
Multiple Grid Multiple Time-Scale (MGMT)

Simulations in Linear Structural Dynamics

 by Tejas Ruparel

B.E. in Mechanical Engineering, August 2006, University of Pune

M.S. in Mechanical Engineering, May 2010, Worcester Polytechnic Institute

A Dissertation submitted to

The Faculty of

School of Engineering and Applied Science

of The George Washington University

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

January 31, 2015

Dissertation directed by

Azim Eskandarian

Professor of Engineering and Applied Science

James Lee

Professor of Mechanical and Aerospace Engineering

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3669113

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3669113

 ii

The School of Engineering and Applied Science of The George Washington University

certifies that Tejas Ruparel has passed the Final Examination for the degree of Doctor of

Philosophy as of December 15, 2014. This is the final and approved form of the

dissertation.

Multiple Grid Multiple Time-Scale (MGMT)

Simulations in Linear Structural Dynamics

Tejas Ruparel

Dissertation Research Committee:

Azim Eskandarian, Professor of Engineering and Applied Science,

Dissertation Co-Director

James Lee, Professor of Mechanical and Aerospace Engineering, Dissertation

Co-Director

Majid Manzari, Professor of Civil and Environmental Engineering,

Committee Member

Tianshu Li, Assistant Professor of Civil and Environmental Engineering,

Committee Member

Kunik Lee, General Research Engineer (Chief Safety Scientist), Operation

Research & Development, Turner-Fairbank Highway Research Center,

FHWA/USDOT, Committee Member

 iii

© Copyright 2014 by Tejas Ruparel

All rights reserved

 iv

Dedication

I dedicate this dissertation to my loving parents for their unwavering support,

encouragement and constant love over the years.

 v

Acknowledgements

Over the past four years I have received support and encouragement from a great

number of individuals to whom I am very thankful and I gratefully acknowledge.

First and foremost, I would like to express my sincere gratitude to Prof. Azim

Eskandarian, who has been my research advisor and supervisor since the beginning of my

study. Prof. Eskandarian has constantly encouraged and motivated me to face and

overcome challenges that this work presented along the way. He has helped me shape my

career and grow professionally, and I am immensely grateful for the knowledge and skills I

gained from him.

I would also like to express my gratitude to Prof. James D. Lee for his research

supervision, academic support and constant motivation. He has always reinforced my belief

in a deterministic Universe by pointing out how everything is a consequence of design and

not just a mere coincidence. I am also thankful to him for teaching me mechanics.

My keen appreciation goes to Prof. Majid Manzari for teaching me the Finite Element

Method, he is an incredible teacher. He has helped me fortify my understanding in

mechanics and has always inspired me to pursue challenging problems with patience and

critical thinking.

I would also like to thank the committee members for their time and invaluable

suggestions to improve the dissertation.

Special thanks to Mohamed ElGhoraiby for sharing his knowledge and experience in

structural mechanics, Finite Element Analysis, FORTRAN and GiD. He would always

vi

engage me in technical discussions and provide me with insightful feedback on a variety of

topics. He has been a great colleague and an even better friend.

I would also like to thank Mr. Enrique Escolano from International Center for

Numerical Methods in Engineering (CIMNE) for his continual and prompt support on GiD,

Prof. Alain Combescure from LaMCoS INSA de Lyon and Prof. Arun Prakash from

Purdue University for their valuable suggestions.

Many thanks also go to the CEE department and ISO staff, especially Doreen Walters-

Brooks and Joyce Randolph (aka J), for their assistance with the logistics over the years

and for making my experience at GWU a pleasant one.

I cannot thank my family enough. Without their care and nurturing, I would not be

where I am today. I thank my parents, Meena and Harshad Ruparel, and my brother

Siddharth Ruparel for their unconditional love and support. I owe much of my success to

them. A very special thanks to my girlfriend Melanie Lynn Carlson, who loved and

supported me during the final, critical months of my dissertation, and made me feel like

anything was possible.

Last but not the least; I would like to thank Dr. Kunik Lee from the U.S. Department of

Transportation and Federal Highway Administration for his continual support. This

dissertation is part of a research project ‘Nano Material Modeling and Simulation by New

Multiple Length/Time Scale Theories and Algorithms’ (Grant No: DTFH61-10-H-00005).

 vii

Abstract

Multiple Grid Multiple Time-Scale (MGMT)

Simulations in Linear Structural Dynamics

The work presented in this dissertation describes a general algorithm and its Finite

Element (FE) implementation for performing concurrent multiple sub-domain simulations

in linear structural dynamics. Using this approach one can solve problems in which the

domain under analysis can be selectively discretized spatially and temporally, hence

allowing the user to obtain a desired level of accuracy in critical regions whilst improving

computational efficiency globally. The mathematical background for this approach is

largely derived from the fundamental principles of Domain Decomposition Methods

(DDM) and Lagrange Multipliers, used to obtain coupled equations of motion for distinct

regions of a continuous domain. These methods when combined together systematically

yield constraint forces that not only ensure conservation of energy, but also enforce

continuity of field quantities across sub-domain interfaces. Multiple Grid (MG) coupling

between conforming or non-conforming sub-domains is achieved in the form of linear

multi-point constraints that are modeled using Mortar Finite Element Method (M-FEM);

whereas coupled Multiple Time-scale (MT) equations are derived for the classical

Newmark integration scheme and its constituent algorithms. A rigorous proof of stability is

provided using Energy Method and necessary conditions for enforcing energy balance are

discussed in reference with field variables that are selected to enforce sub-domain interface

continuity. Fully discretized equations of motion for component sub-domains, augmented

viii

with an interface continuity condition are then solved using block elimination method and

Crout factorization. A step-by-step solution approach, utilizing recursive black box sub-

routines, is modeled in order to allow efficient implementation within existing finite

element frameworks.

Proposed MGMT Method and corresponding solution algorithm is systematically

implemented by using the finite element approach and programming in FORTRAN 90.

Resulting in-house code – FEAPI (Finite Element Analysis Programming Interface) is

capable of solving linear structural dynamics problems that are modeled using

independently discretized sub-domains. Auxiliary sub-routines for defining pre simulation

parameters and for viewing global/component sub-domain results are built into FEAPI and

work in conjugation with GiD; a universal, adaptive and user-friendly pre and post-

processor. Overall stability, numerical accuracy and computational efficiency of MGMT

Method is evaluated and verified using a series of benchmark examples. Verification

matrices take into consideration performance evaluation factors such as energy balance (at

global and component-sub-domain levels), interface continuity, evolution/distribution of

kinematic quantities and propagation of structural waves across connecting sub-domains.

Assessment of computational efficiency is derived by comparing the size of respective FE

problems (nodes, elements, number of equations, skyline storage requirements) and the

required computation times (CPU solution time). Discussed examples highlight the greatest

advantage of MGMT Method; which is significant gain in simulation speedups (at the cost

of reasonably small errors).

ix

Table of Contents

Dedication ... iv

Acknowledgements ... v

Abstract ... vii

Table of Contents ... ix

List of Figures ... xiv

List of Tables ... xxiii

List of Acronyms ... xxviii

Chapter 1: Introduction ... 1

1.1 Problem Statement and Motivation .. 1

1.2 Goals and Objectives .. 4

1.3 Contributions of the Dissertation ... 5

1.4 Dissertation Organization ... 6

Chapter 2: Review of Literature and Theoretical Foundation ... 9

2.1 Governing Equations in Linear Structural Dynamics ... 9

2.1.1 Kinematics ... 9

2.1.2 Balance Laws and Equilibrium ... 13

2.1.3 Constitutive Model .. 16

2.2 Finite Element Implementation and Spatial Discretization 18

2.3 Temporal Discretization and Direct Integration Methods ... 25

2.3.1 Explicit Methods ... 25

2.3.2 Implicit Methods ... 28

x

2.3.3 Generalized-α Method ... 30

2.4 Domain Decomposition Methods (DDM) ... 35

2.4.1 Node-cut Partitioning .. 37

2.4.2 Element-cut Partitioning ... 38

2.5 Coupling Sub-Domains in Space and Time ... 41

2.5.1 Mortar Finite Element Method (M-FEM) .. 41

2.5.2 Finite Element Tearing and Interconnecting (FETI) .. 46

2.5.3 Mixed Methods and Subcycling ... 48

2.5.4 GC Method .. 52

2.5.5 PH Method ... 55

Chapter 3: MGMT Formulation .. 63

3.1 Approach and Methodology ... 63

3.2 Domain Decomposition for Structural Dynamics ... 65

3.3 Multiple Grid Coupling .. 69

3.3.1 Coupling Conforming Grids ... 70

3.3.2 Coupling Non-Conforming Grids ... 71

3.4 Multiple Time-Scale Coupling ... 75

3.4.1 Newmark Time Integration ... 75

3.4.2 Interface Condensation .. 78

3.5 Stability Analysis Using Energy Method .. 86

3.6 Solution Algorithm and its Finite Element Implementation 93

3.6.1 Step 1: Solve Av = b ... 95

3.6.2 Step 2: Compute δ = d – cv ... 98

xi

3.6.3 Step 3: Solve Aw = f ... 98

3.6.4 Step 4: Compute y = δ
-1

(g – cw) ... 100

3.6.5 Step 5: Compute x = w – vy .. 100

Chapter 4: Programming the MGMT Method ... 103

4.1 Finite Element Analysis Programming Interface (FEAPI) 103

4.1.1 Program Structure and Component Interfaces ... 106

4.1.2 Program Installation .. 117

4.1.3 Driver Programs .. 119

Chapter 5: Numerical Analysis and Verification .. 121

5.1 Benchmark Case Descriptions ... 122

5.1.1 Case 1 – Uniform grid uniform time-step (UGUT) reference cases 122

5.1.2 Case 2 – Multiple Grid Multiple Time-Step I-I Coupling (MGMT1) 124

5.1.3 Case 3 – Multiple Grid Multiple Time-Step I-E Coupling (MGMT2) 125

5.1.4 Case 4 – Multiple Time-Step I-I Coupling (MTC) .. 126

5.1.5 Case 5 – Multiple Grid Coupling with Implicit Time Integration (MGC) 127

5.2 UGUT Convergence ... 128

5.3 Stability Analysis .. 134

5.3.1 Global Energy Balance ... 135

5.3.2 Augmented Interface Energy .. 138

5.3.3 Interface Continuity ... 145

5.4 Evaluation of Numerical Accuracy .. 150

5.4.1 Example 1: Transverse Vibrations .. 150

5.4.2 Example 2: Longitudinal Vibrations .. 155

xii

5.5 Evaluation of Computational Efficiency ... 169

5.6 Numerical Analysis and Verification Summary .. 170

Chapter 6: MGMT Example Problems and Results .. 174

6.1 Example 1: Stress Resolution in Critical Regions ... 176

6.1.1 Example 1.1: Plate with a Hole ... 176

6.1.2 Example 1.2: 3 Point Bending Test .. 185

6.2 Example 2: Analysis of Heterogeneous Structural Systems 191

6.3 Example 3: Steel Girder Subjected to Impulse Loading ... 203

6.4 Example 4: Curved Frame under Point Loading ... 217

6.5 Example 5: Bridge Analysis ... 226

Chapter 7: Conclusions and Future Directions .. 238

7.1 Conclusions ... 238

7.2 Future Directions .. 241

Bibliography .. 243

Appendix A: FEAPI Input File ... 249

A.1 Example Input File .. 249

A.2 Input File Data Blocks ... 250

Appendix B: FEAPI Output Files ... 257

B.1 Post Mesh File .. 257

B.2 Post Result Files ... 257

B.3 Comma Separated Value File .. 257

B.4 Simulation Summary File .. 257

Appendix C: Pre/Post Example ... 260

xiii

C.1 Program 1: Uniform Grid Uniform Time-scale Simulations 260

C.1.1 Pre-processing (Input File Creation) .. 260

C.1.2 Solver .. 264

C.1.3 Post-processing (Result Visualization) .. 264

C.2 Program 2: Multiple Grid Multiple Time-scale Simulations 266

C.2.1 Pre-processing (Input File Creation) .. 266

C.2.2 Solver .. 273

C.2.3 Post-processing (Result Visualization) .. 274

Appendix D: Library Routines ... 276

D.1 FEAPI ... 276

D.1.1 Modules .. 276

D.1.2 Library – FEA ... 284

D.1.3 Library – MATH .. 307

D.1.4 Library – Program .. 310

D.2 FEAPI–GiD ... 326

D.2.1 Preprocessor .. 326

D.2.2 Postprocessor .. 329

D.2.3 GiDPost ... 334

D.3 MGMT ... 337

D.3.1 Modules .. 337

D.3.2 Library .. 338

xiv

List of Figures

Figure 1-1: Proposed multiscale approach ... 3

Figure 2-1: Motion and deformation of a point in continuum (Chen

et al. 2000) ... 9

Figure 2-2: (a) Surface traction and (b) Internal body force .. 14

Figure 2-3: Discretization in space using Finite Elements .. 19

Figure 2-4: Static mesh refinement using transition elements ... 23

Figure 2-5: Adaptive mesh refinement (h-refinement) (a) Initial

discretization: Mesh 1 (b) Mesh 2 and (c) Mesh 3 (Zienkiewicz et al.

2005) .. 23

Figure 2-6: Pseudo-code for direct time integration using

Generalized-α Method acceleration form ... 34

Figure 2-7: Domain decomposition method .. 35

Figure 2-8: Node-cut grid partitioning ... 37

Figure 2-9: Element-cut grid partitioning .. 38

Figure 2-10: (a) Non-overlapping DD with independent (non-

conforming) discretization in component sub-domains (b) Interface

(Mortar) elements and corresponding Lagrange Multiplier space .. 41

Figure 2-11: Direct subdomain connection using global Lagrange

Multipliers (Park & Felippa 2000) ... 43

Figure 2-12: Localized-Multiplier FEM discretization (Park &

Felippa 2000) .. 43

Figure 2-13: Interface definition (Herry et al. 2002) ... 44

Figure 2-14: Finite element and interconnecting with Lagrange

polynomial function .. 47

xv

Figure 2-15: Comparison between polynomial and mortar Lagrange

Multipliers (Lacour & Maday 1997) .. 48

Figure 2-16: Element time partitioning .. 49

Figure 2-17: Nodal time partitioning .. 49

Figure 2-18: Treatment of incompatible meshes using two-grid

approach (Gravouil & Combescure 2003) ... 53

Figure 2-19: (a) Structural domain under consideration (b)

Decomposed sub-domains linked through Lagrange Multipliers at

the interface (c) sub-domain time-stepping parameters and

intermediate time-step counter ... 56

Figure 2-20: Comparison between (a) GC Method and (b) PH

Method... 62

Figure 3-1: Hybrid MGMT approach ... 64

Figure 3-2: Structural domain decomposition (a) Domain under

analysis (b) Decomposed sub-domains with inherited boundary

conditions and augmented interface reactions ... 65

Figure 3-3: Domain decomposition and resulting conforming/non-

conforming grids ... 69

Figure 3-4: Interface of Lagrange Multipliers (conforming grids) .. 70

Figure 3-5: Reference sub-domain and corresponding Boolean

projection matrix ... 71

Figure 3-6: Interface of Lagrange Multipliers (non-conforming

grids) and corresponding shape functions .. 71

Figure 3-7: Reference sub-domains, interface of Lagrange

Multipliers and corresponding shape functions ... 72

Figure 3-8: Interface integration grid ... 74

xvi

Figure 3-9: Pseudo-code for direct time integration using Newmark

Method acceleration form ... 77

Figure 3-10: MGMT time-stepping .. 79

Figure 3-11: Comparison between (a) PH Method and (b) MGMT

Method... 85

Figure 3-12: Pseudo-code for computing unit load response matrix

for component sub-domains ... 97

Figure 3-13: Pseudo-code for computing sub-domain response under

the action of (applied) external forces and known interface reactions 99

Figure 4-1: Programming the Finite Element Method (Smith et al.

2013) .. 103

Figure 4-2: PFEM (UGUT) and FEAPI (UGUT/MGMT) program

components ... 104

Figure 4-3: GiD – Universal, adaptive and user-friendly pre- and

post-processor ... 105

Figure 4-4: Finite Element Analysis Programming Interface.. 106

Figure 4-5: FEAPI code structure ... 107

Figure 4-6: FEAPI interface sub-components – Library and Modules 107

Figure 4-7: FEAPI interface sub-components – Library > FEA ... 109

Figure 4-8: FEAPI interface sub-components – FEAPI > Library >

MATH ... 109

Figure 4-9: FEAPI interface sub-components – FEAPI > Library >

Program ... 109

Figure 4-10: MGMT interface sub-components – Library and

Modules ... 111

Figure 4-11: FEAPI-GiD interface sub-components – Preprocessor 112

xvii

Figure 4-12: feapi-gid.gid interface sub-components .. 113

Figure 4-13: Input file creation flowchart .. 116

Figure 5-1: Forced vibrations analysis of a cantilever beam ... 121

Figure 5-2: Case 1 (UGUT) domain grids ... 122

Figure 5-3: Case 2 (MGMT1) sub-domain grids ... 124

Figure 5-4: Case 2 sub-domain time increments ... 125

Figure 5-5: Case 3 (MGMT2) sub-domain grids ... 125

Figure 5-6: Case 4 (MTC) sub-domain grids ... 126

Figure 5-7: Case 4 (MTC) time-step ratios .. 127

Figure 5-8: Case 5 (MGC) sub-domain grids .. 127

Figure 5-9: Example 1 – Vertical displacement at free end (x = 10m) 130

Figure 5-10: Example 1 – Convergence of maximum vertical

displacement at free end (x = 10m) .. 130

Figure 5-11: Example 2 – Horizontal displacement at free end (x =

10m) ... 131

Figure 5-12: Example 2 – Convergence of maximum horizontal

displacement at free end (x = 10m) .. 131

Figure 5-13: Total number of equations and CPU solution time for

Implicit UGUT cases .. 133

Figure 5-14: Example 1 – Global energies... 135

Figure 5-15: Example 2 – Global energies... 136

Figure 5-16: Example 1 – Augmented interface energies from

component sub-domains ... 140

xviii

Figure 5-17: Example 2 – Augmented interface energies from

component sub-domains ... 141

Figure 5-18: Example 1 – Augmented (total) interface energy ... 143

Figure 5-19: Example 2 – Augmented (total) interface energy ... 144

Figure 5-20: Example 1 – (MGMT1) Continuity of interface

variables ... 145

Figure 5-21: Example 1 – (MGMT2) Continuity of interface

variables ... 146

Figure 5-22: Example 2 – (MTC4) Continuity of interface variables 147

Figure 5-23: Example 2 – (MGC3) Continuity of interface variables 148

Figure 5-24: Example 1 – Comparison of vertical displacement at

free end (x = 10m) ... 150

Figure 5-25: Example 1 – Comparison of Sigma-xx at a cross-

section x = 1m and t = 0.05s ... 153

Figure 5-26: Example 1 – Deformed shape and Sigma-xx (N/m
2
) at t

= 0.05s ... 154

Figure 5-27: Example 2 – Comparison of horizontal displacement at

free end (x = 10m) ... 155

Figure 5-28: Example 2 – Longitudinal vibrations .. 158

Figure 5-29: Example 2 – Longitudinal stress (Sigma-xx) as a

function of space ... 159

Figure 5-30: Example 2 – Longitudinal displacement (U-x) as a

function of space ... 161

Figure 5-31: Example 2 – Longitudinal stress (Sigma-xx) as a

function of time ... 163

xix

Figure 5-32: Example 2 – Longitudinal displacement (U-x) as a

function of time ... 164

Figure 5-33: Example 2 – Longitudinal velocity (U̇-x) as a function

of time .. 165

Figure 5-34: Example 2 – Longitudinal acceleration (Ü-x) as a

function of time ... 166

Figure 5-35: Summary of solved cases .. 170

Figure 6-1: Plate with a hole under uniaxial loading ... 176

Figure 6-2: Theoretical stress concentration factor Kt (Budynas &

Nisbett 2008) ... 177

Figure 6-3: Sigma-xx as a function of space .. 178

Figure 6-4: Analyzed grids ... 179

Figure 6-5: Sigma-xx as a function of distance from the hole (along

the width of the plate) ... 180

Figure 6-6: Sigma-xx as a function of distance from the hole (along

the length of the plate) .. 181

Figure 6-7: Contour plots for Sigma-xx, Sigma-yy and

Displacement-y around the hole ... 182

Figure 6-8: Contour plots for Sigma-xx and Sigma-yy outside the

critical region... 183

Figure 6-9: Distribution of element integration points .. 183

Figure 6-10: Global energies for UGUT3 v/s MGMT and

augmented (total) interface energy ... 184

Figure 6-11: 3 point bending test .. 186

Figure 6-12: Domain grids: Transition Mesh and Structured

Multiple Grids ... 187

xx

Figure 6-13: Mesh quality... 187

Figure 6-14: Stress as a function of space .. 188

Figure 6-15: Von Mises Stress (at t = 0.1s) as a function of beam

height ... 189

Figure 6-16: Longitudinal Stress (at t = 0.1s) as a function of beam

height ... 189

Figure 6-17: Von Mises stress distribution t = 0.1s ... 190

Figure 6-18: Contour lines for Displacement-x at t = 0.1s .. 190

Figure 6-19: Contour lines for Displacement-y at t = 0.1s .. 190

Figure 6-20: Heterogeneous material system ... 191

Figure 6-21: Heterogeneous material system – Domain grids .. 194

Figure 6-22: Global energies .. 195

Figure 6-23: Heterogeneous material system – Longitudinal stress

and displacement measurement locations across the length of beam 196

Figure 6-24: Heterogeneous material system – Longitudinal stress

(Sigma-xx) as a function of time .. 197

Figure 6-25: Longitudinal displacement (U-x) as a function of time 197

Figure 6-26: Longitudinal stress (Sigma-xx) as a function of space 199

Figure 6-27: Longitudinal displacement (U-x) as a function of space 199

Figure 6-28: Longitudinal stress wave at t = 0.00075s .. 200

Figure 6-29: Longitudinal stress wave at t = 0.0015s .. 200

Figure 6-30: Longitudinal stress wave at t = 0.00225s .. 201

xxi

Figure 6-31: Longitudinal stress wave at t = 0.003s .. 201

Figure 6-32: Steel girder subjected to short duration impulse loading 203

Figure 6-33: Analyzed cases: UGUT, MGMT1 and MGMT2 ... 204

Figure 6-34: Global Energies.. 206

Figure 6-35: Analyzed result descriptions (a) Results measured at

points A, B and C as functions of time (b) Results measured along

segment D as functions of space ... 207

Figure 6-36: Global contour lines for Displacement-x at peak

impulse. UGUT, MGMT1 and MGMT2 (L-R) ... 208

Figure 6-37: Global contour lines for Displacement-y at peak

impulse. UGUT, MGMT1 and MGMT2 (L-R) ... 209

Figure 6-38: Global contour plots for Sigma-xx. UGUT, MGMT1

and MGMT2 (L-R) ... 210

Figure 6-39: Global contour plots for Sigma-yy. UGUT, MGMT1

and MGMT2 (L-R) ... 211

Figure 6-40: Displacement-x as a function of time .. 212

Figure 6-41: Sigma-xx as a function of time.. 213

Figure 6-42: Displacement-x as a function of space .. 214

Figure 6-43: Sigma-xx as a function of space .. 215

Figure 6-44: Interface disconnection (Deformed shape graphed at

5E7 magnification) .. 216

Figure 6-45: (a) Domain under analysis: Curved frame (b) Transient

point loading .. 217

Figure 6-46: Finite element modeling of a double symmetric domain

under symmetric loading condition .. 217

xxii

Figure 6-47: Analyzed cases ... 218

Figure 6-48: Global energies .. 220

Figure 6-49: Kinematic conformity and interface continuity (N1) 221

Figure 6-50: Kinematic conformity (N2) ... 222

Figure 6-51: Contour plots for Displacement-x. UGUT (Left) and

MGMT (Right) .. 223

Figure 6-52: Contour plots for Displacement-y. UGUT (Left) and

MGMT (Right) .. 224

Figure 6-53: Bridge analysis: Domain description and time

proportional load function .. 227

Figure 6-54: Global energies .. 229

Figure 6-55: Augmented interface energies ... 230

Figure 6-56: Kinematic conformity and interface continuity .. 231

Figure 6-57: Displacement-x at t=0.5sec (Deformed shape graphed

at x50) .. 233

Figure 6-58: Displacement-y at t=2.5sec (Deformed shape graphed

at x50) .. 234

Figure 6-59: Sigma-xx at t=4.5sec (Deformed shape graphed at x50) 235

Figure 6-60: Sigma-yy at t=4.5sec (Deformed shape graphed at x50) 236

Figure A-1: (a) Example problem (b) Transient (linear) loading .. 249

Figure C-1: (a) Domain under consideration – 2D cantilever beam

(b) Transverse (step) loading .. 260

Figure C-2: Decomposed sub-domains and corresponding time-

stepping parameters .. 266

xxiii

List of Tables

Table 2-1: Labels for sub-domain and interface degrees of freedom

(DOF) .. 42

Table 3-1: Labels for FE degrees of freedom .. 69

Table 3-2: Sub-domain time-stepping parameters ... 78

Table 4-1: FEAPI material library .. 114

Table 5-1: Case 1 (UGUT) simulation parameters .. 122

Table 5-2: Case 2 (MGMT1) simulation parameters ... 124

Table 5-3: Case 3 (MGMT2) simulation parameters ... 125

Table 5-4: Case 4 (MTC) simulation parameters ... 126

Table 5-5: Case 5 (MGC) simulation parameters .. 128

Table 5-6: RMSE and NRMSE between respective UGUT cases 132

Table 5-7: Total number of equations and CPU solution time .. 133

Table 5-8: Example 1 – RMSE and NRMSE (%). Variable = Global

energies .. 137

Table 5-9: Example 2 – RMSE and NRMSE (%). Variable = Global

energies .. 137

Table 5-10: RMSE and NRMSE (%). Variable = Internal energy v/s

External work .. 138

Table 5-11: Mean variance in augmented (total) interface energy

contributions .. 142

Table 5-12: Example 1 – (MGMT1) RMSE and NRMSE (%).

Variable = Interface displacement, velocity and accelerations ... 145

xxiv

Table 5-13: Example 1 – (MGMT2) RMSE and NRMSE (%).

Variable = Interface displacement, velocity and accelerations ... 146

Table 5-14: Example 2 – (MTC4) RMSE and NRMSE (%).

Variable = Interface displacement, velocity and accelerations ... 147

Table 5-15: Example 2 – (MGC3) RMSE and NRMSE (%).

Variable = Interface displacement, velocity and accelerations ... 148

Table 5-16: Example 1 – RMSE and NRMSE (%). Variable =

displacement at free end (x = 10m) .. 151

Table 5-17: Example 1 – Comparison between UGUT2 and MTC

cases ... 152

Table 5-18: Example 1 – Comparison between UGUT3 and

MGMT1 .. 152

Table 5-19: Example 1 – RMSE and NRMSE (%). Variable =

Sigma-xx at x = 1m and t = 0.05s ... 153

Table 5-20: Example 2 – RMSE and NRMSE (%). Variable =

displacement at free end (x = 10m) .. 156

Table 5-21: Example 2 – Comparison between UGUT2 and MTC

cases ... 157

Table 5-22: Example 2 – Comparison between UGUT3 and

MGMT1 .. 157

Table 5-23: Example 2 – RMSE and NRMSE (%). Variable =

Sigma-xx as a function of space ... 160

Table 5-24: Example 2 – RMSE and NRMSE (%). Variable = U-x

as a function of space .. 162

Table 5-25: Example 2 – RMSE and NRMSE (%). Variable =

Longitudinal stress (Sigma-xx) .. 167

Table 5-26: Example 2 – RMSE and NRMSE (%). Variable =

Longitudinal displacement (U-x).. 167

xxv

Table 5-27: Example 2 – RMSE and NRMSE (%). Variable =

Longitudinal velocity (U̇-x) .. 167

Table 5-28: Example 2 – RMSE and NRMSE (%). Variable =

Longitudinal acceleration (Ü-x) ... 167

Table 5-29: Example 2 – Average errors and corresponding rankings 168

Table 5-30: Comparison of computational resources for Example 1

and Example 2 ... 169

Table 5-31: Summary of analyzed results .. 171

Table 5-32: Summary of computational efficiency ... 173

Table 6-1: Case parameters .. 179

Table 6-2: Example 1.1 – Comparison of computational resources 185

Table 6-3: Simulation parameters .. 187

Table 6-4: Mechanical properties for Steel and Tin .. 192

Table 6-5: Time-step to accurately resolve structural wave

propagation .. 192

Table 6-6: UGUT heterogeneous material system – Simulation

parameters ... 194

Table 6-7: MGMT1 heterogeneous material system – Simulation

parameters ... 194

Table 6-8: MGMT2 heterogeneous material system – Simulation

parameters ... 194

Table 6-9: RMSE and NRMSE (%). Variable = Global energies 196

Table 6-10: Mean variance in augmented (total) interface energy 196

Table 6-11: RMSE and NRMSE (%). Variable = Longitudinal stress

(Sigma-xx) as function of time ... 198

xxvi

Table 6-12: RMSE and NRMSE (%). Variable = Longitudinal

displacement (U-x) as function of time .. 198

Table 6-13: Example 2 – Comparison of computational resources 202

Table 6-14: Simulation parameters .. 205

Table 6-15: RMSE and NRMSE (%). Variable = Global Energies 205

Table 6-16: RMSE and NRMSE (%). Variable = Displacement-x as

a function of time .. 212

Table 6-17: RMSE and NRMSE (%). Variable = Sigma-xx as a

function of time ... 213

Table 6-18: RMSE and NRMSE (%). Variable = Displacement-x as

a function of space .. 214

Table 6-19: RMSE and NRMSE (%). Variable = Displacement-x as

a function of space .. 215

Table 6-20: Example 3 – Comparison of computational resources 216

Table 6-21: Simulation parameters .. 218

Table 6-22: RMSE and NRMSE (%). Variable = Global Energies 220

Table 6-23: RMSE and NRMSE (%). Variable = Kinematic

conformity/interface continuity (N1) ... 222

Table 6-24: Example 4 – Comparison of computational resources 225

Table 6-25: Simulation parameters .. 226

Table 6-26: RMSE and NRMSE (%). Variable = Global energies 230

Table 6-27: RMSE and NRMSE (%). Variable = Kinematic

conformity (v/s UGUT results)... 232

Table 6-28: RMSE and NRMSE (%). Variable = Interface

continuity (Ω1 v/s Ω2) .. 232

xxvii

Table 6-29: Example 5 – Comparison of computational resources 237

Table A-1: FEAPI::DOMAIN .. 250

Table A-2: FEAPI::COORDINATES .. 250

Table A-3: FEAPI::CONNECTIVITIES ... 251

Table A-4: FEAPI::MATERIAL .. 251

Table A-5: FEAPI::RESTRAINTS .. 252

Table A-6: FEAPI::LOADS ... 252

Table A-7: FEAPI::PRESCRIBED .. 253

Table A-8: FEAPI::TRANSIENT .. 254

Table A-9: FEAPI::INTERFACE .. 255

Table A-10: FEAPI::POST ... 256

xxviii

List of Acronyms

1. AMR – Adaptive Mesh Refinement

2. API – Application Programming Interface

3. BDD – Balancing Domain Decomposition Method

4. BEC – Block Elimination using Crout Factorization

5. BEM – Block Elimination Method

6. BLAS – Basic Linear Algebra Subprograms

7. BVP – Boundary Value Problem

8. CDM – Central Difference Method

9. CST – Classical Stress Theory

10. CFL – Courant–Friedrichs–Lewy

11. CPU – Central Processing Unit

12. DDM – Domain Decomposition Method

13. DDT – Derived Data Type

14. DOF – Degrees of Freedom

15. FE – Finite Element

16. FEAPI – Finite Element Analysis Programming Interface

17. FEM – Finite Element Method

18. FETI – Finite Element Tearing and Interconnecting

19. GC – Gravouil-Combescure

20. GUI – Graphical User Interface

21. HHT –Hilber-Hughes-Taylor

xxix

22. LBB – Ladyzhenskaya-Babuska-Brezzi

23. LHS – Left Hand Side

24. LLM – Localized Lagrange Multipliers

25. MGC – Multiple Grid Coupling

26. MGMT – Multiple Grid Multiple Time-scale

27. MTC – Multiple Time-scale Coupling

28. MPI – Message Passing Interface

29. MM – Mixed Methods

30. M-FEM – Mortar Finite Element Method

31. NRMSE – Normalized Root Mean Square Error

32. PDE – Partial Differential Equation

33. PFEM – Programming the Finite Element Method

34. PH – Prakash-Hjelmstad

35. PCG – Preconditioned Conjugate Gradient Method

36. RHS – Right Hand Side

37. RMSD – Root Mean Square Deviation

38. RMSE – Root Mean Square Error

39. TCL – Tool Command Language

40. UGUT – Uniform Grid Uniform Time-scale

41. WBZ – Wood-Bossak-Zienkiewicz

 1

Chapter 1: Introduction

1.1 Problem Statement and Motivation

Space and time are inherently coupled in the analysis of engineering problems. An

approximate solution to these problems is usually obtained by using a mathematical tool

suitable for the scale at which the physical phenomenon is addressed. Finite Element

Method (FEM) is one such numerical technique that is used for solving problems in

structural mechanics. It discretizes the governing equations over finite space and time and

uses variational principles to minimize an error function in order to produce a stable

solution. Numerical techniques as such, innately introduce discretization error due to the

choice of finite space and time resolution (Shah 2002; Pointer 2002). Overall quality of the

solution can be improved by spatial and temporal refinements, however, at the expense of

increasing number of unknowns and consequently longer computation times.

Over the past couple of decades, researchers have devoted significant amount of effort

towards element formulations, material modeling, non-linear formulations, efficient

solution algorithms and several other numerical techniques in order to improve overall

quality of the solution. Static mesh transition, Adaptive Mesh Refinement (AMR)

(Bellenger & Coorevits 2005), Mortar Finite Element Method (Maday et al. 1988;

Lamichhane & Wohlmuth 2004b) and Finite Element Tearing and Interconnecting (FETI)

(Farhat & Roux 1991) are among the few techniques that are widely used to segregate

problem size (total number of unknowns) between critical and remote regions. These

techniques not only provide complete control over grid resolution, compared to fixed

coarse or fine scale discretization, but also help in capturing local gradients and wave

2

dynamics more accurately, hence yielding a better solution in the qualified region of

interest. Domain Decomposition Method (DDM) (Smith et al. 1996; Toselli & Widlund

2005) is another approach that enables effective implementation of these techniques by

decomposing the problem under consideration into component sub-domains, which can

then be modeled independently, formulated and solved.

Within the context of time discretization, a common approach in coupling sub-domains

is to use the same integration method (implicit or explicit) with the same time-step ()t

globally over multiple grids. This is not recommended since it restricts one to analyze an

entire domain using a single time-step that meets the stability and accuracy criteria for all

elements. This is not desirable in the case of large scale problems since different regions

could very well represent significantly different stability and accuracy requirements. In

addition, different regions may exhibit high frequency (wave propagation type) and/or low

frequency (vibration type) responses, requiring explicit and/or implicit time integration

methods respectively. Accordingly, it is much more economical to use different time-steps

or different time-stepping algorithms in different sub-domains in order to capture local

behavior as accurately as possible.

In the analysis of large scale systems with complex geometries, the range of element

sizes in a mesh varies several orders in magnitude. Certain parts of the mesh may contain

very small elements, perhaps to capture high stress gradients, while large parts of the mesh

may still be relatively coarse. Using an exclusive implicit or explicit time integration

scheme with a uniform time-step, for such problems, is computationally very inefficient. If

one were to use explicit scheme, the time-step would be restricted by the size of the

smallest element in the mesh and it would take large number of steps to compute the

3

response of the structure for the desired interval of time. On the other hand, using an

implicit scheme with large time-steps, one would not be able to accurately capture the

response in regions of the mesh with high gradients.

Aforementioned challenges motivate us to construct an enhanced computational

method that can incorporate multiple scales, i.e. independently discretized (spatially and

temporally) sub-domains, in order to preserve numerical accuracy and boost computational

efficiency in the analysis of complex, large-scale structural systems, Figure 1-1.

Domain under analysis

Cri t ical region

Unstructured gr id wi th

uni form t ime-step

Independent ly discret ized

(spat ia l ly and temporal ly)

sub-domains

Tradi t ional approach: Proposed approach:

Figure 1-1: Proposed multiscale approach

4

1.2 Goals and Objectives

The objective for this dissertation can be broadly classified into two categories:

 The first objective is to explore, formulate, implement and verify a new

computational algorithm that allows selective discretization of finite element

problems in space and time. The goal within this objective is to establish a

systematic approach for concurrent multiscale simulations that allow improved

numerical accuracy in desired critical regions whilst enhancing computational

efficiency globally. Proposed formulation shall be derived specifically for

applications in solid continuum mechanics with a primary focus on problems in

linear structural dynamics. Resulting Multiple Grid Multiple Time-scale (MGMT)

approach and constituent assumptions shall be analyzed rigorously to provide a

proof of stability using an established theoretical framework.

 The second objective of this dissertation is to implement the proposed formulation

using FEM. The goal within this objective is to develop an efficient and an easy to

implement solution algorithm and create a comprehensive, yet flexible computer

program that can be used for the numerical simulation of linear structural dynamic

systems using the proposed MGMT Method. Resulting computer program shall be

used for numerical analysis and verification purposes by solving benchmark

examples using traditional FEM and MGMT Method. Thorough performance

evaluation, including stability analysis, assessment of numerical accuracy and

computational efficiency shall also be performed using this computer program.

5

1.3 Contributions of the Dissertation

This dissertation contributes to the area of multiscale simulations in solid continuum

mechanics. Specifically, it introduces an efficient and a systematic approach for Multiple

Grid Multiple Time-scale (MGMT) simulations in linear structural dynamics.

The dissertation provides a précis of existing literature and theoretical foundation that

supports the construction of a concurrent multiscale algorithm; it discusses their advantages

and disadvantages, and builds upon their limitations and shortcomings to provide an

advanced approach to MGMT simulations. Major contributions of this dissertation can be

listed as follows:

1) Formulation of a consistent approach to implement user defined multiple grid and

multiple time-scale discretizations in structural analysis

2) Development of an efficient and easy to implement solution algorithm

3) Implementation of proposed formulation and solution algorithm using FEM,

creating a self-contained computer program for multiscale simulations

4) Verification of proposed formulation and its FE implementation for problems in

linear structural dynamics

5) Evaluation of overall stability, numerical accuracy and computational efficiency, as

assessed by solving baseline problems

6) Comprehensive comparison between traditional FEM and proposed multiscale

approach by accessing various performance evaluation factors

6

1.4 Dissertation Organization

This dissertation elaborates on every aspect discussed in the previous sections and

presents a comprehensive discussion of the proposed multiscale algorithm, its theory,

formulation, implementation and verification. The content and structure of this dissertation

is arranged as follows:

 Chapter 2: Review of Literature and Theoretical Foundation

Chapter 2 provides a comprehensive review of existing literature and theoretical

foundation to help evaluate all theories and approaches relevant to multiscale modeling at

continuum scales. Within the context of spatial/temporal discretization, traditional methods

that allow improving accuracy and/or computational efficiency are briefly discussed. Focus

is laid on mathematical techniques such as Domain Decomposition Methods (DDM),

Lagrange Multipliers and Mortar Finite Element Method (M-FEM), since they innately

assist multiscale coupling. Existing methods in coupling independently discretized sub-

domains, GC Method (space and time) and PH Method (time only), are also discussed in

details, along with their advantages shortcomings.

 Chapter 3: MGMT Formulation

Chapter 3 begins with the application of DDM, used to derived coupled equations of

motion, for decomposed sub-domains augmented with an appropriate interface condition.

M-FEM is then used to couple sub-domains that may be selectively discretized in space,

resulting in conforming or non-conforming interfaces. Equations necessary for Multiple

Grid (MG) coupling and their FE implementation is also discussed in details. Sub-domain

specific time discretized equations are then obtained using Newmark integration method.

Interface reactions (Lagrange Multipliers) from disparate time-scales are then condensed

7

and expressed in terms of reactions at largest/global time-step, allowing Multiple Time-

Scale (MT) coupling. Energy Method is then used to prove that resulting Multiple Grid and

Multiple Time-Scale (MGMT) equations, and specifically the selected interface condition,

results in unconditional stability for linear structural systems. Crout factorization and Block

Elimination Method (BEM) are then used to design a systematic step-by-step algorithm for

obtaining the solution of coupled MGMT equations that are synchronized at the global

time-step.

 Chapter 4: Programming the MGMT Method

Following the formulation of MGMT Method, a FORTRAN 90 based FE code was

developed for numerical simulations and verification purposes. Chapter 4 elaborates on the

development and implementation of this computer program, highlighting its Object

Oriented features, data structures and auxiliary FE libraries. Resulting computer program –

Finite Element Analysis Programming Interface (FEAPI) is capable of solving linear

structural dynamics problems that are modeled using independently discretized sub-

domains. General structure of the program, information flow, implemented data types and

its interaction with an external pre/post processor, GiD, is also described in Chapter 4.

 Chapter 5: Numerical Analysis and Verification

The focus in Chapter 5 is to evaluate the overall performance of MGMT Method by

analyzing factors such as: 1) Numerical stability, 2) Numerical accuracy, 3) Computational

efficiency. Two benchmark examples – 1) Transverse vibration 2) Longitudinal vibration

of a 2D cantilever beam are first solved using traditional Uniform Grid Uniform Time-scale

(UGUT) approach in order to establish baselien results. These examples are then solved

using MGMT Method, taking into account various scenarios such as: 1) Implicit-Implicit, 4

8

sub-domain coupling, 2) Implicit-Explicit 2 sub-domain coupling, 3) Uniform/conforming

grid with multiple time-stepping and 4) Multiple grids with uniform time-stepping. Results

for global energy balance, interface energy dissipation/accumulation, evolution/distribution

of kinematic quantities and propagation of structural waves across component sub-domains

are presented with corresponding relative errors in comparison with converged UGUT

cases. Computational efficiency is evaluated by comparing total number of nodes,

elements, required number of equations in primary unknown variables and resulting

computation times (CPU solution time). A comprehensive performance evaluation matrix

is designed and the relative advantages/shortcomings of MGMT Method are highlighted in

detail.

 Chapter 6: MGMT Example Problems and Results

Chapter 6 presents traditional FE application problems wherein MGMT Method can be

potentially used to preserve numerical accuracy in desired regions, whilst improving

computational efficiency globally. Example problems, such as stress resolution in critical

regions, wave propagation across heterogeneous material systems, response under complex

loading functions and large-scale structural problems are solved using UGUT and MGMT

Method and their results are presented in this Chapter.

 Chapter 7: Conclusions and Future Directions

Chapter 7 concludes and summarizes the content of this dissertation and provides

directives for related future work.

9

Chapter 2: Review of Literature and Theoretical Foundation

2.1 Governing Equations in Linear Structural Dynamics

Continuum mechanics characterizes the fundamental physical model that provides

foundation for all physical theories concerning the modeling of material behavior at

macroscopic scales. In solid mechanics, and particularly structural dynamics, the response

of a structure is represented by a Boundary Value Problem (BVP); which is a set of Partial

Differential Equations (PDE) describing the kinematics of deformation, conservative laws

of continua and the constitutive laws along with appropriate boundary conditions and initial

conditions.

This section presents a brief review of the mathematics and physical laws that

approximate the macroscopic behavior of material that is subjected to mechanical loading.

A comprehensive description on continuum/solid mechanics and structural dynamics can

be found in: (Eringen 1980), (Chen et al. 2000), (Spencer 2004), (Zienkiewicz et al. 2005),

(Reddy 2007), (Bower 2009) and (Hughes 2012).

2.1.1 Kinematics

Figure 2-1: Motion and deformation of a point in continuum (Chen et al. 2000)

10

In continuum mechanics, and especially solid mechanics, motion is described by

choosing some convenient configuration (reference/original configuration) of the solid that

is in the initial, undeformed state. The material then changes its shape under the action of

external loads, and at some time t occupies a new region, which is called the deformed or

current configuration of the solid, Figure 2-1. If the position of point P in the reference

configuration is expressed by (1,2,3)KX K X in the Lagrange (material) coordinate

system and its position in the deformed configurations, represented by p , is expressed by

(1,2,3)kx k x in the Eulerian (spatial) coordinate system, then the motion of the solid

is expressed through a deformation mapping function as follows:

 (,) (,)k k Kt or x x X t x x X (2.1)

(,) (,)K K kt or X X x t X X x (2.2)

To be a physically admissible deformation (Bower 2009) the mapping function must be

1:1 on the full set of real numbers and must be invertible; it must also be continuous and

continuously differentiable and must satisfy / 0k Kx X   or , 0k Kx  . Note: From now

on indices after comma will indicate partial differentiation with respect to associated

coordinate system, Lagrangian (majuscule) or Eulerian (minuscule).

The displacement ()u of a material point expressed as a vector that extends from X in

the reference state to x in the deformed state is then defined as:

 u = x X b (2.3)

11

Where b represents the vector extending from the origin of the Lagrangian (reference)

coordinate system to the Eulerian (deformed) coordinate system. The displacement field in

Eq. (2.3) completely specifies the change in shape of the solid. Velocity vector v is then

expressed as the material time rate change of the position vector (,)k kp x t X and is

defined as:

k
k

xd
or v

dt t


 



p
v (2.4)

And consequently acceleration vector a is defined as:

,(,) k
k k l l

vd
or a t v v

dt t


  



v
a x (2.5)

From Eq. (2.1) and Eq. (2.2) we have ,k k K Kdx x dX and ,K K k kdX X dx , yielding the

definition of deformation gradient , /kK k K k KF x x X     F x and its inverse

1

, /K k K kX X x    F . The Jacobian is defined as J  F and is a measure of the volume

change produced by a deformation. Note:

1) For any physically admissible deformation, the volume of the deformed element

must be positive. Therefore, all physically admissible displacement fields must

satisfy 0J 

2) If a material is incompressible, its volume remains constant and accordingly, it must

satisfy 1J 

3) If the mass density of a material at a point in the undeformed state is 0 , its mass

density in the deformed state is expressed as: 0 / J 

12

Green deformation tensor is defined as TC F F or , ,KL k K k LC x x with corresponding

Lagrangian strain tensor expressed as  1 2 E C I or  1 2KL KL KLE C   , where KL

represents the Kronecker delta. Equivalent definitions for Cauchy deformation tensor and

Eulerian strain tensors are expressed as , ,kl K k K lc X X and  1 2kl kl klc   respectively.

Lagrangian and Eulerian strain components expressed in terms of displacement gradients

can be expressed as:

1

2

NK L M
KL MN

L K K L

UU U U
E

X X X X


   
   

    
 (2.6)

1

2

k l m n
kl mn

l k k l

u u u u

x x x x
 

    
   

    
 (2.7)

Using above expression, infinitesimal strain tensor can be defined as:

1

2

K L
KL

L K

U U
E

X X

  
  

  
 (2.8)

1

2

k l
kl

l k

u u

x x


  
  

  
 (2.9)

The infinitesimal strain tensor is an approximate deformation measure, which is only

valid for small shape changes; however it is more convenient than the Lagrange or Eulerian

strain definitions because it is linear. Comprehensive discussion and derivation of

aforementioned discussion can be found in – ‘Mechanics of Continua’ (Eringen 1980) and

‘Meshless Methods in Solid Mechanics’ (Chen et al. 2000).

13

2.1.2 Balance Laws and Equilibrium

Fundamental balance laws include conservation of mass, momentum and energy.

Equations of motion and equilibrium of deformable solids however are obtained by

generalizing Newton’s Laws of motion (conservation of linear and angular momentum) to

deformable solids.

A. Balance of Linear Momentum

The time rate change of linear momentum P is equal to the resultant force F acting

on the body.

The linear momentum of a volume (v) can be expressed as:

v

vd  vP (2.10)

Where  represents mass density and v is the velocity vector. Then the balance of

linear momentum is established by:

v

v
d d

d
dt dt

  v
P

F (2.11)

The resultant force acting on any arbitrary internal volume (v) with a boundary surface

(a) within a deformed solid is expressed as:

a v

() a vd d  T n bF (2.12)

First term in Eq. (2.12) refers to the resultant force acting on the internal surface (a)

where ()T n refers to the traction acting on any surface with a unit outward normal n . The

14

Cauchy (true) stress tensor, representing force per unit area of the deformed solid is then

denoted by ()T n , see Figure 2-2 (a) and Eq. (2.13). The second term in Eq. (2.12) is

the resultant body force; where b represents the body force vector denoting the external

force acting on the interior of a solid (v) , per unit mass. See Figure 2-2 (b) and Eq. (2.14).

