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Abstract

Engineering Photonic Switches for Quantum Information Processing

Neal N. Oza

In this dissertation, we describe, characterize, and demonstrate the operation of a dual-

in, dual-out, all-optical, fiber-based quantum switch. This “cross-bar” switch is particularly

useful for applications in quantum information processing because of its low-loss, high-speed,

low-noise, and quantum-state-retention properties.

Building upon on our lab’s prior development of an ultrafast demultiplexer [1–3], the new

cross-bar switch can be used as a tunable multiplexer and demultiplexer. In addition to

this more functional geometry, we present results demonstrating faster performance with

a switching window of ≃45 ps, corresponding to >20-GHz switching rates. We show a

switching fidelity of >98%, i. e., switched polarization-encoded photonic qubits are virtually

identical to unswitched photonic qubits. We also demonstrate the ability to select one

channel from a two-channel quantum data stream with the state of the measured (recovered)

quantum channel having >96% relative fidelity with the state of that channel transmitted

alone. We separate the two channels of the quantum data stream by 155 ps, corresponding

to a 6.5-GHz data stream.
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Finally, we describe, develop, and demonstrate an application that utilizes the switch’s

higher-speed, lower-loss, and spatio-temporal-encoding features to perform quantum state

tomographies on entangled states in higher-dimensional Hilbert spaces. Since many previous

demonstrations show bipartite entanglement of two-level systems, we define “higher” as

d > 2 where d represents the dimensionality of a photon. We show that we can generate

and measure time-bin-entangled, two-photon, qutrit (d = 3) and ququat (d = 4) states with

>85% and >64% fidelity to an ideal maximally entangled state, respectively. Such higher-

dimensional states have applications in dense coding [4], loophole-free tests of nonlocality [5],

simplifying quantum logic gates [6], and increasing tolerance to noise and loss for quantum

information processing [7].
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CHAPTER 1

Overview

Buoyed by lofty goals of outperforming classical counterparts for particular applications—

e.g., rapidly factoring numbers [8], performing quick unsorted searches [9], and ensuring cryp-

tographic security [10,11]—quantum information processing (QIP) has rapidly developed over

the past three decades. These developments have required researchers from various disci-

plines, including engineering, mathematics, physics, computer science, and materials science,

to collaborate on various implementations. Their efforts have yielded QIP demonstrations in

technologies such as nuclear magnetic resonance spins [12,13], Bose-Einstein condensates [14,15],

atom- & ion-traps [16–19], quantum dots [20,21], superconducting circuits [22,23], diamond-based

NV centers [24], rare-earth-ion-doped crystals [25], and photons [26–28].

Although there is some debate [29–31], common consensus believes that, for any practi-

cal, scalable, real-world applications, the field requires further developments to realize the

lofty promises in any of the aforementioned mediums. Fortunately, the telecommunica-

tions (telecom) industry has very successfully used photons as practical information carriers.

Transmission of photons between various parties is rapid, robust, and reliable. Additionally,

manipulating a photon is well understood for its various degrees of freedom. As such, our

lab opts to use photons—often from the telecom band—as our information carrier for QIP.

A critical resource for many QIP systems is the ability to generate entanglement. We can

loosely analogize this phenomenon using a pair of coins. We say these coins are “entangled”

if flipping the coins produce random, yet correlated results. In others words, if we flip one
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coin, we will randomly obtain a heads or tails. When we flip the other coin, we find that

its result will always be identical to the first. If prepared appropriately, this completely

random, yet perfectly correlated behavior between the coins happens instantly regardless of

the physical separation between the two coins. Based on our day-to-day interactions, this

should be very surprising since we are unaware of any other phenomenon that behaves across

vast distances instantly.

In fact, in March 1947, Albert Einstein wrote a letter to Max Born describing entangle-

ment as “spukhafte Fernwirkung”, translated as “spooky action at a distance”. He and his

colleagues, Boris Podolsky and Nathan Rosen, famously decried entanglement as evidence

that quantum theory was incomplete [32]. Fortunately, following the initial efforts of John S.

Bell, we know now that the principle of locality, upon which Einstein and others based their

argument against entanglement, is not a required condition of nature [33]. Many scientists

have since verified the existence of entanglement; google “Bell’s inequality violations” for

evidence. Others have employed entanglement for QIP demonstrations such as Shor’s algo-

rithm [12,34], and quantum teleportation [35,36]. For other QIP applications, such as the BB84

quantum key distribution protocol [10], we do not require entanglement, but instead just a

correlated-particle source.

As such, our group has previously demonstrated several photon-pair, and photon-based

entanglement sources [37–41]. Other groups—most specifically the Takesue group—have also

demonstrated entangled-pair and photon-pair sources for the telecom band [42–44]. As alluded

to earlier, telecom-band QIP is a beneficiary of the many decades of prior investment and

development that yielded mature technologies—such as the internet—and cheaper compo-

nents. Additionally, when we overcome the experimental challenges for photonic QIP, part of
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the present network of fibers can immediately be used for point-to-point information transfer

since much of the fiber around the globe is currently ”dark”, i. e., unused.

Unfortunately, this network cannot be used as-is. Current photon routers and repeaters,

which detect the incoming light and re-emit a new pulse to the appropriate destination,

destroy the quantum state of any QIP photon. Hence, new switches and routers need

to be developed. Prior members in our group laid down groundwork towards realizing

photonic QIP in the O-band (1260-1360 nm). In this thesis, we will investigate projects that

parlay their efforts to further promote the use of photonics for QIP applications. The first

project focuses on the further development of switching technology for quantum information

applications. The new work shown in this thesis primarily involve improvements to the

switch’s functionality, via the addition of a second input, and demonstrations of higher rate

switching performance.

The second project uses the switch in a unique application that measures two-photon

entanglement in higher-dimensional Hilbert spaces. Such entanglement is useful for other

QIP applications such as dense coding [4], more robust quantum information transfer [7], sim-

pler quantum logic gates [6], and loophole-free tests of nonlocality [5]. Additionally, since it is

a largely unexplored space, there is potential for applications yet unknown to researchers.

Since many prior realizations of entanglement have been two-particle, two-bases demonstra-

tions, for the purposes of this thesis, we define high-dimensional or higher-dimensional as

any system that is larger than two bases per photon. We will investigate this definition

further in Chp. 3.

In order to test and use higher-dimensional states, we must first generate them. In many

cases, such as the demonstration shown in this thesis, generation of higher-dimensional

entanglement is not too difficult. Unfortunately, the ability to manipulate such states and
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then measure them is more challenging. Even authors Imre and Gyongyosi recognize this in

their book, “Advanced Quantum Communications: An Engineering Approach”, when they

say, “We can also immediately note that a qutrit can contain more information than a two-

level qubit, however, the manipulation of these quantum systems is still very difficult”. The

aforementioned “qutrit” is an example of one such higher-dimensional state. Although still

challenging, one of the goals of our implementation for higher-dimensional states is to better

enable their manipulation and measurement. Fortunately, the switch we developed for the

first project is such an enabler.

For both of these projects, we must first generate the desired signals that we wish to switch

and/or measure. As such, part of this dissertation also describes the systems employed to

create narrow (<100 ps) pulses that arrive at high rates (up to 10 GHz) for use in generating

and routing single photons with similar characteristics.

In the following sections, we provide an outline for the remainder of this dissertation with

the intent of summarizing the topics found in each chapter.

Chapter 2 synopsis: Single-mode fibers and nonlinear optics

We begin the dissertation by laying the theoretical, mathematical, and conceptual ground-

work for the forthcoming discussion. We start by explaining introductory ideas for electro-

magnetic wave propagation in a medium, more specifically, single-mode fibers. Developing

on this, we delve into a introduction of nonlinear optics phenomena observed in optical fibers.

This will specifically focus around cross-phase modulation and four-wave mixing since these

two phenomena play important roles in our experiments. We then look at these phenomena

again, except under the lens of quantum mechanics.
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Chapter 3 synopsis: Introduction to quantum information processing

In the third chapter, we present the appropriate discussion to understand quantum states.

We start by presenting the definitions and notations for a single qubit (quantum binary digit).

We then look at multiple qubits and the implications for phenomena such as entanglement.

The next section moves from qubits to qudits, states that have more than two bases, i. e.,

states that are not binary. We finish the chapter by briefly defining various metrics which

can quantify the quality of a quantum state.

Chapter 4 synopsis: Survey of alternative technologies and demonstrations

Chapter 4 investigates the efforts of other groups to realize comparable goals as the

experiments presented in this dissertation. We break this up into two sections: the first

is a look at alternative switching technologies for single-photons; the second is a look at

demonstrations for alternative higher-dimensional state creation and measurement.

Chapter 5 synopsis: Generation of pump pulses and photonic entanglement

In this chapter, we turn our attention to the systems we use to generate the various

signals required to test our switch. These entail the generation of optical pulses that will

later be used to activate our switch. Additionally, we describe the systems used to produce

our entangled photon pairs. Since both of these systems must be synchronized, we devote a

decent portion of this chapter to look at the electronics that we use to carve or pulse-pick

the respective optical pulses. Since this was a significant effort, we describe the various

generations of designs. Each iteration is accompanied by a brief discussion of the problems

observed with that design motivating the modifications for the next iteration of the design.

We conclude the chapter with a discussion of how to use the generated test pulses to create
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entangled photons in fiber. The entangled pair discussion is divided between generating

time-bin entanglement and polarization entanglement.

Chapter 6 synopsis: Cross-bar switching operation and performance

This chapter is dedicated to discussing the switches developed in our lab. We begin

by briefly detailing the operation of simpler one-input, two-output switch [1–3]. Once we

understand how that switch works, we segue the discussion to the operation of the two-input,

two-output (cross-bar) switch. We then characterize the cross-bar switch classically. Next,

we look at the single-photon characterizations of the switch. We finish with a demonstration

of the cross-bar switch’s ability to select one channel from a two-temporal-channel quantum

data stream.

Chapter 7 synopsis: Generation and measurement of higher-dimensional states

Chapter 7 describes our efforts to generate, manipulate, and measure higher-dimensional,

time-bin-entangled states. We begin this chapter with an operational overview of the various

components needed to create and measure such quantum states. We follow this with an in-

depth look at the various subsystems and their respective purposes for the experiment. We

finish the chapter with experimental results demonstrated for qubit states, qutrit states, and

ququat states.

Chapter 8 synopsis: Conclusion and future work

We briefly conclude the dissertation with a recap of the work performed and the results

obtained. We then extend the discussion to see what the future holds for the technologies

described herein. The look into the future is broken down into near-term tasks, medium-term

options, and long-term possibilities.
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CHAPTER 2

Single-Mode Fibers and Nonlinear Optics

This chapter establishes the appropriate groundwork to discuss all of the fiber-optics-

related concepts, phenomena, and experiments in latter chapters. We begin with a brief

introduction to Maxwell’s equations, which describe the propagation of electromagnetic (EM)

waves. We then extend this framework to discuss, more specifically, the propagation of EM

waves in optical fibers, the medium of interest for this dissertation. In that discussion, we

address the specific parameters needed for the experiments described later in the thesis. In

the following section, we further extend our understanding of EM propagation in optical

fiber to describe the nonlinear optical effects, such as cross-phase modulation and four-wave

mixing, that we utilize for our experiments. The mathematical treatment provided in this

document follows the derivations available from Agrawal [45]. We then conclude with a look

at the quantum-mechanical treatment of the nonlinear processes.

We remark here that much of the material covered in this chapter can be found in

numerous and various types of texts and resources. Hence, this chapter and the next also

serve to unify notation for the remainder of this dissertation.

2.1. Maxwell’s equations

Any discussion of optics would be remiss if Maxwell’s equations were not the beginning

of the discussion. Maxwell’s equations, shown in Eq. (2.1), unify the field of EM theory.

They mathematically describe the behavior of electric charges (electric currents) as sources
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of electric (magnetic) fields. They also describe the interaction between time-varying electric

and magnetic fields.

∇ ·D = ρf (2.1a)

∇ ·B = 0 (2.1b)

∇× E = −∂B
∂t

(2.1c)

∇×H = Jf +
∂D

∂t
(2.1d)

D = ǫE = ǫ0E+P (2.1e)

B = µ0(H+M) (2.1f)

Here E is the electric field (V/m), H is the magnetic field (A/m), D is the electric flux

density (C/m2), B is the magnetic flux density (V·s/m2), ρf is the free charge density

(C/m3), Jf is the free current density (A/m2), P is the electric polarization (C/m2), and

M is the magnetization (A/m). ǫ0 = 8.8542 × 10−12 F/m is the vacuum permittivity, and

µ0 = 4π × 10−7 H/m is the vacuum permeability (H/m).

We note that we are using Maxwell’s “macroscopic” equations, thus we ignore the indi-

vidual bound charges and bound currents from a dielectric medium’s atoms’ and molecules’

electric dipole moment and magnetic moment. Instead, we bundle their cumulative effect

into the terms for electric polarization and magnetization. We also note here that bold-face

terms denote vectors that are functions of space and time. This notation will apply for

the remainder of this thesis. Finally, at optical frequencies or for the optical mediums used

in this research, where there are no free electrons, we can safely make the approximations

µ = µ0, ρf = 0, Jf = 0, and M = 0.



33

By taking the curl of Eq. (2.1c) and substituting in Eq. (2.1d), we get

∇×∇× E = − ∂

∂t
(∇×B) = −µǫ∂

2E

∂t2
(2.2)

Using the vector identity ∇×∇×V = ∇(∇ ·V)−∇2V on Eq. (2.2), we obtain the wave

equation in a linear medium

∇2E− ǫr
c2

· ∂
2E

∂t2
= 0 (2.3)

where c =
√

1/µ0ǫ0 is the speed of light in a vacuum, a universal constant, and ǫr is the

relative permittivity of the medium. The general solution to the wave equation takes the form

of f(ωt−k ·r). We note here that the angular frequency is defined as ω = 2πc/λ (radians/s),

and the wavenumber of the wavevector k is defined as k = |k| = 2π/λ (radians/m). For

completeness, we show the trivial relations c = νλ = ω/k where ν is the ordinary frequency

of our EM wave.

We introduce here the concept of the refractive index n, which defines the speed of light

(or electromagnetic field) travelling in a medium, v, according to the relation n = c/v =
√
(ǫ/ǫ0)(µ/µ0). Here, ǫ is the electric permittivity of the medium. In order to more clearly

define ǫ, we write the definition of electric polarization of a linear medium as

P = ǫ0χE (2.4)

where χ is the electric susceptibility (unitless) of the medium. Based on this equation, it

is trivial to deduce that ǫ = ǫ0ǫr = ǫ0(1 + χ) and D = ǫE using the electric constitutive

relation, Eq. (2.1e). Thus far, we have assumed a nondispersive medium, but if the EM

wave is in a dispersive medium, then χ behaves as a function of the frequency of the EM

wave. This is justified because a medium cannot polarize immediately. This response time
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defines a frequency dependence. As a result of this frequency dependence of the electric

susceptibility, we see that the refractive index is also frequency dependent. Thus we remark

that from this point forth, when we use n, it actually means n(ω). Fortunately, for small

deviations from a central ω, the dispersion is relatively constant thereby justifying treating

n as a constant.

2.2. Fundamentals of single-mode optical fiber

Now that we have established a basic platform for discussion of EM waves propagating

through a medium, we turn our focus to the medium. For the research presented here, our

focus will predominantly be on propagation through optical fiber and occasionally through

air. The motivation for using optical fiber is that it is one of the lowest loss mediums for

photon propagation. Additionally, fiber optics is a well-developed technology built upon

decades of investment from the telecom industry thereby making it compact and affordable.

Although there are many types of fibers, we limit the discussion to the commonly available

single-mode fiber—often called SMF or SMF28—since that is what we use in all of the

experiments discussed in this thesis.

Aptly named, SMF only guides one transverse mode (or electromagnetic profile). The

guiding happens using the process of total internal reflection. The mode that propagates

through the fiber is defined by the material’s properties, especially its geometry and molecular

composition.

The standard SMF fiber we use (Corning SMF-28e) is an example of a step-index fiber.

Step-index fiber is a type of fiber composed of two regions, the core and the cladding.

These regions are different in their size and material composition. The core has an index of

refraction n1, while the cladding has a smaller index of refraction n2. We now introduce the
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Figure 2.1. The typical diameter of the core of SMF-28 is ≃8 µm. The diam-
eter of the cladding is 125 µm. Most of the guided wave exists in the core,
and propagates down the fiber due to total internal reflection caused by the
difference in the indices of refraction between the core (n1 = 1.46 µm) and
cladding (n2 = 1.453 µm). Figure is not to scale.

V number, or normalized frequency, for an optical fiber.

V = k0a
√
n2
1 − n2

2 (2.5)

where k0 is the wavenumber in vacuum, and a is radius of the core.

If V < 2.405, the fiber is defined to be single-mode. Typical values for SMF-28e are core

radius a = 4.1 µm, cladding radius b = 62.5 µm, n1 = 1.46, and n2 = 1.453. Using these

values, it is easy to see that k0 < 4.859 µm−1, i.e. λ > 1290 nm. This fact is convenient as it

allows us to use the same medium for propagation of signals in the O-band (1260-1360 nm)

and the C-band (1530-1565 nm). As you will see later, photons from both of these bands

are used in our experiments.

Once again, we find that our discussion has been done with dispersion in absentia. Of

course, we realize that in real-world systems, dispersion is present. Intuitively, we can

imagine an EM wave propagating down a step-index waveguide. By comparing the ratio of
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the wavelength to the core radius, we see that if the EM wave has a shorter wavelength,

the electric field will have better confinement in the core, i. e., less of the propagating wave

will exist in the evanescent wave travelling in the cladding. By varying the wavelength,

while still adhering to the single-mode condition specified, we find that the “effective index”

experienced by the EM wave varies with wavelength since varying amounts of the EM wave

will exist in the core and cladding. It is conventional to define here the mode-propagation

constant β(ω) = n(ω)ω/c0. Since it is difficult to derive an explicit functional form of β, it

is conventionally expressed using its Taylor expansion,

β(ω) = β0 + β1 · (ω − ω0) +
β2
2

· (ω − ω0)
2 + · · ·+ βm

m!
· (ω − ω0)

m + · · · (2.6)

where

βm =

(
dmβ

dωm

)

ω=ω0

, (m = 0, 1, 2, . . .) (2.7)

and ω0 is the central frequency of the pulse spectrum. For fiber optics, we often limit the

discussion to just β1 and β2, explicitly written below.

β1 =
1

c0

(
n+ ω

dn

dω

)
=
ng
c0

=
1

vg
(2.8)

β2 =
1

c0

(
2
dn

dω
+ ω

d2n

dω2

)
. (2.9)

We use this opportunity to introduce the terms ng and vg for the group index and group

velocity, respectively. We also remark that β2 represents the group velocity dispersion. This

describes how quickly the pulse broadens over time.

Rather than using the frequency of light in fiber optic systems, the wavelength of the

propagating beam is commonly used in literature and among optics engineers. As such, we
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define the dispersion parameter D as follows:

D =
dβ1
dλ

= −2πc0
λ2

β2 (2.10)

We remark here that for a given input wavelength, if D < 0, we are operating in the

“normal” dispersion regime, and if D > 0, we are operating in the “anomalous” dispersion

regime. Based on this, we can then define a wavelength λD for which D = 0. We refer to this

wavelength as the zero-dispersion wavelength of the medium. We note that the optical pulses

still experience some dispersion due to higher-order dispersion effects. For pure bulk-fused

silica fiber, λD is approximately around 1.27 µm. By adjusting the doping and geometry of

this fiber, λD can be shifted up to 1.31 µm, which is the condition for SMF-28e, the fiber

we use in the experiments presented in this thesis.

2.3. Nonlinear optics

We have discussed Maxwell’s equations, which describe how EM fields propagate through

mediums. We have also discussed optical fibers since they are our choice of medium. We now

focus our attention to what happens to the EM fields in a medium when higher intensities of

the field are present. Under such situations, we incite a nonlinear response from the medium.

For completeness, we define intensity as I
∆

= ncǫ0|E|2/2, where E is the complex amplitude

of the electric field E.

2.3.1. Introduction of χ(3)

Previously, when we introduced the polarization term P in Eq. (2.4), we noted it was for

a linear medium. At higher intensities of light, the dielectric medium reacts more strongly

with the field and behaves nonlinearly. In order to understand this, we start by rewriting
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Eq. (2.4) into its power series decomposition,

P = ǫ0

(
χ(1)E+ χ(2) : EE+ χ(3)...EEE+ χ(4)EEEE+ · · ·

)
(2.11)

where χ(m) for (m = 1, 2, 3, . . .) is the mth order electric susceptibility. Note that the first

term typically dominates, and contributes to the linear treatment earlier. It also contributes

to the ǫr coefficient in Eq. (2.3). Hence, we recognize the terms χ(2) and higher as the

components that contribute to higher order nonlinear phenomena. χ(2) is responsible for

phenomena like sum-frequency generation, and second-harmonic generation in other medi-

ums, but in isotropic medium like optical fiber, it and all other even-order susceptibilities

are necessarily zero due to symmetry arguments. As such, the dominant nonlinear term for

fiber is the χ(3) term. Equipped with this knowledge, we rewrite Eq. (2.3) as

∇2E− 1

c20
· ∂

2E

∂t2
= −µ0

∂2PL

∂t2
− µ0

∂2PNL

∂t2
(2.12)

where the linear part is described by PL = ǫ0χ
(1)E and the nonlinear part is described by

PNL = ǫ0χ
(3)EEE. Higher order terms can safely be ignored due to the negligibly small

values of the susceptibilities in optical fiber.

For this thesis, the two nonlinear phenomena of most importance are cross-phase mod-

ulation (XPM), in which one strong field affects the phase of another co-propagating field,

and four-wave mixing (FWM), in which two photons scatter in the medium generating two

other photons. Unfortunately, we also see other phenomena, more specifically self-phase

modulation (SPM) and Raman scattering, which work against our goals. As such, in the

proceeding sections, we will investigate all of these phenomena.
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2.3.2. Phase modulation in Optical Fiber

SPM is arguably the most common χ(3) phenomena since any intensities required to achieve

other phenomena will also be strong enough to witness SPM. That stated, we are not in-

terested so much in the intense fields that will generate the SPM, but rather their effect on

single-photon-level beams that co-propagate with them through the fiber. Since our interest

lies in the XPM between the intense beam (pump, p) and the weak beam (signal, s), we

will discuss SPM in conjunction with the development of XPM rather than describe SPM

separately.

In an effort to clearly describe the nonlinear processes in optical fiber, we limit the prop-

erties of electric fields to being linearly polarized, and satisfying the quasi-monochromatic

approximation, ∆ωm ≪ ωm, where m ∈ p, s. The latter approximation is fair for pulses that

have pulse widths >0.1 ps. Thus we write the electric field as

E(r, t) =
1

2
~x [Ep exp(−iωpt) + Es exp(−iωst)] + c.c. (2.13)

where ~x is the optical polarization unit vector, ωp and ωs are the pump and signal carrier

frequencies, and Ep and Es are the pump and signal’s slowly varying electric field envelopes.

Based on this, we obtain the following nonlinear polarization.

PNL(r, t) =
1

2
~x [PNL(ωp) exp(−iωpt)

+PNL(ωs) exp(−iωst)

+PNL(2ωp − ωs) exp(−i(2ωp − ωs)t)

+PNL(2ωs − ωp) exp(−i(2ωs − ωp)t) ] + c.c.

(2.14)
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where the four nonlinear polarization terms are defined by

PNL(ωp) =
3ǫ0
4
χ(3)
xxxx(|Ep|2 + 2|Es|2)Ep (2.15a)

PNL(ωs) =
3ǫ0
4
χ(3)
xxxx(|Es|2 + 2|Ep|2)Es (2.15b)

PNL(2ωp − ωs) =
3ǫ0
4
χ(3)
xxxxE

2
pE

∗
s (2.15c)

PNL(2ωs − ωp) =
3ǫ0
4
χ(3)
xxxxE

2
sE

∗
p (2.15d)

The last two terms oscillating at 2ωp − ωs and 2ωs − ωp arise from the four-wave mixing

process, which we will discuss in the following section. Since these terms require appropriate

phase-matching to become appreciable, we will assume that the conditions are such that

the pump and signal are phase-mismatched, and hence we will ignore them in the current

context. The other two terms can now be shown to provide a nonlinear contribution to the

index of refraction. Combining these terms with their linear part, we can write them as

P (ωm) = ǫ0ǫmEm where ǫm = ǫLm + ǫNL
m = (nL

m + ∆nm)
2. Here, nL

m is the linear part of the

refractive index, and ∆nm is the change to the index of refraction caused by the nonlinear

effects. Making the assumption that ∆nm ≪ nL
m, we obtain the nonlinear contributions

∆np ≈ ǫNL
p /2nL

p ≈ n2(|Ep|2 + 2|Es|2) (2.16a)

∆ns ≈ ǫNL
s /2nL

s ≈ n2(|Es|2 + 2 |Ep|2) (2.16b)

where n2 = 3ǫ0Reχ
(3)
xxxx/8 is the nonlinear-index coefficient. As such, we see that the re-

fractive index of an optical field inside fiber is dependent on not only its own intensity, but

also the intensity of other optical fields that are copropagating. Hence, we can define the



41

intensity-dependent nonlinear phase shift experience by a field propagating in fiber as

φNL
p (z) = (ωp/c)∆npz = n2(ωp/c)(|Ep|2 + 2|Es|2)z (2.17a)

φNL
s (z) = (ωs/c)∆nsz = n2(ωs/c)(|Es|2 + 2|Ep|2)z (2.17b)

The first term on the right hand side in each of these arises courtesy of SPM, while the

second term comes from XPM.

We can now plug the nonlinear polarization into the nonlinear Schrödinger equation.

Here, we assume the transverse dependence of the electric field can be factored out, and thus

takes the form of

Em(r, t) = Fm(x, y)Am(z, t) exp(iβ0mz) (2.18)

where Fm(x, y) is the transverse distribution of the fiber mode, Am(z, t) is the slowly varying

amplitude, and β0m is the propagation constant corresponding to the carrier frequency ωm.

Dispersive effects are accounted for using the expansion of β as done earlier. Since the trans-

verse spatial mode does not vary very much for different telecom wavelengths propagating

down single-mode fiber, we will treat it as a constant for the following calculations. Based

on this, we obtain the propagation equations for the pump and signal as

∂Ap
∂z

+
1

vgp

∂Ap
∂t

+ i
β2p
2

∂2Ap
∂t2

+
αp
2
Ap = iγp(|Ap|2 + 2|As|2)Ap (2.19a)

∂As
∂z

+
1

vgs

∂As
∂t

+ i
β2s
2

∂2As
∂t2

+
αs
2
As = iγs(|As|2 + 2|Ap|2)As (2.19b)

where γm = n2ωm/(cAeff ), αm is the linear loss coefficient, and Aeff is the effective core

mode area. Once again, we see the first term on the right hand side corresponds to SPM,

and the second term corresponds to XPM.
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Now that we have developed this model, let us consider the effects of group velocity

mismatch, dispersion, and loss in fiber on the propagation and phase accumulation in the

fiber. In order to do so, we begin by defining three useful lengths. The first is the walk-off

length, i. e., the length over which the nonlinear interaction between the pump and signal

fields will occur. This is defined as Lw = T0/|d| where T0 is the pulse width, and d = v−1
gs −v−1

gp .

The second length is the dispersion length defined as LD = T 2
0 /|β2|. The last length is the

effective fiber length over which the fiber is essentially lossless for the propagating field. This

is defined as Leff = [1− exp(αL)]/α.

These parameters provide us some baseline for which to operate XPM experiments. For

instance, if the length of fiber, L, is much longer than LD, then we can ignore dispersion

effects. Alternatively, increasing the fiber length such that L > 2Lw will not provide any

additional phase modulation since the pulses will not interact after that length. Similarly,

if L ≫ Leff , the signal will be lost in the fiber due to loss. Hence we can design an XPM

switch with these parameters in mind.

2.3.3. Four-wave mixing in Optical Fiber

Now that we have developed a model considering SPM and XPM, we will move our focus to

looking at FWM which is useful for photon-pair generation. In our previous consideration

of the SPM and XPM, we ignored the contributing terms due to FWM. We were able to

do so by making the assumption that there existed a phase-mismatch that suppressed that

action. While any four-wave interaction is an example of four-wave mixing, in this section

we will address specifically the FWM where the phases match and thus contribute to photon

generation at new frequencies.
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To begin this analytical discussion, let us then consider four distinct waves oscillating at

ω1, ω2, ω3, and ω4. Let us assume all of these waves are linearly polarized along the ~x axis,

and propagating along the ~z axis. We can therefore write the total electric field as

E = ~x
1

2

4∑

j=1

Ej exp[i(βjz − ωt)] + c.c. (2.20)

where βj = njωj/c. If we supply this equation into the relation PNL = ǫ0χ
(3)...EEE, then we

can write PNL in the same form.

PNL = ~x
1

2

4∑

j=1

Pj exp[i(βjz − ωt)] + c.c. (2.21)

We note here that each Pj consists of a large number of terms arising from the products of

the three electric fields. We will also make the assumptions of a quasi-CW case—to ignore

pulse propagation effects—and a lossless transmission medium. By factoring the electric

field’s transverse component out, as done in Eq. 2.18, and assuming that the transverse

spatial profile in fiber is guided, we obtain the equations governing the field’s amplitude

propagation through the fiber, shown here:

dA1

dz
= iγ1

[(
|A1|2 + 2

∑

j 6=1

|Aj|2
)
A1 + 2A∗

2A3A4 exp(i∆kz)

]
(2.22a)

dA2

dz
= iγ2

[(
|A2|2 + 2

∑

j 6=2

|Aj|2
)
A2 + 2A∗

1A3A4 exp(i∆kz)

]
(2.22b)

dA3

dz
= iγ3

[(
|A3|2 + 2

∑

j 6=3

|Aj|2
)
A3 + 2A1A2A

∗
4 exp(i∆kz)

]
(2.22c)

dA4

dz
= iγ4

[(
|A4|2 + 2

∑

j 6=4

|Aj|2
)
A4 + 2A1A2A

∗
3 exp(i∆kz)

]
(2.22d)
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where we have introduced the wave-vector mismatch parameter ∆k = β3 + β4 − β1 − β2.

In this definition, βj = ñjωj/c, and ñj is the effective mode index at the frequency ωj.

Analyzing these equations, we see that the first term on the right hand side is once again the

SPM term. The summation term describes the XPM between that wave and each other wave

separately. Finally, the last term on the right hand side corresponds to the FWM process.

In order to have an efficient FWM process, we want to minimize the wave-vector mis-

match, ∆k. We also note that FWM is a parametric process, i. e., no energy is transferred

between the medium and the light. This latter point implies that we must conserve energy

and momentum and thus, ω1±ω2 = ω3+ω4. Since phase matching highly detuned frequencies

is difficult, it is quite often seen that this aforementioned energy relation is ω1+ω2 = ω3+ω4.

It is often easier to limit the number of frequencies involved in this interaction and

employ some form of degeneracy. This can occur if the source uses two pump photons

such that ω1 = ω2, or if two detuned pump photons generate degenerate signal and idler

photons such that ω3 = ω4. From this point forth we will simply call the former case

FWM, and the latter case degenerate FWM. The photon-pairs (and entangled photons)

generated in the sources described in Chp. 5 occur due to a spontaneous FWM process. The

“spontaneous” qualifier indicates that we do not seed the signal and idler frequencies, ω3

and ω4. Based on the treatment above, this scenario should yield no signal and idler photons

since A3 = A4 = 0, but as we will show in the following section, vacuum fluctuations lead to

spontaneous emissions in the signal and idler bands.

2.4. Quantization of the electric field

In the previous section, we introduced the nonlinear optical phenomena of FWM and

XPM. These are important to the experiments discussed in this thesis. We applied the
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classical treatment to derive these relations. Since we are interested in quantum information

processing, in this section, we derive the aforementioned nonlinear phenomena using the

quantum mechanical treatment. We start our quantum mechanical analysis of FWM by first

quantizing the electric field, and then using that formalism to describe XPM and FWM. The

Hamiltonian of a simple harmonic oscillator is

Ĥ =
1

2m
p̂2 +

m

2
ω2q̂2, (2.23)

where p̂ and q̂ represent the particle’s momentum and location, respectively. We remark

that the symbols that “wear hats” are operators. This conventional notation for operators

will be used for the remainder of this dissertation.

Using those terms for position and momentum, we can respectively define the annihilation

and creation operators as

â =

√
mω

2~
q̂ +

1√
2m~ω

p̂, (2.24)

and

â† =

√
mω

2~
q̂ − 1√

2m~ω
p̂. (2.25)

Supplying Eqs. (2.24) and (2.25) into Eq. (2.23), we obtain the following equation.

Ĥ =
1

2
~ω
(
ââ† + â†â

)
(2.26)

Using the commutation relation, [â, â†] = 1, this equation simplifies to

Ĥ = ~ω

(
â†â+

1

2

)
= ~ω

(
N̂ +

1

2

)
(2.27)
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where N̂ = â†â is the number operator. Based on this derivation, it is easy to see that the

Hamiltonian acting on the vacuum state, |0〉, yields

Ê |0〉 = Ĥ |0〉 = ~ωN̂ |0〉+ ~ω

2
|0〉 = ~ω

2
|0〉 . (2.28)

This result tells us that, even in the absence of all particles, there is a non-zero energy.

For our subsequent discussion, this implies that, although there may seem to be no present

energy at the signal and idler wavelengths classically, the vacuum field is always present.

This background due to vacuum provides the impetus for the spontaneous generation of

FWM photons.

2.4.1. Quantum mechanical treatment of spontaneous FWM and XPM

The sources discussed in this thesis make the assumption of a strong undepleted pump. As

such, the pump in the forthcoming discussion will not be treated quantum mechanically.

For simplicity, we will also assume the fiber used is short enough to ignore any dispersion

effects and loss. The following discussion is based on the work of Lin et al. [46], and makes

the assumption that the signal and idler are co-polarized with the pump.

The commutation relation of the optical fields is

[
Â(z, ωm), Â

†(z, ωn)
]
= 2πδ(ωm − ωn) (2.29)

where the 2π is an artifact of the Fourier transform. We introduce a parameter m̂ to describe

the noise operator arising from the presence of the phonon reservoir and its coupling with

the optical field due to the Raman process. This parameter is introduced to preserve the

commutation relation while allowing for spontaneous Raman scattering. Conservation of the
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previous commutation relation requires the following equality.

[
m̂(z,Ωu), m̂

†(z′,Ωv)
]
= 2πg‖(Ωu)δ(z − z′)δ(Ωu − Ωv) (2.30)

where Ωj is the detuning from the classical pump field, and g‖ is the measured co-polarized

Raman gain.

Similar to what we showed before during the classical treatment, we will not try to solve

directly for the equations describing the pump propagation through the fiber. Unlike what

we did in Eq. (2.18), we will not factor out the transverse spatial profile or phase information

from the slowly varying field envelope. Thus, we have Ap(z) = Ap0 exp(ikpz + γP0z) where

we define the pump power P0 = |Ap0|2. Based on this, we can describe the signal and idler

evolution using

∂Âs
∂z

= i [ks + γξ(Ωsp)P0] Âs + iγη(Ωsp)A
2
p0Â

†
i + iAp0m̂(z,Ωsp) (2.31a)

∂Âi
∂z

= i [ki + γξ(Ωip)P0] Âi + iγη(Ωip)A
2
p0Â

†
s + iAp0m̂(z,Ωip) (2.31b)

where Ωjp = ωj − ωp, j ∈ (s, i). Here, we also introduced the terms ξ(Ωjp), and η(Ωjp). The

former describes the nonlinear phase shift due to XPM and Raman scattering. The latter

describes the FWM efficiency. These two terms are more precisely defined as

ξ(Ωjp) = 2− fR + fRg‖(Ωjp), (2.32)

and

η(Ωjp) = ξ(Ωjp)− 1, (2.33)
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where fR is the fractional contribution of the Raman response to the nonlinear index of

refraction. For both of these terms, the constant dominates. If we set fR = 0, then we will

be ignoring the Raman contribution as we did in the analysis earlier.

Using the equations above, we obtain the following general solutions for the electric field

amplitude after propagation through fiber of length L.

Â(L, ωs) =
[
α(L, ωs)Â(0, ωs) + β(L, ωs)Â

†(0, ωi) + N̂(L, ωs)
]
exp[i(kp + γP0)z] (2.34a)

Â(L, ωi) =
[
α(L, ωi)Â(0, ωi) + β(L, ωi)Â

†(0, ωs) + N̂(L, ωi)
]
exp[i(kp + γP0)z] (2.34b)

The first two terms in each of these come from FWM, while the last term is a result of

Raman scattering. The coefficients in these equations are defined as follows:

α(L, ωu) = [cosh(gL) + (iκ/2g) sinh(gL)] exp[i(ku − ku′)L/2] (2.35)

β(L, ωu) = (iγη/g)A2
p sinh(gL) exp[i(ku − ku′)L/2] (2.36)

N̂(L, ωu) = i

∫ L

0

m̂(z,Ωup)[Apα(L− z, ωu)− A∗
pβ(L− z, ωu)]dz (2.37)

where u ∈ (s, i), u′ = i if u = s, and u′ = i if u = s. We define the phase mismatch using

κ = ks+ki−2kp+2γP0(ξ−1), and the parametric gain coefficient g by g2 = (γηP0)
2−(κ/2)2.

The aforementioned equations are very general, and account for stimulated and sponta-

neous processes. For the desired entanglement, we want to limit the stimulated processes.

