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ABSTRACT

Reducing Complexity: A Regularized Non-negative Matrix Approximation (NNMA)

Approach to X-ray Spectromicroscopy Analysis

Rachel Y. C. Mak

X-ray absorption spectromicroscopy combines microscopy and spectroscopy to provide rich

information about the chemical organization of materials down to the nanoscale. But with

richness also comes complexity: natural materials such as biological or environmental sci-

ence specimens can be composed of complex spectroscopic mixtures of different materials.

The challenge becomes how we could meaningfully simplify and interpret this information.

Approaches such as principal component analysis and cluster analysis have been used in pre-

vious studies, but with some limitations that we will describe. This leads us to develop a new

approach based on a development of non-negative matrix approximation (NNMA) analysis

with both sparseness and spectra similarity regularizations. We apply this new technique to

simulated spectromicroscopy datasets as well as a preliminary study of the large-scale bio-

chemical organization of a human sperm cell. NNMA analysis is able to select major features

of the sperm cell without the physically erroneous negative weightings or thicknesses in the

calculated image which appeared in previous approaches.
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CHAPTER 1

Introduction

1.1. Spectromicroscopy

Spectromicroscopy is the combination of spectroscopy and microscopy. Microscopy has

been used since around Galileo’s time as a tool to image objects too small for the naked eye to

see: in 1665, Robert Hooke published his detailed drawings of magnified insects in his book

Micrographia, while Antonie van Leeuwenhoek and Zacharias Janssen were instrumental

in developing some of the first microscopes in the 16th and 17th centuries. Spectroscopy

separates the components in the images and enables us to carry out quantitative elemental

and chemical analysis of these objects. We can combine the advantages of both techniques

by dividing an object or sample into units of pixels, acquiring a spectrum over each pixel,

and building up an image of the sample using its spectroscopic components – resulting in

“spectroscopic imaging” or spectromicroscopy. A familiar example would be a colour image,

from which we can obtain information about the wavelength-dependent response of each

object in the image, which we could not do in a grayscale image (since it only contains scalar

intensity information).

The first microscopes used visible light as the input (excitation) source as well as the out-

put (imaging) medium, as did the first experiments in spectroscopy – Isaac Newton was said

to have been one of the first to use a glass prism to split a ray of sunlight into its seven visible

components. Today, the excitation source and imaging medium could be a combination of

visible light, electrons, x-rays, or even neutrons and protons. Different excitation sources
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extract different types of information about the sample, and can provide different contrasts

in imaging, thus providing different insights. And now, with the technological capability to

image large numbers of pixels and acquire spectra across a large range at each pixel, the

challenge – and the focus of this thesis – becomes the distillation and interpretation of this

rich, complex data.

In the next section, we will briefly describe a few (by no means exhaustive!) spectromi-

croscopy techniques capable of extracting different types of electronic, molecular, or chemical

information from samples. Then we will go further and discuss the physical mechanisms for

x-ray absorption in materials and how they could be studied to gain chemical information.

1.2. Different spectromicroscopy techniques

1.2.1. X-ray fluorescence microscopy

X-ray fluorescence (XRF) probes the inner shell electronic transitions of atoms: when an

inner-shell electron absorbs an incident x-ray photon and leaves a core hole, another electron

from a higher orbital or shell can fill the hole, leaving the atom to emit a photon with

characteristic energy unique to the element of the absorbing atom. An energy dispersive

spectrometer can be used to measure the energy of the emitted photon. Thus, by scanning

an XRF microscope over a sample, a map of its elemental distribution can be obtained.

However, XRF is not an efficient radiation process and typically produces low yields for

light elements (Z . 11).

1.2.2. Auger electron spectroscopy

For lighter elements down to lithium, the Auger effect provides the dominant energy transi-

tion pathway and can be taken advantage of by Auger electron spectroscopy (AES). Similar
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to XRF, an incoming x-ray photon (or electron) creates a core hole which is then filled by

a higher-orbital electron; but instead of radiating a de-excitation photon as in XRF, the

energy is absorbed by a second outer-shell (Auger) electron. The Auger electron is ejected

from the atom if this de-excitation energy is greater than its orbital binding energy. This

energy difference, or the kinetic energy of the Auger electron, is typically between ∼ 20 and

500 eV. Due to the short mean free path of electrons in solids, AES is most suited to the

analysis of surface compositions [1].

1.2.3. X-ray photoelectron spectroscopy

Like XRF, incident x-ray photons are used to eject photoelectrons from samples in x-ray

photoelectron spectroscopy (XPS). But unlike XRF, this process is non-radiative. As in

AES, XPS also has as a final state an emitted photoelectron, and so is also a surface-sensitive

technique. As well as elemental identification, the peaks at different photoelectron energies

in the XPS spectrum can be analyzed for shifts (with respect to some reference spectra) to

obtain chemical state information, the importance of which will be discussed in more detail

in the next section.

1.2.4. Electron energy loss spectroscopy

In electron energy loss spectroscopy (EELS), a near-mono-energetic beam of electrons is

focused onto a thin section of the specimen. Some fraction of these electrons will transfer

some of their energy via inelastic collisions. In transmission mode, the energy loss of the

electrons can be measured as they traverse through the sample, and peaks corresponding to

ionization energy loss can give information about the elemental and chemical composition of

the sample. The energy of detected electrons range from 0.1 to 1 keV. EELS is sensitive to
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light elements (down to carbon) and transition metals. It is capable of high energy resolution

(< 0.1 eV) and sub-nm spatial resolution [2] for thin films.

1.2.5. Infrared and Raman light spectromicroscopy

We include infrared (IR) and Raman spectromicroscopy here since they can be used to

obtain complementary sample information to the techniques described above: while x-ray

and electron spectroscopies probe electronic state information of the absorbing target, IR can

probe the lower-energy vibrational and rotational modes of molecules without much sample

perturbation, as well as their polarizability to reveal molecular orientation. In particular,

near-IR has deep penetration and has even been used on living subjects [3]. IR spectro-

microtomography (3D imaging) and reconstruction has recently been carried out to study

the spatial distribution of chemical components in biological samples [4]. On the other hand,

Raman (inelastic) scattering produces much weaker signals, but also offers higher sensitivity.

1.3. X-ray absorption spectroscopy

Section 1.2 summarised a few different variations of x-ray absorption spectroscopy (XAS)

techniques, and lead to the point that we would now like to be able to probe samples beyond

the surface and obtain not just electronic, but chemical state information from the bulk.

1.3.1. Chemical and oxidation state information

The chemical state of an atom is determined by its type or species as well as its bonding

environment, which in turn is related to the nature and number of its neighboring atoms

and the types of bonds formed. In theory, a single isolated atom (such as in a monatomic

noble gas) would produce the “purest” absorption spectrum of that element. The absorption
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spectrum would simply consist of a generally decreasing trend as the probability of absorption

decreases with increasing energy, punctuated by sharp absorption “edges” which correspond

to sharp increases in absorption when the energy of incident photons matches the resonant

energy required to excite an allowed electronic orbital transition in an atom. The first

(lowest-energy) edge usually corresponds to the absorption of an x-ray photon by a K-

shell electron, which is then ejected into the continuum. The optical density (product of

absorption coefficient and sample thickness) of the element nickel is shown in Figure 1.1,

showing the absorption K-edge at 8.33 keV.
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Figure 1.1. The optical density spectrum of an isolated Ni atoma, showing the
absorption K-edge at 8.33 keV.

aData generated from http://henke.lbl.gov/optical_constants/filter2.html.

The spectrum is modified when the bonding environment around the absorbing atom

changes – the atom could be packed within a crystalline solid and/or bonded with other

http://henke.lbl.gov/optical_constants/filter2.html
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atomic or molecular species. The forging of new molecular bonds and hybrid orbitals mod-

ulates the energy levels of the unbonded configuration. Even pure nickel in an amorphous

form (e.g., Ni foil) exhibits rich structures in its absorption spectrum, as shown in Figure 1.2.
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Absorption spectrum of Ni foil

Figure 1.2. The absorption spectrum of a relatively “pure” sample (consisting
of just one element) of Ni foil samplea can exhibit rich structures due to the
absorbing atoms being surrounded (in this case, in an unstructured order) by
other atoms. Resonances near the absorption edge and into beginning of the
extended region (from ∼ 30 eV above the edge) are clearly observed.

aData taken from http://millenia.cars.aps.anl.gov/~newville/ModelData/ni_rt01.xmu.

Chemical bonds usually affect the less strongly-bound states; they alter the binding

energy levels and oxidation state of the atom, which manifest as shifts in the absorption

edges of its spectrum. For example, the absorption spectra of several different types of Ni

compounds are shown in Figure 1.3.

http://millenia.cars.aps.anl.gov/~newville/ModelData/ni_rt01.xmu
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NiOH2
Ni:57-Al:43(OH) ¢0.43(NO3 ) ¢mH2O

Ni3Si4O10(OH)2

Figure 1.3. Absorption spectra of different compounds of Nia, showing relative
shifts in their absorption edges, as well as different structures around the edge.

aData taken from http://www-ssrl.slac.stanford.edu/mes/spectra/compounds/ni/ni_index.html.

We will next describe the x-ray absorption process which produces the modulations,

resonances, and edge shifts in the absorption spectrum.

1.3.2. X-ray absorption cross-section

X-ray absorption involves the interaction of the photon’s electromagnetic field with the

momentum of a core electron in the absorbing atom and can be described by the electric

dipole approximation. If we consider the electron as both a wave and a particle capable of

absorbing an incident x-ray photon with energy equal to or greater than its binding energy,

and transitioning from an initial quantum state |i〉 to a final state 〈f |, then we can calculate

http://www-ssrl.slac.stanford.edu/mes/spectra/compounds/ni/ni_index.html
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its transition probability per unit time pi→f semi-classically using Fermi’s Golden Rule [5]:

pi→f ∝
∑

all final states
with energy Ef

|〈f |ε · p|i〉|2 δ(Ef − Ei − h̄ω), (1.1)

where ε is the polarization vector of the incident photon; p is the linear momentum operator

of the core electron1; and the δ function ensures conservation of energy, i.e., energy of the

final state (Ef ) is equal to the sum of energies of initial state (Ei) and incoming photon (h̄ω).

The probability is summed over all possible final states with energy Ef allowed by the dipole

selection rules. In the case of inner shell excitation, pi→f represents the probability of a

transition from the initial state |i〉 consisting of the incident photon and core electron to the

final state 〈f | of the core hole and ejected photoelectron in an available molecular orbital or

the continuum – precisely the photoelectric effect. The larger the amount of overlap between

the initial and final states, the higher the probability of the transition. Since this probability

is measured by the absorption spectrum, it is this amount of overlap between the initial and

final states that determines the structure of the absorption spectrum of an atom in a given

environment. The shape of the absorption spectrum, or the behaviour of the absorption cross-

section, can be explained as a combination of long- and short-range interactions – encoded

in the x-ray absorption near-edge structures (XANES) and extended x-ray absorption fine

structures (EXAFS) respectively. We will describe the physical mechanisms that contribute

to these structures in the following two sections.

1The position operator r could also be used here, since 〈f |ε · p|i〉 ∝ 〈f |ε · r|i〉. This follows because the
commutator of the Hamiltonian H with the position operator r is proportional to p: [H, r] ∝ −ih̄p. So
〈f |ε · p|i〉 ∝ 〈f |ε · [H, r] |i〉 = (Ef − Ei) 〈f |ε · r|i〉.
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1.3.3. Extended x-ray absorption fine structure (EXAFS)

We discuss the EXAFS first since the interactions which give rise to the structures in this

region can be explained in terms of a single-scattering approximation and are therefore sim-

pler to understand. The EXAFS region begins from about 30 to 50 eV above the absorption

edge, extending to beyond 1000 eV above the edge. This region contains information about

the short-range structure around the target atom, such as the (bond) distances to its nearest

neighbour atoms as well as the coordination number and chemical species of its surrounding

atoms.

When an incident photon with energy E ejects a photoelectron with binding energy E0

from an atom, the photoelectron travels as a wave radiating out in all directions and can

scatter elastically off electrons from neighbouring atoms. This gives rise to outgoing and

incoming waves whereby the electron interferes with itself, with constructive interference

occurring when the round-trip distance 2R from the absorbing to scattering atom and back

is an integer number n of the electron’s de Broglie wavelength λ:

2R = nλ. (1.2)

The wavelength of the electron is given by

λ =
h

p
, (1.3)

where h is Planck’s constant and p is the momentum of the electron.

Since the kinetic energy of the photoelectron is E − E0 = p2

2me
(where me is the mass of

the electron) and its wavenumber k ≡ 2π
λ

, these two quantities are related by

k =
2π

h

√
2me(E − E0) (1.4)
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As we change E by scanning the photon energy in an XAS experiment, the resulting

change in the wavenumber k of the photoelectron affects its interference pattern and modu-

lates the absorption probability by a factor

χ(k) ∝ 1

kR2
sin(2kR), (1.5)

where the 1/R2 factor accounts for the decay in scattering probability as the spherical waves

spread out. The absorption probability is maximum when the interference is constructive,

i.e., when 2kR = (2n+1)
2

π.

If µ0(k) represents the smoothly decreasing base absorption of an isolated atom above

the edge, then the total absorption above the edge for a non-isolated atom can be written as

µ(k) = µ0(k)[1 + χ(k)], (1.6)

and so

χ(k) =
µ(k)− µ0(k)

µ0(k)
(1.7)

measures the deviation from the base absorption, or the EXAFS due to the interference

between the backscattered and outgoing photoelectron waves originating from the absorbing

atom.

The complete EXAFS equation is usually written in the form [6, 7]

χ(k) =
∑
i

Ni
Si(k)

kR2
i

e−
2Ri
λ(k) e−2σ2

i k
2

sin[2kRi + δi(k)], (1.8)

which accounts for the backscattering amplitude Si(k) from each of the Ni neighbouring

atoms in the ith shell at distance Ri from the absorbing atom; e−
2Ri
λ(k) describes the decay of

the photoelectron and the core hole as a function of the mean free path λ(k) of the electron
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(the longer the path 2R the electron has to travel compared to λ(k), the more likely it

and the core hole would be to decay and thus lower the probability of scattering); e−2σ2
i k

2

is the Debye-Waller factor associated with the variations in relative distances between the

absorbing and backscattering atoms due to structural disorder or thermal fluctuations; and

δi(k) is the additional phase shift caused by the potentials of the absorbing and backscattering

atoms.