1n

2n

3n

ad

dP

vd
dP

Figure 2-2: (a) Surface traction and (b) Internal body force

Using notations used in Figure 2-2, Cauchy stress components ij and body force

vector b are expressed as:

a 0
() lim

a

j

ij j i
d

i

dP
T n

d



  (2.13)

v 0

1
lim

vd

d

d 


P
b (2.14)

The balance of linear momentum, or Eq. (2.11), can then be expressed as:

v a v

v () a v
d

d d d
dt

    v T n b (2.15)

,ij i j jb a    (2.16)

15

B. Balance of Angular Momentum

The time rate change of angular momentum H about any fixed point is equal to the

resultant momentum M about that point.

The angular momentum of a volume (v) can be expressed as:

v

vd  x vH (2.17)

Then the balance of angular momentum is established by:

v

v
d d

d
dt dt

   x v
H

M (2.18)

The resultant moment (about a fixed point) exerted by tractions and body forces acting on

a general region within a solid is expressed as:

a v

() a vd d    x T n x bM (2.19)

Balance of angular momentum is then expressed as:

v a v

v () a v
d

d d d
dt

       x v x T n x b (2.20)

Conservation of angular momentum for a continuum requires that the Cauchy stress must

be symmetric, i.e.:

ji ij  (2.21)

16

2.1.3 Constitutive Model

The governing equations in structural dynamics are completed by constitutive laws that

provide the missing connection. Unlike kinematics and balance laws, a constitutive law

cannot be calculated or predicted from first principles, except for a very few special cases,

such as small deformations of crystalline materials, where elastic properties can be

estimated using ab-initio techniques that approximate quantum mechanical level atomistic

interactions in some way (Bower 2009). In solid (structural) mechanics we are primarily

concerned with the stress-strain relationship. As described in (Chen et al. 2000), for a

constitutive model to adequately represent a material, various axioms, such as axiom of

Causality, Determinism, Equipresence, Neighborhood, Memory, Objectivity, Material

Invariance and Admissibility, must be satisfied.

In this section we will briefly present the constitutive model for an isotropic, linear

elastic material behavior. Assuming infinitesimal strain tensor defined by Eq. (2.9) and

Cauchy stress tensor, the stress-strain relationship for an isotropic linear elastic solid, in

terms of Young’s modulus ()E and Poisson’s ratio () is expressed as:

1
ij ij kk ij

E E

 
   


  (2.22)

11 11

22 22

33 33

23 23

13 13

12 12

1 0 0 0

1 0 0 0

1 0 0 01

2 0 0 0 2(1) 0 0

2 0 0 0 0 2(1) 0

2 0 0 0 0 0 2(1)

E

  

  

  

 

 

 

     
    

 
    
     

    
    

    
    

       

 (2.23)

17

The inverse relationship can be expressed by:

1 1 2
ij ij kk ij

E 
   

 

 
  

  
 (2.24)

11 11

22 22

33 33

23 23

13 13

12 12

1 0 0 0

1 0 0 0

1 0 0 0

(1 2)
0 0 0 0 0

2 2(1)(1 2)
(1 2)

20 0 0 0 0
2

2
(1 2)

0 0 0 0 0
2

v

v

v

E

v v

 

  

  

 

 


 

 


 
 

    
    
    

    
    

         
    
       

 
 

 (2.25)

The stress-strain relationship in Eq. (2.25) is often expressed using the elastic modulus

tensor ()ijklC as:

ij ijkl klC  (2.26)

For Plane Strain or Plane Stress deformations, some strain or stress components are always

zero (by definition) so the stress-strain laws can be simplified. Accordingly, for plane strain and

plane stress deformations we have:

33 23 13 0Plane Strain       (2.27)

33 23 13 0Plane Stress       (2.28)

18

2.2 Finite Element Implementation and Spatial Discretization

PDEs, referred to as the strong form, discussed in preceding sections represent the

governing equations for dynamic linear elasticity. An analytical solution for governing

equations in strong form is almost never available, even for simple problems and

accordingly, these equations are expressed in an integral form, referred to as the weak

form, to obtain an approximate solution to the problem. Two distinct procedures are

available for obtaining such approximation: 1) method of weighted residual (Galerkin

Method) and 2) method of variational functionals. A comprehensive discussion on these

methods can be found in (Zienkiewicz et al. 2005).

In this section we will discuss how the approximate solution to aforementioned PDEs

can be obtained by using the Galerkin Method and FEM. As discussed in preceding

sections, our goal is to calculate displacements, strains and stresses satisfying the following

governing equations for dynamic linear elasticity:

1) The strain-displacement equation:  , ,

1

2
ij i j j iu u   or

1

2

ji
ij

j i

uu

x x


 
     

2) The elastic stress-strain law: ij ijkl klC 

3) The equation of motion (as derived under the balance of linear momentum):

,ij i j jb a    or

2

2

ij j

j

i

u
b

x t


 

 
 

 

4) And the necessary boundary conditions on displacement and stress: *

i i uu u on 

and
*()ij i j Tn T on  n

19

Now, in a general three-dimensional continuum denoted by  with a volumeV , the

weak form of equation of motion using Galerkin Method is expressed as:

,() 0ij i j jb a dV  


    (2.29)

Here,  represents a test weight function that reduces the residual error in an average

sense. To solve the integral form of elasticity equation given in Eq. (2.29), we discretize the

displacement field. That is, we calculate the displacement field at a set of n discrete points,

called nodes, within the continuum that is discretized using finite number of elements ()E .

V
b

T

F

E 1n

2n

3n

4n

Figure 2-3: Discretization in space using Finite Elements

The displacement field at an arbitrary point within the solid is then specified by

interpolating between nodal values. The continuous variable iu is then approximated by ˆ
iu

through simple functions of space variables, called shape functions as follows:

ˆ
i i iu u N U   (2.30)

Where, N represents the shape function and U represents the nodal displacements.

Subscript i denotes the spatial dimensions (1,2,3)i  and 1,2,3, m  represents an

20

index denoting the node number on a particular element and m is the total number of

nodes per element. Equation (2.30) is also expressed as:

ˆ
i i iu u N U   (2.31)

Here, iN  is the (,)thi  component of the 3 3m matrix made from m shape

functions ()N and U is the th component of the vector of nodal displacements of the

finite element. Accordingly, 1,2,3, 3m  .

Since the primary unknown variable in Eq. (2.29) is the displacement iu , an appropriate

choice of test functions is the coefficients from Eq. (2.31). Accordingly, Eq. (2.29) can be

expressed in terms of shape functions as an approximate solution to the continuous variable

iu as follows:

,() 0j ij i j jN b a dV   


   (2.32)

Using Green-Gauss theorem and integration by parts, above equation becomes:

,() 0ij j i j j j j ij i jN b N a N dV n N d      
 

      (2.33)

The infinitesimal strain tensor, in terms of selected weight functions and nodal

displacements, can be expressed as:

, ,

1
()

2
ij j i i j ijN N U B U        (2.34)

21

Introducing elastic stress-strain law and updated strain-displacement relationship from

the above equation into Eq. (2.33) we get:

,() 0ijkl kl j i j j j j ij i jc B U N b N N U N dV n N d         
 

      (2.35)

* 0

T u

ijkl kl ji j j j j

j j ij i j

U c B B dV U N N dV b N dV

T N d n N d

      

 

 



  

 

  

   

  

 
 (2.36)

The fourth term in Eq. (2.36) is the natural boundary condition on stress and the fifth

term is the essential (Dirichlet) boundary condition on displacement which vanishes when

the test functions pass through nodes, as in FEM. Resulting space discretized (over the

nodes of finite number of elements) equation of motion is expressed as:

M U K U F or MU KU F        (2.37)

Where:

Mass Matrix: j jM N N dV  


  (2.38)

Stiffness Matrix: ijkl kl jiK c B B dV  



  (2.39)

*Load Vector:

T

j j j jF b N dV T N d  
 

   
(2.40)

22

First term in Eq. (2.37) represents inertia forces, whereas the second term represents

elastic forces (in linear elastic constitutive modeling); however, solids in motion also

experience a third type of force whose action is to dissipate energy. This force, in general,

is dependent on velocity and is usually denoted by C (also called: Damping Matrix).

Ideally, this matrix is obtained by incorporating a rate-dependent constitutive model, but is

often assumed to be a linear combination of mass and stiffness matrices as follows:

c cC m M k K    (2.41)

Where mass coefficient ()cm and stiffness coefficient ()ck are scalars and are referred

to as Rayleigh damping coefficients. These coefficients are related to the damping ratio

() as follows:

2

2

c cm k 





 (2.42)

Where  is the natural (usually fundamental) frequency of vibration. The equation of

motion, after incorporating damping forces, is then expressed as:

MU CU KU F   (2.43)

This equation is the final space discretized (semi-discretized) equation of motion for a

linear structural dynamic system and represents the equilibrium of a deforming solid under

the action of external forces. Note: 1) Initial conditions must include nodal velocities and 2)

Inertia, damping and elastic stiffness matrices are constant for linear elastic problems, but

load vector ()F will in general be a function of time.

23

Within the context of spatial discretization, grid segregation is commonly implemented

using 1) Static Mesh Refinement, also called Transition Mesh, Figure 2-4, or 2) Adaptive

(dynamic) Mesh Refinement (AMR), see Figure 2-5. These methods allow selective

concentration of nodes in vicinity of the critical region as opposed to remote regions, hence

improving accuracy whilst preserving computational efficiency.

Coarse gr id

Fine gr id

(a) Mesh transition using
triangular elements

(b) Mesh transition using
quadrilateral elements

Figure 2-4: Static mesh refinement using transition elements

(a) (b) (c)

Figure 2-5: Adaptive mesh refinement (h-refinement) (a) Initial discretization: Mesh 1 (b) Mesh 2
and (c) Mesh 3 (Zienkiewicz et al. 2005)

Static mesh refinement requires the user to predict a critical zone and pre-define its grid

density during the meshing/pre-processing phase. It is necessary to ensure node-to-node

connectivity within the global computational grid and accordingly, transition zones

24

utilizing triangular or quadrilateral elements must be used, as shown in Figure 2-4. AMR

on the other hand, uses pre-defined error norm/criterion during the simulation phase to

resolve steep gradients and coarsen flat gradients. Following two approaches are widely

used for refinement of FE using AMR, (Zienkiewicz et al. 2005):

1) H-refinement uses the same class of elements, but with different sizes, making them

smaller or larger, in order to attain maximum efficiency in reaching a desired

solution.

2) P-refinement uses the same element size, but changes the order of the polynomial

used to define their shape functions.

These mesh refinement techniques, although they allow improving grid resolution in a

desired critical regions, they do not allow selective discretization in time-domain. This not

only affects the solution accuracy in transient problems, but also affects the global

computational efficiency. AMR also requires re-computation of global system matrices, for

every refinement, further increasing simulation time and reducing computational

efficiency.

25

2.3 Temporal Discretization and Direct Integration Methods

In structural dynamics, the FEM solves equilibrium equations discretized both in space

and time. In a time-history or dynamic response problem, we usually solve the dynamic

equation in the form of Eq. (2.43) for U , U and U as functions of time. There are two

distinct methods for time-history analysis: 1) Mode Superposition Method and 2) Direct

Integration Method. For most problems in structural dynamics or wave propagation, direct

integration method is more convenient. Using this method, the time interval of interest is

divided into N time-steps of size t , and the equilibrium equation is enforced at discrete

instants of time nt where  0,1,2,... 1n N  . Direct integration algorithms as such, can be

broadly classified into two categories: Implicit and Explicit methods. Since a description of

these algorithms, within the context of their computational characteristics (accuracy,

stability requirements, efficiency, etc.), can serve as an important basis for their

implementation, we will now briefly discuss these time integration algorithms, their

benefits/limitations and suitable FE implementation.

2.3.1 Explicit Methods

When the solution at time ()t t is computed based on quantities from the previous

time-step only, the method is called Explicit Method. In general, it may be expressed as:

 1 1 1 1, , , , , ,n n n n n n nU f U U U U U U    (2.44)

Direct integration algorithms derived from such expressions are referred to as single-

step methods if the right hand side (RHS) contains variables at time nt only, or two-step

26

methods when the RHS contains variables from time
nt and

1nt 
. Central Difference

Method (CDM), for example, is a two-step explicit method that assumes the following:

 1 1

2

2n n n

n

U U U
U

t

  



 (2.45)

 1 1

2

n n

n

U U
U

t

 



 (2.46)

The displacement solution at time ()t t or 1nt  is then obtained by considering Eq.

(2.43) at time nt as follows:

 n n n nMU CU KU F   (2.47)

Substituting nU and nU from Eq. (2.45) and Eq. (2.46) we obtain:

1 12 2 2

2

2 2
n n n n

M C M M C
U F K U U

t t t t t
 

     
          

         
 (2.48)

Equation (2.48) can now be used to solve for unknown displacements 1()nU  .

At the end of every explicit time-step, the stiffness matrix is computed based on

changes in geometry and/or material properties. Stiffness matrix inversion/factorization is

not required in this case (Bathe 1996). Although computationally desired, the accuracy of

explicit methods largely depends on the time-step size and hence the total number of time

increments. The solution tends to diverge for a large time-step or if the number of

increments are not sufficient. Explicit methods also do not enforce equilibrium of internal

forces with external loads.

27

The length of time-step in explicit integration schemes, such as CDM, is limited and

subject to following conditions (Cook et al. 2001):

max

2
(undamped system)criticalt t


    (2.49)

 2

max

2
1 (damped system)criticalt t  


      (2.50)

In the above equations, max refers to the maximum natural frequency in the finite

element mesh and  is the critical damping factor. For wave propagation problems, time-

step t is also subject to the Courant–Friedrichs–Lewy (CFL) condition as follows:

critical

H
t t

c
    (2.51)

2

(1)(1 2) 2(1)

G E E
c G

 


   


  

  
 (2.52)

Where, H is the grid spacing and c is the speed of dilatational waves (P – waves) in a

continuum,  and G are the Lame constants and  is the mass density.

Alternately, stability conditions from Eq. (2.51) and (2.52) may also be expressed as,

(Plesek et al. 2012):

max2 H
Cr

c






 
  

 
 (2.53)

28

Where the dimensionless Courant number is defined as:

c t
Cr

H


 (2.54)

Here 1Cr  exactly satisfies the stability requirement for linear elements integrated

explicitly using CDM. Since the ‘critical’ explicit time-step is a function of grid spacing

within a mesh, it is clear that stability and accuracy requirements of the smallest element

within a mesh will dictate the global time-step size.

2.3.2 Implicit Methods

Implicit methods compute the solution at time ()t t based on itself and previous

states of the problem. Contrary to Eq.(2.44), implicit methods may be described as:

 1 1 1 1 1 1, , , , , , , ,n n n n n n n n nU f U U U U U U U U      (2.55)

This method is similar to explicit methods in addition that it enforces equilibrium

condition, i.e. Eq. (2.55) is combined with the equation of motion at time ()t t . Hence it

includes a convergence check (typically enforced by a user specified tolerance) which is

usually performed using Newton–Raphson iterations. This method is more accurate since it

takes into consideration the previous state of the structure, which accounts for geometric

and/or material changes. It also allows for larger time-steps, however, at the cost of

increased Newton–Raphson iterations. Since these iterations include stiffness matrix

calculation and factorization, implicit methods can be computationally very expensive.

These methods, however, are more desirable for non-linear analysis as they perform the

much required convergence check.

29

Explicit methods in general utilize less computational resources per time-step, but

require a large number of steps, whereas implicit methods utilize large amount of

computational resources, but require fewer steps. The choice between explicit and implicit

methods is hence dictated by the problem under consideration. Explicit methods are great

when it comes to short duration analysis, such as crash, impact or blast analysis problems.

Since these problems (categorized under the wave propagation type) result in several high

frequency modes, small time-steps are required to accurately model the response. Implicit

methods, however allow large time-steps enabling faster solutions, which is desirable in

case of structural dynamic problems where the response is typically dominated by low

frequency modes.

According to (Bajer 2002), the best time integration scheme should have the following

features:

1) It should be unconditionally stable.

2) It should have parameter controlled dissipation or no dissipation.

3) Controlled dissipation, if present, should not affect the response of lower modes.

(Numerical dissipation is sometimes desirable in the high frequency regime)

4) It should have better computational efficiency.

5) It should permit computation of non-inertia structures with the motion being

kinematically enforced.

Following features are also important from a practical point of view:

1) Computational cost

2) Accuracy

30

3) Stability

4) Damping of high frequency response

5) Efficient information communication (important in wave propagation problems)

Among the most widely used time integration methods in structural dynamics,

Newmark Method (Newmark 1959), HHT-α Method (Hilber et al. 1977), WBZ-α Method

(Wood et al. 1980) and Generalized-α Method (Chung & Hulbert 1993) possess most of the

above mentioned features. In addition, these algorithms may be used for implicit or explicit

time integration by selecting appropriate algorithmic parameters.

2.3.3 Generalized-α Method

When incorporating fine-scale discretization in critical regions as opposed to remote

regions, one must be careful about spurious high frequency modes introduced as a result of

spatial FE discretization of critical regions. These high frequency modes are not

characteristic of the physical structure and may affect the overall quality of solution. Hence

it is desirable to be able to introduce controlled numerical dissipation to damp out any high

frequency contributions. Numerical damping may be introduced within Newmark family,

but it leads to undesirable low frequency damping and reduced order of accuracy.

Aforementioned α-algorithms have been developed (Hilber et al. 1977; Wood et al. 1980;

Chung & Hulbert 1993) to improve upon this situation. Here the equation of motion is

satisfied in a weighted average sense, allowing improved algorithmic damping that is

mainly concentrated in the high frequency domain. Generalized-α Method is one of these

one step three stage numerically dissipative algorithms that incorporates an optimal

combination of high frequency and low frequency damping. That is, for a desired level of

31

high frequency dissipation, the low frequency dissipation is minimized. We will now

briefly discuss the Generalized-α Method and its numerical implementation.

When the time interval of interest is divided into N time-steps of size t , equilibrium

Eq. (2.43), using Generalized-α Method is enforced at discrete instants of time nt where

 0,1,2,... 1n N  such that:

1 1 1 1m f f fn n n nMU CU KU F             (2.56)

Where:

1 1

1 1

(1)

(1)

m

f

n m n m n

n f n f n

x x x

x x x





 

 

  

  

   


   

 (2.57)

Equation (2.56) is supplemented by the essential initial conditions:

0 0(0) (0)U U t and U U t    (2.58)

Using Eq. (2.57) fully discretized equilibrium equation is then expressed as:

1 1 1

1

(1) (1) (1)

(1)

m n f n f n

f n f n m n f n f n

MU CU KU

F F MU CU KU

  

    

  



    

     
 (2.59)

Displacement and velocity updates in Generalized-α Method are identical to those for

Newmark Method (Chung & Hulbert 1993) and are expressed in terms of algorithmic

parameters  and  . These are obtained by restricting the sum of the coefficients of their

acceleration terms equal to the coefficients of the acceleration term in Taylor series

expansion of 1nU  and 1nU  around nt . Simple numerical experiments have shown that this

32

update equation results in a monotone increase per period in the peak displacement and

velocity errors (Chung & Hulbert 1993). Accordingly, expressions for displacement and

velocity updates are as follows:

 2 2
1 10.5n n nn nU U tU t U t U       (2.60)

 1 11n nn nU U t U t U      (2.61)

Substituting Eq. (2.60) and (2.61) back into Eq. (2.59), the acceleration-form of

Generalized-α Method may be obtained as:

1nU  n+1K = F (2.62)

Where effective stiffness matrix K and load vector n+1F are expressed as:

 2(1) (1) (1)m f fM t C t K           K (2.63)

  

  

1

2

(1)

(1) 1

(1) 0.5

f n f n m n f n f n

f n n

f n n n

F F MU CU KU

C U t U

K U tU t U

    

 

 

     

    

      

n+1
F

 (2.64)

Equation (2.62) can be solved for unknown accelerations by factorizing K using

Cholesky decomposition (only once for linear systems with a uniform time-step).

Displacements and velocities can then be obtained from Eq. (2.60) and (2.61) respectively.

Hence, completing the solution at time 1nt  .

33

Generalized-α Method is second order accurate, Eq. (2.65), and unconditionally stable,

Eq. (2.66), for the following conditions, (Chung & Hulbert 1993):

1

2
m f     (2.65)

1 1 1
 and ()

2 4 2
m f f m         (2.66)

For a user defined high frequency dissipation factor  , algorithmic parameters for

unconditional stability are obtained using Eqs. (2.65) and (2.66). Accordingly for:

1) WBZ-α Method: [0,1] 

21 (1)
, 0, ,

2 4
m f


     


      (2.67)

2) HHT-α Method: [0,1 3] 

21 (1)
0, , ,

2 4
m f


     


     (2.68)

3) Generalized-α Method (Optimal case): [0,1] 

21 3 1 1 (1)
, , ,

2 2 2 4
m f

  
    

  
     (2.69)

In these equations, the lower bound of  represents no dissipation, whereas the upper

bound represents complete annihilation of high frequency modes.

34

With appropriate algorithmic parameters, Generalized-α Method can be extended to:

1) HHT-α Method for 0m 

2) WBZ-α Method for 0f  and

3) Newmark Method for 0m f  

Finally, a pseudo-code to advance the solution of an input system of equations from

time-step  0,1,2,... 1n N  to (1)n using the Generalized-α Method can be expressed

as follows:

System matrices

M C K

Previous solution

n n nU U U

Load vector

1n nF F 

Algorithmic parameters

m ft    

Generalized-α Method

1) Compute effective stiffness matrix

2) Factorize effective stiffness matrix

3) Compute effective load vector

4) Solve for acceleration

5) Compute updated displacements

6) Compute updated velocities

Solution

1 1 1n n nU U U  

Input

Black-box

Output

Input

Figure 2-6: Pseudo-code for direct time integration using Generalized-α Method acceleration form

35

2.4 Domain Decomposition Methods (DDM)

Domain Decomposition Methods (DDM) are among the most efficient and reliable

techniques for the solution of engineering applications using FEM. One of the greatest

advantages of this method is that the domain under analysis can be decomposed into

several component sub-domains, which can then be formulated numerically, modeled and

solved independently. Global solution is then obtained by assembling these sub-domains

enforced by an interface condition, for example – continuity of a field variable.

The very fundamental idea of DDM can be explained using the following example for

the solution of Poisson’s equation, Figure 2-7, as presented in (Toselli & Widlund 2005).





1

2

1

2

1n

2n

(a) Original domain (b) Decomposed sub-domains

Figure 2-7: Domain decomposition method

Say we want to solve the Poisson’s equation subject to boundary conditions as follows:

2u f in   (2.70)

0u on  (2.71)

36

In the above equations, u and f represent real or complex valued functions and  is

a domain in 2 or 3 dimensions. Let the original domain  be decomposed into two non-

overlapping sub-domains 1 and 2 , Figure 2-7 (b), subject to following rules:

1 2

1 2

1 2

1 2

0

0 0

  

  

   

     

 (2.72)

As a coupled system, a new problem may now be defined as:

Sub-domain 1:

Poisson’s Equation:
2 1 1 1u f in  

Boundary Condition:
1 10 \u on   

Interface:
1 2u u on 

1 2

1 2

u u

n n

 
 

 

Sub-domain 2:

Poisson’s Equation:
2 2 2 2u f in  

Boundary Condition:
2 20 \u on   

Hence the basic idea is to decompose our problem into several sub-domains, each with

its own discretized equations and boundary conditions, enforced by an appropriate interface

condition. In several cases, Lagrange Multipliers may be used to enforce a weak statement

of continuity across the interface (Bernardi et al. 1994).

Sub-domain interfaces created as a result of DDM may be non-overlapping or

overlapping interfaces. Non-overlapping interfaces form the basis of Schur Compliment

Approach (Roux 1990). Substructuring techniques in structural analysis uses this approach

(Dodds & Lopez 1980) and the interface condition is usually applied to the unknown

37

kinematic quantities, such as displacement, velocity or acceleration. Another application of

non-overlapping DDM is the Balancing Domain Decomposition Method (BDD) where the

interface problem is solved iteratively using a Preconditioned Conjugate Gradient (PCG)

Method (Mandel 2005). On the other hand, overlapping interfaces form the basis of

Schwarz Alternating Method (Lions 1987). Although this approach helps improving the

stability of adjoining interfaces, it generates several additional unknowns as compared to

non-overlapping interfaces.

A comprehensive discussion on various domain decomposition methods, theory, related

algorithms, their implementation and analysis can be found under ‘Domain Decomposition

Methods – Algorithms and Theory’ (Toselli & Widlund 2005), ‘Domain Decomposition:

Parallel Multilevel Methods for Elliptic Partial Differential Equations’ (Smith et al. 1996).

Once the problem domain has been decomposed, component sub-domains can be

spatially discretized independent of each other. Within the framework of structural domains

and FEM, node-cut partitioning (non-overlapping DDM) and element-cut partitioning

(overlapping DDM) methods are the two most widely used discretization techniques.

2.4.1 Node-cut Partitioning

Sub-domain nodes –

Interface nodes –

(a) Conforming interface (b) Non-conforming interface

Figure 2-8: Node-cut grid partitioning

38

If the dividing interface is formed along the element edges, it is called node-cut

partitioning, Figure 2-8. Resulting interface in this case is either a line (2D sub-domains) or

a surface (3D sub-domains). Elements in this case are assigned uniquely to the sub-

domains on either side of the interface. Interior nodes are private to component sub-

domains, whereas nodes that fall on the interface are shared by adjacent elements and are

responsible for communicating information across partitioned sub-domains.

2.4.2 Element-cut Partitioning

Sub-domain nodes –

Interface nodes –

(a) Conforming interface (b) Non-conforming interface

Figure 2-9: Element-cut grid partitioning

An alternate partitioning technique is the element-cut partitioning, Figure 2-9. Interface

in this case is created by decomposing the domain across the element face. Accordingly,

dividing interface is either a surface (2D sub-domains) or a volume (3D sub-domains).

Nodes in this case are assigned uniquely to the partitioned elements and the elements which

have been cut are duplicated for each sub-domain across the interface, hence creating an

overlap region. Sub-domains in this case communicate not only with private nodes, but also

with nodes coincident with the shared elements, which are part of other sub-domains.

39

Among these techniques, node-cut partitioning is a preferred approach since it

generates lesser number of unknowns/interface degrees of freedom (DOF), as compared to

element-cut partitioning, and it also results in a simpler interface. Once the domain has

been partitioned and discretized in space, two different approaches can be employed to

enforce interface conditions, (Becker et al. 2003):

1) An iterative procedure can be implemented to enforce the solution or its normal

derivative or combinations to be continuous across the interface. This technique

forms the foundation of the Standard Schwarz Alternating Method as discussed in

(Lions 1989).

2) Another approach is to use the Lagrange Multiplier technique to achieve continuity

of kinematic quantities across the interface. Several different methods have been

discussed in (Tallec & Sassi 1995; Bernardi et al. 1994).

Since the Lagrange Multiplier approach does not require iterations to enforce

continuity, this method is more suitable for large-scale problems. It also yields a direct

global solution. However, the unknowns in this case have to be computed at the interface

before enforcing a suitable condition on kinematic quantities. Accordingly, they must

satisfy the inf-sup or equivalently the Ladyzhenskaya-Babuska-Brezzi (LBB) condition,

which requires a special choice of multiplier space, such as mortar elements (Bernardi et al.

1994), or the use of special stabilization techniques (Baiocchi et al. 1992). When

computing Lagrange Multipliers, another concern that comes into the picture is the grid

conformity or the node-to-node connectivity at the interface. The usual domain

decomposition approach would require that the nodes of a given element in a particular

40

sub-domain intersect exactly with the nodes on an adjacent element from a sub-domain

across the interface. Node-to-node connectivity at the interface can be very well modeled

on structures with relatively simple boundaries; however, this is inconvenient when

analyzing large structures with several integral parts. Conforming sub-domain interfaces

are also difficult to model when one wishes to resolve a particular sub-domain (critical

region) with a fine grid resolution, as opposed to a coarse grid in the surrounding/remote

sub-domain. Since interface conditions are responsible for re-connecting partitioned sub-

domains and hence obtaining the global solution, communication of information and

transformation of nodal quantities across interfaces (conforming or non-conforming) has to

be efficient. Another concern that needs to be answered is the gain in computational

efficiency with respect to the actual accuracy that could be polluted as a result of non-

conformity across the interface (Lacour & Maday 1997).

41

2.5 Coupling Sub-Domains in Space and Time

In previous sections we have seen how traditional FEM can be used to spatially and

temporally discretize the governing equation of motion for a structural dynamic system.

We have also seen how DDM can be used to partition the problem into several component

sub-domains; each with its own governing equation, boundary condition and appropriate

interface continuity condition. Following sections briefly describe various methodologies

and algorithms used to couple sub-domains with distinct discretizations, hence concluding

the review of literature and theoretical foundation in finite element multiscale coupling.

2.5.1 Mortar Finite Element Method (M-FEM)

Mortar Finite Element Method (M-FEM) is an interface discretization technique that is

used to couple sub-domain grids across distinct spatial resolutions. In this method, node-to-

node connectivity may or may not exist at the interface between adjacent sub-domains.

Coupling is achieved in the form of point constraints, which are enforced by introducing

Lagrange Multipliers, that are chosen to preserve the accuracy of the solution (Maday et al.

1988; Lamichhane & Wohlmuth 2004b).

1 1



1N N  2N

or

Sub-domain nodes –

Interface nodes –

1


2


1,2



(a) (b)

Figure 2-10: (a) Non-overlapping DD with independent (non-conforming) discretization in
component sub-domains (b) Interface (Mortar) elements and corresponding
Lagrange Multiplier space

42

Consider as an example a 2D domain, which has been decomposed into two non-

overlapping, non-conforming sub-domains (1 and 2) as shown in Figure 2-10 (a). Let

them be spatially discretized using 4 node quadrilateral elements with standard bilinear

shape functions. Let Lagrange Multipliers () represent the sub-domain reactions in the

form of interface fluxes or tractions. These unknowns, discretized over the interface, may

be approximated using shape functions N  as shown in Figure 2-10 (b). Let the DOF

associated with respective FE domains and their interfaces be as assumed in Table 2-1.

Table 2-1: Labels for sub-domain and interface degrees of freedom (DOF)

Finite element region Corresponding number of DOF

Ω
1
 a

Ω
2
 b

Γ
1

λ m (< a)

Γ
2

λ n (< b)

Γ
1,2

λ k

Here, if we choose coarse grid discretization to represent the Lagrange Multipliers, i.e.

k m , the adjacent interface on 1 is referred to as the non-mortar interface, whereas the

interface on 2 is referred to as the mortar (glued) interface. If multiple sub-domains exist

at a node on a mortar element, the usual linear interpolation shape functions associated with

this particular node are replaced by a constant part (Zienkiewicz et al. 2005). The choice of

mortar element discretization (for unknown Lagrange Multipliers) can be obtained from

either sub-domain or independently. However, total number of DOF associated with the

mortar interface should not be too rich in space so that they over constrain the coarse grid

or too weak so that the constraints are not well enforced on the fine grid (Bernardi et al.

43

1994). Typically in M-FEM, the Lagrange Multiplier space is identical to one of the sub-

domain interfaces, usually the coarser mesh. Hence for a non-overlapping DD, as shown in

Figure 2-10 (a), the Lagrange Multiplier space is defined as obtained from 1 , i.e. k m .

Recently, Park and Felippa (Park & Felippa 2000) proposed an approach using

Localized Lagrange Multipliers method (LLM), as opposed to the typical global Lagrange

Multipliers, Figure 2-11.

Figure 2-11: Direct subdomain connection using global Lagrange Multipliers (Park & Felippa
2000)

Figure 2-12: Localized-Multiplier FEM discretization (Park & Felippa 2000)

44

Although LLM was principally developed for contact-impact problems, it focuses on

non-matching interfaces. Using LLM, a ‘contact frame’ with its own independent

discretization is introduced between interfacing bodies, Figure 2-12, thus leading to a three

field formulation. Each field variable in this case is expressed independently in order to

ensure local equilibrium. They also enforce continuity of displacement across sub-domain

interfaces and present an approach for positioning nodes on the contact frame.

More recently, Herry and Valentin (Herry et al. 2002) proposed a slightly modified

version of global Lagrange Multiplier to connect sub-domains with non-matching grids.

Henceforth, this approach will be referenced as the Hybrid M-FEM technique.

1 2

Figure 2-13: Interface definition (Herry et al. 2002)

In contrast to M-FEM, this approach uses interface discretization that is inherited from

both, mortar and non-mortar interfaces; hence the name Hybrid M-FEM. For the DD

shown in Figure 2-13, assume 1 and 2 have m and n DOF on interfaces 1S and 2S

respectively, and let c be the total number of DOF common between these interfaces

(common ≡ same coordinates). Then according to Herry and Valentin, most ‘optimal’

choice of interface (Lagrange Multiplier) discretization ()k is obtained as k m n c   . It

is also shown that this approach results in exact continuity of kinematic quantities and

45

equilibrium across the interface, however, only for a selected set of basis functions

selectively defined for the Lagrange Multipliers, and the common interface nodes. They

also note that the proposed optimal coupling can be used for elements with linear shape

functions only. Regardless of the choice of interface discretization, interface connectivity

constraints (Zienkiewicz et al. 2005) between adjacent sub-domains are obtained as

follows: (refer to Figure 2-10 and Table 2-1 for subscript representations)

1 1
mkm k

dP N N







 
(2.73)

2 2
nkn k

dP N N







 
(2.74)

Hence, the central idea in M-FEM is to decompose the domain of our interest into non-

overlapping sub-domains (using node-cut partitioning) and impose a weak continuity

condition across the interface by requiring that the jump of the solution is orthogonal to a

suitable Lagrange Multiplier space (Bernardi et al. 1993; Bernardi et al. 1994). In the

analysis of large structures, this approach has two noteworthy advantages. First, the

discretization of domain can be selectively improved in localized regions, such as around

corners or other features where error in solution is likely to be greatest. This will allow for

greater accuracy without the computational burden associated with improving the

discretization over entire global domain. Another practical benefit of this method is that it

can be utilized to connect independently modeled and analyzed sub-structures in a large

problem. For example, in analysis of an automobile the external framework and the chassis

may be modeled independently by different engineers. It is unlikely that sub-structures like

46

these will have exact node-to-node connectivity at the interface when assembled as a whole

for a complete analysis. Transition meshes may be used in the vicinity of the interface, but

this would require re-meshing and it would also make the analysis more complex and

expensive. Non-conforming mortar method completely circumvents this difficulty and

hence, naturally assists in multiscale modeling.

A good introduction to Mortar Methods can be found in (Bernardi et al. 1993; Bernardi

et al. 1994; Lacour & Maday 1997; Maday et al. 1988; Lamichhane & Wohlmuth 2004b;

Lamichhane & Wohlmuth 2004a; Lamichhane & Wohlmuth 2005).

2.5.2 Finite Element Tearing and Interconnecting (FETI)

Farhat and Roux (Farhat & Roux 1991) first introduced the Finite Element Tearing and

Interconnecting (FETI) method for the solution of static problems. This method adopted

Schur Compliment Approach, i.e. DD with non-overlapping sub-domains and element-cut

partitioning, and introduced Lagrange Multipliers to enforce displacement compatibility at

the interface nodes. Local singularities introduced as a result of static floating sub-domains

are resolved in two phases: First, the rigid body modes are eliminated from each local

problem and a direct scheme is used concurrently to recover partial local solution from

each sub-domain. In the second phase, mode contributions from phase one are correlated to

the Lagrange Multipliers through an orthogonality condition. Final coupled system of local

rigid modes and Lagrange Multipliers is then solved using a Projected Conjugate Gradient

(PCG) algorithm to complete the solution of the problem. This technique was later

extended to the solution of transient problems (Farhat et al. 1994) along with a time parallel

iterative method for structural dynamics (Farhat & Chandesris 2003; Farhat et al. 2006).

Spectral stability analysis (Farhat et al. 1995) however, proved that FETI algorithm for

47

structural dynamics is only weakly stable and instabilities grow linearly for any interface

constraint. A characteristic feature of FETI, as opposed to M-FEM, is that the interface of

Lagrange Multipliers is discretized using P-elements (P  Polynomial) that inherit

Lagrange polynomial shape functions, Figure 2-14. Polynomial shape functions are similar

to linear basis functions in the sense that they are unity at the host node and zero on others.

2

2


1,2



1

1



1N 2NN 

Polynomial shape funct ion

Figure 2-14: Finite element and interconnecting with Lagrange polynomial function

The upside in using polynomial shape functions is that accuracy can be improved by

increasing the complexity of the polynomial, however, it requires a lot of computing time

to solve a high order shape function. Another difficulty in using polynomial shape

functions is the complexity in computation of interface connectivity constraints using Eq.

(2.73) and (2.74). A comparison in implementing these interface connectivity constraints,

and their accuracy using FEATI and M-FEM, Figure 2-15 (Lacour & Maday 1997),

suggests that M-FEM has the following advantages: 1) It satisfies the compatibility

condition between discrete spaces, 2) It provides an inf-sup condition that is independent of

the discretization parameter and 3) It results in algebraic systems with well-conditioned

matrices.

48

Figure 2-15: Comparison between polynomial and mortar Lagrange Multipliers (Lacour & Maday
1997)

2.5.3 Mixed Methods and Subcycling

Direct integration methods, Implicit and Explicit, both have their advantages and

disadvantages. Researchers have long ago realized the need to synthesize these solution

algorithms so that the time marching scheme can inherit benefits from each one of them.

Similar to grid partitioning techniques, as discussed in Sections 2.4.1 and 2.4.2, the

partitioning of time discretized equations is achieved through element or nodal time

partitioning.

A. Element Time Partitioning

In element time partitioning, Figure 2-16, all equations associated with the elements of

a particular sub-domain are integrated either implicitly or explicitly. Nodes at the interface

are shared nodes and are responsible for communicating information across component

sub-domains. This approach can handle shared nodes with more than two sub-domains

49

since the assembly of system matrices is performed element-wise. Another advantage is

that an element can be assigned, implicit or explicit, dynamically; subject to predefined

user criterions.

    
 
   
 
      
 
      
    
 

     

i

i

i

i

i

i

i

i

e

e

e

e

Impl ic i t nodes -

Expl ic i t nodes -

Shared nodes -

Element Groups

e

e

e

e

Figure 2-16: Element time partitioning

B. Nodal Time Partitioning

In nodal time partitioning, Figure 2-17, DOF associated with certain elements are

integrated either implicitly or explicitly. Elements that have both implicit and explicit

nodes are called interface elements and usually require special treatment. Since variables

associated with these elements are integrated both implicitly and explicitly, the coupling

algorithm is often difficult as compared to element partitioning technique.

ii ie

ei ee

 
 
 
 
 
 
 
 
  

Nodal Groups

Impl ic i t nodes -

Expl ic i t nodes -

Shared elements -

e

i

i

e

i

i

e

i

i

e

i

i

Figure 2-17: Nodal time partitioning

50

There are several techniques that couple different time integration schemes within a

domain, with same time-step. For example, stiffer sub-domains employ implicit integration

in order to circumvent the Courant time-step limit and flexible sub-domains use explicit

integration to reduce overall computation costs. Such methods are referred to Mixed

Methods (MM) (Belytschko et al. 1979). In classical MM, the time marching scheme uses

same time-step in different sub-domains, but uses different algorithm (implicit/explicit)

depending on the local sub-domain requirements. Accordingly, three different classes in

MM are:

1) Implicit-Implicit (I-I) partitions

2) Explicit-Implicit (E-I) partitions

3) Explicit-Explicit (E-E) partitions

Implicit methods can adopt a direct solution approach, or an iterative method, to solve a

given system of equations (Bathe & Wilson 1976). Iterative methods require less storage

space, but for structural meshes the convergence rate is very poor (Belytschko et al. 1979).

Direct solution method, on the other hand, yields converged results but requires more

storage space. Accordingly, I-I MM (Park et al. 1977) utilizes direct solution and iterative

methods as suited in different partitions.

E-I Mixed Methods were first introduced by (Belytschko & Mullen 1977) along with

their stability analysis (Belytschko & Mullen 1978), allowing stiffer sub-domains to be

integrated implicitly, whilst using explicit integration in flexible sub-domains. Using this

element time partitioning and E-I approach, explicit nodes are integrated first and the

results are used as boundary conditions for the implicit nodes. An alternate, and an easy to

51

implement, nodal time partitioning E-I approach for linear problems was developed for the

Newmark Method (Hughes & Liu 1978) and its stability analysis was provided using the

Energy Method. This approach was later extended to non-linear problems (Hughes et al.

1979) with a proof for convergence (Hughes & Stephenson 1981). The E-I method was

later augmented to control numerical dissipation of unwanted high frequency oscillation

using a method similar to HHT-α Method (Miranda et al. 1989). Mixed time E-I method

(Liu & Belytschko 1982) is another approach that uses the predictor-corrector algorithm to

update implicit elements (once for every T) and the Newmark Method to update explicit

elements (m times every t).

Subcycling, or E-E integration technique, is another approach that use different time-

steps in different sub-domains; however the stability and accuracy analysis of this method

is significantly involved. A multi-time-step method for first-order equations, where sub-

domains may be integrated using Subcycling and the entire domain is integrated at integer

multiples for a global update, is presented in (Belytschko et al. 1984). This approach was

later extended to second-order equations in (Smolinski 1992) with a proof of stability in

(Smolinski et al. 1996). It was shown that Subcycling leads to reduction in total computer

time in the analysis of large-scale problems, such as vehicle crash analysis, and can also

cause an increase in accuracy for some applications (Bruijs 1990). An implicit Subcycling

time integration method, based on the Trapezoidal Rule, was also proposed by (Smolinski

& Wu 1998). Although energy analysis shows that this approach is unconditionally stable

and conserves the same pseudo-energy as the standard algorithms, numerical tests have

shown that the accuracy of the method degrades if the total cycle time or the time-step ratio

becomes large.

52

2.5.4 GC Method

A time-space mortar method for coupling linear modal sub-domains and non-linear

sub-domains in explicit structural dynamics was first proposed by Alain Combescure

(Faucher & Combescure 2003). This approach introduced new opportunities in DDM,

wherein each sub-domain can be discretized based on its effective loading conditions in

order to reduce the computation time of the simulation. Using this technique, sub-domains

that are subjected to small perturbations are assumed to represent linear elastic behavior

and are suitably replaced by modal basis response of a much smaller size than the original

problem. In order to establish compatibility between non-conforming grids, this approach

adopts the hybrid version of M-FEM (Herry et al. 2002) as discussed earlier. This approach

also extended the static FETI Method (also referred to as Dual Method) to incorporate

multiple time-stepping using Newmark time integration scheme.

Another approach to handle sub-domain specific time-scale and space-scale

characteristics in time-dependent non-linear problems was then proposed by Combescure

and Gravouil (Gravouil & Combescure 2003). Under this approach, response from fine

scale discretization and coarse scale discretization is obtained from a two-scale resolution

technique inspired by the Multigrid Methods (Parsons & Hall 1990a; Parsons & Hall

1990b), Figure 2-18. They proposed an algorithm with a single iteration level to deal with

both: non-linear equilibrium and two-space scale discretization; in which relaxation steps

are performed using a non-linear PCG algorithm. However, this method permitted only two

scale decomposition, i.e. it allowed only two spatial grids, each with its own time-scale,

Figure 2-18.

53

Figure 2-18: Treatment of incompatible meshes using two-grid approach (Gravouil & Combescure
2003)

Gravouil and Combescure (Combescure & Gravouil 2001; Combescure et al. 2003;

Mahjoubi et al. 2009) later proposed a general time-space multi-scale method (GC Method)

for the solution of transient problems based on node-cut grid partitioning. Using this

method, partial differential equations were discretized independently over sub-domains,

solved individually and then globally over the interface using Lagrange Multipliers.

Assuming kinematic quantities, such as displacement, velocity and acceleration, are linear

over the interface; Lagrange Multipliers are introduced to enforce continuity across the

interface. Equilibrium equations for the coupled system are then formulated as a sum of

total energy, obtained from each sub-domain and augmented by the interface energy. GC

Method uses Hybrid M-FEM (Herry et al. 2002) and Newmark time integration scheme for

the evolution of kinematic quantities. It is however shown that GC Method requires

computation of interface reactions (Lagrange Multipliers) at the smallest time-step, which

54

is indeed computationally very expensive for large-scale structures with large interfaces.

They first present a procedure to couple different Newmark schemes (implicit/explicit) in

each sub-domain with the same time-step. By enforcing continuity of velocities across sub-

domain interfaces and utilizing the Energy Method, they show that this approach is energy

preserving. They also show that the method is stable if and only if the interface energy is

zero. For Newmark time integration scheme, the GC Method has zero interface energy

under one of the following condition:

1) For continuity of Accelerations:  is constant for each sub-domain

2) For continuity of Velocities:  and  are independent parameters

3) For continuity of Displacements: (2 0)   for each sub-domain

Therefore, it is shown that continuity of velocities at the interfaces leads to a stable

algorithm. They further present their approach for non-linear cases with same time-step in

all sub-domains, and linear cases with different time-steps in different sub-domains. GC

Method was also extended to explicit-implicit formulation for non-linear problems with

different time-steps in different sub-domains (Combescure et al. 2003). They derive

coupled equations and stability conditions for both material and geometric non-linearity. A

monolithic energy conserving approach, to couple heterogeneous time integrators such as

Newmark, HHT-α, Simo, Krenk and Velocity Verlet with incompatible time-steps, was

also built on the foundation of GC Method (Mahjoubi & Gravouil 2011) and a FE software

enabling implicit-explicit multi-time-stepping co-computations, based on GC Method, was

also developed by (Brun et al. 2012). However, it was shown that GC Method has

unsuitable features of being dissipative on the interface between sub-domains. It was also

55

shown that sub-domain computations are stable as long as Newmark stability requirements

are fulfilled within each sub-domain, but the accuracy of the time-integration scheme

reduced by one order when multi-time-stepping was introduced. Hence, indicating that for

second order time-integration schemes (such as Newmark Method), the multi-time-step GC

Method only lead to first order accuracy.

2.5.5 PH Method

Prakash and Hjelmstad, or PH Method, (Prakash & Hjelmstad 2004) further extended

FETI algorithms and improvised on existing formulation for multiple time-stepping

approach laid down by GC Method. They adopt Newmark time-integration method to

selectively discretize component sub-domains, allowing distinct time-steps (with integer

ratios) and implicit and/or explicit algorithms. Theoretical foundation of the newly

developed multi-time-scale algorithm, in this dissertation, is largely inspired from the PH

Method. Accordingly, we shall now take a brief look at this approach, as presented in

(Prakash & Hjelmstad 2004).

For simplicity, we will assume the decomposition of a continuous domain  into two

non-overlapping sub-domains: A and B as shown in Figure 2-19 (a) and (b). It is also

assumed that A is integrated with a larger time-step T (corresponding to the global

time-step) and Newmark parameters  ,A A  whereas B is integrated with a smaller

time-step t (,)B B  such that the time-step ratio (/)T t    is an integer.

Intermediate time-steps in integrating B are denoted by  such that 0  corresponds to

time nT t and   corresponds to 1() () nT T T t t      , see Figure 2-19 (c).