This is achieved by maintaining γPL≪ 1. We also make the assumption that the signal and

idler are centered near the phase-matching location such that Re(κ) ≈ 0. Finally, we will

assume that the signal and idler are filtered using square, band-pass filters with bandwidth

∆ν (in Hz).
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We now define the signal/idler photon flux as Iu = 〈Â†
u(L, t)Âu(L, t)〉. The angle brackets

denote averaging with respect to the vacuum input state. We also make the assumption that

the phonon reservoir is described by a thermal population, n(Ωuv) = [exp(~|Ωuv|/kBT )−1]−1,

for the frequency Ωuv = ωu−ωv, and at temperature T . We remark that kB is the Boltzmann

constant. We define N (Ωuv) = n(Ωuv) + u(−Ωuv) where u(x) is the unit step function.

Using this, we can write the photon flux as

Iu = ∆ν
(
|γP0Lη(Ωup)|2 + P0L|g‖|N (Ωup)

)
(2.38)

Based on this, we see that the photon flux due to FWM photon pairs is proportional to

P 2
0L

2, while the contribution from Raman scattering is linearly proportional. We see later

that the quadratic nature of the photon pairs also impacts the switching performance. Based

on this, we have two parameters that we can use to reduce the effect of Raman contributing

to the photon flux. The first way is to adjust the detuning. The other is to cool the fiber

significantly. The latter effect is the reason all the photon-pair or entangled photon sources

described in this thesis are cooled to the liquid nitrogen temperature of 77 K.

Now that we understand some of the background information for fiber optics that is

necessary to understand the forthcoming discussion, we will look at how to describe quantum

states.
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CHAPTER 3

Introduction to Quantum Information Processing

In this chapter, we provide the groundwork for discussing quantum information process-

ing. We will take a look at the basics of quantum states. We begin with a brief look at pure

and mixed qubit states; the latter will require an understanding of density matrices. We will

then look at multiple-qubit states, therein introducing the concepts of entangled and sepa-

rable states. This will encompass polarization-entangled states. We then turn our attention

to higher-dimensional states which we can use to describe time-bin-entangled states. We

will conclude with a discussion of various metrics one can use to measure the entanglement

quality and purity of a state.

3.1. Representations of single-qubit states

In traditional computing, i.e., for classical information, the fundamental piece of informa-

tion is a binary digit, a.k.a. bit. The “binary” descriptor indicates that our data is represented

by either a 0 or 1. For quantum information processing, the fundamental unit is called a

quantum binary digit, or qubit for short. Unlike the classical case, the qubit can exist in

a superposition of both 0 and 1 simultaneously. Since this state has two bases (0 and 1),

we say that it exists in a two-dimensional Hilbert space. Utilizing Dirac’s bracket notation

(see appendix E), we can describe any pure single qubit state (or ensemble of identical pure

qubit states) as

|ψ〉 = α |0〉+ β |1〉 , (3.1)



51

where α and β are complex coefficients (α, β ∈ C) which obey the normalization relation

|α|2 + |β|2 = 1. Alternatively, by ignoring the global phase, we can write this state vector as

|ψ〉 = A |0〉+ Beiφ |1〉 . (3.2)

Here, A, B, and φ are real coefficients, i. e., A,B, φ ∈ R. Also, by applying the normalization

constraint, we obtain B =
√
1− A2. For convenience, we often set A = cos(θ) and B =

sin(θ), thereby implicitly satisfying the normalization condition.

In this thesis, much of the work we discuss deals with polarization-based QIP. As such,

we define |H〉 ≡ |0〉 and |V 〉 ≡ |1〉 as the basis states. Using these, we can then define other

useful polarization states:

|D〉 ≡ (|H〉+ |V 〉)/
√
2

|A〉 ≡ (|H〉 − |V 〉)/
√
2

|R〉 ≡ (|H〉+ i |V 〉)/
√
2

|L〉 ≡ (|H〉 − i |V 〉)/
√
2.

(3.3)

These states represent diagonal, anti-diagonal, right-circular, and left-circular polarization

states of light.

3.1.1. Density matrix representation

Density matrices are another representation for describing a state. For the aforementioned

pure states, we can write the respective density matrix as

ρ̂ ≡ |ψ〉 〈ψ| (3.4)
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We remind the reader that the “hat” on the ρ indicates that this is an operator. As before,

this definition will also describe an ensemble of identical states.

Unfortunately, not all possible state ensembles that we see or measure are pure states.

For instance, photons from a thermal light source will seem to be mixed. Similarly, if we

measure an ensemble of pure states such that the pure states are not identical, then we will

also obtain a mixed state. For states like these, which have some mixture, we must describe

them as a sum of pure states. Hence, a more general definition for a single-qubit density

matrix is

ρ̂ ≡
∑

j

Pj |ψj〉 〈ψj| =




〈0| 〈1|

|0〉 A Ceiφ

|1〉 Ce−iφ B


. (3.5)

There are several characteristics of a density matrix which always hold true. It is Hermitian

(ρ̂ = ρ̂†), is positive semi-definite (A,B,C ∈ R; A,B,C ≥ 0), and has a trace of one

(Tr(ρ̂) = A + B = 1). Consequently, as a byproduct of the trace condition, the coefficients

Pj are probability weights, i. e.,
∑

j Pj = 1. Also, the bras and kets denote that this density

matrix represents the state measured in the |0〉 , |1〉 basis.

Of course, we can rotate the state onto other bases. As such, we note that any physical

density matrix can be diagonalized as

ρ̂ =




〈ψ| 〈ψ⊥|

|ψ〉 E1 0

|ψ⊥〉 0 E2


 = E1 |ψ〉 〈ψ|+ E2|ψ⊥〉〈ψ⊥|. (3.6)

In this case, E1 and E2 represent the eigenvalues of the density matrix and |ψ〉 and
∣∣ψ⊥〉

are the corresponding eigenvectors. By definition, eigenvectors are orthogonal, which we
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explicitly denote using the ⊥ symbol. As an aside, any two states, |ψm〉 and |ψn〉, are

orthogonal if |〈ψm|ψn〉| = 0.

One convenient benefit of using the density matrix to describe our state is that we can

quickly determine if the state is pure or mixed. We perform this test by supplying our state

ρ̂ into the following relation Tr(ρ̂2) ≤ 1. If and only if we satisfy the equality condition,

then ρ̂ is a pure state, otherwise, it is mixed. Another benefit of the density matrix is that

we can compare how similar or dissimilar two states are with respect to one another. We

investigate how to do this in §3.4.

3.1.2. Stokes parameters

Now that we understand a little bit about density matrices, we turn our attention to a unique

decomposition of them. Any single-qubit density matrix can be decomposed and described

using three parameters, {S1, S2, S3} such that

ρ̂ =
1

2

3∑

j=0

Sjσ̂j. (3.7)
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Here, σ̂ are the identity and Pauli matrices. Explicitly written, they are defined as

σ̂0 ≡



1 0

0 1


 ,

σ̂1 ≡



0 1

1 0


 ,

σ̂2 ≡



0 −i

i 0


 ,

σ̂3 ≡



1 0

0 −1


 .

(3.8)

We obtain the S-parameters, referred to as the Stokes parameters, using

Sj ≡ Tr{σ̂j ρ̂}. (3.9)

Often, we use the S-parameters to define the polarization of an EM-field. They can be used

to describe any polarization from an unpolarized light, to partially polarized elliptical light,

to fully polarized light. Mapping the S1–S3 terms to the Cartesian coordinates x, y, z, one

can directly plot the polarization on a unit sphere.

Again, a quick test can determine whether this state is pure or mixed. If
∑3

j=1 S
2
j = 1,

the state is pure. If
∑3

j=1 S
2
j < 1, the state is partially mixed. For a completely mixed state,

∑3
j=1 S

2
j = 0. Finally, S0 = 1 due to normalization. Also, note that Sj ∈ R.

Minds much smarter than mine have realized that the Stokes parameters have a phys-

ical meaning. They can be physically measured by determining probabilities of projective
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measurements as follows:

S0 = P|0〉 + P|1〉

S1 = P 1√
2
(|0〉+|1〉) − P 1√

2
(|0〉−|1〉)

S2 = P 1√
2
(|0〉+i|1〉) − P 1√

2
(|0〉−i|1〉)

S3 = P|0〉 − P|1〉.

(3.10)

Here, P|ψ〉 is the probability of measuring the state |ψ〉. This probability can be determined

using P|ψ〉 = 〈ψ| ρ̂ |ψ〉 = Tr{|ψ〉〈ψ|ρ̂}. In other words, this is the probability of projecting

a given state ρ̂ onto the pure state |ψ〉. Note that P|ψ〉 + P|ψ⊥〉 = 1. This equality can

sometimes simplify other equations.

3.2. Representations of multiple-qubit states

Now that we know how to describe and compose a single-qubit state, we can investigate

how to describe states that have more than one qubit. Anym-qubit pure state can be written

as

|ψ〉m = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψm〉 , (3.11)

where |ψj〉 for j ∈ {1, . . . ,m} are all single-qubit states of the form shown in Eq. (3.1).

Also, ⊗ indicates a tensor product, which mathematically describes how we combine Hilbert

spaces. We can write this state more explicitly as

|ψ〉m =
∑

q1,q2,...,qm∈{0,1}
αq1q2···qm |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qm〉 , (3.12)

where αq ∈ C and
∑

q |αq|
2 = 1. In order to help the reader understand this more clearly,

we briefly provide two examples below. The first is the most general representation of any
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two-qubit pure state:

|ψ〉2 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 . (3.13)

We introduce here the shorthand notation that |00〉 = |0〉1 ⊗ |0〉2 where the subscripts label

the photon. Going one step further, we show the most general form a three-qubit pure state:

|ψ〉3 =α000 |000〉+ α001 |001〉+ α010 |010〉+ α011 |011〉

+α100 |100〉+ α101 |101〉+ α110 |110〉+ α111 |111〉 .
(3.14)

As an aside, we introduce here some of the most common two-qubit pure states, the

maximally entangled Bell states [33].

∣∣φ±〉 = 1√
2
(|00〉 ± |11〉)

∣∣ψ±〉 = 1√
2
(|01〉 ± |10〉)

(3.15)

These states are useful since they form an orthonormal state basis, and are fundamental to

testing Bell’s theorem.

Just as we did for the single-qubit state, we can represent an m-qubit state using density

matrices instead. This enables us to discuss mixed m-qubit states. Hence, we define the

(2m × 2m)-dimensional density matrix as

ρ̂ =
∑

j

Pj |ψj〉 〈ψj|, (3.16)

which is an incoherent sum of pure states. Although the equations look identical, the differ-

ence between Eq. 3.5 and Eq. 3.16 is that |ψj〉 is a single-qubit state in the former equation,

and a m-qubit state in the latter equation.
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Now that we have established the density matrix formulation for an m-qubit state, we

turn our attention to a particular example of mixed states, the Werner states [47]. These

states represent maximally entangled states that have an added mixed component. The

mixed part is similar to introducing uniform noise to an ideal state. Mathematically, we

express this as

ρ̂W = p|γ〉〈γ|+ (1− p)
1

m
I, (3.17)

where |γ〉 is an arbitrary maximally entangled state, I is the identity matrix, and 0 ≤ p ≤ 1.

The identity matrix represents a totally mixed state. Since this state represents the addition

of noise to an ideal state, it is useful to use when simulating entangled state generation.

3.3. Representations of higher dimensional states

In this section, we explore how to represent states that are not binary, i. e., two dimen-

sional. If we have a state that exists in a d-dimensional Hilbert space, then, recalling our

naming convention for qubits, we call this quantum d-ary digit a qudit. A pure state of this

form can be written as

|ψ〉d = α0 |0〉+ α1 |1〉+ · · ·+ αd−2 |d− 2〉+ αd−1 |d− 1〉 , (3.18)

where αj ∈ C and
∑d−1

j=0 |αj|
2 = 1. The subscript on the left-hand-side ket denotes that this

a qudit state.

If we pick d = 3, then we have a trinary state. We call this quantum trinary digit a

qutrit. Explicitly written with the global phase removed, we can write any qutrit state as

|ψ〉3 = A0 |0〉+ A1e
iφ1 |1〉+ A2e

iφ2 |2〉 , (3.19)
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where Aj, φj ∈ R, and
∑2

j=0A
2
j = 1. Similarly, a quantum quaternary (d = 4) state—called

a ququat state—can be explicitly written as

|ψ〉4 = A0 |0〉+ A1e
iφ1 |1〉+ A2e

iφ2 |2〉+ A3e
iφ3 |3〉 (3.20)

with Aj, φj ∈ R, and
∑3

j=0A
2
j = 1.

Thus far, the higher-dimensional states described are all unipartite. If we expand to

multi-partite systems, then we write that state as

|ψ〉m,d = |ψ1〉d ⊗ |ψ2〉d ⊗ · · · ⊗ |ψm〉d . (3.21)

Here, each state |ψj〉d is a qudit state as denoted by the subscript d. We remark here

that, in the preceding equation, all parts of the state have the same dimension d. This

is not necessary, i. e., a state described as a tensor product of a d-dimensional state and

d′-dimensional state, with d 6= d′, is equally valid. We limit the scope to equi-dimensional

particles since those describe the states developed in this dissertation.

Additionally, since the states of interest for this dissertation are bipartite, we assume

m = 2. Thus, we can represent any two-qutrit pure state as

|ψ〉2,3 = |ψ1〉3 ⊗ |ψ2〉3

= α0β0 |00〉+ α0β1 |01〉+ α0β2 |02〉

+ α1β0 |10〉+ α1β1 |11〉+ α1β2 |12〉

+ α2β0 |20〉+ α2β1 |21〉+ α2β2 |22〉

(3.22)
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The coefficients αj and βj are from |ψ1〉3 and |ψ2〉3, respectively, in accordance with Eq. (3.18).

For completeness, we can similarly write any two-ququat pure state as

|ψ〉2,3 = |ψ1〉3 ⊗ |ψ2〉3

= α0β0 |00〉+ α0β1 |01〉+ α0β2 |02〉+ α0β3 |03〉

+ α1β0 |10〉+ α1β1 |11〉+ α1β2 |12〉+ α1β3 |13〉

+ α2β0 |20〉+ α2β1 |21〉+ α2β2 |22〉+ α2β3 |23〉

(3.23)

The density matrix form for qudits is identical to that shown in Eq. (3.5) with one small

change; each state |ψ〉 is now a qudit rather than a qubit. As such, the bipartite density

matrix for equi-dimensional qudits exists is a (d2 × d2)-dimensional matrix.

As we move to higher dimensions, more maximally entangled qudit states are possible.

An example two-photon, maximally entangled qudit state can be written as

|ψ〉 = α0 |00〉+ α1 |11〉+ · · ·+ αd |dd〉 (3.24)

In Chp. 7, we will show results from our efforts to generate and measure maximally

entangled, two-photon qutrit and ququat states of this form. In the next section, we see how

to determine the Stokes parameters for such higher-dimensional states so that we can use a

tomography to reconstruct them.

3.3.1. Qudit Stokes parameters

Earlier, in §3.1.2, we showed how to determine the Stokes parameters for a single-qubit

state. Akin to that we can develop a formalism for higher-dimensional states. The work
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in this section is based on a paper from Thew, et al. [48] and mimics the notation from Joe

Altepeter’s thesis [49].

We can write the density matrix for a one-qudit state as

ρ̂d =
1

d

d2−1∑

j=0

Sjσ̂j. (3.25)

This equation can take a different form, akin to the form seen earlier for a one-qubit example.

In order to do so, we expand this equation as

ρ̂d = S0σ̂0 +
d−1∑

k=1

k−1∑

j=0

(SXj,kσ̂
X
j,k + SYj,kσ̂

Y
j,k) +

d−1∑

l=1

SZl σ̂
Z
l (3.26)

Here, we define the Stokes matrices and parameters as

σ̂0 = I, S0 = 1,

σ̂Xj,k = |j〉〈k|+ |k〉〈j|,

SXj,k = P 1√
2
|j〉+|k〉 − P 1√

2
|j〉−|k〉,

σ̂Yj,k = −i (|j〉〈k| − |k〉〈j|) ,

SXj,k = P 1√
2
|j〉+i|k〉 − P 1√

2
|j〉−i|k〉,

σ̂Zl =

√
2

l(l + 1)

[(
l−1∑

j=0

|j〉〈j|
)

− l|l〉〈l|
]
,

SZl =

√
2

l(l + 1)

[(
l−1∑

j=0

P|j〉

)
− lP|l〉

]
.

(3.27)

Note that for all states shown here, the vectors’ and matrices’ indices range from 0 to d− 1,

i. e., we label the rows and/or columns from 0 to d− 1. Additionally, we note that, at most,

we require a superposition of two orthogonal states in order to determine all the Stokes
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parameters. Thus, to determine any state, we need only the ability to measure pairwise

superpositions of all orthogonal bases. This will later become important when determining

how to reconstruct qutrit and ququat states using quantum state tomographies.

We now explicitly write the Stokes matrices and parameters for a qutrit state as follows:

σ̂0 =




1 0 0

0 1 0

0 0 1




σ̂Z1 =




1 0 0

0 −1 0

0 0 0




σ̂Z2 =




1 0 0

0 1 0

0 0 −2




σ̂X0,1 =




0 1 0

1 0 0

0 0 0




σ̂X0,2 =




0 0 1

0 0 0

1 0 0




σ̂X1,2 =




0 0 0

0 0 1

0 1 0




σ̂Y0,1 =




0 −i 0

i 0 0

0 0 0




σ̂Y0,2 =




0 0 −i

0 0 0

i 0 0




σ̂Y1,2 =




0 0 0

0 0 −i

0 i 0
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and

S0 = 1,

SZ1 = P|0〉 − P|1〉,

SZ2 =
1√
3

(
P|0〉 + P|1〉 − 2P|2〉

)
,

SX0,1 = P 1√
2
(|0〉+|1〉) − P 1√

2
(|0〉−|1〉),

SX0,2 = P 1√
2
(|0〉+|2〉) − P 1√

2
(|0〉−|2〉),

SX1,2 = P 1√
2
(|1〉+|2〉) − P 1√

2
(|1〉−|2〉),

SY0,1 = P 1√
2
(|0〉+i|1〉) − P 1√

2
(|0〉−i|1〉),

SY0,2 = P 1√
2
(|0〉+i|2〉) − P 1√

2
(|0〉−i|2〉),

SY1,2 = P 1√
2
(|1〉+i|2〉) − P 1√

2
(|1〉−i|2〉).

Prior discussion has been limited to one qudit. We can extend this for an m-qudit state

as follows:

ρ̂md =
1

dm

d2−1∑

j0,··· ,jm=0

Sj0,··· ,jm σ̂j0 ⊗ · · · ⊗ σ̂jm . (3.28)

We will not consider an explanation beyond this mention since we only discuss the Stokes

parameters for qudits to highlight that we require pairwise superpositions of all bases to

tomographically reconstruct the states.

Now that we have discussed the ability to describe higher-dimensional states using density

matrices, we can quantify how close a given state is to a maximally entangled quantum state.

We will take a look at various metrics to do so in the next section.
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3.4. Measures of quality of entanglement

In this section, we briefly define and describe three useful measures that compare the

similarity of two different states. If we define one of these states as a maximally entangled

state, then we can use these metrics to determine the quality of entanglement. Additionally,

as a measure for the “quantumness” of our state, if it can violate Bell’s inequality [33], then

we say our state is a quantum state. Using some of the metrics shown in this section, we

can determine whether the measured state will violate Bell’s inequality [50]. The first such

measure is fidelity. The next is linear entropy. The final metrics, which we will not use in

this thesis, but include for the reader’s knowledge, are the related measures, concurrence

and tangle.

3.4.1. Fidelity

The fidelity measures the overlap between two states, i. e., how similar two states are with

respect to one another [51]. Mathematically speaking, this is defined as

F (ρ̂1, ρ̂2) =

[
Tr

(√√
ρ̂1ρ̂2

√
ρ̂1

)]2
, (3.29)

where ρ̂1 and ρ̂2 are the density matrices for two states |ψ1〉 and |ψ2〉. We remark that if |ψ1〉

and |ψ2〉 are pure states, then this formula simplifies to F (ρ̂1, ρ̂2) = Tr(ρ̂1ρ̂2) = |〈ψ1|ψ2〉|2.

This calculation yields a value between 0 and 1, but it is more common to express the value

as a percentage.

For the remainder of this thesis, if we do not mention both states, i. e., we use only F (ρ̂1)

instead of F (ρ̂1, ρ̂2), then we are reporting the fidelity of the given density matrix ρ̂1 to the

density matrix |γ〉〈γ|, where |γ〉 is a maximally entangled state. For two-qubit applications,
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the maximally entangled state takes the form of |γ2〉 = (|00〉+ eiφ |11〉)/
√
2. For three qubit

applications, it has the form |γ3〉 = (|00〉+ eiφ1 |11〉+ eiφ2 |22〉)/
√
3.

Additionally, for switching applications, we define the switching fidelity FS ≡ F (ρ̂, ρ̂′)

where the absence or presence of the prime superscript indicates passive- or active-mode

operation of the switch, respectively. See Chp. 6 for more details about switching.

For a quick test to determine whether a state with a given fidelity is in fact quantum, we

show in Fig. 3.1(a) the range of higher-dimensional states (up to d = 8) that do or do not

violate the appropriate Bell inequality [50]. States with a measured fidelity corresponding to

the shaded region cannot violate Bell inequalities and therefore we cannot know for certain

they are quantum states.

Figure 3.1. (a) Fidelity and (b) linear entropy as a function of the number of
dimensions, d, for a qudit. The blue shaded area represents states that will
not violate the appropriate higher-dimensional Bell inequality.
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3.4.2. Linear Entropy

The Von Neumann entropy of a quantum state describes the amount of mixture of a state [52].

This is defined as

S(ρ̂) ≡ −Tr(ρ̂ ln ρ̂) = −
∑

i

ρ̂i ln ρ̂i. (3.30)

A more analytically convenient description of state’s mixture is provided by the linear en-

tropy, which for a two-qubit system is defined as

SL(ρ̂) =
4

3

(
1− Tr(ρ̂2)

)
=

4

3

(
1−

4∑

a=1

p2a

)
. (3.31)

Here, pa are the eigenvalues of ρ̂. Thus, the linear entropy ranges from 0 for pure states to

1 for totally mixed states. For a two-qudit system, we define the linear entropy as

SL(ρ̂) =
d

d− 1

(
1− Tr(ρ̂2)

)
=

d

d− 1

(
1−

d∑

a=1

p2a

)
. (3.32)

Using the aforementioned for two-qudit linear entropy equation, we can again determine

the “quantumness” of the measured state by comparing the measured linear entropy to the

plot shown in Fig. 3.1(b). Again, the shaded region represents states that do not violate

the appropriate Bell inequality, and therefore cannot be known as quantum states. In other

words, classical states can yield those results as well.

3.4.3. Concurrence and Tangle

Concurrence and tangle is another metric which can be used to characterize the quality of

entanglement [53]. More specifically, it measures the non-classical properties of a quantum

state. Since, in this thesis we often consider two-qubit states, we show here the definition of

concurrence and tangle for this case.
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We start by considering the non-Hermitian matrix, R̂ = ρ̂Σ̂ρ̂TΣ̂. Here, ρ̂ is the density

matrix for a quantum state |ψ〉, superscript T designates transpose, and Σ̂ is the ‘spin flip

matrix’ defined as

Σ̂ ≡




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0




. (3.33)

By solving R̂ for its eigenvalues, and arranging them in decreasing order such that r1 ≤ r2 ≤

r3 ≤ r4, we define the concurrence as

C = Max(0,
√
r1 −

√
r2 −

√
r3 −

√
r4). (3.34)

Given this definition of concurrence, the tangle is simply defined as

T ≡ C2. (3.35)

Here we note that for separable, product states, the tangle is 0, whilst for any maximally

entangled state such as the Bell states, the tangle equals 1.
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CHAPTER 4

Survey of Alternative Technologies and Demonstrations

In this chapter, we present a survey of existing technologies that have been used for rout-

ing photonic information. We also motivate the framework for the design of our all-optical,

fiber-based switch. In addition, we review alternate demonstrations of higher-dimensional

quantum entanglement. As such, we divide the chapter into two sections. Section 4.1 will

investigate other experimental switching technologies. The second section, §4.2, will take a

look at generating and measuring high-dimensional entanglement. For comparison with the

work done in this thesis, we show only bipartite demonstrations where each part exists in a

Hilbert space of dimension greater than two.

4.1. Survey of optical switching technologies

Switching is a fundamental requirement for any networked information transfer. Unfor-

tunately, we cannot use the currently available photonic switches, such as those used for

transmitting information across the internet, since they use a detect-and-reemit paradigm.

Quantum mechanically speaking, the detection process measures our state, thereby obscuring

access to much of the potential information that was encoded on the photon.

Fortunately, for QIP, there are currently many implementations that use a variety of

switching mechanisms, all of which do not require detection. For each switch, the designers

must make trade-offs to obey a certain set of constraints depending on the switch’s intended

use. As such, in this section, we will investigate the design parameters that are of interest
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for the most general switch. While doing so, we introduce some other switching designs as

a means to highlight their advantages or disadvantages.

Decoherence and linear loss: In most QIP implementations, decoherence and loss of the

qubit are often the performance limiting metrics. For optical QIP, while decoherence is not

usually a concern, linear loss is detrimental to the extent that it limits the feasibility of any

practical implementation. This enforces exacting criteria on the design of devices that are

intended for QIP and long-distance quantum communications (LDQC). For example, ideal

linear optical quantum computing requires >82% transmission through the entire system

for fault-tolerant algorithms to succeed [54,55]. Hence, every component (including switching)

needs to be as lossless as possible. Until improvements are made by material scientists,

this rules out switches with lossy propagation mediums. Examples of such designs are those

based on cascaded χ(2) processes [56,57] implemented in materials such as lithium niobate [58,59].

These technologies suffer from scattering losses in the material as well as coupling losses.

Currently, one of the lowest loss mediums is standard optical fiber made from silica. A

switch based on this is preferred since it is immediately compatible with the fibers used for

long-distance transmission. Other fibers such as hollow core fibers [60] and photonic crystal

fibers [61,62] exhibit higher scattering and coupling losses.

In-band noise: We also need to make sure that our signal does not accrue additional noise

while traveling through the switch. Any noise that obscures our signal requires techniques

such as redundancy to accurately receive the message. Silicon-based implementations are

impeded by the presence of noise photons due to the free-carriers present [63–67]. Additional

background noise may arise in the form of spontaneous emission in resonant systems [17,68,69].

These designs rely on the state of an atom, which coherently absorbs the information-carrying

photon, to route the photon. Unfortunately the fact that absorption is possible necessarily
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means that spontaneous emission is possible. This latter effect leads to in-band photons

which act as noise in the quantum channel—precisely the opposite of our desired goal.

Hence, we want a design that operates far off of resonance on the anti-Stokes side for the

signal photons. In so doing, any noise photons generated due to spontaneous emission or

Raman production can be easily filtered out.

High-speed: In order for LDQC to be feasible, existing classical data rates—which are

near TB/s—need to be matched. While in principle, each quantum state can store an

infinite ”amount” of information, encoding and decoding such states is impractical. There-

fore, in a realistic scenario, due to the presence of loss and using quantum error correction

codes (QECC) for combating loss, high-speed switching is crucial in any implementation.

High-speed switching enables faster transmission of information for quantum communica-

tions applications. Resonant atom-photon type switches are limited to MHz rates [17,68,69].

This slow speed offsets other benefits of such switches like having near single-photon level

switching energies. The desire to switch at high rates excludes any technologies that rely on

moving parts such as MEMS [70–73], acousto-optical [74], or opto-mechanical [75] switches. This

indicates that we want a switching technology that is either electro-optical or all-optical.

All optical and coherent: Between switches that do not have physical moving parts,

an all-optical switch is preferable to an electro-optical one. The reason for this is that an

electro-optical modulator (EOM) type switch [76–78] dissipates all of the RF energy used to

activate the switch in the form of heat. In other words, the microwaves and optical waves

are irreversibly coupled. Reversible coupling (or identically, unitary gates) for optical inter-

actions are highly preferred since they reduce the power threshold, and comparatively, little

optical energy is actually dissipated. As scalable technologies come to the fore, dissipation

needs to be addressed as it will otherwise become a bottleneck for any all-optical circuit.
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Moreover, a coherent all-optical switching mechanism can reuse the optical pulses that acti-

vate the switch, since the activation process is dissipation free. This is advantageous because

of its implications for fan-in and fan-out of the switch.

State preserving: A very important criteria for QIP is that the switching technology must

retain the transmitted quantum state. Ideally, the switch retains the quantum state for

every possible degree of freedom of a photon including frequency, pulse shape, polarization,

and phase. In other words, for optical QIP switching, propagating a photonic state through

a switch should not affect its spectral, temporal, spatial or other properties of the photons

in any manner. Such an adjustment could corrupt the desired state. Additionally, the

switch should not entangle the signal photons to the environment or the activation source.

The latter would be an implementation of a CNOT gate, thereby coupling the signal to

another particle and changing its state. χ(2) based switches are prone to pulse distortion.

Thus, they are not desired for applications where the spatio-temporal profile is important.

For polarization-based QIP, switches that are polarization sensitive, such as EOM-based

switches [76–78], are nonideal since both polarizations are not switched identically. For much

of the work presented in this thesis, polarization is important, so our design will need to

address the issue of polarization sensitivity.

Scalable: As we hope to grow the QIP infrastructure, we also desire our switch to be

scalable. In this sense, technologies that require significant overhead and additional support

equipment, such as atomic switches [17,68,69], are nonideal. Currently, integrated photonics

based switches [63–67] have made significant progress. In fact, an on-chip photon-pair source

has been manipulated and measured using reconfigurable photonic circuits [79].

Network integrable: Another feature of an ideal switch for QIP is for it to be network

integrable. Since there are many dark fibers currently laid across the globe, it would be best
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if the switching technology could integrate with that framework. This would remove the need

to create new channels between nodes in a quantum internet [80]. Such a switch should be able

to route photons that exist in telecom bands and be fiber-pigtailed for low-loss coupling into

and out of the device. This is amenable with silicon photonic [63–67], EOMs [76–78], and fiber-

based switches [61,81], but rules out technologies such as cascaded χ(2) and atomic switches.

Low activation energy: In order to be energy efficient, an ideal switch should require very

little energy to toggle the switch from one position to another. For an all-optical switch, that

entails operating the switch with a low-photon number pump. We note that coherent states

have a photon-number uncertainty
√
n̄, where n̄ is the mean photon number. Therefore, for

low-photon number switching energies, it is highly desirable for the switching mechanism

to be insensitive to pump energies past a minimum threshold. This ensure that the switch

remains a deterministic gate. We remark that while a truly single-photon pump is interesting,

it may not be desired for switching applications because such a design entangles the pump

and signal photons therein changing the quantum state of the system.

Large dynamic range: An auxiliary feature of a the ideal switch is for it to have a large

dynamic range for potential as transistor-type applications. By this, we mean that the

switch performance works equally well for one photons as it does for millions of photons.

Such a switch can be useful for routing classical signals equally as well as quantum signals.

This could theoretically be used in a feed-forward type experiment where a time-multiplexed

classical signal precedes the quantum-information-carrying photon to determine the traveled

route. This feature implies that we cannot use resonator-based switches [82–84], since the

presence of a signal photon often changes the resonance condition blocking subsequent signal

photons from coupling into the device.
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Self-stabilizing: In terms of more economical goals, we prefer a self-stabilizing design—one

that does not require active stabilization—made of low-cost components because these factors

reduce the overhead and cost for implementing many switches. For this, we desire a design

that is intrinsically stable. Such designs include integrated photonics based switches [63–67] or

designs that are built around stable geometries like a Sagnac interferometer [85–89].

Low cost: The ideal switch should not cost very much to produce. We recognize that

if a technology is sufficiently capable and superior to alternate options, the free-market

will try to find ways to reduce the cost of that item. As such, more mature technologies,

like silicon-based switches [63–67], EOMs [76–78] are increasingly affordable. Alternatively, built

upon decades of telecom component development, a switch that uses standard optical fiber

components can be made at comparatively cheaper costs.

4.2. Survey of entanglement in higher-dimensional Hilbert spaces

In this section, we briefly take a look at various realizations of higher-dimensional en-

tanglement. As mentioned before, for comparison sake, we limit the scope to bipartite

demonstrations.

4.2.1. Orbital angular momentum entanglement

Demonstrations that use orbital angular momentum (OAM) for their operational degree

of freedom offer the benefit of working in very large Hilbert spaces [7,90–92]. Unfortunately,

they also require free-space transmission and spatial light modulators. Free-space transmis-

sion raises concerns about unequal phase variation between the different transverse spatial

modes. Compensating for these phase differences requires the use of a spatial light modu-

lator (SLM). An SLM is also used as a holographic mask with which one can generate the
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OAM transmission profile. The challenge with using SLMs is that, at best, they operate

at MHz rates. This limits the rate of operation for any desired QIP application that uses

OAM for higher-dimensional entanglement. As such, these can serve as great exploration

tools for higher-dimensional spaces, but are impractical for LDQC applications and quantum

information transfer.

4.2.2. Energy-time entanglement

Rather than using a photon’s OAM degree of freedom, we can use another d-dimensional

degree of freedom. One such method is to use energy-time entanglement. In this type of

system, one uses a downconversion source to generate frequency-correlated pairs. Then,

by playing some dispersion games with the photons, the user can obscure the arrival tim-

ing information. This process entangles the photons in the energy-time degree of freedom.

Several groups have used this type entanglement to demonstrate higher-dimensional entan-

glement [93–96].

4.2.3. Time-bin entanglement

Another degree of freedom that we can use is the arrival time of the photon at the single-

photon detectors. If we discretize the arrival time into short windows, we create time-bins

within which our photon can exist. If two photons arrive at the same time, they form the

state |tata〉 indicating they arrived at time ta. We can entangle this by generating pairs of

photons in various time-bins without generating them in multiple time-bins simultaneously.

In other words, if we generate photon-pairs in a single time-bin (out of d total time-bins),

but we do not know which one, then we can describe our state as |t1t1〉+ |t2t2〉+ · · ·+ |tdtd〉,

an example of a d-dimensional maximally entangled state.
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As we will explain in §5.4, generating this type of entanglement is rather easy for pho-

tonic QIP. Hence, others have attempted to realize such higher-dimensional entanglement.

Unfortunately, they lack high-speed switches to measure such states quickly. As such, they

are forced to either reduce their source rate [97], apply frequency conversion on the signal [98],

or incur a photon losses by using splitters [99]. We show in this thesis our efforts to realize

such a system using the high-speed cross-bar switch described in the next chapter.

4.2.4. Hyperentanglement

Hyperentanglement is a type of entanglement where in we obtain higher dimensionality

by entangling different degrees of freedom. Such systems have been demonstrated (mostly

by the Kwiat group) using combinations of polarization, spatial, time-bin, OAM, and/or

time-energy degrees of freedom [4,100–104]. While such systems do provide access to additional

degrees of freedom, they also require additional complexity and care to ensure appropriate

manipulation and measurement of the quantum state is performed without affecting the other

degrees of freedom of the hyperentangled state. In particular, long-distance fiber transport

of such entangled states will likely require photonic crystal fiber. As discussed earlier, this

introduces the additional challenges of scattering and coupling losses for us to overcome.

Now that we have surveyed the landscape of other switching efforts and higher-dimensional

demonstrations, we turn our attention to the design of our switch.
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CHAPTER 5

Generation of Pump Pulses and Photonic Entanglement

In order for us to create reliable quantum information processors, we must have a source

that creates photon pairs. Sometimes we want that source to be a simple correlated photon-

pair source. Correlated photon-pair sources are useful for those applications that use herald-

ing, where the detected presence of one photon informs the user of the presence of a part-

ner photon. But for other desired quantum protocols, correlated photons are not suitable

enough. In such cases, we may require entangled photons. Ideal entangled-photon sources

should satisfy several key functions and characteristics. They should generate an entangled-

photon pair efficiently—ideally on-demand. The quantum state of the generated entangled

photons should be tunable between completely separable and maximally entangled. Regard-

less of the choice of one’s preferred metric (fidelity, tangle, linear entropy, or another), the

quantum state generated should have great accuracy and precision with the desired state.

Another key characteristic is that the entangled photon source should operate at speeds fast

enough to create pairs at the desired communications rate. Oftentimes, in practice, gener-

ation speeds are not the problem, but rather detection rates. In other words, for photonic

QIP, it it easy to generate photon pairs at fast rates, but detecting these photons at such

high rates is significantly more difficult. Since such ideal sources do not currently exist,

we shall use the remainder of this chapter to describe the efforts from our lab to develop

photon-pair and entangled-pair sources which satisfy as many of these goals as possible.
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As we discussed in Chp. 2, there are two important nonlinear optical phenomena we

utilize in our experiments. The first is XPM, which we use to achieve switching, and the

second is FWM, which we use to generate our photon pairs and/or entangled photons. In

this chapter, we describe the various experimental setups we used to create the pump pulses

for XPM (§5.1) and FWM (§5.2). We start this chapter with a description of the various

XPM pump pulse preparation systems we used. Since we generate the FWM pulses by either

chopping a CW laser or pulse picking using an amplitude modulator, most of the effort for

that system involves designing the electronics that drive the modulator. Hence, the following

section describes the multiple generations of electrical systems used. Finally, we will describe

the optical setups used to generate photon-pairs (§5.3), time-bin entanglement (§5.4), and

polarization entanglement (§5.5). Further details of the polarization entanglement source

can be found in other references from our group [3,37].