The EXAFS model described above is based on a single-scattering approximation, i.e.,

the photoelectron scatters elastically off a neighbouring atom a distance R away and returns

directly to the absorbing atom. However, it is also possible for the electron to take a more

circuitous path and scatter off several different neighbouring atoms before returning to the

absorbing atom. In this multiple-scattering case, we can consider the total interference path

length 2R to be the sum of the scattering lengths [7]. At high energies with respect to

the absorption edge, these multiple scattering paths correspond to rapidly oscillating terms

in k space which tend to average out. If we Fourier transformed χ(k) into a real-space

function describing the radial structure around the absorbing atom, we would not see much

contribution from multiple scatterings at large R. However, at energies around E0, the

photoelectron has lower kinetic energy and thus a longer mean free path λ(k). Multiple

scattering contributions become important here and contribute to near-edge structures in

the absorption spectrum (to be discussed in the next section).

By studying the EXAFS equation χ(k) in Eq. (1.8), we can gain information about the

local structure surrounding the absorbing atom, such as the number N of its nearest neigh-

bouring atoms (or coordination number) and their bonding distances R. The information

is local because of the decay factor e−
2R
λ(k) , where scattering contributions from large R are

suppressed. Typically, EXAFS is sensitive to about 3 Å around the absorbing atom [8].
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1.3.4. X-ray absorption near-edge structure (XANES)

We now turn our attention to the low-k region of the absorption spectrum with respect to

the absorption edge: typically the ∼ 20 eV range below and the first ∼ 30 eV above the edge.

The EXAFS equation breaks down at low-k due to its 1/k dependence; also, the low kinetic

energy and hence long mean free path of the photoelectron here means that the electron can

undergo multiple scatterings and probe further out in R from the absorbing atom – therefore,

the single-scattering approximation assumed above in the description of EXAFS is no longer

valid. The resonances in this region are known as XANES, or sometimes also near-edge x-ray

absorption fine structure (NEXAFS). While an ejected photoelectron in the EXAFS regime

has high enough kinetic energy that it would likely encounter weak backscattering from only

one neighbouring atom before escaping, an electron from the XANES regime just above the

edge would have only just enough energy to reach and probe the empty continuum states just

above the Fermi level (e.g., for molecules, just above the highest occupied molecular orbital).

The final state of the electron may be unbound or bound (in which case the transition appears

as a pre-edge resonance just below the absorption peak), and could be atomic-like or contain

orbital mixing due to molecular bond hybridization with neighbouring atoms. On the other

hand, a low-k electron just below the absorption edge would not have the energy to escape

into the continuum; thus resonances in the pre-edge region are indicative of bound state

transitions.

The position of the absorption edge itself contains information about the chemical species

of the absorbing atom, as well as being correlated with the atom’s oxidation state or valency.

In general, the edge energy shift (or chemical shift) is positive when the oxidation number

increases, since having a smaller number of electrons per atom means that the effective

nuclear potential increases, and each electron becomes more strongly bound to the nucleus.
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Thus more energy would be required to remove a core electron, which is reflected in a higher

edge energy.

XANES is particularly useful in the study of the K-shell spectra of low-Z molecules

[5], which typically form short bond lengths (1.1 to 1.5 Å) that are strongly dependent

on the types of bond hybridization – precisely the area most likely probed by the low-k

electrons. Moreover, covalent bonds between low-Z molecules are strongly directional, and

so produce polarization-dependent spectra (when excited by polarized radiation as in the

case of a synchrotron) which contain information about the orientation of molecules. These

factors combine to create K-shell spectra with strong features that reveal information about

the configuration and bonding within and between low-Z molecules.

By probing the unoccupied electronic states using features just above the absorption

edge, the bound states using features just below the the edge, and the valency or oxidation

state using the position of the edge itself, XANES offers a sensitive tool for studying the

chemistry of the environment surrounding the absorbing atom, such as the intramolecular

bond type and length, band structure, orbital hybridization, molecular orientation, as well as

the identification of chemical species within a sample. Because of its large scattering cross-

section, XANES signals are much larger than those from EXAFS – making them easier to

measure even at low sample concentrations. However, the nature of the multiple scatterings

that give rise to XANES makes its analytical interpretation more complicated than in the

case of EXAFS.

1.3.5. X-ray spectral analysis: where to go from here

In an x-ray spectromicroscopy experiment, the transmitted x-ray intensity I(E) through

each pixel in a sample is measured as a function of energy E (usually a range of energies
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that passes through an absorption edge of interest). This quantity is related to the linear

absorption coefficient µ(E) of the material, and the sample thickness t via the Lambert-Beer

Law:

I(E) = I0e
−µ(E)t , (1.9)

where I0 is the incident energy (measured for each pixel).

With the capability of synchrotron x-rays to obtain rich, complex intensity spectra over

millions of pixels, the challenge becomes how to interpret the collected data. In particular,

we would like to find the absorption of the different components within the sample in order

to understand its chemical composition. The analysis of image spectra over a continuous

energy range is termed “hyperspectral imaging”, and was originally developed for remote

sensing (for mineral and oil exploration) [9, 10]. The techniques developed have since

been used in many applications including the measurement of surface CO2 emissions in

environmental monitoring [11], astronomy [12], and nano-drug delivery in biomedicine [13],

and even tea quality classification [14]. Some data analysis techniques previously applied to

x-ray spectromicroscopy include principal component analysis (PCA) and cluster analysis.

We will review these two techniques in Chapter 2, and identify some shortcomings which will

provide the motivation for this thesis: a development of non-negative matrix approximation

(NNMA) which will be studied in more detail in Chapter 3, with applications to EXAFS

and XANES datasets. We will discuss the results of one of the datasets in Chapter 4, before

suggesting future work towards refining this technique.
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CHAPTER 2

Principal component analysis (PCA) and cluster analysis

After having measured the transmitted intensity spectrum I(E) at each pixel of the

sample, we now have a 3D “stack” of 2D transmission images over a range of N energies, as

illustrated in Figure 2.1. From this stack, we would like to be able to extract the (unknown)

absorption spectrum µ(E) at each pixel of the sample, as well as its thickness weighting t.

In this chapter, we first introduce the optical density, the transformed data quantity that

we will work with directly instead of the intensity, and review two analysis methods for

extracting components from the data: principal component analysis and cluster analysis.

EN

E2

E1

Figure 2.1. A 3D x-ray spectromicroscopy stack consists of a series of 2D
transmission images measured at a range of energies from E1 to EN .
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2.1. Conversion from transmission to optical density

At each pixel of the sample, we can convert I(E) from Eq. (1.9) into an optical density

spectrum D(E), given by

D(E) = µ(E)t (2.1)

= − log

(
I(E)

I0(E)

)
. (2.2)

We choose to work with the optical density instead of the intensity because D(E) is linear

with the absorption µ(E) and sample thickness t – the two quantities that we would like to

discover.

If we assign an index n ∈ {1 . . . N} to each of the N energies at which I(E) has been

measured, and an index p ∈ {1 . . . P} to each of the P pixels in the sample, we can form an

optical density matrix DN×P where the nth row represents the “flattened” 2D optical density

image measured at energy En, as illustrated in Figure 2.2. In other words, the entry Dnp

then represents the optical density of pixel p at energy En.

E1

E2

EN

Figure 2.2. Transformation of the 3D stack of optical density spectromi-
croscopy images into a 2D optical density matrix DN×P . The optical densities
of the pixels in the nth image (measured at energy En) are flattened into the
nth row of DN×P .
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Further, if the specimen contains S spectroscopically distinct components which we label

s ∈ {1 . . . S}, then from Eq. (2.1), we can write Dnp as a linear combination of the absorption

coefficients µns of all the components s at energy En, weighted by the thicknesses tsp of their

respective components:

Dnp = µn1t1p + . . .+ µnStSp (2.3)

=
S∑
s=1

µnstsp . (2.4)

Accordingly, the full optical density matrix DN×P can be expressed as a matrix product:

DN×P = µN×StS×P , (2.5)

where each column of µN×S represents the absorption spectrum of one component, and each

row in tS×P represents the thickness weighting of the corresponding component. (We will

drop the subscript indices on matrix variables from here on, unless we wish to clarify certain

cases.)

The problem we would like to solve is this: given D, can we find factors µ and t which

satisfy Eq. (2.5)? In addition, µ and t are subject to the constraint that all the elements in

each matrix must both be non-negative, i.e., µns, tsp > 0 ∀ {n, s, p}. The requirement for

the non-negativity of µ stems from the fact that negative absorption would imply that the

sample is adding energy to the x-ray beam rather than taking energy away from it, leading

to a violation of energy conservation. The requirement for the non-negativity of t stems

from the fact that it is meaningless for a physical sample to have a negative thickness.

There are two ways of interpreting the factorization of D into µt. Conventionally, we

consider each column of D to represent the experimentally collected spectrum of a pixel. We
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can consider this pixel to be a point in an N -dimensional energy space. Each of these points

can be generated by a collection of S spectra (columns) in µ, i.e., each column in D can

be expressed as a linear combination of the S spectra in µ, with t specifying the weighting

coefficients in the combination, as depicted in Figure 2.3.

)D =

DN  p

·  ·  ·

D1p

·  ·  ·

· 
· 

·) = t1p µ1 + +·  ·  · tSp µS

Figure 2.3. The pth column of D can be thought of as a linear combination
of the S spectra (columns of µ), weighted by the corresponding thickness
coefficients in the pth column of t.

Alternatively, we can think of the problem in a transverse way: each row of D represents

a P -dimensional point at a given energy (not pixel). Each of these points can be expressed

as a linear combination of the S components (rows) in t, with µ specifying the weighting

coefficients in the combination, as depicted in Figure 2.4.

)D = ·  ·  ·) = µn1

· 
· 

·
· 

· 
·

DnPDn1 t1 + ·  ·  · + µnS tS

Figure 2.4. The nth row of D can be thought of as a linear combination of the S
components (rows of t), weighted by the corresponding absorption coefficients
in the nth row of µ.

These two interpretations are equivalent, and both will be useful for our study. The first

(column combination) view is useful because we are interested in recovering the absorption
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spectra of each spectroscopic component (which the column decomposition provides); while

the second (row combination) view is useful because we are interested in reconstructing the

spatial distribution of each component (which the row decomposition provides).

2.2. Principal component analysis

The problem of analyzing the measured data D in terms of a set of spectra µ has been

the subject of a variety of multivariate statistical analysis approaches in energy loss electron

microscopy [15, 16] and in infrared spectromicroscopy [17, 18]. In x-ray spectromicroscopy,

approaches using spectral standards or hand-defined regions assumed to be of uniform, pure

composition can be used to obtain a set of S spectra µ from which thickness maps t can be

calculated using singular value decomposition (SVD) for matrix inversion [19, 20]:

t = µ†D (2.6)

where µ† is the pseudo-inverse of µ. However, the thickness maps obtained in this way are

not guaranteed to be non-negative, which is one of the two non-negativity contraints required

when finding factor solutions to Eq. (2.5).

Principal component analysis (PCA) is a similar but more general approach that has

been used to understand complex samples in x-ray microscopy [21, 22] by reducing the

dimensionality of the dataset in order to identify the significant components or a basis set

of S̄ (reduced S) orthonormal spectral signatures.

PCA is a very well-established statistical analysis method, used as early as 1901 to fit

planes by means of orthogonal least squares [23]. From a basic viewpoint, PCA is like a

generalized version of regression, which seeks to find the best-fit line or hypersurface to

the data while at the same time trying to eliminate correlations (or redundancies) among
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variables. As mentioned, one use of PCA is dimensionality reduction in order to describe

as many variations in a multivariate system with as few variables as possible. In other

words, we seek to maximize the variance of a linear combination of variables. The first

principal component is the linear combination with maximal variance; essentially, we search

for a dimension along which the observations are maximally separated. The second principal

component is the linear combination with maximal variance but in a direction orthogonal to

the first principal component, and so on, up to the nth dimension or principal component.

PCA is therefore useful in sorting data according to importance: large variances (rep-

resented by the most significant components) carry important information regarding the

dynamics in the data, while small variances (least significant components) represent mostly

noise. By cutting out the latter, PCA produces better signal-to-noise ratio and leads to a

more structured description of the data. There may be some loss of information, but this

should be minimized.

To find the significant components in PCA, we first calculate the covariance matrix ZN×N

given by

ZN×N = DN×P DT
P×N . (2.7)

The eigenvectors µN×S and eigenvalues ΛN×N associated with ZN×N are related by

ZN×N µN×S = µN×S ΛS×S , (2.8)

where ΛS×S is a diagonal matrix with the sth entry on the diagonal corresponding to the

sth column (eigenvector or eigenspectrum) in µN×S. The magnitudes of the eigenvalues

can be displayed on a scree plot in order to choose the number of significant spectroscopic

components S. For example, the scree plot of a simulated dataset that will be studied later
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in Chapter 3 is shown in Figure 2.5, clearly indicating four significant components. Their

associated eigenspectra are shown in Figure 2.6.
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Figure 2.5. Scree plot showing the ranking of eigenvalues from PCA on a
simulated four-component dataset that will be studied later in Chapter 3. In
this case, four significant components are clearly indicated. However, in many
real datasets, the number of truly significant components may not be so clear-
cut.

We have seen that the SVD inversion of µ† does not guarantee a non-negative thickness

map t, while PCA produces a basis set µ which may include negative spectral values. There-

fore, neither of these approaches satisfies the non-negative condition of our desired solution

described in Eq. (2.5).

2.3. Cluster analysis

While PCA does not provide a set of spectra which are individually all interpretable

as non-negative absorption spectra of materials present in the sample, it does provide an

orthogonal and reduced-dimensionality search space for cluster analysis [24, 25] by specifying

a minimum number of clusters in which to group pixels with similar spectra.
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Figure 2.6. The four PCA eigenspectra (columns of µN×S) corresponding to
the four most significant eigenvalues in Figure 2.5. As can be seen here, PCA
can produce negative values in the eigenspectra, which does not satisfy our
constraint of a non-negative µ.

The goal of cluster analysis is to find an optimal grouping for which the observations or

objects within each cluster have a high degree of similarity, but the clusters themselves are

dissimilar to one other. The measure of similarity could be defined by a Euclidean distance

or some other metric. Cluster analysis is one of the most common unsupervised learning

algorithms and has also been referred to as unsupervised pattern recognition.

Cluster analysis is different from classification analysis in that the latter allocates the

observations to a known number of groups, while in cluster analysis, neither the number of

groups nor the types of groups are known in advance – hence unsupervised learning. There

are different types of clustering algorithms: hierarchical clustering [26], Gaussian mixture

models [27], neural networking [28], k-means clustering [24, 25], spectral clustering [29],



35

and even a combination such as hierarchical clustering of a mixture model [30], amongst

others.