56

F

U



()F t

U

A

F

A

A B

U

B

F

B



,A B



B
A

T

()T T  ()T t  () 

T t

0 



()AF t ()BF t

(a) (b) (c)

Figure 2-19: (a) Structural domain under consideration (b) Decomposed sub-domains linked
through Lagrange Multipliers at the interface (c) sub-domain time-stepping
parameters and intermediate time-step counter

Consider the structural domain  in Figure 2-19 (a) has prescribed displacements over

U and transient external force over F . Using FE formulation for an un-damped system

with linear elastic constitutive law the problem under consideration can be expressed as:

() () () [0,]MU t KU t F t t T    (2.75)

0 0. (0) , (0)I C U U U U   (2.76)

D U D F. () () on , () () onB C U t U t F t F t     (2.77)

Using Newmark Method, fully-discretized equilibrium equation for the continuous

domain  along with displacement and velocity updates is expressed as:

1 1 1n n nMU KU F    (2.78)

57

 2 2
1 10.5n n nn nU U tU t U t U       (2.79)

 1 11n nn nU U t U t U      (2.80)

In order to formulate constituent equations for A and B augmented by an interface

continuity condition, it is assumed that the interface reactions are discretized over ,A B

 and

represented using Lagrange Multipliers () . The Lagrangian for coupled sub-domains is

then expressed as:

1 1 1 1

2 2 2 2

T T T TA A A A A A B B B B B BU M U U K U U M U U K U
   

     
   

L (2.81)

As proposed by GC Method, PH Method imposes continuity of velocities across sub-

domain interfaces using a linear constraint equation such as:

0A A B BL U L U  (2.82)

Where L represents a Boolean matrix that picks interface degrees of freedom from

respective sub-domains and projects them onto ,A B

 .

Combining the constraint Eq. (2.82) with Eq. (2.81), the Lagrangian in terms of

interface reactions () , and its variation is expressed as:

, ,1 1

2 2

T T
A B A B

i i i i i i T i i

i i

U M U U K U LU
 

  
 

 L (2.83)

58

, ,
T T T T

A B A B
i i i i i i i i T i i

i i

U M U U K U U L LU        
 

 L (2.84)

External virtual work done on the system is expressed by:

,
T

A B
i i

i

U F W (2.85)

Applying Hamilton’s principle:

2

1

() 0

t

t

dt   L W (2.86)

2 2

1 1

, ,

() () 0
T T T

t tA B A B
i i i i i i i i T i i

i it t

U M U L U K U F dt LU dt   
          

   (2.87)

Integrating first term by parts and assuming 1 2() () 0i iU t U t   :

2

1

, ,

0
T T

t A B A B
i i i i i i i T i i

i it

U M U K U L F LU dt  
           

  (2.88)

Using fundamental theorem for calculus of variations, Eq. (2.88) can be expressed as:

: ,
Ti i i i i iM U K U L F i A B     (2.89)

,

0
A B

i i

i

LU  (2.90)

59

Introducing time-stepping parameters from Figure 2-19 (c), fully discretized equations

for A and B are expressed as:

TA A A A A AM U K U L F       (2.91)

 1,2
TB B B B B BM U K U L F           (2.92)

Contrary to GC Method, PH Method enforces continuity of velocities only at the global

time-step ()T T as:

0A A B BL U L U   (2.93)

In order to solve the system of equations represented by (2.91), (2.92) and (2.93),

kinematic quantities from A are decomposed into two parts as follows:

A A AU V W    (2.94)

Note: Eq. (2.94) represents the decomposition of displacements only; however, similar

decomposition is adopted for velocity and acceleration vectors. Equation (2.91) is then

expressed as a ‘Free’ problem (under the action of external forces) and a ‘Link’ problem

(under the action of interface reactions) as follows:

A A A A AM V K V F    (2.95)

TA A A A AM W K W L      (2.96)

60

Using Newmark Method, Eq. (2.95) is solved independently to compute the free

response of A at time ()T T . Resulting solution (, and A A AV V V  ) is then linearly

interpolated using Eq. (2.97), shown for displacements only, at intermediate time-steps

corresponding to sub-domain B , i.e. for time-instants where  1,2  .

1A A A

TV U V 

 

 

   
     
   

 (2.97)

A AW W 





 
  
 

 (2.98)

Knowing the solution at intermediate time-steps, corresponding ‘free’ residuals ()jf

are computed as:

A A A A Af F M V K V       (2.99)

Similarly, ‘link’ residuals ()jl from Eq. (2.96) are obtained as:

TA A A A Al L M W K W         (2.100)

Now, in order to enforce equilibrium of A for every intermediate time-step, the

combined residual from Eq. (2.99) and Eq. (2.100) is set to zero, i.e.   0f l    .

0
TA A A A Af L M W K W         (2.101)

61

Introducing Eq. (2.98), Eq. (2.101) can be expressed as:

  0
TA A A A Af L M W K W   






 
     

 
 (2.102)

However,
TA A A A AM W K W L     

0
T TA Af L L  






 
      

 
 (2.103)

TA A AL f L L I  






 
     

 
 (2.104)

Using the result from Eq. (2.104), intermediate interface reactions from Eq. (2.92) are

condensed out and the equilibrium equation for B is expressed as:

 1 ,2
TB B B B B B AM U K U L F L f    


  



 
       

 
 (2.105)

The final set of coupled equations, including equilibrium Eqs. (2.91), (2.105) and

interface condition, Eq. (2.93), are solved using bordered system approach and the global

solution to the original problem under consideration is obtained by summing responses

from component sub-domain at global time-step T .

Using Energy Method, it is shown that this method is unconditionally stable, energy

preserving and computationally efficient than the former GC Method. Since the interface

continuity condition is enforced at global time-steps only, corresponding interface reactions

(Lagrange Multipliers) are also computed at the global time-step. This makes the PH

62

Method /T t    times faster than GC Method, Figure 2-20 (Prakash & Hjelmstad

2004).

n

1n 

T t

T T 

T

T t 

2

1

3

1 



n

1n 

T t

T T 

T

T t 





(a) (b)

Figure 2-20: Comparison between (a) GC Method and (b) PH Method

However, the drawback in using PH Method is that Lagrange Multipliers are expressed

in terms of ‘free’ residuals, Eq. (2.104), which are obtained from the coarse time-step sub-

domain Eq. (2.99). This makes the fine time-step sub-domain dependent on other sub-

domains, making it impossible to solve multiple sub-domains concurrently. Therefore, PH

Method allows coupling only two sub-domains at a time; and consequently for multiple

sub-domain coupling, one needs to implement a recursive solution algorithm (Prakash

2007) that can solve component sub-domains – one pair at a time. This dependence

between component sub-domains significantly restricts the computational efficiency of

multiple time-scale coupling.

63

Chapter 3: MGMT Formulation

3.1 Approach and Methodology

Since FEM is well established with vast amounts of literature in its theoretical

background, mathematical foundation and applications using computer simulations; this

dissertation builds upon the existing FEM in order to implement concurrent multiple grid

and multiple time-scale coupling. We propose a hybrid approach which may be considered

as a combination of:

1) Multiple grid formulation that allows efficient coupling of ‘independently’

discretized FE sub-domains

2) Multiple time-scale formulation that allows concurrent multi-time-stepping with

energy preserving time interfaces

The framework for this approach is largely based on the fundamental principles of

DDM, used to selectively decompose a structure into component sub-domains. Post

decomposition, component sub-domains can be independently discretized in space.

Subsequently, multiple grids with conforming/non-conforming interfaces can be coupled

together using M-FEM and Lagrange Multipliers that are introduced as interface reactions.

Space discretized equations of motion from component sub-domains can further be

discretized in time, distinct from each other, allowing sub-domain specific time-stepping.

Communication between component sub-domains is desired at the largest/global time-step

and is achieved in a manner that preserves global/local sub-domain energy balance.

64

A distinction between traditional FE approach and the proposed hybrid methodology

can be illustrated as follows:

Domain under analysis:

Traditional Approach

Hybrid MGMT Approach

Uni form gr id d iscret izat ion: Uni form t ime-stepping:

Select ive Domain Decomposi t ion: Select ive Gr id Discret izat ion:

Element time-stepGlobal time-step

Δ
T

Δ
t
=

 Δ
T

Δ
t
=

 Δ
T

Δ
t
=

 Δ
T

Mul t ip le Gr id Coupl ing us ing M-FEM: Mul t ip le T ime-stepping:

Sub-domain time-stepGlobal time-step

Δ
T

Δ
t1

Δ
t2

Δ
t3

Figure 3-1: Hybrid MGMT approach

Following sections elaborate on every constituent step of this hybrid approach and

rigorously derive necessary formulation that is required for the successful implementation

of the proposed MGMT Method.

65

3.2 Domain Decomposition for Structural Dynamics

In this section, we present the DDM approach for deriving coupled equations for

component sub-domains augmented with an appropriate interface condition. We limit our

discussion to linear structural dynamic systems, as derived in Section 2.1.

 F t


U

F

λ

1

1

U

2

1,2

λ

()t

S

1

F

 1F t  2F t
2

F

(a) (b)

Figure 3-2: Structural domain decomposition (a) Domain under analysis (b) Decomposed sub-
domains with inherited boundary conditions and augmented interface reactions

Consider a continuous domain  with prescribed displacements over U and

prescribed tractions over F as shown in Figure 3-2 (a). Using finite element discretization

in space, the governing equation is expressed as:

() () () ()MU t CU t KU t F t   (3.1)

0 0. (0) , (0)I C U U U U   (3.2)

D U D F. () () on , () () onB C U t U t F t F t     (3.3)

66

Here, M represents the mass, C is damping and K represents the domain stiffness.

Primary unknowns are displacements, velocities and accelerations; as represented by ()U t ,

()U t and ()U t . Initial displacements and velocities are defined by 0U and
0U whereas

()DU t and ()DF t represent the prescribed displacements and force boundary conditions

respectively. Energy balance equation corresponding to Eq. (3.1) can be expressed by pre-

multiplying TU (velocities transpose), followed by integration:

1 1

2 2

T T T Td
U MU U KU U F U CU

dt

 
   

 
 (3.4)

Using DDM let us now decompose our original domain into S component sub-

domains such that ,i j

 represents the interface between i and j , as shown in Figure

3-2 (b). If Lagrange Multipliers () in the form of fluxes or tractions are used to represent

interface reactions between connecting sub-domains the resulting equation of motion for a

component sub-domain is obtained as:

 () () () () () 1,2
Ti i i i i i i iM U t C U t K U t F t L t i S     (3.5)

And the corresponding energy balance equation is expressed as:

 
1 1

1,2
2 2

T T T T T Ti i i i i i i i i i i i id
U M U U K U U F U C U U L i S

dt


 
     

 
 (3.6)

Continuity of an unknown variable (say x) across sub-domain interface ,i j

 can be

represented by a linear constraint equation such as:

67

() () () () 0i i j j i i j jL x t L x t or L x t L x t   (3.7)

In above expressions, L represents a multi-constraint operator that is respectively zero

and non-zero for interior and interface DOF respectively. It is used to project required

constraints over the selected set of interface DOF. Variable x may represent displacement

(d-continuity), velocity (v-continuity) or acceleration (a-continuity). Since Eq. (3.5) and

(3.7) are coupled, it is necessary to ensure that enforcing continuity of variable x does not

influence the global energy balance. It is also important to ensure that the time integration

of Eq. (3.5), augmented with the interface condition, yields a stable solution within

component sub-domains and globally. These requirements will help us select an

appropriate variable for the interface condition. Accordingly, we enforce the following

constraints on Eq. (3.6):

1) Energy is conserved within respective sub-domains, that is local equilibrium is

satisfied

2) Interface energy, produced as a result of interface reactions, is identically zero

These constraints are reasonable since the global solution (obtained as an aggregate of

local solutions) can be stable if and only if the solution is stable within respective sub-

domains. Also, if the interface energy contributions are positive, numerical integration of

Eq. (3.5) will eventually escalate with an unstable solution and if the interface energy is

negative, artificial damping will be introduced across sub-domain interfaces. In MGMT,

domain decomposition represents a mathematical division of a continuous domain and

therefore, the dividing interfaces do not represent physical features within the system.

68

Accordingly, any energy produced as a result of introducing Lagrange Multipliers must be

identically zero. This will ensure stable gluing of adjacent sub-domains and seamless

communication across connecting interfaces.

Global energy balance equation, as obtained from component sub-domain

contributions, can now be expressed as:

 
1 1

1 1

2 2

T T T T T T
S S

i i i i i i i i i i i i i

i i

d
U M U U K U U F U C U U L

dt


 

 
    

 
  (3.8)

By enforcing the constraints discussed above, we obtain the following condition:

1

0
T T

S
i i

i

U L 


 (3.9)

Equation (3.9) represents the necessary condition to ensure global energy balance;

specifically it suggests that the interface energy should be identically zero. Comparing this

result with Eq. (3.7), we see that zero interface energy naturally yields continuity of

velocities across sub-domain interfaces. The final set of equations for coupled sub-

domains, now augmented by interface condition, Eq. (3.9), can now be represented as:

 () () () () () 1,2
Ti i i i i i i iM U t C U t K U t F t L t i S     (3.10)

 
1

0
S

i i

i

L U t


 (3.11)

69

3.3 Multiple Grid Coupling

One clear advantage of using DDM is the ability to choose independent resolutions in

component sub-domains so as to obtain a discretization that is well suited to the local

characteristics of the solution to be approximated. In this section we will discuss how

interface constraints can be implemented using node-cut partitioning, hence allowing

multiple grid coupling.

Sub-domain nodes –

Mortar interface nodes –



1 2



1 2

1


2


1


2


1,2



Figure 3-3: Domain decomposition and resulting conforming/non-conforming grids

Table 3-1: Labels for FE degrees of freedom

FE region Corresponding number of DOF

Ω
1
 a

Ω
2
 b

Γ
1

λ m (< a)

Γ
2

λ n (< b)

Γ
1,2

λ k

Consider the decomposition of a continuous region  (2D) into two sub-domains, 1

and 2 which are joined together by introducing Lagrange Multipliers (interface reactions)

at the dividing interface, Figure 3-3. Since we are using node-cut partitioning, the interface

70

for Lagrange Multipliers is a 1D segment. As discussed earlier, the choice for mortar

interface discretization is arbitrary, but fixed. In our derivation for multiple grid coupling,

we choose the coarse grid interface as the non-mortar surface; therefore DOF assigned to

the interface of Lagrange Multipliers is equal to the interface DOF from 1 , that is k m .

3.3.1 Coupling Conforming Grids

An interface between adjacent sub-domains is said to be conforming if and only if

m n and the coordinates for corresponding DOF are coincident. Therefore, we have

k m n  .

1 2

1

  Non-mortar interface on

 Mortar interface on

 Interface of Lagrange Mult ip l iers

1
22

 

1,2

 

Figure 3-4: Interface of Lagrange Multipliers (conforming grids)

In this particular case, multi-constraint operator L is simply a Boolean projection

matrix with 1’s and 0’s assigned to sub-domain interface and interior DOF respectively. If

1B and 2B represent the Boolean projection matrix for 1 and 2 respectively, then the

sub-domain DOF, located on interface i

 (1,2)i  can be selectively projected as:

1 1 1 1 1
m ma ax B x L B   (3.12)

2 2 2 2 2
n nb b

x B x L B   (3.13)

In the above expressions, variable x represents the primary kinematic unknowns, such

as: displacement ()U , velocity ()U or acceleration ()U .

71

As an example for implementing and constructing the Boolean projection matrix,

consider the following illustration, Figure 3-5:

3

1 2 3 4 5 6 7 8 9

6

9

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 10

1

1

0

B

 
 


 
  

1 2 3

4 5 6

7 8 9

3

6

9

Figure 3-5: Reference sub-domain and corresponding Boolean projection matrix

3.3.2 Coupling Non-Conforming Grids

An interface between adjacent sub-domains is said to be non-conforming if m n

and/or the coordinates of corresponding DOF are not coincident. The total number of

Lagrange Multipliers in this case is selected as k m , as shown in Figure 3-6.

1 2

1N N  2N

1 2

1

  Non-mortar interface on

 Mortar interface on

 Interface of Lagrange Mult ip l iers

1
22

 

1,2

 

Figure 3-6: Interface of Lagrange Multipliers (non-conforming grids) and corresponding shape
functions

In order to connect non-conforming grids, we need to define multiple constraints

between interface DOF from either side. These constraints can be obtained using Eq. (2.73)

72

and (2.74). Since the component sub-domains are discretized using 4-node (bilinear)

quadrilateral elements, we assume equivalent shape functions over the interface of

Lagrange Multipliers. Also, since these constraints are applied over interface DOF only;

multi-constraint operator is expressed as:

1 1 1
maka km

L P B (3.14)

2 2 2
kb kn nb

L P B (3.15)

As an example for implementing and constructing multiple constraints, consider the

following illustration, Figure 3-7. Assume element edge from 1 and 2 is 1 and 0.5 unit

length respectively and shape functions used across either interfaces are bilinear functions.

3

6

9

12

15

2N

1

2

3

N 

1 2 3

4 5 6

7 8 9

1N

Figure 3-7: Reference sub-domains, interface of Lagrange Multipliers and corresponding shape
functions

1 1 1

1 3 1 6 1 9

1 1 1 1

2 3 2 6 2 9

1 1 1

3 3 3 6 3 9

3 6 9

1

2

3

0.3333 0.1666 0

0.1666 0.6666 0.1666

0 0.1666 0.3333

N N N N N N

P N N N N N N

N N N N N N

  

  

  

 
  
    
  
    

 

  

  

  

 (3.16)

73

2 2

1 3 1 15

2 2 2

2 3 2 15

3 6 9

2

12

2

3 3 3 15

2

5

1

1

3

0.2083 0.25 0.0416 0 0

0.0416 0.25 0.4167 0.25 0.0416

0 0 0.0416 0.25 0.2083

N N N N

P N N N N

N N N N

 

 

 

 
 
 
 
 
 

 
 


 
  

 

 

  (3.17)

Resulting constraint equations are expressed as:

1 1 2 2 2

3 6 3 6 9

1 1 1 2 2 2

3 6 9 3 6 9

2 2

12 15

1 1 2 2 2

6 9 9 12 15

0.3333 0.1666 0.2083 0.25 0.0416

0.1666 0.6666 0.1666 0.0416 0.25 0.4167

0.25 0.0416

0.1666 0.3333 0.0416 0.25 0.20835

x x x x x

x x x x x x

x x

x x x x x

    

     

 

    

 (3.18)

Hence, multiple grid coupling between conforming and non-conforming sub-domains

can be achieved using Eq. (3.12) – (3.13) and Eq. (3.14) – (3.15) respectively. Note: the

multi-constraint operator for coupled sub-domains, as described by Eq. (3.7) and (3.11), is

expressed as the sum of component sub-domain contributions. Accordingly, the interface

connectivity matrix ()L should be assigned a positive bias ()L for non-mortar DOF and a

negative bias ()L for the mortar DOF.

In the case of non-conforming sub-domains, the numerical integration in Eq. (2.73) and

(2.74), or equivalently Eq. (3.16) and (3.17), is typically performed over each element edge

using the Quadrature rule (Zienkiewicz et al. 2005). MGMT Method however, uses

74

Trapezoidal rule (Lacour & Maday 1997) for the numerical integration of interface

constraints due to its ease of implementation. Under this approach, the interface of

Lagrange Multipliers (non-mortar interface) is divided into N equally spaced panels, or

1N  grid points such that 1 2 1Na x x x b     and the grid spacing

() /x b a N   .

2NN 1N N 

a

b

x

x

Figure 3-8: Interface integration grid

The product of shape functions, and their numerical integration, across the length of the

interface of Lagrange Multipliers is then obtained as follows:

1,2

1 1

1 1

1 1

1

() ()

() () () ()
2

b

k m k m

a

N

k i m i k i m i

i

N N d N x N x dx

x
N x N x N x N x



 

 



 



 


   

 



 (3.19)

1,2

2 2

2 2

1 1

1

() ()

() () () ()
2

b

k n k n

a

N

k i n i k i n i

i

N N d N x N x dx

x
N x N x N x N x



 

 



 



 


   

 



 (3.20)

75

3.4 Multiple Time-Scale Coupling

3.4.1 Newmark Time Integration

In this section we will briefly discuss the Newmark time integration method (implicit

and explicit) and its implementation algorithm as suited for MGMT coupling. We begin

with fully discretized equation of motion, as derived using Generalized-α Method in

Section 2.3.3, with 0m f   .

1 1 1 1n n n nMU CU KU F      (3.21)

Displacement and velocity updates using Newmark parameters  and  are expressed

as:

 2 2
1 10.5n n nn nU U tU t U t U       (3.22)

 1 11n nn nU U t U t U      (3.23)

Substituting these equations back into Eq. (3.21), the acceleration-form of Newmark

Method is obtained as:

1nU  n+1K = F (3.24)

Where effective stiffness matrix K and load vector n+1F are expressed as:

 2M t C t K   K (3.25)

76

     2

1 0.51 n n nn nn K U tU t UF C U t U        n+1F (3.26)

Equation (3.24) can now be solved for unknown accelerations by factorizing K using

Cholesky decomposition as TLDLK . Displacements and velocities can then be obtained

from Eq. (3.22) and (3.23) respectively.

The Newmark algorithm (for an undamped case) is stable if 1/ 2  and is

unconditionally stable if 2(1/ 2) / 4   . With appropriate expression for  and  , the

Newmark Method can be further classified into (Cook et al. 2001):

1) Implicit constant average acceleration method, also known as Trapezoidal rule

1 1

2 4
and  

2) Implicit linear acceleration method (corresponds to θ = 1 in the Wilson Method)

1 1

2 6
and  

3) Explicit Central Difference Method (CDM), also known as Velocity Verlet Method

1
0

2
and  

In order to facilitate the derivation of MGMT equations, it is helpful to visualize the

Newmark Method, Eq. (3.21), (3.22) and (3.23), in a matrix form as follows:

 
 

1 1

1

1

2 2

0

0

0 0 0

0 1 0

0 0.5

n n n

n n

n n

U F U

U U

U U

M C K

t I t I I

t I t tI I

 

 

 





       
       

         
              

   

    

 (3.27)

77

Equation (3.27) can be further expressed in compact form as follows:

1 1 nn nMU F NU   (3.28)

If the time interval of interest is divided into N time-steps of size t , with Eq. (3.28)

enforced at discrete instants of time nt where  0,1,2,... 1n N  , entire time evolution can

be expressed as:

1 1 0

2 2

1 1

0 0 0

0 0

0 0

0 0 N N

U F NUM

U FN M

U FN M  

    
    
    

    
    
         



 (3.29)

A pseudo-code to advance the solution of an input system of equations from time-step

n to (1)n using the Newmark Method can now be expressed as:

System matrices

M C K

Previous solution

n n nU U U

Load vector

1nF 

Algorithmic parameters

t  

Newmark Method

1) Compute effective stiffness matrix

2) Factorize effective stiffness matrix

3) Compute effective load vector

4) Solve for acceleration

5) Compute updated displacements

6) Compute updated velocities

Solution

1 1 1n n nU U U  

Input

Black-box

Output

Input

Figure 3-9: Pseudo-code for direct time integration using Newmark Method acceleration form

78

3.4.2 Interface Condensation

In this section we will derive the fully discretized equations of motion for decomposed

sub-domains, coupled over multiple time scales. We shall use the DD from Figure 3-2 (b).

It is assumed that every component sub-domain is discretized (spatially and temporally)

independent of each other and multiple grid coupling between adjacent sub-domains is

established using M-FEM.

Let the global time-step for evolving MGMT equations from nt to 1nt  , where

 0,1,2,... 1n N  , be T . For reference purposes, we also assume that 1 is integrated

at the global time-step T . Every other component sub-domain ()i can be integrated

with time-steps it such that ()T T = ()i iT t  . In order to obtain global solution at

synchronous time instants it is necessary to ensure that the time-step ratio i is an integer

factor of the global time-step T . Let us also introduce an intermediate time-step counter

i such that  0,1,2,i i  . See Table 3-2 and Figure 3-10 to get a clear understanding

of these time-stepping parameters.

Table 3-2: Sub-domain time-stepping parameters

Sub-domain Time-step

(Δt)

Algorithmic

parameters

Time-step ratio

(ξ = ΔT / Δt)

Intermediate

step counter (η)

Ω
1
 Δt

1
 = ΔT β

1
, γ

1
 ξ

1
= 1 η

1
 = 0, 1

Ω
2
 Δt

2
 β

2
, γ

2
 ξ

2
 η

2
 = 0, 1, 2 … ξ

2

: : : : :

Ω
S
 Δt

S
 β

S
, γ

S
 ξ

S
 η

S
 = 0, 1, 2, 3 … ξ

S

79

n

1n 

T

Global

t ime-step



1t

1

it

i

Sub-domain

t ime-steps

i iT t 

T 0i 

i

Intermediate

step counter

i i 

Figure 3-10: MGMT time-stepping

Using Newmark Method, fully discretized equations of motion for component sub-

domains along with the interface condition enforced at i i  , i.e. global time-steps, are

expressed as:

 1,2
T

i i i i i

i i i i i i i iM U C U K U L F i S
    

     (3.30)

1

0i

S
i i

i

LU




 (3.31)

In Eq. (3.30) unknown interface reactions (Lagrange Multipliers) are computed at every

intermediate time-step, for every component sub-domain. This is computationally very

expensive, especially in cases where the time-step ratio between adjoining sub-domains is

large. Intermediate interface reactions (at 0 i i  ) can however be condensed, so that

80

Eq. (3.30) can be expressed in terms of Lagrange Multipliers at global time-steps, that is in

terms of (0)i

n   and 1 ()i i

n    .

Interface condensation is performed using an energy preserving approach that is similar

to PH Method. This approach makes the interface computation i times faster than GC

Method, making it computationally superior. However, the drawback in using PH Method

is that it allows coupling only two sub-domains at a time. Hence for multiple sub-domain

coupling, one needs to implement a recursive solution algorithm (Prakash 2007) that can

solve component sub-domains – one pair at a time. This again restricts the computational

efficiency of multiple time-scale coupling. Also, in PH Method, the Lagrange Multipliers

are expressed in terms of ‘unbalanced’ interface reactions, which are obtained from the

coarse time-step sub-domain. This makes the fine time-step sub-domain dependent on other

sub-domains, making it impossible to solve multiple sub-domains concurrently using

parallel processing. MGMT Method, however, uses the energy preserving approach with a

slight modification, such that the intermediate interface reactions are expressed only in the

terms of known ()n and unknown 1()n  Lagrange Multipliers. We will also show that

our implementation results in exclusively independent sub-domains, so they may be solved

concurrently independent of each other, further improving computational efficiency.

We begin with kinematic decomposition, Eq. (3.32), which will enable us to define the

equation of motion independently under the action of external forces and under the

response of interface reactions. Accordingly, let:

U V W  (3.32)

81

Where the notation (~) was established earlier in Eq. (3.27) and (3.28). Using Eq.

(3.32), equilibrium of 1 can be expressed as:

   1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

T

n n n n n n n nM V C V K V M W C W K W F L               (3.33)

Note: for 1 , 1 1  which corresponds to 1 1  and hence the time instant (1)n .

Equation (3.33) can now be decomposed into two equations as follows:

1 1 1 1 1 1 1
1 1 1 1n n n nM V C V K V F      (3.34)

1 1 1 1 1 1 1
1 1 1 1

T

n n n nM W C W K W L        (3.35)

Equation (3.34) represents the equilibrium of 1 and its contribution to the kinematic

quantities under the action of external forces only. Equation (3.35) on other hand represents

the equilibrium under the action of Lagrange Multipliers or unknown interface reactions. In

order to avoid interface dissipation across intermediate time-steps, the equilibrium of 1 is

also enforced at every intermediate time-step (2,3)i i S  instant by requiring that the

combined residual of Eq. (3.34) and (3.35), represented by f and l respectively, is

equal to zero. That is:

 1 1 0 1,2i if l i S
 

    (3.36)

For 1i  or 1  , Eq. (3.36) is identical to solving the equilibrium of 1 as defined by

Eq. (3.30). However, for 1 i S  and 1  , it is equivalent to enforcing the equilibrium

of 1 across intermediate time-steps.

82

The first term in Eq. (3.36) represents the free residuals obtained under the action of

external forces and the second term represents the link residuals obtained under the action

of unknown interface reactions:

 1 1 1 1 1 1 1 1 2i i i i if F M V C V K V i S
    

      (3.37)

 1 1 1 1 1 1 1 1 2
T

i i i i il L M W C W K W i S
    

        (3.38)

Before enforcing Eq. (3.36) let us define necessary linear interpolation functions for

obtaining intermediate quantities used in Eq. (3.37) and (3.38):

1 1 1
11i

i i

n ni i
V U V


 

  

   
   
   

   (3.39)

1 1
1i

i

ni
W W





 

 
 
 

 (3.40)

1 1 1
11i

i i

n ni i
F F F


 

  

   
   
   

   (3.41)

Equation (3.34) can be solved independently using the Newmark Method, Figure 3-9,

yielding the solution vector at time instant (1)n or 1 1(1)   . Equation (3.37) can

now be expressed as:

83

1 1 1 1 1 1
1 1

1 1 1 1 1 1
1 1

1 1

1 1

i

i i i i

n nn ni i i i

i i i i

n nn ni i i i

f F F M U V

C U V K U V




   

   

   

   

 

 

             
          
             

             
          
             

     

     

 (3.42)

 

 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1

1i

i

n n n ni

i

n n n ni

f F M U C U K U

F M V C V K V










    

 
 
 

 
 
 

     

   

 (3.43)

Using Eq. (3.30) and (3.34) we have:

1 11
T

i

i

ni
f L








 
  
 

  (3.44)

Using Eq. (3.40), link residuals from Eq. (3.38) can be expressed as:

1 1 1 1 1 1 1 1
1 1 1

T

i i

i i i

n n ni i i
l L M W C W K W
 

  
 

    

     
          
     

     (3.45)

 1 1 1 1 1 1 1 1
1 1 1

T

i i

i

n n ni
l L M W C W K W
 


 

   

 
  
 

     (3.46)

Further using Eq. (3.35):

1 1 1

1

T T

i i

i

ni
l L L
 


  




 
    

 
 (3.47)

84

Enforcing Eq. (3.36) we get:

1 1 1

1

1 1 1

1

1 0

1

T T T

i

T T T

i

i i

n ni i

i i

n ni i

L L L

L L L





 
  

 

 
  

 





   
      

   

   
      

   

11i

i i

n ni i

 
  

 


   
      

   
 (3.48)

Equation (3.48) represents the interpolation function to compute intermediate Lagrange

Multipliers (interface reactions) at every intermediate time-step i for i (2,3)i S .

We can now condense the intermediate Lagrange Multipliers and express the equilibrium

of i as follows:

1 1
T T

i i i i

i i
i i i i i i i i i

n ni i
M U C U K U L F L

   

 
 

 


   
        

   
 (3.49)

Comparing Eq. (3.49) with Eq. (2.105) derived in Section 2.5.5 for PH Method, we

clearly see that this approach does not impose any sub-domain dependency. Intermediate

interface reactions are now defined only in terms of unknown Lagrange Multipliers at

(1)n and known Lagrange Multipliers at n , as shown in Figure 3-11. This further

enables us to solve every component sub-domain independent of each other followed by a

direct solution of 1n  .

85

n

1n 

T t

T T 

T

T t 





n

1n 

T t

T T 

T

T t 



0

(a) (b)

Figure 3-11: Comparison between (a) PH Method and (b) MGMT Method

Using compact notations discussed earlier in Eq. (3.27) and (3.28), global system of

fully discretized equations along with displacement and velocity updates can now be

expressed as:

 1 1
1 1,2

T

i i i

i i
i i i i i i i

n ni i
M U L F N U L i S

  

 
 

 
 

   
        
   

 (3.50)

1

1

0
S

i i

n

i

B U 



 (3.51)

Where: 0 0i iB L    (3.52)

86

3.5 Stability Analysis Using Energy Method

When deriving coupled MGMT equations for component sub-domains, we assumed

that the solution is stable if energy is conserved within respective sub-domains (local

equilibrium is satisfied) and interface energy produced as a result of introducing Lagrange

Multipliers is identically zero. This allowed us to define an appropriate variable for

enforcing continuity across dividing interfaces.

In this section we will show, using Energy Method (Richtmyer & Morton 1967;

Hughes 2012), that the change in energy due to MGMT coupling over time-step 1()n nt t 

or ()T T T  is identically zero if the time integration scheme is stable within

respective sub-domains. We will also show that enforcing continuity of velocities

conserves global energy by yielding zero interface energy contributions.

Some useful definitions and identities used in this Section are, (Hughes 2012):

  1 n n nUndivided forward difference o x xpera xtor   (3.53)

1
2

n n
nmean value operator

x x
x 


 (3.54)

 
1

2

T T

n n n nx A x x A x    (3.55)

1

2

T T
T

n n n n n nx A x x A x x A x 

 
                 

 
 (3.56)

87

Before obtaining stability conditions for coupled sub-domains, we shall derive the

necessary equations for a single sub-domain. For the purpose of stability, it suffices to

restrict our discussion to homogeneous cases where the external applied forces on a system

are equal to zero. Accordingly, the governing equation, discretized in time using Newmark

Method, along with displacement and velocity updates is expressed as:

1 1 1 1

T

n n n nMU CU KU L        (3.57)

 1 11n n n nU U t U t U      (3.58)

 2 2

1 10.5n n n n nU U tU t U t U       (3.59)

Let domain energies be represented by:

1ˆ()
2

TKinetic Energy T x x M x (3.60)

1ˆ()
2

 TStiffness Energ V x x K xy  (3.61)

 ˆ () TDissipation Ener x C xgy D x  (3.62)

Equations (3.58) and (3.59), in terms of discrete operators can be expressed as:

n nU t U 
     (3.63)

88

   
2

2
2

n n n

t
U t U U 


       (3.64)

Using Eq. (3.63), Dissipation energy can be expressed as:

  2ˆ T

n n nD U t U CU  
     (3.65)

Further using Eq. (3.56), Eq. (3.65) can be expressed as:

 
2

2

ˆ

1 1
2

2 2

n

T T T

n n n n n n

D U

t U C U U C U U C U 

   

     
                  

     

 (3.66)

       
2

2 1 1ˆ ˆ ˆ ˆ
2 2

n n n nD U t D U D U D U 
                            

 (3.67)

The energy balance equation from time-step 1n n  is expressed by applying the

forward difference operator [] to the fully discretized equation of motion and then pre-

multiplying by []T

nU :

    0
T T T T

T

n n n n n n n nU M U U C U U K U U L                           (3.68)

89

Substituting Eq. (3.63) and (3.64):

   
2

2 0
2

T
T T

n n n n n n

T
T T

n n n n

t U M U U C U U tK U

t
U tK U U L



   





                 


          

 (3.69)

       

       
3

1ˆ ˆ ˆ ˆ2
2

1ˆ ˆ2 2 0
2 2

n n n n

T
T

n n n n

t T U T U D U t V U

t
V U V U U L



   

                        

                       

 (3.70)

Substituting Eq. (3.65) and dividing both sides by t :

         

     

     

2

2

2

1ˆ ˆ ˆ ˆ2
2 2

1 1ˆ ˆ2 2 2
2 2 2

1 1ˆ ˆ
2

n n n n

n n

T
T

n n n n

t
T U V U t D U V U

t
T U V U

t D U tD U U L
t

  

   

 

                       

   
              

   

 
             

 (3.71)

Using the notations described in Eq. (3.60), (3.61) and (3.62), we can now express the

above equations as:

   

 

 

2

2

1 ˆ2 2
2 2

1 1
2 2

2 2 2

1

T

n n n

T

n n

T T
T

n n n n

t
U M K t C U V U

t
U M K t C U

t U C U U L
t

  

   



                    

    
                

    

    

 (3.72)

90

Introducing (Hughes 2012):

21

2 2

1

2

B M t C t K

A B t C


 



   
         

   

 
    

 

 (3.73)

Equation (3.72) can be expressed as:

 

1 1 1 1

1 1 1 1

2 2 2 2

1 1

2

T T T T

n n n n n n n n

T T T
T

n n n n n n

U AU U AU U KU U KU

U B U t U C U U L
t

 

      

 
                

 (3.74)

Equation (3.74) is similar to the energy balance equation of a continuous domain,

except for the interface energy term. The system of MGMT equations can now be

considered numerically stable if the total energy change (the RHS of Eq. (3.74)) under no

external loads is less than or equal to zero. Hence, if we can show that the interface

contributions are less than or equal to zero, the burden of stability relies solely upon the

stability of component sub-domains, as integrated using Newmark Method.

We shall now assume DD of a continuous region  into S component sub-domains,

Figure 3-2. (b), with sub-domain time-stepping parameters as described in Figure 3-10 and

Table 3-2. Using Eq. (3.74), interface contributions from i can be expressed as:

1 1
1

1ˆ
i

T

i i i

i

T
i i

i
E U L

t



 



  



   
   

 (3.75)

91

Augmented interface contributions from all component sub-domains can then be

expressed as:

   

1 1
1 11 1

1 1
1 1

1ˆ ˆ

1

i i

T

i i i

i i

i

T

i i i i

i

S S T
i i

i
i i

S T
i i i

i
i

E E U L
t

U U L
t

 

 

 
 



   




 

   
  

 
 

    
   

  


 



 (3.76)

Using the relationship derived in Eq. (3.48) the forward difference of interface

reactions in terms of n and 1n  is expressed as:

 

1 1

1 1

1

1 1
1 1

1

n n n n

n n

    

   
   

   

 


 

 



    

           
               

          

 

(3.77)

Equation (3.76) now becomes:

   

   

11
1 1

1 1
1 1

1ˆ
i

T

i i

i

i

i i

i

S T
i i i

n ni i
i

iS
T i i

n n i i
i

E U U L
t

L
U U

t





 




 


 


 


 
 

 
 

  
   

   

  
   

  

 

 

 (3.78)

Note:

       1 0 2 11 1
1

0 1

i

i i i i

i

i

i i i i i i i i

i i i i

n n

U U U U U U U U

U U U U



   




 




       

   


 (3.79)

92

And:

i it T    (3.80)

Therefore we have:

   

 
 

 

1 1

1

1

1

1

1

1

1

ˆ
iS

T i i

n n n n

i

T
S

n n i i i

n n

i

T
S

n n i i i i

n n

i

L
E U U

T

L U U
T

LU LU
T


 

 

 

  















 
   

 


 




 









 (3.81)

Since we have enforced continuity of velocities across sub-domain interfaces, Eq.

(3.11), the above expression yields:

 1

1

1

ˆ
T

S
n n i i

n

i

E LU
T

 

 









0

1

S
i i

n

i

LU






0  

 
  

 (3.82)

ˆ 0E


  (3.83)

Equation (3.83) proves that introducing Lagrange Multipliers in conjugation with the

continuity of velocity constraint, results in identically zero energy contributions.

Accordingly, the stability of MGMT coupling only depends on the stability of Newmark

Method in integrating component sub-domains. Hence, as long as the stability requirements

are satisfied within the time integration of respective sub-domains, MGMT coupling is

stable and energy preserving.

93

3.6 Solution Algorithm and its Finite Element Implementation

In this section we will derive the implementation algorithm and a step-by-step solution

procedure for obtaining the solution of coupled MGMT equations as described by Eq.

(3.50) and (3.51). Let us use the DD from Figure 3-2 (b) and the time-stepping parameters

from Table 3-2, Figure 3-10. In order to communicate information across component sub-

domains at global time-step T or ()i i  , equilibrium of i where 1i  needs to be

advanced from 1,2i i  . These intermediate steps combined together in a matrix

format can be expressed as:

 

 

11

2

2

1

1
1

0 0 0 1/

20 0 2 /
1

0 0

0 0

T

T

i

i

i i i ii

n ni i i i

i

i i i i
i i

ni
i

i i i

in

F N U LU
M L

U

N M L
F L

U

N M L
F






 

 


 

  
                                           
    

 

 (3.84)

Introducing the notation () Eq (3.84) can be expressed as:

1i i

i i i i

nM U L F
 

   (3.85)

Where:

0 0 0

0 0

0 0

0 0

i

i i

i

i i

M

N M
M

N M

 
 
 
 
 
 

 (3.86)

94

1 2i i

T
i i i iU U U U
 

 
 

 (3.87)

2
T

i i
i i

i i

L L
L L

 

 
  
 

 (3.88)

1

2

1
1

2
1

T

T

i

i

i i i i

n ni

i ii
ni

i

F N U L

F LF

F











  
    

  
  
    
  
 
 
 
 

 (3.89)

For sub-domain 1 where 1 1  we have:

1 1 1 1 1 1

1 1 1n n n nM U L F N U     (3.90)

Final system of equations for coupled sub-domains (discretized independently in space

and time) and synchronized at every global time-step T or time-instant (1)n can now

be expressed as:

2 2

2 2 2 2

1 1
1 1 1 1

1 1

2 1

1

0 0

0 0

0 0

0 0

S S

S SS S

n n n

S

n

U FM L

M L U F

M L U F N U

B B B

 

 



 



    
    
    
    

    
    

    
    

     

 (3.91)

95

With:

0 0i iB B    (3.92)

Above set of equations can be conveniently grouped block wise as follows:

A b x f

c d y g

     
     

     

 (3.93)

Using Block Elimination using Crout factorization or BEC algorithm (Govaerts 1991),

the LHS coefficient matrix in Eq. (3.93) can be decomposed as follows:

0

0 1

A b A I v

c d c 

     
     

     
 (3.94)

Global solution to the original problem at time ()T T can now be obtained using the

following steps:

3.6.1 Step 1: Solve Av = b

2

2
2 2

11 1

1

0 0

0 0

0 0

S

SS S

n

vM L

vM L

vM L







    
    
    

    
    
    

    

 (3.95)

Where:

1 2i i

T
i i i iv v v v
 

 
 

 (3.96)

96

Since the LHS (coefficient) matrix and the RHS vector in Eq. (3.95) remain constant in

case of linear structural systems, the above equation is computed only once before entering

the global time-stepping loop. Starting with 1 :

1 1 1 1 1

1

1 1 1 1

1 1

2 1 1

1

0 0

0 0

T

n

n n

n

M C K v L

M v L T I v

T I v







 



    
    

        
         

 (3.97)

Comparing Eq. (3.97) with Eq. (3.28) we see that LHS coefficient matrix represents the

Newmark set of equations for 1 with zero initial conditions. The solution vector can

hence be obtained by using the Black box routine for Newmark Method, Figure 3-9.

Notice that the RHS (load) vector consists of interface connectivity matrix (Boolean

projection matrix in case of conforming sub-domains), accordingly the solution array  in

Eq. (3.96) is also referred to as the unit load response matrix. The first index of interface

connectivity matrix is equal to the total number of DOF associated with the interface of

Lagrange Multipliers, i.e. DOF () . Hence the above system needs to be solved

successively by considering one RHS column at a time; that is by loading one sub-domain

interface DOF at a time. Introducing the notation [: ,]j to represent [all rows, j
th

 column]

of the corresponding RHS vector, the solution array will be an aggregate of DOF ()

columns as follows:

1 ()

1 1

1 1

1 1 1

1 1 1

1 1

1 1

j j DOF

n n

n n n

n n

v v

v v v

v v

 
 

 

  

 

 
 

  
 
 

(3.98)

97

In general, for any sub-domain (1,2,)i i S  the solution array is structured as:

1 ()

i i

i i i

i i

j j DOF

i i

i i i

i i

v v

v v v

v v



 

  

 

 
 

 
 
 
 
  

(3.99)

Step 1 represented as a sub-domain independent pseudo-code can be illustrated as

follows:

Input

Black-box

Output

System matrices

i i iM C K

Previous solution

1 1 1k k k    

Load vector

   / : ,
Ti ik L j

Algorithmic parameters

i i it  

Newmark integration

Solution

 : ,i

k k k kv j   

for i = 1 to S

for j = 1 to DOF(λ)

for k = 1 to ξi

Figure 3-12: Pseudo-code for computing unit load response matrix for component sub-domains

98

3.6.2 Step 2: Compute δ = d – cv

  2

2

2 1 2 1

1

2 2 1 1

1

2 2 1 1

1 1 1

1 ()

1 1

1

0 S

S

T
S S

n

S S

n

S S

n n n

j j DOF

S
i i i

n n

i

B B B v v v

B v B v B v

B v B v B v

L v v

 

 



 



  

 
 

 



    
  

     
 

      

 
 

    
 
 



 (3.100)

Notice that in order to compute , we need the solution from Step 1 at (1)n time

instants. Hence for component sub-domains with 1i  , we only require the solution

at i i  . This observation can be used to our advantage by storing results only for

i i  in Eq. (3.96) and (3.99). Matrix  is similar to that obtained in the GC Method for

the case of T t   , (Gravouil & Combescure 2001). As we can see, it may be calculated

only once before entering the global time-stepping loop.

3.6.3 Step 3: Solve Aw = f

2
2

2
22

11
1 1 1

1
1

0 0

0 0

0 0

SS

SSS

n
n n

FwM

w FM

wM F N U









   
   
   

    
   
   

      

 (3.101)

Where:

1 2i i

T
i i i iw w w w
 

 
 

 (3.102)

99

For 1 we have:

1 1 1 1 1

1 1n n nM w F N U   (3.103)

Since the above system of equations is solved under the action of external forces only,

it is equivalent to solving the free problem for 1 as expressed by Eq. (3.34). Step 3

represented as a sub-domain independent pseudo-code can be illustrated as follows:

for i = 1 to S

for k = 1 to ξi

Input

Black-box

Output

System matrices

i i iM C K

Previous solution

1 1 1k k kw w w  

Load vector

  11 /
Ti i i

k kF k L   

Algorithmic parameters

i i it  

Newmark integration

Solution

i

k k k kw w w w

Figure 3-13: Pseudo-code for computing sub-domain response under the action of (applied)
external forces and known interface reactions

100

3.6.4 Step 4: Compute y = δ
-1

(g – cw)

2

2

2 1 2 1

1

2 2 1 1

1

2 2 1 1

1 1 1

1

1

S

S

T
S S

n

S S

n

S S

n n n

S
i i

n

i

cw B B B w w w

B w B w B w

B w B w B w

L w

 

 





  





   
  

   

   



 (3.104)

 1

1

1

1

1

1

1
1 ()

1 1 1

1 1

0
S

i i

n

i

S
i i

n

i

j j dof

S S
i i i i i

n n n

i i

y L w

L w

L v v L w




















 
 

  

 

 
   

 

 

 
 

    
 
 





 

(3.105)

Since we have already condensed out the interface reactions at intermediate time-steps,

we only need to compute the Lagrange Multipliers at time ()T T . Equation (3.105)

hence represents the direct solution of unknown Lagrange Multipliers at time ()T T .

3.6.5 Step 5: Compute x = w – vy

Global solution (combined from all component sub-domains) at the end of time-step

()T T and local solution at intermediate time-steps (1,2,)  is computed in this

particular step.

2 2

2 1 2 1

1 1S S

T T
S S

n nx w w w v v v y
    

    
   

 (3.106)

101

Equation (3.106) is similar to Eq. (3.32) in the sense that the final solution is obtained

as a sum of free and link responses, in this case however, one does not need to compute

interface reactions at the intermediate time-steps. Now that the global solution is obtained

for time ()T T , we can repeat Steps 3, 4 and 5 in order to compute the desired evolution

of kinematic quantities.

Aforementioned solution algorithm can be conveniently integrated into an existing

structural finite element code. DD of the original problem may be performed prior to the

analysis (user defined) or during analysis (based on a user defined criterion). Assuming

user defined DD, we will now describe a general approach for MGMT implementation:

1) For every sub-domain (1,2,)i i S 

a) Input nodes, coordinates, element connectivity’s, material properties, boundary

conditions, initial conditions, applied loads, time integration parameters and

interface information

b) Form sub-domain arrays (, , ,)i i i iM C K F etc

c) Form Boolean projection matrices ()iB

d) Form interface constraint equations ()iP

e) Form interface connectivity matrices ()i i iL P B

f) Form unit load response matrices using Step 1

2) Compute interface condensation matrix () using Step 2

3) Factorize  (this will be used in Step 4 to compute unknown Lagrange

Multipliers).

4) Compute initial accelerations based on initial conditions.

102

5) Initialize
0 0.0 

6) Loop for total number of integration steps based on global time-step T

a) Computing sub-domain response under the action of (applied) external forces

and known interface reactions using Step 3

b) Compute new interface reactions using Step 4

c) Compute global and local response using Step 5

7) End loop.

103

Chapter 4: Programming the MGMT Method

4.1 Finite Element Analysis Programming Interface (FEAPI)

Finite Element Analysis Programming Interface (FEAPI) is a FORTRAN 90 library for

the numerical solution of partial differential equations using the FEM. It provides basic

building-blocks that allow engineers and software developers to build their own computer

programs in order to solve engineering problems using FEM. As a result the library is very

flexible and enables its users to apply various FE techniques to any new research in the

fields of computational mechanics; e.g. Multiple Grid Multiple Time-Scale (MGMT)

Simulations.

