

suggests the efficiency of the SPPP and bisection algorithms for protecting

cellular transmissions. The figures also show that besides the interference

tolerance level, the throughput gain of the proposed algorithms also highly

depends on the density of D2D links.

6.8 Summary

This chapter presents a decentralized spectrum management for a shared

network consisting of D2D and cellular links, aiming to maximize the total
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Figure 6.11: The total rate of D2D links vs. different D2D densities.

throughput of D2D links with an interference constraint for protecting cellular

transmissions. We propose a low-complexity low-overhead distributed algo-

rithm to update D2D access probabilities, and use the SPPP algorithm to get

the optimal price for controlling the interference from cochannel D2D links.

Though the SPPP Algorithm requires global CSI, it provides a benchmark

for other algorithms. We further propose a low-overhead efficient heuristic

algorithm based on the bisection method, which is shown to be convergent.

Numerical results show that the heuristic algorithm has about the same per-

formance as the SPPP algorithm, especially in the cases with low interference

tolerance level. Another simple greedy algorithm is proposed and shown to

perform well in scenario with high interference tolerance level. The proposed

algorithms provide a large throughput gain with a performance guarantee of

cellular links, compared to a conventional network with links operating only in

cellular mode. Comparing to the cases without interference management (i.e.,
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all D2D links are active), the average rate of cellular links improves significantly

(e.g., average rate per cellular link increases from 0.61 to 1.07 bps/Hz in our

setup). This implies that the proposed algorithms can efficiently manage the

interference from D2D links to the cellular network. Future work could include

investigation of more general utility functions incorporating both throughput

and fairness, joint optimization of D2D mode selection, and consideration of

a more flexible multiple-cell system.

6.9 Appendix

6.9.1 Proof of Proposition 6.3

1. We can complete the proof by applying the Maximum Theorem with Φ =

Ui(xi; x−i,µ) [174].

2. Let A and S be any two distinct subsets of set D = {1, 2, · · · , ND}. We

have 



ai − si ≤ 0, for i ∈ D \ (A ∪ S) ,

0 < ai − si < PDihii, for i ∈ A,

ai − si ≥ PDihii, for i ∈ S.

(6.11)

Given that the number of D2D links is finite, we have that the number of

choices of disjoint A and S is finite. Therefore, the domain of fL can be

partitioned into finitely many polyhedra. With s = Gx, the inequalities

(6.11) can be changed to inequalities in terms of x, which defines a (possibly

empty) polyhedron in X. On the polyhedron Pn, according to (6.8), we have

xi = ai−si
PDihii

for i ∈ A(n), xi = 1 for i ∈ S(n) and xi = 0 otherwise, which can
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be expressed in a matrix form as xi = B
(n)
i si + b

(n)
i , where B

(n)
i is defined

in the Proposition 6.3. Combining with s = Gx, we complete the proof.

6.9.2 Proof of Proposition 6.5

1. We define a function g : R+ → X as g(µ) = (g1(µ), . . . , gND(µ)), where

gi(µ) = xi(µ,x−i(0)), x(0) is a given initial vector, and xi(µ,x−i(0)) is

calculated according to (6.8) by fixing x−i = x−i(0). Observing (6.8), we

can see that gi(µ) is a continuous function for a given x−i. According to

properties of continuous functions (see, e.g., Theorem 4.10 in [180]), g(µ)

is continuous due to the fact that each of the function g1(µ), . . . , gND(µ) is

continuous. Proposition 6.3 shows that the best-response function fL : X→

X is continuous. Invoking properties of continuous functions again (see,

e.g., Theorem 4.7 in [180]), we can conclude that fL(g(µ) is a continuous

mapping, which implies that the NE x∗i (µ) is a continuous function of µ.

Therefore, Uc1 is also a continuous function of µ.