In k-means clustering, we would like to group pixels into clusters according to the sim-

ilarity in their spectral content. The number of clusters k (equivalent to our number of

components S) is estimated using the number of significant eigenvalues from PCA as a min-

imum. We begin with a preliminary, random choice for the locations of cluster centres –

each cluster is characterized by some random linear combination of the weightings of each

component. Then, we choose a pixel p and find the cluster centre closest to p according

to our chosen distance metric, and move this cluster center towards the pixel by a scaled

distance as described in [24]. This is repeated for each of the P pixels, and then the whole

process iterated several times until the positions of the cluster centers have stabilized. This

learning vector quantization algrorithm is described in more detail in [24]. Once the cluster

centres are found, the spectra calculated from each cluster provide a set µ for the calculation

of thickness weightings t according to Eq. (2.6).

Although cluster analysis has proven to be useful for a variety of applications [31, 32],

it has also been observed to yield some regions with slightly negative values in the thickness

maps t, which, as mentioned above, are non-physical and thus represent limitations in the

analysis.

In order to understand the way in which non-negative errors can arise in cluster analysis,

we consider a simple example of a specimen with uniform thickness and a continuum of

composition starting with 100% of material A which is strongly absorptive at energy E1, and

ending with 100% of material B which is strongly absorptive at energy E2 (see Figure 2.7).

A scatterplot of the location of individual pixels based on their responses at the energies

{E1, E2} is shown schematically in Figure 2.8A. If we were to apply cluster analysis to these
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Figure 2.7. A sample of uniform overall thickness, composed of two different
materials with continuously varying ratios as a function of y. The x-ray beam
is travelling along the z direction on the plane of the page, and as it scans
along the y direction, experiences different amounts of absorption depending
on the relative amounts of the two materials.

pixels and tried to sort them into two clusters, this would result in the groupings shown in

Figure 2.8B, where the vectors shown point to the respective cluster centers. These cluster

basis vectors are the spectra or columns of µ (with S = 2 in this example), from which

we could calculate the thickness maps according to Eq. (2.6). The spectral composition of

any given pixel in the sample can be described by some linear combination of these basis

vectors. However, consider the case of a pixel which is far from the median in composition,

such as the one at the upper left in Figure 2.8C. The composition of that pixel involves a

negative weighting of the red cluster basis vector – i.e., one that produces negative values

in the thickness map t, which we have already mentioned is not physically interpretable and

therefore undesirable. Of course, if the variation among the spectral responses of the pixels

assigned to a cluster is small, these errors can be negligibly small; however, as Figure 2.8

shows, there is no guarantee that cluster analysis will produce a thickness map with few

negative pixels. Indeed, this negative thickness error is exactly what is observed in an actual

cluster analysis run applied to data of the form of Figure 2.7, and will be discussed in more

detail in Chapter 3.
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Figure 2.8. Schematic illustration to visualize how the linear combination of
cluster analysis components could result in negative thickness weightings.

2.4. The next step: non-negative matrix approximation

The negative weightings produced in PCA and cluster analysis can be interpreted as

negative thicknesses, which does not make physical sense. Alternatively, the weightings can

be interpreted as a probability distribution of components over each pixel – again, it does not

make sense to have negative probabilities. It is then natural to try to find an approximate

factorization of D while imposing a non-negative constraint on the values of µ and t, with

the goal of looking for a physically meaningful interpretation of spectromicroscopy data.

This is the motivation for this thesis, the rest of which will be devoted to such an analysis

using non-negative matrix approximation, its applications to EXAFS and XANES datasets,

as well as a discussion of its shortcomings and possible improvements.
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CHAPTER 3

Non-negative matrix approximation (NNMA)

3.1. Introduction

Given a set of input data (such as a set of images), the goal of principal component

analysis, cluster analysis, and other factor analysis methods is to find a set of basis vectors

(or basis images), which by linear combination can reconstruct any of the original input

data. However, there are many instances where the concept of simply linearly combining

(adding and subtracting) factors to obtain the final result does not make intuitive sense [33].

Consider the case of face recognition in image analysis: if a face were to be reconstructed

by adding and subtracting faces from a set of basis images, these basis images with negative

facial features would not be physically intuitive. What does it mean to subtract a part of

the face? What is the meaning of the part of the face which has been subtracted (a negative

face component, in a sense)? It would be more meaningful if we were to reconstruct a face

by additively building up from a set of facial features. In text mining, words are grouped

into a basis set, then added up to reconstruct a document; then it does not make sense to

“negatively” include a set of words – they should either exist or not exist in a particular

document.

If we constrain the weighting coefficients in the linear combinations to be non-negative,

the basis images can then only be added (and not subtracted) to reconstruct the desired

images. This creates basis images that represent parts. This additive, parts-based approach

to factorization is called non-negative matrix approximation (NNMA) and has been used
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since at least 1994, when it was first known as positive matrix factorization [34]. The concept

of NNMA is simple: factorize a given non-negative matrix DN×P (where all of its entries are

non-negative) into two non-negative matrix factors µN×S and tS×P , where S < min{N,P},

such that D can be approximated as

D ≈ µt. (3.1)

There is much interest in the study of finding non-negative factorizations in the form of

Eq. (3.1) due its many applications in generating useful, insightful (and perhaps commercially

profitable!) information. We have already mentioned the application of NNMA to feature

extraction in face recognition analysis and text mining in document classification. A tiny

sampling of other applications includes digital image processing (intensity in each image pixel

is non-negative) [35], gene expression analysis (probability of expression is non-negative) [36,

37], PageRank for the ordering of web pages (rank is non-negative) [38, 39], recommendation

systems used by online retail and service providers such as Amazon and Netflix (consumer

ratings are non-negative) [40], and hyperspectral remote sensing (reflectances of objects are

non-negative) [41].

3.2. Minimization of the cost function F

The approximation in Eq. (3.1) can be achieved by minimizing the cost function F (also

known as the objective function), where

F (µ, t) =
1

2
||D− µt||2F . (3.2)

Here, ||X||2F=
∑

ij x
2
ij is the squared Frobenius norm of the matrix X, as described in more

detail in Appendix A.1. We constrain each element in µ and t to be non-negative.
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There are many algorithms for minimizing Equation (3.2), including alternating least

squares [42, 43], gradient-based methods [44, 45], and multiplicative updates derived from

gradient descent [46]. We will base our approach on the last of these, because the rules are

simple to derive and easy to implement, and the results could be interpreted in a direct way.

However, we note that though multiplicative update rules have been widely used in different

applications thanks to their low complexity, they suffer from a lack of good convergence

properties [44]. But, as we shall see in our results, even if we cannot always guarantee a

global minimization, locally minimized solutions can still contain useful information about

the data.

The minimization of the cost function F in Eq. (3.2) with respect to both µ and t

simultaneously is classified as a non-convex optimization problem. While convex problems

have the desirable property of a globally optimal solution (a global minimum or maximum)

that could be found within a reasonable amount of time (i.e., within polynomial time O(nk)

where k is some constant independent of input size n), this is not necessarily the case

for non-convex problems, which are more intractable than convex ones [47]. Non-convex

optimization problems are considered to be NP-hard1 problems which cannot be solved in

polynomial time. To achieve useful results in polynomial time, we resort to local optimization

techniques to search for locally optimal solutions (local minima or maxima) instead. While

local optimization methods can be fast, they require an initial guess for the solution or a

starting point for the search, and the value of the final local solution can depend sensitively

on this starting point; also, locally optimal solutions are not guaranteed to be global (the cost

function is not guaranteed to be the smallest possible over the whole domain), and may not

1NP is the set of all decision problems that can be verified in polynomial time. Decision problems are
problems with simple answers that are binary: yes/no, true/false, etc. Many optimization problems can be
formulated as decision problems. NP-hard problems are outside the set of NP, and hence cannot be solved
in polynomial time. NP stands for “non-deterministic polynomial time”.
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contain information about how far away the true, globally optimal solution lies. Nonetheless,

there could still be useful information to be gained from a locally optimal solution.

In our case, though the problem of minimizing F with respect to µ and t simultaneously

is non-convex, it becomes a convex optimization problem if we minimize with respect to

only one of the variables µ or t while keeping the other variable fixed. Therefore, a local

optimization method would be to alternate the search between the µ and t domains.

3.3. The NNMA algorithm

We use the multiplicative rules derived by Lee and Seung [46, 48] to iteratively update

µ and t alternately. These update rules originate from the more familiar gradient descent

approach – at each iteration, we take a small step in the direction of the steepest negative

gradient:

t← t− εt
∂F

∂t

= t + εt(µ
TD− µTµt) (3.3)

µ← µ− εµ
∂F

∂µ

= µ+ εµ(DtT − µttT) (3.4)

where εµ, εt > 0 are small step sizes. The expansions of the partial derivatives of F in

Eqs. (3.3) and (3.4) are shown in Appendix B.

Lee and Seung set the step sizes to be:

εt =
t

µTµt
(3.5)

εµ =
µ

µttT
(3.6)
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(division is element-wise, so that εt has the same dimensions as t, and εµ has the same

dimensions as µ.) in order to obtain the multiplicative update rules:

t← t
µTD

µTµt
(3.7)

µ← µ
DtT

µttT
. (3.8)

After making an initial guess for the number of components S and initializing µ and t with

non-negative random entries, we update each variable independently using the multiplicative

update rules, and use these to calculate the cost function F . We then use the updated µ

and t to find the next iteration of updates, and calculate F again. We repeat this procedure

until we find the minimum of F .

In practice, when the number of iterations is large enough, F may decrease at ever smaller

increments, so we stop the iterations if one of two conditions are met:

(1) the change in the cost function, ∆F , satisfies −10−6 < ∆F < 0 (this interval can be

adjusted depending on how much mileage one would like to get out of the algorithm

– i.e., how close one would like to get to the exact local minimum, but we have not

found much difference in the quality of the reconstructed µ and t as long as the

magnitude of ∆F is sufficiently close to zero);

(2) the number of iterations exceeds some set maximum number (e.g., maxIters =

104, but this can be varied depending on the behaviour of the convergence with a

particular set of parameters).

The basic NNMA procedure is outlined in Figure 3.1.
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Basic NNMA procedure

(1) Estimate the number of components S.

(2) Initialize µN×S, tS×P with random, non-negative entries.

(3) While (iters < maxIters) and (∆F (µ, t) < −10−6) do:

(i) Update t→ t′ = t · µTD

µTµt + ε
;

(ii) Update µ→ µ′ = µ · Dt′T

µt′t′T + ε
;

(iii) Calculate F (µ′, t′).

Figure 3.1. The basic NNMA algorithm, using the multiplicative update rules
of Lee and Seung. In the updates, the symbol · denotes element-wise matrix
multiplication; division is also element-wise. A small ε ∼ 10−9 is added to the
denominator in the update rules to prevent division by zero.

3.4. Application of NNMA to spectromicroscopy

As discussed in Chapter 2, we measure the transmission intensity of the sample at each

pixel and for each energy, and convert this into a matrix of optical densities, D, for all pixels

and energies.

Each column in D represents the optical density spectrum at each pixel (or if viewed row-

wise, each row in D represents the optical density image at one particular energy). Each

column in µ contains the absorption spectrum of each component as a function of energy;

and each row in t represents the (flattened) image of one component (or, if viewed column-

wise, each column in t represents the components detected at each pixel). From an NNMA

perspective, the S components in the sample are the “hidden features” that we would like

to recover.
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In sections 3.4.2 and 3.4.3, we simulate two different datasets using available reference ab-

sorption spectra; we will describe the results of the basic NNMA procedure on these datasets,

and compare the reconstructed spectra with their respective references. In section 3.4.4, we

will do the same for XANES data from a human sperm cell. But first, we describe the

reference spectra used to simulate our datasets.

3.4.1. Reference spectra for the simulation of datasets

In our simulated datasets, we use a set of reference EXAFS spectra from different arsenic

(As) compounds1 in various mixtures to test whether NNMA could be used to decompose

the mixtures into the individual input components. For reference, the As K-edge is at 11.867

keV [49]. The As compounds we have chosen are As2O3 (arsenic trioxide), As2O5 (arsenic

pentoxide), As2S3 (arsenic trisulfide), and GaAs (gallium arsenide). Their EXAFS spectra

are shown in Figure 3.2, with measurement points at 320 different energies from 11.650 to

12.715 keV. The spectra are also shown superimposed on one another in Figure 3.3(a), while

a close-up highlighting the relative shifts in their absorption edges are shown in Figure 3.3(b).

Taking the point of inflection of the first sharp rise in each spectrum as the location of the

absorption edge, we see that there is an energy difference of only about 6 eV separating the

edges furthest apart from one another (between As2O3 and As2S3). It is thus important

to test whether NNMA would be able to identify the closely-spaced but distinguishable

absorption edges of the different spectra.

1The As compound spectra were provided by Matt Newville from GSECARS (GeoSoilEnviro Consortium
for Advanced Radiation Sources), and are also available from cars.uchicago.edu/~newville/ModelLib/

search.html.

cars.uchicago.edu/~newville/ModelLib/search.html
cars.uchicago.edu/~newville/ModelLib/search.html
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Absorption spectra of different As compounds

Figure 3.2. Reference arsenic (As) compound spectra used in simulating
datasets in Sections 3.4.2 and 3.4.3.
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(b) A close-up look at the relative shifts in their absorption edges. The edges occupy the very
narrow shaded rectangular region of the EXAFS spectra shown in the inset.

Figure 3.3. The reference As compound spectra used in simulating datasets
described in Sections 3.4.2 and 3.4.3.
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3.4.2. Simulated dataset: a two-wedge prism

We construct a hypothetical rectangular prism put together from two right-angled triangular

wedges, as shown in Figure 3.4. The blue wedge is composed of As2O3 (component 1), while

z

y

x

x-rays

Figure 3.4. A model of the two-wedge prism, composed of two different chem-
ical components in varying ratios (varying in the y direction as seen by the
x-rays), used as a simulated dataset to test NNMA. In this example, the mate-
rial in the blue wedge is composed of As2O3, while the red wedge is composed
of As2O5.

the red wedge is composed of As2O5 (component 2). The xy surface of the prism is 256× 64

pixels. (The absolute thickness in the z direction does not matter in this example as we

are only interested in the relative ratios of the two components at each pixel.) The prism

is constructed in such a way that when the x-ray beam is oriented along the z direction

and scanned across the x and y directions, it will “see” the ratio of the mixture of the

two components vary smoothly in the y direction, i.e., the weighting or thickness map of

each component will vary in a smooth gradient as a function of y. Each row of the optical

density matrix, D16384×320, then consists of one sweep of the x-rays at one energy across the
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xy surface of the prism. And at each pixel of the surface, the absorption spectrum will be

different along the y direction depending on the ratio of component 1 to component 2.