Figure 4-1: Programming the Finite Element Method (Smith et al. 2013)

General purpose (black box) sub-routines and functions for FE computations such as:

numerical integration, multi-element assembly of symmetric/un-symmetric systems,

factorization and solution algorithms were adapted from ‘Programming the Finite Element

Method’ – PFEM (Smith et al. 2013). These program routines are essentially used as

building blocks to construct FEAPI kernel, while extending their capabilities to efficiently

104

allow multiple domain, multiscale simulations. Updated procedures are also compatible

with Basic Linear Algebra Subprograms (BLAS), Message Passing Interface (MPI) and

OpenMP. A primary concern when incorporating FORTRAN 90 sub-routines from PFEM

was the flexibility in scaling FE programs to allow multiscale simulations. Since PFEM

essentially uses Uniform Grid Uniform Time-scale (UGUT) approach for the forced

vibration analysis of linear elastic solids, the driver program and constituent sub-routines

from PFEM, were principally designed to handle only single continuous domains, with

uniform structured grid and uniform time-steps.

Nodes

Elements

Material

Coordinates

Connectivity's

B. Constraints

B. Loads

Int. parameters

Post options

etc.

Input Fi le

Mass

Stiffness

Damping

Load

Displacement

Velocity

Acceleration

Stress

Strain

etc.

Variables

DOF array

Element steering

Element assembly

Global assembly

Load functions

Factorization

Time integration

Result extraction

Global energy

etc.

Functions Output Fi le

+

:

U G U T

Ω

MTGM
•••

Ω1 Ω2 Ωn

Figure 4-2: PFEM (UGUT) and FEAPI (UGUT/MGMT) program components

As seen in Figure 4-2, a finite element program needs to host several integral

components: input/output file handling, program variables and parameters, black-box sub-

routines and functions. PFEM, in regards with UGUT, uses only one instance of these

components, however for MGMT simulations; these components were appropriately scaled

105

in order to accommodate concurrent simulation of 1, 2, n   sub-domains. FEAPI

utilizes advanced FORTRAN 90 programming features such as objects/derived data types

(DDT), data encapsulation, function overloading and type inheritance to incorporate

scalability. Accordingly, the programming interface is very flexible in allowing easy

implementation of new numerical methods.

Figure 4-3: GiD – Universal, adaptive and user-friendly pre- and post-processor

FEAPI also hosts auxiliary sub-routine libraries and customized programmable

interfaces that allow seamless integration with GiD (http://www.gidhome.com/), a

universal, adaptive and user-friendly pre- and post-processor. These program blocks

provide an interactive Graphical User Interface (GUI) for the definition, preparation and

visualization of all data related to FEAPI numerical simulations; pre and post analysis. Pre

analysis data includes the definition of domain geometry, material properties, boundary

conditions, solution parameters and other simulation options; whereas post analysis data

includes FEAPI results – nodal, elemental, domain; which can be visualized using contour

fill / contour lines, vector plots, isosurfaces, deformation, graphs etc.

Complete Application Programming Interface (API) including source codes, list of

program variables/parameters, sub-routine/function input-output arguments, call/caller

graphs and collaboration diagrams is available at: http://home.gwu.edu/~truparel/.

http://www.gidhome.com/
http://home.gwu.edu/~truparel/

106

4.1.1 Program Structure and Component Interfaces

FEAPI consists of following programmable interfaces:

1) FEAPI (collection of basic FEA, auxiliary MATH and program sub-routines)

2) MGMT (sub-routines used to perform MGMT simulations)

3) FEAPI-GiD (pre/post processing sub-routines interfacing with GiD)

4) feapi-gid.gid (GiD problem type to define FEAPI characteristic pre-processing)

Interface 4 - feapi-gid.gid

Interface 3 - FEAPI-GiD

Interface 2 - MGMT

Interface 1 - FEAPI

F

E
A

P I

FORTRAN

TCL

(a) Interface hierarchy

feapi_input.dat

Postprocessor

GiDPost

Preprocessor

feapi-gid.bas

feapi-gid.cnd

feapi-gid.prb

feapi-gid.mat

Output.post.msh

Output.post.res

Output.csv

feapi-summary.txt

START

END

FEAPI

Library

Modules

MGMT

Library

Modules

(b) Interface sub-components and process flow

Figure 4-4: Finite Element Analysis Programming Interface

107

 Figure 4-4 (a) shows the hierarchy between FEAPI interfaces and their interaction

levels whereas Figure 4-4 (b) shows the overall process flow and relevant interface sub-

components. Interfaces 1, 2 and 3 (FORTRAN libraries) comprise of pre/post processing,

computational and solver programs while Interface 4 provides necessary Tool Command

Language (TCL) scripts and files to establish GUI communication with GiD. Following

sections provide a brief overview of FEAPI interfaces and constituent sub-components.

Source

├──+- FEAPI ├──+ Library

 | |- Modules

 |

 |- MGMT ├──+- Library

 | |- Modules

 |

 |- FEAPI-GiD ├──+- GiDPost

 |- Postprocessor

 |- Preprocessor

Figure 4-5: FEAPI code structure

A. Interface 1 – FEAPI

Interface 1 hosts the main program feapi.f90 and primary program variables, sub-

routines and functions.

FEAPI

├──+- Library ├──+- FEA

| |- MATH

| |- Program

|

├──+- Modules ├──+- data_domain.f90

 |- data_feapi.f90

 |- data_material.f90

 |- data_structural.f90

 |- data_transient.f90

 |- precision.f90

Figure 4-6: FEAPI interface sub-components – Library and Modules

108

FEAPI > Module represent a collection of program variables, parameters, their

declaration and initial values. Detailed description of these variables, their collaboration /

inheritance, kind and array size can be found in Appendix D.1.1. Following is a brief

description about each module:

 data_domain contains FEAPI domain variables, such as DDT for domain

parameters (number of nodes and elements, DOF per node, number integration

points, nodal coordinates, element connectivity’s etc.), domain boundary conditions

(restrained, loaded, prescribed nodes and corresponding magnitude vectors) and

domain interface info (mortar, non-mortar declaration and interface nodes).

 data_feapi contains global program variables, such as DDT for input files

(name, location, ID), number of FE domain blocks used, and program block

simulation times.

 data_material contains variables for domain specific material properties

(number of materials, number of material properties, mass matrix formulation).

 data_structural contains variables for structural systems, such as mass,

stiffness, load vector, solution vector, and stress / strain arrays.

 data_transient contains domain specific transient analysis variables, such as

integration method, time-step, algorithmic parameters etc.

 data_precision contains the minimum KIND necessary to store real numbers

with a precision of 15 decimal digits and an exponent in the range 10x10
-307

 to

10x10
307

.

109

FEAPI

 Library ├──+- FEA ├──+- beemat.f90 ├──+- gsteer.f90

 |- deemat.f90 |- iniaccl.f90

 |- domainfx.f90 |- lcontri.f90

 |- domainie.f90 |- sample.f90

 |- domainke.f90 |- shapeder.f90

 |- domainse.f90 |- shapefun.f90

 |- ecmat.f90 |- sk2chol.f90

 |- elmat.f90 |- sk2gaus.f90

 |- elres1.f90 |- skvmul.f90

 |- esq2gsk.f90 |- slskchol.f90

 |- esteer.f90 |- slskgaus.f90

 |- fkdiag.f90 |- slsqlub.f90

 |- formkdiag.f90 |- slsqluf.f90

 |- formnf.f90 |- slsqlup.f90

 |- formsky.f90 |- solvedtrans.f90

 |- fpstiff.f90 |- sq2lu.f90

 |- fresidual.f90 |- sq2lup.f90

 |- fstfearry.f90 |- stressinvar.f90

 |- gafamily.f90 |- tpfunction.f90

Figure 4-7: FEAPI interface sub-components – Library > FEA

FEAPI

 Library ├──+- MATH ├──+- crossproduct.f90 ├──+ BLAS

 |- determinant.f90

 |- distance.f90

 |- identity.f90

 |- inversem.f90

 |- invert.f90

 |- l2norm.f90

 |- piksrt.f90

 |- scalarproduct.f90

Figure 4-8: FEAPI interface sub-components – FEAPI > Library > MATH

FEAPI

 Library ├──+- Program ├──+- cputime.f90 ├──+- ppost.f90

 |- findblock.f90 |- ppres.f90

 |- getname.f90 |- ppropn.f90

 |- lnblnk.f90 |- presult.f90

 |- palloc.f90 |- psaver.f90

 |- pfilename.f90 |- psetup.f90

 |- pinput.f90 |- psolve.f90

 |- postcsv.f90 |- psummary.f90

 |- ppcsv.f90 |- pterminal.f90

 |- ppmesh.f90 |- timestamp.f90

Figure 4-9: FEAPI interface sub-components – FEAPI > Library > Program

110

FEAPI library contains fundamental FE, MATH and program sub-routines/functions. A

detailed description of these sub-components, list of input/output arguments, inherited

modules and hierarchical call/caller diagrams can be found in Appendix D.1.2. Library

highlights and their brief introduction is as follows:

 Library > FEA contains sub-routines and functions used to perform FE operations,

such as formation of nodal DOF array, computation of element shape functions and

their derivatives, computation of strain-displacement and stress-strain matrices,

computation and assembly of global system matrices (symmetric/skyline and

unsymmetric), computation of augmented stiffness matrix for prescribed boundary

conditions, computation of time proportional load functions, computation of global

energies, computation of stresses and strains at Gauss integration points, direct

integration of structural dynamic systems and LU factorization (with and without

pivoting).

 Library > Math contains sub-routines used to perform scalar/array operations such

as scalar product, cross product, matrix inverse, matrix determinant and L2 Norm

calculations. It also contains efficient and portable library BLAS (Lawson et al.

1979) to perform various vector and matrix operations.

 Library > Program contains auxiliary sub-routines/functions that are essentially

used for program operations, such as reading input file, allocating/initializing and

updating FEAPI variables, initializing domain data blocks, saving requested

simulation results, generating CSV, *.post.msh, *.post.res and *.txt output files and

computing CPU solution times.

111

B. Interface 2 – MGMT

Interface 2 contains a collection of black box sub-routines used to perform concurrent

multiple grid multiple time-scale simulations for linear structural dynamic equations.

MGMT

├──+- Library ├──+- fbpmat.f90 ├──+- mgmtdid.f90

| |- fmcmat.f90 |- mgmtgdb.f90

| |- fulmat.f90 |- mgmtvar.f90

| |- immat.f90 |- solvemgmt.f90

| |- invmap.f90 |- valued.f90

| |- mgmtall.f90 |- valuem.f90

|

├──+- Modules ├──+- data_mgmt.f90

Figure 4-10: MGMT interface sub-components – Library and Modules

A brief introduction to MGMT sub-components is as follows:

 MGMT > Library contains sub-routines designed specifically for operations such as

allocation of MGMT variables, setup of MGMT sub-domain hierarchy (according

to time-step ratio) and initializing of corresponding domain data blocks, formation

of Boolean projection matrix, formation of multi-constraint interface matrix,

computation of sub-domain unit load response and solution of MGMT equations.

 data_mgmt stores global/sub-domain specific MGMT variables, such as sub-

domain ID’s, time-step ratios, list of interface nodes/DOF, sub-domain coupling

matrices, interface condensation matrix, sub-domain unit load response arrays,

interface projection matrix and array of Lagrange Multipliers,

A detailed description of these sub-routines, DDTs, their inheritance, variable/array

dimensions and collaboration can be found in Appendix D.3.

112

C. Interface 3 – FEAPI–GiD

Interface 3 forms the outer core layer of FEAPI that enables interaction with GiD.

FEAPI-GiD

├──+-Preprocessor ├──+- ip_dbcs.f90

| |- ip_intf.f90

| |- ip_mats.f90

| |- ip_mesh.f90

| |- ip_post.f90

| |- ip_tran.f90

|

├──+-Postprocessor ├──+- gidgnum.f90

| |- gidgxyz.f90

| |- gidmesh.f90

| |- gidrmat.f90

| |- gidropn.f90

| |- gidrvec.f90

|

├──+- GiDPost ├──+- data_post.f90

 |- GiDPost.f90

 |- GiD_hdf5.lib

 |- GiD_post.lib

 |- GiD_zlib.lib

Figure 4-11: FEAPI-GiD interface sub-components – Preprocessor

 Preprocessor is used to read input files generated using Interface 4 – feapi-gid.gid.

It is also used to allocate program variables and initialize corresponding data within

FEAPI.

 Postprocessor is used to output FEAPI post result files for visualization using GiD.

 GiDPost is a set of FORTRAN 90 modules, functions and sub-routines used to

write FEAPI post result files in ASCII or binary compressed format. This library is

copyrighted by CIMNE (http://www.gidhome.com/)

Refer Appendix D.2 for a comprehensive description on these sub-components.

http://www.gidhome.com/

113

D. Interface 4 – feapi-gid.gid

This interface provides an interactive GUI for the definition, preparation and

visualization of all input data related to FEAPI numerical simulations. It works in

conjugation with GiD and is utilized to define pre analysis data, such as domain geometry,

material properties, boundary conditions, solution parameters and other simulation options.

The principle advantage in implementing this interface is that it lets you perform all

necessary declarations and configurations using GiD GUI, hence avoiding the need to

modify the solver itself. Pre-processing is initiated via customized GiD problem type feapi-

gid.gid. This package is required to define, assign and output all the necessary information

that is required to perform a FEAPI simulation. In order to achieve this, some files are used

to define global parameters, conditions, materials, general analysis options, unit systems,

and the structured input file format for FEAPI program solver. These files, Figure 4-12,

combined together constitute the GiD problem type auxiliary interface feapi-gid.gid.

 feapi-gid.gid ├──+- feapi-gid.bas

 |- feapi-gid.cnd

 |- feapi-gid.mat

 |- feapi-gid.prb

 |- feapi-gid.win.bat

Figure 4-12: feapi-gid.gid interface sub-components

Conditions file (feapi-gid.cnd) contains information about conditional variables that

can be applied to different geometrical and FE entities. These conditions are accessible via

GiD > Data > Conditions and contain following definitions:

1) Restrained (constrained) DOF

2) Forced DOF w/ respective magnitudes and time functions

114

3) Prescribed (displacement) DOF w/ respective magnitudes and time functions

4) Domain interface nodes

5) Interface info (Mortar/Non-mortar interface declaration)

Materials file (feapi-gid.mat) contains a list of base materials and their mechanical

properties. In a fashion similar to defining the conditional entity, a material declaration can

be considered as a group of fields containing its name, related mechanical properties and

their corresponding values. Accordingly, any of these base materials and associated fields

can be used to define new materials during the pre-processing phase. Contrary to the

conditions file, a material can be assigned to different levels of geometrical entities (lines,

surfaces or volumes) and can even be assigned directly to grid elements. Included material

definitions, Table 4-1, are accessible via GiD > Data > Materials.

Table 4-1: FEAPI material library

Name Modulus of Elasticity (E) Poisson’s Ratio (ν) Mass Density (ρ)

Steel 207E9 N/m
2
 0.3 7830 Kg/m

3

Aluminum 69e9 N/m
2
 0.33 2712 Kg/m

3

Concrete 40e9 N/m
2
 0.2 2400 Kg/m

3

Copper 117e9 N/m
2
 0.36 8940 Kg/m

3

Lead 13790 N/m
2
 0.425 11340 Kg/m

3

Ph-Bronze 116e9 N/m
2
 0.33 8900 Kg/m

3

Zinc 82737 N/m
2
 0.25 7135 Kg/m

3

Tin 47e9 N/m
2
 0.33 7280 Kg/m

3

Problem Data File (feapi-gid.prb) contains information about common simulation

parameters, program variables and corresponding interval data. Most simulation parameters

are global in nature, i.e. they do not concern any particular geometrical or FE entity. This

115

differs from the previous definitions of conditions and materials properties since they were

all assigned to specific entities. Examples of entity independent global variables include:

DOF per node, type of solution algorithm, algorithmic parameters, convergence criteria,

post result options and so on. Within these declarations, one may consider the definition of

specific problem data for the whole process or intervals of data to allow different variable

values for different solution intervals. Typically, one can define a different load case for

different time intervals in dynamic problems and consequently define variable loads,

variations in time-steps, changes in boundary conditions and so on. FEAPI relevant

definitions included in this file are as follows:

1) Global Variables

GiD > Data > Problem Data > Global Variables

 Analysis type = Static, Transient

 Problem type = Rod, Beam, PlaneStress, PlaneStrain, Axisymmetric, General3D

 Element type = Line, Triangle, Quadrilateral, Tetrahedron, Hexahedron

 Degrees of freedom per node

 Number of Gauss integration points

2) Transient Analysis Options

GiD > Data > Problem Data > Transient Analysis Options

 Direct integration methods = Newmark, WBZ, HHT, Generalized-α

 Algorithmic parameters = Alpha-m, Alpha-f, Beta, Gamma, Delta, Integration time-

step, total number of steps, simulation end time

 Inertia = Consistent or lumped mass matrix formulation

 Damping = Rayleigh damping

116

3) Post Result Options

GiD > Data > Problem Data > Post Result Options

 Post frequency

 Nodal results = Displacement, Velocity, Acceleration

 Element results = Stress (Cauchy, Von Mises), Strains

 Domain results = Kinetic, Stiffness, External, Interface Energy

Once a geometrical entity has been created, meshed, assigned boundary conditions,

material properties and other program variables, Base File (feapi-gid.bas) is used to

generate a structured FEAPI input file (*.dat). The file primarily consists of Tool

Command Language (TCL) scripts that synthesize information from constituent problem

files (*.cnd, *.mat and *.prb) and sequentially print them in a structured format that is

readable via FEAPI. A typical input file generation process can be summarized using

Figure 4-13. This process is initiated via GiD > Calculate > Calculate. An example FEAPI

input file and the description of basic data blocks can be found in Appendix A.1 and

Appendix A.2 respectively.

feapi-gid.bas

feapi-gid.cnd

feapi-gid.prb

feapi-gid.mat

feapi-gid.bat Sub-domain1.dat

Sub-domain2.dat

:

Sub-domainN.dat

Figure 4-13: Input file creation flowchart

117

4.1.2 Program Installation

Interfaces 1 – 4 are included as an integral part of the FEAPI source distribution

(feapi.zip) available at: http://home.gwu.edu/~truparel/. Following files are also included

with the source code:

1) feapi-configuration.txt – Configuration file.

2) feapi.exe – Binary executable file.

3) feapi.chm – Application programming interface (compressed HTML help)

To install the binary version, copy the executable file (feapi.exe), configuration file

(feapi-configuration.txt) and the API (feapi.chm) to desired location (example C:\FEAPI\)

and create input/output directories (C:\FEAPI\Input and C:\FEAPI\Output). Configuration

file contains pointers for FEAPI input/output directory paths and additional MGMT post

result options. These keywords must be defined before running FEAPI. An example file is

described below:

FEAPI::INPUT

C:\FEAPI\INPUT\! FEAPI input directory

FEAPI::OUTPUT

C:\FEAPI\OUTPUT\! FEAPI output directory

MGMT::POST

1! Post frequency

1! Displacements: 1 = Yes, 0 = No

1! Velocities: 1 = Yes, 0 = No

1! Accelerations: 1 = Yes, 0 = No

1 1! Stresses (Cauchy/Von Mises): 1 = Yes, 0 = No; (1/2)

1! Strains: 1 = Yes, 0 = No

1! Kinetic energy: 1 = Yes, 0 = No

1! Stiffness energy: 1 = Yes, 0 = No

1! External work: 1 = Yes, 0 = No

1! Interface energy: 1 = Yes, 0 = No

http://home.gwu.edu/~truparel/

118

Before using feapi-gid.gid, download and install the latest official version of GiD from

http://www.gidhome.com/download/official-versions.

Instructions for installing feapi-gid.gid are as follows:

1) Unzip the contents of feapi-gid.zip

2) Copy feapi-gid.gid to …\GiD_installation_directory\Problemtypes\

3) feapi-gid should now be accessible via GiD > Data > Problem Types

Alternately, feapi-gid.gid may also be copied to another preferred location. In this case

feapi-gid is accessible via GiD > Data > Problem Types > Load. Command execution file

(feapi-gid.win.bat) requires the path to FEAPI input directory that is defined using

FEAPI::INPUT keyword in feapi-configuration.txt. After the input file has been created

and saved inside GiD, it can be generated and exported directly into the FEAPI input

directory via GiD > Calculate > Calculate. To provide this path edit the windows batch

file as follows:

@ECHO OFF

rem FEAPI Input File Base Name = %1

rem FEAPI Input File Location = %2

rem FEAPI-GiD Location = %3

rem Copy FEAPI input file %1.dat to FEAPI Input Directory

rem FEAPI input directory is defined in feapi-configuration.txt

copy %2\%1.dat FEAPI input directory <defined using FEAPI::INPUT>

http://www.gidhome.com/download/official-versions

119

4.1.3 Driver Programs

A. Uniform Grid Uniform Time-scale Simulations

This program solves linear structural dynamic systems using direct time-integration

methods such as Newmark, HHT-α, WBZ or Generalized-α.

→ FEAPI.f90 – Main code

→ pterminal.90 – Select program 1, Read project title

→ pfilename.f90 – Read input filename

→ palloc.f90 – Allocate necessary derived data types for program 1

→ pinput.f90 – Read FEAPI input data

→ ip_mesh.f90 – Read global parameters and mesh data

→ ip_mats.f90 – Read material data

→ ip_dbcs.f90 – Read domain boundary conditions

→ ip_trans.f90 – Read transient analysis options

→ ip_post.f90 – Read post analysis options

→ psetup.f90 – Setup program variables

→ fstfearray.f90 – Allocate and initialize FE structural arrays

→ formsky.f90 – Form FE structural arrays as skyline vectors

→ presult.f90 – Allocate and initialize result storage space

→ psolve.f90 – Solve transient dynamic system

→ solvedtrans.f90 – Solve using direct time integration (program 1)

→ iniaccl.f90 – Solve for initial accelerations using initial conditions

┌ Loop for total number of simulation time-steps

├ Read externally applied loads at current time-step

├ gafamily.f90 – Solve current time-step using Generalized-α method

├ elres.f90 – Compute element results (stresses and strains)

├ domainke.f90 – Compute kinetic energy for current time-step

├ domainse.f90 – Compute stiffness energy for current time-step

├ domainfx.f90 – Compute external work for current time-step

├ pasver.f90 – Save results for current time-step

└ End loop

→ ppost.f90 – Post simulation results

→ psummary.f90 – Post simulation summary

B. Multiple Grid Multiple Time-scale Simulations

This program solves linear structural dynamic systems using MGMT method.

→ FEAPI.f90 – Main code

→ pterminal.90 – Select program 2, read project title and number of sub-domains

┌ Loop for total number of sub-domains

├ pfilename.f90 – Read sub-domain input filename

└ End loop

→ palloc.f90 – Allocate necessary derived data types for program 2

→ pinput.f90 – Read FEAPI input data

┌ Loop for total number of sub-domains

├ ip_mesh.f90 – Read sub-domain global parameters and mesh data

├ ip_mats.f90 – Read sub-domain material data

├ ip_dbcs.f90 – Read sub-domain boundary conditions

├ ip_trans.f90 – Read sub-domain transient analysis options

├ ip_post.f90 – Read sub-domain post analysis options

├ ip_intf.f90 – Read sub-domain interface data

120

└ End loop

→ psetup.f90 – Setup program variables

┌ Loop for total number of sub-domains

├ fstfearray.f90 – Allocate and initialize FE structural arrays

│ → formsky.f90 – Form FE structural arrays as skyline vectors

└ End loop

→ mgmtdid.f90 – Setup sub-domain hierarchy

→ mgmtall.f90 – Allocate and initialize MGMT specific program variables

→ mgmtvar.f90 – Setup MGMT variables

┌ Loop for total number of sub-domains

├ fbpmat.f90 – Form sub-domain Boolean projection matrix

└ End loop

┌ Loop for total number of sub-domains

├ Assign interface projection bias

└ End loop

┌ Loop for total number of sub-domains

├ fmcmat.f90 – Form sub-domain multi Constraint matrix

└ End loop

┌ Loop for total number of sub-domains

├ Form sub-domain interface connectivity matrix

└ End loop

┌ Loop for total number of sub-domains

├ fulmat.f90 – Form sub-domain unit load matrix

└ End loop

→ Form global interface condensation matrix

→ sq2lu.f90 – Factorize global interface condensation matrix

→ mgmtgdb.f90 – Form global domain data block

→ presult.f90 – Allocate and initialize result storage space

→ psolve.f90 – Solve transient dynamic system

→ solvemgmt.f90 – Solve using MGMT method (program 2)

┌ Loop for total number of sub-domains

├ iniaccl.f90 – Solve for initial accelerations using initial conditions

└ End loop

┌ Loop for total number of global time-steps

│┌ Loop for local sub-domain time-steps between global time-steps

│├ Read externally applied loads at current time-step

│├ gafamily.f90 – Solve current time-step using Generalized-α method

│└ End loop

├ Compute updated vector of Lagrange multipliers (interface reactions)

│┌ Loop for total number of sub-domains

│├ Compute link response

│├ Update local sub-domain solution (free + link response)

│└ End loop

│┌ Loop for total number of sub-domains

│├ elres.f90 – Compute sub-domain element results (stresses and strains)

│├ domainke.f90 – Compute sub-domain kinetic energy for current time-step

│├ domainse.f90 – Compute sub-domain stiffness energy for current time-step

│├ domainfx.f90 – Compute sub-domain external work for current time-step

│├ domainie.f90 – Compute sub-domain interface energy for current time-step

│├ pasver.f90 – Save results for current time-step

│└ End loop

├ Update global solution for current time-step

└ End loop

→ ppost.f90 – Post sub-domain/global simulation results

→ psummary.f90 – Post simulation summary

 121

Chapter 5: Numerical Analysis and Verification

In this chapter we will present some examples that will help us evaluate – 1) stability,

2) accuracy and 3) computational efficiency of the MGMT Method. We will analyze a 2D

cantilever beam under forced vibrations; transverse (Example 1) and longitudinal (Example

2). The domain under analysis and transient forces applied at the free end are as shown in

Figure 5-1. In either case, the domain is discretized using 4-node quadrilateral elements

with 2 DOF/node, plane stress formulation, consistent mass matrix and zero damping.

Isotropic linear elastic material properties with modulus of elasticity (E) = 2.07x10
11

 N/m
2
,

Poisson’s ratio (ν) = 0.3 and mass density (ρ) = 7.83x10
3
 Kg/m

3
 are used.

1
m

10m

x

()F t

()F t

(a) Structural domain under consideration

0.2

0.3

(sec)time

8
1 10 N

()F t

0.001

0.01

(sec)time

8
1 10 N

()F t

~ ~

~ ~

(b) Example 1 – Transverse load (c) Example 2 – Longitudinal load

Figure 5-1: Forced vibrations analysis of a cantilever beam

122

Different scenarios analyzed under these examples are as follows:

Case 1) Uniform grid uniform time-step (UGUT) reference cases

Case 2) Multiple Grid Multiple Time-Step I-I Coupling (MGMT1)

Case 3) Multiple Grid Multiple Time-Step I-E Coupling (MGMT2)

Case 4) Multiple Time-Step I-I Coupling (MTC)

Case 5) Multiple Grid Coupling with Implicit Time Integration (MGC)

5.1 Benchmark Case Descriptions

5.1.1 Case 1 – Uniform grid uniform time-step (UGUT) reference cases

UGUT1 UGUT2 UGUT3 UGUT4/5

Figure 5-2: Case 1 (UGUT) domain grids

Table 5-1: Case 1 (UGUT) simulation parameters

Sub-case ID
Grid spacing

(H)
Newmark parameters

Time-step (ΔT)

Example 1 Example 2

UGUT1 0.5 β=0.25, γ=0.5 (Implicit) 1x10
-3

 1x10
-4

UGUT2 0.25 β=0.25, γ=0.5 (Implicit) 0.5x10
-3

 0.5x10
-4

UGUT3 0.125 β=0.25, γ=0.5 (Implicit) 0.25x10
-3

 0.25x10
-4

UGUT4 0.0625 β=0.25, γ=0.5 (Implicit) 0.125x10
-3

 0.125x10
-4

UGUT5 0.0625 β=0.0, γ=0.5 (Explicit) 1x10
-6

 1x10
-6

Reference uniform grid uniform time-step (UGUT) simulations are performed by

improving refinement, both in spatial as well as temporal domains, in order to establish

numerical convergence using conventional FEM (FEAPI – Program 1). This will allows us

123

to establish a solution that is desirable, in accuracy and/or efficiency, and one that can only

be obtained by using traditional FE algorithms. Accordingly, primary conclusions for

evaluating overall performance (stability, accuracy and efficiency) of MGMT Method are

all derived by comparing MGMT results with equivalently converged UGUT cases. Sub-

cases UGUT1 to UGUT4 employ implicit constant average acceleration time integration

algorithms, whereas UGUT5 uses explicit Central Difference Method (CDM), also referred

to as the Velocity Verlet Method. Corresponding spatial discretizations and simulation

parameters, for Example 1 and Example 2, are as shown in Figure 5-2 and Table 5-1.

When comparing results, we will use Root Mean Square Error (RMSE), also called the

root mean square deviation (RMSD), and Normalized RMSE (NRMSE) to provide a

quantitative measure of accuracy between measured variables. NRSME is often expressed

as a percentage, where lower values indicate less variance. This will enable us to quantify

the error (on an average sense) between respective UGUT and MGMT cases. RMSE and

NRMSE are computed as:

 
2

MGMT UGUT

1

1
var var

n

i i

i

RMSE
n 

  (5.1)

UGUT UGUT

max min

100%
var var

RMSE
NRMSE  


 (5.2)

In above equations, n represents the total number of data points recorded at global time

increments. Based on NRMSE we will also highlight the error ranking between respective

MGMT cases, and constituent special cases: MTC and MGC, so one can identify the best

scenario for a particular performance evaluation factor.

124

5.1.2 Case 2 – Multiple Grid Multiple Time-Step I-I Coupling (MGMT1)

Ω4 Ω3 Ω2 Ω1

Figure 5-3: Case 2 (MGMT1) sub-domain grids

Table 5-2: Case 2 (MGMT1) simulation parameters

 Sub-domain
Grid spacing

(H)
Newmark parameters

Time-step (Δt)

Example 1 Example 2

Ω1 0.5 β=0.25, γ=0.5 (Implicit) 1x10
-3

 1x10
-4

Ω2 0.25 β=0.25, γ=0.5 (Implicit) 0.5x10
-3

 0.5x10
-4

Ω3 0.125 β=0.25, γ=0.5 (Implicit) 0.25x10
-3

 0.25x10
-4

Ω4 0.0625 β=0.25, γ=0.5 (Implicit) 0.125x10
-3

 0.125x10
-4

Case 2 represents a 4 sub-domain multiple grid multiple time-scale approach, in which

every component sub-domain has a distinct spatial and temporal resolution, as shown in

Figure 5-3 and Table 5-2. Grid decomposition and corresponding time-scale discretization

begins with a coarse resolution on the RHS (free end) and gradually refines to fine scale

resolution on the LHS (fixed end) of the structural domain under consideration. The total

number of interface (mortar) nodes in this case is 17 (■). This case employs I-I time

integration coupling with a global time-step 31 10T    for Example 1 and 41 10T   

for Example 2. Corresponding time-step ratios for both Example 1 and Example 2 are

1 1  , 2 2  , 3 3  and 4 4  , see Table 5-2. A graphical representation of relative

sub-domain time-stepping is shown in Figure 5-4.

125

1

Sub-domain time-stepsGlobal time-step
Δ

T
 =

 1
x
1

0
-3

Δ
t1

 =
 1

x
1

0
-3

2 3 4

Δ
t2

 =
 Δ

t1
/
2

Δ
t3

 =
 Δ

t1
/
3

Δ
t4

 =
 Δ

t1
/
4

Figure 5-4: Case 2 sub-domain time increments

5.1.3 Case 3 – Multiple Grid Multiple Time-Step I-E Coupling (MGMT2)

Ω1 Ω2

Figure 5-5: Case 3 (MGMT2) sub-domain grids

Table 5-3: Case 3 (MGMT2) simulation parameters

Sub-domain
Grid spacing

(H)
Newmark parameters

Time-step (Δt)

Example 1 Example 2

Ω1 0.25 β=0.25, γ=0.5 (Implicit) 0.5x10
-3

 0.5x10
-4

Ω2 0.0625 β=0.0, γ=0.5 (Explicit) 1x10
-6

 1x10
-6

Case 3 represents a 2 sub-domain multiple grid multiple time-scale approach in which

every component sub-domain has a distinct spatial and temporal resolution, as shown in

Figure 5-5 and Table 5-3. Additionally, 1 employs implicit time integration and 2

employs explicit time integration (CDM). Grid decomposition and the corresponding time-

scale discretization begin with a coarse resolution on the LHS (fixed end) and fine scale

126

resolution on the RHS (free end) of the structural domain under consideration. The total

number of interface (mortar) nodes in this case is 5 (■). The global integration time-step is

30.5 10T    for Example 1 and 40.5 10T    for Example 2. Corresponding sub-

domain time-step ratios are 1 1  , 2 500  for Example 1 and 1 1  , 2 50  for

Example 2. It should be noted that the explicit time-step 2 61 10t    is dictated by the

CFL condition, Eq. (2.51), discussed under Section 2.3.1.

5.1.4 Case 4 – Multiple Time-Step I-I Coupling (MTC)

Ω1 Ω2

Figure 5-6: Case 4 (MTC) sub-domain grids

Table 5-4: Case 4 (MTC) simulation parameters

Sub-domain Grid spacing (H) Newmark parameters

Ω1 0.25 β=0.25, γ=0.5 (Implicit)

Ω2 0.25 β=0.25, γ=0.5 (Implicit)

 Time-step (Δt)

 Example 1 Example 2

Case ID Time-step ratio (ξ
2
) Ω1 Ω2 Ω1 Ω2

MTC1 10 5x10
-4

 5x10
-5

 5x10
-5

 5x10
-6

MTC2 100 5x10
-4

 5x10
-6

 5x10
-5

 5x10
-7

MTC3 1000 5x10
-4

 5x10
-7

 5x10
-5

 5x10
-8

MTC4 10000 5x10
-4

 5x10
-8

 5x10
-5

 5x10
-9

127

Under Case 4, we will evaluate the effects of coupling 2 sub-domains with conforming

grids, but with distinct time-steps, as shown in Figure 5-6 and Table 5-4. The goal is to

quantify the cumulative interface dissipation or accumulation across sub-domain interfaces

caused solely due to multiple time-stepping. Increasingly higher order time-step ratios

2

max(10,000)  are analyzed under this case in order to ensure that MGMT performance

does not degrade with increasing time-step ratios, Figure 5-7. Sub-domains, 1 and 2 ,

employ implicit time integration algorithms and the total number of interface (mortar)

nodes in this case is 5 (■).

Global time-step ΔT = 5x10
-4

1

1 2MTC 
X10

X1

2 2MTC 
X100

3 2MTC 
X1000

4 2MTC 
X10000

Figure 5-7: Case 4 (MTC) time-step ratios

5.1.5 Case 5 – Multiple Grid Coupling with Implicit Time Integration (MGC)

Ω1 Ω2

Figure 5-8: Case 5 (MGC) sub-domain grids

128

Table 5-5: Case 5 (MGC) simulation parameters

Sub-domain Newmark parameters
Time-step (Δt)

Example 1 Example 2

Ω1 and Ω2 β=0.25, γ=0.5 (Implicit) 1x10
-3

 1x10
-4

 Grid Spacing (H)

 Example 1 and Example 2

Case ID Interface DOF (λ) Ω1 Ω2

MGC1 6 0.5 0.25

MGC2 6 0.5 0.125

MGC3 6 0.5 0.0625

Under Case 5, we will evaluate the effects of coupling 2 sub-domains with non-

conforming grids and uniform time-steps, as shown in Figure 5-8 and Table 5-5. The goal

is to quantify the cumulative interface dissipation or accumulation across sub-domain

interfaces caused as a result of introducing Lagrange Multipliers with increasing number of

projected constraints over mortar interface on 2 . Sub-domains 1 and 2 employ

implicit time integration algorithms and maintain a time-step ratio of 1  .

5.2 UGUT Convergence

When modeling a problem using FEM, convergence is an essential attribute to instill

confidence in FEM results from the standpoint of mathematics. The word convergence is

used because the FEM output is ‘expected’ to converge to a single correct solution. In

order to check the convergence, at least two solutions to the same problem are required.

The solution from a particular FE approach is then checked with one that employs an

129

improved approach. If the solution from an improved approach is dramatically different

from the primal approach, then the solution is not converged. However, if the solution

does not change much, then the solution is considered converged. The primary motivation

for convergence is that the FEM solution should approach the analytical solution of the

equivalent mathematical model.

Convergence can be tested differently depending on the solution technique in use. Two

available methods are P-Method and H-Method. P-Method utilizes large elements with

improved complex shape functions. In this approach, polynomial degree of the

implemented shape functions is increased in order to obtain an improved solution. This

method does not mandate grid refinement. H-Method, on other hand, uses simple shape

functions and many small elements to improve the overall quality of the solution.

Accordingly, H-Method or grid refinements essentially translate to increasing the number

discretization points over a domain in order to obtain a better/more accurate solution. These

discretized points are represented by domain degrees of freedom (DOF) in FEM and

mathematically represent the total number of equations that a FE algorithm solves. It goes

without saying, larger the number of equations – larger is the computational cost.

Therefore, it is important to realize that when a domain is discretized with larger DOF, the

gain in accuracy is inherently accompanied by greater computational costs and vice versa.

Since FEAPI implements simple shape functions (linear for 4-node quadrilateral

elements), we employ H-Method to establish a discretization that yields converged results.

Accordingly, grid spacing parameter ()H and corresponding time-steps are successively

refined to obtain convergence in reference UGUT cases.

130

For Example 1 (transverse loading), we measure the vertical displacement of a neutral

layer node on the free end (x = 10), Figure 5-9, and compare the maximum displacements

and relative changes with respect to other UGUT cases in Figure 5-10. It is observed that

the difference sharply falls to 0.04 (UGUT4 v/s UGUT3) and 0.043 (UGUT5 v/s UGUT3)

ensuring convergence discretizations for Example 1.

Figure 5-9: Example 1 – Vertical displacement at free end (x = 10m)

Figure 5-10: Example 1 – Convergence of maximum vertical displacement at free end (x = 10m)

131

In Example 2 (longitudinal loading), we measure the horizontal displacement of a

neutral layer node on the free end (x = 10), Figure 5-11, and compare the maximum

displacements (and relative changes) with respect to other UGUT cases in Figure 5-12. It is

observed that the difference sharply falls to 1x10
-5

 for both (UGUT4 v/s UGUT3) and

(UGUT5 v/s UGUT3) ensuring convergence discretizations for Example 2.

Figure 5-11: Example 2 – Horizontal displacement at free end (x = 10m)

Figure 5-12: Example 2 – Convergence of maximum horizontal displacement at free end (x =
10m)

132

Table 5-6: RMSE and NRMSE between respective UGUT cases

Table 5-6 lists the relative errors between respective UGUT cases. Case pairs that were

used to establish convergence in Figure 5-10 and Figure 5-12 are highlighted in Green. We

can see that there is a similar trend/drop in RMSE and NRMSE as UGUT discretizations

are refined, ensuring convergence over entire spectrum of time; in contrast to the

convergence of maximum value at one particular time instant in Figure 5-10 and Figure

5-12.

 UGUT1 UGUT2 UGUT3 UGUT4 UGUT5

E
x
am

p
le

 1

UGUT1 -
0.5667

(8.3%)

0.7314

(10.36%)

0.7715

(10.83%)

0.7740

(10.86%)

UGUT2 - -
0.1119

(1.59%)

0.1146

(1.59%)

0.1414

(1.97%)

UGUT3 - - -
0.0247

(0.34%)

0.0258

(0.36%)

UGUT4 - - - -
0.0016

(0.002%)

UGUT5 - - -
0.0016

(0.002%)
-

E
x
am

p
le

 2

UGUT1 -
3.97x10

-5

(1.19%)

4.28x10
-5

(1.28%)

4.57x10
-5

(1.38%)

5.59x10
-5

(1.59%)

UGUT2 - -
3.57x10

-6

(0.106%)

7.00x10
-6

(0.212%)

7.00x10
-6

(0.212%)

UGUT3 - - -
3.77x10

-6

(0.106%)

3.58x10
-6

(0.106%)

UGUT4 - - - -
2.91x10

-6

(0.088%)

UGUT5 - - -
2.91x10

-6

(0.088%)
-

133

Finally, we look at the total number of equations (unconstrained DOF) used in each

UGUT case and corresponding CPU solution times required to solve these equations.

Table 5-7: Total number of equations and CPU solution time

Figure 5-13: Total number of equations and CPU solution time for Implicit UGUT cases

For the example problems under consideration, results show that converged solution

can be obtained via grid refinement (from discretizations inherited from UGUT4/5),

however at the cost of larger CPU times. Since converged cases, UGUT4 (Implicit) and

UGUT5 (Explicit), provide the best available approximation of measured variables, these

cases are used as baseline/reference solutions when evaluating MGMT solutions.

 Total Number

of Equations

Solution Time (sec)

 Example 1 Example 2

UGUT1 (I) 120 0.23 0.07

UGUT2 (I) 400 2.01 0.65

UGUT3 (I) 1440 22.23 7.36

UGUT4 (I) 5440 320.92 (~5 min) 107.53 (~ 2 min)

UGUT5 (E) 5440 24822.27 (~ 7 hr) 830.14 (~13 min)

134

5.3 Stability Analysis

Under our first performance evaluation criteria, we analyze the numerical stability of

MGMT Method by looking at the global energy trends and augmented interface energy

contributions from component sub-domains.

For a non-homogeneous linear structural system without damping, we know that

Internal Energy (IE) is equal to the external work performed on the system. In UGUT

simulations, IE is obtained as a sum of Kinetic Energy (KE) and Stiffness or Potential

Energy (SE), whereas in MGMT simulations total IE is obtained by summing KE and SE

contributions from all component sub-domains. Furthermore, interface energy produced as

a result of introducing Lagrange Multipliers is augmented into IE, yielding global/total IE.

Since MGMT Method involves coupling of non-conforming grids as well as concurrent

time-integration of sub-domains with distinct time-steps, it is critical to ensure that the

global aspect of the simulation, i.e. energy balance, is established in order to evaluate

performance of MGMT formulation and implementation. We have already established in

Section 3.5 that MGMT coupling is numerically stable if and only if the total interface

energy accumulates to zero. Consequently, IE from UGUT and MGMT simulations must

be in complete conformance with each other.

Accordingly, in following sections we analyze global energy balance, augmented

interface energy contributions and continuity of velocity across component sub-domain

interfaces in order to provide a comprehensive evaluation of numerical stability of the

proposed MGMT Method.

135

5.3.1 Global Energy Balance

Figure 5-14 shows the global energies from Example 1 (transverse vibration) for

converged cases – UGUT4, UGUT5 and MGMT cases – MGMT1, MGMT2, MTC4 and

MGC3. RMSE and NRMSE for these plots are listed in Figure 5-8.

Kinet ic Energy (J)

St i f fness Energy (J)

External Work (J)

Interface Energy (J)

(a) UGUT4 (b) UGUT5

(c) MGMT1 (d) MGMT2

(e) MTC4 (f) MGC3

Figure 5-14: Example 1 – Global energies

136

Figure 5-15 shows the global energies from Example 2 (longitudinal vibration) for

converged cases – UGUT4, UGUT5 and MGMT cases – MGMT1, MGMT2, MTC4 and

MGC3. RMSE and NRMSE for these plots are listed in Table 5-9.

Kinet ic Energy (J)

St i f fness Energy (J)

External Work (J)

Interface Energy (J)

(a) UGUT4 (b) UGUT5

(c) MGMT1 (d) MGMT2

(e) MTC4 (f) MGC3

Figure 5-15: Example 2 – Global energies

137

Table 5-8: Example 1 – RMSE and NRMSE (%). Variable = Global energies

 Kinetic Energy Stiffness Energy

 UGUT4 UGUT5 UGUT4 UGUT5

UGUT4 -
3.94x10

5

(0.13%)
-

4.34x10
5

(0.11%)

UGUT5
3.94x10

5

(0.13%)
-

4.34x10
5

(0.11%)
-

MGMT1
2.37x10

7

(7.98%)

2.37x10
7

(7.97%)

2.54x10
7

(6.74%)

2.53x10
7

(6.72%)

MGMT2
1.55x10

7

(5.24%)

1.55x10
7

(5.22%)

1.69x10
7

(4.49%)

1.68x10
7

(4.46%)

MTC4
2.06x10

7

(6.95%)

2.07x10
7

(6.95%)

2.15x10
7

(5.71%)

2.14x10
7

(5.69%)

MGC3
6.37x10

7

(21.47%)

6.38x10
7

(21.44%)

6.70x10
7

(17.79%)

6.70x10
7

(17.79%)

Table 5-9: Example 2 – RMSE and NRMSE (%). Variable = Global energies

 Kinetic Energy Stiffness Energy

 UGUT4 UGUT5 UGUT4 UGUT5

UGUT4 -
102.16

(0.08%)
-

204.43

(0.16%)

UGUT5
102.16

(0.08%)
-

204.43

(0.16%)
-

MGMT1
3120.46

(2.59%)

3257.84

(2.63%)

3237.35

(2.66%)

3308.00

(2.71%)

MGMT2
4844.60

(3.91%)

4884.33

(3.95%)

5099.79

(4.19%)

5188.40

(4.26%)

MTC4
2258.88

(1.82%)

2314.85

(1.87%)

2227.30

(1.83%)

2341.72

(1.92%)

MGC3
4657.38

(3.76%)

4727.48

(3.82%)

4604.52

(3.78%)

4719.54

(3.88%)

138

Internal energy (kinetic + stiffness + interface energy) must equal the total amount of

work performed on the system. Accordingly, RMSE and NRMSE errors between these

curves are listed in Table 5-10. These errors are computed only for the time in which

external work is non-zero, since internal energy remains constant, as residual energy, in the

absence of damping. Although the errors in Table 5-8 and Table 5-9 are comparatively

high, global energy balance (internal energy = external work) is verified by relatively small

errors (less than 1%) in Table 5-10.

Table 5-10: RMSE and NRMSE (%). Variable = Internal energy v/s External work

 Example 1 Example 2

UGUT4 0.0 0.0

UGUT5 0.0 0.0

MGMT1 3.22 x10
6
 (0.88%) 1.07 x10

4
 (0.13%)

MGMT2 2.12 x10
6
 (0.56%) 8.85 x10

4
 (0.12%)

MTC4 3.00 x10
6
 (0.82%) 8.86 x10

4
 (0.12%)

MGC3 2.65 x10
6
 (0.07%) 1.11 x10

4
 (0.14%)

Error rankings, in ascending order, for kinetic energy and stiffness energy in Example 1

and Example 2 are {MGMT2 < MTC4 < MGMT1 < MGC3}  {2413} and {MTC4 <

MGMT1 < MGC3 < MGMT2}  {4132} respectively whereas those for internal energy

v/s external work are {3241} and {2413}.

5.3.2 Augmented Interface Energy

Another way to verify numerical stability is to ensure that augmented interface energies

from component sub-domains accumulate to zero, as indicated by Eq. (3.9) and Eq. (3.83).

Interface energy is representative of total work performed by sub-domain interface

reactions () while communicating interactions at intermediate time-steps. These forces

139

enable coupling of multiple-grids and multiple time-scales and consequently also affect the

numerical stability of component sub-domains. Hence, if augmented interface energies

from all sub-domains accumulate to zero, one can derive that energy balance is established

between at component sub-domain levels for a particular time-step. Furthermore, it ensures

efficient and accurate multiscale coupling.

Augmented interface energy, as derived in Section 3.2, is computed as follows:

1

Total Interface Energy
T T

S
i i

i

U L 


 (5.3)

Where, S represents total number of sub-domains,  is the total number of DOF

discretized using M-FEM over each non-mortar sub-domain interface and iL is the multi-

constraint operator that is used to project sub-domain interface velocities, as represented by

U .

Subsequent plots, Figure 5-16 (Example 1) and Figure 5-17 (Example 2), show the

evolution of total interface energy relative to energy contributions from component sub-

domain interfaces. These plots clearly indicate that sub-domain interface energies

annihilate each other, verifying stability at component sub-domain levels and accurate

MGMT coupling.