5.1. Generation of XPM pump pulses

In this section, we describe a source that prepares the optical pulse that we use as our

control signal for our switch (discussed later in Chp. 6). The critical property we desire

for this XPM pump pulse is that it has two frequency components that are orthogonally

polarized. We want these components to propagate together and have equal intensities. The

purpose of these criteria is to ensure that our switch is polarization-insensitive.

5.1.1. First-generation XPM pump pulse preparation

The first pump pulse preparation was inherited from previous projects in our lab, including

prior switching demonstrations. The general schematic is shown in Fig. 5.1(a). We seed

this source with a broadband, femtosecond fiber laser (IMRA Femtolite BX-60) centered at
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1550 nm. We route this to a free-space grating filter, shown in Fig. 5.1(b), to spatially divide

the frequency components. After reflecting the signal off a mirror and a second traversal

through the grating filter, we pick off the separated frequency components at 1545 nm and

1555 nm. Later, these selected frequencies were changed to 1551 nm and 1559 nm since we

could obtain more optical power from the IMRA at those frequencies.

Figure 5.1. (a) This schematic shows the first-generation optical system that
prepares the XPM pump pulses for use in switching. We use a broadband,
narrow-pulse-width, fiber laser (IMRA) as the seed. From this we pick-off two
wavelengths using a free-space double-pass grating filter (DGF). Recombining
these wavelengths at a PBS yields dual-wavelength, orthogonally-polarized
pump pulses. A tunable optical delay for one of the colors ensures that the
orthogonally-polarized pulses are cotemporal. (b) We show the schematic of
the system employed to pick off the two distinct frequencies from the broad-
band input pulse. Initially, the two selected frequencies were 1545 nm and
1555 nm. Later, we used 1551 nm and 1559 nm since they were better bal-
anced in power.

Once we have selected these two frequencies, we route them to opposite inputs of a fiber-

coupled polarizing beamsplitter (PBS). Using the respective FPC in each path, we maximize

the power out from the same port of the PBS. This naturally imposes the orthogonality

condition on the two frequencies. A tunable delay line in the 1551-nm path enables us to
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temporally overlap the frequencies. Hence, we have the desired XPM pump pulse—a dual-

frequency, orthogonally-polarized, cotemporal pulse with a width of approximately 10 ps.

5.1.2. Second-generation XPM pump pulse preparation

Upon the arrival of higher-rate (1.25 GHz) detectors in our lab, we needed to design a system

that is capable of generating pulses at this higher rate. Unfortunately, that meant that we

could no longer use the IMRA as our XPM pump pulse source. As such, we need to devise

a new method to generate the C-band optical pump pulses.

Figure 5.2. This schematic shows the second-generation optical system that
prepares the XPM pump pulses. Akin to the first system, this system gener-
ates two orthogonally-polarized, cotemporal optical pulses. These pulses are
centered at 1547 nm and 1551 nm. The phase modulator chirps the CW seed
laser. The subsequent 5-km fiber spool compresses the chirped pulses to yield
a 10-GHz pulse train with ≃20-ps pulse widths. The free-space tunable optical
delay (FS-TOD) enables us to control the arrival time of this pulse train into
the amplitude modulator. This modulator pulse picks from the 10-GHz train
to yield a downcounted train with a tunable repetition rate of f MHz. In
this thesis, we use both f=50 MHz and f=250 MHz. After amplification and
filtering, we use a 1551-nm WDM to split the two frequencies apart, and then
recombine them at a PBS to ensure orthogonal polarizations.
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The first design solution, shown in Fig. 5.2, uses two CW distributed-feedback (DFB)

lasers as the source lasers. The first laser is centered around 1547 nm, while the second laser

is centered around 1551 nm. We chose these frequencies because of their availability in the

lab. Other CW lasers can be used, but this requires changing the following filtering. The two

CW seed lasers are combined at a 50:50 beamsplitter and sent through a phase modulator

that is driven with a 10-GHz sine wave. This modulation causes sidebands to appear in the

frequency space.

As a brief aside, we show the mathematical derivation of these sidebands here. Imagine

we have a pure sine wave at frequency ωc. We can describe this signal using the equation

Aeiωct. (5.1)

If we modulate the phase of this signal using a sine wave at ωm and with small amplitude

β, then we can describe the field at the output using

Aeiωct+iβ sin (ωmt) = Aeiωct(1 + iβ sin (ωmt)). (5.2)

Here, we show the first two terms of the Taylor expansion on the right hand side. Using

Euler’s formulas, we can rewrite the right hand side as

Aeiωct

(
1 +

β

2
(eiωmt − e−iωmt)

)
= A

(
eiωct +

β

2

(
eiΩ

+t − eiΩ
−t
))

. (5.3)

Thus, we see that we have generated two new terms located at Ω± = ωc ± ωm. These

represent the creation of sideband frequencies that are detuned from the central frequency

by the modulated frequency. Of course, earlier, we arbitrarily took only the first two terms

of the Taylor expansion. Instead, if we include all the terms from the Taylor expansion, then
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we obtain

Aeiωct+iβ sin (ωmt) = Aeiωct

(
J0(β) +

∞∑

k=1

Jk(β)
(
eikωmt + (−1)ke−ikωmt

)
)

= A · J0(β)eiωct +
∞∑

k=1

A · Jk(β)
(
eiΩ

+

k
t + (−1)ke−iΩ

−
k
t
) (5.4)

We use the Jacobi-Anger expansion, a useful identity involving the Bessel functions Jk(β), to

obtain the previous result. This time we see an infinite number of sidebands corresponding

to Ω±
k = ωc ± kωm with varying amplitudes. These sidebands appear at integer multiples

of the modulation frequency. Since our modulation frequency is 10 GHz, we expect to see

sidebands detuned by that amount from each of the central frequencies of the DFB lasers.

When looking at this signal in the time domain, it will resemble a 10-GHz pulse train.

By sending this pulse train into the 5-km spool of fiber, the chirped pulses’ widths compress

due to dispersion yielding us with pulse widths ≃20 ps. We show the autocorrelation of

this pulse in Fig. 5.3. We chose the length of fiber to be 5-km because we had the spool in

lab. We also had another 2-km spool, but tests using just the 2-km spool or the (2+5)-km

spools yielded wider pulse widths. If required, better dispersion engineering, either by using

a dispersion-shifted fiber or performing a precise calculation for the length of SMF, can be

used to improve the pulse width.

Now that we have a 10-GHz pulse train with narrow pulses, we route the pulses to a free-

space tunable optical delay (FS-TOD). Since both frequencies are co-polarized, we use a PBS

to discriminate between incoming and outgoing beams. That is to say, the incoming beam

is adjusted to be H-polarized using the preceding FPC, thereby transmitting through the

PBS. After passing through the QWP (set to 22.5◦), reflecting off a translatable mirror, and

passing through the QWP a second time, this H-polarized light should become V-polarized.
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Figure 5.3. When both colors are present, we see the optical interference yield-
ing int he beat note on the pulse envelope. If we fit to the pulse using a
squared hyperbolic secant (red line), we can calculate the width of this pulse
to be 19.3 ps.

Thus, it reflects off the PBS toward the output collimator. By placing the mirror on a linear

translation stage, we can adjust the path length, thereby creating a tunable optical delay.

This tunability allows us to align the arrival time of the optical pulses with the electrical

pulses in the amplitude modulator. The amplitude modulator pulse-picks, and thereby

downcounts, the 10-GHz pulse train to match our detection gating repetition rate (or an

integral divisor of said quantity). We will discuss the system used to generate the electronic

signals later in §5.2.6, but for now, suffice it to say, we downcount to 50-MHz and 250-MHz

for various tests shown in this thesis.

After amplifying the downcounted pulse train and using a wide bandwidth filter, we use

a narrowband WDM centered at 1551 nm to spatially separate the two pump frequencies.
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As done in the first generation, we individually route each frequency through an FPC and

onto a PBS. We adjust the FPCs to maximize the power at the output of the PBS. Again,

there is a tunable optical delay in one of the paths that we use to temporally align the two

pulses at the output of the PBS. This yields the desired XPM pump pulse.

5.1.3. Third-generation XPM pump pulse preparation

Although the second generation design can be used, it often drifted in power. These power

fluctuations resulted from random thermal fluctuations of the 5-km fiber spool which affected

the pulse-picking performance of the amplitude modulator. The fluctuations were particu-

larly problematic since the subsequent 2-W EDFA’s safety checks would automatically turn

itself off if the input power fell below a minimum threshold (0.08 mW). Hence, we made a

few changes to the second generation’s design.

The first change is to wrap the fiber spool with bubble wrap and styrofoam to provide

thermal isolation. The goal is to minimize the effect of ambient environmental temperature

fluctuations that cause the fiber length to change.

The second change is to remove the FS-TOD. This apparatus, although not too lossy, does

introduce additional loss, particularly from free-space-to-fiber coupling. More importantly,

we can reproduce its functionality by simply adjusting the relative frequencies of the input

CW wavelengths. Adjusting their frequencies modifies their group velocity difference, albeit

only slightly. Nonetheless, since we use km-length scales of fiber, that small change can

yield enough temporal tunability to align the XPM pulse train with the electronic pulse

train at the amplitude modulator. Conveniently, our DFB modules provide us with limited

tunability, thus, we can safely eliminate the free-space delay optics from our system.
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Finally, the third change to improve the output power from this system involved replacing

the 50:50 beamsplitter at the input with an optical add-drop multiplexer (OADM). The

OADM adds in a specific narrow frequency band into the desired spatial path. In this case,

we matched the OADM frequency with the later WDM’s frequency at 1551-nm. If necessary,

this affords us the flexibility to still change the 1547-nm laser to a different frequency in the

future. The schematic of this final design is shown in Fig. 5.4.

Figure 5.4. This schematic shows the third-generation optical system that pre-
pares the XPM pump pulses. This system makes few modifications to the
second-generation system (shown in Fig. 5.2). These include the replacement
of the 50:50 beamsplitter with an optical add-drop multiplexer (OADM), ad-
dition of thermal isolation around the fiber spool, and removal of the FS-TOD.

5.2. Generation of FWM pump pulses

For all the sources described in this chapter, we have a system where an input laser is sent

through an EOM to either chop the signal when the input is the tunable continuous-wave

(CW) laser (Santec TSL-210V), or to pulse pick the signal when the laser is a pulsed laser

(U2T Photonics TMLL-1310). The U2T laser generates femtosecond pulses at a 10-GHz

rate. These pulses are temporally broadened after sending the broadband laser through a



84

WDM. We require the WDM to select a narrow bandwidth pulse around the desired FWM

pump frequency at 1305 nm. This filtering broadens their width from 2 ps [39] to widths on

the order of 20 ps.

For the remainder of this section, “CW source” refers to the usage of the chopped Santec

setup, and “pulsed” or “U2T source” refers to the usage of the pulse-picked U2T setup.

Detailed descriptions of both configurations are provided in the sections which follow. De-

scribed in §5.2.1, the CW source was used to demonstrate early versions of the switching

technology and entanglement generation. In an effort to demonstrate faster switching, we

moved to the higher-rate, narrower pulse-width U2T source. We describe modifications and

improvements to the setup and its operation in §5.2.2, §5.2.3, §5.2.4, and §5.2.5. Finally,

learning from the lessons of the previous generations, we designed and built the electrical

pulse preparation electronics system described in §5.2.6. Aspirations to use a higher-rate

detection system, remove effects from neighboring pulses, and generate narrowly-separate

pulse packets at tunable intervals motivated us to build the latest system.

All of the source preparations discussed in this section follow a simple paradigm. We

start by generating a square wave with the shortest rise and fall times as possible. Next,

we perform an AND operation on the square-wave with a temporally displaced version of

itself to generate a narrow pulse. In later designs, we add a third step of cleaning up the

pulse’s rise/fall times and trailing overshoot fluctuations by using a D-flip-flop to discretize

the output.

5.2.1. Original FWM pump pulse preparation

In Fig. 5.5, we show the original schematic of the chopping circuitry used to generate test

pulses demonstrated in Matthew Hall’s PhD Thesis, and for his entanglement source [3,37].
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Figure 5.5. Schematic showing the original chopping scheme. The C-band
XPM pump preparation, along the orange (top) path, shows the creation of
the dual-wavelength, orthogonally-polarized XPM pump and its subsequent
amplification for use in the switch. Along the blue (bottom) path, we show
the CW laser being chopped into 50-MHz, 100-ps pulses and then amplified
for demonstration of switching. Following the black (middle) path, is the
electronics which determines the chopping frequency, and pulse-shape. Also,
shown is feedback loop implemented for long-term stability.

In this scheme, for convenience, everything was triggered from a 50-MHz C-band pulsed

laser, thus establishing the fundamental clock for the system. The electrical output of the

laser/clock was used to trigger the gated Geiger-mode detectors (Nucrypt CPDS-1). These

detectors were at the time not used for any detection but rather for the regular 50-MHz

square wave they generate at their CLK OUT port. This output was split such that one

path was sent to the first data port (In1) of a 13-GHz multiplexer (Inphi 20709SE) hereafter

referred to as MUX. The other path from output clock was sent to the select port (SEL=Sp-

Sn) of the MUX. The second data port (In2) of the MUX was connected to ground. In

this configuration, whenever the SEL was high, the MUX would output the value of In1,

and whenever SEL was low, the MUX would output the value of In2, i.e. zero. Thus, this

MUX behaves functionally as a traditional AND gate. Since both provided inputs are square

waves, varying the relative path between the In1 path and SEL path, a tunable width pulse
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was obtained at the output of the MUX. The output of this MUX was then sent to an EOM

driver/amplifier (Picosecond Pulse Labs 5865). This amplifier is naturally connected to the

EOM which then performs the chopping operation on the source. For this design, while we

were able to obtain 100-ps chopped CW pulses, our pulse would contain ∼300-ps tail which

would reduce our switching contrast.

Figure 5.6. (a) Pin-layout of Inphi 20709SE with voltage connections. Note
that the subscripts ‘p’ and ‘n’ designate complementary ports. Since Sn is
connected to ground, SEL = Sp−Sn = Sp. (b) We show here four contemporary
plots to pictorially describe the operation of the Inphi 20709SE. Note that
when the SEL and In1 traces are both high, the Outp is also high. Otherwise,
since In2 is set to GND, if SEL or In1 is low, then Out2 is low. (c) Truth table
for the operation of Inphi 20709SE.

After the EOM and the first EDFA, we have a 90:10 coupler. While the 90% port is sent

to be used in the experiment and is amplified, the 10% port is used for a feedback mechanism.

This feedback is necessary to compensate for any long-term drifts in polarization and bias

voltage. The polarization drift is accounted for by placing a linear polarizer (ThorLabs

IFP1310PM-FC) after the EOM. This polarizer is inserted in a fashion to be on-axis with

the EOM’s active axis. By doing so, off-axis polarization components are removed from the

transmitted signal. While this would normally yield a fluctuating output power, using the

PDFA in Automatic Level Control (ALC) mode ensures a constant output power. Thus, the

first PDFA along with the polarizer account for any polarization drift.
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The voltage and source drift leading to poorer extinction through the EOM is compen-

sated using feedback electronics that Matthew Hall designed and implemented. A 100.5-kHz

sine wave is generated using a sine-wave function generator (Elenco GF-8026). This sine

wave is combined with a DC bias voltage from a power supply (Elenco XP-581) using a

bias-tee (Mini-Circuits ZFBT-6GW-FT). Monitoring the 10% port mentioned earlier on a

photodiode, and sending the electrical signal to a lock-in amplifier (Stanford Research Sys-

tems SR530) which is synchronized with the 100.5-kHz sine wave, the extinction is monitored

and additional voltage is applied as necessary to maintain highest extinction.

5.2.2. First-generation FWM pulse-picking source

While switching with CW light is convenient, we are limited to the ∼100-ps pulse widths

obtained from the chopping window. Due to imperfect chopping, these pulses also tend to

have a low-amplitude tail that extends for ∼300-ps after the main pulse which will reduce

the switching contrast and switching performance. If we wish to demonstrate even faster

switching, we need to move to narrower pulses. In order to accomplish this, we change our

1310-nm laser from the CW Santec to a pulsed U2T laser which outputs pulses at 10-GHz

repetition rate and 100-fs pulse widths. These pulses are spectrally filtered to the desired

1305-nm wavelength and thus temporally broadened to approximately 20 ps.

Unfortunately, since the pulse-picking window operates at 50 MHz, we need a method

to lock the 10-GHz pulse train to the 50-MHz clock. This lock should prevent the 10-GHz

signal from ”walking around” with respect to the 50-MHz chopping window. For this reason,

we employ the pulse-picking system shown in Fig. 5.7. Rather than using the electrical clock

from the IMRA laser as the source, we instead opted to photodetect a portion of the optical

output obtained using a 95/5 beamsplitter. This clock signal was then amplified, and sent
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Figure 5.7. First-generation pulse-picking laser source. While the pump pulse
generation and the chopping circuitry remain the same as the original chopping
scheme, we replace the CW Santec laser with the 10-GHz pulsed U2T laser.
In order to ensure that the 10G pulses are stable with respect to the 50-MHz
chopping clock, additional electronics are employed to hybrid mode-lock the
U2T laser.

through an electrical low-pass filter yielding a 50-MHz sine-wave. This pure tone was then

sent as a reference to a 10-GHz dielectric resonator oscillator (DRO) which was locked to

the 50-MHz signal. The output from this was amplified by about 30 dB, then slightly

attenuated using a 6 dB splitter, and finally passed through a phase-shifter before being sent

as the reference for hybrid mode-locking of the U2T.

Since the U2T outputs temporally-narrow, spectrally-broad pulses, further pulse condi-

tioning is required. Hence, we introduced an isolator to prevent back-reflections into the

laser, followed by a WDM at the desired operating wavelength of 1305 nm. Since this filter-

ing reduces the power, we pass the signal through an FPC and the semiconductor optical

amplifier (SOA). The FPC is necessary to maximize transmission and gain through the

polarization-dependent SOA. Finally, we pass the signal through another WDM filter before

sending it along to the same EOM setup, now used as a pulse-picker instead of a chopper.
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We note the addition here of a beamsplitter and photodetector after the second WDM.

This photodetected signal is mixed with a 12-GHz oscillator and monitored on an electrical

spectrum analyzer (ESA). This is done to keep a watchful eye on the hybrid mode-lock

established between the 10-GHz DRO and the passive mode-lock condition of the U2T laser.

It is necessary to have this because we observe drift over the course of several hours between

these two which would require tuning the passive mode-lock of the U2T to re-obtain the

lock. The 12-GHz oscillator is only used to produce a beat signal so that we can monitor

the signal on our ESA since our ESA is limited to seeing up to 3-GHz signals.

5.2.3. Second-generation FWM pulse-picking source

While the first generation pulse-picker was able to do the trick, it had a couple problems.

The first such problem was that it used the CLK OUT from the Nucrypt detectors tying

up these detectors without using them for the desired intent. It was also found that the

square-wave from the Nucrypt detectors was not ideal inasmuch as it provided a reasonable

source of jitter and therefore temporal walk-off. We theorized that this led in part to signal

walk-off between our 50-MHz and 10-GHz signals and required the retuning of the U2T’s

passive mode-lock rather regularly.

As shown in Fig. 5.8, in an effort to clean up the square-wave and use the Nucrypt CPDS-

1 for detection rather than as a triggered square-wave generator, our second generation laser

source preparation entailed replacing the Nucrypt CPDS-1 with an FPGA board (Digilent

Spartan-3E). The FPGA board would accept a trigger from an optically detected pulse and

generate a 50-MHz square-wave, 47% duty cycle at the output. Following the same 2:1 MUX,

we would generate short pulses. Unfortunately, while we were at times able to generate pulses

shorter than 100-ps, stability of this system was a lingering issue.
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Figure 5.8. Second-generation pulse-picking laser source. While functionally
very similar to the previous generation, this design replaces the use of the
Nucrypt CPDS-1 CLK I/O for an FPGA with code used to generate a 50-
MHz square wave based on an input 50-MHz trigger. It also modifies the
source of the 50-MHz trigger from the electrical output of the IMRA to the
photodetected output previously only used to hybrid mode-lock the U2T.

When further investigated, it was determined that there were two errors. First source of

this issue was the electrical output of the IMRA. For some reason, as yet unknown, this out-

put was not providing a regular 50-MHz pulse train which would be useful for synchronizing

with the IMRA’s optical pulse train. It has been noticed that varying torque and tension

on the electrical output also corrupts the optical signal. As such, it was decided to not use

this port, and instead, simply use the photodetected pick-off already being used to lock the

U2T. This change is also noted in Fig. 5.8.

A second issue with this setup is that the DRO which was used to lock the U2T to

the IMRA began malfunctioning. After repair, a neater signal was witnessed, but this time

with a persistent 100-ps jitter. A jitter of that magnitude obscures any ability to view a

100-ps-wide pulse. While we were able to later track the source of timing jitter to the slow

and inconsistent clocking of the FPGA, at this time, we were uncertain what was the cause,
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and instead set out to eliminate the jitter. As such, another source preparation mechanism

was necessitated.

5.2.4. Third-generation FWM pulse-picking source

Our first attempt to remedy the large jitter entailed using a D-type flip-flop (DFF) to clean

up the signal. When we first implemented this solution, the hope was to be able to clearly

delineate between low and high values over the 100-ps pulse and be able to use the high-speed

operation of the DFF to create sharp rising and falling edges. Also, it was hoped that the

100-ps jitter would disappear since we are now clocked at 10-GHz, i. e. only once every 100 ps

would we select the value of the MUX’s output to be either low or high. Hence, the DFF

was used to discretize the MUX output to eliminate the 100-ps jitter while also providing

regular low or high levels to eliminate spurious ripples caused by electrical overshoot.

Figure 5.9. Third-generation pulse-picking laser source. We now added a D-
type flip-flop (DFF) to aid us in discretizing the pulse output to eliminate the
100-ps jitter, and also provide us with regular low and high voltage levels to
reduce electrical overshoot generated by the MUX.

We show in Fig. 5.9 the changes to the setup. In this new setup, we also note the

relocation and addition of the phase shifters. We have added one phase-shifter to only
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one input of MUX. This enables us to select a relative difference between the two paths

of MUX—and thus the output pulse width from the MUX—in a continuous fashion. This

merely allows for more precise tuning and was very useful in conjunction with the DFF used

to discretize this output.

While the data obtained using this source preparation was good and we were able to

obtain 100-ps pulse with <10-ps jitter and minimal ripples after the main peak, it had one

lingering problem. Due to the aforementioned 100-ps jitter, the discretization operation

of the DFF would often lead to identical pulses to the main pulse, but shifted ±100-ps.

Although these neighboring pulses were present less often than the main pulse, they were

still present, and would lead to worse results than originally hoped. It was at this time that

we finally traced the source of the original jitter to the FPGA and required a new solution

for the generation of the square-wave.

5.2.5. Fourth-generation FWM pulse-picking source

In order to resolve the jittering problem, the system was tested with a DFF instead of the

FPGA. The DFF was used because it was clocked at 10-GHz rate which already inspired

confidence insofar as enabling faster signals with low jitter. The general principle in using

a DFF for generating a square-wave is to discretize an input pulse of arbitrary pulse-width

into its low and high values thereby generating a square wave. This method only works

satisfactorily if the input pulse has a “clean” pulse shape. Here, “clean” is used to mean

that the pulse has regular rising and falling edges which are largely devoid of abnormal

spikes. These spikes can yield additional square pulses which can complicate the ANDing

process that follows.
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By sufficiently attenuating the input of the DFF, one can clean up the noise on a signal

and obtain a decent input pulse. Although the width of the pulses generated using this

mechanism are significantly smaller than the previous methods of generating pulses, the

pulse width does not matter if it is larger than the desired 100-ps pulse since we will again

reduce the pulse width to the desired 100-ps value using the ANDing procedure.

Figure 5.10. Fourth-generation pulse-picking laser source. We now introduce
a second DFF, this time serving the purpose of creating the square wave used
for the ANDing procedure performed by the 2:1 MUX.

We show in Fig. 5.10 the new setup for obtaining the pulse-picking pulse. Here, we have

replaced the FPGA with a DFF which is also clocked using the 10-GHz output from the DRO.

This DFF discretizes the pulse obtained from the pick-off port of the IMRA and generates

a square-wave. Note that we have also changed the pick-off from a 95/5 beamsplitter to the

reflect port of a PBS with a HWP in front. This allows for more transmission, and less loss

for the XPM pump pulse condition, while also having the added advantage of enabling us

to tune the width of the square-wave generated by tuning the reflected power of the PBS.
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Given that this method of generation for the pulse-picking laser source was stable, easily

tunable, and satisfactory, we used this for some of the tests shown later in Chp. 6. The other

tests use the newest setup discussed in the next section.

5.2.6. Fifth-generation FWM pulse-picking source

One of the challenges we observed in previous generations of the FWM pulse preparation

was that we always seemed to have some overshoot and broadening of the electrical pulse.

This resulted in the amplitude modulator pulse-picking neighboring pulses. Since all of the

electronics chips that we used were rated for 13-GHz operation, we theorized that maybe

using higher frequency electronics will reduce some of these effects. As such, we embarked

on designing a new electronics setup from the ground up.

As luck would have it, we also procured new higher-rate single-photon detectors (Nucrypt

CPDS-2000) around this time. Since we wanted our new electronics to harmoniously work

with those detectors and the previous version of the detectors (Nucrypt CPDS-4), our system

design needed to have an adjustable clock rate.

An additional design goal was to afford the ability to select a varying number of pump

pulses when we pulse-pick from the 10-GHz source. We desire this functionality because it

enables us to vary the number of time-bins that we generate as explained later in §5.4.

With these two main goals in mind, we designed and built the system shown in Fig. 5.11.

Since we want an adjustable clock source, we can no longer use the IMRA as our reference

clock generator. Instead, we opted to use a clock generator (Stanford Research Systems

CG635) tuned to 100 MHz and 50% duty cycle. We select this frequency since it matches

the phase-locking frequency of the 10-GHz and 20-GHz DROs (Microwave Dynamics PLO-

2020-10.00 and PLO-3070-20.00, respectively). The clock generator has two inverse outputs.



95

We use split one output and use that to drive each of the aforementioned DROs. We use

the 10-GHz DRO to hybrid mode-lock the U2T laser just as we did before. We also use the

12-GHz DRO mixed with a photodetected 10-GHz optical signal to monitor this phase-lock

quality on the ESA, as before. The 20-GHz DRO and subsequent phase shifter tune the

arrival time into the clock input of a latched comparator (Inphi 25707CP), which we denote

LC.

Figure 5.11. Fifth-generation FWM pulse-picking source. Starting from
square one, but using what we learned in the first four generations, we devel-
oped the entire electronics system shown here. This design uses higher-speed
electronics (>20 GHz). The latched comparator (LC) replaces the functional-
ity of the DFF. We now use an AND gate, instead of a 2:1 MUX, to yield the
ANDing operation. By adjusting the integer divisor of the frequency divider
(÷), we can change our pulse-picking frequency to any quotient, 1.25/n GHz,
where n ∈ [2, 32]. We often choose n = 25 or n = 5 to yield a 50-MHz or 250-
MHz pulse train, respectively. There are two important outputs to this design.
The first output pulse picks from a 10-GHz pulse train at the aforementioned
rate for use as a C-band XPM pump pulse. The second output pulse picks
up to four consecutive pulses from a 10-GHz pulse train at the repetition rate
mentioned above. We route this output to an O-band amplitude modulator
to create the FWM pump pulses.

The other output of the clock generator phase-locks a tunable frequency generator (Valon

Technologies 5008). Since the CPDS-2000 detector is clocked at 1.25 GHz, we set one output

of the frequency generator to match that. Ideally, we would set the other output to 50 MHz
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to match the CPDS-4 detector gating rate, but the Valon 5008 has a minimum frequency

output of 138 MHz. Thus, we opt to set the other independent output to 1.25 GHz also.

At this output, we place a frequency divider (Hittite HMC394LP4). This divider, denoted

by the ÷ symbol, can divide an input frequency by any integer between 2 and 32. Hence, we

set it to divide-by-25 to obtain a 50-MHz repetition rate signal. Alternatively, we can set it

to divide-by-5 for a 250-MHz repetition rate. We use the latter setting to demonstrate higher

rate switching. One output (shown as the negated port denoted by the ◦ at the output) of

the divider is split and sent to two locations: (1) the trigger to the communications signal

analyzer, CSA (HP CSA803 with SD-40 and SD-24 sampling heads), our active time-domain

monitor; (2) the clock input of the Nucrypt CPDS-4 detector array. On the output fed to

the detectors, we use a bias tee to add a DC offset voltage to protect the detector electronics.

The positive output of the frequency divider is an input to the LC. The LC is used to

create a sharp rise and fall time using the same principle as the DFF described earlier. Unlike

the DFF operation, which was clocked at a rate of 10-GHz, we designed this system to use

a 20-GHz clock. This increases the sampling of the signal, and thereby should improve the

rise and fall times.

As an aside, the LC, like many other high-speed electronics, is meant to be used with

common-mode logic designs. This means that it has positive and negative inputs (and

output). If we use each pair by inputing a signal and its inverse to the respective inputs,

then we are operating in double-ended mode. This has benefits of reducing noise on the

signal and improving signal fidelity at higher rates. Despite these advantages, we opt to use

these devices in single-ended operation mode since it gives us the flexibility to use the other

outputs as monitors or signals elsewhere. As an consequence of this, we need to terminate
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unused inputs to these devices with 50-Ω terminators to ensure proper internal impedance

matching and also protect the device from accidental electric shocks.

Just as we did before with the DFF, we route both outputs to two of the inputs of an

AND gate (Hittite Microwave HMC852LC3C). In one path, we insert a phase shifter to allow

us to control the relative overlap between the two signals. The AND gate replaces the 2:1

MUX from previous iterations of the electronics setup. We remark here that the AND gate

actually has four inputs, although only two are shown in Fig. 5.11. The other two inputs

are the respective inverse inputs for the shown inputs A and B, and are 50-Ω terminated as

mentioned above.

We route one output of the AND gate to the CSA to actively monitor the shape of the

pulses we are generating. The other output is split twice to create four identical pulses.

Using phase shifters in three of their paths, we can tunably delay them with respect to

the phase-shifter-less pulse. By recombining them using 2:1 electronic combiners (Marki

Microwave PBR-0012), we generate up to four pulses with 100-ps delays between them in

one cable. If we want fewer than four pulses, we can simply disconnect the undesirable

channels and terminate them with 50-Ω terminators. By changing the number of pulses,

we modify the number of time-bins our time-bin entanglement source creates, as described

later in §5.4. Because of the method of generation of these pulses, our current operational

limit is four pulses, but an additional “layer” of splitter and combiners can yield up to 8

time-bins. Hence, growing this system, while doable, can be an expensive solution. Thus,

we suggest future designers to possibly reconsider their method of generating a sequence of

pulses. Nonetheless, this output can then drive the amplitude modulator to generate the

desired FWM pump pulses.
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Figure 5.12. Autocorrelation of the filtered O-band pulse. When fit using a
squared hyperbolic secant (red line), and accounting for the autocorrelation
factor of 30 ps/ms, we obtain a corresponding width of 18.7 ps for our filtered
U2T pulses.

5.2.7. Characterization of O-band pulses

Setting the fifth-generation FWM pump pulse setup to select only one pulse, we can drive

the amplitude modulator to generate a 50-MHz pulse train. In Fig. 5.12, we show the

autocorrelated trace. Fitting this to a squared hyperbolic secant function, we obtain a pulse

width of ≃19 ps. This width defines the narrowest duration for each time-bin. Since this

width is due to broadening from filtering, we assume that if we increase the number of

consecutive pulses selected, they all have roughly this width. Now that we have electronic

pulses that chop or pulse-pick our laser source appropriately, we will investigate how to use

the resulting optical pulses to generate photon pairs.
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5.3. Photon-pair source

In this section, we will discuss a simple, basic design for photon-pair generation. In the

preceding section, we described the electronic systems used to drive the amplitude modulator.

The optical input to the amplitude modulator is a 10-GHz optical pulse train with center

wavelength of 1305 nm. After pulse picking, we have a f -MHz pulse train with ≃20-ps

widths and the same wavelength. As mentioned in the previous section, f can be tuned, but

often we set it to either 50 MHz or 250 MHz. Once we have this optical pulsed source, we

can route it to the elements that generate the photon pairs.

In Fig. 5.13, we see the laser source is fed through a circulator and into a 500-m spool of

standard SMF-28 optical fiber. Due to the χ(3) nonlinearity of the fiber, FWM generation

of signal and idler photons occurs. We submerge this fiber in a liquid nitrogen bath. By

cooling our fiber to 77 K, we suppress much of the spontaneous Raman photon generation

that could add background noise to single-photon measurements.

Figure 5.13. This correlated photon pair source is a 500-m spool of SMF-28
optical fiber cooled to 77 K with a sequence of WDMs to filter out the pump
wavelength and enable access to the signal and idler photons Usage of the
Faraday mirror and double-pass geometry via the circulator ensures long-term
polarization stability.

After propagating through a single pass of the fiber spool, the pump pulse is incident on a

Faraday mirror. Using the Faraday mirror yields two primary benefits. First, it doubles the

path travelled by the pump, thereby increasing the time during which the FWM process can
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occur. Second, it makes the source more phase stable by undoing any birefringence-induced

phase mismatch accumulated from travelling to the mirror on the return trip through the

fiber. This second benefit occurs because the photons’ rate of travel through the fiber

is significantly faster than the time-scale for any birefringence fluctuations to happen. By

routing this returned light through the circulator again, and then through a series of WDMs,

we can filter the signal and idler wavelengths from the pump wavelength. These photon

pairs can subsequently be routed to whatever following experimental apparatus/setup the

user desires.

5.3.1. Photon-pair-source performance

Using a stream of photon pairs, which arrive at a rate of 50 MHz, we characterized the photon

pair source described above. We performed these characterizations using the slower CPDS-4

detectors and the faster CPDS-2000 detectors. In order to be able to clock both detector

arrays, we use the pulse generation electronics described earlier in this chapter (See §5.2.6).

By tuning the pump pulse power, we can affect the photon-pair-production rate. Figure 5.14

shows the pair production rate as a function of the average measured pump power. We have

measured that, for varying powers, we can create photons with pair-production rates on the

order of 10−3–10−2 photons per pulse.

We obtain this figure by measuring coincidence counts and then back-calculating to

determine the number of photons produced at the source. This measurement requires two

detectors, one at each end of the signal (idler) paths. A coincidence count occurs when

these two detectors fire simultaneously, highlighted in green in Fig. 5.15. Throughout the

remainder of this thesis, we will simply refer to coincidence counts as coincidences. The
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Figure 5.14. Photon-pair production rate. We show here the photon-pair pro-
duction rate as a function of FWM pump pulse power for our source operating
at 50-MHz, and measured using both single-photon detector arrays available
to us. To avoid multi-pair production, we operate in the regime with a PPR
between 5×10−3 to 1×10−2, corresponding to a pump power of 100–150 µW.

actual calculation for the pair-production rate (PPR) used is

PPR =
C

g · η2d · η2f
. (5.5)

Here, C is the measure coincidences, g is the number of detection windows (gates) used to

collect them, ηd is the detection efficiency, and ηf is the transmission loss through fiber. For

this calculation, we estimate ηd ≃ 0.1 and ηf ≃ 0.33 as approximates for our experimental

conditions. We remark that the aforementioned PPR has units of number of photon pairs

per gate. Since the gate clock matched the pulse rate, this translates to photon pairs per

pump pulse.

We also characterize our sources by looking at the coincidence-to-accidental ratio (CAR).

This metric is useful because it essentially measures the signal to noise ratio of the source

at various pump powers.
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Figure 5.15. Example of measured coincidence and accidental counts. Here,
we show an example of how to obtain count coincidence and accidental counts.
The little red stars denote when detectors 1 or 2 have fired. S1 and S2 represent
the single counts when the detectors fire. C12 and A12 represent the coincidence
and accidental counts. These events are highlighted in green and orange ovals,
respectively. For this example, we assume that the accidental delay is set
to two gates, where the enumerated gates (G) indicate the detection window
during which counting happens.

An accidental count, heretofore referred to as an accidental, also exists when the detectors

both fire, but not due to two correlated photons. Accidentals can occur due to a single

photon in one path randomly firing simultaneously with a detector dark count in the other

path, or when both detectors have random dark count events. As a sidenote, a dark count

event happens due to random excitations in detectors since our detectors are not perfect

devices. We can artificially measure accidentals by comparing the signal photons’ data

stream with a time-delayed idler-photon data stream, as highlighted in orange in Fig. 5.15.

In the example shown, the accidentals’ delay for comparing the data streams is two gates.

While measuring accidentals is nice for quick sanity checks when performing experiments,

more often than not, we use calculated accidentals. We direct the reader to appendix A for

details on how we calculate dark-count-subtracted coincidences, calculated accidentals, and

dark-count-subtracted accidentals.
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Figure 5.16. Coincidence-to-accidental ratio (CAR). We show the CAR as a
function of the average FWM pump power for the 50-MHz repetition rate
pump.

We show in Fig. 5.16, the CAR of our system as a function of the average pump power.

Ideally, we want to operate at the highest CAR (≃100). Unfortunately, if we compare to the

pair production rate, this corresponds to very few coincidence counts per gate. This means

that we must count for a long time to obtain sufficient count statistics. Given that tomogra-

phies can take a while, and higher-dimensional tomographies will take even longer, we opt

to strike a compromise wherein we operate our source with a pump power corresponding to

a measured CAR of 10.

