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Dielectric-Graphene Integration and Electron Transport in Graphene 

Hybrid Structures 

 

Babak Fallahazad, Ph. D. 

The University of Texas at Austin, 2015 

 

Supervisor:  Emanuel Tutuc 

 

Dielectrics have been an integral part of the electron devices and will likely 

resume playing a significant role in the future of nanoelectronics. An important step in 

assessing graphene potential as an alternative channel material for future electron devices 

is to benchmark its transport characteristics when integrated with dielectrics. Using back-

gated and dual gated graphene field-effect transistors with top high-k metal-oxide 

dielectric, we study the dielectric thickness dependence of the carrier mobility. We show 

the carrier mobility decreases after deposition of metal-oxide dielectrics by atomic layer 

deposition (ALD) thanks to the Coulomb scattering by charged point defects in the 

dielectric. We investigate a novel method for the ALD of metal-oxide dielectrics on 

graphene, using an ultrathin nucleation layer that enables the realization of graphene 

field-effect transistors with aggressively scaled gate dielectric thickness. We show the 

nucleation layer significantly affects the quality of the subsequently deposited dielectric. 

In the second section, we study the transport characteristics of double layer systems. We 

demonstrate heterostructures consisting of two rotationally aligned bilayer graphene with 

an ultra-thin hexagonal boron nitride dielectric in between fabricated using advanced 

layer-by-layer transfer as well as layer pickup techniques. We show that double bilayer 

graphene devices possess negative differential resistance and resonant tunneling in their 
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interlayer current-voltage characteristics in a wide range of temperatures. We show the 

resonant tunneling occurs either when the charge neutrality points of the two bilayer 

graphene are energetically aligned or when the lower conduction sub-band of one layer is 

aligned with the upper conduction sub-band of the opposite layer. Finally, we study the 

Raman spectra and the magneto-transport characteristics of A-B stacked and rotationally 

misaligned bilayer graphene deposited by chemical-vapor-deposition (CVD) on Cu. We 

show that the quantum Hall states (QHSs) sequence of the CVD grown A-B stacked 

bilayer graphene is consistent with that of natural bilayer graphene, while the sequence of 

the QHSs in the CVD grown rotationally misaligned bilayer graphene is a superposition 

of monolayer graphene QHSs. From the magnetotransport measurements in rotationally 

misaligned CVD-grown bilayer we determine the layer densities and the interlayer 

capacitance. 
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CHAPTER 1: INTRODUCTION 

 

Monolayer graphene, a single layer of carbon atoms arranged in a honeycomb 

lattice, was first experimentally isolated from graphite in 2004 by Andrew Geim and 

Konstantin Novoselov [1] decades after it was theoretically predicted to be physically 

unstable in its free standing form [2]. Soon after its isolation, graphene attracted attention 

within scientific community for its interesting characteristics that set it apart from other 

two-dimensional (2D) electron systems. First, monolayer graphene is the first truly two-

dimensional electron gas (2DEG) compared to the other conventional 2DEGs with 

parabolic energy-momentum dispersion formed at the interface of heterostructures (e.g. 

GaAa-based heterostructures); and second, monolayer graphene possesses superior 

transport characteristics such as high carrier mobility even at the room temperature 

(≅ 10,000 𝑐𝑚2/𝑉 ∙ 𝑠) which makes it promising for device applications. 

Bilayer graphene, consisting of two graphene monolayers stacked on top of each 

other, has also unique electronic properties that makes it equally interesting. Besides high 

carrier mobility, bilayer graphene possesses a tunable band gap and energy-momentum 

dispersion that can be controlled by applying a transverse electric field (𝐸-field). In this 

dissertation, we study various topics related to the electronic properties of both 

monolayer and bilayer graphene. To familiarize readers with the concepts that are often 

discussed in the upcoming chapters, we review the basic physical properties and 

characteristics of monolayer and bilayer graphene in this chapter. We first discuss the 
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energy band structure of monolayer and bilayer graphene and briefly go over the band 

structure calculation using the tight binding method. Then we discuss the carrier transport 

properties of monolayer graphene using the semi-classical Drude-Boltmann formalism. 

We show the effect of the long-range and screened short-range scatterers on the carrier 

transport in monolayer graphene. We continue with the Raman spectra of monolayer and 

bilayer graphene as well as graphite and discuss Raman spectroscopy as a powerful non-

destructive method to determine various quantities associated with graphene such as the 

number of layers, edge orientation, doping, etc. Finally, we review the basic 

magnetotransport properties of monolayer and bilayer graphene and compare the 

quantum Hall effect (QHE) in monolayer and bilayer graphene with that of a 

conventional 2DEG with parabolic energy-momentum dispersion. 

 

 
 

Figure 1.1: Atomic structures of carbon allotropes (Figure adapted from Ref. [3]). 
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1.1 ELECTRONIC PROPERTIES OF GRAPHENE 

 

The electron configuration of carbon atom is 1𝑠22𝑠22𝑝2. Carbon naturally 

exists in variety of forms (allotropes) ranging from zero dimensional (0D) fullerene to 

three dimensional (3D) diamond. Figure 1.1 shows the atomic structure of a few 

carbon allotropes. One of the most common allotropes of carbon is graphite, a stack 

of atomically thin two-dimensional layers, known as monolayer graphene, bonded to 

each other by Van der Waals force. The carbon atoms in monolayer graphene form 

three 𝑠𝑝2 hybridized orbitals and one 𝑝𝑧 orbital orthogonal to the graphene plane. 

Each carbon atom forms three 𝜎 bonds with the neighbor carbon atoms  via 𝑠𝑝2 

orbitals that are separated 120 degrees in x-y plane and form a hexagonal lattice 

structure (Fig. 1.2). The fourth electron, in the 𝑝𝑧 orbital, contributes to the 𝜋 

bonding.  

The hexagonal lattice of monolayer graphene can be considered as a Bravais 

lattice with two-atom basis. Although all carbon atoms in monolayer graphene are 

identical, they are often labeled as 𝐴 and 𝐵 to differentiate the two basis atoms. The 

lattice constant and the distance between the closest neighbor atoms in monolayer 

graphene are 𝑎 = 2.46 Å and 𝑎0 = 1.42 Å, respectively, and the primitive lattice 

vectors are: 

𝑎1 = 𝑎 (
√3

2
,
1

2
) , 𝑎2 = 𝑎 (

√3

2
, −

1

2
) 
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Figure 1.2: Monolayer graphene lattice. Basis atomic sites 𝐴 and 𝐵 are marked by blue 

and red respectively. 𝑎1 and 𝑎2 are primitive lattice vectors, 𝑎0 = 1.42 Å is the C-

C bond length, and 𝑎 = 2.46 Å is the lattice constant. 

 

1.1.1 Band structure 

1.1.1.1 Monolayer graphene 

 

Electrons of 𝜎 bond form deep fully occupied valence bands that do not 

contribute to the charge conduction, therefore the conduction in monolayer graphene 

occurs solely through the electrons of the 𝜋 bond. The 𝑝𝑧 orbitals that form 𝜋 bond 

are only slightly perturbed by the neighboring atoms so the band structure of 

monolayer graphene can be calculated using the tight binding model. The energy-

momentum dispersion of monolayer graphene calculated using tight binding method 

by considering interactions only with the nearest neighbors is: 



 5 

𝐸 = ±𝛾0√1 + 4𝑐𝑜𝑠 (
√3𝑎

2
𝑘𝑥) 𝑐𝑜𝑠 (

𝑎

2
𝑘𝑦) + 4𝑐𝑜𝑠2 (

𝑎

2
𝑘𝑦)            (1.1) 

here 𝛾0 is the nearest neighbor hopping energy, and 𝑘𝑥 and  𝑘𝑦 are the momentum 

components. The energy band diagram of the monolayer graphene is shown in Fig. 

1.3. Monolayer graphene has a hexagonal Brillion zone and the conduction and 

valence band cones, known as Dirac cones, meet at the corners of the first Brillion 

zone, namely 𝐾 and 𝐾’ points. The low-energy band of monolayer graphene can be 

described by 𝐸 = ±ℏ𝑣|𝒌|, where ℏ is the reduced Planck constant, 

𝑣𝐹 = (√3 2⁄ ) 𝑎𝛾0 ℏ⁄  is the Fermi velocity, and 𝒌 is the momentum referenced with 

respect to 𝐾 or 𝐾’ points. 

 

Figure 1.3: Energy-momentum dispersion of monolayer graphene (in units of 𝛄𝟎) 

calculated using tight binding method with γ0 = 2.7 eV. The magnified view of 

the energy bands shows the energy-momentum dispersion is linear close to the 

Dirac point (Figure and caption adapted from ref. [4]). 

 

 



 6 

1.1.1.2 Bilayer graphene 

  

Bilayer graphene is a close relative of monolayer graphene and consists of two 

graphene monolayers stacked on top of each other. The electronic properties of bilayer 

graphene strongly depend on the relative alignment of the two graphene monolayers. 𝐴-𝐵 

(Bernal) stacked bilayer is the most common form of the bilayer graphene where atom 𝐴 

of one layer is aligned with the atom 𝐵 of the opposite layer (𝐵̃) [Fig. 1.4(a)]. 

Rotationally misaligned bilayer is the other form of the bilayer graphene where one 

graphene monolayer is rotated with respect to the other one; the electronic properties of 

rotationally misaligned bilayer graphene depend on the rotational angle and is usually 

similar to that of monolayer graphene due to the weak interlayer coupling [5]–[7]. For the 

convenience, in the rest of this dissertation the term “bilayer graphene” is exclusively 

used for the 𝐴-𝐵 stacked bilayer graphene unless otherwise stated. Even though 

monolayer and bilayer graphene share similar properties (e.g. excellent mechanical and 

chemical stability, high carrier mobility, etc.), there is one striking property that sets 

bilayer graphene apart from monolayer and that is the possession of a tunable band gap. 

The energy-momentum dispersion of the bilayer graphene calculated using the tight 

binding model at a zero magnetic field is [8]: 

𝜀𝛼
2 =

𝛾1
2

2
+

𝑢2

2
+ (𝑣𝐹

2 +
𝑣3

2

2
) 𝑘2 + (−1)𝛼√Γ                                     (1.2) 

Γ =
1

4
(𝛾1

2 − 𝑣3
2𝑘2)2 + (𝛾1

2 + 𝑢2 + 𝑣3
2𝑘2)𝑣𝐹

2𝑘2 + 2𝜉𝛾1𝑣3𝑣𝐹
2𝑘3𝑐𝑜𝑠3𝜑 

𝑣3 = (√3 2⁄ ) 𝑎𝛾3 ℏ⁄  
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here, 𝛼 = 1, 2 correspond to the lower- and higher-energy bands in the four degenerate 

valleys of the bilayer graphene, 𝛾1is the interlayer coupling (between 𝐴̃ and 𝐵), u is the 

difference between the on-site energies in the two layers, 𝛾3 is the weak 𝐴 - 𝐵̃ coupling, 𝑘 

is the magnitude of the momentum referenced with respect to 𝐾 or 𝐾’ points, and 

𝜑 = 𝑡𝑎𝑛−1(𝑘𝑦/𝑘𝑥) is a phase factor. Figure 1.4(b) illustrates the energy band diagram of 

the bilayer graphene calculated using the tight binding method assuming a finite layer 

asymmetry 𝑢 = Δ.  

 

Figure 1.4: (a) schematic of the bilayer graphene lattice containing four carbon atoms in 

the unit cell: 𝐴, 𝐵, 𝐴̃, and 𝐵̃ (atom 𝐵 of the top bilayer is directly on top of the 

atom 𝐴̃ of the bottom bilayer graphene). The coupling between the carbon atoms 

of the opposing layers are marked by dashed lines. (b) Energy-momentum 

dispersion of bilayer graphene close to the 𝐾 point and in the presence of a finite 

layer asymmetry 𝑢 = Δ (right panel adapted from Ref. [9]). 
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1.2 TRANSPORT CHARACTERISTICS 

 

Since the early days of monolayer graphene isolation, experimentalists have 

revealed interesting features in its transport characteristics such as the linear dependence 

of the conductivity on the carrier density and the possession of a finite minimum 

conductivity value at the charge neutrality point (Fig. 1.5) [1], [10]. The inconsistency of 

the experimental observations with prior theoretical predictions initiated a new wave of 

theoretical efforts to shed light on the physics of the carrier transport in graphene [11]–

[15]. In this section, we review the theory of the carrier transport in monolayer graphene. 

We start with the derivation of the linear Boltzamnn transport equation and continue to 

solve it in monolayer graphene using relaxation time approximation within the theoretical 

framework of refs. [16]–[20], which provides a complete transport picture both at low 

and high carrier densities. Within this framework, we drive the conductivity associated 

with the long-range Coulomb scattering and the screened short range scattering and show 

the overall conductivity is consistent with the experimental observations.  
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Figure 1.5: Graphene conductivity (𝜎) vs. gate voltage (𝑉𝑔) measured in a back-gated 

graphene field effect transistor at 𝑇 =  10 𝐾. 𝜎 shows a linear dependence on 𝑉𝑔 

away from the charge neutrality point (Figure and caption adapted from Ref. 

[10]). 

 

1.2.1 Boltzmann transport equation 

 

The carriers in metals and semiconductors can be affected by external magnetic 

field, electric field, and temperature gradients as well as scattering from lattice ions, 

impurities, etc. The state of the carriers in a semiconductor is often described by a 

distribution function 𝑓(𝒌, 𝒓, 𝑡) which is the probability of finding a particle with the 

momentum 𝒌, at the position 𝒓, and at the time t. Since the distribution function carries 

information about the state of the particles, it can be used to calculate quantities such as 
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carrier density and current density.  In equilibrium, the distribution function of fermionic 

quasi-particles is given by Fermi-Dirac distribution: 

𝑓0(𝒌, 𝒓, 𝑡) =
1

1 + 𝑒(𝜖𝑘−𝜇(𝑟)) 𝑘𝐵𝑇(𝑟)⁄
       (1.3) 

where 𝜇 is the chemical potential, 𝑘𝐵 is the Boltzmann constant and 𝑇 is temperature. In 

the following, we derive an equation that controls the spatial and temporal evolution of 

𝑓(𝒌, 𝒓, 𝑡) known as the Boltzamnn transport equation. 

In the absence of any collision, at the time 𝑡 + 𝑑𝑡, the distribution function is 

𝑓(𝒓′, 𝒌′, 𝑡 + 𝑑𝑡) where 𝒓′ = 𝒓 + 𝒓̇𝑑𝑡 and 𝒌′ = 𝒌 + 𝒌̇𝑑𝑡. Assuming the number of 

particles in the system remains the same: 

𝑓(𝒓, 𝒌, 𝑡)𝑑𝒓𝑑𝒌 = 𝑓(𝒓 + 𝒓̇𝑑𝑡, 𝒌 + 𝒌̇𝑑𝑡, 𝑡 + 𝑑𝑡)𝑑𝒓′𝑑𝒌′      (1.4) 

Based on the Liouville’s theorem, the phase-space of the system during the 

motion remains constant (i.e. 𝑑𝒓𝑑𝒌 = 𝑑𝒓′𝑑𝒌′) therefore: 

𝑓(𝒓, 𝒌, 𝑡) = 𝑓(𝒓 + 𝒓̇𝑑𝑡, 𝒌 + 𝒌̇𝑑𝑡, 𝑡 + 𝑑𝑡)       (1.5) 

When collision occurs in the system, an additional term should be added to the eq. 

1.5 to account for the collision: 

𝑓(𝒓 + 𝒓̇𝑑𝑡, 𝒌 + 𝒌̇𝑑𝑡, 𝑡 + 𝑑𝑡) = 𝑓(𝒓, 𝒌, 𝑡) + (
𝜕𝑓(𝒓,𝒌,𝑡)

𝜕𝑡
)

𝐶𝑜𝑙𝑙
𝑑𝑡       (1.6)  

For small time differences, linear expansion of the eq. 1.6 yields: 

𝜕𝑓

𝜕𝑡
+ 𝒓̇ ∙

𝜕𝑓

𝜕𝒓
+ 𝒌̇ ∙

𝜕𝑓

𝜕𝒌
= (

𝜕𝑓

𝜕𝑡
)

𝐶𝑜𝑙𝑙
       (1.7) 

Equation 1.7 is the Boltzmann equation. In the semi-classical approximation, we 

have: 
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𝒓̇ = 𝒗𝑘 =
1

ℏ

𝜕𝜖𝑘

𝜕𝒌
       (1.8) 

ℏ𝒌̇ = −𝑒(𝑬 + 𝒗𝑘 × 𝑩)       (1.9) 

where 𝑬 and 𝑩 are external electric and magnetic fields, respectively. By inserting 𝒓̇ and 

𝒌̇ of eqs. 1.8 and 1.9 back into eq. 1.7, we obtain the stationary Boltzmann equation: 

𝒗𝑘 ∙
∂𝑓

∂𝐫
−

𝑒

ℏ
(𝑬 + 𝒗𝑘 × 𝑩) ∙

∂𝑓

∂𝐤
= (

𝜕𝑓

𝜕𝑡
)

𝐶𝑜𝑙𝑙
       (1.10) 

There is no analytical solution for the Boltzmann equation in its general form, 

therefore, we use approximations to find a solution for eq. 1.10. Assuming the solution of 

eq. 1.10 is only slightly different from the equilibrium distribution (𝑓0) then we can write 

the distribution function as: 

𝑓 = 𝑓0 + 𝛿𝑓       (1.11) 

where  𝛿𝑓 is small compared to 𝑓0. Inserting 𝑓 from eq. 1.11 back into the Boltzmann 

equation (eq. 1.10) yields: 

𝒗𝑘 ∙
∂𝑓0

∂𝐫
−

𝑒

ℏ
(𝑬 + 𝒗𝑘 × 𝑩) ∙

∂𝑓0

∂𝐤

= (
𝜕𝑓

𝜕𝑡
)

𝐶𝑜𝑙𝑙
− 𝒗𝑘 ∙

∂𝛿𝑓

∂𝐫
+

𝑒

ℏ
(𝐸 + 𝒗𝑘 × 𝐵) ∙

∂𝛿𝑓

∂𝐤
      (1.12) 

As shown in eq. 1.3, the dependence of the distribution function 𝑓0 on the wave and 

position vectors is through the chemical potential and temperature. Therefore, the left 

hand side of eq. 1.12 can be written as: 
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𝒗𝑘 ∙
∂𝑓0

∂𝐫
−

𝑒

ℏ
(𝑬 + 𝒗𝑘 × 𝑩) ∙

∂𝑓0

∂𝐤

= 𝒗𝑘 ∙
∂𝑓0

∂𝜖𝑘
∙ [−e (𝐸 +

∇𝑟𝜇

𝑒
) − (

𝜖𝑘 − 𝜇

𝑇
) ∇𝑟𝑇 ]       (1.13) 

Replacing left hand side of eq. 1.12 by eq. 1.13 and keeping only linear in 𝐸-field terms 

yields: 

𝜕𝑓0

𝜕𝜖𝑘
𝒗𝑘 ∙ [(−

𝜖𝑘 − 𝜇

𝑇
) ∇𝑟𝑇 − 𝑒 (𝐸 +

1

𝑒
∇𝑟𝜇)]

= (
𝜕𝑓

𝜕𝑡
)

𝐶𝑜𝑙𝑙
− 𝒗𝑘 ∙ ∇𝑟𝛿𝑓 +

𝑒

ℏ
(𝒗𝑘 × 𝐵) ∙ ∇𝑘𝛿𝑓       (1.14) 

It is worth to mention 𝛿𝑓 is proportional to the applied 𝐸- field so in equation 

1.14 we neglect terms including product of 𝛿𝑓 and 𝐸 as they eventually lead to higher 

order terms. Solving eq. 1.14 for 𝑓 is still challenging as the distribution function 𝑓 

appears in the collision term. To simplify the collision term, we use relaxation time 

approximation: 

(
𝜕𝑓

𝜕𝑡
)

𝐶𝑜𝑙𝑙
= −

𝛿𝑓

𝜏
       (1.15) 

here, relaxation time 𝜏 is the average of the particle collisions time. We will discuss the 

form of the relaxation time in monolayer graphene in the next section. Using the 

relaxation time approximation and in the absence of an external magnetic field (i.e. 