We take the As2O3 and As2O5 absorption spectra in Figure 3.2 and set them as the

two columns in our µ320×2 matrix, while each row of the t2×16384 matrix specifies the relative

thickness of each component across all the pixels on the surface of the prism (e.g., the entries

corresponding to the row of pixels on the prism halfway up in the y direction would be 0.5

for both components 1 and 2). Of course, we would not have the luxury of knowing µ and t

beforehand in a real experiment; but for the purpose of this simulation, we multiply these two

matrices to obtain our “experimental” optical density, D. The idea is to find out whether,

given only D, how well we can recover µ and t using the NNMA procedure described in

Section 3.3.

The reconstructed absorption spectra are shown in Figure 3.5, along with a close-up

of the absorption edge reconstruction in Figure 3.6. The NNMA parameters used for this

reconstruction are S = 2 and 10,000 iterations. Cluster analysis reconstructions are also

shown for comparison. The corresponding thickness maps are shown in Figure 3.7 and 3.8.

From the point of view of cluster analysis, each pixel on the surface of the prism is

assigned exclusively to one of two clusters (or components). However, as can be seen from

Figure 3.4, this is only true for the very top row of pixels where y is maximum (all pixels

there are seen by the x-rays as composed purely of component 1 in blue), and the very

bottom row of pixels where y = 0 (composed purely of component 2 in red). All of the

other pixels in between are composed of some mixture of components 1 and 2. Therefore,

when using cluster spectra to fit the observed pixel spectra in D, the error is largest in the

mid-y region where the prism is composed of exactly the same amount of component 1 as

component 2, as shown in the cluster error map in Figure 3.8(b).
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Figure 3.5. Comparison between reference, cluster, and NNMA reconstructed
spectra for the simulated two-wedge prism sample. Close-ups of the recon-
struction around the absorption edge regions are shown in Figure 3.6.
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Figure 3.6. Comparison of the region around the absorption edges between
reference, cluster, and NNMA reconstructed spectra for the simulated two-
wedge prism sample.
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(b) NNMA reconstructed thickness maps.

Figure 3.7. NNMA reconstruction of the thickness maps for the two compo-
nents in the simulated two-wedge prism sample, compared with the reference
thickness maps. In this case, µ1 corresponds to As2O3, while µ2 corresponds
to As2O5. We can also compare these to the thickness maps obtained from
cluster analysis shown in Figure 3.8.

For the simulated two-component prism sample, NNMA is able to more accurately re-

construct the edge regions of the absorption spectra compared with cluster analysis, along

with a better approximation of the thickness maps without any negative regions.

3.4.3. Simulated dataset: alphabetical letters

Next, we simulate a dataset consisting of four alphabetical letters (‘A’, ‘B’, ‘C’, and ‘D’)

using all four of the As compound EXAFS spectra from Section 3.4.1. The composition of



52

0 50 100 150 200 250
x

0
10
20
30
40
50
60

y

    

0 50 100 150 200 250
x

0
10
20
30
40
50
60

y

    
Cluster map for μ1 Cluster map for μ2

(a) Cluster analysis component maps for the two components in the simulated two-wedge prism
sample.
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(b) The cluster composition map for combining the two components from Figure 3.8(a) is shown
on the left, while the cluster analysis distance error map is shown on the right. The brighter the
region on the error map, the larger the error in using cluster spectra to fit pixel spectra. Because
cluster analysis assigns each pixel exclusively to just one cluster (component), the error is largest
halfway up in the y direction, where the material in the prism is comprised of both components
equally.

(c) While the cluster analysis component map is discrete (each pixel belongs to one and only one
cluster), we can use SVD to invert the cluster spectra in order to obtain a continuous thickness
maps via Eq. (2.6). As can be seen here, these thickness maps contain some negative (red) regions
towards the lower y values on the map corresponding to µ1, and higher y values on the map
corresponding to µ2.

Figure 3.8. For comparison with Figure 3.7, here are the cluster analysis com-
ponent maps (top); the combined component map and error map (middle);
and the thickness maps obtained from the singular value decomposition of
cluster spectra (bottom).
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the letters are ‘A’ → As2O3, ‘B’ → GaAs, ‘C’ → As2S3, and ‘D’ → As2O5. The letters have

been written into a 128× 128-pixel background with no absorption. Each column of µ320×4

contains one of the four As reference spectra, while each row (component) of t4×16384 contains

a 1 where a pixel belongs to the letter composed of that component, and 0 otherwise (e.g.,

the entries in the first row of t which correspond to the pixels of ‘A’ are set to 1, while the

rest of the entries are 0). We again multiply µ and t to obtain a simulated optical density

matrix D320×16384, on which we perform the NNMA procedure as before.

The NNMA parameters we used were S = 4 and 10,000 iterations. Figure 3.9 shows the

reconstructed spectra alongside their corresponding thickness maps.

We find that NNMA does not perform as well on the letters dataset as on the prism

sample: the structure of the reconstructed spectra differ from those of the reference; and

each of the thickness maps, instead of containing just a single letter (representing one of

the four original components), contains some combination of letters. This indicates that the

extracted components are made up of some linear combination of the reference components.

The simulated letters dataset differs from the two-wedge prism sample used in Section 3.4.2

mainly in the sparseness of t. For the prism, most of the pixels are composed of some

mixture of two components, and so most of the entries in the t matrix are non-zeros. On

the other hand, each of the letters is composed purely of just one component, on top of a

non-absorbing background, and so most (> 70%) of the entries in t should be zeros. If we

have prior information about the sparseness (or other properties) of the dataset, as in the

case with the letters example and also in many real experimental samples that we might be

interested in studying, then we could implement a strategy to introduce this characteristic

into the NNMA procedure, in order to obtain reconstructions that better model the data.

This scheme, called “regularizations”, will be discussed in Section 3.6.
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Figure 3.9. NNMA reconstructed spectra and thickness maps for the letters
dataset, with S = 4. There is no a priori determination of which letter will
correspond to which thickness map. Since each letter can be found in varying
amounts in all of the thickness maps, NNMA has not been successful here
in teasing out each feature (letter) and assigning it to a component. Rather,
each letter is represented as a mixture of all four components, which could
be possible in some cases, but which we know is not the case here since we
simulated each letter with just one component.
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3.4.4. Experimental dataset: human sperm cell

In both the two-wedge prism and letters examples discussed above, the datasets were sim-

ulated from a reference set of absorption spectra, and thus we have a set of true spectra

and thickness maps with which to compare our NNMA reconstructions. We now turn our

attention to an experimental spectromicroscopy dataset of a human sperm cell, taken with a

scanning transmission x-ray microscope (STXM) by H. Fleckenstein at beamline X1A of the

National Synchrotron Light Source [50]. The importance of studying the human sperm cell

will be discussed in Section 4.1; here, we focus on the application of NNMA to the dataset.

Since we do not have a set of reference spectra for an experimental dataset, the challenge

becomes whether we could gauge how “good” or “correct” our reconstructions are – if indeed

there is such a thing as a correct reconstruction. The goal is to be able to extract meaningful

features or components from the cell.

The optical densities of the sperm cell were experimentally measured and span 133 energy

points between 283.8 and 291.6 eV – the XANES region surrounding the carbon K-edge at

284.2 eV [49]. Each 2D image slice of the spectromicrospy stack is 114× 68 = 7752 pixels,

so that D has dimensions 133 × 7752. PCA and cluster analysis suggest that the number

of components S ∼ 5. Therefore, we applied the basic NNMA procedure outlined in Fig-

ure 3.1, with S = 5 and 10,000 iterations. The reconstructed spectra and their corresponding

thickness maps are shown in Figure 3.10. For comparison, the cluster analysis spectra and

thickness maps are shown in Figure 3.11.
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Figure 3.10. NNMA reconstructed absorption spectra and corresponding
thickness maps for the sperm dataset, with S = 5.
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(a) Reconstructions for components s = 1, 2, 3 are shown here, while s = 4, 5 are shown in the next
figure.
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(b) (Continued from Figure 3.10(a).) Reconstructions for components s = 4, 5.

There are several observations to be made from these results. First, the reconstructed

spectrum of the first component µ1 has a smaller signal than the others – its maximum is

less than half the magnitude compared to that of the next smallest component µ2. This

could indicate either a background component; or, as its corresponding thickness map sug-

gests, an overall distribution of carbon mass in the sperm cell. Second, the reconstructed

spectra are not very smooth; there are some sharp spikes and dips as well as other small

but rapid fluctuations that remain even when the algorithm was run over a larger number of

iterations, and that are not characteristic of absorption spectra. Experimentally measured

spectra do contain fluctuations from detector and other instrument noise, but also involves a

monochromator response function that serves to blur the signal and contribute to smoothing
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Figure 3.11. As a comparison to the NNMA reconstructed spectra and thick-
ness maps for the sperm dataset shown in Figure 3.10, here are the spectra
and component maps generated from cluster analysis with S = 5. Each pixel
in the image is assigned exclusively to one component spectrum. A composite
image showing all of the components is shown at the bottom.
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– i.e., if the monochromator has an energy resolution of 0.1 eV or better (as is the case with

the STXM used in this experiment), then by sampling at energy intervals finer than this

resolution, we would expect a smooth spectral response. Third, the thickness maps do not

appear to be very well-differentiated – e.g., there are areas in t2 and t3 that overlap, as also

in t4 and t5.

The first issue involves the problem of choosing an appropriate estimate for S, the number

of spectral components, which we will investigate in the next section. The second and

third issues will be addressed with the addition of regularization terms, to be discussed in

Section 3.6.

3.5. Choosing the number of spectral components

As mentioned in the previous section, performing the NNMA procedure with S = 5 on

the sperm dataset produces one component that appears weaker than the others. If we

had chosen S = 4 instead, then we would obtain the spectra and thickness maps shown in

Figure 3.12. It appears that the s = 1 and 3 components from Figure 3.10(a) have merged

to yield the new s = 3 component.

To get a more quantitative sense of how the quality of the NNMA reconstructions depends

on S, we could look at how the cost function F varies as a function of S, since F is a measure

of how closely the reconstructed optical density matrix D matches that from experiment. For

the sperm dataset, we set S between 2 and 9, and applied the NNMA procedure as before.

The plot of F versus S is shown in Figure 3.13. There is a large (55%) decrease in the cost

function from S = 2 to 3, and a smaller but still significant (31%) decrease from S = 3 to 4.

From S = 4 to 5, the decrease is only 6%, and continues to get smaller with increasing S. Of

course, we expect the cost function to decrease as S increases. In fact, in the limit S → P ,
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Figure 3.12. NMNA reconstructed absorption spectra and corresponding
thickness maps for the sperm dataset, with S = 4. Comparing this to Fig-
ure 3.10(a) where S = 5 was used, it appears that the s = 1 and 3 components
from that figure have merged to yield the s = 3 component in this figure.
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we would expect a near-perfect match between reconstruction and data (F → 0), since we

could simply assign each pixel its own component. However, this would overfit the data and

does not tell us anything useful. The purpose of using NNMA (as well as PCA and cluster

analysis) is to perform dimensionality reduction in order to identify meaningful features in

the data. From this cost function analysis, we estimate the number of components to be 4 or

5, consistent with the number suggested by PCA. There is no definitive method to decide the

exact number for S, and we do not have the true set of spectra in an experiment. Another

interesting method for estimating S, which we have not used in this work, involves a measure

based on the cophenetic correlation coefficient ρS [36]. It evaluates the stability of assigning

pixels to S clusters over several runs. As the clustering becomes more stable (pixels do not

change clusters between different runs), ρS becomes smaller. S is chosen where ρS begins to

decrease significantly.
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Figure 3.13. Cost function F versus number of components S for the sperm
dataset. There is a large decrease in the cost function from S = 2 to 3, and
a smaller but still significant decrease from S = 3 to 4. However, from S = 4
onwards, the decreases become less significant, and we estimate S to be 4 or
5. We would then perform NNMA at these two different values and see how
the results change.
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3.6. Addition of regularizations

The basic NNMA procedure works relatively quickly and is able to find a consistent

minimization (at least locally) for the cost function F . While the results for the simulated

artificial dataset are good, the reconstructed absorption spectra for the sperm dataset are not

what we would expect from realistic physical spectra. This is because the NNMA algorithm

has no underlying expectation of what the reconstructed results should look like: from the

NNMA perspective, it does not matter if the spectra are not smooth, or if the thickness maps

contain many components that overlap one another spatially – as long as F is minimized.

However, our goal is to be able to separate the components within the sample as cleanly

as possible, while generating realistic, smooth absorption spectra. In addition, NNMA does

not guarantee a unique solution to the factorization problem: given a solution pair (µ, t)

which minimizes Eq. (3.2), it is possible to find an invertible matrix XS×S such that we could

achieve the same minimization with the solution pair (µX, X−1t).

To solve these problems, we can add regularizations to the cost function in Eq. (3.2) to

incorporate any prior information that we might have about the data, or certain character-

istics that we might expect from the results. The addition of regularization terms modifies

the cost function to be minimized, so that it becomes:

F (µ, t) =
1

2
||D− µt||22 + λ1J1(µ, t) + ... + λnJn(µ, t), (3.9)

where n is the number of regularization schemes we wish to incorporate; Ji is the regularizer

that is a function of µ and/or t; and λi > 0 is its corresponding continuous regularization

parameter.
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While hard constraints strictly exclude infeasible solutions, regularizations are softer and

allow for adjustments – by tuning λ – on how much penalty we want to assign when the

reconstruction does not fit the model well. Essentially, λ represents a trade-off between

finding reconstruction solutions that minimize the errors in data matching (that is, the basic

cost function in Eq. (3.2)), and solutions that fit our expected model. If each λi is small

compared to one, then most of the weight falls onto the first term of Eq. (3.9), and it pays

to minimize the error in data matching at the cost of not following the data model. As

λi increases, then more weight falls onto the ith regularization term, and so we place more

emphasis on extracting desired characteristics of the data model at the cost of larger errors

in data matching. Regularizations also serve to narrow the search space for solutions to the

minimization problem, and thus reduce the non-uniqueness of the solutions.

3.6.1. Sparseness regularization

One of the characteristics we look for in the thickness maps is features consisting of well-

separated components. To aid in this objective, we make two observations. First, many

biological specimens contain distinct, localized regions or structures (such as the nucleus,

mitochondria, etc.) with unique absorption signatures. Since these structures are localized,

they appear in only a small (relative to the total) number of pixels. Second, each type of

structure is composed of components that are distinct from those of other types (since the

combination is what gives each type its unique “chemical fingerprint” – it is what distin-

guishes a nucleus from a cell wall, for example), and so their absorption signatures should

typically be a combination of only a few components.

The upshot of these observations is that we would expect the t matrix to be sparse: if

each component is concentrated only within a small region or number of pixels (structure



65

localization), then we can expect each row of t (representing each component) to contain

mostly zeros – that is, t is row-sparse. In addition, if each pixel contains only a very small

number of pure components (components in identified structures should be as unmixed as

possible), then we can expect each column of t to contain more zeros than not – that is, t is

column-sparse.