Another way to consider this situation is to look at the CAR as a function of the measure

coincidence counts per million gates. By doing so, we can ask, what CAR will we obtain

if we measure n coincidences count during a specified duration. This enables us to find a

balance between coincidence count rates and the best signal-to-noise ratio. This metric helps

us avoid counting for exorbitant durations to yield decent counting statistics with low error
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Figure 5.17. Coincidence-to-accidental ratio (CAR). We show the CAR as a
function of measure coincidences per million gates for the 50-MHz repetition
rate pump. Using this metric, it is clear that sufficiently low coincidence-
detection rates yield high CAR, but this requires a long data collection time
to obtain decent statistics.

bars. Based on this chart, we operate at approximately 10 coincidence counts per million

gates.

We caution here that, if the optical system downstream is very lossy and yields very few

measured single-photons or coincidences, we cannot simply turn the pump power up. Based

on the information above, it should be evident that, although turning up the pump power

increases the number of generated photon pairs, it also increases the likelihood that multiple

pairs of photons are generated by a single pump pulse. We call this event a “multi-pair

emission”, and the resulting photons “multi-pair photons”. This is nonideal because these

photons can obscure information by acting as background noise. These extra photons also

increase the number of accidental coincidences that we measure since almost every time slot
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will have a photon-pair or more. This is part of the reason we see the decrease in CAR as

we increase the pump power.

Additionally, as we discuss in the next section, multi-pairs for time-bin entangled states

can yield crosstalk between neighboring time bins. As such, we must ensure that our multi-

pair probability is low. The simplest method to do this is reduce the pump power until our

photon-pair production rate is smaller than 0.01. We select this value since it implies that

the multi-pair production rate is (0.01)2 = 0.0001, i. e., one multi-pair per 10,000 pulses.

Experience tells us that this is sufficiently small to mitigate multi-pair emissions while not

requiring exorbitant durations for data collection.

5.4. Time-bin entanglement source

Fortunately, generating time-bin entangled photons is quite trivial using the photon-pair

source described in the previous section. We start by assuming that the pump power is set

to avoid multi-pair generation. Doing so, if we send in a single pump pulse (one time-bin),

which we label t0, it will generate photon-pairs, which we label |t0t0〉, or more simply |00〉.

The first term in the ket identifies that the signal photon was generated by pulse t0, and the

second term identifies the same for the idler photon.

Extending this to two subsequent pump pulses (two time-bins) labelled t0 and t1, respec-

tively, we generate state |00〉+ |11〉. This happens because the FWM process independently

generates signal and idler photons pairwise by each pump pulse. Here, the numbers in the

kets identify the subscript of the pump pulse that generates the photon-pair. This state is

a maximally entangled state akin to the polarization-based Bell state |Φ+〉 described in the

previous chapter. We note that, in reality, we obtain this maximally entangled state after
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postselection based on a coincidence detection. The postselection is necessary because the

actual state includes contributions from the vacuum state and Raman photons.

We remark here that if we increase the pump power to allow multi-pairs, then we antic-

ipate seeing coincidence counts between different signal and idler time-bins. This generates

the state |00〉 + |01〉 + |10〉 + |11〉, which is a mixed state. Hopefully, this highlights the

importance of operating at pump powers that minimize multi-pairs while increasing pair-

production rates.

Naturally, we can extend the number of pulses ad infinitum. In this case, we generate

d time-bins by producing d subsequent pump pulses. Enumerating each pump pulse, we

generate the two-photon state |00〉 + |11〉 + · · · + |dd〉. This state exists in an (d × d)-

dimensional Hilbert space. In fact, it is one of the maximally entangled states within said

space. Recalling from §3.3, we see that, by selecting d = 3 or d = 4 time-bins, we can

generate maximally-entangled, two-photon qutrit and ququat states.

5.5. Polarization entanglement source

By modifying the photon-pair source ever so slightly, we can achieve a polarization-based

entanglement source. As seen in Fig. 5.18(a), we have added a polarization-dependent delay

(PDD) between the circulator and the spool of SMF-28. As shown in Fig. 5.18(b), the

PDD is a folded Mach-Zehnder interferometer built around a PBS. Since one loop of the

interferometer is longer than the other, that polarization experiences a relative delay with

respect to the other polarization.

As shown, any V-polarized light which enters Input 1 cotemporally with H-polarized light

will leave delayed. In other words, all light which enters will be divided into its V-polarized

and H-polarized components with the former lagging the latter. Similarly, if the light enters
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Figure 5.18. (a) Schematic of a polarization-based entanglement source. The
inclusion of a polarization-dependent delay (PDD) enables obscuration be-
tween photon creation. This obscuration between the generation of H-
polarized and V-polarized photon pairs creates the entangled state |HH〉 +
eiφ |V V 〉, where φ is determined by the input state |ψ〉 = |H〉 + eiφ/2 |V 〉. (b)
Diagram of the polarization-dependent delay. The PDD is a folded Mach-
Zehnder interferometer. The two looped paths are discriminated by a PBS.
Additional PBSs are included in each loop to maximize extinction. PBSp is
used to denote a PBS turned 90◦ in order to transmit V-polarized light.

Input 2, then the V-polarized light will be delayed with respect to the H-polarized light. The

reversible nature of the PDD in conjunction with the Faraday mirror adds some stability

while also automatically compensating for any length differences between the paths travelled

between the H-polarized and V-polarized light.

Since FWM retains the polarization state of the pump, the H-polarized pump photons

will generate H-polarized signal and idler photon-pairs. Similarly, for the V-polarized pump

photons. When reincident on the PDD during the return trip through the photon-pair source,

the H-polarized photon-pairs will again be contemporaneous with the V-polarized photon-

pairs. Since we operate using pump powers such that the photon-pair creation process is

very infrequent, we cannot know whether the photon-pairs generated are of the V-polarized

variety or H-polarized variety without observing them. This lack of knowledge creates the

entangled state |HH〉 + |V V 〉 for D-polarized input light before the first PBS. If the input

light at the PBS was R-polarized, then we would have the state |HH〉−|V V 〉. Alternatively,

if the input is only H-polarized or V-polarized, then the output will yield the separable states,
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|HH〉 or |V V 〉 respectively. Thus by tuning the HWP and QWP before the PBS, we can

choose between a maximally entangled state and a completely separable state.

Thus, we have demonstrated an easily deployable source which can be tuned to generate

the desired photon-pair state. These states can be simple correlated photon pairs, time-bin-

entangled photons, or polarization-entangled photons. Now that we have these photons, we

will look at how we can route them without changing their quantum state.
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CHAPTER 6

Cross-bar Switching Operation and Performance

Most demonstrations of quantum communications and information processing have used

direct links between two nodes [105–107]. While this is satisfactory for nascent proof-of-principle

concept demonstrations, it is resource inefficient for larger network topologies which are

desired as the field matures [80]. Therefore, development of a photonic router or switch

is a necessity since it obviates the need for additional transceivers and channels between

every node in a network. Additionally, photonic switches can multiplex parallel quantum

data streams to one channel. One example where this serialization is useful for QIP is for

producing a higher-rate single-photon source by multiplexing separate single-photon sources

to a single output channel [108]. Conversely, the photonic switches can be used to demultiplex

a high-speed quantum data stream into multiple spatial channels which are routed to slower

single-photon detectors [109] without sacrificing communication rates.

In this chapter, we investigate our efforts to develop such a switch. We start by discussing

how a changeover (one-input, two-output) switch operates in §6.1. In §6.2, we explain the

modifications to the changeover switch’s design that yield a cross-bar (two-input, two-output)

switch. We look at the experimental performance of the cross-bar switch in the following

section. These results include the loss and speed metrics. Then, in §6.4, we demonstrate

that our switch retains polarization-encoded quantum information upon transmission or

reflection. In the final section, §6.5, we discuss an experiment that demonstrates our ability

to use the switch to select one channel of a temporally-multiplexed two-channel quantum
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data stream. Almost all of the results in this section utilize the FWM pump preparation

shown in §5.2.5. If that is not the case, it will be noted to provide clarity.

6.1. All-optical changeover quantum switch

In this section, we discuss the configuration and operation of the all-optical quantum

changeover switch demonstrated in our lab [1–3]. Since this work is described in greater detail

elsewhere, we only introduce the relevant details here to describe the mechanism by which we

obtain switching. We direct the reader to the aforementioned references for characterizations

of the changeover switch’s performance. The novel experimental geometry and results are

presented in the following sections.

Very simply, the changeover switch is a one-input, two-output switch wherein the switch-

ing operation simply chooses between the outputs, as shown in Fig. 6.1(a). The “changeover”

nomenclature comes from the simple fact that the switch “changes over” between the two

output possibilities depending on whether it is passively off or actively on. The actual

switch, schematically shown in Fig. 6.1(b), employs the traditional NOLM geometry demon-

strated by Bülow and Veith [89]. There are two main differences between their demonstration

and ours: (1) we use this design for single-photon-level signals (attenuated classical pulses

or quantum correlated photons); (2) our signal frequency is significantly detuned from the

XPM pump’s frequency. We make the latter modification because the large detuning allows

us to satisfactorily filter out most pump photons. This minimizes in-band noise photons

despite the required high XPM pump powers.

We summarize the basic design for the switch thus: if we send our O-band (signal)

light into port A, then depending on the presence or absence of the C-band (pump) pulse,

the O-band light will reflect to port B, or transmit to port C. To more clearly explain the
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Figure 6.1. (a) Simplified diagrams of the changeover switch’s operation in
passive and active mode. (b) We show here the geometry of a changeover,
nonlinear optical loop mirror switch used for quantum switching. It is com-
prised of a circulator (Circ), a 50:50 beamsplitter, a pair of WDMs for injecting
and removing the XPM pump, an FPC, and a common path of fiber of length
L in the Sagnac geometry.

processes that enable this, let us begin by looking at the passive operation of the switch,

i. e., in absence of a pump pulse.

After injecting O-band light into port A, it passes through the circulator and is incident

on the 50:50 beamsplitter. Here, the light is divided into two parts, the clockwise (�)

propagating component, and the counterclockwise (	) propagating component of the Sagnac

interferometer. When the �- and 	- parts are reincident on the 50:50 beamsplitter, they

have a relative phase difference that affects their interference condition. By tuning the FPC

in the Sagnac loop, we adjust the relative phase difference, and select between constructive

and destructive interference at port B. In essence, this adjustment chooses whether our

switch reflects the signal to port B, or transmits the signal to port C. The reflected light

passes through the circulator again and out at port B. We remark here that the circulator

introduces a small difference in loss (≃0.5 dB) between the two outputs of the switch. We
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also note that the circulator is necessary in order to detect the photons since, otherwise, we

would route the signal back to the source as done by Mortimore in his seminal work [110].

Let us now consider the active operation of the switch. When we introduce the pump

light at XPM Pump In, we modify the operation of the switch slightly. During this active

switching, the co-propagating (�) signal light accumulates additional phase via the nonlinear

response of XPM discussed in §2.3.2. We remark here that the 	-propagating component of

the signal light does not acquire any significant phase because its interaction time with the

pump pulse is very brief. The phase accumulated by the �-path due to XPM is an intensity-

dependent process. Hence, the user can tune the pump power to achieve zero, partial, or

complete switching.

We remark now that the only parameter that defines the switching-rate limit is the

length of fiber (L in Fig. 6.1) commonly travelled by the signal and pump. This is due to

the fact that the signal and pump experience different refractive indices in fiber. According

to Corning’s datasheet for SMF-28e, the 1310-nm light experiences an index of refraction

n1310 = ns = 1.4676, while the 1550-nm light sees an index of refraction n1550 = np = 1.4682.

The subscripts simply demarcate O-band (signal) light versus C-band (pump) light. Based on

these numbers, we calculate the walkoff parameter, defined in Eq. (6.1), to be approximately

2 ps/m.

dw ≡ 1

vp
− 1

vs
=

1

c
(np − ns) (6.1)

vp and vs are the pump’s and signal’s respective group velocities. In other words, a pulse

at the signal frequency will travel through a 1-m SMF fiber patchcord 2 ps faster than a

pulse at the pump frequency. This implies that the arrival time and length of the common

path for these wavelengths are the only factors that affect the switching window, the time
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Figure 6.2. Explanation of switching window. (a) Switching window. Phase
accumulated by the signal photons as a function of the relative delay, ∆t,
between the arrival times of the C-band pump and O-band signal. (b) We
look at the location of the signal pulse, zs, relative to the location of the pump
pulse, zp, at the beginning (t = 0) and end (t = t′) of the Sagnac spool fiber
of length, L. This is done in the pump pulse’s frame of reference for the six

transition locations on the switching window. We label these locations A - F .
τp and τs are the temporal widths of the pump and signal pulse, respectively. vp
and vs are the velocities of the C-band and O-band pulses in fiber, respectively.
∆x is the additional distance traveled by the signal pulse in the time t′.

during which switching is possible. This walk-through behavior has the added benefits that

the switching operation is also independent of the pump pulse’s shape, and a uniform phase

is applied to the signal, thereby enabling high-contrast switching.

There are five general regimes, shown in Fig. 6.2(a), that determine the switching window.

We label these regimes I, II, III, IV, and V, and will discuss them in more detail below. In

Fig. 6.2(b), we show the transition cases, A – F , between each regime. For each of these
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cases, we show a cartoon of the relative positions of the pump (shown in orange) and signal

(shown in blue) pulses at the beginning and end of their common travel path. We remark

that all of these are shown with respect to when the pump pulse has first completely entered

the Sagnac loop—defined as t = 0—and when the pump pulse has completely left the Sagnac

loop—defined as t = t′. Defining the time with respect to the pump’s propagation through

the fiber allows us to focus on the signal’s relative distance from the pump at different

locations, z, in the fiber. It also defines ∆t as the delay in time between the pump’s entry to

the Sagnac loop and the signal’s entry into the Sagnac loop. We also remark that the pump

requires t′ seconds to travel the length of the fiber, L. Due to the different group velocities

in fiber, the signal will travel L + ∆x in the same amount of time. As such, we can define

the following relations,

t′ =
L

vp
=
L+∆x

vs
(6.2)

τw =
∆x

vs
= Ldw (6.3)

In the latter equation, we define the switching window width, τw. This is useful to determine

the minimum length of fiber required to theoretically obtain complete switching.

Based on these equations and the pictorial example, if L = 0, then B and D (or C

and E ) are the same point, and thus, a switching window does not exist. In other words,

for this hypothetical example, regimes II–IV do not exist since the two pump and signal

pulses never travel together. Instead, if we consider the scenario where C and D are the

same point, then we have the L with which we first obtain complete switching. In this case,

we find that τw = τp + τs, where τp and τs are the temporal pulse widths of the pump and

signal, respectively. This scenario, where regime III does not exist and the relative delay

between the arrival times of the pump and signal equals the sum of their pulse widths, is the
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critical walk-through case. Thus, we can define the shortest length of fiber, Lcrit, required

for complete switching because the use of any shorter length of fiber does not allow enough

time for the pump to modulate the signals phase completely. For completeness, we include

below the definition of the critical length,

Lcrit =
τp + τs
dw

(6.4)

So based on this discussion, we see that the only parameter which determines the switching

window is the common length of fiber in the Sagnac loop. The switching window can then

be measured by simply doing a scan of the relative delays between the pump and signal.

So now to describe the behavior of the pulses for each regime. The first regime is where

the pump pulse arrives too early with respect to the signal pulse. In this regime, despite

the group velocity difference, the signal never temporally overlaps with the pump and hence

does not acquire any phase.

In regime II, the pump arrives early and the signal arrives soon thereafter such that

only during the latter part of their common path do they overlap. In this case, the signal

accumulates some phase, but not the entire amount since it does not experience the complete

pump pulse’s power. This corresponds to the rising edge of the switching window.

Regime III is the ideal switching regime where the pump pulse still arrives before the

signal pulse, and the difference in their arrival times is such that the signal can travel com-

pletely through the pump and accumulate the entire phase desired. Note that for sufficiently

short pump and signal pulses and long common fiber path, the switching could happen early

or late in the fiber. Intuitively, it is in this manner that the length of fiber is the only

parameter which determines the switching window.



116

In regime IV, the signal pulse arrives at such a time that it only experiences XPM with

part of the pump pulse during the early portion of the fiber. This corresponds to the falling

edge of the switching window.

Finally, the fifth regime is when the O-band light arrives too early and travels too quickly,

therefore it again experiences no phase from the slow and tardy pump pulse. Based on these

five regimes, we have now defined the switching window, and we have also demonstrated

why the common fiber path defines said switching window.

6.2. All-optical cross-bar quantum switch

While the changeover switch is suited for demultiplexing quantum data streams and per-

forming routing operations between one input and two outputs, any operation that requires

two inputs and two outputs—for example, path switching of independent data streams, cre-

ating discrete temporal delays, or acting as a variable beamsplitter—must use the cross-bar

switching geometry described in this section. We show the simplistic behavior of the switch

in Fig. 6.3(a). When in passive mode, the switch reflects incident signals at each input to the

output on the same side, hence looking like two “bars”. When in active mode, the incident

signals “cross” paths to reach the opposite output. From this, we discover the derivation of

the name “cross-bar”.

In order to achieve the cross-bar functionality, this design builds on the changeover switch,

described in §6.1, by adding a circulator at port B, schematically shown in Fig. 6.3(b). Look-

ing more closely, we see that the new circulator enables its port of the Sagnac interferometer

to be an input and an output port, serving the same purpose as the other circulator. This

simple adjustment enables our switch to route photons incident at both inputs simultane-

ously. That is to say, we can simultaneously reflect (or transmit) incident photons to both
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Figure 6.3. (a) Simplified diagram demonstrating the switch’s operation in
passive and active modes. (b) We show here the geometry of our cross-bar
quantum switch. This switch is identical to the changeover switch except for
an additional circulator.

output ports, as shown in Fig. 6.3(a). For this geometry, we determine the switching win-

dow exactly the same way as we did for the changeover geometry. This is true regardless of

which port the light is input, since incident light on either port has a co-propagating (�)

component in the Sagnac loop that experiences XPM with the pump pulse.

With the addition of this circulator, the cross-bar switch can be used as a functionally

“reversible” quantum gate. The unitarity of the gate is maintained by the dual-in, dual-

out geometry. The quantum nature of this gate is seen through the switch’s ability to

entangle temporal modes or spatial modes. We will explain this in further detail in §6.5. As

such, this switch is not only useful for the obvious routing, serialization, and deserialization

applications, but also for other potential applications in QIP. We discuss one such example

in Chp. 7.
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Figure 6.4. (a) Entanglement source [37] and switch test setup. We show here
the setup that we use to characterize the cross-bar switch’s performance. We
route the signal photon from the entanglement source (described in §5.5)
through the switch, whereas we route the idler photon is routed directly to
the polarization analyzers. (b) Cross-bar switch. The dashed lines designate
the ability to test different permutations of input ports (A,B) and output ports
(C,D).

6.3. Cross-bar switch characterization

Now that we understand how the switch operates, we can turn our attention to how well

it performs. We show the general setup for single-photon tests in Fig. 6.4. Note that this is

the most complete example of the test setup. We remove elements from this setup to test

particular parameters.

6.3.1. Classical switching characterization

Here, we look at the results for the switch operation using a classical source. In this scenario,

we take the laser pulse picking source, filter it to 1305 nm, and send it directly to the switch’s
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input. This is in lieu of sending the pulses to the FWM fiber. Looking at Fig. 6.4, this test

corresponds to bypassing the entanglement generation setup, and routing the light from the

pulse picker directly to the inputs A or B of the cross-bar switch.

First, we provide the trivial insertion loss specification for the switch. For this test,

we send light to each input of the switch and measure the passive transmission at each

output. Comparing the total power at the output (sum of both outputs) with respect to

the input, we can estimate the insertion loss of the switch. Based on the insertion losses

of each in-situ component, we expect the inherent loss of the switch to be ≃1.8 dB. The

actual measured loss for one input is ≃2.3 dB. The other input has slightly more loss at

≃2.7 dB. We attribute the additional 0.5-dB (0.9-dB) loss to fiber-fiber coupling of various

components in the Sagnac loop. The measured difference between the two inputs comes from

the fact that one circulator is spliced to the 50:50 beamsplitter, whereas the other circulator

is not spliced.

In other words, we expect that we can reduce the overall loss of the switch by splicing all of

the components together. Additionally, other research is done in our group to demonstrate

a different geometry switch that uses the same XPM switching mechanism to reduce the

total insertion loss to <0.3 dB [111]. The advantage of this design compared to the lower-loss

geometry is that the NOLM switch geometry does not require any active stabilization.

Next, we present the contrast obtained using the cross-bar switching configuration. In

Fig. 6.5, we show the normalized switching probability as a function of the XPM pump

power. That is to say, we input light at ports A and B, and measure the power at ports C

and D while adjusting the EDFA’s output power setting.

We show this for light input at both inputs of the cross-bar switch to demonstrate that

the switch behaves similarly regardless of which input is used. Based on these curves, we see
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Figure 6.5. Classical characterization of cross-bar switch. We show the nor-
malized switching probability as a function of the input pump power. This is
show for the transmission and reflection from both inputs of the switch.

that our switching contrast is about 3:1 for the 20-m switch, and about 20:1 for the 600-m

switch. We show later that by improving the pulse-picking electronics, we can improve from

the 3:1 to approximately 14:1.

Figure 6.6 shows the normalized switching probability as a function of the delay between

the 1550 path and the 1310 path. If we fit these traces to a Gaussian curve using the least-

squares fitting technique, we obtain a full-width half-maximum (FWHM) for these pulses

of ≃55 ps. These widths correspond well to the expected switching window widths for a

L=20 m switch, assuming the ∼20-ps width for the U2T signal pulse, and ∼10-ps width for

the IMRA XPM pump pulse.

We note here that the switching window curves have neighboring pulses (peaks). These

are due to imperfect pulse-picking wherein the pulse-picking electronics and EOM also select
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Figure 6.6. In (a) and (b), we show the classical switching windows at out-
put ports C and D when the signal is input to port A and B, respectively.
If we fit these curves with a Gaussian curve, we find the FWHM for these
pulses are: FWHMAC=53.0 ps; FWHMAD=57.7 ps; FWHMBC=55.7 ps; and
FWHMBD=56.4 ps.

a small amplitude of neighboring pulses from the U2T laser’s 10-GHz pulse train. We believe

that the measured FWHM widths are slightly wider than expected because this tail and the

neighboring pulse broaden the calculated fits. As mentioned before, improving this factor

motivated us to develop the fifth-generation FWM pulse-picking electronics.

To test the improvement of the switch using the faster electronics, we performed a quick

classical test. We input a 10-GHz pulse train into port A, and looked at the output on

port C. If we passively minimize and maximize the light at port C, then we obtain the direct

detected waveforms shown below in Figs. 6.7 and 6.8, respectively. We used the optical input

of a digital communication analyzer (Agilent 86100A with the 86105A measurement module)

to perform this direct measurement. The bandwidth is 20 GHz, thereby broadening the U2T

pulses to about 50 ps. Based on the two plots below, we calculate that our contrast is about

140/10 or 14:1. This is certainly an improvement over previous results, and we believe that

it can be improved further based on the classical results obtained for the changeover switch.
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Figure 6.7. Inputting at 10-GHz pulse train at port A, and measuring at port
C, we see our pulse begin to appear as we increase the switching pump power.
This scenario assumes that our switch is passively minimized, hence the base-
line around 20 µW is a measurement artifact of the detector.

Figure 6.8. Inputting at 10-GHz pulse train at port A, and measuring at port
C, we see our pulse begin to disappear as we increase the switching pump
power. This scenario assumes that our switch is passively maximized. The
minimum is around 30 µW, which is only slightly higher than the baseline at
20 µW.
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Based on the results obtained and shown in this section, we claim that we are capable

of obtaining decent switching with the narrower switching windows and faster laser source.

This is encouraging since it enables us to switch even faster signals in the future.

6.3.2. Single-photon switching characterization

Now that we investigated the classical performance of the switch, we turn our attention to

the single-photon regime. This is necessary in order to demonstrate quantum states since

classical states obscure the quantum interactions, thereby making it difficult to observe

quantum phenomena like entanglement. In order to measure single photons, we replace

standard P-I-N type detectors with InGaAs single-photon detectors.

We must also generate single-photons. We obtain them using FWM, as described earlier.

In other words, we return the setup to that shown in Fig. 6.4. We now insert WDMs and

the photon-pair source after the source. At the detector, we merely count the number of

single counts at the output of each detector. Using this configuration, we obtain the results

shown below in Fig. 6.9. We demonstrate switching from both inputs to the various outputs.

We obtain these results using the ideal XPM pump power determined using the classical

switching setup described in the previous section.

Once again, we see the narrow switching window widths corresponding well to the con-

volution of the signal and pump pulse widths. We also see the nearest neighboring peak, but

now they are significantly smaller in magnitude than previously. This is due to the quadratic

improvement of the photon flux described in §2.4.1. Finally, we remark here that, although

not shown, the switching contrast for this data is approximately 10:1 for the 20-m switch.

While we see a drop in contributions from the neighboring pulses, we can theoretically

obtain even better performance by looking instead at coincidences between signal and idler
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Figure 6.9. Single-photon regime characterization of cross-bar switch. Here we
show the normalized switching probability vs relative pump-signal path delay.
The traces shown were obtained for active single-photon switching from both
inputs to both outputs. The solid lines shown for each trace are Gaussian
fits to the largest peak and used to obtain the FWHM for each trace. The
FWHM pulse widths for these are FWHMAC=47.8 ps, FWHMAD=46.5 ps,
FWHMBC=44.6 ps, and FWHMBD=44.9 ps. The subscripts designate the
corresponding input port and output port as labeled.

while only delaying one arm with respect to the others. Since we should have temporal

distinguishability from the ∼70-ps windows provided by the Nucrypt detectors, we should

be capable of using that distinguishability to reduce the neighboring photons contribution

even more.
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Figure 6.10. In (a) and (b), we show the coincidence-counted switching win-
dows at output ports C and D when the signal is input at port A and B,
respectively. In these figures, the black line shows the theoretical switching
window for our switch parameters [112]. By fitting these with a Gaussian, we
obtain the following FWHM widths: FWHMAC=46.5 ps; FWHMAD=45.4 ps;
FWHMBC=41.8 ps; and FWHMBD=44.2 ps.

In Fig. 6.10, we show the switching windows obtained using coincidence counts rather

than single-photon counts. Note that the results shown are true coincidences for two cases—

routing photons through port A and port B. The coincidences shown are accidentals sub-

tracted, but no correction is applied to compensate for detector dark counts. In other words,

these counts include coincidence events due to detector dark-count events. Again, as a

sidenote, the switching contrast for this case is approximately 15:1.

Yet again, for all of these measurements, we obtain a FWHM τw of ≃45 ps. This corre-

sponds well not only with the expected width calculated earlier, but also with the theoretical

model of the quantum description of a fiber-loop Sagnac interferometer [112], as shown by the

black curves in Figs. 6.10(a) and (b). We remark that theoretical model does not require

any fitting parameters. Based on these measurements, using the 20-m Sagnac loop, we have

demonstrated that we can switch pulses at a theoretical rate of >20-GHz.
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Now that we have characterized the cross-bar switch and its operation, we move to

demonstrating that it retains the polarization entangled state of the transmitted qubits.

6.4. Polarization-entanglement retention characterization

We demonstrate the entanglement-preserving properties of our switch by measuring the

quantum state generated by our entanglement source (cf. Fig. 6.4(a)) after the signal portion

of the state is transmitted through the switch under passive and active conditions. Unlike the

measurements made in the previous, we do not merely count single-photons and coincidence

events. Instead, we perform complete 36-measurement polarization-state tomographies by

compiling the aforementioned counts for all pairwise combinations of the six canonical po-

larization states, |H〉 , |V 〉 , |D〉 , |A〉 , |R〉 and |L〉. We reconstruct the entangled state using

both linear-least-squares-fit and maximum-likelihood tomographies. In general, these results

do not vary significantly. The results shown here correspond to the maximum-likelihood to-

mographies.

We use the switching fidelity, FS, to characterize the performance of the switch. Although

it is defined in §3.4.1, for convenience and as a reminder for the reader, we define the switching

fidelity as FS ≡ F (ρa, ρa′), where the absence or presence of the prime superscript indicates

the passive- or active-mode operation of the switch, respectively.

In Fig. 6.11(a), we show the reconstructed density matrix of the quantum state un-

der passive operation of the switch, with signal light entering port A and exiting port C.

Figure 6.11(b) shows the reconstructed density matrix of the quantum state under active

operation of the switch with signal light transmitted from port A to port D. Based on these

reconstructed density matrices, we determine FS = 99.6 ± 0.3%. Inputting signal light at

port B yields comparable results with a measured FS of 98.5 ± 0.5%, shown in Fig. 6.12.
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Figure 6.11. We show the density matrices for the (a) passively unswitched (re-
flected) and (b) actively switched (transmitted) output polarization-entangled
states, |OR〉 and |OT 〉, respectively, for a state input to port A. The respec-
tive fidelities to a maximally entangled Bell state are F (ρOR

) = 91.7 ± 0.2%
and F (ρOT

) = 91.4 ± 0.3%. The switching fidelity is FS = F (ρOR
, ρOT

) =
99.6± 0.3%, thereby demonstrating that the switch does not degrade the en-
tanglement properties of the transmitted photons.

From these results, we conclude that our switch introduces very little degradation (< 1.5%)

to the entangled quantum state of the photons passing through it.

Figure 6.12. We show the density matrices for the (a) passively unswitched (re-
flected) and (b) actively switched (transmitted) output polarization-entangled
states, |OR〉 and |OT 〉, respectively, for a state input to port B. The respec-
tive fidelities to a maximally entangled Bell state are F (ρOR

) = 92.4 ± 0.4%
and F (ρOT

) = 90.8 ± 0.5%. The switching fidelity is FS = F (ρOR
, ρOT

) =
98.5± 0.3%, thereby demonstrating that the switch does not severely degrade
the entanglement properties of the transmitted photons.
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Figure 6.13. (a) Diagram showing five degrees of freedom in a multiplexed
entangled-photon data stream which can be demultiplexed by applying a
controlled switch operation. (b) Schematic of the time-division multiplex-
ing Michelson interferometer that we insert between the pulse-picker and the
circulator shown in Fig. 6.4. The path difference in the two arms gives rise to
two independent quantum channels, |ψ0〉 and |ψ1〉, separated by ≃155 ps.

6.5. High-speed demultiplexing of a quantum data stream

To demonstrate the speed and utility of our cross-bar switch as a spatio-temporal ma-

nipulation device, we perform a test wherein the goal is to demultiplex a single quantum

channel from a dual-channel entangled-photon data stream. We begin by encoding two max-

imally entangled polarization states into adjacent temporal modes, t0 and t1, separated by

∆t = t1 − t0. Since we route the signal photon through our switch, this system describes

five-qubit hyperentanglement (see Fig. 6.13(a)) embodied on two photons, where there are

two signal and idler polarization qubits (|H〉s,i, |V 〉s,i), two signal and idler temporal qubits

(|t0〉s,i, |t1〉s,i), and a single signal spatial qubit (|OR〉s, |OT 〉s) [1]. The term “hyperentangle-

ment” refers to states that are simultaneously entangled in multiple degrees of freedom; in

this case, they are polarization and time.

To experimentally realize such five-qubit hyperentanglement, we insert a time-division

multiplexing Michelson interferometer (TDM-MI), as schematicized in Fig. 6.13(b), between

the pulse-picking electronics and the circulator shown in Fig. 6.4(a). One arm of the TDM-MI
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is constructed such that its mirror is mounted on a linear translation stage providing control

of the relative delay ∆t of that arm with respect to the other (fixed) arm of the interferometer.

The QWPs in the TDM-MI and the subsequent FPC (see Fig. 6.13(b)) are adjusted such that

the O-band pump drives the entanglement source in Fig. 6.4(a) to produce a hyperentangled

signal-idler quantum state [2]

|Φ〉 = c0 |ψ0〉 |t0〉s |t0〉i |OR〉s + c1 |ψ1〉 |t1〉s |t1〉i |OR〉s ,

where

|ψ0〉 ≡
1√
2
(|H〉s |R〉i − i |V 〉s |L〉i) ,

|ψ1〉 ≡
1√
2
(|H〉s |H〉i + |V 〉s |V 〉i) ,

and c0, c1 are arbitrary constants. If we measure |Φ〉 using polarization-basis tomography

while tracing out the temporal degrees of freedom and projecting into the signal output spa-

tial mode |OR〉s, then we anticipate the outcome to be a highly mixed state. This is the

result one would expect when simultaneously measuring multiple, but separately entangled,

quantum data streams. If instead, we use a switch to implement a controlled-NOT opera-

tion to couple the signal photon’s temporal and spatial modes (see Fig. 6.13(a)), then we

transform |Φ〉 to

|Φ′〉 = c0 |ψ0〉 |t0〉s |t0〉i |OT 〉s + c1 |ψ1〉 |t1〉s |t1〉i |OR〉s .

We anticipate this demultiplexed quantum state to exhibit maximal entanglement since the

switching operation already projected it into the signal spatial mode |OR〉s. This will be true
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Figure 6.14. (a) Density matrix of the leading state |ψ0〉 with F (ρψ0
) = 97.6±

0.6%. (b) Density matrix of the trailing state |ψ1〉 with F (ρψ1
) = 97.5± 0.7%.

The states’ mutual fidelity is F (ρψ0
, ρψ1

) = 1.8 ± 1.0%. (c) Density matrix
obtained when both channels are transmitted through the switch and measured
together. The measured fidelity is F (ρΦ) = 68.6±1.0%. (d) Density matrix of
the state measured when we switch out |ψ0〉, obtaining a fidelity of F (ρΦ′) =
93.6 ± 1.0%. This recovered state has a fidelity of F (ρΦ′ , ρψ1

) = 96.2 ± 1.2%
with the state |ψ1〉. Insets show cartoons of which states are measured, ordered
by arrival time from left to right. The dashed pulse in the inset in (f) indicates
that the state |ψ0〉 is switched out and, therefore, not measured.

even after tracing out the temporal degrees of freedom because only the maximally entangled

state |ψ1〉 would be present.

For the demultiplexing results demonstrated here, c1/c0 ≃ 1.07 and ∆t ≃ 155 ps. We

used a high-speed photodetector (EOTech, Model ET-3500F) to directly measure the de-

lay ∆t. Figure 6.14(a) shows the reconstructed density matrix for the leading state |ψ0〉

corresponding to the temporal mode t0. We obtain this density matrix by blocking the
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|ψ1〉-generating arm in the TDM-MI. The measured fidelity of this state to a maximally en-

tangled state is F (ρψ0
) = 97.6±0.6%. By blocking the |ψ0〉-generating arm of the TDM-MI,

we obtain the reconstructed density matrix shown in Fig. 6.14(b) for the trailing state |ψ1〉

corresponding to the temporal mode t1.

Its fidelity to the nearest maximally entangled state is F (ρψ1
) = 97.5 ± 0.7%. The

measured overlap between these two states is F (ρψ0
, ρψ1

) = 1.8±1.0%, which is close to zero,

showing that the quantum states prepared in the two temporal modes t0 and t1 are nearly

orthogonal to each other. When both of these states are measured simultaneously, we obtain

the density matrix shown in Fig. 6.14(c). The measured fidelity of this state to the nearest

maximally entangled state is F (ρΦ) = 68.6 ± 1.0%, therein exhibiting the characteristics of

a highly mixed state, as expected. Finally, when a control pulse is applied to the switch

to demultiplex |ψ0〉 from the data stream, we obtain the density matrix for |Φ′〉—shown in

Fig. 6.14(d)—with fidelity to a maximally entangled state of F (ρΦ′) = 93.6 ± 1.0%. The

fidelity between this state and the reference trailing state |ψ1〉 is F (ρΦ′ , ρψ1
) = 96.2± 1.2%,

thus showing that we are able to recover the desired state with high fidelity. We suspect that

the small measured degradation of the recovered state relative to the original state is due

to the aforementioned presence of the background photons caused by nuances of the pulse-

picking electronics. Although Raman photons can also lead to significant degradation of

performance, they did not reduce the switching fidelities measured in §6.4, hence we believe

their contribution to be minimal. Striking a balance between high operation speed and low

in-band background photons, we selected ∆t = 155 ps, which corresponds to a 6.5-GHz

operating rate, as opposed to the highest possible rate of >20 GHz allowed by the 45-ps

switching windows.
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We have demonstrated the operation of a cross-bar, entanglement-preserving switch for

use in quantum communications and networking. We have shown that our switch is a low-loss

(3 dB) device, can operate at high rates (>6.5 GHz), and retains the polarization-encoded

quantum state of the input photons. Further improvements can be made to the switch

by directly splicing the fibers rather than using connectorized fiber adapters and by using

custom-made low-loss fiber components to further reduce the loss (<1.5 dB achievable).

Additionally, shortening the common Sagnac-loop fiber path should enable even shorter

switching windows, thereby further improving the speed metric of the switch. Better pulse-

preparation electronics would enable the switch to operate at even faster rates (>20 GHz),

while also improving the switching contrast. Thus, the switch presented here is potentially

an enabling device for future applications in quantum communications, and more specifically,

quantum networking.

Next, we will discuss and develop a system that utilizes this switch to measure time-

bin entangled states. In this fashion, we can explore higher-dimensional Hilbert spaces by

potentially creating and measuring exotic states.
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CHAPTER 7

Generation and Measurement of Higher-Dimensional States

Higher-dimensional entangled states are of interest to the QIP community because they

can potentially enable quantum information transfer with larger bits per photon encoding [4],

and higher robustness to noise or loss [7]. The latter is courtesy of the fact that higher-

dimensional states increase the noise threshold below which quantum key distribution is

secure [113]. Another application of interest for higher-dimensional entangled states is per-

forming loophole-free tests of nonlocality [5]. Inspired by these applications, and the potential

for yet unbeknownst benefits, we present our initial efforts to realize a higher-dimensional

quantum information system.