140

 (a) MGMT1

(b) MGMT2

(c) MTC4

(d) MGC3

Figure 5-16: Example 1 – Augmented interface energies from component sub-domains

141

(a) MGMT1

(b) MGMT2

(c) MTC4

(d) MGC3

Figure 5-17: Example 2 – Augmented interface energies from component sub-domains

142

Total interface energy seems infinitesimally small relative to component sub-domain

energy contributions. However, subsequent figures show that there is a small variance in

interface energy over entire simulation time. This variance is partly due to machine

tolerance/round-off errors and can be reduced by refining the increments used in numerical

integration of interface connectivity constraints, Eq. (2.73) and (2.74), See also Figure 3-8.

Table 5-11 lists the RSME in total interface energy indicating its mean variance about

zero, since corresponding UGUT interface energy is identically zero. These errors represent

average accumulation or dissipation of total interface energy over entire simulation time.

Table 5-11 also lists the total number of global integration loops, representing the

frequency of recorded data. It should be noted that for every global integration loop, sub-

domains with 1  are integrated  times before synchronizing with global time-step.

Table 5-11: Mean variance in augmented (total) interface energy contributions

 Example 1 Example 2

MGMT1 9.48x10
-5

(@ 300) 4.99x10
-8

(@ 100)

MGMT2 2.08x10
-5

(@ 600) 1.91x10
-8

(@ 200)

MTC1 1.71x10
-5

(@ 600) 1.99x10
-8

(@ 200)

MTC2 1.33x10
-5

(@ 600) 2.12x10
-8

(@ 200)

MTC3 1.88x10
-5

(@ 600) 1.95x10
-8

(@ 200)

MTC4 1.48x10
-5

(@ 600) 1.85x10
-8

(@ 200)

MGC1 1.15x10
-5

(@ 300) 1.85x10
-8

(@ 100)

MGC2 1.31x10
-5

(@ 300) 2.09x10
-8

(@ 100)

MGC3 1.17x10
-5

(@ 300) 2.42x10
-8

(@ 100)

These errors are orders of magnitude smaller than the global energy scales, hence their

contribution is considered negligible. Error rankings for total interface energy, Example 1

and Example 2, are {3421} and {4231}.

143

Figure 5-18: Example 1 – Augmented (total) interface energy

144

Figure 5-19: Example 2 – Augmented (total) interface energy

145

5.3.3 Interface Continuity

Another consequence of the global stability requirement is the continuity of velocities

at sub-domain interfaces, as enforced by Eq. (3.11). In this section, we compare

conformance between interface variables (displacement, velocity and acceleration) at x = 5,

i.e. half way across the length of the beam, as obtained from adjoining sub-domains. Figure

5-20, compares yU , yU and yU for Example 1, as obtained from MGMT1 sub-domains 2

and 3 . The grid ratio and time-step ratio between these sub-domains is 2 and a total of 10

mortar DOF () are used to communicate interactions at the dividing interface.

Figure 5-20: Example 1 – (MGMT1) Continuity of interface variables

Table 5-12: Example 1 – (MGMT1) RMSE and NRMSE (%). Variable = Interface displacement,
velocity and accelerations

 Example 1

MGMT1

U
2
 v/s U

3
 1.31x10

-3
(0.058%)

U̇
2
 v/s U̇

3
 4.88x10

-2
(0.039%)

Ü
2
 v/s Ü

3
 6871.41 (23.27%)

146

Figure 5-21 compares yU , yU and yU for Example 1, as obtained from MGMT2 sub-

domains 1 and 2 . The grid ratio and time-step ratio between these sub-domains is 4 and

500 respectively with a total of 10 mortar DOF () at the sub-domain interface. It should

be noted that 1 and 2 in this case are coupled via Implicit and Explicit time integration

algorithms.

Figure 5-21: Example 1 – (MGMT2) Continuity of interface variables

Table 5-13: Example 1 – (MGMT2) RMSE and NRMSE (%). Variable = Interface displacement,
velocity and accelerations

 Example 1

MGMT2

U
1
 v/s U

2
 2.03x10

-3
(0.087%)

U̇
1
 v/s U̇

2
 0.2521 (0.195%)

Ü
1
 v/s Ü

2
 1.4030 (0.002%)

147

Figure 5-22 compares
xU ,

xU and
xU for Example 2, as obtained from MTC4 sub-

domains 1 and 2 . The grid ratio in this case is 1 (conforming interface), however the

time-step ratio between these sub-domains is 10,000. A total of 10 mortar DOF () are

used at the sub-domain interfaces to enable multiple time-scale coupling.

Figure 5-22: Example 2 – (MTC4) Continuity of interface variables

Table 5-14: Example 2 – (MTC4) RMSE and NRMSE (%). Variable = Interface displacement,
velocity and accelerations

 Example 2

MTC4

U
1
 v/s U

2
 1.53x10

-6
(0.004%)

U̇
1
 v/s U̇

2
 0.0

(0.0%)

Ü
1
 v/s Ü

2
 5988.58 (22.52%)

148

Figure 5-23 compares
xU ,

xU and
xU for Example 2, as obtained from MGC3 sub-

domains 1 and 2 . The time-step ratio in this case is 1; however the grid-step ratio

between these sub-domains is 8. A total of 10 mortar DOF () are used at the sub-domain

interfaces to enable multiple grid coupling.

Figure 5-23: Example 2 – (MGC3) Continuity of interface variables

Table 5-15: Example 2 – (MGC3) RMSE and NRMSE (%). Variable = Interface displacement,
velocity and accelerations

 Example 2

MGC3

U
1
 v/s U

2
 1.79x10

-6
(0.005%)

U̇
1
 v/s U̇

2
 1.43x10

-2
 (0.269%)

Ü
1
 v/s Ü

2
 466.58 (2.418%)

149

For the results discussed above, NRMSE for displacement and velocity are well below

1%, whereas errors in accelerations (in certain cases) are significantly higher. However, the

key variable under consideration here is velocity, since we enforced continuity of velocities

across sub-domain interfaces using Eq. (3.11) in order to ensure global and local stability.

For Example 2 (MTC4) we notice that conforming grids with a time-step ratio of

10,000 yield continuous velocities with 0% NRMSE, Table 5-14. We have already seen

that multi-constraint cooperator in this case is a Boolean projection operator ()L B . For

non-conforming grids, however, L BP where P represents interface connectivity

constraints modeled using M-FEM. This indicates that any positive error in velocity

continuity (for cases with non-conforming interfaces) can be reduced by efficient numerical

integration of interface constraints, as discussed earlier in Section 5.3.2.

Since aforementioned results exhibit good conformance in continuity of interface

velocity, we establish that Eq. (3.11) is efficiently implemented, further verifying MGMT

stability.

Velocity error rankings for Example 1 and Example 2 are {12} and {43} respectively.

150

5.4 Evaluation of Numerical Accuracy

5.4.1 Example 1: Transverse Vibrations

As our first evaluation criteria for numerical accuracy in Example 1, we look at the

time evolution of the beam tip deflection. Figure 5-24 shows the vertical component of tip

deflection for UGUT4, UGUT5, MGMT1, MGMT2, MTC1, MTC2, MTC3, MTC4,

MGC1, MGC2 and MGC3. Corresponding errors and total number of equations

(unconstrained DOF) are listed in Table 5-16.

(a) UGUT4, UGUT5, MGMT1, MGMT2, MTC4, MGC3

(b) MTC1, MTC2, MTC3, MTC4 (c) MGC1, MGC2, MGC3

Figure 5-24: Example 1 – Comparison of vertical displacement at free end (x = 10m)

151

Table 5-16: Example 1 – RMSE and NRMSE (%). Variable = displacement at free end (x = 10m)

 UGUT4 UGUT5 Number of Equations

UGUT4 - 3.09x10
-3

 (0.043%) 5440

UGUT5 3.09x10
-3

 (0.043%) - 5440

MGMT1 0.154 (2.24%) 0.1572 (2.28%) 1884

MGMT2 0.020 (0.29%) 0.0246 (0.34%) 2954

MTC1 0.2619 (3.83%) 0.2647 (3.89%) 410

MTC2 0.2672 (3.84%) 0.2727 (3.89%) 410

MTC3 0.2748 (3.84%) 0.2796 (3.90%) 410

MTC4 0.2816 (3.85%) 0.2686 (3.90%) 410

MGC1 0.362 (5.16%) 0.3668 (5.20%) 270

MGC2 0.375 (5.26%) 0.3736 (5.31%) 798

MGC3 0.3839 (5.37%) 0.3832 (5.42%) 2814

In Section 5.2 we discussed how H-Method, or grid refinement, can be used to achieve

numerical convergence when using FEM to obtain the solution to a particular problem. We

also established that UGUT4 and UGUT5 discretization, each with 5440 DOF, yield

converged solutions to Example 1 problem. Accordingly, Table 5-16 also lists the total

number of equations (unconstrained DOF) used to solve a particular MGMT case.

Errors are relatively small for most cases. MGMT2 has the smallest error since it hosts

maximum (2954) DOF in comparison with other cases; whereas MGC3 (2814 DOF) has

maximum error resulting in a conclusion that higher grid ratios with fewer interface

coupling DOF may result in poor connections and hence higher errors. Additionally, if we

look at MGMT1, it also hosts higher grid ratios, but the error in this case is almost half of

MGC cases, indicating that one may use higher grid ratios, however, these should be

modeled with a gradual grid refinement and relatively larger interface coupling DOF. This

interpretation is further verified by noticing the gradual drop in MGC errors. That is,

152

encountered error reduces as the grid ratio between 1 and 2 reduces from 8  4  2

for MGC3  MGC2  MGC1. Similar trend, gradual drop in error, is also noticed for

respective MTC cases suggesting that accumulated error increases as the time-step ratio

between component sub-domains increases. However; the errors in MTC (maximum of

3.9% for max 10,000 ) is relatively smaller than MGC (5.42% for a grid ratio of 8) clearly

indicating the necessity, influence and the importance of efficient multiple grid coupling.

We also notice a significant effect on numerical accuracy due to multiple time-scale

coupling by comparing equivalently discretized UGUT2 and MTC cases, as follows:

Table 5-17: Example 1 – Comparison between UGUT2 and MTC cases

 UGUT4 UGUT5 Number of Equations

UGUT2 0.1146 (1.59%) 0.1414 (1.97%) 400

MTC1 0.2619 (3.83%) 0.2647 (3.89%) 410

MTC2 0.2672 (3.84%) 0.2727 (3.89%) 410

MTC3 0.2748 (3.84%) 0.2796 (3.90%) 410

MTC4 0.2816 (3.85%) 0.2686 (3.90%) 410

Augmented effect of multiple grids and multiple time-scales can be observed by

comparing UGUT3 and MGMT1 as follows:

Table 5-18: Example 1 – Comparison between UGUT3 and MGMT1

 UGUT4 UGUT5 Number of Equations

UGUT3 0.0247 (0.34%) 0.0258 (0.36%) 1440

MGMT1 0.154 (2.24%) 0.1572 (2.28%) 1884

Errors trends in the measurement of displacement at free end for Example 1, Table

5-16, are {2143}.

153

Figure 5-25 and Table 5-19 show the comparison of Sigma-xx for a cross-section at x =

1m from the fixed end (at t = 0.05s). Most cases have errors less than 0.5% indicating good

conformance. Highest error occurs in MGC3 (~1%) since the stress is computed over a

coarse grid (MGC3- 1). A global overview of Sigma-xx and deformed shape is plotted in

Figure 5-26.

Figure 5-25: Example 1 – Comparison of Sigma-xx at a cross-section x = 1m and t = 0.05s

Table 5-19: Example 1 – RMSE and NRMSE (%). Variable = Sigma-xx at x = 1m and t = 0.05s

 UGUT4 UGUT5

UGUT4 - 1.53x10
7
 (0.076%)

UGUT5 1.53x10
7
 (0.076%) -

MGMT1 9.91x10
7
 (0.495%) 8.57x10

7
 (0.420%)

MGMT2 6.30x10
7
 (0.315%) 6.97x10

7
 (0.346%)

MTC4 9.60x10
7
 (0.480%) 8.16x10

7
 (0.408%)

MGC3 2.01x10
7
 (1.009%) 1.88x10

7
 (0.945%)

* Error ranking for the measurement of Sigma-xx is {2413}

154

U
G

U
T

4

U
G

U
T

5

M
G

M
T

1

M
G

M
T

2

M
T

C
4

M
G

C
3

Figure 5-26: Example 1 – Deformed shape and Sigma-xx (N/m
2
) at t = 0.05s

155

5.4.2 Example 2: Longitudinal Vibrations

In Example 2, we first look at the time evolution of the beam tip deflection. Figure 5-27

shows the horizontal component of tip deflection for UGUT4, UGUT5, MGMT1,

MGMT2, MTC1, MTC2, MTC3, MTC4, MGC1, MGC2 and MGC3. Corresponding errors

and total number of equations (unconstrained DOF) are listed in Table 5-20.

(a) UGUT4, UGUT5, MGMT1, MGMT2, MTC4, MGC3

(b) MTC1, MTC2, MTC3, MTC4 (c) MGC1, MGC2, MGC3

Figure 5-27: Example 2 – Comparison of horizontal displacement at free end (x = 10m)

156

Table 5-20: Example 2 – RMSE and NRMSE (%). Variable = displacement at free end (x = 10m)

 UGUT4 UGUT5 Number of Equations

UGUT4 - 2.91x10
-6

 (0.088%) 5440

UGUT5 2.91x10
-6

 (0.088%) - 5440

MGMT1 1.13x10
-5

 (0.34%) 1.15x10
-5

 (0.35%) 1884

MGMT2 0.43x10
-5

 (0.13%) 0.45x10
-5

 (0.13%) 2954

MTC1 0.97x10
-5

 (0.29%) 1.00x10
-5

 (0.30%) 410

MTC2 0.98x10
-5

 (0.29%) 1.02x10
-5

 (0.31%) 410

MTC3 0.98x10
-5

 (0.29%) 1.04x10
-5

 (0.31%) 410

MTC4 0.99x10
-5

 (0.31%) 1.33x10
-5

 (0.35%) 410

MGC1 1.26x10
-5

 (0.38%) 1.28x10
-5

 (0.39%) 270

MGC2 1.29x10
-5

 (0.39%) 1.31x10
-5

 (0.39%) 798

MGC3 1.31x10
-5

 (0.39%) 1.36x10
-5

 (0.41%) 2814

Errors are relatively small for most cases and very small compared to displacement

measurements in Example 1. Once again, MGMT2 has the smallest error since it hosts

maximum DOF in comparison with other cases; whereas MGC3 has the maximum error.

As observed in Example 1 results, the error gradually increases for respective MTC and

MGC cases, validating the conclusion that accumulated error does increase with increasing

grid ratios and time-step ratios. MTC cases yield relatively small errors than MGC cases

suggesting that regardless of grid discretization refinement, higher grid ratios with fewer

coupling interface DOF can significantly affect the results. The error in MGMT1 is also

relatively high, but it should be noted that the measured variable in this case is recorded at

in a coarse grid sub-domain (MGMT1- 1). Once again, comparing equivalently

discretized cases, UGUT2 and MTC cases in Table 5-21, we can observe the effect of

multiple time-scale coupling. As we can see, the effective accumulated error due to MTC is

157

relatively smaller in case of wave propagation type problems, in contrast with the

observations made in Table 5-17 for Example 1.

Table 5-21: Example 2 – Comparison between UGUT2 and MTC cases

 UGUT4 UGUT5 Number of Equations

UGUT2 7.00x10
-6

(0.212%)

7.00x10
-5

(0.212%)

400

MTC1 0.97x10
-5

 (0.29%) 1.00x10
-5

 (0.30%) 410

MTC2 0.98x10
-5

 (0.29%) 1.02x10
-5

 (0.31%) 410

MTC3 0.98x10
-5

 (0.29%) 1.04x10
-5

 (0.31%) 410

MTC4 0.99x10
-5

 (0.31%) 1.33x10
-5

 (0.35%) 410

Augmented effect of multiple grids and multiple time-scales can be observed by

comparing UGUT3 and MGMT1 as follows:

Table 5-22: Example 2 – Comparison between UGUT3 and MGMT1

 UGUT4 UGUT5 Number of Equations

UGUT3 3.77x10
-6

 (0.106%) 3.58x10
-6

 (0.106%) 1440

MGMT1 1.13x10
-5

 (0.34%) 1.15x10
-5

 (0.35%) 1884

Errors trends in the measurement of displacement at free end for Example 2, Table

5-20, are {2413}.

158

We will now evaluate the capability of MGMT Method in simulating wave propagation

across component sub-domains. Since structural waves are coupled in space and time, we

need to ensure that MGMT coupling does not damage the characteristic features of a wave

(such as amplitude and phase) as it propagates through distinct spatial and temporal

resolutions.

1
m

10m

x ()F t

Figure 5-28: Example 2 – Longitudinal vibrations

First, we will look at the distribution of longitudinal stress (Sigma-xx) and longitudinal

displacement (U-x) along the length of the beam as a function of space. This will help us

gauge the effects of sub-domain interfaces on possible wave reflection or deterioration.

Analyzed quantities are measured at the neutral layer and recorded at 5 time instants (t =

1x10
-4

, 5x10
-4

, 10x10
-4

, 15x10
-4

 and 20x10
-4

) that are within the time frame required by the

wave to travel once across the beam. Results are plotted for UGUT4 v/s MGMT1, UGUT5

v/s MGMT2, UGUT4 v/s MTC4 and UGUT4 v/s MGC3. Stresses are plotted in Figure

5-29 and displacements in Figure 5-30, with corresponding errors listed in Table 5-23 and

Table 5-24 respectively.

 t = 1x10
-4

 t = 5x10
-4

 t = 1x10
-3

 t = 15x10
-4

 t = 2x10
-3

Plot ▬ ▬ ▬ ▬ ▬

159

UGUT MGMT Interface

Figure 5-29: Example 2 – Longitudinal stress (Sigma-xx) as a function of space

160

Table 5-23: Example 2 – RMSE and NRMSE (%). Variable = Sigma-xx as a function of space

 t = 1x10
-4

 t = 5x10
-4

 t = 1x10
-3

 t = 15x10
-4

 t = 2x10
-3

MGMT1
1.96x10

6

(6.71%)

1.08x10
6

(1.07%)

1.82x10
6

(1.83%)

2.15x10
6

(2.02%)

2.64x10
6

(2.43%)

MGMT2
2.64x10

6

(8.86%)

4.06x10
6

(4.00%)

5.86x10
6

(5.82%)

4.20x10
6

(3.97%)

4.39x10
6

(4.08%)

MTC4
1.79x10

6

(6.13%)

2.65x10
6

(2.65%)

3.93x10
6

(3.93%)

3.50x10
6

(3.26%)

4.04x10
6

(3.70%)

MGC3
8.87x10

6

(3.03%)

1.85x10
6

(1.85%)

3.15x10
6

(3.15%)

5.02x10
6

(4.67%)

4.94x10
6

(4.52%)

The average error over all selected time-instants is 2.81% (MGMT1), 5.34%

(MGMT2), 3.93% (MTC4) and 3.44% (MGC3). From Figure 5-29 we can see that

MGMT2 and MGC3 show a nominal phase lag in stress measurements. This can be a result

of using relatively high grid density in 2 in disparity with coarse grid density in 1 .

A very similar phase lag is observed in MTC4, but not in MGMT1, indicating that

multiple grid and multiple time-scale interfaces can slow down the propagation of stress

waves in finely discretized (space and time) sub-domains.

Implicit-Explicit coupling in MGMT2 also affects the stress distribution in 2 in the

form of jagged undulations which sharply disappear in the implicit sub-domain 1 .

MGC3 shows a significant error at the interface of 1 and 2 , once again suggesting

that higher grid ratios should not be coupled with fewer interface DOF.

Error rankings for ‘average over time’ stress measurements in this case is {1342}.

161

UGUT MGMT Interface

Figure 5-30: Example 2 – Longitudinal displacement (U-x) as a function of space

162

Table 5-24: Example 2 – RMSE and NRMSE (%). Variable = U-x as a function of space

 t = 1x10
-4

 t = 5x10
-4

 t = 1x10
-3

 t = 15x10
-4

 t = 2x10
-3

MGMT1
5.80x10

-7

(1.57%)

2.46x10
-6

(0.31%)

4.47x10
-6

(0.28%)

8.38x10
-6

(0.52%)

1.23x10
-5

(0.77%)

MGMT2
3.02x10

-6

(8.12%)

2.90x10
-5

(3.65%)

4.14x10
-5

(2.60%)

2.88x10
-5

(1.81%)

2.70x10
-5

(1.69%)

MTC4
2.59x10

-6

(7.03%)

2.27x10
-5

(2.86%)

3.20x10
-5

(2.01%)

3.13x10
-5

(1.97%)

3.17x10
-5

(1.98%)

MGC3
1.03x10

-6

(2.79%)

6.04x10
-6

(0.75%)

1.35x10
-5

(0.85%)

1.98x10
-5

(1.24%)

2.25x10
-5

(1.40%)

The average error over all selected time-instants is 0.73% (MGMT1), 4.46%

(MGMT2), 3.96% (MTC4) and 1.75% (MGC3). A ‘nominal’ phase lag is observed in

displacement measurements, however, jagged undulations due to explicit time-stepping in

MGMT2- 2 disappear in this case, ensuring better conformance in displacement wave

propagation. Error rankings for ‘average over time’ displacement measurements in this

case is {1342}.

We will now look at the time evolution of longitudinal stress (Sigma-xx), longitudinal

displacement ()xU , velocity ()xU and acceleration ()xU as it propagates across the beam

as a function of time. Results are measured at 4 different locations, x = 10, 7.5, 5 and 2.5

and are plotted for UGUT4 v/s MGMT1, UGUT5 v/s MGMT2. UGUT4 v/s MTC4 and

UGUT4 v/s MGC3 with respective errors listed in subsequent tables.

 x = 10 x = 7.5 x = 5 x = 2.5

Plot ▬ ▬ ▬ ▬

163

UGUT MGMT

Figure 5-31: Example 2 – Longitudinal stress (Sigma-xx) as a function of time

164

UGUT MGMT

Figure 5-32: Example 2 – Longitudinal displacement (U-x) as a function of time

165

UGUT MGMT

Figure 5-33: Example 2 – Longitudinal velocity (U̇-x) as a function of time

166

UGUT MGMT

Figure 5-34: Example 2 – Longitudinal acceleration (Ü-x) as a function of time

167

Table 5-25: Example 2 – RMSE and NRMSE (%). Variable = Longitudinal stress (Sigma-xx)

 x = 10 x = 7.5 x = 5 x = 2.5

MGMT1 8.42x10
6
 (8.0%) 7.60x10

6
 (3.6%) 6.05x10

6
 (2.9%) 7.10x10

6
 (3.3%)

MGMT2 5.06x10
6
 (4.8%) 7.15x10

6
 (3.4%) 9.27x10

6
 (4.4%) 5.87x10

6
 (2.7%)

MTC4 5.22x10
6
 (5.0%) 4.05x10

6
 (1.9%) 5.77x10

6
 (2.7%) 3.45x10

6
 (1.5%)

MGC3 1.44x10
6
 (1.3%) 1.03x10

7
 (4.9%) 1.54x10

7
 (7.3%) 1.25x10

7
 (5.7%)

Table 5-26: Example 2 – RMSE and NRMSE (%). Variable = Longitudinal displacement (U-x)

 x = 10 x = 7.5 x = 5 x = 2.5

MGMT1 3.46x10
-5

 (1.1%) 2.86x10
-5

 (0.9%) 3.23x10
-5

 (0.8%) 2.01x10
-5

 (0.6%)

MGMT2 7.25x10
-5

 (2.2%) 4.11x10
-5

 (1.2%) 6.08x10
-5

 (1.9%) 6.60x10
-5

 (2.1%)

MTC4 3.93x10
-5

 (1.1%) 2.92x10
-5

 (0.9%) 2.91x10
-5

 (0.9%) 2.87x10
-5

 (0.9%)

MGC3 7.77x10
-5

 (2.3%) 6.13x10
-5

 (1.9%) 5.43x10
-5

 (1.6%) 4.79x10
-5

 (1.5%)

Table 5-27: Example 2 – RMSE and NRMSE (%). Variable = Longitudinal velocity (U̇-x)

 x = 10 x = 7.5 x = 5 x = 2.5

MGMT1 0.1978 (1.91%) 0.1573 (2.85%) 0.1430 (2.66%) 0.1133 (2.20%)

MGMT2 0.2828 (2.71%) 0.1876 (3.41%) 0.1728 (3.21%) 0.1722 (3.34%)

MTC4 0.1735 (1.67%) 0.092 (1.66%) 0.100 (1.86%) 0.100 (1.95%)

MGC3 0.4716 (4.55%) 0.3853 (6.96%) 0.3156 (5.88%) 0.2283 (4.42%)

Table 5-28: Example 2 – RMSE and NRMSE (%). Variable = Longitudinal acceleration (Ü-x)

 x = 10 x = 7.5 x = 5 x = 2.5

MGMT1 2660.03 (8.9%) 1747.2 (11.2%) 2134.57 (12.1%) 2947.2 (15.0%)

MGMT2 32370.4 (106%) 21195.2 (109%) 2825.17 (16.2%) 1519.43 (8.6%)

MTC4 5594.7 (18.7%) 2469.6 (15.8%) 3067.39 (17.4%) 1501.08 (7.6%)

MGC3 5570.8 (18.6%) 3070.2 (19.6%) 2658.09 (15.0%) 2207.2 (11.2%)

168

Table 5-29: Example 2 – Average errors and corresponding rankings

 Sigma-xx U-x U̇-x Ü-x

MGMT1 5.23% 0.85% 2.40% 11.8%

MGMT2 3.82% 1.85% 3.16% 59.96%

MTC4 2.77% 0.95% 1.78% 14.87%

MGC3 4.80% 1.82% 5.45% 16.10%

Ranking {4231} {1432} {4123} {1342}

Results for structural wave propagation (Sigma-xx, U-x and U̇-x) show fairly good

conformance with converged UGUT cases. For longitudinal stress results, MTC4 has

minimum errors whereas MGMT1 has the highest errors. MGMT1 records the highest

error at x=10 since the stresses here are computed over a coarse grid (1) but the error

sharply falls by almost 50% as the grid density increases at x=10 in MGMT2 and MGC3.

Hence finely discretized sub-domains are recommended in regions where stress (or strain)

gradients are critical so that resulting errors can be kept to their minimum. This is inference

is further validated by noticing that errors also drop at x=7.5, x=5 and x=2.5 for MGMT1,

i.e. as the mesh is refined. MGMT2 and MGC3 have the same grid density at x=10 but

MGC3 records the minimum error indicating that explicit integration in MGMT2- 2

resulted in higher errors. Results for longitudinal displacement are very satisfactory with an

average error of less than 2% for all analyzed cases but they are relatively higher for

velocity and acceleration results. Overlooking the effect of grid density on recorded values

values, we conclude that the structural wave (stress and displacement) propagates

seamlessly across component sub-domains without any significant loss in amplitude or

phase.

169

5.5 Evaluation of Computational Efficiency

Finally we look at the principal advantage of using MGMT Method as opposed to

UGUT approach by comparing the improvements in invested computational resources.

Table 5-30 lists the total computation time (in sec) required to obtain the global solution of

the problem, total number of nodes, elements, number of equations representing the

primary unconstrained DOF and the total amount of skyline storage that is descriptive of

the total CPU memory in use.

Table 5-30: Comparison of computational resources for Example 1 and Example 2

Case ID Nodes Elements
Number of

equations

Skyline

storage

Solution time (sec)

Example 1 Example 2

UGUT4 2737 2560 5440 221352
320.92

(~5 min)

107.53

(~2 min)

UGUT5 2737 2560 5440 221352
24822.27

(~7 hr)

830.14

(~13 min)

MGMT1 959 850 1884 74110
127.98

(~2 min)
41.80

MGMT2 1482 1360 2954 122615
13678.54

(~4 hr)

490.27

(~8 min)

MTC1

210 160 410 5543

16.17 5.50

MTC2 144.81 48.56

MTC3
1396.67

(~23 min)

474.74

(~8 min)

MTC4
13685.74

(~4 hr)

4605.30

(~1 hr)

MGC1 138 100 270 3361 1.02 0.35

MGC2 402 340 798 17949 4.43 1.46

MGC3 1410 1300 2814 120433 28.12 9.25

170

5.6 Numerical Analysis and Verification Summary

An overview of various scenarios analyzed in this chapter is presented in Figure 5-35. It

also illustrates various grid ratios and time-step ratios taken into consideration and also

shows the total number of mortar element nodes (■) used to couple distinct discretization.

UGUT1 UGUT2 UGUT3 UGUT4/5

(M

G
M

T
1
)

ξ = 1ξ = 2ξ = 3ξ = 4

(M
G

M
T

2
) ξ = 1 ξ = 500 (Ex. 1) 50 (Ex. 2)

(M
T

C
)

ξ = 1 ξ = 10, 100, 1000, 10000

(M
G

C
)

ξ = 1 ξ = 1

Figure 5-35: Summary of solved cases

Table 5-31 shows a quick overview of various performance evaluation factors analyzed

using aforementioned cases and corresponding error rankings (NRMSE in ascending

order). Note: Notation for error rankings is – MGMT1 ≡ 1, MGMT2 ≡ 2, MTC4 ≡ 4 and

MGC3 ≡ 3.

171

Table 5-31: Summary of analyzed results

U
G

U
T

4

U
G

U
T

5

M
G

M
T

1

M
G

M
T

2

M
T

C
1

M
T

C
2

M
T

C
3

M
T

C
4

M
G

C
1

M
G

C
2

M
G

C
3

R
an

k
in

g

S
ta

b
il

it
y

 A
n

al
y

si
s

Kinetic Energy





















{2413}

{4132}

Stiffness Energy





















{2413}

{4132}

IE v/s External

Work





















{3241}

{2413}

Domain Interface

Energy
















Total Interface

Energy





























{3421}

{4231}

Displacement

Continuity
    

Velocity

Continuity
    

{12}

{43}

Acceleration

Continuity
    

N
u

m
er

ic
al

 A
cc

u
ra

cy

Tip Deflection


































{2143}

{2413}

Stress-xx (@ x = 1)       {2413}

Stress-xx = f(x)       {1342}

U-x = f(x)       {1342}

Stress-xx = f(t)       {4231}

U-x = f(t)       {1432}

U̇-x = f(t)       {4123}

Ü-x = f(t)       {1342}

 = Example 1

(Transverse Vibration)

 = Example 2

(Longitudinal Vibration)

172

Table 5-32 shows the effective computational gain in MGMT implementation relative

to corresponding UGUT cases. Here we will use ‘Percentage Change’ (Wikipedia 2014) to

express a change in a variable, such as nodes, elements solution time etc. It is calculated by

comparing the initial (reference/old) value and the final (updated/new) value, representing

the change between them. More generally, if
1V represents the old value and

2V the new

one:

2 1

1 1

100
V VV

Percentage change
V V


   (5.4)

For example: the solution time for Example 1, using traditional (reference) FE

approach was 320.92 sec; and the same solution, using (new) approach, MGMT1, was

127.98 sec. Then, according to Eq. (5.4):

127.98 320.82
100 60.12%

320.82
Percentage change


    (5.5)

The negative sign in Eq. (5.5) represents percentage decrease. Accordingly, it can be

said that the solution time for MGMT1 decreased by 60.12%.

When comparing variables such as nodes, elements, number of equations, skyline

storage and CPU solution time, between UGUT and MGMT cases, we prefer a negative

percentage change since these variables represent computational resources that are invested

to obtain the same numerical solution. Therefore, fewer the computational resources, i.e.

larger the negative percentage change, better is the computational efficiency. Accordingly,

percentage change measurements for such variables will be represented by (▲) indicating

percentage increase (positive change – requiring more computational resources) and by

173

(▼) indicating percentage decrease (negative change – requiring less computational

resources). For other variables, such as in the comparison of numerical accuracy, we will

respectively use ▼ or ▲ to indicate a negative or a positive percentage change.

Consequently, Table 5-32 presents a summary of computational efficiency between

UGUT and MGMT cases, with implicit MGMT cases (MGMT1, MTC4 and MGC3

compared) against UGUT4 (I) and explicit case (MGMT2) compared against UGUT5 (E).

Table 5-32: Summary of computational efficiency

 Nodes Elements
Number of

equations

Skyline

storage

Solution time (sec)

Example 1 Example 2

MGMT1

v/s

UGUT4
▼64.96% ▼66.8% ▼65.37% ▼66.52% ▼60.12% ▼61.13%

MGMT2

v/s

UGUT5
▼45.85% ▼46.88% ▼45.7% ▼44.61% ▼44.89% ▼40.94%

MTC4

v/s

UGUT4
▼92.33% ▼93.75% ▼92.46% ▼97.5%

▲
4164.5%

▲
4182.8%

MGC3

v/s

UGUT4
▼48.48% ▼49.22% ▼48.27% ▼45.59% ▼91.24% ▼91.4%

Results show that invested computational resources, both memory and processing time,

show significant reduction than corresponding UGUT cases; with the exception of MTC4

which has a considerably higher CPU solution time since it employs a significantly large

time-step ratio (10,000)  and a smaller time-step in 2 : 85 10 sec compared to

30.125 10 sec for Example 1 and 95 10 sec compared to 40.125 10 sec for Example 2.

174

Chapter 6: MGMT Example Problems and Results

 In this chapter we will present some FE problems wherein MGMT Method can be

potentially used to preserve numerical accuracy in desired critical regions whilst improving

computational efficiency globally. Discussed examples provide a comprehensive matrix of

result analysis by comparing variables such as: global energies, augmented interface

energies, kinematic conformity, interface continuity, displacement/stress contour plots and

relative errors (RMSE/NRMSE) where relevant. Principal advantage in using MGMT

Method, which is the gain in computational efficiency, is also discussed by comparing

invested computational resources and CPU solution times between various UGUT and

MGMT cases.

Various examples analyzed in this chapter are as follows:

 Example 1: Stress Resolution in Critical Regions

Here we will analyze two classical FE problems that primarily focus on stress

resolution. In Example 1.1: Plate with a Hole, we compare MGMT results with

both: analytical and UGUT results whereas in Example 1.2: 3 Point Bending Test,

we compare results between transition mesh (UGUT) and structured mesh

(MGMT) approach.

 Example 2: Analysis of Heterogeneous Structural Systems

The focus in this example problem is to ensure accurate and efficient modeling of

structural wave propagation across heterogeneous (material) structural systems,

whilst highlighting the limitations in traditional FE approach and corresponding

advantages in using MGMT Method.

175

 Example 3: Steel Girder Subjected to Impulse Loading

This example analyzes the effects of isolating a small region, which is subjected to

short duration impulse loads, with a fine scale discretization so the critical region

can be solved using explicit time-integration whilst using implicit integration in the

larger, remote region. Global vibration characteristics are measured and compared

with a fine grid, explicit UGUT discretization.

 Example 4: Curved Frame under Point Loading

Similar to Example 3, the goal in this example is to isolate the concentrated point

load with fine discretization whilst ensuring that the dynamic behavior in remote

regions is retained. However, this example uses 8 node quadrilateral elements with

quadratic shape functions, and since interface reactions (or Lagrange Multipliers)

are discretized using linear shape functions, this example tests MGMT interface

coupling by comparing kinematic conformity and continuity at the interface.

 Example 5: Bridge Analysis

Here we analyze a large domain with both: heterogeneous material components and

application of complex loading functions; to observe overall structural dynamics,

kinematic conformity at material interfaces and gain in computational efficiency.

Reference results are obtained from a UGUT simulation and are compared with

multiple time-step (MTC), multiple grid (MGC) and MGMT coupling approaches.

176

6.1 Example 1: Stress Resolution in Critical Regions

6.1.1 Example 1.1: Plate with a Hole

The "plate with a hole" problem is one of the fundamental learning steps in any study

involving finite element analysis as it illustrates a number of key points essential to the

accurate application of the FEM to stress analysis. In this example, we will examine the

distribution of stress in a flat plate (2D) with a hole under uniaxial loading (simple tension).

We will approach this problem with both, uniform grid uniform time-scale (UGUT) and

multiple grid multiple time-scale (MGMT) discretizations.

The domain under analysis, Figure 6-1, is 10” wide, 20” long and 0.1” thick with a

circular hole of diameter 0.5” at the center. The domain is discretized using 4-node

quadrilateral elements (2 DOF/node) with plane stress formulation, consistent mass matrix

and zero damping. Isotropic linear elastic material properties with modulus of elasticity (E)

= 3x10
7
 Psi, Poisson’s ratio (ν) = 0.3 and mass density (ρ) = 7.33x10

-4
 lbf-sec

2
/in

4
 are used.

1.0

(sec)time

10 /lb in()F t

()F t

l = 20"

x

y

w
 =

 1
0

"

0.5"d 

(a) Domain under consideration (b) Linear (ramp) load

Figure 6-1: Plate with a hole under uniaxial loading

Using Classical Stress Theory (CST), longitudinal stress in the plate (ignoring the hole)

can be obtained as:

177

10
10

10 0.1

F
Psi

w t
   

 
 (6.1)

For a plate with a hole, under uniaxial tension, nominal stress is obtained as:

   
10

10.5263
10 0.5 0.1

nom

F
Psi

w d t
   

  
 (6.2)

Maximum stress in the plate, in vicinity of the hole, can then expressed as:

max t nomK  (6.3)

Where theoretical stress concentration factor (Kt) can be obtained from the following

chart (Budynas & Nisbett 2008):

Figure 6-2: Theoretical stress concentration factor Kt (Budynas & Nisbett 2008)

For the example problem described in Figure 6-1 we have:

178

0.5
0.05

10

d

w
  (6.4)

Therefore, from Figure 6-2, we have Kt = 2.8 and accordingly the maximum stress in

the vicinity of the hole is:

max 2.8 29.4736nom Psi    (6.5)

Now that we have established the maximum value of stress in the vicinity of the hole

via analytical method, we will approach this problem using FEM. We will compare the

computed stress (Sigma-xx) not only in the vicinity of the hole, but also as a function of

space along the width and length of the plate as shown in Figure 6-3.

Sigma-xx along

width

Sigma-xx along

length

l = 20"

w
 =

 1
0

"

Figure 6-3: Sigma-xx as a function of space

Figure 6-5 (UGUT1) shows the distribution of longitudinal stress as a function of space

along the width of the plate. The computed maximum stress in this case is 20.64 Psi. This

result is far from the theoretical value; in fact it is almost ▼30%. The difference can be

explained by the coarse mesh in the stress concentration region that is in the vicinity of the

hole. In order to achieve desired/converged value of maximum stress, two different

approaches can be used for this problem. The classical approach is to refine the grid

179

discretization, using H-method as discussed under Section 5.2, or to refine the mesh only in

the vicinity of the hole and establish multiple grid connections between critical region and

the rest of the structure. Accordingly, we adopt both: refined UGUT and MGMT method

with the following parameters.

Table 6-1: Case parameters

Case ID Nodes Elements Grid Spacing (H) Time-step (ΔT)

UGUT1 908 836 H = 0.5 1x10
-3

UGUT2 3488 3344 H = 0.25 0.5x10
-3

UGUT3 13664 13376 H = 0.125 0.25x10
-3

MGMT-Ω1 836 764 H = 0.5 1x10
-3

MGMT-Ω2 4800 4608 H = 0.125 0.25x10
-3

(a) UGUT1 (b) UGUT2

(c) UGUT3 (d) MGMT

Figure 6-4: Analyzed grids

180

Figure 6-5: Sigma-xx as a function of distance from the hole (along the width of the plate)

181

Figure 6-6: Sigma-xx as a function of distance from the hole (along the length of the plate)

182

We can see from Figure 6-5 that the maximum longitudinal stress increases (and

converges towards theoretical value) as the domain gird is refined. It is 25.42 Psi

(▼13.75%) for UGUT2, 28.99 (▼1.64%) for UGUT3 and 29.02 (▼1.54%) for MGMT.

Similar trend is also observed for the minimum longitudinal stress, Figure 6-6. In fact, only

UGUT3 (-0.459 Psi) and MGMT (-0.46 Psi) discretizations are capable of predicting

compression on the lateral edge of the hole. We also compare the overall distribution of

longitudinal and lateral stress, and lateral displacement and notice that the contours get

smoother with grid refinement.

(a) UGUT1 (b) UGUT2 (c) UGUT3 (d) MGMT

Figure 6-7: Contour plots for Sigma-xx, Sigma-yy and Displacement-y around the hole

183

(a) Sigma-xx UGUT3 (b) Sigma-xx MGMT (c) Sigma-yy UGUT3 (d) Sigma-yy MGMT

Figure 6-8: Contour plots for Sigma-xx and Sigma-yy outside the critical region

Zooming out of the critical region, Figure 6-8, we notice a discontinuity in stress

contours for MGMT discretization; however this discontinuity does not exist in Figure 6-5

and Figure 6-6. This is because former plots were obtained by stresses computed at nodal

location, whereas latter contour plots are obtained by stresses computed at element

integration points. We clearly see from Figure 6-9 that non-conforming interfaces also

result in non-conforming element integration points, and it should be noted that the multi-

constraint operator ()L works on nodal quantities only. Accordingly, in order to establish

continuity of quantities computed at integration points; one should implement a multi-

constraint operator that connects disparate integration points from adjacent sub-domains or

simply project these quantities onto nodes using element shape functions and L .

(a) Conforming interface (d) Non-conforming interface

Figure 6-9: Distribution of element integration points

184

Following figures plot the global energies (kinetic energy and stiffness energy) for

UGUT3 and MGMT along with the total augmented interface energy for MGMT. Also,

listed is the RMSE for respective plots.

Figure 6-10: Global energies for UGUT3 v/s MGMT and augmented (total) interface energy

Augmented interface energy does accumulate over time, and once again is the result of

fewer number of interface coupling DOF (or high grid ratio). MGMT- 1 in this case has a

total 24 ‘non-mortar’ nodes whereas MGMT- 2 has 96 ‘mortar’ nodes, resulting in only

24 mortar element nodes and hence only 24 Lagrange Multipliers () to communicate

information across connecting sub-domains.

185

Finally we look the invested computational resources for all analyzed cases. UGUT3

has the smallest error (1.64%) amongst UGUT cases however it requires ~12 hours of

computation time. MGMT on other hand takes only 18 min to solve with an even smaller

error (1.54%).

Table 6-2: Example 1.1 – Comparison of computational resources

Case ID
Number of

equations

Skyline

 storage

Solution time

(sec)

% change in

Sigma-xx

UGUT1 1795 108723 81.57 ▼29.97%

UGUT2 6935 814215 1749.16 (~30 min) ▼13.75%

UGUT3 27247 6296845 43967.58 (~12 hr) ▼1.64%

MGMT 4147 336151 1103.33 (~18 min) ▼1.54%

MGMT

v/s

UGUT3

▼ 84.78% ▼ 94.66% ▼ 97.49%

6.1.2 Example 1.2: 3 Point Bending Test

In this example we will analyze a single edge notch concrete beam under bending. The

goal is to demonstrate the capability of MGMT Method in resolving critical regions with

structured fine scale discretizations in the vicinity of the notch/crack.

The domain under consideration is shown in Figure 6-11 (a) with a linear ramp load of

1N as shown in Figure 6-11 (a). The domain is discretized using 4-node quadrilateral

elements (2 DOF/node) with plane stress formulation, consistent mass matrix and zero

damping. Isotropic linear elastic material properties for concrete with a modulus of

elasticity (E) = 40x10
9
 N/m

2
, Poisson’s ratio (ν) = 0.2 and mass density (ρ) = 2400 Kg/m

3

are used.

186

2mm

10mm

20mm

20mm

0.05m

0.7m

0
.1

5
m

()F t

0.05m

(a) Domain under consideration

0.1

(sec)time

1N
()F t

(b) Linear (ramp) load

Figure 6-11: 3 point bending test

Since the edge notch (crack) is significantly smaller in size than rest of the beam,

typical FE approach would require a transition or an unstructured mesh so the crack can be

resolved whilst using coarser elements in the remote region. However, unstructured mesh

can inherently result in elements that are poor in shape quality within the transition zone.

This is not recommended since it can adversely affect the quality of the solution. MGMT

Method on other hand allows the user to decompose the original problem into sub-domains

which can then be discretized independent of each other. Hence permitting structured fine

scale discretization in desired critical regions. Accordingly, in this example we will

approach the problem with unstructured transition mesh and structured multiple grids,

Table 6-3 and Figure 6-12, for comparison.

187

Table 6-3: Simulation parameters

Case Grid spacing (H) Newmark parameters Time-step (ΔT)

Transition

Mesh
H = 0.0055 β = 0.25, γ = 0.5 (Implicit) 1x10

-4

Structured

Multiple Grids

1H = 0.025

2H = 0.001

β
1
 = 0.25, γ

1
 = 0.5 (Implicit)

β
2
 = 0.25, γ

2
 = 0.5 (Implicit)

Δt
1
 = 1x10

-3

Δt
2
 = 1 x10

-4

Figure 6-12: Domain grids: Transition Mesh and Structured Multiple Grids

Transi t ion Mesh Structured Mult ip le Grids

Figure 6-13: Mesh quality

In Figure 6-13 we compare the overall mesh quality for both – transition mesh and

structured multiple grids. The criterion ‘Shape Quality’ measures the likeness of an element

188

to be a reference element (an equilateral triangle in the case of triangles, a regular

tetrahedron in the case of tetrahedra, a square in the case of quadrilaterals and a cube in the

case of hexahedra). Its value is 1 for a perfect element (reference element), and it decreases

as the element degrades in shape in comparison with the reference element. A negative

value would represent that the element has a negative Jacobian at some point. In Figure

6-13 we clearly see that the mesh quality quickly degrades for elements within transition

zone. Although it allows resolving critical regions in the vicinity of the crack, element

quality can adversely affect the quality of solution in this region. Structured multiple grids,

on other hand maintain a consistent element shape quality of 1, allowing the user to resolve

critical regions in the vicinity of crack whilst achieving optimum shape quality.

Stress along

beam height

Figure 6-14: Stress as a function of space

Figure 6-15 and Figure 6-16 show the Von Mises Stress and longitudinal stress as a

function of space at the center of the beam and along its height, See Figure 6-14. Structured

MGMT clearly shows a smoother stress distribution around the crack tip with a maximum

Von Mises stress of 343.19 N/m
2
 versus 272.24 N/m

2
 for transition mesh, and a maximum

longitudinal stress of 353.69 N/m
2
 versus 310.65 N/m

2
 for transition mesh.

Finally, Figure 6-17, Figure 6-18 and Figure 6-19 show the overall (across the beam)

distribution of Von Mises stress, longitudinal and lateral displacement at t = 0.1s.

189

272.24, 0.11

343.19, 0.11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0 50 100 150 200 250 300 350

Transition Mesh Structured Multiple Grid

Von Mises Stress (N/m
2
)

D
is

ta
n

c
e

 a
lo

n
g

 b
e

a
m

 h
e

ig
h

t
(m

)

T ransi t ion Mesh Structured MGMT

Figure 6-15: Von Mises Stress (at t = 0.1s) as a function of beam height

310.65, 0.11

353.69, 0.11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

-100 0 100 200 300 400

Transition Mesh Structured Multiple Grid

D
is

ta
n

c
e

 a
lo

n
g

 b
e

a
m

 h
e

ig
h

t
(m

)

S igma-xx (N/m
2
)

Figure 6-16: Longitudinal Stress (at t = 0.1s) as a function of beam height

190

T
ra

n
s

it
io

n

M
e

s
h

S
tr

u
c

tu
re

d

M
u

lt
ip

le
 G

ri
d

s

Figure 6-17: Von Mises stress distribution t = 0.1s

T
ra

n
s

it
io

n

M
e

s
h

S
tr

u
c

tu
re

d

M
u

lt
ip

le
 G

ri
d

s

Figure 6-18: Contour lines for Displacement-x at t = 0.1s

T
ra

n
s

it
io

n

M
e

s
h

S
tr

u
c

tu
re

d

M
u

lt
ip

le
 G

ri
d

s

Figure 6-19: Contour lines for Displacement-y at t = 0.1s

191

6.2 Example 2: Analysis of Heterogeneous Structural Systems

Most structural systems used in contemporary mechanical and civil engineering

applications are heterogeneous (composites) and multicomponent in nature. An essential

characteristic feature of such multi-material, multicomponent systems is that structural

waves travel at different speeds through different mediums with possible reflection at the

material interface. Accordingly, accurate and efficient numerical modeling of wave

propagation in heterogeneous media is important for several applications. Following

example shows the fundamental limitations of conventional uniform grid uniform time-

scale FEM and demonstrates the relative advantages in using MGMT Method.