2. Recall A and S denote the sets of active D2D links and of saturated D2D

links, respectively. Without loss of generality, let A = {1, . . . , n} and S =

{n+ 1, . . . , n+m}. We denote xa = [x1, · · · , xn]T , xs = [xn+1, · · · , xn+m]T

and x0 = [xn+m+1, · · · , xND ]T . Let Haa be a matrix with (i, j)th ele-

ment being
PDjhji

PDihii
for i, j ∈ A, Wa =

[
w1

PD1
g11
, · · · , wn

PDngnn

]T
and Ca =

[
IC1+ID1

PD1
h11

, · · · , ICn+IDn
PDnhnn

]T
, where IDi =

∑
j∈S PDjhji. According to (6.8),

we have xa = (Haa)
−1
[
Wa

µ
−Ca

]
, xs = 1 and x0 = 0. The domain

of function Uc1 can be divided into finite polyhedra according to differ-
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ent A and S. Denoting βa = [PD1g11, PD2g22, · · · , PDngnn]T and βs =
[
PDn+1g(n+1)(n+1), · · · , PDn+mg(n+m)(n+m)

]T
, in each polyhedron, we have

Uc1(µ) = µ
∑

i∈A

xiPDigii + µ
∑

i∈S

PDigii

= µβTa (Haa)
−1

[
Wa

µ
−Ca

]
+ µβTs 1T

= βTa (Haa)
−1
[
Wa +

(
Haaβ̃1

(
βTs 1T

)
−Ca

)
µ
]
,

(6.12)

where β̃1 = [ 1
PD1

g11
, 0, · · · , 0], and 1 = [1, 1, · · · , 1]T . Therefore, Uc1 is a

linear function in each given polyhedron, and thus it is piecewise affine.

3. We use the same argument as the proof of Theorem 1 in [167]. The first

condition is equivalent to that matrix H
(β)
aa := diag(βa)Haa (diag(βa))

−1 is

strictly (column-wise) diagonally dominant. We have

βTaH−1
aa

(
Ca −Haaβ̃1

(
βTs 1T

))
= 1T

(
H(β)
aa

)−1
C(β)
a , (6.13)

where C
(β)
a = diag(βa)

(
Ca −Haaβ̃1

(
βTs 1T

))
. To show that Uc1 is non-

increasing, we need to show that (6.13) is non-negative. The first con-

dition is a sufficient condition for 1T
(
H

(β)
aa

)−1

≥ 0. Similar proof can

be found in [167], and we ignore the details. The remaining proof is to

show Ca − Haaβ̃1

(
βTs 1T

)
≥ 0. The ith element of the left term of the

above inequality is 1
PDihii

(
ICi +

∑
j∈S PDjhji −

h1i

g11

∑
j∈S PDjgjj

)
, which im-

plies that
∑

j∈S PDj

(
hji − h1i

g11
gjj

)
≥ 0, ∀i ∈ A is a sufficient condition to

make Ca −Haaβ̃1

(
βTs 1T

)
≥ 0. Combining with 1T

(
H

(β)
aa

)−1

≥ 0, we can

conclude that (6.13) is non-negative, and thus Uc1 is non-increasing.
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6.9.3 Proof of Proposition 6.6

We first show that the intersection of Uc1 and Uc2 on [0, µmax] is non-

empty, and then show that the bisection algorithm converges to one of the

intersection points. Prop. 6.5 shows that Uc1 is a continuous function of µ.

It is easy to observe that Uc2 is also a continuous function of µ. Therefore,

Uc1 − Uc2 is a continuous function of µ. Recalling the assumption that when

all D2D links are active, the interference from D2D to BSs is greater than the

interference tolerance level, we have Uc1 − Uc2 > 0 when µ = 0. On the other

hand, when µ = µmax, we have Uc1 − Uc2 < 0. According to the intermediate

value theorem, we can conclude that there is some number µ ∈ [0, µmax] such

that Uc1(µ) − Uc2(µ) = 0. In other words, there is at least one intersection

point between Uc1 and Uc2 on [0, µmax].