The system described in this chapter generates time-bin entangled photons. These pho-

tons are then converted to polarization and measured to tomographically reconstruct the

state. We start this chapter by looking at an overview of the experiment and its various

subsystems in §7.1. In the following section (§7.2), we discuss the subsystems in more depth

while also highlighting the connections between them. Section 7.3 briefly investigates how

we combine the smaller two-qubit polarization tomographies to yield the larger qutrit and

ququat tomography results. Finally, in §7.4, we conclude the chapter with a review of the

results we have achieved thus far. This last section will include the generation and measure-

ment of an entangled qubit state, entangled qutrit states, and an entangled ququat state.



134

7.1. Project overview

In this section, we present an overview of our project to explore higher-dimensional

Hilbert spaces. The primary goal of this project is to generate, manipulate, and measure

entangled states with more than two bases. The original proposal goes so far as to strive for

a two-photon, 10-time-bin state, therein generating, manipulating, and measuring a 20-qubit

maximally entangled state.

As discussed in §5.4, our FWM source is capable of generating such states using the

arrival time as our operational degree of freedom. Our high-speed switch, described in §6.2,

acts as a high-speed, low-loss, spatio-temporal gate, and is thus a logical, yet unique means to

manipulate and measure the temporally-encoded states. With these two pieces of the puzzle

securely in hand, we look at the high-level schematic of the experimental setup, shown in

Fig. 7.1, to identify the various elements of the system, and their respective functions. There

are eight main subsystems which we will briefly explore here.

Figure 7.1. We show here a pictorial overview of the subsystems desired to
generate, manipulate, and measure a 20-qubit maximally entangled state.
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Synchronization Circuitry: This circuitry serves as the heart of the system. It ensures

that the various signals traveling through the subsystems stay locked, i. e., do not drift with

respect to one another. The primary signals that it synchronizes are the detector gating

clock, and repetition rates of the FWM- and XPM-pump pulse trains. The FWM and XPM

pumps must be locked in order for the switch to operate reliably. Meanwhile, the detectors

must be gated at a matching rate to increase photodetection efficiencies—an unmeasured

photon is a lost photon.

FWM Pump Preparation: This subsystem generates the optical O-band pump pulse that

we use to drive the photon-pair source. It takes an input from the synchronization circuitry

to ensure that the pulses it generates are locked with other signals. The pulse widths of the

FWM pump pulses are important because they affect how narrow a time-bin can be.

Photon-Pair Source: This subsystem generates the photon pairs that we use for quantum

information processing. Since the process that generates the pairs is FWM, sending in a

stream of pump pulses produces a temporally entangled state.

Signal/Idler Time-Bin-to-Polarization (TB-to-Pol): This subsystem is the first part

of the measurement apparatus for time-bin entangled photons. We use this subsystem to

map the temporal information of our quantum state onto the polarization degree of freedom

of the transmitted photons. This enables us to use the well-established polarization state

tomography setup to measure the quantum state. We perform the mapping by routing two

distinct time-bins onto opposite inputs of a PBS. This essentially superposes two time-bins.

A tunable delay before one input of the PBS enables us to select which two time-bins to

superpose. Note that this operation superposes all time-bins that are separated by selected

delay. That is to say, if the delay is set to one time-bin for a four-time-bin state, then the

superposed states will be 1+2, 2+3, and 3+4, where the numbers represent the enumerated
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time-bins. In this case, the first time-bin shown will be mapped one polarization (say H), and

the second to the orthogonal polarization (V). We note that this subsystem is the time-bin

analog of quarter- and half-waveplates in a polarization state tomography.

High-Speed Switch: Once we have a train of superposed time-bins, we must select the

orthogonal pair upon which to perform the polarization state tomography. We use the high-

speed switch, capable of switching a single time-bin out from pulse train, to achieve this

functionality. The switching window determines how narrow the time-bin can be, and as

discussed in §6.1, the critical length depends on the pulse widths of the XPM pump and

signal photon. The latter depends on the FWM pump pulse’s width. If the TB-to-Pol

subsystem is analogous to waveplates, then the switch is the time-bin equivalent of a PBS

in a polarization state tomography setup. Therefore, this is the second part of the time-bin

state tomography apparatus.

XPM Pump Preparation: This subsystem generates the optical C-band pump pulse that

provides the desired π phase shift to the signal photons transmitted through the cross-bar

switch. Just as with the FWM pump pulses, the pulse widths of the XPM pump pulses are

an important parameter to tune the minimum time-bin window.

Polarization Analyzers: The traditional use of a QWP-HWP-PBS-SPD yields us the abil-

ity to project the input quantum state onto various bases. Performing a joint measurement

on these projections, we can recreate the state of the measured ensemble of photons.

Computer: The last, but not least, subsystem is the computer. We use this to collect

and process all the data recorded by the single-photon detector arrays. This subsystem also

controls various automated systems such at the automated waveplates used to perform the

polarization state tomography.
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7.2. Detailed experiment

Now that we have discussed the general function of each subsystem, we take a more in

depth look at each. Although some of the subsystems are identical to subsystems shown

earlier, we include them here for the reader’s convenience, for pictorial consistency, and for

highlighting the interconnects between the subsystems.

Again, we begin with a project overview, shown in Fig. 7.2. Unlike before, this time we

label the inputs and outputs for each subsystem. All of the labels in this section remain

consistent, thereby indicating that a node is identical across different figures.

Figure 7.2. We use this overview schematic to highlight the various inter-
connects between subsystems shown later. We also include the O-band and
C-band source lasers explicitly. Finally, we show the CSA, which is one tool
we use to actively monitor some of our signals in the time-domain.

There are three base lasers we use for all our optical signals. The O-band laser is the

10-GHz, femtosecond semiconductor laser (U2T Photonics TMLL-1310). For the C-band,

we use two DFB lasers centered at 1547 nm and 1551 nm, as described in §5.1.

Additionally, we include the CSA. This useful instrument enables us to monitor several

signals in (virtually) real-time to determine if our systems are properly synchronized. If
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one of the signals starts to display excessive jitter or amplitude loss, we can recognize it

immediately and tune the appropriate dials (typically on phase shifters or tunable optical

delays) to remedy the problem.

Figure 7.3. We use the clock and lock electronics shown here to ensure that
signal generation, manipulation, monitoring, and measurement apparati are
locked and remain so.

As mentioned earlier, we use an electrical apparatus that synchronizes the many subsys-

tems. Although shown in Fig. 5.11, we show it again here in Fig. 7.3 with the additional

labels. From this, we see that A represents the signal that hybrid mode-locks our 10-GHz

O-band laser. An identical signal, D , drives the phase modulator in the XPM pump prepa-

ration source. Also, we drive the amplitude modulator in the same source using the narrow

pulses generated by the AND gate. These yield a synchronized, narrow pulse train at the

appropriate downcounted rate (50 MHz or 250 MHz) at E . A similar pulse train, desig-

nated by B , drives the amplitude modulator in the FWM pump preparation setup at the

same repetition rate. As described in §5.2.6, the difference with this pulse train is that it

can pulse-pick up to four consecutive 10-GHz pulses. In order to ensure that the 10-GHz

laser stays hybrid mode-locked, we pick off a signal, C , from the FWM pump preparation

setup, mix it with a 12-GHz DRO, and monitor the beat note on an ESA. We described
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this process earlier in §5.2.1. We use the signal at F to trigger the CSA. The signal at G

accurately reflects the signals we use to drive the amplitude drivers in both the XPM and

FWM pump preparation subsystems, hence we monitor it on the CSA in real-time. Finally,

using the signal at H , we clock the detectors. The alert reader will recognize that we show

H twice. This is to simplify notation since we never use both single-photon detector arrays

(Nucrypt CPDS-4 and CPDS-2000) simultaneously.

Figure 7.4. This figure is the 3-D version of the figure shown in Fig. 5.4.

We highlight the four inputs ( D , E , V , and W ) from the clock and lock

preparation subsystem, and the two CW DFB lasers. The output, X , drives
the XPM process in the cross-bar switch.

Shown in Fig. 7.4 is the 3-D version of the figure shown in Fig. 5.4. As such, we only

highlight three points here. First, the inputs D and E come from the clock and lock

preparation subsystem to generate the appropriate downcounted pulse train. Second, we

insert the two CW DFB lasers to be modulated at V and W . Finally, the output at X

controls whether the cross-bar switch is in passive mode or active mode.

Figure 7.5 shows the optical elements used to generate our FWM pump pulse. This is in

conjunction with the electrical setup discussed in Fig. 5.11. We note here that the setup is

almost identical to the O-band optical path shown in Fig. 5.10. This setup has two inputs
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Figure 7.5. We show here the experimental setup, which in concert with the
electronics shown in Fig. 5.11, prepares the FWM pump pulses. This setup

has two inputs ( J and B ), and three outputs ( C , K , and L ).

at J and B , and three outputs at C , L and K . The signal at J comes from the

10-GHz O-band laser, where an isolator and DWDM centered at 1305 nm are not shown.

We amplify this signal using a semiconductor optical amplifier. The amplified signal is split

using at 90:10 beamsplitter. The output of the 10% port is photodetected and sent to the

mixer to ensure the 10-GHz laser stays hybrid mode-locked. The 90% port is fed through

at tunable optical delay which enables us to tune the arrival time of the 10-GHz optical

pulse train with respect to the electrical pulse-picking pulses at B . We pass the output

from the amplitude modulator through a linear polarizer (shown as a PBS) to maximize

extinction. This signal is then amplified, filtered, and amplified again to provide us with

sufficiently high powers to drive our FWM process. Shown at L , we use the reject port of

the first 1305-nm DWDM to monitor the optical pulse shapes on the CSA. We filter and

subsequently attenuate the light at the pass port to the appropriate color and powers. We

use a 99:1 beamsplitter to monitor the power of the attenuated pulse at the 1% port. We

use this measured power to calibrate the PPR and CAR of our photon-pair source, as shown
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in §5.3. At the 99% port ( K ), we have a sequence of up to four FWM pump pulses, each

separated by 100 ps. The entire group repeats every 20 ns for the 50-MHz setting of the

frequency divider.

In order to ensure that we will be able to superpose the various time-bins, we performed a

quick test measuring the pair-wise coherence between these pulses. This test entails passing

the pulses through a Mach-Zehnder interferometer (MZI) and measuring the interference

visibilities by tuning the pulse’s relative arrival times at the second beamsplitter. For this

test, the MZI was actively stabilized using a reverse propagating pulse and an Arduino-

based PID feedback circuit (see Fig. 7.7). If we label our pulses 1 through 4, then the

measured interference visibilities between pulse 1 and itself (1-1), was >95.6%. Similarly,

the 2-2, 3-3, and 4-4 visibilities were >96.5%, >95.3%, >96.4%, respectively. Note that for

all four of these tests, the MZI has no relative delay between both arms. Instead, if we

introduce a 100-ps delay in one arm, corresponding to a one pulse delay, then we obtain

1-2, 2-3, and 3-4 visibilities of >90.5%, >95.5%, and >96%, respectively. A two pulse delay

yields interference visibilities of >91.7% and >93.5% for 1-3 and 2-4 pulse superpositions,

respectively. Finally, we use a three pulse delay to measure a 1-4 interference visibility of

>88.4%. These results seem to keep with the results found in Monika Patel’s thesis for the

same U2T 10-GHz laser [39], wherein we observed approximately 90% interference visibilities

for up to eight pulses. Additionally, we measured a 50% visibility around a 17 pulse delay.

These provide us with an approximate upper bound on the number of pulses that our system

can successfully generate and use.

Figure 7.6 shows the photon-pair source. This image is very similar to that shown in

Fig. 5.13. The only difference is that, in this case, we recycle the reject 1305-nm light for

use in stabilizing the unbalanced Mach-Zehnder interferometers.
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Figure 7.6. We show a photon-pair source akin to that shown in Fig. 5.13.

This design has one input at K and four outputs at M , N , P , and Q .
The first two outputs correspond to the signal and idler single-photons. The
only difference between the two designs is that we recycle the 1305-nm light
from the reject port after both signal/idler WDMs.

Figure 7.7. We use an unbalanced Mach-Zehnder interferometer, shown here,
to map two time-bins onto the orthogonal polarization bases.

We use an unbalanced Mach-Zehnder interferometer (UMZI) to achieve the time-bin-to-

polarization conversion. We achieve this by splitting the time-bin encoded pulse-train ( M ,

N ) at a 50:50 beamsplitter. One path of the UMZI is longer than the other path by a

tunable amount. By selecting the delay increments to be integer multiples of one time-bin,

we can temporally overlap any two time-bins. A motorized tunable optical delay (TOD)

provides us with the temporal tunability. Unfortunately, it can only move 560 ps, therein
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limiting the maximum number of time-bins to five. We select four time-bins as our maximum

to match the electronic splitter/combiner network shown in the clock/lock setup.

In order to map the time-bins onto polarization, we feed the two opposite paths onto the

the orthogonal inputs of a PBS. By tuning the FPCs, we can ensure that the photons from

each input are routed to the same output ( R , S ).

We note that one path of the UMZI has a fiber stretcher (FS), which we use to ensure

that our UMZI remains phase stable. This homemade fiber stretcher uses a piezoelectric to

push two semicircular 3-D printed rods around which we wrap a length of fiber. Depending

on the length of fiber, we can change the amount of phase achieved by tuning the voltage

applied to the piezoelectric. For our designs, we can achieve a π phase for ≃1305-nm light by

applying ≃1.5 V. The signal we use to maintain the phase stability of the UMZI is the 1305-

nm FWM pump pulses ( P , Q ). To minimize their contribution to background photons, we

inject this light at InR so that it is reverse propagating through the UMZI. We photodetect

this light using DFB, then use an Arduino Uno to read in the voltages. The Arduino then

performs a software based PID operation—actually, only integrator—to correct for drifts.

This correction signal is then applied to the FS to obtain phase stability. A copy of the

Arduino feedback control code can be found in Appendix D.

In order to measure the phase stability, we sent in classical, polarized light to InF and

monitored its polarization at OutF using a polarimeter. The polarimeter measures the three

Stokes parameters used to define the polarization of the beam. By plotting these three over

time, as shown in Fig. 7.8, we note that the polarization drifts <5% over the duration of

1000 s. We deem this acceptable for now, but recognize that it can potentially be improved.

The cross-bar switch shown in Fig. 7.9 is very similar to that shown earlier in Fig. 6.3(b).

Among the differences are the additional FPCs, TODs, and WDMs at the inputs or outputs
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Figure 7.8. We show here the three Stokes parameters (S1–S3) that describe
our state’s input polarization to demonstrate the polarization stability of the
UMZI. Based on this measurement, our phase locking and compensation optics
satisfactorily stabilize the output polarization of the signal and idler photons
with variance <5% over 1000 s.

of the switch. We route the signal and idler pulse train of superposed time-bins at R and

S , respectively. We note that the superposed time-bins are encoded onto the polarization

bases of a single temporal window. By setting the in-Sagnac FPC to passively reflect light,

no photons will reach the outputs at T and U because the WDMs filter them out. Instead,

when a XPM pump pulse is present at X , the switch will transmit the desired superposition

of time-bins to the respective output, and only that pair of time-bins will be measured. In this

fashion, the cross-bar switch acts as a temporal shutter for the time-bin superpositions. We

remark here that this functionality can also be reproduced using separate changeover switches
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Figure 7.9. This switch shown here is very similar to the switch shown in
Fig. 6.3(b). The few differences here are the addition of FPCs and TODs at
both inputs, and WDMs at both outputs. The TODs enable us to pick which
superposed pair of time-bins we want to switch, and the WDMs omit all of
the unswitched superposed pairs of time-bins.

in the signal and idler paths. The benefit of the cross-bar design is that we can perform the

selection simultaneously using just one XPM pump pulse and appropriate adjustment of the

TODs.

Figure 7.10 show the standard free-space polarization state tomography optics (QWP-

HWP-PBS-SPD) for both signal and idler photons. We also show some QWPs and HWPs

before these which we can use to birefringence compensation. Alternatively, we can arti-

ficially perform this rotation using software. For convenience, we often opt for the latter,

especially when processing larger tomographies.
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Figure 7.10. We show here a standard free-space polarization state tomogra-
phy setup preceded by several waveplates which can be used to compensate for
fiber birefringence. Often, we do not adjust the birefringence compensating
waveplates, and instead perform that polarization state “rotation” in software,
after calculating our state.

7.3. Higher-dimensional state reconstruction

Now that we understand the experimental setup, it should be clear that, since we perform

polarization-based tomographies, every tomography can at most recreate a two-qubit state.

This is because polarization is fundamentally a binary basis, i. e., we cannot use polarization

to realize qutrit and ququat states directly. Hence, this may seem insufficient for measuring

qutrit or higher-dimensional states. Fortunately, as discussed earlier in §3.3.1, by measuring

pairwise superpositions of time-bins—now encoded onto polarizations—we can recreate an

entire higher-dimensional state.

A single qutrit state requires us to determine the nine Stokes parameters that depend on

the probabilities of measuring 15 basis states. Explicitly written, the 15 time-bin projective
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measurements are:

{M3} =
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(7.1)

If we select two time-bins, ta and tb, and map them to the H and V polarizations respectively,

then we can use the polarization analyzers to perform six of the 15 required projective

measurements, shown here:




|ta〉

|tb〉
1√
2
(|ta〉 ± |tb〉)

1√
2
(|ta〉 ± i |tb〉)




=⇒




|H〉

|V 〉
1√
2
(|H〉 ± |V 〉)

1√
2
(|H〉 ± i |V 〉)




(7.2)

Here, ta, tb ∈ {0, 1, 2}, and the double arrow represents the mapping between time-bins

and polarizations. By selecting various pairs of time-bins, we can obtain all 15 projective

measurements, and thus measure a single qutrit. But, since we actually measure a two-

photon state—signal and idler—we must perform projective measurements corresponding

to |ψa〉 ⊗ |ψb〉 where |ψa〉 , |ψb〉 ∈ {M3}. We write this relation explicitly in Eq. 7.3. In

order to do this, we require the ability to superpose any two time-bins for the signal and



148

idler, independently. Recall that the UMZI in each path—signal and idler—enables us to

superpose any two time-bins, and the tunable optical delay at each input of the switch allows

us to select which arbitrary pair of superpositions we wish to measure, thereby selecting the

desired two-qutrit projective measurement.
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(7.3)
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The ququat example follows quite similarly, with the only difference being the larger

number of required projective measurements, shown below for one ququat.

{M4} =
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(7.4)

The coincidence counts from these projective measurements are then fed into the tomog-

raphy program—either maximum-likelihood [114,115] or linear-least-squares-fit algorithms [116]—

to produce the density matrices that describe the incident quantum state.
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As a sidenote, in order to ensure that our bases are aligned to the H and V bases of the

PBSs in the signal and idler polarization analyzers, we can rotate the birefringence compen-

sating waveplates. This can be experimentally tedious, so we often perform the rotation in

software. This is a trivial process for two-qubit states, but for two-qutrit and two-ququat

states, we must be more careful since they are composed of an several qubit measurement

tomographies. We determine the appropriate rotation by first taking the qubit states for

all combinations of signal and idler superposed time-bins and identifying the transformation

required to rotate the measured state into the expected ideal state’s bases. Equipped with

these transformation matrices, we rotate all the measurements supplied to the tomography

code by a single transformation matrix and calculate the measured state. We repeat this

process for all other transformation matrices. Comparing the resulting states with the ideal

maximally entangled state, we can determine which rotation most closely aligns us to the

H and V bases of the signal and idler PBS. All states measured in the following section use

this method of rotation.

Now that we know how to reconstruct our quantum state, we turn our attention the

experimental results wherein we create and measure such states.

7.4. Experimental results

In this section, we present the results of the aforementioned experimental setup. As

described in the previous section, all the results shown here use the fifth-generation FWM

pump preparation (§5.2.6), third-generation XPM pump preparation (§5.1.3), and the Nu-

crypt CPDS-4 single-photon detector array. Additionally, all tomographies use the linear

least-squares fit algorithm rather than the maximum-likelihood tomography [114,115] to save

on time. We have calculated density matrices using a maximum-likelihood tomography for



151

several of the states shown in this section, and their fidelities agree to within 1% of the linear

least-squares fit tomography results. Because we use the linear least-squares fit tomography

algorithm, we also verify that the retrieved density matrix is legal by ensuring that its di-

agonal elements are positive and its trace is one [116]. Finally, we obtain all the error bars

by running a Monte Carlo simulation using Poissonianly-randomized measured coincidence

counts.

The first task was to measure a basic qubit state. This state is established by sending two

FWM pump pulses into the photon-pair source. The ideal measured state should be |γ2〉 =

|00〉 + |11〉. Herein, any state |γ〉 represents an “ideal” two-photon, maximally entangled

state where the subscript denotes the dimensionality. We show in Fig. 7.11 the measured

density matrix of this state. The fidelity of the measured state |ψm2〉 to the ideal state

is F (ρ̂m2, ρ̂γ2) = 96.3 ± 0.7%. The measured linear entropy of this state is SL(ρ̂m2) =

0.076± 0.019. By comparing these parameters to the values of fidelity and linear entropy in

Fig. 3.1, we can safely say that this measured state can violate Bell’s inequality.

Figure 7.11. We show the density matrix of a two-qubit state. This state
has a fidelity to |00〉 + |11〉 of 96.3 ± 0.7%. Its linear entropy is SL(ρ̂m2) =
0.076 ± 0.019. This data corresponds to a detected coincidence count rate of
200 per measurement.
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This result corresponds to detecting approximately 200 coincidence counts per measure-

ment. We initially selected this count rate because it corresponded to a source CAR>15.

Also, when we say “measurement”, we refer to each projective measurement used in a

polarization state tomography. Hence, for a complete four-detector tomography, we use

36 projective measurements corresponding to independently setting the signal and idler to

{H,V,D,A,R,L}, respectively. Each projective measurement is 300 million gates at 50 MHz,

the same for all qutrit tomographies shown hereafter.

To give the reader a sense of time, each complete tomography takes ≃1 minute to prepare

the waveplates and collect dark-count data, ≃9 minutes to rotate the waveplates, and ≃2

minutes to collect 3600 million gates of data (36 measurements × 100 million gates per mea-

surement). Thus, a complete qubit tomography that uses 300 million gates per measurement

takes ≃16 minutes to complete. For a complete qutrit tomography, we require 9× 36 = 324

measurements, or in time 9 × 16 = 144 minutes (≃2.4 hours). Finally, a complete ququat

tomography needs 36 × 36 = 1296 measurements. This requires ≃576 minutes, i. e., ≃9.6

hours. Hence, for the ququat measurement shown later, we opted to use 100 million gates

per measurement, thereby reducing the data collection time to ≃7.2 hours.

With a qubit successfully generated and measured, the next logical step is to attempt

measuring a qutrit state. Since the qutrit state measurements are composed of projections

that can generate qubit states, we asked ourselves “What is the expected qutrit state given

a qubit state with a known measured fidelity?” In order to give us an idea of the expected

limits for such a qutrit state, we performed some tomographic simulations. These simulations

use the methodology discussed in Appendix B. We use Werner states to simulate imperfect

measured states. We rewrite here the Werner state, mentioned in §3.2, for the reader’s
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convenience.

ρ̂W = p|γ〉〈γ|+ (1− p)
1

d2
I, (7.5)

where p is the percent of the state that is entangled, d is the dimensionality of the qudit,

and |γ〉 is an arbitrary maximally entangled qudit state. By adjusting p, we can simulate

the expected fidelities of qubit and qutrit states with varying contributions due to mixed

states, i. e., noise. We plot the effect of the added mixture on the measured qubit and qutrit

states in Fig. 7.12.

Figure 7.12. We show here the simulated fidelities of Werner states with vary-
ing degrees of mixture added. The simulations randomize the coincidence
counts according to a Poissonian distribution. We plot qubit (◦) and qutrit
(△) fidelities to the respective maximally entangled state versus the percentage
of the state that is entangled, p. Additionally, we vary the number of average
coincidence counts (100, 300, 500, and 1000 CC/meas) to see the effect of poor
count statistics on the expected results. We also show the limits corresponding
to an unrandomized, ideal Werner state for the qubit (blue dashed line), qutrit
(green dot-dashed line), and ququat (red dotted line). All simulations shown
here use the linear-least-squares-fit algorithm.
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In order to simulate real measurements, we randomize the coincidence counts per mea-

surement. The randomization obeys a Poissonian distribution around a given average coin-

cidence count rate. In addition to varying the amount of mixture, we change the average

number of coincidence counts per measurement (CC/meas) to be 100, 300, 500, and 1000.

We note that as we collect fewer coincidence counts for a tomography, we cannot achieve

perfect fidelity—even in the absence of any added noise. This reinforces our intuition that

we need sufficient counts to measure high-quality states.

As a reference, we also show the theoretical limits on fidelity for qubits, qutrits, and

ququats. These ideal limits do not assume any randomization on the coincidence counts.

When compared to randomized data, we note that as we add more mixture (move left on

the plot), the simulated qubits yield higher fidelities than the theoretical limit. This is due

to the variance from randomizing the coincidence counts.

Figure 7.12 also provides us with an approximate sense of the expected qutrit values given

a qubit value. We make two assumptions in order to do so: (1) random noise is the only

source of degradation of the fidelity, and (2) that noise—due to effects such as decoherence,

Raman photons, or loss—affects qubits and qutrits identically. Based on this, we note that

for a 90% entangled Werner state (p = 0.9), we expect a qubit fidelity of ≃93%, which is

near the fidelity of our measured qubit state. For the same amount of mixture, we expect a

qutrit state to have a fidelity of 88% with a maximally entangled qutrit state.

Expecting a qutrit state fidelity around 88%, we attempted to measure the state |γ3〉 =

|00〉+|11〉+|22〉. The resulting state, shown in Fig. 7.13, has a fidelity with this ideal state of

F (ρ̂m3, ρ̂γ3) = 84.7± 1.0%. This state’s measured linear entropy is SL(ρ̂m3) = 0.302± 0.017.

Once again, if compared to Fig. 3.1, we can use this state to violate the appropriate 3-D
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Bell inequality. In order to obtain this state, we set the power to collect approximately 350

coincidence counts per measurement.

Figure 7.13. We show the density matrix for a qutrit state at a low FWM
pump power. The fidelity of this state to |00〉 + |11〉 + |22〉 = 84.7 ± 1.2%.
The measured linear entropy is SL(ρ̂m3) = 0.302± 0.017. This corresponds to
approximately 350 coincidence counts per measurement.

Out of curiosity, we took qutrit measurements at varying FWM pump power levels to see

the effect on the degradation of fidelity. We discovered that we can increase the power almost

2.5 times and not see much degradation in the states quality. This indicates that although

we initially selected a lower power, where the CAR was greater than 15, to mitigate the effect

of multi-pair events, we can instead operate at a higher power to increase our coincidence

collection rate without significant degradation in performance due to multi-pairs. We show

this state in Fig. 7.14, wherein we see a fidelity of F (ρ̂m3, ρ̂γ3) = 85.7 ± 0.8%. This state’s

linear entropy is SL(ρ̂m3) = 0.281±0.014. Yet again, this state can violate the Bell inequality.

This state used about 1800 coincidence counts per measurement.
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Figure 7.14. We show the density matrix for a qutrit state at an intermediate
FWM pump power. The fidelity of this state to |00〉+|11〉+|22〉 = 85.7±0.8%.
The state’s linear entropy is SL(ρ̂m3) = 0.281 ± 0.014. This corresponds to
approximately 1800 coincidence counts per measurement.

Earlier in §5.4, we posited that if we increase the FWM pump power, our pure entan-

gled state will become more mixed and separable due to the presence of multi-pair events.

Evidently, we did not increase the power enough to witness multi-pair events. Since we

did not observe such behavior, we increased the FWM pump power further. The resulting

measured density matrix, shown in Fig. 7.15 and corresponding to ≃5100 coincidence counts

per measurement, yields a fidelity with the ideal qutrit state of F (ρ̂m3, ρ̂γ3) = 41.2 ± 0.5%.

This state’s measured linear entropy is SL(ρ̂m3) = 0.825± 0.003. Clearly, when compared to

Fig. 3.1, this state falls into the shaded area, therefore it is unable to violate Bell’s inequality.

This, once again, verifies our intuition that multi-pair events lead to crosstalk, and highlights

the detrimental impact of such events on our ability to use such states for QIP.

Of course, since operating at higher pump powers increases multi-pairs (bad) while also

increasing our coincidence collection rate (good), we must strike a balance. One of the
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Figure 7.15. We show the density matrix of a qutrit state at a high FWM
pump power. The fidelity of this state to |00〉+ |11〉+ |22〉 = 41.2±0.5%. This
state’s measured linear entropy is SL(ρ̂m3) = 0.825± 0.003. This corresponds
to ≃5100 coincidence counts per measurement.

benefits of operating at higher coincidence count rates per measurement is that we can

reduce the run time required to obtain decent statistics. This then relaxes the duration

over which our system must remain stable. As such, we want to operate at as high a

coincidence count rate per measurement while maintaining a reasonable fidelity to the desired

maximally entangled state. Since the system stability is even more important when taking

longer measurements for a ququat state, we opted to find the appropriate balance point

using qutrit states before attempting a ququat state. We plotted the measured qutrit states’

fidelities as a function of coincidence counts per measurement (cf. Fig. 7.16). Based on these

results, the aforementioned rate of 1800 coincidence counts per measurement seems suitable.

We remark that the average qubit fidelities shown in this figure correspond to the max-

imally entangled qubit states obtained during each qutrit measurement. In other words,
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Figure 7.16. We investigate the effect of coincidence count collection on the
measured qubit (green ◦) and qutrit (blue ◦) fidelities (compared to the maxi-
mally entangled qubit and qutrit states, |γ2〉 and |γ3〉). Both of these represent
dark-count-subtracted coincidence counts. We also show non-dark-count sub-
tracted results (pink △) to note that the tomographies improve by a small
amount when using dark-count subtracted counts, especially at lower count
rates. Based on these results, we choose to operate at a collection rate of
≃1800 coincidence per measurement. For reference, we also show the simu-
lated qubit and qutrit fidelities for a 90% entangled Werner state (cf. Fig. 7.12
for p=0.9). Based on these references we see that for a state with ≃93% qubit
fidelity, we expect a qutrit state with fidelity of ≃88%. Thus our ≃85% states
are close albeit with room for improvement.

there are three maximally entangled qubit tomographies obtained when the measured signal

and idler time-bin superpositions match which we use to calculate the average qubit fidelity.

Figure 7.16 also includes lines that correspond to the simulated qubit and qutrit reference

points for a Werner state with p = 0.9 (cf. Fig. 7.12). We plot these to show that for the

measured average qubit fidelities around 93%, we expect a qutrit fidelity to be around 88%.
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The plot clearly shows that although we are close—measured fidelities are ≃85%—there

is room for improvement. We attribute this slight degradation between the expected and

measured values to system instabilities and drift over the 2.5 hour duration of the experiment.

Another set of data was also included in Fig. 7.16. As mentioned earlier in this chapter,

all the results shown in this chapter correspond to dark-count-subtracted data. We decided

to compare the results of such data with non-dark-count-subtracted data. In doing so, and

shown in Fig. 7.16, we find that performing dark-count subtraction does not improve the

results significantly. This is good for two reasons. First, it means that we are operating

at sufficiently high coincidence count rates that detector dark-count events are a minimal

contribution to the coincidences. Additionally, we have biased our single-photon detectors

well to minimize contribution of the dark counts. Second, and more importantly, to reduce

the time for a complete tomography, we can omit the step wherein we measure the dark

counts without a significant penalty in fidelity. This removes approximately one minute from

the 16 minutes required to perform a complete 36-measurement tomography—a fractional

improvement—but as we aim to scale this system to large dimensions, any reduction in time

will help. We remark that none of the results shown in this chapter omit the dark-count

collection step, but this point is worth remembering for future tests.

Finally, we attempt to generate the ideal ququat state |γ4〉 = |00〉 + |11〉 + |22〉 + |33〉.

Based on the our qutrit measurement results, we set the FWM pump power to provide us

with ≃2000 coincidence counts per measurement. Upon performing a tomography, we obtain

the reconstructed density matrix shown in Fig. 7.17. This measured state has a fidelity of

F (ρ̂m4, ρ̂γ4) = 64.9 ± 0.5% with the ideal state. The corresponding linear entropy of this

state is SL(ρ̂m4) = 0.506 ± 0.008. If we compare this state to the Fig. 3.1, we see that this
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state does not quite violate Bell’s inequality. Fortunately, we are close to creating a state

that does violate it, and we have plausible culprits for the cause in degradation.

Figure 7.17. We show the density matrix of a ququat state. The fidelity of
this state to |00〉+ |11〉+ |22〉+ |33〉 = 64.9± 0.5%. The linear entropy of this
state is SL(ρ̂m4) = 0.506± 0.008. This data corresponds to ≃2000 coincidence
counts per measurement.

As noted earlier, collecting the required data for a ququat state takes over seven hours. If

a couple hour qutrit tomography provides instabilities, then a ququat tomography is bound

to experience the effects more negatively. Improving the subsystem stabilities for day-long

operation should affect these results quite positively. In order to improve results, there are

multitude of steps we can take. We plan to investigate operating at higher pair-production

rates, reduce data collection times, remove potentially unnecessary steps such as dark-count
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collection, automate delay line adjustments for superposing and selecting time-bins, and

build in additional feedback mechanisms to monitor subsystem stabilities.

With these improvements, we hope to improve our ququat fidelities, but since we have not

yet performed any tomographic simulations with randomized coincidence counts for ququat

states, we cannot provide any insight on the expected fidelities. Of course, we anticipate

that these results can be improved significantly based on the ideal ququat line (red dotted

line) shown in Fig. 7.12.

Hence, in this chapter, we have shown that we are able to create, manipulate, and

measure entangled two-qubit states, entangled two-qutrit states, and entangled two-ququat

states. Not shown here, but verified experimentally, is the ability to generate separable

two-photon states. We trust the reader understands that generating such a state is trivial.

We generate time-bin entanglement by using the FWM process in standard optical fiber.

Although many other sources can replicate this result, using standard fiber is convenient

since our entire system is fiber-based. We designed and built an UMZI that manipulates the

time-bins and enables us to perform a projective measurement on these superpositions, akin

to a waveplate in a polarization state tomography. Finally, our cross-bar switch is essential

for selecting narrow time-bins (≤100 ps) for the measurement process. These demonstrations

open up avenues to further explore higher-dimensional Hilbert spaces.
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CHAPTER 8

Conclusion and Future Work

We have developed, characterized, and demonstrated an all-optical switch with practical

applications in QIP. Our switch was built upon a prior one-input, two-output design [1–3].

The novelty of the switching demonstrated in this thesis includes the addition of a second

circulator to enable two-input, two-output operation. This new geometry enables the switch

to behave as unitary quantum gate. Additionally, we modified the switch design and pulse-

generation electronics to enable high-rate switching.

In order to test such high rates, we designed and built an electrical synchronization setup

that enables us to pulse-pick 100-ps-wide signals at rates up to 1.25 GHz. The rate can be

tuned to any integer divider of 1.25 GHz between 2 and 32. Using this tunability, we have

demonstrated pulse-picking, switching, and single-photon detection at 50-MHz and 250-MHz

rates. Also, the pulse-picking electronics has been designed to select up to four consecutive

pulses from a 10-GHz laser. In this fashion, we can test switching rates up to 10 GHz using

detectors that operate at the slower rates (≤1.25 GHz).

Regarding the switch’s performance, it exhibits an insertion loss of 2.3 dB. At the cost

of potential experimental inconvenience, the loss can be further reduced by splicing most,

if not all, connections between the individual components. By selecting the length of in-

Sagnac optical fiber, we can determine the switching window, i. e., the duration during

which switching is possible. This parameter limits the arrival rate of any signal we want to

route. Given the current selection of O-band signal and C-band XPM pump, the switching
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window width is defined by multiplying the in-Sagnac fiber length by 2.0 ps/m. We have

shown a switching window as short as ≃45 ps, thereby implying that our switch can route

signals that arrive at a rate >20 GHz.

We also tested our switch’s ability to transmit a polarization-entangled quantum state.

The measured switching fidelity, which quantifies the comparison between the switched state

and unswitched state, for our switch is > 98%. This result verifies that any transmitted state

does not experience much degradation due to active switching.

The ability to retain polarization-encoded information, and the high speed switching

performance enables us to perform other tests. In one such test, we successfully recovered

one channel from a two-temporal-channel quantum data stream, where the two channels were

separated by 155 ps. Each channel contains a state with a measured fidelity to an arbitrary

maximally entangled state ≃ 97.5%. The measured fidelity between the states in these

two channels was 1.8 ± 1.0%, thereby indicating that they are nearly mutually orthogonal.

When both channels were simultaneously present in the data stream, we measured a fidelity

of 68.6 ± 1.0% to an arbitrary maximally entangled state. When we switch one channel

out from the data stream, and measure the resulting state, it should be very similar to the

unswitched state measured by itself. This recovered state has a fidelity of 96.2± 1.2% with

the corresponding state. This spatio-temporal demonstration points to the utility of our

switch as a high-speed routing device for polarization-encoded information, perhaps in a

network setting with shared data transfer fibers.