1
m

10m

()F tSteelTin

(a) Domain under consideration

0.001

0.006

(sec)time

8
1 10 N

()F t

~ ~

(b) Transient impact load

Figure 6-20: Heterogeneous material system

Figure 6-20 shows an overview of a heterogeneous domain under analysis. It consists

of a 2D cantilever beam subjected to longitudinal impact loading of sinusoidal form. The

192

beam is divided halfway across the length and consists of Steel and Tin on either side of the

dividing interface. Mechanical properties for these materials, Modulus of Elasticity (E),

Poisson’s Ratio (ν) and Mass Density (ρ) are listed in Table 6-4. Ignoring Poisson’s Ratio,

wave speed of the material is calculated as /c E  and is also listed in Table 6-4.

Table 6-4: Mechanical properties for Steel and Tin

In order the model the longitudinal wave as accurately as possible, the domain under

analysis needs to be adequately discretized, both in space and time. A span of 10 elements

seems appropriate to spread the impact load across the width of the beam, accordingly 4

node quadrilateral elements of width 0.1m are selected. In order to achieve structured mesh

across the domain, as well as to maintain the aspect ratio of individual elements, the length

of the element is also selected as 0.1m. Accordingly, as a preliminary spatial discretization,

a grid consisting of 100x10 elements is selected. An appropriate time-step for each material

media is then obtained by dividing the characteristic length of the element with respective

material wave speed.

Table 6-5: Time-step to accurately resolve structural wave propagation

 E (N/m
2
) ν ρ (Kg/m

3
) c (m/sec)

Steel 207x10
9
 0.3 7830 5141.67

Tin 47x10
9
 0.33 7280 2540.87

Critical time-step

(Δtc = H/c)

Selected time-step

(Δt < Δtc)

Steel 50.1/ 5141.67 1.94 10  51 10

Tin 50.1/ 2540.87 3.93 10  53 10

193

It is evident from Table 6-5 that different material systems, depending on their

mechanical properties, require different time-steps in order to accurately resolve structural

wave propagation across the domain. Traditional FE approach requires uniform time-scale

discretization and consequently the solution algorithm is forced to use the lowest stable

time-step for the entire range of material systems under analysis. In this case, the global

time-step would be limited to 1x10
-5

 sec. Clearly, this is computationally inefficient since

half the domain (Tin) does not require this small time-step to accurately capture the wave.

As an alternative, elements from the steel domain may be appropriately scaled to match

the larger time-step (3x10
-5

 sec); however this introduces non-conforming connections at

the interface which cannot be handled by traditional FE techniques. Usual FEM is therefore

incapable of resolving heterogeneous material systems according to their time-step

requirements, hence resulting in lower computational efficiency and compromised solution

accuracy. In order to demonstrate relative advantages in using MGMT Method, whilst

overcoming aforementioned limitations, following cases will be considered under this

example:

1) UGUT – Uniform grid uniform time-step with lowest stable time-step

2) MGMT1 – Uniform gird with material appropriate time-steps

3) MGMT2 – Uniform time-step with appropriately scaled elements

194

Following tables and accompanying figure give a summary of simulation parameters

for various cases analyzed under this example.

Table 6-6: UGUT heterogeneous material system – Simulation parameters

Case Grid spacing (H) Newmark parameters Time-step (ΔT)

UGUT 0.1 β = 0.25, γ = 0.5 (Implicit) 1x10
-5

Table 6-7: MGMT1 heterogeneous material system – Simulation parameters

Number of sub-domains = 2 Total number of interface DOF = 22

Global time-step ΔT = 3x10
-5

 Time-step ratio (ξ) = 1, 3

 Sub-domain Grid spacing (H) Newmark parameters Time-step (Δt)

Ω1 (Tin) 0.1 β = 0.25, γ = 0.5 (Implicit) 3x10
-5

Ω2 (Steel) 0.1 β = 0.25, γ = 0.5 (Implicit) 1x10
-5

Table 6-8: MGMT2 heterogeneous material system – Simulation parameters

Number of sub-domains = 2 Total number of interface DOF = 14

Global time-step ΔT = 3x10
-5

 Time-step ratio (ξ) = 1, 1

Sub-domain Grid spacing (H) Newmark parameters Time-step (Δt)

Ω1 (Tin) 0.1 β = 0.25, γ = 0.5 (Implicit) 3x10
-5

Ω2 (Steel) 0.6666 β = 0.25, γ = 0.5 (Implicit) 3x10
-5

UGUT and MGMT1

MGMT2

Figure 6-21: Heterogeneous material system – Domain grids

195

Initial comparison is made by plotting global energies, Figure 6-22, and by measuring

relative RMSE and NRMS errors, Table 6-9, in order to ensure stability and overall

conformance between global energies.

Figure 6-22: Global energies

196

Table 6-9: RMSE and NRMSE (%). Variable = Global energies

 Kinetic Energy Stiffness Energy

UGUT v/s MGMT1 1109.42 (1.30%) 1108.30 (1.00%)

UGUT v/s MGMT2 297.58 (0.35%) 304.60 (0.27%)

Table 6-10: Mean variance in augmented (total) interface energy

 Total Interface Energy

MGMT1 1.31x10
-8

 (@ 200)

MGMT2 1.07x10
-8

 (@ 200)

Table 6-9 shows very good conformance between global energies and validates MGMT

stability by ensuring negligible interface energy accumulation/dissipation, Table 6-10.

Subsequent results include comparison of stress wave (Sigma-xx), Figure 6-24, and

displacement wave, Figure 6-25, as a function of time, as it propagates across the length of

the beam. Measurements are made at 4 different locations as shown in Figure 6-23.

Resulting RMSE and NRMSE errors are listed in Table 6-11 and Table 6-12 respectively.

1
m x

x = 2.5 x = 5 x = 7.5 x = 10

Figure 6-23: Heterogeneous material system – Longitudinal stress and displacement
measurement locations across the length of beam

197

x = 5

x = 10

x = 7.5

x = 2.5

UGUT MGMT1 MGMT2

Figure 6-24: Heterogeneous material system – Longitudinal stress (Sigma-xx) as a function of
time

Figure 6-25: Longitudinal displacement (U-x) as a function of time

198

Table 6-11: RMSE and NRMSE (%). Variable = Longitudinal stress (Sigma-xx) as function of time

Stress (Sigma-xx)

MGMT1 MGMT2

x = 10 973568.46 (0.93%) 1010704.63 (0.96%)

x = 7.5 1462419.42 (1.04%) 868346.19 (0.622%)

x = 5 2684557.54 (2.90%) 2030655.68 (2.19%)

x = 2.5 1740279.38 (1.67%) 1289447.07 (1.23%)

Table 6-12: RMSE and NRMSE (%). Variable = Longitudinal displacement (U-x) as function of
time

Displacement-x

MGMT1 MGMT2

x = 10 1.10x10
-6

 (0.34%) 3.20x10
-6

 (0.1%)

x = 7.5 1.10x10
-6

 (0.34%) 3.02x10
-6

 (0.09%)

x = 5 1.39x10
-6

 (0.46%) 3.41x10
-6

(0.11%)

x = 2.5 1.61x10
-6

 (0.70%) 5.38x10
-6

(0.23%)

Following results include plots of longitudinal stress, Figure 6-26, and displacement,

Figure 6-27, as a function of space, measured at 4 different time instants t = 0.00075,

0.0015, 0.00225 and 0.003 sec. Subsequent are the contour plots for longitudinal stress

with global deformation, Figure 6-28 through Figure 6-31.

199

t = 0.00225

t = 0.00075

t = 0.0015

t = 0.003

UGUT MGMT1 MGMT2 Interface

Figure 6-26: Longitudinal stress (Sigma-xx) as a function of space

Figure 6-27: Longitudinal displacement (U-x) as a function of space

200

U
G

U
T

M
G

M
T

1
M

G
M

T
2

Figure 6-28: Longitudinal stress wave at t = 0.00075s

U
G

U
T

M
G

M
T

1
M

G
M

T
2

Figure 6-29: Longitudinal stress wave at t = 0.0015s

201

U
G

U
T

M
G

M
T

1
M

G
M

T
2

Figure 6-30: Longitudinal stress wave at t = 0.00225s

U
G

U
T

M
G

M
T

1
M

G
M

T
2

Figure 6-31: Longitudinal stress wave at t = 0.003s

202

Results show very good conformance between UGUT and MGMT cases. Stress wave

propagates seamlessly across the length of the beam without any significant change in

amplitude or phase. Table 6-11 shows that maximum NRMSE error in longitudinal stress

occurs at x = 5 which is 2.9% for UGUT v/s MGMT1 and 2.19% for UGUT v/s MGMT2.

However x = 5 not only represents the interface between Steel and Tin sub-domains but

also represents an interface between multiple grid (MGMT2) and multiple time-scale

(MGMT1) sub-domains; accordingly certain discontinuity in stress is expected as a result

of multiscale computations. Corresponding errors for longitudinal displacement are much

lower, 0.46% for UGUT v/s MGMT1 and 0.11% for UGUT v/s MGMT2, and hence

represent smoother continuity in displacement across the interface. Longitudinal stress and

displacement, plotted as function of space, also show very good conformance with UGUT

case, ensuring no delay in communicating information across heterogeneous MGMT sun-

domains. Table 6-13 shows the comparison of computational resources utilized in

analyzing respective cases. MGMT1 with uniform grid and material specific time-step

reduces the computation time by 9.3%, whereas MGMT2 with uniform time-step and

appropriately scaled element sizes reduces the computation time by 67.2%.

Table 6-13: Example 2 – Comparison of computational resources

 Nodes Elements
Number of

equations

Skyline

storage

Solution time

(sec)

UGUT 1111 1000 2200 59536 22.68

MGMT1
1122

▲ 0.99%

1000

▲▼

2222

▲ 1.00%

63849

▲ 7.24%

20.57

▼ 9.30%

MGMT2
778

▼ 29.97%

680

▼ 32%

1534

▼ 30.27%

39681

▼ 33.34%

7.44

▼ 67.19%

203

6.3 Example 3: Steel Girder Subjected to Impulse Loading

In this example we will analyze a large compound structure used for building bridges

and the frameworks of large buildings. This girder, as shown in Figure 6-32, is analyzed for

its response under the action of a sudden impulse loading applied at the mid-section

connection. Since the load signifies a large magnitude force applied over a short duration of

time, the girder is expected to represent an impact response and accordingly, wave

propagation is the primary concern in this example. In addition to modeling response under

impulse loading, we would also like to analyze the global, structural dynamic behavior of

the girder. Traditional FE approach in such scenarios would require small time-steps and

preferably an explicit integration scheme in order to capture the wave dynamics; and

limited by the inherent nature of single domain discretization, one would be forced to

utilize a uniform grid uniform time-scale discretization throughout the analysis domain

under consideration.

5x10
-4

15x10
-4

(sec)time

12 KN
()F t

~ ~
 ()F t

9 2

3

207 10 /

7830 /

0.3

0.001

0.05

c

c

E N m

Kg m

m

k





 









6.12m

1
0
.6

m

Figure 6-32: Steel girder subjected to short duration impulse loading

204

In this example, we will begin with UGUT discretization, Figure 6-33 and Table 6-14,

that uses explicit time integration scheme and a domain wide spatial discretization of H =

0.025. We then selectively isolate the girder section that is subjected to impulse loading

(2) and discretize it with same parameters as UGUT. We then employ two different

discretizations within the remote region of the girder (1) with coarser grids and implicit

time integration algorithms.

Resulting analysis domains and their respective simulation parameters are as shown in

Figure 6-33 and Table 6-14. In either case, the domain is discretized using 4-node

quadrilateral elements (2 DOF/node) with plane stress formulation and consistent mass

matrix. Rayleigh damping is assumed in this example and the corresponding damping

coefficients are: cm = 0.001 for mass and ck = 0.05 for stiffness. Isotropic linear elastic

material properties with modulus of elasticity (E) = 2.07x10
11

 N/m
2
, Poisson’s ratio (ν) =

0.3 and mass density (ρ) = 7.83x10
3
 Kg/m

3
 are used.

UGUT

MGMT1

MGMT2

Ω1

Ω2

Ω1

Ω1

Ω2

Ω2

Figure 6-33: Analyzed cases: UGUT, MGMT1 and MGMT2

205

Table 6-14: Simulation parameters

Grid spacing

(H)

Interface

DOF (λ)

Newmark

parameters

Time-

step (ΔT)

Time-step

ratio (ξ)

UGUT H = 0.025 -
β=0.0, γ=0.5

(Explicit)
1x10

-6
 -

MGMT1-Ω1 H = 0.05

60

β=0.25, γ=0.5

(Implicit)
2x10

-4
 1

MGMT1-Ω2 H = 0.025
β=0.0, γ=0.5

(Explicit)
1x10

-6
 20

MGMT2-Ω1 H = 0.083

40

β=0.25, γ=0.5

(Implicit)
2x10

-4
 1

MGMT2-Ω2 H = 0.025
β=0.0, γ=0.5

(Explicit)
1x10

-6
 20

We first look at the global energy distribution in order to establish numerical stability in

UGUT and MGMT simulations. Figure 6-34 plots the evolution of kinetic, stiffness energy

and external work for all three cases with augmented interface energy contributions for

MGMT cases. As expected, the total internal energy (kinetic + stiffness + interface) in all

three cases approaches zero as soon as the impulse load terminates. This is due to system

damping present in the form of Rayleigh damping coefficients. From the evolution of

interface energy we see that highest augmented energies (although several orders of

magnitude smaller than domain energies) are generated at the peak of applied impulse load;

but again: approach zero due to system damping. Results from Figure 6-34 and Table 6-15

show overall good conformance with UGUT and hence numerical stability is verified.

Table 6-15: RMSE and NRMSE (%). Variable = Global Energies

 Kinetic Energy Stiffness Energy Interface Energy

MGMT1 5.77x10
-7

 (1.79%) 7.10x10
-9

 (0.96%) 2.91x10
-17

MGMT2 8.99x10
-7

 (1.86%) 8.57x10
-9

 (1.16%) 3.03x10
-17

206

Figure 6-34: Global Energies

207

Subsequently, we will look at:

1) Distribution of Displacement-x and Displacement-y (Figure 6-36 and Figure 6-37)

at peak impulse along with the deformed shape of the girder.

2) Distribution of Sigma-xx and Sigma-yy (Figure 6-38 and Figure 6-39) at simulation

end time.

3) Evolution of Displacement-x and Sigma-xx as function of time (Figure 6-40 and

Figure 6-41) along with respective RMSE and NRMSE. Recorded at A → x =

0.125m, B → x = 3m and C → x = 6m, See Figure 6-35.

4) Evolution of Displacement-x and Sigma-xx as function of space (Figure 6-42 and

Figure 6-43) along with respective RMSE and NRMSE. Recorded along segment

D, Figure 6-35 (b), and at t = 0.0005sec, 0.001sec and 0.0015sec.

A B C

D

(a) (b)

Figure 6-35: Analyzed result descriptions (a) Results measured at points A, B and C as functions
of time (b) Results measured along segment D as functions of space

208

Figure 6-36: Global contour lines for Displacement-x at peak impulse. UGUT, MGMT1 and
MGMT2 (L-R)

209

Figure 6-37: Global contour lines for Displacement-y at peak impulse. UGUT, MGMT1 and
MGMT2 (L-R)

210

Figure 6-38: Global contour plots for Sigma-xx. UGUT, MGMT1 and MGMT2 (L-R)

211

Figure 6-39: Global contour plots for Sigma-yy. UGUT, MGMT1 and MGMT2 (L-R)

212

Figure 6-40: Displacement-x as a function of time

Table 6-16: RMSE and NRMSE (%). Variable = Displacement-x as a function of time

 MGMT1 MGMT2

x = 0.125m 1.93x10
-10

 (0.85%) 2.25x10
-10

 (1.00%)

x = 3m 2.07x10
-10

 (0.92%) 2.43x10
-10

 (1.09%)

x = 6m 2.09x10
-10

 (0.94%) 2.51x10
-10

 (1.13%)

213

Figure 6-41: Sigma-xx as a function of time

Table 6-17: RMSE and NRMSE (%). Variable = Sigma-xx as a function of time

 MGMT1 MGMT2

x = 0.125m 1.70 (1.31%) 1.69 (1.30%)

x = 3m 0.62 (1.60%) 0.62 (1.62%)

x = 6m 8.72x10
-2

 (1.58%) 0.202 (3.67%)

214

Figure 6-42: Displacement-x as a function of space

Table 6-18: RMSE and NRMSE (%). Variable = Displacement-x as a function of space

 MGMT1 MGMT2

t = 0.0005sec 3.17x10
-10

 (28.88%) 3.54x10
-10

 (32.23%)

t = 0.001sec 1.46x10
-10

 (24.47%) 2.00x10
-10

 (33.23%)

t = 0.0015sec 1.05x10
-10

 (26.46%) 1.73x10
-10

 (43.38%)

215

Figure 6-43: Sigma-xx as a function of space

Table 6-19: RMSE and NRMSE (%). Variable = Displacement-x as a function of space

 MGMT1 MGMT2

t = 0.0005sec 0.89 (0.63%) 1.19 (0.85%)

t = 0.001sec 0.22 (0.16%) 0.53 (0.39%)

t = 0.0015sec 0.14 (0.10%) 0.38 (0.29%)

216

From aforementioned results we see that MGMT1 has a better conformance (smaller

NRMSE than MGMT2) with UGUT since it hosts more DOF than MGMT2. There is a

significant error in displacement-x as a function of space for both MGMT1 and MGMT2

due to 1 2  interface disconnection, Figure 6-44, under the action of sudden impulse

loading. Accordingly, utmost care must be taken when modeling critical regions subjected

to impact conditions. All other MGMT1 results show relatively small errors, averaging to

less than 1%, which is significantly smaller in comparison to the gain in simulation

speedup (~99%) as shown in Table 6-20.

Figure 6-44: Interface disconnection (Deformed shape graphed at 5E7 magnification)

Table 6-20: Example 3 – Comparison of computational resources

 Nodes Elements
Number of

equations

Skyline

storage

Solution time

(sec)

UGUT 24133 22076 48214 10444765 38268.63 (~11 hr)

MGMT1
7390

▼69.37%

6284

▼71.53%

14748

▼69.41%

1473410

▼85.89%

300.97 (~5 min)

▼99.24%

MGMT2
3236

▼86.59%

2624

▼88.11%

6448

▼86.62%

387348

▼96.29%

160.64 (~3 min)

▼99.54%

217

6.4 Example 4: Curved Frame under Point Loading

In this example we will analyze a thin curved frame subjected to concentrated point

load as shown in Figure 6-45. Since the domain under analysis is doubly symmetric with

symmetric loading conditions, we shall model only a quarter of the original domain with

symmetric boundary condition as shown Figure 6-46. 8 node quadrilateral elements with

2DOF/node and 3x3 Gauss integration rule will be used to discretize the domain along with

plane stress formulation, consistent mass matrix and zero damping.

1.7

1
.5

R 0.35

9 2

3

207 10 /

7830 /

0.3

E N m

Kg m



 





Thickness = 0.02

()F t

0.005

(sec)time

20KN
()F t

0.01

~ ~

(a) (b)

Figure 6-45: (a) Domain under analysis: Curved frame (b) Transient point loading

Constrained vertical motion

Constrained horizontal motion

℄

℄

()F t () / 2F t

Figure 6-46: Finite element modeling of a double symmetric domain under symmetric loading
condition

218

Two cases, Figure 6-47, will be analyzed under this example. For MGMT analysis, we

will isolate the region around concentrated point load (Ω2) and analyze the overall

vibration characteristics of the thin frame, primarily by comparing the conformance of

displacement, velocity and accelerations of N1 (y-component) and N2 (x-component), see

Figure 6-47, with results obtained from corresponding UGUT nodes. The goal is to ensure

that MGMT interface is capable of efficiently communicating information between

component sub-domains (grid ratio = 5, time-step ratio = 100) so the dynamic behavior in

remote regions is retained.

UGUT

() / 2F t

Ω1

Ω2

MGMT

() / 2F t

N1

N2

Interface

Figure 6-47: Analyzed cases

Table 6-21: Simulation parameters

Grid spacing

(H)

Interface

DOF (λ)

Newmark

parameters

Time-

step (ΔT)

Time-step

ratio (ξ)

UGUT H = 0.002 -
β=0.25, γ=0.5

(Implicit)
1x10

-6
 -

MGMT-Ω1 H = 0.01

10

β=0.25, γ=0.5

(Implicit)
1x10

-4
 1

MGMT-Ω2 H = 0.002
β=0.25, γ=0.5

(Implicit)
1x10

-6
 100

219

Subsequently, we will look at:

1) Evolution of global energies: kinetic energy, stiffness energy and external work

with relative errors in MGMT analysis (Figure 6-48 and Table 6-22).

2) Augmented interface energy and its mean variance about zero (Figure 6-48 and

Table 6-22).

3) Kinematic conformity (comparison between UGUT and MGMT) and interface

continuity (comparison between MGMT-Ω1 and MGMT-Ω2) of displacement-y,

velocity-y and acceleration-y for interface node N1, See Figure 6-47, with

corresponding errors (Figure 6-49 and Table 6-23).

4) Kinematic conformity (comparison between UGUT and MGMT) of displacement-

x, velocity-x and acceleration-x for node N2, See Figure 6-47, with corresponding

errors (Figure 6-50).

5) Overall deformed shape and displacement contour plots at various time-instants.

Displacement-x (Figure 6-51) and Displacement-y (Figure 6-52).

6) Comparison on of computational resources (Table 6-24).

220

Figure 6-48: Global energies

Table 6-22: RMSE and NRMSE (%). Variable = Global Energies

 Kinetic Energy Stiffness Energy Interface Energy

MGMT 6.41x10
-2

 (2.35%) 0.762 (26.89%) 2.09x10
-10

221

Figure 6-49: Kinematic conformity and interface continuity (N1)

222

Table 6-23: RMSE and NRMSE (%). Variable = Kinematic conformity/interface continuity (N1)

UGUT v/s

MGMT-Ω1

UGUT v/s

MGMT-Ω2

MGMT-Ω1 v/s

MGMT-Ω2

Displacement 7.11x10
-6

 (1.52%) 7.60x10
-6

 (1.63%) 1.26x10
-6

(0.27%)

Velocity 1.18x10
-2

 (3.25%) 1.16x10
-2

 (3.20%) 4.58x10
-4

(0.12%)

Acceleration 60.96 (10.53%) 3956.27 (683.8%) 3958.18 (621.5%)

Figure 6-50: Kinematic conformity (N2)

223

t = 0.0025sec

t = 0.0025sec

t = 0.005sec

t = 0.005sec

t = 0.0075sec

t = 0.0075sec

t = 0.01sec

t = 0.01sec

Figure 6-51: Contour plots for Displacement-x. UGUT (Left) and MGMT (Right)

224

t = 0.0025sec

t = 0.0025sec

t = 0.005sec

t = 0.005sec

t = 0.0075sec

t = 0.0075sec

t = 0.01sec

t = 0.01sec

Figure 6-52: Contour plots for Displacement-y. UGUT (Left) and MGMT (Right)

225

Aforementioned results show very good conformance between UGUT and MGMT

simulations. The augmented interface energy (10
-10

) is several orders of magnitude smaller

than global energies (10
0
) ensuring numerical stability. Kinematic comparison between

UGUT and MGMT results measured at N1 yields significantly larger errors (1.6% in

displacement and 3.2% in velocity) but the comparison of interface continuity between Ω1

and Ω2 results measured at N1 yields relatively low errors (0.2% in displacement and 0.1%

in velocity) ensuring efficient grid coupling. Errors in kinematic comparison of remote

node N2 are also sufficiently low (1% in displacement and 2.5% in velocity) ensuring that

global dynamic behavior can be efficiently retained in MGMT simulations. Comparison

between deformed shape and displacement counter plots further substantiates this

inference.

As shown in Table 6-24, this example certainly demonstrates the principal advantage in

using MGMT Method. It is evident that reducing the total number of space discretized

variables (number of equations) will inherently yield errors but the resulting gain in

computational speed up due to MGMT coupling is indeed significant.

Table 6-24: Example 4 – Comparison of computational resources

 Nodes Elements
Number of

equations

Skyline

storage

Solution time

(sec)

UGUT 23733 7410 47424 4483371 41929.49 (~12 hr)

MGMT
5010

▼78.89%

1496

▼79.81%

9994

▼78.92%

541396

▼87.92%

3724.36 (~1 hr)

▼91.11%

226

6.5 Example 5: Bridge Analysis

In this example we will analyze a large scale bridge problem with heterogeneous

materials subjected to complex loading conditions. The goal is to ensure conformance in

global structural dynamics, kinematic continuity at material interface and gain in

computational efficiency as a result of MGMT implementation. Various cases discussed

under this example are listed in Table 6-25. The bridge, Figure 6-53, is discretized using 4-

node quadrilateral elements with 2 DOF/node, plane stress formulation and consistent mass

matrix. Rayleigh damping is assumed and the corresponding damping coefficients are:

cm = 0.01 for mass and ck = 0.05 for stiffness. Isotropic linear elastic material model is

used with the following properties: Steel: E = 2.07x10
11

 N/m
2
, ν = 0.3 and ρ = 7.83x10

3

Kg/m
3
and Concrete: E = 40x10

9
 N/m

2
, ν = 0.2 and ρ = 2400 Kg/m

3
.

Table 6-25: Simulation parameters

Grid spacing

(H)

Interface

DOF (λ)

Newmark

parameters

Time-

step (ΔT)

Time-step

ratio (ξ)

UGUT H = 0.3 -
β=0.25, γ=0.5

(Implicit)
1.25x10

-3
 -

MTC-Ω1

H = 0.3 72

β=0.25, γ=0.5

(Implicit)
5x10

-3
 1

MTC-Ω2
β=0.25, γ=0.5

(Implicit)
1.25x10

-3
 4

MGC-Ω1 H = 1.0

24

β=0.25, γ=0.5

(Implicit)
1.25x10

-3

1

MGC-Ω2 H = 0.3
β=0.25, γ=0.5

(Implicit)
1.25x10

-3

MGMT-Ω1 H = 1.0

24

β=0.25, γ=0.5

(Implicit)
5x10

-3
 1

MGMT-Ω2 H = 0.3
β=0.25, γ=0.5

(Implicit)
1.25x10

-3
 4

 227

139m

4
7
m

6() 240 10w f t N  

Steel

Concrete

1
(sec)time

()f t

1 1

1.0

0.0

6

N1

Figure 6-53: Bridge analysis: Domain description and time proportional load function

 228

Spatial discretization listed in Table 6-25 results in UGUT w/ 12,886 nodes, MTC w/

12,886 + 36 interface nodes, MGC and MGMT w/ 9,482 + 12 interface nodes.

Accordingly, analysis domain is first solved using UGUT to establish baseline results and

computational efficiency followed by MTC (4)  to quantify the gain in computational

efficiency as a result of introducing multiple time-stepping only. MGC, with an average

grid ratio of 4 and 1  , is then solved to measure the computational efficiency and the

resulting gain produced due to reducing the total number of domain DOF. Finally, a

combination of aforementioned MTC and MGC cases: MGMT is used to observe the

collective effect of reducing the total number of DOF and multiple time-stepping on total

CPU solution time. In addition to measuring the computational scaling introduced as a

result of MGMT (and constituent special case) simulations; a comprehensive comparison

of global FE results (in reference with UGUT) is presented in order to ensure that the

dynamic behavior of the domain is captured with desired accuracy. Accordingly, we will

also look at: 1) Evolution of global energies with relative errors (Figure 6-54 and Table

6-26). Note: The kinetic energy in these plots is magnified x100 for visual resolution and

comparison only. 2) Augmented interface energy and its mean variance about zero (Figure

6-55 and Table 6-26). 3) Kinematic conformity (comparison between UGUT and

MTC/MGC/MGMT) and interface continuity (comparison between -Ω1 and -Ω2) for

displacement-y, velocity-y and acceleration-y of interface node N1, see Figure 6-53, with

corresponding errors (Figure 6-56 and Table 6-27). 4) Deformed shape and

displacement/stress contour plots at various time instants (Figure 6-57, Figure 6-58, Figure

6-59, Figure 6-60. Note: Deformed shape is graphed at x50 magnification

229

Figure 6-54: Global energies

230

Table 6-26: RMSE and NRMSE (%). Variable = Global energies

 Kinetic Energy Stiffness Energy Interface Energy

MTC 461.91 (2.12%) 10537.26 (0.27%) 5.96x10
-9

MGC 57.02 (0.26%) 7225.80 (0.18%) 7.13x10
-9

MGMT 466.37 (2.14%) 12633.63 (0.33%) 7.36x10
-9

Figure 6-55: Augmented interface energies

231

Figure 6-56: Kinematic conformity and interface continuity

232

Table 6-27: RMSE and NRMSE (%). Variable = Kinematic conformity (v/s UGUT results)

 Displacement Velocity Acceleration

MTC-Ω1 4.87x10
-5

 (0.25%) 2.97x10
-3

 (2.62%) 1.93

(103.75%)

MTC-Ω2 4.84x10
-5

 (0.25%) 2.97x10
-3

 (2.62%) 1.18

(63.74%)

MGC-Ω1 1.14x10
-5

 (0.06%) 8.40x10
-5

 (0.07%) 3.63x10
-2

 (1.94%)

MGC-Ω2 3.31x10
-6

 (0.01%) 7.55x10
-5

 (0.06%) 3.64x10
-2

 (1.95%)

MGMT-Ω1 4.93x10
-5

(0.26%) 2.99x10
-3

 (2.63%) 1.99 (106.7%)

MGMT-Ω2 4.80x10
-5

(0.25%) 2.98x10
-3

 (2.63%) 1.18 (63.73%)

Table 6-28: RMSE and NRMSE (%). Variable = Interface continuity (Ω1 v/s Ω2)

 Displacement Velocity Acceleration

MTC 1.50x10
-5

 (0.07%) 0.0 (0.0%) 1.41 (9.7%)

MGC 1.27x10
-5

 (0.06%) 2.87x10
-5

 (0.02%) 2.30x10
-4

 (0.01%)

MGMT 6.02x10
-6

(0.03%) 2.90x10
-5

 (0.02%) 1.46 (9.84%)

Energy plots for constituent MGMT cases are in very good conformance with each

other and with the reference UGUT results. Augmented interface energy, with an average

mean variance of 10
-9

, remains consistently small compared to global energy scales (10
6
),

hence ensuring numerical stability. Kinematic agreement (UGUT v/s MTC/MGC/MGMT)

for displacement and velocity is also very reasonable with the least errors occurring in

MGC. MTC accounts for significant disagreement between kinematic conformances,

however the 0.0% error in interface continuity ensure efficient multiple time-scale

coupling. It is clear from these results that MTC guarantees interface continuity and MGC

ensure close conformance with desired UGUT results. Accordingly and as expected,

MGMT yields averaged errors from both MTC and MGC cases.

233

UGUT

MTC

MGC

MGMT

Figure 6-57: Displacement-x at t=0.5sec (Deformed shape graphed at x50)

234

UGUT

MTC

MGC

MGMT

Figure 6-58: Displacement-y at t=2.5sec (Deformed shape graphed at x50)

235

UGUT

MTC

MGC

MGMT

Figure 6-59: Sigma-xx at t=4.5sec (Deformed shape graphed at x50)

236

UGUT

MTC

MGC

MGMT

Figure 6-60: Sigma-yy at t=4.5sec (Deformed shape graphed at x50)

237

Aforementioned results show very conformance between UGUT and constituent

MGMT cases. As we can see from Table 6-29, MGC effectively reduces computation time

by 70%. Certainly, the error incurred in MGC coupling is primarily due to the loss in

available DOF, but this is in-turn is complimented with a significant gain in computational

efficiency. MTC with a small time-step ratio of 4, effectively reduces simulation time by

58%, and as discussed earlier allows efficient time-scale coupling with very good

conformance in continuity of interface variables (with the exception of acceleration).

As expected, MGMT coupling enhances computational efficiency whilst averaging

errors in MGC and MTC scenarios. Accordingly, it is certainly more desirable to

compliment distinct grid discretizations with respective time-stepping parameters. Overall,

we can see that MGMT Method is capable of preserving accuracy in desired critical

regions (Ω2 in this example) and is also efficient in modeling global behavior of the

domain under analysis.

Table 6-29: Example 5 – Comparison of computational resources

 Nodes Elements
Number of

equations

Skyline

storage
Solution time (sec)

UGUT 12886 11628 25656 2381836 9766.96 (~3 hr)

MTC
12922

▲0.27%

11628

▲▼

25728

▲0.28%

1574408

▼33.89%

4070.47 (~1 hr)

▼58.32%

MGC
9494

▼26.32%

8374

▼27.98%

18928

▼26.22%

896648

▼62.35%

2865.57 (~48 min)

▼70.66%

MGMT
9494

▼26.32%

8374

▼27.98%

18928

▼26.22%

896648

▼62.35%

2535.82 (~42 min)

▼74.03%

238

Chapter 7: Conclusions and Future Directions

7.1 Conclusions

A systematic approach to perform concurrent multiscale simulations within the purview

of continuum mechanics, and as applicable to linear structural dynamic systems is

presented. Derived simulation strategy is largely based upon the fundamental principles of

DDM, allowing selective discretization (spatial and temporal) of component sub-domains.

Constituent governing equations for decomposed sub-domains are linked together through

Lagrange Multipliers, used to represent pseudo interface reactions, and the resulting system

of coupled equations is augmented with an appropriate interface condition that demands

interface energy, produced as a result of introducing interface reactions, to be equal to zero.

It is shown that enforcing this particular condition naturally results in the continuity of

velocities across sub-domain interfaces. Conversely, continuity of velocities is enforced as

an interface (sub-domain boundary) condition and it is shown, using Energy Method, that

resulting interface reactions from adjacent sub-domains completely annihilate each other

and therefore yield zero interface energy accumulation or dissipation.

Association between space discretized equations, form component sub-domains

(conforming or non-conforming), is established via M-FEM and uses the same old

Lagrange Multipliers to communicate multiple constraints across sub-domain interfaces;

hence allowing Multiple Grid (MG-) coupling. Semi-discretized, and grid coupled,

equilibrium equations are then selectively discretized in time using Newmark time

integration method. Multiple Time-scale (-MT) coupling is then established by requiring

the equilibrium equation, from fully-discretized sub-domains, to be identically satisfied at

239

every intermediate time-step. Subsequently, it is shown that as long as the stability

requirements are satisfied within the time integration of component sub-domains, MGMT

coupling is stable and energy preserving. Additionally, interface reactions (Lagrange

Multipliers) from intermediate time-step are condensed and expressed in terms of global

time-steps, further enhancing computational efficiency. Final set of equations for MGMT

sub-domains are solved using block elimination and Crout factorization and the

corresponding step-by-step algorithm to obtain global solution at synchronous time-steps is

presented.

MGMT Method is rigorously implemented for the numerical simulation of linear

structural dynamic systems and an in-house computer program – Finite Element Analysis

Programming Interface (FEAPI) is developed for analysis and verification purposes.

Overall performance of the proposed formulation is assessed by solving benchmark

problems; followed by stability analysis, and evaluation of numerical accuracy and

computational efficiency. Comparisons are made against reference uniform grid uniform

time-scale simulations and relative errors (RMSE and NRMSE) are presented for the entire

set of analyzed results. It is shown that MGMT Method is numerically stable, reasonably

accurate and yields good conformance with reference results. It is also shown that

numerical accuracy is proportional to grid density (in a constituent sub-domain) and is

inversely proportional to the computational efficiency (of the global problem). Hence, the

loss in available degrees of freedom is clearly reflected in the NRMSE; however it is

relatively insignificant compared to the advantage gained in simulation speedup. Thus, a

comprehensive matrix of error rankings and computational efficiency is presented to allow

competent and proficient application of the MGMT Method.

240

Furthermore, examples involving stress resolution in critical regions, wave propagation

across heterogeneous material systems, complex loading functions and evaluation of global

structural behavior show the potential advantage (and limitations) in using MGMT Method

in such application problems. Results show that MGMT Method yields very good

conformance in global energies with relatively infinitesimal interface energies, hence

ensuring overall numerical stability. Kinematic comparison between reference UGUT and

MGMT results also yields good conformance. Continuity of interface variables, especially

velocity, ensures efficient implementation of augmented interface conditions and further

validates zero interface energy. It is seen that MGC primarily contributes to simulation

speedup while MTC allows accurate conformance in overall structural dynamics and

accordingly MGMT produces the best results with averaged errors (from MTC and MGC)

with improved computational efficiency. It is also shown that distinct grid resolutions

should be accompanied with appropriate time-step scaling to achieve optimal balance

between numerical accuracy and simulation speedup.

241

7.2 Future Directions

The task of multiscale modeling at macroscopic levels, whilst integrating a fair balance

in numerical accuracy and computational efficiency, is immensely challenging. Owing to

the widespread scope continuum mechanics, and structural dynamics in general, many

specific application domains still remain unexplored; some of which are listed as follows:

1) Several engineering materials exhibit characteristic orientation, such as fiber

reinforced composite materials. Even though the material may deform elastically,

the simple isotropic model implemented under this dissertation is unable to describe

the response of such materials accurately. This implementation can however be

easily extended to include a more general stress-strain relationship, including the

description of anisotropic solids, in order to accurately capture the response of such

materials.

2) Multiple grid coupling using M-FEM can be certainly extended to incorporate 3-

dimensionsal sub-domains and contact problems. Accordingly, the performance and

efficiency of MGMT coupling should be evaluated and verified in scenarios

involving large (3D) geometries and contact conditions.

3) M-FEM, although efficient, should be further explored and analyzed for optimal

Lagrange Multiplier spaces that are more suitable for MGMT coupling interfaces.

4) MGMT Method, with appropriate implementation, can also be used to improve

computational efficiency in non-linear (geometric or material) problems.

5) Domain Decomposition Method and MGMT Method in turn inherently yield to the

capability of parallel computing. Since component sub-domain, each with their own

boundary conditions and discretizations, are solved independent of each other, sub-

242

domain specific computations can be assigned to individual processors further

boosting computational efficiency.

6) Adaptive Mesh Refinement (AMR) is an attractive FE feature that enables

minimizing errors in desired regions – as triggered by pre-defined user criterions

during the course of simulation. This technique can certainly be combined with

MGMT Method, allowing problem specific sub-domain discretizations – only in

triggered regions and only when required.

7) MGMT Method can also be extended to handle transient field problem, such as heat

conduction or fluid flow.

8) Coupled problems such as fluid-structure interaction or soil pore-fluid interaction

can also benefit from MGMT Method since it allows sub-domain specific physical

modeling and solution algorithms.

In addition to allowing sub-domain specific discretizations in the analysis of large-scale

structural dynamic systems, MGMT Method has a promising field of application in

coupling microscopic discrete atomic systems with macroscopic continuum models.

Atomistic modeling of explicit interactions between atoms provides valuable insight into

material behavior and its failure. Accordingly, coupling atomistic simulations with

continuum based models can help predict structural behavior with better accuracy.

Atomistic modeling however uses nanometer (10
-9

 m) space scales and picosecond (10
-12

sec) time-scales, making it computationally impossible to augment large-scale (10
0
m)

systems with complementary discretizations. MGMT Method can however provide a

smooth transition between macro and micro scales, enabling atomistic-continuum coupling.

243

Bibliography

Baiocchi, C., Brezzi, F. & Marini, L.D., 1992. Stabilization of Galerkin methods and

applications to domain decomposition. In A. Bensoussan & J.-P. Verjus, eds. Future

Tendencies in Computer Science, Control and Applied Mathematics SE - 23. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, pp. 343–355.

Bajer, C., 2002. Time integration methods - still questions. In W. Szczesniak, ed.

Theoretical Foundations of Civil Engineering. Warsaw, pp. 45–54.

Bathe, K. & Wilson, E., 1976. Numerical methods in finite element analysis.

International Journal for Numerical Methods in Engineering, 11(9), p.1485.

Bathe, K.-J., 1996. Finite element procedures, Prentice Hall.

Becker, R., Hansbo, P. & Stenberg, R., 2003. A finite element method for domain

decomposition with non-matching grids. ESAIM: Mathematical Modelling and

Numerical Analysis, 37(02), pp.209–225.

Bellenger, E. & Coorevits, P., 2005. Adaptive mesh refinement for the control of cost and

quality in finite element analysis. Finite Elements in Analysis and Design, 41(15),

pp.1413–1440.

Belytschko, T. & Mullen, R., 1977. Mesh partitions of explicit-implicit time integration.

In K.-J. Bathe, J. T. Oden, & W. Wunderlich, eds. Formulations of Computational

Algorithms in Finite Element Analysis. Cambridge: MIT Press.

Belytschko, T. & Mullen, R., 1978. Stability of explicit-implicit mesh partitions in time

integration. International Journal for Numerical Methods in Engineering, 12(10),

pp.1575–1586.

Belytschko, T., Smolinski, P. & Liu, W.K., 1984. Multistepping implicit-explicit

procedures in transient analysis. In W. K. Liu, ed. Innovative Methods for Nonlinear

Problems. Swansea: Pineridge Press, pp. 135–154.

Belytschko, T., Yen, H.J. & Mullen, R., 1979. Mixed methods for time integration.

Computer Methods in Applied Mechanics and Engineering, 17–18 Part(February),

pp.259–275.

Bernardi, C., Maday, Y. & Patera, A.T., 1994. A new nonconforming approach to

domain decomposition: the mortar element method. In H. Brezis, ed. Nonlinear

partial differential equations and their applications. Paris, France.

Bernardi, C., Maday, Y. & Patera, A.T., 1993. Domain Decomposition by the Mortar

Element Method. In H. Kaper, M. Garbey, & G. Pieper, eds. Asymptotic and

Numerical Methods for Partial Differential Equations with Critical Parameters.

Springer Netherlands, pp. 269–286.

244

Bower, A.F., 2009. Applied Mechanics of Solids, CRC Press.

Bruijs, M., 1990. Subcycling in transient finte element analysis. Eindhoven University of

Technology.

Brun, M. et al., 2012. Implicit/explicit multi-time step co-computations for predicting

reinforced concrete structure response under earthquake loading. Soil Dynamics and

Earthquake Engineering, 33(1), pp.19–37.

Budynas, R. & Nisbett, J., 2008. Shigley’s mechanical engineering design, McGraw-Hill.

Chen, Y., Lee, J.D. & Eskandarian, A., 2000. Meshless method for solid mechanics, New

York, NY: Springer New York.

Chung, J. & Hulbert, G.M., 1993. A Time Integration Algorithm for Structural Dynamics

With Improved Numerical Dissipation: The Generalized-α Method. Journal of

Applied Mechanics, 60(2), pp.371–375.

Combescure, A. & Gravouil, A., 2001. A time-space multi-scale algorithm for transient

structural non-linear problems. Mécanique & Industries, 2(1), pp.43–55.

Combescure, A., Gravouil, A. & Herry, B., 2003. An algorithm to solve transient

structural non-linear problems for non-matching time-space domains. Computers &

structures, 81(12), pp.1211–1222.

Cook, R.D. et al., 2001. Concepts and applications of finite element analysis 4th ed.,

Wiley.

Dodds, R. & Lopez, L., 1980. Substructuring in linear and nonlinear analysis.

International Journal for Numerical Methods in Engineering, 15(June 1979),

pp.583–597.

Eringen, A., 1980. Mechanics of continua.

Farhat, C. et al., 2006. Time-parallel implicit integrators for the near-real-time prediction

of linear structural dynamic responses. International Journal for Numerical Methods

in Engineering, 67(5), pp.697–724.

Farhat, C. & Chandesris, M., 2003. Time-decomposed parallel time-integrators: theory

and feasibility studies for fluid, structure, and fluid-structure applications.

International Journal for Numerical Methods in Engineering, 58(9), pp.1397–1434.

Farhat, C., Crivelli, L. & Géradin, M., 1995. Implicit time integration of a class of

constrained hybrid formulations—Part I: Spectral stability theory. Computer

Methods in Applied Mechanics and Engineering, 125(1-4), pp.71–107.

Farhat, C., Crivelli, L. & Roux, F.-X., 1994. A transient FETI methodology for large-

scale parallel implicit computations in structural mechanics. International Journal

for Numerical Methods in Engineering, 37(11), pp.1945–1975.

245

Farhat, C. & Roux, F.-X., 1991. A method of finite element tearing and interconnecting

and its parallel solution algorithm. International Journal for Numerical Methods in

Engineering, 32(6), pp.1205–1227.

Faucher, V. & Combescure, A., 2003. A time and space mortar method for coupling

linear modal subdomains and non-linear subdomains in explicit structural dynamics.

Computer methods in applied mechanics and Engineering.

Govaerts, W., 1991. Stable solvers and block elimination for bordered systems. SIAM

journal on matrix analysis and applications, 12(3), pp.469–483.

Gravouil, A. & Combescure, A., 2003. Multi-time-step and two-scale domain

decomposition method for non-linear structural dynamics. International Journal for

Numerical Methods in Engineering, 58(10), pp.1545–1569.

Gravouil, A. & Combescure, A., 2001. Multi-time-step explicit–implicit method for non-

linear structural dynamics. International Journal for Numerical Methods in

Engineering, 50(1), pp.199–225.

Herry, B., Di Valentin, L. & Combescure, A., 2002. An approach to the connection

between subdomains with non-matching meshes for transient mechanical analysis.

International Journal for Numerical Methods in Engineering, 55(8), pp.973–1003.

Hilber, H.M., Hughes, T.J.R. & Taylor, R.L., 1977. Improved numerical dissipation for

time integration algorithms in structural dynamics. Earthquake Engineering &

Structural Dynamics, 5(3), pp.283–292.

Hughes, T.J.R., 2012. The finite element method: linear static and dynamic finite element

analysis, Mineola, New York: Dover Publications.

Hughes, T.J.R. & Liu, W.K., 1978. Implicit-Explicit Finite Elements in Transient

Analysis: Stability Theory. Journal of Applied Mechanics, 45(2), pp.371–374.

Hughes, T.J.R., Pister, K.S. & Taylor, R.L., 1979. Implicit-explicit finite elements in

nonlinear transient analysis. Computer Methods in Applied Mechanics and

Engineering, 17–18, Par(0), pp.159–182.

Hughes, T.J.R. & Stephenson, R.A., 1981. Convergence of implicit-explicit algorithms in

nonlinear transient analysis. International Journal of Engineering Science, 19(2),

pp.295–302.

Lacour, C. & Maday, Y., 1997. Two different approaches for matching nonconforming

grids: The mortar element method and the FETI method. BIT Numerical

Mathematics, 37(3), pp.720–738.

Lamichhane, B.P. & Wohlmuth, B.I., 2004a. A quasi-dual Lagrange multiplier space for

serendipity mortar finite elements in 3D. ESAIM: Mathematical Modelling and

Numerical Analysis, 38(1), pp.73–92.

246

Lamichhane, B.P. & Wohlmuth, B.I., 2004b. Mortar finite elements for interface

problems. Computing, 72, pp.333–348.

Lamichhane, B.P. & Wohlmuth, B.I., 2005. Mortar finite elements with dual lagrange

multipliers: Some applications. Domain Decomposition Methods in Science and

Engineering, 40, pp.319–326.

Lawson, C. et al., 1979. Basic linear algebra subprograms for Fortran usage. ACM

Transactions on Mathematical Software, 5(3), pp.308–323.

Lions, P., 1987. On the Schwarz alternating method. I. In R. Glowinski et al., eds.

Proceedings of the 1st International Conference on Domain Decomposition

Methods. Paris, France.

Lions, P., 1989. On the Schwarz alternating method. III: a variant for nonoverlapping

subdomains. In T. F. Chan, R. Glow, & O. Widlund, eds. Third International

Symposium on Domain Decomposition Methods for Partial Differential Equations.

Houston, Texas: SIAM, pp. 202–223.

Liu, W.K. & Belytschko, T., 1982. Mixed-time implicit-explicit finite elements for

transient analysis. Computers & Structures, 15(4), pp.445–450.

Maday, Y., Mavriplis, C. & Patera, A.T., 1988. Nonconforming mortar element methods:

Application to spectral discretizations. In T. F. Chan et al., eds. Proceedings of the

2nd International Conference on Domain Decomposition Methods. California:

SIAM, pp. 392–418.