𝐵 = 0), the solution of the linear Boltzmann equation (eq. 1.14) is: 

𝑓(𝑘) = 𝑓0(𝑘) + (−
𝜕𝑓0

𝜕𝜖𝑘
) 𝜏(𝜖𝑘)𝑣𝑘 ∙ [(−

𝜖𝑘 − 𝜇

𝑇
) ∇𝑟𝑇 − 𝑒 (𝐸 +

1

𝑒
∇𝑟𝜇)]       (1.16) 
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At a constant 𝐸-field and in the absence of a temperature gradient, the distribution 

function can be simplified to: 

𝑓(𝑘) = 𝑓0(𝑘) − 𝑒(𝑬 ∙ 𝒗𝒌)𝜏(𝜖𝑘) (−
𝜕𝑓0

𝜕𝜖𝑘
)       (1.17) 

1.2.2 Electrical conductivity 

 

Knowing the distribution function, the current density can be obtained from: 

𝒋 = −𝑒 ∫
𝑑𝒌

4𝜋2
𝒗𝑘[𝑓(𝒌) − 𝑓0(𝒌)]       (1.18) 

By isolating the terms proportional to the 𝐸-field, and by assuming current is 

carried only by electrons close to the Fermi energy, the general form of the conductivity 

is: 

𝜎 = 𝑒2𝜏(𝜖𝐹) ∫
𝑑𝒌

4𝜋2

1

ℏ

𝜕𝑣𝑘

𝜕𝑘
𝛿𝑓(𝜖𝑘)       (1.19) 

For monolayer graphene with linear energy-momentum dispersion (𝐸 = ±𝑣𝑓ℏ|𝑘|) 

eq. 1.19 becomes: 

𝜎 =
2𝑒2

ℎ
𝑘𝐹𝑣𝐹𝜏       (1.20) 

The general form of the graphene conductivity (eq. 1.20) obtained from the 

linearized Boltzmann transport equation using relaxation time approximation is 

proportional to 𝜏 which is yet to be determined. In the next section we address the 

calculation of the relaxation time. 
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1.2.3 Relaxation time 

 

The general form of the relaxation time derived from the scattering by impurities 

is [17], [20]: 

𝜏(𝜖𝑘)−1 =
2𝜋

ℏ
∑ ∫ 𝑑𝑧𝑛𝑖

(𝑎)(𝑧)

𝑎

∫
𝑑2𝑘′

(2𝜋)2
|〈𝑉𝑘,𝑘′(𝑧)〉|

2

× [1 − 𝑐𝑜𝑠𝜃𝑘𝑘′]𝛿(𝜖𝑘 − 𝜖𝑘′)       (1.21) 

where 𝜃𝑘𝑘′ is the scattering angle, 𝑛𝑖
(𝑎)(𝑧) is the density of the 𝑎th kind of impurity, 𝑧 is 

the coordination in the normal direction, and 〈𝑉𝑘,𝑘′(𝑧)〉 is the matrix element of the 

scattering potential associated with impurities and is determined by the configuration of 

the 2D system and the spatial distribution of the impurities. Calculation of the relaxation 

time requires knowledge about the spatial distribution of the scattering sites. While 

calculating the precise value of the relaxation time for randomly distributed impurities in 

three dimensions is complicated, for simplicity, we assume the impurities are randomly 

scattered in a 2D plane parallel to the graphene at 𝑧 = 𝑑. As a result, the term associated 

with the matrix element of the scattering potential becomes: 

∫ 𝑑𝑧𝑛𝑖
(𝑎)(𝑧)|〈𝑉𝑘,𝑘′(𝑧)〉|

2
= 𝑛𝑖 |

𝑣𝑖(|𝑘 − 𝑘′|)

𝜀(𝑘 − 𝑘′)
|

2

𝐹(|𝑘 − 𝑘′|)       (1.22) 

where 𝑛𝑖 is the density of the impurities, 𝐹(|𝑘 − 𝑘′|) is the form factor associated with 

the wave function of the carriers, 𝑣𝑖(𝑞) = 2𝜋𝑒2/(𝜅𝑞)𝑒−𝑞𝑑 is the Fourier transform of the 

Coulomb potential in an effective lattice dielectric constant 𝑘, and 𝜀(𝑞) is the 2D static 

Random-Phase-Approximation (RPA) dielectric function given by: 
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𝜀(𝑞, 𝑇) = 1 + 𝑉𝐶(𝑞)Π(𝑞, 𝑇)       (1.23) 

where 𝑉𝐶(𝑞) is the Coulomb interaction and Π(𝑞, 𝑇) is the polarizability function. 

The exact form of the dielectric function through Random-Phase-Approximation 

(RPA) is known [21], however, for simplicity we use the following approximation for 

dielectric function: 

𝜀(𝑞) = {
1 +

4𝑘𝐹𝑟𝑠

𝑞
     𝑖𝑓 𝑞 < 2𝑘𝐹

1 +
𝜋𝑟𝑠

2
         𝑖𝑓 𝑞 > 2𝑘𝐹

       (1.24) 

With the matrix element of the scattering potential given in eq. 1.22 and the 

dielectric function given in eq. 1.24, the corresponding relaxation time and therefore 

conductivity can be calculated. Before continuing with the calculation of the monolayer 

graphene conductivity, it is worth to mention that carriers in monolayer graphene are 

confined to a one-atom thick layer. As a result, the effect of surrounding environment on 

the electronic properties of monolayer graphene can be more pronounced than other 

2DEGs. In the following, we define the coupling constant for monolayer graphene to 

address the effect of environment on charge carriers. 

1.2.4 Coupling constant 

 

The coupling constant 𝛼 is defined as the ratio between the Coulomb potential 

energy and the kinetic energy of an electron system and is a measure of the electron-

electron interaction strength in such system. For a monolayer graphene sandwiched 
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between two different environments with dielectric constants 𝑘1 and 𝑘2, the coupling 

constant is: 

𝛼 =  
2𝑒2

(𝑘1 + 𝑘2)𝑣𝐹ℏ
       (1.25) 

The dimensionless coupling constant of graphene is independent of the carrier 

density owing to its linear energy-momentum dispersion. Consequently, in monolayer 

graphene, Coulomb potential of impurities is renormalized by screening and directly 

affects the transport characteristics. 

1.2.5 Long-range scattering 

 

Now we turn to the calculation of the monolayer graphene conductivity. The 

relaxation time associated with the Coulomb scattering can be obtained using the 

dielectric function of eq. 1.24. Monolayer graphene conductivity associate with the long-

range Coulomb scattering is: 

𝜎𝑙 =
2𝑒2

ℎ

𝑛

𝑛𝑖𝑚𝑝

1

𝐹𝑙(𝛼)
       (1.26) 

 where 𝑛 is the carrier density, 𝑛𝑖𝑚𝑝 is the density of charged impurities, and 𝐹𝑙(𝛼) is: 

𝐹𝑙(𝛼) = 𝜋𝛼2 + 24𝛼3(1 − 𝜋𝛼) +
16𝛼3(6𝛼2 − 1)arccos (1 2𝛼⁄ )

√4𝛼2 − 1
     (1.27) 

Equation 1.26 shows the monolayer graphene conductivity associated with the 

long-rang Coulomb scattering has a linear dependence on the carrier density consistent 

with the experimentally measured graphene conductivity [1], [10] which suggests that 
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Coulomb scattering is the dominant scattering mechanism away from the charge 

neutrality point. 

1.2.6  Screened short-range scattering 

 

We also address the contribution of the screened short range scattering on 

monolayer graphene conductivity. For short-range disorder, the matrix element of the 

scattering potential is: 

∫ 𝑑𝑧𝑛𝑖
(𝑎)(𝑧)|〈𝑉𝑘,𝑘′(𝑧)〉|

2
= 𝑛𝑑𝑉0

2 𝐹(|𝑘 − 𝑘′|)       (1.28) 

where 𝑛𝑑 is 2D impurity density and 𝑉0 is a constant representing the potential strength. 

The conductivity associated with the screened short range scattering is:  

𝜎𝑠 =
𝜎0

𝐹𝑠(𝛼)
       (1.29) 

where 𝜎0 is a constant and 𝐹𝑠(𝛼) is given by: 

𝐹𝑠(𝛼) =
𝜋

2
−

32𝛼

3
+ 24𝜋𝛼2 + 320𝛼3(1 − 𝜋𝛼)

+ 256𝛼3(5𝛼2 − 1)
arccos(1 2𝛼⁄ )

√4𝛼2 − 1
       (1.30) 

Unlike 𝜎𝑙, 𝜎𝑠 is independent of the carrier density. Combining the long-range and 

short-range conductivities from eqs. 1.26 and 1.29, the overall monolayer graphene 

conductivity is: 

𝜎−1 = 𝜎𝑙
−1 + 𝜎𝑠

−1       (1.31) 
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1.3 RAMAN SPECTRUM 

 

Raman spectroscopy is a powerful characterization tool that has been used for 

decades to study the structural and electronic properties of molecules and semiconductor 

materials. In particular, it has been an integral part of research on carbon allotropes in the 

past 40 years [22], and more recently it is widely used as a fast, high resolution, and non-

destructive method to measure various quantities associated with graphene such as 

number and orientation of layers, edge chirality and purity, doping, strain, etc.  In the 

following, we review the fundamentals of the Raman spectroscopy and introduce the 

Raman signatures of monolayer and bilayer graphene, and briefly discuss the origin of 

the signature bands. 

1.3.1 Raman scattering 

 

Raman spectroscopy utilizes Raman scattering to reveal the atomic structure and 

electronic properties of materials. In the interaction of photons with a medium, majority 

of photons get either reflected or transmitted through without carrying finger prints of the 

medium. This is due to the Rayleigh (elastic) scattering of photons and it occurs when 

electrons excited by incident photons return to their initial state by emitting photons 

similar to the incident photons. While most photons get elastically scattered, a small 

portion of them experience inelastic scattering by phonons which subsequently leads to 

the emission/absorption of phonons and emission of secondary (scattered) photons. The 

inelastic scattering of photon by phonons is called Raman scattering and is characterized 
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by the energy difference between the scattered and incident photons. Assuming 𝑘𝑖𝑛 (𝑘𝑠𝑐) 

and 𝜔𝑖𝑛 (𝜔𝑠𝑐) are the wave vector and frequency of the incident (scattered) photons, 

respectively, and 𝑞 and Ω𝑞
𝜈  are those of a phonon from branch 𝜈, then from energy and 

momentum conservation we have: 

{
𝜔𝑖𝑛 = 𝜔𝑠𝑐 ± Ω𝑞

𝜈

𝑘𝑖𝑛 = 𝑘𝑠𝑐 ± 𝑞
       (1.32) 

where plus (minus) sign corresponds to creation (absorption) of a phonon. Figure 1.6 

schematically shows the Rayleigh and Raman scattering processes. 

 

 

Figure 1.6 Rayleigh and Raman Scattering. (a) Stokes Raman scattering: an incident 

photon creates an electron-hole pair which subsequently decay into a phonon 𝛺 

and another electron-hole pair e-h’. A photon with frequency 𝜔𝑠𝑐 is emitted when 

the secondary electron-hole recombine (b) Anti-Stokes Raman scattering: similar 

to the Stokes except that the phonon is absorbed by the electron-hole pair. (c) 

Comparison of the Rayleigh and Raman scatterings. 
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Since Raman scattering is closely related to the electrons, any change in the 

electronic properties of a medium, e.g. due to defects or doping, can affect the position, 

width, or intensity of the peaks in the Raman spectrum. 

 1.3.2 Raman signatures of monolayer and bilayer graphene 

 

Raman scattering involves the emission or absorption of phonons, thus, to better 

understand the Raman spectrum of graphene it is instructive to start with its phonon 

dispersion. The Bravais lattice of monolayer graphene consists of two-atom basis that 

gives rise to six branches in the phonon dispersion: three optical (O) and three acoustic 

(A) braches. One branch of each group (acoustic and optical) originates from out of plane 

(o) vibrations of the carbon atoms and the remaining two branches originate from in-

plane (i) longitudinal (L) and transverse (T) vibrations. Figure 1.7(a) shows the first 

Brillion zone of monolayer graphene where high symmetry points (i.e. 𝛤, 𝐾, 𝐾’, 𝑀) are 

marked and Fig. 1.7(b) illustrates the phonon dispersion of monolayer graphene 

calculated using the density function theory (DFT) [23], [24]. 
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Figure 1.7: (a) The first Brillion zone of monolayer graphene with 𝛤, 𝐾, 𝐾’, and 𝑀 points 

marked. (b) monolayer graphene phonon dispersion calculated by DFT 

(Figure and caption adapted from Refs. [23], [24]). 

 

Raman spectra of monolayer and bilayer graphene and graphite measured using a 

green laser (𝜆 = 532 𝑛𝑚) is shown in Fig. 1.8. There are two distinct peaks in the three 

Raman spectra labeled as G and 2D peaks. The G peak at the Raman shift ~1580 𝑐𝑚−1
 

stems from a first order Raman scattering process and is associated with doubly 

degenerate iTO and iLO phonon mode at the center of the Brillion zone 𝛤. The second 

peak is 2D peak at the Raman shift of ~2700 𝑐𝑚−1
 which originates from a second-order 

Raman scattering process involving two iTO phonons close to the 𝐾 point. In disordered 

graphene, another peak appears at the Raman shift of 1350 𝑐𝑚−1 known as D peak. The 

D peak is also associated with a second-order Raman scattering but unlike 2D peak it 

involves one iTO phonon and a defect. Figure 1.9(a) schematically presents the Raman 

scatterings for D, G, and 2D peaks in monolayer graphene. 
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Figure 1.8: Raman spectra of graphene, bilayer graphene, and graphite measured using a 

green laser (𝜆 = 532 𝑛𝑚). The signature G (~1580 𝑐𝑚−1) and 2D 

(~2700 𝑐𝑚−1) peaks are mark. 

 

The phonon dispersion of bilayer graphene is similar to that of monolayer 

graphene except that each branch splits into two branches corresponding to symmetric 

and antisymmetric vibrations of the atoms in the two layers. Similarity of the phonon 

dispersions especially close to the 𝛤 point yields a G peak similar to that of monolayer 

graphene. However, a noticeable difference between the Raman spectrum of bilayer and 

monolayer graphene is in the shape and the width of the 2D peak. As shown in Fig. 

1.9(b), the Raman scattering associated with the bilayer graphene 2D peak has four 

components, so the width of bilayer graphene 2D peak (~50 𝑐𝑚−1) is wider than that of 
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monolayer (~25 𝑐𝑚−1) and it can be used to unambiguously distinguish bilayer from 

monolayer graphene. 

 

Figure 1.9: Raman processes in (a) monolayer graphene (b) bilayer graphene. Solid lines 

present energy-momentum dispersion, blue (red) arrows present intraband 

transitions by absorption (emission) of photons, dashed arrows present interband 

transitions accompanied by phonon emission/absorption, and dotted arrows 

present electrons scattered by defects. 
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1.4 TWO-DIMENSIONAL ELECTRON GAS IN MAGNETIC FIELD 

 

Free electrons in a magnetic field (𝐵) form cyclotron orbits. In three dimensional 

metals and semiconductors, the response of free electrons to a magnetic field leads to 

classical Hall effect. The response of a 2DEG to a perpendicular magnetic field is 

remarkably different. In the presence of a perpendicular magnetic field, the transverse 

(Hall) conductivity of a 2DEG shows quantized plateaus at 𝜎𝑥𝑦 = 𝜈 𝑒2 ℎ⁄  where 𝜈 is an 

integer number known as filling factor and given by 𝜈 = 𝑛ℎ 𝑒𝐵⁄ . Figure 1.10(a) shows 

the quantized 𝜎𝑥𝑦 vs. 𝜈 of a conventional 2DEG with parabolic energy-momentum 

dispersion. The Hall conductivity plateaus are accompanied by vanishing longitudinal 

resistivity (𝜌𝑥𝑥 = 0). The integer Quantum Hall effect (QHE) in a 2DEG can be 

explained by considering the effect of magnetic field on its band structure. Adding a 

vector potential term (associated with the applied magnetic field) to the Hamiltonian of a 

2DEG system yields a Hamiltonian analogous to that of a quantum harmonic oscillator 

with discrete energy levels 𝐸𝑁 = ℏ𝜔𝑐(𝑁 + 1 2⁄ ) known as Landau levels (LLs) where 𝑁 

is the orbital index, 𝜔𝑐 = 𝑒𝐵 𝑚∗⁄  is the cyclotron frequency, and 𝑚∗ is the carrier 

effective mass. Figures 1.10(b) and (c) show the quantized LLs of a 2DEG with no 

disorder and with low disorder, respectively. Electrons in a disordered 2DEGs and in a 

perpendicular magnetic field circulate and drift along the equipotential contours. 

Electrons close to the center of LLs occupy the extended states and contribute to the 

conduction while electrons at the tail of the LLs are localized by disorder potential. The 

population of these states limits the conduction to the edge of the medium where 
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chemical potential crosses the fully occupied LLs. In this condition, the conductivity of 

the medium is set by the edge states and remains constant while the localized states are 

populated. In addition, the conduction through one-dimensional edge states is 

dissipationless due to the absence of low energy states to scatter to which results in 

vanishing 𝜌𝑥𝑥. 

 

Figure 1.10: Schematic illustration of (a) integer quantum Hall effect in a 2DEG with 

parabolic energy-momentum dispersion. (b) Landau levels of an ideal 2DEG (c) 

Landau levels of a disordered 2DEG (Left panel adapted from Ref. [25]). 

 

1.4.1 Quantum Hall effect in monolayer graphene 

 

Although carriers in monolayer graphene form a 2DEG, the QHE in monolayer 

graphene presents unique features that are different from a conventional 2DEG with 

parabolic energy-momentum dispersion. Compared to a conventional 2DEG, the 

sequence of QHSs in monolayer graphene is shifted by a half integer and occur at the 

filling factors 𝜈 = ±4(𝑀 + 1 2⁄ ) where 𝑀 is an integer number [Fig. 1.11(a)]. 
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Monolayer graphene LLs are four fold degenerate, two from spin degeneracy and two 

from valley degeneracies, with energies given by: 

𝐸𝑁 = ±𝑣𝐹√2𝑒ℏ𝐵𝑁       (1.33) 

Eq. 1.33 shows the spacing between the monolayer graphene LLs scales with √𝑁 

unlike a conventional 2DEG where the spacing is independent of the LL index.  

Monolayer graphene possesses a distinctive LL at zero energy which stems from 

the particle-hole symmetry. As shown in Fig. 1.11(a), the zero energy LL consists of 

electron and hole states (with equal contribution) that leads to the half integer shift in the 

number of flux quanta required to fill a full integer LL. At zero energy, and at valley 𝐾 or 

𝐾’, the wavefunctions reside entirely on one of the carbon sublattices, 𝐴 or 𝐵, while for 

non-zero energies, there is an equal chance to find them on each sublattice. 

1.4.2 Quantum Hall effect in bilayer graphene 

 

The QHE in bilayer graphene differs from that of a conventional 2DEG and 

monolayer graphene. The Berry phase of 2𝜋 in bilayer graphene leads to the LL energies: 

𝐸𝑁 = ℏ𝜔𝑐√𝑁(𝑁 − 1)       (1.34) 

with filling factors 𝜈 = ±4(𝑀 + 1), where 𝑀 is an integer number. Fig. 1.11(b) shows 

the QHSs of bilayer graphene. Similar to the monolayer graphene LLs, bilayer graphene 

LLs are fourfold degenerate due to the spin and valley degeneracies, however, the lowest 

LL in bilayer graphene (i.e. at zero energy) includes both 𝑁 = 0 and 𝑁 = 1 orbitals with 

eight fold degeneracy.  
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Figure 1.11: Schematic illustration of integer quantum Hall effect in (a) monolayer 

graphene with conductivity plateaus at 𝜈 = ±4(𝑀 + 1 2⁄ ) (b) bilayer graphene 

with conductivity plateaus at 𝜈 = ±4(𝑀 + 1) (Figure adapted from Ref. [25]). 

 

1.5 CHAPTER ORGANIZATION 

 

In Chapter 2, we focus on the integration of metal-oxide dielectrics with 

monolayer and bilayer graphene and study carrier mobility in graphene in the presence of 

metal-oxide dielectrics as well as thickness scaling of top dielectric in dual-gated 

graphene field-effect transistors. In chapter 3, we study the 2D-2D tunneling in double 

bilayer graphene heterostructures and show resonant tunneling and negative differential 

resistance in their interlayer current-voltage characteristics. In chapter 4, we study the 

Raman spectrum and magneto-transport characteristics of A-B stacked and rotationally 

misaligned bilayer graphene grown by chemical-vapor-deposition (CVD).  
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CHAPTER 2: GRAPHENE FIELD-EFFECT TRANSISTOR WITH 

METAL OXIDE TOP DIELECTRIC 

 

High-k dielectrics are an essential component of aggressively scaled 

complementary metal-oxide semiconductor (CMOS) devices [26] and will likely play a 

role for graphene based devices. Technological advances on the integration of high-k 

dielectrics and silicon FETs have paved the road for application of high-k dielectrics in 

electron devices with alternative channel materials such as graphene, nevertheless, 

despite the considerable progress in silicon devices, the incorporation of high-k 

dielectrics in graphene electron devices comes with its own unique challenges.  