In another application, we use the switch’s high-speed spatio-temporal mapping function-

ality to perform projective measurements on time-bin-entangled states that exist in higher-

dimensional Hilbert spaces. Each time-bin in these states is 100 ps wide. We have demon-

strated the ability to measure states up to a dimensionality of four. Our best measured qubit
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state has a fidelity to |00〉 + |11〉 of 96.3 ± 0.7%. For a qutrit state, we measured a fidelity

to |00〉+ |11〉+ |22〉 of 85.7± 0.8%. Given the aforementioned qubit fidelity, this measured

qutrit fidelity is close to the expected qutrit fidelity of ≃88% obtained from simulations.

Finally, we tried to generate and measure a ququat state. The resulting state has a fidelity

of 64.9±0.5% to the maximally entangled state |00〉+ |11〉+ |22〉+ |33〉. The measured qubit,

qutrit, and ququat linear entropies are SL(ρ̂2) = 0.076± 0.019, SL(ρ̂3) = 0.281± 0.014, and

SL(ρ̂4) = 0.506± 0.008, respectively.

We hope that over the course of this dissertation, and punctuated by the summary of

results above, we have convinced the reader of the merits of our cross-bar switch. Albeit, we

recognize that there is always room for improvement. For instance, the required XPM pulse

energy to obtain a π-phase shift for complete switching is ≃2.6 nJ, which is a lot of power.

As such, in the next section, we look at potential tasks and directions to improve and build

upon the work presented.

8.1. Future work

In this section, we will look at the future direction of the work demonstrated in this

thesis. We divide the section into tasks for the near-term, medium-term, and long-term. In

doing so, we hope to address various ideas we have to improve the current system, as well

as ideas to improve the entire platform for switching and measurement to enable further

exploration of QIP. We divide this section up based upon the timeline that we believe can

affect change to improve our results.
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8.1.1. Near term

Most of the changes for the near term are aimed at reducing the time required to obtain all

the necessary measurements. Given the reasonably good results for qubit and qutrit states,

we believe that long-term fluctuations in temperature (on the order of several hours) cause

the fibers to move thereby changing the measured state. Also, such drifts can change the

phase between superposed time-bins due to fiber shifts in the UMZI.

One way to diagnose if this type of drift is causing problems is to compare our measured

ququat states with tomographic simulations. Unfortunately, we have not yet performed the

corresponding tomographic simulations for such states. So an immediate task would be to

complete these simulations.

Equipped with these simulation results, we can determine how good our measured ququat

results actually are. Based on this, we can better determine the next steps. If we are near

the predicted limit (as we are for qutrits), then we will attempt to improve each qubit

measurement. If instead, there is a significant gap between the expected results and our

measured results, we will need to improve the stability of all the subsystems for the longer

durations required to collect all the data.

In addition to improving subsystem stability, we can improve the losses through the

many components and connections. Reducing losses will improve our single-photon collection

statistics. By improving the collection efficiency, we should be able to collect data faster

thereby reducing the duration required to perform a complete measurement. In particular,

we can reduce the losses through the UMZI and switch by splicing the individual components

to one another.
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Another near-term demonstration that we can perform is to reconfigure the electronics to

pulse-pick at 250 MHz. We can then use the available Nucrypt CPDS-2000 detectors, clocked

at 1.25 GHz, to repeat the aforementioned results at higher rates. Again, this enables us to

reduce the data-collection time with the hope of avoiding the long-term drifts that corrupt

our measured state.

Moving to the faster detectors will also warrant rewriting the data collection code. Given

the need to write code, at this time, it may also make sense to investigate and potentially

employ compressive sensing algorithms for quantum state reconstruction [117]. Compressive

sensing techniques offer a significant improvement on the required number of measurement

settings for reconstructing pure states; such states are akin to the ones we generate. Yet

again, this change can reduce the data collection time.

8.1.2. Intermediate term

In this section, we consider tasks that can improve the characteristics or performance of the

higher-dimensional setup. Unlike most of the near term tasks, the suggestions that we posit

here may require reconfiguring aspects of the experiment since they cannot immediately

be realized. Additionally, they potentially add functionality or features that should be of

interest as we explore higher-dimensional states further.

The first improvement would be to introduce a phase modulator upstream from the

time-bin-entanglement source. Currently, if three FWM pump pulses generate the state

|00〉+ |11〉+ |22〉, the addition of a phase modulator can produce slightly more exotic states

of the form |00〉 + eiφ1 |11〉 + eiφ2 |22〉. In this fashion, we can create a variety of states and

measure them. Such a state generator has potential applications for testing violations of

Bell’s inequalities or creating codewords for information transfer.
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Assuming we have developed a system that is stable over the duration of days, and in

the spirit of pushing the current system to its limits, another intermediate term project

is to increase the dimensionality of the generated and measured states. Currently, we are

limited by the number of splitters and combiners we use in the pulse-picking electronics.

Inserting an additional layer of splitters and combiners to that setup can provide up to

eight time-bins. Of course, increasing the system to that dimension requires the insertion of

another motorized delay line in each UMZI and at each input of the cross-bar switch. This is

because each delay line provides up to 560-ps adjustment, and we require more than 800 ps.

Alternatively, we can consider other methods to obtain the required delays in a stable and

reproducible manner. A final consideration to realize yet higher-dimensional states is the

coherence time of the pulsed laser. Our current U2T laser exhibits ≃50% visibility between

pulses that are separated by 1700 ps [39]. As such, an eight-dimensional qudit may begin to

push the limits of the desired coherence between pulses. As an aside, and motivated by this

coherence concern, we also will want to model the effect of decoherence on the entanglement

quality of our generated states.

Another potential improvement would entail replacing the input BS of the UMZI with

a changeover switch, described in §6.1. The current setup requires us to discard half of

our signal and idler photons after the WDMs. Using a low-loss, high-speed changeover

switch obviates that issue because we simply route different time-bins to opposite arms and

delay appropriately to obtain the desired superposition. As before, this increases our data

collection statistics and therefore reduces the data collection time. Unfortunately, this is an

intermediate term goal because it requires developing or purchasing additional components,

such as EDFAs, amplitude modulators, and electronics. These components will be used to
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drive the changeover switches as well as control the timing to ensure appropriate routing of

the time-bins. This is a potentially expensive and time-consuming process.

Given that we have shown the ability to generate and measure higher-dimensional quan-

tum states, one potential direction is to realize an experimental demonstration of one of the

various motivating applications for such states. These applications include dense coding [4] or

increased robustness to noise and loss [7] for information transfer. Such a demonstration will

require building out the infrastructure to manipulate the quantum state for testing. Since we

have the ability to generate and measure various degrees of dimensionality, we can provide

a comparison study to verify the theoretical improvements by moving to higher dimensions.

8.1.3. Long term

The suggestions for the work described in this section are long-term in nature because each of

them require significant time investment, and could potentially serve as a significant piece of

someone’s thesis work. They also present potential ways to improve the switching technology

to combat the shortcomings of this design. Although inspired by the work presented in this

thesis, the proposed projects will likely require a lot of redesigning and development to realize

ideal goals of rapid switching and measurement of time-bin entangled states.

As mentioned earlier, the cross-bar switch has two main drawbacks: (1) it requires high

XPM pulse energies to achieve complete switching, and (2) although it is compact, it is not

very scalable. To tackle the first challenge, we propose further research into using more

exotic fibers or materials in the Sagnac loop. These fibers will ideally have a higher χ(3)

and reduced cross-sectional area to increase the phase imparted due to the XPM process.

Additional fiber engineering can provide control over the group velocity difference between

the pump and signal to enable even shorter switching windows and therefore higher operating
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speeds. Also, controlling the guided frequencies of the fiber can enable local applications of

the switch at wavelengths with higher single-photon detection efficiencies. In short, there is

a wealth of potential for exploring this switching geometry and mechanism by engineering

the Sagnac fiber. This potential flexibility can enable catered uses of the switch for specific

applications.

In order to address the second challenge, we propose moving this architecture to an

integrated photonics platform. For instance, using integrated silicon waveguides can achieve

the higher χ(3) and smaller mode volumes. Also, building on the years of knowledge from the

semiconductor industry, we can efficiently develop many such switches in a small confined

space. Also, since these devices will likely be small, the propagating signal will accumulate

less loss as it travels from device to device. One challenge for such a system is that, to

the best of our knowledge, circulators do not yet exist for integrated photonics devices.

Fortunately, we can employ a Mach-Zehnder interferometer geometry rather than the Sagnac

geometry [111]. Such a design is viable because in the integrated platform, we anticipate

significantly less phase fluctuations, thus obviating the requirement of active stabilization.

Finally, motivated by my experience designing and building a real-time entangled photon

polarimeter (see Appendix C), I believe that judicious application of our high-speed switches

can enable us to perform fast time-bin quantum state tomographies. This is in lieu of the

current polarization state tomographies. Of course, realizing this requires reconsidering the

UMZI since we no longer need the PBS at the output. This implies that we need to deter-

mine another method to create the temporal superpositions with variable phase. The phase

tunability will likely require many additional phase modulators, and the appropriate driving

electronics. Since we also anticipate many switches to route the appropriate superposed
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signals to the desired detectors, we feel that such an experiment would benefit greatly from

an integrated photonics setup with computer controlled devices.

Hopefully, we have sufficiently excited the reader regarding the potential improvements

for our all-optical, low-loss, high-speed, cross-bar switch with an eye to the long-term devel-

opments that can enable significant advances in the field of QIP.
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[66] Haché, Alain & Bourgeois, Martin. Ultrafast all-optical switching in a silicon-based

photonic crystal. Applied Physics Letters, 77(25):4089–4091, 2000.

[67] Tanabe, Takasumi, Notomi, Masaya, Mitsugi, Satoshi, Shinya, Akihiko, & Kuramochi,

Eiichi. All-optical switches on a silicon chip realized using photonic crystal nanocavities.

Applied Physics Letters, 87(15):151,112, 2005.

[68] Dawes, Andrew MC, Illing, Lucas, Clark, Susan M, & Gauthier, Daniel J. All-optical

switching in rubidium vapor. Science, 308(5722):672–674, 2005.
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APPENDIX A

Dark-Count Subtraction Calculations

In this appendix, we will show how to perform dark-count subtraction for our coinci-

dence (§A.1) and accidental (§A.2) measurements. We base this calculation from an internal

document, written by Kim Fook Lee, explaining how he calculated these values for previous

experiments done in our lab. Here, we make modifications to account for detection events,

i. e., detector trigger gates, instead of measurement integration time.

For this appendix, we assume we have two detectors labelled x and y. Since most of

the variable definitions are symmetric for these two detectors, we will occasionally use the

subscript z where z ∈ {x, y}. We start by defining the single counts measured on these two

detectors as Sx and Sy, respectively. We can rewrite each of these as

Sx = Lx +Dx

Sy = Ly +Dy,

(A.1)

where Lz are “light” counts from FWM or Raman photons, and Dz are dark counts from

the detectors. Experimentally, the single counts are measured results, i. e., an input to these

calculations. Similarly, we measure our coincidence counts (Cx,y) between the two detectors.

In other words, for every pair of detectors, we must measure five quantities: Sx, Sy, Dx, Dy,

and Cx,y. Additionally, for reasons we discuss later, we must also know the number of gates

(detection events) possible, which we label g.
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A.1. Dark-count-subtracted coincidences

Since a coincidence is any event where both detectors fire simultaneously, it should be

straightforward to see that

Cx,y = C(Sx, Sy) = C(Lx, Ly) + C(Lx, Dy) + C(Dx, Ly) + C(Dx, Dy), (A.2)

where C(a, b) is a function that returns the coincidences due to a and b. The first term of the

right hand side corresponds to each detector firing due to their respective light photons. The

second and third terms correspond to one detector firing due a light photon, while the other

detectors fires due to a dark count. The last term is then due to each detector simultaneously

registering a dark count.

Assuming we cool the fiber to minimize Raman photons, if we want our true coincidences

from FWM photons, then we need to solve for C(Lx, Ly). We remark here that we cannot

measure the light counts Lz directly. Instead, we recognize the following relations, and

substitute them in instead:

C(Lx, Dy) = C(Sx, Dy)− C(Dx, Dy)

C(Dx, Ly) = C(Dx, Sy)− C(Dx, Dy).

(A.3)

Using these relations, and doing trivial algebraic gymnastics, we obtain

C̃x,y = C(Lx, Ly) = Cx,y − C(Sx, Dy)− C(Dx, Sy) + C(Dx, Dy) (A.4)

Here, the tilde above the left-side term denotes that it is a dark-count-subtracted quantity.

We will use this notation through the remainder of this chapter.
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Now that we have this equation, we must determine how to calculate the actual counts

for C(a, b). In order to do this, we recognize that the probability of a coincidence is merely

the product of the independent probabilities that detectors x and y fire. Mathematically, we

express this probability as

P (a ∩ b) = P (a)× P (b). (A.5)

Since these values are the probability per detection event, we can determine the expected

number of coincidence counts by multiplying P (a ∩ b) and the number of detection events.

For our experiments, we typically use the number of detection gates, g, to represent the

latter value. So, we can write the following equation to solve for the number of coincidences

due to events a and b:

C(a, b) = g · P (a ∩ b). (A.6)

As a reminder, a and b represent a specific event happening, such as registering a dark

count on detector x. Thus, using the measured counts for event a, we can determine the

probability P (a) by dividing the measured counts by the total duration of the measurement.

For example, if we want to know the probability of a dark count on detector x over g

detection events, then we simply solve P (Dx) = Dx/g. Based on this relation, and by

combining Eq. (A.5) and Eq. (A.6), we obtain the equation

C(a, b) =
a · b
g
. (A.7)

Substituting this into Eq. (A.4) yields

C̃x,y = Cx,y −
1

g
(SxDy −DxSy +DxDy), (A.8)
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where, to summarize, the first term on the left-hand side represents the measured coinci-

dence counts, and the second term—all in the parentheses—represents statistically calculated

accidental counts from measured events.

A.2. Calculated and dark-count-subtracted accidentals

When calculating accidentals, the process is very similar. Using the probabilistic deriva-

tions above, we can calculate accidentals in one of two ways. First, is the non-dark-count-

subtracted method. The calculation for this is

Ax,y =
SxSy
g

. (A.9)

If we wish to calculate dark-count-subtracted accidentals, then we can use

Ãx,y =
LxLy
g

=
(Sx −Dx)(Sy −Dy)

g

=
1

g
(SxSy − SxDy −DxSy +DxDy).

(A.10)

We remark here that for mathematical brevity, the aforementioned dark-count-subtracted

coincidences in Eq. (A.8) can be rewritten in terms of measured coincidences and both types

of calculated accidentals as follows:

C̃x,y = Cx,y − Ax,y + Ãx,y. (A.11)

Once we have all of these relations for coincidences and accidentals derived, we can

trivially solve for the CAR as shown below:

Rx,y =
Cx,y
Ax,y

(A.12)
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and

R̃x,y =
C̃x,y

Ãx,y
. (A.13)

Again, the tilde merely represents that the data uses dark-count subtraction.

We use the relations presented in this appendix to prepare the counts that are inputs to

our tomography code. For all tomographies taken prior to the higher-dimensional Hilbert

space experiment, we used the non-dark-count-subtracted coincidences Cx,y and accidentals

Ax,y. All CAR measurements and tomographies taken for the higher-dimensional Hilbert

space experiment required using dark-count-subtracted coincidences C̃x,y and accidentals

Ãx,y because the system was lossy. Since this yields a poor signal-to-noise ratio, we opted to

improve our measurements by removing the “noise”.
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APPENDIX B

Tomographic Simulations

In this appendix, we will take a look at how the tomographic simulations in this disser-

tation were performed. We use these simulations to produce some of the theoretical results

shown in Chp. 7 and Appendix C. We will not discuss the actual tomography algorithms

used. Instead, we point the reader to other references for those details [114–116]. We suffice it

to say here that we use codes programmed in MATLAB, primarily by Joseph Altepeter and

Evan Jeffery, to calculate the tomographies.

The basic process to simulate a tomography is to first create the coincidence counts that

resemble experimental data. The next step is to process them using the tomography code,

either maximum-likelihood [114], or linear-least-squared-fit algorithms [116]. Finally, compared

the retrieved state with some other states. Then repeat this process numerous times with

randomly varying input coincidence counts, i. e., run the Monte Carlo method.

In order to generate the coincidence counts, we provide an input ideal density ma-

trix, ρ̂ideal. Using this density matrix, we can calculate a probability matrix, Pij that

represents the probability of measuring a coincidence count between detectors i and j,

for various measurements. We obtain this by calculating Pij = 〈ψj |ρ̂ideal|ψi〉. |ψ〉 rep-

resents the states of the projective measurements we want to perform. So for a full 36-

measurement polarization tomography, we will have 36×4 such probabilities corresponding

to the |ψ〉 ∈ {|H〉 , |V 〉 , |D〉 , |A〉 , |R〉 , |L〉} bases and coincidence counts between the four
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detectors. We refer to these projectors as Mproj. By providing the average number of coinci-

dence counts (Cavg), and optional parameters such as coincidence-to-accidental ratio (CAR)

and transmission loss (η), we can calculate the expected number of coincidence counts (Cexp)

for each pair of detectors using

Cexp = η

(
Cavg +

Cavg
CAR

)
. (B.1)

Note that the first term corresponds to true coincidences, whereas the second term represents

accidental coincidences. We then randomize the coincidence counts according to a Poissonian

distribution and supply the resulting counts to the tomography code. The code yields us

with its best guess for our state, described as a density matrix ρ̂meas. We can use that density

matrix and calculate comparative metrics such as fidelity or linear entropy. By repeating

this process many times, we can obtain statistical values to characterize the quality of the

state we are trying measure. Figure B.1 shows a flowchart for the process described above.

Figure B.1. Flowchart for tomographic simulations
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B.1. Example tomography simulation code

In this section, we show an example code similar to the code used to simulate tomogra-

phies for the entangled-photon polarimetry work shown in Appendix C. Note that this code

sets and creates the appropriate variables and matrices, and then writes them into a script

files that MATLAB can read. MATLAB then performs the tomographic reconstruction, and

saves the resulting data to a file which can be independently analyzed.

1 #!/usr/bin/python
2 """
3 countsVsPrecision.py
4 File to create a plot of simulated precision
5 based on idealized lab conditions for a source
6 """
7

8 from pylab import *
9 from numpy import *

10 import os
11 import numpy2matlab
12

13 ## Establish input parameters
14 totalTime = 9
15 timeBetwProj = 0 # List the Time between projectors for tests
16 #timeBetwProj = 1/54. # List the Time between projectors for eom
17 #timeBetwProj = 3 # List the Time between projectors for WPs
18

19 ## Variable for number of "Monte Carlo" simulations to run
20 simul = 2000
21

22 ## Using input parameters, determine dependent parameters
23 timePerMeas = totalTime/9. - timeBetwProj
24 if timePerMeas < 0:
25 print(’Time Travel not allowed!! timePerMeas was calculated’ + \
26 ’ to be negative. Set to 0.’)
27 timePerMeas = 0
28

29 ## Determine useful variables
30 root2 = 1/sqrt(2)
31 H = array([1,0])
32 V = array([0,1])
33 D = root2*(H+V)
34 A = root2*(H-V)
35 R = root2*(H+V*1j)
36 L = root2*(H-V*1j)
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37 ## Two-qubit states are Kroenecker Products of 1-qubit states
38 HH = kron(H,H)
39 HV = kron(H,V)
40 VH = kron(V,H)
41 VV = kron(V,V)
42

43 ## Maximally entangled state
44 maxEnt = 0.5*array([[1,0,0,1], [0,0,0,0], [0,0,0,0], [1,0,0,1]])
45 ## Totally mixed, separable state
46 mixed = 0.25*array([[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]])
47 ## rho = theoretical state (99% fidelity to maximally entangled state?)
48 #rho = .03*mixed + .97*maxEnt
49 #rho = mixed
50 rho = maxEnt
51 rho = rho / trace(rho)
52

53 psi = array([H,D,R])
54 psi_perp = array([V,A,L])
55 ## Below: dim(psi) = 4 x 9 x 4
56 ## psi = [TT, TR, RT, RR] where T = transmitted, & R = reflected
57 psi = array([kron(psi, psi), kron(psi, psi_perp),
58 kron(psi_perp, psi), kron(psi_perp, psi_perp)])
59 #print(psi)
60

61 ## Define pr as the probability matrix for each measurement
62 ## pr = < psi | rho | psi >
63 ## dim(pr) = 4 x 9
64 pr = array([dot(conj(psi[m,n,:]), dot(rho, psi[m,n,:])) \
65 for m in range(size(psi,0)) \
66 for n in range(size(psi, 1))]).reshape(4,9)
67 #print(pr)
68

69 ## Define measurement matrices for the measurements we make
70 meas_q1 = array([[ 0, 180, 0, 90], \
71 [ 0, 180, 0, 90], \
72 [ 0, 180, 0, 90], \
73 [ 22.5, 180, 45, 90], \
74 [ 22.5, 180, 45, 90], \
75 [ 22.5, 180, 45, 90], \
76 [ 0, 180, 45, 90], \
77 [ 0, 180, 45, 90], \
78 [ 0, 180, 45, 90]])
79

80 meas_q2 = array([[ 0, 180, 0, 90], \
81 [ 22.5, 180, 45, 90], \
82 [ 0, 180, 45, 90], \
83 [ 0, 180, 0, 90], \
84 [ 22.5, 180, 45, 90], \
85 [ 0, 180, 45, 90], \
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86 [ 0, 180, 0, 90], \
87 [ 22.5, 180, 45, 90], \
88 [ 0, 180, 45, 90]])
89

90 ## Define countRate as total number of counts from which we calculate trues
91 ## Counts per measurement (ideal, i.e. w/o Poissonian randomization)
92 countRate = (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, \
93 20000, 50000, 100000, 200000, 500000, 1000000, 2000000, 5000000, \
94 10000000, 20000000, 50000000, 100000000, 200000000, 500000000)
95

96 ratio = (3)
97

98 for cR in countRate:
99 accRate = cR/ratio

100 ## Create coinc array w/ data about all the "ideal" tomographic
measurement

101 ## dim(coinc) = 4 x 9
102 ## coinc[0] = TT
103 ## coinc[1] = TR
104 ## coinc[2] = RT
105 ## coinc[3] = RR
106 trues = array([(cR*pr[n])*timePerMeas \
107 for n in range(size(pr, 0))])
108 acc = array([0.25*accRate*timePerMeas \
109 for n in range(size(pr))]).reshape(9,4)
110

111 coinc = trues.T + acc
112

113 ## Write an automatically generated MATLAB script to take the
tomographies

114 ## using the seeds generated above and find the fidelities
115 scriptname = "tomo_simul.m"
116 rhoFidOutname = "rho_fidelity.txt"
117 coincStr = numpy2matlab.array2matlab(’coinc’, real(coinc), ’;\n’)
118 rhoStr = numpy2matlab.array2matlab(’rho_0’, rho, ’;\n’)
119 accStr = numpy2matlab.array2matlab(’acc’, acc, ’;\n’)
120 meas_q1Str = numpy2matlab.array2matlab(’measQ1’, meas_q1, ’;\n’)
121 meas_q2Str = numpy2matlab.array2matlab(’measQ2’, meas_q2, ’;\n’)
122

123 saveName = ’simVars_’ + str(int(cR)) + \
124 ’_’ + str(int(accRate)) + ’_’ + str(totalTime) + \
125 ’_’ + str(timeBetwProj) + ’.mat’
126 coincName = ’coinc_’ + str(int(cR)) + \
127 ’_’ + str(int(accRate)) + ’.mat’
128 script = open(scriptname, ’w’)
129 if os.path.exists(saveName):
130 print(’Using old file: ’ + saveName)
131 script.write(’load ’ + saveName + ’;\n’)
132 script.write(’oldSize = size(f,2);\n’)
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133 else:
134 print(’Saving to New file: ’ + saveName)
135 script.write(’clear;\n’)
136 script.write(’oldSize = 0;\n’)
137 script.write(’format compact;\n’)
138 script.write(coincStr)
139 script.write(rhoStr)
140 script.write(accStr)
141 script.write(’acc = acc.*ones(9,4);\n’)
142 script.write(meas_q1Str)
143 script.write(meas_q2Str)
144 script.write(’meas(:,:,1) = measQ1;\n’)
145 script.write(’meas(:,:,2) = measQ2;\n’)
146 script.write(’ctalkQ1 = [1,0;0,1];\n’)
147 script.write(’ctalkQ2 = [1,0;0,1];\n’)
148 script.write(’for n = 1:’ + str(simul) + ’\n’)
149 script.write(’ index = oldSize + n\n’)
150 script.write(’ coinc_rand(:,:,index) = poissrnd(coinc);\n’)
151 #script.write(’ rho_1 = simple_linear_2q_4d_tomography( ...\n’)
152 #script.write(’ meas, coinc_rand(:,:,index), acc, ctalkQ1,

ctalkQ2);\n’)
153 script.write(’ rho(:,:,index) = simple_linear_2q_4d_tomography(

...\n’)
154 script.write(’ meas, coinc_rand(:,:,index), acc, ctalkQ1,

...\n’)
155 script.write(’ ctalkQ2);\n’)
156 script.write(’ rho(:,:,index) = make_legal(rho(:,:,index));\n’)
157 script.write(’ f(index) = fidelity(rho(:,:,index), rho_0);\n’)
158 script.write(’ save(\’’ + coincName + ’\’, \’coinc_rand\’);\n’)
159 script.write(’ save(\’’ + saveName + ’\’, \’rho\’, \’f\’);\n’)
160 script.write(’end\n’)
161 script.close()
162 os.system(’matlab -nosplash -nodesktop -r \’tomo_simul; quit;\’’)

Tomographic Simulation Example
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B.2. Code used to obtain error bars for tomography measurements

The process by which we obtain errors bars on our measurements is very similar to the

simulation process. For this reason, we show example code here for how to do so. The

difference between this code and the tomographically simulated code is that here, we do not

artificially generate our coincidence counts. Instead, we use the measured coincidence counts

and Poissonianly randomize those.

1 % This function will accept parameters for taking a tomography and return
2 % the mean fidelity, tangle, and linear entropy along with their standard
3 % deviations for a given "numSim" number of Monte Carlo Simulations
4

5 % It is assumed that the input variables can be Poissonianly randomized.
6

7 function [fMean, fErr, tMean, tErr, slMean, slErr] = getTomoErrorBars(meas
, coinc, acc, ctalk_q1, ctalk_q2, numSim)

8

9 for ii=1:numSim
10 [rho, intens, fval] = simple_2q_4d_tomography(meas, poissrnd(coinc),

...
11 poissrnd(acc), ctalk_q1, ctalk_q2);
12

13 f(ii) = general_bell_fidelity(rho);
14 t(ii) = tangle(rho);
15 sl(ii) = linear_entropy(rho);
16 end
17

18 fMean = mean(f);
19 fErr = std(f);
20 tMean = mean(t);
21 tErr = std(t);
22 slMean = mean(sl);
23 slErr = std(sl);

Error Bar Calculation Code
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APPENDIX C

Real-time Entangled Photon Polarimetry

C.1. Introduction

Photonic entanglement is a fundamental resource for quantum information processing

and quantum communications [118]. Engineering suitable entanglement sources for a partic-

ular application, or integrating those sources into a larger system, however, can be a chal-

lenging experimental task. Generating high-quality entanglement requires protecting against

or compensating for decoherence, single-qubit rotations, and partial projections. For both

free-space [119–122] and fiber/waveguide-based entanglement sources [37,38,123–125], this means

compensating for any polarization rotations or decohering effects which may occur in transit

to a destined application. In addition to the aforementioned static effects, it is necessary to

test the source’s stability in the face of real-time system perturbations such as atmospheric

turbulence or fiber breathing owing to environmental fluctuations. At present, the best avail-

able technique for measuring two-qubit entangled states is quantum state tomography [114,115],

a procedure which can provide a precise reconstruction of the quantum state, but which gen-

erally requires 5–30 minutes to complete. This long measurement time can make debugging

systematic experimental problems—particularly those with short timescales—challenging, if

not impossible.

The field of classical optical communications has faced similar problems when transmit-

ting polarized light over long distances. A polarimeter is a common tool that is used to debug

unwanted polarization rotations or depolarization effects (i.e., polarization decoherence). A
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polarimeter actively monitors the polarization state of a classical optical field, providing an

experimenter with a real-time picture of the optical field’s Stokes vector (i.e., its polariza-

tion state). Similarly, an entangled photon polarimeter—a measurement device capable of

performing quantum tomographies and displaying the reconstructed two-qubit states in real

time—would be a valuable tool for optimizing and deploying entangled photon sources.

In this appendix, we present our experimental implementation of an entangled photon

polarimeter, which is capable of displaying nine reconstructed density matrices per second

via complete quantum state tomographies. This represents a speed improvement of 2–3

orders of magnitude over the best quantum state tomography systems currently in use in

laboratories around the world. Using this new tool, we record the first live video—at 9

frames-per-second (fps)—of a two-photon quantum state’s transition from separability to

entanglement. We also use this space to describe the design, assembly, and characterization

of the polarimeter, which uses a pair of computer-controlled, electro-optically-modulated

polarization controllers (polcons). We also discuss some setbacks encountered during the

development and the solutions employed to either remedy or circumnavigate them. But

first, we start with a look at a little theoretical background for two-qubit polarimetry.

C.2. Two-qubit polarimetry

Two-qubit polarimetry is a specific example of two-qubit quantum state tomography, a

procedure for reconstructing an unknown quantum state from a series of measurements (gen-

erally either 9 or 36 coincidence measurements performed using two single-photon detectors

per qubit [115]), each performed on an ensemble of identical copies of the unknown state.

Three key parameters can be used to characterize any experimental apparatus for quantum

state tomography: the time required to complete the state reconstruction procedure and the
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accuracy and precision with which the reconstructed density matrix represents the unknown

quantum state.

The time required to complete a quantum state tomography, T , is dependent on the

number of two-qubit measurement settings taken per reconstruction, M ; the time per mea-

surement setting, τm; the time to switch between measurement settings, τs; and the time

necessary to numerically reconstruct the unknown density matrix from an analysis of the

measurement results, τa:

T ≡M × (τm + τs) + τa. (C.1)

The accuracy and precision of a tomography are closely related, both indicating how closely

the reconstructed density matrix, ρ̂, matches the “true” unknown density matrix, ρ̂ideal. The

“accuracy” of a tomographic reconstruction measures error due to systematic effects, such

as improperly performed projective measurements, uncharacterized drifts in the detectors’

efficiency, or a non-identical ensemble of unknown quantum states. The “precision” of a

tomographic reconstruction measures the statistical error in ρ̂, and is strongly dependent

on the total number of measurable states N in the identical ensemble (which is in turn

dependent on the entanglement source’s pair production rate, R, and the total single-qubit

measurement efficiency, η). In general, the tomographic precision decreases as T (and there-

fore N) decreases [116]. For sufficiently small T , we can neglect systematic effects and quantify

tomographic precision (as a function of N and of ρ̂ideal) to be the average fidelity between ρ̂

and ρ̂ideal:

Fp (N, ρ̂ideal) ≡ F (ρ̂, ρ̂ideal) =

(
Tr

{√√
ρ̂ρ̂ideal

√
ρ̂

})2

. (C.2)

Note that the equation above uses the usual definition for fidelity between two mixed

states [51], which for a pure ρ̂ideal ≡ |ψ〉 〈ψ|, simplifies to the more familiar F (ρ̂, ρ̂ideal) ≡
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Figure C.1. (a) Tomographic precision Fp(N, ρ̂ideal) for ρ̂ideal = |φ+〉 〈φ+| with
|φ+〉 = 1√

2
(|HH〉 + |V V 〉). Each data point represents a 2000-tomography

numerical Monte Carlo simulation of the average fidelity between the recon-
structed density matrix and ρ̂ideal, under realistic assumptions about the sys-
tem noise (a coincidence-to-accidental ratio of 3). Each simulated tomography
utilizes four detectors and nine coincidence measurements, such that each un-
known quantum state in the N -state ensemble is projected onto one of nine
four-element orthonormal bases (e.g., HH, HV, VH, VV). Results for both
the maximum likelihood technique and the truncated-eigenvalue, linear-least-
squares-fit technique are shown. For a given N , the maximum likelihood tech-
nique is slightly more precise [116]. (b) Using the same simulated data, Fp is
shown as a function of total tomography time T for two different experimental
systems: a traditional free-space tomography system with η = 0.1, τs = 5 s,
τa = 5 s and an entangled photon polarimeter with η = 0.07, τs = 0.02 s,
τa = 0.001 s. In both systems R = 106 pairs/second and M = 9.

Tr {ρ̂ρ̂ideal} = 〈ψ| ρ̂ |ψ〉. Figure C.1(a) shows Fp(N) for ρ̂ideal = |φ+〉 〈φ+| with |φ+〉 =

1√
2
(|HH〉 + |V V 〉), where each data point represents a Monte Carlo simulation of the aver-

age fidelity between a reconstructed density matrix and the ideal unknown state.

Two-qubit polarimetry is an application of two-qubit polarization tomography which max-

imizes precision for very short T (≤ 1s), allowing an experimenter to manipulate an entangled

photon source using real-time tomographic feedback (by updating after every measurement,
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the time between updates can be reduced to T/9). (In this appendix, entangled photon

polarimetry refers to the application of two-qubit polarimetry to entangled photon states.)

Because maximizing precision requires maximizing N , the ideal entangled photon polarime-

ter will minimize both the time between measurements (τs) and the time for numerical

analysis (τa):

N = Rη2Mτm = Rη2 (T −Mτs − τa) . (C.3)

Although Eq. (C.3) can be used to derive the total time necessary to perform a single

tomography with a given precision, an entangled photon polarimeter will likely perform

many tomographies in series. In this configuration, the tomographic measurements and the

numerical analysis of those measurements can be parallelized in one of two ways. For τa <

M(τm+τs), a complete set ofM measurements can be analyzed at the same time the next set

of M measurements are being performed, leading to one tomographic result being displayed

to the experimenter every M(τm + τs) seconds. For τa < τm + τs, a tomographic result can

be analyzed and displayed after every measurement, rather than after every complete set of

M measurements. In other words, after every measurement, the previous M measurements

are used to reconstruct an updated density matrix, leading to a faster refresh rate based on

a tomographic “rolling average”. Similarly, this configuration can be altered in real time to

utilize even more measurements (e.g., 4M) for increased precision (analogous to averaging

multiple traces on an oscilloscope).

C.3. Building the polarimeter

Now that understand some of key parameters involved with obtaining accurate and pre-

cise results, we look at how we build our polarimeter. This subsystems of this device are

divided into several main components: optical elements, digital-to-analog converters (DACs),
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amplifiers, photon detection, and computer control (see Fig. C.2). After a brief discussion

of the overall design goal, and the preliminary constraints, we will elaborate on the process

involved for bringing each of these main components online. Finally, we will discuss some of

the larger problems that came up during this entire process.

Figure C.2. High-level block diagram of the polarization controller apparatus.

C.3.1. Design goal

This project’s goal is to develop and build a system that can rapidly control the polarization

of light via a computerized interface. In order to demonstrate this ability, we opted to

demonstrate a real-time entangled photon polarimeter. Such a device has applications for

high-speed measurement of polarization-based entangled states that are useful for photonic

QIP.
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Figure C.3. Connections to the EOSPACE polcon. The white dot corresponds
to pin 1 just as seen on the actual polcon device. (NC = Not Connected)

C.3.2. Design criteria

In order to achieve the goal, we need to consider the many different aspects of our design,

including the constraining factors. Based on these, we decide what components need to be

made, purchased, and/or used.

The functional workhorse for this project are the polcons, purchased from EOSPACE

(Model PC-B4-00-SFU-SFU-UL). The remainder of the system was designed around these

devices. We have two four-stage polcons, each with 24 connection pins. Each stage has

three voltage-control leads, and the remaining 12 pins are not connected. By grounding the

central pin of each stage, we require eight independently controlled voltages for each polcon.

Table C.1. Polcon pin lookup table

Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Stage 1
NC

2
NC

3
NC

4
NC

Voltage Va Vb Vc Va Vb Vc Va Vb Vc Va Vb Vc

In order to drive these 16 voltages, we use two 12-bit, eight channel DACs purchased from

ACCES I/O (Model USB-DA12-8A). These DACs were primarily selected for the number of

available channels, and the rate at which we can update the values. These DACs are quoted

to perform in streaming mode at rates up to 125 kHz. Since amplifiers are used to provide
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the appropriate voltages to the polcons, output voltage was not a major concern.

Va = V0 · λ
τ

π
· sin(α)− Vπ · λ

τ

2π
· cos(α) + Va,bias

Vb = 0 (Ground)

Vc = V0 · λ
τ

π
· sin(α) + Vπ · λ

τ

2π
· cos(α) + Vc,bias

(C.4)

In accordance with the documentation provided by EOSPACE, we used Eq. (C.4), to

simulate the range of voltages required for the polcons. These equations relate the rotation

angle (α) and retardance (τ) of a waveplate to the necessary voltages based on a given

geometry of the lithium niobate (LiNbO3) waveguides and the electrodes. This allows us

to treat each stage as an independent waveplate with an adjustable rotation angle and

retardance. Note that all angles in Eq. (C.4) are specified in radians. A derivation of

Eq. (C.4) is provided in §C.10.

Based on simple calculations, we determined that a voltage range of ±40 V should be

sufficient. Since the DACs provide a ±5 V signal source, an eightfold amplifier circuit is

necessary for each channel. Also, a high-power DC supply with a rail-to-rail voltage potential

of 80 V is necessary in order to provide DC voltages between ±40 V without clipping.