Mahjoubi, N. & Gravouil, A., 2011. A monolithic energy conserving method to couple

heterogeneous time integrators with incompatible time steps in structural dynamics.

Computer Methods in Applied Mechanics and Engineering, 200(9-12), pp.1069–

1086.

Mahjoubi, N., Gravouil, A. & Combescure, A., 2009. Coupling subdomains with

heterogeneous time integrators and incompatible time steps. Computational

Mechanics, 44(6), pp.825–843.

Mandel, J., 2005. Balancing domain decomposition. Communications in Numerical

Methods in Engineering, 9(March 1992), pp.1–10.

Miranda, I., Ferencz, R.M. & Hughes, T.J.R., 1989. An improved implicit-explicit time

integration method for structural dynamics. Earthquake Engineering & Structural

Dynamics, 18(5), pp.643–653.

Newmark, N., 1959. A method of computation for structural dynamics. Journal of

Engineering Mechanics, 85(EM3), pp.67–94.

Park, K. & Felippa, C., 2000. A variational principle for the formulation of partitioned

structural systems. International Journal for Numerical Methods in Engineering,

47(1-3), pp.395–418.

247

Park, K., Felippa, C. & DeRuntz, J., 1977. Stabilization of staggered solution procedures

for fluid-structure interaction analysis. ASME Applied Mechanics Division Symposia

Series, 26, pp.94–124.

Parsons, I. & Hall, J., 1990a. The multigrid method in solid mechanics: part I—algorithm

description and behaviour. International Journal for Numerical Methods in

Engineering, 29(July 1989), pp.719–737.

Parsons, I. & Hall, J., 1990b. The multigrid method in solid mechanics: part II—practical

applications. International Journal for Numerical Methods in Engineering, 29(July

1989), pp.739–753.

Plesek, J., Kolman, R. & Gabriel, D., 2012. Estimation of critical time step for explicit

integration. In 18th International Conference on Engineering Mechanics. Svratka,

Czech Republic, pp. 1001–1010.

Pointer, J., 2002. Understanding Accuracy and Discretization Error in an FEA Model. In

Ansys.

Prakash, A., 2007. Multi-time-step domain decomposition and coupling methods for non-

linear structural dynamics. University of Illinois at Urbana-Champaign.

Prakash, A. & Hjelmstad, K.D., 2004. A FETI-based multi-time-step coupling method for

Newmark schemes in structural dynamics. International Journal for Numerical

Methods in Engineering, 61(13), pp.2183–2204.

Reddy, J.N., 2007. An Introduction to Continuum Mechanics, Cambridge University

Press.

Richtmyer, R.D. & Morton, K.W., 1967. Difference methods for initial-value problems

Second., New York, NY, USA: Interscience.

Roux, F.-X., 1990. Domain decomposition methods for static problems. La Recherche

Aerospatiale(English Edition), (1), pp.37–48.

Shah, C., 2002. Mesh Discretization Error and Criteria for Accuracy of Finite Element

Solutions. In Ansys.

Smith, B.F., Bjorstad, P.E. & Gropp, W.D., 1996. Domain decomposition: parallel

multilevel methods for elliptic partial differential equations, New York, NY, USA:

Cambridge University Press.

Smith, I.M., Griffiths, D.V. & Margetts, L., 2013. Programming the finite element

method 5th Editio., John Wiley & Sons, Inc.

Smolinski, P., 1992. An explicit multi-time step integration method for second order

equations. Computer Methods in Applied Mechanics and Engineering, 94(1), pp.25–

34.

248

Smolinski, P., Sleith, S. & Belytschko, T., 1996. Stability of an explicit multi-time step

integration algorithm for linear structural dynamics equations. Computational

mechanics, 18, pp.236–244.

Smolinski, P. & Wu, Y.-S., 1998. An implicit multi-time step integration method for

structural dynamics problems. Computational Mechanics, 22(4), pp.337–343.

Spencer, A.J.M., 2004. Continuum Mechanics Dover Ed e., Dover Publications.

Tallec, P. Le & Sassi, T., 1995. Domain decomposition with non-matching grids:

Augmented Lagrangian approach. Mathematics of Computation, 64(212), pp.1367–

1396.

Toselli, A. & Widlund, O., 2005. Domain decomposition methods-algorithms and theory,

Springer Series in Computational Mathematics.

Wikipedia, 2014. Relative change and difference. Wikipedia, The Free Encyclopedia.

Available at:

http://en.wikipedia.org/w/index.php?title=Relative_change_and_difference&oldid=6

36200665.

Wood, W.L., Bossak, M. & Zienkiewicz, O.C., 1980. An alpha modification of

Newmark’s method. International Journal for Numerical Methods in Engineering,

15(10), pp.1562–1566.

Zienkiewicz, O.C., Taylor, R.L. & Zhu, J., 2005. The finite element method: its basis and

fundamentals, Elsevier.

249

Appendix A: FEAPI Input File

FEAPI input file *.dat may be created manually or by using FEAPI-GiD interface. This

file contains basic information about analysis domain, nodal coordinates, element

connectivity’s, boundary conditions and other FEAPI simulation parameters.

A.1 Example Input File

5.0

time

1

()F t

()F t

(a) (b)

Figure A-1: (a) Example problem (b) Transient (linear) loading

FEAPI::DOMAIN

2 9 4

Transient

PlaneStress

Quadrilateral 4 2 4

FEAPI::COORDINATES

10.00000 10.00000

10.00000 5.00000

4.20000 10.00000

5.50000 5.50000

10.00000 0.00000

0.00000 10.00000

0.00000 4.50000

4.00000 0.00000

0.00000 0.00000

FEAPI::CONNECTIVITIES

1 7 6 3 4

1 1 2 4 3

1 9 7 4 8

1 5 8 4 2

FEAPI::MATERIAL

1

207e9 0.3 7830

0 0.0 0.0

0

FEAPI::RESTRAINTS

3

6 0 0

7 0 0

9 0 0

FEAPI::LOADS

3

1 0.25 0.0 Linear 5.0 0.0

2 0.5 0.0 Linear 5.0 0.0

5 0.25 0.0 Linear 5.0 0.0

FEAPI::PRESCRIBED

0

FEAPI::TRANSIENT

Newmark

0.25

0.5

0.0

0.1 0 5.0

FEAPI::POST

1

1

1

1

1 1

1

1

1

1

0

250

A.2 Input File Data Blocks

Table A-1: FEAPI::DOMAIN

This data block defines FEAPI global variables.

FEAPI::DOMAIN

ndim nn nels

atype

ptype

etype nod nodof nip

ndim Spatial dimensions of the FE domain under analysis

nn Total number of nodes

nels Total number of elements

atype Analysis Type

ptype Problem Type

etype Element Type

nod Number of nodes per element

nodof Number of degrees of freedom per node (DOF)

nip Number of Gauss integration points

Table A-2: FEAPI::COORDINATES

This data block defines global nodal coordinates.

FEAPI::COORDINATES

x-1 y-1 z-1

:

:

x-nn y-nn z-nn

(x,y,z)-nn Global x, y, z coordinates for node 1 to nn

251

Table A-3: FEAPI::CONNECTIVITIES

This data block defines element node connectivity’s and material ID for the
corresponding element.

FEAPI::CONNECTIVITIES

nel1-matID n-1 … n-nod

:

:

nels-matID n-1 … n-nod

nels-matID Material ID for element 1 to nels

n-nod Element connectivity’s starting from node 1 to node nod

Table A-4: FEAPI::MATERIAL

This data block defines finite element material properties.

FEAPI::MATERIAL

nmats

! IF (atype == static)

1mats-E 1mats-Nu

:

:

nmats-E nmats-Nu

! END IF

! IF (atype == transient)

1mats-E 1mats-Nu 1mats-Rho

:

:

nmats-E nmats-Nu nmats-Rho

! END IF

damping rmdc rkdc

mmf

nmats Total number of materials used

nmats-E Modulus of elasticity for materials 1 to nmats

nmats-Nu Poisson’s ratio for materials 1 to nmats

nmats-Rho Mass density for materials 1 to nmats

damping Rayleigh system damping (1 = Yes, 0 = No)

rmdc Rayleigh mass coefficient

rkdc Rayleigh stiffness coefficient

mmf Lumped mass matrix (1 = Yes, 0 = No)

252

Table A-5: FEAPI::RESTRAINTS

This data block defines restrained/constrained degrees of freedom.

FEAPI::RESTRAINTS

rdof

! IF (rdof > 0)

n-1 dof-1 … dof-nodof

:

:

n-rdof dof-1 … dof-nodof

! END IF

rdof Total number of nodes with restrained DOF

n-rdof Restrained node number from 1 to rdof

dof-nodof Restraint flag 1 to nodof (1 = restrained, 0 = free)

Table A-6: FEAPI::LOADS

This data block defines loaded degrees of freedom.

FEAPI::LOADS

ldof

IF (ldof > 0)

n-1 dof-1 … dof-nodof lfun ldur lwav

:

:

n-ldof dof-1 … dof-nodof lfun ldur lwav

END IF

ldof Total number of nodes with loaded DOF

n-ldof Loaded node number 1 to ldof

dof-nodof Load magnitude for DOF 1 to nodof

lfun
Time proportional function

(Linear/Step/Square/Since/HalfSine/Triangle/Sawtooth)

ldur Load duration

lwav Load wavelength

253

Table A-7: FEAPI::PRESCRIBED

This data block defines prescribed (displacement) degrees of freedom.

FEAPI::PRESCRIBED

pdof

! IF (pdof > 0)

n-1 dof-1 … dof-nodof pfun pdur pwav

:

:

n-pdof dof-1 … dof-nodof pfun pdur pwav

! END IF

pdof Total number of nodes with prescribed DOF

n-pdof Loaded node number 1 to pdof

dof-nodof Load magnitude for DOF 1 to nodof

pfun
Time proportional function

(Linear/Step/Square/Since/HalfSine/Triangle/Sawtooth)

pdur Prescribed displacement duration

pwav Prescribed displacement wavelength

254

Table A-8: FEAPI::TRANSIENT

This data block defines FEAPI transient analysis options.

! IF (atype == transient)

FEAPI::TRANSIENT

meth

! IF (meth == Newmark)

beta gamma delta

! END IF

! IF (meth == WBZ)

beta gamma alpham delta

! END IF

! IF (meth == HHT)

beta gamma alphaf delta

! END IF

! IF (meth == Generalized)

beta gamma alpham alphaf delta

! END IF

dt nsteps endt

meth Direct integration method (Newmark/WBZ/HHT/Generalized)

beta Newmark parameter 

gamma Newmark parameter 

delta Amplification decay factor 

alpham Generalized-α parameter
m

alphaf Generalized-α parameter f

dt Integration time-step t

nsteps Total number of integration steps N

endt Simulation termination time

255

Table A-9: FEAPI::INTERFACE

This data block defines sub-domain interface data.

! IF (inn > 0)

FEAPI::INTERFACE

inum inn

n-1

n-2

:

:

n-inn

! DO (1 to inum)

iid itype nin

! IF (nin > 0)

n-1

n-2

:

:

n-nin

! END IF

! END DO

! END IF

inum Total number of sub-domain interfaces

inn Total number of sub-domain interface nodes

n-inn Interface node number t to inn

iid Interface ID

itype Interface type (Master/Slave)

nin Total number of nodes on interface iid

256

Table A-10: FEAPI::POST

This data block defines FEAPI post analysis options.

FEAPI::POST

resf

rflag1

rflag2

rflag3

rflag4 res4k

rflag5

rflag6

rflag7

rflag8

rflag9

resf Result frequency

rflag1 Post nodal displacements (1 = Yes, 0 = No)

rflag2 Post nodal velocities (1 = Yes, 0 = No)

rflag3 Post nodal accelerations (1 = Yes, 0 = No)

rflag4

res4k

Post element stresses (1 = Yes, 0 = No)

Result keyword (1 = Cauchy Stress, 2 = Von Mises Stress)

rflag5 Post element strains (1 = Yes, 0 = No)

rflag6 Post domain kinetic energy (1 = Yes, 0 = No)

rflag7 Post stiffness energy kinetic energy (1 = Yes, 0 = No)

rflag8 Post domain external work (1 = Yes, 0 = No)

rflag9 Post domain interface energy (1 = Yes, 0 = No)

257

Appendix B: FEAPI Output Files

FEAPI generates a series of output files that contain a variety of post-simulation results.

B.1 Post Mesh File

Post mesh file (*.post.msh) contains nodal coordinates and element connectivity’s for

displaying the mesh while post-processing overlaid results in GiD.

B.2 Post Result Files

Post result file (*.post.res) contains post-simulation data such as vector results

(displacements, velocities, accelerations), matrix results (stresses, strains). This file, in

combination with the post mesh file, is used for result post-processing using GiD.

B.3 Comma Separated Value File

‘Comma separated value’ file (*.csv) contains user defined outputs for vector results.

By default, options are available for extracting domain results such as kinetic energy,

potential energy, external work and interface energy.

B.4 Simulation Summary File

Simulation summary file (FEAPI-summary.txt) contains brief summary about the

completed simulation. It outputs global/local domain information as well as FEAPI block

execution times. Following is an example of the FEAPI simulation summary file:

258

==

 Finite Element Analysis Programming Interface (FEAPI)

 Version 1.0

 Department Of Civil Engineering

 School of Engineering and Applied Science

 George Washington University

==

 >> MULTIPLE GRID MULTIPLE TIME-SCALE (MGMT) SIMULATIONS

 >> PROJECT :

 >> NUMBER OF DOMAINS :

 >> DATE AND TIME :

==

 >> MGMT SUB-DOMAIN SUMMARY

 ---------------------|------|------------|------------|-------

 File Name | Rank | dt | nsteps | mratio

 ---------------------|------|------------|------------|-------

 + | | | |

 + | | | |

 ---------------------|------|------------|------------|-------

==

 >> GLOBAL INFO

 + FEAPI GLOBAL BLOCK : 0

 GiD Post Mesh File :

 GiD Post Result File :

 GiD Post Result File :

 + GLOBAL PARAMETERS

 Analysis Type :

 Problem Type :

 Element Type :

 Number of Dimensions :

 Number of Nodes :

 Number of Elements :

 Number of Nodes/Element :

 Degrees of Freedoms/Node :

 Number of Gauss Points :

 Number of Equations :

==

 >> DOMAIN INFO

 + FEAPI DOMAIN BLOCK : 1

 + DOMAIN FILES

 GiD Input File :

 GiD Post Mesh File :

 GiD Post Result File :

 GiD Post Result File :

 + DOMAIN PARAMETERS

 Analysis Type :

 Problem Type :

 Element Type :

 Number of Dimensions :

 Number of Nodes :

 Number of Elements :

 Number of Nodes/Element :

 Degrees of Freedoms/Node :

 Number of Gauss Points :

 Number of Equations :

 Skyline storage :

 Integration Time-Step :

 Total Number of Steps :

==

259

 >> FEAPI BLOCK EXECUTION TIMES

 PROGRAM BLOCK SECONDS % TOTAL

 + PTERMINAL :

 + PFILENAME :

 + PALLOC :

 + PINPUT :

 + PSETUP :

 + PRESULT :

 + PSOLVE :

 + PPOST :

 TOTAL :

==

260

Appendix C: Pre/Post Example

Here, we will consider an example of forced vibration analysis of a 2D cantilever beam

as shown in Figure C-1. The domain will be discretized using 4-node quadrilateral

elements (2 DOF/node) with plane stress formulation, consistent mass matrix and zero

damping. Isotropic linear elastic material properties with modulus of elasticity (E) =

207x10
9
 N/m

2
, Poisson’s ratio (ν) = 0.3 and mass density (ρ) = 7830 Kg/m

3
 will be used.

1

10

x

()F t

0.2

0.3

 (sec)time

8
1 10 N

()F t

(a) (b)

Figure C-1: (a) Domain under consideration – 2D cantilever beam (b) Transverse (step) loading

C.1 Program 1: Uniform Grid Uniform Time-scale Simulations

Grid spacing (H) Newmark parameters Time-step (ΔT)

0.25 β=0.25, γ=0.5 (Implicit) 0.5x10
-3

C.1.1 Pre-processing (Input File Creation)

1) Start GiD.

2) Select ‘Create Line’. (Geometry > Create > Straight Line)

 Enter points to define line (0, 0.5) (10, 0.5) (10, -0.5) (0, -0.5) (0, 0.5). Join > Escape.

 Right click > Label > All.

261

3) Select ‘Create NURBS surface’. (Geometry > Create > NURBS surface > By

contour)

 Enter lined to define NURBS surface (1, 2, 3, and 4). Escape.

 Right click > Label > All.

4) Save workspace.

 (File > Save > ‘example1’)

5) Assign element type.

 (Mesh > Element Type > Quadrilateral). Enter surfaces to assign this element type (1).

Enter > Escape.

 (Mesh > Quadratic Type > Normal).

6) (Mesh > Structured > Surfaces > Assign Size). Select 4-sided or NURBS surface to

define structured mesh (1). Enter > Escape. Enter mesh size to assign to lines

(0.25). Select lines to define structured mesh (2 and 4). Enter mesh size to assign to

lines (0.25). Select lines to define structured mesh (1 and 3). Enter > Escape >

Close. (Mesh > Generate Mesh). OK > View Mesh.

7) Select problem type. (Data > Problem Type > feapi-gid)

262

8) Assign material properties. (Data > Materials)

 Select Steel. Assign > Elements > Enter elements to assign Material: Steel. Select all

elements. Escape > Close.

9) Define global variables. (Data > Problem Data > Global Variables)

 Analysis type: Transient

 Problem type: PlaneStress

 Element type: Quadrilateral

 DOF per node: 2

 Gauss points: 4

 Accept > Close.

10) Define boundary conditions. (Data > Conditions)

 Assign Restrained DOFs. Check DOF 1 (x) and DOF 2 (y). Assign. Select all nodes on

line 4. Escape.

 Assign Forced DOFs. Enter -0.2e8 (1x10
8
 /5 nodes) for DOF 2 (y). Assign. Select all

nodes on line 2. Escape.

Load function: Step

Load duration: 0.2

Load wavelength: 0.0

 Close.

11) Define analysis options. (Data > Problem Data > Transient Analysis Options)

 Direct Integration

Integration method: Newmark

Newmark parameter (Beta): 0.25

Newmark parameter (Gamma): 0.5

Generalized parameter (Alpha m): 0.0

263

Generalized parameter (Alpha f): 0.0

Amplification decay factor: 0.0

Time step: 0.5e-3

Number of steps: 600

End time: 0.3

 Inertial and System Damping

Uncheck lumped mass approximation

Uncheck Rayleigh damping

 Accept. Close.

12) Define post analysis options. (Data > Problem Data > Post Result Options)

 General

Post frequency: 2

 Nodal results. Check all (Displacements, Velocities and Accelerations)

 Element results.

Select Cauchy stresses

Check Strains.

 Domain results. Select kinetic energy, stiffness energy and external work.

 Accept. Close.

13) Save workspace.

14) Generate FEAPI input file. (Calculate > Calculate)

Windows batch file (feapi-gid.win.bat) is executed on Calculate. It will copy the input

file (example1.dat) to FEAPI input directory defined using FEAPI::INPUT.

264

Fixed nodes

Loaded nodes

C.1.2 Solver

1) Run FEAPI.

2) Enter program number: 1 (Forced vibration analysis of linear elastic solids)

3) Enter project title: Example 1

4) Enter base name for input file: example1

C.1.3 Post-processing (Result Visualization)

1) Start GiD in Post process mode. (File > Postprocess)

2) Browse to FEAPI output directory and open example1.post.msh

3) Plot deformation.

 (Window > View Results)

 Select Main Mesh as Deformed (Step: 0.3, Result: Displacement, Factor: 0.2).

4) Plot deformation contours.

 (View Results > Contour Fill > Displacement > Disp y).

265

5) Plot stress contours.

 (View Results > Smooth Contour Fill > Stress > Sig xx).

6) Plot stress contour lines.

 (View Results > Contour Lines > Stress > Sig xx).

7) Plot deformation graph.

 (View Results > Graphs > Point Evolution > Displacement > Disp y)

 Enter the coordinates of the point to see its evolution (10, 0.0). Enter.

266

C.2 Program 2: Multiple Grid Multiple Time-scale Simulations

Here, we will decompose the domain under analysis from Figure C-2 into two

component sub-domains each with an exclusive spatial and temporal discretization.
1

10

x

()F t

Ω1 Ω2

5

Sub-domain Grid spacing (H) Newmark parameters Time-step (Δt)

Ω1 0.0625 β=0.25, γ=0.5 (Implicit) 0.125x10
-3

Ω2 0.25 β=0.25, γ=0.5 (Implicit) 0.5x10
-3

Figure C-2: Decomposed sub-domains and corresponding time-stepping parameters

C.2.1 Pre-processing (Input File Creation)

A. Sub-domain 1

1) Start GiD.

2) Select ‘Create Line’. (Geometry > Create > Straight Line)

 Enter points to define line (0, 0.5) (5, 0.5) (5, -0.5) (0, -0.5) (0, 0.5). Join > Escape.

 Right click > Label > All.

267

3) Select ‘Create NURBS surface’. (Geometry > Create > NURBS surface > By

contour)

 Enter lined to define NURBS surface (1, 2, 3, and 4). Escape.

 Right click > Label > All.

4) Save workspace.

 (File > Save > ‘example1-d1.gid’)

5) Assign element type.

 (Mesh > Element Type > Quadrilateral). Enter surfaces to assign this element type (1).

Enter > Escape.

 (Mesh > Quadratic Type > Normal).

6) (Mesh > Structured > Surfaces > Assign Size). Select 4-sided or NURBS surface to

define structured mesh (1). Enter > Escape. Enter mesh size to assign to lines

(0.0625). Select lines to define structured mesh (2 and 4). Enter mesh size to assign

to lines (0.0625). Select lines to define structured mesh (1 and 3). Enter > Escape >

Close. (Mesh > Generate Mesh). OK > View Mesh.

7) Select problem type. (Data > Problem Type > feapi-gid)

8) Assign material properties. (Data > Materials)

268

 Select Steel. Assign > Elements > Enter elements to assign Material: Steel. Select all

elements. Escape > Close.

9) Define global variables. (Data > Problem Data > Global Variables)

 Analysis type: Transient

 Problem type: PlaneStress

 Element type: Quadrilateral

 DOF per node: 2

 Gauss points: 4

 Accept > Close.

10) Define boundary conditions. (Data > Conditions)

 Assign Restrained DOFs. Check DOF 1 (x) and DOF 2 (y). Assign. Select all nodes on

line 4. Escape.

 Assign Domain Interface Nodes. Assign. Select all nodes on line 2. Escape.

 Define interface info. Select Interface Type – Slave, Interface ID – 1. Select all nodes on

line 2. Escape.

 Close.

11) Define analysis options. (Data > Problem Data > Transient Analysis Options)

 Direct Integration

Integration method: Newmark

Newmark parameter (Beta): 0.25

Newmark parameter (Gamma): 0.5

Generalized parameter (Alpha m): 0.0

Generalized parameter (Alpha f): 0.0

Amplification decay factor: 0.0

Time step: 0.125e-3

269

Number of steps: 0

End time: 0.3

 Inertial and System Damping

Uncheck lumped mass approximation

Uncheck Rayleigh damping

 Accept. Close.

12) Define post analysis options. (Data > Problem Data > Post Result Options)

 General

Post frequency: 8

 Nodal results. Check all (Displacements, Velocities and Accelerations)

 Element results.

Select Cauchy stresses

Check Strains.

 Domain results. Check kinetic energy, stiffness energy, external work and interface

energy.

 Accept. Close.

13) Save workspace.

14) Generate FEAPI input file. (Calculate > Calculate)

Fixed nodes

Interface nodes (Slave, ID 1)

270

B. Sub-domain 2

1) Start GiD.

2) Select ‘Create Line’. (Geometry > Create > Straight Line)

 Enter points to define line (5, 0.5) (10, 0.5) (10, -0.5) (5, -0.5) (5, 0.5). Join > Escape.

 Right click > Label > All.

3) Select ‘Create NURBS surface’. (Geometry > Create > NURBS surface > By

contour)

 Enter lined to define NURBS surface (1, 2, 3, and 4). Escape.

 Right click > Label > All.

4) Save workspace.

 (File > Save > ‘example1-d2.gid’)

5) Assign element type.

 (Mesh > Element Type > Quadrilateral). Enter surfaces to assign this element type (1).

Enter > Escape.

 (Mesh > Quadratic Type > Normal).

6) (Mesh > Structured > Surfaces > Assign Size). Select 4-sided or NURBS surface to

define structured mesh (1). Enter > Escape. Enter mesh size to assign to lines

271

(0.25). Select lines to define structured mesh (2 and 4). Enter mesh size to assign to

lines (0.25). Select lines to define structured mesh (1 and 3). Enter > Escape >

Close. (Mesh > Generate Mesh). OK > View Mesh.

7) Select problem type. (Data > Problem Type > feapi-gid)

8) Assign material properties. (Data > Materials)

 Select Steel. Assign > Elements > Enter elements to assign Material: Steel. Select all

elements. Escape > Close.

9) Define global variables. (Data > Problem Data > Global Variables)

 Analysis type: Transient

 Problem type: PlaneStress

 Element type: Quadrilateral

 DOF per node: 2

 Gauss points: 4

 Accept > Close.

10) Define boundary conditions. (Data > Conditions)

 Assign Forced DOFs. Enter -0.2e8 (1x108 /5 nodes) for DOF 2 (y). Assign. Select all

nodes on line 2. Escape.

 Assign Domain Interface Nodes. Assign. Select all nodes on line 4. Escape.

 Define interface info. Select Interface Type – Master, Interface ID – 1. Select all nodes on

line 4. Escape.

 Close.

272

11) Define analysis options. (Data > Problem Data > Transient Analysis Options)

 Direct Integration

Integration method: Newmark

Newmark parameter (Beta): 0.25

Newmark parameter (Gamma): 0.5

Generalized parameter (Alpha m): 0.0

Generalized parameter (Alpha f): 0.0

Amplification decay factor: 0.0

Time step: 0.5e-3

Number of steps: 0

End time: 0.3

 Inertial and System Damping

Uncheck lumped mass approximation

Uncheck Rayleigh damping

 Accept. Close.

12) Define post analysis options. (Data > Problem Data > Post Result Options)

 General

Post frequency: 2

 Nodal results. Check all (Displacements, Velocities and Accelerations)

 Element results.

Select Cauchy stresses

Check Strains.

 Domain results. Check kinetic energy, stiffness energy, external work and interface

energy.

 Accept. Close.

273

13) Save workspace.

14) Generate FEAPI input file. (Calculate > Calculate)

Forced nodes

Interface nodes (Master, ID 1)

Global representation:

Before starting the simulation, make sure feapi-configuration.txt has necessary values

defined under data block – MGMT::POST.

MGMT::POST

1! 1 = Post frequency is same as global time-step sub-domain

1! Displacements: 1 = Yes

1! Velocities: 1 = Yes

1! Accelerations: 1 = Yes

1 1! Stresses (Cauchy/Von Mises): 1 = Yes

1! Strains: 1 = Yes

1! Kinetic energy: 1 = Yes

1! Stiffness energy: 1 = Yes

1! External work: 1 = Yes

1! Interface energy: 1 = Yes

C.2.2 Solver

1) Run FEAPI.

2) Enter program number: 2 (Multiple grid multiple time-scale simulations)

3) Enter project title: Example 1 MGMT

4) Enter base name for input file 1: example1-d1

5) Enter base name for input file 2: example1-d2

274

C.2.3 Post-processing (Result Visualization)

In this example, FEAPI generates outputs for local sub-domain results as well as global

results plotted over multiple grids. Local sub-domain results may be post-processed using

corresponding *.post.msh files and global results for the original problem may be post-

processed using global.post.msh as follows:

1) Start GiD in Post process mode. (File > Postprocess)

2) Browse to FEAPI output directory and open Global.post.msh

3) Plot deformation.

 (Window > View Results)

 Select Main Mesh as Deformed (Step: 0.3, Result: Displacement, Factor: 0.2).

4) Plot deformation contours.

 (View Results > Contour Fill > Displacement > Disp y).

5) Plot stress contours.

 (View Results > Smooth Contour Fill > Stress > Sig xx).

275

6) Plot stress contour lines.

 (View Results > Contour Lines > Stress > Sig xx).

7) Plot deformation graph.

 (View Results > Graphs > Point Evolution > Displacement > Disp y)

 Enter the coordinates of the point to see its evolution (10, 0.0). Enter.

276

Appendix D: Library Routines

D.1 FEAPI

D.1.1 Modules

A. data_domain.f90

! This module contains FEAPI domain variables.

MODULE data_domain

USE precision

IMPLICIT NONE

! Data type for FEAPI-domain parameters.

TYPE :: domain_parameters

! Spatial dimensions of finite element domain.

INTEGER :: ndim

! Total number of nodes.

INTEGER :: nn

! Total number of elements.

INTEGER :: nels

! Total number of nodes per element.

INTEGER :: nod

! Number of degrees of freedom per node.

INTEGER :: nodof

! Number of degrees of freedom per element.

INTEGER :: ndof

! Number of Gauss integration points.

INTEGER :: nip

! Number of stress/strain terms.

INTEGER :: nst

! Total number of equations.

INTEGER :: neq

! Analysis Type.

CHARACTER(LEN = 15) :: atype

! Problem Type.

CHARACTER(LEN = 15) :: ptype

! Element Type.

CHARACTER(LEN = 15) :: etype

! Array of nodal coordinates.

REAL(sdp), ALLOCATABLE :: g_coord(:,:)

! Array of element connectivity.

INTEGER, ALLOCATABLE :: g_num(:,:)

! Element degree of freedom steering vectors.

INTEGER, ALLOCATABLE :: g_steer(:,:)

END TYPE domain_parameters

! Data type for FEAPI-domain boundary conditions.

TYPE :: domain_bconditions

! Array of numbered nodal degrees of freedom.

INTEGER, ALLOCATABLE :: nf(:,:)

! Total number of nodes with restrained degrees of freedom.

INTEGER :: rdof

! List of restrained nodes.

INTEGER, ALLOCATABLE :: lrn(:)

! Array of restrained degrees of freedom.

INTEGER, ALLOCATABLE :: ardof(:,:)

! Total number of nodes with loaded degrees of freedom.

INTEGER :: ldof

277

! List of loaded nodes.

INTEGER, ALLOCATABLE :: lln(:)

! Array of loaded degrees of freedom.

REAL(sdp), ALLOCATABLE :: aldof(:,:)

! Total number of nodes with prescribed (displacement) degrees of freedom.

INTEGER :: pdof

! List of (displacement) prescribed nodes.

INTEGER, ALLOCATABLE :: lpn(:)

! Array of (displacement) prescribed degrees of freedom.

REAL(sdp), ALLOCATABLE :: apdof(:,:)

! Load function

CHARACTER(LEN = 10), ALLOCATABLE :: lfun(:)

! Load duration

REAL(sdp), ALLOCATABLE :: ldur(:)

! Load wavelength

REAL(sdp), ALLOCATABLE :: lwav(:)

! Prescribed (displacement) funtion

CHARACTER(LEN = 10), ALLOCATABLE :: pfun(:)

! Prescribed (displacement) duration

REAL(sdp), ALLOCATABLE :: pdur(:)

! Prescribed (displacement) wavelength

REAL(sdp), ALLOCATABLE :: pwav(:)

END TYPE domain_bconditions

! Auxiliary data type for domain interface info.

TYPE :: aux1

! Interface ID.

INTEGER :: id

! Interface label.

CHARACTER(LEN = 6) :: ilab

! Number of nodes on a particular interface.

INTEGER :: nn

! List of nodes on a particular interface.

INTEGER, ALLOCATABLE :: ln(:)

END TYPE aux1

! Data type for domain interface info.

TYPE :: domain_interface

! Total number of interfaces.

INTEGER :: inum

! Total number of interface nodes.

INTEGER :: inn

! List of interface nodes.

INTEGER, ALLOCATABLE :: lin(:)

! Domain interface info.

TYPE(aux1), ALLOCATABLE :: iinf(:)

END TYPE domain_interface

! Derived data type for FEAPI-domain parameters.

TYPE(domain_parameters), ALLOCATABLE :: dparam(:)

! Derived data type for FEAPI-domain boundary conditions.

TYPE(domain_bconditions), ALLOCATABLE :: dbcond(:)

! Derived data type for domain interface info.

TYPE(domain_interface), ALLOCATABLE :: dintrf(:)

END MODULE data_domain

278

D

A
T

A
 C

O
L

L
A

B
O

R
A

T
IO

N

B. data_feapi.f90

! This module contains FEAPI program variables.

MODULE data_feapi

USE precision

IMPLICIT NONE

! FEAPI configuration file name.

CHARACTER(LEN = 25) :: pconfig = 'feapi-configuration.txt'

! FEAPI summary file name.

CHARACTER(LEN = 25) :: psummry = 'feapi-summary.txt'

! FEAPI driver program number.

INTEGER :: fedpn

! Project title.

CHARACTER(LEN = 50) :: title

! Number of finite element domain blocks.

INTEGER :: dblocks

! FEAPI computation times.

REAL(sdp), ALLOCATABLE :: pcpu(:)

! Data type for FEAPI include directories.

TYPE :: feapi_paths

279

! Directory path.

CHARACTER(LEN = 50) :: path

! Directory path character length.

INTEGER :: plen

END TYPE feapi_paths

! Data type for FEAPI files.

TYPE :: feapi_files

! File (base) name.

CHARACTER(LEN = 20) :: name

! File name character length.

INTEGER :: len

! Input file location.

TYPE(feapi_paths) :: ip

! Output file location.

TYPE(feapi_paths) :: op

END TYPE feapi_files

! Derived data type for FEAPI input files.

TYPE(feapi_files), ALLOCATABLE :: pfiles(:)

END MODULE data_feapi

280

D

A
T

A
 C

O
L

L
A

B
O

R
A

T
IO

N

C. data_material.f90

! This module contains FEAPI domain material variables.

MODULE data_material

USE precision

IMPLICIT NONE

281

! Data type for FEAPI-domain element material properties.

TYPE :: element_material

! Number of materials used.

INTEGER :: nmats

! Number of material properties.

INTEGER :: nprops

! Element material ID.

INTEGER, ALLOCATABLE :: ematid(:)

! Array of material properties.

REAL(sdp), ALLOCATABLE :: prop(:,:)

! System damping.

INTEGER :: damping = 0

! Rayleigh mass coefficient.

REAL(sdp):: rmdc = 0.0_sdp

! Rayleigh stiffness coefficient.

REAL(sdp):: rkdc = 0.0_sdp

! Mass matrix formulation.

INTEGER :: mmf = 0

END TYPE element_material

! Derived data type for FEAPI-domain element material properties.

TYPE(element_material), ALLOCATABLE :: demats(:)

END MODULE data_material

D

A
T

A
 C

O
L

L
A

B
O

R
A

T
IO

N

D. data_structural.f90

! This module contains FEAPI structural system variables.

MODULE data_structural

USE precision

IMPLICIT NONE

! Data type for structural (symmetric/skyline) system arrays.

TYPE :: structural_arrays

! Mass matrix (skyline).

REAL(sdp), ALLOCATABLE :: mv(:)

! Damping matrix (skyline).

REAL(sdp), ALLOCATABLE :: cv(:)

! Stiffness matrix (skyline).

REAL(sdp), ALLOCATABLE :: kv(:)

! Diagonal term locator for skyline mapping.

282

INTEGER, ALLOCATABLE :: kdiag(:)

! Initial kinematic quantities.

REAL(sdp), ALLOCATABLE :: x0(:,:)

! Final kinematic quantities.

REAL(sdp), ALLOCATABLE :: x1(:,:)

! R.H.S load vector.

REAL(sdp), ALLOCATABLE :: loads(:,:)

! Element stresses (computed at Gauss integration points).

REAL(sdp), ALLOCATABLE :: estress(:,:,:)

! Element strains (computed at Gauss integration points).

REAL(sdp), ALLOCATABLE :: estrain(:,:,:)

END TYPE structural_arrays

! Derived data type for structural (symmetric/skyline) system arrays.

TYPE(structural_arrays), ALLOCATABLE :: starry(:)

END MODULE data_structural

D

A
T

A
 C

O
L

L
A

B
O

R
A

T
IO

N

283

E. data_transient.f90

! This module contains FEAPI domain transient analysis variables.

MODULE data_transient

USE precision

IMPLICIT NONE

! Data type for FEAPI-domain transient analysis variables.

TYPE :: transient_variables

! Direct integration method.

CHARACTER(LEN = 15) :: meth

! Newmark parameter.

REAL(sdp) :: beta = 0.25_sdp

! Newmark parameter.

REAL(sdp) :: gamma = 0.5_sdp

! Generalized Alpha parameter.

REAL(sdp) :: gaam

! Generalized Alpha parameter.

REAL(sdp) :: gaaf

! Amplification Decay Factor.

REAL(sdp) :: adf = 0.0_sdp

! Time-step.

REAL(sdp) :: dt

! Termination time.

REAL(sdp) :: endt

! Total number of steps.

INTEGER :: nsteps

END TYPE transient_variables

! Derived data type for FEAPI-domain transient analysis variables.

TYPE(transient_variables), ALLOCATABLE :: dtrans(:)

END MODULE data_transient

D

A
T

A
 C

O
L

L
A

B
O

R
A

T
IO

N

F. precision.f90

! This module contains FEAPI precision parameters.

MODULE precision

IMPLICIT NONE

284

! Selected double precision.

!

! sdp returns the minimum KIND necessary to store real numbers with a

! precision of 15 decimal digits and an exponent in the range 10^-307 to

! 10^307.

INTEGER, PARAMETER :: sdp = SELECTED_REAL_KIND(15,307)

END MODULE precision

D.1.2 Library – FEA

A. beemat.f90

! This sub-routine computes strain-displacement matrix.

SUBROUTINE beemat(deriv,bee)

USE precision

IMPLICIT NONE

! - Arguments.

! Shape function derivatives with respect to global coordinates.

REAL(sdp), INTENT(IN) :: deriv(:,:)

! Strain-displacement matrix.

REAL(sdp), INTENT(OUT) :: bee(:,:)

! :

! :

RETURN

END SUBROUTINE beemat

C

A
L

L

C

A
L

L
E

R

B. deemat.f90

! This sub-routine computes stress-strain matrix.

SUBROUTINE deemat(ptype,e,v,dee)

USE precision

IMPLICIT NONE

! - Arguments.

! Modulus of elasticity.

REAL(sdp), INTENT(IN) :: e

! Poisson's ratio.

REAL(sdp), INTENT(IN) :: v

! Formulation

CHARACTER(*), INTENT(IN) :: ptype

! Element stress-strain matrix.

REAL(sdp), INTENT(INOUT) :: dee(:,:)

! :

! :

RETURN

END SUBROUTINE deemat

285

C

A
L

L

C
A

L
L

E
R

C. domainfx.f90

! This sub-routine computes domain external work.

SUBROUTINE domainfx(loads,disp,fx)

USE precision

USE interfaces

IMPLICIT NONE

! - Arguments.

! Load vector.

REAL(sdp), INTENT(IN) :: loads(0:)

! Displacement vector.

REAL(sdp), INTENT(IN) :: disp(0:)

! External work.

REAL(sdp), INTENT(OUT) :: fx

! :

! :

RETURN

END SUBROUTINE domainfx

C

A
L

L

C

A
L

L
E

R

D. domainie.f90

! This sub-routine computes domain interface energy.

SUBROUTINE domainie(ipro,ifor,velo,ie)

USE precision

USE interfaces

USE data_mgmt

IMPLICIT NONE

! - Arguments.

! Interface projection matrix.

REAL(sdp), INTENT(IN) :: ipro(:,:)

! Interface force.

REAL(sdp), INTENT(IN) :: ifor(:)

! Nodal velocities.

REAL(sdp), INTENT(IN) :: velo(0:)

286

! Interface Energy.

REAL(sdp), INTENT(OUT) :: ie

! :

! :

RETURN

END SUBROUTINE domainie

C

A
L

L

C

A
L

L
E

R

E. domainke.f90

! This sub-routine computes domain kinetic energy.

SUBROUTINE domainke(mv,velo,kdiag,ke)

USE precision

USE interfaces

IMPLICIT NONE

! - Arguments.

! Mass matrix (symmetric/skyline).

REAL(sdp), INTENT(IN) :: mv(:)

! Velocity vector.

REAL(sdp), INTENT(IN) :: velo(0:)

! Diagonal term locator.

INTEGER, INTENT(IN) :: kdiag(:)

! Kinetic Energy.

REAL(sdp), INTENT(OUT) :: ke

! :

! :

RETURN

END SUBROUTINE domainke

C

A
L

L

C

A
L

L
E

R

F. domainse.f90

! This sub-routine computes domain stiffness energy.

SUBROUTINE domainse(kv,disp,kdiag,se)

287

USE precision

USE interfaces

IMPLICIT NONE

! - Arguments.

! Stiffness matrix (symmetric/skyline).

REAL(sdp), INTENT(IN) :: kv(:)

! Displacement vector.

REAL(sdp), INTENT(IN) :: disp(0:)

! Diagonal term locator.

INTEGER, INTENT(IN) :: kdiag(:)

! Stiffness Energy.

REAL(sdp), INTENT(OUT) :: se

! :

! :

RETURN

END SUBROUTINE domainse

C

A
L

L

C

A
L

L
E

R

G. ecmat.f90

! This sub-routine computes the consistent mass matrix for an element.

SUBROUTINE ecmat(ecm,fun,ndof,nodof)

USE precision

IMPLICIT NONE

! - Arguments.

! Shape functions.

REAL(sdp), INTENT(IN) :: fun(:)

! Number of Degrees of freedom per node.

INTEGER, INTENT(IN) :: nodof

! Number of Degrees of freedom per element.

INTEGER, INTENT(IN) :: ndof

! Element consistent mass matrix.

REAL(sdp), INTENT(OUT) :: ecm(:,:)

! :

! :

RETURN

END SUBROUTINE ecmat

C

A
L

L

288

C

A
L

L
E

R

H. elmat.f90

! This sub-routine computes the lumped mass matrix for an element.

SUBROUTINE elmat(area,rho,emm)

USE precision

IMPLICIT NONE

! - Arguments.

! Element area.

REAL(sdp), INTENT(IN) :: area

! Material mass density.

REAL(sdp), INTENT(IN) :: rho

! Lumped element mass matrix.

REAL(sdp), INTENT(OUT) :: emm(:,:)

! :

! :

RETURN

END SUBROUTINE elmat

C

A
L

L

C

A
L

L
E

R

I. elres1.f90

! This sub-routine computes element stresses and strains at Gauss

! integration points.

SUBROUTINE elres1(db,disp,stress,strain)

USE precision

USE interfaces

USE data_domain

USE data_material

USE data_structural

IMPLICIT NONE

! - Arguments.

! Domain block.

INTEGER, INTENT(IN) :: db

! Nodal displacement vector.

REAL(sdp), INTENT(IN) :: disp(0:)

! Element stresses.

REAL(sdp), INTENT(INOUT) :: stress(:,:,:)

! Element strains.

REAL(sdp), INTENT(INOUT) :: strain(:,:,:)

! :

289

! :

RETURN

END SUBROUTINE elres1

C

A
L

L

C

A
L

L
E

R

J. esq2gsk.f90

! This sub-routine is used in the assembly of symmetric/skyline matrices.

SUBROUTINE esq2gsk(kv,km,g,diagtl)

USE precision

IMPLICIT NONE

! - Arguments.

! Element steering vector.

INTEGER, INTENT(IN) :: g(:)

! Diagonal term locator.

INTEGER, INTENT(IN) :: diagtl(:)

! Element matrix.

REAL(sdp), INTENT(IN) :: km(:,:)

! Global matrix (stored as a skyline vector).

REAL(sdp), INTENT(OUT) :: kv(:)

! :

! :

RETURN

END SUBROUTINE esq2gsk

C

A
L

L

C

A
L

L
E

R

290

K. esteer.f90

! This sub-routine returns the element degree of freedom steering vector from

! element node numbering and nodal degree of freedom array.

SUBROUTINE esteer(num,nf,g)

IMPLICIT NONE

! - Arguments.

! Element node numbers vector.

INTEGER, INTENT(IN) :: num(:)

! Numbered nodal freedom matrix.

INTEGER, INTENT(IN) :: nf(:,:)

! Element degree of freedom steering vector.

INTEGER, INTENT(OUT) :: g(:)

! :

! :

RETURN

END SUBROUTINE esteer

C

A
L

L

C

A
L

L
E

R

L. fkdiag.f90

! This sub-routine computes the skyline profile for symmetric system

! matrices.

SUBROUTINE fkdiag(diagtl,g)

IMPLICIT NONE

! - Arguments.

! Element degree of freedom steering vector.

INTEGER, INTENT(IN) :: g(:)

! Skyline profile.

INTEGER, INTENT(OUT) :: diagtl(:)

! :

! :

RETURN

END SUBROUTINE fkdiag

C

A
L

L

C

A
L

L
E

R

291

M. formkdiag.f90

! This sub-routine computes the array of diagonal term locators for a skyline

! storage system.

SUBROUTINE formkdiag(gg,diagtl)

USE interfaces

IMPLICIT NONE

! - Arguments.

! Element degree of freedom steering array.

INTEGER, INTENT(IN) :: gg(:,:)

! Skyline profile -> Diagonal term locator.

INTEGER, INTENT(INOUT) :: diagtl(:)

! :

! :

RETURN

END SUBROUTINE formkdiag

C

A
L

L

C

A
L

L
E

R

N. formnf.f90

! This sub-routine forms the (numbered) nodal degree of freedom array.

SUBROUTINE formnf(lrn,ardof,nf)

IMPLICIT NONE

! - Arguments.

! List of constrained nodes.

INTEGER, INTENT(IN) :: lrn(:)

!> Array of constrained degrees of freedom.

INTEGER, INTENT(IN) :: ardof(:,:)

!> Nodal freedom matrix.

INTEGER, INTENT(INOUT) :: nf(:,:)

! :

! :

RETURN

END SUBROUTINE formnf

C

A
L

L

292

C

A
L

L
E

R

O. formsky.f90

! This sub-routine computes and assembles symmetric element matrices

! into global skylines arrays.

SUBROUTINE formsky(db)

USE precision

USE interfaces

USE data_domain

USE data_material

USE data_structural

IMPLICIT NONE

! - Arguments.

! Domain block .

INTEGER, INTENT(IN) :: db

! :

! :

RETURN

END SUBROUTINE formsky

C

A
L

L

C

A
L

L
E

R

293

P. fpstiff.f90

! This sub-routine forms a penalty augmented stiffness matrix for including

! prescribed (displacement) degrees of freedom.

SUBROUTINE fpstiff(db)

USE precision

USE interfaces

USE data_domain

USE data_structural

IMPLICIT NONE

! - Arguments.

! Domain block.

INTEGER, INTENT(IN) :: db

! :

! :

RETURN

END SUBROUTINE fpstiff

C

A
L

L

C

A
L

L
E

R

Q. fresidual.f90

! This sub-routine computes the residual for the equilibrium equation.

SUBROUTINE fresidual(dn,rloads,rx0,rx1,resd)

USE precision

USE interfaces

USE data_domain

USE data_structural

USE data_transient

IMPLICIT NONE

! - Arguments.

! Domain number.

INTEGER, INTENT(IN) :: dn

! Loads.

REAL(sdp), INTENT(IN) :: rloads(:,:)

! Initial solution vector.

REAL(sdp), INTENT(IN) :: rx0(:,:)

! Updated solution vector.

REAL(sdp), INTENT(IN) :: rx1(:,:)

! Residual.

REAL(sdp), INTENT(INOUT) :: resd(:)

! :

! :

RETURN

END SUBROUTINE fresidual

294

C

A
L

L

C

A
L

L
E

R

R. fstfearry.f90

! This sub-routine forms structural finite element arrays.

SUBROUTINE fstfearry(db)

USE precision

USE interfaces

USE data_domain

USE data_material

USE data_structural

IMPLICIT NONE

! - Arguments.

! Domain block.

INTEGER, INTENT(IN) :: db

! :

! :

RETURN

END SUBROUTINE fstfearry

295

C

A
L

L

C

A
L

L
E

R

S. gafamily.f90

! This sub-routine uses the Generalized-alpha family of algorithms for direct

! time integration of (symmetric/skyline) structural dynamic equations.