In this chapter, we study the integration of high-k dielectrics in monolayer and 

bilayer graphene FETs. We investigate the carrier mobility in back-gated monolayer and 

bilayer graphene FETs with a top HfO2 dielectric (namely device type 1) as a function of 

the HfO2 film thickness and temperature and show that the carrier mobility decreases 

during the deposition of the first 2-4 nm of top dielectric and remains constant for thicker 

layers. Our data strongly suggest that fixed charged impurities located in close proximity 

to the graphene are responsible for the mobility degradation. 

In the second section, we study the thickness scaling of Al2O3 and HfO2 

dielectrics deposited by atomic layer deposition (ALD) on graphene using ultra-thin, 

oxidized evaporated Al and Ti nucleation layers and show because of a lower surface 

diffusion of Ti in comparison to Al, the minimum metal film thickness needed for full 

surface coverage is 0.6 nm for Ti and 1.2 nm for Al. We fabricated dual-gated graphene 
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FETs (namely device type 2) with top Al2O3 dielectric thicknesses down to 2 nm, using 

both Ti and Al nucleation layers. Our results show that the nucleation layer impacts the 

dielectric constant and morphology of the ALD Al2O3, and adds a series contribution to 

the top gate capacitance. Furthermore, transmission electron microscopy (TEM) reveals 

that the observed difference in the Al2O3 dielectric constant is a result of the structural 

difference between the two films, with the Al2O3 grown on Ti being partially crystalline 

and that on Al being amorphous.  

 

2.1 INTRODUCTION 

 

Graphene is considered as an alternative channel material and a promising 

candidate for nanoelectronic devices [27] owing to its high carrier mobility [28],
 
chemical 

and mechanical stability [29], and the potential for scalability to nanometer dimensions. 

While the intrinsic carrier mobility in graphene is very high, with values of ≅ 200,000 

cm
2
/V∙s reported in suspended graphene [30], scattering by charged impurities [31], 

surface roughness [32], and phonons [33] reduce the mobility in graphene devices 

integrated with dielectrics. 

Graphene was first mechanically exfoliated and isolated on a 300 nm-thick 

SiO2/Si substrate. The visibility of graphene on  SiO2, combined with the availability and 

the compatibility of SiO2 with silicon fabrication processes made SiO2/Si a widely used 

substrate for graphene. Consequently, majority of the graphene properties were first 

experimentally examined on SiO2/Si substrate. 



 30 

The mobility of graphene on SiO2/Si is limited by three scattering mechanisms: 

longitudinal acoustic (LA) phonons, remote interfacial phonon, and impurity scattering. 

Figure 2.1 shows the carrier mobility (𝜇) vs. temperature (𝑇) in graphite and graphene 

measured on SiO2/Si substrate [33]. While theoretical calculations suggest the remote 

interfacial phonon scattering limits the room temperature mobility of graphene on SiO2/Si 

to 𝜇 ≅ 40,000 cm
2
/V∙s, in practice, the charged impurity scattering dominates the 

transport characteristics and limits the mobility to values lower than 10,000 cm2
/V∙s. 

 

 

Figure 2.1: Temperature dependence of mobility in graphene and graphite on SiO2/Si 

substrate. The experimental mobility values are measured at carrier density 𝑛 = 1 

× 10
12

 cm
-2

. Three scattering mechanisms limiting mobility in graphene: 

scattering by LA phonons (dark red solid line), remote interfacial phonon 

scattering (green dashed line), and impurity scattering (red and blue dashed lines). 

The calculated net mobility values for two samples are marked by red and blue 

solid lines (Figure and caption adapted from Ref. [33]). 
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In chapter 1, an expression for the graphene conductivity (eq. 1.26) associated 

with the long-range Coulomb scattering was derived. The carrier mobility corresponding 

to eq. 1.26 is: 

𝜇 =
2𝑒

ℎ

1

𝑛𝑖𝑚𝑝

1

𝐹𝑙(𝛼)
       (2.1) 

 

where 𝑛𝑖𝑚𝑝 is the density of charged impurities, 𝛼 = 2𝑒2/(𝑘1 + 𝑘2)𝑣𝐹ℏ is the coupling 

constant  introduced in chapter 1, and 𝐹𝑙(𝛼) is defined by eq. 1.27. In effect, using a high-

k dielectric medium in the vicinity of graphene, yields a lower 𝛼 with better screening of 

charged impurities located in proximity to graphene. Equation 2.1 and 1.27 combined, 

indicate a lower 𝛼 yields a higher mobility in graphene. Consequently, one way to access 

higher mobilities in graphene is to use high-k dielectrics.  

Several experimental studies have examined the impact of using a top medium- or 

high-𝑘 dielectric [34]–[37] on the carrier mobility in graphene. Figure 2.2 shows the 

mobility vs. number of ice layers deposited on top of a back-gated monolayer graphene 

FET measured at 77 K [34]. A gradual mobility increase (up to 30%) as a function of ice 

thickness is observed in monolayer graphene which can be explained by 30% decrease in 

𝛼 associated with the higher dielectric constant of ice (k ≅ 3.2) compared to vacuum. 
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Figure 2.2: Mobility vs. number of ice layers deposited on top of a back-gated graphene 

FET measured at 77 K. ≅ 30% mobility increase observed after ice deposition 

(Figure adapted from Ref. [34]). 

 

Chen et al. demonstrated a mobility enhancement (≅ 7×10
4
 cm2/V∙s) at room 

temperature with deposition of high dielectric constant liquids (k = 32-189) on graphene 

devices fabricated on SiO2/Si substrates [35]. Ponomarenko et al. observed a mobility 

enhancement factor of 2 and 1.5 when covering graphene with glycerol (k ≅ 45), and 

ethanol (k ≅ 25) respectively [36].  

The carrier mobility in graphene devices with conventional medium- or high-k 

metal-oxide dielectrics, such as Al2O3 or HfO2 are typically lower than the mobility of 

back-gated graphene devices. Indeed, the highest reported mobility values in graphene 

devices with Al2O3 (k ≅ 6) top dielectric is ≅ 8600 cm
2
/V∙s [37], and typical mobility 

values for graphene with HfO2 top dielectric are below 5000 cm2
/V∙s [38]. 

Understanding the impact of the dielectric on mobility in graphene is not only 

technologically relevant, but can shed light on the scattering mechanism in this material. 

Furthermore, examining the thickness scalability of the high-k dielectrics in graphene 
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devices is valuable as it can lead to assessment of graphene devices as a potential 

candidate for future nanoelectronics. 

2.2 ATOMIC LAYER DEPOSITION OF METAL-OXIDE DIELECTRICS ON GRAPHENE 

 

The deposition of ultra-thin high-𝑘 dielectrics on graphene is a key component for 

graphene FETs. The deposition of ultrathin films is particularly difficult because of 

chemical inactivity of the graphene surface. Both physical vapor deposition (PVD) and 

atomic layer deposition (ALD) have been used to deposit dielectrics on graphene, each 

technique possessing trade-offs. For example, direct deposition of dielectrics on 

exfoliated graphene by PVD methods, such as electron-beam evaporation [39], radio 

frequency (RF) sputtering [40], and pulsed laser deposition (PLD) [41] result in structural 

damage to graphene as confirmed by Raman spectroscopy and mobility measurements of 

top-gated graphene field-effect transistors [39]–[41]. Dielectric deposition on graphene 

by ALD, a method which possesses excellent conformality and film thickness control 

[42], [43], is stymied by the chemical inertness of the graphene surface [44], [45]. As 

such, the ALD of dielectrics on graphene requires a nucleation layer. A number of 

graphene surface treatments have been evaluated, such as exposure to NO2 [46], [47] or 

ozone [48], spin coated polymers [49], molecular buffer layers [50], or the deposition of a 

thin metal film which is subsequently oxidized [37]. Desirably, the nucleation layer used 

to deposit the ALD dielectric should not add charged impurities, interface traps, and 

permit thickness scaling of the dielectric. 
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Figure 2.3: Schematic view of (a) device type 1: a back-gated graphene FET with a 285-

nm thick SiO2 bottom dielectric, and a top dielectric stack consisting of an 

oxidized Al layer and ALD HfO2 (b) device type 2: dual-gated graphene FET 

with a top dielectric stack consisting of an oxidized Al or Ti layer and ALD 

Al2O3.  

 

2.3 DEVICE FABRICATION 

 

Figure 2.3 shows the schematic view of the devices type 1 and 2. Fabrication of 

both device types begins with the mechanical exfoliation of graphene from natural 

graphite (“Flaggy Flake” from NGS Natugraphit GmbH) using polyethylene tape (from 

UltraTape, part #1112) on 285 nm-thick SiO2 thermally grown on highly-doped Si 

substrates (n-type, <100>, arsenic dopant, 𝑁𝐷  > 1020
 cm

-3
). Figures 2.4(a-c) show optical 

micrographs of natural graphite flakes [panel (a)], graphite flakes on a tinted blue 

polyethylene tape with acrylic adhesive [panel (b)], and a SiO2/Si substrate with Pt/Cr 

alignment marks prepared for graphene exfoliation [panel (c)]. After mechanical 

exfoliation of graphene, monolayer and bilayer graphene flakes on SiO2/Si substrates are 

identified by Raman spectroscopy [51] and optical contrast [Fig. 2.4(d)] [52]. After 
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isolation of monolayer and bilayer graphene flakes, the active regions (two-point, four-

point, and Hall bar) are defined by electron-beam (e-beam) lithography, and the excess 

graphene is etched by oxygen plasma. Metal contacts to graphene are defined by e-beam 

lithography, 50-nm thick Ni deposition, and lift-off. Figure 2.4(e) shows an optical image 

of the back-gated graphene FET. From this point, the back-gated graphene FETs go 

through two different fabrication processes to yield devices type 1 and 2.  

For device type 1, a back-gated graphene FET with top HfO2 dielectric, prior to 

the HfO2 deposition, a thin (1.5 ± 0.1 nm) pure Al film (99.999%) is deposited by e-beam 

evaporation to provide nucleation sites for the ALD process [26], [37]. The metal film is 

oxidized in the presence of residual O2 during evaporation and ambient O2 exposure after 

removal from the deposition chamber [53], [54] and forms a thin metal-oxide interface 

film. The sample is then transferred to the ALD chamber for successive, 1 ± 0.1 nm thick 

HfO2 deposition cycles. The HfO2 ALD was performed at a temperature of 200 °C using 

TEMAH and H2O as precursors without post-deposition annealing. 
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Figure 2.4: Optical micrographs of (a) natural graphite flakes (b) natural graphite flakes 

on polyethylene tape (c) 285 nm-thick thermally grown SiO2 on Si substrate with 

Pt/Cr alignment marks 200 μm apart and ready for graphene exfoliation (d) as 

exfoliated monolayer and multilayer graphene on SiO2/Si substrate (e) a back-

gated graphene FET (f)  a dual-gated graphene FET. The contacts (top gates) are 

marked in light (dark) color. The scale bar in panels (a) and (b) are the same and 

defined by the width of the tape which is 1 inch. 

 

For device type 2, a thin metal film of either Ti (0.6 ± 0.1 nm) or Al (1.5 ± 0.1 

nm) is deposited on the back-gated graphene FETs by e-beam evaporation. After 

removing from deposition chamber, the samples are loaded into the ALD chamber, where 

the Al2O3 top gate dielectric is deposited at 250 °C using trimethylaluminum (TMA) and 

water as precursors with no post deposition annealing. Lastly, the top gate is defined by 

e-beam lithography followed by metal (Ni) deposition, and lift off. An optical micrograph 

of device type 2, dual-gated graphene FET, is shown in Fig. 2.4(f). 
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Figure 2.5:  vs. 𝑉𝐵𝐺, determined using four-point measurements, for different top 

dielectric stack thicknesses (𝑡𝑠𝑡𝑎𝑐𝑘). 𝑉𝐵𝐺 values of x-axis are offset by the charge 

neutrality voltage (𝑉𝐵𝐺−𝐶𝑁𝑃), at which the graphene conductivity is minimum. 

 

2.4 DEPENDENCE OF THE MOBILITY ON TOP METAL-OXIDE DIELECTRIC THICKNESS 

2.4.1 Conductivity and carrier mobility 

 

We first present characteristics of the device type 1. The four-point device 

conductivity () measured as a function of the back-gate bias (𝑉𝐵𝐺), at room temperature, 

under vacuum, and for different total top dielectric thicknesses (𝑡𝑠𝑡𝑎𝑐𝑘) are shown in Fig. 

2.3. The total top dielectric thicknesses (𝑡𝑠𝑡𝑎𝑐𝑘) includes the nucleation layer thickness 

and HFO2 dielectric thickness. The data are measured before the dielectric deposition and 
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also after each incremental HfO2 deposition. The measurement shows the minimum 

conductivity of the device at the charge neutrality point drops from 12e
2
/h to 8e

2
/h after 

deposition of the Al and first HfO2 layer and is unchanged with the further HfO2 

depositions. Using the  vs. 𝑉𝐵𝐺 data, the carrier mobility () is extracted after each HfO2 

deposition which in turn provides us with the dielectric stack thickness (𝑡𝑠𝑡𝑎𝑐𝑘) 

dependence of the carrier mobility.  

 

 

Figure 2.6:  vs. 𝑡𝑠𝑡𝑎𝑐𝑘 for four monolayer and one bilayer graphene samples measured at 

room temperature. The mobility decreases steeply after the first 2-4 nm of oxide 

deposition, and remains constant for thicker dielectric films. 

 



 39 

The carrier mobility of electrons and holes are calculated from the linear slope of 

 vs. 𝑉𝐵𝐺 data, using: 

𝜇 =
1

𝐶𝐵𝐺

𝑑𝜎

𝑑𝑉𝐵𝐺
           (2.1) 

where 𝐶𝑜𝑥  ≅ 12 nF/cm2
 is the SiO2 bottom dielectric capacitance. To avoid the non-

linearity around the minimum conductivity point when extracting the 𝑑𝜎/𝑑𝑉𝐵𝐺, we 

exclude a 6 V voltage window centered at the charge neutrality point back-gate bias 

(𝑉𝐵𝐺−𝐶𝑁𝑃), and average out the slopes of  vs. 𝑉𝐵𝐺 over a 25 V 𝑉𝐵𝐺 window, on the 

electron and hole branches. We note that our approach of using the slope of  vs. 𝑉𝐵𝐺 

data to extract the mobility neglects short-range scattering, e.g. from neutral impurities 

[19]. Taking into account the effect of short-range scattering, the extracted mobility 

values in our samples would changes only slightly, by ≅ 10%.  

The data in Fig. 2.6 shows the mobility () vs. dielectric stack thickness (𝑡𝑠𝑡𝑎𝑐𝑘), 

measured for four monolayer and one bilayer device at room temperature. A mobility 

drop is observed after formation of the oxidized Al buffer layer, and also deposition of 

the first 1-2 nm of HfO2. 
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Figure 2.7: (a) 𝜎 vs. 𝑉𝐵𝐺 measured at different temperatures (𝑇) for a graphene device 

with a 11 nm HfO2 top dielectric. The 𝑉𝐵𝐺 value is offset by the back gate 

voltage at the charge neutrality point (𝑉𝐵𝐺−𝐶𝑁𝑃) (b)  vs. 𝑇 for the same 

device. The relatively weak 𝑇-dependence suggests that phonons are not the 

mobility limiting factor in these devices. 

 

2.4.2 Temperature dependence 

 

To further investigate the scattering mechanism in graphene devices with a HfO2 

top dielectric we show in Fig. 2.7(a)  vs. 𝑉𝐵𝐺 for a monolayer graphene with an 11 nm-

thick HfO2 top dielectric at different temperatures (𝑇). The  vs. 𝑇 data shown in Fig. 

2.7(b) shows a   1/𝑇 dependence at higher 𝑇 values, consistent with acoustic phonon 

scattering [33], followed by a saturation at the lowest 𝑇. These data reveal a weak 

temperature dependence which indicates that phonon scattering is not dominant in our 

devices. Since the surface roughness is not expected to change with the top dielectric 
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deposition, the  vs. 𝑡𝑠𝑡𝑎𝑐𝑘 data of Fig. 2.6 combined with the  vs. 𝑇 of Fig. 2.7(b) 

strongly suggest that fixed charged impurities located in the high-k dielectric, and in close 

proximity to the graphene layer are responsible for the mobility degradation.  

 

Figure 2.8: Band diagram schematic for a structure consisting of metal-oxide deposited 

on graphene. The oxygen vacancies, inherent for dielectrics deposited at low 

temperatures become ionized in the proximity of the interface, creating fixed 

charged impurities, which in turn reduce the mobility (Reproduced from Ref. 

[55]). (b) 𝑛𝑖𝑚𝑝 vs. 𝑡𝑠𝑡𝑎𝑐𝑘 data for four graphene monolayers. 

 

2.4.3 Origin of the fixed charge impurities 

 

Next we address the origin of these additional charged impurities that accompany 

the top dielectric deposition. The metal-oxide dielectrics, either Al2O3 or HfO2, are 

deposited at room temperature or 200 °C respectively. Dielectrics deposited at low 

temperatures, such as the ALD process used here, are generally not stoichiometric, but 

oxygen deficient. We speculate that these charged impurities are point defects, such as 



 42 

charged oxygen vacancies [55], [56]. Indeed, the oxygen vacancies form donor levels 

closer in energy to the HfO2 conduction band, and higher than the graphene Fermi level.  

Similar to a metal-high-k dielectric stack [55], [56], the electrons tunnel out of the 

dielectric and into the graphene in order to bring in equilibrium the Fermi levels in 

graphene and HfO2 [Fig. 2.8(a)], and the point defects in close proximity to the graphene 

layer become charged, which in turn reduces the carrier mobility.  

To quantify the above argument, we employ the Boltzmann transport formalism where 

charged impurity screening is treated within the random phase approximation [16]. We 

use  vs. 𝑡𝑠𝑡𝑎𝑐𝑘 data of Fig. 2.6 to estimate the charged impurity areal density (𝑛𝑖𝑚𝑝) 

from: 

𝑛𝑖𝑚𝑝 =
2𝑒

ℎ

1

𝜇

1

𝐹𝑙(𝛼)
           (2.2) 

where 𝑒 is the electron charge, ℎ is Planck’s constant, 𝛼 is the dimensionless coupling 

constant define by eq. 1.23: 

f
kk

e




)(

2

21

2


  

 𝜈𝐹 = 1.1×106
 m/s is the graphene Fermi velocity, k1 = 16 and k2 = 3.9 are the dielectric 

constants of top and bottom oxides, and 𝐹𝑙(𝛼) is given by eq. 1.25: 

𝐹𝑙(𝛼) = 𝜋𝛼2 + 24𝛼3(1 − 𝜋𝛼) +
16𝛼3(6𝛼2 − 1)arccos (1 2𝛼⁄ )

√4𝛼2 − 1
 

The stack relative dielectric constant (k ≅ 16) is measured by adding a top metal 

gate and comparing the relative capacitance of the top and bottom gates as discussed in 

detail in section 2.5.1.
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Figure 2.8(b) shows 𝑛𝑖𝑚𝑝 vs. 𝑡𝑠𝑡𝑎𝑐𝑘 for four monolayer graphene devices. These 

data suggest that the dielectric deposition increases the charged impurity concentration by 

≅ 1.5 – 4 × 10
12

 cm
-2

. These values are in good agreement with previous studies which 

examined the thermochemistry of metal-oxide-semiconductor structures using HfO2 on Si 

[55], [56]. 

 

2.5 SCALING OF THE TOP METAL-OXIDE DIELECTRIC 

 

Now we turn to the characteristics of the device type 2 where we study the scaling 

of the top metal-oxide dielectric in dual-gated graphene FETs. 

 

Figure 2.9: 𝑅2𝑝𝑡 vs. 𝑉𝑇𝐺 measured in a dual-gated graphene FET at different 𝑉𝐵𝐺. The 2 

nm-thick Al2O3 top dielectric was deposited by ALD using a 0.6 nm Ti nucleation 

layer. (b) 𝑉𝑇𝐺−𝐶𝑁𝑃 vs. 𝑉𝐵𝐺, measured from the 𝑅2𝑝𝑡 vs. 𝑉𝑇𝐺 traces at different 

back-gate biases. The 𝐶𝐵𝐺/𝐶𝑇𝐺 ratio is equal to the slope of the fitted line. 
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2.5.1 Top gate capacitance measurement 

 

Fig. 2.9(a) shows an example of a dual-gated graphene FET resistance (𝑅2𝑝𝑡) 

measured as a function of the top gate voltage (𝑉𝑇𝐺), and at different back-gate voltages. 