Optically speaking, we need a source of light with the operating wavelength at 1550 nm.

For characterization, we use a CW laser (Santec TSL-210), but for performing entangled

photon polarimetry, we need an entangled photon source; we use a fiber-based two-qubit

degenerate entangled photon source developed in our lab [38].

Optically downstream from each polcon, we also put a fiber-connectorized polarizing

beamsplitter (FPBS) to project the polarization state onto the orthogonal outputs before
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performing coincidence count detection using a Nucrypt single-photon detector array. These

FPBSs were purchased from General Photonics (Model PBC-001-P-03-SM-FC/PC)

Finally, uniting everything, we need a method to send commands to the DACs and read

data from the detectors. Any computer with two USB ports for the DACs, and one serial

port for the detectors should suffice. We opted to use Photonix in the lab because of its

speedy processor, and Linux programming environment.

C.3.3. Background for waveplates

Since we treat each stage as a waveplate, a brief discussion of waveplates is given here. A

waveplate is an optical device that adds a phase between orthogonal polarizations of light.

The amount of phase, called the retardance, is traditionally based on geometric factors. A

waveplate is further characterized by its ordinary and extraordinary axes. These axes specify

orthogonal linear polarizations which we call horizontal (H) and vertical (V). Occasionally,

we also refer to these axes as the slow and fast axes. These axes are special in that if H- (or

V-) polarized light is incident and aligned with the either axis, it is unaffected. Alternatively,

if diagonal light (conventionally defined as D = H + V) is incident upon the waveplate, then

the H-polarized component and the V-polarized component will have a phase between them

equal to the retardance of the waveplate.

Standard waveplates are available as half-waveplates (HWP) and quarter-waveplates

(QWP). The half and quarter distinction tell us that the retardance is equal to a half

or quarter of the given operating wavelength. For example, at 1550 nm, a HWP applies a

775-nm phase shift between the H and V components of incident light.

The aforementioned discussion is primarily relevant for light which is aligned to the optic

axes of the waveplate. Of course, either the light or the waveplate can be rotated to provide
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variations on the output. Hence an additional relevant factor is the orientation angle of the

waveplate. Combined with knowledge of the orientation angle, and the retardance, we can

quickly determine the output polarization of light given the input polarization through a

known, characterized waveplate.

Unlike typical waveplates, the polcons are not constrained by physical geometry. Instead,

since they operate as electro-optic modulators (EOMs), they adjust the properties of the

internal waveguide, thereby changing the properties of the transmitted electromagnetic wave.

This characteristic works to our advantage because each stage of each polcon behaves like a

waveplate with variable retardance and orientation angle. This affords tremendous flexibility

when manipulating states.

The next optical component of the design is a fiber-connectorized polarizing beamsplitter

(FPBS). The FPBS is simply a device that uses optical properties of the propagating medium

to direct light of orthogonal polarizations to two different outputs. We use the FPBS to

measure our state since we can measure the output ports separately using the Nucrypt

detectors.

C.4. Hardware

C.4.1. Digital-to-analog converters

As mentioned before, the polcons are driven by a low-voltage supply from the DAC which

is subsequently amplified. Based on simple simulations, we determined that we can operate

the polcons with ±40 V supply. This supply enables us to treat each stage of the polcon as a

waveplate with a variable retardance of up to half a wavelength. Based on an online search

of DACs, we deemed it sufficient to use a supply that provides ±5 V since this is easier and

cheaper to obtain than a ±40-V supply.



208

Another factor used to select an appropriate DAC was the rate at which the signal could

be updated. Noting that the operating baudrate of the serial port used to read data from

the detectors is 115,200 bits per second, we selected a device that can update at 125 kHz.

This should be plenty sufficient for the current needs. Future designs can optimize the

readout rates by using faster protocols like USB for all communication interfaces. Based on

these criteria, we purchased the ACCES I/O USB-DA12-8A DACs for our digital-to-analog

converters.

C.4.2. Amplifiers

We now look to the design of the amplifier circuits with an eightfold gain for each channel.

In order to determine which op-amps are suitable for the design, we need to consider three

main factors: the current draw, supply voltages, and switching rate.

Using the supply voltages as a preliminary screening, we searched for high-power op-

amps, and settled on the OPA453 op-amps. It is useful to note here that the OPA453 was

chosen instead of its sister product, the OPA452, because the OPA453 is designed to operate

at gains higher than five; our amplification is a factor of eight. These op-amps are rated to

operate at 80 V, which is perfect for the ±40-V supply we wish to drive.

Also, the recovery time for the OPA453 is 1 µs, i.e. 1-MHz switching rate. This is

sufficiently larger than the 125-kHz rate determined by the DACs, and therefore we deduce

that switching rate will not be an issue with these op-amps.

Finally, modeling each stage according to Fig. C.4, and using the following equation,

ix = cx(∆vx/∆t), x ∈ a, c, it is trivial to show that the maximum current draw is 150 µA.

Since each amplifier can support up to 50 mA of current draw, and each stage gets its
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Figure C.4. The circuit model for each stage of the polcon. Note that Vb is
grounded.

own op-amp, this OPA453 is the perfect selection for this application. Note that measured

average capacitance between any two connected pins of the polcon was on the order of 15 pF.

Figure C.5. Electrical schematic of the amplifier circuitry. C = 10 µF, Ra =
5 kΩ, Rb = 40 kΩ. Therefore, the gain is Rb/Ra = 8.

Looking at Fig. C.5, you will see that the op-amps are wired with resistors in an inverting

amplifier configuration. The resistors were chosen to provide the desired gain factor of eight.

It is critical to note the inverting nature in order to properly send the software code for

driving the DACs.

C.4.3. Heat considerations for op-amps

As can be expected with high-power applications, heat dissipation is an important factor that

must be considered. At the small currents which are being driven, it may seem unimportant,
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Figure C.6. Drawing of the Heat Sink assembly. Note that we use a mica
insulator, nylon screws, and nylon washers to prevent the grounded backplate
of the op-amp (OPA453) from accidentally conducting electricity through the
much larger heat sink.

but with 16 of these op-amps in a small enclosure, heat can become a factor. For this reason,

each op-amp is connected to a heat sink, and the enclosure lid is currently left open to allow

for dissipation. Since the back plates of the op-amps are connected to GND, the heat sinks

are attached to them using nylon screws and with a mica plate in between to electrically

isolate the heat sinks while retaining thermal conductivity. A drawing for this assembly is

shown in Fig. C.6. Future plans exist to create vents in the lid so that the box can be closed

while enabling the heat to dissipate easily. In the event that this is not sufficient, a fan may

be attached.

C.4.4. Power supply

Rather than spend extra money on a pre-built ±40 V power supply, we scavenged around

the lab and used a mish-mash of various parts to build my own “custom” supply. We did not

design and build one using transformers, rectifier and switching circuitry. Instead, we used
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three pre-built power supplies of different voltages (two ±15 V, and one ±12 V) along with

a follow-up circuit in order get the ±40 V supply with a central pick-off we call REF. The

circuitry for the power-supply is shown in Fig. C.7. Essentially, we treat the three supplies

as +30 V and +24 V supplies by ignoring their reference outputs and using only the poles

of the supply. By wiring these three in series, we can obtain an 84 V supply which we can

subsequently modify to get the desired ±40 V.

Figure C.7. Electrical schematic of the power supply. We use three AC-to-
DC converters (transformers) to generate an ≃ 84 V power supply. We then
use six diodes (1N4002) to create a ≃4-V drop in voltage. Finally, we use a
generic op-amp (LF347N) in a unity-gain configuration. The output of the
op-amp establishes the reference (REF) for the +40-V and −40-V supplies.
Rc = 100 kΩ

The first modification is the use of the six 1N4002 diodes. These diodes are used to simply

step down the voltage by approximately 4 V (assuming that each Si diode has a forward

bias voltage of ∼0.6–0.7 V). The next modification is to add a voltage divider followed by
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an op-amp on the middle connection. The voltage divider is used to make the ±20 V into

a +10 V and -10 V with a central reference voltage (REF). The op-amp is wired in the

unity gain configuration and is used to simply prevent any variation on the reference voltage

caused by fluctuations of load current.

In order to determine the appropriate op-amp for this selection, we looked for two main

criteria: current draw, and supply voltage. The largest conceivable current draw on this op-

amp happens if all 16 DACs are switched simultaneously and instantly from their maximum

values to their minimum values. Using the aforementioned 150 µA calculation, this would

require an op-amp that can tolerate a 2.4 mA. The other criteria was that the supply voltage

for the op-amp be ±20 V. The selected op-amp for this application was the LF347N. This

op-amp can tolerate a load current up to 11 mA and can work with supply voltages up to

±30 V making it suitable for this application.

C.4.5. Polarization control box

For the polcons, the electrical considerations of how the wiring was done is discussed in the

next section. Optically speaking, when placing the polcons in their housing, a lot of care

was taken to maximize the bending radius of the fibers. This enable it to fit properly in

the case, but not bend too much so as to introduce unnecessary loss. Similar considerations

were made for the other optical elements in the housing, the FPBSs. Also, while placing the

optics in the polcon Box, we taped down the fiber to mitigate polarization drifts due to fiber

breathing and environmental fluctuations. Ideally, the fibers will not move much since the

lid has now been placed on the box preventing significant movement of the fiber.
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Figure C.8. High-level diagram showing the interfaces and connections be-
tween different parts of the entire setup. Note that the arrows for the ca-
bles/adapters do not indicate direction of data transfer. The direction of data
transfer is indicated by the arrows inside the DB-25 cables which indicate the
number of data lines used on that bus.

C.4.6. Hardware interconnects

When assembling all these different parts, with 16 independent voltages being controlled, it

becomes very important to follow the interfaces between devices. Also care must be taken

not to accidentally cross some wires for the “homemade” amplifiers. In general, a D-Sub

25-pin (DB-25) connector is utilized throughout the design. This was chosen for the ability

to transfer 16 (or more) voltages in a small form factor. Also, it was the output choice made

by the ACCES I/O DACs making it convenient for to retain the connector throughout the

rest of the design. Shown in Fig. C.8 is a high-level drawing of the setup indicating whether

a male or female DB-25 connector is used for each of the different parts.

Note that the connection from the amplifiers to the polcon box is a single DB-25 cable.

In an effort to avoid confusion, the pin connections shown in Table C.2 were made. For

the reader’s convenience, we show the pinout numbering of the male and female connectors

in Fig. C.9. The reader will note that the lower numbered pins connect to the polcon and
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Figure C.9. Pinout numbering for male and female DB-25 Connectors. The
male connector is used on the polcon box, while the female connector is used
as the output from the amplifier box.

FPBS with lower serial numbers. Also, both devices use the same REF for their common

ground. This REF is connected to each stage’s Vb. Corresponding Va and Vc are also kept

on contiguous pins. This makes it easier to address them from software. For reference, a

reverse look-up table is also provided.

C.4.7. Single-photon detection

Single-photon detection is performed using a four-detector array of InGaAs avalanche photo-

diodes (APDs) operated in the gated Geiger mode. By increasing the speed of these detectors

from 8.3 MHz to 50 MHz, the entangled photon polarimeter achieves a 6-fold speed increase

relative to previous implementations of quantum state tomography which utilized the same

telecom-band detection systems. Moreover, by synchronizing the detector-array’s control

software with the EOM-based analyzers, we have reduced the switching time to τs = 20

ms. By upgrading the detector control software to eliminate extraneous electronic delays,

we anticipate that this will approach the 125 kHz limit (τs = 10 µs) imposed by the EOM

voltage controllers. The quantum efficiency of each detector at 1550-nm is approximately

20%, with a measured dark-count rate of 1–4 ×10−4 per pulse.
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Table C.2. Pin connections for the polcons and the DB-25 connector on the
polcon box. Channel A of the polcon box uses EOSPACE polcon with serial
#140526 and General Photonics FPBS with serial #90030926. Channel B
uses EOSPACE polcon with serial #140527 and General Photonics FPBS with
serial #90030932

Pin Lookup
DB-25 Pin # Polcon Pin # Polcon Channel Polcon Stage # Value

1 1 A 1 Va
2 3 A 1 Vc
3 7 A 2 Va
4 9 A 2 Vc
5 13 A 3 Va
6 15 A 3 Vc
7 19 A 4 Va
8 21 A 4 Vc
9 Not Connected
10 Not Connected
11 Not Connected
12 2, 8, 14, 20 A & B ALL (1–4) REF
13 2, 8, 14, 20 A & B ALL (1–4) REF
14 1 B 1 Va
15 3 B 1 Vc
16 7 B 2 Va
17 9 B 2 Vc
18 13 B 3 Va
19 15 B 3 Vc
20 19 B 4 Va
21 21 B 4 Vc
22 Not Connected
23 Not Connected
24 Not Connected
25 Not Connected

C.5. Software

Almost all the code for this project was written using Python. A small portion of code

was written in C++. The software written for this project falls into three categories: driver

software, interface software, and application software. The driver software is low-level code

written to talk to the physical apparatus. This type of code was specifically written for
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Table C.3. Pin connections for the polcons and the DB-25 connector on the
polcon box. Channel A of the polcon box uses EOSPACE polcon with serial
#140526 and General Photonics FPBS with serial #90030926. Channel B
uses EOSPACE polcon with serial #140527 and General Photonics FPBS with
serial #90030932

Reverse Pin Lookup
Polcon Channel A Pin # Polcon Box DB-25 Pin # Polcon Channel B Pin #

1 1 14 1
2 12 13 2
3 2 15 3
4 NC NC 4
5 NC NC 5
6 NC NC 6
7 3 16 7
8 12 13 8
9 4 17 9
10 NC NC 10
11 NC NC 11
12 NC NC 12
13 5 18 13
14 12 13 14
15 6 19 15
16 NC NC 16
17 NC NC 17
18 NC NC 18
19 7 20 19
20 12 13 20
21 8 21 21
22 NC NC 22
23 NC NC 23
24 NC NC 24

communication with the DACs. Interface software is written in order to talk to a preexisting

code or interface. Code of this form was written for communication with the detectors, and

the DACs. Finally, application software is written for end-user goals. This type of code

unifies the other codes as a sort of wrapper and produces some sort of useful result. The

application software is very useful for automating entire processes as we have done for the

entangled photon polarimeter.
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C.5.1. Interface to DACs

Low-level code was written to control the DACs. This was necessary because ACCES I/O

claimed to have Linux support for their devices, but unfortunately, the USB-DA12-8A was

the only device in their product line without support. In order to control the DACs, we used

some of their supplied C++ code for their similar devices and modified it so that we could

produce the desired voltages on our devices. After getting this to work, we spent some time

trying to implement the same effect using Python in order to unify all the automation code.

Unfortunately, a direct port of the code was unsuccessful. Finally, we resorted to writing

a wrapper method in Python which would execute the compiled version of the C++ code

using a command-line interface and supply the required parameters such as the byte mask,

and output DAC values (in hex) as arguments.

After some use, a problem was discovered with using these DACs. The DACs would

demonstrate some discontinuities during a linear scan of the voltages. At the time of this

publication, the source of this problem is uncertain, and efforts to find the problem remain

underway. We believe the problem lies with the aforementioned C++ code. Indicators

currently seem to point to the fact the problem can be resolved using properly written C++

code which utilizes streaming the data in accordance with the DACs stream mode.

The discontinuities make it difficult to properly get the desired output voltages. For-

tunately, by ignoring the lowest few bits, the desired tests/experiments can be run with

minimal disruption to the goals.
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C.5.2. Brief description of libraries for polcons

In order to control the polcons using the DACs, a few modules were written. The DACmodule

contains most of the methods used to interface directly with the DACs. These methods

include ways to convert between a desired voltage to the corresponding decimal value of the

DAC.

A separate module, called eomModule, was written to control the polcons (aka EOMs)

specifically. This module contains different classes used to organize the data into useful

packages. These packages allow the user to interface with each individual stage, or with a

polcon as a whole. Within each of the different classes, there are the methods which are

relevant for that class. For instance, since updates to all the stages on a polcon are done

together, the “Update polcon” method is found in the class for the polcons. Methods for

each polcon stage enable one to set the proper Va and Vc for that stage based upon a given

desired retardance and orientation angle.

It should be noted here that there are a few other parameters that also need to be known

(and properly characterized) for each polcon stage. These parameters are the various voltage

constants seen in Eq. (C.4): V0, Vπ, Va,bias, and Vc,bias. In the eomModules, we refer to these

parameters as Vsettings or voltage settings. Each stage’s voltage settings are also contained

as variables in the class describing that polcon stage. In general, we used the pre-calibrated

values for the voltage settings provided by EOSPACE, but as discussed later, we do adjust

them a little to assist in determining the canonical points.
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C.5.3. Interface to detectors

Since the Nucrypt detectors already have a built-in menu system and interface, some code

needed to be written to use that framework. The code is distributed into different sections.

The first section is used to initialize parameters for detection. These parameters include the

repetition rate, and thresholding values for each of the detection channels. Another section

involves code written to read out the data.

Each readout consists of a set of 23 numbers on one line from the Nucrypt detectors.

Each line represents a predetermined number of detection windows (or triggers), typically 1

million. The first number is merely a number which tells us which line we are reading. The

next four numbers represent the number of detections (or singles) on each detector A–D. The

next two numbers are the coincidence counts and the detectors’ reported accidental counts

between detectors A and B. The following five pairs are the coincidence and accidental counts

between detectors C/D, A/C, B/D, A/D, and B/C respectively. The following two numbers

are the four-fold coincidence and accidental counts between all the detectors. Finally, the

last four numbers report the after-pulses on each detector. In short, the pattern is as follows:

# SA–D CAB AAB CCD ACD CAC AAC CBD ABD CAD AAD CBC ABC CABCD AABCD APA–D

Before this project, during any detector read, we would need to specify the number of

these readout lines we would like to measure in rapid succession. We refer to this number as

the cycles we would like to read. When the cycles are completed, the detectors automatically

sum the results of the readout lines. This final line is then collected by the computer and

used to produce statistically valuable data which can be processed.
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Unfortunately, each time the detectors start a read of n cycles, there is an inherent 0.1-s

delay. This conflicted with our final speed goals for the entangled photon polarimeter; so a

method of communicating and reading the detectors more rapidly needed to be devised and

implemented.

After much contemplation, and discussion with Joe Altepeter, we implemented a makeshift

solution which we refer to as the free-running mode. Essentially, in order to avoid the delay

for each read of the cycles, we would set our number of cycles to a very large number. We

could then collect the data line by line, and use the computer to post-process, i. e. sum, the

data, rather than burden the detectors with this task. This gives us the benefit of having

only one 0.1-s delay when the readout is started initially.

C.5.4. Data processing

After the detection is done, we are left with a large file which has collected the readout lines

from the detectors. All of this data needs to be processed into more useful results. Once

again, in order to make the data more statistically valuable, the first post-processing done

is to sum a predetermined number of lines. Using these summed lines, we then calculate the

statistical accidental counts based on the following equation, where x and y are the detector

labels, and g is the number of detection gates, i. e. lines that summed × one million.

Axy = (SxSy)/g

Collecting the coincidences with the calculated accidental counts, we save the data into large

files.
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For the entangled polarimetry project, we use programs written by Joe Altepeter and

Evan Jeffrey to analyze these large data files and process the tomographies using a linear-

least-squares-fit algorithm [116], as opposed to a maximum likelihood algorithm [114]. Sub-

sequently, the processed data is used to display two-qubit ellipsoid representations of the

entanglement [126]. The double-ellipsoid visualization technique plots the surface of remotely

preparable states for two-qubits in Poincaré space. The positions of the points on this surface

indicate states which can be remotely prepared, while their color indicates the measurement

which must be performed on the other qubit to remotely prepare them. Totally uncorrelated

states are plotted as individual points on the two spheres, maximally entangled states are

plotted as spheres of radius one, and partially mixed states as ellipsoids inside the surface

of the sphere. Every two-qubit state has a unique graphical representation. For an example

of this visualization, see Fig. C.11.

C.6. Characterization and calibration

C.6.1. Procedure for determining the canonical bases

A polarimeter (ThorLabs DPC/TXP 5004) has often been used during the development of

these devices to try to calibrate the voltage values needed to obtain the six canonical bases

(H, V, D, A, R, and L). The polarimeter displays the polarization of the input light on the

Poincaré sphere, and lists the Stokes parameters for that polarization. Using the latter, we

can calculate orthogonality between different pairs of bases.

In order to find the six orthogonal points and thus control the polcons reliably, we need

to satisfy two criteria. The first is to have a known optical input to the device, and the

second is to be able to adjust the stage under test (SUT) to a desired starting point. Since

we already have a FPBS after our polcons, we simply shined light through the “output”
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of the polcon box. This assures us that the light will have a fixed input polarization, thus

satisfying our first criteria.

Using the numbering convention described earlier for the polcon stages, we now set

a pre-stage (in our case stage 4) to its default voltage settings (the values provided by

EOSPACE). Equipped with the polarimeter, iterating between adjustments of the retardance

and orientation angle for the pre-stage, and adjusting the voltage settings for the SUT,

we search for a location on the Poincaré sphere where the polarization does not change

significantly. Once this location is determined, we label that H, and then search for the

remaining five canonical points by simply adjusting the retardance and orientation angle of

the SUT.

After approximately finding the canonical points’ Stokes parameters, a simple calculation

in Matlab can yield the orthogonality between any of these. This is used to verify that we

have useful canonical points. Finally, to ensure that the tomography code works properly

and the detector channels correspond to the proper transmission/reflection ports from the

FPBS, we check that right-handedness of the measured Stokes parameters. If they are found

to be left-handed, then we simply flip the orientation angle measurement used to obtain the

R and L canonical points, i. e., relabel R to L and vice versa.

C.6.2. Power supply and DAC calibration

A few simple tests have been done to better calibrate the power supply, and DACs. The

power supplies have been tested and have a voltage range of approximately ±39.8 V. The

DACs have also been tested for stability, and repeatability. The DACs seem to be stable

on the order of 10mV. These small fluctuations are not large enough to affect the eventual

polarization significantly.
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Other than the DACs discontinuities which were discussed earlier, the DACs also have

one small flaw. Each channel of the DAC has a small shift from the ideal value. For example,

if we aim to set all the DAC channels at 5 V by setting the hex code to 0x0FFF, one channel

may be at 4.98 V while another may be near 5.1 V. The shifts from the ideal value vary

on the order of 10-100 mV. Fortunately, it seems that all the channels shift is just a shift

and not some nonlinearity. Hence, a small software correction should resolve this problem.

At the time of publication, the software correction has not yet been implemented since the

current experiments have not required the levels of precision afforded by such a change.

In terms of repeatability, the DACs have demonstrated reliable results. In other words,

these DACs are very precise, but not particularly accurate; the accuracy can of course be

improved by implementing the software based correction. Now that we know how to build

the setup, and calibrate the components, let us look at the experimental details used to test

the entangled-photon polarimeter.

C.7. Experimental details

The entangled photon polarimeter presented here is based on a previous apparatus for

free-space telecom-band quantum state tomography [38,115], which although accurate, is too

slow to provide real-time feedback. Three key improvements have dramatically improved the

tomographic speed while maintaining precision: bulk wave plates have been replaced with

fast electro-optic modulators (EOMs), an array of four single-photon detectors triggered at

8 MHz have been replaced with an array that is triggered at 50 MHz, and the traditional

maximum likelihood reconstruction technique has been replaced with a much-faster linear-

least-squares-fit method.
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Below, we briefly discuss the differences between these two techniques after reviewing the

entangled photon source used to test the tomography apparatuses. Figure C.1(b) highlights

the differences between the two techniques, showing the expected tomographic precision Fp

as a function of total tomography time T .

C.7.1. Entangled photon source

To test the entangled photon polarimeter, we utilize a fiber-based, frequency-degenerate,

1550-nm, polarization entangled photon-pair source [38]. The source utilizes spontaneous

four-wave-mixing in dispersion-shifted fiber and is pumped by 50-MHz repetition rate dual-

frequency pulses spectrally carved from the output of a femtosecond pulsed laser. Because

the output photons are identical, reverse Hong-Ou-Mandel interference in a Sagnac loop is

used to deterministically split the output photons into separate output single-mode fibers.

See Fig. C.10(a).

The same source is used to test two separate tomography systems, the automated wave-

plate-based apparatus first described in [38] and the entangled photon polarimeter presented

here.

Figure C.10. (a) The entangled photon source used to test the entangled pho-
ton polarimeter [38]. (b) The entangled photon polarimeter, composed of fast
electro-optic modulators, in-fiber polarizers, and a four-detector array [127].
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C.7.2. Polarization measurements

Traditionally, two-qubit polarization tomography is performed using bulk, free-space, bire-

fringent crystals (i.e., wave plates). A quarter- and a half-wave plate followed by a polarizer

on each of the two qubits can implement an arbitrary projective measurement [115]. By col-

lecting photons from both the transmitted and the reflected ports of each qubit’s polarizer,

one can project an unknown photon pair into one of four orthonormal basis states, defined by

the wave plates. If well characterized, this can lead to a very accurate tomography, though

the measurement-to-measurement transition time τs will in general be very large (≈ 5s). For

the fiber-based source above, this type of polarization analyzer will lead to a single-qubit

loss of ≈ 1.5 dB (including the fiber to free-space to fiber coupling losses).

To decrease τs, we have constructed an all-fiber/waveguide polarization analyzer based

on electro-optic modulators (EOMs). These LiNbO3 EOMs (EOSpace, model PC-B4-00-

SFU-SFU-UL) allow precise control of both the retardance and optic axis of a birefringent

crystalline waveguide using the fringe fields from three electrodes. In general, this process

has an extremely short response time leading to EOM switching rates of up to 10 MHz. In

practice, we are able to implement arbitrary polarization measurements at 125 kHz, which

is a limit set by the speed of our computer-controlled voltage sources.

Although high-speed, EOMs are more difficult to precisely characterize than bulk wave

plates; using a standard polarimeter we have characterized the six transformations performed

by each EOM-based analyzer (corresponding to projections onto the H, V, D ≡ (H+V)/
√
2,

A ≡ (H−V)/
√
2, R ≡ (H + iV)/

√
2, and L ≡ (H− iV)/

√
2 basis states). EOM projections

deviated from an ideal measurement by an average of 2.1 degrees on the Poincaré sphere.

The single-qubit losses of the EOM-based analyzers varied between 3.0–3.4 dB.
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C.7.3. Tomographic reconstruction

Traditionally, the maximum likelihood technique has been used to reconstruct a two-photon

state’s density matrix from a series of coincidence measurements, which numerically solves

for the density matrix ρ̂ most likely to reproduce the measured counts [114,115]. This method

always produces a legal state, but is relatively slow (τa ≈ 5 s).

By using a simpler analysis technique based on a linear least-squares fit, we are able to

increase the state reconstruction speed by more than three orders of magnitude [116]. We use

the 2-qubit Stokes vector as a linear model, and solve the following least-squares problem:

wM · S = wC. (C.5)

Here, M is the set of measurements, which can be arbitrary POVMs; C is the measured

counts, and S is the Stokes vector we solve for; w is a weight vector representing the dis-

tribution width for each measurement. We assume the counting process to be Poissonian,

and use the large-N limit where the Poisson distribution is approximated as a Gaussian with

width
√
N . To guarantee a legal density matrix, we post-process the least-squares fit by

truncating the negative eigenvalues [116]. We have found that this type of linear fit provides

results identical to those obtained via the maximum likelihood method with a negligible drop

in precision (see Fig. C.1(a)), only much faster (∼ 1.3 ms per tomography using Matlab on

a 2.4-GHz CPU).

This three-order-of-magnitude speed increase allows us to display a new frame (i.e., to-

mography result) after every measurement, reconstructed using the previous M measure-

ments. For four-detector, complete-basis polarization analyzers (described above), only nine
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measurements are needed to perform a complete tomography. Note that it is often experi-

mentally optimal to perform a redundant set of 36 measurements in order to detect and/or

correct for systematic errors such as source intensity drift, detector efficiency drift, or polar-

izer crosstalk [115].

C.8. Entangled photon polarimeter performance

After setting up all of the electronics and optics, programming the appropriate software,

and resolving the experimental hurdles, we are finally able to test the entangled photon

polarimeter. In order to do this, we tell the software to cycle through the 36 projective

measurement settings. We need to ignore some of the data we receive from the free-running

detector readouts during the interim periods when the computer switches between the two

polcons settings for their respective canonical points. Thus, in our test run, we would omit

every sixth line of data. Keeping this in mind, we would essentially sum over five lines of data

for each measurement used in the tomography. After that, we would simply run the code in

very long loops, and use only the previous 36 summed measurements in the tomography code

and visualization. Stated a little differently, only the 36 most recent measurements affect

the frame that is visible on the screen at any time. This implies that the first 36 frames that

are displayed on the screen are not valid frames to consider when using the polarimeter.

Using entangled states generated by the degenerate entangled photon source, and with the

calibrated canonical points, we were able to test the polarimeter. Figure C.11 shows frames

from a video demonstrating real-time adjustment of a state from separable to maximally

entangled. This video updates the on-screen frames at a rate of 3 Hz, and uses the Altepeter

spheres visualization of entanglement [126]. For this measurement, the polarimeter was set to
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time-average over the last 15 seconds of data, while performing one complete tomography

every four seconds.

Figure C.11. Individual frames from a 3 frame-per-second (fps) real-time video
recording of a two-photon state’s transition from separability to maximal en-
tanglement. (a) t = 0 s. (b) t = 62 s. (c) t = 123 s. (d) t = 197 s. State
(a) is completely separable, while state (d) has 83% fidelity with a maximally
entangled state.

We then improved the device operation by reducing some overhead from the detectors.

We took another set of data and made another video. Frames from this video are shown in

Fig. C.12 using the more traditional density matrix representation. This video operated at

9 fps, and one complete tomography was taken each second.

To verify the polarimeter’s stability, we recorded three 9-fps live videos of a two-photon

polarization state using the 36-measurement configuration. First we recorded two videos

where the measured state is not changed during the course of the measurement run, for a

totally separable pure state, |DV 〉, and a maximally entangled state, |φ+〉. By analyzing
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Figure C.12. Selected frames from a nine fps video of a two-qubit photon
state’s transition from separability (|HH〉 at t=0 s) to entanglement (|HH〉+
|V V 〉 at t=157 s) to separability (|V V 〉 at t=243 s). Each frame shows a
density matrix reconstructed using the previous 36 measurements (≈ 4 s of
data).

each frame and comparing it to the target state, we directly measured the system precision

to be 98%± 1% (for |DV 〉) and 95%± 2% (for |φ+〉).

By utilizing fast EOM-based analyzers, a four-detector array triggered at 50 MHz, and

a linear least-squares algorithm for tomographic reconstruction, the entangled photon po-

larimeter is capable of performing nine tomographies per second. Operated at this speed,

τm = 80 ms, τs = 20 ms, and τa = 1 ms. Total single-qubit insertion loss is measured to be

η = 3–3.4 dB (not including detector inefficiency). The tomographic precision is estimated

using a Monte Carlo simulation of this polarimeter’s application to the entanglement source

pictured in Fig. C.10 (resulting in ≈ 1000 coincidences per second). For nine-measurement

tomographies (T ≈ 1 s), Fp(ρ̂, ρ̂ideal) ≈ 92%. For 36-measurement tomographies (T ≈ 4 s),

Fp(ρ̂, ρ̂ideal) ≈ 96%. So in conclusion, we have built and demonstrated a device that uses
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EOM-based polarization controllers to act as a real-time entangled-photon polarimeter for

potential applications in QIP.

C.9. Troubleshooting

In our quest to develop the entangled photon polarimeter, we ran into a few main hurdles.

The first hurdle was overcoming the inherent delay of the detectors during the initialization

of each readout cycle. This was overcome using the makeshift free-running mode of operation

for the detectors which is described above.

The next hurdle we ran into was that we obtained poor detection statistics. Poor statistics

significantly limit the usefulness of the polarimeter since it requires us to integrate longer in

order to obtain useful statistical values. The insufficient statistics was due to two factors.

First, some components in the optical setup were dirty. After cleaning the optical paths of

the culprits, our results improve, but only minimally. The larger problem of obtaining poor

results lie with a dying detector (detector B on the Nucrypt box). This detector has been

increasingly performing poorer and poorer as noted through discussions with Milja Medic

and Matt Hall from their experiments. In order to overcome the poor statistical data, we

simply integrated our results for longer durations. This unfortunately meant that we were

unable to reach the more rapid goals originally set for the project.

As discussed earlier, DAC discontinuities also contributed to a hurdle for the development

of the polarimeter. These discontinuities were for the most part ignored in the latter stages

since they did not factor into the usage. Unfortunately, this will not likely be case for all

future experiments and projects. As addressed earlier, this problem is being looked into with

more detail at the time of publication.
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Finally, as a result of the DAC discontinuities, we get imperfect canonical bases. The

solution for this will be very trivial once the source of the discontinuities is discovered, and

resolved. After we are rid of the discontinuities, simply calibrating the polcon stages with

their proper voltage settings, we should be able to obtain the canonical basis more easily.

C.10. Derivation of polcon driving equations

Here we will derive the equations shown in Eq. (C.4). These equations describe the

manner in which one can obtain the voltages required to drive the polcons. The derivation

is based upon the steps taken by van Haasteren, et al [128].

In order to derive these equations, we start by taking a look at the index ellipsoid for

LiNbO3 with an external electric field, E, with components in the x-direction and y-direction,

Ex and Ey respectively.
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Using the electro-optic tensor for LiNbO3, we can show that the index change due to the

presence of the field is given by
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Based on this and accounting for the fact that our LiNbO3 polcon is a uniaxial, x-cut,

z-propagating waveguide, we can obtain the following relations.

1

n2
1

=
1

n2
0

− r22Ey + r13Ez
1

n2
2

=
1

n2
0

+ r22Ey + r13Ez

1

n2
3

=
1

n2
e

+ r33Ez
1

n2
4

= r42Ey

1

n2
5

= r42Ex
1

n2
6

= −r22Ex

(C.8)

Note here that no and ne are the ordinary and extraordinary indices of LiNbO3

By plugging these relations into Eq. (C.6), ignoring the Ez component of the electric

field, and looking only at the intersection of the resulting index ellipsoid with the xy-plane,

we obtain Eq. (C.9) for an ellipse.

(
1

n2
o

− r22Ey

)
x2 +

(
1

n2
o

+ r22Ey

)
y2 − 2r22Exxy − 1 = 0 (C.9)

ax2 + 2bxy + cy2 + 2dx+ 2fy + g = 0 (C.10)

ϕ =
1

2
arctan

(
2b

a− c

)
(C.11)

Equation (C.10) is the general equation for a quadratic, and Eq. (C.11) defines the angle

between the x-axis and the major axis of an ellipse. Thus, by equating the coefficients in

Eq. (C.9) with those in Eq. (C.10) for a general ellipse, and using Eq. (C.11), we can obtain

ϕ =
1

2
arctan

(
r22Ex
r22Ey

)
(C.12)
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Here, we assume that our crystal’s axes are aligned with the x-axis, y-axis, and z-axis

of the electric field. Equipped this knowledge, we define the physical orientation angle as

ϕ, the angle between the x-axis and the major axis of the ellipse described by Eq. (C.9) as

shown in Fig. C.13.

Figure C.13. Cross-section of the index ellipsoid for LiNbO3 and the xy-plane.

Based on the physical interpretation of the index ellipse, we realize that n3
or22Ex and

n3
or22Ey represent the indices of refraction along the x and y axes. Using this knowledge,

we can define two phase retardances show in Eq. (C.13). These retardances are derived by

simply multiplying the aforementioned indices by the length of electrode in order to obtain

the optical path, and then converting the lengths into phase.

τ1 =
ω

c
L r22 n

3
o Ex (C.13a)

τ2 =
ω

c
L r22 n

3
o Ey (C.13b)
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Using these phase retardances and Eq. (C.12), it is trivial to define a phase retardance τ

at the output of the waveguide as:

τ = τ2 cos(2ϕ)− τ1 sin(2ϕ) (C.14)

For future use, and convenience, we rewrite Eq. (C.12) as follows.

ϕ =
1

2
arctan

(
τ1
τ2

)
(C.15)

So now to make this useful, we want to come up with a means to convert the voltages

on terminals Va and Vc into the parameters τ and ϕ. In LiNbO3, the relationship between

the applied voltage differences and the external electric field is linear. Thus, we can write

the following matrix relationship.



τ1

τ2


 =



t11 t12

t21 t22






Us

Uas


 (C.16)

As per van Haasteren’s paper [128], we define the symmetric and antisymmetric potentials,

Us and Uas, in terms of Va and Vc (when Vb is ground) as



Us

Uas


 =




1
2

1
2

−1 1






Va

Vc


 (C.17)

We now introduce two terms, Vπ and V0. The first parameter corresponds to the voltage

required to induce a π-phase shift between the TE and TM modes, and the latter parameter

is the voltage required to rotate all the power from the TE mode to the TM mode, or

vice versa. Setting these voltages such that t11 = π/λV0, and t22 = π/λVπ, and by setting
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t12 = t21 = 0, we can easily show that

Va = 2V0 ·
λ

2π
· τ1 − Vπ ·

λ

2π
· τ2 (C.18a)

Vc = 2V0 ·
λ

2π
· τ1 + Vπ ·

λ

2π
· τ2 (C.18b)

During this derivation, we have neglected the effect of the intrinsic birefringence of the

LiNbO3 crystal. In order to correct for this effect, we add bias voltages to Eqs. (C.18).

This can also be corrected for during the derivation in a couple different locations. For

example, we can introduce a term τi which describes a phase retardance due to the influence

of birefringence into Eq. (C.14) and Eq. (C.15) by replacing τ2 with τ2 + τi. This method is

used in van Haasteren’s derivation.