The sparseness of t is thus related to the degree of mixing between different components

in the sample: the more sparse t is – that is, the more zero or near-zero entries t contains

– the greater the degree of spectral separation in µ, which is what we seek. Consider the

extreme case of a solution for t in which, for each of the P columns, at most one of the S

entries is non-zero. This would mean that the sample has a single distinct spectrum at each

pixel in the measured data (or just background signal in the case of an all-zeros column),

with no spectral mixing, giving a very sparse solution for t. Such a highly sparse solution

exactly like the one just described would be highly unlikely in x-ray spectromicroscopy data

of anything other than a completely phase-segregated sample, yet it is still desirable to

seek solutions with some degree of sparseness in t, since they offer simpler and often more

insightful interpretations of the data.

Sparseness regularizations and constraints have proven useful in a variety of applications,

including text mining [51, 52], compressed sensing in signal processing [53, 54], the study

of neural networks [55], and gene expression in bioinformatics [56].

Since the sparsest solution for t means that it should contain as many zero entries as

possible, this would be achieved by minimizing its “`0 norm” 1, ||t||0, which counts the

1The `0 norm is not technically a norm, since it does not satisfy the scaling property of a true norm – i.e.,
||αt||0 6= α||t||0.
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number of non-zero entries in t:

||t||0= #{(i, j) | tij 6= 0} (3.10)

However, the minimization of the `0 norm is computationally expensive to solve (see Appen-

dix A.2). As an approximation to the `0 norm, one popular way to achieve sparse solutions

is to regularize ||t||1, the `1 norm of t, also known as the lasso technique [57, 58] (also see

Appendix A.3). The addition to the basic cost function in Eq. (3.2) is then:

(3.11)

λtJt(t) = λt||t||1

= λt

P∑
p=1

S∑
k=1

tkp

where each element tkp ≥ 0 by constraint. The sparseness regularization parameter λt can

be tuned according to prior information we might have about the chemical structure of the

sample. The addition to the update rule for t is:

λt
∂Jt(t)

∂t
= λt onesS×P (3.12)

(where onesS×P is an S × P matrix with all entries equal to one), so that the t update rule

in Eq. (3.7) becomes modified to

t← t

(
µTD

)
(µTµt + λt)

. (3.13)

There are some limitations associated with the lasso. For example, when S > P , at

most P components or features can be selected before saturation [59]. Although this is not

usually the case in spectromicroscopy datasets (where the number of pixels is much greater

than the number of components, or S � P ), this problem commonly arises in applications
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such as microarray data analysis, where there can be many thousands of genes expressed in

fewer than 100 samples. In these cases, other sparseness regularization schemes have been

proposed [60].

Sparseness regularization on the letters dataset. We apply NNMA with this new

update to the letters dataset, setting λt = 0.8. From Figure 3.14, we can see from the

thickness maps that sparseness regularization does yield a sparser t (compared to Figure 3.9)

– most of the pixels in the image are identified with just one of the four components. The only

exceptions are those pixels associated with the letter ‘B’, which contain a mixture of mainly

µ2 with some contribution from µ3. The reconstructed spectra are similar to the reference

spectra in Figure 3.2, again with the exception of µ2. For comparison, Figure 3.15 show

NNMA reconstructions with the same parameters, except this time with λt = 0.1. Since

a lower penalty is being placed on the sparseness regularization term, more of the features

(letters) begin to contain mixtures of two or more components. On the other end of the

scale, placing too high of a penalty on the sparseness regularization term can also drastically

affect the quality of the reconstructions, as shown in Figure 3.16. A large λt can dominate

the denominator in the t update rule in Eq. (3.13), and if it is also large compared to the

numerator µTD, the t would not change much between iterations. Indeed, for λt = 2.5, we

find that ∆F < −10−7 after fewer than 50 iterations and the algorithm is stopped.

A more systematic investigation on how we might use the behavior of the cost function

F as a function of λt to choose appropriate regularization parameter values will be presented

in Section 3.6.3.

We are not sure why the component associated with ‘B’ seems to be more difficult to

reconstruct correctly; it might have something to do with the fact that the original µ2 used
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Figure 3.14. NNMA reconstructed spectra and thickness maps for the letters
dataset, with sparseness regularization. Parameters are λt = 0.8, S = 4, and
number of iterations = 1000. The thickness maps show that t has been made
very sparse, with most of the pixels assigned to just one component. The only
exceptions are those associated with the letter ‘B’, which appear to contain
mostly µ2 with some mixture of µ3. All of the spectra are comparable to the
reference spectra, again with the exception of µ2. We will address this problem
in Section 3.6.2.
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Figure 3.15. NNMA reconstructed spectra and thickness maps with the same
set of parameters as for Figure 3.14, except λt = 0.1. Since a lower penalty
is being placed on the sparseness regularization term, the thickness maps ac-
cordingly show more mixtures than those with a higher penalty imposed. We
observe again that the reconstructed spectrum for ‘B’ deviates the most from
the reference.
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Figure 3.16. Setting the sparseness regularization parameter λt too high can
drastically reduce the quality of the reconstructions. Here, we have set λt = 2.5
while keeping the other parameters the same as for Figures 3.14 and 3.15.
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to simulate ‘B’ (the GaAs spectrum in Figure 3.2) has a smaller absorption resonance signal

than the other three spectra, thus making its optical density weaker in the simulated data.

(Strangely, its reconstructed spectrum happens to have the largest resonance magnitude.)

The problem of obtaining better spectra reconstructions from NNMA will be discussed in

the next section.

Sparseness regularization on the sperm dataset. We also apply NNMA with sparse-

ness regularization to the sperm dataset. Figure 3.17 (with λt = 0.2) show improved feature

selection in the thickness maps compared to Figure 3.10 (no regularization). Again, spectra

improvement will be discussed in the next section. As was seen in the letters dataset, setting

too high a penalty for sparseness can lead to worse feature selection (Figure 3.18) if the

sparseness of the data does not match.
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Figure 3.17. NNMA spectra and thickness maps reconstructions for the sperm
dataset, with sparseness regularization. Parameters are λt = 0.2, S = 5, num-
ber of iterations = 10,000.
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(a) Reconstructions for components s = 1, 2, 3 are shown here, while s = 4, 5 are shown in the next
figure.
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(b) (Continued from Figure 3.17(a).) Reconstructions for components s = 4, 5.
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Figure 3.18. Not all data are modelled well by high sparseness. Setting too
high a penalty for sparseness can lead to bad feature selection (here, λt = 5.0,
with other parameters being the same as those used in Figure 3.17.).
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(a) Reconstructions for components s = 1, 2, 3 are shown here, while s = 4, 5 are shown in the next
figure.
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(b) (Continued from Figure 3.18(a).) Reconstructions for components s = 4, 5.

3.6.2. Spectra similarity regularization

We saw in Sections 3.4.3 and 3.4.4 that NNMA on its own does not always yield a set of

smooth absorption spectra µ. On the other hand, we saw in Section 2.3 that cluster analysis

could produce a relatively good set of absorption spectra µcluster, even though there might

be negative values in the corresponding thickness maps. One idea then is to combine the

advantages of each approach in the hope that this will lead to an improved set of spectra.

We could do this by trying to make the NNMA spectra similar to those from cluster analysis.

To achieve this, we minimize the `2 norm of the difference between the two sets of spectra
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by introducing a “spectra similarity” regularization term to the cost function F , given by

λµsim
Jµsim

(µ) = λµsim
||µ− µcluster||22 (3.14)

= λµsim

S∑
k=1

N∑
n=1

(µn,k − µclustern,k)
2, (3.15)

where Jµsim
is the spectra similarity regularizer, and λµsim

is the regularization parameter

for tuning how similar we desire the two sets of spectra to be (the higher λµsim
is, the more

similar they will be, at the cost of worse data matching).

The addition to the update rule for µ is

λµsim

∂Jµsim
(µ)

∂µ
= λµsim

2(µ− µcluster), (3.16)

so that the µ update rule in Eq. (3.8) becomes modified to

µ← µ

(
DtT

)(
µttT + 2λµsim

(µ− µcluster)
) . (3.17)

Spectra similarity regularization on the letters dataset. We apply NNMA with this

new update rule to the letters dataset, setting λµsim
= 10.0 and λt = 0 (without sparseness

regularization). The resulting NNMA spectra and thickness maps are shown in Figure 3.19,

from which we can see that the spectra are improved from those in Figures 3.9 and 3.14, in

that they more closely resemble the reference spectra. We also observe from the thickness

maps that each letter is associated mainly with just one component (very little mixtures),

and thus that the reconstructed t is sparse, even though we did not regularize sparseness in

this case.
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Figure 3.19. NNMA reconstructed spectra and thickness maps for the let-
ters dataset, with cluster spectra similarity regularization. Parameters are
λµsim

= 10.0, λt = 0, and S = 4, and number of iterations = 1000. The spec-
tra are more similar to the reference (and cluster) spectra compared to those
in Figures 3.9 and 3.14. Although we did not regularize sparseness, it can be
seen from the thickness maps that t is mostly sparse – each pixel contains just
one predominant component (though there are still some small mixtures in,
for example, the pixels of letter ‘B’, which appear in faint amounts in all of
the maps in addition to t1). As discussed in the text, this is not surprising
since cluster analysis inherently selects for maximum sparseness.
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This is not surprising, because – in a way – clustering can be thought of as an extreme

example of NNMA with maximum sparseness: in cluster analysis, each pixel is assigned

exclusively to one cluster – a “winner-takes-all” approach. When coaxing the NNMA spectra

to be similar to cluster spectra (by increasing λµsim
), we would expect the NNMA thickness

maps to begin to resemble cluster component maps, as is the case in Figure 3.19.

In NNMA, the sparseness regularization parameter λt can be tuned to control how many

clusters a particular pixel can belong to simultaneously (the data could be highly sparse as

in the letters dataset; or every pixel could be a mixture of components, as in the two-wedge

prism dataset). A very large value of λt (very high sparseness) would try to force each pixel

to belong to only one cluster; a lower value of λt allows for more overlap between clusters,

so that each pixel would be more likely to contain more than one component.

Spectra similarity regularization on the sperm dataset. For the sperm dataset,

NNMA reconstructions with spectra similarity (but without sparseness) regularization are

shown in Figure 3.20, with λµsim
= 5.0. The reconstructed spectra are improved from those

without any regularizations (Figure 3.10) and those with only sparseness regularization (Fig-

ure 3.17). As expected, the component maps highlight features that are similar to the cluster

components (the higher λµsim
is, the more similar they will be).
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Figure 3.20. NNMA reconstructions of the sperm dataset, with cluster spectra
similarity but no sparseness regularization. Parameters are λµsim

= 5.0, λt = 0,
S = 5, number of iterations = 10,000. The features identified are comparable
to the ones from cluster analysis (Figure 3.11), as expected.
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(a) Reconstructed components s = 1, 2, 3 are shown here, while s = 4, 5 are shown in the next figure.
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(b) (Continued from Figure 3.20(a).) Reconstructed components s = 4, 5.

3.6.3. Combining regularizations

We have seen in Section 3.6.1 that sparseness regularization can provide good feature se-

lection or well-differentiated thickness maps in NNMA reconstructions, but may not yield

good spectra, while Section 3.6.2 shows that cluster spectra similarity regularization can

provide more realistic spectra with some inevitable sparseness built in (since clustering is

a maximum sparseness feature selection method). Of course, not all datasets are described

well by a sparse model. Suppose that we would like to keep cluster spectra similarity, while
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maintaining control over the sparseness of the model. We could combine the two regular-

izations by simply adding them to the cost function simultaneously 2. During the iterative

updates, we would just update µ and t according to their respective update rules.

We note that the basic multiplicative updates of Eqs. (3.7) and (3.8) yield non-increasing

cost functions, since they are derived by taking steps in the direction of the steepest negative

gradient with respect to the cost function F . Also, since

[
µTD− µTµt

]
ij
> 0 (3.18)[

DtT − µttT
]
ij
> 0 (3.19)

(from Eqs. (3.3) and (3.4)), then if we initialize with positive t and µ, we have

tk+1
ij = tkij

[
µTD

µTµt

]
ij

> 0 (3.20)

µk+1
ij = µkij

[
DtT

µttT

]
ij

> 0 (3.21)

for the (k + 1)th update. With the modified update of t with sparseness regularization in

Eq. (3.13), tk+1
ij > 0 remains true since λt > 0. However, the same may not hold true

with the modified update of µ with spectra similarity regularization in Eq. (3.17) – because

(µ − µcluster) can contain negative values, µk+1
ij can become negative. We could set any

negative values in µ to zero after each update, but the problem with this is that once a

value has been set to zero, it stays zero according to the multiplicative update rules, and

the algorithm becomes pinned to a possibly non-stationary point. Instead, we set negative

values to some small, positive value: e.g., 10−5.

2Because cluster analysis automatically makes the reconstruction sparse (each pixel is assigned to one and
only one cluster), it follows that cluster spectra similarity regularization is not independent of sparseness.
This issue will be discussed in Section 4.3.
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NNMA with sparseness and cluster spectra similarity regularizations

(1) Estimate the number of components S.

(2) Initialize µN×S, tS×P with random, non-negative entries.

(3) While (iters < maxIters) and
((∆F (µ, t) < −10−6) or (0 < ∆F (µ, t) < 10−3)) do:

(i) Update t : t′ ← t · µTD

µTµt + λt + ε
;

(ii) Set zero entries in t′ to 10−5;

(iii) Update µ : µ′ ← µ · Dt′T

µt′t′T + 2λµsim
(µ− µcluster) + ε

;

(iv) Set zero entries in µ′ to 10−5;

(v) For each k ∈ {1 . . . S}, normalize µ′k by
∫
µcluster,k(E) dE;

(vi) Calculate F (µ′, t′).

Figure 3.21. The NNMA algorithm with modified update rules to include
sparseness and cluster spectra similarity regularizations. In the updates, the
symbol · denotes element-wise matrix multiplication; division is also element-
wise. A small ε ∼ 10−9 is added to the denominator in the update rules to
prevent division by zero. Note that the cost function F is not guaranteed to be
non-increasing under the modified update rules, as discussed in Section 3.6.3.
In one of the stopping conditions, we extend the interval for ∆F into slightly
positive territory to take into account that the cost function could now become
slightly positive.