The top Al2O3 dielectric is 2 nm-thick, and was deposited by ALD using a 0.6 nm-thick 

Ti nucleation layer. Each trace shows the ambipolar behavior characteristic of graphene 

FETs, with a charge neutrality which is back-gate dependent. The 𝑉𝑇𝐺 value at the charge 

neutrality point (𝑉𝑇𝐺−𝐶𝑁𝑃) has a linear dependence on 𝑉𝐵𝐺 [Fig. 2.9(b)]. The slope of the 

𝑉𝑇𝐺−𝐶𝑁𝑃 vs. 𝑉𝐵𝐺 data is the ratio of the back-gate capacitance (𝐶𝐵𝐺) to top gate 

capacitance (𝐶𝑇𝐺). The bottom dielectric capacitance is measured using 100×100 µm
2
 

metal pads deposited on SiO2 in close proximity to the graphene FETs. Using the 

measured 𝐶𝐵𝐺/𝐶𝑇𝐺 ratio and the measured value of the 𝐶𝐵𝐺, the value of the 𝐶𝑇𝐺 is 

calculated for each dual-gated graphene FET. We note that the quantum capacitance does 

not contribute to the measured 𝐶𝑇𝐺 because the 𝐶𝐵𝐺/𝐶𝑇𝐺 is determined from the 

dependence of the charge neutrality point on 𝑉𝐵𝐺 and 𝑉𝑇𝐺, where the Fermi energy 

remains zero. 

 

2.5.2 Graphene topography after nucleation layer deposition 

 

Figure 2.10 shows the topography of two graphene flakes probed by atomic force 

microscopy (AFM) after the deposition and subsequent oxidation of 1.5 nm of Al (top 

panel), and 0.6 nm of Ti (bottom panel). The graphene surface roughness after the Al 
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deposition/oxidation is 0.52 nm, compared to 0.24 nm for graphene with the oxidized Ti 

film. We attribute the larger surface roughness of oxidized Al on graphene to a higher 

surface mobility of Al [57], [58]. The surface diffusion of the metal atoms on graphene 

places a lower boundary on the nucleation layer thickness required for a full surface 

coverage, which in turn is required for the deposition of a pinhole-free top dielectric. 

Experimentally we find that 1.2 nm and 0.6 nm are the minimum nucleation layer 

thicknesses when using Al and Ti respectively. A lower nucleation layer thickness leads 

to severe gate leakage due to pinholes in the ALD Al2O3 dielectric.    

 

Figure 2.10: Topography of graphene flakes after the nucleation layer deposition. The top 

(bottom) panel represents data for a graphene flake with a 1.5 nm thick Al (0.6 

nm thick Ti) film. The measured surface roughness values are 0.52 nm for Al, and 

0.24 nm for Ti nucleation layers. The smoother surface of the graphene with Ti 

film suggests that Ti covers the entire graphene surface at a lower thickness.  
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2.5.3 Effect of nucleation layer on dielectric constant 

 

Figure 2.11(a) shows 𝐶𝑇𝐺 vs. the ALD Al2O3 physical thickness (𝑡𝐴𝑙2𝑂3
). The data 

are extracted from multiple devices using Al and Ti nucleation layers for the Al2O3 ALD. 

We note at a given 𝑡𝐴𝑙2𝑂3
 the 𝐶𝑇𝐺 values are higher when using Ti as a nucleation layer. 

Figure 2.11(b) shows the inverse of the capacitance per unit area (𝐶𝑇𝐺
−1) vs. 𝑡𝐴𝑙2𝑂3

. For a 

given nucleation layer, 𝐶𝑇𝐺
−1 has a linear dependence on the 𝑡𝐴𝑙2𝑂3

. The linear dependence 

of 𝐶𝑇𝐺
−1 vs. 𝑡𝐴𝑙2𝑂3

 can be understood using a simple capacitor model [Fig. 2.11(c)], where 

the top dielectric stack capacitance consists of the ALD Al2O3 capacitance (𝐶𝐴𝑙2𝑂3
) in 

series with an interface capacitance (𝐶𝑖𝑛𝑡): 

𝐶𝑇𝐺
−1 = 𝐶𝑖𝑛𝑡

−1 +
𝑡𝐴𝑙2𝑂3

𝑘0
           (2.3) 

here 0 is the vacuum dielectric permittivity and k represents the relative dielectric 

constant of the ALD Al2O3. The slope of the 𝐶𝑇𝐺
−1 vs. 𝑡𝐴𝑙2𝑂3

 data yields the ALD Al2O3 k-

value, and the y-axis intercept (𝐶𝑖𝑛𝑡
−1) represents the interface capacitance. The extracted 

dielectric constant of Al2O3 deposited on the oxidized Al and Ti interfaces are 5.5 and 

12.7, respectively, and the measured Cint is 1.6 ± 0.5 µF/cm2 for Al interface and 1.1 ± 

0.3 µF/cm2 for the Ti interface. We note that 𝐶𝑖𝑛𝑡 can originate from both the dielectric 

formed by the oxidized metal layer, as well as interface traps. The difference in k-values 

extracted for Al2O3 deposited on Al and Ti is surprising, and demonstrates that the 

nucleation layer plays a key role in the subsequent ALD growth of Al2O3 on graphene.  
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Figure 2.11: (a) 𝐶𝑇𝐺 vs. 𝑡𝐴𝑙2𝑂3
 for dual-gated graphene FETs with Ti and Al nucleation 

layers (b) 𝐶𝑇𝐺
−1 vs. 𝑡𝐴𝑙2𝑂3

 of same devices. For both interfacial layers, 𝐶𝑇𝐺
−1 has a 

linear dependence on 𝑡𝐴𝑙2𝑂3   The k values for ALD Al2O3 deposited on Ti and Al 

nucleation layers are 12.7 and 5.5, respectively (c) Dual-gated graphene FET 

schematic, with the top gate capacitance consisting of interface capacitance (𝐶𝑖𝑛𝑡) 

and Al2O3 capacitance (𝐶𝐴𝑙2𝑂3
), in series.  

 

Figure 2.12 shows the carrier mobility () vs. the dielectric stack thickness 

(𝑡𝑆𝑡𝑎𝑐𝑘) probed for three back-gated graphene FETs before and after the Ti deposition, 

and after the ALD Al2O3. The mobility is extracted from the slope of the four-point 

conductivity (𝜎) vs. 𝑉𝐵𝐺, using eq. 2.1; and each data point is the average mobility for the 

two carrier types (the difference between the electron and hole mobilities is less than 

10%).  The data show that the nucleation layer has a smaller impact on the carrier 

mobility compared to the subsequent ALD Al2O3 which causes a more significant 

mobility decrease. This observation is in agreement with the data of Fig. 2.6 for HfO2 

deposited on graphene using oxidized Al as an interfacial layer. As discussed earlier, the 

mobility decrease is attributed to Coulomb scattering from charged point defects (e.g. 

oxygen vacancies) in the dielectric.  
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Figure 2.12:  vs. 𝑡𝑠𝑡𝑎𝑐𝑘 for graphene FETs with the top ALD Al2O3 dielectric deposited 

on Ti. The shaded area represents the interfacial layer thickness. The dashed line 

is a guide to the eye. 

 

2.5.4 Al2O3 structure 

 

To explore the origin of the Al2O3 dielectric constant dependence on the 

nucleation layer, we analyzed the dielectric structure using TEM, and electron energy 

loss spectroscopy (EELS). Figure 2.13 shows the TEM cross section of two samples, 

consisting of the ALD Al2O3 deposited on graphene using Al [Fig. 2.13(a)] and Ti [Fig. 

2.13(b)] nucleation layers. A comparison of the Al2O3 structure in Fig. 2.13(a) and Fig. 

2.13 (b) reveals that the Al2O3 grown on Ti has crystalline regions. Although the Al2O3 
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film is not fully crystalline, it does show long range order by comparison to the Al2O3 

grown on Al, which is amorphous. The inset of Fig. 2.13(b) shows the Fourier transform 

of an Al2O3 grain in film deposited on Ti nucleation layer, confirming the partially 

crystalline structure. Figures 2.13(c,d) show the composition maps [panel (c)] and line-

scan [panel (d)] of O, C, Ti, and Al determined from EELS measurements for an Al2O3 

film grown on graphene using a Ti interface. The data indicates that Ti does not diffuse 

into the ALD Al2O3 dielectric during the growth. Figure 2.13 data therefore suggests that 

the difference in the dielectric constants of Al2O3 deposited using Al and Ti nucleation 

layers, stems primarily from the dielectric crystal structure, with the Al2O3 being partially 

crystalline when grown on oxidized Ti, and amorphous when grown on oxidized Al. The 

higher dielectric constant of Al2O3 grown on oxidized Ti is in agreement with previous 

studies correlating the dielectric constant and crystal structure for Al2O3 [59]. Further 

studies are required to clarify crystallization mechanism for the ALD of Al2O3 on the 

oxidized Ti interfacial layer.  
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Figure 2.13: Leakage current density (𝐽) as a function of vertical electric field (𝐸) for 

different top dielectric thicknesses. The gate resistance for devices with 2.6 nm 

top dielectric stack is ~1 MΩ. 

 

The top gate leakage current density (𝐽) versus the electric field (𝐸-field) is shown 

in Fig. 2.13, for different stack thicknesses. The measured gate resistance of devices with 

the thinnest top-gate dielectric, 0.6 nm oxidized Ti followed by 2 nm Al2O3 is ~1 MΩ. 

The leakage current density for devices with stack thicknesses of 6 nm or more are less 

than 10
-5

 A/cm
-2

. 
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Figure 2.14: TEM cross section micrographs of ALD Al2O3 on graphene, grown using Al 

(a), and Ti (b) nucleation layers. Panel (b) inset: Fast Fourier Transform 

corresponding to the grain marked by the dashed line. (c) Compositional maps of 

oxygen, carbon, titanium, and aluminum determined from EELS measurements 

on an Al2O3/TiOx/graphene stack. (d) Concentration profiles of C (K-edge), Al 

(L-edge), O (K-edge), Si (L-edge), and Ti (L-edge) obtained from EELS line 

scans of Al2O3/TiOx/graphene stack. 
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2.6 SUMMARY 

 

In summary, we studied the monolayer and bilayer graphene mobility dependence 

on the thickness of a top high-k metal-oxide dielectric as well as the thickness scaling of 

ALD Al2O3 dielectric in graphene FETs, using oxidized Al and Ti nucleation layers. We 

show graphene mobility decreases after 2-4nm metal-oxide dielectric deposition and 

remains constant if the dielectric thickness is further increased. The mobility temperature 

dependence suggests that phonons are not the dominant scattering mechanism in these 

devices, indicating that additional charged impurities located in close proximity to the 

graphene layer are introduced during dielectric deposition. We speculate that positively 

charged oxygen vacancies, ubiquitous in high-k dielectrics, are the mobility limiting 

factor in our devices. 

We also show the smooth surface of thermally evaporated Ti on graphene 

provides excellent surface coverage at thicknesses as low as 0.6 nm which enables the 

realization of graphene FETs with ultra-thin top gate dielectrics. The nucleation layer has 

a significant impact on the dielectric constant and morphology of the subsequently grown 

ALD dielectric. TEM analysis reveals that the ALD of Al2O3 on graphene using an Al 

nucleation layer yields an amorphous film, whereas the Ti nucleation layer yields a 

partially crystalline film. 
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CHAPTER 3: RESONANT TUNNELING IN DOUBLE BILAYER 

GRAPHENE HETEROSTRUCTURES 

 

In this chapter, we demonstrate gate-tunable resonant tunneling and negative 

differential resistance in the interlayer current-voltage characteristics of rotationally 

aligned double bilayer graphene heterostructures separated by hexagonal boron-nitride 

(hBN) dielectric. An analysis of the heterostructure band alignment using individual layer 

densities, along with experimentally determined layer chemical potentials indicates that 

the resonance occurs when the energy bands of the two bilayer graphene are aligned. We 

discuss the tunneling resistance and interlayer dielectric capacitance dependence on the 

interlayer hBN thickness, as well as the resonance width dependence on mobility, 

rotational alignment, and in-plane magnetic field. 

3.1 2D-2D RESONANT TUNNELING 

 

Tunneling between two distinct two-dimensional (2D) carrier systems, namely 

2D-2D tunneling has been used in GaAs 2D electron [60], [61] and 2D hole systems 

[62]–[64] as a technique to probe the Fermi surface and quasi-particle lifetime. Figure 

3.1(a) shows schematic view of a dual-gated GaAs/AlGaAs heterostructure with carriers 

being confined in two parallel 2D GaAs quantum wells [65]. In this device, carriers can 

move from one layer to another by tunneling through the AlGaAs tunnel barrier. The 

tunneling current is greatly enhanced when the energy and momentum of the carriers are 

conserved during the tunneling. Figures 3.1(b-d) illustrate various possible scenarios 
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regarding the relative alignment of the two GaAs quantum well energy bands and 

chemical potentials (𝜇) [66]. When the bottom of the energy bands of two quantum wells 

are not energetically aligned [Fig. 3.1(b)], the carrier tunneling between two layers is 

negligible because the energy and momentum conservation cannot be satisfied 

simultaneously. By applying a sufficiently large gate voltage, while two layers are at the 

same potential (e.g. grounded), one can bring the bottom of the conduction bands of two 

layers in alignment [Fig. 3.1(c)], however, the alignment of the chemical potentials leads 

to zero tunneling current between two layers. Fig. 3.1(d) shows the condition at which the 

bottom of conduction bands are brought in alignment by applying an interlayer voltage 

(𝑉𝑖𝑛𝑡) between two layers at fixed gate voltages. Here, carriers at energy states between 

top and bottom layer chemical potentials (𝜇𝑇 , 𝜇𝐵) can tunnel between two layers while 

their energy and momentum are both conserved. Figure 3.1(e) shows the interlayer 

current-voltage characteristics of the device shown in Fig. 3.1(a) measured at 𝑇 = 0.3 K. 

The momentum conserving tunneling between two layers leads to a gate-tunable 

resonantly enhanced tunneling conductivity and negative differential resistance (NDR). 
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Figure 3.1: (a) Schematic of a dual-gated double quantum well tunneling transistor based 

on GaAs/AlGaAs heterostructure. The individual quantum wells are 

independently contacted. A sketch of the energy band diagram is shown at left. 

The energy-momentum dispersion of two layers when (b) energetically 

misaligned (c) energetically aligned with identical carrier density (d) energetically 

aligned with different carrier densities. (e) Interlayer current-voltage 

characteristics showing gate-tunable resonant tunneling and NDR (Figures and 

captions adapted from refs. [65], [66]). 
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3.1.1 2D-2D tunneling formalism 

 

In this section, we consider a system of two parallel two-dimensional electron 

gases (2DEGs) vertically stacked on top of each other and separated by a tunnel barrier 

and derive expressions for its interlayer current (𝐼𝑖𝑛𝑡) and differential conductance (𝐺) as 

a function of interlayer voltage (𝑉𝑖𝑛𝑡). We first go over the basics of the energy bands in a 

2D-2D system. Figure 3.2 shows a simplified schematic view of the energy bands in a 

2D-2D system where 𝐸𝐵0 (𝐸𝑇0) corresponds to the bottom of the first energy sub-band in 

bottom (top) layer, 𝜇𝐵 (𝜇𝑇) is the chemical potential in bottom (top) layer, and 𝐸𝐹𝐵 (𝐸𝐹𝑇) 

is bottom (top) Fermi energy:  

𝐸𝐹𝐵 = 𝜇𝐵 − 𝐸𝐵0       (3.1) 

𝐸𝐹𝑇 = 𝜇𝑇 − 𝐸𝑇0       (3.2) 

Assuming the electrostatic potential drop across the dielectric layer is 𝑉𝐸𝑆 then: 

𝐸𝑇0 − 𝐸𝐵0 = 𝑒 ∙ 𝑉𝐸𝑆       (3.3) 

The separation of the chemical potentials in the two layers is defined by the applied 

interlayer voltage: 

𝜇𝑇 − 𝜇𝐵 = 𝑒𝑉𝑖𝑛𝑡       (3.4) 
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Figure 3.2: Conduction band of two 2DEGs. 𝜇𝐵 (𝜇𝑇) is the chemical potential in bottom 

(top) layer and 𝐸𝐵0 (𝐸𝑇0) is the conduction band edge energy of bottom (top) 

layer. 

 

The Hamiltonian of a 2D-2D system (𝐻) can be written as [67]: 

𝐻 = 𝐻𝑇 + 𝐻𝐵 + 𝐻𝑇        (3.5) 

where 𝐻𝑇 and 𝐻𝐵 are the Hamiltonian for electrons in the top and bottom layers, 

respectively, and 𝐻𝑇 is the tunneling Hamiltonian: 

𝐻𝑇 = − ∑(𝑡𝒌,𝒌′𝑐𝒌,𝑇
† 𝑐𝒌′,𝐵 + 𝐻. 𝑐. )       (3.6)

𝒌,𝒌′

 

𝑡𝒌,𝒌′ is the tunneling matrix element and 𝑐 and 𝑐† are the creation and annihilation 

operators, respectively. Term 𝑡𝒌,𝒌′ in a 2D-2D system with a tunneling barrier that is 

invariant under translations perpendicular to the barrier is zero for 𝒌 ≠ 𝒌′ therefore 
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𝑡𝒌,𝒌′ = 𝑡𝛿𝒌,𝒌′. The tunneling current in a 2D-2D system calculated using Kobu formalism 

has the form: 

𝐼𝑖𝑛𝑡 =
2𝑒

ℏ
𝑡2𝑆 ∫

𝑑2𝑘

(2𝜋)2
∫

𝑑𝐸

2𝜋

∞

−𝐸𝐹

𝐴(𝐸, 𝒌)𝐴(𝐸 + 𝑒𝑉𝑖𝑛𝑡, 𝒌)[𝑓(𝐸) − 𝑓(𝐸 + 𝑒𝑉𝑖𝑛𝑡)]     (3.7) 

where 𝑆 is the tunneling area,  𝑓(𝐸) is the Fermi distribution function, and 𝐴(𝐸, 𝒌) is the 

spectral function of electrons in top and bottom 2DEGs at zero magnetic field given by: 

𝐴(𝐸, 𝒌) =
1

Γ𝑇,𝐵
2 + (

ℏ2𝑘2

2𝑚∗ − 𝐸)
2        (3.8) 

here Γ𝑇,𝐵 = ℏ/2𝜏𝑇,𝐵 is the broadening associated with the scattering time 𝜏𝑇,𝐵 in top and 

bottom layers and 𝑚∗ is the carrier effective mass. The integral of eq. 3.7 with the 

assumptions of low temperature (𝑘𝐵𝑇 ≪ Γ) and weak disorder (Γ ≪ 𝐸𝐹) yields: 

𝐼𝑖𝑛𝑡 = 𝑆𝑡2
2𝑒

ℏ

𝑚∗

𝜋ℏ2

Γ

Γ2 + (𝑒V𝑖𝑛𝑡 + 𝜇𝑇 − 𝜇𝐵)2
𝑉𝑖𝑛𝑡      (3.9) 

here Γ = Γ𝐵 + Γ𝑇. It is customary to present the tunneling data in terms of differential 

conductance defined as 𝐺 = 𝑑𝐼/𝑑𝑉𝑖𝑛𝑡. The general form of the differential conductance 

valid for all 𝑉𝑖𝑛𝑡 values is [67], [68]: 

𝐺 (𝑉𝑖𝑛𝑡) = 𝑆𝑡2
2𝑒

ℏ

𝑚∗

𝜋ℏ2
Γ

Γ2 − (𝑒𝑉𝑖𝑛𝑡)2 + (𝜇𝑇 − 𝜇𝐵)2

[Γ2 + (𝑒V𝑖𝑛𝑡 + 𝜇𝑇 − 𝜇𝐵)2]2
      (3.10) 
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Figure 3.3 shows an example of 𝐺 vs. 𝑉𝑖𝑛𝑡 measured in a 2D-2D electron system at 

temperatures ranging between 𝑇 = 0.47 K and 𝑇 = 9.1 K and with equal carrier densities 

in both layers (𝑛 = 1.6 × 1011 cm
-2

).  

 

Figure 3.3: 𝐺 vs. 𝑉𝑖𝑛𝑡 of a 2D-2D electron system measured at various temperatures in a 

sample with equal carrier densities in both top and bottom layers (𝑛 =  1.6 ×
 1011 cm

-2
). Insets show the energy band alignment at resonance and off 

resonance (Figure and caption adapted from Ref. [69]). 

 

3.2 2D-2D TUNNELING IN DOUBLE BILAYER GRAPHENE HETEROSTRUCTURES 

3.2.1 Van der Waals heterostructures 

 

 

Recent progress in realization of atomically thin heterostructures by stacking 2D 

atomic crystals, such as graphene, hexagonal boron nitride (hBN), and transition metal 
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dichalcogenides (TMDs) has provided a versatile platform to probe new physical 

phenomena, and explore novel device functionalities [70], [71]. Combining such 

materials in vertical heterostructures may provide new insight into the electron physics in 

these materials through Coulomb drag [72], [73] or tunneling [74], [75].  