Once we have corrected for the intrinsic birefringence effect, and supplying in the trigono-

metric relations for τ , we get our result shown in Eqs. (C.19). As a sanity check, we verify

that these match the equations in Eqs. (C.4).

Va = 2V0 ·
λ

2π
τ · sin(α)− Vπ ·

λ

2π
τ · cos(α) + Va,bias (C.19a)

Vb = 0 (Ground) (C.19b)

Vc = 2V0 ·
λ

2π
τ · sin(α) + Vπ ·

λ

2π
τ · cos(α) + Vc,bias (C.19c)
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APPENDIX D

Interfacing with various lab equipment

Since I, along with Joe Altepeter, encouraged the adoption of Linux as our group’s pri-

mary operating system, I include here instructions for installation, use, and troubleshooting

of programs that may be useful for future users in our lab. Where appropriate, I also show

and explain useful code (scripts) for interfacing with, and/or collecting data from various

instruments used in our lab. I also include in this appendix scripts for plotting and saving

the collected data.

For most of the code shown in the appendix, I use python. If instead, I am referring to

a terminal prompt, or a bash script, it will either be explicitly noted or the traditional “

>> cmd ” for the command line prompt will be shown.

D.1. Determining the serial port for a connected device

In this section, we will learn how to determine which port a device is connected to

after we plug it into the computer. For the sake of this appendix, I use the terms “USB”

and “serial” interchangeably. In general, when Linux adds a USB port for communication,

it assigns the port to /dev/ttyUSBn, where n is usually (although not always) the lowest

available integer. While this is convenient, it can often become confusing when many serial

devices (CPDS detectors, AWPs, measurement equipment, etc) are connected to the same

computer. Although it would be useful to have a script automatically diagnose which device

maps to which port, it has sufficed thus far to run the following command twice—once with
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the desired device on, and once with it off—and look for which device was removed and

added.

>> dmesg | grep ttyUSB

Sometimes, simply turning the device off and on again is insufficient. In these scenarios,

unplug the USB cable, wait briefly (≈ 10 s), and then re-plug the cable into the socket.

If the computer still does not recognize your device, consider rebooting the computer with

the device plugged in or not plugged in. Ideally, one of these situations should enable you

to recognize the device’s port. Note that by rebooting the computer, you may re-map the

ports. Thus, you will need to verify all other device mappings again.

Oftentimes, without requiring a power cycle, the output of the dmesg command provides

some insight to the port-device mapping. For instance, there are typically four AWPs that

are referenced by FTDI USB Serial Device converter now attached to ttyUSBn. Once

you know the four numbers for n, you can individually probe those ports using the AWP’s

identify command.

Similarly, devices which are shown as pl2303 converter are serial-to-USB adapters. In

our setup, these correspond to the detector and the MDLs. By looking at the associated

device ID number—typically usb 2-1.p(.q)—one can decipher whether the device is the

detector or the MDLs that are connected to a USB hub. As a hint, the device that is listed

as usb 2-1.p is usually the detector, whereas the devices that include the additional suffix

.q are the MDLs connected to the USB hub.

D.1.1. User privileges for ttyUSBn access

As is true with much of Linux, user permissions are very important for accessing files and

devices. (For more information on Linux user permissions, google ”Linux File Permissions”).
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By default, the owner of all serial connections is root, and the group with whom it is shared

is dialout. As such, it is VERY important to add all potential users to the dialout group.

You can check whether you are in the dialout group by typing in the terminal the command:

>> groups

This lists all the groups of which you are a member, and one of them should be dialout.

If you are not, you (or an administrator) can add you to the dialout group using the

command:

>> sudo usermod -a -G dialout nealoza

where you can replace ”nealoza” with the appropriate username. Once this is done, you

should be able to communicate with all serial ports on the computer. Now that we have the

ability to talk to the serial ports, we will next look at an interface for Linux that we can use

to leverage this ability.

D.2. Setting up minicom

In this section, I describe how to setup and use a program called minicom to communicate

to many RS-232C, USB, GPIB, and other serial connections. In our lab, we often use minicom

to run commands for communicating with the Nucrypt CPDS detectors. Since this appendix

is written for Unix-based computers, including OS X, if you wish to you use Windows as

your OS, please use hyperterminal for your serial communication needs.

D.2.1. Installing and basic usage of minicom

If minicom has not already been installed, use the following command in a terminal to install

it:

>> sudo apt-get install minicom
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This will require administrator privileges, so if you do not have that for the computer,

either obtain access or have an administrator install the program. Once the program is

installed, you can run the program using

>> minicom

If you wish to enable the colorful interface which often helps when trying to find counts

using the CPDS4 detectors, you can use the command

>> minicom -c on

Using these commands, you now have access to minicom. If, at any time, you are uncertain

about which commands you can use to adjust your minicom behavior or interface, type

CTRL-A Z to bring up the Help Menu. If things are setup correctly, you will likely use this

sparingly.

When you are done using minicom, you can type CTRL-A X to exit the interface and

return to the computer terminal.

D.2.2. Settings for minicom

Once the user can start minicom, they need to ensure that the program is setup correctly.

In order to view or adjust settings for minicom, the user must access the minicom settings

page. From the terminal, the user can type:

>> minicom -s

If minicom is already open, the user can just type CTRL-A O . The main parameters

of interest are as follows: serial port, baudrate, data lengths, parity, hardware flow control,

and software flow control.

The serial port is typically set to /dev/ttyUSBn. Again, n is an integer. Adjust the

baudrate appropriately for the device with which you are communicating.
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Communication with the CPDS detectors uses a baudrate of 115200. Waveplates and

measurement instruments can also work at this baudrate, although other instruments, such

as the CSA, use the traditional baudrate of 9600. Consult their manuals to determine the

appropriate baudrate.

The data length should be set to eight bits. The parity should be turned off, i.e., set to

’N’ for ’None’. There should be one stop bit. These three settings are often expressed more

simply as 8N1.

The hardware and software flow control should be set to ”Yes” and ”No”, respectively.

D.2.3. Troubleshooting minicom

1) I receive a “/dev/ttyUSBn locked” error when I try to initialize minicom.

First, ensure that you are part of the dialout group. If not, see the instructions above

in section (SECTION) to add your username. If you are a dialout member, check to see if

someone else has an open instance of minicom for that port. If no one else is using it and you

do not have another window with it open, have an administrator delete the lock file from

/var/lock/. The file will typically have a name like /var/lock/LCK..ttyUSB0.

2) After minicom is initialized, the screen stays blank.

Check to make sure the device you are controlling is on. If it is on, then the likeliest prob-

lem is that the serial port setting is incorrect. Follow the instructions in section (SECTION)

to determine and adjust the settings appropriately.

3) I seem to be able to do something, but all I see is nonsense symbols and characters.

Check the baudrate at which you should be operating the device in question. Oftentimes,

a wrong baudrate yields improper data communication which translates to gobbledygook on

the screen.
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D.3. Interfacing with and Plotting from Lab Instruments

In this section, I present the code that we use to interface with, and in some cases, plot

data from various lab instruments. The instruments that I will show the code for here are:

(1) Tektronix CSA-803 Communication Signal Analyzer with SD-24 and SD-40 sampling

head modules, hereinafter called CSA; (2) Agilent 86140b Optical Spectrum Analyzer, here-

inafter called OSA; (3) Lecroy LT354 Oscilloscope, hereinafter called Lecroy Oscilloscope; (4)

Agilent E4430A Electrical Spectrum Analyzer, hereinafter called ESA; (5) Agilent 86100A

(86105A) Digital Communication Analyzer, hereinafter called DCA; (6) Arduino Uno.

D.3.1. Plotting for the CSA

1 import os.path
2 import sys
3 import array
4 import time
5 import serial
6 import string
7 import numpy
8 import pylab
9 import pickle

10

11 if __name__ == ’__main__’:
12 # Prologix GPIB-USB Controller serial port
13 comport = "/dev/ttyUSB5"
14 # HP33120A GPIB address (can be checked on the CSA front Panel)
15 addr = 17
16

17 # Open serial port to communicate with CSA
18 ser = serial.Serial( comport, 9600, timeout=0.5 )
19

20 # Set mode as CONTROLLER
21 ser.write("++mode 1\n")
22

23 # Set CSA address
24 ser.write("++addr " + str(addr) + "\n")
25

26 # Turn off read-after-write to avoid "Query Unterminated" errors
27 ser.write("++auto 0\n")
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28

29 # Do not append CR or LF to GPIB data
30 ser.write("++eos 3\n")
31

32 # Assert EOI with last byte to indicate end of data
33 ser.write("++eoi 1\n")
34 #end GPIB configuration
35 # ==============================================
36

37 # Ask CSA for data points from the specified trace
38 #output will be in ascii format
39 #####################################################
40 # Change the TRACE# in following command to select #
41 # TRACE0 = Channel 3 and 4 (SD-30 Sampling Head) #
42 # TRACE1 = Channel 3 and 4 (SD-30 Sampling Head) #
43 # TRACE2 = Channel 1 (SD-24 Sampling Head) #
44 # TRACE3 = Channel 2 (SD-24 Sampling Head) #
45 #####################################################
46 cmd = "OUTPUT TRACE3;ENDCG WAV:BIN;BYT.OR LSB;CURVE? "
47 #send command to CSA
48 ser.write(cmd + "\n") # \n must be included to signal that the command

has ended (this is for the GPIB USB adapter)
49 #instruct computer to listen for response
50 ser.write("++read eoi" +"\n") # \n must be included to signal that the

command has ended
51 #read response
52 text = ser.read(100000)
53 #print(text)
54

55 #now convert the text data to a list of integers
56 points = list()
57 buff = ""
58 i = 0
59 #loop through the preamble without recording any of it
60 while(text[i]!=’,’):
61 i+=1
62 #skip the last character of pre-amble
63 i+=1
64

65 while(i <len(text)):
66 #read the numbers fore each data point digit-by-digit and store each
67 #digit in a buffer.
68 if(text[i]!=’,’):
69 buff=string.join([buff,text[i]], sep=’’)
70 #Once a comma is reached, convert the buffered string
71 #to an integer and concatenate to the list of datpoints
72 else:
73 points.append(int(buff))
74 buff=""
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75 i+=1
76 #concatenate the last buffered value onto the list of data points
77 points.append(int(buff))
78 #print(points)
79

80 #command to ask CSA what the x increments are for the data-points
81 cmd = "WFMPRE? Xincr "
82 #send command
83 ser.write(cmd + "\n")
84 #instruct computer to listen for response
85 ser.write("++read eoi" +"\n")
86 #read response from CSA
87 xincSTR=ser.read(1000)
88 #now convert the string into a floating point number
89 buff = ""
90 i = 0
91 #loop through the preamble without recording any of it
92 while(xincSTR[i]!=’:’):
93 i+=1
94 #skip the last character of pre-amble
95 i+=1
96

97 while(i<len(xincSTR)):
98 #convert to a number by iteratively appending each digit of the

string to a buffer
99 if(xincSTR[i]!=’E’):

100 buff=string.join([buff,xincSTR[i]], sep=’’)
101 i+=1
102 #when the next character in the string ie "E" the buffer is full,

and we have read all the digits of the mantissa of the float
103 else:
104 #convert the buffer to a float
105 mantissa=float(buff)
106 i+=1 #skip the ’E’
107 break
108 #clear the buffer
109 buff=""
110 #convert the remainer of the string to a number by iteratively

appending each digit of the string to a buffer
111 while(i<len(xincSTR)):
112 buff=string.join([buff,xincSTR[i]], sep=’’)
113 i+=1
114 #when the end of the string has been reached, convert the buffer to an

int
115 exponent=int(buff)
116 #multiply the mantissa by the approriate power of ten to get the x

increment
117 xinc = mantissa*pow(10, exponent)
118
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119 #command to ask CSA what the x offset (xzero) is for the data-points
120 cmd = "WFMPRE? XZEro "
121 ser.write(cmd + "\n")
122 ser.write("++read eoi" +"\n")
123 xzeroSTR=ser.read(1000)
124 buff = ""
125 i = 0
126 while(xzeroSTR[i]!=’:’):
127 i+=1
128 i+=1
129 while(i<len(xzeroSTR)):
130 if(xzeroSTR[i]!=’E’):
131 buff=string.join([buff,xzeroSTR[i]], sep=’’)
132 i+=1
133 else:
134 mantissa=float(buff)
135 i+=1
136 break
137 buff=""
138 while(i<len(xzeroSTR)):
139 buff=string.join([buff,xzeroSTR[i]], sep=’’)
140 i+=1
141 exponent=int(buff)
142 xzero = mantissa*pow(10, exponent)
143

144

145

146 #command to ask CSA what the scale factor is for the data-points
147 cmd = "WFMPRE? YMUlt "
148 ser.write(cmd + "\n")
149 ser.write("++read eoi" +"\n")
150 ymultSTR=ser.read(1000)
151 buff = ""
152 i = 0
153 while(ymultSTR[i]!=’:’):
154 i+=1
155 i+=1
156 while(i<len(ymultSTR)):
157 if(ymultSTR[i]!=’E’):
158 buff=string.join([buff,ymultSTR[i]], sep=’’)
159 i+=1
160 else:
161 mantissa=float(buff)
162 i+=1
163 break
164 buff=""
165 while(i<len(ymultSTR)):
166 buff=string.join([buff,ymultSTR[i]], sep=’’)
167 i+=1
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168 exponent=int(buff)
169 ymult = mantissa*pow(10, exponent)
170

171

172

173 #command to ask CSA what the x offset is for the data-points
174 cmd = "WFMPRE? YZEro "
175 ser.write(cmd + "\n")
176 ser.write("++read eoi" +"\n")
177 yzeroSTR=ser.read(1000)
178 buff = ""
179 i = 0
180 while(yzeroSTR[i]!=’:’):
181 i+=1
182 i+=1
183 while(i<len(yzeroSTR)):
184 if(yzeroSTR[i]!=’E’):
185 buff=string.join([buff,yzeroSTR[i]], sep=’’)
186 i+=1
187 else:
188 mantissa=float(buff)
189 i+=1
190 break
191

192 buff=""
193 while(i<len(yzeroSTR)):
194 buff=string.join([buff,yzeroSTR[i]], sep=’’)
195 i+=1
196 exponent=int(buff)
197 yzero = mantissa*pow(10, exponent)
198

199

200 #create an array, xvals, of the same length as points, populate xvals
with the appropriate time values, and store in the numpy array x

201 xvals = range(len(points))
202 for i in xvals:
203 xvals[i] = xzero+xinc*xvals[i]
204 x = numpy.array(xvals)
205

206 #create an array, yvals, of the same length as points, convert the
points values to voltage values and store in the numpy array y

207 yvals = range(len(points))
208 for i in yvals:
209 yvals[i] = yzero + ymult*points[i]
210 y = numpy.array(yvals)
211

212 #plotting the scope trace
213 print("len(x)", x.size, "len(y)", y.size)
214 pylab.plot(x,y)
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215 pylab.xlabel("Time (s)")
216 pylab.ylabel("Amplitude (V)")
217 pylab.show()
218 # Name the files for the x and y values here
219 numpy.savetxt(’XBarSwCW_0015_100m_x.txt’, x);
220 numpy.savetxt(’XBarSwCW_0015_100m_y.txt’, y);
221

222 # fx= open(’savxFile.txt’, ’w’);
223 # fy= open(’savyFile.txt’, ’w’);
224 # fx.write(’x = ’ + str(x) + ’;\n’);
225 # fy.write(’y = ’ + str(y) + ’;\n’);
226 # fx.close();

CSA Code: Tektronix CSA803 w/ SD-24 and SD-40
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D.3.2. Plotting for the OSA

1 import numpy, pylab, glob
2

3 fileList = glob.glob(’./Filter Characterization/*.CSV’);
4 #fname = "./osaSpectra/OSAdgf.csv";
5

6 for fname in fileList:
7 picName = fname.strip(’./’).strip(’CSV’);
8 f = open(fname);
9 allData = f.read().split();

10 szData = len(allData);
11 plotInfo = [allData[i].split(’,’) for i in range(0,47)]
12 xStart = float(plotInfo[11][1]);
13 xStop = float(plotInfo[12][1]);
14 xDiff = xStop-xStart;
15 xInc = xDiff/1000;
16 allData = [allData[i].split(’,’) for i in range(47, szData-3)]
17 raData = numpy.array(allData);
18 raData = numpy.reshape(raData, -1);
19 flData = numpy.array([float(raData[i]) for i in range(len(raData))])
20 flData = numpy.reshape(flData, (-1, 2));
21 xData = (flData[:,0] - flData[0,0])*xInc+xStart;
22 yData = flData[:,1];
23 pylab.plot(xData, yData);
24 pylab.xlabel(’Wavelength (nm)’);
25 pylab.ylabel(’Amplitude (dBm)’);
26 pylab.xlim(xData[0], xData[-1])
27 pylab.xticks(numpy.arange(11)*xDiff/10+xStart);
28 pylab.ylim(-65, 5)
29 pylab.title(fname)
30 pylab.savefig(picName);
31 #pylab.show();
32 pylab.clf();

OSA Code: Agilent 86140b
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D.3.3. Plotting for the Lecroy Oscilloscope

1 import numpy, pylab, glob, time
2

3 psUnit = 1; # Variable to choose between ms or ps (0 = ms, 1 = ps)
4

5 fileList = glob.glob(’./*.txt’);
6 #fileList = [’./IMRAautoCorr120716.txt’];
7 #fname = ’./1550autoCorrG.txt’;
8 #fname = ’./IMRAautoCorr10.txt’;
9 for fname in fileList:

10 picName = fname.strip(’./’).strip(’txt’);
11 f = open(fname);
12 allData = f.read().split();
13 szData = len(allData);
14 plotInfo = [allData[i].split(’,’) for i in range(0,7)]
15 allData = [allData[i].split(’,’) for i in range(7, szData)]
16 raData = numpy.array(allData);
17 raData = numpy.reshape(raData, -1);
18 flData = numpy.array([float(raData[i]) for i in range(len(raData))])
19 flData = numpy.reshape(flData, (-1, 2));
20 xData = (flData[:,0] - flData[0,0])*1000*(29*psUnit+1);
21 yData = flData[:,1];
22 pylab.plot(xData, yData);
23 if psUnit == 1:
24 pylab.xlabel(’Time (ps)’);
25 else:
26 pylab.xlabel(’Time (ms)’);
27 pylab.ylabel(’Amplitude (V)’);
28 pylab.xlim((xData[0], xData[-1]));
29 pylab.xticks(xData[-2]*numpy.arange(11)/10);
30 pylab.title(fname);
31 pylab.minorticks_on();
32 pylab.grid(which=’minor’);
33 pylab.savefig(picName);
34 #pylab.show();
35 pylab.clf();

Oscilloscope Code: Lecroy LT354
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D.3.4. Plotting for the ESA

1 #####
2 # This code returns plots of the ESA (Agilent E4403b)
3 #####
4 import numpy, pylab, glob, time
5

6 # Create variable to determine how to output plot
7 # Set to 0 to only show on screen
8 # Set to 1 to save to a file
9 # Set to 2 to do both

10 saveFile = 0
11

12 prefix = ’../PLDRODebug/’
13 suffix = ’.CSV’
14 # Uses glob to grab every file in a directory
15 #fileList = glob.glob(prefix+’*’+suffix)
16 # For single file use, comment the line above and uncomment the line below
17 fileList = [prefix+ ’TRACE006’ +suffix]
18

19 ctrFreq = -1
20 span = -1
21 rbw = -1
22 vbw = -1
23 refLevel = -1
24

25 # Iterate through all files selected using glob
26 for fname in fileList:
27 plotData = []
28 # Create the name for the file we will save the plot to
29 plotName = fname.strip(prefix).strip(suffix)
30

31 # Open File
32 print(’Opening ’ + fname)
33 f = open(fname)
34 # Read in all the data and divide by lines
35 allData = f.read().splitlines()
36 # Return the size of the file (as a # of lines)
37 szData = len(allData)
38

39 # Parse the "header" information from the file, otherwise
40 # parse the actual (plottable) data from the file
41 for line in allData:
42 ll = line.split(’,’)
43 ll[0] = ll[0].strip()
44 if ll[0] == ’Center Frequency:’:
45 ctrFreq = float(ll[1])
46 print(’Center Frequency = ’ + str(ctrFreq*1e-9) + ’ GHz’)
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47 elif ll[0] == ’Span:’:
48 span = float(ll[1])
49 print(’Span = ’ + str(span) + ’ Hz’)
50 elif ll[0] == ’Resolution Bandwidth:’:
51 rbw = float(ll[1])
52 print(’RBW = ’ + str(rbw) + ’ Hz’)
53 elif ll[0] == ’Video Bandwidth:’:
54 vbw = float(ll[1])
55 print(’VBW = ’ + str(vbw) + ’ Hz’)
56 elif ll[0] == ’Reference Level:’:
57 refLevel = float(ll[1])
58 print(’Reference Level = ’ + str(refLevel) + ’ dBm’)
59 elif ll[0].isdigit():
60 xval = float(ll[0])*1e-6
61 yval = float(ll[1])
62 plotData.append([xval, yval])
63

64 xmin = (ctrFreq - span/2)*1e-6
65 xmax = (ctrFreq + span/2)*1e-6
66 print(’Range:’ + str(xmin) + ’ MHz to ’ + str(xmax) + ’ MHz’)
67 # Convert the data into a numpy array (for plotting)
68 numpyData = numpy.array(plotData)
69 numpyData = numpy.reshape(numpyData, (-1, 2))
70 # Select out the x and y data
71 xData = numpyData[:,0]
72 yData = numpyData[:,1]
73

74 # Plot the data!
75 pylab.plot(xData, yData, linewidth=2.0, marker=’o’)
76 # Add the required "extra" stuff to the plot
77 pylab.xlabel(’Frequency (MHz)’)
78 pylab.ylabel(’Power (dBm)’)
79 pylab.xlim((xmin, xmax))
80 numTicks = 5
81 pylab.xticks((xmax-xmin)*numpy.arange(numTicks)/(numTicks-1)+xmin)
82 #pylab.title(fname)
83 #pylab.minorticks_on()
84 #pylab.grid(which=’minor’)
85

86 # Save the data to a file
87 if saveFile == 0:
88 pylab.show()
89 elif saveFile == 1:
90 pylab.savefig(plotName)
91 else:
92 pylab.show()
93 pylab.savefig(plotName)
94 # Clear the figure from the screen or buffer
95 pylab.clf()
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96

97 # Aaaaaaand we’re done!

ESA Code: Agilent E4430A
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D.3.5. Plotting for the DCA

1 # Plot the spectrogram of files obtained from Southern Photonics FROG
2

3 import numpy, pylab, glob
4 from matplotlib import ticker
5

6 fileList = glob.glob(’./SwTraces/130818/run3/*.txt’)
7 print(fileList.sort())
8 #fname = "./waveform1.txt"
9

10 for fname in fileList:
11 picName = fname.strip(’./SwTraces/130818/run3/’).strip(’.txt’)
12 print(picName)
13 pwr = int(picName[-9:-7])
14

15 f = open(fname)
16 readData = f.read() # Read all raw data as strings
17 readLines = readData.split(’\r\n’)
18 #szLines = len(readLines)
19 #parseLines = [readLines[ii].split(’,’) for ii in range(0,szLines)]
20 #header = parseLines[0:18]
21 #data = parseLines[18:]
22 #print(data)
23 #data = numpy.array([float(data[ii]) for ii in range(0,szData)])
24 data = readData.split()
25 szData = len(data)
26 data = [data[ii].strip(’,’) for ii in range(0,szData)]
27 header = data[0:43]
28 data = data[43:]
29 szData = len(data)
30

31 points = int(header[3])
32 xOff = float(header[22])*(10**12) # Scaled for ps
33

34 data = numpy.array([float(data[ii]) for ii in range(0,szData)])
35 data = data.reshape(points,2).transpose()
36 data[0] = data[0]*(10**12) # Scale for ps
37 data[1] = data[1]*(10**6) # Scale for ps
38

39 (val, mod) = divmod(pwr/2, 3)
40 if mod == 0: clr = (0, 0, val/4.+0.25)
41 elif mod == 1: clr = (0, val/4.+0.25, 0)
42 else: clr = (val/4.+0.25, 0, 0)
43

44 print(val, mod, clr)
45 pylab.plot(data[0]-xOff, data[1], label=(str(pwr*100)+’ mW’), \
46 color=clr, linewidth=2)
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47

48 # Plot the data
49 pylab.xlabel(’Time (ps)’)
50 pylab.ylabel(’Power (uW)’)
51 pylab.grid(’on’)
52 pylab.legend()
53 #pylab.title(picName)
54 #pylab.show()
55 pylab.savefig(’./’ + picName)
56 #pylab.clf()
57 f.close()

DCA Code: Agilent 86100A w/ 86105A



254

D.3.6. PID feedback control using Arduino Uno

The code in this subsection uses the Arduino coding language which is based on the Pro-

cessing and Wiring programming languages.

1 /*
2 PIDfeeback.ino
3 Code to use Arduino as a PID feedback controller for two UMZIs
4 (UMZI = Unbalanced Mach-Zehnder Interferometers
5 */
6

7 #include <PID_v1.h>
8

9 // Define variables/constants for changing PWM frequency
10 // from prescale = 64 (default) to prescale = 1
11 // corresponding to freq = 488.28125 Hz to freq = 31.25 kHz (respectively)
12 // Changes the clock for PWM on pins 3 and 11
13 // Google "arduino TCCR2B" for more information
14 const byte mask = B11111000; // Mask bits that are not prescale values
15 const int prescale = 1;
16

17 // Variables used for debugging
18 // 0 = Off or False
19 // 1 = On or True
20 #define turnOn 1
21 #define dispON 0
22 #define dlyOn 0
23

24 /* *******************************************
25 Many variables are arrays of two elements.
26 The first is to control one UMZI, and the
27 second is to control the other UMZI.
28 ******************************************* */
29

30 // Define variables we’ll connect to
31 double inPID;
32 double outPID[2];
33 double setPID[2];
34

35 // Define the PID gain parameters
36 const double Kk = 0.005;
37 const double Ki[2] = {Kk, 0.0003};
38

39 const double setV = 1.0; // in V (between 0 and 5 V) <<<--------SET
VOLTAGE-------<<<<<

40 const double setPt[2] = {0.25, 0.25}; // Fraction between [0,1] for where
to set the setPoint
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41

42 // Declare pin labels here for universal usage
43 const int inPin[2] = {A3, A1}; // Set analog pin A3 for PID1 in
44 const int outPin[2] = {3, 11}; // Set digital pin 3 for PID1 out
45

46 double err = 0.0;
47

48 /*
49 1 <= upLim <= 255
50 0 <= loLim <= 254
51 */
52 const int upLim = 255;
53 const int loLim = 0;
54 const int diff = 250; // margin between limit and reset point
55

56 void setup() {
57 Serial.begin(9600); // Connect to serial monitor (baudrate = 9600)
58

59 // Set the PWM to output in Fast PWM mode to increase frequency to ˜62.5
kHz

60 // TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM21) | _BV(WGM20);
61 // TCCR2B = _BV(CS22);
62 // Set the PWM frequency to 31.25 kHz
63 TCCR2B = (TCCR2B & mask) | prescale;
64 pinMode(outPin[0], OUTPUT);
65 pinMode(outPin[1], OUTPUT);
66

67 //pinMode(aInPin, INPUT);
68 outPID = {128, 128};
69 //setPID = setV*1024/5.0;
70 setPID[0] = 1024*setPt[0];
71 setPID[1] = 1024*setPt[1];
72 }
73

74 void loop() {
75 // Run loop to perform a task (repeatedly)
76 #if turnOn
77 processPID(inPin[0], outPin[0], setPID[0], &outPID[0], Ki[0]);
78 processPID(inPin[1], outPin[1], setPID[1], &outPID[1], Ki[1]);
79 #endif
80 }
81

82 void processPID(int inPort, int outPort, double sPID, double* oPID, double
Kit) {

83 inPID = analogRead(inPort);
84 err = sPID - inPID;
85 *oPID += Kit*err;
86

87 if(*oPID >= upLim) {
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88 *oPID = upLim-diff;
89 #if dispON
90 Serial.print("\nˆˆˆˆˆˆˆˆˆˆˆˆˆˆ\n");
91 #endif
92 }
93 else if(*oPID <= loLim){
94 *oPID = loLim+diff;
95 #if dispON
96 Serial.print("\n##############\n");
97 #endif
98 }
99

100 analogWrite(outPort, *oPID);
101

102 #if dispON
103 Serial.print("Err: ");
104 Serial.print(err);
105 Serial.print("\t outPID: ");
106 Serial.print(*oPID);
107 Serial.print("\t Set: ");
108 Serial.print(sPID);
109 Serial.print("\t inPID: ");
110 Serial.print(inPID);
111 Serial.print("\t inVolt: ");
112 Serial.print(inPID*5.0/1023.0);
113 Serial.print(’\n’);
114 #endif
115

116 #if dlyOn
117 delay(1000);
118 #endif
119 }

Arduino PID Feedback Control
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APPENDIX E

Dirac Bracket Notation, Linear Algebra, and Hilbert Spaces

Although this information is located in books [118,129,130] and on the internet [131–133], we

will briefly look at the definitions of states and operators using Dirac bracket notation and

linear algebra. This is done for fun, (over-)completeness, and as a promise to my brother that

he should be able to understand this dissertation based on our undergraduate coursework—or

at least our shared life experiences.

Without further ado, any pure state can be represented as a vector. In Dirac notation,

we reference a state with |ψ〉, or orally spoken “ket psi”. Here, ψ is just a label for the

state. For all intents and purposes, that label could be f,ý, o, R, Y, A, or ,. The

respective states for such labels would be |f〉, |ý〉, |o〉, |R〉, |Y〉, |A〉, and |,〉. We

can thus write the state as a decomposition of its characteristic features, i.e., its bases. If

we use |o〉 as an example, its bases include size, color, number of panels, location, and

velocity. Characteristics which remain the same for the entire duration of the experiment

or calculation can safely be ignored. For our example, assuming only one ball is used in a

game (our proverbial “calculation”) and we consider discrete moments in time, then we can

describe the ball’s location on the field as a function of two parameters, x and y. Visually,

this is easily imagined as shown in Fig. E.1. Mathematically, we can write that state as

|o〉 = x |oX〉+ y |oY 〉 . (E.1)
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x
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✛ ✲

✻

❄

Figure E.1. Here we have a field with the ball at (x,y).

The |oX〉 and |oY 〉 terms represent a unit vector in the X and Y directions. These are

appropriately and separately scaled using the x and y coefficients to precisely locate the

soccer ball. This notation can similarly be written using linear algebraic notation instead of

Dirac notation.

|o〉 =



x

y


 = x



1

0


+ y



0

1


 . (E.2)

Here, we explicitly denote the unit vectors, but we should recognize that those are not

necessarily the only bases we can use; any orthogonal bases can be used. For instance, we

can use [ 11 ] and [ 1
−1 ] instead.

Once again, we remark that, in this example, the only degree of freedom we consider is

the ball’s location. Since this has two free parameters (x and y), we say that all states of

this type exist in a two-dimensional Hilbert space. Additionally, sometimes these parameters
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have boundaries. For soccer, the limits for x are -60 m and 60 m. Alternatively, y can range

between -35 m and 35 m. Note that we assume the center of the field is the origin.

Instead, if we consider the color of the ball, we may use the following notation (both

Dirac and linear algebraic):

|o〉 = r |o〉+ g |o〉+ b |o〉 =




r

g

b



= r




1

0

0



+ g




0

1

0



+ b




0

0

1



. (E.3)

For this example, there are three free parameters, implying that these states exist in a three-

dimensional Hilbert space. Akin to an 8-bit RGB description for computer monitor pixel

colors, we can limit the each of the free parameters to integers between 0 and 255.

When we simultaneously consider both location (L) and color (C), our state vector spans

a six-dimensional Hilbert space. We denote this state as follows:

|o〉 = |o〉L ⊗ |o〉C = (x |oX〉+ y |oY 〉)⊗ (r |o〉+ g |o〉+ b |o〉) (E.4)

These soccer ball’s state vectors imply that the ball can, through some magic or fancy

technology, change color depending on its location on the field. To make this mathematically
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clearer, we expand Eq. (E.4) and write it explicitly as follows:

|o〉 = xr |oX〉 |o〉+ xg |oX〉 |o〉+ xb |oX〉 |o〉+ yr |oY 〉 |o〉+ yg |oY 〉 |o〉+ yb |oY 〉 |o〉

= xr




1

0

0

0

0

0




+ xg




0

1

0

0

0

0




+ xb




0

0

1

0

0

0




+ yr




0

0

0

1

0

0




+ yg




0

0

0

0

1

0




+ yb




0

0

0

0

0

1




=




xr

xg

xb

yr

yg

yb




(E.5)

From this, it should be apparent that for each x, y location, there can exist a unique asso-

ciated RGB color. This is the most general possible state for this “magical” type of soccer

ball that can change colors based on its location on the field. This special connection or

“magic” between the color and location is a type of entanglement. That is to say, knowing

the location of the ball immediately tells information about the color of the ball. We remark

that this entanglement is within a single ball’s degrees of freedom.

If, instead, the color and location do not depend on each other, then we can separate the

terms (as initially written in Eq. (E.4)) and act on each degree of freedom independently.

The state of a soccer ball of this type is referred to as separable.

Now, let us discuss when we have multiple soccer balls. We start with two soccer balls,

|o〉1 and |o〉2. The subscripts outside the kets are used to identify the two soccer balls. Let

us assume that these are the boring black soccer balls we started, and the only degree of
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freedom of interest is their location. As such, we can write the two soccer ball’s location as

|oo〉 = |o〉1 ⊗ |o〉2 = (x1 |oX〉1 + y1 |oY 〉1)⊗ (x2 |oX〉2 + y2 |oY 〉2)

= x1x2 |oX〉1 |oX〉2 + x1y2 |oX〉1 |oY 〉2 + y1x2 |oY 〉1 |oX〉2 + y1y2 |oY 〉1 |oY 〉2

= x1x2 |oXoX〉+ x1y2 |oXoY 〉+ y1x2 |oYoX〉+ y1y2 |oYoY 〉 .

(E.6)

Here, in keeping with convention, we simplify the notation by removing the subscripts and

combining both states’ relevant parameter into the same ket, i. e., |oX〉1 |oX〉2 = |oXoX〉.

When using the simplified notation, since we no longer have the identifying subscripts, the

position of the terms in the ket is important. The first term represents the first soccer

ball’s position, whereas the second term represents the second ball’s position. To impress

upon the reader this importance, we highlight the distinction |oXoY 〉 6= |oYoX〉, although

|oX〉1 |oY 〉2 = |oY 〉2 |oX〉1.

Since you are an astute reader, you have already noticed that Eq. (E.4) and Eq. (E.6)

are similar. Your hunch is correct; we treat independent degrees of freedom and independent

discrete objects identically. This time, rather than possibly exhibiting intra-ball entangle-

ment, we can have inter-ball entanglement. In other words, the location of the two balls

can be linked “magically”. In the extreme case, we can witness this entanglement if our

state description implies that knowing the location of one ball deterministically tells you the

location of the other ball. Alternatively, if the two ball’s locations are truly independent,

then we can describe that state as separable.

Up until this point, we have considered only kets and their tensor products to describe our

state. There is an entirely different side of the Dirac bracket notation that we must consider,

and that is the “bra”. The bra of ψ is just the conjugate transpose (a.k.a. Hermitian
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conjugate) of the ket of ψ. In other words, 〈ψ|† = |ψ〉 and |ψ〉† = 〈ψ|, where the † indicates

the Hermitian conjugate. In vector notation, since kets are column vectors, that implies that

bras are row vectors, as shown for the soccer ball’s location in Eq. (E.7).

〈o| = x∗ 〈oX |+ y∗ 〈oY | = x∗
[
1 0

]
+ y∗

[
0 1

]
=

[
x∗ y∗

]
(E.7)

Here, the little stars indicate the complex conjugate of those values. (Yes, we have now

entered the imaginary plane).

Based on this, we can take the inner product of the bra and ket of a vector as shown

below for two three-element vectors, A and B.

〈A|B〉 = (〈A|)(|B〉) =
[
A∗

1 A∗
2 A∗

3

]



B1

B2

B3



= A∗

1B1 + A∗
2B2 + A∗

3B3 (E.8)

Note that the inner product of a state with itself is just the norm of the state. So for the

soccer ball’s location (assuming x and y can be complex), we obtain

〈o|o〉 =
[
x∗ y∗

]


x

y


 = x∗x+ y∗y = |x|2 + |y|2 (E.9)

If instead, we choose to take an outer product of the ket and bra vectors, we obtain the

following:

|A〉〈B| = (|A〉)(〈B|) =




A1

A2

A3




[
B∗

1 B∗
2 B∗

3

]
=




A1B
∗
1 A1B

∗
2 A1B

∗
3

A2B
∗
1 A2B

∗
2 A2B

∗
3

A3B
∗
1 A3B

∗
2 A3B

∗
3




(E.10)
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This is useful when defining operators such as the density operator (density matrix) of pure

states, as shown in §3.1.1.

There are many other useful realizations to be had with the Dirac bracket notation.

Some such tasks include performing projective measurements or determining the probability

of measuring a state given an input density matrix. Rather than explicitly showing their

utility here, we encourage the reader to explore the field and discover these for themselves.

We hope that this appendix does provide the reader with a sufficient basis to understand

the notation used widely in this thesis, and the field at large.
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