Adopting the bisection algorithm, the interval is divided into two halves

at each iteration. The interval at iteration t is denoted by L(t) = [at, bt], where

a0 = 0 and b0 = µmax. According to procedures of the bisection algorithm,

we have Uc1(at) ≥ Uc2(at) and Uc1(bt) ≤ Uc2(bt) at each iteration t. Similar to

the proof of the existence of intersection points on [0, µmax], we can show that

there is at least one intersection point between Uc1 and Uc2 on L(t). Therefore,

the bisection algorithm preserves the existence of intersection points in current

interval. The length of interval L(t) has |L(t)| = |L(t− 1)|/2 = · · · = µmax/2
t.

It must stop when |L(t)| ≤ ε, which implies that the algorithm converges,

and the maximum number of iteration for convergence, denoted by T , satisfies

µmax/2
T = ε, i.e., T = log2(µmax/ε).
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Chapter 7

Conclusions

7.1 Summary

Small BSs and D2D communication are emerging important technol-

ogy components for cellular networks to meet the drastic rise in wireless traffic

demand. An immediate effect of the increasing network heterogeneity is the

obsolescence of conventional resource allocation schemes, particularly the user

association (D2D mode selection) and interference management schemes. The

key challenges in the design of user association and interference management

in such heterogeneous and irregular networks include the high computational

complexity to solve the massive combinatorial user association problem over

SINRs of all users and loads of all BSs, the coupled relationship between user

association, scheduling and interference management, and the low-complexity

low-overhead requirement for algorithms in implementation. In this disserta-

tion, we tackled these challenges with novel models and fundamental analysis

leveraging techniques from optimization and stochastic geometry. Chapters 2,

3 and 4 focus on HetNets consisting of macro BSs and small cells, while Chap-

ters 5 and 6 investigate the cellular networks integrating D2D communication.

The main contributions are summarized as follows.
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For the networks with small BSs, Chapter 2 proposes a novel user

association scheme that achieves load balancing through a network-wide utility

maximization problem. We propose a low-complexity distributed algorithm

that approaches the optimal performance. The optimal performance is then

adopted as a benchmark to find the biasing factors in CRE. We show that

the simple CRE with identical biasing factor per tier provides near-optimal

performance, if the biasing factors are carefully designed. The load-aware

association significantly benefits the rate distribution.

Chapter 3 then extends the above framework to jointly optimize the

user association and RB blanking, in the effort to further improve the cell-edge

performance. We propose to relax the unique association, which converts the

problem to a convex optimization. We show both theoretically and through

simulation that the optimal association of the relaxed problem is still mostly

unique. There is a significant difference in user association on normal and

blank RBs in simulation, which implies the importance of jointly investigation

of user association and interference management. Simulation shows that the

RB blanking can further improve the rate of cell-edge users.

Then we extend the baseline single-antenna model to multiple-antenna

transmission in Chapter 4. We focus on the case where BSs operate in the

massive MIMO regime. We formulate a utility maximization problem to jointly

optimize user association and interference management, where we focus on two

interference management techniques – RB blanking and JT. We propose an

efficient algorithm approaching optimal solutions, which can be implemented

212



in a partially distributed manner with low overhead. We further propose a

simple scheduling scheme yielding near-optimal resource allocations. Both RB

blanking and JT provide a great rate gain (1.6x for blanking and 2.2x for

JT versus optimal user association without interference management) for the

cell-edge users.

For the D2D enhanced cellular networks, Chapter 5 presents a tractable

model to investigate the resource allocation between D2D and cellular net-

works, as well as the mode selection of potential D2D links based on an

Aloha-type time hopping scheme. We provide analytical SINR distribution

and average rate expressions, that are applied to efficiently optimize the de-

sign principles such as the resource partition ratio and time-frequency hop-

ping probabilities. With an appropriate resource partition, we observe that

the dedicated method has a larger overall rate than the shared method in the

downlink. D2D links would access frequency bands as many as needed and all

potential D2D links are in D2D mode to maximize the total rate in fully loaded

networks. The result can serve as an optimized lower bound for networks with

more sophisticated D2D resource allocations.