 
 

Figure 3.4: (a) Schematic of the double bilayer graphene device. (b) Optical micrograph 

of the top and bottom graphene flakes illustrating the alignment of straight edges. 

The red (yellow) lines mark the boundaries of the bottom (top) bilayer graphene. 

(c) Optical micrograph of the device. The red (yellow) dashed lines mark the 

bottom (top) bilayer graphene. 

 

The emergence of single or few atom-thick semiconductors, such as graphene and 

TMDs can open new routes to probe 2D-2D tunneling in their heterostructures, which in 

turn may enable new device applications [74], [76], [77]. While fascinating, resonant 

tunneling between two graphene or TMD layers realized using a layer-by-layer transfer 

approach is experimentally challenging because the energy band minima are located at 

the K points in the first Brillouin zone, and the large K-point momenta coupled with 

small rotational misalignment between the layers can readily obscure resonant tunneling. 
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Bilayer graphene, as discussed in the first chapter, consists of two monolayer 

graphene in A-B stacking, and has a hyperbolic energy-momentum dispersion with a 

tunable bandgap [8], [78], [79]. Hexagonal boron-nitride is an insulator with an energy 

gap of 5.8 eV [80] and dielectric strength of 0.8 V/nm [81], which has emerged as the 

dielectric of choice for graphene [70] thanks to its atomically flat, and chemically inert 

surface. We demonstrate here resonant tunneling and NDR between two bilayer graphene 

flakes separated by an hBN dielectric. A detailed analysis of the band alignment in the 

heterostructure indicates that the NDR occurs when the charge neutrality points of the 

two layers are energetically aligned, suggesting momentum conserving tunneling is the 

mechanism responsible for the resonant tunneling. 

3.2.2 Realization of double bilayer graphene heterostructures 

 

Figure 3.4(a) shows a schematic representation of our double bilayer 

heterostructure devices, consisting of two bilayer graphene flakes separated by a thin 

hBN layer. The devices are fabricated through a sequence of bilayer graphene and hBN 

mechanical exfoliation, alignment, dry transfers/layer pick-ups, e-beam lithography, and 

plasma etching steps similar to the techniques reported in Refs. [70], [82]–[84]. 

3.2.2.1 Fabrication: dry layer transfer method 

 

In this method, devices are fabricated using the dry transfer technique described 

in ref. [83]. The device fabrication starts with mechanical exfoliation of bilayer graphene 

and hBN on SiO2/Si substrate. Then, we spin coat poly-propylene carbonate (PPC) on a 1 
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mm-thick Polydimethylsiloxane (PDMS) film bonded to a thin glass slide. The 

glass/PDMS/PPC stack is used to pick up the top bilayer graphene, the thin interlayer 

hBN (𝑡ℎ𝐵𝑁 = 1.2 nm), and the bottom bilayer graphene consecutively from SiO2/Si 

substrates using the Van der Waals force between the two-dimensional crystals. The 

entire stack is transferred onto an hBN flake previously exfoliated on SiO2/Si substrate. 

Figure 3.4(b) shows the transferred stack on top of bottom hBN/SiO2/Si substrate. After 

dissolving the PPC, a sequence of EBL, O2 and CHF3 plasma etching is used to define the 

active area. Finally, the metal contacts are defined by EBL, e-beam evaporation of Ti-Au, 

and lift-off [Fig. 3.4(c)]. 

3.2.2.2 Fabrication: layer pickup method 

 

In this method, similar to the dry layer transfer method, the fabrication starts with 

exfoliation of hBN on a silicon wafer covered with 285 nm-thick thermally grown SiO2. 

Topography and thickness of the exfoliated hBN flakes are measured with atomic force 

microscopy (AFM), and flakes with minimum surface roughness and surface 

contamination are selected. On a separate silicon wafer covered with water soluble 

Polyvinyl Alchohol (PVA) and Poly(Methyl Methacrylate) (PMMA), bilayer graphene is 

mechanically exfoliated from natural graphite and identified using optical contrast and 

Raman spectroscopy. The PVA is dissolved in water, and the PMMA/bilayer graphene 

stack is transferred onto hBN flake using a thin glass slide [Fig. 3.5(a)]. The PMMA film 

is then dissolved in acetone and the bilayer graphene is trimmed using EBL and O2 

plasma etching [Fig. 3.5(b)]. Similarly, a thin hBN (thBN = 1.2-1.8 nm) flake exfoliated on 

http://en.wikipedia.org/wiki/Polydimethylsiloxane


 63 

a PMMA/PVA/Si substrate is transferred onto the existing bilayer graphene [Fig. 3.5(c)]. 

A second bilayer graphene is transferred onto the stack [Fig. 3.5(d)], and trimmed on top 

of the bottom bilayer graphene using EBL and O2 plasma etching [Fig. 3.5(e)]. Finally, 

metal contacts to both top and bottom bilayer graphene are defined through EBL, 

electron-beam evaporation of Ni and Au, and lift-off [Fig. 3.5(f)]. 

 

 

Figure 3.5: Fabrication of back-gated double bilayer graphene heterostructure using dry 

transfer technique. (a) Transfer of bottom bilayer graphene onto bottom hBN. (b) 

Trimming of bottom bilayer in O2 plasma using PMMA mask. (c) transfer of thin 

interlayer hBN flake. (d) Transfer of top bilayer graphene. (e) Trimming of top 

bilayer in O2 plasma using PMMA mask. (f) Final device after definition of metal 

contacts. The black arrows in panels (a) and (d) point to the reference straight 

edges used for the alignment of the two layers. 
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Device 

Top 

bilayer 

mobility 

(cm
2
/V·s) 

Bottom 

bilayer 

mobility 

(cm
2
/V·s) 

Interlayer hBN 

thickness 

(# of monolayers) 

𝑪𝒊𝒏𝒕 
(µm/cm

2
) 

𝑪𝑩𝑮 
(nF/cm

2
) 

Optical image 

#1 3,500 
150,000-

160,000 
6 1.02 10.5 

 

#2 14,800 2,400 5 1.23 12.9 

 

#3 - - 4 - - 

 

#4 13,800 150,000 4 1.55 10.5 

 

Table 3.1: List of the key devices presented in this chapter. 
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3.2.2.3 Rotational alignment 

 

The bilayer graphene flakes selected for the device fabrication have at least one 

straight edge which is used as a reference to align the crystalline orientation of the bottom 

and top bilayer graphene during the transfer [Figs. 3.4(b) and 3.5(a,d)]. The accuracy of 

the rotational alignment is mainly limited by the size of the flakes, and the resolution of 

the optical microscope.  For a typical length of the bilayer graphene straight edge of 10 – 

20 µm, we estimate the rotational misalignment between the two bilayers in our devices 

to be less than 3 degrees. The interlayer hBN straight edges are not intentionally aligned 

with either the top or bottom graphene layers during transfers. 

3.2.2.4 Tunnel junction uniformity 

 

The interface between various materials in an atomically thin heterostructure 

plays a key role in device quality and tunneling uniformity. Particularly, the presence of 

contaminants, such as tape or resist residues, and wrinkles in the tunneling region and in 

between the layers changes the interlayer spacing and the local carrier density, which in 

turn makes the tunneling current distribution non-uniform. To achieve an atomically flat 

interface with minimum contamination, the heterostructure is annealed either after each 

transfer or after the stack completion in high vacuum (10
-6

 Torr), at a temperature 𝑇 = 

340C for 8 hours. Figures 3.4(c) and 3.5(f) depict the optical micrograph of the final 

devices. In Fig. 3.4(c) the bottom and top bilayer graphene boundaries are marked by red 

and yellow dashed lines; the interlayer hBN is not visible in this micrograph.   
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3.3 ELECTRICAL CHARACTERIZATION 

 

The devices are characterized at temperatures ranging from T = 1.4 K to room 

temperature, using small signal, low frequency lock-in techniques to probe the individual 

layer resistivities, and a parameter analyzer for the interlayer current-voltage 

characteristics. Nine devices were fabricated and investigated in this study; we focus here 

on data from four devices, labelled #1, #2, #3, and #4. Device #1 consists of the double 

bilayer heterostructure separated by hBN where the top layer is exposed to ambient, 

while Devices #2 to #4 have the top layer capped with an additional hBN layer. Table 3.1 

shows the optical images of the devices as well as a summary of their key parameters.  

3.3.1 Layer resistivity measurement 

 

To characterize the double bilayer system, it is instructive to start with the 

characteristics of the individual layers. The device layout allows us to independently 

probe the bottom and top layer resistivites (𝜌𝐵, 𝜌𝑇), and carrier densities (𝑛𝐵, 𝑛𝑇) in the 

overlap (tunneling) region as a function of the back-gate (𝑉𝐵𝐺) and interlayer bias (𝑉𝑇𝐿) 

applied on the top layer; the bottom layer potential is kept at ground during all 

measurements. Figure 3.6 shows the bottom (panel a) and top (panel b) layer resistivity 

measured as a function of 𝑉𝐵𝐺 and 𝑉𝑇𝐿 in Device #1, at 𝑇 = 1.4 K. The carrier mobility of 

Device #1 measured from the four-point conductivity is 150,000 - 160,000 cm
2
/V·s for 

the bottom bilayer and 3,500 cm
2
/V·s for the top bilayer at 𝑇 = 1.4 K. The data of Fig. 

3.6 indicate that the combination of gate biases at which both bilayer graphene are charge 



 67 

neutral, namely the double charge neutrality point (DNP), is: 𝑉𝐵𝐺−𝐷𝑁𝑃 = 20.2 V and 

𝑉𝑇𝐿−𝐷𝑁𝑃 = -0.235 V.  

 

Figure 3.6: Device #1 bottom [panel (a)] and top [panel (b)] bilayer graphene resistivity 

contour plots measured as a function of 𝑉𝐵𝐺 and 𝑉𝑇𝐿 at 𝑇 = 1.4 K. The charge 

neutrality points in both panels are marked by black dashed lines. 

 

3.3.2 Capacitances and chemical potential measurement 

 

At a given set of 𝑉𝐵𝐺 and 𝑉𝑇𝐿, the values of 𝑛𝐵 and 𝑛𝑇 can be calculated using the 

following equations [85]: 

𝑒(𝑉𝐵𝐺 − 𝑉𝐵𝐺−𝐷𝑁𝑃) =
𝑒2(𝑛𝐵 + 𝑛𝑇)

𝐶𝐵𝐺
+ 𝜇𝐵                      (3.11)

𝑒(𝑉𝑇𝐿 − 𝑉𝑇𝐿−𝐷𝑁𝑃) = −
𝑒2𝑛𝑇

𝐶𝑖𝑛𝑡
+ 𝜇𝐵 − 𝜇𝑇                      (3.12)
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Here 𝑒 is the electron charge, 𝐶𝐵𝐺 is the back-gate capacitance, 𝐶𝑖𝑛𝑡 is the interlayer 

dielectric capacitance, 𝜇𝑇 and 𝜇𝐵 are the top and bottom bilayer graphene chemical 

potential measured with respect to the charge neutrality point, respectively. Solving eqs. 

3.11 and 3.12 yields a one-to-one correspondence between the applied biases and the 

layer densities. Finding a self-consistent solution for eqs. 3.11 and 3.12 requires the 𝐶𝐵𝐺 

and 𝐶𝑖𝑛𝑡 values, and the layer chemical potential dependence on carrier density. We 

discuss in the following an experimental method to determine the capacitance values in a 

double bilayer graphene, along with the chemical potential dependence on the carrier 

density. 

Along the charge neutrality line (CNL) of the top bilayer graphene [i.e. 

𝑛𝑇 = 𝜇𝑇 = 0], eq. 3.12 reduces to 𝜇𝐵 = 𝑒(𝑉𝑇𝐿 − 𝑉𝑇𝐿−𝐷𝑁𝑃), thus the 𝜇𝐵 value at a given 

𝑉𝐵𝐺 can be determined along the top layer CNL. To determine the value of the 𝐶𝐵𝐺, we 

measure 𝜌𝐵 and 𝜌𝑇 of the device in a perpendicular magnetic field. Figure 3.7(a) presents 

the 𝜌𝑇 contour plot of Device #1 measured as a function of 𝑉𝐵𝐺 and 𝑉𝑇𝐿, in a 

perpendicular magnetic field 𝐵 = 13 T, and at 𝑇 = 1.5 K. The charge neutrality line of the 

top bilayer graphene [dashed line in Fig. 3.7(a)] shows a staircase behavior, which stems 

from the bottom bilayer graphene chemical potential crossing the Landau levels (LLs) 

[82]. At a given LL filling factor (𝜈), marked in Fig. 3.7(a), the bottom bilayer graphene 

carrier density is 𝑛𝐵 = 𝜈𝑒𝐵 ℎ⁄ ; h is the Planck constant. Writing eqs. 3.11 and 3.12 along 

the top bilayer CNL, combined with 𝑛𝐵 = 𝜈𝑒𝐵 ℎ⁄  yields: 
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𝐶𝐵𝐺 =
𝑒2𝐵

ℎ
(

∆(𝑉𝐵𝐺 − 𝑉𝑇𝐿)

∆𝜈
)

−1

           (3.13) 

Where ∆(𝑉𝐵𝐺 − 𝑉𝑇𝐿) is the change in 𝑉𝐵𝐺 − 𝑉𝑇𝐿 corresponding to a bottom bilayer filling 

factor change ∆𝜈 along the top layer CNL [dashed line in Fig. 3.7(a)]. Figure 3.7(b) 

shows a clear linear dependence of 𝑉𝐵𝐺 − 𝑉𝑇𝐿 vs. 𝜈, marked by circles in Fig. 3.7(a). The 

slope of 𝑉𝐵𝐺 − 𝑉𝑇𝐿 vs. 𝜈 data along with eq. 3.13 yields 𝐶𝐵𝐺 = 10.5 nF/cm
2
 for Device #1, 

corresponding to 285 nm-thick SiO2 in series with 40 nm-thick hBN dielectric.  

The 𝑛𝐵 value along the top bilayer CNL can be calculated using eqs. 3.11 and 

3.12: 

𝑛𝐵 =
𝐶𝐵𝐺

𝑒
∙ [(𝑉𝐵𝐺 − 𝑉𝐵𝐺−𝐷𝑁𝑃) − (𝑉𝑇𝐿 − 𝑉𝑇𝐿−𝐷𝑁𝑃)]           (3.14) 

Combining the μ𝐵 values determined along the top layer CNL of Fig. 3.6(b), with eq. 

3.14 yields μ𝐵 vs. 𝑛𝐵. Figure 3.8 shows μ𝐵 vs. 𝑛𝐵 for Devices #1 and #4. We note that in 

addition to the layer densities the applied 𝑉𝐵𝐺 and 𝑉𝑇𝐿 also change the transverse electric 

fields across the two layers (discussed later in this chapter). The chemical potential of the 

two devices match well at high carrier densities, but differ near 𝑛𝐵 = 0 thanks to different 

transverse electric fields values across the bottom layer near the DNP [8]. Because the 

experimental data show the bilayer graphene chemical potential is weakly dependent on 

the transverse electric fields away from the neutrality point, and to simplify the solution 

of eqs. 3.11 and 3.12 we neglect the 𝜇𝑇 and 𝜇𝐵 dependence on the transverse electric 

field across the individual layers. By fitting a polynomial of degree five to the 
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experimental 𝜇𝐵 vs. 𝑛𝐵 data of Fig. 3.8 we find an expression for the 𝜇 vs. 𝑛 that will be 

subsequently used to solve eqs. 3.11 and 3.12. Table 3.2 shows the coefficients of the 

fitted polynomial: 

𝜇(𝑛) = 𝑎0 + 𝑎1 ∙ 𝑛 + 𝑎2 ∙ 𝑛2 + 𝑎3 ∙ 𝑛3 + 𝑎4 ∙ 𝑛4 + 𝑎5 ∙ 𝑛5       (3.11) 

Coefficient Value 

𝑎0 -0.0006213 eV 

𝑎1 3.660×10
-2 

eV·cm
2
 

𝑎2 1.513×10
-3

 eV·cm
2
 

𝑎3 -1.187×10
-3

 eV·cm
2
 

𝑎4 -3.093×10
-5 

eV·cm
2
 

𝑎5 3.999×10
-5

 eV·cm
2
 

 

Table 3.2: Fitting parameter values obtained by fitting a polynomial of degree five to the 

𝜇 vs. 𝑛 data of Fig. 3.8. 

 

In eq. 3.11, 𝑛 is in units of 10
12

 cm
-2

. The dashed line in the Fig. 3.8 depicts the 

polynomial fit to the experimental 𝜇𝐵 vs. n data, which will be subsequently used to solve 

eqs. 3.11 and 3.12.  
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Figure 3.7: Capacitance and chemical potential measurement in device #1 (a) Contour 

plot of ρT measured as a function of VBG and VTL, at B = 13 T and T = 1.5 K in 

Device #1. The bottom bilayer graphene LL filling factors are marked. (b) 

𝑉𝐵𝐺 − 𝑉𝑇𝐿 vs. 𝜈 of the bottom bilayer showing a linear dependence; the 𝐶𝐵𝐺 value 

is determined from the slope. 

 

We now turn to the extraction of the 𝐶𝑖𝑛𝑡 value. Let us consider the bottom bilayer 

graphene CNL, marked by a dashed line in Fig. 3.6(a). In a dual gated graphene device 

with metallic gates, the value of the top-gate capacitance can be readily extracted from 

the linear shift of the bottom graphene charge neutrality point with back-gate and top-

gate voltages [37], which yields the top-gate to back-gate capacitance ratio. Because the 

top layer is not a perfect metal, using the slope of the bottom bilayer CNL of Fig. 3.6(a) 

to calculate 𝐶𝑖𝑛𝑡 neglects the contribution of the top bilayer quantum capacitance. 

Combining eqs. 3.11 and 3.12 along the bottom bilayer CNL, i.e. 𝑛𝐵 = 𝜇𝐵 = 0, we 

obtain the following expression that includes the quantum capacitance: 
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𝐶𝑖𝑛𝑡 = −
𝑒𝐶𝐵𝐺 ∙ (𝑉𝐵𝐺 − 𝑉𝐵𝐺−𝐷𝑁𝑃)

𝑒(𝑉𝑇𝐿 − 𝑉𝑇𝐿−𝐷𝑁𝑃) + 𝜇𝑇(𝐶𝐵𝐺 ∙ (𝑉𝐵𝐺 − 𝑉𝐵𝐺−𝐷𝑁𝑃)/𝑒)
           (3.15) 

 Using eq. 3.15 and the 𝜇𝑇 vs. 𝑛 dependence of Fig. 3.8, we determine an interlayer 

dielectric capacitance of 𝐶𝑖𝑛𝑡 = 1.02 µF/cm
2
 for Device #1. The 𝐶𝑖𝑛𝑡 values for Devices 

#2, and #4 are 1.23 µF/cm
2
, and 1.55 µF/cm

2
, respectively. 

 

Figure 3.8: 𝜇𝐵 vs. 𝑛𝐵 for Devices #1 and #4. The dashed line is the polynomial fit to the 

experimental data. 

 

 

3.3.3 Interlayer current-voltage characteristics 

 

Now we turn to the interlayer current (𝐼𝑖𝑛𝑡) - voltage characteristics of our 

devices.  Figure 3.9(a) shows the 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 for Device #1 measured at various 𝑉𝐵𝐺 
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values, and at 𝑇 = 10 K. For small bias values, 𝐼𝑖𝑛𝑡 increases monotonically with 𝑉𝑇𝐿, 

corresponding to an interlayer resistance of 39 GΩ·µm
2
. For 𝑉𝐵𝐺 values ranging from 10 

V to 30 V, the interlayer current-voltage traces show a marked resonance and NDR, 

which depend on the applied 𝑉𝐵𝐺. Figure 3.9(b,c) present the 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 of Devices #2 

and #3 measured at room temperature. The normalized interlayer resistance of Devices 

#2 and #3 at the limit of 𝑉𝑇𝐿 = 0 V is 1 GΩ·µm
2
 and 0.3 GΩ·µm

2
, respectively. Similar to 

the Device #1 data, we observe resonant tunneling and NDR in the interlayer current-

voltage characteristics of Devices #2 and #3. A distinct difference between Devices #2 

and #3 and the first device is that the resonance is centered around 𝑉𝑇𝐿 = 0 V in Devices 

#2 and #3 by comparison to Device #1. As we discuss below, the NDR position can be 

explained quantitatively by considering the electrostatic potential across the double 

bilayer heterostructures. 