SUBROUTINE gafamily(af,am,beta,gamma,dt,sm,sc,sk,l0,l1,d0,v0,a0,d1,v1,a1,diagtl)

USE precision

USE interfaces

IMPLICIT NONE

! - Arguments.

! Generalized Alpha parameter.

REAL(sdp), INTENT(IN) :: af

! Generalized Alpha parameter.

REAL(sdp), INTENT(IN) :: am

! Newmark parameter

REAL(sdp), INTENT(IN) :: beta

! Newmark parameter.

REAL(sdp), INTENT(IN) :: gamma

! Integration time step.

REAL(sdp), INTENT(IN) :: dt

! Structural mass matrix.

296

REAL(sdp), INTENT(IN) :: sm(:)

! Structural damping matrix.

REAL(sdp), INTENT(IN) :: sc(:)

! Structural stiffness matrix.

REAL(sdp), INTENT(IN) :: sk(:)

! Loads at the beginning of the time-step.

REAL(sdp), INTENT(IN) :: l0(:)

! Loads at the end of the time-step.

REAL(sdp), INTENT(IN) :: l1(:)

! Displacements at the beginning of the time-step.

REAL(sdp), INTENT(IN) :: d0(:)

! Velocities at the beginning of the time-step.

REAL(sdp), INTENT(IN) :: v0(:)

! Accelerations at the beginning of the time-step.

REAL(sdp), INTENT(IN) :: a0(:)

! Diagonal term locator

INTEGER, INTENT(IN) :: diagtl(:)

! Updated displacements.

REAL(sdp), INTENT(OUT) :: d1(:)

! Updated velocities.

REAL(sdp), INTENT(OUT) :: v1(:)

! Updated accelerations.

REAL(sdp), INTENT(OUT) :: a1(:)

! :

! :

RETURN

END SUBROUTINE gafamily

C

A
L

L

C

A
L

L
E

R

T. gsteer.f90

! This sub-routine returns the global element steering matrix.

SUBROUTINE gsteer(connect,nf,g_g)

USE interfaces

IMPLICIT NONE

! - Arguments.

! Nodal connectivities.

INTEGER, INTENT(IN) :: connect(:,:)

! Nodal freedom matrix.

INTEGER, INTENT(IN) :: nf(:,:)

! Element degree of freedom steering matrix.

INTEGER, INTENT(INOUT) :: g_g(:,:)

! :

! :

RETURN

END SUBROUTINE gsteer

297

C

A
L

L

C

A
L

L
E

R

U. iniaccl.f90

! This sub-routine computes initial accelerations from given initial conditions.

SUBROUTINE iniaccl(sm,sc,sk,l0,d0,v0,a0,diagtl)

USE interfaces

USE precision

IMPLICIT NONE

! - Arguments.

! Symmetric mass matrix (skyline).

REAL(sdp), INTENT(IN) :: sm(:)

! Symmetric damping matrix (skyline).

REAL(sdp), INTENT(IN) :: sc(:)

! Symmetric stiffness matrix (skyline).

REAL(sdp), INTENT(IN) :: sk(:)

! Initial loads.

REAL(sdp), INTENT(IN) :: l0(:)

! Initial displacements.

REAL(sdp), INTENT(IN) :: d0(:)

! Initial velocities.

REAL(sdp), INTENT(IN) :: v0(:)

! Diagonal term locator.

INTEGER, INTENT(IN) :: diagtl(:)

! Computed initial accelerations.

REAL(sdp), INTENT(OUT) :: a0(:)

! :

! :

RETURN

END SUBROUTINE iniaccl

C

A
L

L

C

A
L

L
E

R

298

V. lcontri.f90

! This sub-routine computes domain (degree of freedom) load contributions.

SUBROUTINE lcontri(db,idf,ctime)

USE precision

USE interfaces

USE data_domain

USE data_transient

USE data_structural

IMPLICIT NONE

! - Arguments.

! Domain block.

INTEGER, INTENT(IN) :: db

! Initial load / final load identifier (0/1)

INTEGER, INTENT(IN) :: idf

! Current time.

REAL(sdp), INTENT(IN) :: ctime

! :

! :

RETURN

END SUBROUTINE lcontri

C

A
L

L

C

A
L

L
E

R

W. sample.f90

! This sub-routine returns local coordinates and weighting coefficients for

! the Gauss integration points.

SUBROUTINE sample(etype,s,wt)

USE precision

IMPLICIT NONE

! - Arguments.

! Element type.

CHARACTER(*), INTENT(IN) :: etype

! Gauss point coordinates.

REAL(sdp), INTENT(OUT) :: s(:,:)

! Gauss point weights.

REAL(sdp), INTENT(OUT), OPTIONAL :: wt(:)

! :

! :

RETURN

END SUBROUTINE sample

299

C

A
L

L

C
A

L
L

E
R

X. shapeder.f90

! This sub-routine computes the value of shape function derivatives at

! selected Gauss integration points.

SUBROUTINE shapeder(der,points,i)

USE precision

IMPLICIT NONE

! - Arguments.

! Shape function derivatives with respect to local coordinates

REAL(sdp), INTENT(OUT) :: der(:,:)

! Integration point local coordinates.

REAL(sdp), INTENT(IN) :: points(:,:)

! Selected integration point.

INTEGER, INTENT(IN) :: i

! :

! :

RETURN

END SUBROUTINE shapeder

C

A
L

L

C

A
L

L
E

R

Y. shapefun.f90

! This sub-routine computes the value of shape functions at

! selected Gauss integration points.

SUBROUTINE shapefun(fun,points,i)

USE precision

IMPLICIT NONE

! - Arguments.

! Shape functions.

REAL(sdp), INTENT(OUT) :: fun(:)

! Integration point local coordinates.

300

REAL(sdp), INTENT(IN) :: points(:,:)

! Selected integration point.

INTEGER, INTENT(IN) :: i

! :

! :

RETURN

END SUBROUTINE shapefun

C

A
L

L

C

A
L

L
E

R

Z. sk2chol.f90

! This sub-routine performs Cholesky factorization on a symmetric matrix

! stored as a skyline vector.

SUBROUTINE sk2chol(kv,diagtl)

USE precision

IMPLICIT NONE

! - Arguments.

! Diagonal term locator.

INTEGER, INTENT(IN) :: diagtl(:)

! Global matrix -> Cholesky factorized.

REAL(sdp), INTENT(INOUT) :: kv(:)

! :

! :

RETURN

END SUBROUTINE sk2chol

C

A
L

L

C

A
L

L
E

R

AA. sk2gaus.f90

! This sub-routine performs Gauss factorization of a symmetric

! matrix stored as a skyline vector.

SUBROUTINE sk2gaus(kv,diagtl)

USE precision

IMPLICIT NONE

! - Arguments.

! Diagonal term locator.

301

INTEGER, INTENT(IN) :: diagtl(:)

! Global matrix -> Gauss factorized.

REAL(sdp), INTENT(OUT) :: kv(:)

! :

! :

RETURN

END SUBROUTINE sk2gaus

BB. skvmul.f90

! This sub-routine performs matrix-vector multiplication on a

! symmetric matrix stored as a skyline vector.

SUBROUTINE skvmul(kv,disps,loads,diagtl)

USE precision

IMPLICIT NONE

! - Arguments.

! Global coefficient matrix stored as a skyline.

REAL(sdp), INTENT(IN) :: kv(:)

! Multiplying vector.

REAL(sdp), INTENT(IN) :: disps(0:)

! Diagonal term locator.

INTEGER, INTENT(IN) :: diagtl(:)

! Resulting matrix-vector multiplication vector.

REAL(sdp), INTENT(OUT) :: loads(0:)

! :

! :

RETURN

END SUBROUTINE skvmul

C

A
L

L

C

A
L

L
E

R

CC. slskchol.f90

! This sub-routine performs Cholesky forward and backward substitution on a

! symmetric matrix stored as a skyline vector.

SUBROUTINE slskchol(kv,loads,diagtl)

USE precision

IMPLICIT NONE

! - Arguments.

! Global matrix stored as a skyline.

REAL(sdp), INTENT(IN) :: kv(:)

! Diagonal term locator.

INTEGER, INTENT(IN) :: diagtl(:)

302

! RHS vector -> Solution vector.

REAL(sdp), INTENT(INOUT) :: loads(0:)

! :

! :

RETURN

END SUBROUTINE slskchol

C

A
L

L

C

A
L

L
E

R

DD. slskgaus.f90

! This sub-routine performs Gauss forward and backward substitution on a

! symmetric matrix stored as a skyline vector.

SUBROUTINE slskgaus(kv,loads,diagtl)

USE precision

IMPLICIT NONE

! - Arguments.

! Global matrix stored as a skyline.

REAL(sdp), INTENT(IN) :: kv(:)

! Diagonal term locator.

INTEGER, INTENT(IN) :: diagtl(:)

! RHS vector -> Solution vector.

REAL(sdp), INTENT(INOUT) :: loads(0:)

! :

! :

RETURN

END SUBROUTINE slskgaus

EE. slsqlub.f90

! This sub-routine performs backward substitution on an upper triangular

! square matrix obtained after LU factorization.

SUBROUTINE slsqlub(a,b)

USE precision

IMPLICIT NONE

! - Arguments.

! LU factorized matrix.

REAL(sdp), INTENT(IN) :: a(:,:)

! RHS vector -> Solution vector.

REAL(sdp), INTENT(INOUT) :: b(:)

! :

! :

RETURN

END SUBROUTINE slsqlub

303

C

A
L

L

C
A

L
L

E
R

FF. slsqluf.f90

! This sub-routine performs forward substitution on a lower triangular square

! matrix obtained after LU factorization.

SUBROUTINE slsqluf(a,b)

USE precision

IMPLICIT NONE

! - Arguments.

! LU factorized matrix.

REAL(sdp), INTENT(IN) :: a(:,:)

! RHS vector -> Solution vector.

REAL(sdp), INTENT(INOUT) :: b(:)

! :

! :

RETURN

END SUBROUTINE slsqluf

C

A
L

L

C

A
L

L
E

R

GG. slsqlup.f90

! This sub-routine performs forward and backward substitution following

! LU factorization with pivoting.

SUBROUTINE slsqlup(a,b,sol,row)

Use precision

IMPLICIT NONE

! - Arguments.

! LU factorized matrix.

REAL(sdp), INTENT(IN) :: a(:,:)

! RHS vector.

REAL(sdp), INTENT(IN) :: b(:)

! Solution vector.

REAL(sdp), INTENT(OUT) :: sol(:)

! Pivot mapping.

INTEGER, INTENT(IN) :: row(:)

304

! :

! :

RETURN

END SUBROUTINE slsqlup

HH. solvedtrans.f90

! This sub-routine solves transient structural dynamic

! equations using direct integration.

SUBROUTINE solvedtrans()

USE precision

USE interfaces

USE data_feapi

USE data_transient

USE data_structural

USE data_post

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE solvedtrans

C

A
L

L

C

A
L

L
E

R

305

II. sq2lu.f90

! This sub-routine performs LU factorization on a square matrix returning

! lower triangular and upper triangular square matrices.

SUBROUTINE sq2lu(a,lower,upper)

USE precision

IMPLICIT NONE

! - Arguments.

! Input square matrix.

REAL(sdp), INTENT(IN) :: a(:,:)

! Factorized lower triangular matrix.

REAL(sdp), INTENT(OUT) :: lower(:,:)

! Factorized upper triangular matrix.

REAL(sdp), INTENT(OUT) :: upper(:,:)

! :

! :

RETURN

END SUBROUTINE sq2lu

C

A
L

L

C

A
L

L
E

R

JJ. sq2lup.f90

! This sub-routine performs LU factorization on a square matrix with

! pivoting.

SUBROUTINE sq2lup(a,row,error)

USE precision

IMPLICIT NONE

! - Arguments.

! Input square matrix -> LU factorized matrix.

REAL(sdp), INTENT(INOUT) :: a(:,:)

! Pivot mapping.

INTEGER, INTENT(OUT) :: row(:)

! Error flag.

LOGICAL, INTENT(OUT) :: error

! :

! :

RETURN

END SUBROUTINE sq2lup

KK. stressinvar.f90

! This sub-routine computes the stress invariants.

SUBROUTINE stressinvar(stress,sigma_m,sigma_eq)

USE precision

IMPLICIT NONE

! - Arguments.

! Cauchy stress components.

REAL(sdp), INTENT(IN) :: stress(:)

306

! Mean stress invariant (Hydrostatic stress).

REAL(sdp), INTENT(OUT), OPTIONAL :: sigma_m

! Equivalent stress (Von Mises effective stress).

REAL(sdp), INTENT(OUT), OPTIONAL :: sigma_eq

! :

! :

RETURN

END SUBROUTINE stressinvar

C

A
L

L

C

A
L

L
E

R

LL. pfunction.f90

! This sub-routine returns the coefficient for time proportional functions.

SUBROUTINE tpfunction(ctime,func,duration,wavelength,coefficient)

USE precision

IMPLICIT NONE

! - Arguments.

! Current time.

REAL(sdp), INTENT(IN) :: ctime

! Time proportional function.

CHARACTER(*), INTENT(IN) :: func

! Function duration.

REAL(sdp), INTENT(IN) :: duration

! Function wavelength.

REAL(sdp), INTENT(IN) :: wavelength

! Time proportional coefficient \f$ \in \f$ [0,1].

REAL(sdp), INTENT(OUT) :: coefficient

! :

! :

RETURN

END SUBROUTINE tpfunction

C

A
L

L

C

A
L

L
E

R

307

D.1.3 Library – MATH

A. BLAS

Basic Linear Algebra Subprograms (BLAS) are a set of low-level kernel subroutines

that perform common linear algebra operations such as copying, vector scaling, vector dot

products, linear combinations, and matrix multiplication. A quick reference guide to these

sub-routines can be found here: http://www.netlib.org/lapack/lug/node145.html.

B. crossproduct.f90

! This sub-routine forms the cross product of two REAL vectors, a = b x c.

SUBROUTINE crossproduct(b,c,a)

USE precision

IMPLICIT NONE

! - Arguments.

! Real vector 1.

REAL(sdp), INTENT(IN) :: b(:)

! Real vector 2.

REAL(sdp), INTENT(IN) :: c(:)

! Cross product of b and c.

REAL(sdp), INTENT(OUT) :: a(:,:)

! :

! :

RETURN

END SUBROUTINE crossproduct

C. determinant.f90

! This function returns the determinant of a 1x1, 2x2 or 3x3 matrix.

FUNCTION determinant(jac) RESULT(det)

USE precision

IMPLICIT NONE

! - Arguments.

! Jacobian matrix.

REAL(sdp), INTENT (IN) :: jac(:,:)

REAL(sdp) :: det

! :

! :

RETURN

END FUNCTION determinant

C

A
L

L

http://www.netlib.org/lapack/lug/node145.html

308

C

A
L

L
E

R

D. distance.f90

! This sub-routine returns the distance between two points a and b with

! respect to global coordinates.

SUBROUTINE distance(a,b,ab)

USE precision

IMPLICIT NONE

! - Arguments.

! Point 1.

REAL(sdp), INTENT(IN) :: a(:)

! Point 2.

REAL(sdp), INTENT(IN) :: b(:)

! Distance between a and b.

REAL(sdp), INTENT(OUT) :: ab

! :

! :

RETURN

END SUBROUTINE distance

C

A
L

L

C

A
L

L
E

R

E. identity.f90

! This sub-routine returns a REAL identity matrix.

SUBROUTINE identity(n,a)

USE precision

IMPLICIT NONE

! - Arguments.

! Matrix dimension.

INTEGER, INTENT(IN) :: n

! Identity matrix.

REAL(sdp), INTENT(OUT), ALLOCATABLE :: a(:,:)

! :

! :

RETURN

END SUBROUTINE identity

F. inversem.f90

! This sub-routine computes the inverse of a (nxn) square matrix.

309

SUBROUTINE inversem(matrix,inverse,n)

USE precision

IMPLICIT NONE

! - Arguments.

! Input matrix size.

INTEGER, INTENT(IN) :: n

! Input matrix.

REAL(sdp), INTENT(IN), DIMENSION(n,n) :: matrix

! Inverse matrix.

REAL(sdp), INTENT(OUT), DIMENSION(n,n) :: inverse

! :

! :

RETURN

END SUBROUTINE inversem

G. invert.f90

! This sub-routine computes the inverse of a small square matrix.

SUBROUTINE invert(matrix)

USE precision

IMPLICIT NONE

! - Arguments.

! Matrix -> Inverse

REAL(sdp), INTENT(INOUT) :: matrix(:,:)

! :

! :

RETURN

END SUBROUTINE invert

C

A
L

L

C

A
L

L
E

R

H. l2norm.f90

! This function returns the L2 norm of a vector.

FUNCTION l2norm(vec) RESULT(norm)

USE precision

IMPLICIT NONE

! - Arguments.

! Vector.

REAL(sdp), INTENT(IN) :: vec(:)

REAL(sdp) :: norm

! :

! :

RETURN

END FUNCTION l2norm

310

I. piksrt.f90

! This sub-routine sorts a REAL array in descending order by straight

! insertion.

SUBROUTINE piksrt(arr)

USE precision

IMPLICIT NONE

! - Arguments.

! Array to be sorted -> Sorted array.

REAL(sdp), INTENT(INOUT) :: arr(:)

! :

! :

RETURN

END SUBROUTINE piksrt

C

A
L

L

C

A
L

L
E

R

J. scalarproduct.f90

! This sub-routine forms the scalar product of two REAL vectors, a = b . c

SUBROUTINE scalarproduct(b,c,a)

USE precision

IMPLICIT NONE

! - Arguments.

! Vector 1.

REAL(sdp), INTENT(IN) :: b(:)

! Vector 2.

REAL(sdp), INTENT(IN) :: c(:)

! Scalar product of b and c.

REAL(sdp), INTENT(OUT) :: a

! :

! :

RETURN

END SUBROUTINE scalarproduct

D.1.4 Library – Program

A. cputime.f90

! This function returns the current CPU time in seconds.

FUNCTION cputime()

USE precision

IMPLICIT NONE

REAL(sdp) :: cputime ! Return value.

REAL(sdp) :: time ! Time.

! :

! :

RETURN

311

END FUNCTION cputime

C

A
L

L

C

A
L

L
E

R

B. findblock.f90

! This sub-routine is used to find data blocks within FEAPI program files.

SUBROUTINE findblock(uid,path,name,search)

USE interfaces

IMPLICIT NONE

! - Arguments

! File unit identifier.

INTEGER, INTENT(IN) :: uid

! File location.

CHARACTER(*), INTENT(IN) :: path

! File name with extension.

CHARACTER(*), INTENT(IN) :: name

! 'Search' character string.

CHARACTER(*), INTENT(IN) :: search

! :

! :

RETURN

END SUBROUTINE findblock

C

A
L

L

312

C

A
L

L
E

R

C. getname.f90

! This sub-routine prompts the input of terminal commands.

SUBROUTINE getname(argv,nlen)

USE interfaces

IMPLICIT NONE

! - Arguments.

! Terminal argument.

CHARACTER(*), INTENT(OUT) :: argv

! Argument character length.

INTEGER, INTENT(OUT) :: nlen

! :

! :

RETURN

END SUBROUTINE getname

C

A
L

L

C

A
L

L
E

R

D. lnblnk.f90

! This function computes the character length for an input argument.

FUNCTION lnblnk(string) RESULT(alen)

313

IMPLICIT NONE

! - Arguments.

! :

! :

RETURN

END FUNCTION lnblnk

C

A
L

L

C

A
L

L
E

R

E. palloc.f90

! This sub-routine allocates FEAPI TYPE variables.

SUBROUTINE palloc()

USE interfaces

USE data_feapi

USE data_domain

USE data_material

USE data_transient

USE data_structural

USE data_post

IMPLICIT NONE

! - Local variables.

! :

! :

RETURN

END SUBROUTINE palloc

314

C

A
L

L

C

A
L

L
E

R

F. pfilename.f90

! This sub-routine allocates and assigns FEAPI program files.

SUBROUTINE pfilename()

USE interfaces

USE data_feapi

IMPLICIT NONE

! - Local variables.

! :

! :

RETURN

END SUBROUTINE pfilename

C

A
L

L

C

A
L

L
E

R

G. pinput.f90

! This sub-routine reads FEAPI input data.

SUBROUTINE pinput()

USE interfaces

USE data_feapi

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE pinput

315

C

A
L

L

C

A
L

L
E

R

H. postcsv.f90

! This sub-routine generates FEAPI Comma Separated Values (CSV) result file.

SUBROUTINE postcsv(db)

USE data_feapi

USE data_post

IMPLICIT NONE

! - Arguments

! Domain block.

INTEGER, INTENT(IN) :: db

! :

! :

RETURN

END SUBROUTINE postcsv

C

A
L

L

C

A
L

L
E

R

I. ppcsv.f90

! This sub-routine is used to print FEAPI CSV results.

SUBROUTINE ppcsv()

USE interfaces

316

USE data_feapi

USE data_post

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE ppcsv

C

A
L

L

C

A
L

L
E

R

J. ppmesh.f90

! This sub-routine generates FEAPI GiD post mesh files.

SUBROUTINE ppmesh()

USE interfaces

USE data_feapi

USE data_post

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE ppmesh

317

C

A
L

L

C

A
L

L
E

R

K. ppost.f90

! This sub-routine is the primary FEAPI post driver.

SUBROUTINE ppost()

USE interfaces

USE GiDPost

USE data_post

USE data_feapi

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE ppost

318

C

A
L

L

C

A
L

L
E

R

L. ppres.f90

! This sub-routine is used to print FEAPI post results.

SUBROUTINE ppres()

USE precision

USE interfaces

USE data_feapi

USE data_post

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE ppres

319

C

A
L

L

C

A
L

L
E

R

M. ppropn.f90

! This sub-routine opens FEAPI GiD post result files.

SUBROUTINE ppropn()

USE data_feapi

USE data_post

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE ppropn

320

C

A
L

L

C

A
L

L
E

R

N. presult.f90

! This sub-routine is used to allocate FEAPI result storage.

SUBROUTINE presult()

USE precision

USE interfaces

USE data_post

USE data_feapi

USE data_domain

USE data_transient

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE presult

C

A
L

L

C

A
L

L
E

R

321

O. psaver.f90

! This sub-routine saves FEAPI results to corresponding storage.

SUBROUTINE psaver(db,rt,rstep,resv,resm,cvsr,rn)

USE precision

USE data_feapi

USE data_post

IMPLICIT NONE

! - Arguments

! Domain block.

INTEGER, INTENT(IN) :: db

! Result step number.

INTEGER, INTENT(IN) :: rstep

! Result time.

REAL(sdp), INTENT(IN) :: rt

! Result vector.

REAL(sdp), INTENT(IN) :: resv(:)

! Result matrix.

REAL(sdp), INTENT(IN) :: resm(:,:,:)

! CVS result.

REAL(sdp), INTENT(IN) :: cvsr

! Result name.

CHARACTER(LEN = *), INTENT(IN) :: rn

! :

! :

RETURN

END SUBROUTINE psaver

C

A
L

L

C

A
L

L
E

R

P. psetup.f90

! This sub-routine is used to setup FEAPI program variables.

SUBROUTINE psetup()

USE interfaces

USE data_feapi

USE data_mgmt

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE psetup

322

C

A
L

L

323

C

A
L

L
E

R

Q. psolve.f90

! This sub-routine is the primary FEAPI solution driver.

SUBROUTINE psolve()

USE precision

USE interfaces

USE data_feapi

USE data_mgmt

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE psolve

C

A
L

L

324

C

A
L

L
E

R

R. psummary.f90

! This sub-routine posts FEAPI program summary.

SUBROUTINE psummary()

USE interfaces

USE data_mgmt

USE data_post

USE data_feapi

USE data_domain

USE data_transient

USE data_structural

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE psummary

C

A
L

L

C

A
L

L
E

R

S. pterminal.f90

! FEAPI program terminal.

SUBROUTINE pterminal()

USE interfaces

USE data_feapi

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE pterminal

C

A
L

L

325

C

A
L

L
E

R

T. timestamp.f90

! This function the current timestamp.

FUNCTION timestamp()

IMPLICIT NONE

! - Arguments.

! Timestamp. Example: '20 April 2012 4:20:01.234 PM'

CHARACTER(LEN = 40) :: timestamp

! :

! :

RETURN

END FUNCTION timestamp

C

A
L

L

C

A
L

L
E

R

326

D.2 FEAPI–GiD

D.2.1 Preprocessor

A. ip_dbcs.f90

! This sub-routine reads FEAPI domain boundary conditions.

SUBROUTINE ip_dbcs(db)

USE interfaces

USE data_feapi

USE data_domain

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE ip_dbcs

C

A
L

L

C

A
L

L
E

R

B. ip_intf.f90

! This sub-routine reads FEAPI domain interface variables.

SUBROUTINE ip_intf(db)

USE interfaces

USE data_feapi

USE data_domain

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE ip_intf

C

A
L

L

327

C

A
L

L
E

R

C. ip_mats.f90

! This sub-routine reads FEAPI material variables.

SUBROUTINE ip_mats(db)

USE interfaces

USE data_feapi

USE data_domain

USE data_material

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE ip_mats

C

A
L

L

C

A
L

L
E

R

D. ip_mesh.f90

! This This sub-routine reads FEAPI domain variables.

SUBROUTINE ip_mesh(db)

USE interfaces

USE data_feapi

USE data_domain

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE ip_mesh

328

C

A
L

L

C

A
L

L
E

R

E. ip_post.f90

! This sub-routine reads FEAPI post variables.

SUBROUTINE ip_post(db)

USE interfaces

USE data_feapi

USE data_post

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE ip_post

C

A
L

L

C

A
L

L
E

R

F. ip_tran.f90

! This sub-routine reads FEAPI transient analysis options.

SUBROUTINE ip_tran(db)

USE interfaces

USE data_feapi

USE data_transient

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE ip_tran

329

C

A
L

L

C

A
L

L
E

R

D.2.2 Postprocessor

A. gidgnum.f90

! This sub-routine transforms FEAPI (local) element node numbering

! to GiD (local) element node numbering.

SUBROUTINE gidgnum(etype,nod,g_num,gnum)

IMPLICIT NONE

! - Arguments.

CHARACTER(LEN = *), INTENT(IN) :: etype ! Element type.

INTEGER, INTENT(IN) :: nod ! Nodes per element.

INTEGER, INTENT(IN) :: g_num(:) ! FEAPI element connectivity.

INTEGER, INTENT(INOUT) :: gnum(:) ! GiD element connectivity.

! :

! :

RETURN

END SUBROUTINE gidgnum

C

A
L

L

C

A
L

L
E

R

B. gidgxyz.f90

! This sub-routine posts Gauss integration point coordinates to

! GiD post result file.

SUBROUTINE gidgxyz(db)

USE precision

USE interfaces

USE data_feapi

USE data_domain

USE GiDPost

USE data_post

IMPLICIT NONE

! - Arguments.

330

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE gidgxyz

C

A
L

L

C

A
L

L
E

R

C. gidmesh.f90

! This sub-routine posts FEAPI GiD post mesh file.

SUBROUTINE gidmesh(db)

USE precision

USE interfaces

USE data_feapi

USE data_domain

USE GiDPost

USE data_post

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE gidmesh

331

C

A
L

L

C

A
L

L
E

R

D. gidrmat.f90

! This sub-routine posts FEAPI matrix results

! (results over Gauss integration points).

SUBROUTINE gidrmat(db,rt,rn,rmat)

USE GiDPost

USE data_post

USE data_feapi

USE data_domain

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

REAL(sdp), INTENT(IN) :: rt ! Result time.

CHARACTER(LEN = *), INTENT(IN) :: rn ! Result name.

REAL(sdp), INTENT(IN) :: rmat(:,:,:) ! Result vector.

! :

332

! :

RETURN

END SUBROUTINE gidrmat

C

A
L

L

C

A
L

L
E

R

333

E. gidropn.f90

! This sub-routine opens a FEAPI-GiD post result file.

SUBROUTINE gidropn(db)

USE GiDPost

USE data_feapi

USE data_post

IMPLICIT NONE! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

! :

! :

RETURN

END SUBROUTINE gidropn

C

A
L

L

C

A
L

L
E

R

F. gidrvec.f90

! This sub-routine posts FEAPI vector results (results over nodes).

SUBROUTINE gidrvec(db,rt,rn,rvec)

USE precision

USE GiDPost

USE data_post

USE data_feapi

USE data_domain

IMPLICIT NONE

! - Arguments.

INTEGER, INTENT(IN) :: db ! Domain block.

REAL(sdp), INTENT(IN) :: rt ! Result time.

CHARACTER(LEN = *), INTENT(IN) :: rn ! Result name.

REAL(sdp), INTENT(IN) :: rvec(0:) ! Result vector.

! :

! :

RETURN

END SUBROUTINE gidrvec

334

C

A
L

L

C

A
L

L
E

R

D.2.3 GiDPost

A. data_post.f90

! This module contains FEAPI post variables

MODULE data_post.f90

USE precision

USE GiDPost

IMPLICIT NONE

! Data type for domain result variables.

TYPE :: result_variables

REAL(sdp), ALLOCATABLE :: rtime(:) ! Result time.

REAL(sdp), ALLOCATABLE :: ndisp(:,:) ! Nodal displacements.

REAL(sdp), ALLOCATABLE :: nvelo(:,:) ! Nodal velocities.

REAL(sdp), ALLOCATABLE :: naccl(:,:) ! Nodal accelerations.

REAL(sdp), ALLOCATABLE :: estrs(:,:,:,:) ! Element stresses.

REAL(sdp), ALLOCATABLE :: estrn(:,:,:,:) ! Element strains.

REAL(sdp), ALLOCATABLE :: dke(:) ! Domain kinetic energy.

REAL(sdp), ALLOCATABLE :: dse(:) ! Domain stiffness energy.

REAL(sdp), ALLOCATABLE :: dfx(:) ! Domain external work.

REAL(sdp), ALLOCATABLE :: die(:) ! Domain interface energy.

END TYPE result_variables

! Data type for FEAPI post options.

TYPE :: post_options

INTEGER :: resf ! Result frequency.

INTEGER, ALLOCATABLE :: rflag(:) ! Result flag.

INTEGER :: res4k ! Result keyword (4. Stress).

END TYPE post_options

! Public attributes

INTEGER :: resn = 9 ! Number of FEAPI results.

INTEGER :: incn ! Include nodes.

INTEGER :: gpc ! Gauss point coordinates.

CHARACTER(LEN = 20), ALLOCATABLE :: rname(:) ! Result names.

! Public attributes (DDT = Derived data type)

TYPE(GiD_PostMode) :: gidpmode

! DDT for GiD spatial dimension.

335

TYPE(GiD_Dimension) :: gidpndim

! DDT for GiD element type.

TYPE(GiD_ElementType) :: gidpelem

! DDT for result type.

TYPE(GiD_ResType) :: gidprtyp

! DDT for result location.

TYPE(GiD_ResLoc) :: gidprloc

! DDT for GiD file unit identifier.

TYPE(GiD_File) :: fd

! DDT for GiD post.res file unit identifier.

TYPE(GiD_File), ALLOCATABLE :: gidprfid(:)

! DDT for GiDPost options.

TYPE(post_options), ALLOCATABLE :: postop(:)

! DDT for domain result storage.

TYPE(result_variables), ALLOCATABLE :: drestr(:)

END MODULE data_post

D

A
T

A
 C

O
L

L
A

B
O

R
A

T
IO

N

336

B. GiDPost.f90

Refer: http://www.gidhome.com/component/manual/gidpost/introduction

C. GiD_hdf5.lib

Refer: http://www.gidhome.com/component/manual/gidpost/introduction

D. GiD_post.lib

Refer: http://www.gidhome.com/component/manual/gidpost/introduction

E. GiD_zlib.lib

Refer: http://www.gidhome.com/component/manual/gidpost/introduction

http://www.gidhome.com/component/manual/gidpost/introduction
http://www.gidhome.com/component/manual/gidpost/introduction
http://www.gidhome.com/component/manual/gidpost/introduction
http://www.gidhome.com/component/manual/gidpost/introduction

337

D.3 MGMT

D.3.1 Modules

A. data_mgmt.f90

! This module contains MGMT variables.

MODULE data_mgmt

USE precision

IMPLICIT NONE

! Auxiliary data type for domain interface info.

TYPE :: aux1

! Interface domain block.

INTEGER :: idb

! Interface ID.

INTEGER :: id

! Interface label.

CHARACTER(LEN = 6) :: ilab

! Number of nodes on a particular interface.

INTEGER :: nn

! List of nodes on a particular interface.

INTEGER, ALLOCATABLE :: ln(:)

END TYPE aux1

! Total number of 'Master' (= Mortar) interfaces.

INTEGER :: mint

! Total number of nodes associated with the interface of

INTEGER :: lnn

! List of Lagrange interface nodes.

INTEGER, ALLOCATABLE :: llin(:,:)

! (Clone) List of Lagrange interface nodes.

INTEGER, ALLOCATABLE :: clin(:,:)

! Degrees of freedom (per node) associated with the Lagrange multipliers.

INTEGER :: lnodof

! Lagrange interface info.

TYPE(aux1), ALLOCATABLE :: liinf(:)

! Sub-domain time-step hierarchy (descending).

REAL(sdp), ALLOCATABLE :: dtorder(:)

! Sub-domain hierarchy.

INTEGER, ALLOCATABLE :: dborder(:)

! Array of Lagrange multipliers.

REAL(sdp), ALLOCATABLE :: lambda(:)

! Interface condensation matrix.

REAL(sdp), ALLOCATABLE :: hmat(:,:)

! Lower triangular decomposition of the interface condensation matrix.

REAL(sdp), ALLOCATABLE :: lhmat(:,:)

! Upper triangular decomposition of the interface condensation matrix.

REAL(sdp), ALLOCATABLE :: uhmat(:,:)

! Data type for sub-domain specific MGMT variables.

TYPE :: mgmt_subdomain

! Sub-domain time-step ratio with respect to parent sub-domain.

INTEGER :: mratio

! Boolean projection matrix.

REAL(sdp), ALLOCATABLE :: bpmat(:,:)

! Multi constraint interface matrix.

REAL(sdp), ALLOCATABLE :: mcmat(:,:)

! Interface connectivity matrix.

REAL(sdp), ALLOCATABLE :: icmat(:,:)

! Unit load response matrix.

REAL(sdp), ALLOCATABLE :: ulmat(:,:,:,:)

338

END TYPE mgmt_subdomain

! Derived data type for sub-domain specific MGMT variables.

TYPE(mgmt_subdomain), ALLOCATABLE :: mgmtdb(:)

END MODULE data_mgmt

D

A
T

A
 C

O
L

L
A

B
O

R
A

T
IO

N

D.3.2 Library

A. fbpmat.f90

! This sub-routine forms the Boolean projection matrix (unbiased).

SUBROUTINE fbpmat(lnodes,gnf,mat)

USE precision

IMPLICIT NONE

! - Arguments.

! List of domain interface nodes.

INTEGER, INTENT(IN) :: lnodes(:)

! Domain nodal freedom matrix.

INTEGER, INTENT(IN) :: gnf(:,:)

! Boolean projection matrix (unbiased).

REAL(sdp), INTENT(INOUT) :: mat(:,0:)

! :

! :

RETURN

END SUBROUTINE fbpmat

C

A
L

L

339

C

A
L

L
E

R

B. fmcmat.f90

! This sub-routine computes the multi constraint matrix

! using mortar finite elements (Trapezoidal Rule).

SUBROUTINE fmcmat(db)

USE precision

USE interfaces

USE data_mgmt

USE data_domain

IMPLICIT NONE

! - Arguments.

! Domain block.

INTEGER, INTENT(IN) :: db

! :

! :

RETURN

END SUBROUTINE fmcmat

C

A
L

L

C

A
L

L
E

R

C. fulmat.f90

! This sub-routine computes the sub-domain unit load response matrix.

SUBROUTINE fulmat(db)

USE precision

USE interfaces

USE data_mgmt

USE data_domain

USE data_transient

USE data_structural

IMPLICIT NONE

! - Arguments.

! Domain block.

INTEGER, INTENT(IN) :: db

! :

! :

RETURN

340

END SUBROUTINE fulmat

C

A
L

L

C

A
L

L
E

R

D. immat.f90

! This sub-routine computes the interface element mass matrix.

SUBROUTINE immat(imm,fun1,fun2,ndof,nodof)

USE precision

IMPLICIT NONE

! - Arguments.

! Shape functions (Interface of Lagrange multipliers).

REAL(sdp), INTENT(IN) :: fun1(:)

! Shape functions (Domain interface).

REAL(sdp), INTENT(IN) :: fun2(:)

! Number of Degrees of freedom per node.

INTEGER, INTENT(IN) :: nodof

! Number of Degrees of freedom per element.

INTEGER, INTENT(IN) :: ndof

! Interface element mass matrix.

REAL(sdp), INTENT(OUT) :: imm(:,:)

! :

! :

RETURN

END SUBROUTINE immat

E. invmap.f90

! This sub-routine performs the inverse mapping of global coordinates

! to local coordinates (Bilinear isoparametric quadrilateral elements only).

SUBROUTINE invmap(pointsl,pointsg,coord)

USE precision

IMPLICIT NONE

! - Arguments.

! Element coordinates.

REAL(sdp), INTENT(IN) :: coord(:,:)

! Global points and coordinates.

REAL(sdp), INTENT(IN) :: pointsg(:,:)

! Local points and coordinates.

REAL(sdp), ALLOCATABLE, INTENT(OUT) :: pointsl(:,:)

! :

! :

RETURN

END SUBROUTINE invmap

341

F. mgmtall.f90

! This sub-routine is used to allocate MGMT variables.

SUBROUTINE mgmtall()

USE precision

USE data_mgmt

USE data_feapi

USE data_domain

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE mgmtall

C

A
L

L

C

A
L

L
E

R

G. mgmtdid.f90

! This sub-routine is used to setup MGMT sub-domain hierarchy.

SUBROUTINE mgmtdid()

USE interfaces

USE data_mgmt

USE data_feapi

USE data_transient

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE mgmtdid

C

A
L

L

C

A
L

L
E

R

H. mgmtgdb.f90

! This sub-routine forms the MGMT global domain block.

342

SUBROUTINE mgmtgdb()

USE interfaces

USE data_mgmt

USE data_post

USE data_feapi

USE data_domain

USE data_transient

USE data_structural

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE mgmtgdb

C

A
L

L

C

A
L

L
E

R

I. mgmtvar.f90

! This sub-routine is used to form MGMT variables.

SUBROUTINE mgmtvar()

USE precision

USE interfaces

USE data_mgmt

USE data_feapi

USE data_domain

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE mgmtvar

343

C

A
L

L

C

A
L

L
E

R

J. solvemgmt.f90

! This sub-routine solves coupled MGMT equations.

SUBROUTINE solvemgmt()

USE precision

USE interfaces

USE data_feapi

USE data_domain

USE data_transient

USE data_structural

USE data_post

USE data_mgmt

IMPLICIT NONE

! :

! :

RETURN

END SUBROUTINE solvemgmt

344

C

A
L

L

C

A
L

L
E

R

K. valued.f90

! This sub-routine returns the value of shape functions on the sun-domain

! interface.

SUBROUTINE valued(x,n,ellen,value)

USE precision

IMPLICIT NONE

! - Arguments

! Location of integration marker over the length.

REAL(sdp), INTENT(IN) :: x

! Array of mortar element lengths.

REAL(sdp), INTENT(IN) :: ellen(:)

! Shape function locator.

INTEGER, INTENT(IN) :: n

! Shape function value.

REAL(sdp), INTENT(OUT) :: value

! :

! :

RETURN

END SUBROUTINE valued

345

C

A
L

L

C
A

L
L

E
R

L. valuem.f90

! This sub-routine returns the value of shape functions on the mortar

! interface.

SUBROUTINE valuem(x,s,ellen,value)

USE precision

IMPLICIT NONE

! - Arguments

! Location of integration marker over the length.

REAL(sdp), INTENT(IN) :: x

! Array of mortar element lengths.

REAL(sdp), INTENT(IN) :: ellen(:)

! Shape function locator.

INTEGER, INTENT(IN) :: s

! Shape function value.

REAL(sdp), INTENT(OUT) :: value

! :

! :

RETURN

END SUBROUTINE valuem

C

A
L

L

C

A
L

L
E

R

	Dedication
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1: Introduction
	1.1 Problem Statement and Motivation
	1.2 Goals and Objectives
	1.3 Contributions of the Dissertation
	1.4 Dissertation Organization

	Chapter 2: Review of Literature and Theoretical Foundation
	2.1 Governing Equations in Linear Structural Dynamics
	2.1.1 Kinematics
	2.1.2 Balance Laws and Equilibrium
	A. Balance of Linear Momentum
	B. Balance of Angular Momentum

	2.1.3 Constitutive Model

	2.2 Finite Element Implementation and Spatial Discretization
	2.3 Temporal Discretization and Direct Integration Methods
	2.3.1 Explicit Methods
	2.3.2 Implicit Methods
	2.3.3 Generalized-α Method

	2.4 Domain Decomposition Methods (DDM)
	2.4.1 Node-cut Partitioning
	2.4.2 Element-cut Partitioning

	2.5 Coupling Sub-Domains in Space and Time
	2.5.1 Mortar Finite Element Method (M-FEM)
	2.5.2 Finite Element Tearing and Interconnecting (FETI)
	2.5.3 Mixed Methods and Subcycling
	A. Element Time Partitioning
	B. Nodal Time Partitioning

	2.5.4 GC Method
	2.5.5 PH Method

	Chapter 3: MGMT Formulation
	3.1 Approach and Methodology
	3.2 Domain Decomposition for Structural Dynamics
	3.3 Multiple Grid Coupling
	3.3.1 Coupling Conforming Grids
	3.3.2 Coupling Non-Conforming Grids

	3.4 Multiple Time-Scale Coupling
	3.4.1 Newmark Time Integration
	3.4.2 Interface Condensation

	3.5 Stability Analysis Using Energy Method
	3.6 Solution Algorithm and its Finite Element Implementation
	3.6.1 Step 1: Solve Av = b
	3.6.2 Step 2: Compute δ = d – cv
	3.6.3 Step 3: Solve Aw = f
	3.6.4 Step 4: Compute y = δ-1(g – cw)
	3.6.5 Step 5: Compute x = w – vy

	Chapter 4: Programming the MGMT Method
	4.1 Finite Element Analysis Programming Interface (FEAPI)
	4.1.1 Program Structure and Component Interfaces
	A. Interface 1 – FEAPI
	B. Interface 2 – MGMT
	C. Interface 3 – FEAPI–GiD
	D. Interface 4 – feapi-gid.gid

	4.1.2 Program Installation
	4.1.3 Driver Programs
	A. Uniform Grid Uniform Time-scale Simulations
	B. Multiple Grid Multiple Time-scale Simulations

	Chapter 5: Numerical Analysis and Verification
	5.1 Benchmark Case Descriptions
	5.1.1 Case 1 – Uniform grid uniform time-step (UGUT) reference cases
	5.1.2 Case 2 – Multiple Grid Multiple Time-Step I-I Coupling (MGMT1)
	5.1.3 Case 3 – Multiple Grid Multiple Time-Step I-E Coupling (MGMT2)
	5.1.4 Case 4 – Multiple Time-Step I-I Coupling (MTC)
	5.1.5 Case 5 – Multiple Grid Coupling with Implicit Time Integration (MGC)

	5.2 UGUT Convergence
	5.3 Stability Analysis
	5.3.1 Global Energy Balance
	5.3.2 Augmented Interface Energy
	5.3.3 Interface Continuity

	5.4 Evaluation of Numerical Accuracy
	5.4.1 Example 1: Transverse Vibrations
	5.4.2 Example 2: Longitudinal Vibrations

	5.5 Evaluation of Computational Efficiency
	5.6 Numerical Analysis and Verification Summary

	Chapter 6: MGMT Example Problems and Results
	6.1 Example 1: Stress Resolution in Critical Regions
	6.1.1 Example 1.1: Plate with a Hole
	6.1.2 Example 1.2: 3 Point Bending Test

	6.2 Example 2: Analysis of Heterogeneous Structural Systems
	6.3 Example 3: Steel Girder Subjected to Impulse Loading
	6.4 Example 4: Curved Frame under Point Loading
	6.5 Example 5: Bridge Analysis

	Chapter 7: Conclusions and Future Directions
	7.1 Conclusions
	7.2 Future Directions

	Bibliography
	Appendix A: FEAPI Input File
	A.1 Example Input File
	A.2 Input File Data Blocks

	Appendix B: FEAPI Output Files
	B.1 Post Mesh File
	B.2 Post Result Files
	B.3 Comma Separated Value File
	B.4 Simulation Summary File

	Appendix C: Pre/Post Example
	C.1 Program 1: Uniform Grid Uniform Time-scale Simulations
	C.1.1 Pre-processing (Input File Creation)
	C.1.2 Solver
	C.1.3 Post-processing (Result Visualization)

	C.2 Program 2: Multiple Grid Multiple Time-scale Simulations
	C.2.1 Pre-processing (Input File Creation)
	A. Sub-domain 1
	B. Sub-domain 2

	C.2.2 Solver
	C.2.3 Post-processing (Result Visualization)

	Appendix D: Library Routines
	D.1 FEAPI
	D.1.1 Modules
	A. data_domain.f90
	B. data_feapi.f90
	C. data_material.f90
	D. data_structural.f90
	E. data_transient.f90
	F. precision.f90

	D.1.2 Library – FEA
	A. beemat.f90
	B. deemat.f90
	C. domainfx.f90
	D. domainie.f90
	E. domainke.f90
	F. domainse.f90
	G. ecmat.f90
	H. elmat.f90
	I. elres1.f90
	J. esq2gsk.f90
	K. esteer.f90
	L. fkdiag.f90
	M. formkdiag.f90
	N. formnf.f90
	O. formsky.f90
	P. fpstiff.f90
	Q. fresidual.f90
	R. fstfearry.f90
	S. gafamily.f90
	T. gsteer.f90
	U. iniaccl.f90
	V. lcontri.f90
	W. sample.f90
	X. shapeder.f90
	Y. shapefun.f90
	Z. sk2chol.f90
	AA. sk2gaus.f90
	BB. skvmul.f90
	CC. slskchol.f90
	DD. slskgaus.f90
	EE. slsqlub.f90
	FF. slsqluf.f90
	GG. slsqlup.f90
	HH. solvedtrans.f90
	II. sq2lu.f90
	JJ. sq2lup.f90
	KK. stressinvar.f90
	LL. pfunction.f90

	D.1.3 Library – MATH
	A. BLAS
	B. crossproduct.f90
	C. determinant.f90
	D. distance.f90
	E. identity.f90
	F. inversem.f90
	G. invert.f90
	H. l2norm.f90
	I. piksrt.f90
	J. scalarproduct.f90

	D.1.4 Library – Program
	A. cputime.f90
	B. findblock.f90
	C. getname.f90
	D. lnblnk.f90
	E. palloc.f90
	F. pfilename.f90
	G. pinput.f90
	H. postcsv.f90
	I. ppcsv.f90
	J. ppmesh.f90
	K. ppost.f90
	L. ppres.f90
	M. ppropn.f90
	N. presult.f90
	O. psaver.f90
	P. psetup.f90
	Q. psolve.f90
	R. psummary.f90
	S. pterminal.f90
	T. timestamp.f90

	D.2 FEAPI–GiD
	D.2.1 Preprocessor
	A. ip_dbcs.f90
	B. ip_intf.f90
	C. ip_mats.f90
	D. ip_mesh.f90
	E. ip_post.f90
	F. ip_tran.f90

	D.2.2 Postprocessor
	A. gidgnum.f90
	B. gidgxyz.f90
	C. gidmesh.f90
	D. gidrmat.f90
	E. gidropn.f90
	F. gidrvec.f90

	D.2.3 GiDPost
	A. data_post.f90
	B. GiDPost.f90
	C. GiD_hdf5.lib
	D. GiD_post.lib
	E. GiD_zlib.lib

	D.3 MGMT
	D.3.1 Modules
	A. data_mgmt.f90

	D.3.2 Library
	A. fbpmat.f90
	B. fmcmat.f90
	C. fulmat.f90
	D. immat.f90
	E. invmap.f90
	F. mgmtall.f90
	G. mgmtdid.f90
	H. mgmtgdb.f90
	I. mgmtvar.f90
	J. solvemgmt.f90
	K. valued.f90
	L. valuem.f90