Chapter 6 proposes a more dynamic resource allocation algorithm for

D2D links that share uplink cellular resources. We propose a low-complexity

low-overhead distributed algorithm to maximize the network throughput with

a performance guarantee for cellular links, whose key idea is a pricing mecha-

nism. That is, the BSs adapt the price on each RB according to the aggregate

interference from D2D links, and D2D links then determine whether to ac-
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cess a RB or not based on the achievable rate and price on that RB. Results

show that proposed algorithms provide a significant throughput gain, while

maintaining the quality of cellular links at a predefined service level.

7.2 Future Directions

This dissertation has shown that load balancing with interference man-

agement is a key source of gain in HetNets. Despite the urgent need in the

rethinking and re-investigation of metrics, intuitions and principles in design-

ing HetNets, the load balancing problem is far from being fully understood.

This dissertation concludes with some promising directions for future research.

Resource allocation for more dynamic cases. The considered

models in this dissertation make several assumptions for tractability. For ex-

ample, the system is fully loaded (“always on”) and users are static over a

sufficient large time window (e.g., the time scale of an association period). For

dynamic networks (e.g., with dynamic traffic, time-variant channel and user

mobility), resource allocation adapts to the dynamic variations may further

improve the network performance, while directly applying the schemes pro-

posed for static environment may limit or even kill the performance gain. For

example, an optimal user association based on the static setting is to handover

users to small cells as they enter the small cell area, and then back to macro

BS as they leave the small cell. Such association scheme leads to very frequent

handover for high-mobility users, which results in costly overhead and high

power consumption. Thus, it may be preferable to associate the users with
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high mobility to some suboptimal BSs, or use JT in MIMO systems to avoid

handovers while providing good performance. Note that a related issue with

user mobility is the difficulty in acquiring accurate CSI. That is, the algo-

rithms need to adapt to the new network topology before the CSI is outdated.

Thus, the algorithms designed for static case cannot be directly applied and

it is of interest to explore how resource allocation such as user association and

interference management can be tackled in dynamic systems.

Joint study of downlink and uplink association. The focus of

load balancing study in networks with small cells in this dissertation is on

the downlink. In conventional networks, the default association scheme in the

uplink is typically the same as the association in downlink, since the coverage

areas are almost the same among different macrocells. However, this is not

the case in HetNets, since the BSs of different tiers have such widely divergent

transmit powers. Rather, the downlink coverage area of macro BSs is much

larger than that of smaller BSs. If we adopt the same association in uplink, the

cell-edge macro-users will cause great interference to nearby users, especially

for users which are associated to nearby small cells. Thus, it is necessary to

jointly investigate downlink and uplink associations.

There are some recent interesting papers investigating the uplink as-

sociation in HetNets. Papers [181, 182] study the uplink association using

game theory techniques, while [183] proposes a heuristic algorithm providing

the same association in both the downlink and uplink, aiming to maximize

the downlink capacity and to minimize the uplink power. Different from the
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aforementioned work, [184–187] validate our discussion that different associ-

ations in the uplink and downlink are desirable. Papers [184–186] use the

stochastic geometry approach, where [184] shows that the minimum path loss

association is optimal to maximize the uplink rate coverage, while [185, 186]

focus on the total rate metric. Paper [187] presents system simulations that

show a large uplink throughput gain with different uplink and downlink as-

sociations. In addition, [188] proposes a cooperative uplink reception scheme

that allows the data to be decoded at users’ best uplink reception nodes rather

than the associated nodes. Overall, the optimal downlink and uplink associa-

tions are still far from being fully understood, and it is of interest to study the

optimal downlink and uplink associations jointly with different interference

management techniques in HetNets.

Integration of small BSs and D2D communication. This disser-

tation studies the load balancing in networks with small BSs and with D2D

communication, respectively. It is interesting to extend the work to integrate

both small BSs and D2D communication. In such HetNets, there are many re-

source allocation aspects that needed to be designed: user-BS association, D2D

mode selection, resource allocation between D2D and cellular transmissions,

and interference management for inter-cell interference as well as D2D-cellular

interference. These coupled issues significantly complicates the load balanc-

ing problem. The interplay of small cell offloading and D2D offloading is an

interesting open issue.
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