 

Figure 3.9: Interlayer current-voltage characteristics and resonant tunneling. 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 

of (a) Device #1 measured at 𝑇 = 10 K, and (b) Device #2 measured at room 

temperature. (c) Device #3 measured at room temperature. The right axes show 

the interlayer current normalized by the active area.  
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3.3.4 Thickness dependence of interlayer resistance and capacitance 

 

Figure 3.10(a) shows the normalized interlayer resistance (𝑅𝑐) in double bilayer 

graphene devices as a function of interlayer hBN thickness, from 4 to 8 monolayers, 

measured at zero interlayer bias, and at either low 𝑇 = 1.4 - 20 K temperatures, or at room 

temperature. Data are included from both devices with and without resonant tunneling. 

The data show an exponential dependence on thickness of the tunneling barrier, similar to 

experimental tunneling data through hBN using graphite and gold electrodes [86]. These 

data indicate that the 𝑅𝑐 value is largely determined by the interlayer hBN thickness. 

 

Figure 3.10: (a) Normalized interlayer resistance vs. number of hBN layers measured in 

multiple devices and at a low temperature of 𝑇 = 1.4 – 20 K and at room 

temperature. (b) 𝐶𝑖𝑛𝑡 vs. number of hBN layers. (c) 𝑅𝑐 × 𝐶𝑖𝑛𝑡 (delay time) vs. 

number of hBN layers. The dashed lines in panels (a) and (b) are guides to the 

eye. 

 

Figure 3.10(b) shows the 𝐶𝑖𝑛𝑡 vs. number of hBN. The 𝐶𝑖𝑛𝑡 data show the 

expected 1/thickness dependence. The number of hBN layers can be converted to hBN 
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thickness (𝑡ℎ𝐵𝑁) using the interlayer spacing of 2.67 Å. We use Fig. 3.10(b) data to 

calculate the dielectric constant of hBN, by first plotting 𝐶𝑖𝑛𝑡
−1 vs. 𝑡ℎ𝐵𝑁, calculating the 

slope of 𝐶𝑖𝑛𝑡
−1 vs. 𝑡ℎ𝐵𝑁 and finally using the slope value in 𝑘 = (𝑑𝐶𝑖𝑛𝑡

−1 𝑑𝑡ℎ𝐵𝑁⁄ )−1 ∙ (1 𝜖0⁄ ). 

The experimentally measured dielectric constant of the hBN is k = 1.8.  

An important figure of merit often used for benchmarking of CMOS devices is 

the delay time. For interlayer tunneling field-effect transistors (ITFET), the relevant delay 

time is defined by product of normalized interlayer resistance and interlayer capacitance. 

Figure 3.10(c) shows 𝑅𝑐 × 𝐶𝑖𝑛𝑡 (in units of second) vs. number of hBN layers. The fastest 

device, with 4 layers-thick interlayer hBN, possesses a delay time of about 1 µs 

indicating the maximum achievable operation frequency for this device is relatively low. 

To reduce the delay time, smaller 𝑅𝑐 and 𝐶𝑖𝑛𝑡 values are desired. Lower 𝑅𝑐 values can be 

achieved by reducing 𝑡ℎ𝐵𝑁, however, the two bilayer graphene are likely to be shorted 

when the thickness of the interlayer dielectric is three atoms or less. A more feasible 

solution to achieve lower interlayer resistance is to replace hBN by a dielectric with a 

smaller band gap. The interlayer tunneling current 𝐼𝑖𝑛𝑡 ∝ exp (−√∆) where ∆ is the band 

gap of the dielectric, therefore, a dielectric with a band gap smaller than that of hBN 

yields a smaller 𝑅𝑐 and hence a smaller delay time. On the other hand, reducing 𝐶𝑖𝑛𝑡 can 

be achieved by using a thicker dielectric, not desired because of increasing 𝑅𝑐, or by 

using a dielectric with smaller dielectric constant. 
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3.3.5 Energy band alignment at resonant tunneling 

 

To better understand the origin of the observed NDR in Figs. 3.9, it is instructive 

to examine the energy band alignment in the double bilayer graphene heterostructure. To 

determine if the NDR occurrence stems from momentum conserving tunneling, we 

examine the biasing conditions at which the charge neutrality points of the two bilayer 

graphene are aligned and the electrostatic potential drop across the interlayer dielectric is 

zero: 

𝑒𝑉𝑇𝐿 + 𝜇𝑇(𝑛𝑇) − 𝜇𝐵(𝑛𝐵) = 0           (3.16) 

Figure 3.11 illustrates the energy band alignment of a double bilayer graphene 

device at biasing conditions where the charge neutrality points of top and bottom bilayers 

are aligned, the condition most favorable for momentum conserving tunneling. The 

schematic ignores the band-gap induced in the two layers as a result of finite transverse 

electric fields, as the layer chemical potentials are controlled mainly by the carrier 

densities (Fig. 3.8). 
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Figure 3.11: Energy band diagram of the double bilayer graphene device when charge 

neutrality points of top and bottom bilayers are aligned. 

 

The symbols in Fig. 3.12 show the experimental values of the tunneling resonance 

as a function of 𝑉𝑇𝐿 and 𝑉𝐵𝐺 for Devices #1 and #2, defined as the maximum conductivity 

point in Figs. 3.9(a,b) data. The solid lines show the calculated 𝑉𝑇𝐿 vs. 𝑉𝐵𝐺  values 

corresponding to layer densities and chemical potential that satisfy eq. 3.16, 

corresponding to the charge neutrality points of the two layers being aligned. The good 

agreement between the experimental values and calculations in Fig. 3.12 strongly 

suggests that the tunneling resonance occurs when the charge neutrality points of the two 

bilayer graphene are aligned, which in turn maximizes momentum (k) conserving 

tunneling between the two layers [87]–[89]. This observation is also in agreement with 
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the findings in other 2D-2D systems where resonant tunneling occurs when the energy 

bands of the two quantum wells are aligned [61]–[64]. 

 
 

Figure 3.12: 𝑉𝑇𝐿 vs. 𝑉𝐵𝐺 of Devices #1 and #2 at tunneling resonance (circles) and when 

charge neutrality points are aligned (solid line) 

 

3.3.6 Carrier densities at resonant tunneling 

 

Figure 3.13 shows the layer densities 𝑛𝑇  vs. 𝑛𝐵 calculated in Devices #1 and #2 at 

the tunneling resonance position corresponding to Figs. 3.9(a,b) data. In Device #1 the 

top (bottom) bilayer is populated with holes (electrons) at the tunneling resonance. In 

Device #2 the top bilayer is close to neutrality, while the bottom bilayer carrier type can 

be either hole or electron depending on the applied 𝑉𝐵𝐺. Most notably, in both devices the 

tunneling resonance occurs at a fixed top layer density value. This observation can be 
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understood using eq. 3.13 and eq. 3.16, which yield a fixed top layer density 𝑛𝑇 =

𝑒 (𝑉𝑇𝐿−𝐷𝑁𝑃 ∙ 𝐶𝑖𝑛𝑡)⁄  when the charge neutrality points are aligned, independent of 𝑉𝐵𝐺. 

 

Figure 3.13: 𝑛𝑇 vs. 𝑛𝐵 of Devices #1 and #2 at tunneling resonance. 

 

3.3.7 Resonant tunneling at large interlayer bias 

We have so far presented 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 of three double bilayer graphene devices 

possessing gate-tunable resonant tunneling in the vicinity of 𝑉𝑇𝐿 = 0 V. In this section, we 

focus on the interlayer current-voltage characteristics of double bilayer devices at large 

𝑉𝑇𝐿 values beyond the range presented in Fig 3.9. Figure 3.14(a) shows 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 of 

Device #2 measured in the range -0.9 V ≤ 𝑉𝑇𝐿 ≤ 0.9 V at room temperature and at 𝑉𝐵𝐺 = -

40, 0, 40 V. Figure 3.14(a) data reveals three sets of gate-tunable resonant tunneling, one 

set centered around 𝑉𝑇𝐿 = 0 V and two sets at |𝑉𝑇𝐿| ≅  0.5 - 0.7 V. The first set of gate-

tunable resonant tunneling, is extensively discussed in the previous sections where it is 
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associated to the energy and momentum conserving tunneling when the charge neutrality 

points of the two bilayer graphene are energetically aligned. The additional two sets of 

resonant tunneling, at larger 𝑉𝑇𝐿, are equally interesting, however, the origin of them 

needs to be clarified. 

To better understand the origin of the resonant tunneling at |𝑉𝑇𝐿| ≅  0.5 - 0.7 V, 

Fig. 3.14(b) shows the differential conductance (𝑑𝐼𝑖𝑛𝑡/𝑑𝑉𝑇𝐿) vs. electrostatic potential 

drop (𝑉𝐸𝑆) defined as 𝑉𝐸𝑆 = 𝑉𝑇𝐿 + [𝜇𝑇(𝑛𝑇) − 𝜇𝐵(𝑛𝐵)]/𝑒 for Device #2. The maximum 

differential conductance in Fig. 3.14(b) occur either at 𝑉𝐸𝑆 = 0 V or 𝑉𝐸𝑆 = ± 0.4 V 

independent of the applied 𝑉𝐵𝐺 . The 0.4 V spacing between the differential conductance 

peaks is similar to the reported energy difference between the first and second sub-bands 

of bilayer graphene at K-point [90] which suggests the resonant tunneling at |𝑉𝑇𝐿| ≅  0.5 

- 0.7 V occurs when the lower conduction band of one layer is aligned with the upper 

conduction band of the opposite layer. Figures 3.14(c-e) illustrate the energy band 

alignment in double bilayer graphene heterostructure at 𝑉𝐸𝑆 = - 0.4 V, 𝑉𝐸𝑆 = 0 V, 𝑉𝐸𝑆 = 

0.4 V, respectively. 
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Figure 3.14: (a) 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 of Devices #2 measured at room temperature, and at 𝑉𝐵𝐺 = -

40, 0, 40 V. In addition to the resonant tunneling centered around 𝑉𝑇𝐿 = 0 V, there 

are two additional sets of resonant tunneling occurr at |𝑉𝑇𝐿| = 0.5 - 0.6 V. (b) 

𝑑𝐼𝑖𝑛𝑡/𝑑𝑉𝑇𝐿 vs. 𝑉𝐸𝑆 corresponding to the data of panel (a) measured at room 

temperature, and at 𝑉𝐵𝐺 = -40, 0, 40 V. (c-e) The schematic presentation of the 

energy band alignment in double bilayer graphene at (a) 𝑉𝐸𝑆 = - 0.4 V (b) 𝑉𝐸𝑆 = 0 

V (c) 𝑉𝐸𝑆 = 0.4 V. In panels (c) and (e) the lower conduction band of one bilayer 

is aligned with the upper conduction band of the opposite bilayer. In panel (b), the 

charge neutrality points of the two bilayers are aligned (Figure and caption 

adopted from ref. [91]). 
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3.3.8 Temperature dependence 

 

Figures 3.15(a-c) show the temperature dependence of 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 measured in 

Device #2 and at 𝑉𝐵𝐺 = -40, 0, 40 V, respectively. At lower temperatures and at the 

resonant tunneling, the slope of 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿, i.e. differential conductance, increases. In 

addition to the resonant tunneling, Figs. 3.15(a-c) data exhibit a non-resonant tunneling 

current background that increases with 𝑉𝑇𝐿 and it is associated with non-momentum-

conserving tunneling. Fig. 3.15 data shows the non-resonant tunneling component has a 

weak temperature dependence. 

 

Figure 3.15: 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 of device #2 measured at 𝑉𝐵𝐺 = -40, 0, 40 V and at temperatures 

ranging between 𝑇 = 1.5 K and room temperature. The temperature dependence 

of the background tunneling current is relatively weak. 

 

A recent theoretical study [92] suggests the background tunneling current in 

graphene/hBN/graphene heterostructures is due to the inelastic electron-phonon 
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scattering. In fact, the best fit to the experimentally measured background tunneling 

current is achieved by taking into account the emission of optical flexural (ZO) phonons 

in hBN. 

3.3.9 Transverse electric field across the individual bilayers 

 

The momentum-conserving tunneling between two bilayer graphene depends on 

their energy-momentum dispersion, and density of states. The band structure of bilayer 

graphene, particularly close to the CNP, can be tuned by an applied transverse electric 

(𝐸) field, as a result of the applied 𝑉𝐵𝐺 and 𝑉𝑇𝐿. In the previous section, we showed 

resonant tunneling peaks occur when the charge neutrality points of the two bilayers are 

energetically aligned. A recent theoretical study suggests an additional set of resonant 

tunneling peaks in a double bilayer graphene heterostructure originating from the 

alignment of the density of state features close to the band edge when the two bilayers 

possess a band gap [93]. The additional set of resonant peaks, characterized by sharp 

peaks, is expected primarily at low temperatures. At high temperatures the sharp peaks 

become weaker when due to the more significant contribution of the thermally occupied 

adjacent states. It is therefore instructive to examine the E-field value for the two bilayers 

in a double bilayer graphene heterostructure. The general expressions for transverse 𝐸-

field across the top (𝐸𝑇) and bottom (𝐸𝐵) bilayers in a double bilayer graphene device 

are: 

𝐸𝐵 =
𝑒𝑛𝐵

2𝜀0
+

𝑒𝑛𝑇

𝜀0
+ 𝐸𝐵0     (3.17) 
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𝐸𝑇 =
𝑒𝑛𝑇

2𝜀0
+ 𝐸𝑇0                  (3.18) 

here 𝑛𝑇 and 𝑛𝐵 are the top and bottom layer densities, respectively, and 𝜀0 is the vacuum 

permittivity.  𝐸𝑇0 and 𝐸𝐵0 are the transverse E-fields across the top and bottom bilayer at 

the DNP, as a result of unintentional layer doping. At a given 𝑉𝐵𝐺 and 𝑉𝑇𝐿, the 𝑛𝐵 and 𝑛𝑇 

values can be calculated from eqs. 3.11 and 3.12. The 𝐸𝐵0 value can be calculated as 

following. We first determine 𝐸𝐵 = 0 point, marked by minimum 𝜌𝐵 along the CNL of 

the bottom bilayer resistivity contour plot [Fig. 3.16(a)]. At 𝐸𝐵 = 0, eq. 3.11 and 3.17 

yield: 

𝐸𝐵0 =
𝐶𝐵𝐺∆𝑉𝐵𝐺

𝜀0
              (3.19) 

Here ∆𝑉𝐵𝐺 = 𝑉𝐵𝐺−𝐷𝑁𝑃 − 𝑉𝐵𝐺−𝐸𝐵=0.  

Finding the value of the 𝐸𝑇0 in a back-gated double bilayer device requires an 

assumption about the dopant position that cause the device DNP to shift from 𝑉𝐵𝐺 =

𝑉𝑇𝐿 = 0 V. To calculate the 𝐸𝑇0 in our devices assume the dopants are placed on the top 

bilayer graphene, an assumption most plausible when the top bilayer is uncapped, as in 

Device #1.  Equation 3.17 combined with the Gauss law yield: 

𝐸𝑇0 =
𝐶𝐵𝐺𝑉𝐵𝐺−𝐷𝑁𝑃

𝜀0
       (3.20)  

Figures 3.16(b,c) show the calculated 𝐸𝑇 and 𝐸𝐵 in Device #1 and #2 along the locus of 

aligned neutrality points in the two bilayers, i.e. at the tunneling resonance, as a function 

of 𝑉𝐵𝐺. At the tunneling resonance 𝐸𝐵 shows a linear dependence on 𝑉𝐵𝐺, while 𝐸𝑇 

remains constant. For Device #1, the condition  𝐸𝑇 = 𝐸𝐵, desirable for identical energy-
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momentum dispersion in the two bilayers occurs at 𝑉𝐵𝐺 = 24 𝑉, and a finite E-field. For 

Device #2, 𝐸𝑇 = 𝐸𝐵 is closer to zero, and at 𝑉𝐵𝐺 = −7 𝑉. Figures 3.9(a) and 3.16(b) data 

combined suggest the tunneling resonance in Device #1 is strongest in the vicinity of the 

𝐸𝑇 = 𝐸𝐵 point, where the band structures are closely similar for both top and bottom 

bilayers. The tunneling resonance in Device #2 occurs over a wider range of 𝑉𝐵𝐺 where 

the difference between the 𝐸𝑇 and 𝐸𝐵 can be as large as 0.34 V/nm. 

 

 

Figure 3.16: (a) Device #1 𝜌𝐵 contour plot vs. 𝑉𝐵𝐺 and 𝑉𝑇𝐿, measured at 𝑇 = 1.4 K. The 

CNL of the top bilayer graphene is added to mark the DNP. 𝐸𝑇 and 𝐸𝐵 in (b) 

Device #1, and (c) Device #2, calculated at the tunneling resonance. 

 

3.4 BROADENING OF THE RESONANT TUNNELING PEAKS 

 

In addition to the location of the resonances, we also considered their broadening. 

Potential sources of broadening include finite initial and final state lifetimes 𝜏 due to 

scattering, rotational misalignment 𝜃, or the non-uniformity of tunneling associated with 



 86 

spatial inhomogeneities. While a detailed theoretical description of the tunneling in 

double bilayers is outside the scope of this study, in the following we provide estimates 

for the broadening associated with these mechanisms gauges in terms of the alignment of 

the band structures, i.e., the electrostatic potential difference between bilayers 𝑉𝐸𝑆 =

𝑉𝑇𝐿 + [𝜇𝑇(𝑛𝑇) − 𝜇𝐵(𝑛𝐵)]/𝑒.   

 
 

 

Figure 3.17: Energy band diagram of rotationally misaligned bilayers. (a) Brillouin zone 

boundaries of two hexagonal lattices rotationally misaligned by θ˚ in real space. 

KB (KT) is the valley minimum the bottom (top) bilayer graphene. (b) A rotational 

misalignment by a small angle 𝜃 translates into valley separation in momentum 

space by ∆𝑘 ≅  |K|θ. 

 

The contribution from the carrier scattering lifetime () in either layer to the 

broadening width in units of volts is ∆𝑉𝜏 ≅ ℏ (𝑒𝜏)⁄ , where ℏ is the reduced Planck 

constant. Using the momentum relaxation time 𝜏𝑚 obtained from the carrier mobility 

𝜇 = 𝑒𝜏𝑚 𝑚∗⁄ , where 𝑚∗ is the effective mass, a lower limit of the broadening can be 
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estimated to be ∆𝑉𝜏 ≅ ℏ (𝜇𝑚∗)⁄  . The broadening width associated with rotational 

misalignment can be estimated using the wave-vector difference ∆𝑘 = |𝐊|θ illustrated in 

Fig. 3.17(b), which translates into a broadening ∆𝑉θ ≈ ℏ𝑣̅|𝐊|θ 𝑒⁄ , where 𝑣̅ is an average 

velocity of the tunneling carriers, and |𝐊| = 1.7 × 10−10 m
-1

 is the wave-vector 

magnitude at the valley minima. Using the Fermi velocity of monolayer graphene vF = 

1.110
8
 cm/s as reference leads to a numerical expression 

∆𝑉θ ≈ (180 m𝑉)(𝑣̅ 𝑣𝐹⁄ )(θ 1o⁄ ). The lower carrier velocity in bilayer by comparison to 

monolayer graphene leads to a reduced resonance broadening at a given rotational 

misalignment angle 𝜃. However, a notable difference between tunneling in bilayer vs. 

monolayer graphene is that rotational misalignment can be compensated in double 

monolayer by applying a larger interlayer bias to bring into coincidence states with equal 

momenta and energies in the two layers [74], [87]. 

The effective mass of bilayer graphene is both density and transverse electric field 

dependent [8], [82]. Using an average effective mass value 𝑚∗ = 0.05 𝑚𝑒 [82], where 𝑚𝑒 

is the bare electron mass, the lower layer mobility value in Device #1 of 3,500 cm
2
/V·s 

corresponds to a broadening ∆𝑉𝜏 = 6 mV. For Device #2 the corresponding broadening is 

∆𝑉𝜏 = 11 mV, using the top and bottom layer mobility values of 14,800 and 2,400 

cm
2
/V·s measured at room temperature. The experimental values for the tunneling 

resonance width are 𝛤 ≅ 12 mV and 𝛤 ≅ 68 mV for Devices #1 and #2, measured at 𝑇 = 

10 K, and room temperature respectively. These values are determined by fitting 
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Lorentzian peaks to the 𝐼𝑖𝑛𝑡/𝑉𝑇𝐿 data of Figs. 3.9(a,b) data plotted as a function of 𝑉𝐸𝑆; an 

example is shown in Fig. 3.18(a).  