The procedure for NNMA with both sparseness and spectra similarity regularizations is

summarized in Figure 3.21.
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Combining the two regularizations, the form of the cost function F to be minimized

becomes

F (µ, t) =
1

2
||D− µt||22 + λµsim

||µ− µcluster||22 + λt||t||1, (3.22)

and we have to minimize F over a two-dimensional parameter space, (λµsim
, λt). We perform

systematic calculations of F with different sets of (λµsim
, λt) ranging over 11 orders of

magnitude. We chose such a large range because we do not have any initial idea about the

scale and relative trade-off or “exchange rate” between λµsim
and λt; that is, λt = 5.0 could

impose a high degree of sparseness for a given dataset, while λµsim
= 5.0 might correspond

to only a moderate match between cluster and NNMA spectra. For the sperm sample, the

surface plot of the total cost F over this parameter space from (10−10, 10−10) to (10, 10) is

shown in Figure 3.22. (The cost function at each parameter pair is taken as the average

of 5 runs.) In addition, we can examine the individual contribution from each term in

Eq. (3.22): the cost contribution from the data-matching term alone is shown in Figure 3.23,

while those from each of the two regularization terms are shown in Figures 3.24 and 3.25.

From these parameter plots, we can see that the costs for sparseness and cluster spectra

similarity decrease as their respective regularization parameters increase (since we are placing

a higher penalty on non-sparse reconstructions or non-similarity to cluster spectra), at the

expense of a higher data-matching cost. Although we have not thoroughly studied the

relationship between the shape of the parameter plots and the “goodness” of the spectra

and thickness reconstructions (which may itself require some objective measure), we find in

general that reconstructions are better with parameters within the region where the cost

function just begins to increase significantly (Figure 3.22(b)). This corresponds roughly to

−1 < log(λt) < 0 and −1 < log(λµsim
) < 1.
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Figure 3.22. Minimized total cost F for the sperm sample, as a function of the
two regularization parameters, λt and λµsim

.

(a) For the most part, F is lowest for small parameters. This is expected since only the data-
matching term is of significant contribution to F in Eq. (3.22). As the parameters increase beyond
∼ 10−2, F also begins to increase noticeably, due to increasing penalty being imposed by the
regularization terms. A close-up of the region where F just begins to increase is shown in the next
figure.
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(b) A close-up of the “corner” region in Figure 3.22(a), defined by λt and λµsim
where the total

cost function F just begins to increase.
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Figure 3.23. Contribution to F from the data-matching term in Eq. (3.22) for
the sperm sample, as a function of the two regularization parameters, λt and
λµsim

.

(a) Contribution to F from the data-matching term in Eq. (3.22) for the sperm sample. A close-up
of the region where the cost to data-matching just begins to increase is shown in the next figure.
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(b) (Continued from Figure 3.23(a).) A close-up of the “corner” region defined by λt and λµsim

where the data-matching cost just begins to increase.
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Figure 3.24. Contribution to F from the sparseness regularization term for
the sperm sample, as a function of both λt and λµsim

. More calculations
were done with λt between 0.1 and 1 (or −1 < log(λt) < 0) where the cost
begins to rise significantly, hence the denser mesh in that interval. The sparse-
ness cost is smaller as λt increases (since we are penalizing more heavily for
non-sparseness), but at the expense of a higher cost to data-matching (Fig-
ure 3.23(b)).
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Figure 3.25. Contribution to F from the spectra similarity regularization term
for the sperm sample, as a function of both λt and λµsim

. Similar to the
sparseness cost, the cost to matching NNMA reconstructed spectra to cluster
spectra becomes smaller as λµsim

increases, at the expense of a higher data-
matching cost (Figure 3.23(b)).
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3.6.4. Other types of regularization

Apart from the sparseness and cluster spectra similarity regularizations discussed above,

there are other regularization schemes we could implement to better model the outcome

based on knowledge we have about the data, including smoothness, continuity, closure,

unimodality, orthogonality, or local rank-selectivity [61]. Below, we will briefly discuss two

more regularizations relevant to spectromicroscopy; but for reasons due to time constraint

or difficulty encountered during implementation, we did not fully test these out.

Smoothness regularization. Absorption spectra, represented by the columns of µ, are

smooth functions of energy. This is not very well-reflected in the reconstructed spectra from

the basic NNMA procedure on the sperm dataset, as we saw in Figure 3.10. Although

the experimental data always contains noise from detectors and other instruments which

contributes to fluctuations (non-smoothness), there is also an overall smoothing effect due to

the monochromator response if we sample at energy intervals finer than the energy resolution.

One way to introduce smoothness into µ is to add ||µ||22, the square of the `2 norm of µ,

as a regularization to the cost function [44, 62]. However, in order to have more control

over the smoothing of each column in µ, and to take into account that the region around an

absorption edge may not be smooth, we instead tried to regularize the second derivative of

each column of µ. This should still have the effect of keeping fluctuations small, while also

having the advantage of taking non-uniform energy step sizes into account. An explicit form

for the smoothness regularizer is derived in Appendix C, but we have not yet been able to

integrate it into our regularized NNMA scheme because the formula as it stands appears to

increase (rather than decrease, as desired) the cost function as soon as the algorithm begins.
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Stochasticity regularization. The thickness maps as they stand do not (yet) relate di-

rectly to the physical thicknesses in the sample – for example, it is possible for a thin but

copper-rich specimen to exhibit the same absorption around the copper absorption edge as

a thicker specimen containing less copper. Thus, to translate the entries in t into actual

thicknesses, we must first measure the absorption far away from the edge, and use this value

as a scaling reference when converting into physical thickness.

From a different point of view, the weightings in t might also be interpreted as proba-

bilities or ratios. From Figure 2.3, we saw that for a given pixel p, its spectral composition

is made up of a linear combination of spectra weighted by the corresponding thickness map

weightings in the column tp. If we assume that the S spectral components form a complete

set to describe the sample composition, and that the ratios of all components sum to one,

then we might interpret the tsp as either the probability of component s being found in

pixel p, or the fraction of pixel p that contains component s. In these interpretations, we

would want to constrain each column of t to sum to one (in other words, making t column

stochastic). However, we would also like to leave room for the possibility that our estimate

for S may not be exact, so we don’t want to place a hard constraint on t. In this instance,

we could make use of a “stochasticity regularizer”, Jtst(t), to be added to the cost function

[44], given by

λtstJtst(t) = λtst||tTe1 − e2||22, (3.23)

where λtst is the regularization parameter, and e1, e2 are column vectors of ones in RS and

RP respectively. Jtst simply measures the deviation of the sum in each column of t from

one – the bigger the deviation, the higher the penalty in the cost function. As usual, the

addition to the t update rule is the derivative with respect to t, where element kp of the
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derivative is given by:

λtst

[
∂Jtst
∂t

]
kp

= 2λtst

(
S∑
s=1

tsp − 1

)
(3.24)

As expected, this update rule depends only on the column p in t, and not the row k.
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CHAPTER 4

Discussion and future directions

4.1. Study of the human sperm cell

In Chapter 3, we considered the application of x-ray spectromicroscopy and NNMA to

the study of the XANES spectra and thickness maps of the human sperm cell. Sperm are

compact cells with tightly-packed and well-segregated materials in their head, and a long

flagellum which allows them to move through fluid (Figure 4.1). Their density and total

thickness makes them difficult to study in electron microscopy without sectioning, and their

small size means that the sub-50 nm spatial resolution of x-ray spectromicroscopy is helpful

for seeing compositional details.

2 
- 4

 μ
m

~ 50 μm4 - 5 μm

Flagellum

Acrosomal
cap Posterior

ring
Nucleus

Mitochondria sheath 
and midpiece

Figure 4.1. Diagram of a human spermatozoa. The enzymes involved in pen-
etrating the egg are in the acrosomal cap, while the nucleus contains the DNA
tightly packed with histone proteins. The flagellar motor is within the poste-
rior ring.
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One in four couples experience difficulties in conceiving [63] with a male factor contribut-

ing in more than 50% of these cases [64]. The andrological assessment of male infertility

relies mostly on conventional criteria of sperm quality like concentration, motility and mor-

phology. While threshold values of these metrics can be used to classify men as subfertile,

of indeterminate fertility or fertile, none of the measures are reliable diagnostics of infertil-

ity [65]. This indicates that the sperm of infertile men may have hidden abnormalities in

the composition of their nuclei. DNA damage above a certain threshold appears to impair

fertilization and embryo development [66, 67], but little is known about the etiologies of

sperm DNA damage and its full impact on human reproduction. Light microscopy does not

deliver valuable information on sperm DNA or chromatin abnormalities, while bulk chemical

measurements average over many morphologies and are not sensitive to individual sperma-

tozoa. Flow cytometry can correlate sperm morphology with total DNA content [68], but it

is still useful to visualize overall biochemical organization at higher resolution and without

using a single biochemical marker. X-ray spectromicroscopy insights into the correlation

between sperm morphology and abnormal DNA or protein distributions could lead one to

better understand the basis for light microscopy selection of one abnormality over another

for in vitro fertilization in cases where no sperm are present with normal morphology.

Several investigators have carried out high resolution x-ray microscopy studies of sperm

[69, 70, 71, 72]. Zhang et al. have used carbon near-edge x-ray absorption spectromi-

croscopy for compositional mapping of hamster, rat, and bull sperm [19]. They acquired

spectra of thin film standards of proteins protamine 1 and 2, and of calf thymus deoxyri-

bonucleic acid (DNA); a species-weighted ratio of the protamine spectra was used along with

the DNA spectrum to form a two-spectrum matrix µ which was then inverted using singular

value decomposition to yield thickness maps (Eq. 2.6) and estimate protein-to-DNA ratios.
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While proteins and DNA make up the majority of content by mass in sperm, we have

used NNMA analysis on carbon near-edge x-ray spectromicroscopy data to image the major

biochemical organization of human spermatozoa without assuming a composition given by

selected thin-film standards. We have used both cluster analysis [24] and NNMA to analyze

the same dataset.

Using the cluster spectra as targets, we can use Eq. (2.6) to calculate the thickness maps

for each of the components. These maps and cluster spectra are shown in comparison to

results by NNMA analysis in Figure 4.2. We can readily identify the components found

by NNMA as the lipid membrane and flagellum (t2), the acrosomal cap (t3), the nucleus

(t4) containing DNA with tightly-packed histone proteins, while t1 appears to highlight the

posterior ring in which the flagellar motor resides.

The areas of negative thickness (red) in the cluster maps indicate that the cluster spectra

do not perfectly represent all chemical signatures in the sample. However, as demonstrated

in Section 3.6.2, it is possible to use the cluster spectra in a spectra similarity regularization

term in NNMA in order to produce a more realistic set of reconstructed spectra and non-

negative thickness maps.

4.2. A note about the run-time of NNMA

As described in Section 3.6.3, we run the NNMA algorithm for a set number of iterations

(∼ 104), or until the change in the cost function ∆F is below some threshold (∼ 10−6).

NNMA runs most quickly without regularizations, and an average run with 104 iterations

typically takes on the order of 10 minutes on a laptop computer with a 2.66 GHz dual-core

Intel i7 processor. Depending on the chosen regularization parameters, the same number of

runs could take about 2 to 3 times longer. For very sub-optimal parameters, ∆F can start
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Figure 4.2. Comparison of cluster and NNMA analysis of the sperm dataset,
showing their respective reconstructions of absorption spectra and correspond-
ing thickness maps. The cluster spectra are shown in black and its correspond-
ing thickness maps are shown in the middle column, while the NNMA spectra
are shown in blue with corresponding maps in the rightmost column. The
regularization parameters used are λt = 0.5 and λµsim

= 10.
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increasing quickly, preventing the algorithm from iterating more than a few times before

stopping. In general, the run-times of our NNMA implementation is an improvement over

those reported which are on the order of days for previous NNMA algorithms tested on

similarly sized spectromicroscopy datasets [50].

4.3. Limitations of regularized NNMA in its current form

We have shown that regularized NNMA provides an improvement in the reconstruction

of interpretable spectra and thickness maps. We first applied NNMA with the basic mul-

tiplicative update rules provided by Lee and Seung [48], and found that because of the

non-uniqueness of the factorized solutions, the reconstructions of the absorption spectra µ

and thickness maps t are not well-defined. We then added sparseness and cluster spectra

similarity regularization terms to the cost function, leveraging prior knowledge about the

data to build a model for producing more realistic spectra and maps.

The sparseness regularization ||t||1 alone was able to give well-differentiated thickness

maps with better feature selection, but the spectral reconstructions still left something to

be desired (smoothness). To remedy this, we took the set of spectra from cluster analysis

and used it as a basis for comparison with NNMA reconstructions via a spectra similarity

regularization term ||µ−µcluster||22 in the cost function, imposing a higher penalty for larger

deviations. This helped to add smoothness to the NNMA spectra.

However, while cluster analysis does appear to provide a good basis set with which to

compare NNMA spectra, there is a sense that this is somewhat of a “shortcut”. Because

cluster analysis by default provides maximum sparseness by assigning each pixel in an image

exclusively to one component (which is great from a feature selection point of view), it is

rather inflexible and can lead to inaccurate results in pixels which contain a mixture of two or
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more components. In addition, the thickness maps obtained from the inverse SVD of cluster

spectra contain non-physical negative regions, which in turn indicates corrections to be made

to the spectra. Thus we run the risk that too much emphasis on a close spectral match

can detract NNMA from finding a better solution. In addition, cluster analysis inherently

selects features with maximum sparseness, since each pixel is assigned exclusively to one

component. This could counteract or at least interfere with the sparseness that we specify

via the sparseness regularization parameter λt. Recall that the reason we included this

similarity regularization in the first place was because NNMA often produced non-smoothly

varying absorption spectra, without or with sparseness regularization. Since cluster analysis

spectra are generally smooth functions with respect to energy, we were able to confer some

smoothness to the NNMA spectra by applying a similarity regularization. However, it would

be even better if we were able to achieve smoothness directly via a smoothness regularization.

There are different ways to regularize smoothness: ||µ||2 to minimize fluctuations; but

this can suppress resonances or even absorption edges which contain important information

for chemical identification. We could also minimize the first derivative of each column of µ,

which takes neighbouring points into account and tries to minimize large deviations from one

energy point to the next. But the absorption edge might again be suppressed, since we take

the value E0 to be at the point of inflection along the edge, and the first derivative at the

point E0 is not necessarily zero. Naturally then, a third option for smoothness regularization

would be to minimize the second derivative of each column of µ. This would not suppress

resonance peaks or absorption edges, and has the added advantage that since the numerical

calculation of the second derivative is a 5-point difference algorithm, smoothing around a

given µij does not just take into account its nearest neighbours (µi−1,j and µi+1,j), but also

its next nearest neighbours (µi−2,j and µi+2,j), thus allowing for more accurate smoothing.
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4.4. The bionanoprobe: x-ray fluorescence imaging with spectroscopy

At the end of Chapter 1, we briefly mentioned that high-brilliance synchrotron x-rays

that could be tuned over a wide range of energy are capable of collecting rich absorption

spectra over millions of pixels in a reasonable amount of time. In addition, if we could

collect fluorescence signals from the same sample and perhaps even rotate the sample and

repeat measurements at different tomographic projections, this would allow us to have a more

comprehensive understanding of the elemental and chemical make-up of the material under

study. One such instrument capable of performing these tasks is a recently-commissioned

scanning x-ray bionanoprobe located at the Advanced Photon Source at Argonne National

Laboratory, equipped with fluorescence and transmission detectors for the high-resolution

imaging of frozen-hydrated biological specimens at cryogenic temperatures. The segmented

transmission detector also allows differential phase contrast imaging by looking at the rel-

ative difference in signals between two given segments. While scanning fluorescence using

the bionanprobe has already been demonstrated [73, 74], spectroscopy was only recently

tested [75], with the eventual goal of combining both fluorescence microscopy imaging and

absorption spectroscopy in order to reap the benefits of spectroscopic imaging discussed in

Chapter 1.