 

Figure 3.18: (a) 𝐼𝑖𝑛𝑡/𝑉𝑇𝐿 vs. 𝑉𝐸𝑆 for Device #2 at 𝑉𝐵𝐺 = 40 V and at 𝑇 = 297 K (solid 

line), along with a Lorentzian fit to the experimental data (dashed line). (b) 

Temperature dependence of 𝛤 measured in Device #2 and at 𝑉𝐵𝐺 = -40, -20, 20, 

40 V. (Right panel adapted from Ref. [91]) 

 

3.4.1 Temperature dependence 

 

Figure 3.18(b) shows the temperature dependence of 𝛤 measured in Device #2 

and at 𝑉𝐵𝐺 = -40, -20, 20, 40 V. The data of Fig. 3.17(b) shows 𝛤 has a weak dependence 

on temperature in the range 1.5 K ≤ 𝑇 ≤ 300 K suggesting acoustic phonon scattering is 

not the primary source of broadening. As the ∆𝑉𝜏 values calculated above are lower than 

the experimental values ∆𝑉𝐸𝑆, we conclude that the broadening is mainly limited by 
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rotational alignment in our devices, with Device #1 having a better alignment than 

Device #2. Although we cannot quantify experimentally the rotational misalignment in 

the two devices, we note that during fabrication Device #1 was annealed after each 

graphene and hBN layer transfer, while Device #2 was annealed after the double bilayer 

stack was completed. We speculate that multiple annealing steps may improve the 

rotational alignment between the layers.  

3.4.2 Interlayer tunneling with an in-plane magnetic field 

 

In rotationally misaligned bilayer graphene when the rotational angle 𝜃 is small, 

the separation of the charge neutrality points in the k-space can be written as 𝛥𝑲𝑖 = 𝒍𝑧 ×

𝜃𝑲𝑖 where 𝑖 = 1 to 6 corresponds to the 6 valleys and 𝒍𝑧 = (0,0,1). Tunneling carriers in a 

double bilayer graphene heterostructure gain an in-plane momentum 𝑒𝑡ℎ𝐵𝑁𝒍𝑧 × 𝑩|| when 

an external in-plane magnetic field (𝑩||) is applied. Thus, for a rotationally misaligned 

bilayer graphene in an external in-plane magnetic field, the momentum transfer is written 

as ℏ𝛥𝑲𝑖 = 𝒍𝑧 × [𝜃𝑲𝑖 + 𝑒𝑡ℎ𝐵𝑁𝑩||]. Depending on the relative alignment of the in-plane 

magnetic field and the bilayer crystal orientations the momentum transfer at each valley 

could be different [74].  

The resonant tunneling in double bilayer graphene heterostructures occurs when 

the energy and momentum of the carriers are conserved while tunneling. Applying an 

external in-plane magnetic field, not can changes the in plane momentum of the tunneling 

carriers but also shifts the Brillion zones of the layers with respect to each other. 
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Consequently, an in-plane magnetic field is expected to change the resonant tunneling 

characteristics. Figure 3.19 shows 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 of Device #2 measured in 𝐵|| = 0, 14 T and 

at 𝑉𝐵𝐺 = -40 [panel (a)] and 𝑉𝐵𝐺 = 40 V [panel (b)]. 

 

Figure 3.19: 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 of Device #2 measured at in-plane magnetic fields 𝐵|| = 0, 14 T 

and at (a) 𝑉𝐵𝐺 = -40 V and (b) 𝑉𝐵𝐺 = -40 V.  

 

There are a few noteworthy features in Fig. 3.19. In both panels, the in-plane 

magnetic field changes 𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 only in the vicinity of the resonant tunneling bias 

confirming the resonant tunneling is a momentum conserving process. In addition, in Fig 

3.19(a), the small features superimposed on the local 𝐼𝑖𝑛𝑡 minima (centered at 𝑉𝑇𝐿 ≅ - 0.1 

V) in 𝐵|| = 0 T trace disappear at 𝐵|| = 14 T. These small features in zero magnetic field 

𝐼𝑖𝑛𝑡 vs. 𝑉𝑇𝐿 are associated with the alignment of the bilayer graphene band edge features 

when bilayer graphene possesses a band gap [93]. Another noteworthy effect of the in-
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plane magnetic field is on the broadening of the resonant peaks. As an example, at 𝑉𝐵𝐺 = 

40 V, the broadening of the resonant peaks at 𝐵|| = 0 T is Γ = 50 mV, while in the 

presence of an in-plane magnetic field 𝐵|| = 14 T, the width of the broadening increases 

to Γ = 98 mV. 

3.5 SUMMARY 

 

In summary, we present a study of interlayer electron transport in double bilayer 

graphene. In devices where the bilayers straight edges were rotationally aligned during 

the fabrication we observe marked resonances in interlayer tunneling. Using individual 

layer densities and experimental values of the layer chemical potential we show that the 

resonances occur when the charge neutrality points of the two layers are energetically 

aligned, consistent with momentum-conserving tunneling.  The interlayer conductivity 

values show an exponential dependence of the interlayer hBN thickness, and can serve to 

benchmark switching speed for potential device applications. 
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CHAPTER 4: QUANTUM HALL EFFECT IN BERNAL STACKED 

AND ROTATIONALLY MISALIGNED CVD BILAYER GRAPHENE 

 

In this chapter, we examine the quantum Hall effect in bilayer graphene grown on 

Cu substrates by chemical vapor deposition. Spatially resolved Raman spectroscopy 

suggests a mixture of A-B (Bernal) stacked and rotationally misaligned (twisted) 

domains. Magnetotransport measurements performed on bilayer domains with a wide 2D 

band reveal quantum Hall states (QHSs) at filling factors 𝜈 = 4, 8, 12, consistent with an 

A-B stacked bilayer, while magnetotransport measurements in bilayer domains defined 

by a narrow 2D band show a superposition of QHSs of two independent monolayers. The 

analysis of the Shubnikov–de Haas oscillations measured in rotationally misaligned 

graphene bilayers provides the carrier density in each layer as a function of the gate bias 

and the interlayer capacitance. 

 

4.1 INTRODUCTION 

 

A-B stacked bilayer graphene, as discussed in the first chapter, possesses 

parabolic energy-momentum dispersion close to the charge neutrality point as well as a 

tunable bandgap in the presence of a transverse electric field (𝐸-field). When the stacking 

order of two layers is not A-B, i.e. two layers are rotationally misaligned, the electronic 

properties of bilayer graphene deviates from that of A-B stacked bilayer graphene. 

Theoretical calculations show the electronic properties of commensurate, rotationally 

misaligned bilayer depend on the degree of rotational misalignment angle 𝜃 [5]–[7], [94], 
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[95]. The fundamental differences between A-B stacked and rotationally misaligned 

bilayer graphene can be summarized as (i) the energy-momentum dispersion of 

rotationally misaligned bilayer graphene is linear similar to that of monolayer graphene 

yet with a smaller Fermi velocity that depends on the rotational misalignment angle 𝜃 [5], 

[6]; (ii) applying a transverse E-field across rotationally misaligned bilayer does not lead 

to a band gap opening [5]; (iii) the emergence of two low-energy van Hove peaks in DOS 

of the rotationally misaligned bilayer originating from the mixing of the linear energy 

bands of the two monolayers [96]. 

Monolayer graphene, as described in the first chapter, is a Bravais lattice with two 

sub-lattices A and B and primitive lattice vectors: 

𝒂1 = 𝑎 (
1

2
,
√3

2
) , 𝒂2 = 𝑎 (−

1

2
,
√3

2
) 

where 𝑎 = 2.46 Å is the lattice constant. In the A-B stacked bilayer graphene, sub-lattice 

A of one layer (namely A1) is aligned with the sub-lattice B of the opposite layer (namely 

B2). In rotationally misaligned bilayer graphene, one layer is rotated with respect to the 

other layer with a rotational angle 𝜃. Here, for simplicity, we assume the origin of the 

rotation is an A1-B2 site. The rotationally misaligned bilayer is commensurate if an A1-B2 

site, besides the one at the origin, occurs elsewhere. Fig. 4.1 shows the lattice of a 

commensurate, rotationally misaligned bilayer graphene with 𝜃 = 3.89°. The 

superimposed honeycomb lattices of the two monolayers in a commensurate, rotationally 

misaligned bilayer, form a supper-lattice with a periodicity that depends on 𝜃.  
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Figure 4.1: Lattice structure of rotationally misaligned bilayer graphene at 𝜃 = 3.89°, with 

super-lattice primitive vectors 𝑻1  and 𝑻2. The points α, β, and γ correspond to A-

B, B-A, and A-A stacked sites respectively. The unit cell of the super-lattice is 

marked with the yellow rhombus. The inset illustrates three hopping processes in 

the interlayer Hamiltonian (Figure and caption adapted from Ref. [94]). 

 

A commensurate bilayer graphene is obtained when a B2 site is rotated to a spot 

formerly occupied by a similar sub-lattice atom. Using this condition, an expression is 

derived for the rotational angles leading to a commensurate structure [5]: 

𝜃𝑖 = 𝑐𝑜𝑠−1 (
3𝑖2 + 3𝑖 + 1/2

3𝑖2 + 3𝑖 + 1
)        𝑖 = 1,2, …       (4.1) 

The primitive lattice vectors associated with the supper-lattice of commensurate, 

rotationally misaligned bilayer graphene are [5]: 

𝑻1 = 𝑖𝒂1 + (𝑖 + 1)𝒂2,    𝑻2 = −(𝑖 + 1)𝒂1 + (2𝑖 + 1)𝒂2       (4.2) 
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The lattice constant Figure 4.1 shows the primitive lattice vectors 𝑻1 and 𝑻2, and sites 

with the highest symmetry in the unit cell: 𝛼 (A-B stacked), 𝛽 (B-A stacked), and 𝛾 (A-A 

stacked). The lattice constant of the supper-lattice is: 

|𝑻1| = √3𝑖2 + 3𝑖 + 1𝑎0       (4.3) 

 

 

Figure 4.2: Brillouin zones of the fixed and rotated monolayer graphene, as well as the 

Brillouin zone of the commensurate, rotationally misaligned bilayer graphene for 

𝜃 = 13.17°. In this Figure 𝑨1 and 𝑨2are the reciprocal lattice vectors of the fixed 

layer, 𝑨1
′  and 𝑨2

′  the reciprocal lattice vectors of the rotated layer, and 𝑮1, 𝑮1 the 

reciprocal lattice vectors of the super-lattice (Figure and caption adapted from ref. 

[94]). 

 

Finally, the reciprocal lattice vectors associated with the supper-lattice of 

commensurate, rotationally misaligned bilayer graphene are: 
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𝑮1 =
4𝜋

3(3𝑖2 + 3𝑖 + 1)
[(3𝑖 + 1)𝒂1 + 𝒂𝟐]       (4.4) 

𝑮2 =
4𝜋

3(3𝑖2 + 3𝑖 + 1)
[−(3𝑖 + 2)𝒂1 + (3𝑖 + 1)𝒂𝟐]       (4.5) 

Figure 4.2 shows the reciprocal lattice vectors of the individual layers (A1, A2, A’1 A’2) 

and the supper-lattice (G1, G2). 

Figure 4.3(a) shows the first Brillion zone of commensurate, rotationally 

misaligned bilayer graphene, centered at midpoint between the charge neutrality points of 

the two layers. 𝐺1 and 𝐺2 represent reciprocal lattice vectors of the super-lattice and ⨂ 

marks the charge neutrality points of the two layers at ±Δ𝐾/2 on the y-axis. 

Figure 4.1(b) shows an example of the energy-momentum dispersion of 

commensurate rotationally misaligned bilayer graphene with a rotational misalignment 

angle 𝜃 = 3.9° along the line passing through the charge neutrality points of the two 

monolayers [Fig. 4.1(a)] calculated in a continuum approximation [5]. Here, the energy-

momentum dispersion close to the charge neutrality points of the two layers (𝑘/Δ𝐾 =

±0.5) is linear and there is no energy gap at the charge neutrality points. The Fermi 

velocity of the rotationally misaligned bilayer graphene (𝑣̃𝐹) is [5], [6]: 

𝑣̃𝐹

𝑣𝐹
= 1 − 9 [

𝑡̃⊥

ℏ𝑣𝐹Δ𝐾
]

2

 

where 𝑣𝐹 is the Fermi velocity in monolayer graphene, ℏ is the reduced Planck constant, 

Δ𝐾 is the amplitude of the wavevector at the corner of the Brillion zone [marked in Fig 

4.1(a)], and 𝑡̃⊥ is the coupling energy between zero energy doublet of one layer and six 

states from opposite layer with energies ±𝑣𝐹Δ𝐾. Figure 4.1(c) presents the normalized 
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Fermi velocity of rotationally misaligned bilayer (𝑣̃𝐹/𝑣𝐹) as a function of the 

misalignment angle calculated by perturbation theory and the continuum model. At large 

rotational angles, 𝑣̃𝐹 is nearly constant with a value close to 𝑣𝐹 while at small rotational 

angles, 𝑣̃𝐹 is smaller than 𝑣𝐹 and shows strong 𝜃 dependence. 

 

 

Figure 4.3: (a) The first Brillion zone of rotationally misaligned bilayer centered 

midpoint between the charge neutrality points of the two monolayers (marked 

with ⨂). 𝐺1 and 𝐺2 are the reciprocal lattice vectors of the super-lattice. (b) 

Energy-momentum dispersion of rotationally misaligned bilayer graphene with 

rotational misalignment 𝜃 = 3.9° (c) Rotationally misaligned bilayer Fermi 

velocity normalized by monolayer Fermi velocity vs. 𝜃 calculated by continuum 

model. (d) Same as panel (b) but in the presence of a potential difference 𝑉 = 0.3 

V. The potential difference between two layers does not lead to band gap opening 

(Figures and caption adapted from Refs. [5], [6]). 
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Figure 4.1(d) shows the energy-momentum dispersion of the rotationally 

misaligned bilayer graphene of Fig. 4.1(b) with a potential difference 𝑉 = 0.3 V between 

the two layers. Unlike A-B stacked bilayer graphene where a potential difference leads to 

opening of an energy gap at the charge neutrality point, the energy-momentum dispersion 

of the rotationally misaligned bilayer does not show bandgap at either charge neutrality 

points, a finding similar to that of monolayer graphene. 

Raman spectroscopy, as discussed in the first chapter, is a powerful non-

destructive characterization method widely used to determine the number of graphene 

layers. Bilayer graphene can be identified and differentiated from monolayer or thicker 

graphene based on the width and the shape of its 2D band. This method is relevant 

particularly when the stacking order of the layers is A-B. When the two layers are 

rotationally misaligned, the weak coupling between the layers leads to 𝜃-dependent 

features in Raman spectrum [97], [98]. Figure 4.4(a) shows examples of rotationally 

misaligned bilayer graphene and monolayer graphene Raman spectra with rotational 

angles between 3° and 27° measured with a 𝜆 = 633 nm laser [97]. The Rama spectra of 

Fig. 4.2(a) reveals the position, width, and intensity of the 2D band (at ≅ 2700 𝑐𝑚−1) as 

well as the intensity of the G band (at ≅ 1580 𝑐𝑚−1) depend on the rotational 

misalignment angle 𝜃. Figure 4.2(b) shows the energy dispersion relation of the 

rotationally misaligned bilayer graphene close to the charge neutrality points of the two 

layers (located at K1 and K2). The charge neutrality points are separated from each other 

in the momentum space as a result of the rotational misalignment. In addition, the overlap 

of the two energy bands, between charge neutrality points, induces Van Hove 
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singularities. Figure 4.4(c) shows the energy dependence of the rotationally misaligned 

bilayer graphene DOS (red trace) compared to that of monolayer graphene (blue trace). 

The interaction of the two layers in the rotationally misaligned bilayer graphene leads to 

the Von Hove singularity. 

 

Figure 4.4: (a) Raman spectra of rotationally misaligned bilayer graphene and monolayer 

graphene measured with a 𝜆 = 633 nm laser. (b) Energy bands of 

rotationally misaligned bilayer graphene. Van Hove singularities are 

induced by overlap of individual layer energy bands. (c) The energy 

dependence of rotationally misaligned bilayer graphene density of states 

(DOS) without (blue) and with (red) interlayer interactions. DOS exhibit 

distortions from the interlayer interactions showing Van Hove singularities 

[97]. 
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A notable feature in Fig. 4.2(a) is the intensity of the G band at 𝜃 = 10° which is 

significantly larger than others. At this rotational angle, the incident photon energy 

matches the energy difference between conduction and valance band Van Hove 

singularities so the large intensity of the G band stems from the large density of states at 

Van Hove singularity points. Consequently, this observation shows the Raman spectrum 

of rotationally misaligned bilayer not only depends on the rotation angle 𝜃 but also 

depends on the excitation wavelength.  

A-B stacked bilayer graphene, as discussed in the first chapter, possesses a 2D 

band consisting of four Lorentzian components and a full width at half maximum 

(FWHM) of 50 cm
-1

. The distinctive 2D band characteristics of A-B stacked bilayer 

graphene are often used to distinguish bilayer from monolayer graphene. In comparison, 

the 2D FWHM of rotationally misaligned bilayer depends on 𝜃. Figure 4.5(a) shows the 

2D band FWHM of rotationally misaligned bilayer graphene vs. 𝜃 measured using a 𝜆 = 

633 nm laser [97]. At large 𝜃, the 2D band FWHM of rotationally misaligned bilayer is 

similar to that of monolayer graphene (30 cm
-1

) while at smaller 𝜃, the 2D band FWHM 

increases and shows a local peak at 𝜃 ≅ 10°, where the excitation wavelength matches 

the Van Hove singularity point energy difference. Figure 4.5(b) shows the intervalley 

scattering mechanisms associated with the 2D band of rotationally misaligned bilayer 

graphene. The blue (black) arrows correspond to the condition at which laser excitation 

energy is smaller (larger) than energy difference between conduction and valance band 

Van Hove singularities. The increment of the 2D band FWHM at small rotational angles, 

𝜃 < 5°, can be explained by complex constructive/destructive interferences of Raman 
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scattering modes at small rotational angles where the interaction between two layers is 

stronger [97]. 

 

 

Figure 4.5: (a) Experimental (black symbols) and theoretically calculated (red symbol) 

rotationally misaligned bilayer graphene 2D band FWHM vs. rotational 

misalignment angle 𝜃. The horizontal line represents the 2D band FWHM of 

monolayer graphene. The grey and red lines are guides to the eye. (b) Intervalley 

2D Raman scattering processes for rotationally misaligned bilayer graphene in 

which the laser excitation energy is smaller (blue lines) or larger (black lines) than 

the energy difference between conduction and valence Van Hove singularities 

(Figure and caption adapted from Ref. [97]). 

 

While electron transport in natural bilayer graphene has been explored to a large 

extent, the transport properties of grown graphene bilayers remain to be fully explored. 

Recent studies have reported the growth of bilayer graphene on SiC and metal substrates 

by chemical vapor deposition (CVD). Bilayer graphene grown on SiC substrates has been 

shown to be Bernal stacked when grown on the Si-face [99], [100] and rotationally 

misaligned when grown on the C-face [101]. While several recent studies suggest the 

growth of A-B stacked bilayer on metal substrates based on Raman spectroscopy [102]–

[105], evidence of stacking from electron transport data in grown bilayer graphene has 
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been scant. It is therefore interesting to probe the electronic properties of CVD-grown 

graphene bilayers, which in turn can shed light on the growth mechanism and help assess 

its potential for device applications. 

 

Figure 4.6: Optical micrograph of a CVD-grown multi-layer graphene sample after 

transfer onto a 285-nm thick SiO2 on Si substrate. Monolayer, bilayer, and trilayer 

regions are marked. 

 

In this chapter, we provide a systematic investigation of the quantum Hall effect 

in bilayer graphene grown on Cu substrates by chemical vapor deposition. Our data show 

that such bilayers consist of a mixture of domains which are either Bernal stacked or are 

rotationally misaligned. 
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4.2 REALIZATION OF BACK-GATED BILAYER GRAPHENE FIELD EFFECT TRANSISTOR 

  

4.2.1 Chemical vapor deposition of bilayer graphene 

 

The graphene samples studied here are grown on a 25 µm-thick Cu foil at a 

temperature of 1035ºC by CVD, using a mixture of methane and hydrogen at the partial 

pressures of 0.02 mbar and 0.03 mbar, respectively. After the growth, the graphene film 

on one side of the Cu foil is coated with PMMA and placed in an aqueous solution of 

ammonia persulfate ((NH4)2S2O8) to dissolve the Cu on the unprotected side. The PMMA 

film that carries the graphene flake is rinsed several times with deionized water to 

minimize the chemical contamination, and then transferred onto a silicon substrate 

covered with 285 nm-thick thermally grown SiO2. After the transfer, the sample is 

allowed to dry and the PMMA is dissolved in acetone. 

Figure 4.6 shows an optical micrograph of a graphene film transferred on the SiO2 

substrate. The optical inspection indicates the presence of monolayer, bilayer, and trilayer 

regions. 

4.2.2 Raman spectra 

 

To probe the number of graphene layers, and obtain an initial assessment of the 

layer stacking, the sample is characterized by Raman spectroscopy acquired using a 488 

nm excitation wavelength, 300 nm spot size, and a power lower than 0.1 mW. Figure 

4.7(a) presents a representative mapping of the Raman 2D band FWHM acquired over a 
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30×30 µm
2
 area superimposed on the optical image of the graphene film. These data 

reveal the presence of distinct domains on the bilayer area with either a narrow 2D band, 

with FWHM values between 27 and 33 cm
−1

, or a wide 2D band, with FWHM values 

between 45 and 54 cm
-1

. By comparison, the Raman 2D band FWHM measured in 

monolayer graphene is 28 - 30 cm
-1

 while in A-B stacked bilayer graphene it is 50 cm
-1

 

[24], [51], [106]–[108]. Figure  4.7(a)  data  therefore suggest that the bilayer domains 

with narrow 2D band consist of two graphene monolayers which are rotationally 

misaligned (twisted bilayer), while the domains characterized by a wider 2D band consist 

of two A-B stacked monolayers. We note the two types of bilayer domains of Fig. 4.7(a) 

show no obvious differences in optical contrast. Figure 4.7(b) shows samples of Raman 

spectra acquired on the same sample of Fig. 4.7(b), at different positions on the 

monolayer, the rotationally misaligned bilayer, and the A-B stacked bilayer regions, as 

indicated. The 2D band FWHM of these Raman spectra are 28 cm
-1

, 30 cm
-1

, and 50 cm
-

1
, respectively. The 2D band intensity (I2D) is larger than the G band intensity (IG) on the 

monolayer and bilayer domains with narrow 2D band, an observation which agrees with 

Raman spectroscopy results for exfoliated graphene [51], [106]. In contrast, the bilayer 

domain with a wide 2D band shows an I2D/IG ratio lower than 1. The D band, located at a 

Raman shift of 1350 cm
-1

 is either absent or very weak, indicating that the defect density 

of the CVD-grown and transferred graphene is low. Figure 4.7(c) shows a histogram of 

the 2D band FWHM values acquired over a 15×20 µm
2
 bilayer graphene grain 

characterized by a wide 2D band. The data points range between 45 cm
-1

 and 65 cm
-1

, 

with a maximum at 53 cm
-1

. Figure 4.7(d) presents a typical spectrum of the 2D band 
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selected from the bilayer graphene region with a wide 2D band. The 2D band spectrum of 

Fig. 4.7(d) could not be fitted with a single Lorentzian function, but an excellent fit is 

obtained using four Lorentzian functions. The combined data of Fig. 4.7(a-d) therefore 

suggest that bilayer domains with narrow 2D band consist of rotationally misaligned 

graphene monolayers, while the bilayer domains with wide 2D band are two A-B stacked 

monolayers. We next focus on the electron transport and quantum Hall effect in these two 

types of bilayers. 

4.2.3 Device fabrication 

 

After the graphene is characterized by Raman spectroscopy, we fabricate back-

gated Hall bar devices on selected bilayer domains with a uniform 2D band FWHM, 

which is either narrow (27 - 33 cm
-1

) or wide (45 – 65 cm
-1

). The active region of the Hall 

bar is defined by electron-beam (e-beam) lithography and isolated from the rest of the 

film using oxygen plasma etching. Metal (Ni) contacts are defined by a second e-beam 

lithography, metal deposition, and lift-off. An example of a Hall bar device made on a 

bilayer graphene is shown in Fig. 4.8(a).  
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Figure 4.7: (a) 2D band FWHM spatial map reveals the bilayer is a mixture of domains 

with either wide (45 - 54 cm
-1

) or narrow (27 – 33 cm
-1

) 2D band. Dashed lines 

mark the boundaries of the bilayer domains and the dotted line marks a Hall bar 

subsequently fabricated to probe electron transport in individual bilayer regions. 

(b) Raman spectra acquired at three different positions, as marked in panel (a) 

show the G (≃ 1580 cm
-1

) and 2D (≃ 2700 cm
-1

) bands. (c) Histogram of the 2D 

band FWHM on a bilayer domain with wide 2D band. The average 2D FWHM is 

53 ± 2 cm
-1

. (d) Example of a 2D band spectrum (black line) acquired on a A-B 

stacked bilayer domain. A fit (red) using four Lorentzian functions (green) 

provide a very good match to the experimental data.  
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4.3 CHARACTERIZATION 

  

4.3.1 Conductivity measurement and carrier mobility 

 

Figures 4.8(b,c) show the four-point conductivity (𝜎) vs. back-gate voltage (𝑉𝐵𝐺) 

of A-B stacked [panel (b)] and rotationally misaligned [panel (c)] bilayer graphene 

measured at room temperature and under vacuum. The carrier mobility (µ) of each 

sample is determined from the four-point conductivity dependence on back-gate bias, 

𝜇 = 1 𝐶𝐵𝐺 × 𝑑𝜎 𝑑𝑉𝐵𝐺⁄⁄ ; 𝐶𝐵𝐺 is the back-gate capacitance per unit area. For the samples 

examined in this study 𝐶𝐵𝐺 = 14.4 nFcm
-2

, a value which is measured on 100×100 µm
2
 

metal pads deposited in close proximity of the Hall bar devices, and also confirmed by 

Hall measurements. 

 

Figure 4.8: (a) Optical micrograph of a back-gated Hall bar fabricated on bilayer 

graphene. An example of conductivity vs. 𝑉𝐵𝐺 of (b) A-B stacked bilayer (c) 

rotationally misaligned bilayer graphene measured at room temperature. 
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The extracted mobility of the A-B stacked bilayer graphene devices are in the 700 

- 1,800 cm
2
V

-1
s

-1
 range, and rotationally misaligned bilayers exhibit mobility values in 

the 3,400 - 3,700 cm
2
V

-1
s

-1
 range. The higher mobility in rotationally misaligned bilayers 

by comparison to A-B stacked bilayers can be explained by differences in their 

bandstructure, which forbid electron back-scattering in monolayer graphene, and hence in 

rotationally misaligned bilayer graphene, but allow back-scattering in A-B stacked 

bilayer graphene [109]. 

 

4.3.2 Quantum Hall effect in CVD-grown bilayer graphene 

 

4.3.2.1 A-B stacked bilayer graphene 

 

To establish the layer stacking of the CVD-grown graphene bilayers and explore 

their electronic properties, in the following we discuss quantum Hall effect measurements 

in this system. Magnetotransport measurements were carried out in perpendicular 

magnetic fields (𝐵) up to 31 T, using a pumped 
3
He refrigerator with a base temperature 

𝑇 = 0.3 K, and small signal, low frequency lock-in techniques. Figure 4.9(a) shows the 

longitudinal (ρxx) and Hall resistivity (𝜌𝑥𝑦) as a function of 𝑉𝐵𝐺 measured at a 

perpendicular magnetic field 𝐵 = 25 T and 𝑇 = 0.3 K in a graphene bilayer that displays a 

Raman signature consistent with A-B stacking, i.e. wide 2D band. The data shows clear 

quantum Hall states (QHSs), marked by vanishing 𝜌𝑥𝑥 and quantized 𝜌𝑥𝑦 at filling factors 

𝜈 =  ±4 and 𝜈 =  −8. The filling factors are determined from the 𝜌𝑥𝑦 plateau values, 
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which are equal to ℎ/𝜈𝑒2; h is Planck’s constant and 𝑒 the electron charge. Alternatively, 

the filling factor can be calculated using 𝜈 =  𝑛ℎ 𝑒𝐵⁄ , where 𝑛 is the total carrier density 

calculated by 𝑛 = 𝐶𝐵𝐺(𝑉 𝐵𝐺 − 𝑉𝐵𝐺−𝐶𝑁𝑃)/𝑒; 𝑉𝐵𝐺−𝐶𝑁𝑃 is the gate bias at the charge 

neutrality point. 

 

Figure 4.9: (a) 𝜌𝑥𝑥 and 𝜌𝑥𝑦 vs. 𝑉𝐵𝐺, measured at 𝐵 =  25 𝑇, and 𝑇 =  0.3 𝐾. The data 

shows QHSs, marked by vanishing 𝜌𝑥𝑥 and quantized 𝜌𝑥𝑦 at filling factors 

𝜈 =  ±4 and 𝜈 =  −8. (b) 𝜌𝑥𝑥 vs. 𝜈 measured at 𝑇 =  0.3 𝐾, and at different 𝐵-

field values, illustrating the emergence of QHSs at integer filling factors multiple 

of four with increasing the 𝐵-field. 

 

Figure 4.9(b) shows the 𝜌𝑥𝑥 vs. 𝜈 measured in the same sample at different 𝐵 

values, and at 𝑇 = 0.3 K. The data show the emergence of QHSs at integer filling factors 

that are multiples of four, i.e. 𝜈 =  ±4, −8, −12, thanks to the fourfold degeneracy of 

each Landau level (LL) associated with the spin and valley degrees of freedom [8]. The 
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QHSs filling factors of Fig. 4.9(a,b) are consistent with the expected values in natural 

bilayer graphene [8], [25], in effect fingerprinting A-B stacked bilayer. 

 

Figure 4.10: (a) 𝜌𝑥𝑥 vs. 𝑉𝐵𝐺 measured at different temperatures, and at 𝐵 =  25 𝑇. Inset: 

𝜌𝑥𝑥 vs. 𝑇−1 at 𝜈 =  −4 on a log-lin scale, measured at 𝐵 =  15 𝑇 (□), 20 𝑇 (○), 

25 𝑇 (▽), 30 𝑇 (◇). (b) ∆ vs. 𝐵, for 𝜈 =  −4 and  𝜈 =  −8 QHSs. The solid lines 

are guide to the eye. 

 

Figure 4.10(a) shows 𝜌𝑥𝑥 vs. 𝑉𝐵𝐺 measured at 𝐵 = 25 T, and at different 

temperatures. Although the 𝜈 =  ±4, −8 QHSs weaken with increasing 𝑇, these QHSs 

remain clearly visible at the highest temperature, 𝑇 = 70 K. The inset of Fig. 4.10(a) 

shows the Arrhenius plot of 𝜌𝑥𝑥 measured at 𝜈 =  −4, and at 𝐵 = 15, 20, 25, 30 T. These 

data follow a thermally activated behavior, 𝜌𝑥𝑥 ∝ 𝑒−Δ (2𝑘𝐵𝑇)⁄ , where ∆ is the energy gap 

and 𝑘𝐵 is Boltzmann’s constant. Figure 4.10(b) shows the extracted 𝜈 =  −4, −8 QHSs 
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energy gaps vs. 𝐵. The data follow a linear dependence of ∆ as a function of 𝐵, with the 

∆ values approaching 0 at 𝐵 ≃ 13 T. The QHS energy gaps of Fig. 4.10(b) are 

considerably smaller than theoretical values [110]. For example, the theoretically 

expected energy gap of 𝜈 =  −4 at 𝐵 = 30 T is 108 meV, a value roughly eight times 

larger than the experimental value. The 𝜈 =  −4 and 𝜈 =  −8 QHSs energy gaps probed 

in CVD-grown bilayer graphene are also approximately fivefold smaller than values 

typically measured in exfoliated bilayer graphene on SiO2 substrates [111], [112]. 

 

4.3.2.2 Rotationally misaligned bilayer graphene 

 

We now turn to the magneto-transport properties of the rotationally misaligned 

bilayer graphene samples, fabricated on bilayer graphene domains with a narrow Raman 

2D band. Figure 4.11(a) shows an example of 𝜌𝑥𝑥 and 𝜌𝑥𝑦 vs. 𝐵 data, measured in a 

rotationally misaligned bilayer device at 𝑉𝐵𝐺 = -40 V, corresponding to 𝑛 = -9.7×10
12

 cm
-

2
, and at 𝑇 = 0.3 K; the sample mobility is μ = 6,500 cm

2
V

-1
s

-1
. These data possess 

several noteworthy features. First, the 𝜌𝑥𝑥 vs. 𝐵 data display Shubnikov-de Haas (SdH) 

oscillations present down to magnetic fields as low as 𝐵 ≃ 3 T, which contrast Fig. 

4.9(b) data, where QHSs are not visible at B-fields lower than 10 T. This observation can 

be explained by the larger monolayer graphene LL energies by comparison to bilayer 

graphene. Moreover, the 𝜌𝑥𝑥 vs. 𝐵 data do not follow a QHS sequence which can be 

readily attributed to either monolayer (𝜈 =  ± 2, 6, 10 …) or bilayer (𝜈 =  ± 4, 8, 12 …), 
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and instead shows a beating pattern similar to the QHSs superposition of a multisubband 

system, consistent with parallel electron transport in two independent graphene 

monolayers. 

 

 

Figure 4.11:  (a) 𝜌𝑥𝑥 and 𝜌𝑥𝑦 vs. 𝐵 measured at 𝑛 =  −9.7 × 1012 𝑐𝑚−2 and at 𝑇 =

 0.3 𝐾. The SdH oscillations stem from a QHSs superposition of the two 

decoupled graphene monolayers. (b) Fourier transform of 𝜌𝑥𝑥 vs. 𝐵−1 data. The 

two peaks represent the layer densities, up to a factor 4e/h. (c) Top layer, bottom 

layer, and total carrier densities of the rotationally misaligned bilayer graphene vs. 

𝑉𝐵𝐺. The symbols (lines) represent experimental data (calculations). 

 

To determine the subband (layer) density in a rotationally misaligned bilayer, we 

examined the Fourier transform (FT) of 𝜌𝑥𝑥 vs. 𝐵−1 data, calculated by first re-plotting 

the 𝜌𝑥𝑥 vs. 𝐵 data, subtracting a linear fit background to center the 𝜌𝑥𝑥 vs. 𝐵−1 data 

around zero, and then applying a fast Fourier transform algorithm. Figure 4.11(b) shows 

the FT amplitude vs. 𝐵 corresponding to Fig. 4.11(a) data. These data show two 

prominent peaks, which yield the two layer densities, up to a factor 4(e/h) = 9.67×10
10
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cm
-2

T
−1

. Figure 4.8(c) summarizes the layer and total densities as a function of 𝑉𝐵𝐺. We 

attribute the higher (lower) density to the bottom (top) layer, as it lies closer (farther) with 

respect to the back-gate. Both layer densities go to zero at 𝑉𝐵𝐺−𝐶𝑁𝑃 = 68 V.  

To understand the top (𝑛𝑇) and bottom (𝑛𝐵) layer density dependence on 𝑉𝐵𝐺 in 

rotationally misaligned bilayer graphene, we employ the model introduced in chapter 3. 

The applied 𝑉𝐵𝐺 is distributed partly across the SiO2 dielectric and partly on the chemical 

potential of the bottom layer:  

 

𝑒(𝑉𝐵𝐺 − 𝑉𝐵𝐺−𝐶𝑁𝑃) = 𝑒2(𝑛𝐵 + 𝑛𝑇) 𝐶𝐵𝐺⁄ + 𝜇𝐵(𝑛𝐵)       (4.6) 

 

here 𝜇𝐵(𝑛) = 𝑠𝑔𝑛(𝑛)ℏ𝑣𝐹√𝜋|𝑛| is the bottom layer chemical potential (Fermi energy) 

relative to the charge neutrality point in monolayer graphene at a carrier density 𝑛; sgn 

represents the sign function. Similarly, the bottom layer chemical potential is the sum of 

the electrostatic potential difference between the layers and the chemical potential of the 

top layer: 

𝜇𝐵(𝑛𝐵) = 𝑒2𝑛𝑇 𝐶𝑖𝑛𝑡⁄ + 𝜇𝑇(𝑛𝑇)       (4.7) 

 

where 𝐶𝑖𝑛𝑡 is the interlayer capacitance and 𝜇𝑇(𝑛) is the top layer chemical potential 

relative to the charge neutrality point. Using eqs. 4.6 and 4.7 and 𝐶𝑖𝑛𝑡 as a fitting 

parameter, we calculate 𝑛𝑇 and 𝑛𝐵 as a function of 𝑉𝐵𝐺. An excellent fit to the 

experimental data is obtained for 𝐶𝑖𝑛𝑡 = 6.9 µFcm
-2

 [solid lines in Fig. 4.9(c)]. 
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Remarkably, this value is in good agreement with the interlayer capacitance expected 

theoretically for A-B stacked bilayer [79] suggesting that the separation of the two layers 

in rotationally misaligned bilayer graphene is close to that of A-B stacked bilayer. Two 

previous experimental studies [113], [114] which examined electron transport in 

rotationally misaligned bilayer graphene consisting of two exfoliated graphene 

monolayers reported 𝐶𝑖𝑛𝑡 values of 0.6 µFcm
-2

 [113], and 6.8 µFcm
-2

 [114]. 

Figure 4.12(a) shows the 𝜌𝑥𝑥 contour plot as a function of 𝑉𝐵𝐺 and 𝐵 probed in 

the rotationally misaligned bilayer sample of Fig. 4.11. The charge neutrality point is 

reached at back-gate bias 𝑉𝐵𝑔−𝐶𝑁𝑃 = 68 V. The data show a QHS pattern which stems 

from the QHSs superposition of the two decoupled monolayers. To map the position of 

the observed QHSs, we use eqs. 4.6 and 4.7 to calculate the layers densities as a function 

of 𝑉𝐵𝐺 and 𝐵, with the only difference that the chemical potential depends on both 

density and magnetic field as 𝜇(𝑛)  =  𝐸𝑁, where 𝐸𝑁 = 𝑠𝑔𝑛(𝑁)𝑣𝐹√2𝑒ℏ𝐵|𝑁|is the 

energy of the N
th

 LL in monolayer graphene, and 𝑁 = 𝐼𝑛𝑡[𝑛ℎ 4𝑒𝐵⁄ ] is the LL index; 𝐼𝑛𝑡 

is the nearest integer function. Using 𝐶𝑖𝑛𝑡 = 6.9 µFcm
−2

 extracted from Fig. 4.8 data 

analysis, we calculate 𝑛𝐵 and 𝑛𝑇 at fixed 𝐵 and 𝑉𝐵𝐺 values, which are then converted into 

layer filling factors 𝜈𝑇,𝐵 = 𝑛𝑇,𝐵ℎ 𝑒𝐵⁄ . The black (red) lines in Fig. 4.12(a) represent the 

calculated position of half-filled LLs, i.e. 𝜈𝑇,𝐵 =  ±0, 4, 8, 12 … for the bottom (top) 

layer. The 𝜌𝑥𝑥 maxima are in excellent agreement with the calculations, quantitatively 

confirming that the QHS sequence of rotationally misaligned bilayer graphene is a 

superposition of the QHSs of the two graphene monolayers. 
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Figure 4.12: (a) rotationally misaligned bilayer 𝜌𝑥𝑥 contour plot as a function of 𝑉𝐵𝐺 and 

𝐵. The red (black) lines are the calculated position of 𝜈 =  ±0, 4, 8, 12 … LLs of 

the top (bottom) layer. The layer filling factors (𝜈𝑇 , 𝜈𝐵) are indicated for each 

QHS (b) Landau level fan diagram of the top (blue), and bottom (red) graphene 

layers as a function of B. The black line shows the chemical potential of the 

bilayer device at 𝑉𝐵𝐺 − 𝑉𝐵𝐺−𝐶𝑁𝑃 =  −50 𝑉. Each step in the chemical potential 

marks a quantum Hall state. 

 

Figure 4.12(b) shows the Landau level fan out diagram of a rotationally 

misaligned bilayer graphene and the calculated chemical potential of the device (relative 

to the Dirac point of the bottom layer) as a function of 𝐵, at a fixed back gate bias 𝑉𝐵𝐺 = 

18 V (𝑉𝐵𝐺 − 𝑉𝐵𝐺−𝐶𝑁𝑃 = −50 𝑉).  At a constant back-gate voltage the number of 

occupied LLs decreases with increasing the B-field, and the chemical potential follows a 

zigzag trajectory between the individual LLs of the two graphene layers.  
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4.4 SUMMARY 

 

In summary, using a combination of Raman spectroscopy and magnetotransport 

measurements we established that CVD-grown bilayer graphene on Cu consists of a 

mixture of A-B stacked and rotationally misaligned monolayer domains. The A-B 

stacked domains show QHSs at filling factors 𝜈 = 4, 8 ,12 in agreement with data in 

exfoliated bilayer graphene. The rotationally misaligned bilayer graphene domains 

display a superposition of the individual QHSs of two grapehene monolayers, which 

allows us to extract the layer densities and inter-layer capacitance. The layer stacking 

determined from magnetotransport data correlates with the FWHM of the Raman 2D 

band. 
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