4.5. Other applications in x-ray spectromicroscopy

In the future, we would also like to be able to apply NNMA to the EXAFS of real

datasets, and examine reconstructed structures in the extended energy region which we can

Fourier transform in order to determine interatomic distances of different compounds as well

as the edge energy shifts to identify the different valence states of the absorbing atom. One

such application would be to the study of arsenic contamination in soil samples, which can
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contain a complex mixture of minerals and organic components [76]. Arsenic is known to

be of environmental and health concern. The toxicity of arsenic depends on its chemical

speciation – for example, arsenite (As III) is usually more toxic than arsenate (As V) [77].

Speciation can depend on environmental factors such as pH and oxygen level (which alter

the redox potential of As), and can affect the adsorption of dissolved arsenic – an important

remediation tool for the removal of arsenic from contaminated drinking water.

Another interesting application of EXAFS is to the study of bimetallic (e.g., Au-Pd)

nanoparticle catalysts [78, 79], which are used for catalysing oxidation or reduction in

the process of transforming bio-renewable materials [80]. Quantitative information such as

the nanoparticle’s size, shape, metal-metal bond length, and coordination number could be

obtained. NNMA could be used as a test to check the uniformity of the nanoparticles, which

is difficult to achieve in mass production.

4.6. MANTiS: a graphical user interface application

Recently, an open-source application for the analysis of spectromicroscopy data has been

developed in Python by Lerotic [81]. The application, called MANTiS (Multivariate ANal-

ysis Tool for Spectromicroscopy), includes a graphical user interface which guides the user

through a series of steps in the analysis, from data pre-processing (limiting energy ranges,

choosing regions of interest, setting background threshold, etc.), to PCA and cluster anal-

ysis. We have also implemented in MANTiS the regularized NNMA algorithms discussed

in Chapter 3. The NNMA module calls functions for both the basic multiplicative updates

or the modified updates depending on the user’s selection of regularization parameters. A

screenshot of the NNMA “tab” is shown in Figure 4.3.
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Figure 4.3. A screenshot of the NNMA analysis tab in MANTiS.

The code is open source, and the repository could be cloned from

https://code.google.com/p/spectromicroscopy.

https://code.google.com/p/spectromicroscopy
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APPENDIX A

Matrix norms

In Chapter 3, our goal was to find a balance between the minimization of various `2 and

`1 in order to yield different characteristics from the data. For completeness, we include here

the explicit form of each norm, and a brief qualitative description of how each norm can be

used to tease out different features.

A.1. Error minimization using the `2 norm

When applying NNMA to our x-ray absortpion spectromicroscopy data, the basic cri-

terion is to minimize the difference or error between the measured optical density D, and

the approximation obtained from the NNMA reconstruction µt. One way to do this is to

minimize the `2 norm of this difference, i.e., the basic cost function

F (µ, t) =
1

2
||D− µt||2F (A.1)

=
1

2

N∑
i=1

P∑
j=1

(
Dij −

S∑
k=1

µiktkj

)2

. (A.2)

This is a least squares problem and is commonly used for error minimization. The `2 norm

is also known as the Euclidean or Frobenius norm. In addition to the basic cost function,

we also used the `2 norm as a regularization to minimize the difference between the NNMA

and cluster analysis absorption spectra µ.
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A.2. Sparseness and the `0 “norm”

If we would like the t matrix to be sparse, we would ideally minimize its number of

non-zeros (though we don’t want any component (row) or any pixel (column) to contain all

zeros as it would then carry no information and be redundant), i.e., we would minimize

||t||0= #{(i, j) | tij 6= 0} (A.3)

or the `0 “norm” of t (as mentioned in the text, this is not a true norm as it does not satisfy

all the properties of a norm). However, the minimization of the `0 norm is a combinatorial

(counting) problem known to be NP-hard, and so cannot be solved in polynomial time [82].

A.3. Sparseness regularization using the `1 norm

As an approximation to the NP-hard problem of minimizing ||t||0 to regularize sparseness

in t, we instead minimize its `1 norm:

||t||1=
∑
i,j

|tij|. (A.4)

We mentioned in Section 3.6.1 that the `1 norm is a popular approximation to the `0 norm for

regularizing sparseness. To understand this visually, suppose that we are only interested in

two components, so that rank(t) = 2. Then the component space of t can be represented on

the 2D plane, where each axis represents one of the components. The `0 norm is depicted as

the bolded line segments (non-negative region along the axes) in Figure A.1, and each point

(or pixel) is located somewhere on the S1S2 plane depending on its component composition.

In the ideal case of maximum sparseness, each pixel would contain just one (pure) component,

and would lie along one the bolded line segments. Minimization of ||t||0 would then result

the the clustering of pixels along these two line segments. However, since the minimization
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S2

S1

Figure A.1. A representation of the component space of t2×P in the 2D plane.
In the ideal case where ||t||0 is minimized for maximum sparseness, all of the P
pixels would cluster along the bolded line segments that lie on one of the two
axes. In other words, each pixel would contain just one (pure) component, not
a linear combination – the solution we desire if we wanted to look for maximum
component separation. (In reality, if we were able to minimize ||t||0, some
pixels may contain predominantly one component, with some small mixture
of the second, as depicted in this figure.)

of ||t||0 is computationally difficult to solve, what about minimizing

||t||1/p =

(∑
i,j

tpij

)1/p

for 0 < p < 1 ? (A.5)

For example, Figure A.2 shows what ||t||1/4 would conceptually look like. This appears

to still be a good approximation to a feature selection model (matching each pixel to one

component), in that many of the pixel points lie close to one of the component axes. However,

this turns out to be also a non-convex problem. In fact, feature selection becomes more

powerful as p → 0, but global minimization of ||t||p for 0 < p < 1 is a non-convex problem

[83].

The next best option, then, would be to try to minimize the `1 norm, shown in Fig-

ure A.3(a). At first glance, it may not look like a very good feature selection model as many

of the pixels appear as mixtures of components. However, as we increase the significance
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S2

S1

Figure A.2. Minimizing ||t||1/4=
(∑

i,j t
1/4
ij

)4

looks like it might be a good

approximation to the NP-hard counting problem of minimizing ||t||0. However,
this problem, too, turns out to be non-convex, as does the more general case
for ||t||p where 0 < p < 1 .

of the `1 penalty term by increasing the sparseness regulariztion parameter λt, we find that

minimizing ||t||1 does produce better feature selection, as shown in Figure A.3(b).

S2

S1

(a) With only a small penalty placed on
the minimization ||t||1 (small value for the
sparseness regularization parameter λt), the
model produces some pixels with mixtures of
components.

S2

S1

(b) As we increase the penalty placed on the
minimization of ||t||1 by increasing λt, it be-
comes a better feature selection model, yield-
ing more pixels with pure components.

Figure A.3. Comparison between small and large penalties imposed on the
minimization of ||t||1.



117

APPENDIX B

Partial derivatives of the cost function F

First, we write down some identities related to partial derivatives of matrix traces, which

we will make use of when calculating partial derivatives of the cost function F :

∂

∂X
Tr(XTA) = A (B.1)

∂

∂X
Tr(XTAX) = AX + ATX (B.2)

∂

∂X
Tr(AXTB) = BA (B.3)

∂

∂X
Tr(BTXTXB) = XBBT + XBBT (B.4)

Next, we expand the cost function F :

F =
1

2
||D− µt||2F

=
1

2
Tr
[
(D− µt)T(D− µt)

]
=

1

2
Tr(DTD)− Tr(tTµTD) +

1

2
Tr(tTµTµt) (B.5)

Then, we can calculate the partial derivatives:

∂F

∂t
= −µTD +

1

2

(
µTµt + µTµt

)
= −µTD + µTµt (B.6)
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where we have used the identities (B.1) and (B.2);

∂F

∂µ
= −DtT +

1

2

(
µttT + µttT

)
= −DtT + µttT (B.7)

where we have used the identities (B.3) and (B.4).
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APPENDIX C

Smoothness regularizer Jµsm
(µ)

We desire our absorption spectra to be smooth functions with respect to energy E. Each

spectrum is represented by a column in the µ matrix. We can regularize the smoothness

over each column by adding a regularization term Jµsm
(µ) (we will drop the subscript “sm”

in the rest of this appendix for simplicity) to minimize the second derivative of each column

in µ.

Since any given column µk in µ is a measurement at N discrete energy points, we will

use finite difference (shown below) to calculate the second derivative. Moreover, the energy

points are not necessarily evenly spaced: during XANES or EXAFS data collection, more

measurements need to be collected to resolve the steep rise of an absorption edge, and

(especially in the case of EXAFS), more measurements also need to be collected in the

extended energy region (beyond the absorption edge) to resolve the fine modulations arising

from short-range interactions.

To find the finite difference second derivative of a column vector µk with respect to E

(with unequal subintervals), we first write the Taylor series expansions for µn+1,k (forward

expansion) and µn−1,k (backward expansion) around µn,k (n is the index label for energy,

and hence also indexes the rows of µ):

µn+1,k = µn,k + µ′n,k(En+1 − En) +
1

2
µ′′n,k(En+1 − En)2 +O((En+1 − En)3) (C.1)
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Energy

A
b

so
rp

ti
on

μn+1

μn-1

μn

En,n-1 En+1,n

En-1 En En+1

Figure C.1. The energy intervals in a measured absorption spectrum need not
be divided evenly.

and

µn−1,k = µn,k − µ′n,k(En − En−1) +
1

2
µ′′n,k(En − En−1)2 +O((En − En−1)3), (C.2)

where µ′n,k =
[
∂µk
∂E

]
n,k

, and µ′′n,k =
[
∂2µk
∂E2

]
n,k

.

We multiply Eq. (C.1) by (En−En−1), and Eq. (C.2) by (En+1−En), then add the two

equations to obtain:

(C.3)
µ′′n,k = 2

[
µn+1,k

(En+1 − En)(En+1 − En−1)
− µn,k

(En+1 − En)(En − En−1)

+
µn−1,k

(En − En−1)(En+1 − En−1)

]

Eq. (C.3) is the centred difference second derivative for µn,k, where 2 ≤ n ≤ N − 1.
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Assuming that indexing begins at 1 and ends at N , we should treat the cases n = 1 and

n = N separately.

For n = 1, we use the forward difference to find µ′′1,k. First, we write the forward Taylor

series expansions for µ2,k and µ3,k:

µ2,k = µ1,k + µ′1,k(E2 − E1) + µ′′1,k
(E2 − E1)2

2
+O((E2 − E1)3) (C.4a)

µ3,k = µ1,k + µ′1,k(E3 − E1) + µ′′1,k
(E3 − E1)2

2
+O((E3 − E1)3) (C.4b)

We multiply Eq. (C.4a) by
(
E3−E1

E2−E1

)
, then subtract Eq. (C.4b) to obtain:

µ′′1,k = 2

[
µ3,k

(E3 − E2)(E3 − E1)
− µ2,k

(E3 − E2)(E2 − E1)
+

µ1,k

(E2 − E1)(E3 − E1)

]
. (C.5)

For n = N , we use the backward difference to find µ′′N,k. First, we write the backward

Taylor series expansions for µN−1,k and µN−2,k:

µN−1,k = µN,k − µ′N,k(EN − EN−1) + µ′′N,k
(EN − EN−1)2

2
+O((EN − EN−1)3) (C.6a)

µN−2,k = µN,k − µ′N,k(EN − EN−2) + µ′′N,k
(EN − EN−2)2

2
+O((EN − EN−2)3) (C.6b)

We multiply Eq. (C.6a) by
(
EN−EN−2

EN−EN−1

)
, then subtract Eq. (C.6b) to obtain:

(C.7)
µ′′N,k = 2

[
µN,k

(EN − EN−1)(EN − EN−2)
− µN−1,k

(EN − EN−1)(EN−1 − EN−2)

+
µN−2,k

(EN−1 − EN−2)(EN − EN−2)

]
.

For each column µk in µ, we have the second derivative µ′′n,k =
[
∂2µk
∂E2

]
n,k

calculated at

each point n, for 1 < n < N . To strive for a smooth spectral function, we would like to

minimize this second derivative. We simply sum the absolute values of each entry and call
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this our smoothness regularizer Jµ(µ):

Jµ(µ) =
S∑
k=1

N∑
n=1

∣∣∣∣∣
[
∂2µk
∂E2

]
n,k

∣∣∣∣∣ . (C.8)

Now, the addition to the NNMA update algorithm requires us to calculate the derivative

of Eq. (C.8) with respect to µi,j, i.e.,
∂Jµ(µ)

∂µi,j
.

For 4 ≤ i ≤ N − 3 (we will treat the cases i ∈ {1, 2, 3, N − 2, N − 1, N} separately):

∂Jµ(µ)

∂µi,j
= 2

 −1

(Ei+1 − Ei)(Ei − Ei−1)︸ ︷︷ ︸
contribution when n=i

+
1

(Ei − Ei−1)(Ei − Ei−2)︸ ︷︷ ︸
n=(i−1)

+
1

(Ei+1 − Ei)(Ei+2 − Ei)︸ ︷︷ ︸
n=(i+1)

 .
(C.9)

For i = 1:

(C.10)

∂Jµ(µ)

∂µ1,j

= 2

 1

(E2 − E1)(E3 − E1)︸ ︷︷ ︸
n=1

+
1

(E2 − E1)(E3 − E1)︸ ︷︷ ︸
n=2


=

4

(E2 − E1)(E3 − E1)
.

For i = 2:

(C.11)

∂Jµ(µ)

∂µ2,j

= 2

 −1

(E2 − E1)(E3 − E2)︸ ︷︷ ︸
n=1

+
−1

(E3 − E2)(E2 − E1)︸ ︷︷ ︸
n=2

+
1

(E3 − E2)(E4 − E3)︸ ︷︷ ︸
n=3


= 2

[
−2

(E3 − E2)(E2 − E1)
+

1

(E3 − E2)(E4 − E3)

]
.
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For i = 3:

(C.12)

∂Jµ(µ)

∂µ3,j

= 2

 1

(E3 − E2)(E3 − E1)︸ ︷︷ ︸
n=1

+
1

(E3 − E2)(E3 − E1)︸ ︷︷ ︸
n=2

+
−1

(E4 − E3)(E3 − E2)︸ ︷︷ ︸
n=3

+
1

(E4 − E3)(E5 − E3)︸ ︷︷ ︸
n=4


= 2

[
2

(E3 − E2)(E2 − E1)
+

−1

(E4 − E3)(E3 − E2)
+

1

(E4 − E3)(E5 − E3)

]
.

For i = N − 2:

(C.13)

∂Jµ(µ)

∂µN−2,j

= 2

 1

(EN−2 − EN−3)(EN−2 − EN−4)︸ ︷︷ ︸
n=N−3

+
−1

(EN−1 − EN−2)(EN−2 − EN−3)︸ ︷︷ ︸
n=N−2

+
1

(EN−1 − EN−2)(EN − EN−2)︸ ︷︷ ︸
n=N−1

+
1

(EN−1 − EN−2)(EN − EN−3)︸ ︷︷ ︸
n=N


= 2

[
1

(EN−2 − EN−3)(EN−2 − EN−4)
+

−1

(EN−1 − EN−2)(EN−2 − EN−3)

+
2

(EN−1 − EN−2)(EN−2 − EN−3)

]
.
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For i = N − 1:

(C.14)

∂Jµ(µ)

∂µN−1,j

= 2

 1

(EN−1 − EN−2)(EN−1 − EN−3)︸ ︷︷ ︸
n=N−2

+
−1

(EN − EN−1)(EN−1 − EN−2)︸ ︷︷ ︸
n=N−1

+
−1

(EN − EN−1(EN−1 − EN−2)︸ ︷︷ ︸
n=N


= 2

[
1

(EN−1 − EN−2)(EN−1 − EN−3)
+

−2

(EN − EN−1)(EN−1 − EN−2)

]
.

For i = N :

(C.15)

∂Jµ(µ)

∂µN,j
= 2

 1

(EN − EN−1)(EN − EN−2)︸ ︷︷ ︸
n=N−1

+
1

(EN − EN−1)(EN − EN−2)︸ ︷︷ ︸
n=N


=

4

(EN − EN−1)(EN − EN−2)
.

However, it seems that the smoothness regularizer Eq. (C.8) does not always result in

a monotonically decreasing cost function. This may be due to the non-differentiable nature

of the function at values around zero. Instead, we will sum the squares of each element in

Eq. (C.8) and use this as our smoothness regularizer:

Jµ(µ) =
S∑
k=1

N∑
n=1

[
∂2µk
∂E2

]2

n,k

. (C.16)

Again, the addition to the NNMA update algorithm requires us to calculate the derivative

of Eq. (C.16) with respect to µi,j. First, we write out the expansion of
[
∂2µk
∂E2

]2

n,k
; to simplify

notation, we denote En+1,n = (En+1 − En), etc.
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For 2 ≤ n ≤ N − 1 (expanding Eq. (C.3)):

[
∂2µk
∂E2

]2

n,k

= 4

[
µ2
n+1,k

E2
n+1,nE

2
n+1,n−1

+
µ2
n,k

E2
n+1,nE

2
n,n−1

+
µ2
n−1,k

E2
n,n−1E

2
n+1,n−1

− 2µn+1,kµn,k
E2
n+1,nEn,n−1En+1,n−1

+
2µn+1,kµn−1,k

En+1,nEn,n−1E2
n+1,n−1

− 2µn,kµn−1,k

En+1,nE2
n,n−1En+1,n−1

]
(C.17)

For n = 1 (expanding Eq. (C.5)):

[
∂2µk
∂E2

]2

1,k

= 4

[
µ2

1,k

E2
2,1E

2
3,1

+
µ2

2,k

E2
3,2E

2
2,1

+
µ2

3,k

E2
3,2E

2
3,1

− 2µ1,kµ2,k

E3,2E2
2,1E3,1

+
2µ1,kµ3,k

E3,2E2,1E2
3,1

− 2µ2,kµ3,k

E2
3,2E2,1E3,1

]
(C.18)

For n = N (expanding Eq. (C.7)):

(C.19)

[
∂2µk
∂E2

]2

N,k

= 4

[
µ2
N,k

E2
N,N−1E

2
N,N−2

+
µ2
N−1,k

E2
N,N−1E

2
N−1,N−2

+
µ2
N−2,k

E2
N−1,N−2E

2
N,N−2

− 2µN,kµN−1,k

E2
N,N−1EN−1,N−2EN,N−2

+
2µN,kµN−2,k

EN,N−1EN−1,N−2E2
N,N−2

− 2µN−1,kµN−2,k

EN,N−1E2
N−1,N−2EN,N−2

]

Now, we sum the contributions from Eqs. (C.17), (C.18), and (C.19) to give Jµ(µ) and

differentiate with respect to µi,j.
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For 4 ≤ i ≤ N − 3 (we will treat the cases i ∈ {1, 2, 3, N − 2, N − 1, N} separately):

(C.20)

∂Jµ(µ)

∂µi,j
= 4

 2µi,j
E2
i+1,iE

2
i,i−1

− 2µi+1,j

E2
i+1,iEi,i−1Ei+1,i−1

− 2µi−1,j

Ei+1,iE2
i,i−1Ei+1,i−1︸ ︷︷ ︸

contribution when n=i

+
2µi,j

E2
i,i−1E

2
i,i−2

− 2µi−1,j

E2
i,i−1Ei−1,i−2Ei,i−2

+
2µi−2,j

Ei,i−1Ei−1,i−2E2
i,i−2︸ ︷︷ ︸

n=(i−1)

+
2µi,j

E2
i+1,iE

2
i+2,i

+
2µi+2

Ei+2,i+1Ei+1,iE2
i+2,i

− 2µi+1

Ei+2,i+1E2
i+1,iEi+2,i︸ ︷︷ ︸

n=(i+1)

 .
= 8

[
µi−2,j

(
1

Ei,i−1Ei−1,i−2E2
i,i−2

)
+ µi−1,j

(
−1

Ei+1,iE2
i,i−1Ei+1,i−1

+
−1

E2
i,i−1Ei−1,i−2Ei,i−2

)
+ µi,j

(
1

E2
i+1,iE

2
i,i−1

+
1

E2
i,i−1E

2
i,i−2

+
1

E2
i+1,iE

2
i+2,i

)
+ µi+1,j

(
−1

E2
i+1,iEi,i−1Ei+1,i−1

+
−1

Ei+2,i+1E2
i+1,iEi+2,i

)
+ µi+2,j

(
1

Ei+2,i+1Ei+1,iE2
i+2,i

)]

For i = 1:

(C.21)

∂Jµ(µ)

∂µ1,j

= 4

 2µ1,j

E2
2,1E

2
3,1

− 2µ2,j

E3,2E2
2,1E3,1

+
2µ3,j

E3,2E2,1E2
3,1︸ ︷︷ ︸

n=1

+
2µ1,j

E2
2,1E

2
3,1

+
2µ3,j

E3,2E2,1E2
3,1

− 2µ2,j

E3,2E2
2,1E3,1︸ ︷︷ ︸

n=2


= 16

[
µ1,j

E2
2,1E

2
3,1

− µ2,j

E3,2E2
2,1E3,1

+
µ3,j

E3,2E2,1E2
3,1

]
.
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For i = 2:

(C.22)

∂Jµ(µ)

∂µ2,j

= 4

 2µ2,j

E2
3,2E

2
2,1

− 2µ1,j

E3,2E2
2,1E3,1

− 2µ3,j

E2
3,2E2,1E3,1︸ ︷︷ ︸

n=1

+
2µ2,j

E2
3,2E

2
2,1

− 2µ3,j

E2
3,2E2,1E3,1

− 2µ1,j

E3,2E2
2,1E3,1︸ ︷︷ ︸

n=2

+
2µ2,j

E2
3,2E

2
4,2

+
2µ4,j

E4,3E3,2E2
4,2

− 2µ3,j

E4,3E2
3,2E4,2︸ ︷︷ ︸

n=3



= 8

[
µ1,j

(
−2

E3,2E2
2,1E3,1

)
+ µ2,j

(
2

E2
3,2E

2
2,1

+
1

E2
3,2E

2
4,2

)

+ µ3,j

(
−2

E2
3,2E2,1E3,1

+
−1

E4,3E2
3,2E4,2

)
+ µ4,j

(
1

E4,3E3,2E2
4,2

)]
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For i = 3:

∂Jµ(µ)

∂µ3,j

= 4

 2µ3,j

E2
3,2E

2
3,1

+
2µ1,j

E3,2E2,1E2
3,1

− 2µ2,j

E2
3,2E2,1E3,1︸ ︷︷ ︸

n=1

+
2µ3,j

E2
3,2E

2
3,1

− 2µ2,j

E2
3,2E2,1E3,1

+
2µ1,j

E3,2E2,1E2
3,1︸ ︷︷ ︸

n=2

+
2µ3,j

E2
4,3E

2
3,2

− 2µ4,j

E2
4,3E3,2E4,2

− 2µ2,j

E4,3E2
3,2E4,2︸ ︷︷ ︸

n=3

+
2µ3,j

E2
4,3E

2
5,3

+
2µ5,j

E5,4E4,3E2
5,3

− 2µ4,j

E5,4E2
4,3E5,3︸ ︷︷ ︸

n=4



= 8

[
µ1,j

(
2

E3,2E2,1E2
3,1

)
+ µ2,j

(
−2

E2
3,2E2,1E3,1

+
−1

E4,3E2
3,2E4,2

)

+ µ3,j

(
2

E2
3,2E

2
3,1

+
1

E2
4,3E

2
3,2

+
1

E2
4,3E

2
5,3

)
+ µ4,j

(
−1

E2
4,3E3,2E4,2

+
−1

E5,4E2
4,3E5,3

)

+ µ5,j

(
1

E5,4E4,3E2
5,3

)]

(C.23)
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For i = N − 2:

∂Jµ(µ)

∂µN−2,j

= 4

 2µN−2,j

E2
N−2,N−3E

2
N−2,N−4

− 2µN−3,j

E2
N−2,N−3EN−3,N−4EN−2,N−4

+
2µN−4,j

EN−2,N−3EN−3,N−4E2
N−2,N−4︸ ︷︷ ︸

n=N−3

+
2µN−2,j

E2
N−1,N−2E

2
N−2,N−3

− 2µN−1,j

E2
N−1,N−2EN−2,N−3EN−1,N−3

− 2µN−3,j

EN−1,N−2E2
N−2,N−3EN−1,N−3︸ ︷︷ ︸

n=N−2

+
2µN−2,j

E2
N−1,N−2E

2
N,N−2

+
2µN,j

EN,N−1EN−1,N−2E2
N,N−2

− 2µN−1,j

EN,N−1E2
N−1,N−2EN,N−2︸ ︷︷ ︸

n=N−1

+
2µN−2,j

E2
N−1,N−2E

2
N,N−2

+
2µN,j

EN,N−1EN−1,N−2E2
N,N−2

− 2µN−1,j

EN,N−1E2
N−1,N−2EN,N−2︸ ︷︷ ︸

n=N


= 8

[
µN−4,j

(
1

EN−2,N−3EN−3,N−4E2
N−2,N−4

)

+ µN−3,j

(
−1

E2
N−2,N−3EN−3,N−4EN−2,N−4

+
−1

EN−1,N−2E2
N−2,N−3EN−1,N−3

)

+ µN−2,j

(
1

E2
N−2,N−3E

2
N−2,N−4

+
1

E2
N−1,N−2E

2
N−2,N−3

+
2

E2
N−1,N−2E

2
N,N−2

)

+ µN−1,j

(
−1

E2
N−1,N−2EN−2,N−3EN−1,N−3

+
−2

EN,N−1E2
N−1,N−2EN,N−2

)

+ µN,j

(
2

EN,N−1EN−1,N−2E2
N,N−2

)]
(C.24)
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For i = N − 1:

∂Jµ(µ)

∂µN−1,j

= 4

 2µN−1,j

E2
N−1,N−2E

2
N−1,N−3

− 2µN−2,j

E2
N−1,N−2EN−2,N−3EN−1,N−3

+
2µN−3,j

EN−1,N−2EN−2,N−3E2
N−1,N−3︸ ︷︷ ︸

n=N−2

+
2µN−1,j

E2
N,N−1E

2
N−1,N−2

− 2µN,j
E2
N,N−1EN−1,N−2EN,N−2

− 2µN−2,j

EN,N−1E2
N−1,N−2EN,N−2︸ ︷︷ ︸

n=N−1

+
2µN−1,j

E2
N,N−1E

2
N−1,N−2

− 2µN,j
E2
N,N−1EN−1,N−2EN,N−2

− 2µN−2,j

EN,N−1E2
N−1,N−2EN,N−2︸ ︷︷ ︸

n=N


= 8

[
µN−3,j

(
1

EN−1,N−2EN−2,N−3E2
N−1,N−3

)

+ µN−2,j

(
−1

E2
N−1,N−2EN−2,N−3EN−1,N−3

+
−2

EN,N−1E2
N−1,N−2EN,N−2

)

+µN−1,j

(
1

E2
N−1,N−2E

2
N−1,N−3

+
2

E2
N,N−1E

2
N−1,N−2

)
+µN,j

(
−2

E2
N,N−1EN−1,N−2EN,N−2

)]
(C.25)

For i = N :

∂Jµ(µ)

∂µN,j
= 4

 2µN,j
E2
N,N−1E

2
N,N−2

− 2µN−1,j

E2
N,N−1EN−1,N−2EN,N−2

+
2µN−2,j

EN,N−1EN−1,N−2E2
N,N−2︸ ︷︷ ︸

n=N−1

+
2µN,j

E2
N,N−1E

2
N,N−2

− 2µN−1,j

E2
N,N−1EN−1,N−2EN,N−2

+
2µN−2,j

EN,N−1EN−1,N−2E2
N,N−2︸ ︷︷ ︸

n=N


= 16

[
µN−2,j

EN,N−1EN−1,N−2E2
N,N−2

− µN−1,j

E2
N,N−1EN−1,N−2EN,N−2

+
µN,j

E2
N,N−1E

2
N,N−2

]
.

(C.26)
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Now, to recap: we (finally!) have an explicit form for Jµ(µ) given by Eq. (C.16), along

with Eqs. (C.17), (C.18), and (C.19). This is the smoothness regularizer to be added to the

cost function F . We also have an explicit form for ∂Jµ(µ)

∂µi,j
, given by Eqs. (C.20 - C.26). This

is the addition to the NNMA update rule for µ, which is now given by:

µi,j ← µi,j

 (DtT )i,j

(µttT )i,j + λµ
∂Jµ(µ)

∂µi,j

 (C.27)
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